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ABSTRACT

The seismic response of curved box girder bridges, incorporating interaction

between the support columns and the girder, has been predicted by several schemes.

The methods incorporate the influence of warping torsion and torsional-bending

interaction.

The results from these various methods have been compared to other techniques,

giving excellent correlation. These techniques will be applied in order to eval-

uate the influence of various parameters and the development of design formulations.
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CHAPTER 1

INTRODUCTION

With the advent of the 1964 Alaskan Earthquake, the 1971 San Fernando

Earthquake, the 1976 Tunsun Earthquake (1), the 1978 Santa Barbara Earthquake

(2), and the Miyagi Earthquake (3), bridge s~ructures throughout the world have

undergone considerable destructive forces.

These earthquakes have caused the bridge professionals to reasses the design

techniques that have been applied, up until that time, for seismic design.

A prime force in such modifications has been the Highway Department for the

State of California (CALTRANS) and the California based professional organization

Applied Technology Council (ATC).

The present 1977 AASHTO bridge code (4), as related to seismic design, was

greatly influenced by the work developed by CALTRANS. This code suggests an equivalent

static force method for simple structures and when the structure is complex, for

example curved bridges, a computer based response spectrum or dynamic analysis

should be considered.

In this present 1977 AASHTO code, most engineers would utilize the seismic

coefficient method (SCM), because computer oriented dynamic programs may not be

available nor are they amenable for direct design. However, the utilization of

the S.C.M., may give erroneous results when designing under seismic conditions

(5), as experienced by CALTRJU~S. CALTRANS in fact has utilized the response

spectrum technique for the design of many structures.

Because of these conditions and from experience gained from recent earth­

quakes, the FffivA decided to reasses the 1975 AASHTO code and in 1977 sponsored

a research program directed by ATC (6). The work of this council, in part, was

to prepare a new specification, resulting in the ATC - 6 design guideline (7).
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Although this code will be an improvement over the past criteria, there are major

areas of research still requiring investigation. These areas, as suggested recently

by the delegates attending the "Workshop on Earthquake REsistance of Highway

Bridges", (7) conducted by ATC, include:

1. "Conduct Parametric Studies for the Seismic Response of Common Types

of B~idges to Determine the Effects of Geometry and Constraint on

Overall Seismic Response"

Parameters should include:

a) Span length

b) Curvature

c) Column height and stiffness

d) Haterial, etc.

2. llPerform Appropriate Dynamic Analysis on Curved Bridges", (8,9) and

develop a simple procedure for the design of curved bridges.

3. llDevelop a Practical and Accurate Hethod to Sstimate the Fundamental

Period of Bridges ll .

4. llCorrelate Vibrational Characteristics of Existing Bridges with Theoryll.

5. "Prepare Summary of Dynamic Behavior and Characteristics".

These various areas of research are presently being studied and will encom

pass curved steel and concrete box girder bridges.

The techniques to be employed in the dynamic analysis of such structures

can consist of:

i) response spectrum technique

ii) multi-mode method-response spectrum

iii) multi-mode time history analysis

These various methods are presently being used in this research. The method

that was employed in the work described herein involves matrix formulations

2



considering interactions between a single column bent or multi-column bent and

an energy solution using the Rayleigh Ritz technique. These results have been

computerized and compared to previously developed techniques (10), as well be

presented herein.

These general theories are now being applied and the influence of various para­

meters studied. These results will then permit formulation of a proposed design

criteria for curved steel and concrete bridges, which will be presented in a later

report.
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CHAPTER 2

THEORY - SINGLE COLUMN BENT

2.1 General

In this chapter, the formulation of the matrix method for the response of

curved box girders, modeled as one dimensional beam, will be presented. Consider

first the original curved box girder bridge system, beam and columns, as in Fig. lea),

this system will be modeled as a combination of beam element connected with the pier

element to form the entire structure, as shown in Fig. l(b). With this basic

modeling, the dynamic response of the entire structure will now be examined.

In developing the response of the curved bridge it is convenient to use

curvilinear coordinates, shown in Fig. 2, where,

Y is the vertical direction

X is the radial direction

Z is the longitudinal direction and

~, n, ~ are displacements functions corresponding to X, Y, Z directions, are ~ is

the transverse rotation function.

Assuming the box girder structure has rigid internal diaphragm, and thus

maintains its shape, the following displacement parameters o(z) can be used to

describe the displacement model of the element;

(1)

2.2 Stress-Strain

The stresses induced on the curved element are represented by five actions or

internal forces and can be described as follows;
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cr = (2)

where My, and Mx, are the primary bending moments, N
Z

is the axial force and

MT = pure torsional moment and ~ = warping torsional moment.

The strains are related to deformation according to the following;

~" + i~ 1 2 .E.p 0
R

0 S

-11" + :£. 2 1
ija -p 0

{d R R:= =
_s. + tP~ _1 = [p] {oJ (3)

R
0 P a

R

. ~
+ .E.B. <P~ 0 a p

R R

-21 0
.£.2 2

ep~~

R
0 -p

1<.

where R is radius curvature and p
3 ? aaz' p- =~. Acco~ding to Hook's law, the stress-

strain relationship for which the material is assumed linear, isotropic and elastic for

one-dimensional problem is given by,

{cr} = [D] {d (4)

where {cr} and {g} represent the induced internal forces and the corresponding strains,

respectively; and [D] is material characteristic matrix, given as follows;

EI 0 0 0 0
Y

EI 0 0 0x

[D] = EA 0 0 (5)

(Sym. )
GK

t
a

EI
w

where; E = Young's modulus, G = shear elastic modulus, Iy, Ix are the moments of

inertia in the Y and X direction; A = cross area, ~ = pure torsional constant,

and Iw = warping torsional constant.
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2.3 Displacement Functions

Normally a beam element in space can be represented by six degrees of freedom,

three translation displacements and three rotational displacements. However, 8ddirin~~

degrees of freedom are required for curved bridge elements, such as warping, which

may be important and must be considered. For example, consider the open cross section

seen in Fig. C3a), or the separated box section shown in Fig. C3b) and a three pier

system shown in Fig. (3c). If the super and sub-structures are properly modeled, then

the warping torsional influence should be included. If the warping torsional H·",i~l.~"

is not considered then the torsional resistance may be underestimated, giving erroneous

results.

The expression for warping corsion, of the nodal point displacements, will include

the parameter of twist angle along the longitundinal direction of the beam, thus

increasing the nodal point displacements to seven. .~so if the twist angle between

the connection of the beam and pier is considered, then another displacement or

digree of freedom is required thus giving eight displacements at a given nodal point.

Therefore in the following development displacements 01' 0Z' .. 08 will be used

to express the joint i nodal point displacement parameters, ~~d 09' 010'

will be used to e~~ress joint j nodal point displacements parameters.

The nodal point displacements of the element can be given by the following;

{o}e ~ I:~l (6)
J ,

where;

01 09

02 010

=

08
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where;

01, 02, 03, 09, 010, and 0Il are translational displacements;

04, 0S, 06, 012, 013 and 014 are rotational displacements;

08 and 016 are the rate of change of 06 and 014 rotations respectively,

along the longitudinal direction of the beam, which accounts for

warping torsional influence.

07 and °15 are the continuity condition between the curved beam and

pier. These nodal displacements are shown in Fig. 4.

Assuming polynomials for the one-dimensional displacement model; consequently, a

third and a fifth order polynomials for the displacement functions for ¢ and ~ and

a linear displacement function for ~ are assumed respectively, thus the following

displacement matrix is obtained;

where;

{a} = [N] {o}e (7)

N7 0 0 0 ~8 0 N9 0 N~ 0 0 0 NIl 0 N12 0

0 N
1

0 NZ 0 0 0 0 0 N3 0 N4 0 0 0 0

(N] =
0 0 NS 0 0 0 0 0 0 0 N6 0 0 0 0 0

0 0 0 0 0 Nl 0 N2 0 0 0 0 0 N
3

0 N4
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and;

"T ="'1 1 3_2, 2 3
- Z"l" Z

2 3
(z - 2z + z )~

2 3
(3z - 2z )

2 3
(-z + z )~

N5 = 1 - Z

N
6

::a z

N7 = 1 - 10z3 + 15z4 - 6z5

N
S

... (z - 6z3 + Sz4 - 3z5)~

12345
Ng ... 2 (z - 3z + 3z - z )Z2

N10 = 10z3 _ 13z4 + 6z5

Nll ::a (_4z3 + 7z4 - 3z5) 2

N ... 1. (z3 _ 2z4 + z5) Q.2
12 2

where z = Z/-i.
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2.4 Nodal Forces

Assuming a uniform load q acts on the elements;

q (9)

where q , q , and q are the uniform loads in the x, y, and z direction and q~
x y Z 'Y

r *}is the uniform torque. Assuming now a virtual displacement to , and a corresponding

virtual strain {s}, the change in the total work caused by the stress (internal work)

and uniform load (external work) is computed as:

TW= {s*} {a} dz - (10)

Using the nodal point displacements to express the above, gives;

