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ABSTRACT 

A time domain finite element method that efficiently solves the three dimensional 

soil-structure interaction problem is presented. In addi.tion to a.ll the factors 

currently considered by' frequency domain approaches the new method aUo ..... s the 

consideration of the nonlinear effects in the structure and foundation (separation of 

base mat from soil or nonlinear materia!). 

The general equations of mation for the linear cases are expressed in terms of the 

relative displacements of the soil-structure system with respect to those of the 

nodes at the foundation level. This formulation allows the load vector to be an 

exclusive function of the free field accelerations at the soil-structure interface. In 

order to avoid the scattering problem the dynamic displacements can be defined with 

respect to those of the buried part of the structure. The nonlinear case requires 

that the equa.tions of mation be established in terms of the total interaction 

displacements. 

The energy radiation through the boundaries of the finite element model is accounted 

for by using frequency independent radia.tion boundaries obtained from a frequency 

dependent boundary defined at the fundamental frequency of the soil-structure 

system. The effects of this approximation are shown to be minimal for typical 

structures. 

The soil-structure system is divided into substructures, namely the structure (one 

or more) and the soil. The latter is modelled with three dimensional solid elements 

in the near field and axisymmetric elements in the far field. The coupling between 

them is enforced by expanding the displacements of the solid elements in terms of 

the axisymmetric ones. A new method for the redLlction in the number of degrees of 

freedom is presented that is based on component mode synthesis techniques and on 

the use of orthogonal sets of Ritz functions. These functions are obtained in a 

simplel" and cornputationally faster way than the eigenvectors, while yielding 

improved accur acy. 

;. b 



In the linear caset the resulting reduced set of equations of motion is integrated by 

uncoupling the system using the complex made shapes. The latter procedure becomes 

exact for piece-wise linea.r type of excitation and is computationally as efficient as 

the step-by-step methods for reduced systems. 

For linear problems the present method becomes numerically far more efficient than 

the existing frequency domain approaches. This difference leads to substantial 

savings in computer time and storage. 
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INTRODUCTION 

Soil-structure interaction problems have been studied for the last three decades. 

The need for analyzing a given structure not as if it were isolated. but rather as a 

part of a seismic environment and as a part of an ensemble of soil and other 

structures interacting between each othert is making soil-structure analysis 

impera.tive fay an increasing range of structures. Many aspects need be studied in 

ordey to completely analyze a soil-structure ini:eyadion problem, Some of these 

aspects are: the seismic environment, the dynamic propel' ties of soils, the site 

response, impedance pyoblems and structuyal analysis, The solutions to all these 

problems have required the attention of many reseal'chers in the thy!?!? different 

areas of seismology, geotechnical engineering and structural engineering. 

Much has been written about soH-structure interaction problems. In recent yeays 

seveyal authors, Lysmer(978), loriss and Kennedy<19T7), Rosenblueth (1980), have 

summarized the dispersed literature by writing different reports that tend to 

classify the analytical methods, analyze their differencest study the nature of input 

motionst and discuss the future possibilities for solving the different types of 

problems. This literature is concerned principally with frequency domain methods. 

Theye are two main reasons; 

1) This domain permits t through the use of frequency dependent impedance 

coefficients, the splitting of the problem into separate studies of soil and structure. 

2) The radiation boundaries that count for the transmission of eneygy through the 

edges of the Finite element model,and that have been obtained from wave 

pmpagation theory, are frequency dependent. 

1 
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So far these two reasons have been powerful enol.Jgh to inhibit the time domain as 

the effective environment for the solution of the soil-structure problem. However 

this trend has to have an end, because of certain limitations of the method. 

Frequency domain techniques can not solve true nonlinear soil and structural 

problems: and they become numerically inefficient for three dimensional problems, 

The purpose of this dissertation is to present efficient numerical techniques in the 

time domain that can solve the soil structure interaction problem in 3 dimensions, 

and at the same time to leave the door open for the solution of true nonlinear 

problems, feasible only in the time domain. 

The presentation of this research is organized as follows: 

An extensive review of the analytical methods in the frequency domain are discussed 

in Chapter 2. The complete, substructure, and hybrid methods are formulated and 

compared to each other, Special attention is given to the substructure methods, and 

more concretely to the recently introduced volume methods that eliminate the need 

for solving the scattering problem. 

Chapter 3 deals with the analytical solutions to the soil-structure interaction 

problem in the time domain. The complete, boundarYt and volume methods are 

formulated, The last one constitutes an innovation within the time domain 

framework. The substructuring approach t as done in the frequency domainf cannot be 

adopted in the time doma.in due to the practical impossibility of splitting the system 

and solving independently the equa.tions of the soil and structure. Substruduring 

concepts in the time domain are used in the sense of reducing the number of 

equations in each of the substructures that subsequently are assembled and solved 

simul taneously. 

Chapter 4 deals with the research towards the finding of a frequency independent 

radiation boundary to be used in the time domain computations. Results are given 

which demonstrate that the use of frequency independent boundaries defined at the 

fundamental frequency of the system leads to very good approximations in two and 

three dimensional problems, 
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The reduction in tile number of degree"l of freedom by the use of Ritz functions is 

described in Chapter 5. One, blQp and three dim'£msional examples are given which 

demonstrate their accuracy in solving not only structural problems but wave 

propagation problems as well. General <:echniq:ues for the reduction of the system of 

equations and dynamic 5uhstructuring are also explored. A new method of 

sub structuring is presented that is not only suitable for soil-structure interaction 

problems, but for general dynamic: 5ubstructuring as well. The results of a numerical 

example show the efficiency of this new technique. 

The analytical methods formulated in Chapter 3 are extended in Chapter 6 for the 

solution of the scattering and nonlinear problem. The formulation of the nonlinear 

problem is mostly suited fDr the ca.se of the existance of loca.l nonlinearities at the 

foundation leve1t like uplifting of the structure or plastic beha.viour of the soil close 

to the founda.tion, The pmpas€:d fllndeIing of the near and far fields of the ensemble 

soil-structure system is presented in Chapter 7. The near field part of the soil is 

modeled with solid finih? elements and the fa.r field with a:r.isymmetric elements that 

are coupled at the bounoa.ry interface with the solid ones. Some considerations are 

made rega.-rdil1g thE' material damping in the soil and the structuret and the numerical 

integl'ation of the reduced set of €!qua.tions. l:-1e5Llli:s of a three dimensional problem 

are shawn in Chr:pter :3. Conclusions of this research an? summarized in Chapter 9. 



CH.APTER 2 

ANAL Y'TICAL METHODS IN 

THE FREQUENCY DOIV!AIN 

2.1- INTRODUCTION: 

The following discussion summari1::es all the current analytical methods with their 

complete formulations, for the solution of soil-structure interaction problems in 

the frequency domain. All the analysis is made under the assumption that the finite 

element method is the analytical tool used for the discretization of the problem. 

The methods in the frequency domain are divided into three categories! 

a) Complete methods 

{

Continuum 

b) Substructure methods Boundary 

Volume 

d Hybrid methods 

The complete methodst Lysmer (1974) and U975>t solve the ensemble soil- strudure 

system simultaneously in terms of the total displacements. The motion is specifie~ 

at the bottom of the model, I;!hich is supposed to be rigid, and is obtai.ned from the 

control motion at the surface by the deconvolution prOCESS. 

The substructure methods~ Chopra (1973)t Gutierrez (1976), Raus!?l and ROE!';';1set 

(1975) and Kausel (1978), make use of the principles of compa.tibility of forces am.: 

displacements at the foundation level to split the complete model into two parts: 

soil and structure. The frequency dependent impedance coefficients, obtained in 

closed form solutions for a few cases <generally surface structures) and by finite 

elements for the rest, are attached to the foundation. By introducing the free field 

motion at the foundation level the dynamic response of the structure can be 

obtained independently. 

4 
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It is possible to distinguish between surface and embedded structures, and in the 

li:l.tter between boundary and volume methods, depending upon at which points the 

motion is specified, For the boundary methods the motion is specified at the 

interface between soil and structure. For the volume methods the motion is specified 

at all the nCldes of the structure that are buried, 

The hybrid methods eliminate the impedance problem at the boundary between the 

soil and the structure, and create a far field impedance problem that is solved by 

system identification techniques. A detailed formulation of all these methods will be 

given belCHy, 

2.2.- SIHPLIFIED MODEL. 

In order to better iJJ.ustrate the concepts upon which the general formulations in 

both time and freqL1ency dornaim;, are based t a simple 2 degl"€~e of freedom problem 

will be analyzed first. The formulation for more complicated soil-structure systems 

with thousands of degrees of freedom is only 3.n extension of this small case, the 

concepts do not va.ry. 

I.et 1n1 and rrn2 be a system of two masses connected by a beam of stiffness k, as 

shmm in Fiqllre (2.1), The system is vibrating due to a. specified ground motion v 
- 9 

applied at fT1r._,. No externc.<J forCES ate acting in the system. The equations of 
.: 

motions in total coordinates are: 

+ (2..1) 

Since the system has no support the matrix k. is singular. The first equation of the 

system (2.1) is; 

o 

or 

In (2.2), the input vector is defined i.n the R,H.S. of the equation. A step further can 

be taken if IJ-Je write the total displacements as the sum of the dynamic and 

pseudostatic components. The dynamic displacements represent the relative 
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k 

k 

Fig 2.1.- Simplified 2 degree of freedom model. 
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dir-:;placements uf degi'ee of freEdom 1 with respect to degree of freedom 2, The 

pseudostatic ones result fron'l a static support disple,cement. Un this particular case 

it is a rigid body motion.) 

The substitution of C:'~,:::) in (2.2) yields! 

m, v\ + k'l VI = kl:l. \f, - I'VII v, .- kn v, 
however 

k.I1V~ + k!ll'.\!' "" C;l (2..5) 
because a rigid body motion imposed in an unsupported structure ( k. is singular) 

does not create any internal forces. :1:'1: may be seen also t that (2.5) comes from (2.4) 

by elirnj,nating an the dynamic terms i.n it. Therefore (2.4) b.?COfliesi 

ItJhich is the well knC)li,Jn equ<;!tion of motion of a single degree of freedom system 

under ground excita.tinn (sep Figure 2. n. The concepts outlined in this simple 

problem \,;ill be used throughout the time and frequency domain formulations. The 

next step will be to extend them to th,~ genera.! case of a 1a\'ge continuum or discrete 

model of a soil-'structun·1 system. 

],:;:,- COl!lPLETE 1'.1ETHODS. Lysmer Ci.'n4) and (1975) 

Complete methods are df:fined as methods in which the motions of the soil and the 

sttUctU,(!2 are dete'(minc~d simultaneously. The equations of' motion dye derived with 

reference to FigurE' (:2.,2) which Hlusi:ra.tes a complete, discrebzetl sojJ--structUI"!? 

system. The soL! (Iegrees of fn:?edorn are designated by yo t those of the structure 
a 

by Y" f and the ones at tIl",' basernent"-rock by rb • The concepts seen above for the s 
2. degree of freedom syr,;tem apply simila.rly in this ca.se. The equations of motion of 

tr.~ complete system in tota1 CC'JOl"dinates a.re: 
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~ 

~ 

Fig 2.2.- Finite element mesh for the complete methods. 
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The input motion is specified at the basement-rock, and therefore no external forces 

are applied on the R.H.S. of the equation. The coupling terms expressing forces a.t 

the base level that correspond to the prescribed motion at the base of the model, 

can be transferred to the R.H.S. as done in the simple model (Equation 2.2, and 2.6) 

becomes! 

= t ... ;:~- ~;..:' -.... ~~ 1 
or in a simplified not ahon (2.7) 

('1..e) 

where Of is the input force vector with only nonzero elements at the base of the 

model. (See Figure 2.1) 

This method does not use any superposition of displacements, therefore it has the 

advantage over the substructure methods of the possibility of including nonlinear 

effects by making use of the equivalent linear method, Lysmer (1975), However, it 

requires a much larger computational effort and overall it is numeric.3.11y inefficient. 

The extension to three dimensional analysis is currently prohibitive. Another 

problem arises from the fact that the motion is specified at the boundary of the 

mesh, which leads to conflict with the radiation elements situated on it. The 

solution adopted in FLUSH is to assume that the lower boundary is rigid and specify 

the input motion at this location. 

2.4.- SUBSTRUCTURE METHODS. 

2.4.1.- BOUNDARY METHODS: Chopra(1973)'Gutierrez (1976>t Roesset(1'?75), 
Kausel(1978) 

Formulation in total displacements! 

The ensemble soil-structure may be divided as shown in Figure 2.2. r represents s 
the motions at the structure,Y'b and ~ the motions and the contact forces at the 

boundary with the soil respectively. The displacements at the soil al'e deSignated as 

r a and those at the boundary as r f • 
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Fig 2.3.- Finite element mesh partition for the boundary methods. 
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The equations of motion for each of the substructures are! 

For the structure! 

(
ms. 0 II .~~} + [G~ Gfob)f ~;} + r ~ KsblI ¥"s~ 1 = J 0 1 
o h'l" l 't"b+' Cbs, c.w, l r .. t. l ~ k~ l rb~ J l Rio 

where Rb is the interaction forces between the soil and the structure that would 

not exist if the influence of the structure upon the soil were negligible. Note that 

the stiffness matrix is singular, that is the structure is vibrating as the 2 degree of 

freedom model model studied above with the addition of the interaction forces, as 

shown in Figure 2.2. 

For the soil! 

[
mf 0 1J ~:1 + [GfT ~ II ~:} + r k* kfo.1I rt 1 :: J -~b) (~.IO) 
o mo.lro. ~ Cao.llro. lk.of ~ lr~ to 

The free field equations for the soil part are (scattering problem): 

if we define the interaction displacements as: 

-I:. 0 
y+",rf-f"f 

-l: 0 
f'o.. '" ('0. - ("0. 

and subtract (2.11) from (2.10) we obtain: 

It should be noted that up to this point everything has been done in the time 

domain. The continuation of the substructure method in the time domain is possible 

by using influence coefficients that lead to a system of Volterra integro differential 

equations, but this poses a complicated and certainly inefficient technique of 

analysis. The frequency domain offers a much easier solution, as it will be seen in 

I-Jhat follows. 
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Equation (2.12) may be written in the frequency domain as : 

where the symbol'" stands for the Fourier transform. The vibration of the soil due 
" h .. ·t to forces - Rb (w) eo applied at the soil-structure interface and without the 

excitation at the lower boundary is also governed by Equation (2.13), This 

constitutes the impedance problem. Equation (2.1:3) may be condensed for each 

frequency""""" to the -F degrees of freedom to obtain: 
A A 

Sf' (.w) r-f Cw) :I R. f (j.c)) 

Compatibility between soil and structure leads for each frequency to! 

At "'-\;. 
"'of = rb 

The substitution of (2.15) and (2.14) in (2.9) yields: 

now 

and (2.16) becomes! 

ksb 11 f r~t} _ J 0 } 
Kfpb+5f U l r..,f. - l5+@) rt

O 

(2..rr) 
Equation (2.17) governs the motion of the structure in total coordinates with 

interaction effects due to any prescribed free field motions at the soil"-structure 

interface. At this stage it is worth pausing to make some observations: 

1) For surface structures and certain soil conditions (half space or single layer) 

analytical solutions for Sf(w) are availablet thus saving the effort of the impedance 

problem. The frequency dependency of Sf(w) can be eliminated approximately by 

introducing the static values of Sf plus a virtual mass of the soil associated with 

the structure. 
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Several authors, Tsai, Niehof, Swatta, and Hadjian (1974) have demonstrated that the 

use of frequency independent impedance coefficients Sf' defined at ....... =0, leads to 

excellent results. The use of coefficients defined at the fundamental frequency of 

the system will lead to more accurate solutions than those obtained with the static 

values. 

2) If the structure is embedded the free field motions r f at the interface do not 

coincide with those at the surface, even in the case when the boundary is rigid. 

Since r f are unknown, a scattering problem must be solved first. This consists of 

solving the free field problem with the shape of the embedded structure in it, as 

shown in the Figure (2,2), but without the interactions forces, so as to obtain the 

free field motions at the interface. Due to the lack of closed form solutions, this 

problem can only be solved at the present moment by finite element techniques. 

Formulation in relative disRlacements. 

First Case: Free field motions are identical at all nodal points. 

In this case the structure behaves as if it were subjected to a single support 

excitation r b o=v g , where v g is the ground motion at the interface level, and r b
o 

is defined in (2,17), The total displacements may be divided into the dynamic plUS the 

pseudostatic components, as done with the 2 degree of freedom system in the 

previous section. 

where r sand r b are the dynamic components, and r s q and r b 0 are the free field 

and the quasi-static components respectively. Substituting (2,18) in (2.17>: 

~". C and :Ie are defined in (2.17), The Sf terms vanish in the R.H.S. yielding: 
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The quasi-static displacements can be defined in terms of the free field ones 

{:~} = !~, 
r is a matrix containing zeros and ones, because the quasi-static displacements are 

rigid body motions. Since Ie is singular Kr=O,thus if the damping terms are 

neglected (2.19) becomes: 

[ -w'!:! + >iii S;; + !5, J { :: 1 = - ;;;. !::1l: Q, (w) 

or 

[ _~2.rm5 01 + \i;)f Css ~h1+ \~ ~ llf :51= _\VVl5 
lo m.. lc~ C\.b l~ kbDUt rb ) L 0 

Equation (2.20) expresses the dynamic equilibrium of the structure as a function of 

the ground accelerations, considering that these are all the same at the soil 

structure interface, and in terms of the relative displacements. 

Second case: The free-field motion is different at each point of contact between 
soil and structure. 

The structure is subjected now to a multiple support excitation. Again the total 

displacements can be decomposed into the dynamic and pseudostatic components: 

where the first term in the R.H.S. represents the dynamic components and the second 

the free-field and quasi-static components. The latter ones are the displacements 

produced in the structure due to unit displacements at the base. 

Thus, 
.. 0 

or 
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where 

therefore 

Now substituting (2.21) in (2.17) yields: 

The Sf term vanishes in the R.H.S" and after some manipulation it becomes: 

(~.2Z) 

Where 

kIK ~ kbb - ~ k;! kSb 

This is the most general Equation of the boundary methods, Note that if there is no 

soil-structure interaction the term rb vanishes and Equation (2.22) represents a 

standard multiple support excitation problem. 

