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ABSTRACT

The purpose of the research reported here was to assess the feasibility of the base isolation
method for the rehabilitation of existing buildings that do not conform to current seismic code
requirements. The number of unreinforced masonry buildings in California is estimated to be
as great as 100,000. Many of these buildings will be demolished rather than strengthened due
to the problems associated with the conventional procedure which involves adding new struc
tural elements such as shear walls, internal frames or bracing. The economic feasibility of base
isolation as a method of rehabilitation has been demonstrated by undertaking a specific project.
For this purpose, a building in San Francisco was selected for a design study. The exterior of
the building, constructed in 1912 as a Masonic Hall, is handsome and the interior elegantly
finished. It must be made to conform to the current San Francisco seismic code and this,
under conventional rehabilitation, would be extremely destructive to the interior of the building
and extremely costly. The building has proved to be a difficult one to rehabilitate by base isola
tion due to its unusual configuration. The one wall of the Masonic Hall that is in contact with
an adjacent building must be cut. The unusual structural configuration of the Hall has also ren
dered analysis of the structural framing system difficult. However, a base isolation rehabilita
tion scheme has been developed, drawings have been prepared and the cost to implement the
scheme has been estimated. This estimate is comparable to that for a conventional rehabilita
tion. That a practical rehabilitation scheme for an unusually difficult building has been
developed indicates that suitable rehabilitation strategies using the concept of base isolation for
typical masonry buildings are possible. Given the large number of buildings at hazard in seism
ically active regions of the United States, it is clear that base isolation has been demonstrated to
be a viable strategy. Substantial building replacement costs will be avoided and the safety of
buildings so rehabilitated greatly enhanced.
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1. INTRODUCTION

Before the 1933 Long Beach earthquake, earthquake resistant design was not required by the
building ordinances of any of the large metropolitan areas of California. The 1927 edition of
the Uniform Building Code included earthquake design only as an option. Many structures of
masonry or lightly reinforced concrete construction were built in this era and are in use today in
the San Francisco and Los Angeles metropolitan areas. Although most will eventually be
replaced, there are many with architectural or historical significance that justifies their retention
and the costs of their rehabilitation.

The damage to a building by an earthquake is caused by the horizontal ground movements that
cause the building to vibrate producing accelerations at the higher levels of the building that
exceed those at the ground level. It is generally accepted that a building must have a lateral
force resisting system that combines both strength and ductility to resist the forces induced by
these movements. In a new building these characteristics can readily be provided by using
moment resisting frames in steel or reinforced concrete with appropriately detailed beam
column connections, but the development of ductility implies some damage. Further, while the
structure may be saved by strengthening, higher forces may be transmitted to the nonstructural
components and to the contents, and the danger to the occupants may be increased. A
different approach to the protection of buildings from earthquake, that of base isolation, has
recently become a practical possibiiity.

Base isolation is a strategy for reducing the effects of earthquake on buildings by the use of a
number of possible mechanisms which uecouple the building from the horizontal components
of the earthquake ground motion and simultaneously support the vertical weight of the struc
ture. While many base isolation systems have been proposed over the years, until recently
none has been considered sufficiently practical to be implemented. With the development of
multilayer elastomeric bearings, the concept has become a practical possibility. The bearings for
use in aseismic isolation systems for buildings are a development of elastomeric bridge bear
ings. The vertical stiffness of the bearings is high and the horizontal stiffness low. Many years
of experience with bridge bearings have shown that they are equivalently as strong and reliable
as reinforced concrete components in bridges. Recognition of the engineering qualities of elas
tomeric bearings has led to their application in aseismic base isolated in several countries, but
not so far in the United States.

Considerable research supported by the National Science Foundation and the Malaysian Rubber
Producers' Research Association has been carried out on base isolation at the Earthquake Simu
lator Laboratory of the Earthquake Engineering Research Center of the University of Califor
nia, Berkeley, on the large square shaking table at that facility. This research has established
that the base isolation of structures is technically feasible. The remaining unanswered ques
tions pertain to its economic feasibility. The projects completed or under way in countries
other than the United States suggest that the concept is economical for new buildings.

The purpose of the research reported here was to assess the economic feasibility of the method
as a strategy for the rehabilitation of existing buildings that do not conform to current seismic
code requirements. The number of masonry buildings in California is estimated to be as great
as 100,000. Many of these buildings will be demolished rather than strengthened due to the
problems associated with the conventional rehabilitation procedure. This procedure involves
adding new structural elements such as shear walls, internal frames or bracings. In many cases,
these elements eliminate usable space in the interior of the structure. If base isolation were
used, the alterations to the building would be primarily to the foundation. A building in San
Francisco has been selected for a design study. The building was constructed in 1912 as a
Masonic Hall. The exterior is handsome and the interior elegantly furnished. It is of sufficient
architectural merit and in such a location that it could not be demolished without public outcry.
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Due to an intended change in use, however, it must be made to conform to the current San
Francisco seismic code. Conventional rehabilitation would be extremely destructive to the inte
rior of the building.

The internal structure of the building is unusual and has complicated the analysis of the fram
ing system. In some parts of the building the quality of the concrete is questionable and one of
the exterior walls is in contact with that of an adjacent structure. A base isolation rehabilitation
scheme has been developed, drawings have been prepared and the cost of the scheme has been
estimated. A comparative conventional rehabilitation scheme has also been developed and its
cost estimated. The base isolation scheme is superior to the conventional rehabilitation and will
provide greater protection than required by code for rehabilitated buildings. In the base isola
tion scheme the exterior wall in contact with the adjacent building will be cut and a seismic gap
provided between the two buildings. In the conventional scheme, this wall will remain, causing
an interaction between the contacting buildings and negating to a certain extent the benefits of
the rehabilitation procedure. Any conventional scheme would also considerably damage the
interior of the building. Restoration of the fine interior to its original condition is an expense
not included in the cost estimate. Even when the cost of cutting the common wall is included,
the base isolation scheme is not more expensive than the conventional scheme, and if the costs
of restoring the interior could be reliably estimated and included, the conventional scheme
would cost much more.
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2. THE MASONIC HALL

The former Masonic Building was designed in 1911 by the well-known San Francisco architec
tural firm of Bliss and Faville. In styling it is neo-Italian-Renaissance and although it is seven
stories high it. is much taller than a seven-story building would ordinarily be. The elegance. of
the exterior is shown in the Bliss-Faville elevations (Figures 1 through 4) and the fact that the
exterior has been well maintained is shown in the recent photograph (Figure 5).

