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ABSTRACT

This report is prepared to be Chapter 11 of the upcoming ASCE
Manual on Beam-to-Column Building Connections currently under review
by members of the Monograph Task Committee of the Committee on Struc­
tural Connections of the ASCE Structural Division.

This chapter first introduces the concept and points out some of
the advantages of eccentrically braced frames (EBFs) for seismically
resistant steel construction. Because of the special features encoun­
tered in the analysis of such frames, and a very limited literature on
this developing subject, a brief exposition of some of the available
design procedures is provided. An approach is given for appraising
the performance of the active links, i.e., beam segments between braces
and/or columns, for achieving a stiff elastic structure together with

an indication of the ductility demands placed on the links at extreme
cyclic overloads. Suggestions for link length selection are made based
on experimental results with some 28 full-size isolated links. Some of
the obtained results in these experiments are described, and selected
hysteretic loops for cyclic loadings are given. Together with the infor­
mation given in Chapter 6 (Report No. UCB/EERC-83j02), the experimental
data on links provide guidance for design and detailing of active links.
Illustrated in this chapter are suggested details for the following
items: link-column connections, link-brace connections, and spacing
and sizing of link-web stiffeners. Possible applications of EBFs in
non-seismic design are also pointed out. The chapter concludes with
the needs for future research.

Three EERe reports, providing greater detail on the problems dis­
cussed herein, are in preparation, respectively, by Keith Hjelmstad,

Kazuhiko Kasai, and James Malley as principal authors.
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CHAPTER 11 - ECCENTRICALLY BRACED FRAMES (EBFs)

By Egor P. Popov and James O. Malley
Department of Civil Engineering

University of California
Berkeley, CA 94720

11.1 INTRODUCTION

11.1.1 General

For resisting lateral loads caused by wind or earthquake, either

moment-resisting or diagonally braced framing is commonly employed in

structural steel design. As pointed out in Chapter 6 (Section 6.2.2),

the story drift of a moment-resisting frame depends on four factors:

bending of the columns, axial deformation of the columns, flexure of

the beams, and the shear deformation of the column panel zone. If

necessary, the deformation of a panel zone can be kept small with the

use of doubler plates. The contribution of the columns to the story

drift can also be contained within reasonable bounds. However, the

limiting story drift due to flexure of the beams may require the use

of larger beams than necessary for strength alone. Such a solution

is costly. Therefore, if functional considerations make it feasible

to use diagonal bracing, their choice becomes a more economical option.

Any number of diagonal bracing systems can be used. Ordinarily

such bracing is so arranged that at a joint the centerlines of beams,

columns, and braces meet at a point. All such systems may be referred

to as concentrically braced frames (CBFs). Such systems are frequently

used along the narrow dimensions of buildings, either for wind or seismic

applications, since they provide an economical solution for drift control.
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However~ in some situations the braces cause undesirable obstructions

within a bay and~ for lateral loads due to an extreme seismic distur­

bance, their carrying capacity under cyclic loads may be poor. As has

been shown by Popov and Black [1981J, even initially concentrically

loaded struts when subjected to severe cyclic load reversals can drama­

tically decrease in their compressive strength. Fortunately, such poor

behavior of an individual member does not decrease the capacity of a

multiply redundant frame to the same extent. Meager experimental

results [Maison and Popov, 1980J nevertheless indicate that it may be

difficult to achieve good overall frame ductility with the types of

CBFs used in building construction.

The above problems with CBFs and moment-resisting frames suggest

another possibility. By deliberately offsetting the diagonal braces

at joints, a hybrid frame is obtained which can have the advantages

of rigidity at moderate loads and, as has been shown experimentally

[Roeder and Popov, 1977,1978aJ, can have good ductility at extreme

overloads. Some alternative arrangements of this kind of bracing are

shown in Fig. 11.1. The use of such eccentrically braced frames (EBFs)

appears to have been first suggested by Spurr [1930J for architectural

reasons in wind bracing. This concept can also be used to advantage

for reducing the size of nominally concentric connections (see Section

11.4).

The specific use of eccentric connections in eccentric K-braces

for seismic applications was studied by Fujimoto et aZ. [1972J. Experi­

mental and analytic results on single diagonal EBFs of the type shown

in Fig. 11.2 reported by Roeder and Popov [1977,1978aJ provided a
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renewed interest in this type of framing. This chapter is primarily

concerned with recent developments on eccentric connections for such

applications. However~ first a few remarks regarding the analysis of

such bracing systems are necesSary because of the special features

encountered in their analysis.

11.1.2 Analysis of EBFs

Any bracing scheme in which the diagonal braces are deliberately

offset from the beam-column joints (as illustrated in Fig. 11.1) can

be classified as an EBF. By offsetting the diagonal braces from common

joints, the axial forces from a brace are transferred to a column or

to another brace through shear and bending in a portion of a beam

called the active link. The diagonal braces are proportioned so as

not to buckle by having greater strength than the supporting beam. As

there is considerable flexibility in locating the braces in an EBF,

functional requirements can be more easily met than with conventional

bracing.

If an EBF is adopted for wind bracing, the usual elastic methods

of analysis suffice. However~ if an EBF has a primary function of

resisting lateral loads caused by possible seismic disturbances~ the

procedure is more complex. An EBF must be designed for factored loads

using plastic methods of analysis~ and then be checked for code com­

pliance (elastic behavior) at working loads. Only in this manner can

proper functioning of the frame for dissipating energy through ductile

behavior (see Section 6.1.2) of the active links be assured~ and global

column buckling prevented.
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The above approach was illustrated by Roeder and Popov [1977J and

Popov and Roeder [1978J on the simple EBF shown in Fig. 11.2 with pre­

scribed loading conditions. The appropriate mechanism motions (or

collapse mechanisms; see Section 6.1.2) for this frame in two possible

directions are shown in Fig. 11.3. After applying the plastic moment

balancing procedure [Horne, 1954; Gaylord, 1966J for the loading condi-

tion shown in Fig. 11.2, the balanced distribution of moments shown in

Fig. 11.4 was found. This lower bound solution can be improved by

changing the proportion of shear in the two columns. However, the

obtained solution as is can be used for a preliminary selection of

member sizes. If this were done, the columns would have to be consi-

dered in single curvature over three stories. Fortunately, because of

the great flexibility of the plastic design method, such conditions

need not arise in practice.