2.4,2.- VOLUlYfE METHODS. (Lysmer 1981> 

The volume methods avoid the scattering problem present in the boundary methods. 

They basically consider the interaction effects between soil and structure not only 

a.t the interface nodes but in all th2 buried degrees of freedom (see Figure (2.4». The 

trick necessary to accomplish this is to reduce the ma.ss, stiffness, and da.mping of 

the embedded structure by the corresponding properties of the excavated soil. 

Formulation in. total displacements: 

As in the boundary methods, the structure and the soil are considered separately. 

The same notation is used in this caSe. 
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Fig 2.4.- Finite element mesh partition for the volume methods. 
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Structure: 

The interaction forces are now a.cting in all the buried degrees of freedom. 

Soil: 

It is clear that if we sum up (2.2:;::) and (2.24) we will obtain the Equations of the 

assembly as in the case of the boundary methods. The free field Equations now 

refer to the whole soil system without the excavated part; thus a scattering problem 

need not be solved. 

r I'YI.,. 
o l{ r:} r" ::1t %1 + l k ... k~ 1t':1 ( 0) 

lo m ... l 'i-: + Ca,f 
:: \ 0 (z.zs) 

kof k_ rOo 

Subtracting (2.25) from (2,24) yields 

[:' o 1\" 1 r« c~1t ~'1 (~ ~ 1{ r'1 {-:b) (212~) 
M6, r,,- + C'd + ko...f 

.:: 

'"40. r .... k(JA r ... 

t 0 t 0 where y- = y- - y- and r =t~ -y-
f f f a. a a... 

Equation (2.26) defines the impedance problem, which will have more unknowns than 

the corresponding irnpedance problem in the boundary method. Thus at the cost of 

having to solve an impedance problem with more unknowns, the volume methods 

eliminate the need to solve the scattering problem. Transferring to the frequency 

domain, defining the impedance I"elation as S/w)rb(w) = ~(w), and following the 

same pi"Ocedure as in the boundary methods, Equation (2.23) becomes: 

Equation (2.27> defines the motion of the structure in terms of the total 

displacements and as a function of the free-field ground motion at the buried 

degrees of freedom. The free field motion may be obtained from a site response 

analysis. Assuming one dimensiona.l vertical propagation of P and S waves, Schnabel 
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(1972) , the problem becomes very simple. More complicated wave patterns, like 

inclined P and S waves and surface waves, can be considered also, Gomez-Masso 

(1979), Chen (1981)' and Wolf (1982). 

Formulation in Relative Displacements: 

Since the free-field motion is different at each point of the buried degrees of 

freedom, a multiple support a.nalysis is needed. The formulation is identical to that 

described for the boundary methods and there is no need to proceed in much detail. 

Again 

are obtained from static condensation as: 
1\ ~ I 1\0 r$T := ... r b 

where 
-I 

L::I - k&S k,,\, 

Substituting in (2.27>: 

Since 

k*::: k~1o - kbt; k.~ \($'- - k-ff 

Equation (2.28) constitutes the most general Equation for the structural 

displacements in terms of the free-field motions at the buried structural degrees of 

freedom. 
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2.4.3.- IMPEDANCE PROBLEM: 

In order to obtain the frequency dependent impedance matrix Sf' Equation (2.13) 

has to be solved as many times as the number of frequencies in the frequency range 

of interest. Equation (:2.13) can be written as: 

where 

GtTf '" - ;;;2. I"t'lTt + ;'W C-H + k.# 

9-fo.::: iw c.~ + kfa. 

~M. = - 0.)'2. t'I'lo.Q. + im c~ + ~OA. 

Two methods are commonly used to determine the impedance matrix Sf : 

a) Static condensation may be applied to the r f degrees of freedom: 

( 
T -I "", A 

G( off - <4Q, ~1lA Gto:f) rf ". R~ 

and 

(2.30) 

Because G aa and G ff are usuaUy very large matrices, this method requires 

excessive computational effort. 

b) An alternative procedure is to first calculate the dynamic flexibility matrix for 

the foundation. This involves the dired solution of Equation (2.13) for unit harmonic 

loads applied at the boundary interface to obtain the displacements at the 

correspondent degrees of freedom. The impedance matrix is the inverse of the 

dynamic flexibility matrix: 
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It is worth noticing that all the operations have to be repeated for each frequency. 

However since the impedance matrix Sf typically varies slowly with frequency, a 

common simplification is to analyze the soil region at a relatively coarse frequency 

interva.l and then calcula.te Sf at intermediate frequencies by interpolation. 

Another important point to consider j.s the fact that frequency dependent radiation 

boundaries may be used at this stage to reduce the sizE! of the finite element mesh. 

No attempt has yet been made to reduce the size of the system of Equations (2.13) by 

the use of Ritz functions. As shown in more detailla.ter in this thesis, the use of a 

total number of Ritz functions equal to 10°/" of the total number of degrees of 

freedom of the impedance problem leads to results within 96% accuracy. The main 

consequence of this is that typical wave propagation problems can be analyzed very 

accurately using Ritz functions. 

Another important aspect to take into consideration is that the impedance problem 

has been solved analytically for cases of surface structures under certain conditions 

regarding the number of soil layers and the rigidity of the foundation. This 

eliminates the need to solve Equation (2.13) with finite elements, and the impedance 

coefficients can be directly assembled in the stiffness matrix of the structural 

system. This type of solution constitutes the basis of the so-called "continuum 

methods" t that may be considered as a particular case of the substructure methods. 

Analytical solutions to the impedance problem are provided in the literature. Lysrner 

and Richart (1966), Luco and 'flifestman (1971h Veletsos and Wei (1971) obtained the 

impedance functions for the case of rigid massless circular plates resting on 

homogeneous isotropic elastic half-space, Arnold (1955)rBycroft (1956)t Warbuton 

(1957), Kashio <1970}, Wei (1971) and Luco (1974) have provided solutions for a 

layered ela.stic half-space. Solutions for a viscoelastic half-space are given by 

Veletsos, Verbic a.nd Nair (1973) and (1974) and Chopra (1975), and for viscoelastic 

layered systems by Luco (1976), Impedance functions for rigid strip footings have 

been obtained by Dien <I971> and Luco (1972), Lu,o (1977) and Sa.vidis (1977) have 

obtained the response of rectangular footings to horizontally propagating waves in 

a half-space. Flexible rectangUlar footings on a half-space have been studied by 

Iguchi <1981>, and rigid foundations of arbitrary shapes in a half-space by Rucker 

(1'182) and Wang (1976) 
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In all the cases the solutions are obtained for surface structures, or at the most for 

one layer. Studies of the effect of foundation embedment on the response have been 

rather limited and only a very small number of continuum solutions, all for very 

special cases, are now available. 

In summary then, for the impedance problem of surface structures a limited number 

of closed form solLltions are available, for embedded structures however, the only 

general approach to the impedance problem, now available is to solve Equation 

(2.1:;:) by the finite element method as explained at the beginning of this section. 

2.5.- HYBRID METHODS: (Gupta, Lin, Penzien and Chen (1980» 

Except for the cases for which a continuum solution is available, the solution for 

the impedance functions poses the major computational problem in the substructure 

approach. Since continuum solutions are only available for surface structures, 

whenever any structural embedment is present a three dimensional finite element 

model will have to be analyzed (Equation 2.1:3) for a wide range of frequencies of 

excitation. Since a three dimensional analysis is still very impractical, due to the 

tremendous amount of degrees of freedom involved, two dimensional approximations 

are made under the assumption of plane strain conditions, which are not always 

satisfactory, Lysmer and Seed (1977) and Idriss and Kennedy (1979). 

In order to avoid the impedance problem for the case of buried structures, Gupta, 

Lin, Penzien and Yen (1980) developed a hybrid method which basically consists of 

partitioning the soil into a near field and a far field. The far field is modeled in the 

form of an impedance matrix. In other words t the substructure concepts are extended 

in such il. way that the superstructure contains not only the building but the near 

field part of the soil as well. (See Figure (2.5» Equation (2.17) holds in this casel 

r~ repl"eEents the total displacements of the structure in the near field, and r b 
represents those at the boundary of the modelt which include the far field 

coefficients. 
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Fig 2.5.- Finite element layout for the hybrid methods. 
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The only problem remaining is to define the far field coefficients. Analytical 

solutions are only available for torsional exdtation with a spherical boundary (Luco 

197/:.). Gupta and Penzien solve the problem by system identification techniques, by 

insuring that the resulting hybrid model reproduces the known compliances of a rigid 

circular plate on an ela.stic half-space, Once the impedance coefficients are obtained 

they are assembled to the stiffness matrix and the Equations of motion can be 

solved in terms of the total displacements (Equation 2.17), or the relative ones 

<Equation 2.20), 

A limitation of this method is that a scattering problemt involving the half-space in 

the absence of the near field, needs to be solved to define the input motions at the 

interface. Gupta and Penzien neglect this effect and assume that the input motion is 

uniform along the boundary and equal to the free-field motion. This assumption is 

generally not appropiate since large variations in the free-field motions are 

expected to occur along the boundary. 

Tsong (1981) extended this method to the case of two dimensional problems. Again a 

method of system identification is used to determine the two dimensional far field 

frequency dependent impedance functions. 

2.6.- SUMMARY OF FREQUENCY DOMAIN JYIETHODS: 

As has been shown a.bove, the frequency domain methods can be classified into three 

major groups: compleh~1 substructure, and hybrid methods. The substructure methods 

may be subdivided into continuum, boundary and volume methods. Figure (2.c.) 

summarizes the steps involved in each one of them. The complete methods only 

require a site response analysiS (deconvolution) to define the motions at the 

bedrock. These are introduced as input in the complete structure and soil analysis. 

The continuum approach avoids the site response and scattering problems, The 

impedance functions are obtained analytically and the input motion for the last stage 

is directly the surface ground motion. The boundary and volume methods are similar. 

The main advantage of the flexible volume methods is to eliminate the scattering 

problem, which requires a complete finite element solution, by paying a higher price 

in the impedance problem. A dramatic reduction in the size of the model can be 

obtained with frequency dependent radiation boundaries. In the hybrid methods the 
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finite element solution of the impedance problem is avoided by using system 

identification techniques. 

The free field solution (site response problem) is usually obtained assuming one 

dimensional vertical propagation of elastic waves. Chen <1981> and Lysmer (1980) 

have studied the free field problem including inclined body waves and horizontal 

(Rayleigh, Love) waves. They have demonstrated that, for both soil sites and rock 

si tes, the major part of the response is due to vertically propagated P and S waves. 

An exception is the ca.se of buried structures, such as pipelines and tunnels, for 

which an analysis assuming horizontally propagating wa.ves is needed. 

In the case ofaxisymmetry of material properties and geometry, the number of 

degrees of freedom of the three dimensional problem may be reduced by using 

axisymmetric elements, a.nd by expanding the load and displacements in terms of 

Fourier Series. 
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CHAPTER 3 

ANALYTICAL METHODS 

IN THE TIME DOMAIN 

3.1.- INTRODUCTION. 

Chapter 2 has outlined the formulation of the cammon methods in the frequency 

domain. As pointed aut at the beginning, the reasons for the popularity of the 

frequency domain approach are, firstly, the possibility of dividing the problem into 

substructures that can be analyzed independently t and secondly t the frequency 

radiation boundaries that help to reduce considerably the size of the finite element 

models. As a consequence very little attention has been given to the time domain 

approach. In fact there is only one formal method t the one presented in Dynamic of 

Structures, Clough and Pemien (1975), for the solution of the problem in this domain. 

The following discussion will describe the current analytical methods and their 

complete formulations for the soil-structure interaction problem in the time domain, 

and then will extend them to eliminate the scatteing problem (volume methods), 

These approaches constitute the basis for the formulation of the scattering and 

nonlinear problems that will be discussed in Chapter 6. The methods in the time 

domain can be divided into three main groups~ 

1) Complete methods. 

2) Boundary methods. 

3) Volume methods. 

The complete methods are formulated as was done for the frequency domain. By 

virtue of the principle of superposition the total displacements may be dividt:d t as 

explained belowt into the free field displacements and the interaction displacements. 

By doing so the input motion ma.y now be established, not at the bottom boundarYt 

but at either the interface between soil and structure (boundary methods), or at the 

26 
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buried part of the structure (volume methods). These formulations simplify the 

problem and make the use of frequency independent boundaries more feasible, since 

the source of excitation is not dose to the boundary as in the complete method but 

far away from it. The volume methods have never been proposed before in the time 

domain, and have, as shown later, a major advantage over the boundary methods by 

eliminating the scattering problem, 

A drastic reduction of the size of the problem can be achieved by using Ritz 

functions, and by dynamic substructuring. These methods will be discussed later in 

this work. 

It should be noted that the substructure concept used in the frequency domain is not 

simila,r to that of the time domain. The splitting of the model, as done in the 

frequency domain, is very cumbersome in the time domain due to the need of using 

Volterra integra-differential equations. In order to avoid this problem the 

equations of motion of the soil-structure ensemble have to be solved 

simultaneously. Therefore w hen we refer to substructuring concepts in the time 

domain we refer to the reduction in the number of degrees of freedom in certain 

parts of the system, structure and soil, that subsequently, are assembled and salved 

simul taneously. 

3.2.- COMPLETE lVIETHODS. 

There is no difference in formulation of the complete method,s between the time and 

frequency domains. The only difference is in the numerical technique used for the 

solution of the set of equations. In one case transformation to the frequency doma.in 

is done by means of the Fast Fourier Transform, and in the other case a direct 

implicit or explicit integration is done with a time step scheme. 

Because of obvious limitations, the use of frequency dependent transmitting 

boundaries is not possible in this c:aset and in general large models will have to be 

used to avoid spurious results coming from the reflections and refractions of 

elastic waves in the boundary of the finite element model. Currently a three 

dimensional analysis of a soil-structure interaction problem by a complete method is 

prohibitive due to the la'(ge amount of computer time and storage that is neeC;~d. 
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:?I.:3.- BOUNDARY METHODS. 

The cClmplete problem may be divided, as shown in Figure (3.1), into a free field 

problem without the excavated part of the soil (scattering problem), and a j;ource 

problem in which the input is defined only at the interface boundary between the soil 

and the structure. 

The notation corresponding to each part of the problem is as follows: v represents 

the motions at the struc:ture, v represent those at the soil-structure interface and 
g 

v the soil displacements. FLlrthermore a 

in t ~ ,k are the properties of the system in free field motion, meaning without c c c 
the strtlcture, 

--;; .-" "'-' 

Vet V c' v c are the free field motionst 

fTlJ C , kc are the properties of the added system (building) and 
L C 

•• t • t t 
V C' V c' v c are the added Dr interaction motions resulting from locating the 

building in the site. 

The partitions Clf the displacements are: 

v; -Fil OJI'Id 

v, 'U:1 "0. I 

and the property matrkes! 

me -l; WlS 

:1 me" [: 

0 ;1 m" Wi" 
0 m." moo. 

(3.a) 

and i.n the same manner for the stiffness and damping matrices. 

The freE! field equations are: 
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The first matrix equation leads tol 

where the R.B.S. represents the input motion at the base of the model. When the 

building is superimposed on the foundation, the properties and motions on the L.H.S. 

of Equation (3.4) are modified by the added building and displacements. However~ the 

input motion remains the same. This is due to the fact that far from the structure 

the input is not considered to be modified by the presence of the structurE', even 

when the basement is not rigi.d, as in the case of a half-space. The Equation that 

controls the motion of the whole system in total coordinates is: 

By substituting (::::.4) in (:3.5) and reducing terms (:3.5) becomes! 

l me-. + mc,,] Vc."" + r. c ... T c"l v;: + t ke + k 1 ve-t: :; - WiG ~a. - c~~c. ~:Ve 

This is the Equation fDr the added motions which corresponds to Figure 3.1,( By 

substituting (3.1) and (3.:2> in (:3.6)' (:3.6) becomes: 

tm.+ .... 1{ iin + (.l'..+cllV'] + li<..+ \cllv~J: -t;1~' -t; j;;, -t~ );;9 
('5:1) 

Ii: is important to notet firstly, that the input motion is defined only at the interfaCE 

between the soil and the strudure, as shown in Figure 3.1.ct and secondlYt that the 

added motions in the structure are total displacements, and consequently Equation 

<3.7> is suitable for nonlinear analysiS in the structure. For a surface structure, the 

input motion v coincides with the free field at the surface. For embedded 
9 

structures, v contains the different free field motions at the interface nodes. In 
9 

this case, unless direct data are available or an assumption is made regarding these 

motions, a scattering problem must be solved in order to obtain v . . 9 
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In the case of a rigid foundation, the same input motion may be specified at all the 

contact nodest and equal to the surface motion. In general, however, a scattering 

problem will be needed, which is an inconvenience that may be avoided by using the 

volume methods described below. 

Equation (:3.7) may be further simplified by dividing the added displacements in two 

parts: a dynamic component, v t plus a pseudostatic component, v s, The c c 
pseudostatic displacements may be derived from (2.37) by eliminating the dynamic 

terms. Hence: 

lke + 1<1 v; • -{;} v, 

or 

where 

Thus 

vt::: Vc:, + reVCj @_lO) 

Substituting (3.10) in (:3.7> we get: 

-v, (3.U) 

The main advantage of Equation (3.11) is that the R.H.S. is in terms of the free field 

accelerations only. This is so because the displacements have dropped out, and the 

velocity effects are usually neglected. Once the dynamic displacements v are 
c 

obtained from (3.11) the total forces oF may be obtained as follows: 
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The forcE's in the superstructure are: 

fs::'\ kv +> kS"5 

Note that these forces depend only on the dynamic displacements v and v s~ and 

therefore no superposition with the free field motion is needed. 

Up to this point there are two major disadvantages: 

1) No energy radiation mechanism at the boundary has been considered. To avoid 

reflections very large models will be necessary. 

