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ABSTRACT

This report presents a general analysis procedure

for simulating the earthquake response of re~nforced con

crete frame buildings, which mayor may not have been dam

aged during previous exposures to strong ground motions.

The establishment of this analysis procedure requires the

completion of the following tasks: 1) The accurate modeling

of the behavior of general reinforced concrete frame members

subjected to strong cyclic loads; 2) The definition of a

damage parameter, which correlates well with the structure's

residual strength and stiffness, and which is suitable for

subsequent reliability analyses; 3) The establishment of a

procedure for the dynamic analysis of damaged concrete

frames.

A theory for a new mathematical model of frame members

is developed and its accuracy is verified by simulating

various experiments for which data were available in the

literature. New local and global damage parameters are

defined, and a procedure for analyzing damaged frames is

outlined. Herein it is assumed that the building's funda

mental frequency is known or can be determined in post

earthquake field measurements. The analysis procedure is

verified by reproducing some shaking table tests that had

been carried out at the University of Illinois. Some

interesting albeit preliminary conclusions could be drawn

from these limited studies: 1) The accuracy of the new frame

member model is excellent for practical purposes; 2) The
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proposed definitions of damage parameters are useful and

reliable indicators for damage states; 3) The agreement

between experimental measurements and theoretical response

predictions for damaged concrete frame is remarkable.
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CHAPTER 1

INTRODUCTION

1.1 General

The design of buildings against earthquake loadings has

received a considerable amount of attention in the last few

decades. This task is particularly difficult when the load-

carrying structural system is a reinforced concrete frame.

A few highly publicized buildings which had behaved less

than satisfactorily during the recent San Fernando and

Imperial Valley earthquakes have demonstrated that the

strict adherence to building code requirements alone is not

a guarantee of satisfactory performance.

The response of concrete buildings to strong seismic

ground motions is complicated by its strong nonlinear

nature. Current design philosophy is based on the principle

that a building will withstand strong ground motions most

effectively and economically, if a large amount of the

earthquake energy input into the structure is dissipated

through inelastic action in plastic hinges. Such plastic

hinges will naturally occur in the regions of maximum

moment, i.e., at the ends of the most highly stressed beams

and columns. Plastic hinges are in general not desirable in

columns, because of the increased likelihood of the

formation of a mechanism and the concomitant danger of

instability. But also, high axial forces drastically reduce

the energy absorption capacity of a column, therefore
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decreasing the effectiveness of plastic hinges therein. For

this reason it has been generally accepted that the strong

column-weak beam design philosophy is preferable.

The mathematical simulation of the response of rein

forced concrete members to strong cyclic loads is extraor

dinarily difficult. We are dealing here with members made

up of two different materials, steel and concrete, both of

which have nonlinear stress-strain laws. In addition,

concrete cracks at low tensile stresses and experiences

microcracking at relatively low compression, which leads to

progressive material softening under increasing load. Even

though improved reinforcement details can offer very effec

tive confinement of the concrete, thereby raising both its

strength and ductility, concrete experiences a progressive

deterioration under repeated load excursions into th~

inelastic range. This has been observed in numerous

laboratory experiments, in which the diminishing member

stiffness causes a gradual decrease of the areas enclosed

within the hysteresis loops of the load-deflection curves.

After exceeding a certain critical strain or displacement

level, tests also exhibit a gradual weakening of maximum

strength or load-carrying capacity.

This steady decrease both in stiffness and possibly

strength can have serious practical consequences. A

building which has been subjected to a strong earthquake and

seems to have performed satisfactorily may have experienced

a critical decrease in stiffness and strength which may make
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it much more vulnerable to the numerous aftershocks. It is

conceivable that certain levels of damage could also be the

result of other accidental overloads as well as multiple

exposure to strong winds.

In contrast to the study of seismic behavior of theo

retically undamaged concrete buildings, the study of damaged

concrete buildings is still in its infancy. It requires the

solution of the following three tasks:

1. The adequately accurate modeling of the response of

general reinforced concrete frame members to strong

cyclic loads;

2. The definition of a damage parameter which

correlates well with the structure's residual

strength or stiffness or both, and which can be

determined relatively easily in a post-earthquake

field inspection;

3. The establishment of a procedure for the dynamic

analysis of damaged concrete frames, which will

permit subsequent studies to determine the

reliability of buildings in a seismic environment.

The first task has received the most attention of

researchers in the past. Several important experiments have

been conducted which were extremely instructive with respect

to the understanding of inelastic cyclic response of

reinforced concrete members. Most of these tests will be

referred to in detail in subsequent chapters.
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Some work has been done previously in regard to damage

definition, but the proposed parameters are not well-suited

for the analysis procedure presented herein.

Previous research on the response analysis of damaged

concrete frames is virtually nonexistent.

1.2 Previous Work on Models for Concrete Frame Analysis

The mathematical models proposed for the simulation of

concrete members can be subdivided into three categories,

according to their complexity and associated cost(l).

The most complex and expensive models have been devised

for finite element analysis(2). A wide variety of tests

have been simulated successfully with such models. Because

of the large number of degrees of freedom and the resulting

computational expenses typically associated with such

studies, finite element analysis will be used for only

unusual design tasks such as those related to safety-class

nuclear power plant structures. The majority of finite

element studies will be restricted to reseach in order to

study the behavior of concrete members and to derive from

these studies simplified models applicable to more common

design situations.

On the next lower level of complexity, the moment

curvature relationships of sections are determined by

subdividing the cross-sections into a finite number of

layers so that these may be called "semi-finite element"

models(3,4). The computational effort required to establish
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complete moment-curvature curves for each member makes the

use of also such models rather infeasible for the nonlinear

dynamic analysis of large structures.

In order to reduce the computation expense, another

step of simplification has to be taken, which leads to the

direct determination of moment-curvature relationships for

an entire member. Such models, which may be termed "member

size" models, are often accurate enough for practical

purposes. A number of such models have been proposed in the

literature.

Probably the first one proposed, the Clough(5) model

employs a simple bilinear relationship between moment and

curvature. A member is assumed to consist of two imaginary

parallel beam elements - an elastoplastic one to represent

the yielding characteristics and a fully elastic one to

represent strain hardening. Plastic deformations are

assumed to be limited to the ends of the members in hinges

of zero length. This model proved to be adequate for the

analysis of structures made of materials with simple

bilinear stress-strain laws, such as steel. For the

analysis of concrete structures with degrading material

properties it is inadequate.

Hidalgo and Clough(6) have improved the above model by

introducing a stiffness degradation parameter, which is a

function of the maximum displacement amplitude experienced

by the structure during previous earthquake exposures. The

results of analysis employing this model were found to be
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rather sensitive to small variations of this degradation

parameter.

Giberson(7) has proposed a model consisting of a linear

elastic beam element and two nonlinear springs at the ends

to simulate concentrated plastic hinges. To determine the

moment-curvature relationship of the springs, the member was

divided into two cantilever beams by assuming an inflection

point at midspan. Litton(S) has developed a similar model,

but in order to obtain the member stiffness matrix, the

stiffness of the member excluding the plastic end regions

was inverted; to this flexibility matrix the current

flexibility values of the nonlinear springs were added, and

the combined flexibility matrix was then inverted to compute

the combined stiffness matrix. Suko and Adams(9) have

refined Giberson's model by computing the spring stiffnesses

with the point of contraflexure determined by an initial

elastic analysis. Otani(IO) has extended these models by

adjusting the plastic hinges at the beam ends to account for

bond deterioration in the joint regions.

None of the above member models consider either the

effect of the finite size of the plastic regions or the

phenomenon of strength degradation. In addition, some

models employ parameters which need to be determined from

experiments.

Herein, a member-size model will be presented which

takes the finite size of the plastic regions into account.

It is felt that the straightforward theory of the model and
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the elimination of some inconsistencies inherent in the

simpler models(ll) warrant the slightly increased compu

tational effort required. The most important aspect of the

model is the fact that there is no need for a priori test

data with which the free parameters of other models have to

be adjusted to fit the load-deflection curves to given

experimental results.

1.3 Previous Work on Damage Definition

Turning to the second task to be solved for dynamic

analysis of damaged frames, a definition of damage is needed

which can be used directly in a structural response analy

sis. In past studies, damage has generally been treated

rather subjectively. For example, building inspectors were

trained to fill out certain forms designed to assess

building damage by relying strongly on their past experience

and subjective judgement. Alternatively, damage can be

looked at from a strictly economical viewpoint, using a

scale from zero for no damage to a maximum of one,

representing total replacement cost.

Wiggins and Moran(12) have proposed one such empirical

procedure for grading existing buildings on a scale from 0

to 180 points. The building is given points in several

different categories and the sum of all points is taken as a

measure of its structural reliability. Similarly, Culver

et al(13) have proposed another field evaluation method,

easy to use, but again of limited use in a general



-8-

methodology because of the subjective .judgment required on

the part of the investigators.

A more suitable approach has been taken by Bertero et

al(14) which introduces the concept of damageability limit'

states. A more general approach which involves structural

damage considerations has been outlined by Ting et al(lS)

and Liu and Yao(16). Shibata and Sozen(17) have introduced

a damage parameter as the ratio between the initial stiff

ness and the reduced secant stiffness at maximum defor

mation.

None of the studies mentioned has proposed a definition

of a damage parameter suitable for the dynamic analysis of a

damaged reinforced concrete frame. Such a parameter should

1) be as free from subjective judgment as possible; 2) be

relatively easy to determine on the basis of field measure

ments; and 3) be indicative of the amount of stiffness and

strength degradation. Herein, such a damage parameter will

be presented which is based either on the post-earthquake

fundamental period of the building or the maximum roof dis

placement experienced in previous earthquakes.

1.4 Scope and Objective

This study will develop the tools necessary to

perform nonlinear dynamic analyses of reinforced concrete

frames which mayor may not have been damaged during prior

exposure to earthquake ground motions. As outlined earlier,

this objective requires the solution of three different
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tasks, namely the development of an appropriate model for a

general reinforced concrete frame member; the establishment

of a suitable damage parameter; and the actual response

analysis procedure for damaged concrete frames.

In Chapter 2, a new mathematical model for frame

members will be described, which is different from others

presented in the literature in that the finite size of

plastic regions is taken into account, and which requires

for a complete definition the specification of only a few

elementary material properties of steel and concrete and the

geometric section properties. It is capable of simulating

the complete behavior of such members under strong cyclic

loads up to advanced states of deterioration, even under the

presence of high shear and axial forces.

The accuracy of the model developed in Chapter 2 will

be evaluated in Chapter 3 by simulating a large number of

experimental tests reported in the literature and by

comparing the analytical and experimental results. This

comparison extends to individual cantilever beams, beam

column subassemblies and entire building frames, of which

scale models have been tested on the shaking tables of the

Universities of California and Illinois.

A general analytical procedure for damaged concrete

frames will be presented in Chapter 4. Since the shaking

table tests consisted of a series of ground motions for the

same frames which resulted in increasing levels of damage,

they serve as appropriate examples to evaluate the accuracy
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of the proposed analytical procedure.

Chapter 5 contains a brief summary and the conclusions

to be drawn from this study. Also, a list of problems

suggested for future study is given.
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CHAPTER 2

A MATHEMATICAL MODEL FOR RiC FRAME MEMBERS

2.1 Introduction

A mathematical model for reinforced concrete frame

members is presented in this chapter, which is different

from others presented in the literature in that the finite

size of plastic regions is taken into account. Moreover the

model requires the specification of only a few elementary

material properties of steel and concrete to simulate the

complete behavior under strong cyclic loads, even under the

presence of high shear and axial forces.

This model is an extension of an earlier model

developed in the course of an ongoing research project on

the reliability of damaged concrete frames (18-23) carried

out at Columbia University. In contrast to the earlier

version, the new model takes into account the effect of

axial and shear forces, as well as the strength degradation

which accompanies strong cyclic response. In addition, new

definitions of damage and failure parameters are introduced

which will be useful for subsequent reliability studies.

The accuracy of the proposed model will be demonstrated

in Chapter 3 by analyzing numerous members and structures

for which experimental test results are available in the

literature. The comparison between all experimental and

analytical results shows excellent agreement, leading to the

conclusion that the model is very effective in predicting
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the nonlinear behavior of reinforced concrete frame members.

2.2 Material Constitutive Laws

2.2.1 Reinforcing Steel

A typical stress-strain curve for steel is shown

in Fig. (2.1). For the purpose of the present analysis, the

actual curve is idealized by a bilinear curve, consisting of

an elastic part characterized by the initial modulus of

elasticity

and an inelastic part with strain hardening ratio

f - fsu sy
E - Esu sy

( 2.1 )

( 2. 2 )

where f sy and E sy are the yield stress and strain

respectively, f su is the ultimate stress, and E SU is the

strain at ultimate stress.