A direct plastic design procedure based on a generalized portal

method of analysis has been developed by Kasai [1983J in which the

columns assume double curvature in each story for any fixed loading

condition. Using this approach, a solution of the same problem is

shown in Fig. 11.5. In this solution it was assumed that plastic

moments develop in the beams at the left column (Mp at the top and

M; in two lower beams; see definitions in Section 11.1.4), and smaller

plastic moments develop on the right at both ends of the links (see

definition (4) in Section 11.1.4). In this procedure, any plausible

plastic beam moments can be assumed. As an example, in an improved

design the moment at the upper left corner could be reduced. It is

important to note, however, that in using the direct plastic design
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procedure, all critical moments conform to the requirements of the collapse

mechanism given in Fig. 11.3, and the columns in each story are in double

curvature. The obtained results give both the upper and the lower bound

solutions for this plastic problem, and inelastic activity is confined

to the appropriate locations. In this study, for simplicity, the effect

of the axial forces acting on the links was neglected (see Section 11.5).

The static analysis approach described above is customarily used

in seismic design of buildings. In reality, however, the problem is

both non-deterministic and dynamic. Pauley [1983J has shown that moment­

resisting frames during some instants of large earthquake motion behave

very differently from what is assumed in static analysis. At some

instants of time the columns in frames may be forced into single curva­

ture over several story heights. However, the complex phenomenon of

multistory column buckling under dynamic loadings is different from that

occurring under static conditions and needs to be explored further. For

this reason the sensitivity of EBFs to different bracing arrangements,

variations in lateral loads, and their response under dynamic loading

conditions are currently being studied at the University of California

at Berkeley. In the process, procedures for better methods of analysis

and design of EBFs are evolving. Their capability to meet the conflict­

ing requirements of providing a stiff structure for light and moderate

lateral loads and a ductile one for extreme overloads makes EBFs a

viable alternative for seismic applications.

Inasmuch as the current codes, such as UBC [1982], specify elastic

criteria, and there is always an interest in determining the behavior
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of frames at working loads, as noted earlier, plastically designed EBFs

should be checked for elastic behavior at working loads.

11.1.3 Some Characteristic of EBFs

The basic characteristics of an EBF can be noted by examining the

elastic as well as plastic behavior of a simple diagonally braced frame

[Hjelmstad and Popov~ 1982], such as shown in Fig. 11.6. The depen­

dence of the elastic frame stiffness on the two parameters ell and h/l

is illustrated in Fig. 11.7. By varying the eccentricity ratio ell

from 0 to l~ the frame changes in character from a concentrically

braced frame to a conventional moment-resisting frame. For all inter­

mediate values of e/l~ the frame becomes eccentrically braced. All

three curves for different hills clearly show the advantages of bracing

the frame to gain lateral stiffness in the system. With only a small

loss of such stiffness~ a brace can be placed slightly eccentric to

the upper corner joint. By making the eccentricity ratio ell large,

a significant decrease in frame stiffness occurs. Hence, from the

point of view of attaining a high degree of elastic stiffness, the

ratio ell should either be zero or as small as possible. If ell is

set at zero~ the frame reverts to conventional concentric diagonal

bracing and the desired ductility at extreme overloads may be difficult

to attain. For all values of ell < 0.5, the addition of bracing results

in a substantial increase in stiffness. This increase becomes larger

for narrower bays (e.g., h/l = 1), where the columns contribute less

to the lateral stiffness of the frame. It is to be noted that the

results shown are for a one-story frame for which member boundary
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conditions are different from those found in multistory frames. How­

ever,. this diagram reflects qualitatively the importance of an eccentric

brace on elastic frame stiffness.

Studies similar to the above [Hje1mstad and Popov, 1982J showed

that the effect of shear deformation in the active links should be

considered for ell < 0.5. Neglecting these deformations in this range

leads to an overestimate of the frame stiffness.

To gain insight regarding ductile behavior, it is necessary to

examine the mechanism motion (collapse mechanism) of the frame such

as shown in Fig. 11.8. This mechanism gives an indication of the

extent of energy dissipation through plastic deformation and of duc­

tility requirements in the critical regions. Recalling from Section

6.1.2 that the ultimate story drift index measured by angle e is on

the order of 1.5 to 2 percent, the kinematically compatible link defor­

mation y can be found. Thus, from simple considerations of frame geo­

metry,

el = ye (11.1)

It is to be carefully noted that since in EBFs e is usually much smaller

than l, severe ductility requirements are placed on the link. The duc­

tility demands on a beam in a moment-resisting frame, where e = l, are

much smaller. The energy dissipation in these localized regions is

critical to the performance of a frame during a major earthquake.

Since in seismic design a complete lateral load reversal can be anti­

cipated, the maximum feasible value for y must be determined through

cyclic experiments.
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The correct choice of eccentricity e for an EBF can be arrived

at only after carefully considering the two conflicting requirements

of stiffness and ductility. In order to achieve a stiff structure,

e must be small. However, for small values of e, the ductility demanded

(measured by y) of an active link may become excessive.

As an aid to the design of active links, which is the principal

topic of this chapter, they are classified in the next section accord­

ing to their length and location in a frame.

11.1.4 Classification of Active Links

In seismic design of EBFs, the concept of II strong columns-weak

girders ll is adhered to as it is for moment-resisting frames (Section

6.1.1). Except for the possible development of plastic hinges at

column bases, inelastic activity is concentrated in the active links.

A representative example of this condition is illustrated for the mecha­

nism motion (collapse mechanism) of the frame in Fig. 11.3. From this

figure several different kinds of plastic regions can be identified

which can be classified into four types.

It is apparent that the links on the right undergo a great deal

more inelastic activity than those on the left. Further, their beha­

vior strongly depends on their length. If they are sufficiently long,

plastic moment hinges form at both ends of the links. On the other

hand, if these links are short they tend to yield in shear with smaller

end moments. This differentiation between the two kinds of active link

behavior is best illustrated with the aid of a shear-moment interaction

diagram. A typical diagram for a wide-flange section is shown in Fig.
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11 .9 [Nea1, 1961]. The relevant parameters are defined as foll ows:

Mp = FyZ (11.2)

M* = FY(d - t f) (bf - t w)t f (11.3)p

V* = F~(d - tf)tw (11.4)
P

where Mp = plastic moment capacity of a beam;

M; = plastic moment capacity of a beam reduced due to shear;

v; = plastic shear capacity of a beam;

Fy = yield stress of steel;

F~ = shear yield stress of steel;

Z = plastic section modulus;

d = depth of beam;

t f = flange thickness;

t w = web thickness;

bf = flange width.

