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1. INTRODUCTION

For the evaluation of seismic design response of a linearly behav-
ing structural system, the modal analysis approach with pseudo-accelera-

tion spectr‘al'3

as seismic design input is commonly used. The eigen-
value analysis of an analytical model of the structure is performed to
obtain dynamic characteristics l1ike mode shapes, natural frequencies and
participation‘factors. These quantities are used with pseudo-
acceleration spectra to obtain the maximum responses in each mode which
are then combined by the commonly used procedure of the square-root-of
the-sum~of-the-squares, usually abbreviated as SRSS. Several other

forms4'9

of this procedure are avai]abie in the Tliterature, which mainly
deal with the special problem of the combination of responses of the so-
called closely spaced modes,. Herein, these modified procedures will
also be referred to as SRSS rules of different types.

One of the attributes associated with the modal analysis approach
is that only a first few modes are necessary in the calculation of
response as the contributioﬁ of high fregquency modes to the response is
usually considered small. It is probably true for some regular
multistory buildings which are on flexible side. However, there are
also many situations of practical interest where high frequency modes
may contribute significantly to the total response. Though the
displacement response of a structural system may be unaffected by higher
modes, it is known that responses like support forces, bending and
torsional moments, axial forces, etc., may often have significant

10,11

contributions from such modes . In such cases the use of only a

first few modes in the calculation of response can possibly introduce

large numerical errorsil. This error is due to the so-called "missing



mass" effect and can, at least theoretically, be removed by inclusion of
higher modes. However, evaluation of higher modes is often beset with
large numerical errors and thus inclusion of all modes may not
necessarily 1mpr09e the acéuracy of the results in the normal course
(unless eigensolution algorithms are carefully chosen).

.The Secoﬁd problem associated with the high frequency modes is due
to their combination with other modes in the calculation of design
response. The modal responses of high frequency modes with frequencies
higher than the forcing fdnction frequency are rather known to be
strongly correlated even though their frequencies may be fairly well

11

separated. Therefore, as pointed out by Kennedy'®, the higher modes

require a different mode combination rule than what are normally used.

Thus some improved.mode response combination ru1e511"14

have recently
been proposed. Conceivably another situation could also occur where the
.responses in two modes with widely different frequencies should be
combined as absolute sum, For example, when the low frequency mode
response is near its peak, several osci]]ations of the higher frequency
mode méy occur to produce an additive effect. Such is the case in the
~combination of the two cyclic thermal stress components which are caused
by seasonal and diurnal temperature changesl5.

It is shown here that in the aforementioned situations, the SRSS

5,8

rules™*~ which implicitly assume the input to be white noise to develop

the expressions for modal correlation coefficient provide inaccurate
results. The SRSS approach proposed by the writer and his co]]eague56
earlier which does not make such an assumption about the input, however,

can provide mathematically exact results (at least for the mean square



response) as long as all the modes are calculated accurately and used in
the approach. To avoid calculation of all modes, especially high

frequency modes, an alternative method is necessary. A new SRSS

formulation based on the method of "mode acceleration” approach16”18 is,

therefore, developed here,

2. ANALYTICAL FORMULATION

For a multi-degrees-of-freedom structural system excited by ground
motion, say, in one direcfion, the equations of motion can be writtén in
“the following form:

1) + [C1667 + KTk} = LMD dx () (1)
where [M], [CJ and [K], respectively, are the mass, damping and stiff-
ness matrices of the system; {x} = response vector of relative displace-
ments of the structure with respect to ground; {r} = ground displacement

influence vector19

; and ;é(t) = ground acceleration. It becomes
necessary to use modal analysis approach for the calculation of design
response if the design ground motions are characterized by ground
response spectra1'3. In the modal analysis approach;‘the solution vec-
tor {x} is expressed as a linear combination of normal modes using the
expansion theorem as follows:

{x} = [al{q} (2)
where [ @] = modal matrix with its columns representing the normal modes
of the system anq {g} = the vector of the principal coordinates.
Subsﬁitution of equation (2) in (1) and with some standard manipulations

involving orthogonal properties of the normal modes, the following

decoupled equation in terms of jth principal coordinate is obtained:

'S " 2 'Y .
.+ Lwd.e Fowng. = o—v. = Z2ee 3
q; + 2B wg; + Wiy Yng(t), J 1., n (3)



where the suffix j is associated with the mode number; uﬁ = modal fre~-
quency; y; = modal participation factor defined as {% ﬂtM][r}/

(o, Y DM Loy 5 By = Loy 1'TCT {053/ (2w b} DM (g ) 15 the so-called
modal damping ratio; and T over a vector quantity represents its
transpose. Equation (3) assumes thatl{fjfT[C]{¢k} = 0; that is, matrix
[€] can be diagonalized by the normal modes and that it is, what is
commonly called as, a proporfiona] dampihg matrix., A more general case
where the matrix [C] is not of this type can also be treated?) but will
not be persued any further here.

