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NOTATION

The following symbols are used in this report:

[A]

A',B',C',D '

AII,BII,CII,D II

= real symmetric matrix of order 2n, defined by Eqo 16

= elements of vector {AI}, defined by Eqo 1.6

= e1 ements of vector {All}, defi ned by Eqo 1.21

AIII,BIII,CIII,DIII = elements of vector {Alit}, defined by Eqo IVo26

a Jj,b Jj

[B]

[C]

[D]

{d }

{E}

{E I}

EI ( .,;)

g

Ex[ eJ

e

= constant defi ned by Eq 0 14

= elements of vector {A.} and {a.}, defined in Eqo 18
J J

= the real and imaginary parts of qJj

= real symmetric matrix of order 2n, defined by Eqo 16

= dampi ng mat ri x

= peaks factor for a response quantity Sand psuedo accel
eration response of an oscillator with frequency w

j
and

dampi ng ~j

= elements of vector {Will}, defined by Eqo IVo22

= matrix of direction cosine of principle excitation com
ponents measured with respect to structural axes

= vector of direction cosines of an excitation with
respect to structural axes

= the directio~hcosine of the mth unprimed axis with
respect to n primed axis, with m,n = 1,2,3

= the vector of principle excitation components Xl ,X2and X3 specified along the principle axes of the ground
motion

..
= the vector of correlated ground motion components Xl'

X2 and X3 along structural axes

= excitation defined in Eq. 111.3

= the expected value of [e]

= eccentricity parameter, distance between mass and
stiffness centers of a floor slab

= square of the ratio of the relative velocity to psuedo
response spect rum values at frequency w. and dampi ng ~.

J J

v



Gmj

gj

H. ( w)
J

hj (t)

[K]

L( A)

[M]

m·
J

N

p.
J

{q. }
J

[R]

Rmn

R~k

r

= an e1 ement of the vector {G.} defi ned by Eq. 18
J

= modal response value of the response quantity S(t)

= frequency response funct i on of Eq. 5

= impulse response function

= stiffness matrix

= auxiliary function, definE~d by Eq. 31

= mass matri x

= jth modal mass obtai ned as {<\>.l [M] {<\>. }
J J

= number of degrees of freedom

= jth complex eigenvalue

= modal response vector defined in Eq. 14, a complex
quantity

= response mat ri x defi ned by Eq. 26

= element of response matrix defined by Eq. 27

= psuedo acceleration response spectrum value at frequency
w. and damping ~. for the .tth component of excitation
J J .

= re1at i ve di sp1acement response spect rum va 1ue at
frequency w.and dampi ng ~ .. for the .tth component of
excitation J J

= relative velocity response spectrum value at frequency
w. and damping ~. for thE~ .tth component of excitation
J J

= constant factor defined by Eq. 9

= radius of gyration of the floor slab

{rl }, {r2 }, {r3 } = ground displacement influence vectors for the excita
tion in the three directions

S(t)

S2
max

S·1

{T}

= a response quant ity of interest·

= maximum mean square response value

= the parameter of spectral density function in Eq. 36

= vector which transforms the relative displacement eigen
vector {<\>j} into modal response quant ity gj

vi



{u } = relative displacement response vector of the system with
respect to the three ground excitations

U~k'V ~k'W ~k = factors defined in Eq. 1.15
.. .. ..
Xl ,X2 ,X 3 = principal components of ground acceleration
.. .. ..
X, ,X2,X3

a:

A.
1

[pi]

[ p"]

Pmnjk

= components of ground acceleration along the structural
axes

= angle of orientation of the maximum response measured
from the major principle axis

= jth modal damping ratio

= constant factor defined by Eq. 19

= element of the vector {y.}, ~ = 1,2,3
J

= jth modal response of the response quantity S(t) for
proportionally damped system

= Lagrange Multiplier

= eigenvalue of Eq. 29, also the mean square value of the
principal response

= matrix defined in Eq. 11

= matrix used in Eqo 23 with diagonal elements
= I(l-p.)/p., i=2,3 and all other elements being zero

. 1 1

= a term defined in Eqo 28 and 29

= variance ratios for intermediate and minor principal
excitat; ons 0 Also def; ned as <1>2 (w) = Pl <1>1 (w) and
<1>3 (w) = P2 <1>1 ( w)

= matrix of spectral density function, Eqo 7

<1>1(w),~(w),<1>3(w) = spectral density functions of major, intermediate
and mino~ principal excitation compon~nts

{<t>. }
J

w.
J

c5( t )

= jth undmaped mode shape or eigenvector of Eqo 1 for pro
portional damping system and the lower half part of the
jth complex eigenvector fornonproportional damping
system

= frequency and damping parameters for the spectral
density function in Eqo 36

= jth modal frequency

= delta dirac function
vi i





1. INTRODUCTION

1.1 GENERAL

Earthquake induced ground motions as felt by structural systems are

usually multidimensional, with six components: three translations and

three rotations. In seismic design practice, however, only the transla

tion components in three orthogonal directions are usually considered.

Often these are assumed to be statistically uncorrelated and as such a

design response is obtained as the square root of the sum of the squares

of the responses due to each of the components (3,11). Other response

combination methods which are primarily concerned with the evaluation of

a design response satisfying a limit state have also been proposed in

the literature (5,6,14). In this report, however, a related but differ

ent aspect of this problem is examined.

The three components of ground motion along an arbitrary set of

orthogonal directions will usually be statistically correlated. How

ever, as observed by Penzien et al in a series of papers (9,12,13), a

special set of three orthogonal axes called the principal axes exist

along which the ground motion components are not correlated. It has also

been observed that the intensities of the three principal components are

usually different. The orientation of the major principal axis has been

observed to be along the epicentral direction, although the correlation

between these two directions has not been found to be very strong (9).

Herein these principal axes will be called as the principal excitation

axes.

As a structure may not be oriented such that its own geometric axes

align with the principal excitation axes, the motions felt by the struc

ture along its own axes will, in general, be correlated. The degree of



this correlation will depend upon the relative orientation of the struc

tural axes with respect to the principal excitation axes. The objective

of this investigation is to analytically study the effect of this corre

lation on a calculated structural response. The conditions under which

a largest structural response will be obtained are investigated for pro

portionally and nonproportionally damped structural systems. A set of

three orthogonal directions, herein called as the principal response

directions, have been observed to exist for each response quantity such

that if the principal excitations are applied to the structure along

these direction they wi 11 induce the maxi mum response. The exi stence of

such principal directions is of practical interest in as much as it

helps in the evaluation of the worst case response. A step-by-step

methodology to evaluate the worst cases response is outlined. Numerical

results, illustrating the effect of structural orientation and input

correlation on the structural response are presented.

1.2 REPORT ORGANIZATION

Section 2 of t~e report describes the equations of motion for three

correlated ground components. The expressions for the mean square and

design response of structural systems with proportional and nonpropor

tional damping matrices are developed. The term "nonproportional" is

used in a more broad sense than what it literally means; any viscously

damped system whose damping matrix cannot be decoupled by undamped modes

is considered to be a nonproportionally damped system. The input for

design response is assumed to be defined in terms of response spectra, a

commonly used form of sei smi c des i gn input.

2



Section 3 explores the condition on the input which will give the

maximum mean square response irrespective of the orientation of the

structure. It is shown that if all the components of excitation are

assumed to be equal to the major principal component, the mean square

response will be maximum and the same for all orientation.

The evaluation of maximum mean square response when the excitation

components are of unequal intensity is presented in Section 4. Here,

the existence of principal response direction is identified.

Numerical results of a torsional structural system are presented in

Section 5. The effect of change in the angle of orientation and vari-

ance ratio on the calculated response is shown. The response is shown

to attain a maximum value at certain angular positions. In Section 6 a

step-by-step procedure is outlined to obtain the worst case response for

multicomponent earthquake inputs. Numerical results for another illus-

trative example are presented. Summary and Conclusions are provided in

Sect ion 7.

To make the report self contained, some necessary details of alge-

braic manipulation are provided in Appendices I to IV.

2. ANALYTICAL FORMULATION

2.1 EQUATIONS OF MOTION

The equations of motion of a multi-degree-of-freedom structural

system excited at its base by three components of ground motion with two

lying in, say, the horizontal plane and the other one in the vertical

direction can be written as follows:
•••• ..1 •• 1 •• 1

[M][u}+ [C]{u} + [K]{u} = -[M]{{rl}Xl + {r2 }X2 + {r3 }X3} (1)

where [M], [C] and [K] are, respectively, the mass, damping and stiff-

3



ness mat ri ces of the system; {u} = re1at i ve di sp1acement response vector
•• 1

of the system with respect to the three ground excitations; Xl(t),
.. I .. I

X2(t) and X3(t) are the components of the ground acceleration along the

structural axes, represented by the primed set xl' x2' and x3 in Fig. 1;

and {r
l

}, {r2 } and{r3} are the ground displacement influence vectors (4)

for the excitations in the three directions. The dot over a time vary-

ing quantity represents its time derivative.