The effect of shear is neglected in defining Mp' whereas M; is based on

the assumption that the web is in a plastic state and carries shear only.

Equation (11.4) is written assuming that the web is yielding in shear.

This equation is essentially the same as Eq. (6.3), which conforms to

the AISC Specifications [1980J, i.e., v; very nearly equals Vp.

By considering the equilibrium conditions for an isolated link in

a plastic state, one can obtain its length b* at the balance point,

where M; and v; are reached simultaneously (see Fig. 11.9). This rela­

tion reads

b* = 2M*/V* (11.5)
p p
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Active links equal to or shorter than b* will yield predominantly in

shear~ and are called shear links. Those that are somewhat long~r have

a good deal of moment-shear interaction. The end moments of the long

links will approach the plastic moment capacity Mp of the beam, and

moment hinges will form at the ends of the links. Such links are

referred to as moment links.

It is to be noted that for moment links a large increase in shear

can take place with only a small change in moment. Conversely, for

shear links the shear capacity remains essentially constant for a con-

siderable range of end moments.

The inelastic behavior of the plastic regions on the left shown in

Fig. 11.3 is quite different from the behavior of links on the right.

The upper link, by virtue of its long length, is the classical moment

hinge such as occurs in moment-resisting frames. Its moment capacity

is given by Eq. (11.2). The remaining two beam links on the left

require the formation of only one plastic moment hinge to develop the

frame collapse mechanism. However, since large shear must be trans­

mitted through them, their moment capacity must be limited to M;,
defined by Eq. (11.3). Both of these types of plastic hinges exper-

ience moderate rotation; therefore, the imposed ductility demand is

small. Note that no plastic hinges form at the lower ends of the braces,

which is in complete agreement with the moment diagram shown in Fig. 11.5.

The above discussion suggests the possibility of the following four

types of plastic regions that may develop in an ESF:

(1) Single plastic moment hinges having the full plastic moment capacity

Mp of a beam. These occur at beam-to-column connections in long
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beam segments and are identical to those of moment-resisting frames.

(2) Single plastic moment hinges having reduced plastic moment capacity

due to shear. These occur at beam-to-column connections of short

beam links. Their capacity usually is at or near M~.

(3) Plastic moment hinges at both ends of an active link having a

plastic capacity ranging from M~ to Mp depending on link length.

When the end moments are at or near Mp~ this system forms a moment

1ink.

(4) Plastic moment hinges at both ends of a short active link develop­

ing plastic end moments of M; or less~ depending on the link length~

with the link web yielding in shear. This is a yielding system

forming a shear link.

Since in the EBFs the inelastic activity is mainly concentrated at

or in the links~ their performance is critical in seismic design, and

their behavior is discussed in the next section.

11.2 EXPERIMENTAL RESULTS ON LINK BEHAVIOR

11.2.1 Experimental Setup for Studying Links

The original experiments [Roeder and Popov, 1977~1978aJ were made

on one-third scale subassemblages. In these models the W6x12 shear

1inks had an effective panel size of approximately 11 x 6 in. (280 x 150 mm).

The webs were 0.23 in. (6 mm) thick. In a prototype this translates into

a non-standard W18 x 108 section with an 0.69 in. (18 mm) web. No stan­

dard W18 section can meet these requirements. The webs of the available

sections are thinner, raising the possibility of web buckling. Precisely
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such buckling was observed in the next series of frame tests [Manheim,

1982J·. Some preliminary suggestions for controlling web buckling were

advanced earlier by Popov [1980J, but it was evident that further experi­

ments on active links were necessary, as no information was available

on the behavior of short wide-flange beams under severe cyclic loading.

Since the purpose of this investigation was specifically the beha­

vior of the active links, the experimental model isolated the link from

the remainder of the structure. The model (Fig. 11.10b) was extracted

from the two possible prototype configurations shown in Fig. 11.10

[Hjelmstad and Popov, 1982J. The fully welded end plates totally

restrain warping in the link cross-section, a condition simulating

the prototype structure, since the link is either adjacent to a region

of the beam with low shear or is welded to a column flange. Welded

flanges provided excellent torsional restraint, a recommended design

approach at plastic hinges [AISe Specifications Part 2~ 1980J.

A schematic diagram depicting the manner of applying the loading

is shown in Fig. 11.11. By transferring the shear force to the specimen

through the rigid L-shaped member~ the imposed loading consists of a

constant shear force and linear variation of bending moment with abso­

lute maximum of opposite sign at each end. This condition approximates

reasonably well the behavior of a link in the plastic range. Although

actually~ initially the moments at the two ends may differ significantly

from each other, and this condition may persist due to strain hardening.

The loads were applied quasi-statically to prescribed cyclic displacement

levels.

To date~ 28 full-size link specimens have been tested at Berkeley
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[Hjelmstad and Popov, 1982; Malley and Popov, 1982] on sections ranging

in size from W12 x 22s to W18 x 60s. Some of the results obtained in

these experiments are described below. In the completed series of

experiments, no axial forces were applied to the links, a subject for

future research.

11.2.2 First Series of Link Tests

In the first series of tests reported by Hjelmstad and Popov [1982],

15 full-size links were subjected to quasi-statically applied cycles

of relative end displacement in the plane of the specimen's web. Be­

cause of severe ductility requirements that may be imposed on the links

during strong seismic excitations, the behavior of specimens undergoing

relative end displacement of ±3 in. (75 mm) and more were explored.

The specimens were made from W18 x 35, W18 x 40, W18 x 60, W16 x 26, and

W12 x 22 sections and were either 28 in. (710 mm) or 36 in. (910 mm)

long. Because of the greater advantage in stiffening a frame (see Fig.

11.7) gained from the use of short links, the emphasis was directed

toward a study of shear links (see Eq. (11.5)), although some links

(W16 x 26s and W12 x 22s) were in the intermediate length range. The

specific objective of this test program was to determine web stiffener

requirements such that a link would attain the necessary ductility y

under cyclic loading. In this series of experiments the webs were

reinforced with pairs of stiffeners either 3/8 in. (10 mm) or 1/2 in.