The building was designed for a Masonic order and, as such, consists of two-story reception
rooms, banquet rooms, a drill hall with sprung wood floor, and other lodges together with a
commandery hall (SOO-seat theatre), an imposing architectural space a full three stories in
height topped by a domed ceiling. The building was abandoned by the Masonic Order (at their
structural engineer's request) when they moved to larger modern quarters in 1951 but the
drama of the interior remains (Figures 6 and 7). The interior of the building is lavishly eclec
tic, generally of fine carved wood paneling, parquet and marble floors, and ornate vaulted
ribbed ceilings. The building would make an ideal performing arts center. It has a theatre and
any of the larger meeting rooms could become recital halls or performance and rehearsal rooms.
Many of the meeting rooms have double walls that were originally designed to separate them
acoustically from adjacent rooms, and to create an architectural shell within a structural shell.
The sound insulation which results makes them even more attractive for this type of use.
Some rooms have loft pipe organs-there are six in the building-all of which are functional. It
would be essential in any rehabilitation scheme that these architectural details be preserved.
The building is within two blocks of the Civic Center, the Opera House and the new Davies
Symphony Hall which have become the focal point of the arts in San Francisco.

Given the uniqueness of the building and its potential when rehabilitated, it is clear that any
scheme used to bring the structure into conformity with the seismic requirements of the city
must be carefully designed to preserve the special character of the building.



- 4 -

3. STRUCTURAL CHARACTERISTICS OF THE MASONIC HALL

The structural system of the building is quite standard for its era although it is uncommon in
modern structural engineering practice. The three principal elevations-the north, south and
east elevations-all front onto streets and, as such, are architecturally imposing, consisting of a
window arch colonade dressed in marble from the ground to the midheight of the second floor.
Granite facing continues to the parapet of the building. The Gothic arch windows are repeated
again from the fourth floor to the midheight of the fifth floor and are narrower in width. At
the attic there is a line of small windows. Above this is a fluted Gothic frieze cantilevered out
to form the parapet of the building.

The building has six levels, including an extended basement which is 110 ft. 9 in. (33.76 m) in
height, 116 f1. 2 in. (35.41 m) in width and 154 f1. 2 in. (46.99 m) in length. The fenestration
between Levels 1 and 2 as shown in the elevations (Figures 1 through 4) produces a structure
that has a soft story at this level when compared to the stiffness of the level above. A soft
story occurs again between Levels 4 and 5, again due to window openings as shown in the
elevations. The interior wood paneled walls are mounted on a metal lath and plaster construc
tion base. These walls are positioned for acoustic reasons so as to allow an access space up to 3
ft. (0.9 m) in width where the interior walls flank the exterior structural walls. Within the core
of the building these interior walls are designed to cover the interior columns leaving an access
space between these walls. The exterior architectural surfaces are tied to a concrete spandrel
wall frame which is cast around a structural steel girder floor and column system that is the
principal load-carrying system of the building.

The consulting engineers at the time, Galloway and Markwart, designed the structure with typi
cal concrete encased beams spaced at approximately 7 f1. (2.13 m) on center supporting a 3.5
in. (89 mm) deep concrete slab with about 0.17 sq. in. (110 sq. mm) of square bar reinforce
ment per foot. This secondary beam system spans an average of 20 ft. (6.1 m) and is carried
by girders or built-up girders to the columns. The columns typically are built-up sections with
flanges composed of a 7/8 in. (22 mm) cover plate attached to angles in turn attached to a 7/8
in. (22 mm) web plate that forms a column typically 18 in. x 18 in. (457 mm x 457 mm) at
the ground floor/basement level, which reduces to 12 in. x 12 in. (305 mm x 305 mm) at
Level 6. The columns are supported on a iron base plate cast with stiffening ribs and set on a
concrete footing. The built-up column is bolted to the cast iron base. All the connections are
riveted and consist of 3/4 in. (19 mm) or 7/8 in. (22 mm) diameter rivets.

The connections are generally of the shear type for beam to girder connections. The moment
capacity of the girder to column connections is limited. The moment connection is achieved by
angles riveted from the column flanges to the girder flanges. A system of two 32 f1. 6 in. (9.91
m) deep trusses extending from Levels 2 to 4 and spanning some 62 ft. (18.9 m), shown on
the longitudinal section (Figure 8), supports the commandery hall (Figure 6) and the ceiling of
a large assembly room below. The truss consists of riveted plates and sections encased in con
crete for fireproofing. The truss diagonals transfer lateral loads from Levels 4 to 2. The truss
is not visible internally as wood paneling walls cover the truss from Level 2 to the underside of
Level 4 and form the banquet room.

Above the commandery hall is a dome which has been modified to a lower profile to incor
porate a shallow plaster dome ceiling. The exterior wall arch window colonade at Level 1 gives
an average concrete column dimension of 5 f1. 6 in. (2.08 m). A deep spandrel wall is above
the arches with relatively few window openings up to the underside of the windows on Level 4.
At Level 4 the arch windows continue but are narrower and increase the average concrete
column width dimension to 12 ft. 3 in. (3.73 m). At the attic, Level 6, the small dormer win
dows reduce the average concrete column width dimension to 6 ft. 10 in. (2.08 m). The span
drel wall is solid and continues up to the parapet level.
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From the basement to the first floor only, the steel columns are fireproofed by concrete, reduc
ing the column dimension to 2 ft. (610 mm) square. The basement at this point extends out
under the city pavement. Any shear derived from earthquake forces would have to be
transferred at this level through the sidewalk diaphragm to the retaining walls. The rear. wall of
the building is partially in contact with an adjacent building and is formed of completely east
in-place concrete with relatively few window openings. These look out onto a light well formed
by the two buildings.

Various room functions and the architectural design lead to a variety of floor shapes at each
level. There are many additional irregularities in the interior of the building producing a wide
variety of column loads. Levels 1, 2, 4 and 7-the roof level-are rigid diaphragms. Levels 3,
5 and 6 are unsupported mezzanines cantilevered from the exterior walls, with varied openings
and shapes which make diaphragm action difficult without additional horizontal bracing. New
central core walls would be required to collect the horizontal seismic forces generated by these
floors. Examples of the many unsupported, randomly braced diaphragms with no lateral resis
tance are shown in the plan view of Figure 9. There are no lateral resisting elements to restrain
the mass associated with these mezzanines except for the piers along one edge. A longitudinal
section (north/south) is shown in Figure 8 and a transverse section in Figure 10. A plan of the
basement is shown in Figure 11.