.,. * e{o } = [N] {o } , and substituting in Eqs. (3) and (7) gives;

or

{s} = [p] {oJ = [p] [N] {o}e = [B] {6}e

{s*} = [B] {6*}e

(ll)

where [B] = [p][N] or

" " It It ItNT N6
It

N7 0 S 0 Na 0 Ng 0 NIO 0 0 NIl 0 N12 0

R R
It " ItN1 NZ " N3 N40 -N~ 0 -N 0 0 0 -N3 0 -N 0 0l. Z

R 4R R R

{B} -N
,

-N -N
9 -NIO

,
= 7 0 N

S 0 8 0 N6
-NIl -N120 0 0 0 0 (12)R R R R R R, It , ,

N
l NZ

,
N3 N4

, ,
0 0 0 N

l 0 NZ 0 0 0 N3 0 N
4R R R R

" " It

-N -N I,. II -N -N " "0 ..1. 0 z 0 -N 0 -N 0 3 0 4 0 -N 0 -N
R R 1 2 3 4R R
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substituting (11) intO (4) gives;

{cr} = [D] [B] {8}e

substituting (13), (7) and (11) into (10) gives;

{8*}eT fQ. [B]T[D] [B] dZ{8}e = {o*}eT fz [N]T {q} dZ

(13)

(14)

the element stiffness matrix and equivalent nodal point load matrix are therefore;

{F}e = [k] {o}e {Q}, where;

[k] = f!J. [B]T [D] [B) dZ

and

2.5 Stiffness MatrLx

(15)

(16)

Substituting [B] and [D] into Equation (15) and integrating, results in the

following matrix;

where [k]. are defined as follows;
~
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2.6 Element Mass Matrix

The influence of earthquake loading, using Newton's second law and considering

the eccentricity of centroidal axes and shear center, will now be examined. These

inertia loads include element vibration acceleration (q ) and earthquake accelerationv

(qa) loads and can be expressed as;
o

Consider first the element vibrations (qv)' Examination of Fig. 5 shows the

eccentricity e between t~le cer..troidal axes and shear center, where the radial accel-

eration is given by;

therefore;

The radial horizontal inertia force is

q = - p Am ~l = -cAm (~ + ~ e)vx

Similarly qvx produces a torsion of -qvx . e, therefore the torsional inertia

force is;

qv~ = -(pI~ + qvx e)

The total element vibration q is therefore;v

~ p Am (~ + q,e)

{~}
<i"y pAm ii

= = = -'",..
~z pAmifJ

~q> oI l' + pAe(~+<jl 0 e), m

'0

{;S}e= [AJ {o } [AJ [N]-p = -p

A 0 0 A e
1!l m

0 A 0 0
m

0 0 A 0
m

A e 0 0 I + A e-m m m

{o }

(19)

where 9 = uni.t volume mass,

A = cross section in calculating mass,
m

I = mass moment of L"lerti.a
m

16



Substituting q into (14), the equivalent inertia force as a nodal point load isv

des cribed as;

{Q}
v (20)

where:

[ m] = )"9- [N] T p [A] [ N] dZ

and mis element mass matrix. Integrating the above equation, gives;

(21)

[m] = [m] I + [m] 2 + [mJ 3 (22)

where m
l

, m2 and m
3

are given in the following;

17
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2.7 Seismic Mass Matrix

In developing the seismic mass ~atrix, curvilinear coordinates will be used.

In general the earthquake acceleration, for the cartisian coordinate system, will

be oriented in three-direction. Therefore the X and Z accelerations must be trans-

formed into radial and tangent directions. As shown in Fig. 6a, the geometrical

relationships can be written as;

; = ~cos e + gz sin e
g

r; = gyg

iP g
=~ sin e + gz cos e·

x

<P = 0

As given by Eq. (19), the ground acceleration load matrL~ q can similarly beg:

written as;

qgx PAm(Sg +"'Ijle) cos e 0 sin e

qgy
gx

{q } = PAmii g =-pA 0 1 0
gy= -g m

qgy pA 1jJ -sin e 0 cos e gzm

qgljl L PI<jl + pA e( S + <jle) e cos e 0 e sin e
m

.. ~pA [T] { "1.gJ

..
{qg} = -pA[T]{g}

21

(23)



Now substituting Eq. (23) into Eq. (16), gives the equivalent earthquake inertia load;

\o1here,

{F}g = T
-pA r [N] [T] dZ

m

..
{g} = {g} (24)

[gm] T= PAm r 9., [N] [T] dZ

Now substituting [N] and [T] into the above equation and integrating, gives the

following element seismic mass matrix [gmJ, where the sine and cosS terms, using

Taylor series, can be written as;

and

02 2
Sin e = (1 - - z) Sin e _ (J.. ...

2R2 i R 4

Cos e =
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2.8 Pier Element and Coordinate Transformation

Tne basic pier element is similar to the curved-beam element except that pier is

assumed as a straight ela~ent. Therefore the basic curved beam element matrix

can be used to develop the local stiffness matrix (~p) and mass matri:c (mp)

for the Pier element, by letting R .... OQ. The curved beam element does not ha~Te to

be transformed from the local coordinate into the global coordinate, however

the pier element, must be transformed by using the following formula;

= (25)

where L is the coordinate transformation matrix:

(26)

1 0 0

0 0 -1 0 0
0 1 0

1 0 0

[ti] .. rLj] .. 0 0 0 -1 0
0 1 0

0 0
0 -1

1 0

The stiffness and mass matrL~ for the global coordinate system, for the pier

element, are therefore;

[k] .. [=.]T [k] [LJ
p g p (27)

[m J
p g (28)

24



The intertia force components of the pier due to earthquake acceleration, can

be calculated by using the following local coordinate system formula;

cos 81 0 Sin 61

{q} =
Sin 61 0 -cos 61 {g} = -pA[T ]{g}pA

m - P
0 J:. 0

0 0 0

where 8
1

is a constant, as shown in Fig. 6b.

Substituting Eq. (29) into Eq. (16) and integrating, gives the following seismic

mass matrix for the pier element;

(29)

~ cos 61 0 ~ Sin 61

~ Sin 61 0 -~ cos 81

0 ~ 0

2 Sin 61 0 -2 cos 61
12 12

2
81 2 S' 81- cos 0 - ~n

10 10

0 0 0

22
81 22-- cos 0

120 -- Sin 61
120

[g ]:11 pAm 0 0 Q
(30)

mp
~ cos 6J 0 ~ Sin 81....

~ Sin 61 0 -~ cos 81

0 !.: 02

- t S. 61 0 2 cos 8 I- ~n

12
12 I

_ 2 I
- cos 61 0 - 2

81 I10 -Sin I

10 I
I

0 0 0 I

22 22 I
81

0

6

1J-- cos -- Sin
120 120

0 0 0

25



The local coordinate transformation, into the global coordinate system, is

obtm.ned from;

(31)

2.9 Dynamic Global Equations and Earthquake Response

Using the general dynamic equilibrium equation ground acceleration due

to seismic loading, assembling the stiffness, mass and seismic matri.~, and in tTI-u1. 1_11' ~ I~I;;

the damping [C], the following global equation is obtained:
..

[M] {5} -10 [C] {OJ -10 [K] {C} = -[Gm] {get)} (32)

where [M], [C] and [K] are mass, damping and stiffness matrix in global coordinate

respectively and [G] is the seismic mass matrix represented in the global coordinate

system and {get)} represents the three directional ground accelerations.

Boundary Conditions:

In solving the bridge problem, the following .set of boundary conditions

will be assumed;

1) beam: hinge: 01 = 0, 52 = 0, 03 = 0, 06 = ° and 07 = 0

roller: 01 = 0, 02 = 0, 06 = 0, and 07 = °
2) beam and pier:

obtained from the free

coordinates, gives

~~} (33)

n
function of time . <PI, ¢2,

Using now the characteristic vector [~], as

vibration equations and transformed into global

where Yl , Yz' .'.Yn are coordinate values and a

••• ~ are calculated from the free vibration equations, and must satisfy the
n

following equations;

(34)
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and from orthorgonality;

•
(35)

[~JT [M] [~J • (I]

where [Q] is the frequency diagonal matrix. Substituting Eq. (33) into

Eq. (32) and multiplying by [~]T gives n uncoupled differential

equations:

{!} + 2~[0] {y} + [02 ] {y} .. - [~lT (G
m

] {g(t)}

or {y} + 2~[0] {y} + [02] {Y} • -[1] {get)}

where ~ is the structural damping ratio and [yJ is the mode shape reference
..

coefficients. If the ground acceleration {get)} is known, then {y} can be

determined. Substituting {y} into (33), the displacement response value

(36)

~t every nodal point can be evaluated. If the response spectrum analysis is used, the

corresponding frequency spectrum displacement {Sd} , can then be determined.

