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NOTATION

The following symbols are used in this report:

fA] = real symmetric matrix of order 2n, defined by Eq. 16
At,B',C',D' = elements of vector {A'}, defined by £q. I.6
A" ,B",C",D" = elements of vector {A"}, defined by Eg. I.21
A"' B"',C"',D'" = eTements of vector {A"'}, defined by Eq. IV.26
‘ﬂg = constant defined by Eq. 14
Amj’amj = elements of vector {Aj} and {aj}, defined in Eq. 18
a...b . = the real and imaginary parts of q ..
[B] = real symmetric matrix of order 2n, defined by Eq. 16
cl . - = damping matrix
Cs’Cj _ - = peaks factor for a response quantity S and psuedo accel-
eration response of an oscillator with frequency w. and
damping ?j J
CO’Cl’CZ’CB = elements of vector W"'}, defined'hy Eq. IV,.22
[D] = matrix of direction cosine of principle excitation com-
ponents measured with respect to structural axes
d} = vector of direction cosines of an excitation with
: ' respect to structural axes
- = the directiop, cosine of the mtN unprimed axis with
respect to n* primed axis, with m,n = 1,2,3
£} = the vector of principle excitation components X ,%
and X, specified along the principle axes of the ground
motion '
E'} = the vector of correlated ground motion components f‘,
Xé and Xé along structural axes
Eé(T) = excitation defined in Eq. TII.3
Ex[ <] = the expected value of [ <]
e = eccentricity parameter, distance between mass and
stiffness centers of a floor slab
Fxﬁuﬁ) = square of the ratio of the relative velocity to psuedo

response spectrum values at frequency uﬁ and damping BJ

v
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an element of the vector {Gj} defined by Eq. 18
modal response value of the response quantity S(t)
frequency responsevfunction of Eg. 5

impulse response function

stiffness matrix

auxiliary function, defined by Eq. 31

mass matrix

jth modal mass obtained as {yjiT[M]{gj}

number of degrees of freedom

th

Jj*" complex eigenvalue

modal response vector defined in Eq. 14, a complex
quantity

response matrix defined by Eq. 26
~element of response matrix defined by Eq. 27

psuedo acceleration response spectrum value at frequency
w, and damping Bj for the f£th component of excitation

relative displacement response spectrum value at
frequency w,and damping B. for the £h component of
excitation J

relative velocity response spectrum value at frequency
uﬁ and damping ?j for the 2th component of excitation

constant factor defined by Eq. 9
radius of gyration of the floor slab

= ground displacement influence vectors for the excita-
tion in the three directions

a response guantity 6f interest-
maximum mean square response value
the parameter of spectral density function in Eq. 36

vector which transforms the relative displacement eigen-
vector {?j} into modal response quantity gj
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relative displacement response vector of the system with
respect to the three ground excitations

= factors defined in Eq. I.15
principal components of ground acceleration

components of ground acceleration atong the structural
axes ' -

angle of orientation of the maximum response measured
from the major principle axis

jth modal damping ratio
constant factor defined by Eq. 19

element of the vector {Yj}’ 2=1,2,3

jth modal response of the response quantity S(t) for

proportionally damped system
Lagrange Mu1tip1ier

eigenva]ué of Eq. 29, also the mean square value of the
principal response

matrix defined in Eq. 11

matrix used in Eq. 23 with diagonal elements
= /il—pii/pi, i=2,3 and all other elements being zero

a term defined in Eq, 28 and 29
variance ratios for intermediate and minor principal
excitations, Also defined as &, (w) = p; & (w) and
- 2 171
@3((9) - 92@](0.))

matrix of spectral density function, Eq. 7

2(uﬂ,¢§(uﬂ = spectral density functions of major, intermediate

and minor principal excitation components

jth undmaped mode shape or eigenvector of Eq. 1 for pro-
portional damping system and the lower half part of the
jth complex eigenvector for nonproportional damping
system

frequency and damping parameters for the spectral
density function in Eq. 36

jth modal frequency

delta dirac function
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1. INTRODUCTION

1.7 GENERAL

Earthquake induced ground motions as felt by structural systems are
usua]]y‘multidimensioné], with six components: three translations and
three rotatioﬁs. In seismic design practice, however, only the.transla—
tion components in thﬁee orthogonal directions are usually considered.
Often these are assumed to be statistically uncorrelated and as such a
design response is obtained as the square root of the sum of the squares
of the responses due to each of the components (3,11). Other response
combination methods which are primarily concerned with the evaluation of
a design response satﬁsfying a 1imit state have also been proposed in
the literature (5,6,14). In this report, however, a related but differ-
ent aspect of this problem is examined.’

The three components of ground motion along an arbitrary set of
orthogonal directions will usually be statistically correlated., How-
aver, as observed by Penzien et al in a series of papers (9,12,13), a
special set of three orthogonal axes called the principal axes exist
along which the ground motion components are not correlated. It has also
been observed that the intensities of the three principal components are
usually different. The orientation of the major principal axis has been
observed to be along the epicentral direction, although the correlation
between these two directions has not been found to be very strong (9).
Herein these principal axes will be called as the principal excitatibn
axes. | |

As a structure may not be oriented such that its own geometric axes
align with the principal excitation axes, the motions felt by the struc-

ture along its own axes will, in general, be correlated. The degree of



this correlation will depend upon the relative orientatioh of the struc-
- tural axes with respect té the principal excitation axes. The objective
of this 1nvestigafion is to analytically study the effect of this corre-
lation on a calculated structural response. The conditions_under which
a 1arge$t structural response will be obtained are investigated for pro-
portionally and nonproportionally damped structural systems. A set of

three orthogonal directions, herein called as the principal response

~ directions, have heen observed to exist for each response gquantity such
that if the principal excitations are applied to the structure along
-these direction they will induce the maximum response, The existence of
such_principa] directions is of practical interest in as much as it
helps in the evaluation of the worst éase response, A step-by-step
methodology to evaluate the worst cases response is outlined. Numerical
results, illustrating the effect of structural orientation and input

correlation on the structural response are presented.

1.2 REPORT ORGANIZATION

Section 2 of the report describes the equations-of motion for three
corré1ated ground components. The expressions for the mean square and
design response of strﬁctura1 systems with proportional and nonpropor-
tional damping matrices are developed. The term “nonproportional” is

used in a more broad sense than what it literally means; any viscously
damped system whose damping matrix cannot be decoupled by undamped modes
is considered to be a nonproportionally damped system. The input for
design response is assumed to be defined in terms of respbnse spectra, a

commonly used form of seismic design input.



Section 3 explores the condition on the input which will give the
maximum mean square response irrespective of the orientation of the
structure. It is shown that if all the components of excitation are
assumed to be equal to the major principal component, the mean square
~response will be maximum and the same for all orientation,

The evaiuation of maximum mean square response when the excitation
components are of unequal intensity is presented in Section 4. Here,
the exiétence of principal response direction is identified.

Numerical results of a torsional structural system are presented in
Section 5. The effect of change in the angle of orientation and vari-
ance ratio on the calculated response is shown., The response is shown
to attain a maximum value at certain angular positions. In Section 6 a
step-by-step procedure is outlined to obtain the worst case response for
multicomponent earthquake inputs. Numerical results for another i]ius—
trative éxample are presented, Summary and Conclusions are provided in
Section 7.

To make the repert self contained, some Necessary details of alge-

braic manipulation are provided in Appendices I to IV,

2., ANALYTICAL FORMULATION

2.1 EQUATIONS OF MOTION

The equations of motion of a multi-degree-of-freedom structural
system excited at its base by three components of ground motion with two
lying in, say, the horizontal plane and the other one in the vertéca]
directién can be written as follows:

NI06 ) + (016 + K1) = -IMICar, Ky + 0y + (r 0} (1)

where [M], [C] and [K] are, respectively, the mass, damping and stiff-



‘ness matrices of the system; {u} = relative displacement response vector
wsl

of the system with respect to the three ground excitations; X](t),

Xz(t) and X3(t) are the'components of the ground acceleration along the
structural axes, represented by the primed set-g{, xé, and xé in Fig. 1;
and {r]}, {rz} and{r3} are the ground displacement influence vectors (4)
for the excitations in the three directions. The dot over a time vary-
ing quantity represents its time derivative,

For an arbitrary structural orientation, the excitation components

.l ol ol

X1, X2 and i3 will be correlated. Let the principal axes of the ground
motion represented by the unprimed set X1s Xos and X3 be as shown in
Fig. 1. In terms of the ground motion components along the principal

axes, the components along the structural axes can be'written as fol-

lowsf
) T
€'y = 07 €) (2)
where
) 4 4y dz 93
E'y = X2 » £} = X2 , [D] = d2] q22 d23 (3)
X3 X3 d3; dzp d33

where dmn = the direction cosine of mth

unprimed axis with respect to
the nth primed axis, with m,n = 1,2,3, and {E} = the vector of uncorre-
lated components i., ié and £3’ specified along the principa1 axes of
ground mdtion.