2) The final Equation (:3.11) is expressed in terms of all the geometric degrees of 

freedom of the system. For most cases their number will be very large (several 

hundred to several thousands), The reduction of this system to normal coordina.tes 

requires obtaining the eigenvectors ~"hich can be very costly. Also since the damping 

is nonproportional the system will be coupled. Therefore mode superposition will not 

be applicable a.nd a. step-by·-step integration or the uncoupling the system ItJith 

complex mode sha.pes will have to be carried out for the numerical integration. 

These disadvanta.ges and the scattering problerB may be avoided in the following 

manned 

1) The sca.ttering problem may be eliminated by using the volume methods described 

below. 

2) Energy radiation may be acct}unted for by using frequency independent radiation 

boundaries which, as will be seen later in this work, prove to be very efficient. The 

resulting boundary will add nelA' terms in the damping, stiffnesst and mass matrices. 

:3) The final Equation of motion (3.11) may be reduced by ~\filson-Yuan Ritz vectors, 

Wilsont Yuan and Dickens (1982), which can be obtained more easily than the 

undamped eigenvectors, while yielding a better accuracy. 

4) The resulting set of coupled equations can be uncoupled by the damped mode 

shapes and integrated exactly for linear type of excitation, avoiding the inaccuracies 

inherent in the step-by-step procedures. 



JJ 

3.4.- VOLUME METHODS. 

The complete problem may be divided now, as shown in the Figure (:3.2), into a free 

field with the excavated soil included, plus the source problem for the added 

motions, in which the input is defined only at all the buried structural nodes, and in 

which the structure properties at its embedded level are reduced by those of the 

soil. The formulation of this method, though different, will follow the same line as 

that of the boundary methods. Up to Equation (:3.4), the same formula apply, 

however the partitions are now as follows! 

• ~ M<l Ve = If :. Vc. .:. 

vi v, 
~ N 

v~ v~ 

w here v t represent the total motions at the structure, v / at the buried part, vat 

at the soil and v stat the boundary of the model. The partitions for the property 

matrices are! 

rm mf 0 01 
[: 

0 0 0 l 

\'rJff-mtf 
.., 

:] 
... 

Wtf'3 l~ m-Fs- M". ... m* 0 (:~.14) 
m,. : ma"" ... l: ... 

m" m, ... m9f-m<jt m" m,f 

0 0 Q -T 1>1 

m~ m~ 

and in the same manner for the stiffness and damping matrices. Substituting (:3.13) 

and (3.14) in (3.4), (:3.4) becomes! 

tm.,+ m.,l{v:} + [cG + c]{v:l 4- C kG + ~1~v:l ;: 

r mf 0 Gf 0 kf 
() 1 

l~_M~ m,.-m~ [::1-
- c:.p-~ ~J- l<.t:f- kff ~-k~Ff1 c.u-c..fF 

= 
m,,~ m, - ~, ~-k~ 

""" 
~ -c'Jf c." k" v, 

0 0 0 0 0 

To simplify the notation let the matrices on the R.H.S. be called, X m, Xc' and X k 
respectively. The L.H.S. of Equation (3.15) is identical to that of Equation (3.7). The 

R.H.S., although more involved, has the main advantage of being defined in terms of 

the free field motion without excavation, and therefore no scattering problem need 

be solved. 

("5.\s) 
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The free field motions at the embedded nodes may be obtained assuming a desired 

wave propagation pattern. The simplest one, as mentioned already, is to assume 

vertical propagation of P and S waves. The added displacements may be written, as 

done before, as the sum of the dynamic and pseudostatic components. 

a.gain: 
k~ 0 

"" ... 
Y"c. :: - [ke + k] k-t:f-~ k~- k.f, 

... 
~-~ ~ 
0 0 

substituting (3.17) into (:3.15): 

(. w.. + m.l v. + (.2..+ c.l if. + [.~. + k] v. • -{ (. ilI. ... .",,] r. + x .. 1t ~ } 
It can easily be seen that the forces in the nonburied part of the structure will 

depend only on the dynamic displacements. However, the forces in the buried part 

will now depend on the dynamic as well as on the free field displacements. Their 

computation will be a little more involved than in the case of the boundary methods. 

With the inclusion of the radiation boundaries the only problem left is the reduction 

of the number of degrees of freedom. 

:;:.s.~ SUMMARY OF TINE DOMAIN METHODS. 

A classification analogous to that done with the frequency domain methods is 

illustrated in Figure <:3.3) for the time domain. The site response problem needs to 

be solved prior to any analysis, except for the case of surface structures for which 

the control motion is directly the ground motion at the surface. The scattering 

problem needs to bE:' solved for the boundary methods only. The input motion is 

defined in different places as shown in the Figure <:3.3)' depending on the different 

methods. The main difference ~~ith the frequency domain methods is the need to 

solve the whole system of equations simultaneously. This is why the use of 

radiation boundaries and the reduction in the number of degrees of freedom is 

crucial. 
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CHAPTER 4 

RADIATION BOUNDARIES 

4.1.-INTRODUCTION. 

The finite element model of the soil-structure system has to account for the energy 

radiation at the boundaries. Boundary conditions that are not adequate will produce 

reflections of wave fronts that will impinge back in the structure producing spurious 

results. One way of solving the problem is by extending the finite element mesh as 

much as necessary in order to pI'event the reflected waves from reaching the 

structure during the time of the analysis. This approach will certainly lead to very 

large models and the computational effort may be extra.ordinary. 

Following this line of thought, Day (1977) proposed a method for attenuation of 

waves based on prolonging the finite element mesh with elements whose size 

gradually increase ... lith increasing distances from the structure. The zone of growing 

grid is made dissipative with internal viscous damping, and terminates at a large 

distance from the structure. The method is successful depending on the rate of grid 

growth and viscous damping. Day proposes a constant viscous damping and a factor 

for element size increase equal to 1.1. 

Another approach to the problem of mesh finiteness is due to Smith (1974), In his 

method first order reflEctions ,From plane boundaries are rigorously eliminated by 

averaging independently computed solutions for the Dirichlet and Newman boundary 

conditions. The method requires 2n independent solutions, where n is the number of 

boundaries at which reflections are canceled. a.nd it does not eliminate higher order 

reflections (the waves that impinge in the boundary more that once). Therefore even 

though the theory is exact, the efficiency of the technique is limited since at least 

2° solutions are necessary for a given pl'oblem. 

37 
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Cundall et a.l (1978) devised an ingenuous trick that is based on Smith's theory of 

superposition and is formulated in finite differences. The trick consists of 

superimposing the solutions not in all the domain but in two small meshes attached 

at the boundaries of the modelt where the reflections are to take place. The 

superposition is carried out every few time steps and consequently the refledions 

do not propagate out of the small meshes. In order to avoid the numerical shock 

created by the sudden jumps in accelerations and velocities due to the Newman and 

Dirichlet conditions, they use constant force and constant velocity as boundary 

conditions. The method gives good results but so far it has only been implemented 

in two dimensions, Kunar and Ovejero (1980). 

Boundary conditions obtained by the integration of wave equations at the boundary 

of a given model are only available in the frequency domain because of the frequency 

dependency of the problem. Lysmer and Kulhemeyer (1969) presented an approximate 

transmitting boundary based on the assumption of energy being transmitted in the 

form of P and S waves through the bottom of the model and the fundamental mode of 

Rayleigh waves through the sides of the model. The results were quite good for 

relatively small models. Waas (1972) perfected the method and solved the case of a. 

steady state plane motion of a system of horizontal layers of infinite lateral extent, 

terminated below by a rigid boundary. The theory ha.s been extended to include 

axysimmetric geometries~ Waas (1972) and Kausel et al (1975)' but it is stiU 

restricted to horizontal layers with rigid bottom boundariest and to steady state 

problems. No theoretical solution for the boundary element is available in the time 

domain. 

The following discussion gives some examples that demonstrate that the use of 

frequency independent radiation boundaries obta.ined in a very simple wa.y from a 

frequency dependent one defined at the fundamental frequency of the soil-structure 

system, leads to very acceptable approximations. Prior to the examples, however, 

some observations will be made about the nature of a radiation boundary_ 
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4.2.- NATURE OF THE RADIATION PROBLEM. 

4.2.1- One dimensitlnal case. 

The perfect absorbing energy mechanism in the one dimensional case is a frequency 

independent viscous dashpot. In order to find its characteristics let's consider a 

semi-infinite bar. The expressions for the displacements and velocities at a point x 

due to an outgoing harmonic wave are: 

u .. Ae 1.(wt.-~) 

u= A. • i (.IIJ-t. - k,,) 
1""\0)1. e. 

where ........ is the frequency, k.. is the wave number and A is the amplitude of the 

wave, At a certain point :x: the horizontal stress will bel 

Cf_.. E ~u. ... - E A. U(e ~(w1: - k.,,) 
h ax 

Expressed in terms of the velocities, this yields 

0'= -Eu.k. 
to 

now 

thus: 
(4.\) 

Relation (4.1> is satisfied at any point of the bar. The stress is identical to the one 

produced by a simple damped oscillator with a damping value equal to -Vpl' • 

Therefore if we cut the bar at any location and colocate as boundary a dashpot equal 

to V pJ" tractions will be applied to the boundary which will be equal in magnitude 

and opposite in direction to the sh"esses caused by the incident wave, thus becoming 

the one dimensional perfect energy absorbing mechani·::;m. Since its characteristics do 

not depend Lipan frequency, it can be used equivalently in the time or frequency 

domains. 
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4.2.2.- Two and three dimensional cases. 

The general equation for the propagation of a plane wave in a general anisotropic 

medium is: (Synge U'i/56» 

(4.Z) 

where u is the vector of particle displacements, n is the vector of direction 

cosines, k. is the horizontal wave number vector. y- is the vector of particle 

coordinates, w is the frequency of the wave and, A is its amplitude. For 

simplicity, only the two dimensional case as done by White (1977), will be considered. 

The extrapolation to the three dimensional case is straightforward. Equation (4.2) 

has two independent solutions for the plane case. 
a . T 

U ~ z.. A",{nm) e1<fLt.W {km3 {r-}--I:] 
m",' 

The strains are: 

~ .. u,...~ + U~hlC 

The velocities will be : 

The strains can be expressed (as done in the one dimensional case) in terms of the 

velocities as follows: 

where 

in which 
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The normal and shear stresses at a given boundary can be expressed as: 

where D is the matrix representing the constitutive characteristics of the 

material. It must be noticed that the matrix E3* is independent of frequency and 

amplitude of the waves, and only depends on the physical characteristics of the 

material and the direction of the wave propagation. Therefore, if we knew the 

direction of propagation of a given wave we could get the perfect energy absorbing 

frequency independent mechanism by simply satisfying the boundary condition: 

er :: - S1lt U 

This ideal solution is impossible to carry out due to the practical impossibility of 

finding in a given finite element mesh all the directions of all the wave trains 

impinging at the boundaries. This is why analytical solutions to the radiation 

boundary, based on wa.ve propagation theory have not been obtained in the time 

domain. It is because of this that all the methods mentioned in the introduction have 

been developed. 

4.3.- FREQUENCY INDEPENDENT RADIATION BOUNDARY, 

4.:3.1.- One dimensional cases. 

a) Single dof: 

Consider a SDOF system with the characteristics shown in Figure (4.1>, As can be 

seen the damping varies parabolically with respect to frequency from the value 0 at 

\i'oJ =0 to 60 at "",,=40. At the fundamental frequency w 1 the damping value is 20, 

ItJhir.:h corresponds to a. damping ratio of 10%. The expression for the dynamic 

amplification factor is: 

DAr (m) ~ [k (- mw~ + ;,wc(w)] 
-1 

Figure (4.2) shows the results obtained computing the DAF with the da.mping 

depending on frequency and with the frequency independent damping that ha.s been 

matched at the fundamental frequency w 1=10. As we can see they are practically 

the same, and the maximum response is obviously perfectly matched. 
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c (w) 

60 

20 

c(w) 

k 

m 
k = 1000 
m =10 
Wo = 10 
Cc=200 
e = 10 0/0 

-
~------~------~--------~------~~_w 
o wo=IO 20 30 40 

Fig 4.1.- Characteristic:s of a SDOF system and damping variation with frequenc:y_ 



D.A.F. 

--- CONSTANT DAMPING 

5 -- VARIABLE DAMPING 

4 

3 

2 

oL-------------------~==~~~ 
w 

Fig 4.2.- Dynamic Amplification Factor versus frequency for constant and variable 

damping. 
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Figure (4.3) shows a second example in which the variation of damping with respect 

to frequency is increased. At the funda.mental frequency the damping value is equal 

to 80, which corresponds to a damping ra.tio equal to 40%. In this case due to the high 

damping ratio the fundamental damped frequency differs from the undamped 

frequency and is equal to 9.27. The values of the OAF considering frequency 

dependent and independent damping are shown in Figure (4.4), This Figure also 

includes the results obtained by matching the damping at the undamped fundamental 

frequency. 

b) Multidegree of freedom- systems: 

Consider now the case of a bar with the characteristics given in Figure (4.5), that is 

modeled with linear finite elements and subjected to harmonic loads at its tip, as 

shown. The damping constant attached at the end of it varies parabolically as 

illustrated in the same Figure. The value of c: =1 corresponds to the case of perfect 

energy transmission. The Variation of c with respect to frequency is considered 

sharp enough to give a good idea of how much effect the consideration of frequency 

dependent coefficients has on the system response. Impedance coefficients attachad 

at the foundation of building models experience a proportionally smaller variation 

than those considered here. The amplitude of the complex response function at the 

degrees of freedom 1 and 2 are illustrated in Figures (4.6) and (4.7) respectively. 

As we can see, the differences between both structures are very small for degree of 

freedom 1 and almost negligible for degree of freedom 2. It is worth noticing that 

the maximum response is always computed exactly at the fundamental frequency of 

the system and that both solutions practically coincide along the part of the 

frequency spectrum where the maximum responses are expected. These results are in 

agreement with those obtained by Tsai, Niehoff, Swatta and Hadjian (1974) with the 

difference that they took the static va.lues of the frequency dependent impeda.nces. 

Due to this fact they do not obtain total agreement in the peak response given by 

the two approaches at the fundamental frequency of the system. 



m 

c(w) 

160 

80 

k = 1000 
m= 10 
Wo = 10 
Cc =200 

e = 100/0 

-L-______ L-____________ ~~--~-w 

o w = 10 o 
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Fig 4.3.- Characteristics of a SDOF system and damping variation with respect to 
frequency. 
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D.A.F. 

2 

- VARIABLE DAMPING 

CONSTANT DAMPING, DEFINED AT: 
o UNDAMPED FREQ . 
.6 DAMPED FREQ. 

66 il6il6 

OL---------------~~--------------~I---------~ W 
o 10 20 

Fig 4.4.- Dynamic Amplifica.tion Fa.ctor versus frequency for variable and consta.nt 
damping. 



e iwt 

- ... -+, ;2 
E =10 

p=1 
C = P Vp = I 

c (W) 

7 

+5 

-
~----~--~--------~----------L---------~ ___ W 
o 10 15 20 

Fig 4.5.- Modelling of a discrete bar and variations of the dashpot characteristics 

wi th respect to frequency. 
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I H (w) I -- FREQ. DEPENDENT DAMPING 
AT D.O. F. 

--- FREQ. iNDEPENDENT DAMPING 
2 

° L __ .-l.~~~:L-=-=~~~=:::::==L~ w ( rd/sec) ° 5 10 15 20 

IH (w)1 

AT D.O.F. 2 
2 

L __ --L~~=~::::===:i=::::::::==::::::JL. ...... w ( rd/sec) 
°0 5 10 i5 20 

Fig 4.6 and Fig 4.7 ,- Amplitude of the complex response functions at degrees of 

freedom 1 and 2 of the discrete bar. 



4.:3.2.- TWO DIMENSIONAL CASES. 

As mentioned before, Lysmer and ICulhemeyer (19b9) developed a frequency 

dependent boundary under the assumption of energy being radiated in the form of 

body waves through the bottom of the model and in the form of Rayleigh waves 

through the lateral boundaries. They obtained rather good approximations with 

relatively small models for the case of a vertical vibration of a rigid footing in an 

elastic half-space, The improvement over a frequency independent solution capable 

of radiating only body waves through both the lateral and the bottom boundaries was 

significant. 

The aim in this case (as in the one dimensional case) is to demonstrate that the 

assumption of a frequency independent boundary, matched at the fundamental 

frequency of the system leads to very good approximations in the frequency range of 

interest. 

Three examples are considered in this case. The first two are the vertical and 

horizontal excitations of a rigid footing in an elastic half-space with characteristics 

shown in Figure (4.8). The third corresponds to the horizontal excitation of a single 

layer over a bedrock. For each case two different models of different dimensions are 

considered. The first one has a length equal to four times the radius and depth equal 

to three times the radius. For the second model, the depth does not change and the 

length is doubled to eight times the radius. To see the influence that the material 

damping in the soil has in the response, the same models are considered including 

viscous Rayleigh damping with a damping ratio equal to 20%. 

For all cases the fundamental frequency of the system is computed at which the 

frequency independent boundary is defined. The responses in the form of compliance 

functions are obtained by subjecting the system to harmonic unit loads with varying 

frequencies. The complia.nce functions of the models that do not include viscous 

damping are checked against the exact solutions for the half-space that are given 

by Luco and Westman (1972) and Oien (1';>] 1>. The compliances for the cases that 

consider viscous damping can not be checked against any exact solution, however 

their purpose is to show the influence that the viscosity has in the frequency 

independence of the boundary. 
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Figures (4.9) and (4.10) illustrate the results in the half-space for the vertical cases 

without and with internal viscous damping respectively. Figures (4.11> and (4.12) 

illustrate those corn?sponding to the hori:rontal cases. In view of these results the 

following conclusions may be drawn: 

Vertical excitation in the half-spa~~: 

a) The differences between the results obtained with frequency dependent and 

independent boundaries arE! small for the small model (L=4R), and almost negligible 

for the large model (L=:3R). In both cases the approximations achieved for the 

frequency range of interest are very significant. 

b) The errors tha,t both solutions give with respect to the exact solution in the low 

frequency range is due to the limited size in the vertical direction of the finite 

element modelt and the limitations of the Lysmer- Kulhemeyer boundary itself. 

c) In the hlo dimensional vertical case most of the energy is dissipated in the form 

of P and S waves. The energy radiated through the lateral boundary in the form of 

Rayleigh waves is not significant. Therefore, the differences between a frequency 

dependent and independent Rayleigh boundary are not important. 

d) Viscous damping in the soil tends to decrease the differences between the 

results obtained 'Nith both types of boundaries. In this particular case both sets of 

results completely coincide. 