Therefore the displacement coefficients are:

If the acceleration response spectrum

response {Sd} is obtained by applying

{s }
a

{S }
a

(37)

is used, transformation into displacement

The value of Sd from the response spectrum is the maximum, however

these maximum values do not occur at the same time, therefore the following

formula is used to calculate the node point displacements;

The element forces are given in two parts, (1) the force SA due to

element deformation, and (2) the force S2 due to the element inertia

force. The forces SA is given as,

27
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(39)

The inertia force is produced by the element vibration acceleration, therefore

che equivalent acceleration of the element vibration is;
e e

{A} • [~] [(.\)2] {y }

the corresponding element end forces are therefore;

{S } :I

B • (40)

the total end forces are therefore;

where according to the response spectrum method,
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2.10 Computer Program Flow Chart

Using the matrix formulation, a computer program was developed to calculate

the structural natural frequency and mode shape. These results, in conjunction

with the response spectrum, were then used to determine the displacements

and internal dynamic forces. The general flow chart for the computer program

that was developed is as follows;

Input structural information

Formulate global stiffness matrix
and lobal mass matrix

Solve characteristic equations

Formulate ~eismic mass matrix

input earthquake acceleration
record

No

input response curve

Mode shape reference coefficient

get displacement coefficient ! I! solve differential equations
for displacement factors

superimpose response
values

superimpose response
by square root method

il=u=t=p=u=t:::;l----------..l.
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2.11 Example

Using the matrix method described herein and the resulting computer

program, a three span continuous bridge, shown in Fig. 7(a), was analyzed and

the results compared to the SAP IV computer results.

The bridge consists of a three-span continuous curved-beam bridge, with

the left end hinged with all the other supports on rollers. The span lengths

are 100', 100', 100', the radius is 600' and the pier height is 30'. The

material properties are;

Young's modulus E = 432000 K/ft2

shear modulus G = 183050 K/ft2

3
density p = 0.004658 Kslug/ft

Assuming a constant cross section, the sectional properties are;

ACft
2

) I (ft4) Iy(ft4) K.r(ft
4

) I (ft6) Am(ft2) I (K/ftx w m

beam 61.18 425.9 5696.0 417.0 0.1 61.18 0.001

pier 35.93 300.0 138.3 178.7 0.1 35.93 0.001

The bridge was modeled with 16 nodal points and 13 elements, as shown in

Fig. 7(b). The frequencies, from the dynamic analysis, are listed in the

2sec)

following table. The results obtained from a space frame system (six degrees

of freedom at each nodal point), using the SAP IV program are also listed.

FREQUENCIES (CPS)

frequency NO. curved-beam method SAP IV results

1 20.22 19.96

2 25.00 25.12

3 31. 73 31. 99

4 44.40 44.14

5 45.33 45.15

6 53.53 53.48

7 91.34 91. 78

8 101. 40 97.39,_.. I.' , ,~,



As can be seen the frequencies and corresponding mode shapes, as shown in

Fig. 8, agree well with the SAP IV data. The following mode shape figures,

shown in Fig. 8, illustrate the mode shapes that occur in the radial direction

(1,4 and 7),4 mode shapes that occur in the vertical direction (2,3,5,8),

and the axial direction mode shape as given by frequency 6.

Using the response spectrum method, the internal forces are calculated

by both the curved beam method and SAP 4 program, giving the following results.

The response spectrum curve that was used is the 1940 El Centro Earthquake

record (lg), with a damping ratio of 5%.

TBJU1SVERSE EARTHQUAKE FORCE

curved-beam method SAP lV

n.ode 7 -1 .580 10-1x .577 x 10 x
direction

10-1 x 10-1displacement (ft) node 8 .660 x .669

.. internal (K-ft) element 4My .139 x 105 .139 x 105
forces

105 105element 3 My .126 x .133 x

element 7 My .193 x 105 .204 x 105

VERTICAL EARTHQUAKE FORCE

curved-beam method SAP IV

-1 .161 -1
Y node 3 .177 x 10 x 10
direction -1 x 10-1displacement(ft node 8 .231 x 10 .216

~terna~Kft) element 2Mx .428 x 104 . .456 x 104

terce or 104 x 104
(K) element 6Mx .605 x .589

element 4 N .536 x 103 .516 x 103
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LONGITUDINAL EARHTQUAKE FORCE

- . --
j cu~{ed-beam method SAP IV

I .... _?
Z node 16 .988 x 10-~ .942 x 10 -
direction

10-2displacement. (ft) node 7 .41.5 x .482 ::t 10-2

internal
(Kit} element 1 N .107 x 104

I
.107 x 104

force or 104 L

(K) element 3 My .793 :, I" .804 x 10'"!

I10
4 ~

element 7 My .603 x .625 x 10'+ ,

The oreceding results represent the design values due to earthquake forces

in the three directions. Taese results are in close agreement to the SAP IV

results, but the method developed herein considers warping and the radial

influence on the curved-element. Also of importance is fewer nodal points

are required to obtain the same accuracy, as shmvn in the following table.

CURVED BEA1'l SOLUTION FREQUENCIES (CPS)

Mode 4 elements 3 elements· 2 elements

1
~ 12.71 12.72 12.77

2 46.11 46.23 46.56

3 51.29 51.70 56.76

As can be seen, using 4, 3, or 2 elements results in essentially the

same frequency, thus a minimal number of elements are required for the

same accuracy.
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For the curved-beam

CHAPTER 3

THEORY - MULTI COLUMN BENT

3.1 General

In the previous Chapter 2, the response of continuous curved beams, supported

on single column bents was examined. This analysis required certain specified

boundary conditions between the columns and beams and their complete interaction.

If the pier bent consists of multi columns, as shown in Fig. 9a, the

rigid pier cap will restrain the piers such that the rotational and vertical

influences from the curved beam are negligible. Therefore the vertical and

rotational interaction between the beam and pier does not exist, and thus can be

separated, in solving the curved beam response, Therefore, the primary dis-

placements for the pier will be radial, longitudinal and rotational, and for

the curved beam the primary displacements will be radial and longitudinal.

As shown in Fig. 9a, the radial displacement is assumed as ~. As shown
p

in Fig. 9b, the displacement in the longitudinal direction is ~p'

It is also kno\Vll that the most critical element for these types of

bridges is the pier, therefore in the following discussion, emphasis will

be given to the transverse vibration of the pier.

As showu in Chapter 2, curvilinear coordinates will be used, where X is

the radial direction, Y is the vertical direction and Z is the axial direction.

The terms ~, n, and ~ are displacements corresponding to x, y, and z directions.

The displacement of pier elements in the x and z directions are represented

by displacement functions ~p' ~p' and torsional angle ¢p.

element the displacements considered are the radial displacement ~ and tangent

displacement ~.
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3.2 Pier Element

The pier element describing the radial direction, uses a shear type,

but in tangent direction the beam element will be used.

The displacement parameters for the pier are;

rne bridge pier element nodal point displacements parameters as described

in Fig. 10, are;

(1)

{o }e ·r::} (2)
P

~i ';j

Wi $
j

{opi} .. $i {IS .} :II $. , (3)
PJ j

<Pi <P •
J

.CP i 4>j
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Assuming the displacement function and evaluating us:!.~-: known noda: values

:.hen it. is obtained,

{d.} .. (N] {o}e
p p p

[N5
0 a 0 0 N

6
0 0 0

:Jand (N J - 0 N1 NZ 0 0 0 N
3

N4 0 (4)
p

0 0 0 N1 NZ 0 0 0 N3

"..;uere;

N1 1 - 3y + Z y3-
2 3

HZ - (y - 27 + Y ) Q.

2 3
N3 - (3y - 2y ) (5)

2 3N4 • (-y + Y )!L

NS • l - Y

N
6 - Y

the induced force vector is;

~

M
{O' }

x
a (6)p

H.r

~

where ~ radial'shear

M radial bending moment
:{

~ pure torsional moment

~ warping torsional moment
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the strain matrix is;

a~ r- P 0 0
.-E.
'dy

a2 1jJ
0 p2 0

E:}p • [?] {&}
{e:} aT

p p- •
0 0 p

aq,
.-E.
ay 0 0 _p2

a2 <j>

aT
{d = rpl [Nl {n1 e [B] {o}e (7)

- • '!) -~ p . p p- ..
where

a
p

elY
and

(B]
P

:II

o

o

o

o

o

o

o 0

o 0

, ,
N

l
N

2
It "

-Nl -N'2

o

o

o

o

o

o

000

It

N
4

0 0

, ,
o N

3
N

4
II If

o -N'3 -N'4

(8)

the Elastic matrix is;

[D] :II

P

where;

EI
X

o

Elw

(9)

12EIz is the equivalent shear stiffness of the pier element. .
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Using Equation (Z-15), the pier element stiffness matrix can be developed;

(10)

Substituting [B] and [D] into Eq. (10) and integrating gives the following;

[k] = [k] +1 (11)

where k1 and kZ are defined as;

Symm.