With Eq. 2, the solution of Eq. 1 now can be obtained in terms of
the ﬁncorre1ated components using any standard techniqﬁe. Here the main
interest is in the evaluation of seismic design response. Thus
k:(t)'s, i =1,2,3 are considered as random processes so that the

1

ensemble of ground motions are included in the evaluation of response.



Furthermore, only linear systems are considered and the modal analysis
approach is used so that seismic design inputs commonly defined in terms
of ground response spectra (7) can be directly used. For analytical
convenience the ground motions will be assumed to be characterized by
stationary random processes.

The formulation of the modal analysis approach will depend upon the
constitution of the damping matrix [CI in Eq. 1, If this matrix is a
so-called "proportional" or "classical" (2,10), the normal mode- approach
can be used where the undamped eigenvectors of the system can be
employed in diagonalizing [C]. This forms the basis of the commonly
used‘§guareigpot-of-the1§ym-of—the1§guares (SRSS) approach for propor-
tionally damped systems (1,15). However, if [C] is not proportional or
classical it becomes essential to employ the Z2n-state vector approéch
(10) in which complex eigenvectors are used to affect the decoupling of
equations of motion, In this latter cése, though there are no normal |
modés, it is still possible to devise an SRSS type of approach for the
calculation of seismic design response. The details of such ah approach
are provided by the senior writer in Ref. 16. Hefein, the Systems with
proportional as well as nonproportional damping matrix have been con-
sidered, and thé expressions for the mean square and design responses
have been developed for multicomponent excitations. The terms propor-
tional or nonproportional is used in a broader sense and is meant to

include all nonclassically damped systems (2,10).

2.2 PROPORTIONALLY DAMPED SYSTEMS

Here undamped normal modes are used to decouple Eq. 1. For a

'Iinearly behaving structural system a response quantity, S(t}, can be



written in terms of modal parameters as follows:

S(t) = Y h(t-m)ds (4)

g =

t

th

in which:N_ﬁ number of degrees-of-freedom; Cj = j*' modal response of

the response quantity S(t); {Ki} = vector of partici-

(v YV Y')T=
137 25 13§
pation factors for excitations along the structural axes, with its ele-
ments defined as Yo~ {gjfT[M]{rl}/mj, £=1,2,3; {gj} = jth undamped
mode shape or eigenvector of Eq. 1; ms = {qjir[M]{Qj}; T over a vector -
indicates its transpose; and hj(t) is the impu]se'response function of

the following decoupled equation:

. ew . 2
.+ 2B8.w vV, + owv, =
v 2%%”J. %VJ &(t) (5)
wherein, Ej = jth modal damping ratio defined as = {qj}T[C]{qj}/Zaﬁmj

and w, = jth natural frequency of the system,

For stochastic excitations, Eq. 4 can be used to obtain'the mean
5quare, and also the design, response, Substituting for {E}' in terms
of {£} from Eq. 2 and after some standard algebraic manipulations of
random vibration analysis, the mean square value of the stationary
response for zero mean stationary excitations can be written in terms of

the spectral density function of the excitation components as follows:

E ZJ—NAN ) T L8II0] ty, DH. (w)H 6
x[s°] = JZ k}jch( [ (ty;y (DT TI0] (y DH; () fla)da  (6)

where Ex[ <] denotes the ekpected value of [ «] and

[3] = 2, ( w) (7



is the matrix of the spectral density functions of the three components
along the principal excitation axes, and Hj(uﬁ = 1/(u§-u?+215jgjw) is
the frequency response function of Eq. 5. The asterisk over a quantity
denotes its complex conjugate. For development of [&] see Appendix II,
Egs. II.3-11.6.

Employing some commonly made, and fairly reasonable simplying

assumptions (15,16), Eq. § can be cast into an SRSS type approaéh for

the evalyation of setsmic design response as follows:

N T R AR INES S TS, (8)
S, = . T .. Ws + e r..R .1} 8
445 T MM LRI I
where
33 5
F,Q‘]k = rg:n}:dﬁndinmeYnk; /Qd(wj) = R,Qa(wj)/w‘] 3
' . | (9)
— | 2 ] 2 4 | 2 1 ? 4 .
Rﬁjk = [A +ij,Q(wj)B ]R,Qa(wj)/wj+[c +uf<F2(ui<)D ]Rﬂa(u‘()/mk :

And, for frequency Uﬁ and damping ratio ?j’ R = psuedo acceler-

Jza(“’j)
ation spectrum for the xth component of excitation and Fx(uﬁ) = the
square of the ratio of the relative velocity to psuedo velocity response
spectrum values. A', B', C' and D' are defined in Appendix I. Eq. 8 can
be used to obtain design response for an arbitrary orientation of the
structure defined with respect to the principal directions of the exci-
tation, if they are known.

It has been observed (9,12,13) that the variances of the ground
accelerations along the principal directions are unequal. Here it is

assumed that they are in the ratio of 12p]:p?. Later a parametric vari-

ation study is conducted where numerical values have been assigned to



these variance ratios, For simplification it is also assumed that the
frequency characteristics of the input motions, as defined by their
spectral density functions are also same. Thus, @é(m)b= p]@1(m)

~ and ¢3(uﬁ = p2¢1(09 with él(w) beiﬁg the spectral density function of
thé major principal component, Substituting these in equation (6) and
realizing that [D]TtD] = [1], an identity matrix, the following is

obtained:

. 2 N N T T T =
Exis?] = T T gty tyy - Gy OIR IRI 5 0) T (il ()
J - 0 .
(10)
in which
, 0 0 0
[pI] = 0 ]'P', 0 (11)
0 0 T-pz

The first term in Eq. 10 represents the mean square response due to
three independent but equal intensity excitétfons applied along the
structufa] axes. The remaining term represents the effect bf correla-
tion between the components which, of course, depends upon the orienta-‘
tion of the structure with respect to the principal axes. The effect of
orientation ‘and variance ratio on the response is examined numerically

later.

2.3 Nonproportionally Damped Systems

Equations parallel to Eq. 8 and 10 for the calculation of station-
ary mean square response and.the désign response can also be derived for
~nonclassically damped structural systems excited by correlated excita-
tion components., Using the 2n-d1mensiona1lstate vector approach

(10,16), the solution of Eq. 1 for response quanfity, S{t), can be



written as

2Nt p.(t-7
S(t) = ZI {q; Y e i d (12)
J
Using Eq. 2
2Nt p.{t-1)
S(t) = zf c 01 e d do (13)
J
in which,
CFRARCIFFLPYRUER
(14)
g.
Qg5 = - ) {0, Y IMIcr J 2= 1,2,3
A]
= T ) _ :
| Aj {¢j} (ZPJ-EM} + [C]){cbj h 9y {T}{¢j}
and Py = jth complex eigenvalue and {Qj} = the lower half part of the
Jth eigenvector of the following 2n-dimension eigenvalue problem:
p;TAT{e} + [B1{a} = 0} | o (15)
wherein
(0] ([M] -fm1 [0] ‘
[A] = s [B] = (16)
M1 [c] fol [xJ

and {T} is a vector which transforms the re1étive displacement eigen-
‘véctor {?j} into the modal response value 9, of the response quantity
S(t).

Realizing that the components of {E} are uncofre]ated random pro-
cesses, the stationary mean response of S(t) can be written in the fol-

Towing form (see Appendix II):



=]

NN .
Ex(s°1 = ) ] J CF Y101 T 1007 63 sl (u)do  (17)

JJ =°
.where
. . T
.} = CH2ALY = <Gy, . . >
' [ 2
2 2158 = PrgI-F
1= . 0 ALY = oo, B, = b, /1-8] 18
@53 = {2, By = o (35585 = by /i-Fs (18)
.8, - b -
23 235 % P37 7P
in which agj"bgj are the real and imaginary parts of qxj respectively;
and o and E% are analogous to the modal frequency and damping ratio,

.defined in terms of the real and imaginary parts of the p; as follows:

Real(p.)
wj = lpJ| 5 BJ o= ‘*’j (19)

Eq. 17 can be further extended to develop the following SRSS type
~ of approach for the calculation of design response for nonclassically

‘damped systems:

N 3

2 2 2
Sq = 4 j=z1 221 Ui + ijx(wj)Vﬁj]RRd(wj)

N 3
2 2 2 2
+8 § 7 TODA"+eF (w)B RS (w) + €"+efF (g )D" RS, (0 )]
321 k=j+1 221 A A M %2 % 2d %
' (20} .
[} H " i 2 2 oy
where, ijk’ Vﬁjk and A", B", C" and D" are defined in Appendix I. Eq.
20, applicab1e to nonproportionally damped systems, is similar to Eq. 8
and can be used with prescribed ground spéctra to obtain design

response, again only if the elements of [D] are known,
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For the special case of excitations, with variance ratios of ey and
pps Ed. 17 can also be rewritten as follows:
N e T TroaT
D6 Y &Y - Gy DI L' IDIGE N3, (wH. (w)HE(w)dw
kK ~e J J ] J
(21)

N
Ex($%) = ¥
J

Here, 1ike Eg., 10, the response terms which are affected by the

input correlation and structural orientation have also been separated.