The building in its existing condition was modeled dynamically and was found to be unable to
withstand a seismic loading greater than 0.05g. The major structural weakness lies in the low
strength concrete of the colonade spandrel walls poured around the steel frame. The contribu
tion of the steel frame located on the neutral axis of the columns is negligible. The entire
lateral force resistance is provided by the perimeter concrete arch colonade.
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4. CONVENTIONAL REHABILITATION SCHEME

A conventional design was developed to bring the Masonic Hall up to code. In view of the
poor concrete strength of exterior wall, the design was intended to provide an internally stiff
earthquake-resisting system. New shear walls would be located at several places within the
building to minimize interference with the open spaces and meeting rooms. Shear walls would
be positioned in the central core to absorb the loads from the floating mezzanine floors (Levels
3, 5, and 6) and to restrain the building in the north-south direction. At the unsupported mez
zanines the slabs would have to be extended to connect them to the new shear walls. In addi
tion, extensive work would be required at all levels. The central core shear walls would be
located in duct spaces or vent shaft areas to minimize damage to the interior wood paneled
walls. Other shear walls would be located around the perimeter to support the existing rigid
diaphragms formed by Levels 1, 2, 4 and 7, and to tie into the existing spandrel walls.
Diaphragm flanges would have to be reinforced to resist high tension and compression forces.
The introduction of shear walls would have a major effect on the interior of the building. The
locations of these shear walls are shown in Figures 12 through 16. Longitudinal and transverse
sections are shown in Figures 17 and 18.

The shear walls would be positioned between the existing steel columns and typically would
span one column bay. The existing steel column would form part of the main tension steel or
compression steel of the shear wall. In the case of the exterior walls, the existing columns
would generally be eccentric to the new shear walls. A new steel member would have to be
welded to the existing column and embedded in the new shear wall. This would not only pro
vide steel reinforcement but would also use the existing column dead load forces to counteract
overturning. An opening could be cut at each floor level. A connection to the concrete span
drel beam/steel frame system could be cast into the shear wall at that level to act as a general
diaphragm collector.

Above the second floor, the existing architectural shell mentioned earlier might have to be
removed at various points to allow the new shear walls to be constructed. The cost of this pro
cedure would depend on whether the original architecture was replaced or rebuilt. Reproducing
the work of the craftsmen of 1911 would certainly be more expensive than demolishing the
existing work and replacing it with modern materials. In the central core adjacent to the eleva
tor shaft the same technique would be adopted by creating a shear wall between existing
columns stripped of their concrete fireproofing.

Additional cover plates would be welded to the existing steel column to form a box section that
would be needed at the junction where the north/south and east/west shear walls intersect that
column. At the other end of this shear wall, a cover plate would be welded to the existing
column, again forming a box section. Due to the seismic shear loads acting on the east/west
central core, the wall would be three column bays in width for a length of 48 ft. 04.63 m) at
the basement (Figure 17) and would be continued at this dimension to Level 3. At this point,
the shear wall would be reduced to two bays up to Level 6, and further reduced to one bay to
engage the roof diaphragm. The shear walls with a concrete strength of fc'= 4,000 psi (27.58
MPa) have been designed to take the full seismic loads required by the San Francisco building
code, which in a shear wall building would be due to a base shear of 0.186g. The concrete floor
diaphragms at Levels 3 and 5 would act in the north/south direction and would require addi
tional steel cross bracing under the existing concrete floor to accommodate the resulting shears
and chord stresses.

The concrete floor diaphragms at the other levels would require local steel reinforcement to
transfer the chord and shear stresses to the new shear walls. Generally the existing steel fram
ing member at the diaphragm boundary would absorb the resulting chord stresses. The 3.5 in.
(89 mm) slab can accommodate the horizontal diaphragm shear stresses.
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The foundation would contribute a major part to the expense in the conventional rehabilitation.
The existing footings would also have to be strengthened not only to resist the seismic forces
generated by these shear walls but also to support the additional weight of the walls themselves.
Columns would have to be temporarily supported while the existing concrete footings were
removed and new footings cast. A major problem was encountered with the central core shear
walls in the east/west direction. The new concrete footing would have to be extended to
engage the foundations of the adjacent columns and to reduce these pressures. This would
have to be done to counter the high soil pressure produced by seismic overturning forces. The
shear wall at the west elevation would pose a similar problem in that the existing retaining wall
would have to be underpinned in sections during construction of the new footing.

In the conventional scheme the fact that the rear wall of the adjoining building is cast against
the rear wall of the Masonic Hall is ignored. Under the present code a 4 in. (102 mm) expan
sion joint should be provided between two adjacent buildings. When the building was con
structed in 1912, however, this was not considered necessary. If the conventional scheme were
to provide for this seismic gap, the cost of the rehabilitation would increase significantly. Any
rehabilitation scheme that does not provide a seismic gap to a neighboring building will be
suspect as seismic loads from that building could compromise the scheme. The connected
structures will interact strongly during a seismic attack.
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5. BASE ISOLATION REHABILITATION SCHEME

Base isolation is an alternative approach to the rehabilitation of old buildings, and may be cost
effective in life safety, structural strengthening and maintenance. The base isolation rehabilita
tion scheme was designed to protect the structure from an O.4g peak acceleration earthquake
with a response spectrum as given by the ATC-3-06 [l] recommendations (Figure 19). This is
a much more severe design criterion than that currently required by the city of San Francisco,
but was selected to demonstrate what could be achieved by this approach.

The first step in the design of the base isolation system is to determine the distribution of
column loads. This was accomplished by estimating the weight of the various components of
the existing building and including an allowance for fixed equipment and furniture. A total of
75 columns support a dead load of 9,000 tons (8,165 tonnes) and a live load of 6,000 tons
(5,443 tonnes). The loads carried by individual columns vary widely. The lightest loaded
column carries as little as 20 tons (18 tonnes); the heaviest carries in excess of 600 tons (544
tonnes). The distribution of column loads is shown in Figure 20. The load of each column is
given in Table 1. The largest practical size of bearing with current technology is around 24 in.
(680 mm) square or 28 in. (711 mm) in diameter if circular. A bearing of this size can,
depending on the design and the elastomer which is used, carry a load in the range 150-200
tons (136-181 tonnes). For this reason a 24-in. square bearing was taken as the largest bearing
to be used and nominally denoted as a 150-ton bearing. A study was carried out to determine
the best distribution of bearing sizes and numbers under each column to minimize the number
of sizes of bearing that will need to be made. The range is from 50 tons (45 tonnes) nominal
load to 150 tons (136 tonnes), and one, two or four bearings are located under each column.
Details of the bearing selection and design of the individual sizes are given in reference 2. The
design selected uses seven different bearings. Each uses a natural rubber compound with a
hardness of 60 IRHD. The maximum difference between the nominal load at a bearing cluster
and the estimated column load on the bearing cluster is not more than 10%. Considering the
approximate nature of the column load calculation this is completely adequate. In addition to
natural rubber bearings a number of teflon bearings will be used to carry light loads below 50
tons (45 tonnes) and to reduce the span lengths for certain slabs.