2.2.2 Concrete

Unlike steel, concrete exhibits different behavior in

tension and compression. The tensile strength can be safely

ignored because under strong cyclic loading the concrete

will crack after a few cycles and lose most of its tensile

strength. Confinement of concrete has an effect on the

stress-strain relationship which is most significant in the
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Figure (2.2) shows experimental stress-

(2.3).

strain curves for square prisms confined with various

contents of square ties (24).

In the past, various expressions have been proposed to

idealize the stress-strain curve of confined concrete, Fig.

Chan (25) proposed a trilinear curve, Fig. (2.3a).

The first two lines approximate the curve for unconfined

concrete up to stress f p ' while the slope of the third line

is a function of the lateral confinement. The curve by

Soliman and Yu (26), Fig. (2.3b), consists of a parabola and

two straight line segments. Roy and Sozen (27) proposed a

bilinear curve, Fig. (2.3c), a loading branch up to the
,

maximum stress f and an unloading branch with a slopec

determined from test results. Kent and Park's curve (28),

Fig. (2.3d) consists of a second order parabola up to the
,

maximum stress f , a linear unloading branch, and a horic

zontal linear portion with a residual constant stress
I

of .2 f •c The slope of the unloading branch is a function
,

of the uniaxial cylinder strength, f , the ratio of width ofc

confined concrete to spacing of hoops, and the ratio of

volume of hoop steel to volume of concrete core.

Most of the above models have neglected the effect of

confinement on concrete strength. Also, the models incor-

porating parabolic loading branches require iterative

procedures to compute moment-curvature relationships.

Below, a new model is proposed to represent the stress-

strain behavior of concrete, Fig. (2.4), which accounts for
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the confinement effect both on the concrete strength and the

slope of the unloading branch, yet avoids the complications

associated with parabolic functions. Also it will permit

the definition of concrete failure.

The proposed curve consists of three linear branches,

the first two of which approximate the loading part of the

curve, while the third one represents the unloading part.

The slope of the falling branch depends only on the ratio of

the volume of hoop steel to volume of confined concrete.

The proposed trilinear curve has the following

characteristics:

1) The ultimate strength of the concrete, f cu ' is a
I

function of the uniaxial cylinder strength, f c ' and the

"degree of confinement, p •

2) The loading part is a bilinear curve such that the area

under the bilinear curve is the same as the area of the

parabola proposed by Kent and Park. The slope of the

first line is equal to the initial slope of the parabola.

3) Coordinates of the cut-off point of the unloading

branch, 0.2 f cu and Em' are chosen empirically.

Experimental evidence suggests that when the extreme

concrete compression fibre is strained to the value Em or

beyond, the strength of the concrete member starts to

degrade, when subjected to subsequent load cycles. Atalay

and Penzien (29) have noticed that this occurs at about

the same time when the concrete cover spalls off. This

point will be termed as the "onset of failure" because the
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member can sustain only a few load cycles of decreasing

amplitude after reaching such a critical strain Ern'

The proposed curve is completely determined by

specifying the following three values, Fig, (2,4):
I

1) uniaxial strength of plain concrete, f c'

2 ) strain at maximum stress, E '
0'

3 ) volumetric ratio of confinement steel given by

p " =

II

2(b + d

" ..
b d s

II II

( 2 , 3 )

II "

where band d are the width and depth of the confined

core,
II

As is the hoop cross-sectional area, and s is the

hoop spacing,

Referring to Fig, (2,4), the following variables are

defined:

f = a fcu c c

E = a EOcu c

f 2 f ( 2 , 4 )= "3cy cu

1
E = "3 Ecy cu
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where a c and ~c are factors which account for the

confinement effect on concrete strength and ultimate strain,

respectively. These factors are determined from the

following empirical expressions,

"a = 1 + 10 pc

Q = 2 + 600 p"t-'c

( 2 • 5 )

( 2 • 6 )

The first, "elastic," branch of the trilinear curve has

a slope equal to the modulus of elasticity

. . 2fcu
E

CU
( 2. 7 )

The second, "inelastic," branch is characterized by the

.strain hardening ratio

Pc = 0.25 ( 2 . 8 )

The third line, the "unloading" branch has the negative

slope

- P E =c c

.8fcu ( 2.9)

Figure (2.5) compares for different confinement ratios

some test results (24) with Kent and Park1s idealization(28)

and the trilinear model proposed herein. The most
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noticeable difference between the two analytical models is

the lack of strength enhancement in the Kent and Park

model. Also the proposed model requires less computational

effort than the one by Kent and Park.

2.3 Primary Moment-Curvature Relationship

It is assumed that plane sections remain plane in an

average sense even after cracking of concrete, and that

steel and concrete material laws can be approximated as

described in the previous section. Then the primary moment

curvature relationship (i.e., for monotonically increasing

moment) of a beam section can be derived using conventional

reinforced concrete theory only. Details are given in

Appendix A.

A typical primary moment-curvature curve is shown in

Fig. (2.6). The curve is linear almost up to the yield

point (My'~Y)' defined as the point at which the tension

steel starts to yield. For moments greater than My the

moment-curvature relationship becomes nonlinear, but the

deviation from a bilinear curve is small and can safely be

ignored, Fig. (2.6), as long as the axial force is small, as

will be discussed later. The procedure described in

Appendix A allows the determination of the bending moment Mm

associated with the curvature ~m at which the concrete

strain reaches the failure value Ern' Fig. (2.4). The slopes

of the two branches of the M - ~ curve are then given by
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(2.10)

and

(2.11)

Thus, the primary moment-curvature relationship is

determined and valid up to the failure of the concrete

cover, which is assumed to occur when the concrete at the

extreme fiber is strained to a value of Ern.

2.4 HysteretiG ~ehavior of Reinforced Concrete

Under load reversals, the stiffness of a reinforced

concrete member changes due to the cracking of concrete and

debonding effects at the steel-concrete interface. A number

of empirical moBels have been proposed in -the past to

represent the hysteretic behavior of reinforced concrete

members:

1) Simple bilinear formulations were the first ones

employed by researchers (30,31), Fig. (2.7a). A simple

bilinear model cannot reproduce the stiffness degradation

of actual concrete members and is, therefore, only very

approximate.

2) The concept of degrading bilinear model has been

introduced by Clough (5) and represents a clear

improvement over the simple bilinear formulations,

Fig. (2.7b).
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3) A general trilinear model has been proposed by Takeda

et al (32) with an elaborate set of rules to reproduce the

hysteresis behavior under load reversals, Fig. (2.7c).

This model is sufficiently accurate for many applications

and, for this reason, has been adopted by a number of

other investigators (33,34).

4) Iwan (35) has decomposed the general hysteretic response

into three basic behavior components - perfectly plastic,

elasto-plastic or simple Coulomb slip, and irreversible or

directional slip behavior. With this decomposition it is

possible to identify basic behavior parameters and

calibrate them against test results.

5) Baber and Wen (36) have combined four different

functions to obtain closed hysteresis loops with a

sufficient number of free parameters to model both

softening and hardening materials. The deterioration

parameter was chosen to be a function of the total energy

dissipated by hysteretic action, although according to

some tests (37,38) rather stable hysteresis loops can be

obtained, i.e., energy can be dissipated without

significant stiffness degradation.

6) Other models have been proposed, for example, by Atalay

and Penzien (29), and Tani et al (39)

For the purpose of this study, a modified Takeda-type

model is used to represent hysteretic moment-curvature

relationships, Fig. (2.8). The model has, basically, five

different types of branches. These are identified in
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Fig. (2.8) by corresponding numbers with circles.

1) Elastic loading and unloading: as long as the maximum

moment does not exceed the yield moment, My' the load

deformation relationship

t>M = (EI)l t>q,

holds, where

(EI)l = (EI)e

is given by Eq. (2.10).

(2.12)

(2.13)

2) Inelastic loading: if the moment exceeds the yield

moment as well as the maximum ·i~elastic moment reached in

any previous cycle, and if the moment is still increasing,

then the moment-curvature relationship is given by

where

(EI)2 = p(EI)e

is given by Eq. (2.11).

(2.14)

(2.15)

3) Inelastic unloading: if the yield limit has been

exceeded in a previous cycle, and if the absolute value of

the moment is decreasing without a change in sign (branch 3

in Fig.(2.8)), then the moment-curvature relationship is

given by

(2.16)
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The computation of (EI)3 will be presented in Section 2.6.

4) Inelastic reloading during closing of cracks: In a

reversed loading cycle, previously opened cracks tend to

close, leading to an increase in stiffness and the charac

teristic "pinched" shape of the moment-curvature curve.

This phenomenon is particularly pronounced in the presence

of high shear forces. If the absolute value of the moment

is increasing and its value is still less than a certain

"pinching moment" for the current cycle (to be defined in

the next section), then

t.M = (EI)4 b.cj>

where (EI)4 will be discussed in Section 2.6.

5) Inelastic reloading after closing of cracks:

(2.17)

if in a

reversed loading cycle, the absolute value of the moment is

increasing, and its value exceeds the pinching moment, then

t.M = (EI)5 b.cj>

where (EI)5 will be given in Section 2.6.

( 2. 18 )

2.5 Shear Effect on Hy~teretic Behavior

Figure (2.9) shows two different types of moment

curvature behavior. The first one is characterized by

stable hysteresis loops, Fig. (2.9a), which exhibit

gradually decreasing stiffnesses for loading cycles of
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increasing amplitudes. The second type, illustrated in Fig.

(2.9b) is markedly different. Within an individual reload-

ing cycle, the initial stiffness is somewhat- low and

increases with increasing load up to a certain level, giving

the hysteresis loop the characteristic pinched shape.

As reported by Ma et al (4) the main reason for the

difference between the two types of hysteresis loops is the

presence of high shear stresses. They noticed that stable

hysteresis loops are obtained when the maximum nominal shear

stress, vmax ' is less than 3.5 ~ In this case the

Bauschinger effect on steel and bond deterioration can be

considered the main source of

vmax is greater than 3.5 ~~,

stiffness degradation. When. .
stiffness degradation will be

accentuated, resulting in pinched load-deformation curves.

In other words, when load reversal occurs within the

inelastic range with high shear stresses, the .open shear

cracks will initially permit the transfer of shear forces

mostly through dowel action only, leading to a rather low

stiffness. After the closing of such cracks, aggregate

interlock and shear friction cause a significant increase of

the member stiffness.

In order to include the shear effect in the present

mathematical model, the stiffness of a section during

reloading is assumed to be nonlinear and will be represented

by two straight-line segments, Fig. (2.10). The first line

connects the "point of reloading" (O'~r) and the "pinching

point" (Mp'~p)' The second line connects the latter point
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with the point of resumed inelastic loading (M ,~ ). The
x x

first line represents reloading before the closing of shear

cracks and is identified in Figs. (2.8) and (2.10) by number

4. The second line segment approximates reloading after the

closing of shear cracks and is labelled in Figs. (2.8) and

(2.10) by the number 5.

The pinching moment (Mp'~p) is determined as follows.

If shear stresses are negligible and the hysteresis loops

are stable during reloading, no pinching is likely to occur,

and branches 4 and 5 will form a single straight line. In

this case the pinching

"point of no pinching"

coordinates

po i n t (Mp ' ~P )

(M , ~ ), Fig.
n n

will degenerate to a

( 2 • 10 ), with the

~n = ~r
(EI)

(EI) - (EI)e

and

M = (EI)e ~nn

where
M

(EI) x=
~x - ~r

(2.19)

( 2. 20 )

(2.21 )

Introducing a pinching factor, a p ' which represents the

effect of shear stress on the hysteresis behavior, that

a p = I, if the shear effect is negligible, and a p = 0 if the

shear effect completely controls the load-deformation behav-

ior, then it is possible to define the coordinates of the

pinching point as
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(2.22)

(2.23)

In order to relate the pinching factor to the relative

shear of a section, it appears advantageous to introduce the

nondimensional ratio of the shear span, a, to the effective

depth of the beam, d. In a cantilever beam subjected to an

end load, the shear span is equal to the beam length, t, and

therefore the ratio tjd can be used to represent the degree

of pinching of the moment curvature loops. In a typical

building frame, inflection points are located approximately

at midspan, so that a = tj2. The empirical equation

a
a p = 0.4 d - 0.6

where

0 if a < 1.5ap = d

1 if a > 4a p = d

(2.24)

adequately describes the relationship between the pinching

a
factor, a p ' and the shear span ratio, d •

In summary, during reloading, the point of pinching

(M ,~ ) can be determined as follows:
p p
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1. Given the shear span ratio, ~, compute the pinching

factor, a p ' using Eq. (2.24).

