L--------ﬁ-

ABK-TR-02

VR

METHODOLOGY FOR |
MITIGATION OF SEISMIC HAZARDS
IN EXISTING UNREINFORCED
MASONRY BUILDINGS: |

SEISMIC INPUT

B ‘K A Joint Venture |

~ 250 North Nash Street

El Segundo, California 90245

Topiéal Report 02
December 1981

Prepared for

NATIONAL SCIENCE FOUNDATION

Contract No. NSF-=C-PFR78-19200
Applied Science and Research Applications

Washington, D.C. 20550

" . REPRODUGEDBY

- U.S. DEPARTMENT OF COMMERCE

NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161






e o o o o o e e S o B S R e e o

ABK-TR-02

FOREWORD

This topical report is one of several reports prepared by ABK, a Joint
Venture, for the Natiomal Science Foundation under Contract No. NSF-C-PFR78-19200.
The overall objective of the contract is to derive a methodology for the mitigation
of seismic hazards in existing unreinforced masonry buildings. This research
supports the objective of the Disaster and Natural.Hazard Research being con-
ducted under the Applied Science and Research Applications program of the
National Science Foundation.

The joint venture ABK consists of the three firms, Agbabian Associates (AA),
S.B. Barnes & Associates (SBB&\A), and Kariotis & Associates (K&A), all in the
Los Angeles area. The principal investigators for the three firms are
R.D. Ewing for AA, A.W. Johnson for SBB&A, and J.C. Kariotis for K&A. The
editor is J. Athey of AA.

This report presents the selection of earthquake ground motion time
histories for analysis and testing of unreinforced masonry buildings and com-
ponents. It utilizes the Applied Technology Council (1978) procedure for
specifying earthquake ground shaking. Principal contributors to this report
are S.A. Adham from AA and J.C. Kariotis from K&A.

Dr. J.B. Scalzi served as Technical Director of this project for the
National Science Foundation and maintained scientific and technical liaison
with the joint venture throughout all phases of the research program. His
contributions and support are greatly appreciated.
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EXECUTIVE SUMMARY

\kCurrent procedures for the development of earthquake input ground
motions for analysis and testing of unreinforced masonry (URM) buildings and
components are discussed in this report. The Applied Technology Council 3-06
Report (ATC, 1978) provided a state-of-the-art tool for specifying earthquake
ground shaking within a seismic zone in the United States. This report
results from a comprehensive effort by a large group of earthquake engineer-
ing experts. Although the ATC procedure is still being reviewed and tested,
it represents the consensus of opinion on a subject that has many different
points of view. Therefore, this research program for the analysis and test-
ing of URM buildings selected its time-history input based on the ATC
procedure. However, other rational methods for developing seismic input

at a site can be used.

Representative URM buildings at seven'U.S. geographical regions were
studied under this research program. These regions are designated in the
maps shown in Figures 1 and 2, with contours marking four different levels
of acceleration. For design purposes, the ATC-3 report furnishes types of
earthquake motion at different areas across the United States. The
coefficients Aa and Av (for EPA and EPV, respectively) are used to
construct response spectra for earthquake motions at different zones,

as illustrated in Figure 3, and can be derived from these maps.

The response spectra for 5% damping for the seven geographical regions
selected for this study are shown in Figures 4, 5, and 6. An ensemble of six
time-history records was selected to match the ATC spectrum for each region
and provide a bound on the design ground motion expected; this accounts for

statistical variations in earthquake motioms.

Two earthquake components were selected from the ensemble of six records

for the time-history nonlinear analysis and testing of URM buildings in the
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California Coast and Central Nevada region. These components provided the
best match for the ATC spectrum for this region. The two spectra are shown

in Figures 7 and 8.

The scaled N69W component of 1971 Castaic was selected for the Wasatch-
Salt Lake City region, while the scaled SO4E components of 1949 Olympia was
selected for Puget Sound and New Madrid-Memphis regions (Figs. 9 and 10).
The scaled E-W component of 1971 Hollywood Storage P.E. was selected for the
New Madrid-St. Louis area (Fig. 11). The scaled N21E component of the 1954
Taft record was selected for time-history analysis and testing of URM build-

ings in Carolina and New England regions (Fig. 12}.

The following table matches the seven regions with their appropriate

earthquake record.

SELECTED EARTHQUAKE RECORDS FOR SEVEN U.S. REGIONS

Effective Peak

Acceleration, Scale
Geographical Region g Earthquake Record Factor

New England 0.1 Taft, 1954, N21E 1.6
Carolina
New Madrid-St. Louis 0.1 Hollywood Storage 0.5

: P.E. Lot, 1971, N9OE
Puget Sound 0.2 Olympia, 1949, SO4E 1.1
New Madrid-Memphis
Wasatch-Salt Lake City | 0.2 bastaic, 1971, N69W 1.0
California Coast and 0.4 Castaic, 1971, N69W 1.8

Central Nevada

California Coast and 0.4 El Centro, 1940, SOCE 1.25
Central Nevada
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SECTION 1

INTRODUCTION

This topical report presents the selection of time-history input for
analysis and testing of unreinforced masonry (URM) buildings and components
subjected to earthquake ground motions. The Applied Technology Council
procedure (ATC, 1978) for specifying earthquake ground shaking is discussed
in detail, while current methods for selecting earthquake ground motion inmput

are summarized in the Appendixes.

This report can be placed within the gemeral framework of a larger
research project, the overall objectives of which are described in the
following paragraphs. This introduction also describes the importance of

and the reliance on time histories for the amalysis.

Section 2 presents the ATC procedures for specifying ground shaking,
using two ATC regional maps. Procedures specific to this study are given
in Sections 3 and 4, with Section 3 providing a summary of seismic input
for seven geographical regions in the United States and Section &4 providing
the concluding ensemble of time histories based on the ATC spectra that can
be used for analysis of URM buildings in these geographical regions. General
information about earthquakes and their mechanisms is presented in Appendix A.
Risk analysis methods and development of design earthquakes are described in
Appendices B through F. Appendix G gives the time-history and Fourier spectra

of earthquake records for selected sites.

1.1 RESEARCH OBJECTIVE

A 24-month research study was undertaken by ABK, a joiant venture com-
prised of the three firms of Agbabian Associates, S.B. Barmes & Associates,
and Kariotis, Kesler & Allys. Their research derived a methodology for the
mitigation of seismic hazards in existing URM buildings. The study program
was structured to support the objective of Disaster and Natural Hazard
Research being conducted under the Applied Science and Research Applications

(ASRA) program of the National Science Foundation.
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The program is divided into two major efforts, resulting in a series of
published reports. The first effort evaluates codes and standards applicable
to URM buildings, categorizes nationwide existing masonry constructiom, evalu-
ates current methods for selecting earthquake ground motion input, categorizes
URM damage from past earthquakes, reviews strength data for URM, assesses
analytical methods for evaluating URM, and evaluates retrofit methods. In the
second effort, a program for amalytical verification and testimg, including
retrofit, is conducted. Both quasi-static and dynamic tests are performed on
wood and metal diaphragms and on URM walls subjected to out-of-plane forces.
Wall sections subjected to in-plane forces and anchorages are tested. The
results of both efforts are integrated in the-development of the recommended

methodology.

1.2 REQUIRED EARTHQUAKE GROUND MOTION INPUT

Time histories of ground motioné are needed for input to proposed
analytical models. These models represent wall elements responding to
in-plane seismic motions and to seismic forces normal to the wall plane,.
horizontal diaphragms, and torsional modes of irregular URM buildings. The
analysis models require respomse behavior corresponding to nonlinear models
with hysteretic force-displacement plots. It is anticipated that behavior
of elements to be tested in a dynamic environment cannmot be represented as

elastic.

Review of prior tests indicétes that (1) for diaphragm test specimens,
force-displacement plots are hysteretic; (2) for URM walls tested on a shaking
table (ATC-5 Project, UC Berkeley) for ground motions perpendicular to their
plane, the collapse displacements are sensitive to the time histories of the
input motions; (3) for in-plane dynamic forces, stress computations on URM
walls are dependent on estimates of relative story level excursions; and
(4) for vertical load carrying systems, predictions of dymamic imnstability

are dependent on upper bounds of relative story level excursions.
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1.3 PROCEDURE FOR SPECIFYING REQUIRED EARTHQUAKE GROUND MOTIONS

Various methods have been used to specify earthquake ground shaking at a
site (Appendices A through F). The Applied Technology Council 3-06 Report
provided a state-of-the-art tool for specifying earthquake ground shaking
within a seismic zone in the United States (ATC, 1978). This report was a
result of a comprehensive effort of a large group of earthquake engineering
experts. The report divided the United States into different seismic zones
and specified response spectra associated with these zones. These spectra
represeﬁt earthquakes that have an accepted probability of occurremce. Each
response spectrum is assigned an effective peak acceleration, in addition to
an effective peak velocity associated with each seismic zone. The effective
peak velocity provides an envelope for motions in the intermediate period range.