Horizontal excitation in the half-space! 

a) Figures (4.9) and (4.10) show that the differences between the results obtained 

with both boundaries are small <within 10%). This differences are smaller for the 

large model than for the small one, which tends to indicate that the frequency 

dependency of the boundary decreases when the size of the model increases. 

b) Enlarging the model has a definite effect on the importance in the results. Not 

only does the frequency dependency lose importance, but also the response gets much 

closer to the exact solution. This leads to the conclusion that the 

Lysmer-Kulhemeyer boundary should only be applied at a moderate distance from the 

structure (6-8 times the semi-width of the footing), 
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Cv A 
- EXACT 

0.50 
6 FREQ. DEPENDENT BOUNDARY 

o FREQ. INDEPENDENT BOUNDARY 

0.25 

IMAG. 

o L _____ .i ___ r:::==~'~::::;i:;;;:;;' a = w_r 
o 0.5 2.0 0 Vs 

(a) DIMENSION S 

Cv 

0.50 

i 
! 

0.25 ~ 
! 

L Wi' 
O· -L---L-~~ao=-

o 0.5 1.0 1.5 2.0 V'S 

(b) DIMENSIONS L=8R AND H=3R 

Fig 4.9.- Vertical compliances of a rigid strip footing on an elastic halfspace. 

a) Dimensions L=4Rt H=:3R. b) Dimensions L=8Rt H=:3R. 
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- FREQ. DEPENDENT BOUNDARY 

o FREQ. INDEPENDENT BOUNDARY 

3.0 

IMAG. 

1.5 

o 
wR '---___ ---l _____ --L ____ -"'-____ -'-_~ .. - a = --
Vs 

o 
0.5 1.0 1.5 

Fig 4.10.- Vertical Compliances of a rigid strip footing resting on a viscoelastic 

halfspace, Dimensions of the model L=:::R and h=3R. 
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t b) DIMENSIONS L::: 8R AND H :::3R 

Fig 1.11.- Horizontal compliances of a rigid footing resting on a.n elastic halfspace. 

a) Di mensions L=4R and H=::::R. b) Dimensions L=8R a.nd H=:3R. 
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- FREQ. DEPEN DENT BOUNDARY 

o FREQ. INDEPENDENT BOUNDARY 
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Fig 4.12.- Horizontal compliance of a rigid strip footing resting on a viscoelastic 

halfspace. Dimensions of the model L=l3R and H=3R. 
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c) Since the nature of the wave propagation in this case is such that most of the 

energy is dissipated through the lateral boundaries in the form of Rayleigh waves, 

the results obtained demonstrate the validity of the proposed approach. 

d) Again the inclusion of viscous damping decreases the differences between both 

methods to such an extent that they become almost negligible. 

Horizontal excitation in one layer over a rigid base. 

Results in the large model for the frequency dependent and independent boundaries 

are so close in this case that their corresponding plots are superimposed on each 

other. Figure (4.1:;:) shows the differences between the responses of the large model 

L=8R and a model of length L=14R. It can be seen how close both solutions are, In 

both cases there is no difference between the frequency dependent and independent 

boundary. 

4.3.3.- THREE DIMENSIONAL CASES. 

The Lysmer-Kulhemeyer boundary is again used to obtain the vertical compliance of 

a rigid circular footing bonded to an elastic half-space. Since the results in the two 

dimensional cases gave a good idea of the dimensions of the model, only poe finite 

element model will be used for the three dimensional problem. Its length and depth 

are L=(;.R and H=5R. The material damping is not considered in this example. The 

results are illustrated in Figure (4.14)twhere they are compared to the exact 

solutions obtained by Luco and Westman (1971). 

The boundary is defined at a frequency equal to 6.5 rd/sec which corresponds to an 

adimensional frequency of a..=0.5. The differences between the exact and the 

approximate solution at that particular frequency are due to the size of the finite 

element model and the limitations of the viscous Lysmer-Kulhemeyer boundary 

itself. Overallt the approximations obtained with the frequency independent 

boundary over the frequency range of interest are quite good t especially in this case 

wheret according to Miller and Pursey (1955), 67% of the energy is transmitted in 

the form of Rayleigh waves that are supposed to be radiated with frequency 

dependent radiation boundaries only. 
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L = 8R 

L = 14R 

wR L-----L-----L-----I;~==~~~a=--o 0 0.5 1.0 1.5 2.0 Vs 

Fig 4.13.- Horizon t al camp liances of a rigid footing resting on a layer over a rigid 

base for different dimensions of the finite element model. 
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- EXACT SOLUTION 

o SOLUTION WITH FREQ. 
1.00 INDEPENDENT BOUNDARY 

0.75 

0.50 
IMAG 

0.25 

o wr 
&------1.----.....1-----...1------1-311_0 = --
o 0.5 1.0 1.5 2.0 C 

Fig 4.14,- Vertical compliance of a circular footing resting on an ela.stic halfspace. 
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4.:3.4.- CONCLUSIONS. 

Two important conclusions can be drawn from these results. 

a) The frequency dependent viscous Lysmer-Kulhemeyer boundary provides quite 

good results for two and three dimensional models with moderate sizes (length equal 

to 6-10 times the semi-width of the footing), This consideration is in agreement 

with the results obtained by Roesset and Ettorney (1977), 

b) For those cases in which the frequency independent boundary is obtained from the 

frequency dependent one by defining it at the fundamental frequency of the system 

good approximations are obtained. Errors decrease when the size of the model is 

increased and when internal viscpus damping is included. 



CHAPTER 5 

REDUCTION IN THE SIZE 

OF THE PROBLEM 

The utilization of the frequency independent boundary allows us to limit the size of 

t he finite element model. and consequently to reduce the computational effort 

involved in this ordinarily large problem. The use of sets of Ritz functions will 

further reduce the system of equations and render a solution of a.cceptable accura.cy. 

He will see in this chapter that reduced systems of equations obtained with 

Hilson-Yuan Ritz functions yield very good results i.n solving not only structural 

problems but wave propagation problems as weU. In this way the computational 

Eiffort involved in solving the original set of equations is greatly reduced. 

:;.1.- RITZ FUNCTIONS TECHNIQUES. 

~'tl.1.- Introduction. 

It is a well known fact that the use of only a few eigenvectors of a structural 

system renders a sufficiently accurate approximation to the total response of that 

system to ari earthquake type of loading. Wilson, Yuan and Dickens (1982) have 

c emonstrated that the use of subspaces expanded by a set of Ritz functions that are 

generated taking into account the spatial distribution of the load, yields more 

c.ccurate results than the approximations obtained with the subspace exp3.l1ded with 

the same number of eigenvectors. 

Hilson and Yuan used typical building and ca.ntilever cases to show their results. 

The following discussion will demonstrate by the use of several numerical examples 

how well these Ritz vectors approximate wave propagation and impedance type of 

~roblems in onet two and three dimensions. The Ritz vectors are automatically 

£snerated in a much faster and less costly way than the eigenvectors and therefore 

t hey become excellent candidates for the reduction of la.rge systems of equations, 

Le. the soil-structure systems. 
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5.1.2.- One dimension. 

Figure (5.1) shows the the problem of the transmission of a wave generated in a 

semi-infinite bar by a rectangular pulse applied at its tip. According to wave theory 

the pulse will propagate to infinity leaving a constant deformation S in the bar as 

shown in the lower half of figure (5.1>. In order to check the efficiency of the Ritz 

vector approach in modeling the problem, the bart whose characteristics are given in 

the same figure, is modeled with linear elements. The total number of degrees of 

freedom is 20. A dashpot is attached to the right end of the bar to simulate the 

infinite length of the bar. 

Sets of 3,5, and 7 Ritz functions are used to reduce the systems of equations. The 

analysis is carried out by step-by-step integration using the Newmark method, 

Newmark (1959). Figures (5.2>t(5.:3h(5.4) and (5.5) show, firstly the approximation to 

the exact solution obtained by the finite element approach, and secondly the degree 

of accuracy with which the Ritz functions approximate the finite element solution. 

As can be seen, the wave pattern and final deformation in the bar are approximated 

very well by the sets of 5 and 7 Ritz functions. The solution given by the set of 3 

Ritz vectors shows significant dispersions at several points. It may be conduded 

that only a few Ritz vectors provide an excellent approximation to wave propagation 

problems in one dimension. 

5.1.3.- Two dimens.!C!.'l2.' 

The impedanc.e problem shown in Figure (4.8) is now solved again using different 

sets of Ritz functions. Two cases are considered: first, the horizontal excitation in 

the half-space, and second, the horizontal excitation of one layer over a rigid 

bedrock. In both cases the dimensions were L=8R. Internal viscous damping and a 

frequency independent bounda.ry are included. The total number of degrees of 

freedom in the first and second cases was 428 and 400 respectively. 

Tables (5.1> and (5.2) show how the results obtained with sets of 5,8,12,16,20,25,35, 

and 50 Ritz vectors compared with those obtained with the complete set of 

equations. Maximum errors over the frequency range of study are also shown. By 

increasing the number of Ritz vectors the approximation converges to the exact 

solution, and as seen in the tablest the results are outstanding. 
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RITZ VECTORS Comp(t. 
Set ---'-'1---

20 25 35 50 428 ····_·_·-t··_·_ .... ...., .... ~~-- ... -- .. _....,----.--- --.---.-

.6141 .614 .618 .622 ,645 

DIFFERENT SETS OF 
--.. 1·· .... -.. -----· ........ -.. -... -j.-...... -.~-... ..-

w (rcrsec 5 8 12 16 
-- "- -----"--~- ..... -. 

! 2.6 .591 .600 .604 .610 
---·-f-----·--- ---_ ..... _.-

.572 ( .572 .575 . 577
1 

.613 
----_. -- --

i 

.498' .500 1~ .496 1 .492 1 --._-1"-_ ....... 
~ 

.400 
. 

.402. .402 .4011 .3951 ._---_ .. ! , j 9 ,16 I,' '~~,: .• =a-. .:_40~- '" . .:~0?.L.~~.05f.- J-. 
; I i j I! 
,13. 0 ! .]20

1
. 320

1 

.315j.313 .314 •. J_1_3+1_._3_1_2+\_.3_1_2-+(_:31~ 

t-~2-.~ .. 2-.l.~_2.?~_.~~ 2 ~+_ . 218 ~~~ __ ~ 217 I ' .. 21 ~ I . 2171 . 21 ?_)_ ... : .. ~.~?~ 
; 26.0 i .2381 .1581 .159\ ,1591 ,159 [ .159 1 .159i ,1591 .159i 
~ Max'---:-

I
; - ; ~I; It t . - '-'--r-.,:,,: -';":'-+-1 .. ---;i-~:.....t-I -":"';'-.41 

I I Jl ; Error% i 33.0 j 5. 3~,_4_._7_3 ..... ! _3_0_7_9-+.1_3_,1_5_, __ . _3_,1_0",""",-; _2_,_5+.! _1_,_8_9-J1 ___ --'_. 

TABLE 5.1 - Amplitudes of the horizontal compliances of a rigid 
strip footing resting on a viscoelastic halfspace. 



TABLE 5.2 - Amplitudes of the horizontal compliances of a rigid 
strip footing resting on a layer over a rigid base. 
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TYPE OF 

LOAD 

p (t ) 

'"'-__ ---o._~- t 

EXACT DISPLACEMENT AT THREE DIFFERENT TIMES: 

t :: t 
3 

1, __ ---..11 _________ LOAD 

'.~ ,-----=-------------- DISPL. 

----------~-------------------LOAD 

[------~--~------ DISPL. 

I LOAD 

~ __________________________ ~I DISPL. 

Fig 5.1.- One dimensional wave propagation example. 
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66 

6 t =0.4 sec 

o 

o 

6 t :; 0.5 sec 

5 

3 
5 
7 

--20 

10 

---o ~----------------~~~~~--~-~_-_--------

o 5 10 

6 t :: 0.6 sec 

-------o ~----------------------------~~~~~--~_--__ --__ -_-------

o 5 

LENGTH 

Fig 5.3. 

10 



6 

o 

o 

..... 6 
Z 
W 
~ 
W 
u 
« 
..J 
Cl.. 0 
(f) 

0 
0 

6 

o 

t = 0.7 sec 

"-,,-

t = 0.8 sec 

t = 0.9 sec 

5 

5 

5 

LENGTH 

Fig 5.4. 

3 
5 
7 
20 

--- ----

10 

10 

10 



68 

6 

o 

I- 6 
Z 
w 
~ 
w 
u 
<{ 
...J 
a.. 0 
U) 

0 

6 

o 

3 
5 
7 
20 

~ ___ t~=~I.~o~s:e~c~ ____________________ -=~~::~:::;._~.~ 
l_ 10 

o 5 

. -.- . 
.--' ................. 

= 1.1 sec 

0 

t :: I. 2 sec 

o 

..... _. ---=-:...:-;.;;-.. ------~""'-

-""-

5 

LENGTH 

Fig 5.5. 

~-------

....... 



I­
z 
w 
~ 
w 
() 

<l: 
-' a.. 
(J) 

6 

6 

o 0 

6 

o 

..,."., 

---- - - --:,.--..,:: ____ «B ____ _ 

-." ......... -_.--

3 
5 
7 

--20 

-----------

--- --- ~ - ... ----....". ....... ........... 
~ ~ -....... -.~ .'. --- ... .-.-- ... ~ - ----

t= 1.3sec 

5 

--=:.:-...:::..---- --~.- '"'-.- --. - .-- - --------------~-:. -- ......... --------

t = I. 4 sec 

5 

......- ....... - ---- ---- -- . -. -..,.. -- --'.-- ~ -.-.--=..-~-.~.--=.;---

~~ ---------------

t::: I. 5 sec 

10 

10 

o L-__ ~ __ ~~ ____ L_ __ ~ ____ ~ __ ~ ____ ~ ____ ~ __ _L __ ~ 

o 5 10 

LENGTH 

Fig 5.5 (cont.) 



70 

For a set of ~:5 Ritz vectors (less than 10% of the total number of degrees of 

freedom) the maximum error over the frequency range is 2.5"1". The rapid convergence 

of the Ritz functions to the complete solution for high frequencies is due to the 

attenuation cilLlsed by the viscous damping. 

5.1.4.- Three dimensions. 

The impedance problem shown in Figure (4.14) is solved again using a set of 63 Ritz 

vectors which correspond to 10% of the total number of degrees of freedom. Table 

(5.3) shows the amplitude of the compliance functions obtained with the Ritz vectors 

and with the complete set of equations. This time no viscous damping is considered. 

The results showt as expected, more discrepancy in the high frequency range. This is 

contrary to the two dimensional case where the high frequency content was damped 

out by the material damping. 

CONCLUSIONS. 

It has been shown that a sma.ll number of Ritz functions suffice to give an excellent 

approximation not only to structural problemst but to wave propagation problems as 

well. The necessary number of functions will depend on the degree of accuracy 

desired for the high ft'equency content. Global functions fail to represent the 

propaga.tion of high frequency waves. Howevert since in general material damping 

will be included in the soil, the high frequency content will be attenuated and a small 

set of Ritz functions will provide an excellent approximation throughout the 

frequency range. 

Moreovert for most cases tile major part of the structural response is contained in a 

few modes that are located in the low-medium frequency range. For this range the 

Ritz vectors provide an excellent approximation as seen above. 



I w(rd/s:Ji~~~ c~~~;t-Er~-
r 
! 6.5 .873 .871 0.23 
i--'----+-------- t--------,-I--------
i 
1 13.0 .862 .822 I 4.64 

\---19_.5_0 ___ ~61~. ____ -.:6 36JZ.99 I
j i....-_

2_6 . O_O_-ll __ ~~ 0 l .447 ! 10.51 __ 

TABLE 5.3 - Amplitudes of the vertical compliances 
of a rigid circular footing resting on 
an elastic halfspace. 
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5.2.- SUBSTRUCTURES. 

The dynamic substructuring concept is closely rela.ted to the idea of redudng the 

number of degrees of freedom of a certain structural system while retaining at the 

same time a high accuracy in its dynamic response. The reduction is not done globally 

as mentioned abovE', but at the substructure level, and compatibility of 

displacements and forces a.t the substructure interfaces generates the complete set 

of equations of the complete structure. Soil-structure interaction problems invite 

the idea. of dynamic substructuring because of the size of the proble., and because 

the structure (or structures) and the StU can be reduced separately to be coupled 

together for the global solution. 

Many methods have been proposed for dynamic substructuring. The GlIya.n, Hurty, 

Hinh, and McNeal methods are several of the most Llsed. Dickens <1980> analyzes 

them extensively and compares them with the subspace iteration algorithm. In what 

follows the concepts of each of the methods will be summarized 1 and a new method 

will be proposed that is more suitable for soil-structure interaction systems. 

5.2.1.- Review of the existing methods of substructurin,g. 

a) Guyan method ~ 

GlIyan (1965) proposed a method by which the degrees of freedom of each 

5ubsi:rLlcttwe are divided into master and slave, The slave degrees of freedom are 

defined in terms of the master ones by means of static condensation. The free 

vibration equ,%tions of a substructure are: 

Fmm static condensation 

(&.2.) 

thl.l!". 