For an arbitrary structural orientation, the excitation components
.. I .. I .. I

Xl ' X2 and X3 wi 11 be correlated. Let thl:l principal axes of the ground

motion represented by the unprimed set xl' x2' and x3 be as shown in

Fig. 1. In terms of the ground motion components along the principal

axes, the components along the structural axes can be written as fol-

lows:

(2)

..
1ated components Xl' X2 and X3, specified along the principal axes of

ground motion.

With Eq. 2, the solution of Eq. 1 now can be obtained in terms of

the uncorrelated components using any standard technique. Here the main

interest is in the evaluation of seismic design response. Thus
..
Xi(t)' s , i = 1,2,3 are considered as random processes so that the

ensemble of ground motions are included in the evaluation of response.

4
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Furthermore, only linear systems are considered and the modal analysis

approach is used so that seismic design inputs commonly defined in terms

of ground response spectra (7) can be directly used. For analytical

convenience the ground motions will be assumed to be characterized by

stationary random processes.

The formulation of the modal analysis approach will depend upon the

constitution of the damping matrix [C] in Eq. 1. If this matrix is a

so-called "proportional" or "classical" (2,10), the normal mode approach

can be used where the undamped eigenvectors of the system can be

employed in diagona1izing [C]. This forms the basis of the commonly

used ~quare-~oot-of-the-~um-of-the-squares (SRSS) approach for propor

tionally damped systems (1,15). However, if [C] is not proportional or

classical it becomes essential to employ the 2n-state vector approach

(10) in which complex eigenvectors are used to affect the decoup1ing of

equations of motion. In this latter case, though there are no normal

modes, it is still possible to devise an SRSS type of approach for the

calculation of seismic design response. The details of such an approach

are provided by the senior writer in Ref. 16. Herein, the systems with

proportional as well as nonproportional damping matrix have been con

sidered, and the expressions for the mean square and design responses

have been developed for multi component excitations. The terms propor

tional or nonproportiona1 is used in a broader sense and is meant to

include all nonclassically damped systems (2,10).

2.2 PROPORTIONALLY DAMPED SYSTEMS

Here undamped normal modes are used to decouple Eq. 1. For a

linearly behaving structural system a response quantity, S(t), can be

5



written in terms of modal parameters as follows:

S(t)
N t T

= 1: 1;;·f {YJ'} {E I }hJ.(t-'t)d't
j J 0

(4)

in which N ,;, number of degrees-of-freedom; 1;;. = jth modal response of
J

the response quantity S(t); {Yj} = (Ylj' "'2j' Y3j)T = vector of partici-

pation factors for excitations along the structural axes, with its ele

ments defi ned as Y~ = {<I>j l [M] {r .RJ/mj , X = 1,2,3; {<I>j} = jth undamped

mode shape or eigenvector of Eq. 1; m
J
. = {<I>.l[MJ{<I>.}; T over a vector

J J

indicates its transpose; and hj(t) is the impulse response function of

(5)

T{<I>. } [C] {q>. }/2w.m.
J J J J

<5( t )

as =

w. =
J

For stochastic excitations, Eq. 4 can be used to obtain the mean

and

the following decoupled equation:
.. • 2
v. + 2~. w. v. + w. v. =

J J J J J J

wherein, .~ = jth modal damping ratio defined

jth natu ra1 frequency of the system.

square, and also the design, response. Substituting for {E}I in terms

of {E} from Eq. 2 and after some standard ;:llgebraic manipulations of

random vibration analysis, the mean square value of the stationary

response for zero mean stati onary excitati ons can be written in terms of

the spectral density function of the excitation components as follows:

(6)

where Ex[·J denotes the expected va 1ue of [.J and

([>1 ( w) o

o
(7)

iJ?2 ( w)

6



is the matrix of the spectral density functions of the three components

along the principal excitation axes, and H.(w) = 1/(J-i+2i~.w.w) is
. J J J J

the frequency response function of Eq. 5. The asterisk over a quantity

denotes its complex conjugate. For development of [~J see Appendix II,

Eqs. I!. 3- II. 6.

Employing some commonly made, and fairly reasonable simplying

assumptions (15,16), Eq. 6 can be cast into an SRSS type approach for

the evaluation of seismic design response as follows:

N 3 2 N N 3
S~ = I C{ I ro;·RJr:j(w,)} + 2 I I {1;J'1<o=I

l
rO;kRo;k} (8)

j=l J J.=l -"VJ J j=l k=j+l )(; -"V-"V

where

2= R o~ ( w. ) / w.
NJ. J J

(9 )

And, for frequency w. and dampi ng rat i 0 ~., R o~ ( w. ) = psuedo acce 1er-
J J NJ. J

thation spectrum for the J. component of excitation and FJ.(wj ) = the

square of the ratio of the relative velocity to psuedo velocity response

spectrum values. AI, B1
, CI and DI are defined in Appendix I. Eq. 8 can

be used to obtain design response for an arbitrary orientation of the

structure defined with respect to the principal directions of the exci-

tation, if they are known.

It has been observed (9,12,13) that the variances of the ground

accelerations along the principal directions are unequal. Here it is

assumed that they are in the ratio of 1: r,: P2. Later a parametric vari

ation study is conducted where numerical values have been assigned to

7



these variance ratios. For simplification it is also assumed that the

frequency characteristics of the input motions, as defined by their

spectral density functions are also same. Thus, ~(w) = Plif?l(w)

and if?3 (w) = P2~ (w) wi th if?l (w) bei ng the spect ra1 dens ity funct i on of

the major principal component. Substituting these in equation (6) and

realizing that [DJT[DJ = [IJ, an identity matrix, the following is

obtained:

N N T T T 00

= } kL 'j11«{Yj} {Yk} - {Yj} [DJ[p'][D]{Yk}) 1_
00

~(w)Hj(w)Hk(w)dw

(10)

in which

[p'] = [~ l~~ l~J (11 )

The fi rst term in Eq. 10 represents the mean square response due to

three independent but equal intensity excitations applied along the

structural axes. The remai ni ng term represents the effect of carrel a

tion between the components which, of cours~, depends upon the orienta-

tion of the structure with respect to the principal axes. The effect of

orientation and variance ratio on the response is examined numerically

later.

2.3 Nonproportionally Damped Systems

Equations parallel to Eq. 8 and 10 for the calculation of station-

ary mean square response and the desi gn response can a1so be deri ved for

. nonclassically damped structural systems excited by correlated excita

tion components. Using the 2n-dimensional state vector approach

(10,16), the solution of Eq. 1 for response quantity, S(t), can be

8



written as

Using Eq. 2

in which,

2N t P . (t - 1:)
S(t)::: I J {qJ'}T {E I }e J d 1:

j 0

2N t p.(t-o)
S(t)::: I J {qJ.}T[DJT {E}e J do

j 0

(12 )

(13 )

q~

g. T
- _.:J. {4l.} [MJ[r o};

- J AAl
~::: 1,2,3

(14 )

A. ::: {4l. }T(2p.[M] + [CJ) {4l.}; g. ::: {T}{4l.}
J J J J J J

and Pj ::: jth complex eigenvalue and {4lj }::: the lower half part of the

jth eigenvector of the following 2n-dimension eigenvalue problem:

wherein

p. [AJ {4l} + [BJ {4l}::: {O}
J

(15)

[
[OJ [MJ]

[A] ::: ;
[MJ [C J [

-[MJ [OJ]
[BJ :::

[OJ [KJ
(16 )

and {T} is a vector which transforms the relative displacement eigen

vector {4l
j

} into the modal response value gj of the response Quant ity

S(t) •

Realizing that the components of {E} are uncorrelated random pro

cesses, the stationary mean response of S(t) can be written in the fol-

lowing form (see Appendix II):

9



N N CD

Ex[S2] = L L f {Gj}T[D]T[~ ][D]{G~}Hj(w)H~(w)dw (17)
j j _CD

where

alj al j ~j - bl·nJ J

{a. } = a2j {A.} = w. a2 · ~. - b2 . A-~~ (18)
J J J J J J J

a3j a3 · ~. - b3·nJ J J J

b,q,j are the real and imaginary parts of q~ respectively;

are analogous to the modal frequency and damping ratio,

in whi ch a,q,j'

and w. and ~.
J J

.defined in terms of the real and imaginary parts of the Pj as follows:

w. = Ip·1
J J

Rea 1(p . )
W. = - __-->r-J
J w.

