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reduce the effect of lateral earthquake ground motion on

3, active control systems can be used. During the last

severa.i decads

w

, many different approaches have been applied to
fiad a suitable gain metrix for the control law. Several recent

iovesgigations have been summerized and reviewsd herein. In addi-

tion, & techniqgue on basis of the system identification methods

is deveioped and presented,

~



Table of Contents

" Introduction

System Identification

Approximate Method

- Numerical Examples

Conclusion
Acknowledgement
Appendix A: Root Perturbations

Appendix B: Additional Numerical

Examples
References

Figures

10

12

14

i5.

16

17

22

24






1. 1Introduction

During these past several decades, modern civil engineering
structures are becoming more flexible because of (a) the availa-

bility of bpetter methods of analysis and computations, (b) the

iacreasing cost on

construction materials, aand {(c) the desire to

1

builid taller and longer structures. The dynamic response of such

-

flexivle structures to wind and earthquake excitatiouns may exceed
limit states for human comfort or structursal dintegrity. Conse-
Tgqueniiy, the possibility of applying feedback control fto ciwvil

engineevring structures was discussed in an earlier paper [1l].

To control the behavior of a given structure, one can use

€
e
o
e
o
o

passive and/or active controel systems. The main idea of
vsing 4 control system ig that flexible structures such as

extremely tall buildings or long bridges can be designed to

resizl essentially the operational gravity loads and the active

-~
o)
=3
~r

rol system can be used to minimize side-sway meotions resulti-

ing from lateral 1io

n

ids. Recently, the relevant literature on the
interrelatioaship among structural identification, control, and

reliabilicy was rveviewed {[2].

To effectively control the motions of a given structure, it

is necessary to describe the chavacteristics of this particular

geiructurve. Currently available mathematical representations

result frow generalizations of existing knowledge in the struc-

tural engineering profession. Ffollowing the completion of the

construction process, each c¢ivil engineering structure possess



its own characterisgtics, the precise description of which is dif-
‘s

icult to obtain with the use o¢f any general mathematical model

3] In recent years, applications of system identification tech-

e

niques includes mathematical modeiing, damage assessment, and

apility evaluation of existing structures on the basis of

-
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ield observaticns and test data [4,5]. Several approaches are
4

being explored for the solution of this i{mportant problem [6-8].

&4 general approach to active structural control to satisfy

simaitangocus

o
=

vy the requirement for s

[

ety, serviceability, and .
human comfort considerations was presented by Rohman and Léipholz

{9}, The feasibility of using such & control was also con-~

sidered. {n another paper, Rohman and Leipholz [10] studied the
vibration of a singie—span bridge with the use of a control

mechanism. They showed scme advantages of using a closed-locp

control in flexible civil engineevivng structures.

Tuned-mass dampers have been installed in two tall buildings
to reduce motions during high wiads [1i1,12]. These systems are
presentiy designed to operate as passive tuned-mass dampers. How-
ever, gquesclons remain as to the effectiveness of such systems

[13). Meanwhile, possible modifications fo make these devices

intoe active control systems have been studied by Lund [14].

Yao and Tang [15] and Masri and Beckey [16] proposed the
application of servo=-controiled pulse generators to mitigate the
earthquake induced motions of tall buildings. Numerical results

show that such countrol systems can be effective in controlling



building moticons during strong earthquakes.

The active control of structures by modal syathesis was
presented by Meliroviteh and 5‘z [17]. Their control scheme con-
sists of independent modal control prdvidiﬁg active damping. for
the controlled modes of the structure. Scong and Chang [18] stu-
died an optimal control configuration using the thecry of modal
control. For tall buildings, the application of modern contrel
theory introduces a number of difficult problems. An important
probplem is that of obtaining optimal control configuration of
appropriate lcocations of -comtrollers. This topic has been studied
by Scong and Chang. Recently, optimal open~looep control of
structures under earthquake excitation was studied by Yang and
Lin 1319). They uséd an active tendon control system and an active

mass damper system.,

The concept of active feedback cocntrol was studied by Roorda
{20} . Results of these experiments demonstrate in a simple-way>
the essential ingredients of an active feedback control system.
It involves the control of the midspan deflection of a king=post
truss by Selectively lengthening or shorteniang the under-slung -
cable in a controlled way. In addition, & vertical cantilever is
controlled with a pair of vertical steel tendons fixed to a cfoss
arm attached at the columﬁ and to a yoke which pivots about the

column center line near the base.