(5.3) 
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Note that (5,:3) l'I?presents a set of Ritz vectors which are equal to the static 

displa.cements at the s1.3.ve degrees of freedom obtained from unit displacements at 

the master degrees of freedom·, Using (5.:3) as a transformation of coordinates, 

Equation (5,1) can be reduced to 

(~.4) 

where 

The applica.tion of this technique to dynamic substructuring is very simple. The 

boundary and s0!leded internal nodes a.re ta.ken a.s the master nodes. The inclusion of 

the boundary nodes aHows the direct assemblage of all the substructure Equations, 

as in the direct stiffne£is metllod. 

b) H~Iri:L[neth9d (Component mode synthesis), 

Hurty <1971.) used two types of vectors to reduce the substructure system of 

Equations. First, like in the Guyan/s method, the slave degrees of freedom are 

statically condenser! to the boundary ones. In order to represent the dynamic 

c:hara,cteristics of the sub!..;tructllre a second set of Ritz functions is formed with the 

eigenvectors obtained by fixing the boundary. Only a few of these eigenvectors are 

usually needed. The governing Equations are: 

where the sut,jnriic:es liS" and lim" r2present slave and master respectively. The 

reduction of (5,:1 j according to (~i.(:.) yields the following transformed stiffness and 

mass matrices: 



As in the Guya,n Iliet.hod all the boundary degrees pf freedom ha.ve been retained and 

therefOl"E! the assemblage of each of the substructures into the total system is 

direct, 

c) Hintz and McJieaJ metllods} 

Hintz (976) used the same concept a.s that the component mode synthesis and 

proposes as a set of Ritz vectors the eigenvectors of the unrestrained substructure 

plus a set of vectors obtained from the static solution of unit forces at the boundary 

degrees of freedom, The transformation is now 

The expr'tE'ssionsfor the reduced mass and stiffness become more involved for this 

case ,3,nd I,l,'Ul not be included here. However this is not the main inconvenience. In 

order to assemble the substructures in the total system, compatibility conditions 

have to be met, If x, ;. and X:k'i represent the bounda.ry displacements between 
Olin. 

substructure 1 and 2 respectively; the condition to be met is J<;:b1:::Xb2+ This means 

that 

(S.l) 

Thus prior to the assemblage of each D'F the substructures into the total system the 

a,Dove compatibility conditions hay!? to imposed at each set of connecting 

substructures, 

lVkNE:<1i's method 097l.l is baskaHy the same as the Hintz method with the exception 

that the eigenvE!itors a,n~ nO~1} obtained with a.t least a ;;tatically determinate set of 

boundary d8gree::; ,-}j:: Freedom restrainEd. Again compCl:tibility conditions have to be 

satisfied before the assembla!~e of substructures can be carried out, 

·file prc!blern i!!, nO~>1 to 'Find a slIbs"tructuring procedure that will most conveniently 

suit tivO) cha,racteristics of soil-structure interaction systems, 
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The starting point will be the general Equation of motion in terms of the relative 

displacements derived fe)l' the boundary methods in Section 3.3.2. (The procedure will 

apply identically the same for the volL:me methods.) Equation (:3.11> is rewritten 

again here 

[m.t-m.p. + tc• ~ cJ v ... [.k.,.+ 1<01 v.' - ( l "VlTll V"." {~11 ii, 
The subindex "g" may represent either the boundary degrees of freedom for the 

boundary method or all the bLiried structural degrees of freedom for the volume 

methods. In this manner all the subsequent formulation can be applied to both 

methods simultaneously. 

As mentioned before, one way of reducing the total system is by using global Ritz 

functions. Ever. though this can not be considered a real substructuring technique it 

is m(~ntioned here beca.lIse it will be used later to compare its results with those of 

the proposed sllbstructuring procedure. Several methods of reducing the Equations of 

motion of the soil-structure systems are described next. 

a) Define the following displacement transformation: 

'Where v t v and v are the displacements at the structure, boundary interfacet 
s g a 

and soil respectivelYt and (1' is a set of global Ritz vectors. Substituting this 

transformation into Equation (5.8) and premultiplying by 1; leads to: 

* .. *- ~T[_) {OJ]" M Y + C Y + K Y = - T I (m~ + Me;. r~ + ~~ V5 

where 

1'1* = t"T [me + mG] ~ 

Kit< = t T [ ~ + ~c.1 t 
C$ :. t1'[.cc + 'C:c]<t 

Call 91 the procedure defined by Equation (5:9). 
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b) The R.H .S. of Equation (5.9) may be obtained once the mass and the stiffness have 

already been reduced. This would yield the following Equations: 

1i1-9 + C&y ... K¥Y = - r. """0 + ;.T t ;)1 ;;~ 
where M*,C* and X* are defined in Equation <5.10). and 

'0' - (I<.-t;.~ \~1 
Equation (5.11> defines the procedure S2. 

Equation (5.11> may be obtained formally from the Equations of motion (3.7) (Section 

(3.::::.2» that is expressed in terms of the total added displacements by defining the 

following transformation 

(S.l2.) 

where cP is the same set of global Ritz functions as that defined in part a. Applying 

the transformation defined by (5.12), Equation (:;:.7) becomes: 

",$Yot + C"Y~ + K"Y.' 0 -'V{:,,)~, -<r{;}~, -'fl~ J 9~ 
Now we can express y c t as the summation of it. dynamic component plus a pseudo­

static one. Following the same procedure as that of Section (3.3.2), the generalized 

coordinates can be expressed as: 

{:: d d ()I: )-' T {k' } ... 
)Ie;. .. Yc. + t"c:. V, li-' 'lie. - \< <\> ~~, ", 

thus 

)II;'<! ~ d ~. "I' •• 

( {
o )1.v C Y + K Y ::: - M rC, + <f ~~, "'j 

where K*, C* and K* are defined in (5.1(1) and r is: 
c 
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Note that the l..B,S. of Equations (5.14) and (5.11) are identical. The R.B.S. of (5.14) 

is the Rib: approximation to the R.H.S. of <5'.11), Once Equation (5.14) is solved for 

the generalized displacementSt the relative coordinates will be v= + y , The 

total forces in the str-ucture can he obtained from v. 

c) A substructuring procedure that may suit the characteristics of soil-structure 

interaction problems can be obtained by extending the concepts of the component 

mode synthesis techniques. Consider the structure-soil system shown in Figure 5.1. 

The structure and soil can be separated into two different substructures. The 

displacements of the first may be expressed (as in component mode synthesis) in 

terms of a set of Ritz vectors obtained considering the structure fixed (see Fig 5tIlt 

plus a set of vectors that statically condensate the structural degrees of freedom to 

the foundation. The transforma.tion is then: 

{ "lit 1 '" [4'5 -k;: ~ 1 J '3$ 1,.. i~ 'Is 
"~ J 0 I t v, J (S.IS) 

where ~s is the set of Ritz vectors and Y", is the generated Ritz coordini:l.tes • 
..> 

Figure 5.lc shows the second substrudul"et which consists on the soil system plus 

the foundation. This system is reduced entirely by Ritz vectors according to the 

following expression! 

The assemb12.ge of both sutlstructures can not be done directly, since the boundary 

displacements in th,re SDil. have been expressed in terms of the Ritz coordinates. As 

in the Hinb: method compatibility conditions an? necessary at the interface degrees 

of freedom. These constraints are defined by the first set of Equations of (5.16): 

(s.rT) 

Ttle substitution of (5.17) into (5.15) yields: 
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Equations (5.17) and (5.18) allow the direct assemblage of the substructure reduced 

matrices. The reason why a Hurty type of sub structuring has not been used here is 

because the number of degr::?E?s of freedom at the foundation v \vill generally be 

large. They need be reduc2d as those in other parts of the total system. The 

compatibility condition imposed in Equation (5.17) is not difficult to implement 

nLJmerically, since it merely consists of backsubstituting the vectors <P'l in the 

already triangula.rized superstructure stiffness matrix. Therefore, the vector 

-:Ie -1:Ie can be obtained directly, without the need to invert:Ie • It is 
55 sg 55 

worth noting that the exposed substructure procedure is equivalent to a global 

transformation defined by the following expression! 

Once the displacements transformation matrices have been defined, the reduction of 

the substructure mass, stiffness and damping matrices is straightfonvard! 

Str~lcture! Soil! 

!:Jill\. ~:M5~$ lit i! M~¥o. ::: MQ, = s 

c* s 
., ~: C:;?es CYJ!. ... 

0.. ~: Co. 9?o. 

v..: ~ ~: ~<~ ~~ K!. ~ <f~ ~ ~~ 
The assemhl.a.ge of the substructure matrices will yield the total matrices M\ 

C *, and J:<:::*. Due to the particular nature of the soil-structure interaction 

problem, the load vector has to be computed once the mass/stiffness and damping of 

the total sy·;;tem have been formed. After a.ssembling, the Equations of the system 

are similar to EquatiDfI (5.14) 

M~9 + C"'Y + K"y " [- M * ro + ~T t:',)] §, (s.t~) 

where 

('0.2.0) 

and ~: is given by Equation (5.1'::). 
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Substituting (5.18) in (5.20) and (5.19), the R.H.S. of (5,19) becomes: 

Note that the vectors (1) and (2) in (5.21> may be formed in the structure at the 
* *-1 substructure level. The last step is to compute M (K) • The complete 

reduced system is now ready for numerical integration. Equation (5.21) defines the 

procedure S:3 for subsequent computations. 

5,2..:3.-Numerical examj21e. 

To check the methods considered in section 5.:::.2 a small numerical example is 

carried out. A fictitiolls soil-structure system is modeled with a E: degrees of 

freedom shear beam model that is illustrated in Figure 5.2. The fundamental period 

of the structure on a fixed base is 0.4 seCt and that of the soil alone is 0.5 sec. The 

fundamental period of the ensemble is 0.625 sec, which shows that there is 

significant interaction between both systems. 

The soil-structure model is subjected to a free field motion equal to the W-E 

component of the Taft earthquake. The Equations of motion are integrated 

numerically by the Newma.rk step-by-step integration procedure. The time step is 

chosen sufficiently sma.ll to avoid numerical perturbation. The system is solved 

using the following different approaches: 

1,- It complete run is made (8 dofs) to obtained the master solution. 

2.- The system is reduced with sets of 1,2,3, and 4 eigenvectors and solved 

according to the procedure S1 explained above. 

:;::,- The system is reduced with sets of 1,2 t3 t and 4 Wilson-Yuan Ritz vectors and 

solved according to the procedure S1. 

4.- The system and load vector are reduced with sets of 1,2,3 and 4 Wilson- Yuan 

Ritz vectors and solved according to procedure S2. 

5.- The system is solved with sets of Wilson-Yuan vectors in the soil and structure 



~l 31 STRUCTURE 

4 MASSES 

( 
Ib·sec ) 

2 3 4 5 6 7 8 
12.35 24.7 34.7 24.7 83.4 117.4 117.4 117.4 

5 10~ ft 

SOIL 

SHEAR STIFFNESS: 

(k/ft) 

ks = 39520 

kG = 120250 

LENGTH OF THE ELEMENTS Ls = 8.33 ft 

I'-G = 50. Oft 

Fig 5.7.- Charaderistics of a fictitious soil-structure system. 
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using the sub structuring procedure S3. 

The maximum displacements and story forces obtained by the different methods are 

given in Table 4. Comparison~; are made with respect to the complete model. In view 

of the results the following comments may be made: 

* All the methods give good results that converge to the complete solution as the 

number of Ritz vectors is increased. 

* Differences between the third and fourth approaches are very small. This 

demonstrates that the assumption of approximating the R.H.S. of the Equation of 

motion with Ritz vectors is feasible. 

* Errors resulting from reducing the system with eigenvectors in one side and Ritz 

functions in the other are of the same order of magnitude. The eigen solution 

provides an approxima.tion to the the exact solution from below, whereas that 

provided by the Wilson-Yuan Ritz vectors oscillates with respect to it. For instance, 

the three vector solLltion with Wilson-Yuan Ritz vectors gives a better response 

that the eigenvectors, while the four vector solution is better using the 

eigenvectors, although the differences between them are very small. 

* The substructuring approach also gives very good results. The solution obtained 

with two Ritz functions in the structure and 2 in the soil gives an approxima.tion of 

the same order" as that obtained with four global vectors. 

Conclusion: 

aJ The Wilson-Yuan Ritz vectors and the eigenvectors give solutions with the same 

degree of approximation. Since the Ritz vectors are obtained with much less 

computational effort than the eigenvectors, they become a better candidate for the 

solution of soil-structure interaction problems where the sizes of the models are 

qui te large. 

b) The substruduring procedure defined in Section 5.3.2 renders very good results. 

Again dUE! to the effectiveness and the simple way by which the Ritz vectors are 

obtained, this slIbstructuring method becomes not only ideal for soil-structure 

intera.ction probh'!mst but also for general dynamic substructuring. 
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CHAPTER. .6 

SOLUTION TO THE SCATTERING 

AND NON:-LINEAR PROBLEMS 

1:...1.- SCATTERING PROBLEM: 

As we have seen throughout the time domain formulation, in order to solve the 

soil-structure interaction problem of an embedded structure by the boundary method, 

a scattering problem needs to be solved first. This is the only way in which the 

motions at the interface between soil and structure may be computed. So far, in the 

literature that deals with this problem, the only method that is given to solve the 

scattering problem is to model the scattering field with finite elements and to 

introduce the input motion at the rock basement, as shown in the figure below. 

In what followsl a new method is presented that makes use of the superposition 

principle to define the equations of motion in terms of the free field accelerations 

at the excava.ted part of the soil. Since the motion is defined at the soil-structure 

interface (inside the model> the input does not interfere with the transmitting 

boundaries placed at the edges of the model. A reduction on the size of the model can 

be achieved by using the vHlson-Yuan Ritz functions as explained in Chapter 5. 

Using the principle of superposition the free field problem can be divided into two 

parts as illustrated in Figure t .• 1. The first one corresponds to the scattering 

problem and the s@cond to the interaction problem, The general equations for the 

total system are! <Damping terms are not included for simplification.) 

Mu + Ku = Q({:;) 

and for the scattering: 

(~.2.) 
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applying the superposition principle: 

U" v" + U.f 

or 

The substitution of (6.6) and (6.1) in (6.2) yields: 

arranging terms: 

Equa.tion (6.4) can be solved for the added motions and uf may be obtained from 
(6.3), 

The physical property matrices are: 

l:" 
0 

:j 
11<~ kll'l.b 

:~ \ M .. rna, K= 
\ Kb& 

klPb 

0 ",,0 ka.\r) kM, 

and ro 0 

:J l: 
0 

~1 M~ .. \0 m>li' Kf = ~ b 

lO 0 ~ k(IA 

Equation (6.4) becomes! 

roo ir1 [0 
0 

°1r} [~O °r'1 r' -~ 

:1t~\ o ~: 0 I ~~ + 0 
k"" ~ u::: 0 ~-m~O ~,,+_~ kw..-Kb\r. I:r 

o 0 ~ J tJ~ La ~ kac., u~ 0 0 0 Uo. 0 0 

The first equation vanishes. The second and third become: 

Equation (t •• 5) is in terms of the added displacements. Note that the load vector is 

defined at the interface degrees of freedom. 
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i 
Once the added motions u b are known, the motions of the scattering problem are 

obtained from: 

U~b = U b - Ub 
Equation (6.5) can be expressed in terms of the accelerations by simply considering 

the total displacements as the sum of quasi-static plus dynamic displacements: 

IJ~ = ur 

+ ~C:l 
thus 

r. r" k~ ~ll:' ~1 
Substituting (6.6) into (6.5) we get: 

Equation (6.7) is expY'essed in terms of the accelerations only. This equation may be 

further simplified by reducing the number of degrees of freedom by the· techniques 

explained in Cha.pter 5. 

/:: .• 2.-· NONLINEAR ANALYSIS: 

The concepts used so far can be easily extended to include nonlinearities in the soil 

near the foundation of the strLicturt!. Consider the case of a soil-structure system 

in which the portion of soil close to the foundation (see Figure (6,2» may behave 

nonlinearly due to the uplifting of the structure or plastic behavior of the material. 

As shown in the Figure, v t , v t, v t and v t represent the total motions at the 
n 9 a. 

structure,the nonlinear part of the soil, the boundary interface, and the linear part 

of the soil respectively. The total displacements may be divided, as done in the 

boundary methods, into the added v
t 

plus the free field:':: • c c 

·0 v 

0 
v.'\: 

VII 

VG "- <JI.t'\d = v, c:. 
v';1 

... 
v(II, Vcr. 



vt v
t n 

(a
) 

C
O

M
P

L
E

T
E

 N
O

N
L

IN
E

A
R

 
P

R
O

B
L

E
M

 

+
 

'l"
' 

.\ 
.....

 
Va

 
~
- V

g 

(b
) 

S
C

A
T

T
E

R
IN

G
 P

R
O

B
L

E
M

 

..
 

P
O

IN
T

S
 A

T
 W

H
IC

H
 T

H
E

 I
N

P
U

T
 M

O
T

IO
N

S
 A

R
E

 S
P

E
C

IF
IE

D
. 

F
ig

 6
.2

.-
T

w
o 

st
ep

 s
o

lu
ti

o
n

 f
o

r 
th

e 
no

nl
in

ea
r 

pr
ob

le
m

, 

v ,V
n 

Va
 

Vg
 

(c
) 

A
D

D
E

D
 

P
R

O
B

L
E

M
 

(X
l 

(X
l 



89 

As can be seen the added motions contain the total displacements of the structure 

and the nonlinear part of the soil. Therefore Equation (:3.7) that is reltJritten below 

is perfectly suitable for nonlinear analYSis in those regions. 

0 0 0 

L me. + m 1 v; + l c:. + c] v: + [kc:.+ k] vt ::. - "" - c, ,..,. ~ ,.. .. v. v., - V9 , 
M'fl c" k" 
0 0 0 

The solution to this problem may be achieved in two steps: 

1) Solve the scattering problem according to Section t .• l, in order to obtain the 

motions at the boundary, v ,that constitute the input of the interaction problem, 
g 

<Equation (3.7», 

2) Solve Equation <:3.7) for the added displacements. The total displacements in the 

nonlinear part of the soil and the structure will be given directly. Since the 

nonlinearities are localized at the foundation level, the elastic parst of soil and 

structure can be reduced by using Wilson-Yuan mtz functions and the substructuring 

techniques explained in Chapter 5. The reduced elastic components can then be 

coupled to the nonlinear part, and only the latter needs to be modified during the 

response analysis, Clough and Wilson (1979), 



CHAPTER 7 

MODELIl'lEG AND SOLUTION OF 

SOIL-STR"t:1C TURE INTERAC TION 

PROBLEMS :IN THE TIME DOMAIN 

7.1.- MODELING THE SOIL-STRUCTURE SYSTEM: 

So far all the techniques presented are aimed at modeling the soil-structure problem 

in the time domain. The main concern in saving computer time and storage is to 

reduce the siIe of the finite element model and maintain at the same time a high 

level of accuracy. ThuSt the frequency independent boundary and the reduction of the 

number of degrees of freedom by sub structuring techniques are of most importance. 

