REPORT NO.
UCB/EERC-82/24
NOVEMBER 1982

FRI3-165811

EARTHQUAKE ENGINEERING RESEARCH CENTER

A MATHEMATICAL MODEL FOR
THE RESPONSE OF MASONRY WALLS
TO DYNAMIC EXCITATIONS

by

HULUK SUCUOGLU
YALCIN MENGI
HUGH D. McNIVEN

Report to the National Science Foundation

— o
ad
—
i

;

I l r

|
7 N.A-.AA

W

RODUCED BY

NATIONAL TECHNICAL -
INFORMATION SERVICE

1.5 DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 2216l

COLLEGE OF ENGINEERING
UNIVERSITY OF CALIFORNIA - Berkeley, California



Forsale by the National Technical Informa-
tion Service, U.S. Department of Commerce,
Springfield, Virginia 22161.

See back of report for up to date listing of
EERC reports.

DISCLAIMER

Any cpinions, findings, and conclusions or
recommendations expressed in this publica-
tion are those of the authors and do not
necessarily reflect the views of the National
Science Foundation or the Earthquake En-
gineering Research Center, University of
California, Berkeley



=maTeom
[1%]

REPORT DOCUMENTATION [ 1. REPORT HO.
PAGE NSF/CEE-82069

2, 3. Racliplent’s Accession MNo.

019

3, 1 &Y

. :t‘;le?alr'\dgf‘:ubtmg

A Mathematical Model for the Response of Masonry Walls to

Dynam1c Excitations.

5. Hagort Dote
November 1982

&

7. Amhor(s)

_ M. Sucuoglu, Y. Mengi, H. D. McNiven

3, Porforming Organization Rept. 'No.

UCB/EERC-82/24

9. Performing Orzanization Name and Address
Farthquake Engineering Research Center
University of California, Berkeley
47th Street & Hoffman Blvd
Richmond, Ca. 94804

10. Project/T: 234/ Work Unit No.

11. Contract(C) or Grant(G) No.
© '

© (-21851

iz Sponsndng Organization Name and Address
Nation TTSC]ence Foundatipn-

1800 G Street, M.W.
Washington, D.C. 20550

13. Type of Raport & Period Covered

14

15 Supplementary Notss

-

im Abstract (Limitt 200 worcs) ‘
The study involves three stages:

. attributed,

i} on physical grounds,
" of the wall,

experimental observatfons,'choicé of the form
for a mathematical model, and opt1m1zat10n analysis. . .
‘The masonry wall specimens ‘were subjected to simulated earthquake ground motions, and
horizontal and vertical periodic excitations.
indicates that the first two modal frequencies are close to each other, ]
to strong interaction between the brick and mortar phases
_ Hence, a two phase mathematical model (mixture model) is chosen to describe
the wall behavior because of its capability of differentiating between the two phases of
the wall and of taking into account the interaction between them.
mixture model are put into a discrete form to simplify .the analysis.
The .parameters appearing in the model are determined, through optimization, by
matching theovetical and experimental responses in frequency space.

Evaluation of the experimental data

This is

The equations of the

17. D-;;J;ent Anslysis  a, Descriptors

b. ldentiRers/Open-Ended Tarms

c. COSATI Fleid/Group

15. Avallablllty Statemen.

Release Unlimited

19, Security Class (This Report) 21. No. of Pages

133

20. Security Class (This Pags) 22, Price

-~ =p=t 720 g)

See Instructiony on Raverss

\

OFTIONAL FORM 272 (477}
(Formarly NT15-33)
Department of Cimmerce






A MATHEMATICAL MODEL
FOR THE RESPONSE OF MASONRY WALLS
TO DYNAMIC EXCITATIONS

by

Haluk Sucuo3lu
and
Yalcin Mengt
Department of Engineering Sciences

Middle tast Technical University
Ankara, Turkey

and

Hugh D. McNiven

Department of Civil Engineering
University of California
Berkeley, California

Report to the National Science Foundation

Report No. UCB/EERC-82/24
Farthquake Engineering Research Center
College of Engineering
University of California
Berketey, California

November 1982

j f 8






i

ABSTRACT

In this study a mathematical model is proposed to predict the linear
dynamic behavior of masonry walls. The study involves three stages:
experimental observations, choice of the form for a mathematical model, and
optimization analysis.

The experimental work was carried out using a shaking table, where the
masonry wall specimens were subjected to simulated earthquake ground motions,

“and horizontal and vertical periodic excitations. Time histories of
accelerations were recorded at the lower and upper ends of the specimens.

Evaluation of the experimental déta indicates that the first two modal
frequencies are close to each other. This is attributed, on physical grounds,
to strong interaction between the brick and mortar phases of the wall.
Accordingly, a two phase mathematical model, namely a mixture model, is chosen
to describe the wail behavior because of its capability of differentiating
between the two phases of the wall and of taking into account the interaction
between them. The equations of the mixture model are put into a discrete
form to simplify the analysis.

The parameters appearing in the model are determined, through optimiza-
tion, by matching theoretical and experimental responses. Optimization anal-
ysis is performed in frequency space. The response quantities to be matched
are chosen to be the complex frequency response functions (experimental and
theoretical) relating the Fourier transforms of the top and base accelerations
of the wall. Computations in the optimization analysis are carried out by
introducing an object (error) function and minimizing it using a Gauss-Newton
method.

The results show that the mixture model is capable of predicting correctly

the dynamic response of masonry walls up to a frequency which is well above
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the second modal frequency. It is also found that the mixture model

remains valid in the presence of micro cracks which may exist between mortar

and brick constituents.
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1. INTRODUCTION

This report describes the first phase of a study the object of which
is to develop a mathematical model for predicting the response of masonry
walls to dynamic excitation. To ouy knowledge, such a model has not
previously been developed, although a considerabie number of experimentai
studies [1-6], aimed at modifying and improving the existing codes for
masonry structures, have been undertaken., Mayes et al. [1-3] were
concerned essentially with the strength, failure modes and cyclic shear ba-
havior of masonry piers, Hidalgo et al. [4] studied the cyclic behavior
of masonry piers subjected to load reversals. Giilkan et al. [5,6] tested
single-story masonry houses on a shaking table and investigated their
experimental behavior by subjecting them to earthquake excitations.

This phase of the analysis 1is concerned with the dynamic behavior of
masonry walls in the linear range. The second phase of the work, which
will be done in the future, will use the results established here and the
insight gained to extend the analysis to the nonlinear range.

The study is presented in three main stages: first, the experimental
dynamic behavior of the masonry wail specimens is examined, then a matha-
matical model is chosen; finally, the parameters appearing in the model are
determined through optimization. The selection of the form of the mathe-
matical model is the most crucial stage in the analysis. An appropriata
model can be chosen only after careful interpretation of the experimental
data. With a poor model the analysis may fail to produce the optimum vaiues
of the model parameters even if the most powerful optimization algorithm is
used.

The experiments were performed at the Earthquake Engineering Research

Center of the University of Califernia, Berkeley, U.S.A.. In these experiments



masonry wall specimens were subjected to base motions on the shaking table.
Two types of base motion were applied in the experiments; one periodic
(parallel to the wall, in both the horizontal and vertical directions), the
other derived from ground motion records of the E1 Centro 1940 earthquake.
The amplitudes of the base motions were kept small since the linear behavior
of the walls was our primary concern. During the tests, accelerations at the
top and bottom of the wall were recorded using accelerometers.
The most distinct feature of the experimentally observed behavior of
the masonry wall specimens is that their first and second modal frequencies
are close to each other. They are approximately equal to 19 and 24 Hz for
horizontal motions of the wall specimens. It is suspected, on physical
grounds, that the closeness of these modal frequencies is due to strong inter-
action between the mortar and brick phases of the wall. Consequently, the
model should be capable of predicting these close frequencies but also able
to differentiate between the two phases of the wall. In view of this
reasoning, the mixture model is chosen for the analysis. (The theoretical
framework of the mixture model has already been established in references
[8-11].) The mixture model replaces the heterogeneous wall material by a
two phase homogeneous material and takes into account the interaction between
the two phases. The results obtained using this model indicate that the above
speculation is well-founded. In fact, it is found that the mixture model has
the ability to describe correctiy, not only the closely spaced modal fregquencies,
but also other experimentally observed characteristics of the wall behavior.
Moreover, the model is valid for both horizontal and vertical motions and
has the flexibility of incorporating the debonding characteristics of the wall.
In this study, the equations of the mixture model, which are partial

differential equations, are simplified and put in a discrete form by following



a procedure outlined in reference [12]. The resulting equations relate the
top displacements to the base displacements of the wall. The use of a dis-
crete mixture model is preferred because it simplifies the analysis. For
the discrete model the determination of the theoretical response requires
the solution of ordinary differential equations only, rather than the partial
differential equations of a continuum model. In deriving the discrete model
from the continuum model, care is taken to preserve the capabilities of

the model discussed in the previous paragraph. The discrete model contains
mass, elastic stiffness and damping coefficients, which are to be determined
through optimization.

The mixture model has the property that it reduces to a simple model,
called the effective modulus model, as a special case. The effective
moduTus model is a one phase homogeneous model describing the wall behavior
only up to the first modal frequency. This simple model is also considered
in the analysis.

The model parameters are obtained through optimization by matching
the theoretical and experimental complex response functions (which are
designated by HE and Hﬁ, respectively) in frequency space. The response
function used in the study relates the top acceleration (output) to the base
acceleration (input) and is defined by the ratio {Fourier transform of
output} / (Fourier transform of input). The use of frequency space (rather
than time space) and matching Hﬁ and HE are preferred in the optimization
analysis for several reasons. First, the analysis indicates that matching
the response functions in frequency space is very crucial and can be used
as a criterion for the accuracy of the model. This criterion determines the
frequency range over which the model is valid. Then with this knowledge, we

can determine in advance whether or not the model adequately predicts



the response of the wall in time space to a given input by studying the
Fourier spectrum of that input. Secbndly, working in frequency space
simplifies the optimization analysis because in frequency space the equations
are simpler and there are less data points than in time space. In fact,

to determine the theoretical response of the wall in time space we have to
solve differential equations, but only simple algebraic equations in frequency
space.

The response function (theoretical and experimental) is found using
the definition given above. The Fast Fourier Transform (FFT) algorithm is
used to evaluate Hﬁ. A full discussion of Fourier analysis and of the FFT
can be found in references [13-21].

In the optimization, an object {(error) function is introduced to measure
the accuracy of the match between Hﬁ and HE. It is defined as the integral
of IHE - Hsl2 over the frequency interval considéred in the analysis and is
a function of the model parameters. Optimum values of the model parameters
are computed by using the Gauss-Newton method to minimize the object function.
For this and other optimization methods, see references [22-27].

The results for both horizontal and vertical motions of the wall are
presented and discussed in Chapters 6 and 7. It is found that the mixture
model describes the wall behavior correctly up to a frequency which is well
above the second modal frequency. It is also observed that the mixture model,
with optimum values of the parameters computed through optimization in fre-
quency space, predicts accurately the response of the wall in time space as
expected in view of the argument given previously.

Finally we should point out that, although the two wall specimens
tested have the same dimensions and are made of the same type of mortar and

brick, they have quite different response functions (see Figs. 13,14). This



difference is due to their having different distributions of micro cracks
which may exist between mortar and brick layers. Figures 13 and 14 show
that the mixture model gives a good match for the response of both walls.
This is anticipated because, as mentioned previously, the mixture model
has the capability of taking into account the debonding characteristics cof
the wall.

Presentation of the study is arranged as follows. The experimenta’
work is outlined in Chapter 2. The theoretical models are presented in
Chapter 3, the theoretical and experimenta1 frequency response functions
are evaluated in Chapter 4. The optimization analysis is given in Chapter
5. In Chapter & the numerical results are presented and discussed and

an assessment of the proposed models is made in Chapter 7.



2. EXPERIMENTS

The experiments were performed on a brick masonry wall specimen at
the laboratories of Earthquake Engineering Research Center of the University

of California during July and August 1979.

2.1 The Test Specimen

The test specimen was composed of two parallel walls connected to a
steel base frame which,in turn, was attached to the shaking table. The upper
ends of the two walls were connected to each other by means of a second steel
frame. During experiments weights (concrete blocks) were put on the top
frame (see Figs. 1 to 4). The total weight was 45,210 N {10,160 1bs).
The dimensions of the walls are shown in Fig. 5. The mortar thicknesses and
the dimensions of the brick used in constructing the walls are also indicated
in Fig. b.

In both of the walls no reinforcing was used and the mortar was of type
S. The compressive strength {per gross unit area) of the bricks was 3304 N/cm?

(4790 psi).

2.2 Instrumentation

The following instruments were used for each wail:

(i) Two accelerometers (at the middle of the lower and upper edges of
the wall) measuring inplane horizontal base and top accelerations. (Figs. 3
and 6)

(ii) Two accelerometers {at the middle of the lower and upper edges
of the wall) measuring vertical base and top accelerations. (Figs. 3 and 6)

(iii) Two potentiometers (directed along the two vertical edges of

the wall) measuring vertical displacements.



Figure 1. Front view photograph of the wall specimen on the shaking table

Figure 2. Side view photograph of the wall specimen on the shaking table
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(iv) Two DCDT's (directed along the two diagonals of the rectangular
flat surface of the wall) measuring the displacements in the directions of
the diagonals.

(v) One potentiometer measuring the absolute inplane horizontal dis-

placement of the upper edge of the wall from a fixed point.

2.3 Types of Input

The test specimen was subjected to the following three types of inplane
base motion generated by the shaking table: horizontal periodic, vertical
periodic and modified E1 Centro 1940. A1l types of input motion were recorded
at equally spaced intervals along the time axis with a time increment of

0.00988 second.

2.3.1 Horizontal Periodic Input
The direction of motion was horizontal and in the plane of the wall.
The periodic motion was approximately harmonic and possessed a fundamental
driving frequency which was kept constant during the experiment. This
frequency varied from 3 Hz to 30 Hz for different tests, with an increment

between tests of 3 Hz or 1 Hz, depending on the occurrence of the resonance

phenomena. The amplitude was about 0.05 g (g is gravitational acceleration).

2.3.2 \Vertical Periodic Input

The direction of motion was vertical and the driving frequency varied
from 3 Hz to 30 Hz for different tests, as in Section 2.3.1. The

amplitude was about 0.05 g.

2.3.3 Modified ET1 Centro 1940 Input

This input is obtained from the E1 Centro 1940 record by modifying it
as follows: The shape of the time variation of the E1 Centro record is kept

the same. The time scale is squeezed by dividing the times in the original
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record by a scale factor. In mathematical terms, if f(t) and g(t) are the
original and modified records respectively, where t = time, then g(t) would be
related to f(t) by the relation g(t) = f(st), where s is the time scale factor.
This equation indicates that the value of the original record at a certain
time, say at t = €, would be shifted to the time E/s in the medified record.
The scale factors are shown to he 2.45, 3.46 and 7.7. The reason for changing
the time scale was to make the contributions coming to the output from high
frequency components of the input significant. Thus the mathematical model
can be established in a Targer frequency range and consequently the high
frequency behavior of the wall will be taken into coﬁsideration.

Since our objective was to determine the model parameters of the wall
in the linear range, the amplitudes of the inputs were kept small in the tests.
Maximum amplitudes of various modified E1 Centro inputs having different scale
factors are shown in Table 1 (in Table 1, iig designates the table acceleration).
After all of the tests were completed, the wall was subjected to the E1 Centro
input with the scale factor 7.7 and its amplitude was increased until the
wall cracked.

Table 1
Maximum amplitudes of modified E1 Centro inputs

Time Scale
Factor

.0 (Normal Scale) 2.45

Run No. i 2 3 4 S 6 7 8 9 10 H

max ligl /g 0.043 {0097 |0.155 |0.198 |0.36! [0.403 [0525 |0.074 {0.233 |0.314 |0.457

Time Scale
Factor 3.46 7.70
Run No. 12 13 14 15 16 (rd 18 19 20 21 22

Max | ugl 7g |0.155 |0.338 |0.569 |0.236 [0.359 |0.488 |0.597 |0.750 |0.874|1.046 | 1.203
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Typical records are shown in Figs. 7 and 8 for a horizontal periodic

table acceleration with a driving frequency of 18.58 Hz and for the modified

E1 Centrc input with the time scale factor 3.46, respectively (u* is the

horizontal top acceleration).

~03
o]

Figure 7.

time (sec)

3

A sample record of an input-output acceleration pair

in a periodic run (driving frequency = 18.58 Hz)
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an E1 Centro run (time scale factor = 3.46)
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3. THEORETICAL MODEL

To predict the dynamic behavior of the masonry wall two different
mathematical models are chosen, namely the models based on mixture and
effective modulus theories. Since the effective modulus model is a special
case of the mixture model, the model based on mixture theory is discussed

first.