A plan view and longitudinal and transverse sections of the isolated building are shown in Fig
ures 21 through 23

Since horizontal loads in the existing building are transferred into the pavement diaphragm
above the basement level, the basement level columns can carry only vertical load. When the
ground floor slab is isolated from the perimeter walls some method of providing lateral stiffness
to these columns is needed. The method selected is to introduce a double set of shear walls
between Levels 0 and 1. These added shear walls were carried to Level 2 to improve the
transfer of horizontal force from the higher levels of the building in the soft story region.

Only that part of the rear wall in contact with the adjacent building need be cut away and a new
curtain wall built to provide a seismic gap between the two structures (Figure 25).

The retaining wall at the back of the building must be separated from the floor slab and isola
tion bearings added. Column piers would have to be added to strengthen the retaining wall so
that it could support new bearings under the new rear wall and the existing steel column. A
plan and a section of how this will be accomplished are shown in Figure 26. A detailed diagram
of the isolation joint at the perimeter of the building is given in Figure 27. The elevator and
elevator guide rail would need to be isolated similarly (Figure 28).

An isolation joint would be necessary on the three sides of the building at the sidewalk to allow
relative motion of the building and could be provided by sliding steel plates. The isolation joint
would, however, require that sidewalk supports be added where the existing sidewalk now
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frames the building. For both structural schemes the basement of the building must be
modified. The conventional scheme would require that the existing footings under the new
shear walls be demolished. Larger footings would then be placed to accommodate the increased
loads from seismic forces. The base isolation approach would not require larger footings but a
structural slab would have to be used to provide base fixity to the columns and ensure uniform
movement of all columns under dynamic load.

In the base isolation rehabilitation the new slab would be poured directly over the existing slab
using cardboard forms that would remain in place. Teflon pad supports would be provided
where the span of the self-supporting slab would be reduced to maintain a reasonable thickness
(Figure 29). Where the column loads would be great enough to require more than a single
bearing, large steel shearheads (Figure 30) have been designed with built-in jacking points to
carry the existing columns in the structure once they were jacked up and cut free of the existing
foundations. The shearheads were also designed evenly to distribute the column loads to the
bearing cluster once the jacking devices were removed and the column lowered to its final posi
tion.

Both the shear and compression stiffnesses of the bearings were designed to be directly propor
tional to the load from each column to maintain a constant vertical natural frequency
throughout the structure. The height of the rubber in the bearings is approximately 8 in. (203
mm). The bearing design will provide an equivalent viscous damping in the isolation mode of
5% which translates to a maximum building displacement of 8 in. (203 mm) based on the
ATC-3-06 spectrum with a peak acceleration input of O.4g. With a sway displacement of 8 in.
(203 mm), the maximum shear strain would be 100%, well within the shear strain level that
can be sustained by rubber without damage.

The shearheads will provide a future jacking capability under the columns should the bearings
require maintenance or should the column loads change significantly.
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6. DESIGN AND TESTING OF ISOLATION BEARINGS

The total weight of the structure is approximately 15,700 tons (14,000 tonnes) and there are 75
columns. Each column carries a different vertical load (Figure 20). There is therefore a prob
lem in selecting the bearing sizes to restrict the number that would have to be manufactured.
The predicted maximum displacement of 8 in. (203 mm) suggests a total thickness of rubber of
approximately 8 in. (203 mm) to restrict the shear strain in the rubber to 100%. It is generally
considered desirable to have the minimum plan dimension of the bearings be twice the max
imum displacement to accommodate a lateral displacement of 8 in. (203 mm) under the vertical
load. This cannot be achieved for some of the more lightly loaded bearings but provided that
most of the load is carried by bearings with a minimum plan dimension greater than 16 in. (410
mm) this should be no problem. For ease in manufacturing, the largest possible bearings were
taken to be 24 in. (610 mm).

A number of possible schemes were considered and the one selected uses one, two or four
bearings to carry the column loads. In this scheme both the horizontal and vertical stiffnesses
under the supported columns are proportional to the load for each column. The column loads
for which each bearing is to be designed are given in Table 1. The design comprises seven
bearings in 60 IRHD rubber with the supported load ranging from 50 tons to 158 tons (45
tonnes to 136 tonnes) in 20% increments. The characteristics of the bearings are given in Table
2 and the numbers required of each bearing are given in Table 3. The buckling load for each
bearing type was estimated using the method outlined on reference 3 and the values obtained
are given in Table 2. The least safety factor against buckling is for the smallest bearing, 50 tons
(45 tonnes), and the greatest for the largest, 150 tons (136 tonnes).

The design of the isolation system finally selected led to a number of bearings of each type
being proportioned to have horizontal and vertical stiffnesses appropriate to a working vertical
load which varied from a minimum of 50 tons (45 tonnes) to a maximum of 150 tons (136
tonnes). The dynamic analysis of the building when isolated predicted a design maximum dis
placement for the bearings of 8 in. (203 mm). Two sets of bearings were ordered from a com
mercial rubber company for testing to verify that the bearings would produce the required
stiffnesses and be capable of sustaining the required horizontal displacement under the vertical
load. Four of the largest bearings, 150 tons (136 tonnes), and the smallest, 50 tons (45
tonnes), were manufactured.

The ISO-ton bearings were roughly 20 in. (508 mm) by 24 in. (610 mm) in plan and 10 in.
(250 mm) high. They contained ten layers of rubber 0.75 in. (20 mm) thick and nine steel
plates 0.125 in. (3 mm) thick. Two 1 in. (25.4 mm) end plates top and bottom were included.
A cross section of one of the bearings sawn through after testing is shown in Figure 31. The
50-ton bearings were 12 in. (305 mm) by 14 in. (356 mm) and 10.9 in. (277 mm) high. They
contained eighteen layers of rubber 0.45 in. (11 mm) thick and seventeen steel plates 0.125 in.
(3 mm) thick. Two 0.5 in. (12 mm) end plates completed the bearing. The rubber hardness in
each bearing was 60 IRHD.