For a given excitation ié(t), equation (3) can be solved to define
{x} by equation (2). For a linear structure, other response quantities,
which are linearly related to {x} can also be obtained as

N
S(t) = ) z.q.(t) (4)
j=1 JJ
where gj = value of the résponse quantity S(t) in the jth mode of
vibration; N = the number of degrees-of-fréedom or the total number of
modes of the system, ?j is also caj]ed the mode shapé of the responée
quantity which can be obtained from the dﬂsp}écement mode shape {¢j} by
a simple linear transformation for a linearly behaving structure.

To obtain the design response, one should collectively consider a
large number of ground motions in equation (1) or (3). Thus, it is
appropriate to model the ground acceleration éé(t) as a random process,
The design response is then related to the autocorrelation function (or
more commonly, to the root mean square value) of the response. Algebra

is considerably simplified if x_{t) is assumed to be a stationary random

g
process. Although earthquake motions are inherently nonstationary, the



assumption of stationarity has been extensively used to develop some
acceptable analytical procedures in structural dynamics for earthquake
induced ground motion, The commonly used SRSS procedure has its basic
roots in such an assumption, Furthermore some corrections can be
applied to the response calculated with stationary assumptions to
incorporate the nonstationarity effects. For a zeroc mean stationary

;g(t) characterized by a spectral density function ¢§(uﬁ, the stationary

mean square response of S(t) can be shown to be defined as®:
N N N
2 2
ES2(t)] =V 240 (w)+2 5 Y oty
je1 ST =1 k,jﬂ;lqwk
(A T () + AL (w )/ + ALy (w) + AL (a)/ee]  (5)
1YY A KA T T e 1 412 % %
in which
” 2
1 ) o= H.|" d 6
(o) = [ e (a]H]® d (6)
” 2., 2.
I .} o= H. d
o) = [z (wdIH1% du (7)

where Hj is the complex frequency response function defined as =
1/(u§-u?+2§igjd). The coefficients Ay, Ay, Ag and Ay are obtained as
the solution of the following simultaneous egquation:

[61AY = ) (8)
where the elements of the 4x4 matrix [G] and vector {Pa} are defined in
Appendix I.

It is noted that 11(03) and 12(“3)’ reSpectfve1y, represent the
mean square values of the relative displacement and velocity responses

of an oscillator with freguency = uB and damping -ratio = (3 excited by

the stationary ground excitation ;g(t). They can be related to the



relative displacement (or psﬁedo—acce]eration) and relative velocity
spectra through their respective peak factors®l. {Here, the peak factor
is defined as a factor by which root mean square response should be
multiplied to obtain a characteristic value of maximum response, like
response spectrum value). Assuming that the peak factors relating the
mean squaré values of the relative displacement and relative velocity
responses to their respective response spectra are the same and
répresented‘by Ces I1(uﬁ) and 12(03) can be written in terms of response
spectrum values as:
IGog) = Rolw)/uce (9)
o) = R(w)/cs o)
whére Ra(Uﬁ) and Rv(“ﬁ)’ respectively, are the psuedo acceleration and
relétive‘ve?ocity response spectrum values at frequency wy and damping
ratio ?j' |
To obtain design response, the root mean square response of S(t)
must be multiplied by its peak factor. This peak factor will depend
upon the characteristics of the random process S(t) and could be some-
what different from that used in equations (9) and (10). Analytical

21 and others can be used to define

procedure developed by Vanmarcke
these péak factors. However, for simplicity and without loosing any
significant accuracy the peak factor for S(t) can be assumed to the same
as for relative displacement and relative velocity, i.e. Ceo Thus |
multiplying equation {5) by c? and'using gequations (9) and (10), the

design response, S, can be expressed in terms of psuedo-acceleration

and relative velocity spectra as follows:



where S, is the design response of quantity S(t); Sj = YJCJRa(“ﬁ)/w =
maximum modal response in jth mode; and Sjk = the cross-modal response.
Equation (11) defines an SRSS rule for the combination of modal
response. The single summation terms define the normally used SRSS
rule. The double summation terms account for interaction of various
modes and must be considered if the frequencies are closely spaced and
also when the high frequency modes contribute significantly. A
quantative measure of modal interaction 1s the modal correlation
4

coefficient’ defined as:

Pik = gg%ﬁ— ' (12)
which in view of equation (11)a is clearly séen to depend not only on
the two modai frequencies (or their ratio) but also on the response
characteristics of the input. Response independent expressions for Psk
have also been obtained8 under a rather restrictive assumption of white
noise input, wherein, besides damping, this coefficient is shown to
depend only on the frequency ratio, r = ua/uk It is high or very
nearly equal to 1.0 when the frequencies are close i.e. when the

frequency ratio is nearly equal to 1.0, It has also heen shown8

that
this coefficient calculated on the basis of white noise input assumption

is not very different from the coefficient calculated with nonwhite



filtered Kanai-Tajimi type of spectral density function extending over
the frequency domain of 0 to «,

A more close inspection, however, shows that the character of this
correlation is significantly altered if the input spectral density
functions with cut off frequency limits are considered or if it is
eva1uated.at very high frequencies for a filtered white noise (Kanai-

- Tajimi) spectral density function, A seismic input with an upper limit
on its constituent frequencies is more realistic than the input defined
by a Kanai-Tajimi type of spectral density function with rather slowly
diminishing tail which imply the existence of some very high frequency
components in the input motion. Ground response spectra often
prescribed for design clearly indicate absence of such high frequencies
~in the input motion, For example, the spectra as defined in Reference
22, do seem to suggest an absence of motion with frequencies higher than
about 20 to 25 Hz, as no amplification beyond 33 Hz is seen.

Figure 1 shows the variation in ‘ﬁk with frequency ratio ry = uﬁ/wk
and damping ratios f% = F& = ,02 for a broad band Kanai-Tajimi type of
spectral density function with a cut-off frequency of 20 Hz. The graphs
are plotted for w, (herein referred to as central frequency) values of
2,5,10,15,20,30,50 and 100 Hz. Also plotted is the curve obtained for
the white noise input. (In this case only one curve is obtained for all
frequencies as it only depends on the frequency fatio.) The difference
in the curves obtained for the two different types of inputs.is
significant., Of special significance to the work presented later in
this paper is the magnitude of correlation between two high'frequency

modes, {curves for uﬁ > 30 cps). This is erroneously predicted by the



white noise formu'lations’8 Figure 1. This, as shown later, also results
into significant errors in the calculated responses especially when the
high frequency modes are dominant. On the other hand, however, equation
(11) can still be used for an accurate calculation of response of
structures with or without high frequency modes as long as all such
modes are considered in the summation processs in the equation, Thus in
many cases where high frequency modes are also important, a ?arge number
of modes may have to be evaluated by eigenvalue analyses to obtain
accurate evaluation of design response. The situétion can, however, be
significantly improved by an alternative formulation where only a first
few modes falling within the frequency range of the input will be
adequate for an accurate evaluation of design response. This is based

on-the so-called "mode acceleration18-18

approach of structural
dynamics. A preliminary account of this was presented by the writer in

Reference 23,

3. ALTERNATIVE SRSS APPROACH

In the previous section equation (11) was developed directly from
equation {4), where the principal coordinates qj(t)s represent the modal
displacements. Thus the preceeding approach is also referred to as the
"mode displacement" approach. Using equation (3), equation (4) can also
be written in an alternative form as

N

S(t) = -
j=1

. A 2
t) + 2B.w.q. + q. . 13
(t) By ; qJ}/ub (13)
where now the response S(t) is expressed as a function of'&j(t) which is
the.jth mode acceleration, and thus the name "mode acceleration"

approach. (Modal velocity éj also enters equation (13), but being



- associated with damping term it usually has a much smaller

contribution.) Using equation (13), the autocorrelation function of

S(t) is obtained as

N N C.q(
ELS(t)S(t,)1 = 1 1 =5
N R E

+

+

[Yj Yk E {Xg(t".)xg

(t,)

¥ @8 uE {;'g(t2>éj (£7)) + Exg (t,)a;

vy (2B E o (t))d, (1)) + Ex (), (£5)3)

;&)

+ 8 B G (t))d, ()0 + B (t))a,(ty))

+ 2, 0F (6 )a (ty)} + 28 4F 4, (tp)a;(tg))] (14)

where E( +) denotes the expected value of ().

‘Various auto and cross correlation terms in equation (14) can be

evaluated in terms of input autocorrelation through equation (3). See

Appendix II for details. Considering the stationary value of response,

as done in the derivation of equation {11), each term can be expressed

in terms of the input spectral density function and frequency response

functions Hj and H . The mean square response is then obtained by the

substitution t = tl = t2 and is given as follows:

ELS?(t)] =

N v. C. .
(3L E(x0) +
J= w J

J

=

)

Loed

2.2

- OO

10

0?
J

2

W

(1-262) - w4]|Hj|2cpg(@)dw



N N C.Cyv.y ° -
+ 5 3 -lj‘z—ﬂz—k f wz[(4[%j By o * wz)(HJ.H?(f + HHH)
k=it b -

2 2 2 2 2 2 1,2 2 2
£ 26 (1-48) [H,] %+ 26 (1-48) [ 17 - 2 ([Hy %+ [H,1%)