3. MAXIMUM MEAN SQUARE RESPONSE

Since the principal excitation axes are not known in advance, a
question is immediately raised: what orientaton of a structure wifh
respect to ground excitations will result in the highest response?'An
examination of Eqgs. 10 and 21 indicates that when all three excitations
are of equal intensity, [p'] is a null matrix and thus the total
response is given by the first term. This response will be maximum if
and only if the second terms in Eqs. 10 ahd 21 are always positive.
That it is, indeed, the case can be seen from the fact that the second
term in Eq. 10 represents the stationary mean square value (a positive

gquantity) of the following response quantity:

N t
S'(t) =Yg [ E'(vh.(t-7)d= (22)
] J 0 g J
where the excitation'term is defined as
Eé(t) = {y; }T[D]T[p“]{E(t)} (23)

where [ '] is a diagonal matrix like [p'] except that the nonzero
diagonal terms are defined as /il-p157 ;2 with i = 2 and 3, Similarly

it can be shown that the second terms associated with [p'] in Eq. 21 for

11



nonproportionally damped systems also represents a mean square value,
always a positive quantity (see Appendix III for details). This shows
that a maximum response will be obtained if the intensities of the
excitations along the intermediate and minor principal axes of the
ground motion are assumed to be the same as that of the excitation
component along the major principal axis. In such a case, the maximum
-response is independent of the orientaton of the structure; that is, all
orientatfoﬁs of the structure will result into the same maximum
response. This is similar to the uniform state of stress in solid
mechanics where stresses are equal and maximum in all directions. This
is, probably, implicitly understood by seismic analysts and has
practical implications. It shows that a designer should chose his
inputs in all three orthogonal directions to be of intensity equal td
that of the major principal component to ensure that the calculated
forces will not be exceeded no matter what the orientation of the
sfructure. However, if the dground motions of unequal intensity are to
be used as iputs, it is essential to locate the worst orientation which
will induce the maximum structural response. The following approach
defines such an orientation for a particular response quantity of design

interest.

4, PRINCIPAL RESPONSE DIRECTIONS

It is desired to obtain the elements of matrix [D] such that the
response in Eqs, 6 or 17 is maximum for a given set of principal exci-
tation components. First, the worst direction causing maximum response
for a single excitation is obtained. The mean square résponse for a

proportionally damped system due to, say, the major principal excitation



component applied along an axis with direction cosines d;, dj and dg,

defined in the primed coordinate axes, can be written as

Ex(s%) - ?E:Z % Gt g2t 1358 et a2 13ty f _ B (o) (w)de
(24) |
This, and a similar quadratic for a nonproportionally damped system, can
be written in matrix notatiohs as follows:
Ex(5%) = W} [R14d} (25)
where {d} is a vector of direction cosines dys dp and dg and the

response matrix fﬁ] is defined as follows:

R Rz Rys
RI=1 R0 Rpp Ry (26)
R R R

Ry R3p Ry
ﬂi] is a Hermitfan matrix. The elements of this matrix are defined as

follows:

N N .
R = } g Pon ik :om,n = ]’2f3 (27)

where ‘%njk are defined for proportisnally damped systems as follows:

P ik = C, c‘;k 3 Yk f <I>.|(w)H‘(w)H’k‘(w)dm - (28)

and for nonproportionally damped systems as follows:

(2]

Bon ik = f_m ijG:ké](w)Hj(m)H*k‘(w)dw (29)

in which ij is an element of the vector defined in Eq. 18.

13



To obtain the excitation direction which will extremize Ex[SZ] with
the following constraint on its direction cosines,

@ydr=1 (30)
the Lagrange multiplier appfoach can be used. The extremization of the
cauxiliary function with Lagrange multiplier, A,

L(N) = @Y RIMY - A(@T) @)-1) - (31)
leads to the following eigenvalue problem
[RIW@) - AdY = Q) | (32)
It is seen that the Lagrange multiplier is also the eigenvalue, A non-
trivial solution of Eq. 32 requires that the determinant of the charac~
teristic matrix be zero. This gives a third degree characteristic equa-
tion in A, Tike the equation of the principal stresses in continuum
mechanics. It.can be shown that all roots of this equation are real and
positive. For each root, 31’ i=1,2,3, there is a corresponding vector
of direction Eosines {d},. For different Aﬁ's these direction cosines
are orthogonal; that is, {d}?{d}j = 0 for i # Jj. One of these three
direction corresponds with maximum value of response whereas the others
correspond with the intermediate and minimum values of response. For an
ith eigenpair, Eq. 32 can be written as
R} = » ) (33)
Premultiplying Eg. 33 with {d}g and using Eg. 30, one obtains
n = @RI (34)
Comparing this with Eq. 25, it is seen that the Lagrange multiplier,
xﬁg which is the eigenvalue of Eq. 29 is also the hean square value of
the response when the excitation is apb]ied along the direction speci-
fied by &i%, .The largest eigenvalue gives the largest mean square

. response,



It is seen that these principal directions could be different for
each response quantity because Cj or ij are different. Here these
principal directions associated with a response quantity are called as

the principal response directions to differentiate these from the prin-

cipal excitation axes. Also since O 5 depends upoh the excitation

Jk
spectral density function, the principal response directions will, in
Qenera1, also depend upon the frequency characteristics of the excita-
tion. waever, if the frequency characteristics of the input components
are not significantly different, their principal response directions for
a response will not be much different either. ‘Thus, for the three 
orthogonal components of input it will, probably, be accurate eﬁough to
assume that these principal response directions are input independent.
This simplifies the identification of the worst orientation of excita-
tion for the calculation of worst case design response., To obtain the
worst case response'the major, . intermediate and minor principal excita-
tion axes shoﬁ1d, respectively, coincide with the major intermediate ahd
minor principal response directions which are identified by the eigen-
value problem in Eq. 32. The total response in such a case is given by
Eq. 6 for proportionally damped and by Eq. 17 for nonproportionally
damped structural system, with the matrix [D] conﬁaining the directioh
cosﬁnes of principal response directions. This total response, as per
Eqs. 6 or ]7,'13 seen to be the square-root-of -the-sum-of-the-squares of

the response due to each principal excitation component,
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5. NUMERICAL RESULTS

To study the effect of structural orijentation and variance ratios
on the structural response, the numerical results have been obtained for
the structural system shown in Fig. 1. This system is similar to the
ohe considered in Ref, 8, The system-represents a multi story building
~ with rigid floors interconnected by co]uhns. Each floor Has three
degrees of freedom in its own plane, The mass and stiffness centers of
the system are eccentrically placed by an amount e with the purpose of
creating torsional effect and coupling in modal responses. The'tor—
sional and bending stiffnesses of the system and the eccentricity bet-
ween the mass and stiffness centers can be adjusted to introduce varying
degrees of modal correlation, and interaction of this correlation with
the tofreTation in the input components is reflected in the calculated
response. A nonproportional damping matrix is created by assigning dif-
ferent damping constants in the two horizontaT directions. Parallel
numerical results have also been obtained in which this damping matrix
has‘been assumed to be proportional, This implies that the off diagonal
terms of the matrix [@ﬂT[C][®] are negligible. Such an assumption is
often made in practice to simplify the analysis. The comparison of the
two similar results shows the error introduced by the assumption of pro-
portionality of a damping matrix.