- The AIC procedure for specifying earthquake ground shaking at various
areas was used in the ABK program. However, other rational methods for pro-
viding site-specific earthquake input can be considered for the evaluation of
unreinforced masonry buildings at a specific site. These site-specific
motions should be associated with the probability level given by the ATC docu~
ment to provide an equivalent design earthquake. Therefore, the methodology
developed in this research, while using the ATC procedure to develop seismic

input, can accommodate other types of procedures for developing earthquake

inputs as well,

1.4 LIMITATICNS OF SELECTED PROCEDURE

The library of U.S. time-history records available for amalysis and
dynamic testing is mostly based on earthquakes that have been recorded in the
western United States and are, for the most part, specific to sites and
geology. This geographical limitation can be minimized by the procedures used
in this report. Generally, an analyst would prefer to use an ensemble of
several earthquake time histories that match the selected design criteria to
determine mean data and coefficient of variation. This procedure is applicable
to simple analytical models that respond linearly to all input motions.
However, for more complex systems that respond nonlinearly to input motioms,
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the cost of running an ensemble of time-history analyses cases would be
expensive. Also, dymamic response of a nonlinear model does not have a domi-
nant relationship to the original elastic period of the model. Period-related
variations in time histories of earthquakes, scaled to the ATC spectral shapes,
are not significantly reflected in dynamic respomse. Therefore, judgaent
should be used in selecting one or two earthquake records that most nearly rep-
resent the characteristics of design earthquake motions for a seismic hazard
zone. This procedure is consistent with the much more generalized approach of
establishing bounds on the performance of both analytical models and test

specimens.

The results of the analysis and testing must be generalized to encompass
the existing inventory of URM buildings and provide bounds on the response of
these buildings in a specific zone. To accomplish this goal, Section 4 pro-
vides an ensemble of six time-history records for each seismic hazard geographi-
cal region and selects a minimum of one time-history record for the nonlinear

analysis or testing of a representative building within the region.
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SECTION 2

PROCEDURE OUTLINED BY APPLIED TECHNOLOGY COUNCIL
FOR SPECIFICATION OF EARTHQUAKE GROUND SHAKING

2.1 INTRODUCTION

This section describes the procedure outlined by the Applied Technology
Council 3-06 report, a state-of-the-art tool for specifying earthquake ground
shaking within a zone in the United States (ATC, 1978). A discussion of the

seismic risk specified by this procedure is also given.

2.2 ATC MAPS

Two earthquake ground shaking regionalization maps were developed by ATC
(Figs. 2-1 and 2-2). These maps are based on the following rules: (1)} the
design lateral force should take into account the distance from anticipated
earthquake sources; (2) the probability of exceeding the design ground shaking
should, as a goal, be roughly the same in all parts of the country; and (3) the
regionalization maps should not attempt to delineate micrpzones. Any such
microzonation should be done by experts who are familiar with the local
conditions. See the ATC-3 report (1978) for a complete description of these

maps.

The development of the Effective Peak Acceleration (EPA) map (Fig. 2-1)
was facilitated by the work of Algermissen and Perkins (1976). Their map,
reproduced in Figure 2-3, is based on the principles of seismic risk (Cormell,
1968; Algermissen and Perkins, 1972). ATC-3 (1978) summarized the steps

involved in the preparation of such a map as follows:

a. Source zones and faults, in which or along which significant earth-
quakes can occur, are identified and brought together on a source

zone map.

b. For each source zone or fault, the rate at which earthquakes of
different magnitude can occur and the maximum credible magnitude are

estimated.
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c. Attenuation laws are used to give the intensity of shaking as a
function of magnitude and distance from an epicenter.
d. With the foregoing information as input, a computer program based on

probabilistic principles can generate values that produce contours
of locations with equal probabilities or with specific intensities

of ground shaking.

Algermissen and Perkins relied primarily on historical seismicity, adjusted
where possible by geological and tectonic information. The Algermissen-Perkins
map shows contours of peak accelerations on rock, which have a 10% probability

of being exceeded in 50 years.

The EPA contour map of Figure 2-1 gives EPA for firm ground, which
includes shallow deposits of stiff cohesive soils and dense granular soilsg
as well as rock. EPA is replaced by the dimensionless coefficient Aa’ which
is numerically equal to EPA when EPA is expressed as a decimal fraction of the
acceleration of gravity. ATC spectra corresponding to this soil condition are
used in this study as the basis for developing seismic time-hiétory input for

the analysis and testing of unreinforced masonry buildings and components.

ATC-3 (1978) indicated that the Algermissen-Perkins map was heavily
influenced by historical seismicity; that is, by the pattern of earthquakes
that have occurred during the past 150 vears (on the West Coast) to 350 years
(on the East Coast). Where there was solid geological evidence that this
rather short period of history might be misleading, this evidence was incor-
porated into the source medel. This approach means that areas that have not
experienced significant earthquakes during the historical period and for which
there is no solid geological basis for suspecting that such earthquakes might
occur, end up being designated as areas of low seismic risk. These same diffi-
culties apply to the map of EPA, although some very recent geological and
seismological studies did lead to the EPA being increased in some parts of

the country where the historical record alone would indicate low seismicity.
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The Effective Peak Velocity (EPV) map (Fig. 2-2) was constructed by
modifying the map for EPA. It was desirable to express EPV by a dimensionless
parameter (Av)’ which is a velocity-related acceleration coefficient. A study
by McGuire (1975), based on strong motion records in California, has provided
data concerning the attenuation of EPV with distance. The strong motion data
available to McGuire were inadequate beyond a distance of about 100 miles. To
estimate the attenuation of EPV beyond this distance, it was assumed that EPV
at large distances from an earthquake is related to the Modified Mercalli
Intensity (MMI). For the Midwest and the East, it was necessary to rely
entirely on information about the attenuation of MMI (Bollinger, 1976).

2.3 DESIGN EARTHQUAKE GROUND MOTIONS

ATC defines "design ground shaking' for a location as the ground motion
that an architect or engineer should have in mind when he designs a building
that is to provide protection for life safety. This motion is expressed as a

smoothed elastic response spectrum for a single-degree-of-freedom system.

The concept of using a standardized spectrum shape that can be scaled
to some appropriate ground motion strength level representative of a design
earthquake for a particular site was first developed by Housner {1959). These
spectrum shafes were based on evaluation of the frequency content of only four

sets of records of strong shaking that were available at the time.

Over the vears, considerably more records have been accumulated, thereby
providing a substantially larger data base. This data base permitted the
development of standardized response spectrum shapes that take into account
the geologic, seismic, and soil conditions at a particular site in the United
States. These conditions are converted by ATC-3 (1978) into ground motion

parameters that are used to construct design elastic response spectra.
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2.4 GROUND MOTION PARAMETERS

The intensity of design ground shaking is represented by two parameters,
EPA and EPV. The EPA is proportional to spectral ordinates for periods in the
range of 0.1 to 0.5 sec, whereas the EPV is proportional to spectral ordinates
at a period of about 1 sec. The constant of proportionality (for theps% damped

spectra) is set at a standard value of 2.5 in both cases.

For a specific actual ground motion of normal duration, EPA and EPV can
be determined as illustrated in Figure 2-4. The 5% damped spectrum for the
actual motion is graphed and fitted with straight lines at the period men-

tioned above. The ordinates of the smoothed spectrum are then divided by
2.5 to obtain EPA and EPV.

2.5 DESIGN ELASTIC RESPONSE SPECTRA

The maps shown in Figures 2-1 and 2-2 have contours marking four different
levels of acceleration. In Figure 2-2, the values of A, and EPV are related

as follows:

Velocity-Related ' Effective Peak Velocity,
Acceleration Coefficient, Av in./s (m/s)
0.05 ' 1.5 (0.0381)
0.10 - 3 (0.0762)
0.20 6 (0.1524)
0.40 . 12 (0.3048)

For actual design purposes, the ATC-3 report furnishes detailed maps that
graph seven types of motion throughout the United States. The coefficients
Aa and Av can be derived from these maps, which appear in the ATC~3 report
(1978) as Figures 1-1 and 1-2. To simplify the application of the ATC-3
procedure by the many designers concerned with construction im the various
jurisdictions, the boundaries of any area are arbitrarily delimited by county
lines nearest the "true" boundaries. A seismic hazard index, which reflects
the ability of different types of construction to withstand the effects of

earthquake motions, is also correlated with the seven types of map areas.
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The values of the coefficients Aa and Av and the seismicity indices

associated with map areas are as follows:

Map Value of Coefficient, Effective Peak Velocity, Seismicity
Area A A, in./s (m/s) Index

7 0.40 0.40 12.0 (0.3048) 4

6 0.30 0.30 9.0 (0.2286) 4

5 0.20 0.20 6.0 (0.1524) 4

4 0.15 ~ 0.15 4.5 (0.1143) 3

3 0.10 0.10 3.0 (0.0762) 2

2 0.05 0.05 1.5 (0.0381) 2

1 0.05 0.05 1.5 (0.0381) 1

Spectral shapes representative of the different soil conditions (Seed
et al., 1974) were selected (Fig. 2-5). These spectraz were simplified to
a family of three curves by combining the spectra for rock and stiff soil

conditions and normalized to the spectral curves shown in Figure 2-6.

Recommended ground-motion spectra for 5% damping for the different map
zone levels are thus obtained by multiplying the normalized spectra values
shown in Figure 5-6 by the values of effective peak ground acceleration.

Soil profile factors were alsec given for the response spectra.

The spectra for 2% damping may be obtained by multiplying the ordinates

- of Figure 2-6 by a factor of 1.25. Spectra for vertical motions may be

obtained by multiplying the ordinates of the spectra for the horizomtal
motions by a factor of 0.67. A discussicn of this factor is given in

Appendix D.