+ 8&2(%% -y B) Loy g (Byg - Bow) - wZ(Bj%-liﬁ(uf()}IHjlleklzjég(w)dw
(15)
where in equation (15) several terms of equation (14) have been
combined. To obtain the design response the mean square value defined
by equation (15) is to be multiplied by c?. With Pe]ative velocity
spectrum as defined by equation (10) and the relative acceleration

defined as

spectrum, Rr(uﬁ)’ and maximum ground acceleration, Ag,
2 o2 a2
Rr(wj) cs f_m w |HJ.| @g(w)dw (16)
2 2.r2
and using equation (15), the design response S, can be expressed as
follows:
2 2 2 .
sy = cgEls’(6)] ©oas)
2o r0IP 4 T 222 w) - ) Uy )
d & 0T T s PTG T R
J

11



N N C. 0 Y:,
e ) 2 BRI a2 ¢ 204 RE)

- Re(ug) = RECg) + ByufReCun) + BR2(w) + ByufR2(u) + BRE(4 )]

| - (19)
where By ... B4 are obtained from the solution of the following simul-
taneous equafions:

[G]{B} = {Pb} (20)
where the elements of matrix [G] and vector {Pb} are defined in Appendix
I,

It will now be shown that the first term on the right hand side of
equation {18) is the squared value of the static response induced by the
inertia forces corresponding to the maximum value of the ground acceler-
ation applied statically, with no regard to any.dynamic effects. That
is, it can be obtained from the solution of the fo]iowing statics
problem

[K]{xs} = [M]{F}Ag . (21)
where the vector {r} on the right hand side of equation (21) ensures
that inertia forces are applied only in the direction bf excitation,
The vector {xs} defines the displacements of this static problem. The
static values, s, of a response quantity for the displacement vector
{xs} is obtained by a simple linear transformation of the following
form:

5= k) &) (22)

where {Kiir, defined in terms of stiffness coefficients, transforms the

12



displacement {x_} into the response S. To show that 32

obtained from
equation (21) and (22) is the same as in the first term of equation
(19), {xs} is expanded in terms of N independent modal vectors of the

system as follows:

N .
x ) = g a, (4} (23)

where g, are the coefficients of expansion. Substitution of equation
(23) in {21) and premultiplication by (o, y, gives
Troq T
{05 Y [K] kZ] Qg (0 = Loy Y [MIr A, (24)

Invoking orthogonality of modes,

(o M )
qu = T Ag (25)
RUCSITN

o T IMT )

'Y.
- - -l
955 =72 T Ag T2 Ag (26) -
wj {¢J-} [M]{cbj} W
Thus from equation (23)
Y
xg} = A, _2 > 190 (27)
‘ =l w;
J
Substituting in equation (22),
_ N .
S=a, T 4 1 (o) (28)
9421 o
J
N . Z.
S=a, J - (29)
gj=] s

13



Thus, the first term on the right hand side of equation (18) can be
replaced by §2 which can be obtained by a static analysis of the system
with inertia forces applied statically.

It is noted that in equation (19), the input is required to be
defined in terms of relative acceleration and relative Ve1oc1ty spectra,
rather than psuedo acceleration and relative velocity spectra as in

14 was probably the first

eduation (11). It is noted here that Hadjian
‘one to advocate the use of relative acceleration spectra as input.
However, the mode combination rules proposed herein is different from
the one proposed by Hadjjan and, also, it has been developed on the
basis of an entirely different formulation, No further comparison of
these two rules has béen reported here,

If any two types of spectra are known, the third one can be
calculated fairly accurately by the following expression

2(0.) = A2 Rz(wj) + 2(1-2ﬁ§)w§R\2/(wj) (30)

a‘™y g r
Equation (30) is approximate in as much as it assumes that the peak.

R

- factors app]ieq to the mean square values of the relative and psuedo
response quantities to obtain their respective maximum values are the
same at the same oscillator frequency and damping values. The
expression is exact, however, if the response spectrum terms in equation
(30) .as replaced by their respective root mean square values,

Here it 1s seen that.the two SﬁSS rutes, Equation (11) and (19),
are similar in as much as both require two forms of seismic inputs.
Also they must give the same numerical value of a response gquantity as
they use the same equation in its two different but equivalent forms.

Indeed, it has been verified that these two approaches provide exactly

14



the same numerical results as long as the seismic inputs used in the two
approaches are consistent as per equation (30) and a complete set of
modés are used in the analysis. Thus no special advantage seems to be
immediately apparent in the use of the new SRSS rule, equation (19},
over the old SRSS rule of equation (11).

