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ABSTRACT

The seismic response of curved box girder bridges, incorporating interaction
between the support columns and the girder, has been predicted by several schemes.
The methods incorporate the influence of warping tersion and torsional-bending
interaction.

The results from these variocus methods have been compared to other techniques,
giving excellent correlation. These techniques will be applied in order to eval-

uate the influence of various parameters and the development of design formulations.
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CHAPTER 1
INTRODUCTION

With the advent of the 1964 Alaskan Earthquake, the 1971 San Fernando
Earthquake, the 1976 Tunsun Earthquake (1), the 1978 Santa Barbara Earthquake
(2), and the Miyagi Earthquake (3), bridge structures throughout the world have
undergone considerabie destructive forces,

These earthquakes have caused the bridge professionals to reasses the design
techniques that have been applied, up until that time, for seismic design.

A prime force in such modifications has been the Highway Department for the
State of California (CALTRANS) and the California based professional crganization
Applied Technology Council (ATC).

The present 1977 AASHTO bridge code (4), as related to seismic design, was
greatly influenced by the work developed by CALTRANS. This code suggests an equivalent
static force method for simple structures and when the structure is complex, for
example curved bridges, a computer based response spectrum or dynamic analysis
should be considered.

In this present 1977 AASHTO code, most engineers would utilize the seismic
coefficient method (SCM), because computer criented dynamic programs may not be
available nor are they amenable for direct design. However, the utilization of
the S.C.M., may give erroneous results when designing under seismic conditions
{5), as experienced by CALTRANS. CALTRANS in fact has utilized the response
spectrum technique for the design of many structures.

Because of these conditions and from experience gained from recent earth-
quakes, the FHWA decided to reasses the 1975 AASHIQO code and in 1977 sponsored
a research program directed by ATC (6). The work of this council, in part, was

to prepare a new specification, resulting in the AIC - 6 design guideline (7).






Although this code will be an improvement over the past criteria, there are major
areas of research still requiring investigation. These areas, as suggested recently
by the delegates attending the '"Workshop on Earthquake REsistance of Highway
Bridges", (7) conducted by ATC, include:
1. '"Conduct Parametric Studies for the Seismic Response of Common Types
of Bridges to Determine the Effects of Geometry and Constraint on
Overall Seismic Response"
Parameters should include:
a) Span length
b) Curvature
¢) Columm height and stiffness
d) Material, etc.
2., "Perform Appropriate Dynamic Analysis on Curved Bridges", (8,9) and
develop a simple procedure for the design of curved bridges.
3. "“Develop a Practical and Accurate Method to Zstimate the Fundamental
Period of Bridges".
4. ™"Correlate Vibrational Characteristics of Existing Bridges with Theory".
5. "Prepare Summary of Dynamic Behavior and Characteristics'.
These various areas of research are presently being studied and will encom
pass curved steel and concrete box girder bridges.
The techniques to be employed in the dynamic analysis of such structures
can consist of:
i) response spectrum technique
ii) multi-mode method-response spectrum
iii) multi-mode time history analysis
These various methods are presently being used in this research. The method

that was employed in the work described herein involves matrix formulations



considering interactions between a single ¢olumn bent or multi-columm bent and
an energy solution using the Rayleigh Ritz technique. These results have been
computerized and compared to previcusly developed techniques (10), as well be

prasented herein.

These general theories are now being applied and the influence of various para-
meters studied. These results will then permit formulation of a proposed design

criteria for curved steel and concrete bridges, which will be presented in a later

raport.



CHAPTER 2
THEORY - SINGLE COLUMN BENT

2,1 General

In this chapter, the formulation of the matrix method for the response of
curved box girders, modeled as one dimensional beam, will be presented. Consider
first the original curved box girder bridge system, beam and columns, as in Fig. 1(a),
this system will be modeled as a combination of beam element connected with the pier
element to form the entire structure, as shown in Fig. 1(b). With this basic
modeling, the dynamic response of the entire structure will now be examined.

In developing the response ¢f the curved bridge it is convenient to use
curviiinear coordinates, shown in Fig. 2, where,

Y is the vertical direction

X is the radial direction

Z is the longitudinal direction and
£, n, ¥ are displacements functions corresponding to X, Y, Z directiomns, are ¢ is
the transverse rotation function.

Assuming the box girder structure has rigid internal diaphragm, and thus

maintains its shape, the following displacement parameters &{(z} can be used to

describe the displacement medel of the element;

(1

© = O3 M

2.2 Stress-Strain
The stresses induced on the curved element are represented by five actions or

internal forces and can be described as follows;






=R
Fa

g =< NZ \. {(2)
MT
MB
L
where My, and Mx, are the primary bending moments, NZ is the axial force and

MT = pure torsional mement and MB = warping torsional moment.

The strains are related to deformation according to the following;

r Do 2 o~ -
ec:n + 'g- 1 P Q % fs] E
e T R o -»" o | |n
er = =
- = 8} 3
_E o+ - %, o p o < w > fpl { (3)
{ R >
T.f}‘ + - o) R‘ Q
X ¢ R ; L)
1 2
-4 - 0 L °© Tx ° 7°
~ o d
where R is radius curvature and p = 3%, p2 = 3%2. Accotrding to Hook's law, the stress-

strain relationship for which the material is assumed linear, isotropic and elastic for

one~dimensional problem is given by,
{g} = [D] {e} (&)
where {o} and {e} represent the induced internal forces and the corresponding strains,

respectively; and [D] 1s material characteristic matrix, given as follows;

EI o 0 o) o j

y
EI o) o o]
b4
[D] = EA [u} o} L (3)
(Sym.) GK 0
t
EI
W

where; E = Young's modulus, G = shear elastic modulus, Iy, Ix are the moments of
inertia in the Y and X direction; A = cross area, KT = pure torsional comstant,

and Iw = warping torsional constant.



2.3 Displacement Functions )
qumally a beam element in space can be represented by six degrees of freedom,
three translation displacements and three rotational displacements. However, addiriona

degrees of freedom are required for curved bridge elements, such as warping, which

may be important and must be considered. For example, consider the open cross sectiom
seen in Fig. (3a), or the separated box seaction shown in Fig. (3b) and a three pier
system shown in Fig. (3c¢). If the super and sub-structures are properly mcdeled, then
the warping torsional imfluence should be included. If the warping torsiomal resis
is not considered then the torsicnal resistance may be underestimated, giving erronecus
results.

The expression for warping torsion, of the nodal point displacements, will include
the parameter of twist angle along the longitundinal direction of the beam, thus
increasing the nodal point displacements to seven. Also 1f the twist angle between
the connecticn of the beam and pier is comsidered, then another displacement or
digree of freedom is required thus giving eight displacements at a given nodal point.
Therefore in the following development displacements 61, 52, . e 68 will be used
to express the joint i nodal point displacement parameters, and 69, 510, .. 616
will be used to express jeoint j nodal point displacements parameters.

The nodal point displacements of the element can be given by the following;

g
e "1
e = | )
Jd
where;
rdl - fﬁgﬂ
Oz S1p
£ 1
i
I T SIS
(6} =4 | pis) -
L 3g 7 LﬁIGJ



where;

81, 92, &3, 89, 819, and 811 are translational displacements;

8y, 85, 85, 812, 813 and 8,4 are rotational displacements;

68 and 616 are the rate of change of 66 and 614 rotations respectively,
along the longitudinal direction of the beam, which accounts for
warping torsional influence.

67 and 615 are the continuity condition between the curved beam and

pler. These nodal displacements are shown in Fig. 4.