In order to simplify the designations of the significant geographic
regions for seismic evaluation of URM buildings, seven map areas were used.
The Aa and Av values corresponding to these regions ranged from 0.4 to 0.05,
as shown in Figure 3-1. Within each seismic zone is a population center about
which seismic input data is known (for example, Charleston is the center for

the Carolina region, Boston for the New England region).
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Effective peak velocities associated with the velocity-related coefficient
Av are from the ATC report (1978). The ground motion velocities émplified by
the recommended spectral factor (Fig. 2-6) closely correspond to the spectra
recommended for soil condition 2, or deep cohesionless or stiff clay conditions.
This mean spectral velocity exceeds the velocity anticipated for rock or stiff
soil conditions. Spectral velocity for soft to medium stiff clay may exceed
the mean spectral velocity used for selecting time histories. However, in the
geographic regions with Aa and Av equal to 0.4, the effective spectral
acceleration may be reduced to 80% of the acceleration for soils Type 1 and 2.
This reduction in response for the period range anticipated for URM buildings
that are generally low in height and have stiff seismic resisting systems may
offset the response effects of the increased spectral velocity.

2.6 RISK ASSOCIATED WITH EARTHQUARE GROUND SHAKING SPECIFIED
BY ATC PROCEDURE

ATC-é (1978) estimated at 90%‘prob§bility that the recommended EPA and
EFV at a given location will not be exceeded during a 50-year period. A 90%
probability of not being exceeded "in a 50-year interval is equivalent to a
mean recurrence interval of 475 years or an average annual risk of 0.002
events per year. Figure 2-7, which is based on information supplied by
Algermissen and Perkins (1976), indicates the probabilities of not being
exceeded at various levels of EPA selection. The dashed .portions of the

curves indicate possible extrapolations to larger and smaller annual risk.

The probability that the ordinates of the design elastic response spectrum
will not be exceeded, at any period, is approximately the same as the proba-
bility that the EPA and the EPV will not be exceeded. This is because the
uncertainty in the EPA and EPV that will occur in a future earthquake is much
greater than the uncertainty in spectral ordinates given the EPA and EPV.

Thus the probability that the ordinates of the design elastic response spectrum
will not be exceeded during a 50-year interval is also roughly 90%, or at least

in the general range of 80 to 95%.
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SECTION 3

SUMMARY OF DATA BASE FOR DEVELOPING SEISMIC
INPUT FOR SEVEN MAJOR U.S. GEOGRAPHICAL REGIONS

3.1 INTRODUCTION

This secton is a compilation of information needed for selecting earth-
quake ground-motion time-history inputs at the following seven geographical
regions: California Coast and Central Nevada, Puget Sound, Wasatch-Salt Lake
City, New Madrid-Memphis, New Madrid-St.. Louis, Carolina, and New England.
Within each region is a major city containing representative URM buildings.
The URM construction in these cities has been surveyed and categorized in
previous tasks (ABK, 1979). The cities for the seven geographical regions
are: Los Angeles, Seattle, Salt Lake City, Memphis, St. Louis, Charleston,
and Boston. The seismic input used here is not site specific for the URM
construction within that city, but rather is intended to be for a generalized

rock or firm ground site within the region.

Information summarized for these regions includes the (1) source magni-
tude, (2) source mechanism, (3) source distance to the selected populaticn
center, (4) source focal depth, (5) attenuation relationship, (6) return
intervals, and (7) peak acceleration, velocity, and displacement associated
with seismic risks. FYigure 3-1 summarizes seismic input data for these seven
regions, and Figure 3-2 shows these regions on an Effective Peak Velocity map.

These are to be referred to in the following discussions of the individual

regions.

It will be noticed that references to seismic frequency and maps of local
seismicity are included for all but the West Coast regions. The seismicity of

the Western regions is well known, as indicated in the following two sections.
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3.2 CALIFORNIA COAST AND CENTRAL NEVADA REGION

The California Coast and Central Nevada region is a highly seismic area. A
site in this area has an effective peak acceleration of 0.40 g and an effective
peak velocity of 12 in./s (0.30 m/s). This acceleration and velocity can be
experienced at a site in this area as a result of strong or moderatel& strong
earthquakes along numercus faults within or bordering the area. Geology,
faulting, and seismicity of this area have been synthesized and summarized in
many investigative reports.* The structure of the California Coast region is
dominated by the San Andreas fault system trending in a northwest direction.
Cther major faults in the region that trend in a northwest direction include
Hayward, Calaveras, Nacimiento, San Jacinto, Whittier, Elsinore, Newport-
Inglewood, Imperial, and San Gabriel faults. Major faults in the area that
trend in an east direction include Garlock, Santa Ynez, San Fernandec, and
Malibu-Santa Monica~Raymend. Faults of the Basin Ranges bordering Califormia
and Nevada trend more northerlﬁ‘than the other faults cited above. This is
particularly evident in the Owens Valley and Death Valley areas. The Qwens
Valley and Sierra Nevada fault zones are examples of this trend.

The threat to population centers in this area would come from moderate to
moderately strong earthquakes on nearby smaller faults or from strong earth-
quakes on a major faults such as the San Andreas fault. Maximum credible
magnitudes corresponding to these earthquakes would range between 6.5 and 8.25
on the Richter scale. Focal depth would be approximately 10 km for these

events. The ATC spectrum for this region is shown in Figure 3-3.

"Such as Bailey and Jahns (1954), Barbat (1958), Barrows (1974), Bolt et al.
(1968), Brown and Lee (1971), Byerly (1951), Calif. Dept. of Water Resources
(1964), Cluff and Bolt (1969), Crowder (1968), Dibblee (1966), Hoots (1931),
Jahns (1954), Jennings et al. (1975), Jennings and Burmett (1961), Jennings
and Strand (1969), Lander (1966-1973), Qakeshott (1966), Page (1966), Reed
(1933), Richter (1958), Roland et al. (1959), Tocker (1959), Wallace (1970),
Wentworth & Yerkes (1971), Yerkes et al. (1965).
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3.3 PUGET SOUND REGION

The Puget Sound region is a moderately high seismic area. For a site in
this area the effective peak acceleration is 0.20 g and the effective peak
velocity is 6 in./s (0.15 m/s). The geology, faulting, and seismicity of the
Puget Sound region has, likf that of the California region, been coveged in

~

many investigative reports.

In the Puget Sound region, which includes the city of Seattle, the earth's
crust is apparently experiencing a dilatational effect, so that normal faulting
predominates, rather than reverse-thrust faulting (Couch and Deacon, 1972).
Also, the epicenters have been deeper (approximately 63 km) than for most
California earthquakes (approximately 10 km), and faulting has not penetrated
to the ground surface. 1In the Puget Sound epicentral areas, the structural
features in gemeral are overlain with deep alluvium sediments. A maximum
credible earthquake of magnitude 7.4 has been predicted for this area (Couch
and Deacon, 1972). Historically, a magnitude 7.1 earthquake has been experi-
enced in this area. Although the structural features are deeply covered with
alluvium, geologic information indicates faulting in this area, and fault
lengths of roughly 50 mi (~83 km) have been postulated; The ATC spectrum for

the Puget Sound region is shown in Figure 3-4.

3.4 WASATCH-SALT LAKE CITY REGION

The Wasatch-S8alt Lake City region is a moderately high seismic area that
has an effective peak accelerafion of 0.20 g and effective peak velocity of
6 in./s (0.15 m/s). Maximum credible earthquakes of magnitude 7 have been
predicted for this area, although the largest earthquake recorded since 1925
was the magnitude 6.6 Hansel Valley (Utah) earthuake of 12 March 1934, at the
north end of the Great Salt Lake. This earthquake created surface cracks on
which there were vertical displacements of from 2 to 20 in. (0.05 to 0.51 m).
The probable causative fault is a normal fault similar to the Wasatch fault

—

“Such as Agbabian Assoc. (1973), Couch and Deacon (1972), Dehlinger et al.
(1971), Rasmussen (1967), Huntting et al. (1961), and Coombs (1953).
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zone that passes near Salt Lake City on the south. Figure 3-5 locates the
largest historical earthquakes in the Utah region and the Wasatch Fault Zone.
Table 3-1 gives the dates and intensities of the largest earthquakes in the

Utah region.

Focal depths of earthquakes in this area are shallow, not more than
10 km from the earth's surface (Dewey et al., 1972). The ATC spectrum for
the Wasatch-Salt Lake City region is identical to the ATC spectrum for the

Puget Sound region given in Figure 3-4.