6GK.r G~

Sf"" 10

SG1C.rJ.
12

(12)

o

o

o

o 0

o

o

o

6G~ GK.r
- sr- TO

GK.r ~J.
-10-30

o

o

o

o

6EI
x

t4
ZEIx

1.

o

o

oa

o 6EI
x

-Jr

12:Elz 0

1.4

o l2EI
:t

o

o

o

o

o

o

6EI
x
~

4EI~
g.

oo

12EI
x

12EIz

[kJ
l

::0

12EI
x

6EI
~...-7

4EI
x

o

o

a

a

J
1
I(13J

oo

o 0

o 0

o 0

5G~ GK.r
sr- - 10

5GX.r
12

o

-12EIw 6EIw
,tj -;:r

o 6EIw 2EIw-;:r t

o

O.

o

o

o

o

o

o

o

o

o

o

o

o

o

oo 0

o 0

o 0

12ZIw 6E!~---rr- 2;'2

4Elw
t

o

o

oo

oo

(k,1 ::0

2

12Eltll -6EItll
1..j .1.2

Symm...
o o o o
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Using the following equation as given in Cnapter 2, tae element mass matrix

can be de'reloped as follou!'::

Em] = IQ, [N] T p [ll] [N] dY

uhere p is the unit volume mass and for pier element [ll] is defined as;

A Q,
1)m

2 0 0

[ll] =
0 A 0pm

0 0 I
PIr!

where A is the cross section area used in calculating the wa33. Now substitutingpm

Eq. (4) into the [m] equation and integrating, the pier element mass matrix

is developed as follows;

_ Q,2_ 0 0 0 0 £,2 0 0 0 0

6 12

132, 11.1'..2 0 0 0 9 _~2 a 0

35 210 709, 420
Z3 0 0 0 13 £2 --±-03 a 0

105 420 140~

13Q, Ipm 11.2.2 Ipm 0 a 0 9Upm 139,2 Ipm----~Apm 2IO Apm 70Apm 420 Apm

(m] ""oA Z3 Ipm 0 0 0 13Z2 Ipm .z,3 Ipm
pm 105 APiii 420 Apm 140 Apm

Symm.

9,2 0 0 0 0

6

13:£. _~2 0 0

35 210
9,3 0 0

105

13trpm 11.2.2Ipm
35 Apm 210 Apm

I~~
105 Apm I-



3.3 Curved-Beam Element

As described previously, the vertical and rotational vibrations will

be neglected, and therefore the curved-beam displacement functions are;

(14)

where the element nodal point displacements parameters, shown in Fig. 11, are

therefore;

';1 ';j

°1l {o } -
1jJi 1jJj

{ole ,. i {o },.
';1

j
';jOJ
"';". ';j

~

(15)

)Tow equating the beam E,;11 function to the function ~!, and using a fifth

order polynomial to express the ~ displacement function, gives

(16)

,vhere;

[

No7[N] -

o

o o o

o

o
(17)

1 - 10z3 + 15z
4

- 6:
5

(z - 6z3 + 8z
4

- 3z
5

)1

2(z2_ 3z3 + 3%4 _ z5)t2

10z3 _ 15%4 + 6z4

+
_ 4
IZ

3(-4z

2 (z3

and;

1 - z

where z = 2/2
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Considering now the internal bending moments and axial forces, the

force vector can be written as follows;

{a} .I (18)

and the corresponding strains are;

1;..... + L

\ .
2 £.

R P R
{e:}

{o } - (P) {o}..
- £.. 1

R + ljI"
R P

{ c:} (19)

where;

[" ~~ " " "N7 ~~ "
" ]~1 Ng Nla NIl NI2' 8

[B) • -k , +8 (20)
NS +9 +10 ,

+11 +12R' 7 N
6

the Elastic matrix is;

, (D} _[E~ OJ
·0 EA
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Substituting [B] and [D] into Eq. (10), gives the curved-beam element

stiffness matrix and follows;

[k] = [k]l + [k]2

where [k]l equals;

120 0 60 3 120 0 60 3
W W n -7"'[r n 2 -Ti:

1 1 0 0 1 1 0

lIt2 - lIt2 --lIt tIt

192 11 60 1 108 a
- 71.2 -- -35"

(k]1" EI.y
351, 35 lR 351.

31- 3 0 4 -1:.,
35 -Ti 35 70~

120 0 60 3
Symm. W -W 71.

1 1 0
1.&2. 1.&

192 11
351- - 35

3
3SX,

and [k]2 equals;

1811. 1 311 1.2 281 1. 3 Z5 1. 3 1
462R ZIt 4620 iZ" 55440 RZ" 231 iF" -2R

1 1 1. 1 .2,2 1 1 1
1. IDa IT6'R 2R - T

52 l3 69 tl+ 151 12 1
3465 iF" 5.5440 RT 4620 iF - 10

(k] .. EA 1 1.5 181 .2,3 12
9240 iT 55440 F -120

Sy'C:lm. 181 2- 1
462R"" - 2R

1
1.

151 1.2 181 1 3

- mo iF" 55440 RT
1 1. 1 1.2

- ID R 120 R
1. 133 1 3 13 1.1+
R - 13860 RZ" 13860 itT
1.2 13 1.4 1 1.5

R - 13860 iF 11088 iF"
311 1.2 281 1,3

- 4620 RZ" 55440 a""
1 1. 1 1.2

10 R 120 R

52 2. 3 23 1.4

3465 RZ" - 18480 iF
1 1. 5

9240 a2
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Using Eq. (2-21) the element mass matrix is developed as follows:

.. pA
m

181! 0 311£2
462 4620

1.9- 0

3

52 3
3465:1

Synm.

281 3 25 0 _ 1512.2 181 3
55440:1 23102. 4620 55440R.

0 0 k 0 0
6

69 4 151~2 0 133 3 13 !+
554401- 4620 13860:1 13860:1

1 5 181 3 0 13 4 1 5
9240! 55440! 13860·:1 110BS!

181
t 0 311£2 281 3

462 4620 55440 t

19- 0 0

3

52 3 23£4
3465~ 18480

1 5
9240:1

The pier element matrix is written in a local coordinate system which is the

same as the global coordinate system, therefore it is not necessary to use the

transformation matrix. However, it is important to recognize the differences

in the nodal point parameters of the beam and pier, when developing the global

matrix. This is necessary because of the different continuity conditions,

between the connection of the beam and pier, which is given as follows:

pin: ~ = ~p
~ .... = <P"
In P

roller: ~ E;p

Using the following global equation for free vibration and the appropriate

bonding conditions, the frequency and eigen vector, are then determined.
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3 .4 Seismic Mass Matrix

~~ discussed in Chapter 2, curvelinear coordinates do not coincide with

the earthquake cartisian coordinates, therefore a transformation of the

earthquake accelerations into structur3l curvilinear coordiantes are necessary.

The acceleration components, as shown in Fig, 12, for the curved-beam element

are;

k \J co. a 'sin e ] .. )
{q} .. gx \k l~Sin a cos 6 g. z

{q} '= [T] {;;, (22)oj

The seismic mass matrix for the beam element is given by;

(22)

= (23)

It is convenient to integrate this equation using the sin e and cos 8 terms,

listed as follows:

Sin e ..

cos e • cos 6i

cos e~...
Sin 6

i

These sin and cos equations represent a condition when the ratio (~/R) is

less than 1110, and are obtained using Taylor's series expression.
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Substituting these sin and cos relationships into Eq. (23) and integrating,

gives the following seismic mass matrix for the beam element;

.2,.2
+ k ~

.2,.2

7R
S

2 2 -JRC

~ + 1.2 ,2.2 .2,.
- 2 ~ 6RS + ZC
4£,3 -2,2 2,2 42. 3

l05RS + laC 105 - 105RC

1.4 2,3 2,3 £,*
280RS + 120C 120S-~

[~J ::0

52.2 ~ 4s 52,2
14RS + 2 - f4<=2

-~ 2..' 12 k+ 3RC JiS +2 2

13 2,3 1.2 12 13 2,3
2l0R S foC - 105 +

210R C J
2,4 1. 3 1. 3 1.4

2l0R S + 120 C 120 C 210RC

(24)

where S Sin Si and C = cos e..
~

The components of the earthquake acceleration for the pier element are;

~x

I
cos 61 Sin 8

1

{q} ::0 q • -Sin 61 cos 61
{g} ::0 [T ] Co}

p z P g
...,
~~ 0 0
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Substituting Eq. (5), [Np] a~ld [Tp] into Eq. (23) and integrating, gives the

seismic mass matrix of pier element as follows;

k l~

2 -r
.:~ k2 2

t ~ t
12'" UC

0 0

0 0

[g:nJp .. (26)

k k2 2

1.. k--r 2

t .. t,..
- 12l:! IT"

0 0

0 0

3.5 Dynamic Global Equations and Earthquake Response

After assembling the stiffness, mass and seismic mass matrix, and

applying the viscos damping matrix [C], the dynamic equilibrium equations

under seismic loading can be obtained as follows;

[M] {8} + [e] {IS} [K] {a} = -[Gm]{g(t)} (27)

Using the characteristic matrix [~J, as obtained from the free vibration,

and using a transformation matrix;

{a} = [<p] {y}

51
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and substituting Eq (28) into Eq. (27) and multiplying by [~]T, gives n

uncoupled differential equations of the following form;

{y} + {y} T
= - [~] [GmJ {g (t)} (29)

The solution gives the value of {Y}, which is then substituted into Eq.

(28) in order to obtain the resulting earthquake induced displacements.