2. Locate the point of no pinching (Mn'~n)' using Eqs.

(2.19) and (2.20).

3. Locate the pinching point (M ,~ ), using Eqs. (2.22) and
p p

(2.23).

2.6 Unloading and Reloading Flexural Stiffnesses

The stiffnesses (EI)3' (EI)4' and (EI)5 associated with

branches 3, 4 and 5 in Fig. (2.8) are determined as fol-

lows. Upon unloading in the inelastic range, an auxiliary

point with the following coordinates is introduced, Fig.

(2.11),

p + - M+)M = (~l(EI)l
0 1 - P 1

1 +
M+

1 )~o = r-=-p(~l (EI)l

(2.25)

(2.26)

where M~ and ~~ are, respectively, the maximum moment and

curvature reached in the positive direction during the cur-

rent load cycle. The inelastic unloading stiffness follows

as

M+
(EI); 1= + +

~l - ~r

where

+ M
0

~r = <1>0 -
(EI)

(2.27)

(2.28)
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is the residual curvature at zero moment, in the positive

direction, and

(EI) = (2.29)

is the stiffness of the reversed loading branch, without

pinching. M- and $- are the maximum moment and curvature
x x

reached during any of the previous load cycles in the

negative direction. + - -with the values of ~ , M , and ~'f'r x 'f'x

known, the pinching point (M~,$~) can be determined as

described in the previous section. The stiffnesses for the

two reversed loading branches follow as

(EI)~ =

and

(EI)~ =

(2.30)

(2.31)

as illustrated in Fig. (2.11).

2.7 Tangent Stiffness Matrix

To compute the tangent stiffness matrix of a general

frame member, the element is subdivided into three regions,

Fig. (2.12):

1. an inelastic region of length xi at node i, having the

average stiffness (EI).,
l
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2. an inelastic region of length Xj at node j, having the

3.

average stiffness (EI)j'

a central region of length

and

(~ - x. - x.), having the
1 J

initial elastic stiffness (EI)e.

For the six planar degrees of freedom identified in

Fig. (2.12), the tangent stiffness of this frame element can

be written as

[K ] =
e symm

0 0 k14 0 0

k 22
k

23 0 k 2S k 26

k
33 0 k 3S k

36

k 44 0 0
(2.32)

k
SS

k
S6

k
66

The coefficients

EA
k ll = k 44 = - k 14 = ~ (2.33)

are assumed to remain constant. k 33 , k 36 , and k 66 are

obtained from their flexibility counterparts, which in turn

can be computed by integrating the moment-curvature expres-

sions over the entire length of the member.

Denoting by

Q.
(EI)e

= --
1

(EI)i

Q.
(EI)e

=
J (EI)j

(2.34)
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the stiffness ratios for the end regions i and j, the

flexibility coefficients are given by

f .. =11

f .. =
JJ

(2.35a)

(2.35b)

f .. 1 [( Q. 1) 2
(1. 5t x. ) += - x. -

1J 3(EI)e t 2 J J J

t 3 (2.35c)

+ (Q. 1) 2
(1. 5t x . ) +- x. - "21 1 1

The corresponding stiffness coefficients follow as

f .. /(f .. f .. 2K33
= f .. )

JJ 11 JJ 1J

f .. /(f .. f .. 2K66
= - f .. )

11 11 JJ 1J (2.36)

f .. /(f .. f .. 2K36
= f .. )

1J 11 J J 1J

and the remaining coefficients follow from statics

K23
= - K

35
= (K

33 + K36 )/t

K26 = - K56
= (K

36 + K66 )/t (2.37)

K55 = (K
33

+ 2K
36

+ 2K22
= K25

= K66 )/t

The length xi and stiffness ratio Qi of the plastic

region at node i depend on the current branch of the M - ~

diagram. For elastic loading or unloading, we have
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x. = a
l

Q~ = a
l

(2.38)

For inelastic loading (see branch 2 in Figure (2-8)),

the length of the plastic region is determined by

x. =
l

M. - M
l Y i

M. + M.
l J

(2.39a)

because bending moments can be assumed to vary linearly

along the beam length. The stiffness ratio within the

plastic region is constant over the length xi and equal to

the value at node i, i.e.

(2.39b)

Upon inelastic unloading, xi remains the maximum

plastic region length reached in any previous inelastic

loading cycle. But now the stiffness varies over the length

of the plastic region, and for an accurate analysis, it

would be necessary to compute the stiffnesses at all

sections. This would be a time-consuming task and require

considerable computer storage. In order to simplify this

task, an empirical averaging process is used (22,23).

Directly at node i the stiffness has to be equal to (EI)3'

while at the border line between plastic and elastic regions

it is (EI)e. We approximate the variable stiffness by an

average value, assumed to be constant over the length of the
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plastic region and given by

(2.40)

where c is an empirical constant, for which values between

0.5 and 0.75 have been found to give most accurate

results. In the present analysis a value of 0.5 is used.

The stiffness ratio for the plastic region at node i

during inelastic unloading follows as

Q~ =
1

(EI)e
= c«EI) - 1) + 1

3
(2.41)

Similarly, the stiffness ratios during inelastic

reloading (branches 4 and 5 in Fig. (2.8» are

Q~ =
1

Q? =
1

(EI) e

(EI)4

(EI)
e

(EI)5

(EI) e= c ( (EI)- - 1) + 1
4

(EI)e
= c«EI) - 1) + 1

5

(2.42)

(2.43)

2.8 Axial Load Effect

The presence of an axial force in a member modifies the

primary moment-curvature relationship as shown in Fig.

(2.13). It can be noticed in this figure that the axial

force affects primarily the values of the yield moment and

curvature at failure. A high axial force increases the

yield moment because of the precompression of the steel, but
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it also limits the capacity of a member to sustain high

strains. Figure (2.13) also shows that the assumption of

linearity of the inelastic loading branch is reasonable as

long as the axial load, P, remains moderate, i.e., as long

as it stays approximately below 50% of the balanced

load, Pb .

Based on the behavior illustrated in Fig. (2.13), we

will consider the moment-curvature relationship to be

bilinear if the computed slope of the inelastic loading

branch is positive. If the axial load exceeds approximately

0.5 Pb , the second slope is likely to become negative. In

this case, the member has very little energy dissipation

capacity, so that it appears to be reasonable to consider

the yield point as the failure point.

When a building is subjected to an earthquake, axial

forces in the columns change as a function of time, because

of the overturning moment as well as due to vertical accel

erations. The accurate computation of member responses

considering variable axial forces is very difficult and

time-consuming in general. In order to simplify the

response analysis, we assume here that the axial load

remains constant and equal to the gravity load effect,

present at the beginning of the cyclic load history.

Another effect of axial forces is the phenomenon known

as the P-~ effect, which cannot be ignored when a member

undergoes large inelastic displacements. Numerous

procedures have been proposed (40-45) for computing these
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second-order effects. For most practical purposes it

appears to be sufficient to approximate the p-~ effect by

using a consistent geometric stiffness matrix for each

member as proposed by Bolotin(4S):

0 0 0 0 0 0

36 3 0 -36 3-:f .R. (2.44)

41 0 -3 -1

[Kg]
P symm 0 0 0= 30

36 -3
1

41

where P is the axial force, and 1 is the member length.

2.9 Strength Degradation During Cyclic Loading

Under load reversals, not only the stiffness of a

reinforced concrete member decreases, but also its strength

deteriorates, provided the member is strained beyond a

certain critical load level. This means that in subsequent

cycles, the maximum load required to deform the member to a

given level of deformation decreases, once this certain

critical load level has been exceeded. To the writers'

knowledge, this strength degradation has not been included

in any of the mathematical models proposed previously.

Strength degradation and the corresponding critical

load are functions of several variables, such as the degree

of confinement and the value of axial force. Atalay and
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penzien(29) have noticed during their experiments that the

strength degradation commences with the spalling off of the

concrete cover. In Section 2.2, this point had been asso

ciated with a concrete failure strain Ern' Fig. (2.4), which

was empirically related to the confinement steel according

to Equation (2.6). Also the terminal point (Mm'~m) of the

primary moment-curvature curve, Fig. (2.6), had been defined

as the point associated with the curvature at which the con

crete strain reaches the value Ern. According to Fig.

(2.13), this point is strongly influenced by the axial

force.

Our theory here is based on the assumption that the

member strength does not degrade as long as the curvature of

the most highly stressed section is less than ~m. Beyond

this level of deformation (i.e., for ~ > ~m)' the member

strength at a section decreases during each cycle of loading

following the cycle during which the curvature exceeded ~m.

The reduction in strength appears to be proportional to the

amount of deformation beyond the critical curvature ~m.

Spalling off of concrete on one side of the member reduces

the moment capacity mainly when this side is under compres

sion. However, the strength for loading in the opposite

direction is also affected, presumably because the loss of

concrete cover on the now tension side exposes the main

reinforcement and leads to some bond slip.

One method of computing the reduced strength would be

to use the dimensions of the diminished section, i.e.
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without the spalled-off concrete, and to modify the primary

moment-curvature curve accordingly. A preferable method,

considered herein, is to consider the original undiminished

section, but to assume a fictitious increased maximum level

of deformation.

+ + --Let (Mx ' ~x) and (Mx ' ~x) designate respectively the

maximum moment and curvature reached during all previous

cycles, in the positive and negative direction, Fig. (2.14).

If the maximum curvature during

exceeded the critical curvature

any previous cycle has

+
~m in the positive

direction, and if unloading occurs in the current cycle,

starting at some point (M,~) in the positive region, then

the points of maximum deformation, (M+,~+) and (Mx-'~-xl, are
+ +x x

modified to the higher values, (M ,~ ) and (M ,~ ) suchx x x x

that:

+
~x = (1 + y+) ~+

x

+ +
M M+ (~x

+
(EI);= + ~x)x x

(2.45)

(2.46)

(2.47)

(2.48)

in which y+ and y- represent the fictitious increases in the

maximum curvatures in the positive and negative direction,

respectively. They are given by
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~+ +- ~m+
(1-1.84 ~) x (2.49)y = Yc Pb ~+

x

+ ( 2.50 )Y = Y Y

Pwhere p- < 0.5 is the ratio of the axial force to the
b

balanced load. y represents the degradation effect in the

negative direction, taken as a fraction of the effect in the

positive direction. The experimental data seem to indicate

a value of y = 0.2, which will be used here. Yc is a factor

For structures

selected to reflect the workmanship or quality control

during construction.

All test specimens analyzed herein have been con-

structed in laboratories, presumably under near-ideal condi-

tions with regard to workmanship and quality control. In

such cases, a value of Yc = 1 is used.

erected under more realistic construction conditions, some-

what lower standards can be expected in many cases, with the

possible consequences of reduced strengths and accelerated

strength degradation of critical members. It is beyond the

scope of this dissertation to propose numerical values for

Yc which reflect realistic construction conditions, but

there exists information in the literature on workmanship in

concrete construction which could be utilized for such a

study (46). It will be the subject of subsequent studies to

investigate the effect of workmanship on the reliability of

concrete buildings.
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The suggested method of simulating strength degradation

is empirical and approximate. However, it is based on the

observation that in laboratory experiments, members usually

fail after very few cycles, once the concrete strain Em has

been exceeded. The actual number of cycles to failure

depends on the confinement degree, and the magnitudes of

axial and shear forces. For practical purposes, it is

appropriate to define the curvature associated with Em as a

point of incipient failure because subsequently, the member

will be able to dissipate only a small amount of energy

until either the steel buckles or ruptures, or the member

looses its torsional stiffness.

2.10 Damage Indicator and Failure Definition

The reliability of a building to withstand future

earthquakes depends greatly on the strength and stiffness

degradation, which its major structural components may have

experienced in an earlier earthquake. Therefore it is

logical to adopt a damage definition related to residual

strength and stiffness. Shibata and sozen(17) have

introduced the damage ratio

DR = (2.51)

as an indicator of damage, where KO is the initial

stiffness, and Kr the minimum reduced secant stiffness. For

individual sections of reinforced concrete members, this
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damage ratio can readily be computed when the moment-

curvature relationship is determined. It is called the

flexural damage ratio and is given by

FDR = max [ (2.52 )

A value of FDR = 1 means that the member has not undergone

any inelastic deformations, while values FDR > 1 can be

considered to be proportional to the degree of damage. But

as damage indicator, FDR is of only limited usefulness, and

it cannot be used to define failure at all. A value of

FDR = 3, for example, might signify failure for one member

and only moderate damage for another member, or for the same

member with a smaller axial force.