3.5 NEW MADRID-MEMPHIS REGION

The New Madrid-Memphis region is a moderately high seismic area. Effec-
tive peak acceleration of 0.20 g and velocity of 6 in./s (0.15 m/s) are
associated with this area. Earthquakes of a maximum magnitude of 7.8 have
occurred in this area (Nuttli, 1973b). The structural areas and fault sysﬁems
iﬁ the central Mississippi valley that are significant to New.Madrid-Memphis
region are shown in Figure 3-6. The epicentral locations of historical
earthquakes in this area are shown in Figures 3-7 and 3-8. Note that the
larger earthquakes appear to have been associated with the western edge of the
New Madrid fault system, which triggered the major New Madrid shocks of 1811
and 1812. However, a far greater number of earthquakes with small epicentral
intensities have occurred to the east along the general axis of the Mississippi
River. Although this energy has been associated with smaller earthquakes, the
total energy release for the period of existing records appears to be nearly
equal to that associated with the larger earthquakes to the west for the same
period. Therefore, the entire faulted area extending from the New Madrid
fault to slightly east of the Mississippi River has been considered by some
authorities to represent an area of nearly uniform seismicity (TVA, 1972).
This area contributes to the seismic hazard of the Memphis and St. Louis

areas. The ATC spectrum for New Madrid-Memphis is shown in Figure 3-4.
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TABLE 3-1. LARGEST EARTHQUAKES IN THE UTAH REGION, 1850
THROUGH 1978 (from Arabasz et al., 1979)
Modified .
Mercalli | Magnitude,
Date Intensity M Location
1884 Nov 10 8 (6)* Bear Lake Valley
1887 Dec 05 7 (5.5) Kanab
1900 Aug 01 7 (5.5) Eureka
1901 Nov 13 9 (6.5+) Richfield
1902 Nov 17 8 (6) Pine Valley
1909 Oct 05 8 (6) Hansel Valley
1310 May.22 7 (5.5) Salt take City
1914 May 13 7 {5.5) Ogden
1921 Sep 29 8 (6) Elsinore
192t Oct 01 8 (6) Elsinore
1934 Mar 12 9 6.6 Hansel Valley
(Kosmo)
1959 Jul 21 6 5.5+ Utah-Arizona
border (Kanab)
1962 Aug 30 7 5.7 Cache Valley
' {Logan)
1966 Aug 16 5.6 Nevada-Utah border
1975 Mar 27 6.0 ldaho-Utah border

(Pocatello Valley)

*Magnitudes in parentheses are estimated from MM|.
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3.6 NEW MADRID-ST. LOUIS REGION

The New Madrid-St. Louis region is a low to moderate seismic area.
Effective peak acceleration of 0.10 g and effective peak velocity of 3 in./s
(0.08 m/s) are associated with this area. Accordingly, the New Madrid-

St. Louis region is exposed to a seismic hazard lower than the seismiE hazard
for New Madrid-Memphis. It is located more than 70 mi (112 km) away from the
New Madrid fault zone. Seismic hazard within the New Madrid-St. Louis region
will result mostly from seismic activities southeast of St. Louis. Moderate
to moderately strong earthquakes will occur at some distance from the site.

However, some more frequent smaller shocks may occur nearby.

The largest earthquake to occur in the central Mississippi seismic region
in this century took place in Hamilton County in south-central Illinois on
9 November 1968. The earthquake had a body wave magnitude of 5.54 with a
focal depth of about 25 km (Stauder and Nuttli, 1970). The motion was almost
" entirely dip-slip and was reverse in character. The data from this earthquake
shed some light on the mechanism of earthquakes in the central United States.
Therefore, a shallow focal depth of approximately 25 km and reverse fault
mgchanism are assigned to this region. The ATC spectrum for New Madrid-St.

Louis region is shown in Figure 3-9,

3.7 CAROLINA REGION

The Carolina region is a low to moderate seismic area. Effective peak
acceleration of 0.10 g and effective peak velocity of 3 in./s (0.08 m/s) are
associated with this area. The seismic history of the southeastern United
States has been studied by Bollinger (1969, 1972, 1973, 1976). Figure 3-10
provides the estimated epicenters of historical earthquakes in this region
over a 217-year period, 1754 through 1970. Bollinger (1973) indicates that
about 700 earthquakes have been noted in this region, of which about half were
aftershocks of the 1886 Charleston earthquake. General distribution patterns
in Figure 3-11 show that the occurrences of earthquakes are relatively inde-
pendent of the geological provinces and exposed geologic structures. The

largest earthquake to occur in the Carolina region was the 1886 Charleston
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earthquake, with a maximum Modified Mercalli Intenmsity (MMI) of X. Table 3-2
lists earthquakes in the southeastern United States. This list shows that an
Intensity VII event has not been reported for the past 50 years, so "it would
appear that either the region is overdue for their occurrence, or the seismic

regime is indeed changing.” (Bollinger, 1973)

Focal depth and source mechanism are not well defined for the area;
therefore, a focal depth of 25 km (similar to that selected for New Madrid-
Memphis) will be assigned to this area. The ATC spectrum for the Carolina

region is shown in Figure 3-9.

TABLE 3-2. EARTHQUAKES WITH INTENSITIES GREATER THAN VII IN
THE SOUTHEASTERN UNITED STATES SINCE 1870 (From
Bollinger, 1973)

Date ' Intensity State Seismic Zone
1874, Feb. 10 v-yi1 North Carolina Southern Appalachian
1875, Dec. 22 Vil Virgina Central Virginia
1886, Aug. 31 X South Carolina South Carolina-feorgia

1386, Oct. 22 VAR South Carolina South Carolina-Georgia
1897, May 31 Vil Virginia Southern Appalachian
1905, Jan. 27 ARESARN Alabama Southern Appalachian
1912, June 12 VIi-Vill South Carclina South Carolina-Georgia
1913, Jan. 1 VII=VIiI South Carolina South Carolina-Georgia
1913, Mar. 28 Vil Tennessee Southern Appalachian
1916, Feb. 21 V-V North Carolina Southe}n Appalachian
1916, Oct. 18 Vil Alabama Southern Appalachian
1926, July 8 Vi=vi| Horth Carolina Southern Appalachian
1928, Nov. 2 Vi-viHi North Carolina Southern Appalachian

3-18
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3.8 NEW ENGLAND REGION

The New England region is a low to moderate seismic area. Effective peak
acceleration of 0.10 g and effective peak velocity of 3 in./s (0.08 m/s) are
associated with this area. Although the northeastern United States is not
considered a highly seismic area in general, there are several zomes of
repeated seismic activity (Cornell and Merz, 1975). These include zomes south
of Boston (near New York City) and northwest of Boston (upstate New York and
New Hampshire). Historical earthquakes of MMI V or more in the immediate
Boston vicinity are shown in Figure 3-12. Estimates of parameter values for

seismic zZones within the Boston area are tabulated in Table 3-3.

Although no strong motions have ever been recorded at or near the New
England region due to lack of instruments at the time, on the basis of obser-
vations of such records at other sites, Cornell and Merz (1975) infer.that
(1) the largest hazard to the New England region will come from a moderately
sized, close earthquake; (2) the strong-motion duration will be relatively
short, perhaps about 5 sec; and (3) the relative frequency content will
emphasize higher frequencies. This latter condition is interpreted to mean
that an effective peak ground velocity of about 3.6 in./s (0.09 m/s) is

expected with any motion where effective peak ground acceleration is 0.10 g.

TABLE 3-3. BEST ESTIMATES OF PARAMETER VALUES
{Cornell-Merz, 1975)

Gecmetrical Mean rate,
source events per
number year over Upper bound

(See Fig. 3-12) entire source Slope, 8 MM intensity’

1 0.024 1.1 7.7
2 0.008 1.1 8.7
3 0.004 T.1 6.7
4 0.028 1.1 7.3
S{circular) 0.020 1.1 6.3
) 0.0125 1.1 6.7
7 0,032 1.1 6.7
8 0.037 1.1 7.3

“Lower bound MM intensity is 5.0 except for Source 5 where
it is 4.0,
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Depth of focus of earthquake events in eastern United States and Canada
has not been discussed extensively in the literature. However, for this study,
a shallow depth of 25 km will be assigned to the New England region. The ATC

spectrum for the New England region is shown in Figure 3-9.
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SECTION 4

SELECTION OF EARTHQUAKE TIME-HISTORY RECORDS
FOR THE UNITED STATES

4.1 INTRODUCTION

This section describes the approach used to select the earthquake time-
history records for the analysis of unreinforced masonry (URM) buildings
located in the seven geographical regions of the United States (shown in
Fig. 4-1) and presents the selected records. Each selected record should
represent the seismological conditions of the particular regiom, including
Richter magnitude, focal depth, source distance, and tectonic province.

Figure 4-1 gives this data for each of the seven regions, along with contours
of EPA (ATC, 1978). Contours of EPV are shown in Figure 4-2. Local soil
conditions are not included in this data, and the results given in this report
are based on an average soil condition that ranges from a deep cohesionless
soil to a stiff clay soil for all geographical regions. Adjustmeﬁts for local
conditions that differ from these will be made on a case=by-case basis and are
beyond the scope of this report.

Earthquake records can be obtained from recorded events or be artificially
generated. However, recorded earthquake motions were preferred since they
represent realistic frequency and energy content from past events. The current
library of strong-motion records is primarily made up of West Coast earthquakes,
so careful consideration must be given to the selection of records for the
various regions. Accordingly, judgment becomes an important factor in defining
those particular features that have the greatest effect on the expected ground
shaking at the various regions and in selecting the records that best represent
these features. Once the records are selected, they must be approximately
scaled to match the ATC design response spectra for each region. The ATIC
response spectra for the seven geographical regions are shown in Figures 4-3,
4=4, and 4-5.

4-1
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The ATC response spectra are smoothed spectra and represent mean values
of the actual spectra. Figure 4-6 shows how the smoothed EPA and EPV segments
are obtained from a response spectrum. The mean of the response spectrum of
the selected time-history record should provide a good match with the corre-

sponding ATC response spectrum.

An ensemble of six candidate earthquake time-history components was
selected for the design intensity level of each region. These records provided
a bound on the type and character of the expected ground motion and account for
some statistical variatioms in earthquake motions. Selected records were

obtained from the ensembles.

For the seven regions, Tables 4~1 through 4-6 present (1) the tabulated
comparison of ATC spectra and ensemble of records and (2) the ensemble of
earthquake records; and Figures 4-7 through 4-22 present the individual compari-

sons of ATC spectra and a specified record, with scaling factor. These tables

‘and figures follow the end of the text of Section 4 and are grouped by regioms.