The bearings were tested in a test rig specially designed and constructed for this test. In this
test rig four bearings were loaded simultaneously. It is necessary to test the bearings in sets of
four. Previous experience with testing smaller bearings had shown that when the bearings are
tested in pairs, as is the conventional practice for bridge bearings, the application of a large hor
izontal load produces large moments at the top and bottom of the bearings which must be
resisted by the testing machine. Most commercial testing machines are not capable of resisting
these moments and the accuracy of the end conditions and of the load measurement is suspect.
This phenomenon persists even when the horizontal load applied to the bearings is absorbed by
the test rig and is not reacted to by the testing machine, as was the case in previous tests. The
four-bearing test rig applies the horizontal load to the bearings by means of a jack placed
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between each pair and the end moments are absorbed by large steel wide flange beams top and
bottom. The test rig set up in the 4,000,000 lb Southwark-Emery Universal Testing Machine of
the University of California at the Richmond Field Station is shown in the photograph (Figure
32).

A 1.5 in. (38 mm) thick steel bearing plate was welded to the cross beams top and bottom and
the ISO-ton bearings were connected to these plates by threaded studs screwed into holes drilled
in the top end plates of the bearings. The same studs were used to connect the bearings to the
large steel boxes that were used to apply the horizontal loads generated by the hydraulic jack to
each pair of bearings. These steel boxes were fabricated from 2 in. (51 mm) thick steel plate
and are roughly 20 in. (508 mm) on side. This method of connecting the bearings to the boxes
and to the bearing plates was subsequently found to be a source of failure in the bearings and
was not used for the 50-ton bearings. These were merely keyed to the boxes and the bearing
plates by short cylindrical shear keys. In the first method of attachment the leading edge of the
bearings tends to lift up but is constrained to remain in contact with the adjacent surface. This
causes tension in the rubber in that region. In the second the bearing edge is able to lift up and
the tension in the rubber is reduced.

The ISO-ton bearings were loaded several times with a vertical load equal to and exceeding the
working load to verify that the required vertical stiffness had been achieved in the manufactur
ing process. The test rig with four bearings was then loaded to the vertical working load of 150
tons per bearing (136 tonnes)and horizontal load was applied to the two stacks of bearings by
the hydraulic jack while the vertical load was maintained constant. Since the required horizon
tal displacement was 8 in. (203 mm), the bearings were loaded through several cycles of hor
izontal displacement of 8 in. (203 mm) to verify the horizontal stiffness and to estimate the
damping in the rubber.

The bearings were then tested to determine the maximum displacement to which they could be
subjected. At a deflection of 10 in. (254 mm) one of the bearings failed in tension and the test
was terminated. A hole, drilled into an end plate to take the locating studs, had gone through
the end plate to the rubber layer below. The edge of the hole had a sharp lip of steel that acted
as a focus for a crack which spread over the steel and rubber interface and eventually produced
the failure. This result made it impossible to determine the stability limit of the bearings but
clearly demonstrated that the method used to locate the bearings was unsatisfactory. In the test
of the 50-ton bearings the location method was changed. During construction of the bearings
the steel plates were held in place by locating mandrels through the bearings. The holes for
these mandrels remained after the bearings were vulcanized and were used for cylindrical shear
keys which transmitted the horizontal loads to the bearings. In addition to requiring no drilling,
with the risk of damaging the bond interface, these shear keys allowed the end plates to lift up.

The 50-ton bearings were similarly loaded vertically several times. Then under a constant verti
cal load of 50 tons (45 tonnes) each, they were loaded horizontally to 8 in. (203 mm) several
times. They were then loaded to a maximum horizontal displacement of 9 in. (230 mm). The
appearance of one of the bearings at 9 in. (230 mm) displacement is shown in Figure 33, indi
cating the uplift at the leading edge of the bearing and the shear key. The 50-tonne bearings
were needed for further tests and were unloaded and removed from the rig. Two were subse
quently loaded vertically to buckling in a smaller test machine. The buckling load was 310,000
Ibs (141 tonnes).

The tests demonstrate that an 8 in. (203 mm) horizontal displacement under vertical load is
well within the capabilities of these bearings. The crucial factor is the ratio of the horizontal
displacement to the least horizontal plan dimension. Shear strain is not a limiting factor. If
larger displacements are needed to satisfy a more severe design spectrum they can be obtained
by increasing the plan dimensions of the bearings. The horizontal stiffness can be maintained
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by decreasing the rubber hardness and thereby reducing the shear modulus of the rubber or by
increasing the total thickness of rubber. This may of course reduce the buckling load of the
bearings but as shown here the safety factor against buckling is so high that a reduction in
buckling load would not be critical.



- 13 -

7. DYNAMIC ANALYSES COMPARISONS

The degree of protection afforded existing buildings by a rehabilitation scheme would normally
be assessed by the seismic design requirements of the Uniform Building Code (VBC) [4] of the
International Conference of Building Officials. This code assumes that the stresses developed in
a building during an earthquake can be satisfactorily estimated by an equivalent static load.
Since the maximum stresses in the structure occur at different times and result from the action
of several modes, the stresses produced by a static load will only approximate the dynamic
stresses. The method leads to a design that performs satisfactorily under earthquake loading for
buildings that are reasonably regular and simply configured. A building on a rubber base isola
tion system cannot be directly analyzed by such a simple procedure. Base isolation achieves its
beneficial result through dynamic effects and the presence of the large discontinuity in shear
stiffness at the isolation level makes the building structurally unusual.

Two types of analyses have been carried out for the alternative structural forms of the building
in its existing and rehabilitated conditions. The existing building and the building as conven
tionally rehabilitated have been analyzed by the approach recommended by the DBC. The
existing building and the building when rehabilitated both conventionally and by base isolation
have been analyzed using multi-mode dynamic analysis and the design spectrum recommended
in the Tentative Provisions for the Development of Seismic Regulations for Buildings (ATC-3
06) prepared by the Applied Technology Council. For San Francisco this proposed code recom
mends the ground motion spectrum shown in Figure 19. The spectrum is based on a peak
ground acceleration of O.4g and assumes 5% damping. The spectrum for stiff soil in the range
0.4 sec. period to 3.0 sec. period is based on a constant spectral velocity of 2.0 fUsee (61
em/sec). Dynamic analyses were performed and the results compared. All systems were stu
died using elastic analysis and unreduced stresses. If one or the other of the various analyses
were to be used for permit application and the ATC-3-06 recommendations were to be fol
lowed, reduction factors would be used. Since such reduction factors depend on the judgment
of the design engineer, they were not considered in the comparison. Although the DEC impli
citly incorporates reduction factors, the ATC-3-06 requirements are explicit. The stress calcu
lated using the DBC recommended method will be lower than those calculated using the ATC
3-06 method in which reduction factors are not considered.