although many investigations have been reported concerning

the application of active control systems in civil engineering



Yaco and Basharkhah [21], who showed that the system reliability

depends a great deal on the time constant of the controller,

A classical design method in control Eheory consists of
relocating the dominant closed-loop polegs further away from the
origin in the s-plane. The new location of #hese poles depends
upon design specifications concerning fagtors such as relative
stability, response times, and desirable accuracy. In this

report, the design of feedback compensators for linear, comnstant

il

Fh

coefficient muliivariable sysitem is cconsidered. Cne of the design

objectives is to obtain suitable pole lccations in ordey to

ensure

L]

atisfactory transient respouse. This problem is analyzed,
first under the assumption that all state variables can be used
in forming feedback signals. Output feedback, i.e. incomplete

state feedback is also possible. To obtain a suitable set of pole

ot

ocaticons, one may use the pole assignment method [22]. Although
thie pole assignment method is straight—-forward and there exists
rat least one ¢clution for control law whenever the open-~loop sys-
tem is completely controliable, one may not find the suitable
pole locations or it is not always possible o relocate them to
suitabie locations for civil engineeving structures. In this
repori, a.method on the basis of system identification concept is
developed. Results of numerical examples are presented to illus-
trate several advantages of using this new method when it is com~

pared with the pole assignment method.



2. System Identificatcion

In previous work of authors {21,22], the equation of motion
and its parameters are assumed %t¢ be known. Then, a mathematical
representation of the system is obtalned by applying laws of phy-
sics. In reallty, not all inforwmation of the system 1s available.
Therefore, a wmodel for the system wust be found by using experi-
mental measurements of availablie inputs and outputs. This subject

is called

L]

ystem identification. In c¢ivil engineering, this con-
cept has been used to obtain "realistic"™ equation of motion and
to evaluzste damage of the structures. Varicus system identifica~-
tion technigues have been devéloped in other branches of
engineering to-date., Nevertheless, the appiication of this con-
cept dn controlling the response of civil engineering structures
is new herein. To find the gain matrix of the control law, one

may use different methods. It is noted that the galn matrix of

(a3
-
o
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control law does not have an unique solution in many cases.
.To use these different approaches,; there is no direct relation-—

ship between displiacemeni or velocity response and the gain

o
1]
s

mattrix. T c¢forve, by using the system identification concept,

<]
[

Line gain

atrix will be found such that the controliled response
of the system becomes almest as closed as possible to the desired

response.

Consider a n~degree=-of-freedom flexible structure. The equa-

fion of motion may be written asz follows:

e a @

mx +cz+tkx=N+f (1)

Where m, ¢, and k are mass’, damping, and stiffness matrices of



the system respectively., N is a3 nxl exteranal {force vector induced

by ground acceleration and £ is a nxl control force vector.

By using state space variable coacepi, Equation 1 may be
written as follows:

©

X = AX+BU+FV (2)
Where A is known as the plani matrix; B as the control matrix;
and ¥ as the distuvrbance matrix., X, U, and V are state vector,
control vector, and external or disturbance force vector respec=

iwv

[

i

lys Let us assume a linear state feedback for the controuil law

[ a3l
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s

J==KX ' (3)