For the present analysis we introduce a modified

flexural damage ratio defined as

MFDR = max [MFDR+ MFDR-]

where

MFDR+
M+ 41+ M+ 41 xm x and MFDR m

= =
M+ 41+ M 41 mx m x

(2.53)

( 2.54 )

This damage ratio represents the ratio between the secant

stiffness at the onset of failure, (Mm,41m), and the minimum

secant stiffness, Fig. (2.15). It is a more useful indi-

cator of damage. The value of MFDR = a indicates that
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deformations have remained elastic and there is no damage.

The value of MFDR = 1 means that the member has been loaded

to the point where the concrete starts to fail, thus indi

cating initiation of the strength degradation process which

may lead to eventual total failure. The value of MFDR = 1

can therefore be considered to correspond with a state

called the "onset of failure." For practical purposes this

onset of failure is actually tantamount to failure so that

MFDR values between 0 and 1 may serve as a measure of

damage. For example, MFDR values from 0 to 0.25 can be

regarded to indicate low damage, values from 0.25 to 0.5

represent moderate damage, from 0.5 to 0.75 high damage, and

values between 0.75 and 1.0 can be interpreted to indicate

severe damage.

In actual response analyses, the computations can be

continued after reaching the value MFDR = 1; therefore

values of MFDR > 1 will not be uncommon. In such cases the

MFDR values increase with the number of cycles following the

onset of failure, indicating a progressive degradation of

strength. For example, for one of the test beams analyzed

in Chapter 3, a value of MFDR = 7.1 has been computed. Such

a high value corresponds to such a small residual strength

and stiffness that for. all practical purposes the member has

failed. The actual numerical value for MFDR is rather

irrelevant in such situations, whereas the fact that a

member has reached a value of MFDR > 1 is much more

significant.
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Fig. (2.1). Steel stress-strain curve
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p" = confinement ratio,

Eq. (2.3)
8

6

H
(J)

~

(J)
(J)

pll=0.0181
~ 4
E-i
(J)

2

o .005 .01

STRAIN

.015 .02

Fig. (2.2). Concrete stress-strain curves for square prisms

confined with various contents of square ties(24)
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ACTUAL
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CURVATURE

Fig. (2.6). Primary moment-curvature relationship for

a beam section
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Fig. (2.7). Hysteretic models
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CHAPTER 3

NONLINEAR ANALYSIS OF RiC MEMBERS AND FRAMES

3.1 Introduction

It is the objective of this chapter to evaluate the

accuracy of the model proposed in Chapter 2 in predicting

the nonlinear behavior and the degree of damage of rein

forced concrete members, subassemblies, or entire frames

subjected to strong cyclic loading. This has been

accomplished in two stages.

First, a computer program has been written to analyze

the response of simple reinforced concrete cantilever

beams. This program was used to analyze the responses of

twenty beams which had been tested in three different

experimental investigations. Section 3.2 summarizes both

the analytical and experimental results obtained for the

twenty cantilever beams.

In the second stage of validation, the proposed model

has been incorporated into DRAIN-2D(47), a general-purpose

nonlinear analysis computer program. This program was then

used to analyze three different types of structures, for

which experimental results were available in the litera

ture. The analytical and experimental results for these

test structures are presented in Section 3.3.

An overall evaluation of the mathematical model is

given in Section 3.4, with the basic conclusion that the

proposed model is very effective in predicting the nonlinear
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behavior of reinforced concrete frames.

3.2 Analysis of Reinforced Concrete Cantilever Beams

The mathematical model described in Chapter 2 has been

programmed for an HP-21MX minicomputer system located at the

Civil Engineering and Engineering Mechanics Department of

Columbia University. The program can analyze the response

of a reinforced concrete cantilever beam for a prescribed

displacement history at the free end. The input data

consist of the properties of the reinforcing steel and

concrete, geometric dimensions, longitudinal and confinement

reinforcement, the axial force, and the displacement his

tory. The output consists of the load-deflection curve,

values of the modified flexural damage ratio (see section

2.10) and the dissipated energy given by the areas enclosed

in the load-deflection loops.

The responses of twenty beams, which had been tested in

three different experimental investigations, will be pre

sented in the following three subsections.

3.2.1 Experiment by Ma, Bertero and popov(4)

The first group of beams to be analyzed was tested by

Ma, Bertero and Popov at the University of California,

Berkeley. This group consisted of six beams with rec

tangular sections (RI - R6), and three with T-section (TI

T3). Three pairs of beams (Rl and R2, R3 and R4, Tl and T2)

were built identically to study the effect of different
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loading conditions on the inelastic behavior of the

specimens. All beams had the same span length of 62.5

inches, except for specimen R5 which had a span length of

38.5 inches. All specimens had a confinement steel ratio of

" = 1%, except for beams Rl and R2, for which "= .53%.
,

The concrete strength, f , ranged from 4.19 ksi to 5.07 ksic

for the various beams. The data required to analyze these

nine beams are summarized in Tables (3.1) and (3.2). Except

for beams R4 and T2, all specimens were subjected to several

load cycles with increasing displacement amplitudes until a

sudden drop in strength occurred, which was interpreted as

constituting failure. Load-deformation data were contin-

uously recorded until the beams had failed completely, or

until the measured deformations had reached a magnitude at

which continued recording might have impaired the func-

tioning of the gages. In contrast, test beams R4 and T2

were loaded directly to the largest deformation permitted by

the stroke of the actuator (about 4 inches). The load was

then reversed, up to the same displacement in the opposite

direction, and this process was repeated until failure

occurred.

The first test, Fig. (3.1), is that of a specimen with

a relatively stable hysteresis behavior, up to a tip

deflection of approximately 2.6 inches, at which time the

concrete is strained beyond m' i.e., subsequently a rapid

deterioration of the specimen can be observed, which for all

intents and purposes constitutes failure. The absence of
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pinching in the individual hysteresis loops indicates that

this test beam failed primarily in bending.

Test specimen R4, Fig. (3.2), was subjected to two

severe load cycles, both of which far exceeded the point

defined earlier as the onset of failure. Actual failure

occurred by rupturing of the longitudinal reinforcement.

Had this failure mode not occurred, a rapid deterioration of

the member could have been expected.

The third test, illustrated in Fig. (3.3), exhibits

pronounced pinching of hysteresis loops, indicating the

presence of high shear. In fact, the final failure can be

called a typical shear failure.
. .

It is noteworthy that in all three cases the agreement

between theory and test is excellent. The results for the

other six beams are not reproduced here because they display

a similar level of. agreement.

The experimental and analytical values of the dissi-

pated energy both at the onset of failure, and at the

termination of each test are listed in Table (3.3). The

agreement between the computed and measured values is

excellent, and an important indication of the accuracy with

which the analytical model can be expected to predict the

nonlinear behavior of reinforced concrete members under

strong cyclic load. Also displayed in Table (3.3) are the

computed values of the modified flexural damage ratio, MFDR,

at the observed onset of failure and at the termination of

each experiment. With the exception of beam R4, the value
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of MFDR=l correlates strongly with the onset of failure

which was defined as the point where the maximum concrete

strain reached the value of the crushing strain m. The

reason why beam R4 had the comparatively high value of 3.91

can be found in the unusual loading history consisting of

only two cycles as shown in Fig. (3.2). In fact, the first

load cycle, which resulted in the damage ratio MFDR=2.83,

can be considered as having already initiated the failure.

3.2.2 Experiment by Atalay and penzien(29)

The second group of members selected to evaluate the

proposed model were tested by Atalay and Penzien, also at

the University of California, Berkeley. This group of

members consisted of twelve specimens with axial forces

varying from 25% of the balanced force, Pb , to .75 Pb , and

having two different steel confinement ratios (.93% and

1.53%). Only the first eight specimens (Sl-S8) are con

sidered here, because the remaining four members (S9-S12)

were subjected to high axial forces, which reduced the

ductility of the members so much as to make their energy

absorption capacities insignificant, as explained in Section

(2.8). Specimen S9, for example, was loaded with an axial

force of .75Pb . It experienced a drop in strength at a tip

deflection of 1 inch and failed at 2 inches. Specimen Sl,

on the other hand, which was loaded with an axial force of

only .25Pb , did not experience a reduction in strength until

reaching a tip deflection of 3.2 inches. The test was
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terminated at a tip displacement of 4 inches without failing

the specimen.

The data used to analyze this group of members are

summarized in Tables (3.4) and (3.5). The test specimens

were simply supported at both ends and subjected to

concentrated midspan loads. The reinforcing bars were

welded to rigid steel plates at midspan in order to prevent

slip in this region. Therefore, each member can be

idealized by two identical cantilevers, with half the load

applied at the free end of each, Fig. (3.4). Each test

specimen was subjected to displacement-controlled cyclic

loads. The displacement amplitudes were held constant for
o •

several cycles before being increased to the next higher

value, until the specimen failed or the test had to be

terminated for other reasons.

The experimental and analytiGal load-deflection curves for

specimens 81, 84 and 85 are reproduced in Figs. (3.4-6).

The good agreement is representative for that of all other

examples not shown here.

During the experiments, the displacement amplitudes at

which the concrete cover started to spall off were

recorded. These were defined earlier to constitute the

onset of failure. The modified flexural damage ratios

associated with these displacement amplitudes are given in

Table (3.6). These values correlate reasonably well with

the definition for the onset of failure (MFDR=l). For

members 85 to 88, the values are somewhat higher than 1,
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indicating small differences between the observed and

computed points of incipient failure. For example, the

failure for specimen 85 was observed to commence at a

displacement amplitude of 2 inches, while the corresponding

computed value was 1.8 inches.

Table (3.6) also lists the modified flexural damage

ratios and the measured and computed dissipated energies at

the time each test was terminated. The first three specimens

survived the test, but the concrete in the critical regions

experienced extensive damage in all three cases. This

result is in agreement with the MFDR values, which are close

to 1, except for specimen 82. The reason for the high value

of MFDR for specimen 82 is that the analytical model had

predicted a more severe degradation of strength than the

test. The other five specimens failed due to buckling or

rupturing of reinforcing bars after spalling of concrete.

These results correlate well with the high MFDR values,

which ranged from 2.02 to 7.10.

3.2.3 Experiment by Popov, Bertero and Krawinkler(48)

The third group of beams analyzed herein was tested by

Popov, Bertero and Krawinkler. This group consisted of

three cantilever beams (B35, B46, B43) with different

confinement ratios and material properties. The data needed

to analyze these three beams are presented in Tables (3.7)

and (3.8).

The experimental and analytical load-deflection curves
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reproduced in Figs. (3.7-9) show the usual good agreement.

The modified flexural damage ratios for the three beams were

computed to be 2.45, 1.21 and .93, i.e., the mathematical

model predicted failure by the time of test termination.

3.3 Analysis of Frame Subassemblies

The mathematical model described in Chapter 2 has been

incorporated into DRAIN-2D, a general-purpose nonlinear

dynamic analysis program. (47) Developed originally to

analyze the response of structures to earthquake

excitations, it was modified for the purpose of the present

study to analyze frames or frame subassemblies, both for
o •

static and dynamic cyclic loads. Below, the results for

three example structures are presented, for which experi-

mental test data were available.

3.3.1 Experiment by Scribner and Wight (49)

A group of beam-column subassemblies, representing an

exterior beam-column joint in a building, was tested

statically by Scribner and Wight at the University of

Michigan. This group consisted of eight half-size (Group I)

and four full-size (Group II) T-shaped reinforced concrete

beam-column subassemblies. A schematic representation of

the test setup is shown in Fig. (3.10).

The purpose of this experiment was to investigate the

effect of intermediate longitudinal shear reinforcement on

the hysteretic behavior of flexural members subjected to
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large repeated reversal loadings. Therefore, specimens 2,

4, 6, 8, 10 and 12 were built identically to specimens 1, 3,

5, 7, 9 and 11, respectively, except that intermediate

longitudinal reinforcement was added to the even-numbered

specimens. Because modelling of members with intermediate

reinforcement is beyond the scope of the present investi

gation, only the odd-numbered specimens were considered

here. (A small modification of the model would permit the

inclusion of such reinforcement.)

The data used to analyze this group of subassemblies

are given in Tables (3.9-13). The loading procedure was

similar for all specimens. First, an axial force (40 kips

for Group I and 100 kips for Group II) was applied at the

two ends of the column and kept constant during the test.

Then, a prescribed displacement history was applied at the

tip of the beam. This history consisted of six cycles of

displacement ductility four in the positive direction and

ductility three in the negative direction. If a specimen

survived all six cycles, then additional cycles of higher

ductilities were applied. As can be noticed from the test

setup, Fig. (3.10), the axial force applied to the column

does not affect the inelastic behavior of the beams, but

only affects the yield characteristics of the column itself.