The building was modeled using the standard computer program TABS 80. The floors were
idealized as rigid diaphragms and the beams, columns and walls as frames. The program can
perform static (equivalent lateral load) analysis and multi-mode dynamic linear elastic analysis.

The existing structure was first analyzed using the DBC criteria and a base shear coefficient of
0.13. The structural system was found to be severely overstressed. The diagonal in the two
story truss was stressed to 174% of allowable stress and the piers at Levels 2 and 3 were
stressed to 140% and 130%, respectively. This DBC analysis was based on an assumed
1/=2,380 psi (16.41 MPa) for the concrete in the piers, which are the important structural ele
ments in this configuration. This concrete strength was obtained from Schmidt hammer results.
The fundamental periods of the building in the two directions were roughly 1.0 sec. for this
concrete strength.

The existing structure was then analyzed dynamically using the ATC-3-06 spectrum. The base
shear in the two directions is given in Table 4. The resulting overstress factors are shown in
Tables 5 and 6. The diagonal in the truss is 457% of allowable and the piers at all levels are
above 100% allowable stress with a maximum at Level 2 of 406%. In an attempt to determine
to what extent the overstress in the existing building could be reduced by stiffening the soft
story to Level 2, it was assumed that shear walls up to the second floor level were inserted into
certain of the bays in the facades at this level. In this case some improvement was noted as
indicated in Tables 5 and 6, but the building remained seriously overstressed.
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A full-scale conventional rehabilitation scheme was then designed and analyzed. This scheme,
described in detail in an earlier section, would result in a building with periods of 0.48 sec. and
0.49 sec. in the longitudinal and transverse directions, respectively, and a base shear coefficient
of 0.722 and 0.589 in these directions. The loads result in serious overstresses in several areas
but this would not be considered important as the main load carrying elements would be the
new system of shear walls which would not be overstressed when the reduction factors were
used. The new system of shear walls would, however, transmit high loads to the two story
truss and the diagonal would have to be reinforced. When the UBC approach is used to analyze
the conventional rehabilitation scheme, the design base shear coefficient is 0.186 in both direc
tions and the stresses generally below the permissible <Tables 5 and 6). The conventional
scheme would be permissible under the UBC.

The base isolation rehabilitation scheme was similarly analyzed for the ATC-3-06 spectrum.
The shear stiffnesses used for the bearings were based on a period of 2.0 sec. for the building
considered as a rigid body above the isolators. Due to the flexibility of the structure, the
periods calculated by the program are slightly greater than this, namely 2.11 and 2.12 sec. in the
longitudinal and transverse directions, respectively.. The base shear coefficients in the two
directions are 0.195 and 0.185, respectively, and the stresses would be everywhere less than
allowable. The diagonal member in the truss would slightly exceed the static allowable, but
since the member is steel it would be permitted an overstress of 33% above the static level.
The stresses calculated for the base isolation scheme are very much less than those calculated
for the conventional procedure under comparable conditions, namely ATC-3-06 analysis. The
conventional scheme would be acceptable under the current UBC Code. Although the base iso
lation scheme cannot be assessed under the current code, it is clearly within its limitations.

The various mode shapes and story shear forces generated by the analysis are shown in Figures
34 to 37. Figure 34 shows the mode shapes of the existing building and Figure 35 those when
two story high shear walls are inserted into the existing building. The mode shapes for the con
ventional rehabilitation are shown in Figure 36 and those for the base isolated building in Fig
ure 37. The story shear forces generated by the ATC-3-06 input for the various configurations
are shown in Figure 38.

The displacement of the center of mass of the building on the basis of the ATC-3-06 spectrum
is 8 in. (203 mm). The torsion of the building on the isolation system might produce corner
displacements which would exceed this. Since the analysis of the torsion of the building cannot
be adequately performed using the computer program, an analysis was performed in which the
building was treated as a rigid body on the isolators and subjected to earthquake input. This
analysis is described in detail in reference 5.

An elastomeric rubber bearing designed for a specific vertical load has an identical translational
stiffness in each of the two horizontal axes. The center of mass of the superstructure of a base
isolated building would coincide with the center of rigidity of the bearing pads, if pads under
each of the columns were designed so as to carry precisely the vertical loads and to have the
desired lateral stiffness. In practice, this ideal situation can rarely be expected and there is
always an eccentricity between the centers of mass and rigidity.

The lateral and torsional motions of the structure are coupled if the centers of mass and rigidity
do not coincide. The dynamic response of such a structure is complicated when the natural fre
quencies of the lower modes are closely spaced. This will inevitably happen when a regularly
shaped building is mounted on rubber isolation bearings.

The analytical solution for the motion of a base isolated structure which typically has a small
eccentricity of the center of mass of the superstructure with respect to the center of rigidity of
the bearing pads is described in reference 5. Such a structure has its first three natural frequen
cies clustered around the design frequency of the bearings. In the theoretical analysis it is
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shown that for an undamped system the coupling between lateral and torsional motions can
produce a corner displacement which is larger than that for the center of mass. However, this
maximum displacement is achieved after a great many cycles of vibration. Damping even at
the modest level of 5%, as assumed here for the bearings, has the effect of absorbing the
motion before the peak is reached. The result of the study is that for this building, even
assuming an eccentricity of 5% of the building length between the stiffness and mass centers of
the system, the effect of torsion on the corner motion is negligible.

Throughout the dynamic analysis of the base isolated building, it has been assumed that the
rubber will produce an effective damping of 5% of equivalent viscous damping in the isolated
mode. In fact, in the shake table experiments [6-8] the damping achieved in the bearings has
been higher than this and there are indications that 10% equivalent viscous damping could in
some situations be a realistic assumption. At this level the stresses in the structure and the dis
placements would be reduced. The physical nature of the damping mechanisms in the rubber
causes the damping to be frequency independent so that experiments measuring damping at a
certain frequency can be used to infer damping values at other frequencies.·
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8. COST ESTIMATE

The drawings and design details of the two rehabilitation schemes were submitted to an
independent firm of consulting engineers and the costs for each were estimated [9]. The esti
mates by the company suggest that both schemes will have identical costs at $2.4 million.