Assuming polynomials for the one-dimensional displacement model; consequently, a

third and a fifth order polynomials for the displacement functions for ¢ and z , and

a linear displacement function for Y are assumed respectively, thus the following

displacement matrix is obtained;

where;

[§]

{8} = [N] {8}° (N
N7 o 0 0 Na Q N9 o NLO o o] o] Nll o) le
o] Nl e} N2 o o s) o 0 N3 o N4 o) ¢ o
o o NS o] 0 0 aQ o) a o N6 o] 0 o o
L o Q Qo Q 0 Nl o Nz‘ 0 o] o} o o NB 0




and;

where z

[

U

i

1-382 422

3

(z - 222 + 23)1

(322 - 22°

)

(—22 + 23)2

l -2

2

1 - 1020 + 152% - 5z

(z = 6z° + gz°

1,3
E-(z - 32z

1023 - 152

3

4

(-423 + 724

1 3
5 {(z= - 2z

z/%

4

e
0

+

5

- 325)2
32% - 25)22
625
325) 2

zs)£2

(8



2.4 Nodal Forces

Asguming a uniform load q acts on the elements:

~

where 9. qy, and q, are the uniform loads in the X, y, and z direction and q¢

*
is the uniform torque. Assuming now a virtual displacement {§ }, and a corresponding
virtual strain {c}, the change in the total work caused by the stress (internal work)

and uniform load (external work) is computed as:

W= (v} (6} dz = (e)T {q) 2 (10)
Using the nodal point displacements tc express the above, gives;

* *
{§ } = [N] {8 }e, and substituting in Eqs. (3) and (7) gives;

{e} = [p] {6} = [p] [N] {6}% = [B] {8}° (11)
% %
or {e' } = [B] {6 }°
where [B] = [p] [N] or
. N" NY n 1" (2} N' " i1
o N 7
7 R5 o 3 o N9 e} NIO o §é_ o) Nll o le o
[h] " ir 1"
o -N. o -N2 o f; ] fg Q -NB 2 —N4 Q f; o fﬁ
R R R R
— ' - -
{3} = §1 o} Ns el §§ a NQ o V1o e} N; o 11 12 0 (12
R R R R R . R )
T 1" t 1
N N ' X .
o 1l o ig o) Nl o NZ o) Eg 0 gﬁ o N o N‘
R R R R 3 4
1t 19 3}
o iﬁ; s} ifg o —Niv o -N;’ o ffi o ifé o -N" o —N"




substituting (11) into (4) gives;

{o} = [D] [B] {&)° (13)
substituting (13), (7) and (11) inte (10) gives;

(51T 1, (81701 8] azis}® = (67T 4 T {ad a2 (14)
the element stiffness matrix and equivalent nodal point load matrix are therefore;

(F1% = [x] {81% - {Q} , where;

(e} = 7, (817 (D] [B] 4z (15)

and

{or = 7 [N}T {q} dz (16)

2.5 Stiffness Matrix

Substituting [B] and {D] into Equation (15) and integrating, results in the

following matrix;
[k] = [kl + [k], + [k]y + (K], + [x]g an

where [k]i are defined as follows;

10
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2.6 Element Mass Matrix
The influence of earthquake loading, using Newton's second law and considering
the accentricity of centroldal axes and shear center, will now be examined. These

inertia loads include element vibration acceleration (qv) and earthquake acceleration

(q,) loads and can be expressed as;
<

(18)

Censider first the element vibrations (qv). Examination of Fig. 5 ghows the

eccentricity = between the centroidal axes and shear ceater, where the radisl accel-

eration is given by; 828, _ 82%  8%4. e. The radial horizontal inertia force is
st 3te  8te
therefore;
= -3 Iy = —-8Am + ¢ e
qVX p Am £ ¢ (g b e)

Similarly Dyxe produces a torsion of ~dux " e, therefore the torsional inertia

force is;
Ly = ~(PT0 + qp @)

The total element vibration q, is therefore;

(a, ) [ea G+ e 9 Ay ° 9 Ae ]
pdm # o] A o] .
lg,} = < B >~ ~5 : {85
- oAg? o 0 o
L Yo { oI ¢ 4 pde(Gte - o) ! e a I+ Amé
- =0 [A] (3} = = [A] [§] {§}® (19)

whers 0 =

unit volume mass,

ross section in calculating mass,

I = mass moment of inertia

18



Substituting 4, into (14), the equivalent inertia force as a nodal point load is

described as;

Q. = - [m] {85} (20)

v

where:

T

fm}] = /7, (W1~ ¢ [A] [N] &2 (21)

2

andmis element mass matrix., Integrating the above equation, gives;

[m] = [m]I + [ml, + [m]3 (22)

where my, oy and m3 are given in the following;

17
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2.7 ’ Seismic Mass Matrix

In developing the seismic mass fnatrix, curvilinear coordinates will be used,
In general the earthquake acceleration, for the cartisian coordinate system, will
be oriented in three-direction. Therefore the X and Z accelerations must be trans-
formed into radial and tangent directions. As shown in Fig. 6a, the geometrical

relationships can be written as;

£g= g‘{cos § <+ §2 sin 9
ﬁ=
g °y
wg=-g‘{ sinS-i-gz cos 8-

¢ = 0

As given by Eq. (19), the ground acceleration load matrix qg can similarly be

written as;

quw - OAm(’ég + te) N - cos § o sin & =
agy oA i o 1 o .
N — P
tagh =4 L =" mB =P 5y
qu OAmlP -gin § 0 cos § &,
. L 4 A e £ s - -e'cos 8 o e sin &
gy | pI6 + oA e( £ + de) - 4

==pA [T] {&}

{q} = —ealTI{a} (23)
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Yow substituting Eq. (23) into Eq. (18), gives the squivalent earthquake inertia load;
o = - - vT - = - = 4 "1
{Fig oA SN [T]dz {g} gy (gl (24)
where,

[gn] = pa_ s, (M7 [T]dz

Yow substituting [N] and [T] into the above equation and integrating, gives the
following element seismic mass matrixrfgm], where the sind and cosd terms, using

Taylor series, can be written as;

Sin 8 = - 22 .2y . 2 223

and

. 3
< 2
Cog & = (1 - 3—5 2”) Cos ei + é%lz - iﬁg 23) Sin ei
2R - 6R
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2.8  Pier Element and Coordinate Transformation

The basic pier element is similar to the curved-beam element except that pier is

assumed as a straight element. Therefore the basic curved beam element matrix

can be used to develop the local stiffness matrix (Kp) and mass matrix (mp)

for the Pier element, by letting R + «». The curved beam element does not have to
be transformed from the local coordinate into the global coordinates, however

the pier element, must be transformed by using the following formula;

{sp}e = L] {8% (25)

where L ig the coordinate transformation matrix:

=]t
o Lj (26)
it o o] 7
0 o -1 CD (:)
o 1 o
1 o] Q
[l =[] = O ° o -1 <
Q 1 o]
e’ -1
- C:) C:D 1 o _

The stiffness and mass matrix for the global coordinate system, for the pier

element, are therefore;

&

[k )1, = f:.AJT [0 [z (27)

U]

mlg = 1" (a1 [1] (28)
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The intertia force components of the pier due to earthquake acceleration, can

be calculated by using the following local coordinate system formula;

where el

Substituting Eq.

[ cos 81
Sin 94
= - QA
m
0
0

(29) into Eg.

mass matrix for the pier element;

Egmp] = pAm

E

cos €3 Q

3 §in 9, o

° %

_% Sin 8y o
12

L
cos 8 o
10

0 o
% cos & 0
s 8in 8, o

o 4

(16) and

0 Sin 8,
0 -cos 9
1 0

,o 0

is a comstant, as shown in Fig. 6b.

;5 Sin 91

-} cos 83

i COs 91
12

L .
== Sin 93
10

129

25
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{8} = -pA{TPI{‘g} (29)

integrating, gives the following seismic

(30)



The local coordimate transformaticn, into the global coordinate system, is

obtained from;

i T
e 1g = [L] [gmpl (31)

Omp

2.9 Dynamic Global Egquations and Earthquake Response
Using the general dynamic equilibriuﬁ equation ground acceleration due
to seismic lcading, assembling the stiffness, mass and seismic matrix, and inrradocise
the damping {C], the following global equation is obtaiﬁed:
B L8+ [€] (8 + (K] L) = -[6]] {g(t)} (32)
where [M], [C] and {K] are mass, damping and stiffness matrix in global coordinate

respectively and {G] is the seismic mass matrix representad in the global coordinate

system and {g(t)} represents the three directional ground accelerations.