The advantages in the use of equation (19) over (11) are, however,
numerical and become apparent when a first few modes only are used in
the evaluation of design response, In such a case, equation (19)
provides a very accurate value of the design response whereas the use of
equation (11), the old rule based on mode displacement approach, can
lead to significant errors especially if the high frequency mode
contribute significantly.

In Table 2 are shown some numerical results obtained for the bend-
ing moments in the columns of a 3-story, nine degrees-of-freedom system
shown in Figure 2, The seismic input to the system has been defiﬁed by
a spectral density function of the following form with a cut-off

frequency, w, = 20 cps.
4 2272

3z w].+4m1. fyw
o (w) = S 5 - W S wsw (31)
g i=1 (w?—w2)2+461?w1?w2 ¢ ¢ ,

The numerical values of the parameters Sis W and Bi for this density
function are shown in Table 1. This density function has been used
earlier in earthquake engineering studies and represents a Kanai-Tajimi
type broad-band input equivalent to the broad—band response spectrum
defined in Reference 22, To make the frequency content of such an fnput
more realistic, the frequencies higher than W = 20 cps have been

eliminated.

15



The system shown in Figure 2 represents a three story building with
rigid f1qors connected by four corner co]umﬁs. Relative values of the
masses and stiffnesses of the system are shown in'thé figure. The
system properties have been adjusted such that the frequencies are on
high side, and thus the contribution from higher frequencies is
significant. Also, the system has some very small eccentricity between
the centers of mass and stiffness, which tend to create some closely
spaced frequencies,

Table 2 shows the root mean square (RMS) values of the bending
moment in two different columns at the ground floor obtained by various
mode combination rules. As the root mean square value is proportional
to the maximum value the results shown fn Table 2 could be considered as
the representative valtues of design response. The results under Case A
have been calculated using all 9 modes of the system shown in Fig. 2.
The fundamental frequency of the system is 20.8 cps, a little higher
than the highest frequency in the ground motion. As the system has
closely spaced frequencies, double summation terms have also been
used. The results in Col, 2 are obtained using equatfoné (11) or (19)
with all modes taken in the calculations. Thus the RMS values in this
column are called the exact values. The bending moment values in next
five columns are shown in terms of the ratios of the RMS values obtained
by varicus mode response combination rules to the exact value shown fn
Col. 2. Thus the closer a ratio is to 1.0 the more accurate is the
calculated value by a rule. In Col. 3 are shown the values obtained by
equation (19), the alternative SRSS rule (also called the new SRSS

rule). A value = 1.00, of course, shows that the two approaches are
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equivalent. The value in Col.4 is obtained from equation (11), and thus
it obviously also gives a ratio of 1.0_1f all the modes of the system
are used, Also shown are the results obtained by Ref, 5 (and 9),
conventional SRSS and absolute sum procedures, respective1y; in Col, 5,6
and 7 of the table. The values corresonding to Ref. 5 were obtained for
thelearthquake duration parameter of. 10 seconds. In References 5 and 9
the evaluation of the cross modal response terms is based on the
assumption that the input is white noise. Though there are some
procedura1 differences between these two approaches, they provide almost
identical values which are only about 75% of the correct RMS values.
Thus even though the complete set of modes are included, the values
calculated by these two approaches are inaccurate mainly because the
correlation between the high frequency modes, devé]oped on the basis of
white noise as input, is imporperly accounted for. The conventional
SRSS rule, on the other hand, completely ignores the modal interaction.
Thus the calculated response can be grossly inaccurate, as is evident
from the results in Col. 6. Furthermore, the absolute sum method is
seen to provide a very good estimate of the true response., It 1is
because all the modes having frequencies higher than the highest
frequency in the input motion are in phase with each other and have
strong positive correlation. |

As alluded to earlier, the main advantage of the new SRSS rule is
that it can provide an accurate value of design response even with g
first few modes. The results shown under Case B in Table 2 clearly
demonstrate this., The value in Col. 2 is égain the exact RMS value

obtained with the complete set of modes. Whereas the values in
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remaining columns have been calculated with only the first three modes.
The Col. 3 values have been calculated with equation (19) and are shown
to provide a very accurate estimation of the correct values. Equation
(11}, which even though considers the correlation between modes
correctly, does not provide a good estimate of correct values; this will
in general be the case when the response is affected by the higher
modes. Other mode combination rules, References 5 and 9 and also
conventional SRSS and absolute sum procedures, are again seen to provide
inaccurate values of response. The inaccuracies in the values are
directly related to the missing mass effect andare seen to become worse
if the system is more rigid as is shown by the results for Case C. Here
the system has been made significantly stiffer with the lowest frequency
= 41.6 cps, for which again the new SRSS rule gives an excellant
estimate of correct response value even with just a first few modes
whereas the rules based on the mode displacement formulations,and also
the other rules, provide grossly inaccurate responses. Forkthe case
when the high frequency modes are not dominant, i.e. when the system is
primarily a flexible system, as it is for Case D, the approaches of
equation (11) and References 5 and 8, will provide a fairly accurate
estimate of response. As the frequencies in this case are fairly