J
(19)

Eq. 17 can be further extended to develop the following SRSS type

of approach for the calculation of design response for nonclassically

damped systems:

N 3
Sd2 = 4 L L {U o;' + w~Fo(w.)Vo;·JR~,l(w.)

j =1 .t=1 AU J J A J AU J )UJ J

N N 3
+ 8 L L L [(AII+iF .t(w.)BII}R~(w.) + {CII+~F .t(<i<)DII}Rid('\)]

j=l k=j+l .t=l J J J
(20) .

where, U,q,jk' VJjk -and All, BII , CII and 011 are defined in Appendix I. Eq.

20, applicable to nonproportionally damped systems, is similar to Eq. 8

and can be used with prescribed ground spectra to obtain design

response, again only if the elements of [0] are known.

10



For the special case ~f excitations, with variance ratios of P1 and

P2' Eq. 17 can also be rewritten as follows:

N N co

= ?If. ({Gj}T{Gk"} - {Gj}T[D]T[pl][D]{Gk"})~1 (w)Hj(w)Hk"(w)dw
J k _0)

(21)

Here, 1ike Eq. 10, the response terms whi ch are affected by the

input correlation and structural orientation have also been separated.

3. MAXIMUM MEAN SQUARE RESPONSE

Since the principal excitation axes are not known in advance, a

quastion is immediately raised: what orientaton of a structure with

respect to ground excitations will result in the highest response? An

examination of Eqs. 10 and 21 indicates that when all three excitations

are of equal intensity, [pi] is a null matrix and thus the total

response is given by the first term. This response will be maximum if

and only if the second terms in Eqs. 10 and 21 are always positive.

That it is, indeed, the case can be seen from the fact that the second

term in Eq. 10 represents the stationary mean square value (a positive

quantity) of the following response quantity:

S I (t) (22)

where the excitation term is defined as

EI(t) = {y.}T[D]T[p"]{E(t)} (23)
g J

where [p.. ] is a di agona 1 mat ri x 1i ke [pi] except that the nonzero

diagonal terms are defined as l(l-Pi)!Pi' with i = 2 and 3. Similarly

it can be shown that the second terms associated with [pi] in Eq. 21 for

11



nonproportionally damped systems also represents a mean square value,

always a positive quantity (see Appendix III for details). This shows

that a maximum response will be obtained if the intensities of the

excitations along the intermediate and minor principal axes of the

ground motion are assumed to be the same as that of the excitation

component along the major principal axis. In such a case, the maximum

response is independent of the orientaton of the structure; that is, all

orientations of the structure will result into the same maximum

response. This is similar to the uniform state of ~tress in solid

mechanics where stresses are equal and maximum in all directions. This

is, probably, implicitly understood by seismic analysts and has

practical implications. It shows that a designer should chose his

inputs in all three orthogonal directions to be of intensity equal to

that of the major principal component to ensure that the calculated

forces will not be exceeded no matter what the orientation of the

structure. However, if the ground motions of unequal intensity are to

be used as iputs, it is essential to locate the worst orientation which

will induce the maximum structural response. The following approach

defines such an orientation for a particular response quantity of design

interest.

4. PRINCIPAL RESPONSE DIRECTIONS

It is desired to obtain the elements of matrix [0] such that the

response in Eqs. 6 or 17 is maximum for a given set of principal exci

tation components. First, the worst direction causing maximum response

for a single excitation is obtained. The mean square response for a

proportionally damped system due to, say, the major principal excitation



component applied along an axis with direction cosines d1, d2 andd3,

defined in the primed coordinate axes, can be written as

N N a:>

= } kL I:jS«Yljdl+Y2jd2+Y3jd3)(Ylkdl+Y2kd2+Y3kd3) I_a:> ~l(w)Hj(w)Hk(w)dw

(24)

This, and a similar quadratic for a nonproportionally damped system, can

be written in matrix notations as follows:

(25)

where {d} is a vector of di rect i on cos i nes d1, d2 and d3 and the
-

response matrix [R] is defined as follows:

-Rll R12 R13
- - - -[R] = R2l R22 R23 (26)

- - -R3l R32 R33
[R] is a Hermitian matrix. The elements of this matrix are defi ned as

fo 1"1 ows:

- N N
R = L L Pmnjk m,n = 1,2,3 (27)mn j k

whel'e P. Ok are defined for proportionally damped systems as follows:mnJ

and for nonproportionally damped systems as follows:

(29)

in which Gmj is an element of the vector defined in Eq. 1&.
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To obtain the excitation direction which will extremize Ex[S2] with

the following constraint on its direction cosines,

{d}T {d} = 1 (30)

the Lagrange multiplier approach can be used. The extremization of the

. auxiliary function with Lagrange mu1tipliE~r, A,

L(A) = {d}T[R]{d} - 11.( {dT} {d}-1) (31)

leads to the following eigenvalue problem

[R] {d} - A.{d} = {O} (32)

It is seen that the Lagrange multiplier is also the eigenvalue. A non-

trivial solution of Eq. 32 requires that the determinant of the charac-

teristic matrix be zero. This gives a third degree characteristic equa-

tion in ~ like the equation of the principal stresses in continuum

mechanics.

positive.

It can be shown that all roots of this equation are real and

For each root, A., i = 1,2,3, there is a corresponding vector
1

of direction cosines {d}.• For different A.IS these direction cosines
1 1

are orthogona 1; that is, {d}: {d}. = 0 for i :#: j. One of these three
1 J

direction corresponds with maximum value of response whereas the others

correspond with the i ntermedi ate and mini mum values of response. For an

i th eigenpair, Eq. 32 can be written as

Premultiplying Eq. 33 with

[R] {d }i· = Ai {d}i

{d~ and using Eq. 30, one obtains
1

Ai = {d}~ [R] {d }i

(33)

(34)

Comparing this with Eq. 25, it is seen that the Lagrange multiplier,

A., which is the eigenvalue of Eq. 29.is also the mean square value of
1

the response when the excitation is applied along the direction speci-

fied by {d\. The largest eigenvalue gives the largest mean square

response.



It is seen that these principal directions could be different for

each response quantity because ~j or Gmj are different. Here these

principal directions associated with a response quantity are called as

the principal response directions to differentiate these from the prin

cipal excitation axes. Also since p. Ok depends upon the excitationmnJ
spectral density function, the principal response directions will, in

general, also depend upon the frequency characteristics of the excita

tion. However, if the frequency characteristics of the input components

are not significantly different, their principal response directions for

a response will not be much different either. Thus, for the three

orthogonal components of input it will, probably, be accurate enough to

assume that these principal response directions are input independent.

This simplifies the identification of the worst orientation of excita-

tion for the calculation of worst case design response. To obtain the

worst case response the major, intermediate and minor principal excita-

tion axes should, respectively, coincide with the major intermediate and

minor principal response directions which are identified by the eigen-

value problem in Eq. 32. The total response in such a case is given by

Eq. 6 for proportionally damped and by Eq. 17 for nonproportionally

damped structural system, with the matrix [0] containing the direction

cos"jnes of principal response directions. This total response, as per

Eqso 6 or 17, is seen to be the square-root-of-the-sum-of-the-squares of

the response due to each principal excitation component.
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5. NUMERICAL RESULTS

To study the effect of structural orientation and variance ratios

on the structural response, the numerical results have been obtained for

the structural system shown in Fig. 1. This system is similar to the

one considered in Ref. 8. The system represents a multi story building

w"ith rigid floors int.erconnected by columns. Each floor has three

degrees of freedom in its own plane. The mass and stiffness centers of

the system are eccentrically placed by an amount e with the purpose of

creating torsional effect and coupling in modal responses. The tor

sional and bending stiffnesses of the system and the eccentricity bet

ween the mass and st iffness centers can be adjusted to i nt roduce va ryi ng

degrees of modal correlation, and interaction of this correlation with

the correlation in the input components is; reflected in the calculated

response. A nonproportiona1damping matrix is created by assigning dif

ferent damping constants in the two horizontal directions. Parallel

numerical results have also been obtained in which this damping matrix

has been assumed to be proportional. This implies that the off diagonal

terms of the matrix [~JT[CJ[~J are negligible. Such an assumption is

often made in practice to simplify the analysis. The comparison of the

two similar results shows the error introduced by the assumption of pro

portionality of a damping matrix.