To simplify the study of orientation effect on the response, the
major and intermediate principal excitatibm directions are assumed to
| lie in the horizontal plane and the minor principal excitation is
aligned along the vertical direction, In this situation, the orienta-
“tion is completely defined by one angle. Assuming this angle to be o,

measured in the counter-clockwise direction from the major principal
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axis, the matrix of direction cosines can be written as follows:

cose sina O
[D] = |-sina cosa O (35)
0 0 1
The effect of changing orientation parameter « on the response is
studied,

The input motions used in this study are defined in terms of a
spectral density function. As mentioned earlier, the spectral charac-
teristics of thé three principal components have been assumed to be the
same. Their intensities a5 measured by their variance are, however,
different., The spectral density function for the major principal

excitation is assumed to be of Kanai-Tajimi form as follows:

% w+4B m2w2
& (w = S.
o (o 2 2)2+4BZ 2 2

(36)

The parameters Si’ o, and Bi of this density function are given in Tab]e‘
1. This density function represents a broad-band seismic input, suit-
able for design purposes. The effect of change in the variance ratio p
on the response has been evaluated, For two principal excitation com- |
ponents, the variance rétio values of 1.0, 0.75 and 0.5, have been
considered to obtain numericd] results of various response guantities.
The numerical results of the mean square response values have been
obtained for the story shear, story torsion and bending.moment in a
column using Eqg. 17 for nonproportional and Eq. 6 for proportional damp-
ing matrices. As these response quantities are not primarily affected
by the vertical component of excitation, the terms corresponding to this

excitation are deleted from these equations.
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The effect of the structural oriéntation and the variarnce ratio on
the root mean square (RMS) value of the base shear in xé-direction is
shown in Fig. 2 for two values of the eccentricity ratio, e/r, equal to

W01 and ,1; r is the radius of gyration of floor slabs. Fig. 3 shows
similar results for the base shear in x]-direction. The results have

1

been normalized by the maximum base shear in x! direction obtained for

2
nonproportionally damped system. For comparison, the results obtained
by Egs. 6 and 17 both are plotted. The differences in these two results
show the magnﬁtude of error which is caused by -the assumption of propor-
tionality of [C] when it is not. Ffom these figures it is seen that
this error is large when e/r is small., For small e/r values in this
case, the fhequencies were closely spaced causing a strong modal inter-
action effect. In such a case, the off-diagonal terms in [@]T[C][Q]
attain a spectal significance and neglecting them can cause large errors
in the calculated response. On the other hand, if the frequencies are
widely separated, the modal correlation will be weaker and the error due
to the assumption of proportionality may not be sighificant. Similar
trend in the magnitude of the error were also observed for other
response quantities like story torsional moment and column bénding
moments.

.Figs, 4 and 5 show the RMS value of the base torsional moment for
proportional and nonproportional damping case for e/r values of .01 and
.10, Figs. 5 and 7 show the RMS bending moment in one of thé columns of
the lower story for proportional damping case whereas Figs. 8 and 9 show
similar results for nonproportional damping case. It is noted that max-
imum values of these quantities are obtained when the yariance ratio is

1.0. For other variance ratios the response changes with the orienta-
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tion and reaches a maximum value which is almost equal to the value fof
variance ratio of 1. The orientation for the maximum response can be
obtained as discussed in the previous section. For the present two
dimensional case this angle is given by the following expression

2R
tan2a = _.:,Jéw_
R117R22

(37)

where Rmn is defind in Eq. 27. Eq. 37 provides two values of « which
are 90° apart which correspond to the maximum and minimum values of the
RMS response. For base shear, Figs. 2 and 3, the directions for maximum

response are almost in the Xy and xé directions. For the structure in
Fig. 1 these directions are also the axes of symmetry for small e/r.
For larger-e/r, a slight shift in the directions for maximum from the
xi and xé is noted, Figs. 2b and 3b, Also for the case of torsional
moment, Figs. 4 and 5, the maximum and minimum resbonse values do not
occur when the excitations are along the xi and y{-directions. Further-
moré, the excitation directions for the Targest response are different
for the proportional and nonproportional systems., As the RMS value of
the bending moment in a column is affected by shear and torsional
moment, the angles for maximum response are also éffected by both. It
ié seen from Figs. 6-9 where the excitation directions for the maximum
column moment response is clearly seen to be somewhere between the
directions for the maximum base shear, Figs., 2 and 3, and maximum tor-
sional moment, Figs, 4 and 5. These results also show that the princi-
pal response directions could be different for different response quan-
tities.

In seismic structural analysis, it is a common practice to take two

horizontal components of excitation to be equal in intensity and the
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intensity of the vertical excitation to be equal to 2/3 of the intensity
of the horizontal excitations. For structures in which horizontal and
vertical responses are untoupled, this practice ensures that a calcu-
lated response is always maximum and is independent of structural orien-
tation. However; structures in which vertical and horizontal responses
are coupled, Qrienting the smallest excitation in the vertical direction
may not induce the worst case response. In such cases, it is necessary
to orient the principal excitation components along the major, minor and
intermediate principal response directions to obtain thé'wofst case
response., This, however, does not require a reanalysis of structural
system after the principal response directions have been identified.
Rather, a step-hy-step procedure as outiined in the following sections

can be used to calculate a worst case design response.

6. EVALUATION OF WORST CASE RESPONSE

6,1 STEP-BY-STEP PROCEDURE

To obtain a worst case response, that is a response which will be
maximum for all possible directions of impinging ground motions, the
following step-by-step procedure can be used:

1. Select a set of coordinate axes to model the structural system,
Though not necessary, it may be preferrable to orient one or more of
these axes along the axes of symmetry if these can be identified.

2. Obtain the dynamic characteristics of the structure such as
frequencies, wrs mode_shapes, {¢j}, and participation factors, ymj. " The
participation factors will depend upon the choice of axes made in

Step 1.

20



i
¢
3. Obtain the elements of responsé matrix, Eq. 26, for all three

components of ground motion. It is noted that the prescribed response
spectra can be directly used in the calculation of these elements, For

example, for a proportional damping case, an element §mn can be written

ds follows:
S N M D
R = v .Y RO () + 2 .. v .v :R,. (38)
mn 321 ,JYITIJ nj &' i=1 k=j+1 39( mj 'nj Ajk
where Rﬁjk is defined in Eq. 9.

4, Solve the eigenvalue problem defined by Eq. 32 for one of the
response matrices ﬂi], The response matrix obtained for the largest
principal component of excitation should, preferably, be used. For such
a response matrix, the largest eigenvalue in Eq. 32 then also prdvides
the worst case response due to the largest principal componenﬁ.

5. In Eq. 25, use the intermediate and minor eigenvectors obtained
in step (4) with the response matrices fﬁ] for the 1ﬁtermediate and
minor principal components to obtain the contributions of these to the
total response,

6. As per Egs. 8 or 20, the square root of the sum of the squares
of the response due to the three components of excitation, as obtained

in steps (4) and (5), gives the worst case design response.

6.2 ILLUSTRATIVE EXAMPLES

The numerical results presented in the brevious section were
obtained fof various values of angle « and variance ratio p. It was
observed that for each response quantity there is a special direction to
cause the maximum response. To identify this direction and to obtain

the maximum response, the eigenvalue approach outlined in Section 4 will
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noﬁ be used.

Tables 2-5 show the results obtained by this approach for the
structural system shown in Fig. 1. In Tables 2 and 3, the results are
for the e/r rétio of .01, and in Tables 4 and 5 for e/r'= 0. Tables 2
and 4 present the results for proportional damping case, whereas Tables
3 and 5 for nonpfoportioha] damping case. |

Columns (2) in the Tables show the root mean square values which
were obtained when the stronger of the two excitation components was
aligned along the x; axis. For excitations with similar spectral
characteristics and with the variance ratioc of p, the mean square
response is simply obtained as:

A _
Ex[S7] = Rip * PRy, (39)

where R]1 andlaéz are the elements of [R] matrix obtained wfth the speé-
tral density function of the stronger excitation component. Here, for
the two dimensional cases, [ﬁj is a 2x2 matrix.:

The response values in Columns (3) are the maximum values obtained

by the approach established in Section 4, That is, it is the square

root of the following mean square value:

Seax = M * ohy (40)

where Al and AZ are the maximum and minimum eigenvalues, respectively,
of [R1.

The angle, measured in degrees from the xi~axis, at which the major
excitation component should be applied to cause the maximum response is
shown in Column 5. These values agree very well with the results
plotted in Figs. 2-5.

Columns (4} show the ratio of the values in Columns (2) and (3).

These values indicate the magnitude of possible underestimation of
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respbnse if the excitation directions are fixed along the structural
axes and no Search for the maximum response is made,

For some response quantities, the orientation of excitation for the
worst effect is obvious. For example, if the maximum story shear in xé
direction is being sought, the stronger excitation component should be
nearly along the xﬁ-direction. For other response quantities, the worst
direction may not be that obvious. Even if the worst directionslare
known in advance, it may not be practically feasible to keep changing
the orientation of excitation to obtain the maximum values of various
response quantities. These trials on re-orientation and re-analyses can
obviously be avoided by adopting the method outlined in Section 6.

In practice the search for the maximum response is avoided by
assuming that the two horizbnta? excitation components are exacti& the
same. In such a situation, any two orthogonal directions in the hori-
zontal plane are principal responsé directions. This obviously ensures
a conservative evaluation of response, no matter what orientation of
inputs is assumed. The method outlined in Section 6.1, however, can be
used to assess the degree of conservation involved in such a practice if
the two horizontal excitation components are not equal,

In practice it is customary to assume the vertical excitation to be
2/3 of the horizontal components. Thus in situations where a response
quantity is affected by both horizontal and vertical excitations, that
is when there is a coupling between the effects of two excitations, the
approach presented in Sections 4 and 6.1 can be effectively used to
obtain the worst case response., This will usually happen where ﬁhere is
an asymmetry in the structure. To illustrate this, here the problem of

a vertical asymmetric frame is used. The frame is shown in Fig. 10.
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The mass and stiffness properties of the frame are given in Table 6.