3.1 General Theory

The mixture model replaces the héterogeneous material of the wall by
a homogeneous one exhibiting orthotropic symmetry. It treats the wall as a
composite made of brick and mortar constituents and takes into account the
interaction between them. The equations of the model are composed of
constitutive equations, linear momentum equations and strain - displacement
relations. The wall under study is referred to a Cartesian coordinate system
(x], Xos x3) where the origin is coincident with the centroid of the wall.
The (x] - x2) plane coincides with the midplane of the wall and the Xy axis
is parallel to the horizontal layering (see Fig. 9). Then, using the results
established in references [8-11], the governing equations for the inplane
motions of the wall are as follows:

Linear momentum equations:

1 1 2 1, _ 1.1 w2
%051 * Pt Qugluy - ugd T mgy - el
(3.1)
2 L 2 12 L1 2.0
ajgji R+ Qij(uj - uj) a; 505 + s 50U
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Constitutive equations:

] [ o] [eb] [ o] [
g | = 1o 22 0| |en| t s s 0 |
_(%ZJ o 0 s}lf1 e, 0 0 s _2e122
L T I )
2] [ ol [a] [2a o] [4
G| = [s1s ;5 0| |en| * |5tz ;O 257
‘G%Z | i 0 0 512- _28%2_ i 0 0 sﬁﬁ _28%2_
Strain-displacement relations:

e?j = %—(Biug + Bju?), (0=1,2) (3.3)

where
%, partial stress components for the o phase measured per unit
area of the wall material

F¢ partial body force components for the o phase measured per unit
volume of the wall material

ul : displacement components averaged over the o phase

e?j : strain components for the a phase.

In writing Egs. (3.1, 3.3) the indicial notation is used. The sub-
scripts 1,j take the values 1 and 2 only, and a repeated index implies
summation over the range of that index. The dot denotes partial differenti-
ation with respect to time and aj stands for a/axj.

In Egs. (3.1 - 3.3) the superscripts 1 and 2 differentiate the two

phases of the wall. In the following analysis the superscript 1 designates

the mortar phase while the superscript 2 designates the brick phase.
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It is noted that the constitutive equations, Egs. (3.2), exhibit ortho-
tropic symhetry, and the constitutive equations of the mortar and brick phases
are coupled. This implies that the partial stress of one phase would be
affected not only by the deformation of that phase, but also by the deformation
of the other. In order to accommodate the dissipated energy, which may be due
to various causes (e.g., to friction produced by slipping between the brick
and mortar phases), it is assumed that the constitutive equations are visco-
elastic and viscoelastic moduli sﬁg appearing in these equations are differential
operators in time. The Kelvin {Voight) model has been chosen for the visco-
elastic constitutive equations. Accordingly the viscoelastic moduli s%ﬁ have
the form siﬁ = k%ﬁ + C%ED, where D = d/dt. The constants k%ﬁ and c%ﬁ

represent elastic and viscous (damping) coefficients, respectively.

The terms Q.., m:, (a=1,2) and q.. in Eqs. (3.1) have the forms
1] 1] 1J

Q'I 0 (Qu+ q.!) 0
_ RPN SR )
(Q‘IJ) = s m = (m'IJ) ’
0 Q2 0 (p(;' qz) (3.4)
9= (q'ij) =
0 95

which, as noted before, exhibit orthotropic symmetry. 1In Egs. (3.4) oy
denotes the partial mass, defined as the mass of the a phase per unit volume
of the wall. 9 and 9, are constants with the dimension of mass per unit
voiume. Q1 and Q2 are some viscoelastic time dependent operators which,

in view of the Kelvin model chosen in the analysis, take the form Qa=ku+caD‘
It is observed from Egs. (3.1) that (Qij) and (qij) represent the linear
momentum interaction between the phases. A detailed discussion and inter-

pretation of the terms Qij’ my

ij and a4 can be found in [8].
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A comment regarding some conditions to be satisfied by the constants
af  oB . . . . .
kmn’ ¢ 90 9 ku and ¢, 1s now in order. Since the kinetic energy,
strain energy and the energy loss due to dissipation are always positive the

matrices

(3.5)

should be positive definite, where m@ = (n%j), q=(g9;.), 598 = (k%ﬁ), 296 =

11
(cﬁﬁ) and (-)T designates the transpose of (+). It should be noted that the
first is a 4 x 4 matrix, the second and third are 6 x 6 matrices and the last
two are 2 x 2 matrices.

Since this study is concerned with analysis involving the motion of
the wall in its own plane, the equations of the mixture theory in the
preceding paragraphs are given for the two dimensional case. However, if
the out-of-plane motion of the wall is to be considered as well as the in-

plane, the three dimensional equations of mixture theory should be considered.

These equations will have exactly the same form as Egs. (3.1 - 3.3) and
(03
ij
the three dimensional case the indices i, j in Eqs. (3.7, 3.3) take values

again the terms qij’ Qij’ m: . will exhibit orthotropic symmetry. But in

from 1 to 3; the matrices associated with Qij’ qij’ m?j would be three

dimensional and the matrices formed by the material moduli 525

mn 10 Egs.

(3.2) would be six dimensional.

3.2 Formulation of Special Problem Associated with Experiments

Using the Toading and geometric conditions of the wall specimen we
now establish equations governing the theoretical response of the wall,
Because the width b of the wall is large compared to its height H (see Figs.

3 and 5) and the input in the experiments (base acceleration) is uniform
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over the lower end of the wall, boundary effects coming from vertical edges
of the wall will be disregarded. With this assumption, the dependent
variables are functions of X, and t only. Then the governing equations,
Egs. (3.1 - 3.3), for the inplane horizontal and vertical motions of the
wall reduce to the following forms;

linear momentum equations:

BXG] + Q(Uz - U]) = (D] + Q)U] - quz

(3.6)
BXGZ + Q(U] - u2) = ‘qu1 + (02 + Q)uz
constitutive equations:
9 ST TS B N
= (3.7)
97 S12. Sz | | %Y
where
(0?2,u?,Q1,q1,si2) for horizontal motion
(Uu’uu’Q’q’SaB) =3 (3.8)

[(ggz,ug,Qz,qz,sgg) for vertical motion

and x stands for Xy In Eq. (3.8), the indices o and B distinguish the
phases and take values 1 or 2 for mortar or brick constituents, respectively.
In writing Eqs. (3.6, 3.7) it is assumed that, for the vertical motion,
Or Yy represent the deviations of stress and displacement from their static
values. These static values are associated with the equilibrium state of
the wall which exists initially under the influence of the weight of the
wall and the top weight.

Before writing the boundary conditions along the upper and lower ends
of the wall, volume ratios will be introduced. The volume ratio Ny is

defined as the volume of the o phase per unit volume of the wall and satis-

fies the equation Yy + n, = 1. The partial mass Py, and actual mass density
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pg of the o phase are related through n, by Py = P

a o

R n (a=1,2).

In writing the boundary conditions at the upper end x=H/2, it is

assumed that the inertia force due to top weight is resisted by the partial

phase stresses 94 and Ty associated with the factors ny and Nos respectively.

This leads to

m Wt o+ +
n ET—(n]u] + n2u2) + oy = 0

m o Lt +
no —H—.-(nTu1 + n2u2) ta, = 0

xa[x)

f- WEIGHT

A

~ WALL

L
‘ @ e +
5 ®, O

(D AND (@) : ACCELEROMETERS MEASURING
HORIZONTAL ACCELERATIONS

AND (3) : ACCELEROMETERS MEASURING
VERTICAL ACCELERATIONS

Figure 9. Geometric description of the wall and the locations

of accelerometers

(3.9)
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where m is the mass of the top weight per unit length of the wall and h'
is the thickness of the wall. In Egs. (3.9), the notation (')1 = (')lx=¥H/Z
is used {see Fig. 9). In writing Egs. (3.9) it is assumed that the
acceleration of the top weight can be expressed in terms of phase accelera-
tions at the top by (n]U; + nzu;). This assumption is consistent with
smoothing operations used in the development of the mixture theory.

The boundary conditions at the lower end of the wall (x = -H/2) can
be expressed in terms of base acceleration (measured using accelerometers 1
and 3). In agreement with the idealization implied by the mixture theory
(see [8-111}, the phase accelerations are both assumed to be equal to the

base acceleration at the iower end. Thus,

ﬁ] =l =1 (t). (3.10)

In Eq. (3.10) Ug represents the horizontal or vertical base acceleration
depending upon whether the horizontal or vertical motion of the wall is being
considered.

In this analysis it is more convenient to work with the dependent
variables o, v, u, { defined by

G=0}+02 H T=O-I-C52
(3.11)

j
H

(u1 + u2) /25 U (u] - u2) /2
rather than the variables o, u . Note that o defined in Eqs. (3.11) is the
total stress measured per unit area of the wall and u is the average of
the phase displacements. In terms of these new variables, the governing
equations, Egs. (3.6, 3.7), and the boundary conditions, Egqs. (3.9, 3.10),
are as follows;

Tinear momentum equations:

BXG = ol + s
(3.12)

3,0 - Q'y = sl + nip
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constitutive equations:

o | S

n S 9,u (3.13)
T S12 Sp2 N
boundary conditions:
B (eq U+ eqplh) + 0" =0
%%-(elzu+ feyh) + T =0 (3.14)
“:"t; -:O
U ug( ) ¥
where
P =Py TPy S =Py Py n=op+ 4q
S11. 7 811 * Spp *F 259y
S12 % S11 ~ Sp2 (3.75)
Spp = S11 t Spp 7 38y
Q' = 4Q
g, =13 e = (Ny - n,) 3 €rp = (N, - n )2
11 ’ 12 1 2’ 22 1 2

The total mass density ¢ defined in Egs. (3.15) designates the mass of the
wall material per unit volume.
Since the matrices (3.5) are positive definite, the matrices
PSRy Ky ¢ S
s kjp koo C12 S22
are also positive definite, and k and ¢ are positive, where (kaB’ k) and
CaB’ c) are, respectively, elastic and viscous coefficients of the operators

(Sus’ Q'); i.e., S g kOtB +c oD and Q' = k + cD.
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The solution of Egs. (3.12, 3.13) subject to the boundary conditions,
Egs. (3.14), and zero initial conditions (the motion is assumed to start

from rest position) determines the theoretical response.

3.3 The Discrete Model

The governing equations, Eqs. (3.12, 3.13), constitute a system of partial
differential equations and determination of the theoretical response involives
integration of these complicated equations. Therefore it is desirable to
reduce them to a simpler form that is more suitable for optimization
analysis. This reduction is made using a modified version of Galerkin's
method proposed in [12] in connection with developing a higher order dynamic
approximate theory for plates. As will be seen shortly, the resuiting
equations describe a discrete model.

Derivation of the equations of the discrete model starts by referring
to Fig. 9. Let h be half of the weight of the wall, i.e., h = H/2, and x
be a nondimensional distance measured in the vertical direction, defined
by X = x/h. To develop a discrete model we first choose a set of distri-
bution functions {¢i(;)’ i=0,1,...}, which form a complete set in the
sense that a given function f(x) in the interval -1 < x <1 can be represented
by the series

z

o:p:(x), i.e., Lim

. a¢1(;) = f(;{)s
Noeo

0 1

1t =

where o are some constants. For developing an m th order model, the
elements {¢0, Proeene- > s Ore1 o ¢m+2} of the set should be retained, since
the two additional functions ¢m+1, ¢m+2 are necessary to satisfy the end
boundary conditions of the wall exactly. To keep the discrete model as
simple as possible and for reasons which will be discussed later, the value

of m is taken to be zero in the analysis, i.e., only the elements ¢0, by
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and ¢2 of the set are retained. The resulting equations will then
constitute a zeroth order model. Legendre polynomials, which are orthogonal,
are chosen as distribution functions to simplify the analysis; i.e.,
o5 = Py (i = 0,1,2 and P is the i th order Legendre polynominal) or,
explicitly,

6o =15 6 =% 3 4= (-1+3) /2. (3.16)

It should be noted that ¢ thus chosen satisfy

+1 B
_{ 03059 = 7T 8y

I

0g(F1) = 0,(¥1) =1 5 ¢, (#1) = ¥ (3.17)

i
(o]

9g(¥1) = s 4(F1) =1 5 9p(F1) = 73

where 6ij is the Kronecker delta, {(+)'=d(+) / dx and a line appearing under
a repeated index implies that the summation rule does not hold for that
index.

Before starting the analysis, we will introduce an averaging operator,
generalized displacements, and the end quantities involving the values of
stresses and displacements at the lower and upper end of the wall, which
are defined as follows.

Averaging operator:

1 +h
L= oy _é (-)¢0dx, (3.18)

generalized displacements:

(uss yy) = Llu 5 ¥) (3.19)
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end quantities:

S =u +u ; Yo=Y+
(3.20)

+ + - - + e -
R =0 +0 3 T =1t +71

To establish the equations of the zeroth order theory, first the
weighted average of the Tinear momentum equations is taken over the height
of the wall using ¢, @s the weighting function, i.e., the operator L is

applied to Egs. (3.12). This gives

I' :Ul

= pﬁo + Swo
(3.21)

II-—I

- Q'wo = SUO + n@o .

To complete the equations of the approximate theory, the constitutive
relations for the end quantities are added to Eqs. (3.21). With the object
of establishing these equations, u and ¥ are expanded in terms of s and
95 as

U= a,by ¥ aphy * aye,
(3.22)

=
I

= b by *+ Byéy + bydy

where a, and bi are some functions of time. Then in order to relate as and
bi to the dependent variables appearing in the approximate theory the
operator L is applied to both of the equations in (3.22). Because the P
are orthogonal this gives

(ags by) = (ugs v,) - (3.23)

To find the other (ai, bi)’ the values of u and ¢ from Egs. (3.22) at x = *h
are substituted into the expressions for st and w+ defined by Egs. (3.20).

This yields
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_s” _ U
3y =7 3 by =g
(3.24)
+ +
=3 ) =¥
By 3= - Uy 3 by =5y

The final step in obtaining the constitutive relations of the end quantities

involves first the substitution of Eqs. (3.22) into Egs. (3.13), from which

we obtain
2sH 251,
o = (a1¢1 taghy) + o (byeg * b2¢2)
2312 2522 (3.25)
T = (a9 Foagdy) + o (bydy + bygy)

Finally, if these expressions for o and T at x = *h are substituted into

the relations RF =0 T o” and T' = 17 T ¢ the constitutive equations for

the end quantities are

+_2 - -
RU=q (505 + Syp0 )
R™ = p LSq7(5% = 2u) + 5,007 - 2p))]

) (3.26)
+ - -
T = (5955 + Sppv7)
T~ = ﬁ- [S7(5" - 2u) + S (6" - 2901

In obtaining Egs. (3.26), the defining expressions of b (i = 0,1,2) in Egs.
(3.16) are used.

The boundary conditions of the problem, Egs. (3.14), can be expressed
in terms of end quantities of the approximate theory. In view of Egs. (3.20),

they take the form

[0}
[sw]

B Lo BT+ 87) + e (T7 + 7)1 + R+ ®

%%—[e12(§+ +87) + e22({1}+ Fy )+ T T
o+ e

-5 =20
§ -5 g

1]
[es]

(3.27)

v =0,
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The equations of the approximate theory are now complete. They are

Egs. (3.2%1, 3.26 and 3.27), which constitute ten equations governing the ten
¥+
).

. The reduced model equations can be simplified further by employing a

o
unknowns (uo, byr S ¥ > R, T
procedure explained below. The procedure begins by taking the Fourier
transforms of the model equations, Egs. (3.21, 3.27 and 3.27), from which
we obtain the following matrix equations:

linear momentum equaticns:

] R_F pmz Swz ug
i - (3.28)
1F | 502 - Q' wg
constitutive equations for end quantities:
7 2[5 S [s7
- F (3.29)
+F N -F
T S12 Sppd LY
ro-F Tz +F S F
R S S S S S u
- % 11 12 _ 12 il 12 4] (3.30)
-F z z +F H lz z F
al S12 Sppd LY S12. 524 L,
boundary conditions:
+F -F +F -F
— e e S +5 R R
_wz %‘ 11 12 + + - 9_ (3-3-})
+F -F +F -F
&2 epp| fV W T T
st s P oot
9 (3.32)
+F -F
I-IJ = w = Oa
where Q' = k + iwc; SaB = kaB * iuc s (a,8 = 1,2); w is angular frequency;

.2

i® = -1 and (-)F designates the Fourier transform of (-).

3.32) correspond to the wall being initially at rest.

Equations (3.28 to
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when £5 = [R°T T7F1T from Eq. (3.28) is substituted into Eq. (3.30),

F_b6g 12 = ,F
HAN =g ST - S (3.33)
Here
2 2 z p
pw Sw - S S
A- N L e
sw2 nwz - ﬁ‘ S S (3.34)
12 22 :
F +F +F  +F 4T
N R L AL O AU L

After some manipulation, Eq. (3.33) can be written as

2
HE z-1 1 4F
(L- 758 g\_)w =5 W (3.35)

-1 is the inverse of (+). It will

where 1 is the identity matrix, and (-)
be shown in Appendix A that the norm of (H /12) -1 A is small compared to
unity for the frequency range considered in this study and for the optimum
values of the model parameters which will be found later. Accerdingly,
the inverse of the coefficient matrix of yﬂ in Eq. (3.35) 1is approximately
equal to (I + (H2/12)§f] A). Thus, the approximate solution of ﬂﬂ in terms
of ﬂf wouid be
W= ?—2—_5'_15) W (3.36)
Substitution of the equation above into Eq. (3.30) yields after some

manipulation

-F +F

e dau (3.37)

-F

Finally, substituting the expressions of f ' and [R+F T+F]T given in Egs.