Boundary Conditions:

In solving the bridge problem, the following .set of boundary conditions
will be assumed;
1) beam: hinge: 8§; =0, §32 =0, 83 =0, 85 = 0 and §7 =0
roller: §; = 0, 82 = 0, 8 = 0, and 87 = 0

2) beam and pier:

fixed end: 8§; = 82 = §3 = 8§, = 85 = 65 = 0

Using now the characteristic vector [¢], as obtained from the free

vibration equations and transformed inte global coordinates, gives

1
{8} = [e] {Y} = [91, D
(o] {1} = [91, o2 5] Fz} 35
T
Q

where Yl, YZ, "'Yn are coordinate values and a function of time. 41, ¢2,
...¢n are calculated from the free vibration equations, and must satisfy the
following equations;

(K] [e] = [22] (M] [9] = © (34)
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and from orthorgonality;

[e1F (K] [8] = [92]

(35)
r 11
[e17 (M] [2] = [I]
where [Q] is the frequency diagonal matrix. Substituting Eg. (33) into
Eq. (32) and multiplying by {@]T gives n uncoupled differential
eguations:
() + 2800] (3} + [82] (¥} = - (917 [ ] (&(e)) (36)

or (¥} + 25[A] (¥} + [RR] (T = (4] (g(e)}

where £ is the structural damping ratio and [y] is the mode shape reference
coefficients. If the ground acceleration {é(t)} is known, then {Y} can be

determined. Substituting {Y} into (33), the displacement response value

at every nodal point can be evaluated. If the response spectrum analysis is used, the

corresponding frequency spectrum displacement {Sd} , can then be determined.

Therefore the displacement cocefficients are:

{Y} max = [v] {54} (37)

If the acceleration response spectrumv{Sa} is used, transformation into displacement

responsel{sd} is obtained by applying {Sa} = mz{Sd}.

The value of Sd from the response spectrum is the maximum, however

these maximum wvalues do not occur at the same time, therefore the following

formula is used to calculate the node point displacements;

§ = /8,2 48,2+ ,, (38)
The element forces are given in two parts, (1) the force SA due to

alement deformation, and (2) the force 82 due to the element inertia

force. The forces SA is given as,
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{s,} = [x] {6} = [kI°(2]° {1} | (39)

The inertia force is produced by the element vibration acceleration, therefore

the equivalent accalsration of the element vibration is;

a1 = o1 W3] )

the corresponding element end forces are therefore;

{53} = [21%{a}% = [0]%[e]® [w2] (¥} (40)

the total end forces are therefore;

{5} = {SA } o+ {SB} (41)

where according te the response spectrum method,

S =/ 8512+ 3,2 4 ..... (42)

28



2.10 Computer Program Flow Chart

Using the matrix formulation, a computer program was developed to calculate
the structural natural frequency and mode shape. These results, in conjunction
with the response spectrum, were then used to determine the displacements
and internal dynamic forces. The general flow chart for the computer program

that was developed is as follows;

{ Input structural information ;

l

' Formulate global stiffness matrix
and global mass matrix

t
| Solve characteristic equations |

[

| Formulate seismic mass matrix
i
| Mode shape reference coefficient |

Response \“\5\ No

Spectrum? l
es 4
| input respomse curve ; ¢ input earthquake acceleration
i i record
!
. get displacement coefficient , | solve differential equations
; l for displacement factors
!
!
superimpose respomnse ‘ superimpose response
by square root method | values |

i i

! outgutl




2.1l Example

Usineg the matrix method described herein and the resulting computer
program, a three span continuous bridge, shown in Fig; 7(a), was analyzed and
the results compared to the SAP iV computer results.

The bridge consists of a three-span continuous curved-beam bridge, with
the left end hinged with all the other supports on rollers. The span lengths
are 100', 100', 100', the radius is 600' and the pier height is 30'. The

material properties are;

432000 K/ft2

Young's modulus E

shear modulus G 183050 K/ft2

density o = 0.004658 Kslug/ft>

Assuming a constant cross section, the sectional properties are;

The bridge was modeled with 16 nodal points and 13 elements, as shown ia

Fig.

following table.

7(b}.

The frequencies, from the dynamic analysis, are listed in the

The results obtained from a space frame system (six degrees

of fraedom at each nodal pcint), using the SAP IV program are also listed.

FREQUENCIES (CPS)

frequency NO. curved-beam method SAP IV results
1 20.22 19.96
2 25.00 25.12
3 31.73 31.99
4 44,40 44,14
5 45.33 45.15
8 53.53 53.48
7 91.34 91.78
8 101.40 97.39

2 4 4. 1, 4 - 2 2

A(EET) Ix(ft ) IY(ft ) &r(ft ) Iw(ft ) Am(fe™) Im(K/ft sec’)
beam | 61.18 425.9 5696.0 417.0 0.1 61.18 0.001
pler 35.93 300.90 138.3 178.7 0.1 35.93 0.001




As can be seen the frequencies and corresponding mode shapes, as shown in
Fig. 8, agree well with the SAP IV data. The following mode shape figures,
shown in Fig, 8, illustrate the mode shapes that cccur in the radial direction
(1,4 and 7), 4 mode shapes that océur in the vertical direction (2,3,5,8),
and the axial direction mode shape as given by frequency 6.

Using the response spectrum method, the internal forces are calculated
by both the curved beam method and SAP 4 program, giving the following results.
The response spectrum curve that was used is the 1940 E1 Centro Earthquake

record (1g), with a damping ratio of 5%.

TRANSVERSE EARTHQUAKE FORCE

curved-beam method . SAP 1V
x node 7 | 577 = 107t .580 x 107+
direction -1 -1
displacement (ft) node 8 .660 x 10 669 x 10
.internal (K-ft) element 4 My 139 x 105 JA39 x 105‘
forces 5 5
element 3 My 126 % 10 . .133 2 10
element 7 My .193 x 10° .204 % 10°
VERTICAL EARTHQUAKE FORCE
curved-beam method SAP 1V
~ -1 =1
b4 node 3 . W177 x 10 .161 x 10
direction : -1 -1
displacement(ft) node 8 .231 x 10 .216 x 10
4 4
internal(Kft) element 2 Mx 428 x 10 . 456 x 10
force or 4 4
iK) element 6 Mx .605 x 10 .589 = 10
element 4 N .536 x 10° 516 x 10°
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LONGITUDINAL EARHTQUAKE FORCE

curyed-beam meathod

SAP IV
z node 16 .988 x 102 .942 x 1072
dirsction -2 -2
displacement (ft) node 7 415 x 10 L482 2 10
internal (REE) element 1 N .107 x 10° .107 x 10"
force orl 4 4
() element 3 My .793 x 10 .804 =z 10
A
element 7 My .603 x 10° 625 ¢ 10°

The preceding results represent the design values due to earthquake forces

in the three directions.

These results are in close agreement to the 3AP IV

results, but the method developed herein considers warping and the radial

influence on the curved-element.

Also of importance is fewer nodal points

- are required to obtain the sams accuracy, as shown in the following table.

CURVED BEAM SOLUTION FREQUENCIES (CPS)
Mode 4 elements 3 elements 2 elements
1 ] 12.71 12.72 12.77
2 46.11 46,23 46.56
3 51.29 51.70 56.76

As can be seen, using 4, 3, or 2 elements results in essentially the

same frequency, thus a minimal number of elements are required for the

Same accuracy.
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CHAPTER 3

THEORY - MULTI COLUMN BENT

3.1 General

In the previous Chapter 2, the response of continuous curved beams, supported
on single column bents was examined. This analysis required certain specified
boundary conditions btetween the columns and beams and their complete interaction.

If the pier bent consists of multi columns, as shown in Fig. %a, the
rigid pier cap will restrain the piers such that the rotational and vertical
influences from the curved beam are negligible. Therefore the vertical and
rotational interaction between the beam and pier does not exist, and thus can be
separated, in solving the curved beam response, Therefore, the primary dis-
placements for the pier will be radial, longitudinal and rotational, and for
the curved beam the primary displacements will be radial and longitudinal,

As shown in Fig. %a, the radial displacement is assumed as Ep. As shown

in Fig. 9b, the displacement in the longitudinal directicn is wp.

It is alsec known that the most critical element for these types of
bridges is the pier, therefore in the following discussion, emphasis will
be given to the transverse vibration of the pier.

As shown in Chapter 2, curvilinear coordinates will be used, where X is
the radisl direction, Y is the vertical direction and Z is the axial direction.
The terms &, n, and ¢ are displacements corresponding to x, ¥y, and z directions.
The displacement of pier elements in the x and z directions are represented
by displacement functions Ep, wp’ and torsional angle ¢p. For the curved-beam
element the displacements considered are the radial displacement £ and tangent

displacement .
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3.2 Pier Element
The pier element describing the radial direction, uses a shear type,
but in tangent direction the beam element will be used.