The ensembles and-selected records for the various geographical regions

are described in the following sections.

4.2 ENSEMBLE OF EARTHQUAKE TIME-HISTORY RECORDS FOR
THE CALIFORNIA COAST AND CENTRAL NEVADA REGION

4.2.1 EARTHQUAKE CONDITIONS

ATC~3 maps (Figs. 4-1 and 4=2) indicate effective peak acceleration of
0.40 g and effective peak velocity of 12 in./s (0.30 m/s) for the California
Coast and Central Nevada region. This écceleration and velocity can be exper-
ienced at a site in this region as a result of strong or moderately strong
earthquakes along numerous faults within or bordering the region. Two types
of earthuake motions should be specified to represent bounding design earth-
quake conditions at the site. The first corresponds to a local earthquake of
magnitude ~6.5 on the Richter scale along one of the nearby faults within
the region. The second condition corresponds to a magnitude 8.5 centered at

one of the major faults, possibly along the San Andreas fault.
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4.2.2 EARTHQUAKE RECORDS

The ensemble of accelerogram records shown in Table 4-1 was selected to
represent ATC spectrum-matched records for the California Coast and Central
Nevada region. The spectra of these records are shown in Figures 4-7 .
through 4-10. The 1940 El Centro record has a long strong-motion duration
of approximately 30 sec (CIT, 1969-1375). This duration is representative
of a moderately large event on the San Andreas fault. The 1952 Taft record

has a considerable wide-band spectrum and represents strong motions from a

large event triggered on a reverse-thrust fault system. The 1971 Castaic
record has a short duration, high-frequency, strong-motion segment. This
record represents the condition of a moderate earthquake event on a nearby
fault. In Table 4-2, the spectra of these records are compared to the ATC
spectrum. This comparison indicates that the N-S component of the 1940

El Centro and the N69W component of the 1971 Castaic record provide the two
bounding design earthquake conditions for a site in the California Coast "and
Central Nevada region. The time histories for these two records, shown in
Appendix G, were selected for the analysis and testing of URﬂ buildings and

components selected in this regiom.

4.3 ENSEMBLE QF TIME-HISTORY RECORDS FOR THE PUGET SOUND,
WASATCH-SALT LAKE CITY, AND NEW MADRID-MEMPHIS REGIONS

4.3.1 EARTHQUAKE CONDITIONS

The Puget Sound, Wasatch-Salt Lake City, and New Madrid-Memphis regions
are moderately high seismic areas. ATC-3 maps (Figs. 4-1 and 4-2) indicate
effective peak acceleration of 0.20 g and effective peak velocity of 6 in./s
(0.15 m/s).

The design earthquake threat to the Puget Sound region would come from
deep focus earthquakes with maximum credible magnitude of 7.4 on the Richter
scale. The design earthquake threat to the Wasatch-Salt Lake City region
would come from a shallow, moderately strong event on a normal fault. The
design earthquake criteria for the New Madrid~Memphis region are developed

for the conditions of an event occurring within 70 km of a site.
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4.3.2 EARTHQUAKE RECORDS

The ensemble of accelerogram records shown in Table 4-3 was selected to
represent ATC spectrum-matched records for Pﬁget Sound, Wasatch-Salt Lake City,
and New Madrid-Memphis regions. The spectra of these records are shown in
Figures 4-11 through 4-16 and are compared to the ATC spectrum in Table 4-4.
The comparison indicates that the N69W component of the 1971 Castaic record
provides a good representation of the earthquake condition for the Wasatch-
Salt Lake City region. However, the 1949 SO4E component of the Olympia record
provides a good match for the earthquake enviromment considered for the Puget
Sound and New Madrid-Memphis regions. Therefore, the time histories for
Castaic and Olympia {Appendix G) were selected for the amalysis and testing of
URM buildings and components at the Wasatch-Salt Lake City region and Puget
Sound/New Madrid-Memphis regions, respectively.

4.4 ENSEMBIE OF TIME-HISTORY RECORDS FOR THE NEW MADRID-ST. LOUIS,
CAROLINA, AND NEW ENGLAND REGIONS ‘

4.4.1 EARTHQUAKE CONDITIONS

The New Madrid-St. Louis, Carolina, and New England regions are areas
of low to moderate seismicity. ATC-3 maps (Figs. 4=1 and 4-2) indicate an
effective peak acceleration of 0.10 g and effective peak velocity of 3 in./s
(0.08 m/s).

The design earthquake threat to the New Madrid-St. Louis region would
come from moderate to moderately strong earthquakes of maximum credible magni-
tude between 5.5 and 6.5. These earthquakes may occur at a distance as far
as 120 km from a site in St. Louis. Depth of focus is approximately 25 km.

The design earthquake threat to the Carolinma region would come from
moderate to moderately strong earthquakes of maximum credible magnitude
between 5.5 and 7. These earthquakes would probably occur at a distance less

than 100 km from Charleston. Depth of focus is approximately 25 km.
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The design earthquake threat to the New England region would result from
moderate earthquake of maximum credible magnitude 5.5. These earthquakes
would probably occur within 80 km of Boston. Depth of focus is approximately
25 km.

4.4.2 EARTHQUAKE RECORDS

The ensemble of accelerogram records shown in Table 4-5 was selected to
represent ATC spectrum-matched records for the New Madrid-St. Louis, Carolina,
and New England regions. The spectra of the three records are shown in Fig-
ures 4-17 through 4-22 and are compared to the ATC spectrum in Table 4-6.

This comparison indicates that the E-W component of the 1971 Hollywood storage
record provides a reasonable correlation with ATC spectrum. Therefore, this
record was selected for the time-history analysis of URM buildings in the New
Madrid-St. Louis region.,

The N21E component of 1954 Taft record from the Wheeler Ridge earthquake
providés a good match for the earthquake environment considered for the
Carolina and New England regions. The time histories for the NI9CE component
of the 1971 Hollywood storage record and the N21E compoment of 1954 Taft
record (Appendix G) were selected for the analysis and testing of URM build-

ings and components at the two regions.
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TABLE 4-1. ENSEMBLE OF EARTHQUAKE RECORDS FOR CALIFORNIA COAST AND CENTRAL NEVADA REGION

Tl

Accelerograph Peak
Accelerograph Station Earthquake Event Site Classificatlon Acceleratlon (1), g's
MM
Eplcentral Subsurface Local Intenslity
Distance (2), Soll Geology at
Location km Location Date Magnlitude (1} | Conditions (3} (2,4) Site (2) | MHorizontal | Vertical
€l Centro 9.3 Imperial 5-18-40 6.7 0 "0 7.8.9 (5) 0.349 0.210
Imperlal Valley Valley, . {SO0E)
Irrigation District Callforriia 0.234
(sa0w)
Taft Lincoln 43.0 Kern County, 7-21-52 7.7 0 0 7 0.156 D.105
School Tunnel Califarnia (N21E)
0.179
(569E)
01d Ridge Route, 28.6 San Fernando, 2-9-71 6.4 ) 1 6 0.316
Castaic, California Californla (N21E)
0.2 0.156
(N69W)

(1) Data provided by CiT (1969-1975),
(2) Data provided by Trifunac and Brady {1975) and/or Trifunac (1976).
(3) Subsurface soil classificatlons correspond to those defined by Seed, Ugas, and Lysmer (1376) and are as follows:

0 = Deep soil site
1 = Stiff soil site
2 = Rock slte

() Local geology classifications correspond to those defined by Trifunac and Brady (1375) and are as follows:

0 = Alluvium
1 = Intermediate rock
2 = Basement rock

{§) Where three numerlcal values of site intensities are provided, the upper and lower values represent the range of
Intensities that have been reported for the accelerograph statlon by varlous Investigators. The intermediate
value represents the slte Intensity actually assigned to the station by Trifunac and Brady (1975).
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TABLE h4-2.

COMPARISON OF SPECTRA FOR ATC AND ENSEMBLE OF RECORDS FOR CALEFORNIA COAST AND
CENTRAL NEVADA REGIiON

Accelerograph Statlon

Scating (1)

Compar{son wlth ATC

(2)

(3)
Veloclty Segment

Location and Date { Comp. Factor Acceleration Segment Comments Recommendations
£} Centro N-S 1.25 ATC sllghtly higher ATC approximate Correlates well tnput for distant event
Imperial Valley average of N-S with ATC
Irrtgation spectrum Figure 4-7
District -
May 18, 1940 E-W 1.40 ATC considerably Reasonable E-W displacements
higher correlation are hligh
Figure 4-8
Taft Lincoln N21E 3.0 ATC approximate ATC approximate Displacements
July 21, 1952 average average appear to be high
due to scaling
Figure 4-9
S69E 3.0 ATC approximate -ATC approximate Displacements
average b average appear to be high
due to scallng
Flgure 4-9
Old Ridge Route N6SW 1.8 ATC approximate Castaic has much Displacements input for nearby event
Castaic, Calif. average more of a narrow appear to be low
July 9, 1971 band shape Flgure 4-10
N21E 1.8 ATC approximate ATC considerabiy | Displacements
average higher than appear to be low
N21E spectrum Figure 4-10

(1) Linear velocity scaling is used along the vertical axis.

(2) Perlod 0.1 seconds to 0,5 seconds.