In this section a general technique for geometrically modeling the soil-structure 

system is explained. This technique is based on the combined use of solid and 

axisymmetric elements to model the soil in the near and far field respectively. 

Figure (7.1> shows the way of modeling a general soil-structure system. A certain 

structure will be represented with standard finite elements. The foundation of the 

structure will be attached to :3 to 27 node solid elements (see Appendix B) that will 

extend throughout the near field region of the soil. At a certain distance from the 

structure the behavior tends to be similar to that of an axisymmetric system with 

non axisymmetric loads. The far field then. can be modeled by several harmonic 

expansions of axisymmetric finite elements (See A.ppendix A). 

In order to couple both the near and the far fields. the displacements corresponding 

to the solid elements at the boundary between both regions are expanded in terms of 

Fourier series. The corresponding displacement transformation matrices are used to 

transform the solid maSSt ... tiffnesst and damping ma:i:rices of the solid elements in 

contact with the axisymmE!tric mesh. All the operations are carried out at the 

element level. (See Appendix B). 
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The frequency independent boundary can now be attached to the edges of the modelt 

and the substructuring techniques can be used to reduce the systems of equations. 

The maximum size of the element is controlled by the size of the wave length 

corresponding to the maximum frequency to be correctly transmitted through the 

finite element mesh. For linear elements the size recommended is h = A f8 for 

lumped mass matricest where h is the length of the element and A is the minimum 

wave length to be transmitted accuratelYt Lysmer and Kulhemeyer <197:3), For 

quadratic elements the size of the element can be extended to ~ f 4. 

7.2.- DAMPING. 

Generation of da.mping matrices presents special difficulties. The internal energy 

dissipation mechanisms in soils and structures depend on many factors that a.re 

difficult or almost impossible to account for analytically in a deterministic way. 

Usually all the damping effects are considered by defining damping ratios in the 

natural mndes of vibration, Some of the bases for assigning those vah,es are 

harmonic:: vibr·3tirm tests, ambient vibration measurements and recorded response 

during earthql1akes. 

Damping ratios are different for different materials, and for a given material they 

vary with the level of strain at which that material is behaving. Thus for a soil­

structure system different damping ratios will be defined; those corresponding to 

the different structural materials (steel-concretelt and to the different types of soil 

composing the site. The lise of distinct damping ratios leads irremediably to 

nonproportional damping matrices that can not be diagonalized by the undamped mode 

shapes and freQ.uencies, Due to the variation of damping ratios for different parts of 

the structure, the damping matrices win have to be defined at the element level. 

Viscous damping has been the common assumption in time domain calculations. For a 

viscous mechanism the viscous forces are proportional to the velocity: 

Where C is the viscolls damping matrix. 



RAYLEIGH DAMPING 

--- MASS PROPORTIONAL DAMPING 

_.-._. STIFFNESS PROPORTIONAL DAMPING 

I , , 
\ 
\ 
\ 
\ 
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eo --\--­
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,I /" 
":<" . ..>' "-

•/ I ......... I -...-
'=L ---- --- -

w 

Fig 7.2.- Variation of the Rayleigh damping ratio with respect to frequency. 
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The matrix C can be defined in terms of Caughey series U 960) : 

'" s: :: z.. tl.n tj (~_\~)"t 
1'1.0 

This provides a proportiona.ll damping matrix. The Rayleigh damping model, proposed 

by Rayleigh much before the Caughey series were developed, happens to coincide 

with the first two terms of these series: 

C I:.'i Q.. M + bk ..., --" ......, 

The coefficients a and b are obtained by matching the damping ratio at two different 

frequencies. Their general eJcpression ist (Clough and PenIlen 1975) 

where w 1 and """2 are the frequencies at which a cedain damping ratio ~ is 

sp ecified. The damping r':ltio at other frequencies is defined by the fallowing 

relation: 
~=~ + ~ 
"'" ZIM, 2.. 

The variation of ~ with respect to frequency is shown in Figure (7.2). A viscous 

damping mechanism yields an energy loss per cycle that is dependent on frequency: 

where """~ is the frequency and A the amplitude of a harmonic excitation. 

Consequently, this formulation leads to large damping ratios and increasing energy 

loss at hig h frequencies. which means that the high frequency content of the 

response will be numerically much more damped than the law frequency content. This 

behavior although in agreement with the comportment of fluids and gases, is in 

contrast with the observation that for structural and soil materialst damping ratios 

differ very slightly with respect to frequency~ 

As a cOl1sequenCEt the Expression (7.1) has to be used very judiciously when applied 

to soil-structure $ystemsl~ by selecting those values of w
1 

and 'V>I
2 

that will keep 

the vad,ation of the damping ratio as constant as possible within the desired 

frequency interval. Kalvhi"ti <1981>t developed an optimized Rayleigh damping ba.sed 

on the application of least squares techniques to minimiIE! the distance between a 

horizontal line of constant damping and the Rayleigh damping curve. 
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The hysteretic type of damping leads to a damping ratio and an energy dissipation 

mechanism that axe independent of frequency, and consequently becomes a better 

candidate for the representation of soil and structural damping. A hysteretic 

damping mechanism is define>d as that for which the damping forces are proportional 

to the amplitude of the displacements but have the direction of the velocity: 

It can be demonstrated that tile damping ratio is now constant throughout the 

frequency range. ThE:' energy loss per cycle is frequency independent and equal to: 

where::· f3 is a hysteretic damping coefficient and k the generalized stiffness. Again 

A is the amplitude of the response. 

The direct lise of Expref.'sion (7.2) leads to a nonlinear set of dynamic equations. The 

nonlinearity can be eliminated in a step-by-step integration by defining the damping 

terms at the beginning of each time step from the values of displacements and 

veloci ties of the previous step, and by transferring them to the R,H.S. of the 

equa.tion. Since the damping forces are generally small t the errors introduced are 

negligible provided that thE' numerical integration is carried out with a small time 

step. Kalvhati (1978). This will insure that sudden jumps in the absolute values of 

the displacements Dr the direction of the velocity do not take place. 

The rela.tion beh'Jeen the hystetetic damping coefficient and the damping ratio can be 

stated by equating the energy loss per cycle. This yie.ld.s the following relation: 

z..p kA2. :; 1l'cA2. w 

Thus 

In the frequency domain the hysteretic damping can be accounted for by the use of 

complex stiffness matrices. The damping force is defined as 

+1) ow i. 'OJ<-~ 

~\lhete k is the stiffness matrix and n the hysteretic damping factor. 



The energy loss per cycle is again independent of frequency and equal to 

E ""1lnkK 

Again by eqLlating the energy loss per cycle for a viscous and hysteretic mechanism~ 

we can get the following reJlation between the damping ratio and the hysteretic 

damping coefficient: 

The general transfer function in the frequency domain becomes: 

It can be seen how easy it is to implement this type of damping in the frequency 

domain, but for obvious reasons is not possible to use it in the time domain. 

After this discussion, the question still remains as to what is the best solution for 

the time domain approach. Two alternate solutions are proposed: 

*- The first one is to introduce hysteretic damping at the element level with a 

hysteretic coefficient equal to f& =11'~ • The time step integration of the equations 

of motion can be carried ollt explicitly by transferring the damping terms to the 

R.H.S. of the equation of motion and by defining them at the beginning of each time 

step according to the velocity and displacement of the previous step. The time step 

will have to be kept small for accuracy reasons, 

*.- The second method consists of using several terms of the Caughey series, as 

explained below; so that as Iconstant a damping ratio as possible can be maintained 

throughout the frequency range of interest. 

In order to consh'uct a damping matrix of those characteristics, a method is 

provided, Clough and Penzien (975), to obtain the coefficients a. , a
i 

..... a.. of 
o 1 

the Caughey series. These coefficients are determined by expanding the generalized 

damping for each mode in terms of the Caughey series. 
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The final expression for the coefficients is: 

• '1 r" I w ,.~'-~ 1 I 

\ \~ 
, 

I 
1:: l ~ Wa .. . . ",,2.;'-3 

~ : :t~~ 2. . 

lL~ I W· .". W· 
" .. 

Where is the constant damping ratio • .,.,. a.re the selected frequencies and ,a.. are 
1 1 

the coefficients to be determined. 

A good selection of the frequencies ""'" 1 t \o'>J' 2 .... wi should provide a fairly 

constant damping ratio over the desired range of frequencies. wi should be the 

fundamental freqL'ency of the system. In order to select the rest of the frequencies a 

certain knowledge of the frequency characteristics of the soil-structure system is 

needed. Once the coefficients a. are known the calculation of the damping ma.trices 
], 

will be carried out a.t the element level. 

Wilson and Penzien (1'972>t proposed a method to compute directly the damping ma.trix 

of the system in terms of the generalized modal damping. The expression for the 

total damping is in thlS caset 

where fTlI is the ma.ss matrb:, are the specified darnping ratios, 'I.'" the modal n 
frequencies, M the generalized modal masses and ~>'\ the mode shapes. This 

n 
method has the inconvenience of having to obtain the mode shapes and frequencies 

for vlhich damping ratios are specified. 

Figures (7,:3) and (7.4) show the variation of damping with respect to frequency for a 

system with damping defined with an even number of terms of the Caughey serjes, 

and by the Wilson-Penzien approach respectively. As can be seent the latter provides 

a zero damping ratio for frequencies higher than ......... f Consequently, this approach is 
1 

not recommended unless provisions are made to damp the high frequency content of 

the system. 
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Fig 7.3.- Damping ratio versus frequency for "i" terms of the Caughey series. 
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w 

Fig 7.4.- Variation of the damping ratio obtained with l'llilson's and Penzien's 

approach. 
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7.3.- NUMERICAL INTEGRATION. 

Once the system of equations is formed and reduced by Ritz vectors or 

sub structuring techniques, its numerical integration can be ca.rried out by one of 

three possible ways in the time domain. 

The first method is modal 'inalysis. This well known technique makes use of the 

undamped eigenvalues and eigenvectors to decouple the system of equations. Each 

uncoupled modal equation can be solved exactly for earthquake type of loading by the 

linear force method. Since the major part of the response is contained in only a 

limited number of modes, this procedure would be perfect if it were not for the fact 

that, as shown above, the damping matrix is not proportional and therefore can not 

be decoupled by the undamped mode shapes and frequencies. Some approximate 

methods have been deviced to overcome this limitation. They are based on energy 

considerations and use dif·Ferent damping ratios for each model Roesset (1973) and 

Tsai (1974). However, they are more suited for structural systems rather than 

soil-structure ones, where due to the big discontinuities in damping characteristicst 

specially at the radiation boundary, the mentioned methods may not be accurate. 

The second way is direct integratiQ!lt The term "direct integration" encompasses a 

large and increasing number of time marching schemes that solve the equations of 

motions in small increment of time. Typical examples are Newmark's method (1959), 

the Wilson- e method (1973)t the« method etet (Bathe and r.-mson (1973», New 

methods continue to be developed to suit the specific characteristics of particular 

problems. Common troubles of all the direct integration methods are the spurious 

period elongation and amplitude modificationst which depend directly on the chosen 

time step, Hilbert (1976). These problems can only be overcome by shortening the 

time step at the expense of more time and storage. Regardless of these difficultiest 

the time step methods are very good candidates for the solution of linear dynamic: 

systems and the only ones for nonlinear systems. 
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The third method which is valid for linear systems is to decouple the equations of 

motion using the complex eigenvectors. This method is prohitive for large systems 

because of its numerical inefficiency, but becomes competitive with the time steps 

methods when the number of equations of the reduced system does not exceed 200. 

The main advantages of this approach being that for piece-wise linear excitation, 

once the set of equations is uncoupled, the time integration can be carried out 

inexpensively a.nd without introducing the numerical errors inherent in the 

step-by-step procedures. A detailed description of this method is given in Appendix 

C. 



CHAPTER :8 

NUMERICAL EXAMPLE 

The procedures explained ab()ve have been implemented in the computer program 

SAPSO, Wilson 1980, for the solution of soil-structure intera.ction problems in the 

time domain. To evaluate their effectiveness, a three dimensional soil structure 

system, whose characteristics are shown in Figure 8.1, is analyzed. The 

superstructure consits of a 2 degree of freedom system attached to a rigid massless 

circular foundation with a radius equal to 42 ft. The lumped masses are connected by 

frame elements. The foundation is attached to a semi-infinite halfspace with the 

characteristics depicted in Figure 8.1. The half-space is discretized with 

axisymmetric finite elements. The length and depth of the model are 5.5 and 5.8 

times the radius respectively, with a total number of degrees of freedom equal to 

714. 

The material damping is assi.gned a constant value for all the frequency range and 

equal to 7 "lot In order to represent this behaviour in the time domain 2 terms of the 

Caughey series are used (Rayleigh damping). The frequencies taken to match the 

given damping ratio are 23 and 70 rd/sec. This will insure a variation of the damping 

ratio of less than 0.7"to (ie. 6.1 to 7.9 "I.,) over the frequency range of 21 <: w ( 87 

rd/sec. Attached to the edges of the model is the Lysmer-Khulemeyer viscous 

damping boundary defined at the fundamental frequency of the system, which has 

been previously computed to be 25.8 rdlsec. 

The frequencies of the 2 degree of freedom model on a fixed base are 34.24 and 85.38 

I'd/sec. The significance of the soil-interaction effects in the dynamic: response of 

the system is apparent from the fact that the first resonant frequency for the 

structural response has bE~en reduced from 34.24 to 25.80 I'd/sec. The second 

resonant frequency varies to a lesser degree from 85.38 to 80.42 rd/sect which 

means that the interaction effects will be concentrated in the first resonant mode. 
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Fig 8.1.- Cha.racteristics of the example. 



The total system of equations is reduced globally with 2 different sets of Rib 

vectors, the fiY's t one has 1~) Ritz functions and the second 40 (2.1 and 5.6 % of the 

total number of degrees of freedom respectively), By running these two cases the 

convergence of the Ritz vector approach can be checked. The system is to be 

subjected to the vertical component of an earthquake excitation represented by the 

first 8 seconds of a given accelerogramt discretized at time intervals of 0.(11 seconds 

and with maximum aceceleration equal to 0.26 g. 

The results obtained with SAP8!) are to be compared with those obtained by the 

comp uter program SASSI (Lysmer et al 1981>, SASSI solves the problem in the 

frequency dOfl:-iin following the volume methods explained in Chapter 2.lt uses 

frequency dependent radiation boundaries, and complex stiffness coefficients (as 

explained in Chapter 7) to account for the constant damping ratio. 

Figures 8.2 and 8.:=: shaw the accelerograms at the top and bottom masses of the 

structural model obtained first by SAPElO, with 15 Ritz functions and with numerical 

integration by the complex E~igen'lectorSt and second by SASSI. As can be seen both 

accelerograms show minor differences only in the peak responses. The total maximum 

accelerations in "g" obtained by both programs are: 

DOFl DOF2 

SASSI -0.440 -0.:393 

SAPElO -0.456 -0,402 

The maximum discrepancy is :3.6"/0' Figures 8.4 and E:.5 show the response spectra at 

both degrees of freedom for 5% damping. As can be seen both solutions are very 

dose. The discrepancy between the two solutions at the peak of the spectrum is 9"1". 

Figures 8.6 and -a.7 show the ac:celerograms obtained by SAPElO with 40 Ritz 

functions, and SASSI. Both solutions are extremely close, except for minor 

differences in the peak responses. This case is also solved with a Newmark constant 

average acceleration step-by'-step method. The results are pnidicaUy identical with 

those obtained ~~ith the complex eigenvaluest and it is not consider necessary to plot 

them here. 
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The total maximum accelerations at both degrees of freedom are now: 

DOF1 DOF2 

SASSI -0.440 -0.393 

SAPE:O (step-by-step) -0.460 -0.:396 

SAP80 <cornplx eigvec> -0.452 -0.400 

The maximum discrepancy is now 2.5%. The response spectra for 5% damping shown in 

figures 8.8 and 8.1 show how close both solutions are. The differences in the 

interval of periods between 0.1 and 0.3 seconds are due to the different ways by 

which both methods represent the material damping. The maximum discrepancy at the 

peak is now 2.5%. 

In order to see how important the interaction effects are in this case. the two 

degree of freedom model is analyzed for the given input considering its base fixed. 

The maximum accelerations obtained in this w~.y are 0.647 g and 0.424g. which 

indicates that the reduction achieved by considering the interaction effects is of 

the order of :30%. This difference increases substantially when comparing the 

response spectra of the model with and without interaction effects, as illustrated in 

Figures 8.10 and 8.11. They show the drastic reduction of the response and the 

shifting of the resonant periods due to the interaction. A third resonant period 

appears at 0.2';>:3 seconds due to the participation of the soii~ 

The program SAP80 was run using a VAX 780 and SASSI using a CDC 7600 computer. 

The cpu time used by both methods are depicted in the table below: 

PROGRAM METHOD OF INTEGRATION COMPUTER CPU TIME (SEC) 

SAP80 (15 fund (Complex Eigvec) VAX 780 220 

SAP:::O (40 fund (Complex Eigvec) VAX 780 515 

SAP80 (40 fund (Step-by-step) VAX 780 506 

SASSI (Fr-eq domain) CDC 7600 176 



2
.Q

Q
 

1
.8

9
 

t.
S

Id
 

1
.4

9
 

A
 

C
 

1
.2

9
 

C
 E
 

L 
1

.0
g

 

G
 

9
.S

Id
 

Q
.S

Q
 

9
..