The displacement parameters for the pier are;

{5}P - Y ¢y

The bridge pier element nodal point displacements parameters as described

in Fig. 10, are;

i
{6 }% = (2)
? 1 s
. p3
SR (" )
' v,
-~ ' = < Lrp
{api} { vy > {apj} \oj (3)
by ¢y
t 1
|t UJ )
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Assuming the displacement function and evaluating usins known nodal valuas
then it is obtained,
{s 3= [N}_{51®
P s IP P

NS o] o] Q o H& Q o) o} 0
d - 3 (&
an [Np] ) Nl NZ o o2 o Y3 N, o o (&)
0 Q o Nl Nz Q a o H3 N& :

wnere:
3 ~—
Nl = 1-3y+2y
2, .3
Ny = (F-2Z;+y)R
2 3
N3 - (3:7 - 27') , (5)
N, = (—y2 + ?3)2
Ns = 1 -3
Nﬁ = 3 J
the induced force vector is;
~ Qx“
1M
X
{Q}p = < L (6)

LG )

where i radial 'shear
radial bending moment

pure torsional wmoment

o E O

warping torsional moment
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the strain matrix is;

r 3
8£P P 0
ay
2
32¢p ¢ P
{e} = <352 ¢ =
a o
P
¢P
Iy -0 o
\<324_ J
3y
1 = [Pl N e =
le LA R
where
3
P =5y and
¥
{'NS o] 0 o] o
" 1]
o N N 0 o
81, = oz
o] o ] Nl N
1t "
] o o —Nl -N2
the Elastic matrix is;
IZEIZ
23
0
[D]p = EIX

S

where

12EI
_—

3

EI&J

o Ay
3
]
wp IO
P
P
¢P
_pz_
=2
A[B}p {6}p
1
NS 0 ] o o
Qo WB N4 Q 9

is the equivalent shear stiffuess of the pier element.

o))

¢-)]

(9)



Using Equation (2-15), the pier element stiffness matrix can be developed;

x] =/y 1817 (D] [B] 4

(10)

Substituting [B! and [D] into Eq, (10) and integracing gives the following:

k] = O] o+ (k]

where k1 and kz are defined as;

pn

(k], =

[k], =

-

lZEIz o o o o]

lZEIz 0
g e
leIx EEIX ) ) Q lZEIX
PE 24 T
ﬁEIx 0 Q ] 6ETL
& - g.&
6GKT GKT o
3% 10
SGKT£ o 0
12
12EI 0
Symm. % z
‘ A
lZEIx
£3
0 ) 0 ] 0 Q o]
) ) ) Q ) 0
) ) ) ) 0
1281, 6ET, o °
St
4EIw o} o
L
) )
Symm. . °
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IS o !
6EL 5] o
X
if
2EI Q o)
. P4
2
o 96 G
54 10
o GKT GKT£
10 T 30
) o o
6EI o a
12
4ET o o
2z

6GKT EEZ

52 - 10
SGKT
12
) ° 0
e ) )
0 ] Q
o -12ETw 8EIw
13 2
o _ SEIw 2EIw
22 A
] ) o
0 ) o
12EIw =-6EIw
&7 22
LEIw
A

(1L

(12)

(13)



Using the following equation as given in Chapter 2, the element mass matrix

can he developed as follows:

ml = oo T o [a] M) av

where p is the unit volume mass and for pier element [A] is defined as;

A 1L
Dm
2 o
(Al = o A
pm
] o

where A is
DIl

Iy

Eq. {4) into

is developed as follows;

22 o o o
6
13 1122 o
35¢ 210
2% o
105
13% Tpm
35 Apm
fm] =54
pm
Syrm.

1122 Ipm
Apm

23 Iom
105 Apm

the cross section area used in calculating the aass.

the [m] equation and integrating, the pier element mass matrix

.2 o 0
12
o 9, .13
S ERT
o 13 2-_1 ;3
Z20~  Tao-
o] Q o]
[ o] [s]
22 o o
6
13 11.
35 T Z1o%
23
105

o o
Q )
Q )
92Ipm _ 1322 Ipm
70Apm 420 Apm
13221pm _ ﬂalpm
420 Apm 140 Apm
0 !
2 o] o]
) o
132Tom 112%Ipm
35 Apm 210 Apm
23 Ipm
105 Apm

Now substituting




3.3 Curved-Beam Element
As described

be neglected, and

(8} = {;}
whare the element

therefora;

i 3

S O A €

{6}° = i ' {Gj}= '
51 Ei 51

vgﬂi Ej

previously, the vertical and rotational vibrations will

therefore the curved-beam displacement f[unctions are;

Now equating the beam £" function to the functiom ¢', and using a fifth

order polynomial to express the £ displacement fumction, gives

(s} = (w1 (81°
where
Ny o ¥z Ny Fygooo Fy
(§] =
o NS Q Q 0 N6 0
and;
N, = 1-102° + 152" - 62’
NS 2 (z - 623 + 8:4 - 325)2
N9 - 2(22- 323 + 324 - zs)iz
Nloa 1023 - 1524 + 624
Nll; (—423 + 'F’z"+ - 3:5)2
Nip* 2 (23 - 0.52° + z2)22
NS = 1 -z
Né = z

45

12

where z

z/

(14)

nodal point displacements parameters, shown in Fig. 11, are

(13)

(16)

an



Considering now the internal bending moments and axial

force vector can be written as follows:

|

forces, the

{g} = (18)
NZS
and the corresponding strains are;
£ + RL‘- o B
{8} = [P} {8}
_§., + q,‘ _;
R R P
{e} = 3] [N] {83° = [B] {&° (19)
where
" ' " 1" " ' "
N _I_N } A ‘ n
O B g Ny Ny @ N, o,
- no)
. ! “
R N Ry Wy s P Fh
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Substituting [B] and [D] inte Eq. (10), gives the curved-beam element

stiffness matrix and follows;

where [k}l equals;

[e],= =1,

and [k]2 equals;

[k}2 = EA

1812
462R

o

k] = [k], + [k],
120 o 60
753 724
1 L
1R% IR
192
352
Syum.
1 311 22 281
2R 4620 R 53440
1 L2 1
) 10 ] 120
52 23 69
3465 RS 55440
—1
9240
Svom.

11
335

32
35

_ 120 o 6Q
727 70<
0 _ 1 ___;
IR< IR
_ 80 o1 108
712 iR 352
-1 o A
72 33
120 o _ &0
723 72
L Y
R* R
192
354
25 23 _ 1 _ 151
331 RZ 2R £620
11 _ 1 - L
7R ) 10
15122 1 & _ _ 133
4620 RZ ~ 10 R 13860
181 23 1 22 13
55440 R¢ ~120 R 13860
1812 _ 1 311
462R% 2R 4620
1 L
) 10
32
3465

~J
™

[+]

[
= nlp

¥

~1}
Q

- ~1
o *"lw

glo ge

N

(&)

?Uql?n = ;r'i\lz-;-\, :ﬂz} Pﬂ':«a Wi sﬂm

|u
_I

=
w




T = pA
m

Using Eq. (2-21) the element mass matrix is developed as follows:
181 o 311,z 281, 3 23 0 151,» 181,53
152> %620~ 554407 731~ ~ %620% 55440~
1 o o 0 1 o ]
3* [
52£3 ngk 15122 o - 13323 13,4
3465 55440 4620 13860 138607
125 lél£3 0 _ l3£g l.s
9240 55440 13860 11088~
Sywm. 181z o L 311, 281, 5
462 4620" 55440~
1 0 o
5
52,1 - 23k
3465” 18480
1,5
) 3240~

The pier element matrix is written in 2z local coordinate system which is the
same as the global coordinate svstem, therefore it is not necessary to use the
transformation matrix. However, it is important to recognize the differences
in the nodal point parameters of the beam and pier, when developing the global
matrix.

This is necessary because of the different continuity cenditions,

between the connection of the beam and pier, which is given as follows;

roller: & = &
Using the following global equation for free vibration and the appropriate
honding conditions, the frequency and eigen vector, are then determined.

[k] {8} - o2[M] {8} =0 (21)
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3.4 Seismic Mass Matrix

As discussed in Chapter 2, curvelinear coordinates do not coincide with
the earthquake cartisian coordinates, therafore a transformation of the
earthquake acceleraticns into structurzl curvilinear coordiantes are necessary.