(13 mm) thick extending to the outside of link flange. Some selected

experimental results are given below.

Hysteretic loops from the experiment, together with a photograph
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at failure for an unstiffened specimen (#1), are displayed in Fig.

11.12. Similar information for a specimen (#4) with three pairs'of

stiffeners is given in Fig. 11.13. Both specimens were made from a

W18 x 40 section of the same material, and were 28 in. (710 mm) long.

As can be seen from Fig. 11.12, the specimen with the unstiffened web

experienced serious deterioration in load carrying capacity. Due to

severe web buckling, characteristic dips in the hysteretic loops are

observed for this specimen. A dramatic improvement in shear link

behavior was achieved by stiffening the web,' Fig. 11.13. The web

stiffeners delayed the initiation of web buckling until the ninth

severe cycle, and the specimen achieved excellent ductility before

material tearing caused failure. For a large number of cycles the

hysteretic loops remained full, allowing material strain hardening

to continually increase the load carrying capacity.

Two specimens, similar to the two above, were designed to inves­

tigate the effect of using panel zones of different sizes between

stiffeners. One specimen (#5) employed two pairs of intermediate

stiffeners spaced so that the center panel (11 in. (280 mm)) was

larger than the two outside panels (8.5 in. (220 mm)). This choice

was made because the outside panels, in addition to carrying the same

shear as the center panel, are subjected to larger bending moments.

Nevertheless, the web buckling became concentrated in the center panel,

causing a rapid deterioration in the energy dissipation capacity of the

specimen. A similar specimen (#3) with equally spaced stiffeners behaved

better. Therefore, equal sizing of panel zones appears to produce more

desirable shear link behavior.
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Two specimens made from W12 x22 sections were 36 in. (910 mm) long.

Since for these links b* = 24 in. (610 mm). they are of an intermediate

length. Their behavior was entirely different from that of the other

links. The unstiffened specimen (#12) experienced early lateral tor­

sional buckling and failed after four cycles, reaching the maximum end

displacements of ±l~ in. (38 mm). Providing two pairs of flange stiffen­

ers for the other specimen (#15) greatly improved the link behavior,

and the specimen sustained six cycles with a maximum end displacement

of 2 in. (50 mm) and retained its planar alignment. Unlike the require­

ment for equal panel zones for shear links, pairs of flange stiffeners

must be placed near the supports. Following suggestions given in the

ASCE Manual 41 [ASCE-WRC, 1971J, these stiffeners were placed one and

one-half times the flange width away from each of the link ends.

Based on the above experiments with links under cyclic loading,

the following observations can be made.

(1) Shear links are more effective energy dissipators than moment links,

although in frames shear links are likely to be subjected to larger

ductility demands than longer moment links.

(2) Web buckling in shear links leads to a significant loss in both

load carrying capacity and energy dissipation capability. There­

fore, shear links require web reinforcement. Flange buckling

alone does not seriously reduce the capacity of shear links.

(3) Flange stiffeners are required for moment links of intermediate

length.

(4) All links strain-harden under repeated loads; however, shear links

benefit more from this effect than moment links.
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11.2.3 Second Series of Link Tests

,In the second series of tests reported by Malley and Popov [1982],

13 additional full-size links were tested in a manner similar to that

employed previously. Again, the emphasis was placed on determining

shear link behavior, rather than that of moment links, and for that

reason all link specimens were 36 in. (910 mm) long, utilizing 18 in.

(450 mm) deep secti ons. Except for two specimens made from W18 x 60

sections, all others were W18x40s. The objectives pursued in this

study were to determine the effect of loading history, stiffener detail

and spacing, and end connection details. Although the use of stiffeners

in pairs was found to be effective in delaying web buckling in the pre­

vious tests, it was thought that a more economical detail could be

developed. Owing to encouraging initial success, whenever webs were

stiffened in this series of tests they were stiffened on only one side of

the web. Either 3/8 in. (10 mm) or 1/2 in. (13 mm) thick stiffeners

extended to a 1ink 1 s longitudinal flange edge. Some of the highlights

from this series of experiments are given below.

Three specimens were used to determine sensitivity of link beha­

vior to loading history. One of these specimens (#16), made from a

,W18 x 60 section, was initially subjected to two large displacement

pulses to induce web buckling prior to further cyc1'ing. The other

W18 x 60 specimen (#18) was first given nine ±1 in. (25 mm) cycles

prior to the usual incremental cycling. Both specimens withstood

extensive cycling after the initiation of web buckling, a desirable

characteristic of large unstiffened panels. Two W18x40 specimens
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with two 1/2 in. (13 mm) equally-spaced web stiffeners provided further

information on the behavior of links with different histories of load­

ing. One of these specimens (#24) underwent an application of mono­

tonically increasing load. When the displacement reached the 7.2 in.

(180 mm) limit of the testing apparatus, the load resisted by the speci­

men had dropped only 6 percent below the maximum. The other identical

specimen (#20) was cycled after a large initial cycle which initiated

a visually observable web buckling. This specimen generated good hyster­

etic loops during the cycling process, indicating excellent capability

in energy dissipation. These results indicate that properly detailed

shear links can dissipate large amounts of energy regardless of the

loading history.

One specimen (#17) was designed to investigate the effects of pro­

viding shear links with one-sided web stiffening. The hysteretic loops

of this specimen t shown in Fig. 11.14, were remarkably similar to those

of an earlier specimen (#9) which was identical except that it employed

pairs of stiffeners placed on both sides of the web. This test demon­

strates that providing adequate stiffeners on one side is structurally

equivalent to placing stiffeners on both sides of a web. For reasons

of reduced welding cost, one-sided stiffeners for shear links appear

to be preferable.

Further cost reductions in providing web stiffeners for shear links

can be realized by relaxing the requirement of welding the stiffeners

to both beam flanges as well as to the web. The detail of omitting a

weld to one of the flanges was tested on another specimen (#21), and

its behavior is illustrated in Fig. 11.15. Comparison of these hysteretic
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loops with those for a specimen with fully welded single stiffeners

showed almost identical response before the initiation of web buckling.

After buckling, however, the energy dissipation decreases more rapidly

in the link with stiffeners welded to the web and one flange only.