3

Where K is he

e

gain métrix'af the control law. It is possible to
use the pcle assignment technique to find the gailn matrlx, but
one has to specify the locaticns of the c¢losed-loop poles in the
s-plane. In most civil engineering structures, it is not possible
to predict the suitable location for the poles of the system.
Because either we do not kuow where they should be relocated
gxactly or it 1s not practical to shift them far enough to the
left of the s~plane. By using system ildentification method, there
is no need to know the exact location of the closed-loop poles.,

This is one of the advantages of using this method rather than

{F
-t
o
1)

pole assignment method. In this approach, there is a direct
relaticonsnip between the elements of the gain matrix and the

desirecd displacement or velocity response. Lo show this method,

e
-y
fo

"
-

ciosed-loop equation of motion way be written as following:



X

fi
e=2
[
+
rel
<

(4)
Where A is known as closed=-loop plant matrix and 1s given as fol~

lows:

A = A-BX (53
The final goal of this method is to find the elewments of the gain
matvix such that the displacement of the system not to aexceed a

certain level. By using Equaticn 1, one can find the displace~

ment, velocity, and acceleration of the cpen-loop system without
any contrel force due to external forces which are assumed as
base excitavion .irn this study. Knowiag the displacement, velo-
city, and acceleration of aéch node, one may prespeciiy a new set
of disslacement, veldcity9 and acceleration for the closed~loop
system. it 1is easy to assume these new set.és &z factor of the
open=loop outpuis. Because the main objective of this study is tu

Teduce the displacement response of the

system, it is obvious

that the above factor shouid be less than one. Therefore, a new

£ outputbs way be assumed for closed—loop systenm according

i

wiith the desired response. Now, Lhe inpuis of the system are the
same as the open-loop case, but the outpuits of the system are

reduced by &

O
(2]

me pres

=]

e¢cified factor. Let us again cénsider'Eéuaw
tion 4. The elements of the closed-locp plant matrix arelthe only
unknowns ia this equation. Because both inputs and outputs of the
system are known. Toe find the elements of A matrix, let us use

the transpose of Equation 4 which may be written as follows:

‘T T T
X =X A +[FV] (6)



az=y (7)

where

‘ T -=T
y={X—FV1T,a=X ;2 = A (8)

In Equation &, V is a 2nxl external force whnich it is assumed as
a input for the system; X is.a 2nxl state vector which it is
assumed according with the desired performance of the system. ;

¢ thne derivative o0f X with respect to the time and it is known.
nerefore, the only wuunknown in Equation 6 ig the A matrix. Either
X 1s assumed to be continuocous or discrete function; we should
discretize the equation. In this case, Equation 7 becomes a sim-
nle simultaneous linear algebraic equations which usually the

number of equations are greater than the number of unknowns.

Siace no one A can satisfy all the simultaneous equations, it 1is

.

) T—-T T .
inappropriate to write the equality X A" ={X~FV] . Rather, an

Z2nxl error vector e 1s dintroduced:

e=y-az (9)
The least-square method yields that one A which minimizes the sun
cf the squares of the e, cowmponents. By using least-square, the
i

N

cliecsed~-loop

’]

iant matrix may be found as follows:

ge

z={a a] a”y (16)
‘Usually, there are more equations than the number of unknowns. It
is more eifificient to use the recursive least-square method.

Assume that & set of p equations yk=az+e has been used to obtain

fods

a least—-square estimate for z, denoted by Zy which may be writtien



T -1 T
= | 11
z, {a al "a Vi (11)

As is often the case, assume that one additilonal set of relations

Yerr = Hpp1%T ey (12)

is available. Then the new estimate for z is given as follows:

_ - 13
Zier = % FOK Iy T B Ed (13)
whevre
T T -1
= P + 1 14
K = Pl P P e ] (14)
P - (aTa]™t (15)
T T -1
Progr = BpmPpHpgg THp Pyt + 10 H Py (16)

Therefore, it 1is possible to find the best estimation of the
closed=-loop plant matrix. Now, let us assume that the A matrix is
given as'zi+1 by using the least-square method. Then, the‘gain
matrix for the control law may be found as follows:

BK=A-A (175
oY

1 'nd
* Bl AA (18)

k={8T8]
Where AA=BK. There 1s a solution for the gain matrix if the
inverse of BBT matrix exists. Otherwise, by using the least-
square meithod, one may find the best solution for the algebraic
equation BK=AA. To use the least-square methed, the rank of [B]
matrix must be equal to the rank of [B|AA] matrix. Otherwise,
there is no solution for the gain matrix. In this case, one has
to change the desired performance of the system. In most civil

engingering structures, it 1s not possible to change the open-

.loop plant matrix very much. Therefore, it is assumed that AA is
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small enocugh to use¢ some approximation (see Appendix A). These

approximate methods are called root perturbations.

3., Approximate Method

Consider Equation 1. By using a similarvity transformation,

rm
Py

»

g, it 1s possible toc diagonalize Dboth mass and stiffness

atrices. Then, Equation ! may be rewritten as follows:

K

s o -

% % % * *
m q +t¢ gtk g=N + {19)

Where

* »
2 - rTar " = 1Ter kT = ThRT (20)

it 1s pessible to choose a similarity transfermation such that
the new mass matrix becomes identity matrix. In this case, the

%
sguare root of the diagonal elements of the k represent the
natural frequencies of the structure. Equation 20 may be rewric-

ten and used as follows:

° 2 <

* * %* *
q +e¢ g+k g=N + f (21)
Because the main external force in this study isrdue to earth-
quake; the damping of the structure does not have a major effect.
In this case, it 1is possible to neglect the damping matrix. In

any event, if one wants to include the damping in the system the

%
¢ matrix may be rewritten as a diagonal matrix as follows:

*
c = dlagon3112élml,.,.....ZEnwn] (22)

Where Si is the damping ratio of the ith mode. There is some

approximation when one use an approximated damping matrix. There

is no need to neglect the damping matrix when the previous method



has been used. This is one of the advantages of the previous

method. By using state space variable, Equation 21 may be written

as follows:

X = AX+BU+FV (23)
Where
0 I
A = * " (24)
-k -c

*
Let us neglect the damping matrix. Since ¢ is a null

matrix,therefore, the damping ratio, Ei, for each mode 1s zero

and the open-loocp eigenvalues of the system are given as:

1 i

*
To find AA matrix by using this method, one can change the ¢ and

¥ matrices. Changing these natrices will cause some changes imn
£, and w,. Let Aii and Aw, be the change in damping ratio and

1 i

natural frequency of the ith mode of the system providing that

both increments are small enough. Knowing that the ith eigenvalue

of the system has the following form:

! 2
A o= ~E 3w 11— 6
i Ry \ * (269
Then the change of the each pole is given by:
AX, = -4 + 3
1 Eiwi JAwi (27)
* #*
The changes in ¢ and k matrices are given as follows:
*
Ae . = 2LE w
ii ii
(28)
Ak . = 248w @
ii ii



* *
By adding these incremental matrices to the ¢ and k

, one can
find a vew set of values for damping and stiffness matrices. Sub-
stituting these new matrices into Equation 21 and by using state
variable concept , one can find the A matrix. Knowing A and A
matrices, the AA matrix may be computed. Finally, the gain matrix

can be found exactly by the same procedure which we use for pre-

vious case.

4, Numerical Examples

Consider a four—-degree-of-freedom shear typed structure

which its parameters are given as follows:

4.y lbmsec”
m, =m, =my =m = 0. '
lb-sec
cl = c2 = c3 = Ch = (.5 in
3 4 1b
kl = k2 = k7 = k = ?.5 in

The open-loop plant matrix for this system is given as follows:

T 0.00 1.00 0.00 0.00 0.00 0.00 0 .00 0.00
|

1—16.67 ~3.33 8.33  1.67 0.00 0.00 0.00 0.00

2 0.00 0,00 0.00 1.00 0.00 0.00 0.00 0.00

L 8.33 i.67 -l6.67  =3.33 8.33 1.67 0.00 0.00

% 0 .00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

E 0,00 0.00 8.33 1.67 -16.67  -3.33 8.33 1.67

% 0.00 0.00 0.00 0.00 6.00 0.00 0.00 1.00
i 0.00 0.00 0.00 0.00 §.33 1.67  -8.33  -1.67