Experimental and analytical load-deflection curves for

the tip of the beam are reproduced in Figs. (3.11-16).

Except for specimen 1, the first set of six load cycles

initiated failure of all test specimens, indicated by a more
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or less pronounced drop in strength. This behavior was

predicted by the analytical model, indicating the validity

of incipient failure definition. The experimental and

analytical load-deflection curves compare reasonably well,

except that during unloading some test specimens appeared to

be stiffer than the corresponding analytical model. This

difference caused some discrepancies between the recorded

and computed values of the dissipated energies, listed in

Table (3.14). These discrepancies ranged from -24% to +4%,

with an average of -13%. Considering the severity of the

loading applied in this test series, wherein most initial

load cycles exceeded the load of failure initiation, the

agreement between test and theory appears to be very

reasonable.

With the exception of specimen 5, the behavior of all

specimens was controlled mainly by flexural deformations.

Only specimen 5 was subjected to relatively high shear

stresses which caused the characteristic pinched hysteresis

loops, Fig. (3.13). It is an indication of the reliability

of the analytical model that its accuracy is independent of

the relative amount of shear.

Specimen 1 was the only one which survived the test

without buckling or rupture of steel, but with some damage

to the concrete in the critical region of the beam. All

other specimens had failed completely at the termination of

the test. This result correlates well with the modified

flexural damage ratios computed for the end of the test and

<> .. ('!
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listed in Table (3.14). The value of MFDR=.918 for specimen

1 indicates approximate onset of failure. For the other

specimens, the computed values ranged from 2.185 to 4.496,

indicating severe strength degradation and high probability

of complete failure. None of the columns suffered any

damage, and the computed MFDR values were zero for all

specimens.

3.3.2 Experiment by Healey and Sozen (50)

This was a dynamic test carried out on the shaking

table of the University of Illinois by Healey and Sozen.

The primary objective of the experiment was to study the

nonlinear dynamic behavior of a small-scale ten-story,

three-bay reinforced concrete frame, Fig. (3.17). The three

bays of the structure had equal span lengths of 305 mm. The

center-to-center story heights were 229 mm for the second

through ninth level, and 279 mm for the first and tenth

level. Before the dynamic tests a total mass of 2770 kg was

distributed equally to each level. Detailed information

regarding member dimensions, material properties and

reinforcement is summarized in Fig. (3.17).

The test structure was subjected to three consecutive

ground acceleration histories. Each one of these was the .El

Centro earthquake, scaled to different peak accelerations,

namely .4g, .93g and 1.25g. These three tests were referred

to as "Run One," "Run TWo" and "Run Three." In this

chapter, only Run One is considered because the analysis is
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based on the assumption of no damage prior to loading. Test

Runs Two and Three will be considered in Chapter 4.

Numerous measurements of the natural frequencies had

been made before and after various testing phases, during

which the difficulties of obtaining reliable data were

demonstrated. The computed frequencies, reported else

where, (22,23) compared well with the recorded values,

especially in light of the uncertainties exhibited by the

different experimental techniques. The model used for the

studies reported in Refs. 22 and 23 was not as comprehensive

as the one presented herein, but the computed frequencies

were almost identical.

The base acceleration input for Run One is plotted in

Fig. (3.18), together with the measured and computed roof

displacement histories. The frame response was governed

primarily by the first mode, therefore all floor responses

looked very much alike, except for the amplitudes, and the

comparison between theory and experiment displayed in Fig.

(3.18) is representative for the entire frame response. The

good agreement indicates the adequacy of the analytical

model, especially in view of damage estimates, for which

this model is intended in subsequent studies.

After having subjected the test model to the

acceleration of Run One, the specimen was coated to permit

the marking and recording of new cracks. The structure

incurred little cracking during Run One; all observed crack

widths were less than or equal to 0.1 rom. Fig. (3.19) shows
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the crack pattern after the test. Also indicated on Fig.

(3.19) are the computed values of the modified flexural

damage ratios, MFDR, for all members. A study of these

results leads to the following conclusions:

1. The MFDR values correlate quite well with the

observed crack pattern.

2. The MFDR values for the columns are considerably

lower than those computed for the beams. This result seems

to indicate that the frame was designed according to the

common strong column-weak beam concept, so that most energy

is dissipated in the beams, not the columns.

3. The observed crack pattern displayed in Fig. (3.19)

does not show cracks at the base of the frame, even though

the computed MFDR values indicate that there should be

some. As reported in Ref. 50, the second test, Run TWo,

with a peak acceleration of .93g, had caused spalling of

concrete at the base of one column. Therefore it is not

likely that Run One, with a peak acceleration of .4g caused

no cracking at the base at all.

4. The most important conclusion is that the values of

the modified flexural damage ratios computed for the various

members were rather low. Even the maximum value of .338,

for the exterior beams of the sixth floor, indicates rather

low damage. This observation agrees with the experimental

evidence.
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3.3.3 Experiment by Clough and Gidwani (51)

A scale model of a two-story, one-bay frame building,

Fig. (3.20), has been tested on the shaking table of the

University of California by Clough and Gidwani. The

original structure was designed to satisfy the code

requirements. Heavy concrete blocks were placed on both

floors (Fig. (3.20» for similitude reasons, in order to

maintain the frequencies of the prototype frame. The

idealization of the frame as well as the data required for

analysis are given in Fig. (3.21).

The frame was subjected to three consecutive ground

acceleration histories. Each one of these was the N69W Taft

earthquake, scaled to different peak accelerations, namely

.10g, .57g and .65g.

The first test, designated as WI, consisted of a ground

motion which stressed the frame only within the working

stress range. This loading caused some limited cracking of

concrete, but reinforcing steel stresses remained well below

yield. This is also indicated by the modified flexural

damage ratios, which were computed to be zero for all

members. The experimental and analytical top-story

displacement histories are reproduced in Fig. (3.22),

together with the ground acceleration motion.

The purpose of the second test, W2, was to subject the

slightly cracked frame to severe ground accelerations, which

would stress the reinforcing steel well into the inelastic

range. The good agreement between experimental and
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analytical roof displacements, displayed in Fig. (3.23),

represents the level of accuracy of the present model in

predicting the nonlinear behavior of frame members. The

observed damage during the test and the computed values of

the modified flexural damage ratios, MFDR, for various

members are indicated in Fig. (3.24). It can be seen from

that figure that the values of MFDR correlate well with the

observed degree of damage. The floor beams had minor cracks

and the computed maximum MFDR value was .036. The columns

had significant flexural cracks and the computed maximum

MFDR value was .522. This value indicates a high damage

according to the scale proposed in Section 2.10.

The third test, W3, will be considered in Chapter 4

because the frame had been damaged during test W2, and our

analysis, up to this point, considers only undamaged frames.

3.4 Summary and Conclusions

In this chapter the mathematical model for reinforced

concrete frame members has been evaluated by simulating four

different kinds of experimental tests: 1) three different

series of simple cantilever beams; 2) a series of beam

column subassemblies; 3) a scale model of a ten-story

frame; 4) a scale model of a two-story frame. In all

cases, the nonlinear behavior as characterized by load

deflection hysteresis curves for static loading or

displacement histories for dynamic ground motion was

predicted very well by the model. Also, the energy
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dissipation characteristics were accurately reproduced in

all cases.

For subsequent reliability analyses of damaged concrete

buildings it is important to introduce useful definitions of

damage and failure. The modified flexural damage ratio,

MFDR, defined in Section 2.10 is believed to satisfy all

requirements. In Table (3.15) MFDR values for all twenty

test beams analyzed in Section 3.2 are summarized, together

with two different damage parameters. The first one was

used by Banon et al.(52) to develop a stochastic model for

damage in reinforced concrete members. It is based on the

single-component mechanical model, which considers

concentrated plastic hinges at the beam ends. This damage

parameter is called flexural damage ratio, FDR, and defined

as

FDR
( 3.1 )

where Kf is the initial elastic flexural stiffness of the

member,

= 3EI

7 ( 3 • 2 )

and Kr is the reduced secant stiffness;

p
max=

°max

(3.3)

where t is the cantilever length, 0max the maximum tip

displacement reached in any loading cycle, and Pmax is the

load corresponding to 0max. The FDR values listed in Table

(3.15) were given in Ref. 52.
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The second column of Table (3.15) contains the flexural

damage ratios computed according to Eq. (2.52). The dif

ferences between the two damage parameters are due to the

fact that the first one is a measure of the stiffness

degradation for the entire member, while the second one

reflects the degradation of the stiffness of the most highly

stressed section.

Both damage parameters can serve as measures of overall

degradation of similar members, but neither one contains an

inherent measure of damage severity or failure.

The modified flexural damage ratios, MFDR, summarized

in the third column of Table (3.15) have been shown earlier

to closely correlate with the onset of failure (MFDR=l),

defined to coincide with the spalling of concrete; therefore

it can serve as a reliable prediction of failure. Excepting

the special case of beam R4 discussed earlier, the MFDR

values range from .92 to 2.42, with an average of 1.35 and a

variance of .29. Therefore, it can be concluded that this

damage parameter can be used with confidence in Chapter 4

for reliability analysis involving damaged frames.

The last column of Table (3.15), which lists the MFDR

values for the termination of each test, corroborates this

finding in that it clearly indicates a high probability of

complete failure of each test specimen, which in fact did

experience failure by most standards. Thus it can be said

that the higher the computed MFDR value, the more severe

will be the expected damage, and the residual strength and

stiffness will be correspondingly small.
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Table (3.1) Material properties of the beams

tested by Ma, Bertero and Popov (4)

I

Beam Es Ps f sy £su f £0c

(ksi) (ksi) (ksi) xl0 5

Rl 28,700 .01 66 .18 5.07 225

R2 28,700 .01 66 .18 4.19 210

R3 28,700 .01 66 .18 4.58 225

R4 28,700 .01 66 .18 4.38 245

R5 29,111 .01 65.5 .18 4.58 222

R6 29,111 .01 65.5 .18 4.34 225

Tl 28,700 .01 66 .18 4.79 226

T2 28,700 .01 66 .18 4.61 226

T3 29,111 .01 65.5 .18 4.47 205

ES steel modulus of elasticity

Ps steel strain hardening ratio

f sy : steel yield stress

£su: steel strain at maximum stress
I

f concrete strengthc

£0 concrete strain at maximum stress
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Table (3.2) Dimensions and reinforcement data of the

beams tested by Ma, Bertero and popov (4)

"Beam L P H Bb Dcb Asb Bt Dct Ast P

( in) (k) (in) ( in) (in) (in 2 ) (in) ( in) (in 2 ) %

R1 62.5 0 16 9 2 1.764 9 2 0.932 0.53

R2 62.5 0 16 9 2 1.764 9 2 0.932 0.53

R3 62.5 0 16 9 2 1.764 9 2 0.932 1.

R4 62.5 0 16 9 2 1.764 9 2 0.932 1.

R5 38.5 0 16 9 2 1.764 9 2 1.764 1.

R6 62.5 0 16 9 2 1.764 9 2 1.764 1.

T1 62.5 0 16 9 2 2.00 36 2 0.932 1.

T2 62.5 0 16 9 2 2.00 36 2 0.932 1.

T3 62.5 0 16 9 2 2.00 36 2 1.764 1.

L Beam length

P Axial force

"p: Confinement ratio; equation (2.3)

H

....,1'---

Ast

Asb

-=tDCb-
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Table (3.3) Analytical and experimental results of the

beams tested by Ma, Bertero and Popov (4)

Onset of Failure Termination of Test

Beam
Modified Dissipated Modified Dissipated
Flexural Energy (k~in ) Flexural Energy (k -in)
Damage Damage
Ratio Test Analysis Ratio Test Analysis

Rl 1.43 335 313 4.63 460 474

R2 1.28 267 316 2.37 364 440

R3 1.21 583 526 1.66 710 699

*R4 3.91 289 224 3.91 289 224
.
R5 1.02 349 343 1.98 550 555

R6 0.98 738 761 0.98 738 761

Tl 0.92 519 544 0.92 519 544

T2 0.99 234 180 0.99 234 180

T3 1.00 803 877 1.00 902 982

*The value given in Ref. ( 4) was 336, but the actual

area computed from the corresponding experimental load-

deflection curve is 289.
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Table (3.4) Material properties of the beams

tested by Atalay and Penzien (29)

I

Beam Es Ps f sy E SU f EOc

(ksi) (ksi) (ksi) xl0 5

81 28,500 .01 55.2 .2 4.22 280

82 28,500 .01 55.2 .2 4.45 280

83 28,500 .01 55.2 .2 4.235 280

84 28,500 .01 55.2 .2 4.005 280

85 28,500 .01 55.2 .2 4.26 280

86 28,500 .01 55.2 .2 4.61 280

87 28,500 .01 55.2 .2 4.615 280

88 28,500 .01 55.2 .2 4.44 280

..