To simplify the study of orientation effect on the response, the

major and intermediate principal excitation directions are assumed to

lie in the horizontal plane and the minor principal excitation is

aligned along the vertical direction. In this situation, the orienta

tion is completely defined by one angle. Assuming this angle to be a,

measured in the counter-clockwise direction from the major principal
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axis, the matrix of direction cosines can be written as follows:

[COS a sin ex

~][0] = -s ~nex cos ex (35)

0

The effect of changing orientation parameter ex on the response is

studied.

The input motions used in this study are defined in terms of a

spectral density function. As mentioned earlier, the spectral charac-

teristics of the three principal components have been assumed to be the

same. Their intensities as measured by their variance are, however,

different. The spectral density function for the major prinCipal

excitation is assumed to be of Kanai-Tajimi form as follows:

<fl
l

(w) =
3
I

i =1

422 2
w.+4~. w. w

1 1 1
Si 2 2 2 2 2 2

( wi - w ) +4 ~i wi w
(36)

The parameters 5i , wi and ~i of this density function are given in Table

1. This density function represents a broad-band seismic input, 5uit-

able for design purposes. The effect of change in the variance ratio p

on the response has been evaluated. For two principal excitation com~

ponents, the variance ratio values of 1.0, 0.75 and 0.5, have been

considered to obtain numerical results of various response quantities.

The numerical results of the mean square response values have been

obtained for the story shear, story torsion and bending.moment in a

column using Eq. 17 for nonproportional and Eq. 6 for proportional damp-

ing matrices. As these response quantities are not primarily affected

by the vertical component of excitation, the terms corresponding to this

excitation are deleted from these equations.
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The effect of the structural orientation and the variance ratio on

the root mean square (RMS) value of the base shear in x2-direction is

shown in Fig. 2 for two values of the eccentricity ratio, elr, equal to

.• 01 and .1; r is the radius of gyration of floor slabs. Fig. 3 shows

similar results for the base shear in xl-direction. The results have

been normalized by the maximum base shear in x2direction obtained for

nonproportionally damped system. For comparison, the results obtained

by Eqs. 6 and 17 both are plotted. The differences in these two results

show the magnitude of error which is caused by the assumption of propor

tionality of [C] when it is not. From these figures it is seen that

this error is large when elr is small. For small elr values in this

case, the frequencies were closely spaced causing a strong modal inter

action effect. In such a case, the off-diagonal terms in [~]T[C][~]

attain a special significance and neglecting them can ca~se large errors

in the calculated response. On the other hand, if the frequencies are

widely separated, the modal correlation will be weaker and the error due

to the assumption of proportionality may not be significant. Similar

trend in the magnitude of the error were also observed for other

response quantities like sto~ torsional moment and column bending

moments.

Figs. 4 and 5 show the RMS value of the base torsional moment for

proportional and nonproportional damping case for elr values of .01 and

.10. Figs. 5 and 7 show the RMS bending moment in one of the columns of

the lower story for proportional damping case whereas Figs. 8 and 9 show

similar results for nonproportional damping case. It is noted that max

imum values of these quantities are obtained when the variance ratio is

1.0. For other variance ratios the response changes with the orienta-
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tion and reaches a maximum value which is almost equal to the value for

variance ratio of 1. The orientation for the maximum response can be

obtained as discussed in the previous section. For the present two

dimensional case this angle is given by the following expression

tan2a:: - (37)

where Rmn is defind in Eq. 27. Eq. 37 provides two values of a which

are 90 0 apart which correspond to the maximum and minimum values of the

RMS response. For base shear, Figs. 2 and 3, the directions for maximum

response are almost in the xl and x2 directions. For the structure in

Fig. 1 these directions are also the axes of symmetry for small e/r.

For larger elr, a slight shift in the directions for maximum from the

xl and x~ is noted, Figs. 2b and 3b. Also for the case of torsional

moment, Figs. 4 and 5, the maximum and minimum response values do not

occur when the excitations are along the xl and yi-directions. Further

more, the excitation directions for the largest response are different

for the proportional and nonproportional systems. As the RMS value of

the bending moment in a column is affected by shear and torsional

moment, the angl es for maxi mum response are also affected by both. It

is seen from Figs. 6-9 where the excitation directions for the maximum

column moment response is clearly seen to be somewhere between the

directions for the maximum base shear, Figs. 2 and 3, and maximum tor-

sional moment, Figs. 4 and 5. These results also show that the princi-

pal response directions could be different for different response quan-

tit i es.

In seismic structural analysis, it is a common practice to take two

horizontal components of excitation to be equal in intensity and the
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intensity of the vertical excitation to be equal to 2/3 of the intensity

of the horizontal excitations. For structures in which horizontal and

vertical responses are uncoupled, this practice ensures that a calcu

lated response is always maximum and is independent of structural orien-

tation. However, structures in which vertical and horizontal responses

are coupled, orienting the smallest excitation in the vertical direction

may not induce the worst case response. In such cases, it is necessary

to orient the principal excitation components along the major, minor and

intermediate principal response directions to obtain the worst case

response. This, however, does not require a reanalysis of structural

system after the principal response directions have been identified.

Rather, a step-by-step procedure as outlined in the following sections

can be used to calculate a worst case design response.

6. EVALUATION OF WORST CASE RESPONSE

6.1 STEP-BY-STEP PROCEDURE

To obtain a worst case response, that isa response which will be

maximum for all possible directions of impinging ground motions, the

following step-by-step procedure can be used:

1. Select a set of coordinate axes to model the structural system.

Though not necessary, it may be preferrable to orient one or more of

these axes along the axes of symmetry if these can be identified.

2. Obtain the dynamic characteristics of the structure such as

frequencies, w.,mode shapes, {<t>.}, and participation factors, y .•. The
J. J mJ

participation factors will depend upon the choice of axes made in

Step 1.
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I
3. Obtain the elements of respons~ matrix, Eq. 26, for all three

components of ground motion. It is noted that the prescribed response

spectra can be directly used in the calculation of these elements. For

example, for a propdrtional damping case, an element R can be writtenmn

as follows:

R =mn

N N N
I C'fno"y: oR~(wo) + 2 I I Co~'Y. oy oRo;k

j=l J J nJ J j=l k=j+l J mJ nJ AV

(38)

where R,£jk is defined in Eq. 9.

4. Solve the eigenvalue problem defined by Eq. 32 for one of the

response matrices [RJ. The response matrix obtained for the largest

principal component of excitation should, preferably, be used. For such

a response matrix, the largest eigenvalue in Eq. 32 then also provides

the worst case response due to the largest principal component.

5. In Eq. 25, use the intermediate and minor eigenvectors obtained

in step (4) with the response matrices [R] for the intermediate and

minor principal components to obtain the contributions of these to the

total response.

6. As per Eqs. 8 or 20, the square root of the sum of the squares

of the response due to the three components of excitation, as obtained

in steps (4) and (5), gives the worst case design response.

6.2 ILLUSTRATIVE EXAMPLES

The numerical results presented in the previous section were

obtained for various values of angle a and variance ratio p. It was

observed that for each response quantity there is a special direction to

cause the maximum response. To identify this direction and to obtain

the maximum response, the eigenvalue approach outlined in Section 4 will
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now be used.

Tables 2-5 show the results obtained by this approach for the

structural system shown in Fig. 1. In Tables 2 and 3, the results are

for the elr ratio of .01, and in Tables 4 and 5 for elr = .10. Tables 2

and 4 present the results for proportional damping Case, whereas Tables

3 and 5 for nonproportional damping case.

Columns (2) in the Tables show the root mean square values which

were obtained when the stronger of the two excitation components was

aligned along the xl axis. For excitations with similar spectral

characteristics and with the variance ratio of ~ the mean square

response is simply obtained as:

2 -Ex[S ] ;: Rll + P R22 (39)

where Rll and R22 are the elements of [RJ matrix obtained with the spec

tral density function of the stronger excitation component. Here, for

the two dimensional cases, [R] is a 2x2 matrix.

The response values in Columns (3) are the maximum values obtained

by the approach established in Section 4. That is, it is the square

root of the following mean square value:
2

Smax = 'I + P"2 (40)

where "l and ~ are the maximum and minimum eigenvalues, respectively,

of [R].

The angle, measured in degrees from the xl-axis, at which the major

excitation component should be applied to cause the maximum response is

shown in Column 5. These values agree very well with the results

plotted in Figs. 2-5.

Columns (4) show the ratio of the values in Columns (2) and (3).

These values indicate the magnitude of possible underestimation of
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response if the excitation directions are fixed along the structural

axes and no search for the maximum response is made.