(3.37, 3.29) into Eq. (3.31), gives

2 < H o
S -5AW =0 (3.38)

where

(3.39)
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Let y and r be the relative values of u and ¢ at the upper end of the wall

with respect to their values at the lower end, i.e.,

y=u -u o or=g oy, (3.40)
Then with the boundary conditions at the Tower end, Egs. {(3.40) take the
form
y = T Ug 3 r = w+ . (3.41)
Then, from Eqs. (3.20),
5T - y + 2u_ S =y
. e (3.42)
w = w = r
Eqs. (3.42) and the expressions defining ﬂf yield
wh=af w2l s
9 (3.43)
ﬂfF =.QF
where
a=ly r 1" b=(1 o 1", (3.44)
Substituting Egs. (3.43) into (3.38) and multiplying the resulting equation
by bh' gives
Z (e + BRI py P bR DRI Ry aF - 2 me + BRH ayy (3.5
- 4 == H 4 == g' - 2 —'=
where M = mb is the total mass of the top weight for one wall and
o s ] 0 0
A" = . B = (3.46)
S n 0 1
In obtaining Eq. (3.45), the fact that B b = 0 is used.
» . - "‘ - - - - 3
Taking into account the relations Q' = k + iwc, SaB kaB + iwe g
Eg. (3.45) can be written finally in expanded form as
£ (3.47)
o |1 e i G K1 K\ P ML
-w + iw + P = g ug
t
Mz Mo 12 Lo Kz Kopdf Ly 124
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where
£ £
) 1 ] fiz
Mg =M+ 7= Mo = &M+ 7
.F
) 22
Map = oM + 7
f £
} U, - N
Mg =epM+ 53 My =epM+ —
f1] = pbh'H {(mass of the wall) (3.48)
f1, = sbh'H . fpp = nbh'H | |
.- bh'cy, L . bh'cy, . oh'Co2 , bh'He
1 7 ; 12T 22 = TR 7
o bh'ky | o bh 'k, o 'ksp bk
1 ¥ ; 12°"F 22 = T 7

Inversion of Eq. {3.47) would give the equations of the discrete model

in the time domain. They are, in matrix form

11 12|V

=
N
™
-
1
(9]
e
™o
(]
™~
1]
e
~
o—
(%)
-~
™o
(3%
=
=
—_ -
N

This is a system of two coupled ordinary differential eguations in time and
has a form encountered widely in structural dynamics. The equations of the
discrete model, Eqs. (3.49), are simpler to handle than the equations of the
continuous system, Egs. (3.12 to 3.14), which are composed of partial

differential equations in the time-space domain.

3.4 Force and Displacement Distributions

The object of this section is to relate the displacement and force

distributions within the wall to the varjables y and r of the discrete model.
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3.4.1 Displacement Distribution

To determine the displacement distribution, we first take the Fourier

transform of Eas. (3.22). This gives

F_F F F
U= aghy T agey T oagh,
(3.50)
F_.F F F
Vo= bgd * bydy * Dby
In view of the Egs. (3.23, 3.24), Egqs. (3.50) can be written as
F_uF T -F 1 +F

where ﬂf = [uF wF}T . When Eg. (3.36) is substituted into this equation,
and the distribution functions given by Egs. (3.16) are taken into account,
Eq. (3.51) becomes

W= %,[ L+ 01 - %) 57T 1w+ %Ai W (3.52)

In this equation, it is to be noted that the factor (1 - §2) is less than
one. Hence in accordance with the assumption used in deriving Eq. (3.36),
the second term in the parentheses will be neglected. Substituting Egs.

(3.43) into Eq. (3.52) gives

LA C - L gpg (3.53)
which, after inversion, can be written in expanded form as
u - ug _ y
= %3 L (3.54)
P r

Eq. (3.54) indicates that the average displacement (the average of the phase
displacements) relative to the base (u - ug) and the difference of the phase
displacements { have approximately linear distributions over the height

of the wall.
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3.4.2 Force Distribution

The determination of the force distribution starts with multiplying
Egs. (3.25) by bh' and taking the Fourier transform of the resulting equations.

This yields

F _ 2bh' ,2 F ., = F
£ - T (,S_ _Ch ¢'l + _.S_Qz ¢’2) (3-55)
where
F F F T
Q@ = [ a, ba ' . (o= 1,2)
=yt o] (3.56)
V = bh'c 3 A=bh'T

Now ¢ was the total stress measured per unit area of the wall material,
so V defined in Eqs. (3.56) describes the usual force acting on the whole
horizontal cross section of the wall. On the other hand, from the definition
T =0y = Oy, it follows that A is a force quantity associated with the
difference of phase stresses (partial stresses), which appears in the analysis
because the mixture model distinguishes the two phases of the wall. Further,
it should be noted that V describes the shear force for the horizontal motion
of the wall and the deviation of the normé1 force from its static value for
the vertical motion of the wall.

F

When the expressions for ga, ¢& {(a = 1,2) are carried into Egs. (3.55)

from Egs. (3.16, 3.24), respectively, and Eq. (3.36) is used, Eq. (3.55)

reduces to
pFoo Bl g y-F O bhTH 5yt F (3.57)
L H 2X ) AR
Substituting Eqs. (3.43) into the equation above gives
F bh' 2 - bh'H F - bh'H F
E:(T_S_-XTA)Q_-X"TAQUQ (358)

Using the definitions of §, A; gf and b, the first component vF of

F

F' is given by
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f f f
F . 2= . - -
yoo= (K]T t Aulyy - w'x —%l-) yF + (K12 + iwly, - WX —%g ) ro- wfR —%l ug
(3.59)
from §u62ku8+ iwcaB and the definitions given in Eqs. (3.48). 1In the time
domain, Eq. (3.59) takes the form
.-y N LTI .
Vv = (K11y+611y+xTy)+(K]2r+C]2r+x——4—r)+x——2——ug . (3.60)

From Eq. (3.58), it is clear that the forces V and A vary linearly over the

height of the wall.

3.5 Effective Modulus Model

Up to this point we have been considering the mixture model. A second
model, the effective modulus model, can be obtained from the mixture model
as a special case.

To reduce the Tength of the analysis, the equations of the effective
modulus theory are presented only for the special one dimensional problems
formuTated in Section 3.2 for the Toading and geometrical conditions of the
wall specimen tested experimentally. The effective modulus model replaces
the wall material by one-phase homogeneous material and does not differentiate
mortar and brick phases. To derive the equaticns of the effective
modulus theory let Uy = Uy and then, from Eq. (3.11), u = Uy = U, and
yp = 0. Then Egs. (3.12 - 3.14) show that the dependent variables of the
effective modulus theory, u and o are governed by the first members of these

equations. They are

BXG = pl

g = S1Iaxu

- (3.61)
m ..t +

= =0

H i + 0
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The definitions of the parameters in the governing equations of the effect-

ive modulus theory, i.e., in Egs. (3.61), are the same as those given for

the mixture model.

Equations (3.61) can be put in a discrete form by following the procedure

outlined in Section 3.3, to yield

in the frequency domain:
2 . F_ 2, F
(-w Myq ¥ uuCH + K11)y = W M]T“g (3.62)
in the time domain:
(3.63)

Mpgd # Gy + Kygy = M0y

M, CHS K]] and y as defined previously by Egs. (3.48 and 3.41).

with M 11°

11°
3.47).

The expressions relating displacement and force distributions in the
wall to the variable y of the discrete effective modulus model can be
derived by using the procedure followed in Section 3.4. They are

displacement distribution:

U-u, = E-(i + 1)y (3.64)

force distribution:
f fn

11
(KITy + C11y + X - ¥) + X —— g . (3.65)
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‘4. THEORETICAL AND EXPERIMENTAL RESPONSE FUNCTIONS

In this chapter, theoretical response functions are derived from the
mixture and effective modulus theories, and the procedure for obtaining
the experimental response function is presented. The parameters appearing
in the theoretical models will be determined through optimization analysis
by matching theoretical and experimental response functions of the wall in
the following chapters. First, we define the response function for a general
system and review very briefly its basic properties (for a more complete
discussion see references [13-17]).

A response function, in general, is a function relating the output of
a system at a specified location to a given input. When the system is
linear and the input x and output y are functions of time, x and y are

related by the convolution integral

y(t) = J'QD h(t)x(t - t)dt . (4.1)

The corresponding relation in the frequency domain is
Y(f) = H(f) « X(f) (4.2)

where Y(f), H(f) and X(f) are the Fourier transforms of y(t), h(t) and x(t),
respectively, and the frequency f is related to the angular frequency w by

f = w/2r. The response function h(t) in the time domain is called the impulse
response function whereas the response function H(f) in the frequency domain
is called the complex frequency respanse function (CFRF) of the system. The
absolute value of CFRF, [H(f)|, describes the amplification of the input

and tan”!

(HI(f) / HR(f)) gives the phase angle difference between the output
and input. Here HI and HR denote imaginary and real parts of CFRF,

respectively.
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In the evaluation of theoretical and experimental response functions
of the wall, the basé and top accelerations are chosen to be, respectively,
the input and output of the wall. This choice is dictated by the fact that,
because of the rigidity of the walls, reliable and sensitive measurements in
experiments are obtained only from accelerometers. Since in this study, for
reasons discussed later, the optimization analysis is carried out in
frequency space rather than in time space,in what follows the response func-
tions (relating base and top accelerations of the wall) are evaluated in

frequency space only.

4.1 Theoretical Response Functions

In Chapter 3, two different mathematical models, namely the mixture
and effective modulus models, were proposed to determine the theoretical
response of masonry walls. Here, CFRF's based on these models are derived

by using the relation

(4.3)

u . \F F
(i) ug

in accordance with the definition given in Eq. {4.2), where HE is the CFRF;

and ('Li+)F F are the transforms of the top and base accelerations,

)F = -ngF for

and (Ug)
respectively. The last term of Eq. (4.3) follows since (§

any function g{(t).

4.1.1 Response Function for the Mixture Model

Dividing the governing equation of the mixture model in the frequency

domain, Eq. (3.47), by M]] gives

T m T ¥ _ 1 v y 1
-w2 + 21Eww + w2 fl = wzq‘ uF
m a y'oa Y P r



where &2:K11/M11; £ is the damping coefficient defined by £ = 611/2M115 and

My P
4= m' =g
n 11
c c
NI B
p:_}fg.g. Y:ﬁz
K11 K1
q':.M_-i_]..- QJ:.M_Z_
H 1
1 M9

It should be noted that the constants a, m', o', v', P, ¥, q' and & are

nondimensional. Solving Eq. (4.4), which is a system of linear algebraic

equations, for yF; then substituting JF = yF + ug in Eq. (4.3), gives
HY = q|22 (an, = Aq,8) + 1 (4.6)
u D 22 12 e
where z is the nondimensional frequency defined by z = w/w and
- _ .2
D= 2198, - o
- - 2
an 1+ 281z - z
(4.7)
8y = P+ 20'€iz - azz
8.5, = Y + 2vy'Eiz - m' 22
12 Y Y -

Aithough the number of parameters appearing in the mixture model is 11

(M1], Wy s M's £, &'y ¥'s Py ¥s q', &), Some of the parameters have pre-

assigned values and do not enter into the optimization analysis as unknowns.
The values of these parameters can be computed from the physical and

geometric properties of the wall specimen stated below

0.80

ny = 0.20 3Ny

1320 kg/m3

il
I

p$ 1800 kg/m® o
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]

b=2.64m ; H=1.2m 4

(4.8 Cont'd)

M=2304kg 3 h' =0.092m.

In writing the value of pg, the volume of the hole in the brick is taken into
account, i.e., pg is computed by dividing the mass of a brick by its total
volume, including the holes in it. When the values of n, and pg are sub-
stituted from Egs. (4.8) into Egs. (3.15), taking into account the relation

P, = napg (o= 1,23 no summation on o), the following results are obtained.

€y = 1 3 @y = ~-0.60 5 oo = 0.36
- 3. . 3
P = 360 kg/m s Py = 1056 kg/m (4.9)
_ 3. N 3
o = 1416 kg/m~ ;3 s = -696 kg/m”~ .

Substitution of these values, and the values of b, h', H from Egs. (4.8) into

Egs. (3.48) gives

f17 = 523 kg s £, = =257 kg
M,y = 2435 kg 3 My, = -1447 kg (4.10)
Miy = 2566 kg s Mi, = -1511 kg .

Then using the definitions of m', g' and % in Eqs. (4.5), their values can

be computed as

m' =-0.59 ;3 gq' =105 ; & =-0.59. (4.11)

Since the ya]ues of the model parameters MI]’ m', q' and £ are assigned,
there remain only the 7 parameters (w, &, o, o', v', p, yv) to be determined
through optimization,

In addition to having preassigned values for some parameters (given
by Eg. (4.11)) there are also some constraints to be satisfied by the model
parameters. To establish these constraints, we note first that the matrices

M = (Mij)’ C = <c1j) and K = (Kij) in Eq. {(3.47) can be written in the forms
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M'= ME + b2|H ﬂf
. 1 bhl
c=bl e 2 g (4.12)
_ bh' bh'H
K=k e e
where E, A' and B are given in Eqs. (3.39, 3.46) and c = (Cij)’ k= (kij)

where (Cij’ kij) were defined in Section 3.2, It was stated in Section

3.2 that the matrices A', k, and c are positive definite and the constants

k and ¢ are positive. Moreover, the matrices E and B are semi positive
definite in view of their definitions. Hence, it follows from Eq. (4.12)
that the matrices M, C, and K are positive definite. This, in turn, implies
that the matrices appearing in Eq. (4.4} are also positive definite, and
leads to the constraints

2

o -m- >0 al 2 2

-y >0s;p-v¥ > 0 (4.]3)

on the model parameters.

4.1.2 Response Function for the Effective Modulus Model

The theoretical response function associated with the effective modulus
model can be cbtained by following the procedure outlined in Section 4.1.1.
Dividing Eq. (3.62) by Mi; and using the definitions of w, £, g' and
z in the previous section, HE can be obtained as
¢ 2

1
T 9 2 5 t1 . (4.14)
U1 4+ 289z - 2

The effective modulus model contains only two parameters to be determined
by optimization, namely w and E.

The CFRF of the effective modulus model can also be derived from the
CFRF of the mixture model (Eq. (4.6)) by simply setting the parameters m',

v, o' and y' equal to zero.
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4.2 Experimental Response Functions

The experimental CFRF's based on experiments are evaluated by using

the simpie relation

F
(f.)
Holfy) = u,‘::‘ ! (4.15)
ug(fj)

where HE is the experimental CFRF, ug ahd ug are the Fourier transforms
(spectra) of the acceleration records taken from accelerometers at the top
and base of each wall of the test specimen during experiments, and fj is

the j th discrete frequency component. During each run of the experiments,
the input and output acceleration histories are recorded at a set of equally
spaced data points with a constant time increment At {0.00988 sec.) and

a data record length of ND (number of data points). Fourier transforms of
such discrete records in the time domain can be determined by using Discrete
Fourier Transform techniques (DFT). The Fast Fourier Transform (FFT) is the
algorithm chosen in the present study to determine the Fourier transforms

of the discrete acceleration records. Detailed discussions of DFT, in
particular the FFT, can be found in references [17-21].

The FFT gives the complex valued ordinates of the transformed records
in the frequency domain at a set of equally spaced points, increment
Af = 1/T, for NF = ND/2 + 1 data points. Here, T is the time length of the
original record in the time domain, defined by T = ND « At and NF is related
to the cut off (aliasing) frequency fc by fc = NF « Af. The record length
ND is varied at each run depending on the type of input motion.

As mentioned in Chapter 2 the wall specimen is composed of two
parallel walls with identical instrumentation. These two walls will be
referred to as walls A and B in the study. The specimen is subjected to
two types of base excitation, classified in Chapter 2 as "periodic input"

(in horizontal and vertical directions) and "modified E1 Centro input". In
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the sections which follow, the experimental CFRF's obtained by using the
experimental data associated with these two types of input are presented

and discussed separately.

4,2,1 CFRF Derived from the Periodic Runs

The wall specimen is subjected to two different types of periodic
base excitation, one being paraliel and the other being perpendicutar to
the horizontal Tayering. The time lengths of all periodic runs are about
2.5 seconds, which corresponds to a record length of 256 data points.

The periodic inputs have approximately sinusoidal variations in time.
If their variations were perfectly sinusoidal, the Fourier transform of
each input should contain a Dirac delta function at its associated frequency.
However, because of its not being perfectiy sinusoidal, the Fourier transform
of a periodic input remains finite for all frequencies; it reaches a maximum
(in absolute value) at a certain frequency, then decreases rapidly and
approaches zero, in both directions from thal frequency. The frequency
corresponding to the maximum value is designated as the "driving frequency"
of that input. In harmony with the terminology used in the analysis of
random processes, the variation described above will be called "narrow
banded spectral density distribution” (NBSD). The time variation of an
input-output pair is given in Fig. 7, for the driving frequency of 18.58
Hz. The associated distribution in the Fourier domain is presented in
Fig. 10. From this figure it is apparent that the input-output pair has a
NBSD with a band width of about 0.6 Hz, centered at the driving fregquency
18.58 Hz.