" closely spaced, the conventional SRSS rule will tend to provide
inaccurate response. The absolute sum method results are closer to the
correct values and it is probably just by chance. In this case also,
the superiority of the new SRSS rule over the old SRSS rules is clearly
seen, The Case E is again for the flexible system, but here all nine

modes have been included in the calculation of response. The over-
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conservativeness of the absolute sum method is clearly seen in this

case,

4. CHARACTERISTICS OF RELATIVE ACCELERATION AND VELOCITY SPECTRA

The aforementioned effectiveness of the new SRSS rule is due to a
very desirable characteristic of relative acceleration and velocity
spectra which are used in the proposed SRSS rule, In Figure 3 is shown
the variation of the root mean square {r.m.s.) values of the psuedo and
relative accelerations with the frequency and damping of an oscillator.
The oscillator is excited by the ground motions with spectral density
function as in equation (31). The ratio of tHe ré]ative to psuedo
acce1erationrr.m.s. value is plotted in Figure 4 for two damping
values, Similar plots are also shown for the relative and psuedo
velocities in Figures 5 and 6, The trend in the variations of the
psuedo and relative response spectrum values will be similar to those of
their r.m.s. values in Figures 3 and 5. Therefore, the plots in Figures
3-6 are also fairly good representations of the corresponding curves for
the response spectrum values. The r.m.s. curves of the psuedo and
relative acceleration responses are conspicuously different in the high
and Tow frequency ranges and similar differences will .also be observed
in their response spectrum curves. Such differences are also there in

velocity curve524

» with relatively larger differences in the high
frequency range. In general, however, it is seen that for high
oscillator frequencies, especially higher than the highest frequency in
the input, the relative spectrum values will always be Tless than the.

corresponding psuedo spectrum values. In fact for the high frequencies

the psuedo-accleration spectrum approaches a constant value equal to the
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maximum ground acceleration whereas as the relative acceleration
spectrum value apporaches zero, Figure 3.

The observation made in the preceding paragraph about the psuedo
and relative response of an oscillator have a special relevance here.

In the SRSS rules of equation (11) and References 5 and 8 which
primarily use the psuedo acceleration spectra as inputs, the
contribution of a mode can be measured, among other things, by the
product of terms (Yj;j/“g)a"d Ra(uﬁ)' Thfs contribution decreases
because the term (chjlug) usually decreases for higher modes. On the
other hand the term Ra(“ﬁ) approaches a constant value equal to that of
“the maximum ground acceleration. However, in the proposed SRSS ruile,
which employs relative spectra, a mode contribution is affected, of
course, by (gjyj/ug) but in addition, also by Rr(uﬁ) which continuously
decreases for higher modes. Thus, as a result of neglecting the higher
modes a smaller error will be introduced in‘the calculation of response
by the proposed SRSS rule than by the SRSS rule which employ psuedo
spectra, This is clearly shown by the results of Table 2. Thus the
proposed SRSS rule can be used to obtain an accurate value of degign
response even with a first few modes.

The guestion which naturally arises is then: how many modes should
one consider to obtain an accurate value of design response? It is felt
that the modes with periods less ﬁhan the zero-acceleration period can
be omitted from the analysis., (The zero-period is the period of an
oscillator below which no amplification in psuedo acceleration is
obtained. For design spectra prescribed in Referene 22, the zero period

is .03 secs., which corresponds to the oscillator frequency of 33 cps.)}.
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Of course, more research effort is necessary to establish a more
specific rule. |

Parallel results were also obtained for the absolute acceleration.
response of a Tiloor using the old SRSS rule and the new rule based on
the mode acceleration approach which again indicated the superiority of
the mode acceleration formulation. These latter results have special

relevance in the generation of floor response spectra,

5. CONCLUSIONS

Several SRSS rules are available for the combination of maximum
modal response to obtain the seismic design response of a linearly
behaving structural system. Most of these rules use psuedo-acceleration
spectra as seismic design input., In the evaluation of design response
for structures with closely-spaced frequencies, modal correlation
effects are considered in these SRSS rules. Based on the assumption of
white noise as input, some methods for the evaluation of the modal cor-
relation, and its effects on the design response, have been proposed.
Here it is observed that these correlations are misrepresented, espec-
jally when two high frequency modes are concerned. It is shown that
these correlations are important in the evaluation of response not only
when the modal freguencies are close, but also when a response has a
significant contribution from the high frequency modes. To obfain an
accurate evaluation of response, especially in such cases, it is
necessary that all modes (a complete set) calculated with high precision
be used in the analysis. It is also necessary that SRSS formulation
Tike equation (11), where modal correlation terms depend upon the input

response characteristic be used; the formulations where these correla-
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tions are considered independent of input, such as References 5 and 8,
can lead to erroneous results. If, however, the system is flexible
relative to the frequency of the input, the formulations based on white
noise as input can also provide accurate value of design response,