For some response quantities, the orientation of excitation for the

worst effect is obvious. For example, if the maximum story shear in x2
direction is being sought, the stronger excitation component should be

nearly along the x2-direction. For other response quantities, the worst

direction may not be that obvious. Even if the worst directions are

known in advance, it may not be practically feasible to keep changing

the orientation of excitation to obtain the maximum values of various

response quantities. These trials on re-orientation and re-ana1yses can

obviously be avoided by adopting the method outlined in Section 6.

In practice the search for the maximum response is avoided by

assuming that the two horizontal excitation components are exactly the

same. In such a situation, any two orthogonal directions in the hori

zontal plane are principal response directions. This obviously ensures

a conservative evaluation of response, no matter what orientation of

inputs is assumed. The method outlined in Section 6.1, however, can be

used to assess the degree of conservation involved in such a practice if

the two horizontal excitation components are not equal.

In practice it is customary to assume the vertical excitation to be

2/3 of the horizontal components. Thus in situations where a response

quantity is affected by both horizontal and vertical excitations, that

is when there is a coupling between the effects of two excitations, the

approach presented in Sections 4 and 6.1 can be effectively used to

obtain the worst case response. This will usually happen where there is

an asymmetry in the structure. To illustrate this, here the problem of

a vertical asymmetric frame is used. The frame is shown in Fig. 10.
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The mass and stiffness properties of the frame are given in Table 6.

The natural frequencies of the system and participation factors are

shown in Table 7. In Tables 8 and 9 are shown the results for axial

force, shear force bending moment and maximum bending stress in various

members of the frame. The latter quantity is of design interest where a

maximum effect of two response quantities (moment and axial force) is

sought. Tables 7 and 8 have parallel columns as in Tables 2 through

5. Again, it is seen that the response is likely to be severely

underestimated if the excitation directions are fixed along geometric

Xi and X2axes and no search for the maximum is made.

7. SUMMARY AND CONCLUSIONS

The response of linearly behaving structures subjected to three

translational components of earthquake has been examined. The effect on

dynamic response of the orientation of a structure with respect to the

ground excitation components is considered. The formulation for the

evaluation of design response, employing response spectra. as inputs, is

presented for proportionally as well as nonproportionally damped struc

tures. Assuming the existence of the so-called principal component of

excitation, the response which considers correlation of input along

structural axes can be expressed in terms of the uncorrelated principal

components.

The existence of a set of input directions, herein called as the

principal response directions, has been identified. These principal

di rect ions depend upon the type of response and the frequency character

istics of the input. If an applied excitation is directed along the

major principal direction the induced response will be maximum. This is



of practical significance as it helps in the evaluation of the worst

case response for a given set of principal excitations of unequal inten

sities. Although each response quantity has its own principal response

directions, the worst case can be directly obtained without conducting

any parametric variation on possible angular orientations of the struc

ture.
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TABLE 1: PARAMETERS OF SPECTRAL DENSITY FUNCTION ~g(w)t Eq. 36

i s· w. ~i
ft2-se~/rad rad/~ec

1 .006 13.5 .3925

2 .00198 23.5 .3600

3 .0015 39.0 .3350

I' ,
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TABLE 2: COMPARISON OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING
MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38,
AND MAXIMUM RESPONSE, Eq. 39, FOR STRUCTURE IN FIG. 1.
PROPORTIONAL DAMPING; e/r = 0.01

Response Maximum Angle
Response By Eq. 38 Response Ratio in Degree
Quantity By Eq. 39

(1) (2 ) (3) (4) ( 5)

Base Shear in - Xl 1.006 1.006 1.00 -:0.081

Base Shear in - Xl 0.711 1.006 0.71 90.082

Torsional Moment 0.069 0.080 0.87 45.00

Bending Moment x'-Direc. 1.743 1 .743 1.00 -0.64
in Col. 1

I D' 1.234 1. 743 0.71 90.64x2- 1 rec.

Bending Moment x1-Direc. 1.782 1.782 1.00 0.63
in Col. 2

x2-Direc. 1.262 1.782 0.71 89.37

.
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TABLE 3: COMPARISON OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING
MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38,
AND MAXIMUM RESPONSE, Eq. 39, FOR STRUCTURE IN FIG. 1.
NONPROPORTIONAL DAMPING; e/r = 0.01.

Maximum
Response Response Response Angle
Quantity By Eq. 38 By Eq. 39 Ratio in Degree

(1 ) (2) (3 ) (4) (5)

Base Shear in - x' 0.874 0.874 1.00 -.051
Base Shear in - x' 0.989 1.399 0.71 90.162

Torsional Moment 0.084 0.112 0.76 72.94

Bending Moment x1-Di ree. 1.515 1.515 1.00 -.77
in Col. 1

x2-Diree. 1.722 1.434 0.71 90.45

Bending. Moment I D' 1.540 1.540 1.00 0.81xl - , rec.
in Col. 2

x2-Diree. 1.747 2.470 0.71 89.95
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TABLE 4: COMPARISON OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING
MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38,
AND MAXIMUM RESPONSE, Eq. 39, FOR STRUCTURE IN FIG. 1
PROPORTIONAL DAMPING; e/r = 0.10.

Maximum
Response Response Response Angle
Quantity By Eq. 38 By Eq. 39 Ratio in Dearee

(1) (2) (3) (4) (5)

Base Shear in - x I 0.945 0.945 . 1.00 -3.311

Base Shear in - x I 0.699 .946 0.74 93.312

Torsional Moment 0.407 0.470 0.65 45.00

Bending Moment x1-Di ree. 1.577 1.563 1.00 -7.57
; n Co1. 1

x2-Diree. 1.196 1.563 0.76 97.57

Bending Moment x1-Diree. 1.911 1.918 1.00 +7.33
in Col. 2

x2-Diree. 1.474 1.918 0.77 82.67
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TABLE 5: COMPARISON OF BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING
MOMENT RESPONSE OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38,
AND MAXIMUM RESPONSE, Eq. 39, FOR STRUCTURE IN FIG. 1.
NONPROPORTIONAL DAMPING; e/r = 0.10.

Response Response MClximum Angl e
Quantity By Eq. 38 Response Ratio in Degree

By Eq. 39

(1 ) (2) (3) (4) (5)

Base Shear in - Xl 0.865 0.866 1.00 -2.351
Base Shear in - ·x I 0.812 1.106 0.73 95.282

Torsional Moment 0.430 0.538 0.80 63.84

Bending Moment x1-Direc. 1.441 1.447 1.00 97.87
in Col. 1

x2-Direc. 1.395 1.881 0.74 -7.43

Bending Moment I O· 2.398 2.402 1.00 7.22x1- lrec.
in Col. 2

x2-Direc. 1.688 2.218 0.76 86.26
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TABLE 6: MASS AND STIFFNESS PROPERTIES OF FRAME IN FIG. 10

MEMBER PROPERTIES

Cross Sectional Moment of Modulus of
Area (sq. in.) Inert~a E1asti city (KSI)

Member Number (i n. )

1 5.88 42.4 30,000

2 10.30 147.0 30,000

3 5.88 42.4 30,000

4 10.30 147.0 30,000

NODAL COORDINATES AND MASS

MASS COO :DINATE
NODE NO. Kips-Slugs X'i n Y'i n

1 - o. o.

2 3.0 -30. 120.

3 5.0 36. 228.

4 3.0 120. 228.

5 - 180. o.
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TABLE 7: NATURAL FREQUENCIES AND PARTICIPATION FACTORS FOR EXCITATIONS
ALONG THE STRUCTURAL AXES (x~ and x~-DIRECTION) OF STRUCTURE
IN FIG. 10. -

DEGREE OF PARTICIPATION FACTOR PARTICIPATION FACTOR
FREEDOM FREQUENCY (CPS) IN xl-DIRECTION IN x2-DIRECTION

1 0.165 3.231 0.737

2 0.527 -.305 1.840

3 2.667 0.565 -2.218

4 3.260 -.357 1.349

5 5.179 0.133 -0.518

6 6.357 - .061 .0.255
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TABLE 8: COMPARISON OF MEMBER AXIAL AND SHEAR FORCE RESPONSE OBTAINED
BY CONVENTIONAL PROCEDURE, Eq. 38, AND MAXIMUM RESPONSE BY
Eq. 39, FOR STRUCTURE IN FIG. 10. PROPORTIONAL DAMPING.