The acceleration components, as shown in Fig, 12, for the curved-beam element

are;

cos 8 'Sin § g )

Lo )

fay

[

0
e

e
-5in 8 cos 8 4 S

{3y = [T] {3} (22) (22)

The seismic mass matrix for the beam element is given by;

(g ] = r, 0% 5 (7] dz (23)

It is convenient to integrate this equation using the sin £ and cos 3 terms,

listed as follows:

Sin 3 = §Sin 8 z cos 8,

i~

cés § = cos 81 - z 8in 8

W M|

i

These sin and cos equations represent a condition when the ratic (2/R) is

less than 1/10, and are obtained using Taylor's series expression.
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Substituting these sin and cos relationships into Eq. (23) and integrating,

gives the following seismic mass matrix for the beam element;

22 2 3 22
7R F e 25 = 78C
2 22 22 2
-t @& §x5 * ¢
423 22 22 423
losk° T 16¢ 10° - 1058
a4 23 g3 a®
2808° T 120° 130° K
[gm] =
éﬁis + % 2 522
14R 2 25 - 22=g
2 14
2 2.2 22 ]
-t R 3g0 T Of
13 23 22 22 13 23
- Z210R ° - 10° “10° * 3im T
2t 23 23 24
| 7R ® T 1o ¢ 126 ¢ 3108C _]

where § = 5in 3, and C = cos 8..
i i

The components of the earthquake acceleration for the pier element are;

qx _ cos Gl Sin 61 ’
{Q}p =14, - —Sin<el cos 8, (g} = [Tp] g}
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Substituting Eq. (5), [¥p] aad [Tp] into Eq. (23) and integrating, gives the

seismic mass matrix of pier element as follows;

1 1
3¢ 2
= 1. 1
A
. 2
12° z°
] 0
a o]
[ngp = . )
3¢ 35
1., 1
-7 2¢
_ i [
12° 1z~
0 e}
3.5 Dynamic Global Equations and Earthquake Response
After assembling the stiffness, mass and seismic mass matrix, and
applying the viscos damping matrix [C], the dynamic equilibrium equations
under seismic lcoading can be obtained as follows;
] {8 + [c] {8} + [K] {8} = -[Gml{g(e)} (27)
Using the characteristic matrix {&¢], as cobtained from the free vibratiom,
and using a transformation matrix;
{6y = [&] {¥v} (28)
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and substituting Eq (28) into Eq. (27) and multiplying by [¢]T, gives n

uncoupled differential equations of the following form;
[ o+ 2¢ (el @l+ @21 (¥ = -[e]" [Gm] (g(e)} (29)

The sclution gives the value of {Y}, which is then substituted into Eq.
{28) in order to obtain the resulting earthquake induced displacements,

The resulting intermal forces are then determined from the following Equation

{s} = ([x1° [¢1® + [m]® [01° [w2D]) {¥} (30)
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CHAPTER 4

THEORY -~ RAYLEIGH RITZ METHOD

4.1 General

The Matrix Method, as described in Chapter 2, provides a method that
is wvery accurate for dynamic analysis. Furthermore, it is very effective
in calculating the earthquake response of curved bridges. FHowever, the
computation time required by the computer is excessive and thus is very
uneconomical. It is therefore the purpose of this chapter to present zn
alternate method in calculating the dynamic frequency and mode shapes.

Then the spectrum method is used to compute the earthquake response of
curved bridges.

In order to determine the actuzl vibration conditions of a curved beam,
the energy effects due to bending, mass eccentricity, axial force, torsion
and warping must be determined. Also one primary requirement in utilizing
the Rayleigh-Ritz Method is the determination of the mode shape fimction.
As it will be described herein, the deflections due to varicus static loads
will be selected as the mode shape function and linear combinatiom will
give the final mode shapes. Using therefore the deflection under static
load as the mode shape function, the internal forces can then be calculatea

directly from the curvature of the defected shape.
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4,2 Basic Equations

For convenience, the curvilinear coordinate system as shown in Fig. 2
of Chapter 2, will be adopted to describe the curved beam.

The displacement {A (s,t)} is a function of the coordinate and time,
which is given és follows

{a} = {8(s)} - Y(©) 6N

whera Y(t) is a time function.

{8} is the wvector of the displacement functions of the elements of the

bridge structure and can be represented as;

£ (z)
n (2)
v (z)
{8} ={¢ (2) } (2)
Ep(i,Y)
wp(i,Y)
. .

where &, n, ¥ are the displacement functions in the X, ¥, Z direction for
the element 4Z and ¢ is the twisting angle of the beam. The function
Ep(i,Y) is the displacement function in X direction of element dY of the
ith pier, and ¢(i,Y) is the displacement in Z direction of the ith pier.
The stress can be represented as a function of actions, and are as

follows;

MY

M

=z

o} = |V,
Yr

e (3)

56



where My, M., are the bending moments of the beam in ¥ and ¥ directiony

Z

beam respectively. The actiocns M

and M
Zp

in the X and Z direction respectively.

N, is the axial force of the beam and MT and MB are torsion and warping of the

are the bending mogents in the pier

The corresponding strain can be reprasented by the following Eq.;

( ~ 2 n
,b' 3 é aJ
{&" +— ) Q R 3Z 0
2
- - 0 > 0 -3
£ 1 3z 3 ‘
Wl . e - —
4 R R Q 3z 0
< % :
" rl" 13 3
"+ = 0 = = =
R R 2 0 272
::; Q 0 0 0
uu; 0 ] 0 0
AN J
or

{e} = [P] {&2

Using Hocke's Law for induced internal forces;

{o} = [D] {e}

where

GX

]

pX

N
~J

Qr

a>
4

(4)

(3)



When the earhtquake occurs, the maximum potential energy of the structure is given

as follows;

s2d Mo ) o (e - TE wf oo e
2
v=u_ L

max 2 (7

The maximum kinetic energy of the structure is given by;
T =% [{i+4q} m] {4 + q} qs
2. max max (8)
where g is the displacement of the structure due to the ground motion, and
the differentiation given is with respect to time.

The mass [m] given in Eq. (8) is given by;

pA 0 0 pde

0 pA O 0

0 0 paA a 0
[m} = ° )

cde O Q oI + pde

R (9)
°p%p
a
A
DP P»

where e 1s the eccentricity between the centroidal axes and the shear

center. Substituring Eg. (1) into Eg. (8), gives,

o2 .
Ta= J{s}T (] {3} ds + Y{ {517 a] {4} ds +%J{Q}T{m] {4} as
2

<.

+ Y J{a}T (a] {4} ds + T
According to the Lagrange Equaticn;

4 f 3T 30
-]+
dt 3? Y
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therefore the following equation can be cbtained;

5oL Uhax ¢ = 'I{5}T [m] {q} ds (10}
Tmax Tmax

which is the dynamic response differential equatiom of the curved beam
where damping ig neglected.
4,3 Eigenvalue Sclutions
' 1f the displacement functiom {§} is accurately determined, then based on

the Rayleigh-Ritz Method, the frequency w of structure is given by;

2 _ Tpaw _ J({P] {s1T (D] ( [P) {8} ds (113
Toax f (53T [m}{s} ds

w

However, it is difficult to obtain an accurate displacement function {8},
therefore the linear combination of several functions fFl}, {FZ}, . will be

used to represent {§}?

Let

-

N (12)

sz
0 (13)

Substituting Eq. (12) into Eq. (11), gives

2 L LAt [x] (a
g (a)

W

where the generazlized stiffness matrix is;

(31° (0] (3] ds (14)



and

(8] = [P] [F] | ' (15)

the generalized mass matrix;

] ={(F]" [m] (F] ds (16)
Using Eq. (13) gives;

[K] {A} - w2 [M] {a} = O (7

which is a homogeneous equation of {A} whose solution gives the frequency

w and eigenvector {A}., Substituting {A} into Eq. (12), gives the corresponding

mode shépe.

4,4 Displacement Functions -~ Three Span Structure

The primary requirement in using the approximation method, is to'select
the mode shape function., As described herein the deflection curve as obtained
from the static loading, will be used as the mode shape function for one
through four span continuous curved bridge. The resulting mode shape functions
for'l, 2 and 4 spans are given in Tables 6, 7 and 9. The techniques
required in developing the fumctions and matrices will be illustrated for
the three span bridge.