The resulting internal forces are then determined from the following Equation

{s}

52
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CHAPTER 4

THEORY - RAYLEIGH RITZ METHOD

4.1 General

The Matrix Method, as described in Chapter 2, provides a method that

is very accurate for dynamic analysis. Furthermore, it is very effective

in calculating the earthquake response of curved bridges. However, the

computation time required by the computer is excessive and thus is verJ

uneconomical. It is therefore the purpose of this chapter to present an

alternate method in calculating the dynamic frequency and mode shapes.

Then the spectrum method is used to compute the earthquake response of

curved bridges.

In order to determine the actual vibration conditions of a curved beam,

the energy effects due to bending, mass eccentricity, axial force, torsion

and warping must be determined. Also one primary requirement in utilizing

the Rayleigh-Ritz Method is the determination of the mode shape function.

As it will be described herein, the deflections due to various static loads

will be selected as the mode shape function and linear combination will

give the final mode shapes. Using therefore the deflection under static

load as the mode shape function, the internal forces can then be calculated

directly from the curvature of the defected shape.
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4.2 Basic Equations

For convenience, the curvilinear coordinate system as shown in Fig. 2

of Chapter 2, will be adopted to describe the curved beam.

The displacement {~ (s,t)} is a function of the coordinate and time,

which is given as follows;

{M = {8 (s)} . yet)

where yet) is a time function.

(1)

{8} is the vector of the displacement functions of the elements of the

bridge structure and can be represented as;

~ (z)

11 (z)

1jJ (z)

{c} - ep (z) (2 )
~ (i,Y)

P

1/!p(i,Y)

where ~, 11, 1/1 are the displacement functions in the X, Y, Z direction for

the element dZ and ep is the twisting angle of the beam. Tne function

; (i,Y) is the displacement function in X direction of element dY of the
p

ith pier, and 1/I(i,Y) is the displacement in Z direction of the ith pier.

The stress can be represented as a function of actions, and are as

follows;

My
Mx

{cr} N.. z

~ (3)

~
Mxp

Mzp;
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where My, MX, are the bending moments of the beam in X and Y direction~

N
Z

is the axial force of the beam and MT and ~~ are torsion and warping of the

beam respectively. The actions M and M are the bending moments in the pier
:q:l zp

in the X and Z direction respectively.

The corresponding strain can be represented by the following Eq.;

( ~2 1 ~

'b'
.,

"j E;" +-"- ? 0 RdZ 0
R ~ ..-,,'-

nIt - _tIl_ 0
a2

0 1
R az2 R

ljI'
__t;_ 1 0 a

0
R -a- n

r _1. ::z
¢' n ' ::z 6 1 a 0 a, <:. J ... _-

R az aT. R

~" +
nIt

0
1 a 32

R R az2 0 (322
~Il 0 0 0 0"p

j.j f1 0 0 0 0¥p

or

{e;} ::: [pJ {a}

Using Hooke's Law for induced internal forces;

{cr} ::: [D] {e:}

o

o

o

o

0

0

0

0 {o}
0

0

~2

"
ay2

(4)

(5)

whe't'e

o

o

E.~

GK~
J.

EIw
EI

pX
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When the earhtquake occurs, the maximum potential energy of the structure is given

as follows;

U = ~ f~p] {i;}max}T [D] ([P] {L}max}dS = ~2 J([P] {M)T [D] [P] {O} dS

U Umax (7)

The maximum kinetic energy of the structure is given by;

1 • T
T .Ir{,~,+}=-;:;- ~ qmax [m] (8)

where q is the displacement of the structure due to the ground motion, and

the differentiation given is with respect to time.

The mass [m] given in Eq. (8) is given by;

a a
oA a
o oI + pAe2(m] =

pA 0

o OA

o 0

pAe 0

o pAe

Q

(9 )

o

where e is the eccentricity between the centroidal axes and the shear

center. Substituting Eq. (1) into Eq. (8), gives,

(m]y2 J T
T "'"2 {e}

• ?
y-

,.. T -
max 2

{e} ds + Yf {e}T(mJ {q} ds

+ yf{e}T [m] (q} ds + T
&.

According to the Lagrange Equation;

d(aT)- - +
dt oy

3U-,..ay o
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therefore the following equation can be obtained;

u
V max v.. + T J.

ma."<:

(10)

which is the dynamic response differential equation of the curved beam

where damping is neglected.

4.3 Eigenvalue Solutions

. If the displacement function {a} is accurately determined, then based on

the Rayleigh-Ritz Method, the frequency w of structure is given by;

2 U
w =~=

Tmax

( [P) {o}) ds (11)

However, it is difficult to obtain an accurate displacement function to},

therefore the linear combination of several functions {Fl }, {F
2
}, ••• will be

used to represent to}:

Let

to} {
.

. A,

. . . J ~} .. [F] {A} (12)

The parameter {A} should be such to make w2 minimum or;

• 2ow
3{A} .. 0 (13)

Substituting Eq. (12) into Eq. (11), gives

.. {A}I [K] {A}

L>\}I [M] {A}

where the generalized stiffness matrix is;

(K] '" f (B]l (0) [aJ d~ (14)



and

[B] = [P] [F]

the generalized mass matrix;

[M] = f [F] T [m] [F] dS

Using Eq. (13) gives;

[K] {A} - w2 [M] {A} = 0

(15)

(16)

(17)

which is a homogeneous equation of {A} whose solution gives the frequency

wand eigenvector {A}. Substituting {A} into Eq. (lZ), gives the corresponding

mode shape.

4.4 Displacement Functions - Tnree Span Structure

The primary requirement in using the approximation method, is to select

the mode shape function. As described herein the deflection curve as obtained

from the static loading, will be used as the mode shape function for one

thro~gh four ?pan continuous curved bridge, The resulting mode shape functions

for 1, 2 and 4 spans are given in Tables 6, 7 and 9. The techniques

required in developing the functions and matrices will be illustrated for

the three span bridge.

A 3-span continuous bridge is shmm in Fig. 13, ,·lith a total length S

and an end span length of as. The height of the end pier is hI and the height

of the interior pier is hZ' The connection between beam and pier on the left

end is hinged, with rollers at all the other supports. Considering these

support connections, 10 displacement functions are required which include;

3~, 3~, 2n and 2~.

(1) Displacements in the radial direction

The displacement will consist of 3 functions and are given as follows;

~l is the deflection due to uniform load as shown in Fig. l4(a) or

~l (z) = S • F
l

(z) = S • (z4 - 2z3 + z)
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Zwhere z := -­
S

~2 is the deflection due to a unit displacement at the interior pier, as

shown in Fig. l4(b) or

{
z3 + 30. (0.-1) Z

2 3
3o.z - 3o.z -+- a.

o < z < a.

a. < z < 0.5
(19)

when z>O.5, the same displacement function can be used if the structure is

symmetric. ;3 is the deflection due to a unit displacement at the end pier,

shown in Fig. l4(c), or

::II S.F
3

(o.,z) (20)

If the support of the structure is on an abutment, this function

can be neglected.

The pier displacement, as shown in Fig. 15, is given as;

where:

1 2
="2 Y

y
y := h

(3 - y) (21)

Because the connection between the beam and the top of pier is hinge,

the deflection of pier will be determined by the displacement of the beam.

The deflection of the interior pier corresponding to the functions ;1' ;2,

~ are therefore;
~ 3 '

~p4 (y) ..
~l (a.) · -~pl

~p5 (y) :0 ~ (a.) · Fpl2
I:" (y) ::II ~ (a) • F

(22)
"po 3 pl
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(2.) Rotation ~

The rotation ~ of the curved girder will consists of two parts, first,

the rotation due to the vibration of the beam, as shown in Fig. 16 It should

be noted that the functions for rotation are similar to the function for radial

displacement and are;

~l (z) :: FI (z)

¢2 (z) ~ F
2

(a., z)

4>3 (z) '" F3(a, z)
} (23)

Second, the beam rotation instituted by the displacement of the pier is

considered as shown in Fig. 17. Using Eq. (22a), the rotation is given by;

The function of rotation can then be computed as;

35 ,
• -Q)

2h
Z

'1

Similarly, the rotation function corresponding to the functions ~2 and ~ 3

are given by;

(24)
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(3.) Vertical Disnlacement n

The vertical displacement ~ll consists of two functions, as shown in

Fig. 18, where;

{ -4
-3 + "Z). - z-(z - Zz S, Z ::a a < z < aa -n

l
:II

z - a-4 -3 1 2~ .. ::a a < z < 0.5(z - 2z + z) S; ..
1 - 2a -CL

and

f2Z
4 -3 + z) S,

1:
- 3: . z ::a

0a < z < a-
n2 =

2
-4 -3 -? 3(1-2a) z - a 0.5(z - 2z + z") S, Z ::a CL < .. <

2 1 - 2a • ...
a

(4.) Tangential Displacement ~

The left end support is hinged and the other supports are on

rollers, therefore, bvo linear functions are chosen" First, the rigid

(2.5)

displacement of the beam is considered and if there is no displacement at the

end pier, then this term can be ignored. The second displacement consist of

a linear variable, as sho,vn in Fig. 19. The displacement functions can be

written as;

./,
"2

::a S

= S . z
} (26)