Maximum
Response Response Angle

Response Member No. By Eq. 38 Eq. 39 Rati 0 in Degree

(1 ) (2) (3) (4 ) (5 )

MEMBER 1 15.690 21.490 0.73 75.79

AXIAL 2 10.067 13.162 0.76 75.58

FORCE 3 4.408 5.924 0.74 75.57

4 8.844 11. 982 0.74 75.43

MEMBER 1 6.232 6.310 0.99 -12.89

SHEAR 2 30.948 38.449 0.80 81 .37 .

FORCE 3 23.586 28.513 0.83 81.77

4 33.462 33.882 0.99 -12.85 .,
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TABLE 9: COMPARISON OF MEMBER BENDING MOMENT AND STRESS RESPONSE
OBTAINED BY CONVENTIONAL PROCEDURE, Eq. 38, AND MAXIMUM
RESPONSE BY Eq. 39, FOR STRUCTURE IN FIG. 10. PROPORTIONAL
DAMPING.

Maximum
Response Response Angle

Response Member No. By Eq. 38 By Eq~ 39 Ratio in Degree

- (1 ) (2) (3) (4) (5)

MEMBER 1 385.42 390.22 0.99 -12.89

BENDING 2 195.85 243.32 . 0.80 81.37

MOMENT 3 90.06 119.76 0.83 81.77

4 394.44 399.4·0 0.99 -12.85

COMBINED 1 31.678 32.064 0.99 -12.88

STRESS 2 6.962 9.520 0.82 81.17

3 8.132 9.735 0.84 81.87

4 13.284 13.4.49 0.99 -12.83
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Ik7m ~ 62.8 Y'/Sec

XiFig""e I, STRUCTURAL MODEL liITH 9 DEGREES OF FREEDOM.
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Figure 10: ANALYTICAL MODEL OF A PLANE FRAME WITH SIX
DEGREES-OF-FREEDOM.
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APPENDIX I

Evaluation of Design Response - The Response Spectrum Approach·

To obtain the expressions for the design response the root mean

square values, obtained from either Eq. 6 for proportional damping or

Eq. 17 for nonproportional damping, must be multiplied by an appropriate

value of the peak factor. The peak factor will of course depend upon

the characteristics of random response S(t) and the desired probability

of exceedence. Several approximate but reasonable methods are available

to evaluate these. See for example Vanmarcke (20).

To obtain the ~xpressions for design response in terms of design

inputs defined as ground response spectra for the three components, the

approach used in References 17 can be used. This approach forms the

basis for the derivation of Eqs. 8 and 20. For the sake of completeness

and ready reference, these deri vat ions are gi yen as fallows for propor-

tiona1 and nonproportiona1 damping cases:

Design Response for Proportionally Damped Systems: Expanding Eq. 6, the

mean square value of S can be written as follows:

Further separating terms with j=k and j=t:k and using the notation

r.Rjk = (I.2)

The following is obtained:
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Ex[S2]
N t 3 00 2

= L L r ,Rjj J <I>~(w)IH.(w)1 dw
j =1 J

~=l -00 J

N N 3
00 2 2

+ 2 L L C/:k L r.Rjk J <I>~(w)N(w)IH.(w)1 IHk(w)/ dw
j=l k=j+1 ~=l

_ 00 J

(I.3)

where

N(w) = w4_w2(w~+~ - 4~jf1<Uj<i<) + w~~ (1.4)

The double summation terms in 1.3 represent the interaction of

modes, and must be considered when the modes are closely spaced as well

as when the effect of modes with frequency higher than forcing function

frequency are required to be included correctly (18,19). The input

independent expressions for the modal correlation coefficients have been

obtai ned by assumi ng that <I>~(w) is a white noi se. The use of such

correlation coefficient in the evaluation of modal correlation in

expressions such as Eq. 1.3, though, may be acceptable in some cases,

can also cause serious errors especially when the high frequency modes

are significant (19). It is thus a best practice to obtain the correla

tion coefficient as a function of the input. This can be done as in

Ref. 15, 16 for single excitation component. For the sake of ready

reference, thi s approach is repeated here for the case of mult i component

excitations.

The frequency integrand in the second term of Eq. 1.3 can be

expressed in terms of partial fractions as follows:

N(w)IHj(w)12IHk(w)/2 = (A 1 +B
,
i)IHj (w)/2 + (C'+O'W2)/Hk(w)12 (1.5)

where the coefficients of partial fractions A', B', C' and 0' are

obtained from the solution of the following simultaneous equations:
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[Z][A ' } = {W I } ( L6)

where the elements of [Z], {A I } and {W I } are

z(l,l) = Z (1 ,3) = z(4,2) = z(4,4) = o. ;

z(1,2) = z(1,4) = z(2,1) = z(2,3) = 1.0. ;

z(2,2) z(3,1) 2 2= = -2wk(1-2~k);

z(2,4) z(3,3) 2 2= = -2w . (1 -2 ~. ) ;
J J

z(3,2) z(4,1) 4= = wk;

z(3,4) z(4,3) 4 (1. 7)= = w.
J

fA I }T = (A I B I CI DI ), , ,

w'(l) = 0., w' (2) = 1.
2 2 2 2

Wi (3) = -wj - wk + 4 ~j ~k wj 9<; Wi ( 4) = wj UJ<

To express the frequency integrals in Eq. 1.3

spectra, the following expressions are used

in terms of response

C2. foo 2 I I2 2W qi n (w) H( w. ) d W = R n, (w.)
J _(0)L J )LV . J

(I.8)

(1. 9)

where R~(Wj) and R.R.v(wj ) are the psuedo acceleration and relative velo

city response spectrum values. The integrals in Eqs. 1.8 and 1.9 repre-

sent the mean square values of the relative displacement and relative

velocity response of an oscillator of frequency w. and damping ~. when
J J .

it is excited by the ground motion represented by the spectral density

qi.R.(w). These values when amplified by their respective peak factors

give the respective response spectrum values. In Eq. 1.8, these peak

factors for the relative displacement (or psuedo velocity or psuedo

acceleration) and relative velocity responses have been assumed to be
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the same, although they are likely to be slightly different from each

other. Using Eqs. 1.5, 1.8 and 1.9 in Eq. 1.3, the design response Sd

can be obtained as follows:

N 3
S2 = C2 t r 2" t I'

d L '" L o;J"
S j =1 J ~=l ""<.J

N N 3
+2 l: I I;;J"l;;k I

j=l k=j+l ~=l

where Cs = the peak factor for the response S, R.Rd ( wj )

relative displacement response and

(1.10)
2= R~ ( wj ) / wj =

(1.11)

If we make an assumption that Cj are not widely different for each

mode and are also the same as Cs ' Eq. 1.10 becomes the same as Eq. 8 in

the text. That is

. 2 N 2 3 2 N N . 3
Sd = I ~ l: rO;J"RJd(wJ") + 2 l: l: I;;J"1i< l:. rO;kR O;k

j =1 J ~=1 ""<.J j =1 k=j +"I ~=1 ""<.J "'V

(1.12)

where r.Rjj and R~k are as defined by Eq. 9 in the text.

The assumption of equality of peak factor ;s really not very crit;-

cal and is quite acceptable. Usually there are just a few modes in a

cluster which contribute most to a response. If the frequencies of

these modes are not very different,their peak factors wil also not be

very different unless they have very different damping ratios. Likewise
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the effective frequency of the response S(t) will also be in the range

of the frequencies of these modes. A peak factor magnitude is also

affected by bandwidth and some other characteristics of a response.

Usually these characteristics will also not be very different for the

dominant modes and quantity S(t) in Eq. [.10, thus the equality of peak

factors has mostly found to be acceptable. This assumption also forms a

basis for the commonly used SRSS rule. The mode response combination

rule in Eq. I.12 is a modified form of the SRSS rule, as applicable to

multicomponent excitations.

Design Response of NonproportionallY Damped Systems: The derivation of

Eq~ 20 from Eq. 17 is similar as for the proportionally damped system.

Expanding Eq. 17,

N
L
k

3 m

L f qi~ ( w)
~ _m

(1.13)

Substituting for 9mj and G;k from Eq. 18

+ iw(a .A k - a kA .)]H.(w)Hk*(w)dw
mJ n n mJ J

where

U.Rjk =
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VJjk =

3 3
I I d fh>,d n.,a .a k
m n )Il1I)ll1 mJ n

(1.15)

3 3
= I I d fh>,d nn (a .A k -a kA .)

m n AlII)IJI mJ n n mJ

in which amj and Amj are the elements of vectors {a
j

} and {A
j

}, defined

in Eq. 18 in the text.