A 3-span continuocus bridge is shown in Fig, 13, with a total length S
and an end span length of aS. The height of the end pier is hy and the height

of the interior pier is h The connection between beam and pier on the left

2.
end 1s hinged, with rollers at all the other supports. Considering these
support connections, 10 displacement functions are required which include;

3¢, 3&, 2n and 29y.

(1) Displacements in the radial direction

The displacement will consist of 3 functions and are given as follows;

£, is the deflection due to wniform load as shown in Fig. 14(a) or

1

£ (z) =S - F(z) =5 - (% - 223 1+ 2y (18)

&0



Z
where z = 7

8
£, is the deflection due to a unit displacement at the interior piesr, as
shown in Fig. 14(b) or

z3 + 3¢ (a=1) z ; O
a

A

Z

(19

<
<

a
z 0.5

| A

£,(2) = §F, (a,2) = §- {’3622 ez 4

when 2>0.5, the same displacement function can be used if the structure is

symmetric. &3 is the deflection due to a unit displacement at the end pier,

shown in Fig. 14{¢), or

‘53 (Z) = S.FB (G,Z) = 3 {}?2(C!,G.) = Fz (G,Z)] (ZO)
If the support of the structure is on an abutment, this function
can be neglected.
The pier displacement, as shewn in Fig. 15, is given as;
1 2
Fpy =37 G- (21)
where:!
= X
y h
Because the coﬁnection between the beam and the top of pier is hinge,
the deflection of pier will be determined by the displacement of the beam.
The deflection of the interior pier corresponding to the functions £, 52
+ s
53, are therefore;
‘;- = - +
D4 () 3y () o1
Epi (y) = £y (@) - Fpl
(22)

Spe () =gy (@) - 7,
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{2.) Rotation ¢
The rotaticn ¢ of the curved girder will consists of twe parts, first,
the rotation due to the vibration of the beam, as shown in Fig. 16 It should
be noted that the functions for rotation are similaf to the function for radial
displacement and are;
9 (z) = F,(2)
3y (2) = Fyla, 2) (23)
¢y (2) = Fila, 2)
Second, the beam rotation instituted by the displacement of the pier is

considered as shown in Fig. 17. Using Eq. (223), the rotation is given by;

¢ =&

b ot (1.0) = & (o) Fpl' (1.0)

The function of rotation can then be computed as;

¢4 - 2,
2h2 1

Similarly, the rotation function corresponding to the functions 52 and 53

are given by;

(24)

-0.
(93]

[}
ojw
=y 7]
-
©-
a

[]
raj L
=rlen
&
[¥3 ]

2 2 | 1
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(3.) Vertical Displacsment n

The vertical displacement will consists of two functions, as shown in

Fig. 18, where:

-4 -3 — — Z
-(z = 2z7 4+ z)+ 3§ . # = (< z<aqa
= ' a - (23)
— —— - - T -: =E._..E._
G- s loleg @ tiTy esz <03
and
@ -+ - TR L L
N = 2 .
G* -2z +3H AT 5, T . 225, @ gz 20
a

(4.) Tangential Displacsment U

The left end support is hinged and the other supports ars om

rollers, therefore, two linear functions are chosen. First, the rigid
displacement of the beam is considered and if there is no displacement at the
end pier, then this term can be ignored. The second displacement consist of
a linear variable, as shown in Fig. 19. The displacement functions can be

written as;

(26)

(5) Radial displacement of the interior niers

The displacement Ep due to & is given by Eg. (21), however, the EP

dus to rotation ¢ has not been developed and will be given herein as illustrated

in Fig. 20.

6.3



Applying a unit rotation at the top of the columm, the curve can be

described as;

.3 2
sz - h(y -3 )

The rotation angles s+ the top of the piers are ¢l s O o ¢3; the corresponding

2
displacements of the piers are therefore;

3 2

1 = bR T -y )
ey = @ G - ¥ 27)
£ = 4@ b @7 - D)

(6) Longitudinal displacement of the end pier

I1f there is a longitudinal displacement of the pier at the left support,

Eq. (21) and wl can be combined to obtain wp’ or ;

, - 12
bp =8 v G (28)

Substituting the functions described above into [F] gives

¢ 3 n b
- -
o 0 o T s 23 T o ¢ O
0 0 0 0 0 0 Ny My 0 0
0 0 0 0 Q 0 0 0 by ¥y |
(Fl= (29,
3 0 0 a
Espl Egpz 2593 IE 4 zaps ngé 0
0 0 0 0 0 0 0 0 0
WP J

Substituting Eg. (29) into Eq. (13}, gives;
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Substitute [B] into Eg. (14), the Generalized Stiffness Matrix can be obtained

as;

(K] = (K] + (Rl + [Ky) + [K,] + (K] + (K] + (K]

where;

e

(%1 EIyS [1]
and [ ] is;
$
o T —
o 0 0 0
0 0 0
0 0
1
"2 -
ng dz
a3
(Sym.)

0 0
) 0
a 0

11 - t1 ' i
nggzdz {Siiédz

Jigzdz JE
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L}

2

3

Jgn dz

£3dz

2

(31).

Wi W[ e

ot I
Jg;wz d?
Nt E
ngwz dz

€3w2 dz

0



[K,] = EI_S (]

where [ ] is;

—

i
]
1

‘l f"\bfdz 1 J’“f’l ¢,dz _
st = > “
R\ R
N
1 [cbgdz
=
R
\
AN
AN
(Sym.?

[
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10

!

(48]

i

.

(%3]

O

~3
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[Ky1 = EAS [ ]

where [ | is;

1 2 3
0 0 0
0 0
0

(Sym.)

68

il

8 9 10
0 0 0 1
0 0 o R
0 0 0o 3
0 0 1 fe.y. ddb
L2 Jenyde
R
i=1"3
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[K4} = GK.S [

where [ ] is;

(Sym.)

4 s

1
1,1

fofﬁid)jdz
i=1~35
j= i~ g

&9

(SRS
Hou
|l

10




[KS] = ELS (]

where [

! is;

(Sym.)

=~

5 7 8 10
| N
B °

P 0
0
0
0
AN
N 0
-l-zjni'n'.'dz 0
R
i=1n2
1= 22 0
0
0

~J

10



{K6] = EpIpX {

where [ ] is;

(Sym.)

]

1 2 3 4
N\ sz;:lssj
a
i=1~%
=435
N
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[%,] = BT, [ ]

where [ ] is;

1 2 3 4 5 6 7 8 9 10
L o
0 0 0 0 0 0 0 0 0 o
0 0 0 0 0 0 0 0 0 é
0 0 0 0 0 0 0 0 i
! 0 0 0 0 0 0 o |
0 0 0 0 0 0 :
0 0 0 0 0
(Sym.) 0 0 0 o
0 0 0 :
[l )
0 o |

Substituting the functions described by Eq. (18) through Eq. (28) into the
matrices just given and completing the integration, will yield the values for
each element in the wmatrix. Obviously these formulas are very long and tedious,
however, the integration can be performed by a computer program.

Substituting Eqs. (29) and (9) into Eq. (16), the Generalized Mass

Matrix can be obtained as follows;

M) = D)+ D]+ D)+ D) (32)

where,
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{Ml]=aAS

Pyl =

2 (I+Ae2)5

2 3 4 5 5 7 8
0 0o | o0 0 o | o 0o !
0 o | o0 0 o | o o |
o | o 0 o | o o |
1
jsigjdz [ o 0 |
0
i % a3 ' 0 0 [
=3 [ o 0
— = -
J ninjdz
(Sym..) [ixlmz t
=4~ 2 l
2 3 4 5 6 7 8
}
0 0
¢$;0 dz
~ 3 I . o
™~ i=1 vg ,
~ j=1% ~é& 0 0
~
. IR
A 0 0
~ |
~ 0 0
{Sym.) 0 0
0
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9 10
0 0
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M,] =

(Sym.)
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4.5 Earthquake Response Soiution

In order to solve Eq. (10), Egq. (11) is first substituted into Eg. (17)
and mz and {A} are obtained. Then, Eq. (11) is substituted into Eq. (10) giving
the following;

L5 m] (4} ds

T
max

Y+ wly =

If damping is considered, then the dynamic equation is;

[ (63T [m] 19}

T
max

Y+ 258 Y + 0lY = -

(33)

where £ is the damping ratio.