The procedure for obtaining the experimental CFRF is now presented.
This pracedure is valid for both the horizontal and vertical periodic

motions. Now tet %j (3 =1 - N) be the driving freguency of the j th input-
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output pair, where N is the number of periodic runs. It must be noted that,
for the j th run thé spectral density distribution has a narrow banded
structure centered at %j' Then it is clear from Eq. (4.15) that the
experimental CFRF can be reliably found only in that narrow band, because
the denominator of this equation fluctuates about zero outside the narrow
band. Obviously, it has the most reliable value at %j' Accordingly the
experimental value of CFRF at each %j {3 =1-N)is obtained by dividing
the Fourier transform of output by that of input of the j th run at

fj, i.e., using the relation given by Eq. {4.15) for the J th run at %j'
Thus each periodic run gives a single value of CFRF at the driving frequency
of that run. We note that in the experiments the driving freguencies of

the periodic inputs varied from 3 Hz. to 30 Hz.

A last comment regarding the procedure outlined above is now in order.
It is clear that, using the j th run it is possible to determine experimental
values of CFRF not only at %j but also in the neighborhood of %j,provided
that the frequencies remain in the narrow band. However, CFRF values
cbtained at these frequencies wi]? not provide additional information because
all these frequencies would be closely packed about %j.

The driving frequencies, and the real and imaginary parts of the
experimental CFRF's evaluated at these frequencies, derived from the
horizontal runs, are given in Table 2 for each of the walls A and B. CFRF's
obtained from the vertical periodic runs are presented in Table 3 for each

of the walls. Graphical representations of these CFRF's are shown in Figs.

13,14 and 17,18, respectively, for the horizontal and vertical runs.

4.2.2 CFRF Derived from the Modified E1 Centro Runs

The base acceleration records used in the experiments which are

derived from the E1 Centro 1940 ground acceleration records possess both
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Table 2

Driving freguencies of periodic runs; real and imaginary
parts of the experimental complex frequency response functions
(CFRF's) of walls A and B (horizontal motion)

WALL A WALL B

f
2} 1 Re (Hu) Im (Hu) Re (Hu) | Im (Hu)

3.56 + 1.009 + 0015 + 1,007 + 0.019

£.32 + 1.072 - 0029 + 1.062 - Q0149
12.26 + .342 - O.IOg) + 1.317 - 0.043
15 42 + 2.276 - 0.556 + 2025 - 04904
16.61 + 3. 619 ~ 2240 + 2.900 ~ ].835
|7.40 + 3_;'.:3 - 5.022 + 2.504 - 3 24|
|8.58 - 0562 - 5 85| + OAIZO ~- 3.917
19 37 - 3.330 - 3.6l - {.205 - 2.028
2056 - 3.497 - 1.485 - 0.876 - 1.0867
21.75 - 2.833 - 0.432 - 0.050 - 0.500
22.549 - 2.512 + 0.451 + 0618 - 0.643
23.72 - |.268 + 2.146 + 10390 - 2.334
24.5} + 0.360 + 0.766 - 1.5186 - |. 656
25.70 + 0318 + 0. 246 - [.314 - 0.229
27.68 + 0.05%0 - Q. 021 - 0.229 + 0.040
30.84 + 0.222 - 0.004 + 0175 + 0.045
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Table 3

Driving frequencies of periodic runs; real and imaginary
parts of the experimental complex frequency response functions
of walls A and B (vertical motion)

WALL A WALL B

f
(Hz) Re (Hu) Im (Hu) Re (Hu) Im (Hu)
3. 56 + 0.999 + 0.005 + 0.990 - 0.022
8.32 + 1. 023 + 0.044 + 1,012 - 0012
9.49 + {047 + 0.032 + | Ol& + 0026
12.26 + | 053 + 0.014 + 1. 002 - 0.080
i5.42 | + 110 + 0023 + 1016 | —0050
16.61 + (199 - 0,019 + [LOGIO - 0.037
17.40 + |.386 - 0.045 + 1050 - 0027
18.58 + [544 - 0.554 + 1.041 - 0078
19.77 + 0331 - 01986 + 1.004 - 0.091
20586 + 0.7086 - 0002 + 0.958 - 00583
21.75 + 0.868 -~ 0006 + 0.974 - Q067
24.5i + 0.821 -~ 0.04¢ + [.O37 - 0.0086
27.68 + 0.6286 + 0.020 + 1.035 - 0.076
30.84 + 0.985 + 0.06%8 + 1.039 - 0.094
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horizontal and vertical acceleration components. However, analysis of
readings of the vertical components did not lead to meaningful results
because of their having negligibly small values compared with the horizontal
components. Accordingly, only the records obtained from horizontal
component accelerometers are considered and used in the analysis.

Time Tengths of the modified E1 Centro runs obtained from the El
Centro 1940 record depend on the time scale factor s, defined and explained
in Section 2.3.3. For s = 1.0, 2.45, 3.46 and 7.7 the time lengths of
the E1 Centro runs are 28, 11.4, 8, and 3.6 seconds; respectively. The
corresponding data record lengths of these runs are ND = 2384, 1158, 819,
and 368.

The input and output accelerations recorded during medified E1 Centro
runs have similar spectral density distributions in Fourier space. The
Fourier transforms of input-output acceleration pairs indicate that they
all have "wide banded spectral density distributions” (WBSD): their Fourier
transforms in absolute values have well-defined values over a wide freguency
band, gradually decrease towards the ends and then fluctuate around zero
outside the band. The widths of the bands depend on the s factors of the
runs. The lower limits of the bands are 2 Hz for all runs, the upper limits
are approximately 7, 9, 11 and 15 Hz for the runs with s factors of 1.0, 2.45,
3.46 and 7.7, respectively. The Fourier transform of the input acceleration
for s = 7.7 is given in absolute values in Fig. 11. The WBSD structure of
the input can be clearly ohserved in this figure.

The experimental CFRF may be obtained for the modified El Centro runs
by taking the Fourier transform of an input-output acceleration pair and
using Eq. (4.15). But, because of the reasons stated in Section 4.2.71, the
CFRF obtained in this way would have reliable values only in the frequency

band of its associated input-output pair. Thus, from the previous paragraph
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it is clear that this interval, which will be called the "reliable frequency
band" (RFB), is (245'f_g 15) Hz for the run with s = 7.7, which is the
widest of the E1 Centro runs. Consequently, only this run is considered

in the analysis.

The CFRF's of the walls A and B derived from the modified ET Centro
run with s = 7.7 are presented graphically in Figs. 20 and 21. The figures
show clearly that the CFRF's have relatively smooth behavior over their
RFB (2 < f < 15) Hz. OQOutside the RFB the experimental points defining the
CFRF's exhibit very large scattering with unacceptab?e variances abcut their

expected values.

4.2.3 Discussions on the Experimental CFRF's

In the previous two sections the experimental CFRF's are derived for
the walls A and B, using the periodic and the modified E1 Centro runs. The
CFRF's reiating the vertical input and output accelerations are obtained only
from the periodic runs, but the CFRF's relating the horizontal ones are
obtained from both types of excitation.

The discrete points defining the CFRF's obtained from the horizontal
periodic runs are spaced in a frequency interval of (3 < f < 32) Hz with
frequency increments of 1 or 3 Hz. Those obtained from the horizontal
companent of the modified E1 Centro run with s = 7.7 define the horizontal
CFRF's in the RFB of s = 7.7, (2 < f < 15) Hz, at more closely spaced

frequency points, with a constant frequency increment of 0.198 Hz.
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Taking into account the rigidity of masonry walls, the resonance
phenomena for the walls in the test specimen can be expected to occur at high
frequencies. In fact, information obtained from the horizontal periodic runs
shows that the first resonance occurs at about 16 - 18 Hz (see Figs. 13, 14).
Hence, it is clear that even the widest RFB of the CFRF obtained from the
E1 Centro run with s = 7.7 does not contain the first resonance frequency.
This means that the E1 Centro run with s = 7.7 can provide experimental data
only in the low frequency range. To have data from the E1 Centro runs in
the high frequency range, it is necessary to increase the value of the scaling
factor 5. Unfortunately experiments were not performed for s values greater
than 7.7. Therefore the experimental data obtained from the periodic runs
which accommodate both the Tow and high frequency behavior of the wall, are
considered in the optimization analysis presented in the next chapter.

In Fig. 12 the horizontal CFRF's derived from the horizontal periodic
and E1 Centro runs are compared in the frequency interval (2 < f < 15) Hz
for the wall A. The very close agreement shown between these two CFRF's
indicates that the response of the wall during the experiments is in the
Tinear range. This justifies the use of Tinear models in the optimization

analysis.
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5. OPTIMIZATION ANALYSIS

Optimization analysis involves three main steps:(a) choosing a suitable
mathematical model describing the behavior of a given system;(b) introducing
an objective function measuring the goodness of the match between theoretical
and experimental responses and(c) finding the unknown parameters or functions
appearing in the theoretical model by minimizing the objective function with
the aid of an optimization algorithm.

The most important step among these three is déciding on the mathematical
model. On one hand, the model should be capable of predicting the experimental
behavior of the system and should accommodate its desired characteristics
but on the other it should be as simple as possible. A logical way of
constructing the mathematical model might involve the following phases.
First, starting from physical laws and considerations, the equations of the
modeT should be estabiished in a general form which can accommodate all the
observed characteristics of the experimental response. Then the model should
be simplified as much as possible, by discarding the mode]_parameters or
functions which have very 1ittle influence on the response, by taking into
account the specific frequency or time interval considered in the_optimiza-
tion analysis, etc. 1t must be emphasized again that the choice of an
appropriate theoretical model is crucial. In fact, starting the analysis
with a bad model would rarely lead to a good match even for optimum model
parameters or functions.

The other two steps involve mathematical analysis and are of less
significance in optimization than the first. The objective function can be
considered as a norm for the error measuring the goodness of the match
between the experimental and theoretical responses. It must be selected

in such a way that it would be zero if and only if the theoretical and
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experimental values coincide at all points considered in the optimization
analysis. Moreover,'the theoretical response could be obtained in terms of
unknown model parameters or functions, then the objective function would be a
function or functional of these unknowns. The Tast step involves finding

the model parameters or functions by minimizing the objective function with
the aid of an optimization algorithm. Various algorithms exist for different
types of optimization problems [22-27]; these are mostly based on iterative
schemes derived from the approximation of the error surface by a simpler
analytical surface in the neighborhood of the minimum point. Selection of

a suitable algorithm for a given problem depends on the structure of the
objective function (i.e., on whether it is a function or functional of
unknowns), on whether the problem has any constraints or not, etc.

In the present study a two phase parametric model is chosen to predict
the dynamic behavior of masonry wai]s. The equations of this model have
already been established in Chapter 3. To compiete the optimization analysis,
it remains now to select both an appropriate objective function, and an
optimization algorithm for minimizing the objective function. This is done
in the following two sections. Before proceeding to these two sections, it
is important to note the use of frequency space in the analysis. The
optimization analysis is carried out by matching experimental and theoretical
CFRF's in frequency space. The CFRF governs the response of the wall through
Eq. (4.3) or Eq. (4.15) and, consequently, matching the CFRF's leads to
matching the responses. Carrying out the optimization in frequency space
rather than in time space has various advantages., First it determines the
frequency range over which the model is valid. Then by studying the Fourier
spectrum of a given input, we can determine in advance whether or not the
model predicts adequately the response in time space for that given input.

For example, if the major portion of the speciral density of input is
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contained in the frequency region over which the model is valid, then we

would know immediately that the model would predict the response to that

input correctly. Secondly, the analysis indicates that the matching of

CFRF's in frequency space is very crucial and can be used as a criterion

for the goodness of the model. Thirdly, working in frequency space

simplifies the optimization analysis. This is because the equations are simpler
and there are less data points in frequency space compared with those in time
space. In fact, in this study, to determine the theoretical response it is
necessary to solve differential equations (Eq. 3.49) in time space whereas

simple algebraic equations in frequency space (Egs. 3.47).

5.1 The 0Objective Function

The objective function is expressed as the integrated least squares
error between the theoretical and experimental CFRF's over the freguency

interval [0, f], which can be written as

(HE - HE)(HE - B aF . (5.1)

J(8) =

O~ ~h>

Here, ﬁ? = (a, m', o, p, v, &, a', v') is the vector of model parameters,
(-)* denotes the complex conjugate of (+) and [0, ?] is the interval con-
sidered in the analysis. J is a scalar quantity which is a function of £
since HE in Eq. (5.1) is a function of the model parameters B.

Because Hﬁ is a discrete function of frequency as defined in Chapter 4,
integration in Eq. (5.1) must be performed numerically. This is done by

using the trapezoidal rule. Thus, denoting the argument of the integral at

i1

the frequency point f fj by ¢

j’
'l N-]
Ejz hﬁ{-%+ﬁ(%+rfﬂ (5.2)

J(B)
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where N is the number of frequency points for which Hﬁ has defined values.

Eq. {5.2) can be written in a more suitable form for optimization as

B) = £ willr, - F)% + (5. - §.)%7 . (5.3)

J=1
In this equation, wj denotes the weight for the j th frequency point fj,
defined by Wy (fj+] - fj_])/z (j =2 - (N-1)), Wy = (f2 - f])/Z,

Wy = (fN - fN—T)/Z and (rj, sj) and (rj, S

t
u S

J.) are {real, imaginary) parts of

i respectively.

The j th term in Eq. (5.3) is associated with the frequency point fj.

the values of H® and Hﬁ at f
In the analysis fj will be taken as the driving frequency of the j th run

for periodic inputs, and the j th discrete frequency point in the reliable
frequency band {RFB) for E1 Centro inputs.

It is important to note that the number of data points in Eq. (5.3)
defining an objective functicn in frequency space is much less than in a
comparable objective functijon that can be defined in time space. This can be
seen very clearly by considering the periodic runs for which the number of
data points in Eq. (5.3) is equal to the number of periodic runs, say M,
whereas the objective function defined in time space for the same periodic
runs would have (M x ND) data points, where ND is the number of time points

in each periodic run.

5.2 Optimization Algorithm

The objective function e = J(B) describes an error surface of an n+l
dimensional space (B], 82, cees Bps e) where n is the number of model para-
meters and e is the value of J at g. Each set of parameters 8 defines a
different point on the ervor surface with coordinates (8, J(8)). The first
element of (B, J{R)) gives the projection of that point on the g-plane. In
optimization analysis the object is to determine that set of parameters

for which the error surface has a minimum. Such a set is called the optimum
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set. In the present study, the optimum set will be found by using an
optimization algorithm based on an iterative scheme. Before discussing the
specific algorithm chosen in the study, it is useful to comment on some
aspects common to all iterative algorithms. In an iterative algorithm,
first an initial approximation B, to the optimum B is chosen. Then a
sequence {@0, gq, §2, ...} is generated by using a recurrence formula of
the form

Biyy = By * By (i =0,1,2,...) (5.4)

where §i+1 designates the updated set at the i th iteration. The expression
defining AB. has different forms for different iterative algorithms. If
the optimization algorithm generates a convergent sequence, the error e

decreases at each iteration, i.e.,
I(By47) < I(B,) (5.5)

and reaches its minimum value, within a 1imit of certain accuracy, in a
finite number of iterations. 1In the neighborhood of a local minimum, the
rate of convergence slows dpwn. Iterations are stopped when a certain
criterion for convergence is satisfied. The most commonly used convergence
criterion is based on the relative change of either the error e or the set

g8 and has the form

lei+l.' el . (5.6)
i)
ar
llagstl .
Tel] (5.7)

where ¢ is a prescribed positive small number and |[(+)|| designates the
maximum norm of a vector quantity (-).
The initial estimate of the optimum set is an important stage of the

analysis. Starting the iterations with a poor initial estimate, which
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defines a_point on the error surface far away from the minimum, may lead
to divergence of the sequence, or convergence only after a large number of
iterations. To make a good gquess for the initial estimate §O it is first
necessary to establish a feasible region for B. This can be done by taking
into account the parameters which have preassigned values, and by consider-
ing the conditions to be imposed on the parameters by physical and geometric
constraints of the problem. Then, by gaining some insight into the physical
aspects of the problem under consideration, an appropriate §G can be chosen
in the feasible region of 8.

The incremental set Ag. in Eq. (5.4) defines an improvement to B,
satisfying the inequality in Eq. (5.5}. An optimization algorithm,in general,
generates A, at each iteration. Such an algorithm can be modified to

increase the rate of convergence as foilows. Let d; be the increment gen-

erated by the algorithm and AB. be the increment modified as

AB. = A, di  (no sumon i) (5.8)

where A; is the modification factor. It is to be noted that Eq. (5.8) with
xi = 1 gives the unmodified increment. Ai is to be determined at each
iteration i in such a way that the error e becomes a minimum along the
descent direction gi. This procedure for determining . is called a "line
search".