In most EBFs the links are located such that one end of the link

is connected to a column. These moment connections are subjected to

loading similar to those encountered in moment-resisting frames, and

the procedures described for their design in Chapter 6areessentially

applicable. However, the shear link energy dissipation mechanism and

the associated web buckling phenomenon are characteristics unique to

EBFs and the effect they have on connection performance had not been

studied. Therefore, a series of tests were made to determine the beha­

vior of shear link connections having conventional details.

Three shear link specimens employed the all-welded connections of

the type shown in Fig. 6.24b, i.e., full penetration flange welds and

fillet welds to a shear tab. Cyclic tests of these specimens demon­

strated that this all-welded connection detail can withstand large

ductility demands without detracting from the capacity of the link.

The fillet welded web connection encountered no problems, even though

strain hardening caused the peak load resisted by one of the specimens

to be over 80 percent above the initial yield level. In this specimen

(#27), a defective weld caused sudden failure of the flange weld in

the heat affected zone. Figure 11.16 illustrates the excellent beha­

vior of a specimen (#26) with three 3/8 in. (10 mm) equally-spaced

stiffeners welded to the web only.
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Two specimens utilized the flange welds and bolted web connections,

per Fig. 6.24a. In both these specimens, the large shear forces gener­

ated during cyclic loading induced bolt slippage in the web connection.

This bolt slippag~ transferred large shear forces to the flanges,

resulting in sudden flange failures. One of the specimens (#22) deter­

iorated more rapidly than a similar all-welded specimen only in the

post-buckling range. On the other hand, the other specimen (#28) failed

earlier than any of the other tested specimens. The hysteretic loops

for this specimen are shown in Fig. 11.17. Comparing this behavior

with that of the welded specimen given in Fig. 11.16 indicates the

superior behavior of welded web connections in shear links.

One specimen (#25) was designed and fabricated with a connection

to a column web, similar to the detail given in Fig. 6.26c. In a cyclic

experiment this specimen behaved quite well, as may be seen from the

hysteretic loops shown in Fig. 11.18. In this detail, the presence of

a large shear in the web reduces the moment to be transmitted through

the flanges to M;, which is smaller than the moment that can develop in

connections for longer beams (see Section 6.4.2).

Jl.2.4 Principal Test Conclusions

The main emphasis in the experimental study of active links was

directed toward determining the cyclic behavior of shear links. These

links were found to be superior to moment links as energy dissipators.

The behavior of the moment links is largely determined by the full

plastic moment capacity of beams and is discussed in Chapter 6. Two

relevant experiments for links of an intermediate length were included
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in the first series of experiments. The following tentative conclusions,

mainly applicable to shear links, may be drawn from the completed tests:

(1) The test results indicate that the theoretical link balance

length b*, where M; and v; are reached simultaneously (see Eq. (11.5))

appears to underestimate the link length where shear action predominates

by about 15 percent. Therefore, a better estimate of the maximum length

emax in which shear behavior for a link predominates can be given as

[Malley and Popov, 1982]

(11.6)

where the meaning of the terms is the same as that in Eq. (11.3).

As emax increases to 2emax ' the link's behavior will approach that

of a moment link. For e > 2emax ' moment link action can be expected.

(2) For monotonic displacements, the link deformation y (see

Fig. 11.8) up to 0.20 can be resisted without significant loss in load

carrying capacity. For cyclic loadings, it appears reasonable to assume

y values of ±0.10.

(3) Experimental evidence indicates that web stiffeners must be

used for short links and should be equally spaced. Reinforcement of

the webs by shear tabs should be judiciously excluded in determining

the web panel length. Stiffeners on only one side of a web suffice to

prevent premature web buckling. Moreover, good pre-buckling link beha-

vior was observed with web stiffeners not welded to the flanges.

(4) Because of both high moment and shear in the links, beam-to­

column connections of the all-welded type should be used. For severe

service the bolted web connections can develop slip, resulting in sudden
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premature failure. Since in shear links the plastic moment capacity

is M; rather than Mp' an experiment with a beam-to-column web connec­

tion showed good performance. However, the suggestions made earlier

(see Section 6.4.2) for improv.ing this detail should be followed.

(5) It is to be noted that to date, no links were tested which

were simultaneously subjected to shear, bending moments, and axial

force. Therefore, it is advisable to limit the axial force transfer

through the links by means of design.

11.3 DESIGN AND DETAILING OF ACTIVE LINK CONNECTIONS

The results of the experimental work presented in this chapter can

be combined with those obtained in Chapter 6 to provide guidance for

connection design and details in EBFs. This section will outline the

suggested details for the following items: (1) link-column connections,

(2) link-brace connections, and (3) web stiffeners.

11.3.1 Link-Column Connections

For eccentrically braced systems in which the active links are

located adjacent to columns, the designer must understand the nature

.of the inelastic response of the frame to adequately detail the connec-

tion. If the active links are sufficiently long to be classified as

moment links (see Section 11.1.4), the rotation capacity demand on the

link-column connection is likely to be small. This can be checked by

determining the y value, as in Eq. (11.1). If the y value is not exces­

sive, the recommendations given in Chapter 6 will apply to the link-

column connection of active links.
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If shear links are to be employed, the ductility demand on the

active links can become quite large. Since these links yield in shear,

the link-column connection must be able to develop the full yield

capacity of the active link. For properly stiffened links, strain

hardening can increase the shear capacity by as much as 75 percent

above the initial yield level. This must be taken into account in

the design of the web connection. The test results indicate that

welded web connections will provide the required shear capacity and

ductility. The detail shown in Fig. 11.19 (and 6.24b), which employs

a fillet-web-weld to a shear tab, was found to be satisfactory for

links with large ductility demands. If a more direct shear transfer

mechanism is required a full penetration web weld, as shown in Fig.

11.20 (and 6.24c), can be employed. This detail is more expensive,

and, unless the welding sequence is carefully worked out, it may cause

large locked-in stresses due to restraint.

For shear links with low ductility demands, a bolted web detail

such as that shown in Fig. 6.21 should provide adequate capacity. The

shear connection should be designed conservatively to insure that the

full shear capacity of the section can be resisted. In all cases, the

flanges should be connected to the column flange with full penetration

welds so that the full moment capacity of the section can be developed.