,4
9

 

Q
.2

9
 

13
.13

13
 

D
EG

RE
E 

O
F 

FR
EE

D
O

M
 

R
ES

PO
N

SE
 

SP
EC

TR
U

M
 
5
~
 

D
A

M
PI

N
G

 

9
.9

 

., .\
 

I
t
 , ,
 , , 

.1
 

.1
 

'I , 
\ 

I , , I f I ,1 .~ 1 " 

:1
 

.:, /J
 

if
 

)J
 

J -~ 

9
.1

 
9

.2
 

\-, 
..

.•
 , 

'\
 

.. ,. 
..

..
 

t t , , • , t t, \.
 , 

9
.3

 

". \
,
'
~
 " .... 

"S
A

SS
I"

 
"S

A
PS

G
" 

""
'-..

.....
. -'

-..
.....

 -..
... _

-.....
.....

 -....
.....

.... "
"."

" .. -

9
.4

 
9

.S
 

9
.B

 
9

.7
 

9.
@

 
G

.9
 

1
.9

 

PE
RI

O
D

 
(S

EC
) 

F
ig

 8
.8

.-
R

es
p

o
n

se
 s

pe
ct

ru
m

 a
t 

D
O

F
l 

ob
ta

in
ed

 w
it

h 
S

A
P

8
0

 u
si

ng
 4

0 
R

it
z 

ve
ct

or
S

t 
an

d 

S
A

S
S

I.
 

~
 
~
 

N
 



Z
.Q

9
 

1
.8

9
 

t.
6

Q
 

L
-4

f.i
 

A
 

C
 

1
.2

0
 

c E
 

L 
L

Q
Q

 

G'
 

9
.(

;0
 

9
.6

9
 

S
.M

i 

Q
.2

Q
 

f:i
I 

r
.
J
~
 

_e
_ ....

. 

D
EG

RE
E 

O
F 

FR
EE

DO
M

 
2 

R
ES

PO
N

SE
 

SP
EC

TR
U

M
 

5%
 

D
A

M
PI

N
G

 

! I'
 

, 
i 

I 
I 

I
'
 

11.
 

r 
i 

...... /
 \ 

4 
'i 

g 
, 

~ 
S 

, 
I 

§ 
\ 

I 
! 

'\
 

I 
A

 
\ 

t 
.,,

, 
'-

, 
"
-

!
,
 

'-
-

!
" 

" 
J 

"'
" 

-
-
-
-
-
-
-
-
-
-

J
S

A
S

S
I

J 

JS
A

P
IS

l<
l.l

 

L~
 

__
 

'
-
,
 

---
i 

j 
....

 
... , 

-
"-

, 

I -
. 

'" 
___ .

 
..-

'--
--

--
--

--
--

--
r 

I 
_

_
 ~ __ L

_
 

C
 

_
_

 
L 

_
_

 ~-
.
-
-
-
-
-
-

J 

G.
ra

 
0

. 
t 

9
.2

: 
Q

.3
 

e.
4 

0
.5

 
Q

.B
 

9
.7

 
Fa

,€
: 

9
.9

 
1

.9
 

PE
R

IO
D

 
(S

E
C

) 

F
ig

 :
:;:

,9
.-

R
es

p
o

n
se

 s
p

e
ct

ru
m

 a
.t 

D
O

F
2 

o
b

ta
.in

e
d

 N
it

h
 S

A
P

80
 u

sj
.n

g 
40

 R
it

! 
v
e

c
to

rs
, 

an
d 

S
A

S
S

I.
 

~
 

f-
' 

\,
.,

j 



3
.5

9
 

3
.2

5
 

S
.Q

Q
 

Z
.7

5
 

Z
.!

;Q
 

A
 

2.
2:

5:
 

C
 

C
 

2
.0

0
 

E
 

L 
1

.1
5

 

1.
5:

9 
r; 

1
.2

5
 

L
G

0
 

0
.7

5
 

9
.5

0
 

0
.2

b
 

2
.2

2
 

f
'
r
-
~
"
"
"
r
:
-
~
 

[ t ~ I, t­ ! i l- I ~ !-

""
 .....

 
r
-
-
-
.
-
.
"
,
r
-
r
-
~
 
~
.
;
'
\
 ..

 

11 /\ ! 
\ 

! 
. 

I 
\ 

! 
~ 

[ 
I, 

, 
, 

f 
'\ 

I 
\ II 

-to
 _
~
 
i..

. ...
. ~
.
 
-.

..
/ 
~
 

~ 

J
\ 

\ 
/' 

\ 
i 

II 
I 
'i
 

! 
I 

'I
 

r 
' 

, 
; 

; 
I 

...
 

i 
,. 

\ 
..

 _
-,

 
. 

• 
I 

R
E.

G
[?

C
f\J

SE
 

I
~
!
 

/ 
\\'

\ 
t
-
.
 

./
 

-..
. 

i 
I 

, 
..

 
! 

, 
... 

r-
I 

~!"
't.

 
I 

...
.. ~

J 
..

..
. 

-
..

 

t--
....

 / 
~
 

,-
~;

::
n:

:-
f'

T"
)1

 
lir

A 
, 

. .J
i 

'-
-_

 ..
. ..

.,
 

~ 
r\

."
 .... "

 
; 

5%
 

D
A

lV
iP

IN
G

 

F
ix

ed
 B

as
e 

R
es

p
o

n
se

 •
.
 

R
es

p
o

n
se

 W
it

h 
In

te
ra

d
io

n
. 

i 
~
~
,
 

L
 

~
 -~
--
~-
-=
-=
-.....

.......
... -
-
-
-
-

_ 
. ..J

...
 _

_
 . 

---
-.-

--L
 

~ 
_ 

' .. 
L.

. 
_._

-..
 -

.. 1.
-_

__
__

__
__

 , 
__

__
__

__
__

 .l
_

. _
__

__
_ l

. _
_

_
_

 .L
 ___

__ 
..

 __
 l 

Q
.2

 
g

. 
t 

(4
.2

 
9

.5
 

iJ
.4

 
g 

• .
; 

1
6

.6
 

1&
 .

,-
~~
 .l

i!.
 

g
.s

 
~ 
.9

 

P
E

R
IO

D
 

(S
E

C
) 

F
ig

 :
::

.1
0.

-
R

es
p

o
n

se
 s

p
ec

tr
u

m
 a

t 
D

O
F

l 
o

b
ta

in
ed

 w
it

h
 a

nd
 w

it
h

o
u

t 
in

te
ra

ct
io

n
 e

ff
e
c
ts

. 

,....
.. 

I-
' 

+:
-



3
.5

9
 

3
.Z

5
 

3
.9

9
 

2.
71

> 

2
.5

9
 

It
 

2
.2

5
 

C
 

C
 

2
.9

0
 

E
 

L 
1

.7
5

 

L
b

0
 

s 
1

.Z
I>

 

L
im

 

Q
.7

S
 

Q
.5

£J
 

B
.Z

5 

9
.9

:6
 

D
EG

RE
E 

O
F 

FR
EE

DO
M

 
2 

R
ES

PO
N

SE
 

SP
EC

TR
U

M
 
S
~
 

D
A

M
PI

N
G

 

F
ix

ed
 B

as
e 

R
es

p
o

n
se

. 

R
es

p
o

n
se

 w
it

h 
In

te
ra

ct
io

n
. 

N
/l

 
.I

 

.. 
.. 

.....
 \ ,

 , \ .. .. .. .....
 "'-

_.
".

~e
',

 _
_

 .
.
 .
;
 

--
--

--
--

--
--

--
--

-
~
-
-
-
L
,
-
-
-

I 
-
-
-
L

 
! 

.-
..

.!
..

.-
-.

 

0
.
~
 

9
. 

a 
r
6
.
~
 

g
.s

 
i;

i.
4

 
!t

io
b

 
Q

.6
 

G
.7

 
9

.8
 

B
.S

 
1

.9
 

PE
R

IO
D

 
(S

E
C

) 

F
ig

 8
.1

1
.-

R
es

p
o

n
se

 s
pe

ct
ru

m
 a

t 
D

O
F

2 
o

b
ta

in
ed

 w
it

h 
an

d 
Ir

Ji
th

ol
Jt

 i
n

te
ra

ct
io

n
 e

ff
ec

ts
. 

~
 
~
 

V
\ 



116 

Assuming a factor of 16 in speed between the CDC 7600 and the VAX 780 <UNIX 

system)t a time domain analysis may be accomplished 5 to 13 times faster than the 

frequency domain analysis depending on the number of Ritz vectors tha.t are used. 

It is worth noticing the little diference in computer time resulting from integrating 

the system of equations by step-by-step methods or by using the complex 

eigenvectors. The conclusions that may be drawn from this example are left for the 

next Chapter. 



CHAPTER 9 

CONCLUSIONS 

The main conclusions of this study may be summarized as follows: 

A time domain finite element method has been developed that solves the three 

dimensional soil-structure interaction problem. This new method can consider the 

following factors: structural embedment, arbitrary soil profile, flexibility of the 

foundation, spatial variations of the free-field motions, interaction between two or 

more structures and nonlinear effects in the structure and foundation (separation of 

the base mat and the soil, or nonlinear behavior of the materials>, 

Two different formulations may be constituted, namely the boundary and the volume 

methods. In the boundary methods the total soil-structure displacements are divided 

into the scattered and the interaction displacements. The latter are subdivided into 

the quasi-static and the dynamic relative displacements. This subdivision allows the 

load vector to be expressed only in terms of the free field accelerations at the 

boundary interface betwp.en the soil and the structure. Computation of the total 

displacements is not needed t since the total forces at the supejrstructure depend 

only on the dynamic relative displacements. The boundary methods require the 

solution of the scattering problem. 

In the volume methods, the total motions are divided into the free field and the 

interaction motions. This division is possible if the properties of the buried portion 

of the structure are reduced by those of the soil at the same level. The subdivision 

of the interaction displacements into the quasi-*static and the dynamic displacements 

leads again to a load vector that is an exclusive function of the free field 

accelerations. The total forces in the superstructure will depend now upon the 

dynamic plus the quasi-static displacements. The volume methods eliminate the need 

of solving the scattering problem. 
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Prior to any soil-structure interaction analysis a site response problem needs to be 

solved in order to obtain the free field motions. Even though some methods are now 

available that include the effect of different wave patterns, no method has yet 

solved the problem of considering the variation of the free field due to the fault 

rupture mechanism, or the location of the site with respect to the fault source or 

hypocenter of a given earthquake. These effects are important for sites that are 

located in the vicinity of active faults, and their study constitutes one of the most 

important problems in strong motion seismology. Until these problems are solved the 

input motion will remain an uncertainty. 

A frequency independent radiation boundary is developed that accounts for the 

energy radiation throug h the boundaries of the finite element model. This 

transmitting boundary is obtained from a frequency dependent boundary defined at 

the fundamental frequency of the soil-structure system. This approach leads to very 

good a.pproximations in soil-structure interaction problems where the total response 

of the structure is concentrated in a few modes dose to the fundamental mode. An 

extensive parametric study is carried out for two and three dimensional cases with 

different soil conditions. Results show that placing the frequency independent 

transmitting boundary at distances equal to or greater than six times the radius of 

the foundation leads to very small errors in the compliance functi,ons over a wide 

range of frequencies. The errors become neglegible when material damping is 

included in the soil. The results obtained from the numerical example presented in 

Chapter E: corroborate these findings. 

Several methods have been presented for the reduction of the total number of 

equations of the soil-structure system that are based on the use of Ritz vectors 

techniques. The Ritz functions are either used globally to reduce the entire system 

or locally to reduce the soil and structure components separately. Following this 

last approach, a new method! of dynamic substructuring based on component mode 

synthesis techniques has been developed. in which compatibility of forces and 

displacements between soil and structure (one or more) are achieved by imposing 

certain restraint conditions to the Ritz vectors. 
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A small numerica.l example is carried out that shows the excellent approximations 

obtained with all these methods. Results are also shown that demonstrate that the 

Ri tz vectors give the same or greater accuracy than the classical eigenvectors of the 

system. The reason far this comes from the fact that the selected Ritz functions 

take into account the spatial distribution of the load whereas the eigenvectors are 

obtained independently from them. Also, since these Ritz vectors are obtai!"ecl in a. 

much simpler and computationally much faster way than the eigenvectors they become 

better candidates for dynr:unic problems. 

A constant damping ratio over a desired frequency range can be achieved by ta.king 

several terms of the Caughey series, and computing its coefficients according to the 

method outlined in Chapter 7. The results of the numerical example shown in Chapter 

8 reveal the complete adequacy of this method. In order to account for the spatial 

variation of the materIal dampingt the damping matrices can be calOJlated at the 

element level. 

The soil is modeled with tbree dimensional 8 to 27 solid elements in the near field 

and axisymmetric elements in the fax field. Efficient computer codes have been 

developed for the construction of the respective shffness and mass matrices. and 

for the coupling between the solid a.nd the a.xisymmetric parts of the finite element 

mesh. Several numeric,!l.l rules are tested for the integrOl.ti.on of the 27 node solid 

element. The 3:x:3x:;: Gauss quadrature provides the best results for f?11 the examples 

chosen. 

Nonlinear effects at the foundation level due to the uplifting of the strudure and 

the plastification of the soil have not been given enough attention as yet, and "their 

influence on the response of the struc:ture are not completely known, The existing 

frequency domain methods cannot for obvious limitations solve these problems in a 

direct manner. I:l. new formulation in the time domain has been presented to account 

fot these nonlinearities. The dynamic sub structuring techniques proposed in Chapter 

5 can still be applied at the elastic parts of the system, thus, making this 

formulation an efficient technique of a.nalysis. Further research is needed to put 

this formulation into practice to explore the consequences that the nonlinear 

behaviour of founda.tions, including soil-structure interaction effectsg have on the 

response of structures. 
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The numerical integration of the reduced set of equations can be carried out by 

step-by-step procedures or by decoupling the system with complex eigenvectors and 

solving each of the uncouple!d equations by the linear force method. The second 

approach becomes exact for piece-wise linear type of excitation. while the first 

always introduces errors in the amplitude and periods of the response. For reduced 

systems of equations (up to 100 mode shapes) the complex eigenvector approach is 

equi valent to the step-by-step procedures in computational effidency and therefore 

becomes a better candidate foy' the numerical integration. 

From the results obtained with the numerical example illustrated in Chapter 8. the 

following conclusions may be drawn: 

1.- The total response of a ~:;oil-structure interaction problem is concentrated in 

only a few modes of vibration. 

2.~ A limited number of Ritz functions (10-40) in the soil suffice to represent the 

major effects of the wave propa,gation problem, 

3.- The use of frequency independent transmitting boundaries defined at the 

fundamental frequency of the system gives satisfactory results. 

4.- A constant damping ratio over a desired frequency range can be achieved by using 

only a few terms of the Caughey series. (2 in the example shown in Chapter 8) 

5.- The computational work ne€!ded to solve the reduced set of equations is equal for 

both the step-by-step procedures and the method of complex eigenvectors. In 

addition, the latter approach eliminates period and amplitude errors associated with 

the former technique. 

b.- The savings in computer time and storage obtained by carrying out the 

soil-structure analysis in the time domain "'/hen compared to the frequency domain 

are outstanding. 

The purpose of this research has been to develop efficient numerical techniques to 

solve soil-structure interaction problems in the time domain. The computer program 

SAP80 has been used as a tool for all the numerical computations carried out 

throughout these studies. However, the imr2ef>lt1..lAi:'ioO\.of these numerical techniques 

has not yet been completed for industrial use. 
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APPENDIX A 

FINITE EI~EMENT FORMULATION 

OFAXISYM].v!ETRIC SC)L.IDS WIT:f:I 

l''f:ON-AXIS'YMMETRIC I~OADS 

In this Appendix a general formulation of an axisymmetric element is given that Cel.f1 

include any number of terms in the Fourier expansion. The coordinate system is 

taken as the rylindrical basis 1'1 f) tl. Since the solid is a solid of revolution, its 

shape i.s completely defined by any plane where e = constant. The body shape is 

defined l'sing a finite element mudel flw the 1'-1 plane. Each element generates a 

solid torus and each node a nodal circle. The shape functions for the r,9 direction 

are trigonometric functions, sine and cosine, that are appropiate due to their 

periodic characteristics for 0(9 <: 21f • 

The displacement E'xpans,ion is: 

."A"{fi f),z.) = f (1J;.l4. (ftir') &t4k9 + W".. ~£'t4M6» 
~p { r, 6', ;):s i (a~ (r;:ifj lM kb + Wbl4. "":~ It Gl) 

Aer ( 1"1 ~~) := j (l/ii14 (VI ~J tJI:1 t..&> 4 WiJ ... 4"~ ""'~ ) 

(4.0 

Where LP t l ..• ~ and LP are the radial, circumferential, and vertical displacements r I 

respectivelYt and v(l'tz) and 'V>..!'(rtz) are the interpolation functions. Note that fOI' 

n =0 Equation (A.1) givE'S the displa.cE'ment expansion for the a::dsymmetric 

components r,lt and for the pure torsion problem e , The functions v (r",z) and n 
\i'oJ n (r ,z) can be expressed in terms of the nodal shape functions (4 to 9 node 

elements) 
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where N a are the element shape functions and va and """,a are the nodal unknowns. 

Substituting (A.2) and (A.3) into (A.l) yields 

K[ f 4. Co f C. ,\ 
A::: I ~ If/' (r, a) e,..olltP ~ + r AI' (r,BJ ." .... 11.8 
- ~~ ~, « 

where 

0;- f C! ~;C.)~)) Wb> 1:1 

§. 
W',. (A.~) 
Vi) 

I.r. 

the reason for this rearrangment is,as will be seen latert that the stiffness matrix 

becomes llncoupled for each ~ the.parts. SPlittin~\ Hn at (A.4) becomes 

01!= .. "!. (2" £". !f4~(6.) 
..- Awl 

The strain displacement re1ationship according to the notation and sign criteria 

given in Figure (A.1) is: 

£,.,. :: Mr, r 

.f.9i11: -r,.. UIJ,f)"" IA.,./". 

f'ilil lOt Ue. all 

rr~ ~ .t!"rIP = ( Yr a" iP .,..U".,. .. Ue9/,.. ) 
rrll c .2£"" =( tI.;'r .,..t-(,..,ar) 

lib" -= .e&';g= (M"/~"'lIrtl~/~) 

. , 



Z 
A 

T zz 

~--=~~------------~~----~r 

Fig A.l.- Stresses and sign criteria for axisymmetric problems. 
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~.+) 

or in simplified notation 

Jr if [ ~ 
£'= I ~ £/,4 i 
-- Il::al lAo. 