The displacement, velocity, and acceleration of the structure
without active control force due to an simulated earthquake are

computed. The maximum displacement and velocity of each node are



found as foliowing:
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X = 5.22 X2
max ma x ma x ma x
v = 19.25 v

i 2 3 4
max ma x ma X ma x
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To reduce the displacement response of the system, a linear
state feedback control system is used. It is desired to reduce
the displacement response of the each node by a factor 0.4. To
find the elements of the closed-loop plant matrix, the displace-
ment and velocity of each node is reduced by a factor 0.2, but
the acceleration of each node and the inputs of the system are
assumed the same as the open-loop system. The closed-lcop plant

matrix, A, may be found by using the transpose of the equation 13

as follows:

T 0.00 1.00 0 .00 0 .00 0.00 0.00 0.00 0.00 |

~83.33 ~16.67  41.67 8.33 0.00 0.00 0.00 Q.00

L 0.00 0.00 0 .00 1.00 0.00 0.00 0.00 0.00 |
41.67 §.33 -83.33 -16.67  41.67 8.33 0 .00 0.00
0.00 0.00 0 .00 0.00 0 .00 1.00 0.00 0.00
0 .00 0.00  41.67 8.33 =83.33 -16.67  41.67 8.33
0.00 0.00 0.00 0.00 0 .00 0.00 6.00 1.00

L ©.00 0.00 0.00 0.00  41.67 8.33 -41.67  ~8.33

Knowing the open-loop plant matrix, A, and the closed-loop plant
matrix, A, the gain matrix of the control law ,U=-KX, may be

found by using Equation 18 and is given as follows:



- 20.00 4.00 -10.00 -2.00 0.60 0.00 0.00 .00
-10.00 =-2,00 20 .00 4.00 ~10.00 =-2.00 0.00 0.00
0.00 0.00 -10.00 -2.00 20 .00 4.00 -10.00 -2.00

0.0C 0.00 0.00 0.00 =-10.00 -2.00 10.00 2.00

-

The displacement and velocity of the closed=-loop system for each

node are found as follows:

i

X = 2.13 X = 3.49 X & .45 X = 4.96
max max max max

v = 15.65 V2 = 21.70 V3 24 ,91 V4 = 27 .78
lmax max max max '

The average reduction in the displacement o¢f each node is found

to be about 58 percent. Thus it is seen that the displacements

of the closed~loop system are almost equal to the desired ones.

The displacement and velocity of each node for both open-loop and
closed-loop system are plotted in Fig. 1 and Fig. 2. It is shown
that the controlled displacement rvesponse of each node is less
than its corresponding value of the uncontrolled displacement
response. Appendix B shows more numerical examples. It is shown
that the controlled displacement response is always less than the
uncontrolled displacement response. To have smaller displace-
ment, we must have some bigger elements for the gain matrix. It
is not always possible t¢ have a desired gain matrix. Therefore,
one should fiand the best possible gain matrix for the linear con-
trol law. This subject is called linear optimal control theory

and will be discussed in later report,



5. Conclusion

There are many different methods which the gain matrix of
the control law can be found. Nevertheless, none ylelds a direct
relationship between the displacement or velocity response and
the elements of the gain matrix. A method is developed in thié
report, and results of numerical examples show that it is easier

to use this method than the pole assignment method.
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Appendix A: Root Perturbation Method

It Ai and ei are respectively the ith eigenvalue and elgen-

vector of A and (Ai+Aki ) and (ei+Aei) are the ith eigenvalue zand

eigenvector of (A+AA) we will have:

. )
AA, = 1 MAe, (A-1)
i i i
and
AE=EH _ (A-2)
Where H has elements:
Hij = liAAej kj __X; (A-3)