The natural frequencies of the system and participation factors are
shown in Table 7. 1In Tables 8 and 9 are shown the results for axial
force, shear force bending moment and maximum bending stress in various
members of the frame. The latter quantity is of design interest where a
maximum effect of two response quantities (moment and axial force) is
sought, Tables 7 and 8 have parallel columns as in Tables 2 through

5. Again, it is seen that the response is likely to be Severe]y
underestimated if the excitation direction§ are fixed along geometric

X: and X, axes and no search for the maximum is made.

1 2

7. - SUMMARY AND CONCLUSIONS

The response of linearly behaving structures subjected to three
frans?ationa] components of earthquake has been examined. The effect on
dynamic response of the orientation of a structure with respect to the
ground excitation components is considered, The formulation for the
evaluation of design response, employing response spectra.as inputs, is
presented for proportionally as well as nonproportionally damped struc-
tures. Assuming the existence of the so-called principal componeni of
excitation, the response which considers correlation of input along
structural axes can be expressed in terms of the uncorrelated principal
components. |

The existence of a set of input directions, herein called as the
principal response directions, has been identified. These principal
directions depend upon the type of response and the frequency character-
istics of the input. If an applied excitation is directed a]ong-the

major principal direction the induced response will be maximum, This is



of practical significance as it helps in the evaluation of the worst
case response for a given set of principal excitations of unequal inten-
sities. Although each response quantity has its own principal response
directions, the.worst case can be directly obtained without conducting
any parametric variation on possible angular orientations of the étruc-

ture.
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TABLE 1: PARAMETERS OF SPECTRAL DENSITY FUNCTION Eb(w), Eq. 36

1 ftz-szz:/rad rad;)éec Bi

1 | .006 13.5 .3925
2 - .00198 23.5 .3600
3 . .0015 39.0 .3350




TABLE 2:

COMPARISON OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING

MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38,

AND MAXIMUM RESPONSE, Eq. 39 FOR STRUCTURE IN FIG, 1.

_PROPORTIONAL DAMPING; e/r =

7 Response Maximum Angle
Response By Eg. 38 Response Ratioc {in Degree
Quantity By Egq. 39

(1) (2) (3) (4) (5)
Base Shear in - xi 1,006 1.006 1.00 | -0,08
Base Shear in - xé 0.711 1.006 0.71 . 90,08
Torsional Moment. 0,069 0.080 0,87 | 45.00
Bending Moment xi-Direc. 1.743 1.743 1.00 -0.64
in Col, 1
Bending Moment x{-Dfrec. 1.782 1.782 1.00 0.63
in Col. 2 :
xé-Direc. 1.262 1.782 0.7 89.37
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TABLE 3: COMPARISON OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING
MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38,
AND MAXIMUM RESPONSE, Eq. 39, FOR STRUCTURE IN FIG. 1,

NONPROPORTIONAL DAMPING; e/r = 0,01.
Maximum

Response Response Response Angle
Quantity By Eq. 38 By Eq. 39 Ratio in Degree
(1) (2) (3) (4) (5)
Base Shear in - xi 0.874 - 0.874 1.00 -.05
Base Shear in - x} 0.989 1.399 0.71 90,16
Torsional Moment . - 0.084 0.112 0.76 72.94
Bending Moment | xi-Direc, |1.515 1.515 1.00 -.77

in Col. 1 _
xé-Direc. 1.722 1.434 0.71 90.45
Bending Moment x{-Direc. 1.540 1.540 1.00 0.81
. in Col. 2 .

' xé-Direc. 1.747 2.470 0.71 89.95
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TABLE 4:

PROPORTIONAL DAMPING; e/r = 0.10.

COMPARISON- OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING
MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eg, 38,
AND MAXIMUM RESPONSE, Eq. 39, FOR STRUCTURE IN FIG. 1

Maximum
Response Response Response Angle
Quantity By Eq. 38 By Eq. 39 Ratio in_Degree
(1) (2) (3) (4) (5)
Base Shear in - x{ 0,945 0.945 1.00 -3.31
Base Shear in - xé 0,699 .946 0.74 93.31
Torsional Moment 0,407 0.470 0,65 45,00
Bending Moment xi~Direc. 1.577 1.563 1.00 -7.57
in Col. 1
xé«Direc. 1.196 1.563 0.76 97 .57
Bending Moment x;~D1rec. 1.911 1.918 1.00 +7.33
in Col. 2
‘xé-Direc. 1.474 1.918 0.77 82.67
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TABLE 5: COMPARISON OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING

' MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38,
AND MAXIMUM RESPONSE, Eq. 39, FOR STRUCTURE IN FIG. 1.
NONPROPORTIONAL DAMPING; e/r = 0.10,

Response Response Maximum ‘ Angle
Quantity - | By Eq. 38 Response Ratio in Degree
By Eq. 39

(M) (2) - (3) (4) (5)

Base Smear in. - x! | 0.865 0.866 1.00 -2.35

- Base Shear in - xé 0.812 1.106 0.73 95.28

Torsional Moment ‘ 0.430 0.538 0.80 63.84

Bending Moment | x:-Direc. | 1.44] 1.447 1.00 97.87
in Col. 1

xé-Direc. 1.395 1 1.881 0.74 -7.43

Bending Moment xi—Direc. 2.398 2,402 1.00 7.22
in Col., 2

xé—Direc. 1.688 2.218 0.76 86.26
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TABLE 6: MASS AND STIFFNESS PROPERTIES OF FRAME IN FIG. 10

MEMBER PROPERTIES

Cross Sectional | Moment of Modulus of
1 , Area (sq. in.) Inertla Elasticity (KSI)
f Member Number (in.7)" ,
1 | 5.88 22,4 © 30,000
2 . 10.30 147.0 30,000
3 5.88 42,4 30,000
4 10.30 147.0 30,000

NODAL COORDINATES AND MASS

 MASS COORDINATE

NODE NO'. Kips-Slugs )(,T.n " Y’in
: - 0. 0.
2 | 3.0 -30. 120,
3 5.0 | 36. 278,
4 3.0 120. 228.
5 | - 180, | o,
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TABLE 7: NATURAL FREQUENCIES AND PARTICIPATION FACTORS FOR EXCITATIONS
ALONG THE STRUCTURAL AXES (x{ and x;-DIRECTION) 0OF STRUCTURE
IN FIG, 10, i
DEGREE OF PARTICIPATION FACTOR ¢ PARTICIPATION FACTOR
FREEDOM ‘ FREQUENCY {CPS) IN xi-DIRECTION IN xé-DIRECTION'
1 0.165 3.231 0.737
2 0.527 -|305 ].840
3 2.667 0.565 -2.218
4 3,260 -.3567 1.349
5 5,179 0,133 -0.518
6 6.357 ~ 4,061 0,255
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TABLE 8: COMPARISON OF MEMBER AXIAL AND SHEAR FORCE RESPONSE OBTAINED .
BY CONVENTIONAL PROCEDURE, Eq, 38, AND MAXIMUM RESPONSE BY
Eq. 39, FOR STRUCTURE IN FIG. 10. PROPORTIONAL DAMPING.

Maximum
Response {Response Angle
Response { Member No, | By Eq. 38| Eq. 39 Ratio in Degree
(1) (2) (3) (4) ()
MEMBER 1 16,690 | 21.490 0.73 75.79
AXTAL 2 10.067 13.162 0.76 75.58
FORCE 3 4,408 | 5.924 10,74 75.57
4 8.844 | 11,982 0.74 - 75.43
MEMBER 1 6.232 6,310 0.99 -12.89°
SHEAR 2 30,948 38.449 0,80 81.37
FORCE 3 23.586 28,513 0.83 81.77
4 33.462 33.882 0.99 -12.85
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TABLE 9: COMPARISON OF MEMBER BENDING MOMENT AND STRESS RESPONSE
OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38, AND MAXIMUM
RESPONSE BY Eq. 39, FOR STRUCTURE IN FIG, 10, PROPORTIONAL
DAMPING,
Maximum -
_ Response Response Angle
Response | Member No. By Eq. 38 |By Eq. 39 . Ratio in Degree
() . (2) (3) (4) (5)
MEMBER 1 385,42 390.22 0.99 -12.89
BENDING 2 195,85 243,32 - 0.80 81.37
MOMENT 3 90.06 119.76 0.83 81.77
4 394,44 399,40 0.99 -12.85
COMBINED ] 31.678 32.064 0,99 -12.88
STRESS z 6.962 9,520 0.82 81.17
3 8.132 9.735 0.84 ©81.87
4 13.284 13,449 0.99 -12.83
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Figure 10: ANALYTICAL MODEL OF A PLANE FRAME WITH SIX
: DEGREES-OF-FREEDOM.