The algorithm used in the present study to find the increment gj in
Eq. (5.8) is Newton's method which is discussed briefly in the next section,
and followed by a description of the line search algorithm. A full discussion

of Newton's method and other multivariable or single variable optimization

methods can be found in references [22-27].
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5.2.7 Newton's Method

Newton's method which is also referred to as the second order gradient
method in the Titerature, is based on Taylor's expansion of the objective

function around a set g, i.e.,

gTﬂ»g‘+ higher order terms (5.9)

N~

3+ d) = 3(8) + 6'd +

where G is the gradient vector, H is the Hessian matrix, both evaluated at
B,and d is an incremental vector. The elements of the gradient vector {G)

and the Hessian matrix (sz) are defined by the relations

2(g) 2°3(8) e petony 5 10
G = 5 H=——--——-—- ,,Q.= -N). .
k BBk k SBkQBR
Let B in Eq. (5.9) be an approximation to the optimum set 8 . and ]|

be small, then the expansion in Eq. (5.9), when higher order terms are

neglected, takes the form

T

Je+d) =g +8drLd Hde=od) . (5.11)

PO —

The object is to determine d so that 8 + d = 8 For fixed B and variable

=min’
d, e = Q(d) defines a quadratic surface approximating the error surface in
the neighborhood of the point (B, J(8)). We know that at the minimum point

(8 J(B_. }) the slope of the error surface must be zero. This is

=min®> ~‘=min
approximately satisfied if the derivative of Q(d) with respect to d vanishes.
Thus, from Eq. (5.11),

G+Hd=0

or

d=-1¢. (5.12)

Because the error surface is approximated by a quadratic surface, the incre-

ment d determined by Eq. (5.12) would be approximate, unless the error
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surface is actually quadratic. Therefore (§_+ d) determines the next

approximation to 8

Bin: The repeated use of this improvement procedure gives

the Newton recurrence relation

Bin

H

=Byt dy (1 =0,1,...) (5.13)
with

-1
—d‘i = -H (§T) g(@_.}) . (5.14)

Computation of gﬁ from Eq. (5.14) requires the inversion of the Hessian.
Alternatively, gi can be found by solving the linear algebraic equations

H(@_-i )Sj_-‘ = "ﬁ(ﬁl) (5-15)
with the aid of an elimination technique which is more suitable for computer

use than the inversion of the Hessian.

Evaluation of G and H for the Present Problem

The objective function in this study is given by Eq. (5.3). Hence,
the elements of G and H are obtained by substituting Eq. (5.3) into Egs.
(5.10). This results in

N _ Brj . Eii
Gy = 2 ‘E wj[}rj - rj) 5t (Sj - sj) = J (5.16)
j=1 k k
2 2
N 3r. 9r.  95. 9S. °r. a%s,
Heg =2 T W | g get + et g (ry = 7y) 55 R O s5) se a0
j=1 J{ Pk Py k Py k%Pg J k%9

(5.17)
The Hessian matrix may be estimated by neglecting terms with second order
partial derivatives (see [22]). This gives -

. Coyw. Brj E)Y‘j . BSj asj . (5.18)

The approximate Hessian H' approaches the Hessian H as g~ 8 To evaluate

“min’

H' it is not necessary to determine the second partial derivatives of rj and
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Sj’ so the procedure is simplified. From Eqs. (5.16) and (5.18) it follows
that the first order derivatives Brj/agk and st/BBk are sufficient to find
both G and H'. These derivatives, called sensitivity coefficients, are
evaluated and presented in Appendix B. The modified version of Newton's
method in which H is approximated by H', is referred to as the Gauss-Newton

method.

5.2.2 Line Search Algorithm

Let § and d be, respectively, the approximation and increment found in
a particular, say i th, iteration. Then, (8 + d) determines the approximation
in the next iteration. It was stated eariier (see Eq. (5.8)) that the con-
vergence can be improved by modifying the increment d to Ad, where X is a
modification factor to be determined by a "line search". For fixed B and

d and variable A, the equation
e = J(B + Ad) (5.19)

describes a profile of the error surface along a line L (in the B plane)
passing through the point B and having the direction d. By searching along

the 1ine L the minimum of the profile is located. The value of X correspond-
ing to this minimum determines the value of X to be used in the i th iteration.
It should be noted that ) has a different value in each iteration.

In the present study a simple line search algorithm is used in the
analysis. Its derivation is based on the approximation of the error profile
along L by a second order interpolating polynomial reproducing the three
function values

e. = J(B) ; e = e +d) e, = J{g + 2d) (5.20)

at A = 0,1,2, respectively. Then the value of A associated with the minimum

point of the approximate profile may be found easily. It is
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e2 - 4e] + 3eO

k:
2({ey-2eq + ()

{5.21)

which involves evaluation of three error values in each iteration.

A value of X close to 1 in a certain iteration indicates that the
point on the error surface corresponding to § in that iteration is near the
minimum and, consequently, the error surface in the netghborhood of that
point is approximately quadratic. Accordingly, the value of X associated
with a selected initial approximation §@ gives a rough indication of

whether the sequence {BO, 31’ ...+ will converge or diverge.

5.2.3 The Iterative Algorithm

The method of optimization used in this study is presented and
discussed in detail in the previous sections. The iterative algorithm is
now summarized step by step:

1. Find an initial estimate §0 to B . ,seti=10

—min

2. Evaluate ey = J(gi) [Eq. (5.3)]
3. Evaluate gqu), ﬂf(§4) [Egs. (5.16),(5.18}]
4. Solve H'(8:)d. = -G(8,) for d, (Eq. (5.15)]
5. Determine Ai [Eqs. (5.20),(5.21)]
6. Find the modified increment Aﬁi = kigi {Eg. {5.8}]
7. Obtain the next approximation by using 8. . = By + 4B, [Eq. (5.4)]

Evaluate @4y = J(§4+1) [Eq. (5.3)]
9. Check convergence [Egs. (5.6) or (5.7}]

10. If not converged, set i = i+1, go to step 3.
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6. NUMERICAL RESULTS AND DISCUSSIONS

Two theoretical models, namely the mixture and the effective modulus
models, have been developed (Chapter 3) and their associated CFRF's obtained
(Chapter 4}, containing seven and two parameters, respectively. These models
{CFRF's) are valid for both horizontal and vertical directions of motion.
Therefore, associated with each model there are two sets of parameters to be
determined through optimization, one for the horizontal and the other for
the vertical response of the wall.

A general purpose computer program was developed to determine the model
parameters through optimization and, together with its flowchart, is presented
in Appendix C. The program, which is based on the Gauss-Newton method, is
general in the sense that it has two features explained below.

(a) The program has the flexibility of varying the values of an
arbitrary number of parameters in the set B while fixing the values of the
remaining ones. This property can be used effectively to facilitate the
optimization analysis as described below. (i) It may be used for shortening
the computations. In fact, this property of the program makes it possible
to examine, at any point on the error surface, the sensitivity of the error
to changes in each parameter separately. If it is observed that the
sensitivity of the error to a particular parameter is small compared with
that of the others in the feasible region of 8, then the value of that
parameter can be fixed during optimization, so that the number of variables
is reduced. (i) It gives control over the convergence and an appropriate
initial estimate leading to a convergent sequence can be chosen. When
convergdence cannot be achieved by releasing ail of the parameters, a
sequential procedure may be tried. Optimization is started by releasing

only the parameters having stable characteristics, say gf,with the number of
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glements n* < 7. Upon convergence, the next step is to release one more
parameter and to choose an initial estimate composed of the converged values
of ﬁf found in the previous step and an estimate for the new parameter. Also,
when necessity arises, the effect of one parameter on another can be observed
by releasing these two only.

(b) The program can be used for evaluating parameters appearing in
both the mixture and the effective modulus models. This generality is intro-
duced into the program because the effective modulus model may be obtained
from the mixture model as its special case. To compute the optimum values
of the parameters o and £ in the effective modulus model, zero values are
assigned to o', v', vy and m', and two fixed dummy values to o and p.

The optimization pregram is used first to determine the parameters

associated with the horizontal, then with the vertical response of the

masonry walls.

6.1 Parameters for Horizontal Response

The parameters of the effective modulus and mixture models are deter-
mined by minimizing the objective function defined in Eq. (5.1), where HE
and Hi are, respectively, the theoretical and experimental CFRF's associated
with the horizontal motion of the walls. The Hﬁ values in this expression
are obtained from the periodic runs rather than from the ET Centro runs,
for the reasons stated in Chapter 4. The El Centro data are used for
comparison only.

First, the simplest of the two models, the effective modulus model,
is considered. Then, the information and experience gained from the study

of this model is used to analyze the more complicated mixture model.
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6.7.1T Effective Modulus Model

The effective modulus model contains only two parameters, namely
8 = (w,t). Selection of the initial approximation 8, 1s rather straight
forward for this model. The parameters w and £ can be interpreted,
respectively, as the undamped angular frequency and the nondimensional
damping coefficient of the fundamental mode. An estimate for w can be
obtained from the first intercept of Re[Hﬁ] on the frequency axis or by the
frequency where Im[Hi} has the first peak. From Figs. 13 and 14 w is estimated
as about 113 rads (18 Hz) for wall A and 119 rads (19 Hz) for wall B. A
short survey made on the error surface by using these values for w and
varying & showed that £ is roughly about 0.08 for wall A and 0.12 for wall
B, and that the error surface is approximately quadratic in the neighborhood
of the points defined by these estimated values. With the initial approxi-
mations §ﬂ = (113, 0.08) for wall A and (119, 0.12) for wall B, the sequence
generated by the program converged to the optimum values in 3 iterations
for wall A and 6 iterations for wall B. The results are presented in Table
4, where the relative error is defined by

e/ 3 (43,
j=1 3T

As seen from the table, the optimum value of £ for wall B is larger than
that for wall A. This is expected because (see Figs. 15 and 16) the
dissipation for wall B appears to be greater than that for wall A. The
theoretical CFRF's obtained using the optimum values of ¢ and & are compared
with the experimental CFRF's in Figs. 13 to 16. The two CFRF's match
fairly well for both walls A and B in the low frequency range, up to the
first modal frequency. The model has no ability to predict the high

frequency response of masonry walls,
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6.1.2 Mixture Model

Finding a reasonable initial approximation which leads to convergence
when all of the seven parameters are released is almost impossible for this
model. A rational way to proceed is, first to establish a feasible region
for the parameter set 8, then to start the optimization with a set of three
or four released parameters and to increase the number of released parameters
sequentially, upon convergence of each set. The set (w,£) is taken here as
as basis for starting the analysis, because the optimum values of these
parameters in the mixture model are expected to be approximated by those
predicted by the effective modulus model, and the sensitivity of the error
to these parameters is similar for both models.

To establish a feasible region, it is necessary to determine the bounds
for each parameter. In view of the definitions in Egs. (3.48), (3.15) and
(4.8 to 4.10), the parameter o defined in Eq. (4.5) is only dependent on
the term q describing linear momentum interaction between the phases of the
wall. For the two extreme values of q, which are zerc (no interaction)
and p {complete interaction), o assumes the values (.40 and 0.60. These
values establish a feasible interval for o( 0.40 < o < 0.60) which also meets
the constraint condition stated in Eq. (4.13). On the other hand, the re-
strictions on the other parameters {p,y) and (o', v'), representing the
elastic and viscous coefficients, respectively, come only from the constraint
conditions in Eq. (4.13). However, these restrictions are not sufficient
to determine well defined bounds for these parameters. The seguential pro-
cedure used in the analysis is explained below step by step. The arguments
given are valid for both walls.

In the first step the released set is chosen to be composed of o, £
and the elastic parameters p, v. The fixed parameter o is assumed to take

an average value of 0.5, and zero is assigned to o' and y', which is the
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value of these parameters in the effective modulus model. The initial
estimates (&0,50) for (©,£) are taken as their optimum values predicted by

the effective modulus model, y_ is estimated to be -0.5 by assuming that

0
brick is stiffer than mortar and Py s taken to be 1.0, Optimization
of the released parameters with these initial estimates gives the desired
result. The minimized relative error for both walls decreases by about
30% compared with that of the effective modulus model and no difficulty
arises in convergence. There is no significant change in {(w,£) as expect-
ed, y remains near its estimated value and the converged value of p is
between 0.5 and 1. In the second step, the parameters w, £, o' and y' are
varied while fixing the remaining parameters o, p, v to the values o = 0.5
and (p,y) = their converged values obtained in the first step. The initial
estimates of the released parameters are chosen to be ué = Y; = 0 and (&O,EO) =
their converged values in the first step. The convergence is again achieved
in a few iterations, improving the minimum relative error. The converged
values of the parameters are similar in magnitude and sign for both walls.
In the third step all of the parameters except «, which is fixed to the value
a = 0.5 are released, with the initial estimates (po,yo) = their converged
values in the first step and (éo,go,aé,yé) = their converged values in the
second step. The converged values of the parameters and the associated
relative error obtained in this step are presented in Table 4. As a last
step, all of the seven parameters are released, by estimating the initial
values of parameters to be those given in the table; but in this case, the
sequence of parameter sets diverges after a few iterations for both walis.
The same sequential procedure is repeated for the other feasibie
values of o, o = 0.45 and 0.55, and the same convergence phenomenon is ob-

served at the third step. The converged values of the parameters for these

a's are presented 1in Table 5 for both walls A and B. As seen from the
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table, the relative errors of the three parameter sets with o = 0.45, 0.50,
0.55 are identical. The computations dndicate that the three sets, further-
more, lead to an identical match between theoretical and experimental CFRF's.
The theoretical CFRF's the same for the three a's are shown for walls A and
B in Figs. 13, 15 and 14, 16, respectively,

The arguments presented above indicate the existence of a uniqueness
problem regarding the parameter o. However this problem does not cause any
major inconvenience for the following reasons. First, for extreme values
of the linear momentum interaction coefficient g, the’parameter o varies over
a narrow interval, 0.40 < o < 0.60, in which the parameters change smoothly
and slowly. Moreover, the value of q is at most about 0.30 for layered com-

posites (see reference [8]). Because of these observations, the parameters

for o = 0.45, which corresponds to g = 0.26, are suggested for practical

purposes. The set associated with o = 0.45 is named as the optimum set of

the mixture model. In order to be more precise about the value of a,

additional observations should be made at intermediate locations of the wall

and the associated readings should be included in the analysis. Unfortunately,

in the present study the measurements were made only at the top and bottom

ends of the wall because of the limited number of available accelerometers.
Comparison of the experimental and theoreticai CFRF's presented in

Figs. 13 to 16 suggests that the mixture model is capable of predicting not

only tow frequency, but also high frequency response of the walls.

6.2 Parameters for Vertical Response

The experimental CFRF's associated with the vertical excitations of
the walls A and B are presented in Figs. 17 and 18, respectively. It may
be observed that there are some marked differences between these CFRF's and

those for the horizontal response. Before presenting the analysis, it is
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appropriate to examine a characteristic of the experimental CFRF's for the
vertical response. 1In Figs. 17, 18 it can be seen that Re[HT] and Im[HY]
have approximately constant values of about one and zero, respectively,
except for a narrow frequency interval where they deviate slightly from
these constant values. This implies that the wall will behave rigidly when
it is subjected to vertical periodic base excitation with a frequency not
contained in the narrow interval. This peculiar behavior may be attributed
partly to the fact that masonry walls constitute a highly dissipative
medium for vertical excitations, resulting in damping out of the vertical
amplification.

The function Hg(fj) for wall A has better defined vaiues than for wall
B and gives a rough idea at least about the response of the wall around the
first modal frequency. For this reason, the parameters of wall A will be
determined first. A procedure similar to that outlined in the previous
section is used in the analysis. Because the high frequency response of the
wall is very uncertain after the first modal frequency, there is difficulty
in choosing the released parameters. Through the search, the most suitable
released parameter set leading to a convergent sequence is found to be
(w, &£, o', ¥). Using the optimization program, the converged values of the
released parameters are determined for fixed values of a, p, v'. A sSurvey
based on the feasible values of p and v' yields as the most suitable values,
0.35 for p and zero for v'.

It is found that the uniqueness problem regarding the parameter a
exists also for the vertical case. Three different sets of parameters are
obtained for the three fixed values of o, a = 0.45, 0.50 and (.55, and are
presented in Table 7. Similar to the horizontal case, these three sets give

identical relative errors and identical CFRF's,
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After determining the optimum set of parameters for wall A, the
parameters for wall B are found by choosing an initial set which is, except
£, equal to the optimum set for wall A. &5 is modified because an increased
value is expected for it. The result of optimization supported this expecta-
tion: the optimum & of wall B is found to be about eight times that of
wall A.

The values of parameters for both walls are presented in Table 6, for
a = 0.5. The theoretical CFRF's of the two walis A and B obtained using
the optimum parameters are compared with the experimental CFRF's in Figs.

17 and 18. A comparison of the theoretical and experimental CFRF's in

absolute values is given in Fig. 19 for wall A.