We know that AE=EA where A is a diagonal matrix. We aiso have:

{A+DAY(E+AEY=(E+AE)( A+ AN) (A~4)
AE+AAE+ AAR+ AA AE=E A+E AA+ AE A+ AE AA (A-5)
-1 -1 -1
AA=E T AAE+E ~ AAE-E  AEA (A=6)
ah=5"tapn+r taaE-r" YRR A (A-7)
AA=E AAE+AH~HA (A-8)
AA =1 hAe. (A-9)
1 i 1
*
0. . = 1. Ase + AsubiH., ~H. . A, {(A-10)
ij i ] i3 ij 3
3
liAAej
Hij = U (A-11)

3 i
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Appendix B: Additional Numerical Examples

Case 1: The displacement of each node is reduced by factor

0.8, but the velocity and acceleration of each node are held

~fized. The closed-loop plant matrix, A, is given as:

0.00 1.G0 0.00 G.00 ¢.00 .00 0.00 0.00 |
-20.83 -3.33 10.42 1.67 .00 0.00 0.00 0.00
0.00 0.00 .00 - 1.00 0.00 0.00 0.00 0 .00
10.42 1.67 ~20.83 ~3.33 10 .42 1.67 0.0C 0.00
0.C0 0.00 U.00 0.00 0.00 1.00 0.00 ¢ .00
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The gain matrix is given as:

ToL.zs 0.00 =-0.62 0.00 0.00 0 .00 0.00 0.00 |
E ~0.62 0 .00 1.25 0.00  ~0.62 0 .00 0 .00 0 .00
% 0,00 0.00  ~0.62 .00 1.25 0.00 =0.62 0.00
L 0.00 0.00 0.00 0.00 ~0.62 0.00 0.62 0.00 |

The maximum displacement and velocity of each node is given as:

X = 454 x, = 7.68  X_ = 9.77 X, = 10.93
max max jmax max

i
o
[¥5]
*
3
]
-3

It

v, = 20.61 Y, /. 26.09 v = 27.18
max max Jmax max :

Case 2: The velocity of each node is reduced by factor 0.8, but

the displacement and acceleration of each node are the same as

open—loop system. The closed-loop plant matrix is given as:



{‘ 0.00 1.00 0.00 0.00 0.00

|

%~16.67 ~4,17 8.33 2.08 0.00

[ 0.00 0.00 0.00 1.00 0.00

i

| 8.33 2.08 —16.67  —b4.17 8.33

{

|

L 0.00 0.00 0 .00 0 .00 0 .00

! 0.00 0.00 8.33 2.08 -16.67
0.00 0.00 0.00 0.00 0.00

_0.00 0 .00 0.00 0 .00 8.33

0.00 0.25 0.00  -0.12 0.00
€.00  -0.12 D .00 0.25 0.00
0.00 0.00 0.00 =0.12 0.00

- 0.00 0 .00 0.00 0.00 0.00

The maximum displacement and velocity of

7.95 X =

B
"
w
o)
o~
<
I

il

v = 19.00 V2 22,60 V3
max max max

Case 3: Both displacement and velocity of each

0 .00 0.00 0.001
%
0 .00 0 .00 0.00
!
0.00 0.00 0.00
2.08 0.00 0.00
§
1.00 0.00 0.00 |
-4.,17 8.33 2,08 |
0.00 0.00 1.00
2.08  =8.33  -2.08
0.00 0.00 0.00]
-0.12 0.00 0.00
0o25 0900 —0012 !
~0.12 0.00 0.12

wmax

node are reduced

by factor 0.8, but the acceleration of the closed-loop system is
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the same as acceleration of the open-loop system. The closed-loop

plant matrix, A is given as follows:

0.00 1.00 0.00 0.00 0 .00 0.00 .00 0.00
-20.83 -4 .17 10 .42 2.08 0.00 0.00 0.00 0.06
0.060 0.00 0.00 1.00 0.00 0.00 0.00 0.00
10.42 2.08 =-20.83 ~4.17 10 .42 2.08 0.00 0.00
0.00 0.00 0.00 0.00 0 .00 1.00 0.00 ¢ .00
0.00 .00 10 .42 2.08 -20.83 -4 .17 10.42 2.08
0.00 0.00 .00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 10.42 2.08 -10,42 -2.08 ]

The gain matrix is given as:

S 1.25 0.25 =0.62 -0.12 0.00 0.00 0.00 0.00 |
0,62  =0.12  1.25 0.25 =-0.62 =-0.12 0.00 0.00
0 .00 0.00 -0.62 ~0.12  1.25 0.25 -0.62 -0.12

| 0.00 0.00  0.00 0.00 =-0.62 ~0.12 0.62 0.12 |

The maximum displacement and velocity is given as:

X, ~ 4.30 X = 7.06 X
max mazx max mnax

v, = 20,16V = 22.63 V ,
lma}‘: ma x max max
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Case 4: The displacement of each node is reduced by factor 0.4,
and the velocity of each node is reduced by factor 0.8. The
acceleration of each node for both open-loop and closed-lcop 1is

the same. The closed- locop plant matrix is given as follows:



I 0.00

0.00

1.00

~4 .17

0.00

UIUO

0.00
20 .83

0.G0

0.00
is given

-3 675

The maximum displacement

X1 = 4.04
max
V1 = 22.93
mazx
Case 5:

by factor

loop and closed—-loop system is the same.

004’

matrix, A

X
2

max

v

maXx

0.00 0.00
2.08 0.00
1.00 0.00
-4 .17 20 .83
0.60 0.00
2.08 =-41.67
6 .00 0.00
0.00 20.83
as
-0.12 0.00
0.25 -3.75
-0.12 7.50
0.00 ~3.75

and velocity of

= 6.62 X

max

25 .67 v
max

, 1s given as following:

#

fi

"0012

0 .00 0.00?
0.00 o.oo%
0 .00 0 .00
0.00 0.00 |
0.00 0.00
20 .83 2.08§
0 .00 1.00§
-20.83 -z.osj
0.00 0.00 |
0.00 0 .00
-3.75 =0.12
3.75 0.12 |

each node 1is given as:

9.12

28.10

Both displacement and velocity of each node are reduced
but the acceleration of each node for both open-

The closed~loop plant



0.00 1.00 0.00 0.00 0.00 G.00 .00 0.00 |
-41.67 -5.33 20.83 4.17 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 G .00 0.00 0.00 0.00
20 .83 4.17 -41.67 -8.33 20 .83 417 0.00 0.00
0 .00 0.00 0.00 0 .00 0.00 1.00 0.00 0 .00
0.00 0.00 20.83 4.17 . -41.67 -8 .33 20 .83 4 .17
. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
L_ 0.00 0.00 0.00 0.00 20,383 .17 =-20.83 -4 17

The gain matrix is given as:

7.50 1.50  -3.75  =0.75 0.00 0 .00 0.00 0.00 |
-3.75 =0.75 7.50 1.50 =-3.75 =0.75 0.00  0.00
0.00 0.00 -3.75 -0.75 7.50 1.50 -3.75 -0.75
| 0.00 0.00 0.00 0.00 -3.75 -0.75 3.75 0.75 |

The maximum displacement and velocity of each node is given as:

Xi = 3.42 X2 = 5.61 X3 = 7.53
max max max ma X

v = 19.55 V2 = 22.58 \Y
max ma x ma X ma x

il
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24 .43
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Fig. 1: Displacement and Velocity Response of the Uncontrolled System.
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Fig. 1 (con.): Displacement and Velocity Response of the Uncontrolled System.
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Fig.2; Displacement and Velocity Respomse of the Controlled System,
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Fig. 2 (comn.); Displacemént and Velocity Response of the Controlled System.