(3) Periad longer than 0.5 seconds.
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TABLE 4-3. ENSEMBLE OF EARTHQUAKE RECOGRDS FOR PUGET SOUND, WASATCH-SALT LAKE CITY,
AND NEW MADRID-MEMPHIS REGIONS,

+

=4

: Accelerograph Peak
Accelerograph Station . Earthquake Event Site Classiflcation Acceleration (1}, g's
) M
Epicentral Subsurface tocal intensity
Distance (2), Soil Geology at
Location km Location Date Magnltude (1) Conditions {3} {2,4) Slte (2) Horlzontal Vertical
8244 Orion Blvd 42.8 $an Fernando, | 2-9-71 6.4 0 0 7 0.255 6.7
First Floor California \ . {NOOW)
Los Angeles 0.134
{S90M)
0id Ridge Route, 28.6 San Fernando, | 2-9-7t 6.4 3 1 6 0.316
Castalic, California - (N21E)
California 0.271 0.156
(N69W)
0lympla Highway 16.8 Western L-13-49 7.0 0 0 8 0.165
Test Lab Washington :  (NOhwW) 0.092
0.280
(NB6E)

NOTE: See Table 4-1 for foolnote callouts.
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TABLE k-&.

COMPARISON OF SPECTRA FOR ATC AND ENSEMBLE OF RECORDS FOR PUGET SOUND,
WASATCH-SALT LAKE CITY, AND NEW MADRID-MEMPHIS REGIONS -

Accelerograph Station (6) Comparison with ATC
Scaling ’ 7 {8)
Location and Date | Comp. Factor | Acceleration Segment | Veloclty Segment Comments Recommendat ions
8244 Orion Blvd. N-5 0.82 N-5 component falls ATC approximate Falr correlation
First Floor well below ATC average of N-5 (Figure L-11}
Los Angeles between 4§ and 20 Hz spectrum
Feb. 9, 1971
E-W 0.82 E-W component falls Falls considerably] Poor correlation
conslderably below above ATC In the {Figure 4-12)
"ATC spectrum range between
0.3-1 Hz
01d Ridge Route NE9W 1.0 Good correlatlon ATC approximate Spectrum for Input for
Castaic, Calif. between both spectra| average of N69W Castalc has much | Salt Lake Clty
Feb. 9, 197N Castalc more of a narrow
band shape
(Figure 4-13}
NZI1E 1.0 Castalc Is higher Castaic falls Spectrum for
than ATC In the consliderably Castalc has much
range of 2 to B Hz below ATC more of a narrow
band shape
(Figure 4-14})
O)ympla Highway NB6E 1.10 Olympia hlgher Olympla falls Falr correlation
Test Lab (2.5-8 Hz) ?elow ATC (Flgure 4-15)
Apel) 13, 194 Olympla lower 0.5-1.5 Hz)
P 3, 1949 (9-16 Hz)
SOLE 1.10 Good correlation ATC approxlmate Good correlatlon Input for
between both average of (Flgure L-16) Seattle and
spectra Olympla Hemphis

NOTE: See Table 4-2 for footnote callouts.
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TABLE- 4-5. ENSEMBLE OF EARTHQUAKE RECORDS FOR NEW MADRID-ST. LOUIS, CAROLINA, AND

NEW ENGLAND REGIONS

Sl-%

) Accelerograph Peak
Accelerograph Station farthquake Event Site Classiflcation Acceleration (1), g's
. MM
Epicentral Subsurface Local Intenslity
Distance (2}, Solil Geology at
Location km Location Date Hagnitude (1) | Conditions (3) (2,h) Site €2) | Horlzontal | Vertical
Ho) 1 ywood 37.1 San Fernando, | 2-9-71 6.4 1 0 7 0.1 71 0.089
Storage California : (S00W)
P.E. Lot
4 - 0.211
Los Angeles (N9OE)
Ferndale 56.3 Northwest 10-7-51 5.8 0 1 5 0.104
City Hall California (shhw)
0.112 0.027
{590W)
Taft Lincoln 43.0 Wheeler Ridge,| 1-12-54 5.9 1 0 6 0.06%5 0.036
School Tunnel California (N21E)
0.068
(S69€)

NOTE: See Table

4-1 for footnote callouts.
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TABLE L-6.

COMPARISON OF SPECTRA FOR ATC AND ENSEMBLE OF RECORDS FOR NEW MADRID-ST. LOUIS,
CAROLINA, AND MEW ENGLAND REGIONS

Accelerograph Station (6) Comparison with ATC
Scaling {(7) (8)
Location and Date | Comp. Factor | Acceleratlon Segment | Veloclity Segment Comments Recommendations
Hol fywood Storage | N-5 0.67 Fair correlation; N-S component Wide band
P.E. Lot however, postly lower overestimates
Los Angeles N-S spectrum 1s than ATC dlsplacements
Feb. 9, 1971 mostly higher (Figure 4-18)
E-W 0.50 Fair correlation ATC average of Wide band For time-history
E-W component falr correlation | analysis of
overestimates St. Louis
displacements :
(Flgure 4-18)
Ferndale Shhw 1.15 Fair correlation SkhW component Narrow band
City Hall much lower than (Figure %-19)
Oct. 7, 1951 ATC Spectrum
S90W 1.15 Falr correlation N46W component Narrow band
much lower than (Figure 4-20)
ATC spectrum
Jaft Lincoln N21E .60 Good correlation Mostly lower Narrow band For time-hlstory
School Tunnel than ATC falr correlation | analysis of
Jan. 12, 1954 (Figure 4-21) Charleston and
Boston
S69E 1.80 Poor correlation Considerably Wider band

lower than
ATC spectrum

lower velocitles
(Figure 4-22)

NOTE:

See Table 4-2 for footnote callouts.
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APPENDIX A
EARTHQUAKE CAUSES AND EFFECTS

A.1 CAUSES

Earthquakes are normally caused by the release of stored energy during
sudden displacement in the earth's crustal rock either along a specific fault
or by rupture of the crustal rock itself (Fig. A-1). This sudden motion of
the crustal rock generates stress waves that propagate outward from the fault
length along which the energy is released, resulting in an earthquake
(Fig. A-2). It.is the ground shaking induced by the passage of the stress
wave, not only the actual surface rupture of the fault, that causes much of

the earthquake damage.

Faults are considered active or potentially active according to evidence
of past geologic activity. Also, an earthquake can occur along a fault that
may have been considered permanently inactive, or a new fault may be produced.
An example of this is the fault that generated the February 9, 1971 San
Fernando earthquake. Few geclogists credited its potency in the San Gabriel
Mountains behind Los Angeles until it ruptured, registering 6.4 to 6.6 magni-
tude on the logarithmic Richter scale. Parts of the mountain were vertically
displaced 8 ft (2.44 m). There was severe ground shaking in the surrounding
area, lasting 10 to 12 sec. The earthquake resulted in the death of 64 per-
sons; 1000 buildings were demolished or badly damaged, including 3 hospitals;

5 highway overpasses collapsed, and utilities were disrupted. This earth-
quake can be compared with the 8.3 magnitude earthquake that destroyed San
Francisco in 1906. However, the emergy released in the 1906 earthquake was

350 times the energy generated by the 1971 San Fernando earthquake. Figure A-3
relates various earthquake magnitudes in Richter umits with equivalent energy
release expressed in tons of INT, comparing the energies released by well-known

earthquakes as well as those released by nuclear weapons.
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A.2 MODES OF EARTHQUAKE DAMAGE

Modes of damage associated with seismic events include ground shaking,

ground failure, water flooding, and tsunamis.

A.2.1 GROUND SHAKING

Ground shaking is probably the most damaging effect of an earthquake,
becﬁuse such a large area is subjécted to the shaking. Seismic zoning of
hazard due to earthquake is primarily concerned with ground shaking. Other
modes of earthquake failure are site specific and dependent on soil strength

or proximity to natural or man-made hazards.

A.2.2 GROUND FAILURE

Ground failure is the result of seismic activity on earthquake materials
and includes landsliding, surface rupture, liquefaction, and compaction and
subsidence.

a. Landsliding depends on the stability of the slope, which is
influenced by rock-type and geologic structure; slope gradient,
precipitation, or moisture penetration; and ground shaking from

earthquakes.

b. Surface rupture (faults, fissures, cracks, and fractures) normally
occurs in close proximity to the fault zone as the result of a

seismic event on these factors.

¢. Liquefaction, the sudden loss of strength of soils under saturated
conditions, can be caused by earthquake shock. Ground material is

temporarily transformed into a fluid mass.

d. Compaction and subsidence of low=-density alluvial material can
result from ground shaking, depending on the physical properties
of the material.

A-5
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Landsliding can cause serious buiding damage due to foundation failure.
Liquefaction can cause building foundations to settle or slide. Compaction

of material can cause settlement of the foundations.

A.2.3 FLOODING

Flooding is a potential earthquake hazard at some sites, if hillside water
reservoirs above the sites fail as a result of ground shaking or ground

failure.

A.2.4 TSUNAMIS

A tsunami is a seismic sea wave with wave periods in the 5- to 60-min
range, generated impulsively by mechanisms (Weigel, 1970). It is likely that
the major cause of tsunamis is a rapidly occurring tectonic displacement of
the ocean bottom. Major tsunamis have caused great loss of life and vast

property damage.