A new SRSS rule is developed here for the calculation of design
response, In its development certain assumptions about the peak factor
values and characteristics of input (i.e., stationarity of ground
motion) have been made, These assumptions, however, do not distract the
applicability of the proposed SRSS rule anymore than they do for the
existing SRSS rules, which are also based on similar assumptions and the
applicahility of which have been veriffed in several earlier studies.

The new SRSS rule proposed here provides a better alternative for
the calculation of design response. In this approach the effect of high
frequency modes (or often referred to as missing mass) is included
through a static analysis. The additional computational effort spent in
static analysis, which requires the solution for a set 6f linear
simyltaneous equations, constitutes only a small part of the effort
~spent in the evaluation of a high frequency modes in eigenvalue
analtysis. For a given number of modes, this alternative rule is
expected to provide a more accurate value of response than the existing
SRSS rules for all cases of structural systems, with or without dominant

high frequency modes.
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TABLE 1: PARAMETERS OF SPECTRAL DENSITY FUNCTION, qb(uﬂ, EQUATION (31)

i S5 o B;
fté-sec/rad rad/sec.

1 0.0015 13,5 0.3925

2 0.000495 23.5 0.3600

3 0.000375 39.0 1 0.3350
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TABLE

2: MEAN SQUARE COLUMN BENDING MOMENT RESPONSE FOR VARIOUS SYSTEMS
OBTAINED BY DIFFERENT MODE COMBINATION RULES

B.M, B.M. RATIO FOR VARIOUS MODE
Colum Exact COMBINATION RULES
Value | Eqg. 19 Eq. 11 Ref, 5 or 9 Conventional| Absolute
SRSS Sum

(1M (2) (3) (4) (5) (6) (7)
A;. System in Fig., 3 with all nine modes (uﬁ = 20,8, wy = 123.4 cps)

1. 1,365 1,000 1.000 0,754 0,528 1.010

2. |} 1.379 | 1.000 1.000 0.758 0.531 1.013
B. System in Fig. 3 with first three modes (u = 20.8, w, = 123.4 cps)

1. | 1.365 § 0.080 | 0.722 0.719 0.508 0.723

2. | 1.379 | 0.980 0.722 0.723 0.511 0.724
C. Stiffer System with first three modes (Uﬁ = 41,6, by = 246.7 cps)

1. 0.315 0.996 0.692 0,685 0,484 0.692

2. 0.318 | 0.996 0.691 - 0.691 0.489 0.691
D. Flexible System with first three modes (uﬁ = 5.2, Wy = 30.8 cps)

1. 139.89 0.999 0.931 0.931 0,657 0.940

2. #0.58 0.999 0.931 0.932 0.659 0.932
E. Flexible System with all nine modes (ui = 5,2, wy = 30.8)

1. 139,89 1.000 1.000 0,952 0.669 1.190

2. 140,58 1.000 1.000 0,953 0.671 1.183
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APPENDIX I - ELEMENTS OF MATRICES [G] .3}, .}

The elements of matrix [G] and vectors {Pa} and {Pb} used in

equations (8) and (20) are defined as follows

B 0 4 0
- 2(1-2f) T -2r2(1-2qf) o4
- 2 2 2
1 -2(1-2¢) 1 -2r (1-265)
0 1 0 T
RS we, -(1+r2-4sjq<r), 1, 0}

P} {4Bj.6kr R 45jB](r(1+r —43J.ﬁkr) + t(gj-rﬁk)r,

2
-4 - 8o g) - g, 1)

where r = “fj/uk and t = 4(rﬁj~ﬁk)
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APPENDIX II - EVALUATION OF CORRELATION TERMS IN EQ. 14

In this appendix, various auto and cross correlation terms required

in Eq. 14 to obtain Eq. 15 are developed.
E[xg(t1)qk(t2)]:

From Eq. 3,

i

qk(tz) = 'Yk f ).(

. g(ﬂhk& -t)dT (I1.1)

2

where h (t) is the impulse response function of Eq, 3. The cross

correlation function is

ELXy (8 )4y (¢5)] = 565 ELAG (8 g (c5)]
= -y | E[Xé(t])ié(wjlhk(tz-T)dT (11.2)