Es steel modulus of elasticity

Ps steel strain hardening ratio

f sy steel yield stress

E
SU

steel strain at maximum stress
I

f concrete strengthc

EO concrete strain at maximum stress



-74-

Table (3.5) Dimensions and reinforcement data of the

beams tested by Atalay and Penzien (29)

II

Beam L P H Bb Dcb Asb Bt Dct Ast p

in) (k) (in) ( in) (in) (in 2 ) (in) (in) in2 ) %

81 60 60 12 12 2.06 1.2 12 2.06 1.2 1.53

82 60 60 12 12 2.06 1.2 12 2.06 1.2 .93

83 60 60 12 12 2.06 1.2 12 2.06 1.2 1.53

84 60 60 12 12 2.06 1.2 12 2.06 1.2 .93

85 60 120 12 12 2.06 1.2 12 2.06 1.2 1.53

86 60 120 12 12 2.06 1.2 12 2.06 1.2 .93

87 60 120 • 12 12 2.06 1.2 12 2.06 1.2 1.53

S8 60 120 12 12 2.06 1.2 12 2.06 1.2 .93

L Beam length

P: Axial force
II

p: Confinement ratio; equation (2.3)

Bt
"-r

- =rct
Ast

H
Asb- -tDCb-,~

Bb
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Table (3.6) Analytical and experimental results of

the beams tested by Atalay and Penzien (29)

Modified Termination of Test
Beam Flexural ModIfied Dissipated Energy (k- i.n)

Damage Ratio Flexural
at Onset Damage Test Analysis
of Failure Ratio

81 1.11 1.11 1253 1236

82 0.97 4.96 1066 839

83 0.90 1.00 1074 1056

84 0.96 3.35 1201 1097

85 1.53 3.93 1237 1593

86 2.62 6.71 990 1072
..

87 2.02 2.02 1051 1214

88 2.20 7.10 730 872
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Table (3.7) Material properties of the beams

tested by Popov, Bertero and Krawinkler (48)

,
Beam Es Ps f sy esu f eoc

(ksi) (ksi) (ksi) xl0 5

B35 29,000 .005 67 .18 3.86 250

B46 29,000 .005 67 .18 3.99 250

B43 29,000 .005 60 .18 5.03 250

o •

Table (3.8) Dimensions and reinforcement data of the

beams tested by Popov, Bertero and Krawinkler (48)

"Beam L P H Bb Dcb Asb Bt Dct Ast p

(in) (k) ( in) (in) (in) in2 ) ( in) (in) in2 ) %

B35 78 0 29 15 3.75 6 15 3.75 6 .61

B46 78 0 29 15 3.75 6 15 3.75 6 .82

B43 78 0 29 15 3.75 6 15 3.75 6 1.64
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Table (3.9) Steel properties for the specimens

tested by Scribner and Wight (49)

Member Es Ps f sy E
SU

(ksi) (ksi)

Beams : Sp. 1-8 27,200 .007 54.4 .168

Columns: Sp. 1-8 28,200 .006 56.4 .16

Beams . Sp. 9-12 29,900 .008 55.0 .18.
Columns: Sp. 9-12 30,000 .01 69.5 .20

Table (3.10) Concrete properties for the specimens

tested by Scribner and Wight (49)

,
" "Specimen f EO P (beams) p (columns)c

(ksi) xl0 5 % %

1 4.95 325 1.2 2.4

3 4.94 358 0.88 2.4

5 4.08 397 1.2 2.4

7 3.84 466 0.97 2.4

9 5.13 315 1.34 0.009

11 4.73 300 1. 34 0.009
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Table (3.11) Dimensions of the specimens tested

by Scribner and Wight (49)

Specimen t 1 e t 2

(in) ( in) (in)

1 47.5 6 30

3 47.5 6 30

5 37 6 30

7 47.5 6 30

9 69 9 48

11 57 9 48. .

e
~ '--;>j

.'1.- .-.i'

~ r-t
I

2

, ~

- - ----

I

2

~ 1:
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Table (3.12) Dimensions and reinforcement of the

beams in the test by Scribner and Wight (49)

Specimen H B Dcb Asb Dct Ast

(in) ( in) (in) (in 2 ) ( in) (in 2 )

1 10 8 1.3 0.613 1.4 0.884

3 12 8 1.8 0.92 1.9 1. 326

5 10 8 1.3 0.613 1.4 0.884

7 12 8 1.8 0.92 1.9 1. 326

9 14 10 1.8 2.404 1.9 3.14

11 14 10 1.8 2.404 1.9 3.14

A

A

H

HD b
'I c

CROSS SECTION A-A
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Table (3.13) Dimensions and reinforcement of the

columns in the test by Scribner and Wight (49)

Specimen H B Dc As

( in) (in) ( in) (in 2 )

1 - 8 12 8 1.5 0.884

9 - 12 18 12 2 . 2.982

T
H

I
B ~s A Is

C C

iJ tlc c

CROSS SECTION C - C

o •
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Table (3.14) Analytical and experimental results

for the test by Scribner and Wight (49)

Specimen Modified Flexural Dissipated Energy (k -in)
Damage Rat io Analytical Experimental

1 0.918 287 366

3 2.534 323 311

5 2.185 255 315

7 3.411 399 407

9 2.412 975 1269

11 4.496 552 723
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Table (3.15) Damage parameters

8pecimen Member FDR(l) Local FDR(2) MFDR(3) rv1FDR ( 4 )

R1 6.8 17.0 1.43 4.63

R2 7.8 32.0 1.28 , 2.37

R3 8.5 18.7 1.21 1.66

R4 10.6 41.9 3.91 3.91

R5 11.0 25.3 1.02 1.98

R6 7.4 23.8 0.98 0.98

Tl 9.0 21.7 0.92 0.92

T2 11.4 23.2 0.99 0.99

T3 8.5 26.6 1.00 1.00

81 -- 33.8 1.11 1.11

82 -- 22.2 0.97 4.96

83 10.4 27.8 0.90 1.00

84 13.1 20.3 0.96 3.35

85 14.6 33.6 1.53 3.93

86 14.1 40.8 2.62 6.71

87 13.1 47.5 2.02 2.02

88 12.2 33.1 2.20 7.10

B35 -- 45.9 2.45 2.45

B46 -- 38.3 1.21 1.21

B43 11.0 30.2 0.93 0.93

( 1 ) Re f. ( 52)
( 2 ) Eq • (2. 47 )
(3) modified flexural damage ratio at onset of failure
(4) modified flexural damage ratio at termination of test
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CHAPTER 4

DYNAMIC ANALYSIS OF DAMAGED CONCRETE FRAMES

4.1 Introduction

The analysis of damaged reinforced concrete buildings

has not received the attention it deserves. Current design

philosophy accepts varying degrees of damage sustained by

buildings exposed to increasing levels of ground shaking.

But while considerable research has been performed on the

analysis of (theoretically) undamaged buildings, the pub

lished literature on the analysis of damaged buildings is

extremely scarce. In this chapter, a procedure is proposed

for the analysis of the response of damaged reinforced

concrete frames subjected to severe ground motions.

To the authors' knowledge there have been two attempts

to analytically simulate the response of damaged frames to

ground shaking. In the first attempt, by Otani and

Sozen(lO), the damage sustained by the frame due to an

earlier ground motion was ignored entirely when the frame

was analyzed for a subsequent acceleration history. In

other words, no attempt was made to account for the effect

that the degraded stiffness might have on subsequent

responses. As would be expected, this simplification can

lead to substantial underestimation of the frame response.

In conjunction with the shaking table experiment of the

two-story, one-bay frame mentioned in Chapter 3, Hidalgo and

Clough (6), and Clough and Gidwani. (51) also performed

analytical response predictions for the initially undamaged
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as well as the damaged frame. In order to assess the

stiffness degrading effects of damage, they decreased the

modulus of elasticity of concrete such that the reduced

elastic frame stiffness would reproduce the two natural

frequencies measured during the experiment. This method has

a number of disadvantages:

1) The change in stiffness is proportional to the square of

the change of the frequency. Therefore, errors in

measuring the frequencies would result in correspond

ingly large errors in estimating the stiffness.

2) The experimental determination of the second and higher

natural frequencies is subject to increasing uncer

tainties and therefore the cause of larger errors in any

response analysis based on such values.

3) Natural frequencies are typically determined experi

mentally by means of small-amplitude vibration tests.

The frequencies associated with more realistic large

amplitude vibrations may therefore be overestimated

appreciably.

4) In their analytical simulation studies, Clough and

Gidwani had found that the structure response is very

sensitive to the factors used to modify the structure

stiffness matrix. Small changes of these factors were

found to cause large changes in the computed reponse.

5) When degrading the stiffness of each member equally (by

reducing the concrete modulus of elasticity by a certain

amount), this method disregards the fact that some
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member stiffnesses might degrade considerably more than

others, i.e., that the stiffness distribution in the

structure might undergo appreciable changes.

4.2 Global Damage Parameter

A global damage parameter should be a clear measure of

the degree of damage in a frame at any point in time. This

applies specifically to the time prior and after the

application of a particular ground motion history. In the

following, four different damage parameters will be

discussed, one of which will be chosen for subsequent

analyses.

One definition of a global damage parameter is the

modified flexural damage ratio (as defined in Section 2.10)

for the most heavily stressed member in the structure.

Although this parameter proved to be very useful in the

analysis of initially undamaged frames, the same is not true

when the objective is the analysis of damaged frames. There

are two reasons for this. First, the MFDR value of any

member, including the most heavily stressed one, is very

difficult to determine in the field. It can be computed

accurately only by actually performing an entire analysis of

the frame for the ground acceleration history which caused

the damage. The second reason is that in general poor

correlation would be expected between a heavily damaged

member and the overall state of damage of the entire

frame. It is conceivable that in spite of the local failure

or severe damage of individual girders, the overall load-
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resisting capacity of a frame is effected only moderately.

A second definition of a global damage indicator is the

residual roof displacement, as proposed in References 22 and

23. As was shown in this earlier study, however, the

correlation between the degree of global damage and the

residual roof displacement exhibited considerable statis

tical scatter and therefore was not entirely satisfactory.

The third global damage parameter is defined as the

value of the fundamental natural frequency of the frame.

This value can be a good measure for damage, because both

the degree of damage and the amount of stiffness degradation

have been found to correlate strongly with the value of this

frequency. This parameter can be determined relatively

quickly in the field using portable ambient vibration test

equipment. In fact, the field measurement of frequencies of

actual buildings is well established (53-57). But from the

analysis point of view, this parameter is not an ideal one

either, because the frequencies measured in ambient vibra

tion tests usually overestimate the actual frequencies

associated with large-amplitude motions (50). Also, the

computed response has been shown to be rather sensitive to

this parameter if used to degrade the entire frame stiffness

uniformly (51).

The fourth definition which may be proposed for a

global damage parameter is the maximum roof displacement,

oR' attained during the entire past loading history of a

building. Common engineering sense would expect a strong

correlation between this maximum frame displacement
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amplitude and the overall state of damage of a building.

The only disadvantage of this damage definition is the fact

that the maximum roof displacement cannot be measured in the

field after an earthquake, unless the building was instru-

mented during the event. However, the evaluation of labora-

tory tests has confirmed the expected strong correlation

between the maximum roof displacement experienced during a

given loading history and the value of the fundamental

natural frequency measured after termination of that

particular loading. In Fig. (4.1) this correlation is

clearly demonstrated for twenty tests, reported in

References 10, 50 and 51. As ordinates, the maximum roof

displacement, bR, is plotted normalized with respect to by,

the first-mode amplitude (roof displacement) at which the

first member in the frame reaches the yield moment,

On the abscissa, values of the frequency ratio

(4.1)

w = ( 4.2 )

are entered, where we is the initial fundamental frequency

of the undamaged elastic frame, and w is the corresponding

frequency measured at the end of the test. Since the

building stiffness can only decrease, we have ;;. w • The

maximum roof displacement, bR, can be either smaller or
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larger than Oy. However, if oR ~ 0y' no structural member

in the frame has yet been strained beyond the yield

capacity, therefore structural damage can be assumed to be

nonexistent. For analysis purposes, we therefore can

set oR :> Oy.