46



APPENDIX I

Evaluation of Design Response - The Response Spectrum Approach:

To obtain the expressions for the design reSponée the root mean
square values, obtained from either Eq. 6 for proportional damping or
Eq. 17 for nonproportional damping, must be multiplied by an appropriate
value of the peak factor. The peak factor will of course depend upon
the characteristics of random response S(t) and the desired probability
of exceedence. Several approximate but reasonable methods are available
to evaluate these., See for example Vanmarcke (20).

To obtain the expressions for design response in terms of design
inputs defined as ground response spectra for the three components, the
approach used in References 17 can be used. This approéch forms the
basis for the derivation of Eqs. 8 and 20. For the sake of completeness
and ready reference, these derivations are given as follows for propor-

tional and nonproportional damping cases:

Design Response for Proportionally Damped Systems: Expanding Eq. 6, the

mean square value of S can be written as follows:

2 NN 3 33 w X
Ex[S°] = J_Z' kZ qu‘,q}T (n%nzdmdxnymj"’nk f_f’x(‘*’)Hj(“’)Hk(“’)d“’) (L)

Further separating terms with j=k and i# and using the notation

3
Toik = }dm¢m%n%k

2k (I.2)

= g W

"The following is obtained:
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j=1 J g NI TR
N N 3 ® ) )
" j=z1 k=jz+1 i 1:21 Caik f-m ég(m)N(w)!Hj(w)[ [H ()] "dw
(1.3)
where
N(w) = &-f(%+{ -4%HU%%)+‘§é (1.4)

The double summation terms in 1.3 represent the 1nteraction of
modes, and must be considered when the modesbare closely spaced as well
as when the effect of modes with frequency higher than forcing function
frequency are required to be included correctly (18,19). The input
independent expressions for the modal correlation coefficienté have been

obtained by assuming that & (w) is a white noise. The use of such

K
correlation coefficient in the evaluation of modal correlation in
_expressions such as Eq. I.3, though, may be acceptable in some cases,
can also cause serious errors especially when the high frequency modes
are significant (19), It is thus a best practice to obtain the correla-
tion coefficient as a function of the input. This can be done as in
Ref. 15, 16 for single excitation component. For the sake of ready
reference, this approach is repeated here for the case of multicomponent
excitations.
The frequency integrand in the second term of Egq. I.3 can be

expressed in terms of partial fractions as follows:

NC 1 ()P ()] 2

H () 7 = (A'+B'w2)lHj(w) [2
where the coefficients of partial fractions A', B', C' and D' are

+(C14D" ) [H (u) (1.5)

obtained from the solution of the following simultaneous equations:
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| CZI[A'} = '} (1.6)
where the elements of [Z], {A'Y and {{'} are

z{(1,1) = z(1,3) = z(4,2) = z(4,4) = 0,;

z(1,2) = z(1,4) = z(2,1) = 2{(2,3) = 1.0.;

2(2,2) = 2(3,1) = &’ (1-260);

2(2,4) = 2(3,3) = -a(1-26);

2(3,2) = 2(4,1) = wg;

2(3,4) = 2(4,3) = v (1.7)

@'y = (A',B',C',D)

w'(1) = 0., w'(2) = 1.

Ay o 22 oy L 22

w_(3) = wJ. W, + 4Bjﬁkmju1<’ w (4) = w; 6

To express the fréquency integrals in Egq. 1.3 in terms of response

spectra, the following expressions are used

(=]

cJ?wj? N @R(w)]H(wjn?dwe Ria'(wj) (1.8)
cJ?f mszi(w)]H(w‘j)|2dm=Riv(mj) (1.9)

-

where Rxa(“ﬁ) and RRV(UB) are the psuedo acceleration and re]atjve velo-
city response spectrum values. The integrals in Egs. [.8 and 1.9 repre-
sent the mean square values of the relative displacement and relative
velocity response of an oscillator of frequency o and damping ﬁj whgn
it is excited by the ground motion represented by the spectral density
@R(uﬂ. These values when amplified by their respective peak factors
give the respective response spectrum values. In Eg. [.8, these peak
factors for the relative displacement (or psuedo velocity or psuedo

acceleration) and relative velocity responses have been assumed to be
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the same, although they are 1ike1y to be slightly different from each
other. - Using Eqs. I.5, 1.8 and 1.9 in Eq. 1.3, the design response S,

can be obtained as follows:

2 _.2 N o2 3 Ryl
S4 = Cg Yo oy 5
=1 J o= NI (C
J
2 2
N- N 3 R (w;) R, (w,)
2 i 2 24k
+2 7 T tg T T AIAGF (0B ] =l 4 [ F ()] =)
351 k=ger TR g K S ct R
(I.10)

- \ N\ = 2
where C. = the peak factor for the response S, Rld(uﬁ) = RXa(uﬁ)/uﬁ =
relative displacement response and

w2R2 ()
F o) = =200 (1.11)
o R (w;) '
st

If we make an assumption that Cj are not widely different for each
mode and are also the same as Cs» Eq. I.10 becomes the same as Eq. 8 in

the text, That is

ERI AR I ORI, | b
5% = - T ..RT (w) +2 ) L. )y T...R._. (1.12)
d g T NI HTY 55 ke 3K GH Kk

where T' .. and R ., are as defined by Eq. 9 in the text.

The assumption of equality of peak factor is really not very criti-
cal and is quite acceptable. Usually there are just a few modes in a
cluster which contribute most to a response. If the frequencies of

these modes are not very different, their peak factors wil also not be

very different unless they have very different damping ratios. Likewise
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the effective frequency of the response S(t) will also be in the range
of the freﬁuencies of these modes, A peak factor magnitude is also
affected by bandwidth and some other characteristics of a response.
Usually these characteristics will also not be very different for the
dominant modes and quantity S(t) in Eq. I.10, thus the eguality of peak
factors has mostly found to be acceptable, This assumption also forms a
basis for the commonly used SRSS rule. The mode response cdmbihation
rule fn Eg. I.12 is a modified form of the SRSS rule, as app]icaBTe to

multicomponent excitations.

Design Response of Nonproportionally Damped Systems: The derivation of

Eq. 20 from Eq. 17 is similar as for the proportionally damped system.

Expanding Eq. 17,

’ N N 3 = 33 o
Ex[S"1= 7 1 1 [ ela zxdmdmemJG;kHJ( o (w)dw  (1.13)
J k L =e mn
Substituting for ij and G;k from Eq. 18
2 N N 3 = 33 5
Ex(S%) = 4 z y Y ] Cbl(m) ¥ ded [Am,] nk mamjank
J k A e mn
+ T'm(amJ.Ank a, mJ)]H { wH (m)dm
NN3 = 2 : .
= 4 Jzkf le f-m @ﬂ(w) {U,Q,jk + W Vﬂjk + 1wwﬁk }Hj(w)Hk(w)dw (1.14)
where
33
Uik = %zdmdm“m"nk



(I1.15)

m Rn(amjAnk-ankAmj)

in which amj

in Eq. 18 in the text.

and Amj are the eltements of vectors'{aj} and {Aj}, defined

Separating terms with j=k and j#,

Ex(Sz) = 4 lg‘ % fm &, (w) (U + w2V YIH (.m)|2dw
’ i1 e A %53 N§iThd
N- 3 ® 5 ‘
+ 4 Z E y o f ‘Dx(“’){um +mv£,jk +inmkHj(w)HE(w)qm(I.]6)
J & & -e
Now realizing that
Yok = Vagr . Vg = Vg
(1.17)
Yok = Mg
The double summation terms can be written as
NN 3 @ 5
4 J_Zk}j % f-m‘@R(w)(UQJ.kmvﬂjkﬂmwkjk)Hj(m)HE(m)dm
NN 3 e ) _
=4 jZ kz % Ao (W [(U g4V g ) 5 (M (ol Y (wlHy ()
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oW (R () - HECH, ()} o (1.18)

2ik

=8 ] 111 e NI (@] P (0% (119)

where
. 2, |
N(w)-VﬂJ.kw +w{UM -(w; 45q(ﬂ( R‘]k+2(q(u?(ﬁw le}
+ wz{-U .(wz 4& B, w v W wow (Biw =B w. )}
gk (e By g ) + “kmk 23k 5 % F % TP
2 2 |
t o ukuj‘jk . (1.20)
The integrand of Eq. 1.19 can be further broken into partial fractions
as follows: » o
m)[HJ.(m)[lek(m)lz - [A"+B"m2]|Hj(m}|2 + Lo SN, (w12 (1.20)

where A", B", C" and D" are obtained as a solution of the following
simultaneous equations,

| (Z]A"} = W"} - (1.21)
where

{Au }T = (A“, B“, C“, Dn)

y .