6.3 Coefficients

The coefficients appearing in the governing equations of the mixture
model, Eq. (3.48), can be determined in terms of the model parameters
considered in the optimization analysis. The relations between the model
parameters and these coefficients are given in Egs. (4.5). Using
the relations &2 = K]1/M11;'g = 011/2M11&, and taking into account the
definitions. given in Egs. (4.10), the coefficients Mij’ Cij and Kij
(i,j=1,2) associated with both horizontal and vertical responses are computed
for walls A and B. The results are presented in Tables 8 and 9. If it is

desired, the corresponding coefficients appearing in the effective modulus

model, Eq. (3.62), can be obtained by following the same procedure.

6.4 Discussion

The results obtained in the previous sections and their implications
are now discussed in detail. The discussion is essentially based on compari-
son of the experimental and theoretical responses in the frequency and time

spaces, and on the relative participation of the brick and mortar constituents
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in the dynamic response of the masonry walls. Since the mixture model is
a more refined model than the effective modulus model, only the results

obtained from the former model will be considered in the discussions,

6.4.1 Comparison of the Parameters Obtained from Periodic and E1 Centro Data

In this section, the optimum values of the parameters are computed
using the E1 Centro data and these values are compared with those already
determined from the periodic data.

The experimental CFRF's dérived from the E1 Centro runs were found in
Chapter 4 for the horizontal response, and presented in Figs. 20 and 21,
respectively, for walls A and B. They are truncated at ¥ = 24 Hz because
of large fluctuations after f = 24 Hz (caused by the unreliability of the
E1 Centro data at higher frequencies). These CFRF's are used in the
optimization analysis to determine the values of parameters associated with
the ET Centro data. The lack of information in the neighborhood of and
after the second modal freguency in the E1 Centro data necessitate fixing
(@, o'y, ¥') to achieve convergence. The fixed values of (x, o', v') and the
initial values of the released parameters (&, £, p, v) are chosen to be
a = 0.50; (a', YI"&O’ Eo’ Poo YO) = their converged values found from the
periodic data with o = 0.5

The results of the optimization analysis are presented in Table 4
together with the corresponding relative errors. When the two sets of
parameters computed from the periodic and the E1 Centro data are compared 1in
this table, some small differences for (w,p) and relatively large differences
for (&,y)} may be observed for both of the walls. These differences are
expected for the following reasons. First, the frequency interval considered
in the optimization analysis is different for the periodic data and the E1

Centro data. 1In fact, it is 0 < f < 32 Hz for the periodic data and
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0 < f < 24 Hz for the El1 Centro data. Secondly, the Hﬁ obtained from the
periodic and from the ET1 Centro data differ considerably outside the interval
2 < f < 15 Hz {which is the reliable frequency band (RFB) of Hi computed from
the E1 Centro data).

The HE are computed using the parameters obtained from the E1 Centro
data and are compared with the experimental values in Figs. 20 and 21 for

walls A and B, respectively.

6.4.2 Comparison of Response in Time Space

Comparisons are presented for the horizontal top acceleration U+(t)
and the base shear force V (t). The experimental i used for comparison
is the acceleration output recorded during the E1 Centro run with s = 7.7
(the maximum amplitude of the input acceleration Ug for this run is 0.236 g).
The theoretical ﬁ+ is obtained as follows: the Fourier transform of the input
acceleration (U'g)F is multiplied by the theoretical CFRF HE computed using
the parameters presented in Table 4 {aobtained from the periodic data). From
Eq. (4.2) the resulting quantity determines (U+)F which is the Fourijer
transform of the output acceleration; its inverse transform gives the
theoretical U . The experimental and theoretical it are compared in Figs.

22 and 23 for walls A and B, respectively. The figures indicate that the two
U+ time histories match fairly well, This good match is anticipated because,
as seen from Figs. 13 and 14, HE matches Hﬁ closely in the frequency

band (FB) (2 < f < 15 Hz) of the input acceleration.

A general comment will be made now regarding the advantage of optimi-
zation using the CFRF. The match of Hz and Hi only in the frequency band of
the input governs the goodness of the match between the experimental and
theoretical outputs. The match of the outputs is not affected by differences

in HE and Hﬁ at frequencies outside this band. If the optimization is based
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on matching CFRF's, then a study of the match of the Hu in the FB of a

given input could determine in advance whether or not the model would predict
adequately the response to that input. A good match in time space associated
with a certain input is not a reliable indicator for the goodness of the
model. It shows only that the model predicts the response correctly for the
excitations with FB's contained in the FB of that input.

Although the shear force at the base of the wall is not measured during
the tests, it can be computed from a free body analysis of the wall by using
the horizontal base and top acceleration records, and by assuming a linear
acceleration distribution over the height of the wall. The theoretical base
shear force can be found in frequency space by using Eq. (3.59) with X = -1.
The coefficients in this equation are listed in Table 8. Transformation from
frequency to time space yields the theoretical V (t). The experimental
(computed) and the theoretical V~ are obtained for the E1 Centro run with
s = 7.7 (having the maximum Ug of 0.236 g). The results are compared in
Figs. 24 and 25 for walls A and B, respectively. The close match in these
figures can be attributed to the good agreement between the t*. This can
be seen more clearly by comparing Fig. 24 with Fig. 22 and Fig. 25 with
Fig. 23.

6.4.3 Comparison of the Responses of Walls A and B

The horizontal response of the walls is governed by their CFRF's shown
in Figs. 13 and 14. It is clear from these figures that the low frequency
behaviors of the walls A and B are similar and their first modal frequencies
are close (18 Hz for wall A and 18.5 Hz for wall B). The only marked
difference in the first mode is in the amount of amplification, which is
greater in wall A than in wall B. This difference is certainly due to different

energy dissipation in the two walls. The second modal frequencies of walls
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A and B are aiso close (~ 23.5 Hz for both walls), but their behaviors after
the first modal frequency are completely different: the second peak values
of the Im[Hu] have opposite signs, and the second and third intercepts of
the Re[Hu] with the frequency axis are different for walls A and B. These
differences are due to different micro slip distributions in the two walls.
A detailed discussion of slip phenomenon is given in the next Chapter. It
is remarkable that the mixture model is able to predict the response of both
walls in spite of their having very different CFRF's.

CFRF's for the vertical response were presentea in Figs. 17 and 18 for
walls A and B, respectively. A comparison of the figures indicates that the
difference in the vertical responses of the two walls stems from the amount
of dissipated energy which is extremely high for wall B compared with that
for wall A. The optimum values of the parameters for walls A and B support
this observation (Table 6) where, among all of the parameters, only the

value of the damping coefficient £ differs considerably for the two walls.

6.4.4 Horizontal Response of the Constituents

CFRF's for the horizontal response of the brick and mortar constituents
are obtained theoretically for wails A and B by using the mixture model with
the optimum parameters given in Table 5. These CFRF's relating the horizontal
top accelerations of the constitutents to the horizontal base acceleration

are found using the equation

F
(u‘;) u;F
HUOL'_-——'—T—:T (Ot= 1,2) (6.])
(i) Y

and by taking into account Egs. (3.11, 3.40, 3.47). The results are shown
in Figs. 26, 27 and 28, 29 for walls A and B, respectively. (The subscripts

1T and 2 designate mortar and brick constituents, respectively, in these figures).
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Figure 26. CFRF for mortar constituent of wall A (horizontal motion)
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When the theoretical CFRF's of the constitutents in walls A and B
are compared, it is found that the response of brick is similar for both
walls whereas the response of mortar is completely different. To understand
the dynamic behavior of the constituents more clearly, their amplifications
[Hujl and phase angles o, = tan™! {InfHu;] / Re[Hu.]} are obtained
separately. The amplification and phase spectra are shown in Figs. (30 to
33) for the constituents of walls A and B. The angle o in the figures
designates the phase shift of the top acceleration of the 1 th constituent
with respect to the base acceleration, and is measured counterclockwise
from the Re[Hui] axis in the complex Hu; plane with the range 0 < a, < 2m.

In Fig. 30 the amplification curves for the brick and mortar constit-
uents of wall A are approximately parallel throughout the frequency range
under consideration. The phase difference between constituent top accelera-
tions, designated by (az - a1) in Fig. 31, is zero at ¥ = 0 and then, varying
slowly, reaches a value of about n/4 at the first modal frequency. After-
wards it increases more rapidly between the two modal frequencies and assumes
an average value of about 7 in the high frequency range. In view of these
observations we conclude that the top accelerations of the two constituents
are "in phase" in the low frequency range and "out of phase" in the high
frequency range. The amplification of mortar is greater than that of brick
by 18% in the first mode and by 30% in the second mode.

The situation is rather different for wall B {see Figs. 32, 33). The
constituent accelerations are almost in phase in the first mode. The phase
djfference (az - al) suddenly jumps from m/8 to w at f = 20 Hz, which is
between the two modal freqguencies, then reaches a value of about 3w/2 in
the second mode (out of phase). An interesting situation is observed at
f = 20 Hz for the mortar constituent. Around this freguency the amplifica-

tion curve passes through a minimum while its phase shift suddenly decreases
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from 1.2m to 0.3w. This singular behavior of the mortar around f = 20 Hz
is probably due to the propagation (initiated at this frequency) of micro
cracks which might be present initially between the mortar and brick
Tayers. Micro cracks may exist in a wall because of imperfections in its
structure. The peculiar behavior at f ~ 20 Hz is observed only for wall
B, not for wall A. This is probably due to a higher density of micro

cracks in wall B than in wall A.
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7. ASSESSMENT OF THE PROPOSED MODELS

In the following sections the results obtained in the previous chapter
are discussed and interpreted further, and the dynamic stiffness matrix for
a wall element is presented to appraise the models used in the study.
Suggestions are also made regarding research areas that need to be

investigated in the future.

7.1 Comments on Closely Spaced Modal Frequencies

In the present study a two-phase model was chosen to study the dynamic
behavior of masonry walls. This choice was dictated by experimental observa-
tion. As can be seen from Figs. 13 and 14, the first two resonance frequencies
of the wall predicted by experiment are close to each other. It may be
expected on physical grounds that the closeness of these two frequencies is
due to the strong interaction between the brick and mortar phases of the wall,
and accordingly that this interaction could be taken into account only by a
model that differentiates the two phases of the wall. The results obtained
in Chapter 6 verify this expectation. The mixture model yields a CFRF which
duplicates closely the experimental CFRF up to a frequency which is well
above the second modal frequency, whereas the effective modulus model gives

satisfactory resylts only up to the first model frequency (see Figs. 13-16).

7.2 Comments on the Effect of Debonding in the Behavior of Masonry Walls

In the previous chapter, it was observed that the CFRF's of walls A
and B were very different and this difference was attributed to different
densities of micro crack distributions in the two walls. Some further
remarks follow regarding the influence of micro cracks on the wall behavior.

Slip and debonding phenomena in elastic composites have been studied

by many researchers (see, for example [28-31]). In references [30] and [31]
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the mixture and effective modulus theories are proposed for layered com-
posites. The incorporation of slip (along constituent interfaces) in the
formulation does not change the form of the equations of the mixture or
effective modulus theory for perfectly bonded constituents, but the model
parameters appearing in these equations become dependent on the slip
coefficient.

The form of the equations of the mixture theory, Egs. (3.1 to 3.3), used
in this study to analyze the dynamic behavior of masonry walls was estab-
Tished in references [8 to 11] by assuming that the constituents were
perfectly bonded. However, in view of the findings mentioned in the previous
paragraph, it is anticipated that this form could be used also to determine
the response of the wall when slip and debonding are present between brick
and mortar constituents. In fact, the results cbtained in the previous
chapter support this expectation. There, it was found that the mixture model
could predict the response of both walls A and B each having very different
debonding and slip characteristics.

Much work remains to be done to establish the debonding and slip
phenomena inwalls more rigorously. Developments in this direction could
follow the steps outlined below. First, parameters describing the debonding
characteristics must be chosen. The selection of slip coefficient and the
density of micro crack {separation) distribution seem reasonable for this
purpose. Secondly, the type of dependence of the parameters of the mixture
model an the slip parameters should be established from a theoretical
analysis. Finally, the type of experiments necessary to evaluate the slip
parameters must be ascertained; and, with the aid of such experiments, the

values of the slip parameters should be determined through optimization.
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7.3 Dynamic Stiffness Matrix for a Wall Element

In this section, a dynamic stiffness matrix relating the forces to

displacements, at the lower and upper ends of a wall element, is developed

using the mixture theory. To this end, Egs. (3.29) and (3.37) will be re-

written in matrix form

1
fr o g3 [
-F H -F
f -»A 0 W
where .
£ [R+F T+F]T L L§+F \},+F]T
From the definitions in Egs. (3.20},
i+F-1 .I .I" r‘-—+F-
f;FJ o1 -ﬂTFd
ﬂ'f‘Fq 1 -]' ri‘l‘F-}
W | o) g

where

g - [:OJ?F TEF]T -

= [u+F ‘?+F]T .

Substitution of Egs. (7.3) into Eg. (7.1), solving for [ng ng]T and

multiplying the resulting equation by bh' give

.+
j F

AL I O R N

el o s
where

E?F - {V;F AF ] T

with

(7.

.2)

.5)

.6)
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VP = bnee™ A ™ and
f
1 . 2 11
Dyy = Kyp # 0y - w0 =
3 1 2 f12 7.7)
Dyp = Dpy = Kyp * iulyy - 0"
£
1 . 2 fop
Dy = Kyp + dulyy ~ 0 =
and
02w koo b s+ T
11~ ™M1 W T W7
D2 = D2 = Ky + uli, + & flg (7.8)
12 7 P21 7 Mo TR Tw 7 '
.f
> 2 Fop
Doy = Kop * Tulpy +w —=
In Egs. (7.8)
o ke ek "2 pntHe (7.9)
22 = T i3 Cop = T :

all of the coefficients in Egs. (7.7) and (7.8) are defined in Eqs. (3.48).
The 4 x 4 matrix

D= (7.10)
02 -p!

is the dynamic stiffness matrix which is being sought. It may be noted that
the discrete form of the governing equations of the mixture model, Eq. {3.47),
could be derived also from the dynamic stiffness relation, Eq. (7.5), by taking
into account the boundary conditions, Egqs. (3.27).

Study of Egs. (7.7 to 7.9) indicates that all of the elements except
Dgz in the dynamic stiffness matrix D could be computed using the optimum
values of parameters determined in Chapter 6. From Eq. (7.8) , and from
22> Cop) and Kpps Cop
(3.48) and {7.9) it is clear that D%Z could alsc be evaluated if the non-

the comparison of the relations defining (K C ) in Egs.

dimensional parameters K and C defined by
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(=DM pLbe (7.11)
1 1
are known. Unfortunately, the experimental data used in this study were not
sufficient to determine these two parameters through optimization.

The values of K and C could perhaps be estimated theoretically. Such
analysis might be very complicated but could be simplified by taking into
account the periodicity of the wall, and consequently basing the analysis on
a unit cell of the wall. This could involve the use of certain hypatheses
regarding deformation modes of the unit cell. The determination of K and C
in this way remains to be done in a‘1ater study.

It shhod be noted that some intervals with well defined Tower and
upper bounds exist for K and C. Since k and c are positive {see Section 3.2),
the Tower bound for K and C is zero. The limiting situation |k| = 0, jc| = 0

of k = (k;.) and ¢ = (Cij) establishes the upper bounds of K and E, which can

1J
be computed using the optimum values of parameters presented in Chapter 6.
For example, associated with the horizontal motion of wall A, they are found
to be 0,744 and 0.460 for K and C, respectively. The use of the rough
estimate R = 6 = 0 is suggested here for practical purposes, until a better
estimate is found through either experimental or theoretical analysis.
Finally, it may be observed that knowing K and E, in addition to the
parameters already determined in Chapter 6, is sufficient to compute the
values of all the coefficients appearing in the equations of the continuum

(mixture) model, Eas. (3.12, 3.13}.



10.

11.

12.

13.

39

REFERENCES

Mayes, R. L. and Clough, R. W., "State-of~the-Art in Seismic Shear
Strength of Masonry-An Evaluation and Review", EERC Report No. 72/21,
University of California, Berkeley, California (1975).

Mayes, R.L., Omote, Y. and Clough, R.MW., "Cyclic Shear Tests of Masonry
Piers, Volume I-Test Results", EERC Report No. 76/8, University of
California, Berkeley, California (1976).

Mayes, R. L., Omote, Y. and Clough, R.W., "Cyclic Shear Tests of Masonry
Piers, Volume II-Analysis of Test Results", EERC Report No. 76/16,
University of California, Berkeley, California (1976).

Hidalgo, P.A., Mayes, R.L., McNiven, H.D. and Clough, R.W., "Cyclic
toading Tests of Masonry Single Piers, Volume 3-Height to Width Ratios
of 0.5", EERC Report No. 79/12, University of California, Berkeley,
California (1979).

Gulkan, P., Mayes, R.L. and Clough, R.W., "Shaking Table Study of
Single-Story Masonry Houses-Volume I, Test Structures 1 and 2", EERC
Report No. 79/23, University of California, Berkeley, California
(1979).

Gulkan, P., Mayes, R.L. and Ciough, R.W., "Shaking Table Study of
Single-Story Masonry Houses=-Volume 2, Test Structures 3 and 4", EERC
Report No. 79/24, University of California, Berkeley, California (1979).