Normalizing the mode shape {§} by

{3} = {8} // ]/Tmax (34)
y = /Tmax Y, and

substituting {6} into Eq. (33), gives

and

'.1; + 25&&' + mzY = - J {E}T[m]{;‘z}ds (33)

where {§} and {;} are described in curvilinear coordinate system. However,
the earthquake acceleration record is presented using a Cartesian Coordinate
System, therefore for consistency, the earthquake acceleration will be trans-
formed from {é} to {&}.

Because the vertical directions for the two coordinate systems are the same,
transformation is not necessary, however, the acceleration in the plane of the
curved beam during earthquake differs from the ground acceleration as shown in
Fig. 21. As shown in Fig. 21, {é} is the acceleration of the ground in three
directions, and {é} is the cdmponent of ground acceleration {é} iﬁ the direction

of structural displacements. Using Eq. (2-23), and the transformation for

columns, {4§" zan be obtained in terms of {g} as follows;
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cosad 0} singd
0 1 0 Sy
- sing 0 coss g
- b4 (36)
iq} = e cos8 0 e sing "
(=]
, z
cnsel 0 sxnel
| - sing, 0 cos8,

Substituting Eq. (36) into Eq. (353) gives

T, v 2md, + Y, - - f{Ts‘}szl [T] ds {3} = - {v] (5} 37

where;

o J (517 [m] (7] ds (38)
Using the Response Spectrum Method, the record of the earthquake
acceleration {%} can be readily obtained, the displacement of the

-

structure can then be obtained from the following equatiocn;

{E}m =2 (8} Y={3} Y = (3} (v]Y (39)

— ’)_
When {8} is not sufficiently accurate, then w“{A} may be used as the
static load, to calculate the final value of the rasponse., However, the funcr”
used in this work are the deflections due to the load, thereforas Eq. (3%9) can be

substituted into Egs. (4) and (3), to calculate the internal actioms which gives;

(0hpae = (D1 [F1 {8} [¥1 Y (40)
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4.6 Example Solutions

Using the method just described, the following structure was analyzed.

As shown in Fig. 22, the bridge is 3-span continuous curved beam of equal

span length (77.7'), with a hinge at the left-end support and rollers

at the other supports.

the following properties;

R = 700ft
E = 432000 K/ft2

b = 0.004658 Kslug/ft>
A= 61.18 Ft°

I = 425.9 £t

X — .

I, = 5676.03 et

K, = 917.3 et

1 =0

G = 183000 k/ft

e =0

The geometry of the bridge, as shown in Fig. 22, has

2

A = 35,93 ft°

P

I =

xp

I, = 138.3 ft

Zp

“1p T

pr

94.87 ft4

4

178.7 £

0

Using these properties and the R-R technique the first three frequencies

have been obtained as shown in Table 1.

Also shown in this table

are the results obtained from the Finite Element Method (SAP 4) using the

space frame element.

In using the SAP 4 program 32 nodal points, were

considered, thus requiring solution of 192 equations.

TABLE 1

Frequencies (CPS)

| principal direction of vibration

frequency order R-R Method SAP 4
1 22.17 22.18 (radial)
2 31.41 32.99 (tangential)
3 41.40 431.43 (vertical)
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These results indicate that the first three frequencies calculated by
the R-R method are in good agreement with those obtained from the SAP 4
program.

The earthquake rasponses has also been computed by the R-R method, and
compared with the results caculated by the SAP 4 program. The earthquake
accelerations selected were éx = lﬂogft/secz. The displacements were examined
at the supports (1,2) and mid span (3) of the bridge, and the actions were =+-—-
at the bottom of the pier and the mid span of the bridge. The Response

Spectrum -~urve that was used was the PRC Specification for the Earthquake

Design of Bridges.

Table 2

Radial Displacement in (ft) for (w = 22.17 CPS
(g, = 1.02 Ft/sec?)

1 2 3 rotation at peint 3
R=-R Method 0.208 2.33 2.65 0.889 P
Eér 4 0.212 2.34 2.69 0.886 R
Table 3

Bending Moment (kft) for (w = 22.17 CPY
(§_ = 1.0g ft/sec?)

M a-a M b=b M e¢=c
R-R Meth 3 3 4
Method 244 x 10 453 % 10 105 x 10
SAP 4 306 x 10° 445 x 10° 113 x 10°
Table 4

Tangential Displacement (ft) for (w = 31.41CPS)
B} (8, = 1.0g ft/sec?)

1 3
R-R Methoed 1.95 2.16
SAP &4 1.67 2.13
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TABLE 5

Actions for (w = 31.41CPS) (g, = 1.0g fr/sec?)

a~a bending moment (K-ft) c—c axial force (k)
A 2
R = R Method 192 x 10 540 x 10
4 2
SAP 4 167 x 10 725 x 10

The results presented herein show that the radial displacement, for
the first mode, is similar to the data obtained from SAP 4, with a maximum
difference of 13%. The resulting stresses indicate that the bending moment
at the interior pier controls the design and is 2% greater than that
calculated by the SAP 4 program. The induced lateral bending moment at the
end pier, results in a difference of 207. The maximum tangential bending
moment of the pier occurs when the acceleration g’z is applied and occurs at
the second frequency.

4.7 Displacement Functions-One, Two, Four Span Bridges

As given in Section 4.4, the displacement functions for a three span
continuous bridge were described in detaii. The beam displacement functions
for a single, two and four span structure are given in the following Tables

6 through 9, where the functions for piers are the same as developed for the

three span continucus bridge.
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TABLE 6

SINGLE SPAN

=

5 ¢l = Fl(Z)
[\ ‘A 4, = F,(0.5, 0.5) = F,(0.5, 2)
/—-\ E = S . ¢

£ 1 1
l\_/’ EZ -0 qbZ

N /——\\‘ nl = Fl(z)

1 = S

7‘9 bl

/-J “LH T i
I
F. and F. are functions as given in Egqs. (18) and (19).

1 2
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TABLE 7

TWO SPAN

/—'—_\ ¢.l = Fl(z)

$ /—\
, ¢, = FZ(O.S s 2)
~ 1 63 = F5(0.5, 0.5) = 7,(0.5, 2)
= e R
z = 2z z £ 0.3

{ | Y, =3

11) !

32




TABLE 8

THREE SPAN

Fl(z)

|

Fz(cr. , )

S~ 4#_’,,1”’7 ¢3 Fz(a,a)'- F, (2,2)

—

[\"/} E4 = 5S¢,

and n, are shown in eq. {253)




TABLE

9

FOUR SPAN

- ¢, = Fl(Z)
/_-\ ¢3 = Fz(a 5 z)
/] ¢4 = _Fz(a, C’-) - FZ(G y Z)
\——/
/] 54 = S¢4
\/
—(;4 - 2;3 + ;), ; = %-, 0= z-i Q
T11=
0.5 -a "4 o - Sz -
WW o (22 —32'+Z)’z—0.5-a
@ <z <05
~
22 -3 42, z2=%,0¢ 2 o
///\\\,4/"\\ Ny=
S 9
2
3(0.5 - a) T4 .73 =2 - z—r
-—ﬂ-;§————-(z 2z + z7), =z 5
L a <z < 0.5
|
| b = s
wz = S8 .z
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CHAPTER 5

THECRY-RAYLEIGH METHOD INCLUDING MULTI COLUMN BENT

5.1 General

As described in Chapter 3, a curved girder, when interacting with a

rigid pier bent (Fig. 23), the transverse and longitudinal torsional

vibrations become uncoupled when the rotation of

top of the piers are

neglected. Consideration of this type of structural system can therefore

simplify the previously developed equations given in Chapter 4.

As detailed in Chapter 4, the vibration functions developed are for a

single column bent bridge structure, and thus transverse and rotational

displacement develope at the top of piers. Therefore, the transverse and

rotaticnal displacements are coupled between the
chapter however, the rotation angle of pier, and
centriod and shear center axis are neglected and
0f the girder can be divided into two parts, (1)
In general in curved multicolumn bent structures

is coupled with the torsional vibration, however

piers and girders., In this
eccentricity between

therefore and the vibration
transverse and (2) longitudinal.
the longitudinal vibration

by neglecting the longitudinal

deformation of the piers, the longitudinal vibration is not influenced by-

pier interaction and therefore the bridge can be
beam cn rigid supports.