The connection of active links to column webs follows guidelines

similar to the suggestions given for column flange connections (see

Section 6.4.2). For flange moment connections, the recommendations of

Driscoll and Beedle [1982J, as given in Fig. 5.32 of Chapter 5, should

be followed. For shear links with large ductility demands, an all-
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welded connection detail, such as that shown in Fig. 11.22, should be

employed. For shear links with smaller ductility demands, bolted web

connections should perform in a satisfactory manner.

11.3.2 Link-Brace Connections

The link-brace connection must also be designed to develop the

shear capacity of the active link. If shear links are employed, strain

hardening can cause significantly larger brace for~es. Roeder and Popov

[1977] suggest that the brace, and therefore the link-brace connection,

be designed for l~ times the yield shear.

The link-brace connection shown in Figs. 11.19 to 11.22 illustrates

a detail for a brace consisting of a pair of angles. A similar detail

can be adopted for square tubes. To stiffen the connection and provide

for easier alignment of the weld centroid, the gusset plate detail is

fabricated of two plates made into a tee section. The angles are

fillet welded (or bolted) to the gusset. Another detail in which the

brace is welded directly to the beam flange has also been used in design

applications.

Providing eccentric bracing makes the active links susceptible to

lateral torsional buckling. For this reason~ the link ends at the

eccentric braces must be laterally supported. The link-beam connections

shown in Figs. 11.19 to 11.22 are designed to reduce the tendency for

lateral torsional buckling of the link-brace assembly.
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11.3.3 Web Stiffeners

'By providing structurally adequate web stiffeners, the deleterious

effects of active link web and/or flange buckling can be avoided. These

requirements depend on the imposed ductility demand on the links and in

this context three different types of links can be recognized: links

with small ductility demand, shear links, and moment links. Web stiffen­

er requirements for each link type are discussed next.

11.3.3.1 Links with Small Ductility Demand

Analysis of the plastic coliapse mechanism (or mechanism motion)

often indicates that certain links will not experience large inelastic

deformations. These relatively inactive links, such as the left links

in Fig. 11.3, may then be made as short as convenient, compatible with

the requirements of a plastic frame analysis. Figure 11.23 shows a

detail of such a link. Since vertical components of axial brace forces

are transferred through such links, large shearing stresses are likely

to develop in these links. Therefore, in order to avoid the need for

intermediate stiffeners, if compatible with plastic analysis, the link

length should be made less than 25tw' where t w is the beam web thickness.

'For the detail shown in Fig. 11.23, full-length stiffeners should be pro­

vided on both sides of the web at the intersection of the brace-beam

centerlines. The half-depth stiffeners located below the flange aid

the transfer of the brace shear force to the beam. Since these short

links have good torsional resistance, generally no lateral bracing is

required.
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11.3.3.2 Shear Links

The stiffeners in shear links are required to delay and control

the web buckling which these members can be subjected to during large

inelastic deformations. Stiffener design can be separated into three

stages: spacing, sizing, and detailing.

Stiffener Spacing: Hjelmstad and Popov [1982b] presented a set

of equations for determining the appropriate stiffener spacing based

on the amount of energy dissipation required of a shear link. These

two empirical equations are:

E*
a 90 - L
tw

= 9.R-n -Ee

a = 94 - 14 .R-n ~*tw e

(11.7)

(11.8)

The topological parameters in these equations are t w' the web thickness,

and a, the minimum panel dimension (usually the distance between stiff­

eners). The energy dissipation parameters are E~, the total energy

dissipated prior to buckling; Ee, the elastic energy stored by a link

at yield; and E*, the energy absorbed during the largest single pre­

buckling cycle in a cycl ic experiment. It is 1ikely that Eq. (11.8)

is conservative since it is not based on monotonic tests, and for this

reason it is subject to future revision.

Without the results from a series of properly modeled inelastic

dynamic analyses, the energy dissipation requirements of the active

links must be approximated from the estimated ductility demand. The

ductility ~ will be taken as:
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(11.9)

where vmax is the maximum relative end displacement of the link and vy
is the relative end displacement at initial yield. For shear links the

l.l values are large (see Fig. 11.8).

For cyclic loading histories. where l.li is defined as the ductility

demand in the i-th cycle. the relationship between energy dissipation

and ductility demand for an elasto-perfectly plastic material undergoing

predominantly shear deformation can be expressed as:

For monotonic loadings the corresponding relationship is:

E*r = 2).1 - 1
e

(11.10)

(11.11)

The a/tw ratio chosen should be the lesser of the two values given

by Eqs. (11.7) and (11.8). For buildings located in regions of high

probability of significant seismic activity. the typical values of this

ratio range between 25 and 30. If calculations show this ratio to be

20 or less. the beam size should be revised.

For eccentrically braced systems in which the shear links are

adjacent to the columns, the stiffeners are located in the panel zone

contiguous to the link-column connection. For the connection detail

with the web fillet welded to a shear tab. the equally spaced stiffeners

should be spaced from the erection bolt line, as shown in Fig. 11.19.

For full penetration welded or bolted web connections, spacing the
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stiff~ners from the face of the column was found to be satisfactory.

A similar approach can be used when the active link is connected'to

the weak column direction. Figures 11.20 to 11.22 illustrate the sug­

gested stiffener spacing in these cases.

Stiffener Sizing: After web stiffener spacing has been selected,

their size must be determined to satisfy two basic design requirements.

First, the stiffeners must have sufficient axial strength to permit

the web to develop tension field action. Second, the stiffeners must

be rigid enough to prevent buckling of the whole link web as a single

panel.

AISC Specifications [1978] give equations for the design of plate

girder web stiffeners based on the work of Basler [1961J. Even though

plate girder stiffeners must meet requirements similar to the two listed

above, these equations cannot be applied in the design of shear link web

stiff~ners since they are based on elastic solutions. Because of the

inelastic nature of shear link web buckling, an exact solution of the

web stiffener design problem would be extremely complex and impractical

for applications. Therefore, an approximate method must be devised for

sizing of shear link web stiffeners.