Rytov, S.M., "Acoustical Properties of a Thinly Laminated Medium",
Soviet Physics-Acoustics, Vol. 2, 68-80 (1955},

Mengi, Y. and McNiven, H.D., "A Mathematical Model of Masonry for
Predicting its Linear Seismic Response Characteristics", EERC Report
No. 79/04, University of California, Berkeley, Califaornia (1979).

Mengi, Y. and McNiven, H.D., "A Mathematical Model for the Linear
Dynamic Behavior of Two Phase Periodic Materials", Internationai
Journal of Solids and Structures, Vol. 15, 271-280 (1979).

Mengi, Y. and McNiven, K.D., "A Mixture Theory for Elastic Laminated
Composites”, International Journal of Solids and Structures, Vol. 15,
281-302 (1979).

Mengi, Y. and McNiven, H.D., "Propagation of Transient Waves in Elastic
Laminated Composites", International Journal of Solids and Structures,
Vol. 15, 303-318 (1979).

Mengi, Y., "A New Approach for Developing Dynamic Theories for Structures",
Vol. 16, 1155-1168 (1980).

Cooper, R.G. and McGillem, C.D., "Methods of Signal and System Analysis",
Holt, Rinehart and Winston, Inc, (1967).




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

100

Crandall, S.H. and Mark, W.D., "Random Vibration in Mechanical Systems",
Academic Press, Inc. (1963).

Champeney, D.C., "Fourier Transforms and Their Physical Applications”,
Academic Press, Inc. (London) Ltd. (1973).

%neddon, I.N., "Fourier Transforms”, McGraw-Hi11 Book Company, Inc.
1951),

Bendat, J.S. and Piersol, A.G., "Measurement and Analysis of Random
Data", John Wiley and Sons, Inc. (19771).

Cooley, J.W., Lewis, P.A.W. and Welch, P.D., "The Fast Fourier Transform
?nd I?s Applications", IEEE Transactions on Education, Vol. 12, 27-34
1969;.

Welch, P.D., "The Use of Fast Fourier Transform for the Estimation of
Power Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms", TEEE Transactions on Audio and Electroacoustics, Vol.
AU-15, 70-73 (1967).

Bergland, G.D., "A Guided Tour of the Fast Fourier Transform”, IEEE
Spectrum, Vol. 6, 41-52 (1969).

Brigham, E.0., "The Fast Fourier Transform", Prentice-Hall, Inc.,
Englewood Cliffs, N.J. (1974).

Adby, P.R. and Dempster, M.A.H., "Introduction to Optimization Methods",
Chapman and Hall, London (1974).

Luenberger, D.G., "Introduction to Linear and Nonlinear Programming",
Addison-Wesley Publishing Company (19737,

Jacoby, S.L.S., Kowalik, J.S. and Pizzo, J.7T., "Iterative Methods for
Nonlinear Optimization Problems", Prentice-Hall, Inc., N.J. {1972).

Kowalik, J. and Osborne, M.R., "Methods for Unconstrained Optimization
Problems", American Elsevier PubTishing Company, Inc., N.Y. (1968).

Wilde, J.D. and Beightler, C.S., “Foundations of Optimization",
Prentice-Hall, Inc., N.J. (1967).

Pierre, D.A., "Optimization Theory with Applications", John Wiley and
Sons, Inc.(1969}.

Drumheller, D.S. and Norwood, F.R., "On the Behavior of Stress Waves
in Composite Materials - I. A Universal Set of Boundary Conditions”,
International Journal of Solids and Structures, Vol. 11, 53-73 {1975).

Gurtman, G.A. and Hegemier, G.A., "A Mixture Theory for Wave Guide-
Type Propagation and Debonding in Laminated Composites", International
Journal of Solids and Structures, Vol. 11, 973-984 (1975).

Benveniste, Y, and Aboudi, J., "A Mixture Theory for Wave Propagation
in a Laminated Medium with Debonding", Journal of Sound and Vibration,
Vol. 46, 473-482 (1976).



101

31, Lene, F. and Leguillon, D., "Homogenized Constitutive Law for a
Partially Cohesive Composite Material", to be published in
International Journal of Solids and Structures.



102

APPENDIX A

VERIFICATION OF |[(H2/12)577 A]] < 1

The verification will be presented only for the horizontal motion of
wall A and for the frequency range that is considered in the analysis.

Let the matrix G' denote the matrix whose norm is to be evaluated:
HZ

G' =35

-1

tenNt

A (A.1)

where A and 5 are given in Fas. (3.34) and H is the height of the wall.
When the numerator and denominator of the right hand side of Eq. (A.1) is

multiptied by bh', G' can be expressed as

—

H

9_' T e

12 bh'

-1

[ 178}

B' (A.2)

where b, h' are defined in Chapter 4 and

B' = w’F - bh'HQ'B . (A.3)
In Eq. (A.3), w is angular frequency, 6‘ is defined in Chapter 3, [ = (fij)
with fij given in Egs. (3.48), and B is defined in Egs. (3.46). Some
manipulation of Eq. (A.3) yields a more suitable form for B':
B = Ky {2%F - (K + 2892008} . (A.4)
- g =2 - -
In Eq. (A.4), z = w/w, w -K11/M]], £ C11/2M1]m and
‘ 1 - = K = c
F' = (fi.) = 5— (f.;) »3 = 1,2), = v T -5
s ) s (fy) s (=12 kel B (8.5)
where K1I’ M1], C]] are defined in Chapter 3, and bh‘Ha' = K + iwC
Substitution of B' from Eq. (A.4) into Eg. (A.2) gives
[ - l_____"] 2 o s
G 7 B S KH {z°F' - (K + 2gizC)B} . (A.6)
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1

Let the matrix (H/bh‘)g' Kyy in Eq. (A.6) be designated by J, which can be

written after some manipulation as

S* S*
g1 72 T (A7)
X* *
S
where
B * * *2
A=Sqy Spp = Sy
* . +* . , * - . -
SH =1+ 28iz 512 =y + 28izy' 322 =p+ 28iza' (A.8)
K C
—_2_2.. . "|=__r¢12_ . o e =Qh__'_
PR, N s (KypaCap) = T (kyysChy)

In £q. (A.8) v, v' are defined in Eqs. (4.5), and k22 and Coo in Chapter 3.
From discussion given in Chapter 7, K and E are taken to be K = 6 = 0,
which implies o' = o' and p = p {where the parameters o' and p are defined in

Egs. (4.5)). Then Eq. {A.6) becomes

6! -‘}‘—5 JF (A.9)
which is a function of w. From this equation it is clear that the maximum
novrm of G', i.e., [{G']|, is zero at w = O and increases with w. In the
calculations, f = w/2r is chosen to be 25 Hz which is well above the second
modal frequency. ||G'|| is computed by using this value of w and the optimum
values of the parameters with o = 0.45 Tisted in Table 5. (For the definition
of o see Egqs. (3.48, 4.5).) The maximum norm of [{G'|{| is found to be

[{6']{ = 0.319,

which is less than one. In the computation of F', the values of M (top mass)

and M, given in Eqs. (3.48, 4.8) and Egs. (3.48, 4.5, 4.9 to 4.11) are used.
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APPENDIX B
SENSITIVITY COEFFICIENTS

In the present problem the number of parameters to be determined through
optimization is seven for the mixture model and two for the effective modulus

model. Let them be ordered so that
(B'l’ 629 + 003 87)-—-(6‘39 d‘} g! CX', g'! p5 Y) (B’])
for the mixture model, and
(81, B3) = (0, &) (8.2)

for the effective modulus model.
First,the evaluation of the sensitivity coefficients of the mixture
model will be presented.

In Section 5.1 the theoretical CFRF ds written in the form

) o= p. 4 is. )
f.) rs 15J (B.3)
where (rj, Sj) are the (real, imaginary) parts of HE at f = fj, respectively.

Differentiation of Eq. (B.3) with respect to By yields

t

OH (f.)  or. 95 .
il T T (B.4)
k k k

The aim here is to evaluate the sensitivity coefficients arjlask, asj/BBk
which appear as real and imaginary parts of BHE(fj)IBBk in Eq. (B.4). To
this end, HE defined in Eq. (4.6) is differentiated with respect to Bk taking

into account the definitions in Eq. (4.7). Thus,

z - 3} )4 29'z |3z .

B.5)
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where

12 By

58, 22 3B, O W C

22 3, 2

(B.6)

and 82/881 = -z/w, 32/88k =0 for k # 1 since z depends only on the parameter
w through z = w/w. To evaluate 8HE/BBk in Eg. (B.5) it is necessary to deter-
mine the derivatives of ayys 3o and 50 with respect to Bkn Using the
expressions defining a]], a1y and 3505 these derivatives are evaluated at

f= fj and presented in Table B.1. In the prepafation of this table the
definition z; = Zﬁfj/B is used. Once the right hand side of Eq. (B.5) is
evaluated at f = fj, its real and imaginary parts give the sensitivity
coefficients arj/ask and st/BBk, respectively.

The sensitivity coefficients of the effective modulus model are the
real and imaginary parts of BHE/SQ and aHS/ag, where HS is the CFRF defined
by Eq. (4.14). They can be evaluated using Eq. {B.5) with (k = 1,3) by
setting the parameters m', o', v', v in Egs. (4.6, 4.7) and in Table B.1

equal to zero.

Table B.1 Derivatives of «‘;11.j (i,J = 1,2) with respect to model parameters

at £ = ..
J
\?3—- 3 3 3 3 ) : )
4 Ck 38, 8, 38, 38, 38, 98, | 384
sz
— -ig iz, 0 0 0 0
a, = (zj ig) 0 212J
22j
Tz.=iy! 0 2iy"z. 0 2izz, 0 1
a, = (m'z.=iy'8) Yz, ;
223. )
a —L (qz. -ia'cE -z 2ia'z, 2itz. Q 1 1
22 @ ( J ) J ] 1
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APPENDIX C
COMPUTER PROGRAM

The FORTRAN program consists of a main program and six subprograms
with a total of 188 statements. The compilation time with the G compiler
of the IBM 370/145 computer is about 28 seconds. Execution takes 3.20
seconds when periodic data are used and convergence is achieved in eight
iterations.

Flowcharts are presented only for the MAIN prdgram and subroutine
SUM. The other subprograms complement the computations performed in SUM
and MAIN. A listing of the computer program and the output for a sample
problem (involving the evaluation of the optimum values of the parameters
of wall A using horizontal periodic data) are included at the end of this
Appendix.

The symbols used in the flowcharts are defined in Chapter 5.
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MAIN PROGRAM

1

N

START

. e .
/ READ ((fj, Hu(fj), st J _']-QN)i ..B_O) /

e
ALL SUM (@l, d.s ers Ay (fJ HU(fJ) Wj j=1,8))

NO CONVERGENCE

#..._.

PRINT
CONVERGENCE

€., A,
17TiTL

1

//;RINT g, //]
=1+1

Iteration no.

: Number of data points
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SUBROUTINE 3UM

SUBROUTINE SUM (8, d, e, 4, (£, Hj(fj), W, 3= 1,N)

-
] &

w85 g.) - w8ce.) |
1l u 3 u j

= 2 2
GIONEEN
= 327(2 L2
B = 853 )/~ 8
o m=m+1 CALL SOLGAU (G, H, d)

No o s 2
Yes
- +

- e, 461 3eo

2(e2—2et+eo)

g

Bk: k th element of E

k,2 = 1-n ; n is the number of released parameters in §
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EARTHQUAKE ENGINEERING RESEARCH CENTER REPORTS

Numbers in parentheses are Accession Mumbers assigned by the National Technical Information Service; these are
followed by a price code.
Port Royal Road, Springfield, virginia, 22161.
and remittance must accompany each order.

Copies of the reports may be ordered from the National Technical Information Service, 5285
Accession Numbers should be quoted on orders for raports (PB
Reports without this information were not available at time of printing.

The camplete list of EERC reports (from EERC 67-1) is available upon request from the Earthquake Engineering Research
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"PLUSH ~ A Computer Program for Probabilistic Pinite Element Analysis of Seismic Soil-3trueture Inter-
action,” by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977 (pB81L 177 451)A0%

"Soil-3tructure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthgquake of June
7, 1975," by J.E. Valera, H.B. Seed, C.F. Tsai and J. Lysmer - 1977 (PB 265 795)A04

"Influence of Sample Disturbance on Sand Response to Cvelic Loading," by K. Mori, H.B. Sead and C.X.
Chan - 1977 (P8 287 352)A04

"Seismological Studies of Strong Motion Records,”" by J. Shoja-Taheri - 1977 {PB 269 655)AL0

Unassigned

"Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings," by No. 1 -
B, Bresler; No, 2 - B, Bresler, T. Okada and D. Zisling; Mo. 3 ~ T. Okada and B. Bresler; Ne. 4 - V,V.
Bertero and B. Bresler - 1977 (PB 267 354)A08 '

"A Literature Survey - Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, $.W. Chen and
R.W. Clough = 1977 (PB 277 933)R07

"DRAIN-TABS: A Computer Program for Inelastic Earthguake Response of Three Dimensional Suildings," by
R. Guendelman-Israel and G.H., Powell - 1977 (PB 270 ©93)a07

"SUBWALL: & Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design
of Structural Walls with Substructure Option," by D.Q. Le, H. Peterson and E.P. Popov - 1377
(PB 270 567)A05

"Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks," by D.P. Clough
(PB 272 280)AL3

"Earthiquake Engineering Research at Berkeley - 1976," - 1977 (PB 273 5Q71A09

"Automated Design of Earthquake Rasistant Multistory Steel Building Frames," by N.0. Walker, Jr. - 1977
(PB 276 524&)A09

"Concrete Confined by Rectangular Hoops Subjected to aAxial Leads," by J. Vallenas, V.V. Bertero and
E.P. Popov - 1977 (PB 275 165)A06

"Seismic Strain Induced in the Ground Huring Earthquakes,” by Y. Sugimura - 1977 (pB 284 201)A04

Tnassigned
"Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames," by 5.W.
Zagajeski and V.V. Berterc - 1977 (PB 280 137)A07

"Earthguake Simulation Testing of a Stepping Frame with Energy~Absorbing Deviees,” by J.M. Xelly and
C.F. Tsztoo = 1977 (PB 273 506)A04

"Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Leadings,” by C.W. Roader and
E.P. Popov - 1977 (PB 275 526)Al5

"A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments," by F.I.
Makdisgi and H.B. Seed ~ 1277 (BB 276 B820)Aa04

"The Performance of Earth Dams during Earthquakes," by H.B. Seed, F.I. Makdisi and P. de aAlba - 1977
({PB 276 821}204

"Dynamic Plastic Analysis Using Stress Resultant Finite Element Formulation,” by P. Lukkunapvasit and
J.M. Kelly - 1977 (PR 275 453)A04

"Preliminary Experimental Study of Seismic Uplift of a Steel Frame," by R.W. Clough and A.A. Huckelbridge

1977 (PB 278 769)a08

"Barthquake Simulator Tests of a Hine-Story Steel Frame with Columns Allowed to Uplift,” by A.A.
Huckelbridge - 1977 (PB 277 944)a09

"Nonlinear Soil-Structure Interaction of Skew Highway Bridges,® by M.-C. Chen and J. Penzien - 1977
{PB 276 176)A07

"Seismic Analysis of an Offshore Structure Suppertad on Pile Foundations,” by D.D.=N, Liou and J. Penzien

1977 (PB 283 1B0)A0D6

"Dynamic Stiffness Matrices for Homogeneous Viscoelastic Half-Planes," by G. Dasgupta and A.X. Chopra -
1977 (PB 279 654)a06 !
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UCB/EERC~77/27 A Practical Soft Story Farthquake Isolation System,” by J.M. Kelly, J.M. Eidinger and C.J, Dexham -
1977 (B 276 B8l4)AQ7

UCB/EERC~77/28 “Seismic Safety of Existing puildings and Incentives far Hazard Mitigation in San Francisco: an
Exploratory Study," by A.J. Meltsner - 1977 (PB 281 970)A05

UCB/EERC-77/29 '"Dynamic Analysis of Electrohydraulic Shaking Tables," by D. Rea, 8. Abedi-Havati and Y. Takahashi
1977 (PB 282 369)A04

UCB/EERC-77/30 "An Approach for Improving Seismic - Resistant Behavior of Reinforced Concrete Interior Joints,” by
B. Galunig, V.V. Bertero and E.P. Popov - 1977 (PB 290 870)A06

UCHB/EERC~78/01 "The Development of Energy-aAbsorbing Devices for Aseismic Base Isolation Systems,"” by J.M. Kelly ang
D.F. Tsztoo - 1978 (PB 284 978}A04

UCB/EERC~78/02 "Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections, by J.G. Bouwkamp
and A, Mukhopadhyay = 1978

UCB/EERC-78/03 - "Experimental Results of an Farthquake TIsolation System using Natural Rubber Bearings," by J.M.
Eidinger and J.M. Kelly =~ 1978 (PB 231 6586)A04

UCB/EERC-78/04 "selsmic Behavior of Tall Ligquid Storage Tanks,” by A. Niwa - 1978 (PB 284 0l7)al4