In the conventional rehabilitation scheme the largest items are the structural concrete at
$700,000, reinforcing bars at $200,000, and structural steel at $60,000. Demolition and
preparatory work is $160,000 and piling and underpinning is $200,000. Miscellaneous costs,
fees, and bonds and a contingency estimate of $223,000 add a further total of $450,000 to com
plete the $2.4 million total.

In the base isolation scheme the largest single item is in underpinning and shoring the column
bases while the bearings are being installed. A total of $520,000 has been allowed for this item,
but since it is not a common practice in the contracting industry this may be too high. It is pos
sible that experienced contractors could develop a less costly method to install the bearings.
Structural concrete is estimated at $400,000 with reinforcing bars at $160,000 and structural
steel at $250,000. This large cost for structural steel in comparison with that for the conven
tional scheme reflects the use of the steel shearheads which allow the use of four bearings
under the most heavily loaded columns. Architectural refinishing is estimated at $70,000.
Demolition and preparation is $150,000. Miscellaneous costs and a contingency allowance of
$220,000 total $520,000 for an overall total Of $2.4 million. The costs for each scheme are
compared in Table 7.

It should be noted that some of the costs included in the isolation scheme are special only to
this building and would not necessarily appear in other cases. There is nearly $0.5 million in
additional structural work needed above the isolation system to stiffen the building and to
alleviate the very poor quality of concrete in certain areas. Cutting away the wall in contact
with the adjacent building, and the special isolation joint under the new wall is an additional
cost. The total cost of architectural finishing associated with the isolation system, and demoli
tion, jacking, shoring, and construction of the floor slab and the shearheads is estimated at $1.4
million.

The structural work associated with the conventional scheme is $1.7 million and an additional
$0.5 million is assumed for architectural refinishing. However, it is important to note that the
architectural refinishing associated with this scheme will not be to the quality of the existing
finish. To duplicate the existing finish would cost not less than $2.0 million.

The total floor area of the building is approximately 101,000 sq. ft. so that the isolation system
can be estimated at roughly $14 per square foot.
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9. CONCLUSIONS

The present study has been carried out to provide a realistic basis for the assessment of an
alternative seismic hazard mitigation strategy which, although directed to a particular building in
San Francisco, will have application to buildings in any region of high seismicity.

Most of the buildings in the California metropolitan areas which do not meet current seismic
requirements are buildings designed prior to the introduction of seismic design codes. These
buildings are generally low-rise apartment and commercial buildings which were built without a
lateral force resisting system and without ductile capacity. They contain brittle components
such as unreinforced masonry partitions and other nonstructural elements with serious seismic
hazards. In a study undertaken in 1974 [10] it was estimated that in one limited area of San
Francisco there are 2,800 commercial buildings in potentially hazardous condition with a
replacement cost in 1974 terms of over one billion dollars. Many of these buildings will not be
replaced in the near future but neither will they be rehabilitated, not only because of the costs
involved, but mainly because of the uncertainties associated with conventional methods of
rehabilitation.

Recent changes in the federal tax treatment of investment real estate contained in the
Economic Recovery Act of 1981 have put rehabilitation of older buildings in a more competi
tive position with respect to new construction. The new law provides for an investment tax
credit of one quarter of the rehabilitation costs of buildings of historical or architectural
significance. This credit is, in addition, available for the rehabilitation of property leased to
governmental agencies and tax exempt organizations. There is thus a strong incentive to
develop effective seismic rehabilitation methods for the many older structures in California
presently in violation of current seismic code.

If the lateral force resisting system of a building is considered to be inadequate, it may be
increased by introducing masonry interior panels between existing columns or by introducing
new shear walls of reinforced masonry or reinforced concrete. However, these new structural
elements can disrupt the building. Ceilings, wall, and floors may be disturbed and the cost of
the disruption and restoration of these areas, which must be considered in addition to the con
struction cost, is highly uncertain. In many cases the only way to build the strengthening ele
ments is by pneumatically applied reinforced concrete which adds further problems of dust and
noise. In view of the high probability of cost overruns, indefinite time scales, and the incon
venience and dislocation that face owners who rehabilitate as opposed to the low probability of
an earthquake attack, it is clear that many owners will choose to risk not rehabilitating their
buildings. The present study in demonstrating the economic feasibility of a rehabilitation
method which is at once structurally superior and much less disruptive should offer an incen
tive to rehabilitation.

The study carried out here has established that base isolation is a technically feasible strategy
for the rehabilitation of existing building. The building studied has proved to be a difficult one
to rehabilitate by base isolation due to its unusual configuration. The rear wall in contact with
the adjoining building will need to be cut away and isolated. The unusual structural
configuration of the Masonic Hall also rendered analysis of the structural framing system
difficult. However, a base isolation rehabilitation scheme has been designed, drawings have
been prepared, and the cost to complete the scheme has been estimated. This estimate is com
parable to the estimate of the cost of a conventional rehabilitation. The fact that a practical iso
lation scheme with costs similar to conventional rehabilitation for an unusually difficult building
has been developed indicates that suitable isolation rehabilitation schemes for typical masonry
structures are feasible. A less complicated building could be rehabilitated by base isolation at
substantial savings compared to conventional rehabilitation. For buildings with important archi
tectural features, base isolation is the only financially viable approach that will preserve the



- 18 -

character of the building. Given the large number of such buildings at hazard in seismic areas
of the United States, it is clear that once base isolation has been demonstrated to be a viable
strategy, substantial building replacement costs will be avoided and the safety of buildings so
rehabilitated greatly increased.
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TABLE 1 INDIVIDUAL COLUMN LOADS

Column Load Column Load Column Load Column Load
No. (tons) No. (tons) No. (tons) No. (tons)

1 81 21 48 41 120 61 366
2 201 22 - 42 93 62 365
3 303 23 36 43 450 63 295
4 347 24 56 44 112 64 313
5

I
400 25 169 45 167 65 361

6 293 26 190 46 56 66 189
7 I 387 27 407 47 73 67 315
8 387 28 93 48 - 68 164
9 203 29 121 49 48 69 81

10 42 30 242 50 54 70 41
11 54 31 167 51 245 71 -
12 59 32 618 52 137 72 27
13 200 33 572 53 63 73 -
14 26 34 59 54 458 74 19
15 155 35 - 55 128 75 76
16 458 36 68 56 220
17 41 37 550 57 59
18 137 38 630 58 103
19 243 39 202 59 77
20 54 40 236 60 203