A-6
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APPENDIX B

EARTHQUAKE RISK ANALYSES

Earthquake risk analyses provide probability levels and return periods
associated with a given intensity of ground shaking at the building site within
the life of the building. These analyses require data that define (1) the fre=-
quency of occurrence of earthquake events and (2) the atteauation of ground
shaking with distance from the fault. Probabilistic procedures are then applied
to this data in order to perform earthquake (seismic) risk amalyses. Two basic
types of seismic risk analyses were described in an Agbabian Associates report

(1975) and are summarized in the remainder of this section.

B.1 UNIFORM SEISMICITY APPROACH

The first probabilistic method is the uniform seismicity approach, origi-
nally developed by Housner (1969) and applied to assess the seismic hazard in

California. This approach was later extended to the Puget Sound area by Ts'ao
(1974). ‘ -

The basic assumptions involved in this method are that (1) the specified
region has uniform seismicity and (2) any one earthquake occurrence within the
specified region is independent of any other occurrence and is Poisson distri-
buted (AA, 1975). With uniform seismicity assumed, the resulting calculations
will provide probabilities that are too high for some areas and too low for
others. Therefore, this approach is most applicable to those regions that do
not exhibit any strong localized patterns of higher or lower seismicity.

The various steps involved in performing probability calculations using

this approach are as follows:

a. Develop a relationship between the earthquake recurrence rate and

either magnitude or epicentral intensity.
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Develop intensity-attenuation curves corresponding to various epi-
central intensity levels, using isoseismal maps of past earthquakes
in the region. A single set of these curves is considered to apply

for the entire region.

Define an appropriate interrelationship between site intensity and

peak acceleration.

Perform the probability calculations for the region. In this, it is
assumed that any earthquake occurrence is independent of any other
occurrence. From this, it can be shown that for the probability of

occurrence of a given site intensity I, within L vyears, P(I,L)

is
. a(I_,I)N(I)-L
P(I,L) = 1-exp|-2, —2 — (B-1)
I
where
A = Total érea of region being considered
a(Io,I) = Area experiencing intensity I due to earthquake
event with epicentral intensity I0 (as determined
in Step b)
N(Io) = Mean number of occurrences of earthquakes with epi-
central intensity I per unit period of time (as
determined in Step a
Z: = Summation over the entire range of epicentral
Io intensities of earthquake events centered within

the region

The peak acceleration corresponding to the intensity I in Equa-
tion B-1 is readily obtained by utilization of the intensity-

acceleration conversion relationships defined in Step ¢ above.
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f. The return period for this level of ground shaking can be computed
as
T(I) = 1 B-2)
a I,Io L
A ' N(Io)
I
o
and is related to the probability P(I,L} by
P(I,L) = 1- exp|- mo (B-3)
) Xp D | ‘

Results of the applications of this approach to the California and Puget
Sound areas are shown in Figure B-1 for a structure life of 50 years. The
results of these applications, in terms of curves relating the probability of
occurrence to the peak acceleration, clearly indicate the relative seismic
hazard of the two areas investigatéd; as expected, California exhibits the

greatest seismic hazard.

B.2 VARIABLE SEISMICITY APPROACH

The second approach is the variable seismicity approach, developed
primarily through the efforts of Cornell and his associates at MIT (Cornell
and Vanmarcke, 1969; Cormell, 1970). The primary feature of this approach

.is that variations in the seismicity of the region, due to predominant active

faults for example, can in theory be considered. The method also accounts for
different source geometries and superimposes the effects of the earthquakes at
each source to develop probability estimates for the ground motions at a parti-
cular location within the region being investigated. The approach is based on
the assumption that occurrences in time of the ith potential event are random

(i.e., Poisson arrivals) with a constant average rate per year. It is further
assumed that those earthquake events that have actually occurred within a line

or area source are equally likely to have occurred anywhere within that source.
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Basically, the variable seismicity approach first requires that the
engineer define each of the various potential earthquake sources; these could
be line sources such as faults, point sources such as relatively short faults
located far from the site, or area sources such as tectonic provinces in
regions where earthquakes cannot be definitely correlated with a causative
fault. For each of these potential sources the engineer must then assign
(1) an activity level in the form of an average amnual rate of occurrence
to earthquakes of magnitude Mo or greater and (2) an attenuation rate for
ground motion as a function of magnitude and distance. These assigned activity
levels and attenuation rates are based on the seismic history and tectonmics

of this and other geclogically similar regions.

The first computation step in this approach is to relate the ground motion
Y (displacement, velocity, or acceleration) to the earthquake magnitude M

and the focal distance R by the formula

Y | ‘
Y = b, exp(b) R 3 : : (B-4)

where bl’ b2’ and b3 are selected from the geologic conditions of the area.
Esteva {1970) showed that for the western United States b1 = 2000, b2 = 0.8,
and b3 = 2 for the case where Y 1is the peak acceleration (cm/secz), R

is in kilometers, and M 1is the Richter magnitude.

The next step is to express the frequency of occurrence of earthquakes at
each source. The computational procedure assumes that the frequency distribu-

tion F(M) expressed in terms of magnitude M 1is

-BOM - 1)
-B(M1 - MO) ?

1 -8

UA
=
1A
=
~
o]
]
R
—

FM) = MD

1 -e
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where
Ho = Minimum magnitude of interest
Ml = Maximum possible magnitude
B = b £n10
b = Magnitude coefficient in the recurrence rate expression

loglON =3 - bM

Utilizing Equation B-1 and the assumptions indicated above and combining
results from all potential earthquake sources, the probability that the peak

motion at the site exceeds some critical value Y during a time peried T 1is

-8
i ﬁMo Y b2
pY>Y, T) = 1-exp{e "TvG & (B-6)
: 1
where
il
vwe = 2: viGi
i=1
v, = Average arrival rate of earthquakes from ith source
n = Total number of socurces considered in analysis
Gi = Theoretical geometry factor for ith source {which depends on

whether source is point, line, or area type; see Cornell and
Vanmarcke (196%) for a tabulation of Gi for various source
types)

There are a number of applications of the variable seismicity approach in
the literature. Cornell and Vanmarcke (1969) used their technique on a hypo-
thetical site and compared the effects of using a point, line, or area source
on the seismic hazard. In this application, the seismic hazard was shown to
be relatively insensitive to the upper bound magnitude Ml and most dependent
on the more frequent, smaller earthquakes at closer sources. Domovan and

Valera (1972) applied the approach to a site located in the San Francisco bay
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midway between the Hayward and San Andreas faults and provided results in terms

of return periods for different levels of peak acceleration.

B.3 DISCUSSION OF APPROACHES

Two different approaches have been presented for computing the probability
that the ground shaking at a site will exceed a certain level within a speci-
fied time. The first, a uniform seismicity approach, does not comsider any
variations in the seismic characteristics of the region. The second approach,
a variable seismicity method, considers the presence of individual earthquake
sources within the region and superposes the effects of each source in the
determination of the ground motion probabilities. Both approaches consider

the occurrence of earthquake events to be Poisson distributed.

An important advantage of the uniform seismicity approach is that it can
be easily applied to an existing site, since the theory is relatively simple
and the data requirements are usually oot difficult to meet. The only data
required to implement t@is method is the recurrence curve for the past earth-
quake events of the region and the attenuation of intensity with distance for
various epicentral intensity levels. This type of data is often readily avail-
able from earthquake frequency studies and from isoseismal maps of past earth-
quake events. Furthermore, the restriction of equal seismicity within the
region is not serious for many regions of the United States, which do not

exhibit apparent patterns of markedly higher or lower seismicity.

The variable seismicity approach is more detailed than the umiform seis-
micity method; its data requirements are more extensive and often must be
provided for each potential earthquake source rather than generally for an
entire region. For some regions this approach is necessary, but this data
may be difficult to obtain. For example, the variable seismicity approach
requires a description of the geometry, extent, location, and recurrence rates
for each potential earthquake source. The geometry of each source is incor-
porated in the approach through scme theoretically derived parameters for
point sources, line sources, or area sources (note the Gi parameter in

Eq. B-6); the form of these parameters requires verification, possibly using
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field measurements. In addition, for many regions, such as the eastern and
midwestern United States, the extent and location of causative faults (line
sources) and the boundaries of tectonic provinces (area sources) cannot be
established with certainty. Because of this difficulty, a definitive asso-
ciation of certain earthquake events with one source or another may not always
be possible. Finally, the applicability of the variable seismicity method is
limited to consideration of those sources for which the available earthquake
data is sufficient to define recurrence rates for that source; other potential
earthquake sources for which inadequate data are avajlable cannot be incorpo-

rated into the variable seismicity approach.

It is noted that both the uniform seismicity method and the variable
seismicity approach utilize a deterministic representation of earthquake
recurrence rates and intensity-attenuation characteristics. Several examples
of the applicétion of the two approaches are given in the Agbabian Associates
report (1976).

In summary, the uniform seismiéity approach represents a reascnable engi-
neering tool for assessing the seismic hazard at a site, provided the region
surrounding the site does not exhibit strong patterns of higher or lower seis-
micity. The variable Seismicity approach can be applied in regions dominated
by a number of discrete earthquake sources only if (1) the geometry, extent,
and location of all potential earthquake sources can be reasonably well defined
and (2) sufficient earthquake data can be associated with each source to define

meaningful earthquake recurrence rates for that source.