WH2) = Vg = Vg us N 45 Ao ) + 2 q(uk B0 (1.22)
w"'(3) = ( 2, 2-4 ) +V z22 + 2 (B.w ~ W_.o;
| SR AT T S A B B Mg
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vy - 22
w"(4) = wjukugk
Substitution of Eqs, 1.19 and 21 inte I.16 and using Egs. 1.8 and

1.9, the expression‘for the design response Sy can be written as

follows:

j=1 2=1
NN 3 » Ci.
+8 J ) 1 [A™F(w )B"}R (w) ~%
j=1 k=j+1 =1 % C
2
v CU+EF D"}R( )25 (1.23)
w; (m (’1( 2 .
k

And if peak factors Cg and-Cj are assumed to be the same,

N 3
2 _ 2 2
Sd =4 4 1221‘ {URJJ+wF(mJ) ﬁJJ}R (w,)
NN ' 5 ) _
+8 ) b [+ JF( )B"}R (wJ) + {C""‘UkF(uf()B"}Rm(w])] (1.24)

j=1 k=j#

which is the same as Eq. 20 in the text.
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APPENDIX II

STATIONARY MEAN SQUARE RESPONSE OF NONPROPORTIONALLY DAMPED SYSTEMS

This appendix describes the development of Eq. f7. With slight
modifications, which help to simplify the algebraic manipulation
involved in the derivation, the following formulation is essentially the
same as described by the senior writer in Reference 16 for a single
component excitation.

Considering the complex and conjugate terms as a pair, Eq. 13 of
the text can be written as a summation over N terms as follows:

t

N p.
s(t) = ¥ [ (4.1 R
=t o

(t-v) (t-7)

Py |
+ {qg}T[D]T{E}e J Ydz . (11.1)

The autocorrelation function can then be written as

t

t .

N 12 p.(ty-7) pr(ty-1,)
EXCS(t)S(t)T = T 3 [ (fred 1 s ggrled 1T

j=1 k=1 0 0 J J

p, (t,-1,) p*(t,-7,)
1 Ex(EHEN)DI((g de & 2 2w fgple © 2 ¥ )drdn, (11.2)
in whicﬁ
Ex(EHEY) =
- -

ExD (7)xq ()] ExDxy (5,050 ] ExCx () 5( %) ]

Xy (5 )% ()1 ExDiy ()5 (5)]  ExCxy (5 )%y ()] | (11.3)

| ExDxG(m)xq (501 Exlxg(m)xy(5)1  Exlxg(m)(x5(7,)] |
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For stationary excitation components, the autocorrelation function
terms in Eq. I1.3 can be written in terms of the power spectral density
functions of the excitations as follows:

® ICRY
dw.

Ex[i}ﬁr])giﬂmz)] = f ) 2 (e

(IT.4)

Furthermore, since X1s

they are statisticaTTy uncorreilated. Thus

Xo and X4 are along the principal excitation axes

Exfgx(ﬁ)i%(Tz)].= 0 for & #m (I11.5)

With these the correlation function matrix in Eq. I1.3 can be written as
follows:

= dulm-)

ECEIETT = [ [ale | 2du

(I1.6)

where [&], the matrix of spectral density functions, is as defined by
Eq. 7 in the text,

Substituting Eq. I1I.6 in Eq. II.27w1th t1-¢] = u, t2-12 = v, we

0

obtain:
Ex[S(tq)S(t,)]
NN o Jut,-t,) t] (-iwHp . )u (-1 wtp*)u
=T T e VR e I v gne I au]
j=1 k=l -o o Y J
t
2 (i wtp, v (i wp)v
EITADI[f (fde  * + e © JvHe (11.7)
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The integral term over u {and similarly, the one over v) can be

written as follows:

t

1 (-1wHp.)u (-1 wrp*)u
[tagle T s e I
0
; (-iuﬁpj)u ; (-iqﬁpg)u t,
- e : e :
.{qj} 'W+ L%y S ) (I1.8)

Considering the situation when a sufficient time has elapsed after
the application of excitation, i.e., t1 + & and t2 + =, the response
will become stationary.. In such a case, the integral in Eq. II.8 eval-
gated at the upper limit of tl = = becomes zerc because of the negative

real part of Py Then for t; > o £q. II.8 becomes

@ T (~1u&p.)d (=1 wHp*)u
S ay) e Toranre 7
_ 1 T 1 T

UEN pj = - puy + iij-an. and {q;) = {a + ib, 11 Eq. 11.9 can be written

in the vector form as follows:

e T T ) T
= (2106} + 2053 (0) = 651 H; (o) (11.10)

where {aj} and {Aj} are as defined by Eq. 18 in the text. Similarly it

can be shown that the integra1 over v can be written as

= (Twp Jv - (wp )y
J (g + (gt e Ydv
0 |
= (-21wfa, } + 268 DHE(W) = GFHE(o) (I1.11)
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Substituting these integral in Eq. II.7, the stationary value of the
autocorrelation function of response S{t) can be written as follows:
@ 1m(t.| "tz)

[ 6, I LeII0T G M, (HE (we

- 00

N

Ex[S(t))S(t,)] = ]
1 2 A
. For t; = t,, this equation defines the‘mean square response as in Eq. 17

of the text.
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APPENDIX IIT
This appendix shows that the second terms in Eg. 10 and 21 in the
main text are always positive as they, respectively, represent the mean

square values of the following response quantity.

N t
S'(t)y = Y ¢ [ E'(Dh.(t-vd7 (I11.1)
RS o J ‘
Jj=1 0
Nt A(t-1) p*(t-1)
sU(t) = Y [ (E"(x)e Y + Exte J Ydr  (I11.2)
j=1 0 d g .
where ,
' Teaalr o
Eg(r) = v} AN S (111,3)
and '
E;(f) = {qj}T[DJ[p"] £} | (111.4)
and E;" is the complex conjugate of E; and ¢" is defined as
0 0 ‘ 0
(p"1=1]0 VU—@57Q 0
0 Ji]—pzi/pz
- The autocorrelation function of S'(t) is
NN b |

h (tp=5)dqd,
(111.5)
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where
. \ PRI g N
Ex[Eg(ﬁ)Eg(rZ)J = {y; 1 [01' Lo ]Ex(.{E}{E} )[e"JD] 4y} (111.6)
Substituting for the autocorrelation function in Ex({E}{E}T) in terms of
spettra] density functions and considering stationary response when

t; » % t, » @and tj-ty remain finite, the Eq. III.5 becomes

N N ® .
EX(S ()8 ()] = T T ogn SOy Y (01" 6" JaI0e" DTy, }
J: = -0
'iw(t.l-tz)
Hj(w)H;(w)e dw
(111.7)
0 0 0
. ]—p]
Now [e'lallg]= |0 — & O
A 1-0,
0 0 —-F;- <I>3
0 0 0
=10 (-9)g 0 = [p'1g) (w) (111.8)
0 0 (1-%)%
Since
B =Y and &= p
Thus,
e e N TeoaTr
Ex[S'(ty)s'(t,)] = j:21 |<=Z1 T8 ;) (D1 [e ][D]{V".}
o fc&t]-tz)
f @g(w)Hj(w)HE‘(w)e dw (111.9)



which when tl = tz-give the mean square value, same as the second term

of Eq. 10,

Similarly the autocorrelation function of $"(t} can be written as:

Ex[S" (t,)5" (t,)]

t .
N N Bt 0. (t -1 ) p*(t. -t.)
- _z] k% .fﬂ fo (o, LR AL (afe ! L2 01 o TEx (EHEY ) [o" D]
J= = . )
p_(t,-t,) pX(t,-1,)
(1,0 22y {q;;}ek 27 )7 d, (111.10)

Proceeding as in Appendix II, and considering the stationary
response when t1 + o t2 + », this correlation function can be written
as
Ex[S"(t7)5"(tp)

N o T 'iu)(t]~t2) '
I [ 601 e IeI0e 101 6, de H. ()M (w)dw
=] -
Employing Eq. II1.5, we obtain
EX[S"(tl)S"(tz)]
N N = To T iu(tl-tz) '

= 7 ¥ [ G,Y[DI'[p'1DIG, Ye 3 (H, (WH*(w)dw (I11.12)
391 k=1 ew K [ A

For t; = t,, this gives the mean square value of $"(t) which is the same .

as the second term of Eq. 21,
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APPENDIX IV .
CHARACTERISTICS OF PRINCIPAL RESPONSE AND PRINCIPAL RESPONSE DIRECTIONS

Here a more complete development of Egs. 25 through 34 is provided.
Also some special characteristics of the prinicpal response quantities

and principal response directions are examined,

PROPORTIONALLY DAMPED SYSTEMS:

For an excitation component app]iéd along an axis with direction
cosines @} ={,,d,,d3} defined in the coordinate system of the

structure, a response quantity S{t) can be written as fo]iows:

S(t) =

t .
g, f Aty 3y (o (t=)d v (1V.1)
551 37 j J

Il g Z

1

where {Yj} = vector of participation factors for the jth mode
= {Yﬁj’Yéjsng}T- The stationary mean square response can be then

written as:

NN o
2 ) T T ‘
Ex[Se(t)] j; k=X1 N j_m {d} {Yj}v{yk} @5 (H; () (w)du (1V.2)
With,
f-w @1(w)Hj(m)H¢(m)dm = ejk (Iv.3)
Eg. IV.2 becomes
| NN NiMe  MjYe Mg
re? o it T
Ex[S"(t)] = {d} (J,:E] k=21 Gk | Yok Megva Teyvac | 4
Y33V itk YajYak
| (IV.4)
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where the matrix

in paranthesis is [R] of Eq. 26,

-~ m.
R Rz Rys
(RI =} Ry Ry, Ry
L R3; Ry Ry

where for proportionally damped systems:

mn

Similarly

ol |

nm

Interchanging the

nim

Comparing Eqs. IV

Thus matrix [R] is a Hermetian matrix.

however, also shows that the imaginary parts of Rmn are zero

N
= z Z a;c_ka ” f @I( H (w)H*( )d w,
J:

N

= 4 kE] z. Ck Ymk f c}é](w)Hj(w)H;(w)dp

dummy indices j and k,

N

-t 55k [ B (o (Y (w)dw

k= 1 J=1

b6 and IV.8, it is seen that
R =R
mn nm

ing terms with j=k and j# in Eq. IV.6,

.