(5) Radial disnlacement of the interior piers

The displacement ~p due to ; is given by Eq. (21), however, the ~p

due to rotation ~ has not been developed and will be given herein as illustrated

in Fig. 20.
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Applying a unit rotation at the top of the column, the curve can be

described as;

3 2Fp2 == hey - y )

The rotation angles at the top of the piers are ~ , ~ ~ ~3' the corresponding
1 2

displacements of the piers are therefore;

~pl = ~l(a) h (y3 - y2)

;p2 = ~2(a) h (y3 - y2) (27)

~p3 = ~3(a) h (y3 - y2)

(6) Longitudinal displacement of the end pier

If there is a longitudinal displacement of the pier at the left support,

Eq. (21) and ~l can be combined to obtain ~P' or ;

~ S
1 2 (3-y)== 2J (28)P

Substituting the functions described above into [F] gives

cP t: n ~

F 0 0 1 r-~

~2
... , '0= O' 0 0'0 C,I C,3

0 0 0 0 0 0 nI nZ 0 0

0 0 a 0 0 0 0 0 !PI W2

[F] : (29;

<PI ~Z ~3 41 4 ~5 96 a 0 0 0

It:pl I~pZ I~p3 r~p4 I~p5 I~p6 0 0 0 0

a a 0 0 0 0 a 0 Wp
0

J
Substituting Eq. (29) into Eq. (15), gives;
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-0
M
'-'

1
-N
; 0 -N 0 0 0 0

,..;1= ;

-,..; : Q,.
; 0 0 0 0 -so

,..;je:: -so

-N :N
:N c c

0 c 0 ,..;Ie::· ,..;Ie:: 0 0

-,..; :,..;
:,..; c c

0 = 0 ....lIe:: ,..;Ie:: 0 0

\0 M \0
:r"'l ~ ~ -\0 :\0 : ~

l.IJ' "';fe:: ,..;Ie:: -eo ~ ~ 0
'--l

I I

11"1 N \1"1
:N --eo ~ -\1"1 :11"1 : Q,.
w ,..;je:: "';1= --eo ~ w 0

W

--:' ,..; --:':,..; --eo ~ --:r :..:r : Q,.
w "';I~ "';I~ --eo --eo ~ 0

'--l
I I

M M
,..;r~

-M :M : :::.
0 0 --eo -eo w 0

1-0

N N

,..;f= -N :N : c.
0 0 --eo --eo ~ 0

1-0

,..; ,..;
--eo -,..; :,..; :c.

0 "';IC:: 0 ~ --eo w 0
1-0

L
I

.....
~
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Substitute [B] into Eq. (14), the Generalized Stiffness Matrix can be obtained

as;

[K]

where;

(31) -

and [ ] is;

<P ~ n 1J;

l..., I I
'0

....,
ra-

Jto 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0

0 a a 0 0 0 0 0

1

f~1t;2dz
~ ft;~~2 d~

J~12dz 0 0 O' ,ff;"t;"dz I1 3
1: f~"1jJI i

0

f~22dZ
0 0 0 R 2 2 dzi

ft;Ilt;"dZ2 3
0 1: Jf: Il 1JJI0 0 dz:

ft;3 2dZ R 3 2

0 0 0 0

(Sym. ) 0 0 0

a 0

2
1 f1J;I dz
- 2
R

2
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where. [.] is;

1 2 3 4 5 6 7 8 9 10

-
.., r

• I.
~ f~l ¢?dz 1:. f$l ¢6 dz 0 0

I
11:. J¢ldz - - - -? ,., - ?

R- \ R"- R""
I

'\
I

1. J<P~dZ 1:. Hz ¢6dz 0 0 2

RZ R2

'\ I , .

'\ 1 f4J. ¢.dz I - Rf¢i nj
dz a a 3

-2 ~ J

'\ R i = 1 - 6
i = 1-6

j = 1 :- 6
J = 1-2

'\ a 0 4

'\

"- 0 0 5

'\
I

I
"-

"- 2
1 0 0 6

1:. J ¢6 dz

R2 1-
(Sym,)

fn12dz J nlnzdzt
0 0

..,
/

)

J nz dz
I

0 0 8

o o 9

67
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where [ ] is;

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 a 0 0 0 0-11
I

I
I

a 0 0 0 0 0 0 0 0 !2
!

I
0 I 0 0 0 0 0 0 0 13I

L -I j
I

1 ~l 2 I
i- i:"ldz I2) .,

-\Jc;.~ .dz
0 '0 0 1 J . ' 14R a

- t,;·1)J2d :d
R ~ J - R ~ I

i = r3 J

i = I' V 3
j = 1-3

I
0 0 0 is

!

I !
0 0 0 16

I

(Sym. ) I
L !- - -1

0 0 0 0 !7
!

I
0 0 0 i8

I

I
j

I
0 0 19

I
i
I

J1/12
2

dz :10

,-
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,.;here [ ] is;

1 2 3 4 5 6 7 8

i",
9 10

I 1
~

1
0 0 ! 1

'" I t

rrb~ebl.d
1 Jrb r r

'"
_ in .dz 0 0

o J. J Z
R J I

2

I

'"
Ii = 1- 6

0 0

j = i- 6 I i = 1 ..... 6
j = 1 - 2 I

I
0 0 4

I
I

'" I
0 0 5

",I-_ I 0 0 6

- !. -

'"
I

(Sym. )
1:. Jr< n ~ dz

0 0 7

2 - J IR

~ = 1 - 2 I 0
J = i ..... 2

0 8

.-

'" 0 0 9

o

j

'-
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[K- ] = E1 S [ ]) w

where [ ] is;

1 2 3 4 5 6 7 8 9 10

" 1 It " fep '.'n '.'dz 0 0 1f- cjJi¢jdz ~ J

"-
0

i=I'V6 i = 1 'V 6 0 0 2j=i'V6 j = 1 'V 2

"-
0 0 3

I
0 0 4

I 0 0 5

,L I 0 0 6
(Sym. )

1:..2fn','n '.'dz I 0 0 7
R 1. J

i=I'V2 I
j = i'V 2 0 0 8

l
0 0 9

L

70

o 10



= E Ip px

where [ ] is;

[ ]

1 2 3 4 5 6 7 8 9 10

1'( I 0 0 0 0 1

" re". 1;" dY

r
r ~pJ. pj

0

"- i == 1 "Ii 6 0 0 0 0 I 2
j == i "Ii 6 I

'" I
0 0 0 0 3

I a 0 a a 4

I 0 0 0 0 5

'" I
"l 0 0 0 0 6

(Sym. )

0 0 0 0 7

a o

o

a

o

8

9
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E Ip z [ ]

where [ ] is;

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 5

a 0 0 0 a 6

(Sym. ) 0 0 0 0 7

0 0 0 8

fhl1J II 2dy 0 9

o p
0 10

Substituting the functions described by Eq. (18) through Eq. (28) into the

matrices just given and completing the integration, will yield the values for

each element in the matrix. Obviously these formulas are very long and tedious,

however, the integration can be performed by a computer program.

Substituting Eqs. (29) and (9) into Eq. (16), the Generalized Mass

Matrix can be obtained as follows;
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o 0

a 0

L a 0
1-

J
F;.;.dz

J. J
o
1 .. 1",3
j .. i"'3

f
11.11.dz

J. J

i"l", 2
j .. i", 2

2

4

5

3

1

i 6
!

_i

i 7
~

o

o

o

o

o

o

o
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n i 8
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o

o

o

o

o
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o

o

o
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I

I
-
I

-I

I
I
I

o

o

8

o

o

o

o

f

7

r 0

! 0

J 0

! 0

I 0

r~

6

o

o

o

543

o

o

o

2

o

o

CSym .)

1

-I

!

10
I

(M 1=pAS
1

1 2 :5 4 5 6 7 8 9 10

;, Ii I

" 0 0 0 0 I ·1J ~.q,.dz I I
........ J. J

i0 0 0 0 I
2

"- i .. 1 '" 6 I !

"- j .. i '" 6 a a a a I 3

"- I I0 0 a 0 4........
i I........

[HZ] = ........ 0 a a a I 5

I
i

J CI+Ae2)S
........ I

I "
0 0 a a

I
6

I

I (Sym .) 0 0 a 0 I 7
I I

i j
I a 0 a ! sI

i
!

I
a a I 9I

I
I

i

L
0 I 10

I
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1 2 :5 4 5 6 7 8 9 10

fh
--..

"'- ~ .~ .dy 0 0 0 0 1
" p1. PJ'"

" 0 0 0 0 0 2

"
i=l'''6
j = i IV 6 0 0 0 0 3

'" 0 0 0 a 4

"-[M4] :: 0 0 0 0 5
"-

PpAp "- 0 0 0 0 6

" 0 0 0 0 7(Sym .)

""- ,0 o. 0 8-,
rljJ~dY 0 9

o "" 0 10
......... -
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4.5 Earthquake Response Solution

In order to solve Eq. (10), Eq. (11) is first substituted into Eq. (17)

and w
2

and {A} are obtained. Then, Eq. (11) is substituted into Eq. (10) giving

the following;

un ds

If damping is considered, then the dynamic equation is;

.. • 2
y + 2~w y + w Y ~

where ~ is the damping ratio.