Malley and Popov [1982J adapted the tension field theory approach

for sizing the web stiffeners in shear links using a formulation similar

to that employed by Adams, Krentz, and Kulak [1979J. Determination of

the optimum orientation of the tension field and the corresponding solu­

tion of static equilibrium results in the following equation for the web

stiffener axial force, Ps :
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Ps = Futw~ [1 a/h ] (11.12)
V'l + (a/h)2

In this equation, because of strain hardening, the diagonal tensil e

capacity Fu was chosen as the ultimate strength of the material. As

before, t w is the web thickness, a is the stiffener spacing, and h is

the clear distance between the flanges.

Shear link test results indicated that yielding of the stiffeners

does not impair their behavior, and local stiffener buckling did not

occur. Therefore, allowing yielding of the stiffeners and assuming

web participation equal to one-half the flange width, the required area

Ast for two-sided web stiffeners becomes:

(11.13)

(11.14)

For one-sided stiffeners, by modifying the equation for eccentricity

[Basler, 1961J, the required area A~t is:

A~t = 2.4 ( :: _ bf2t w)

In these equations, Ps is the stiffener force defined in Eq. (11.12),

.Fy is the uniaxial yield stress of the stiffener material, bf is the

beam flange width, and t w is the beam web thickness. Even though over

twice as much stiffener material is required, one-sided web stiffening

is likely to be more economical than the two-sided detail because of

the reduced welding costs.

Typically, web stiffeners are detailed so that they do not protrude
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outside the longitudinal edge of the beam flanges. For stiffeners which

just reach the edge of the flanges, the required thickness t st of two­

sided stiffeners is:

(11.15)

For similar stiffeners on one side of the web only, the required thick-

ness, t~t' becomes

t' =st (11.16)

In either case, the stiffener thickness should not be less than the link

web thickness, two

The equations presented above provide a method for satisfying the

axial force requirement. In addition, the web stiffeners must possess

sufficient rigidity to prevent web buckling of the whole link web as a

single panel. This requirement, first noted by Timoshenko [1936], has

been studied extensively for the case of elastic buckling. The most

thorough study of the elastic problem was made by Rockey and Cook [1961,

1962,1964].

The complex nature of inelastic plate buckling problems makes

theoretical solutions for the required bending rigidity of shear link

stiffeners impractical for design purposes. However, it is likely that

the important parameters of the inelastic solution would be similar to

those of the elastic problem. Some insight can therefore be gained by

examining the elastic solutions, such as those presented by Wang [1947]

and Stein and Fra1ich [1949]. These solutions demonstrate that the

most important parameter in the determination of the required stiffener
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bending rigidity is the ratio of the smallest panel dimension to the

web thickness (a/tw)' Since the a/tw ratio for shear links is compara­

tively small, it can be argued that the stiffener flexural rigidity

requirements are unimportant. The test results corroborate this obser­

vation, since no problems with the stiffener bending rigidity were

encountered in any of the stiffened specimens. The bending stiffness

provided by the axial force design method presented above appears to

be sufficient to meet the bending rigidity design requirement.

Stiffener Detailing: The final step in shear link web stiffener

design is determination of the proper details. As the test results

presented earlier indicated, adequately designed one-sided stiffeners

exhibit excellent behavior. The extra material costs are outweighed

by the reduced welding costs, making one-sided web stiffening the more

economical detail.

Additional savings can be realized by relaxing the requirement of

fitting the stiffeners between the link flanges. The experimental work

indicates that only a small reduction of energy dissipation capacity

results from providing stiffeners whose length is slightly smaller than

the clear distance between the link flanges. If this more economical

detail is utilized, the stiffeners can be welded to the bottom flange

as well as the web in an effort to restrain bottom flange buckling.

In typical situations, the concrete floor can be counted upon to pro­

vide some buckling restraint for the unwe1ded top flange, although floor

cracking may make this restraint poor in the event of a major seismic

disturbance. This kind of detailing is shown in Figs. 11.19 to 11.22,

where the top of an unfitted stiffener is kept a distance k below the
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outer face of the beam flange. Per the ASCE Manual [1978J, k is taken

as the distance from the outer face of flange to web toe. In all cases,

the welds should be continuous fillet welds on both sides of the stiff­

eners, meeting AISC Specifications [1978J for minimum and maximum size.

11.3.3.3 Moment Links

As the eccentricity of the bracing elements is increased beyond

emax given in Eq. (11.6), the links progressively exhibit more and more

moment hinge rotation with the associated problem of flange buckling,

in a manner similar to that of typical moment-resisting frames. This

difference in behavior changes the web stiffening requirements for the

longer links.

For link lengths between emax and 2emax ' a transition in inelastic

behavior occurs. For these intermediate lengths the shear link web

stiffener design method presented in the previous section should be

followed to determine the spacing and sizing. But. since moment hinge

action can cause flange buckling in thA regions of large moment at the

ends of the link, the following modification should be included in the

provision of the web stiffeners for these intermediate length links.

The outer stiffeners should be placed no further than 1 to 1~ times

the width of the beam flange, bf • from the ends of these links. This

suggestion is related to some work by Lay [1965J and Popov and Stephen

[1972J. Since the outer stiffeners are provided to control link flange

buckling. they should be placed on both sides of the beam web and welded

to both beam flanges as well as to the web.

For link lengths between 2emax and 3emax ' moment hinge action will
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predominate, and web buckling should no longer be a problem. For links

of these lengths, only the stiffeners placed a distance of 1 to l~ times

the flange width from each end of the link are necessary, as shown in

Fig. 11.24. These stiffeners should be fitted between the beam flanges

on both sides of the beam web since moment hinging can occur in these

regions during severe inelastic action.

For links longer than 3emax ' no web stiffeners appear to be neces­

sary, since the moment hinge rotations become small.

11.3.4 Other Details

As pointed out in Chapter 6, two other aspects of steel joints,

i.e., panel zones and column splices, must be considered in the design

of any steel frame for resisting seismically induced lateral forces.

The recommendations concerning these aspects given in Chapter 6 apply

directly to EBF design. In addition, the following observations can

be made. First, the panel zone deformations in columns of EBFs are

likely to be small compared to those of conventional moment-resisting

frames since the beam sizes should be smaller. Because of this, it is

unlikely that the addition of doubler plates will be required in typi­

cal EBF applications. Second, the column splices must be designed con­

ervatively. Because of the unknown nature of any potential seismic

disturbance, and the redistribution of forces during inelastic activity

in a frame, it is impossible to accurately determine the moments and

shears at the splice locations (see Section 11.1.2).
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11.4 NON-SEISMIC APPLICATION OF ECCENTRIC BRACING

In addition to seismic applications, EBFs may also be advantageous

in other design situations. In fact, as pointed out in Section 11.1.1,

this system was first suggested for architectural reasons in wind

bracing [Spurr, 1930J. The flexibility of brace location inherent to

EBFs can result in fewer obstructions to the architectural features of

a building.