B.4 PROBABILITY CALCULATIONS

Using the above discussed seismic risk analyses medels, the probability
that the site or the regicon will experience earthquakes of prescribed intensi-
ties during a specified time, or recurrence period, can then be estimated. The
seismic risk is expressed as a relationship between return periods (years) and
earthquake intensities at a given locale. Generally, the best of the parameters

that describe this intensity is the effective peak ground acceleration.
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B.5 SELECTON OF SEISMIC RISK LEVEL

Risk is defined as the probability of an undesirable or unacceptable
event. In other terms, risk is a function of the probability of the event and
the undesirability of the event. It is not sufficient to establish whether an
event is undesirable or not; it is the degree of undesirability that is of
interest. Undesirability can be measured in monetary value, life safety (loss
of life or injury), damage to the environment, or adverse effects on social

and economic systems.

Risk decisions on whether to retrofit or accept the existing element or
structure are based on economic and political decisions made by the owner or
by a regulatory body representing the public interest. These decisions,

supported by seismic analysis, may be based on these philosophies:

a. For moderate earthquakes in general, or for a single earthquake that
has a high probability of occurring in the useful extended life of
the existing structure, little structural damage should result. This

decision would usually be made by an owner using a value analysis.

b. For high intensity earthquake ground motion, structural damage will
occur, but life-threatening damage should have a low probability of
occurrence, The order of this low probability of damage would be
based on a general appraisal of the investment required to mitigate
the hazard and would be considered in the context of all natural
hazards. This decision would probably by made by a political body

with regulatory powers.

c. For very high intensity earthquakes equal to the maximum expected
in a seismic zone, life-threatening damage would be significantly
reduced by retrofit required to conform to a decision based on the
previous philesophy (in b), with even structural collapse reduced
to a small probability. Again, this decision would be made by a

political body considering public interests.

High intensity earthquake ground motions can be generated and studied by a

design earthquake event, which is discussed in Appendix C.
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APPENDIX C
DESIGN EARTHQUAKE EVENT

"C.1 DEFINITION

A design earthquake event specifies the peak values of certain character-
istic parameters that are associated with high intensity earthquake ground
motions. These motions are associated with the seismic risk level selected
for the site (App. B). The design earthquake generally specifies the maximum
ground displacements, velocities, and accelerations that are likely to occur.
Some meaure of the time duration of the ground motions is also included. An
important tool used to represent design earthquake motions is the response
spectrum, which actually represents the peak response of a series of simple
(single-degree-of-freedom) structures to given ground motioms. Each earthquake
ground-motion history produces a unique spectrum, and the design spectrum is
usually a composite average, or envelope, of the spectra of suchrrecords that
are appropriate for the site of the proposed building.

Development of a design earthquake event for a specific site generally
requires consideration of major geological features: tectomics for the site,
i.e., the types, locations, and arrangement of faults; seismic history, includ-
ing records of intensity and ground motion, if available; and local soil condi-
tions. Engineering judgment and, in some cases, ground-motion calculations
provide the basis for selecting the shape of the required design earthquake

event.

€.2 GOVERNING EARTHQUAKE CONDITIONS AT THE SITE

High intensity shaking at a site may come from different conditions. In
many cases, two earthquake conditions govern the design earthquake intensity
at the site. The first corresponds to a nearby earthquake. The second condi-
tion corresponds to a distant event. Frequency content and duration of the
record vary from one conditon to the other, and ome condition may be more

detrimental to a certain building than the other comndition.
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C.3 EARTHQUAKE GROUND MOTION CORRESPONDING TO DESIGN EARTHQUAKE EVENT

C.3.1 INFORMATION NEEDED TO SELECT GROUND MOTION

The choice of earthquake ground moticm at the site that correspopds
to the design earthguake event requires information on (1) source magﬁitude,
(2) source mechanism, (3) source distance, (4) source focal depth, (5) attenua-
tion relationship, (6) return intervals, and (7) peak acceleration, velocity,
and displacement associated with seismic risk for the site. These factors are
considered in the three methods used to develop ground motion discussed in
this section. These methods are (1) soil response analyses, (2) site-matched
records, and (3) Seed-Ugas-Lysmer shapes. These are in addition to a fourth
method based on the Applied Technology Council recommendation (ATC-3, 1978)

which was summarized in Section 2.

C:3;2 SOIL-RESPONSE ANALYSES

This method requires constructing a mathematical model for the soil
profile at the site. Well-defined soil properties obtained from the geotech-
nical investigation of the site are used to define the material properties of
" the model. A selection is made of an ensemble of rock-outcrop motions for use
as input to the computations. This ensemble is selected at the site to corre-
spond to the intensity level associated with the design earthquake event
developed for the site. The ensemble of rock-outcrop motions is selected
based on the following: (1) the motions must be taken from accelerograph
stations that are underlain by rock materials; (2) the earthquake magni-
tude, source mechanism, and causative-fault distances should be as close as
possible to that of the design earthquake event; and (3) where possible, the
peak acceleration of the rock-outcrop records should be reasomnably close to

the peak acceleration specified for the design earthquake event.

The SHAKE computer code {Schnabel et al., 1972) is used for the analysis
of soil profiles that can be modeled as infinite horizontal lavers. However,
for inclined layers, a two-dimensional analysis should be used. The results
of soil response analyses are used to develop composite respouse spectra for
the site. The mean and mean-plus-one standard deviation spectrum can be

developed from these results.
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APPENDIX D
VERTICAL GROUND MOTION RESPONSE SPECTRA

Recently a considerable number of records of strong vertical ground shaking
have been accumulated, thereby providing a substantially larger vertical motion
data base than was available when the above approach for representing vertical
motion spectra was first suggested. In fact, this data base now appears suffi-
cient to permit development of standardized vertical response spectrum shapes
by processing vertical motion records in the same manner as has been employed
with respect to horizontal motions when developing horizontal response spectrum
shapes. Despite this, design practice through the years has consistently
represented vertical ground response spectra as 2/3 of the horizontal spectra
(Newmark and Hall, 1969; Hall, Mohraz, and Newmark, 1976). The only notable
exception to this trend has been the RG 1.60 spectrum shapes in which this 2/3
proportionality factor was not followed over the entire frequency range.

Werner and Ts'ao (1977) provided an assessment of this practice for speci-
fying vertical response spectra. Their assessment is based on comparisons of
composite vertical spectra with 2/3 of the composite horizontal spectra deve-
loped for Intensities V, VI, and VII, which are intensities with sufficient
data for meaningful statistical comparisons. These comparisons in terms of
mean spectra and 687 bands are shown in Figure D-1 for intensity level VII.
These figures indicate that the 2/3 horizontal composite spectra tend to
slightly exceed the correspondingrvertical composite spectra. Therefore, from
a standpoint of conservatism, -these comparisons indicate that the representa-
tion of vertical design spectra using 2/3 of the horizontal design spectra is

reasonable.
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APPENDIX E

RELIABILITY OF EARTHQUAKE DATA

The lack of information concerning ground movements in the eastern United
States means that estimates are less reliable than those for more active and
more studied seismic regions. The general mean rate of earthquake occurrence
on the eastern edge of the United States is about one-twentieth of that on the
western edge. The eastern rate is about 18 events greater tham or equal to
MMI V/100 yr/100,000 km2 (Algermissen, 1969).

In order to facilitate seismic study of a regionm such as the Boston area,
the geometrical zones or sources are identified by number, as in Figure 3-12.
Then, since occurrence rates near the site of strong motions are of greater

interest, the numbered zones are presented as a mean annual number of events,

"as in Table 3-3.

The source of these New England estimates (Fig. 3-12) is Weston Geophysical
Research, Inc., Westboro, Massachusetts. Several of their estimates differ
from those of the U.S. Geological Survey. In particular, the epicentral
intensity of the important 1755 Cape Ann earthquake has been estimated as
high as IX and as the cause of intensity in Boston of VII to VIII. Weston
seismologists, however, set the epicentral intensity at VIII and the maximum
Boston intensity at VII. The issue is that even historical seismic events
are subject to continuing reevaluation and uncertainty. Correlation between

intensity estimates and known geotectonic structure is weak.

There are inherent limitations on the energy release and the MM epi-
central intensity generated by earthquakes in northeastern states. This upper
bound depends on the source used, and the values appearing in Table 3-3 are
based on conversations with Weston Geophysical. For example, a number such
as 7.3 means that the source indicated "a low seven." As mentiomed previously,
the lower bounds are MMI V (except for Source 5), a number below which one

expects only a very incomplete catalog of events.
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APPENDIX F

EARTHQUAKE VIBRATORY GROUND MOTION ATTENUATION RELATIONSHIPS

There are two procedures generally used to predict the attenuation of the
intensity of strong earthquake vibratory ground motion with respect to distance
from the epicenter, or causative fault, of a postulated earthquake. The first
relates peak horizontal ground acceleration, earthguake magnitude, and distance.
The second relates epicentral MMI, distance, and attenuated MMI. The report by
Agbabian Associates (1978) provides a review of the state of the art of these
relationships.

In general, earthquakes attenuate faster in the western United States
than in the eastern United States and Camada. The unusually low attenuation
of earthquake shock in the eastern regions is assumed to be associated with

.a greater homogeneity of the crustal structure (Milne and Davenport, 1969).

Within a uniform crust, specific waves can be prqpagated over large distances
with very little attenuation. Spatial attenuation of intensities for the
central United States has been studied by Gupta and Nuttli (1975, 1976},
Nuttli (1973a, b, c), and Herrmann and Nuttli (1975a, b). The studies
indicate lower attenuation of ground motion in the central United States

than in the western United States.
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APPENDIX G
TIME-HISTORY AND FOURIER SPECTRA

FOR SELECTED SITES
(FROM CIT 196%-1975)
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