[ {o}T [m]

T
max

..
{q}

(3)

and

Normalizing the mode shape {oJ by

{oJ /-r.r­V·max

y ~ITmax Y. and

(4)

substituting {5} into Eq. (33), gives

.. • 2
y + 2~wY + w Y (5)

where {5} and {q} are described in curvilinear coordinate system. However,

the earthquake acceleration record is presented using a Cartesian Coordinate

System, therefore for consistency, the earthquake acceleration will be trans-
.. ..

formed from {g} to {q}.

Because the- vertical directions for the two coordinate systems are the same,

transformation is not necessary, however, the acceleration in the plane of the

curved beam during earthquake differs from the ground acceleration as shown in

Fig. 21. As shown in Fig. 21, {g} is the acceleration of the ground in three
..

directions, and {q} is the component of ground acceleration {g} in the direction

of structural displacements. Using Eq. (2-23), and the transformation for

columns, un can be obtained in terms of {g} as follows;
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cose 0 sine

0 1 0

{::}- sine 0 cose.. (36){q} = e cose 0 e sine

cosel 0 sinal

- sine l 0 cosel

.. ..
{g} = [T] {g}

Substituting Eq. (36) into Eq. (35) gives

where;

(37)

[yJ -I
[SJ Em] [T] ds (38)

Using the Response Spectrum Method, the record of the earthquake

acceleration {g} can be readily obtained, the displacement of the

structure can then be obtained from the following equation;

(39)

When is not sufficiently accurate, then 2 ­
w Ud may be used as the

static load, to calculate the final value of the response. However, the fjjTicl"-'

used in this work are the deflections due to the load, therefore Eq. (39) can be

substituted into Eqs. (4) and (5), to calculate the internal actions Wllich gives;

{cr} .. [D] [P] (5} [y] Y
max
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4.6 Example Solutions

Using the method just described, the following structure was analyzed.

As show~ in Fig. 22, the bridge is 3-span continuous curved beam of equal

span length (77.7'), with a hinge at the left-end support and rollers

at the other supports. The geometry of the bridge, as shown in Fig. 22, has

the following properties;

R == 700ft

E == 432000 K/ft2
G = 183000 ,kl f t 2

3 0p == 0.004658 Kslug/ft e =

A == 61.18 ft 2
Ap == 35.93 ft Z

Ix == 425.9 ft 4
I == 94.87 ft 4
xp

I = 5676.03 ft4
I zp == 138.3 ft 4

y

~ == 917.3 ft 4
~p == 178.7 ft4

I = 0 I wp == 0w

Using these properties and the R-R technique the first three frequencies

have been obtained as shown in Table 1. Also shown in this table

are the results obtained from the Finite Element Method (SAP 4) using the

space frame element. In using the SAP 4 program 32 nodal points, were

considered, thus requiring solution of 192 ~quations.

TABLE 1 Frequencies(CPS)

freQuencv order R-R Method SAP 4 orincioal direction of vibration

1 22.17 22.18 (radial)

2 31.41 32.99 (tangential)

3 41.40 41.43 (vertical)
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These results indicate that the first three frequencies calculated by

the R-R method are in good agreement with those obtained from the SAP 4

program~

The earthquake responses has also been computed by the R-R method, and

compared with the results caculated by the SAP 4 program. The earthquake

accelerations selected were ~ = LOgftl sec
2

The displacements Iyere examined

at the supports (1,2) and mid span (3) of the bridge, and the actions were

at the bottom of the pier and the mid span of the bridge. The Response

Spectrum ~urve that was used was the PRC Specification for the Earthquake

Design of Bridges.

Table 2

Radial Displacement in (ft) for (w = 22.l7CP~

(~ = 1.Og ft/sec2)
~x

1 2 3 rotation at point 3

R-R Method 0.208 2.33 2.65 0.889 p

,SAP 4 0.212 2.34 2.69 0.886 R

.-. _.. _..

Table 3

Bending Moment (kit) for (w = 22.17 CPS)
(g~ = 1.0g ft/sec2 )..

M a-a t1 b-b M c-c

R-R Method 244 x 103 453 x 103 105 x 104

SAl' 4 306 3 445 x 103
x 10

4
:t 10 113

Table 4

Tangential Displacement (ft) for (w = 31.41CPS)
(gz = 1.0g ft/s~c2)

1 3

R-R Method 1.95 2.16
,

I I
SAP 4 1.67 I 2.13 II
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Actions for (w = 3l.41CPS)

TABLE 5

(g = 1.Og ft/sec2)z

~ab~dhg moment (K-ft) c-c axial force (k)

R - R Method 192 x 104 540 x 102

SM 4 167 x 104 725 x 102

The results presented herein show that the radial displacement, for

the first mode, is similar to the data obtained from SM 4, with a maximum

difference of 15%. The resulting stresses indicate that the bending moment

at the interior pier controls the design and is 2% greater than that

calculated by the SM 4 program. The induced lateral bending moment at the

end pier, results in a difference of 20%. The maximum tangential bending

moment of the pier occurs when the acceleration

the second frequency.

a is applied and occurs at
°z

4.7 Displacement Functions-One, Two, Four Span Bridges

As given in Section 4.4, the displacement functions for a three span

continuous bridge were described in detail. The beam displacement functions

for a single, two and four span structure are given in the following Tables

6 through 9, where the functions for piers are the same as developed for the

three span continuous bridge.
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TABLE 6

SINGLE SPAl.,{

1JJ1 '"' S . z I
I
I

~--------------~-------------I

I

L: ~ I
q,

~
<PI '"' F1(z) I

~
I

<l>Z :0 FZ(0.5, 0.5) - FZ(0.5, z) I
I

\
, I

I
I

I / ~ ;1 '"' S . <PI
~

~ /1 ~Z :0 S • <P Z

I
,

I

I
11 L ~ 111 '"' F1(z)'-

I
I

I
I

I I II 1Pl '"' S
'i-'

F
I

and F
2

are functions as given in Eqs. (18) and (19).
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TABLE 7

TWO SPAN

,

~ ~ <PI =- F1 (z)

<P .c:::: ~ <P 2 = FZ(0.5 , z)

~ ~
<1>3 = FZ(0.5, 0.5) - F2(0.5 , z)

.

~ ~ ;1 = S cj>l

; ;Z = S <l>Z
~ ~

~ :=<:::1 ;3 = s <I> 3

I
-4. -3 -

~~
n = (Zz - 3z + z) . S

n 1 0.5- z <z = 2z -
I I 1/1 = S1

1/1

~
1/1 = s z2 .

I !i
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TABLE 8

THREE SPAN

~ ~ 91 = F (z)1

¢ ~ ~ 9Z = FZ(CL , z)

f':::.=..., =====:::::1 9 ... F2 ~ 11, (1) - F ( 11., z)3 2

z:::::= ~ ';1 ... S ¢,
.J.

~ ~
E:

2
.. S 9Z

~ :==::::::1 ';3 = S 93

c::::::::::;:>.c=:::---. n1 and n2 are shown in eq. (25)
n <:::::::::7

<::::::::::7«:::::::::::7 <:::::::::7

I 1/11 ... S

'j;

J 'p ... S . z·2



TABLE 9

FOUR SPA1'l

I

i '.-

r:::::= ~ . ill = F1(z)

~ ~ il Z = F2(O.5, z)

~

~ ~
il3 = F2(~ , z)

~ /1 il 4 = .F2(~' ~) - F (a z)2 ,
--::::::::::: ::::;:::::--

~ ~ ;1 = S<P 1

r:::::= ~ ~2 = SilZI

~

~ ~ ~3 = S<P 3

~ ~ ~4 = S<P 4
~ :::::::=='"

{-4 -3 ~ - < <+ z), --(z - 2z z = - a - z - ~
~ ,

n =1 -4 ~3 ~ -0.5 -a z - ~C7'C7'C7":7 (2z - 3z + z), Z =--a 0.5 - a
a < z < 0.5

n

I
-4 -3- - z2z - 3z +z, z = - o < z < a.~ , - -

L'\. L""\ n =
c::;:r "Z.J 2 •

2 -4 -3 ~2 - z-d3(0.5 - ~)
(z - 2z + z ), z -2 0.5-aa

\. ~ < Z < 0.5-

I I 1/J = S1
1/J

~
1/J = S . z2

84



h-z,
I.,
,
I

J

\

---------~

---
Fig. 13

~

j.J.
-L

Fig. 14

41
~----r

i

FI'/

Fig. 15



(b)

i ~ '\
......'-)

Fig. 16

L-- ---+l LV I

-t==-------t-· ~"'2-

86

Fig. 17

Fig. 18

Fig. 19



·A--
cI
d

..
~ i+---. ..

g~

I

.L
,~

87

Fig. 20

Fig. 21

Fig. 22



CEL~TER 5

THEORY-RAYLEIGH METHOD INCLUDING MULTI COL1~ BENT

5.1 General

As described in Chapter 3, a curved girder, when interacting with a

rigid pier bent (Fig. 23), the transverse and longitudinal torsional

vibrations become uncoupled when the rotation of top of the piers are

neglected. Consideration of this type of structural system can therefore

simplify the previously developed equations given in Chapter 4.