The correlation coefficient exhibited by the data

plotted in Fig. (4.1) was computed to be 0.825, which can be

considered sufficiently adequate for practical purposes. A

least-square fit of a straight line results in the

functional relationship,

6R = 1 + 14.2(w - 1) ( 4 • 3 )

This equation can be used to obtain an estimate for the max

imum roof displacement, oR' once the fundamental frequency

has been obtained through measurements in the field.

By basing the global damage definition only indirectly

on the field-measured fundamental building frequency, some

of the disadvantages of the earlier definitions are

reduced. It is this definition, therefore, which will be

used in the subsequent analyses.

Before applying the global damage parameter to analyses

of damaged buildings, it will be useful to establish a scale

ranging from zero for no damage to a value of one, which

would correspond to a state of total failure or collapse of

the frame.

It is possible to compute the critical displacement of
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a single-degree-of-freedom oscillator at which the over-

turning moment, including the P-~ effect, exceeds the

restoring moment of the spring element (58). For a multi-

story frame, a comparable collapse analysis requires the

incorporation of a general large-displacement formulation,

which is available for elasto-plastic frames (59). Rather

than attempting to actually compute such critical displace-

ment amplitudes, it is proposed to simplify the analysis by

observing that most of the test beams discussed in Chapter 3

failed at final displacements which would correspond to

interstory drifts of approximately 6%. Until a more

thorough analysis is available to refine this estimate, it

will be assumed that a building frame subjected to an

overall drift of 6% is most likely to be near or beyond the

point of collapse and certainly in a state of damage which

can be termed complete. Thus the roof displacement

OF = .06 H

where H is the total building height, will be used to

( 4 • 4 )

normalize the actual roof displacement, in order to define

the global damage parameter

GDP = ;) 0 ( 4. 5 )
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4.3 Damaged Frame Analysis Procedure

The analysis of a damaged reinforced concrete building

is a difficult undertaking and subject to numerous uncer

tainties in addition to those associated with undamaged

frame analysis. Each member is characterized by a number of

strength and stiffness parameters which are functions of

past loading histories, e.g., the maximum inelastic deforma

tion. A complete deterministic analysis of a damaged frame

would require the knowledge of all these parameters for each

member of the frame. But this information is seldom avail

able unless it has been stored during an analysis for the

loading which caused the damage. The main difficulty in

analyzing damaged frames is therefore the problem of

estimating from the scant information available from a post

earthquake field inspection the restart parameters for all

frame members.

The analysis procedure proposed herein can be

summarized as follows:

1) If no better estimate is available for the maximum past

roof displacements, oR' which the frame may have

undergone during anyone of the first (n-l) earthquakes,

an approximate value can be obtained using Eq. (4.3).

In this case, the frequency of the building is assumed

to be known. Otherwise it will have to be determined in

a field test.

2) The frame is statically loaded such that it maintains

the first mode shape, until the roof displacement
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reaches the value 0y' defined as that value at which the

first member reaches its yield capacity.

3) The static loading is continued into the inelastic

range, still maintaining the first mode shape, until the

roof displacement reaches the value 0kn - l )

load increment all member forces are computed and

compared with the yield capacities, and the structure

stiffness matrix is updated whenever a frame member

changes its yield status. At the termination of this

static analysis, all parameters for both ends of each

member needed for restart analysis are known. These are

primarily the maximum plastic region length, xi' the

4 )

maximum moment, Mx ' and the maximum curvature, ~x.

With the values of x., M and ~ known, the stiffness of
1 x x

the plastic region is determined as shown in Fig. (4.2),

and all other stiffness and strength parameters including

the current member stiffness matrix can be initialized

following the relationships given in Chapter 2.

5) With all initial conditions established in step 4, a

nonlinear dynamic analysis can be performed for the n'th

earthquake, and a new maximum roof displacement

o(n) ;>
R

o(n-l)
R

o~n-l), computed. By normalizing both

and o(n) with regard to the failure
R

displacement of according to Eq. (4.5), the global

damage before and after the n'th earthquake can be

determined.
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4.4 Analytical Study of a Damaged Frame

In order to evaluate the effect of damage on seismic

response of reinforced concrete frames, extensive analyses

have been carried out for the ten-story, three-bay frame(50)

described in Chapter 3. Below, the results will be pre

sented and evaluated under the following aspects:

1) accuracy of damaged frame response analysis; 2) global

and local damage; 3) sensitivity of analysis results.

General observations about the effect of damage will

conclude this chapter.

4.4.1. Accuracy of Damaged Frame Response Analysis

The ten-story, three-bay frame model, Fig. (3.17), has

been subjected on the University of Illinois shaking table

to three consecutive earthquake ground motions, all of which

consisted of the El Centro recording scaled to three

different peak accelerations. Before the frame responded to

the base acceleration history of test Run One, it was

undamaged. The results of the simulation of this experiment

were discussed in Chapter 3, and the roof displacement

history was shown in Fig. (3.18), with a maximum computed

value of o~l) = 24.8 mm.

The ground acceleration used in test Run Two was the

same El Centro record scaled to a peak acceleration of

0.93g. Using the known value of the maximum past roof

displacement o~l) = 24.8 mm, the restart procedure outlined

earlier was employed to initialize all member section
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properties throughout the frame. with these initial

properties the response of the frame was analyzed for the

acceleration history of Run Two. In Fig. (4.3), the

computed and recorded roof displacement histories can be

compared directly. The maximum computed displacement was

o~2) = 61 rom, compared with the observed value of

51.2 rom. Considering the complexity of damaged frame

behavior, this level of agreement is remarkable.

Using the same procedure, i.e., deriving from the known

maximum past roof displacement, o~2) = 61 rom, all necessary

restart parameters, the frame was analyzed also for the

ground accelerations of Run Three, consisting of the El

Centro record scaled to a peak acceleration of 1.25g. The

results are shown in Fig. (4.4) together with the base

acceleration record. This time the maximum computed roof

displacement was 83 rom, which exceeded the recorded peak

displacement by about 18%.

The general agreement between experimental and

analytical results is a measure of the accuracy with which

the proposed analysis procedure can simulate the response of

damaged concrete frames. However, it should be noted that

general statements in this regard should await the outcome

of similar studies of full-scale building frames, even

though it will be difficult to secure reliable data from

field measurements to compare against. Equally important is

the restriction of this study to a single earthquake

acceleration history, namely the El Centro recording. It is
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essential that the applicability of the analytical procedure

described herein be tested for widely different seismic

ground motions, preferably employing random vibration

models(60).

4.4.2 Global and Local Damage

The maximum roof displacements for the three tests of

the ten-story frame were respectively, o~l) = 24.8 rom,

o~2) = 61 rom, and o~3) = 83 rom. The displacement at which

the first member yielded was 0y = 9.4 rom, whereas the

failure displacement, corresponding to a 6% drift, was

OF = 143 mm. Substituting these values into Eq. (4.5), the

global damage parameters for these cases become,

respectively, 0.115, 0.386, and 0.551. These values

illustrate that it is possible to characterize the overall

state of damage in the load-carrying frame with a single

number. This could very well have important application in

practical situations. A more analytical application is the

use of the global damage parameter in the reliability

analysis of concrete frames employing damage probability

matrices(18,21,60).

In other situations it might be necessary to have more

detailed knowledge of the distribution of local damage,

which a single global damage parameter cannot provide. Such

situations might arise out of damage investigations or dur-

ing the determination of strengthening requirements. In

such cases, the modified flexural damage ratio, MFDR, can
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playa role to satisfy this requirement. For illustration,

the MFDR values of all members are indicated in Figs.

(3.19), (4.5) and (4.6) for Run One, Run Two, and Run Three,

respectively, together with the observed crack patterns.

According to Fig. (4.5) almost all members underwent

inelastic deformations during test Run Two. In Run Three,

not a single member remained elastic, Fig. (4.6).

Generally, the beams suffered more damage than the columns,

only the first story columns displayed comparable MFDR

values.

In order to study the correlation between global and

local damage, Table (4.1) summarizes 1) the global damage

parameter, 2) the MFDR value for the first story columns,

and 3) the maximum member MFDR value computed for each of

the three test cases. It can be noticed that the global

damage parameter, GDP, correlates well with the corre

sponding MFDR values for the first story columns, for each

test. The maximum MFDR value, i.e., the damage ratio for

the most heavily stressed member in the frame, has been

contemplated earlier as a possible alternative for a global

damage definition. In this example, it does not correlate

nearly as well with the GDP as does the damage ratio for the

first-story columns. However, it is impossible to derive

from this single analysis a generally valid conclusion in

this regard.
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4.4.3 Sensitivity of Analysis Results

The restart analysis of the damaged frame, discussed in

Section 4.4.1, was based on the knowledge of the maximum

past roof displacement. If such displacement value is not

available, it will have to be estimated from the fundamental

natural frequency using Eq. (4.3). In our case, the funda-

mental frequencies prior to the three tests had been

measured to be we = 2.6, w(l) = 2.1, and w(2) = 1.7 cps,

respectively. With 0y = 9.4 mm, Eq. (4.3) estimates the

maximum roof displacement during Run one as o~l) = 24.4 mrn, as

compared to the actually computed value of 24.8 mm. For Run

Two the estimate is o~2) = 41 mrn as compared with the computed

value of 61 mrn. Using the estimated values for o~l) and

o~2) rather than the actually computed ones, the analyses

were repeated for Run Two and Run Three. The new maximum

roof displacement of Run Two varied from the previously

computed value by only 1.6% and the overall displacement

histories were so similar that the second analysis results

are not reproduced here. Likewise for Run Three, the

response was very similar to the one obtained previously.

The maximum roof displacement was different by only 4%, even

though the restart parameter varied by about 33%.

These results clearly show that the response of this

frame is rather insensitive to the precise amount of damage

sustained during previous ground shaking. This conclusion,

however, may not be generalized to other earthquake ground

motions. The spectrum of the ground motion used here,

Fig. (4.7), indicates a reduced response level for increased
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fundamental periods in the domain of interest here. It

should be expected that damaged frames exposed to more

white-noise type ground motions will be less insensitive to

the amount of damage sustained previously.

4.4.4 Effect of Damage on Subsequent Response

Let GDP(n-l) be the global damage after exposure to n-l

earthquakes. We shall now investigate the effect of

GDP(n-l) on GDP(n), i.e., the amount of damage after expo

sure to an additional n'th earthquake with prescribed peak

acceleration. This study is again restricted to the ten

story frame studied earlier and the El Centro record. The

analysis results are summarized in Fig. (4.8). The abscissa

represents the previous damage value, GDP(n-l), while the

damage after the n'th earthquake, GDP(n), is plotted on the

ordinate. Each curve represents the damage increments due

to an El Centro earthquake with peak acceleration as indi

cated. The following observations can be made in reference

to Fig. (4.8).

1) Values plotted for GDP(n-l) = 0 represent the expected

damage in a previously undamaged frame. It can be

noticed that these values are normally the lowest for

any given level of peak acceleration. This means that

ignoring previously incurred damage in the analysis will

underestimate the expected response by varying

degrees. The errors are proportional to the state of

previous damage as well as the peak acceleration.

2) For a given ground acceleration intensity, there exists
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a certain amount of previous damage beyond which the

particular earthquake will not increase the degree of

damage any further. This point is found as the

intersection of the curve for a given earthquake

intensity with the 45° straight line through the

origin. Points on this line represent the cases where

GDP(n) = GDP(n-l), i.e., the n'th earthquake does not

increase damage.

3) Figure (4.8) can help to answer the following important

question: What peak acceleration must the earthquake

have in order to increase the degree of damage in the

frame, if previous damage is given? The data that can

be used to answer this question are contained in Fig.

(4.8), but are plotted for clarity separately in Fig.

(4.9). For a given level of expected ground shaking,

Fig. (4.9) indicates whether or not a given amount of

previous damage will be increased. This kind of

information should be rather useful when evaluating the

reliability of a concrete frame damaged during a strong

earthquake and about to be subjected to a series of

aftershocks. As can be seen in Fig. (4.9), Run Two and

Run Three exceeded their respective critical accelera

tion levels by large margins.