Structures designed to resist wind induced lateral forces are

generally required to respond elastically. If eccentric bracing is

provided, elastic analysis and design methods usually would be employed.

Since active link web buckling will not occur during an elastic response,

web stiffeners are not required for EBFs designed for wind loads. In

addition, the suggested additional safety factor of 1.5 to preclude the

possibility of brace buckling can be relaxed, since the links will not

strain harden. The bolted web, welded flange link-column connection

(see Fig. 6.24a) can be employed in such applications.

Another possible application for eccentric braces can arise because

of the large and expensive connections which result solely from the

geometrical requirement of forcing the centerlines of all the members

to pass through a common working point. These large and expensive con­

centric connections can be avoided by using a detail such as that shown

in Fig. 11.19 or 11.22. An alternative detail, shown in Fig. 11.25,

shows a modified concentric connection which does not require any field

welding. Moving the working point to the face of the column makes the

detail more compact and less expensive.
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11.5 PROJECTED RESEARCH ON EBFs

The results of the research to date have provided some of the needed

information for the design of EBFs. However, there are still some aspects

of analysis and design which have not been fully resolved. The ongoing

and future research as well as the experience gained from design appli­

cations continue to contribute toward a better understanding of EBFs.

None of the previous experiments have addressed the problem of

axial force transfer through the links. A judicious location of the

links, or the use of parallel gathering beams, can minimize the transfer

of large seismically induced axial forces through the links. In order

to study the effects of large axial forces on active links, a number of

tests are planned in which an axial force will be applied in addition

to the shear force F (see Fig. 11.11).

Comprehensive analytical studies on the local active link response

and the global frame behavior are being continued. These studies are

intended to provide rapid analytical procedures for preliminary design

of EBFs based on plastic methods. As indicated in Section 11.1.2, the

elastic design methods do not account for the redistribution of forces

which occur during the inelastic response of an EBF. The critical

importance of the overall frame ductility requires the use of plastic

analysis techniques, at least in the preliminary design process. After

this initial sizing, elastic analysis can be made to check code com­

pliance and the provision for the required frame stiffness.

Additional information on the behavior of EBFs should result from

the current U.S.-Japan Cooperative Research Program [1982-1984J. This
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program will include a set of pseudodynamic tests on a full-size, six­

story eccentrically braced steel building at Tsukuba, Japan. A scale

model of this structure will subsequently be tested at Berkeley.
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(0) ( b) (c) (d)

Fig. 11.1 Alternative Arrangements of Eccentric Bracing, Including
Possible Locations for Architectural Openings.
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Fig. 11.2 Example Frame and Loading Used to Demonstrate the Pre­
liminary Design Method.
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Fig. 11.3 Collapse Mechanisms (Mechanism Motions) in Opposite
Directions Result in Identical Inelastic Activity.
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Fig. 11.4 Plastic Moment Distribution for Example Frame Assuming
20 percent of Shear Equally Distributed Between the
Two Columns.
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Fig. 11.5 Plastic Moment Distribution for Example Frame Obtained
by Direct Plastic Design Procedure.
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Fig. 11.6 Simple Eccentrically Braced Frame.
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Typical Shear-Moment Interaction Diagram for Wide Flange
Sections.
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Fig. 11. 10 Experimental Model (Shown in Middle) Extracted from Two
Possible Prototype Configurations (Top and Bottom).
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Fig. 11.11 Schematic Diagram of Test Set-up. Quasi-Static Force F
is Applied Cyclically.
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Fig. 11.12 Force-Displacement Hysteretic Loops, and Photo of Unstiffened
Specimen #1 at End of Testing.

11-45



200

~ 100
::,;::
~

0::
<! a
lJJ
:I:
(f)

-100

(a )
-3.0 -2.0 -1.0 a 1.0 2.0

DISPLACEMENT (IN)

3.0

(b )

Fig. 11.13 Force-Displacement Hysteretic Loops, and Photo of Specimen
#4 with Three Pairs of Equally Spaced 3/8 in. (10 mm)
Stiffeners at the End of Testing.
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Fig. 11.14 Force-Displacement Hysteretic Loops and Photo of Specimen
#17 with Two 1/2 in. (13 mm) One-Sided Stiffeners at End
of Testing.
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Fig. 11.15 Force-Displacement Hysteretic Loops and Photo of Specimen
#21 with Two 1/2 in. (13 mm) One-Sided Stiffeners Attached
to One of the Beam Flanges and the Web at End of Testing.
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Fig. 11.16 Force-Displacement Hysteretic Loops and Photo of Specimen
#26 with a Fully Welded Connection Detail and Three 3/8 in.
(10 mm) One-Sided Stiffeners at End of Testing.
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Fig. 11.17 Force-Displacement Hysteretic Loops and Photo of Specimen
#28 with a Bolted Web-Welded Flange Connection Detail and
Three 3/8 in. (10 mm) One-Sided Stiffeners.
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Fig. 11.18 Force-Displacement Hysteretic Loops and Photo of Specimen
#25 with Fully Welded Column-Web Connection and Two 1/2 in.
(13 mm) Full Length One-Sided Stiffeners at End of Testing.
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Fig. 11.19 Fully Welded Connection of Shear Link to Column Flange
with Fillet Welds on Shear Tab Showing Stiffener Spacing.
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Fig. 11.20 Fully Welded Connection of Shear Link to Column Flange
with Full Penetration Web Weld Showing Stiffener Spacing.
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Fig. 11.21 Bolted Web, Welded Flange Connection of Shear Link to
Column Flange Showing Stiffener Spacing.
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Fig. 11.22 Recommended Fully Welded Connection of Shear Link to
Column Web.
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Fig. 11. 23 Detail of a Short Shear Link Connection to Column Flange.
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Fig. 11.24 Detail for Typical Interior Link of Moderate Length.
Provide Lateral Braces on Lines B-B.
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Fig. 11.25 Modified Concentric Detail.
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