N
R = } & 3 i Y f_ @]( W) M ()] 24w
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(IV.5)

(IV.6)

(1v.7)

(1v.8)

(1V.9)

A further simplification,

. 'Separat— '



+

N o |
kE Cj%(ijYnk i @I(w)Hj(w)HE(w)dw (IV.10)

b

J#&
Thus the single summation terms are real, Also the integral of a typi-

cal term with j# can be rewritten as

w0

T oM (e | a (TN (e ()T (P, () P
(IV.11)
where |
N'(w) W =W (uk + 48 By 5 G W
(1v.12)

2 and ij(uﬂlz are even function of w, the

Now since @](w), ]Hj(w)l
imaginary part of the integral associated with N"(w), which is an odd
function, would be equal fo zero. Thus the entire expressfon in Eq.
1v.10 is real and also symmetric with j and k énd m and n. Therefore,
the matrix fﬁ] is a real symmetfic matrik. To express,'ﬁmn in terms of
reSpohse spectrum values, Egs. 1.8 and [.9 in Appendix I are used in

Eqs; IV.10 as follows:

- N 2 2 NN |
Ron = ;|=21 Y 1d( /C + Z kf & & g Tk
2 2
Ry (w:) - Ry (w ) .
: 2 v 1d VL2 b1 1d ' %
A" + %F](wj)a ]«T?-J—+ [C'+4F, (D 3——(:-]2—— Y (Iv.13)
' J

where A', B', etc., are defined in Appendix I, If Emn is associated

with the evaluation of design response, then Cj's can be dropped from
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Eq. IV,13, as in Eq, 38 of the text.

Nonproportionally Damped Systems:

A quadratic similar to Eq., IV.4 can also be developed for nonpro-
portionally damped .systems, For a single excitation along an axis with
direction cosines (dl’dz’d3)’ the response S(t) can be written as:

Nt . (t-v) pE(t-T) . -
JOREMA @ aed @i ) (ade (1v.19)
j= |

The stationary value of the mean square response can then be written as:

Ex[S®(t)] = NE % {d}T(foo (@, 1Gx) H.(wH*(w)dw){d} (IV.15)
) Tk G U GG s (iR (.
or

Ex[2(t)] = @Y [R]{d} (1V.16)

where, now the elements of R are defined as

- N N © |
mn ‘}':z] k=2] f-w ij(w)G;k(w)@] (w)Hj(w)H;('(w)dw,. m,n=1,?,3 (IV.17)
Also
— N N ® A |
m J-L k}} |65 () ()2 (H (HE ()du (1v.18)

Interchanging the dummy summation indices j and k,

"nm =R | (1V.19)

Thus matrix fﬁ] is Hermetian. A further inspection of these terms shows

that the imaginary parts of Rmn are again zero.
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In Eq. IV.16 separating terms with j=k and j# we obtain

(=]
]

N
R = j_g] i emj(w)e;j(w)@(w)mj(w)|Zdw

w0

o0

N .
k;f G, ( )G;k( )@](w)H.(w)H’k*(w)dw (1V,20)

N
+ )
j#K e

Substituting for ij(uﬁ and G* (w) from Eq. 18 in the text, a

single summation term can be written as:’

i ij(m)G"r’]‘j(m)@](w)IHj(m)|2dm

w

A 2 : i 2
=4 f_m {l\mJAnJ tuapaant “"(amjA anJAmJ }®](Q)|Hj(w)| dw

(IV.21)
In which again, the imaginary term is zero being the integral of odd
function over a symmetric range. Similarly a typical double summation

term can be written as

/

-

ij (w)G;k(w)tI’.l ( m)Hj(w)H’Iz(m)dw

w

_ 2
=4 f '%mJAnk Wag ay 1w(amJ e nJamk)}él(w)Hj(m)HE(m)dw

w4+C m2+C

=4f_ ((:m+c1 5 )@

) (0)IH CIRNEIET (1v.22)

where

Cp = ami%nk
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o 2 2
C1 = AmsPnk3midnk (o + o ~48s B o 4 )-2(8 w =B g ) (ag Ay -a An L)
Cp=a.a, il ul-h A, (CraedB. 8 ww)-2w 6 (8 w-Fu)la A, -a A )
27 Ani%nk S % Pm ik VO TR By e g B B s A "3 A

€y = AmjAnkug;i | (Iv,23)
Here again the complex terms are zerc because they represent an integra-
tion of odd function over the symmetric frequency domain,

Thus fﬁ] is a real symmetric matrix even for nonproportionally
damped systems. For the purpose of using response spectrum»as input,

Eq. 1V.22 can be further split into its partial fraction as follows:

i ij ( w)G;'k (w) 2 (Q)HJ. (m)H:(w)dw

-0

w

=4 j‘ [{Alu_l_BnlmZHHj(w)'z ¥ {C" + D"wz}IHk(w)Iz]cI)

I(w)dw (1v.24)

where A'", B'", etc,, are obtained as solution of the following simul-
taneous equations:
CZJA'" )} = W'} (1v.25)
in which the elements of Z are the same as defined in Appendix I and
{A'"fT = (A'", B'", c'", D'")
W () '

Cs W(2) = ¢, (1V.26)

wlll(a)

i

. [ Y -
CZ’ W' (4) = C3 |
Employing Eqs. I.8 and 1.9 in Egs. IV.21 and IV.23 R, for nonpro-

portional systems can also be expressed in terms of response spectrum

values as follows:
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-4 Z‘{A A +lF(:)a

Ran i ming 5 VY57 % nJ]R]d(w )/C
: 2
N N (m ) ‘ RY ()
£ 4] ] AR )B'"J———J—-+ [C" "+ (g )D'] ”zwk }
j #K Cj C
(1.27)

Again the peak factors can be dropped from Eq. IV.27 if Eﬁn is asso-
ciated with the evaluation of maximum design response.

To obtain the direction'cosines (dl,dz,d3) for maximum response,
the stationary value of the auxiliary function given by Egq. 31 in the

text is obtained. This requires:

oL ()

W, 0, 4=1,2,3 - (1v.28)

This_gives the following three simultaneous eﬁuations:
[RI1(d) - Ad} = {0) (1v.29)

Solution of this eigenvalue equation with the constraint of Eq. 30
provides the direction cosines which will extremize the response.

fﬁ] has been shown to be a symmetrfc matrix, both for proportional
as well as nonproportional systems., It is also realized that it_is a
- positive definte matrix as the quadratic form in Egqs. IV.4 and Egs.
‘IV.16 represents the mean square value of a fesponse quantity, always a
pdsitive quantity. It is zero only in fhe-case of no excitation on the
system, a trivial case. The positive definiteness of fﬁ] ensures that
the eigenvalues of Eq. IV.29 will be real and positive. Furthermore,
for each distinct eigenvalue, the eigenvectors will be orthogonal. For
two equal eigenvalues, there will be several orthogonal sets out of
whféh any two can be conveniently chosen., It was also shown, Eq. 34,

that

IR
A = {d;}IRIW, ) Iv.30
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That is, each eigenvalue also represénts the mean square value of the
response if the excitation is applied along the direction defined Dy the
corresponding eigenvector,

Thus to obtain the maximum response, its only necessary to form f§]

and obtain its eigenvalues. The largest eigenvalue gives the
maximum mean square response.

Also for multicomponent excitations these eigenvalues can be used
to obtain the maximum response if the frequency characteris;ics of the
input components aré similar. For three orthogonal principaT excitation
components with the variance ratios of 1:ﬁ:'%’ the maximum mean square
response can be written as:

| Ex(SZ) =Ntk t gk ' | (Iv.31)
in which Al’kz and A3 are the major, intermediate and minor eigenvalues,

respectively, of [R].
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