UCB/EERC-78/05 "Hysterstic Behavior of Reinforced Concrete Columns Subjected to High Axial and Cyclic Shear Porces,”
by S.W. Zagajeski, V.V, Bertero and J.6. Bouwkamp - 1978 (PR 283 §58)al3l

UCB/EERC-78/08 "Thrée Dimensional Inelastic Frame Elements for the ANSR-I Program," by A. Riahi, D.G. Row and
G.H. Powell - 1978 (PB 235 755)A04

UCB/EERC=78/07 "Studies of Structural Response to Earthguake Ground Motion,” by 0.A. Lopez and A.K. Chopra - 1978
(PB 282 790)A0%

UCB/EERC-78/08 "A Laboratory Study of the Fluid-Structure Interaction of Submerged Tanks and Caissons in Farthguakes,"
By R.C. Byrd - 1978 (PR 2B4 957)A08

UCB/EERC-78/09 Unassigned

UCB/EERC-78/10 "Seismic Performance of Nonstructural and Secondary Structural Elements," by I. Sakamoto - 1978
(PBS1 154 593)A05

UCB/EERC-78/11 "Mathematical Modelling of Hysteresis Loops for Reinforced Concrete Columns," by $. Nakata, T. Sproul
and J. Penzien - 1978 (PR 298 274)A0S

UCB/EERC-78/12 "Damageability in Existing Buildings,"” by T. Bleijwas and B. Bresler - 1978 (PB 80 166 978)A05

UCB/EERC-78/13 "Dynamic Behavior of a bPedestal Base Multistory Building,'" by R.M. Stephen, E.L. Wilson, J.G. Bouwkamp
and M, Button - 1978 (PB 286 &50)208

UCB/EERC-78/14 "Seismic Response of Bridges - Case Studies,” by R.A, Imbsen, V. Nutt and J. Penzien ~ 1378
{(PB 286 503)3l10

UCB/EERC-78/15 "A Substructure Technigue for Nonlinear Static and Dynamic Analysis," by D.G. Row and G.H, Powell -
1978 (pPB 2B8 077)al0

UCB/EERC-78/16  “"Seismic Risk Studies for San Francisco and for the Greater San Francisco Bay Area,” by C.S. Oliveira -
1978 (PB 81 120 115}A07

UCB/EERC-78/17 "Strength of Timber Roof Connections Subjected to Cyclic Loads," by P. Gllkan, R.L. Mayes and R.W.
Clough = 1978 (HUD~000 1491)a07

UCB/EERC-~-78/18 "Response of K~Braced Steel Frame Models to Lateral Loads,” by J.G. BouwKamp, R.M. Stephen and
£.P. Popov - 1978

UCB/EERC~78/19 "Rational Design Methods for Light Equipment in Structures Sub]ected toc Ground Motion," by
J.L. Sackman and J.M. Kelly - 1978 (PB 292 31537)a04

UCB/BERC-78/20Q "Testing of a Wind Restraint for Aselsmlc Base Isolation,™ by J.M. Kelly and D.E. Chitty - 1978
(PB 292 833)a03

UCB/EERC-78/21 "APOLLO - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation in Horizontal
Sand Layers During Cyclic ot Earthguake loading,” by P.P. Martin and H.B. Seed - 1978 (PB 292 835)AD4

UCB/EERC-78/22 "Optimal Design of an Earthquake Isolation System,™ by M.A. Bhatti, K.S. Pister and E. Polak - 1978
(PB 294 735)a06

UCB/EERC-78/23 "MASH - A Computer Program for the Non-Linear Analysis of Vertieally Propagating Shear Waves in
Horizontally Layered Deposits," by P.P. Martin and H.B. Seed -~ 1978 (PB 293 101)Aa05

UCB/EERC-78/24 "Investigation of the Elastic Characteristics of a Three Story Steel Frame Using System Identification,”
by I. Kaya and H.D. McNiven - 1978 (PB 296 225)}A06

UCB/EERC-T8/25 "Investigation ¢f the Nonlinear Characteristics 0of a Three-Sto Steel Frame Using System
Identification," by 1. Kaya and H.D. McNiven - 1978 (PB 301 363)A05
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UCB/EERC-79/02

UeB/EERC-79/03

UCB/EERC-73%/04

UCB/EERC-79/05

UCB/EERC~73/C0

UCB/EERC~79/07

UCB,/EERC-79/08

UCB/EERC-79/09

+

UCB,/EERC-73/10

UCB/EERC-79/11

UCB/EERC-79/12

UCB/EERC-"9/13

UCB/EERC-79/14

UCB/EERC~79/15

UCB/EERC~72/16

UCB/EERC-79/17

UCR/EERC-T79 /18

UCB/EERC-79/19

UCB/EERC-79/20

UCB/EERC-T9/2L

UCB/BERC-79/22

UCB/EERC~79/23

UCB/EERC-79/24
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“Studies of Streng Ground Motion in Taiwan," by Y.M, Hsiung, B.A. Bolt and J. Penzien - 1278
(PB 298 4381406

"Cyclic Loading Tests of Masonry Single Piers: Volume 1 - Helght to Width Ratvic of 2," by P.A., Hidalgo,
R.L. Mayes, H.D. McNiven and R.W. Clough - 1378 (PB 290 211)A07

"syelic Loading Tests of Masonry Single Piers: Volume 2 - Height to Width Ratic of 1," by S.-W.J. Chen,
©.A. Hidalgo, R.L. Mayes, R.W. Clough and H.D. McNiven - 13978 (PB 296 212)A0%

"Analytical Procedures in Soil Dynamics,™ by J. Lysmer - 1978 (PB 298 445)A00

"Hysteretic Behavieor of Lightweight Reinforeed Concrete Beam—-Column Subassemblages,” by B. Forzani,
E.P. Popov and V.V. Bertero = April 1979(PB 298 267)A06

“The Development of a Mathematical Model ko Predict the Flexural Response of Reinforced Concrete Beams
ta Cyclic Ioads, Using System Tdentification,” by J. Stanton & H. McNiven - Jan. 1279(pB 285 875)Aal0

"Linear and Nonlinear Earthquake Response of Simple Torsisonally Coupled Systems," by C.L. Kan and
A.K. Chopra - Feb. 1979(PB 298 262} 706

"A Mathematical Model of Masonry tor Predicting its Linear Seismic Response Characteristics,” by
Y. Mengl and H.D. McNiven - Feb. l979(FB 298 266) A0G

"Mechanical Behavicr of Lightwelght Concrete Confined by Different Types of Lateral Reinforcement,”
by M.A. Manrique, V.V. Bertero and E.P. Popov - May 1979(pB 301 114)206

"Static Tilt Tests of a Tall Cylindrical Liquid Storage Tank,” by R.W. Clough and A. Miwa - Feb. 1979
{(PB 301 167)a06

"The Design of Steel Energy Absorbing Restralners and Their Incorporation into Nuclear Power Plants
for Enhanced safety: volume 1 - Summary Report," by P.N. Spencer, V.F. Zackay, and E.R. Parker -
Teb. 1379 (UCB/LERC-79/07) A0S

"The Design of Steel Energy Aapsorbing Restrainers and Their Incorporation into Nuclear power Plants
for Enhanced Safety: volume 2 - The Development of Analyses for Reactor System Piping,""Simple Systems"
by M.C. Lee, J. Penzien, A.K. Choora and K, Suzuki "Complex Systems" by G.H. Powell, E.L. Wilson,

R.W. Clough and D.G. Row = Feb. 1379 (UCB/EERC-79,/08)Al0

"The Design of Steel Energy Abscrbing Restrainers and Their Incorporation into Nuclear Power Plants
for Enhanced Safetv: Volume 3 - Evaluation of Commercial Steels," by W.S. Owen, R.M.N. Pelloux,

R.Q. Ritzhie, M. Paral, T. Ohhashi, J. Toplosky, $.J. Hartman, V.F. Zackay and E.R. Parker -

Feb. 1979 (UCB/EERC-72/0%) AC4

"The Design of Steel Enerygy Absorbing Restrainers and Theilr Incorporation lnto Nuclear Powexr Plants
for Enhanced Safety: Volume 4 - A Review of Energy-Absorbing Devices," by J.M. Xelly and
M.S. Skinner - Feb. 1979 (UCB/EERC-79/10)a04

"Conservatism In Summation Rules for Closely Spaced Modes," by J.M. Kelly and J.L. Sackman - May
1979 (PR 301 328)A03

"Cyclic Loading Tests of Masonry 3Single Piers; Volume 3 - Heignt to width Ratio of 0.5," by
P.A, Hidalgo, R.L. ¥Mayes, H.D. McNiven and R.W. Clough - May 1979(PB 301 32l)a0sg

"Cyclic Behavior of Dense Course-Grained Materials in Relation to the Seismic Stability of Dams," by
N.G. Banarjee, H.B. Seed and C.XK. Chan - June 1979(PB 301 373)Aal3

“Seismic Behavior of Reinforced Concrete Interior Beam-Column Subassemblages,” by 8. Viwathanatepa,
Z.P. Popov and V.V. Bertero = Juhe 1979(PB 301l 326)AlC

“Optimal Design of Localized mnonlinear Syvstems with Dual performance <riteria Under EBarthguake
Excitations," by M.A. Bhatti - July 1972(PB 80 167 109} 206

YCPTDYN - A General Purpose Optimization bprogram for Problems with or without Dynamic Constraints,”
by M.A. Bhatti, E. Polak and K.3. Pister ~ July 1979(PB 80 167 091)AaQS

"ANSR~IT, Analysis of Nonlinear Structural Response,
July 1979 (PB 80 113 201} A0S

"Soil Structure
and H.B. Seed =

Users Manual," by D.P. Mondkar and G.H. Powell

Interaction in Different Seismic Environments.," A, Gomez-Massc, J. Lysmer, J.-C. Chen
August 1979 (PR 80 101 520)A04

"ARMA Models tor Earthquake Ground Motions,“ by M.X. Chang, J.W. Kwiatkowski, R.F. Nau,
and K.5. Pister ~ July 1872(PB 30L 106)A05

R.M. Cliver

"Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. vallenas, V.V. Berterc and
E.P. Popov ~ August 1979(PB 80 165 9035)al2

"Studies on High~Freguency Vibrations of Buildings - l: The Column LEffect,” by J. Lubliner - August 1379
(PB 80 158 S33)A03

"fffects of Generalized Loadings on Bond Reinforcing Bars Embedded in Confined Concrete Blocks," by
S. Viwathanatepa, E.P. Popov and V.V. Bertero - RAugust 1979(PB 81 124 018)Al4

"Shaking lable
R.L. Mayes and

"Shaking Table
R.L, Mayes and

Study of Single-Story Masenry Houses, Volume 1: Test Structures L and 2," by P. Gulkan,
R.W., Clough - Sept. 1979 (HUD-000 1763)Al2

Study of Single-Story Masonry Houses, Volume 2: Test Srructures 3 and 4," by P. Gulkan,
R.W. Clough - Sept., 1972 (HUD-00O0 1836)A12

"Shaking Table Study of Single-Story Masonry Housas, Volume 3: Summary, Conclusions and Recommendations,”
by R.W. Clough, R.L. Mayes and P. Gulkan - Sept. 1979 (HUD-0U00 1837)a06
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UCB/EERC~80/20
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"Recommendations for a U.S.~Japan Cooperative Research Program Utilizing Large~Scale Testing Facilities,"
by #U.S.=Japan Planning Group - Sept. 1979(PB 301 407)A06

YEarthquake~Induced Liguefaction Near Lake Amatitlan, Guatemala," by H.B. Seed, I. Arange, C.X. Chan,
A. Gomez-Masso and R. Grant de Ascoli - Sept. 1979(NUREG-CRL341)A03

"Infill Panels: Their Influence on Seismic ﬁesponse of Buildings," by J.W. Axley and V.V. Bertero
Sept. 1979(PB 80 163 371i)Aal0

"3D Truss Bar Element (Type 1) for the ANSR-II Program,” by D.P. Mondkar and G.H. Powell - Now. 1979

(PB 80 169 709)a02

Y20 Beam-Column Element (Type 5 - Parallel Element Thevry) Row,

G.H. Powell and D.P. Mondkar - Dec. 1279(PB 80 le7 2241A03

"30 Beam-Column Element (Type 2 - Parallel Element Theory) for the ANSR-IL Program,” by A. Riahi,
G.H, Powell and D.P. Mondkar - Dec., 1979(prB 80 167 216)A03

"On Response of Structures to Stationary Bxcitation," by A, Der Kiureghian - Dec. 1373(PB 80166 929)a03

for the ANSR~II Program," by D.G.

"Undisturbed Samplinqvand Cyclic Load Testing of Sands," by S. Singh, H.B. Seed and C.K. Chan
Dec. 1979(ADA 087 298)A07

"Interaction Effects of Simultaneous Torsional and Compressional Cyclic Loading of Sand,” by
P.M. Griffin and W.N. Houston -~ Dec. 1979(ADA 092 352)alS

"Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction
Effects," by A.K. Chopra, P. Chakrabarti and 8. Gupta - Jan. 1980{AD-A087297)A1Q

"Rocking Response of Rigid Blocks to Earthquakes,” by <.5. ¥im, A.X. Chopra and J. Penzien ~ Jan. 1380

[PBEO 1966 002)AC4

"Optimum Inelastic Design of Seismic~Resistant Reinforced Concrete Frame Structures,” by 3.W. Zagajeski

and V.V. Bertero - Jan. 1980(PBB0 164 635)A06

"pffects of Amount and Arrangement of Wall~Panel Reinforcement on Hysteretic Behavior of Reinforced
Concrete Walls,” by R. Iliya and V.V, Bertero -~ Feb. 1980(PB81 122 525)A09

“shaking Table Research on Concrete Dam Models," by A. Niwa and R.W. Clough - Sept. 1980(pPB81 122 368)a06

“The Design of Steal fnevgy-Bbsorbing Restrainers and their Incorporation inte Nuclear Power Plants for
Enhanced Safety (Vol lA): Piping with Energy Absorbing Restrainers: Parameter Study on Small Systems,"
by G.H. Powell, C. Cughourlian and J. Simcns - June 19280

“Inelastic Torsional Response of Structures Subiected to Earthquake Ground Motions," by Y. Yamazaki
April 1980(rB8L 122 327)a08

"study of X-Braced Steel Frame Structures Under Earthquake Simulation,” by Y. Ghanaat - April 1980
{PR81 122 335)All

"Hybrid Modelling of Soil-Structure Interaction,” by §. Gupta, T.W. Lin, J. Penzien and C.5. Yeh
May 1980(PB8L 122 31%9)A07

"seneral Applicability of a Nonlinear Model of a One Story Steel Frame," by B.I. Sveinsson and
H.D. MeNiven - May 1980(pB81 124 877)A06

"A Green-Function Method for Wave Interaction with a Submerged Body,"” by W. Kiocka - April 1980
{PRB1 122 269}Aa07

"Hydrodynamic Pressure and Added Mass for Axisymmetric Bodies," by F. Nilrat - May 1980 (PBS81 122 343)a08

"Treatment of Non-Linear Drag Forces Acting on Cffshore Platforms," by B.V. Dao and J. Penzien
May 1980 (PB81 153 413)a07

"20 Plane/Axisymmetric Solid Element (Type 3 ~ Elastic or Elastic-Perfectly Plastic) for the ARNSR-II
Program," by D.P. Mondkar and G.H. Powell - July 1980(PB81 122 350)203

"4 Response Spectrum Method for Random Vibrations,” by A. Der Kiureghian - June 1940(p381122 301)A03

"cyelie Inelastie Buckling of Tubular Steel Braces," by V.A. Zayas, E.P. Popov and S.A. Mahin
June 1980{PBBL 124 885)AL0

"Dynamic Respense of Simple Arch Dams Including Hydrodynamic Interaction,” by C.8. Porter and
A.K. Chopra = July 1980{PB8l1 124 000)Al3

"Experimental Testing of a Friction Damped'Aseismic Base Isolation System with Fail-Safe
Characteristics,” by J.M. Kelly, K.E. Beucke and M.5. Skinner - July 1980(PB81 148 595} 204

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety (Vol 1B): Stochastic Seismic Analyses of Nuclear Power Plant Structures and Piping
Systems Subjected to Multiple Support Excitations,™ by M.C. Lee and J. Penzien - June 1980

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation inte Nuclear Power Plants
for nhanced Safety (Vol 1C}: Numerical Method for Dynamic Substructure Analysis,” by J.M. Dickens
and E.L. Wilson - June 1980

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants

for Enhanced Safety (Vol 2): Development and Testing of Restraints for Nuclear Piping Systems,” by
J.M. Kelly and M.S. Skinner - June 1930

3D Solid Element (Type 4=~Elastic or Elastic-Perfectly-Plastic)
D.P. Mondkar and G.H. Powell - July 1980(PB8Ll 123 242}A03

for the ANSR-IT Program," by

"Gap-Friction Element (Type 5) for the ANSR-II Program," by D.P. Mondkar and G.H. Powell - July 1980
(PB81 122 28B5¥A03 ! oo ' : [ L ;
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