As detailed in Chapter 4, the vibration functions developed are for a

single column bent bridge structure, and thus transverse and rotational

displacement develope at the top of piers. Therefore, the transverse and

rotational displacements are coupled between the piers and girders. In this

chapter however, the rotation angle of pier, and eccentricity between

centriod and shear center axis are neglected and therefore and the vibration

of the girder can be divided into two parts, (1) transverse and (2) longitudinal.

In general in curved rnulticolumn bent structures the longitudinal vibration

is coupled with the torsional vibration, however by neglecting the longitudinal

deformation of the piers, the longitudinal vibration is not influenced by

pier interaction and therefore the bridge can be analyzed as a continuous

beam on rigid supports.

5.2 Basic Equations

As shown in Fig. 24, the curvilinear coordinate system will be used;

where;

x = radial direction

Y = vertical direction

Z = tangential direction
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The displacement parameters, where Y is time function, are chosen as;

{~(s,t)} = {8(s)} Y (t)

Using the Ritz method, a linear combination

represent the displacements;

(1)

of [F.], may be chosen to
~

{oJ

~ (Z)

1/J(Z)

~p(i,y)

1/Jp(i,Y)

= (F] {A}
(2)

where: [F] matrix of chosen functions

{A} unknown parameters.

The parameters ~ , 1/1 are displacements functions in the X and Z

directions for an element dZ , the parameters ~ (i,Y) and ~ (i,Y) arep p

displacements functions in X and Z directions for an element dY.

The internal forces can be written as;

{cr} = (3)

where;

M = bending moment about the Y-axis
y

N = axial force
z
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M 3 M bending moments of piers on X and Zpx pz

respectively.

The corresponding generalized displacements are:

directions,

{O}T Em] {a} ds

..n +
$' 32 1 d

0 0I;, R W R dZ-

ljI' ~ -! a- R az: {a}{e;} = .. R 0 0
;:-" ;;2"'p 0 0 0
$"

;;y z
P ;;2

a a 0 a y~-

{e:} = [PHo} = [P} [F] {A} = [B} {A}

where;

[B] = [P] [F]

From Hook.' s Law: [a] = [D}{d = [D] [B] {A}

where;

The natural frequency can now be obtained by Rayleigh quotient;

w2 = ....[_{.;:...E:;;.:}'--..;:.{.;;..a.-}_d;;...s,-_

I
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where;

pA a a am

pA 0 am
[m] ~ mass matrix =

PpApm a

Sym. p A
P pm

Substituting Eqs. (2), (4) and (6) into Eq. (7) yields;

2w = {A}T [K] '{A}

{A}T [M] '{A}

( 8)

Because {A} should be selected such that 2w is minimum, gives;

Le.

where;

= 0, therefore;

[K] {A} - w
2 [M] {A} = 0

[K] ~ J IB]T ID] IB] ds

[M] .. J [F] T [M] [F) ds

(9)

(10)

(11)

Solving Eq. (9) gives the nat~ral frequency and characteristic vector {A},

and substituting {A} into Eq. (2), yields the mode shape.

5.3 Displacement Functions.

The deflection curve, as obtained considering the dead load response,

will be used. The following is an example describing the functions

selected for a three continuous span bridge.

(1) Radial displacement; ~

~ is composed of 3 functions;
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~l (z) "" s. F1{z) "" s . 4 3 Z(z - 2z + z:) where z=-s

{3 -z + 3a(a-l)z 0< z < ci

';2 (z) "" S • F2 (a, z) .. S . 2
3az + a 3 a <: z < 0.5• 3az - - -

~3 (z) .. 5 . F3 (a, z) ::II 5 (F2 (a,a) - FZ (a, z)]

(2) Tangential displacement

1JJ = S1

1JJ 2 = S • z

(3) Radial displacement of piers; ~p

The radial displacement function is taken as;

(12)

(13)

(14)

(15)

(16)

2
"" y (3 - 2y) ; (a)

where the top displacement of piers is the same as that of

beam, as show~ in Fig. 25.

The corresponding displacement flli~ctions of columns are

2
~pl "" Y (3 - y) ~1(a5

';p2

2
a y (3 - y) ~3(a)

(17)

(4) Tangential displace~ent of pier; ~
p

1 2
"" s 2" y (3 - y) (18)

The [F) matrix can nov be written as;
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~1 ~2 ;3 0 a

0 a a $1 $2

[F] .. (19)

l:~Pl l:;p2 l:~p3 0 a

0 0 0 $p a

5.4 Stiffness and Mass Matrices

Substituting Eq. (19) into (5) gives the [B] matrix as;

~/t ~" ~II 11~' ! 1jJ'
R 1 R 2

1 Z 3
1 1,.. 1 $' $'- - ; - "Rt;z "R ~3 1 ZR 1

(20)
[BJ ..

E!;;/t l:!;;" r"''' 0 0
pI pZ C,p3

0 a a $" 0
p

Substituting Eq. (20) into Eq. (10)~ gives generalized stiffness matrix;

[K] ..
(21)

where: [K
1

] , [K2] and [K3] are defined as follows:

all al2 a13 al4 al5
.

a22 a
23

a24 aZ5
[IS.J :. EI S a

33 a34y a35
(sym. ) a44 a45

assJ
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where;

a13
=t - all

a14
=t 0

a1.5
1= - SR

a22
1

(-24<1 3 + 18a2)= 52
1 5 4 2a23

=t

52 (-4.8a + 6a - 1.5a )

a34 :a a

a35 =t ;R (3a2 - 3a)

a44 :0 a

b11 b12 b13 b14 b15

b22 b23 b24 °25
[K2) :a EAS

b33 °34 b35
(sym. )

°44 b45

b.53
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where;

b' ...
12

5
::I - R x 0.1

(
S)2 4 2= R (-O.Sa + 0.15a )

(
5 2 4 3= R) (-O.Sa + O.75a - 2O.1633a )

S 4 3b25 ::I - R (-O.25a + O.5a - O.25a)

(RS)2 4 3b33 ::I (5.75a - 1.25a + O.lS(2)

b 34 = a

b35
s 4 3 2

::=
- R (O.25a + 1.Sa - 1.Sa + O.25a)

b44
... 0

b4S = 0

bS5 = 1

Cll e12 0 0 0

c 22 0 0 0

c33 0 0
[K

3
J = E

P (sym. )
c 44 0

0
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where;

I ;iCo.) 12
ell = .px h 3

2

I ~l(a) ;2 (a) 12c12
..

px h3
2

;jo.)
12

c22
:I I h3

px 2

IpX;~(O)
12

c33
:I

h 3
1

52
3

c44
:I I h3

pz 1

Substituting Eq. (19) into Eq. (11), the generalized mass matrix is

(22)

where;

[Z1. J .. PA:n

symmetric

D13 0 0

D23 0 0

D33 0 0

D44 D45

D__
~)
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and;

D
Il

= 0.02795 S2

D12 = S2(-a4 + 1.6a3 - 0.31a)

2 4 3 2S (a - 1.2a - O.3a + O.31a)

Z 4 2DZ2 = S (-O.Sa + O.lSa )

D23 = 52 (_O.Sa4 + O.7Sa3 - O.1633a2)

D
44

... S2

52
D45 = 2

52
D55 "" "3

fEll E12 0 0

°lE
22 a 0 0

(M
Z

] == ~. A E33 0 0
p pm

l symmetric E44 0

0

and;

Z
Ell == 0.371 hZ ~l(a)

E12 = 0.371 hZ ~l(a) f;Z(a)

2 (a)EZ2 = 0.371 hZ ~2

2 (a)E
33

",. 0.371 hI t:3

2
E44 = 0.942 hIS
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5.5 Earthquake Response

As given in the previous cha~ters, the ground accelerations must be

converted into a curvilinear coordinate system. As shown in Fig. 26, the

following relationship can be obtained;

~ case sine
x

~z --sine cos6

~}
rq] '"' '"' [T] { g } (22)

~x easel sinel

~pz -sinel easel"

where; 0 = tangential angle for the beam element dz

6
1

= tangential angle of pier

Therefore the mode parameters are;

{y} .. -T
{d} em] [T] ds (23)

where;

.. { is} / (J {d } T (m] {<5} dS) ~

.. normalized mode shape

(24)

The final earthquake response for displacements at the structure is given by:

where Y can be obtained from spectrum diagram, and the actions can be

obtained from Eq. (3); or

{a}max .. [D] (p] {S} [y] y

These results can be computerized to obtain the dynamic response

of pier bent supported curved bridges.
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CHAPTER 6

Results and Conclusions

The theoretical response of single and continuous curved box girder

bridges, subjected to induced earthquake accelerations has been predicted

by several analytical techniques. These methods consider various

girder-pier bent interaction, which may be simplified depending on the

type of bent, i.e. single or multi column bent.

Several problems have been solved by these methods indicating good

correlation with previously developed techniques.

Utilization of the methods described herein will permit development

of simplified design techniques, to be presented in a later report.
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