TABLE 2 DESIGN OF BEARINGS

L (tons) 50 60 70 85
IRHD 60 60 60 60
A (sq. inches) 12.3x12.3 13.6x13.6 14.5xI4.5 16.lx16.l
t (inches) 0.44 0.48 0.52 0.57
N (layers) 18 17 15 14
kh (tons/inch) 1.28 1.52 1.80 2.17
k v (tons/inch) 250 303 351 432
Buckling (tons) 150 200 250 340

L (tons) 105 125 150
IRHD 60 60 60
A (sq. inches) 18.2xI8.2 19.3x19.3 21.2x21.2
t (inches) 0.64 0.70 0.77
N (layers) 13 11 10
k h (tons/inch) 2.66 3.24 3.90
k v (tons/inch) 535 619 745
Buckling (tons) 470 600 780

Preceding page b\ank
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TABLE 3 TENTATIVE ARRANGEMENT OF BEARINGS

. Column No. Bearings
Actual Load Bearing Design Nominal

(tons) Load (tons) Difference

1 Ix (4) 81

I
85 +5%

2 2x (5) 201 210 +4%
3 2x(7) 303 300 -1%
4 4x (4) 347 340 -2%
5 4x(5) 400 420 +5%
6 2x(7) 293 300 +2%
7 4x(5) 387 420 +8%
8 4x(5) 387 420 +8%
9 2x(5) 203 210 +3%

10 - 42 - -
11 Ix (1) 54 50 -7%
12 1x(2) 59 60 +2%
13 2x(5) 200 210 +5%
14 - 26 - -
15 1x(7) 155 150 -3%
16 4x(5) 458 420 -8%
17 - 41 - ..

18 2x (3) 137 140 +2%
19 2x(6) 243 250 +3%
20 Ix (1) 54 50 -7%
21 Ix (1) 48 50 +4%
22 - - - -
23 - 36 - -
24 1x(2) 56 60 +7%
25 2x(4) 169 170 +1%
26 4x (1) 190 200 +5%
27 4x(5) 407 420 +3%
28 2x(1) 93 100 +7%
29 Ix (6) 121 125 +3%
30 2x (6) 242 250 +3%
31 2x (4) 167 170 +2%
32 4x (7) 618 600 -3%
33 4x(7) 572 600 +5%
34 Ix (2) 59 60 +2%
35 - - - -
36 1x(3) 68 70 +3%
37 4x(6) 550 500 -9%
38 4x (7) 630 600 -5%
39 2x (5) 202 210 +4%
40 2x (6) 236 250 +6%
41 lx(6) 120 125 +4%
42 2x (1) 93 I 100 +7%
43 4x(5) 450 420 -7%
44 lx(5) 112 105 -6%
45 2x(4) 167 170 +2%
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TABLE 3 TENTATIVE ARRANGEMENT OF BEARINGS (cont'd)

Column No. Bearings
Actual Load Bearing Design Nominal

(tons) Load (tons) Difference

46 Ix (2) 56 60 +7%
47 1x(3) 73 70 -4%
48 - - - -
49 lx(l) 48 50 +4%
50 lx(l) 54 50 -7%
51 2x (6) 245 250 +2%
52 2x (3) 137 140 +2%
53 lx(2) 63 60 -5%
54 4x(5) 458 420 -8%
55 Ix (6) 128 125 -2%
56 2x (5) 220 210 -4%
57 lx(2) 59 60 -2%
58 Ix (5) 103 105 +2%
59 Ix (3) 77 70 -9%
60 2x (5) 203 210 +3%
61 4x(4) 366 340 -7%
62 4x (4) 365 340 -7%
63 2x (7) 295 300 +2%
64 2x(7) 313 300 -4%
65 4x(4) 361 340 -6%
66 4x(l) 189 200 +6%
67 2x(7) 315 300 -5%
68 2x(4) 164 170 +4%
69 Ix (4) 81 85 +5%
70 - 41 - -
71 - - - -
72 - 27 - -
73 - - - -
74 - 19 - -
75 lx(3) 76 70 -8%
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TABLE 4 PERIODS AND BASE SHEAR COEFFICIENTS

SCHEMES
FUNDAMENTAL PERIODS BASE SHEAR COEFFICIENTS

Tx Ty Cx Cy

Scheme 1
1.05 0.98 0.265 0.311

(0.130) (0.135)

Scheme 2 0.74 0.53 0.359 0.564

Scheme 3
0.49 0.48 0.589 0.722

(0.186) (0.186)

Scheme 4 2.12 2.11 0.189 0.195

* (UBC Coefficient)

TABLE 5 OVERSTRESS FACTORS (%)

SCHEMES DIAGONAL IN TRUSS
PIERS OF FRAME 5

Level 2 Level 3 Level 5 Level 6
Scheme 1 (UBC) 174 90 130 74 73
Scheme 1 (ATC) 457 232 328 179 174
Scheme 2 (ATC) 355 92 228 291 245
Scheme 3 (UBC) 118 2 56 88 105
Scheme 3 (ATC) 534 10 249 372 445
Scheme 4 (ATC) 108 44 82 80 59

TABLE 6 OVERSTRESS FACTORS ( % )

SCHEMES
FRAME A PIERS OF FRAME B

Level 2 Level 2 Level 6
Scheme 1 (UBC) 70 140 82
Scheme 1 (ATC) 176 406 181
Scheme 2 (ATC) 188 210--
Scheme 3 (UBC) 29 16 85
Scheme 3 (ATC) 112 62 318
Scheme 4 (ATC) 88 114

Scheme 1 :
Scheme 2 :
Scheme 3 :
Scheme 4 :

Existing Building
Existing Building with Shear WaUs added at first two levels
Conventional Rehabilitation Scheme
Isolated Building-Shear Walls added at first two levels
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TABLE 7 COST ESTIMATES FOR CONVENTIONAL AND BASE ISOLATION
REHABILITATION SCHEMES

Rehabilitation Conventional Scheme Base ISOlation Scheme
Item ($ thousands) ($ thousands)

Demolition 160 150

Piling, Underpinning,
Shoring 200 520

Structural Concrete 700 400

Reinforcing Steel 200 160

Structural Steel 60 250

Carpentry 40 40

Architectural Refinishing
(Lath, Plaster, 470 280
Flooring)

Mechanical/Electrical
Systems 120 70

Contingency 150 220

Misc. Costs & Fees 300 300

TOTAL 2,400 2,400
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MODE SHAPES AT CENTER OF MASS
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