Separat i ng terms with j=k and j #1<,

N 3 ex> 2 2
= 4 L I J cI>n(W)(U oi . + wVoi·)IH.(w)1 dw

j J. -ex>)\. -"<JJ "'UJ J

N N
+ 4 I L

j j#l<

Now realizing that

UJjk = UJkj' VJ.:jk = VJkj

(1.17)

WJjk = -w Jkj

The double summation terms can be written as
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(l.18)

which after some simplification can be written as

N N 3 ex>

= 8 L L L J
j k=j+1 ~=l

where

2 2
+ wj UkUJjk (1.20)

The integrand of Eq. 1.19 can be further broken into partial fractions

as follows:

N' (w)IH
j

(w)!2\H
k

(w)1 2 = [AII+Bllw2J\Hj(w)12 + [C II +0 Il w2JIH
k

(w) 1
2 (1.21)

where All, BII , CII and 011 are obtained as a solution of the following

simultaneous equations.

where

{A II}T = (A II, BII, CII, 0 II )

[Z ]{A II} = {w II } . (1.21)
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2 2
wll

(4) = wj'i<UJ!<

Substitution of Eqs. 1.19 and 21 into 1.16 and using Eqs. 1.8 and

1.9, the expression for the design response Sd can be written as

follows:

N 3
s2 = 4L L [U o;k +
d j =1 ~=1 "'-'

c2
2 2 s

w.F( w.)V 0; .JR nA(W,) -2
J J "'<JJ .A:U J C.

J

N N 3
+ 8 L L L

j=l k=j+1 ~=1

C2

+ {C II+iF ( w. )DII }R~ (~) -1 ]
J J C

k

And if peak factors Cs and Cj are assumed to be the same,

N 3
S~ = 4 I L {Uo;.+w~F(w.)Vo;.}R~(w.)

j =1 ~=1 ."'-' J J J "'<J J J .

(I. 23)

which is the same as Eq. 20 in the text.
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APPENDIX II

STATIONARY MEAN SQUARE RESPONSE OF NONPROPORTIONALLY DAMPED SYSTEMS

Thls appendix describes the development of Eq. 17. With slight

modifications, which help to simplify the algebraic manipulation

involved in the derivation, the following formulation is essentially the

same as described by the senior writer in Reference 16 for a single

component excitation.

Considering the complex and conjugate terms as a pair, Eq. 13 of

the text can be written as a summation over N terms as follows:

The autocorrelation function can then be written as

in which

Ex ( (E HE l) =

.. .. .. .. .. ..
Ex[x 1( '1 )x1( "2) J Ex [ x1( 'tl )x2( 't2) ] Ex[x l ('tl )x 3( 't2)]

.. .. .- .. .. ..
Ex[x2 ( '1 )x l ("2)] Ex[x2 h l )x2h 2) J Ex[x2('1 )x3 ('t2)] (I1.3)

.. .. .. .. .. ..
Ex[x 3( 1i )x l ('t2)] Ex[x

3
( 't

l
)x

2
( 't

2
)] Ex[x 3( 'tl )(x3( 't2)]
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For stationary excitation components, the autocorrelation function

terms in Eq. 11.3 can be written in terms of the power spectral density

functions of the excitations as follows:

.. ..
Ex[x J.( 1:1)x J.( 1:2) J

(X) iu:('1-'"2)
= J C1?J.( w) e d w.

-(X)

(II .4)

Furthermore, since xl' x2 and x3 are along the principal excitation axes

they are statistically uncorrelated. Thus
.. ,.

Ex[x J.( '1 )xm( 1:2)J = 0 for J.:/; m (I1.5)

With these the correlation function matrix in Eq~ 11.3 can be written as

foll ows:

(X) iw(1:,- .. )
Ex[{E}{EJTJ = J [<pJe J 2 dw (I1.6)

where [C1?J, the matrix of spectral density functions, is as defined by

Eq. 7 in the text.

Substituting Eq. 11.6 in Eq. 1I.2 with t l - 1 = u, t 2-1:2 = v,we

obtain:

N N (X) iu:(t l -t2) t l T (-iwl-p.)u T (-iwrp~)u
= I I J e [J ({q . } e J + {q~} e J )du ]

j=l k=l -(X) 0 J J

t 2 (i wrp )v (i wl-p k" )v
[DJT[C1?J[DJ[J ({q.}e k + {qk"}e )dv]dw

o J
(ILl)



The integral term over u (and similarly, the one over v) can be

written as follows:

t 1 T (- i wtp . )u T (- i w+-p"!") u
f ({q . } e J + {q"!"} e J )du
a J J

(-iw+-p.)u (-iw+-p"!")u
T e J. T e J . t l= {q.} (. wt ) + [q~} . *J -1 P . J -1 w+-p .

J J 0
(IL8)

Considering the situation when a sufficient time has elapsed after

the application of excitation, i.e., t 1 ~ 00 and t 2 ~ 00, the response

will become stationary. In such a case, the integral in Eq. 11.8 eval-

uated at the upper limit of t 1 = 00 becomes zero because of the negative

real part of Pj" Then for t 1 ~ 00 Eq. II.8 becomes

00 T (- i wtp . )u (- i w+-p"!") ur ({q.} e J + {q~} e J )du
a J J

= 1 {q.}T + 1 {q ..qT
iw-p. J itlrp"!" J

J J
(II.9)

With PJ' = -~w. + iW.A'-~~ and {q.} = {a. + ib.}T Eq. 11.9 can be written
J J J J J J

in the vector form as follows:

= (2iw{a.}T + 2{A.}T)H.(w) = {G.}TH.(w) (II.10)
J J J J J

where {a.} and {A.} are as defined by Eq. 18 in the text. Similarly it
J J

can be shown that the integral over v can be written as

CD (i wtp k )v (i t1rP )v
f ({qk}e + {qk}e k )dv
a

(II.ll)
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Substituting these integral in Eq. 11.7, the stationary value of the

autocorrelation function of response S(t) can be written as follows:

N N <X)

Ex[S(t l )S(t 2)] = L L J
j=l k=l -<X)

i w( t -t )
{Gj}T [D]T[<t>][D] {Gt}Hj (w)Ht( w)e 1 2

(II.12)

For t 1 = t 2, this equation defines the mean square response as in Eq. 17

of the text.
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APPENDIX III

This appendix shows that the second terms in Eq. 10 and 21 in the

main text are always positive as they, respectively, represent the mean

square values of the following response quantity.

S I (t)
N t

= I 1;. f E'('t)h.(t-'t)d't
j=l Jog J

(111.1)

where

N t
SII(t) = L f

j =1 0

p.(t-'t) p~(t-'t)

(EII('t)e J + E*lI e J )d't
9 9

(111.2)

and

(111.3)

( II 1.4 )

and E*II is the complex conjugate
9

[P"J=[:
The autocorrelation function

of Ell and pI! is defi ned as
9

1(1-:1)7~ : ]

1(1-P2)/P2

of SI(t) is

hk (t 2- '"2 )d '1.d 't2
(111.5)
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where

EX[E~(1)E~('"2)] = {Yj}T[D]T[pll]EX({EHEl)[pll][D]{Yk} (III.6)

Substituting for the autocorrelation function .in Ex({EHE}T) in terms of

spectral density functions and considering stationary response when

t l ~ CD, t 2 ~ CD and tl-t2 remai n fi nite, the Eq. II 1.5 becomes

(III.7)

a 0 0

l-p
Now [ p" ] [ ~J [ p"] = 0

__1 ~ a
Pl 2 l-p

0 0
__2 ~

P2 3

o o o

Since

Thus,

= 0 (l-~)~l 0 = [pl]~l(w)

o 0 (1-P2)c11

CD i w( t -t )
f 1 2

~g(w)H.(w)Hk(w)e dw
-CD J
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which when t 1 = t 2"give the mean square value, same as the second term

of Eq. 10.

Similarly the autocorrelation function of S"(t) can be written as:

Ex[S"(t 1)S"(t 2)]

N N t l t 2
= I 1. J J

j =1 k=l 0 0

(III.10)

Proceeding as in Appendix II, and considering the stationary

response when t
1

-+ 00, t 2 -+ 00, this correlation function can be written

as

N N 00

= I I J
j=l k=l _00

i w( t -t ) "
{Gj}T[D]T[p"][~][p"J[D]{Gk}e 1 2 Hj(w)Ht(w)dw

(III.")

Employing Eq. 111.5, we obtain

Ex[S"(t 1)S"(t 2)]

00

=
N N
I I J

j =1 k=l

T T i w( t 1-t 2) "
{G

j
} [0] [pl][D]{Gk}e ~l(w)HJ(w)Hi(w)dw (III.12)

_ 00

For tl = t 2, this gives the mean square value of S"(t) which is the same"

as the second term of Eq. 21.
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~A;..;.PP_E~ND_I_X.......IY.