It should be stressed again that because of the

restriction of these analyses to one building and one

ground motion history, the above conclusions are

preliminary and cannot be generalized without further

study.
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Table (4.1) Comparison between global and local damage

Test GDP MFDR max (MFDR)
(1) ( 2 ) ( 3 )

Run One .115 .176 .338

Run Two .386 .453 .539

Run Three .551 .622 .622

(1) Global damage parameter, Eq. (4.5)

(2) Modified flexural damage ratio for lower level columns

(3) Maximum value of the modified flexural damage ratio
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

The behavior of damaged concrete buildings during

earthquakes is extraordinarily complex and influenced by a

variety of material and structural parameters, in addition

to the ground motion characteristics. A few laboratory

experiments have been conducted, which have helped to

improve considerably our understanding of such behavior. It

has been the objective of this study to develop a

general analysis procedure for simulating the response of

reinforced concrete frame buildings, which mayor may not

have been damaged during previous exposures to strong

earthquake ground motions. Such an analysis capability will

be a useful tool for the post-earthquake evaluation and,

more generally, for the reliability assessment of

buildings. The establishment of this analysis procedure

required the completion of the following tasks:

1. The accurate modeling of the response of general

reinforced concrete frame members to strong cyclic

loads;

2. The definition of a damage parameter which

correlates well with the structure's residual

strength and stiffness, and which is suitable for

subsequent reliability analyses;

o •
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3. The establishment of a procedure for the dynamic

analysis of damaged concrete frames subjected to

strong earthquake ground motions.

To complete task 1, the theory for a new mathematical

model was presented in Chapter 2, the most important aspects

of which are as follows:

1. The model considers explicitly the finite size of

the plastic regions, unlike most other models

proposed previously in the literature, which have in

common the assumption of fictitious plastic hinges

of zero dimensions. By dropping this commonly made

assumption it was possible to derive a

straightforward theory and to avoid some of the

inconsistencies and difficulties inherent in some of

the other models. Although the required

computational effort is increased slightly, it is

felt that the theoretical advantages are worth this

extra effort.

2. There is no need for a priori test data with which

the free parameters of some other models have to be

adjusted to fit given experimental load-deformation

curves. Only elementary material data and geometric

section properties are required for the proposed

model, making it independent of data which in

practical situations may not be available.

3. The model is capable of reproducing the response of

frame members to strong cyclic loads even under the

presence of high shear and axial forces.
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4. The strength degradation, which has been observed in

laboratory tests to accompany successive excursions

into the inelastic range has been accounted for.

The model has been thoroughly tested and evaluated by

simulating virtually all comprehensive tests for which data

were available in the open literature. Comparisons between

analytical and experimental results, reported in Chapter 3,

were very satisfactory and adequate for practical purposes.

To complete task 2 of the overall objective, member and

global damage parameters have been defined. The modified

flexural damage ratio, MFDR, has been proposed as a measure

of local damage in an individual member, which is also

indicative of the amount of stiffness and strength

degradation. The value MFDR = 0 indicates that the yield

capacity of the member has never been exceeded, therefore

damage and concrete cracking can be expected to be

negligible. A value of MFDR = 1 corresponds to the onset

of failure, i.e., a level of deformation beyond which

members exhibit a rapid deterioration of strength and a

significant amount of cracking. For practical purposes it

is appropriate to consider this damage level as synonymous

with failure.

In order to introduce a measure for the overall or

global state of damage in a frame, a global damage

parameter, GDP, was defined. Again, a value of GDP = 0
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indicates that not a single member in the frame has been

stressed beyond the yield capacity, therefore damage can be

considered to be zero. The value GDP = 1 is defined as

virtual failure and is taken to correspond to a maximum roof

displacement of 6% of the building height. Thus, the GDP is

a measure of the maximum roof displacement of the frame

during any previous earthquake, relative to the 6% failure

displacement of and 6y ' the roof displacement at which the

first member in the structure yields, Eq. (4.5). The

maximum roof displacement has been shown to strongly

correlate with the fundamental natural frequency of a frame,

Fig. 4.1. Therefore, if the past maximum roof displacement

is not known, it can be estimated from the fundamental

frequency which in turn can be determined in the field with

relative ease, using port~ble ambient vibration equipment.

For task 3, finally, an analysis procedure has been

proposed which permits the prediction of damaged concrete

frame response to future earthquakes of given intensity.

This procedure can be summarized as follows:

1. Given the value of the global damage parameter prior

to the n'th earthquake, GDP(n-l), the value

o~n-l) can be determined by us ing Eq. (4.5). This

value is an estimate for the largest roof displace-

ment that the frame has experienced in its lifetime.

2. The frame is statically loaded such that it

maintains the first mode shape until the roof

displacement reaches the value o(n-l)
R .
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3. The level of strain reached for the loading of step

2 permits an estimate of the stiffness degradation

and possibly strength deterioration of each member

in the frame. Thus it is possible to estimate all

initial member properties needed for a subsequent

response analysis.

4. With all initial conditions established in step 3, a

nonlinear dynamic analysis can be performed for the

n1th earthquake and a new maximum roof

(n) (n-l)
displacement oR ~ oR computed. By normalizing

the value of o~n), an updated value for the global

damage parameter GDP(n) is obtained.

This analysis procedure has been tested by simulating

the response of the scale model of a ten-story frame to

three consecutive earthquakes, for which shaking table test

results were available. Agreement between theory and

experiment was excellent, and a number of additional studies

were carried out, which led to some preliminary conclusions

about the behavior of damaged frames.

5.2 Conclusions

Based on the comparison between theoretical and

experimental results, both on the element and structure

level, it was possible to draw the following conclusions

with regard to the proposed analysis procedure.

1. Judging the new reinforced concrete frame model by

the accuracy of the load-deflection curves obtained
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for those cyclic static loadings, for which

experimental data were available, it can be

concluded that the accuracy is excellent for

practical purposes.

2. The proposed modified flexural damage ratio, MFDR,

has been found to be a useful and reliable measure

of local member damage.

3. The proposed global damage parameter, GDP, seems to

satisfy the need for an objective measure of the

global state of damage in the structure which is

indicative of the overall stiffness and strength

deterioration.

A number of additional conclusions can be drawn from

the studies reported herein. But since these are based on

only one frame subjected to a single earthquake scaled to

different peak accelerations, they should be considered only

preliminary, pending the outcome of additional studies

involving different frames and random ground acceleration

histories.

1. The agreement between experimental recordings and

theoretical response predictions for the damaged

frame is remarkable.

2. The global damage parameter is a suitable indicator

of the overall state of damage. The usefulness of

this indicator will become even more apparent, when

it is used in the reliability analysis of concrete

frames employing damage probability matrices.
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3. In some situations it might be necessary to obtain

detailed knowledge of the distribution of local

damage. Such situations might arise during post

earthquake damage investigations or determination of

strengthening requirements. In such cases, the

modified flexural damage ratio, MFDR, can playa role.

4. The limited studies indicate a correlation between

the global damage parameter, GDP, and the MFDR value

for the most heavily stressed member in the

structure.

5. Ignoring previously incurred damage when analyzing a

frame will underestimate the expected response and

damage by varying degrees. The errors are propor

tional to the state of previous damage as well as to

the earthquake intensity.

6. For a given ground acceleration intensity, there

exists a certain amount of previous damage beyond

which an earthquake of given peak acceleration will

not increase the degree of damage any further,

assuming the failure displacement OF has not been

exceeded.

5.3 Recommendations for Further Studies

The studies reported herein provide some insight into

the behavior of damaged frames. However, because of the

limited scope of this investigation, some challenging

questions could not be pursued further. These can be the

subject of future studies.



-140-

1. The most immediate application of this analysis

procedure is the reliability study of damaged

concrete frames. It is this objective for which the

present study was carried out.

2. In view of the large uncertainties associated with

structural behavior as well as ground motions, a

thorough statistical evaluation of the sensitivity

of structural response to key input parameters is

called for.

3. In the present analysis, the member axial forces

were considered to remain constant throughout the

response, leading to a constant geometric stiffness

matrix to approximate the p-~ effect. A more

realistic analysis will have to consider the effects

of variable axial forces both due to overturning

moments and vertical accelerations. Also, the

effect on changing yield capacities should be

investigated. Such effects could conceivably be of

significance with regard to very tall buildings.

4. Although it is well known that the displacement

response of tall elastic frames is controlled mostly

by the first mode, it is appropriate to verify this

assumption for the analysis of nonlinear (damaged)

frames.

5. For the failure roof displacement, an empirical

value of of = 0.06 H was chosen. If the analysis
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were to incorporate an accurate large-displacement

formulation, then such an arbitrary value would be

superfluous, because actual instability, i.e.,

collapse, due to overturning could be simulated

directly.

6. Many realistic buildings contain shear walls in

addition to a ductile moment frame. It is not

appropriate to model such structural walls using the

mathematical model presented herein. Therefore it

would be very useful if another member-size model

were to be developed, which could accurately

simulate the cyclic response of shear wall elements.
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APPENDIX A

PRIMARY MOMENT-CURVATURE RELATIONSHIP

The primary moment-curvature curve of a reinforced

concrete section is defined to be the moment curvature

relationship for a moment increasing monotonically from zero

up to failure. The failure moment is defined herein as the

moment corresponding to the curvature at which the compressive

strain in the extreme fiber reaches the characteristic value

Em which was defined in Section 2.2.2.

It is the purpose of this Appendix to summarize the

method of computing the bending moment, M, and curvature, ~,

corresponding to a prescribed concrete strain, EC • The

complete M-~ curve can be obtained by repeating this

computation for different values of EC between zero and Em"

This analysis is based on the following assumptions:

1) The stress strain curves of reinforcing steel and

concrete are idealized as shown in Figs. (2.1) and (2.4),

respectively;

2) The tensile strength of concrete is ignored;

3) Plane sections remain plane after deformation;

4) The axial force (if any) is acting at the plastic

centroid of the section.'

Equilibrium of all axial forces acting on the cross

section shown in Fig. (A.l) requires that

C + C - T - P = 0
c s

(A. 1)
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This can be written in the form

(A. 2)

and solved for y, the distance of the neutral axis from the

compression face

where

-y =
_~ + ~2 + 4ay

2a
(A. 3)

a = a + a + a + acst P

~ = ~c + ~s + ~t + ~p
(A. 4)

The individual terms in Eq. (A.4) are given in Tables (A.l-

A.4) as functions of E
C

• The variables with subscripts s

and t depend on the yield condition of the compression and

tension steel, respectively; therefore an iterative

procedure is required to find the correct location of the

neutral axis. Once the neutral axis has been computed

according to Eq. (A.3), the curvature of the section can be

determined as

(A. 5)

and the steel strains follow as
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E = (j> (d - y)
s

I

E = (j> (y - d )
s

If both steel strains, E ands

(A. 6)

(A. 7)

are compatible with their

/

assumed yield condition, then the computed value of y is

correct. Otherwise, the constants in Eq. (A.4) have to be

updated and y recalculated.

Once both steel strains are compatible with their yield

condition, we may then proceed to establish moment equilib-

rium of all forces acting on the cross section, about the

plastic centroid, Fig. (A.l),

The contribution of concrete compression force is

M = M for E
C

( Ecyc cl

= M - Mc2 for Ecy < E
C

( E
CU

(A.9 )cl

= M - M - Mc3 for E
C > Ecl c2 cu

where

b -2 II

= E 4> - Y (dc 2

"(d -

(A.10)

(A.ll)
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(d " (A.12 )

The moment contribution of the tensile steel is

"Mt = T(d - d ) (A.13)

where

T = E A E: s
for E: <: E: sys s s

(A.14)
= E A [(l-p )E: + P E: ] for E: s > E: syS S S sy s s

Finally, the compression steel contributes the following

moment:

M = C (ds s

where

" I

d ) (A.15 )

E: sy

(A.16 )
I I

= (n-l)E A [(l-p )E: +p E: ]
C S S sy s s

The above procedure has been used to compute primary

moment-curvature curves for a cross section with different

magnitudes of axial force, and the results are shown in Fig.

(2.13).
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Table (A.l) Coefficients of equilibrium equation

(concrete)

e: a ~c Ycc c

"e: b 0 0cy

e: cy e:
>e: b[p + 2(1-p ) - (I-pc) ( cY )2] 0 0cy c c e: c e: c

"e: cu

e: e:
>e: b{-p + (I-pc) [~

cy - ( CY )2]
cu c e: c e: c

0 0
e: e:

+ (pc + p ) [2
cu ( cu) 2]}-- -

C E E
CC

Table (A.2) Coefficients of equilibrium equation

(axial force)
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Table (A.3) Coefficients of equilibrium equation

(tension steel)

e: at ~t Yts

EO;e: 0 nA nA dsy s s

e:
>e: 0 nAs[ps - (l-ps) sy] nA p dsy e: c a s

Table (A.4) Coefficients of equilibrium equation

(Compression steel)

,
e: a ~s Yss s

, , ,
EO;e: 0 (n-l)As (n-l)A dsy s

I e: I ,
>e: 0 (n-l)A [p + (l-p ) sYJ (n-l) Aspsdsy s s s e: c
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