5.2 Basic Equations

analyzed as a continuous

As shown in Fig. 24, the curvilinear coordinate system will be used;

where;
X = radial direction
Y = vertical direction
7Z = tangential directiom

a8






The displacement parameters, where Y is time function, are chosen as;

{a (s,0)} = {8(s)} ¥ (v) (1)

Using the Ritz method, a linear combination of [Fi]’ may be chosen to

represent the displacements;

f 3
g o

{8} =4é:p(i,Y) = (Fi,Fy- = -] ng = [F'] {a} 2)
v, (1, 1) i7
. /

where: [F] matrix of chosen functions
{A} unknown parameters.
The parameters § , § are displacements functions in the ¥ and 2
directions for an element dZ , the parameters ap(i,Y) and wp(i,Y) are

displacements functions in X and Z directions for an element dY .

The internal forces can be written as;

) N
(o} =% M (3)

where;

=
1]

bending moment about the ¥ - axis

Z
[]

axial force

8%



Mpx’ Mpz‘bending moments of piers on X and Z directions,

respectively.

The corresponding generalized displacements are:

(o o' ) 32 1,
& o+ x 322 R 32- 0
v - & - a_
{e} = J R L = R 3z 0 o ({3}
‘5;" 32
P 0 Q =535 0
" 7
]
P L 32
\ -t ¢ 0 Q 3“3;f-
{e} =[P1{s} = [P] [F] {A} = [B] {A} (4)
where:
[(B] = [P] [F] (5)
From Hook's Law: [o] = [Di{e} = [D] (B} {A} (6)
where;
EIY 0 0 0 ]
TA 0 0
[D}] =
EI, 0
Sym .
EI
N P PR

The natural fraquency can now be obtained by Rayleigh quotient;

m2 - f {c} {ol ds 7

[{G}T (m] {S} ds
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will be used.

where;

aAm

[m] = mass matrix =

Sym.

Substituting Egs. (2), (4) and

T

2 _ _{A}Y [K] (a}

oAm

A
? o pa

-
0
0
0
a_a
PPm

(6) into Eq. (7) yields;

(u =
ayt iM] {al
Because {A} should be selected

amz

S IAT S 0, therefore;

i.e.

(K] {A} ~w® [M] (A}

where;

5.3 Displacement Functions.

]

such

0

(] =-f (83T Ip) 127 ds
a1 = [ (97 (o) [F] as

thar

2
w

1s minimum, gives:

and substituting {A} into Eq. (2), yields the mode shape.

(3)

(2

(10}

(11

Solving Eq. (9) gives the natural frequency and characteristic vector {a},

The deflection curve, as obtained considering the dead load responsé,

(1) Radial displacement; £

selected for a three continuous span bridge,

£ is composed of 3 functions;

9l

The following is an example describing the functions



El (z) = s. Fl(z) s 8, (z4 - 223 + 2) where z = Z
s

{j 33 + 3a(a~1l)z 0< z < g
By (2) =5 . Fy (e, 2) =8 . 45,2 Jaz + o3 522 20.5
53 (z) = 5. Fy (@, 2) = 3 (7, (a,2) - Fy (a, z)]

8

{2) Tangential displacement

b=

¢2=S-z

(3) Radial displacement of piers; ap

The radial displacement function is taken as;

EP(Y) ¥ (3 = 2y) £ () vy =3

where the top displacement of piers is the same as that of

beam, as shown in Fig. 25.

The corresponding displacement functions of columns are

2 .
Epl =y (3 - v) 51(3)

B =70~y 5@ [

S = y2(3 = ¥) E4(a)

(4) Tangential displacement of pier; wp

L
b, o= S F3 =)

The ([F] matrix can nov be written as;
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(13

(14)

(15)

(16)

(17)

(18)



Zipl

5.4 Stiffness and Mass Matrices

Substituting Eq.

B E" E"
1 2
1 _ i
"R R R°2
(3] = . o
EEpl Epz
L 0 e

52 %3
0 0
zgpz Ls 3
Q 0

(19) into (5) gives the [B] matrix as;

0

(19)

(20)

Substituting Eq. (20) inte Eq. (10}, gives generalized stiffness matrix;

K] = (R] + K] + [K]

where: [Kl}, [KZ] and [K3} are defined as follows:

291

{Klj = EIyS

#12 313
223 223
233
(sym.)

93

14

24

34

44

(21)



[k

whare;

51

11

(sym.)

2.

;
22 ( 0.22% 0.54°

2
4/s”

V)

13?1 %ﬁw i

(o]

L
TSR
(~24a

3-'—

18a%)

+a - 0.6 a)

(~4.80° + 6a° = 1.502)

1
3 (=322 + 3a)

322

0

o

N =

12

22

- 2 .
4§h (3a”™ = 3¢)

12

23

33
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14

24

34

44




where;

.
b, = (i) x 0.02795
by, = (—E-)Z (=a* + 1.60° = 0.31a)
by = (%)2 (¢* - 1.24° - 0.3a% + 0.3La)
b, = 0
bis = =3 x0.1
s\ 4 2
by, = (ﬁ) (=0.5a + 0.15a%)
by, = (%)2(—0.5@4 +0.75¢> = 0.1633a2)
by, = 0
bys = -3 (<0.25a" + 0.5a> - 0.254)
byy = (-f;:)z (5.75a" = 1.25¢° + 0.15¢%)
by, = 0
bye = == (0.25° +1.5a” - 1.5a° + 0.25q)
by, = 0
bys = O
gy = 1
_
e11 10 0 0
5p 0 ¢
5] - 3, ¢33 O
(sym.) R
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where:

2 12
€ = Ipxsl(a) ‘;5
2
c1g T IS5 @ - &
5 . 12
22 7 Ipx £1e) hg
2 12
Sy3 = Ing53(0) n3
3
2 =
iy = Ipz S h3

Substituting Eq. (19) into Eq.
M = DT+ [y ]

where;

11

el = eay

symmetric

96

(a)

[ ) { ol
n o

(11), the generalized mass matrix is

12

22

13
23

33

(22)




and;

i1

12

13

22

4d

35

1] =

and;

11

12

33

23

45

22

44

0.02795 §°

52(—0.4 + 1.6«:3 - 0.31a)
s2@® - 1.20° - 0.3¢% + 0.310)

52(-0.5a% + 0.15a2)

§2(=0.5a% + 0.75a¢° - 0.1633¢2)

SZ
s?
2
s
3
Ell E12 0 0]
522 3 Q
oA E33 0
D pm
B
symmetric 44

‘ 2

0.37L h, €% (@)
* 2 72

71 h Ez (a)
0.3 1 %3

2
0.942 hIS
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5.5 Earthquake Response

As given in the previous chalsters, the ground accelerations must be

converted into a curvilinear coordinate system. As shown in Fig. 26, the

following relationship can be cbtained;

- * ~
qx cose sing
. qz -sing . cost 8y
gl = g L= \ = (1 (g1 @2
qpx 4 cosel sinel )
) E
qu -sin@l ccs@l. 2z
§ L ,

where; © = tangential angle for the beam element dz

@l = tangential angle of pier
Therefore the mode pafameters are;

' =T
v} = (8} (=] [T] ds (23)

where;
&y = {8}/ (j {617 (m] (8} ds)lﬁ

= normalized mode shape

(24)

The f£inal earthquake response for displacements at the structure is given by:

{8} .= (3rYy= (3} [v1°%

ma (25)
where Y can be obtained from spectrum diagram, and the actions can be
cbtained from Eq. (3); or

o} . = [D1 [P] (6} [¥1 Y (26)

These results can be computerized to obtain the dynmamic response

of pier bent supported curved bridges.
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CHAPTER 6
Results and Conclusions

The theoretical response of single and continuous curved box girdsr
bridges, subjected to induced earthquake accelerztions has been predicted
by several analytical techniques. These methods consider various
girder~pier bent interaction, which may be simplified depending on the
type of bent, i.e. single or multi column bent.

Several problems have been solved by these methods indicating good
correlation with previously developed techniques.

Utilization of the methods described herein will permit development

of simplified design techniques, to be presented in a later report.
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