CHARACTERISTICS OF PRINCIPAL RESPONSE AND PRINCIPAL RESPONSE DIRECTIONS

Here a more complete development of Eqs. 25 through 34 is provided.

Also some special characteristics of the prinicpal response quantities

and principal response directions are examined.

PROPORTIONALLY DAMPED SYSTEMS:

For an eXGitation component applied along an axis with direction

cosi nes {d} = {d l ,d 2,d3 }T defi ned in the coordi nate system of the

structure, a response quantity S(t) can be written as follows:

S(t)
N t T ••

= I CJo f
o

{d} {YJo }x 1( .)h
J
o(t- .)d.

j=l
(IV.1 )

where {yo} = vector of participation factors for the jth mode
J

T
= {Y··'"'(.2 0, Y3· }. The stat i onary mean square response can be then

1J J J

wri tten as:

With,

(IV.3)

Eq. IV.2 becomes



where the mat ri x in paranthesis is [R] of Eq. 26,

-Rll R
12 R13

- - -
[R] = R2l R22 R23 (IV.5)

- - -
R3l R32 R33

Comparing Eqs. IV.6 and IV.8, it is seen that

-R = R*mn nm (IV.9)

-
Thus matrix [R] is a Hermetian matrix. A further simplification,

-
however, also shows that the imaginary parts· of R are zero. Separatmn

ing termswit.h j=k and j:f.:k in Eq. IV.6,

Rmn
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(IV.10)
N N (X)

+ J? kI 1;j ~ Ymj Ynk J ~ (w)H. (w)Hk"( w)d w
_CD J

j:tk

Thus the single summation terms are real. Also the integral of a typi-

cal term with j:tk can be rewritten as

where

N1 (w)

(IV.12)

Nil ( w)

Now since ~(w), IH j (w)1
2

and IHk(w)1 2 are even function of w, the

imaginary part of the integral associated with W(w), which is an odd

function, would be equal to zero. Thus the entire expression in Eq.

IV.10 is real and also symmetric with j and k and m and n. Therefore,

the matrix [R] is a real symmetric matrix. To express, Rmn in terms of

response spectrum values, Eqs. 1.8 and 1.9 in Appendix I are used in

Eqs. IV.10 as follows:

Rmn
N 2 2 2 N N

= I C- y. . ~ . Rl d ( w. )Ie. + I I 1::. r. y. . ~ k
j =1 J mJ nJ J J j * k J 1< mJ n

where AI, 8 1
, etc., are defined in Appendix I. -If R is associatedmn

{[A I +

2
2 R1d(w.)

w. F
l

(w. )8 I ] 2 J
J J C.

J

} (IV.13)

with the evaluation of design response, then CjlS can be dropped from
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Eq. IV.13, as in Eq. 38 of the text.

Nonproportionally Damped Systems:

A quadratic similar to Eq. IV.4 can also be developed for nonpro-

portionally damped systems. For a single excitation along an axis with

direction cosines (d 1,d2,d3), the response S(t) can be written as:

N t T· p.(t-rc) p~(t- ..) ..
S(t ) = I fa {d} ({qJ"}e J + {qJ~}e J )x1( 1:) d.. . (I V•14)

j =1

The stationary value of the mean square response can then be written as:

(IV.15)

or

(IV.16)

where, now the elements of R are defined as

-R
mn m,n=1,2,3 (IV.l?)

Also

Interchanging the dummy summation indices j and k,

- -R = R*nm mn

(IV.18)

(IV.19)

Thus matrix [R] is Hermetian. A further inspection of these terms shows
-that the imaginary parts of R are again zero.mn
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In Eq. IV.16 separating terms with j::k and jik we obtain

-R
mn

N to 2
= I J G. ( w) G* . ( w) q,(w) IH. ( w) I d w

j=l -to mJ nJ J

N N to

+ I L J Gm·(w)G*k(w)cii(w)H.(w)H*k(w)dw
. ... k J n -, JJ.,.. _to

(IV.20)

_to

Substituting for G .(w) and G*.(w) from Eq. 18 in the text t a
mJ nJ

single summation term can be written as:·

to

= 4 J {A.A. + ia .a . + iw(a .A .-a .A .)}iD..(w)IH.(w)/2dw
mJ nJ mJ nJ rnJ nJ nJ mJ -I J

(IV .21 )

In which again t the imaginary term is zero being the integral of odd

function over a symmetric range. Similarly a typical double summation

term can be written as

to

J G .(w)G*k(w)<1?l(w)H.(w)H*k(w)dw
mJ n J_to

to

= 4 f {AmjAnk+iamjank+iw(amjAnk-anjamk)}~(w)Hj(w)Hk(w)dw
_to

where

to 6. 4 2 2 2
= 4 f (C 0w +C 1w +C 2w +C 3) q,l ( w) IH. ( w) I IHk ( w) I dw

_to J
(IV.22)
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2 2 2 2C2 = a .a kw.w-A .A k(W.+Ul-4~.R w.w)-2w.w(R w.-~.w )(a .A k-akA .)mJ n J K mJ n J K J rK J K J K rk J J K mJ n n mJ

2 2C3 = A .A kW.Ul (IV.23)mJ n J K

Here again the complex terms are zero because they represent an integra-

tion of odd function over the symmetric frequency domain.

Thus [R] is a real symmetric matrix even for nonproportionally

damped systems. For the purpose of using response spectrum as input,

Eq. IV.22 can be further split into its partial fraction as follows:

CD

J G. ( w)G*k (w) ~l (w)H . (w)H*k.( w)d wmJ n J
-CD

CD

= 4 f [fAllI+Bllli}IH.(w)12 + {CII + Dll i}IHk(w)1 2 ]tI>1(w)dw
_CD J

(IY.24)

where AI~, Bill, etc., are obtained as solution of the following simul-

taneous equations:

[Z]{A III} = {w I II } (IV .25)

in which the elements of Z are the same as defined in Appendix I and

fA I II l = (A Ill, BI II, CIll, DI II)

(IV.26)Will (1) = CO; Will (2) = C
1

Will (3) = C2; Will (4) = C3

Employing Eqs. 1.8 and 1.9 in Eqs. IV.21 and IY.23 Rmn for nonpro

portional systems can also be expressed in terms of response spectrum

values as follows:
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Rmn
N 2 2 2

:: 4 I fA .A .+w.F(w.)a .a ·}Rld(w.)/C.j::l mJnJ J J mJ nJ .. J J

N N
+ 4 I I

j :f= k

R2 ( )
+ [CIII+~F(Uk)DIIIJ 1~2~ }

k

(IV.27)

-Again the peak factors can be dropped from Eq. IV.27 if Rmn is asso-

ciated with the evaluation of maximum design response.

To obtain the direction cosines (d1,d2 ,d3) for maximum response,

the stationary value of the auxiliary function given by Eq. 31 in the

text is obtained. This requires:

_OI..._(,-A....:...) :: 0,
Cd~

~ = 1,2,3 (IV.28)

This gives the following three simultaneous equations:

[R] {d} - A.{d} :: {O} (IV.29)

Solution of this eigenvalue equation with the constraint of Eq. 30

provides the direction cosines which will extremize the response.

[R] has been shown to be a symmetric matrix, both for proportional

as well as nonproportiona1 systems. It is also realized that it is a

positive definte matrix as the quadratic form in Eqs. IV.4 and Eqs.

IV.16 represents the mean square value of a response quantity, always a

positive quantity. It is zero only in the case of no excitation on the

-system, a tri vi al case. The pos iti ve defi niteness of [R] ensures that

the eigenvalues of Eq. IV.29 will be real and positive. Furthermore,

for each distinct eigenvalue, the eigenvectors will be orthogonal. For

two equal eigenvalues, there will be several orthogonal sets out of

which any two can be conveniently chosen. It was also shown, Eq. 34,

that

IV.30
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That is, each eigenvalue also represents the mean square value of the

response if the excitation is applied along the direction defined by the

corresponding eigenvector.

Thus to obtain the maximum response, its only necessary to form [R]

and obtain its eigenvalues. The largest eigenvalue gives the

maximum mean square response.

Also for multicomponent excitations these eigenvalues can be used

to obtain the maximum response if the frequency characteristics of the

input components are similar. For three orthogonal principal excitation

components with the variance ratios of 1: ~ : P2' the maximum mean square

response can be written as:

(IV.3l)

in which r,'''2 and ":3 are the major, intermediate and minor eigenvalues,

respectively, of [R].

69