For stationary excitation,

.- . © foft
E[xg(tT)xg(fc)] = [ AL

- 00

-1)

T 4 (11.3)

Substituting in Eq. Il.2, the stationary value at t, » = is obtained as

. . 3 w iw(t
ELX (tp)a ()T = -y EX {j_m 2, ()} e

-“t)

U720 40y (11.8)

where Hj(°9 = frequency response function = 1/(u§-ug+21§juﬁug « Thus
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w iw(t
5 *
i w@g( w)Hk e

-t )
V2 (11.5)

-

ELX ()4 (t5)] = v J

Similarly, the stationary values of other related cross correlation

terms are obtained as:

. . @ 5 fult,~t,)
E[Xg(t1)qk(t2)] = f"m W @g(w)HE’ e dw (II.6)
- . = 1'w(t]-t2)
E[Xg(tz)qj(t])] = - f_mmq)g(w)HJ. e dw (II,7)
.- » =, iuﬂt]—tz)
E[Xg(tz)qj(tz)] = v f_m i @g(w)Hj e dw (II.8)
ELa, (ty)q, (t,)]:
Substituting for qj and G » We obtain
byt
E[qj(t.I)qk(tz)] = 'YJ"Yk J'O ,ro E[XQ(T])XQ( '52)]hj(t]"1‘-|)hk(tz-’tz)d't]d‘tz

{I1.9)
Substituting for the autocorrelation function of the ground acceleration
term in terms of its spectral density function, the stationary value
when tl > o t2 > o can be obtained as follows:
® 1u£t]~t2)

Elq;(ty)ay (t)] = vyy [ o (w)HjHE e dw (11,10)

- . .
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Using this expression, other related correlation functionss can be

obtained as follows:

e . * 2 1w(t‘l—t2)
E[qj(t1)qk(t2)] = Yij f (0] Qb(UﬂHth e dw (II.]])

. - ® 4 . 1‘dt]'t2)
E[qj(t])qk(tz)] = Y% [ w @b(uﬂHij e dw (I1,12)

- 00

v ° -e ‘ ® . 3 im(t]"tz)
Elq;(t)a ()] = -yjy [ Tuo (wH HE e

-

(11.13)

. . © 3 iuit]-tz)
E[qj(t])qk(tz)] = Y% Iw iwe (m)Hij(‘ e (I1.14)
Substitution 6f these in Eq. 14, and then separation of terms with

j=k and j#, gives Eq. 15. For j=k terms, the terms with odd powers

of wwhich appear as complex conjugate, cancel out. However when j=#K

these should be properly retained., Combining appropriate terms, the

imaginary terms are eliminated. The Eg. 15 thus contains only the real

terms.

36



NOTATIONS

The following symbols are used in this report:

Ag

A1sAp.Ag.A,
By.B,.83.8,
[cl

¢

EL +]

[G]

[K1]

Y

k)
(M]
"N
{P&I }s {Pb }
{q}

maximum ground acceleration

elements of vector {A} defined by solution of Eq. 8
elements of vector {B} defined by solution of Eq. 20
system damping matrix

peak factor

expected value of [+]

matrix defined in Appendix I

complex frequency response function of an bsci]atior with
frequency v, and damping ratio ?j

impulse response quantity of Eq. 3

mean square values of the relative displacement and
velocity responses of an oscillator with frequency w3 and
damping ratio Bj excited hy the stationary ground acceler-
ation ié(t)

system stiffness matrix

vector defined in terms of stiffness coefficient which
transforms the displacement vector {xs} into response S

system mass matrix

- pumber of degress of freedom

vectors defined in Appendix I

vector of principle coordinate defined by Eq. 2
coefficient of expansion defined by Eq. 26

psuedo acceleration response spectrum value at frequency

uﬁ and damping ratio Bj
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relative acceleration response spectrum value at frequency
u, and damping ratio ?j

relative velocity response spectrum value at frequency s
and damping ratio ?j

ground displacement influence vector

frequency ratio defined by uﬁ/uk

response quantity

the static value of a response quantity for the displace-
ment vector defiend by Eq. 22

design response value quantity S(t)

a parameter of ground spectral density functién

maximum modal response in the jth mode defined by

Sj T CjRa(wj)/w§

cross modal response

response vector of relative displacement of the structure
with respect to ground

ground acceleration

damping ratio parameter used in ground spectral density
function

modal damping ratio

jth mode participation factor

jth mode shape of response quantity

modal corfelation coefficient defined by Eq. 12

modal matrix with its column representing the normal modes
Jjth displacement mode shape

ground spectral density function
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cut~off frequency
frequency parameter used in ground spectral density
function

jth modal frequency
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