It is worth noting that without considering the sin and cos the following relation is 

satisfied 

F.ql'ation (A.:::) can also be expressed in the following manner: 

rr~ 

.... -, 
~ 
..., .. 41 

where B represents the strain-displacement transformation matrix of the whole 

element. 

'T'he constitutive equations for ctiindrically orthotropic or isotropic materials are: 

0"" rtf" err c;.61 C .. 3 Err 
(6,,, C~,.. C~e Cl)a 0 [fJ8 

).t ( A.I") ~ 

C319 [p -ern Car C~~ - ...., IV 

:: 

0;.. 4. $.S ... a 

trrlJ 
() 

G,.dI 22r-fJ ,y 

(]i. ~"' .81h 
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STIFFNESS MATRIX. 

(A.") 

Due to the orthogonality conditions of the trigonommetdc functionst the double 

summation in (A.ti) can be converted in a single one. 

fr" ~ ! 1t 1 j '!/ !'P! 11" rdA 
f={ ~r Jlp4f> 

t:::2 ~r J't#D 

It is worth noting that: 

a) Each harmonic n will pyoduce an uncoupled stiffness matrix. 

b) the vector v contains b degrees of freedom per node and per harmonic. A planar 9 

node element will therefore give 9:x:6=54 degrees of freedom. 

c) The matrix 13 is t.:x:54 therefore the product ::et D13 will rrovitil!a stiffness 

matrix of order 54x54. Due to the yearrangent shown above the stiffness matrix can 

be divided into two of order 27x27. For simplicity we can carry out the product 

shown above by the subdivision of 13 as given in Equation (A.B) and depicted in 

Figure (A.2) 1 T 

):;;:.1 ? J ~ - ~ 
where T 

N= ~~& ,.., .".... ~ "" 
After integrating with respect to P 

r., 7io, 7ij 

7i, h~7U 

7.i"a zj Ti, 
f) 

,Kab becomes: 

r,; ~~~ 7ii 
I? -AI ha "TaJ 

at ~1jl 713 

The numerical integration will be carried out in the following manner: 

K4i :: J M'ITI, [~d'] n , ... 
where M represents the total number of Gauss points used in the integration. 
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NODE 2 3 4 5 6 7 8 9 

K" KI2 KI3 

Kab 

Fig A.2.- Element matrix per harmonic. The order of each c:ell is ~.xb. 
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MASS MATRIX. 

The element kinetic energy is 

-r ~zj'n ( J f f irT 11K T II~ V "rdt9 d A 
/e :. ,J., .- "'" ..., 

where H i<:> defined in Equation (A.4). Again taking into account the orthogonality 
n 

of the trigonommetic functions, the functional can be expressed as 

r;: 12 f1f!~f t'1f !!~"'1. r..M] t 
Each harmonic will produce an uncoup+ed mass matrix. The consistent mass will be 

HAl ~ ~Tr j f ~&I6T '1.., rdA 
This can be lumped to the dia.gonal terms by scaling: 

/1t,.,." (r tf '£ r h4: JI ... ~ rcl.A )~;~lt' ' 
where :t-'I t represents the total mass of the element. Numerical integration will 

BODY FORCES. 

The energy term corresponding to one element is: 

E::: ( u'f'/ .tf(tr == .fjlf'V'lI c .. J ~,~ 
~I - -- "'ClD __ "" ,..., "'" 

Again due to orthogonality conditions! 

Eg 11 2' .f Uti., ( Ht.4.l /", rttll! 
f w, 4 - ~ 
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After impossing the stationarity condition to the energy functional one can obtain 

the nodal forces for a given harmonic n. 

TEMPERATURE LOADS. 

where 

Since 

oI,.~ilc.. +t:t'"Ai-.c", 
~.A"C,- "'tl .. 4~·.r~ 
~ .. A61

('" .,. 0(, 4~a.r" 
o 
o 
o 

(T-J:) = A~ (I)) = 5 (Af:'~1;C9 ""4t~,,,~t:9) 
where the temperature distribution has been expanded as a Fourier series. ott are 

the coefficients of thermal expansion. Substituting CA.1]) in CA.16) 

2;-= 11 1 ~ ('lor.. ~:)£ [ .. t>fM .. f-rr 11; (~~:)~rtIA 
By the stationarity of the functional the thermal loads become: 

..r(t irrj !:-: f!" ,.d.A 
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PRESSURE LOADS. 

They can be treated as body forces. Expression (A.15) can now be Llsed but 

integrating not over the volume but over the area where the pressure is applied 

now 

F.. (':/" rnj ~4~" ./4 

) /J~} '1 4. C" ~ 1;: =' {f{~ J>~ 
"" 

and the pressure loads can be expanded in fourier series lu.dtn, to: 

h"" (t.) == fTfl A/41("" ot,lt (&.) retiA 
If'" "'" /V 



APPENDIX B 

:3 TOI 27 NODE SOLID 

FI]s[ITE EI. .. EMENT 

A solid isoparametric finite element is defined in this Appendix that has a variable 

number of nodes (';::-27), Also, some aspects concerning numerical integration are 

considered. Finally, an expansion of the displacements in the solid element in terms 

of Fourier series is developed so that a solid finite element can be coupled with an 

axisymmetric mesh. 

B.1.- FORMULATION. 

The system of local coordinaLtes for each element is defined in Figure <B.U, In an 

isoparametric element the coordinates can be defined in terms of the shape 

functions: III' 

)(= f Hi C " s, t) 1(~ , 
Ii" 

y::. ~ H,i 'r. t, to.) 1.: , 
K 

~ A Z H" (11 t', .[;) ;It 
I 

The same functions are used to expand the displacements: 
AI' l 

.-«". :>' r Hilf; .r,6-jAJI 
I 

JI" ,: 
~'f :: ~ fld fi $, t) u., 

f 

/if' " 
Il!I = l J.l.d r. sq fJ Ua , 

The shape functions are defined by a serendipity type of formulation that starts 

with the basic nodal linear functions to which the quadratic terms are added. Table 

1 shows all the basic interpolation functions. Table 2 illustrates the generation of 

the shape functions by the serendipity approach. 
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3 10 2 

21 

4 
12 

24 

25 tl9 ~ 23 
• 

20 I ~r s 17 
I 26 

18 

I 

Y--- 14 
--() 

1:'/ 22 

6 

",. 

8 16 5 

Fig B.l.- Local numbering and coordinate system. 
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"ez; /f+yj 

S::z /-1+ ~J 

T: (I-I-~) 

/§ = 1'? £ S T 

,,;= I/i' ,E S T 

/':0-£5 T 

h=1? R::r 

4",1'9 ,j'S T 

,,4 zc 0' ,i" F" T 

h: ~y.R S T 

~= /1-.r) 

?:Jt (-/- ~) 

T; (4-· t) 

,,;!Il'a H- r t.) 
rZ(4-fj 

r-:' (-1- t~ 

;; :: ~'( .,.£K S T 

,.t" 1m #'( ~ S#l T 

It/ = 1'1'1 ,e-S T 

, - ~ 

/1= -1f ~ ST 

~f .... ~~sr 

Table B.1.~ Basic: interpolation functions. 
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The displacement functions given in <Bt2) can also be written in the following form 

{,P.~ 1 f1I!J r.Mi f) If)] 1 ~ .. J 
A'( ~ :: A:f f) ~CI. IP .,tl: :: l' 'io.11" 
...a.) f) 8 #A Uri 

The strain-displacement relationship is: 

fR::r .,h #, I( 

Z, :II ~rf or 

l"W:I ."a~ 1I 

j;:.r:o: ,aJf,., + Ur.)! 

hil- IAr.'11 + It-.,'I 

iiJl. '" U4f,,,, f UIt.,Z 

Combining <B.5) and <B.3)t gives 

& 

1 
A'itllt t> 

f,,€ IP ""It Z:¥ 

tar ~ 2. " () -
/Jr.y ~y /fA". 

};iJl () ~fg 

).,. #4.* " 

f) 

($os) 

Considering the case of Clrthotl"opic or isotropic materials the constitutive equations 

take the following form: 

II:: ~;C, C)t'f ~4' tJ f} :1 -
eYf!( CV"l eli! If) D 

c6;( Cery CH ~ D 0 

(I.t) 
tJ f) D 6My f.) t> 

, 
" () 0 ~iJ1 [) 

I) , () I) (1 4. 



STIFFNESS MATRIX. 

The stiffness matrix is obtained from the strain energy expression as was done for 

the axisymmetric case: 

.A:Q, e _j .lit,.. T C J"J d v,;/ 
,.., ". t IV AI ""' 

where Ie b represents the 8*:;: matrix shown in the figure (A,Z), The computation of 

. Bah =Ba
T ~ Bb is. straightforward. By using numerical quadrature: 

k,.i = llJ£' ( $ .. '" c ~) l J{ ~ 
N la' .."".". ,.. 

HASS MATRIX. 

As for the axisymmetric element, the expression for the consistent mass matrix is 

/(4J grj J He.T" HI ~fi>.fi if.~) 
"" ",fll"""-

where Mab constitutes a :3x:3 cell of the total element mass matrix. By scaling the 

diagonal terms of the consistent ma.ss matrix we can obtain the lumped mass matrix: 

.l'(44.e:: -- .. H4 H£ 6{,ro .I4't 1 ." J t 
r ~A. ~,t...... ,.. 

BODY FORCE(3,. 

From the energy term! 

j.,a'" dll'vl JI' L (r H: a ~T)' d6l"1'1 
ilit ~ 

and the nodal forces are 

(L/I) 

SURF ACE LOADS 

These loads aye defined identically to (B.l1) 

~l-.:: ( H 4T .e d II~A. 
:,f~ '" 

where p is now the surface pressure. The integration is carYied out avey the suyfac:e 

integral instead of over the volume as was done for the body forces. 
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Fl.2- NUMERICAL INTEGRATION 

Numerical integration for the calculation of the stiffness, mass and loads matrices 

at the element level is carried out by quadrature rules. Some authors have obtained 

savings in compl1tetr time and storage by adopting quadrature rules with a smaller 

number of points than the Gaussian rules. Irons <1971> and Hellen (1972) 

demonstrated that quadrature rules that use 13 and 14 points for solid elements 

with 20 nodes are of the same accuracy <1.5 the :3x:;:x3 Gauss quadrature. The aim of 

this study is to find a reduced quadrature that similar to the 20 node element, will 

give to the 27 node element the same degree of accuracy as the 3*3*3 Gauss 

integration rule. 

The general expression for an integration rules is: 

j'} 'j 'It"".,) '" ~ "'r tI J= A, 1(·,0, DJ + ~ //(-1, 0,0) ~ /(1, D. 0)" - . / ... 

+4'; / (-t:, -,;; -e) 1-/ (~ -<; c), --/-1-lJ,./lt....t,...I, .J "'I(-t../,.) +- - / 

Where the capital letters represent the weights and the lower case letters the 

coordinates of the quadrature points. The rules and their respective points and 

weights are shown in Table :3. The errors introduced in the different polynomials 

that are included in the stifness matrix are given in Table 4. 

The solutions to three different problems: a beam, plate bending and solid 

deformation, are illustrated in Tables 5, f:., and 7. As it can be seen the 14 point rules 

give very oscillatory results and in some cases are totally unreliable, as in the plate 

bending and solid problems. The 15 point rule gives much better results. The use of 

the central point considerably increases the accuracy of the integration process. 

However! for the plate problem it gives same oscillatory results that become much 

more pronounced for the solid problem, The use of the 21 point rule does not lead to 

noticeable improvements. The oscillations dissapear for the plate problem but 

remain in the solid proble'm. It is worth noticing, that the average of all the 

oscillatory results coincides with the master solution given by 3:x:3:x:3 Gauss 

integration rule. 
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Table B.3.- Points Mid weights of the interpolation rules. 
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Si)J( J.£~R§,.G 7i~M.f \ .E/dtlfrl( ;)1';;-£&« /ERN]' 

I )?U.t..i' r' r'1 S? r's~t 
L r's'2 r'if'1 r'fs2C l 
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/"(4 /If p.rJ tJ.JP t). ; J' tJ. :1.2- tJ'.I? 
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Table B.4.- Erars af rules. 
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Table B.5.- Tip deflections of t1 CMltilever beam. 

~/c 61,,1& 

-Hodi' _1·'(.1J6 

1 
II " 

.. 
" --

" " 
--

" .. J 
.. to I 

.. 1 " I " I --.'-- -1 
I , 

\I I 
I. 

i : 

" 
I " I i 



148 

If 

E=<6'~.?p 

~-.:JI t1...! 

?-/,tJ 

.E~ct /~.;;7bu at Ak...k 1 

.I'", - if).20J 

r~:~_,_~t-+_/_~_~~ __ /_1_1-r_/._J __ +-/._~_~~ __ ~_~_e-r_~_~' __ +-~_~_~-4_~3.161 
l -LUJ'! -tUft -al,(o~ 

" i I, .. " " 

-/2/6.1 -dIN .1 II \I 

,. II -p.tJtl -/) .. 17'1 -tV&2 I 
+-____ 4-____ ~----~----~i-----~,----~ 

" " 

~11? -alrr -~/p/ " " " II 

.1 

I 

\\ I II I 
i ! 

'I " II 

1 __ ~_s __ ~-A_.v._'~_7-+_-d_./_2_?_~_-_a_~_~ __ r-_II __ ~ __ I_I __ +-_'_\ ___ ~ __ " ___ ~ 
: \ 

II .. J" I .. 

I--~_/_I-;';_' ,_1/_2 .1.-+_-t'._, ~_f_7_-+-. -_1/._,0_7_1-+-_1._, ~_7_r-+-_tl_o_"_<f_l--_I_. p_'_'_!- u.rol-;.nq 
/~ II "I" " 10 If II I' 

~---+-----t-----~------r-----r-----'l------'r-----4-----~ 

" II \1 II 'I 

Table B.6.- Plate bending problem. 
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Table Bf7.- Solid deformation problem. VertiCil uniform lo~ 00 top element. 
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The reasons for the oscillatory nature of the response lies in the higher order terms 

(see Table 1) in the stiffness matrix that are not integrated exactly. These errors 

do not affect the overall response of the structure, because the average 

displacements coincide with those given by the 3x3x3 Gauss quadrature. However, 

they have a definite influence in the local response at the element level. 

Based on the above discusson, it may be concluded that the 15 and 21 point 

quadrature rules have to be used carefully. All the results will have to be averaged 

at t he nodes of each element to obtain reliable answers for solid deformation 

problems. However their use, especially the 15 point rule, will lead to substantial 

savings in computer time. 

B.3.- COUPLING BETWEEN SaUD AN AXISY11METRIC MESHES. 

According to the sign criteria and the configuration illustrated in Figure <B.2) the X, 

y, and z components of the d:isplacements can be transformed into the cilindrical 

components as follows: 

",t(~ := ... ~~ AtA4 If) ... .,u" ~~~ t9 

"'r:: '" 4(tPAI'MP .,.. U,. ~(Jf) 

ita!:& ..«~ 

or in matrix form 

(1./1) 

The displacements in cylindrical coordinates are expanded in Fourier series as was 

done for the axisymmetric elements. 

11: ~ eel V; + I C~~ Ii (1.1'( J .,,/4,. ;: SW.+ &+-1 Wi 
~ ... "" ......... ,. AI "" ..... 

where 

~. {:t ~ ~t::f. ~~~{:I 
"»i ~ 
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x 

Fig B.2.- Transformation of rectangular cartesian coordinates into cylindrical ones. 
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and 
0 46"'[; " ti t».114.9 t) 

C le
• ~ ~'1Itt9 " 

a~ SA=- p 41MA.~ () 
dN -

~ ~ &tJ1U9 () () 41;'1«9 

The 5ubsbtution of <B.13) into <B.14) renders: 

,t(Jl: Tt.&.,. Tc'r,oIJ. Tr'w; .,.,rc'lAIa <I-~,---
.~ A - ....". ~ IIfI'i:II ,., fIIV!AI ~ -.II .... 

Expression (B.15) defines the general transformation of rectangular coordinates into 

a Fourier series expansion. If this transformation is carried out for all the nodes of 

the boundary interface beh~een a solid mesh and an axisymmetric mesh, a perfect 

coupling may be obtained. These transformations can be accomplished in an efficient 

way at the element level. 

For a general isolated mesh, the stiffness matrix will have the shape shown in 

Figure CEl,:3) before and after the transformation. Ks represents the part of the 

stiffness that remains in rectangular coordinates, lC. the axisymmetric stiffness 
1 

for each harmonict K . the coupling stiffness between both parts and lC .. 
51 11 

represents the coupling terms between harmonics. If a given solid mesh is a part of 

an ensemble that has axisymmetry, the coupling terms between harmonics, K .t will 
01 

vanish after adding all the element stiffness matrices along the drcumference. (The 

harmonics are orthogonal in the interval 0 - 21\" ). As a consequence, the stiffness 

matrix will have the form shown in Figure (B.4), where all the coupling terms 

between harmonics have vanished. 

When using a profile solver a more efficient configuration of the stiffness matrix is 

obtained by rearranging the terms as shm."n in the same Figure. 
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K5 K50 K51 K52 

Ko KOI K02 

SYM KI KI2 

K2 

Fig B.3.- Layout of the coupled solid-axisymmetric stiffness matrix. 

Ko 0 K05 -K5 K50 K51 K52 

KI KI5 
--

KO 0 ,..., K2 K 25 

SYM 
KI 

SYM KS 
K2 

Fig B.4.- Layout of the stiffness matrix convenient for a profile solver when there 

is axysimmetry at the boundary. 



APPENDIX C 

SOl .... UTION OF THE EQUATIONS 

OF MC)TION WITH THE 

COMPLEX MODE SHAPES 

A summary Clf the analytical method based on the complex eigenvectors for the 

integration of the equations of motion is given belo\". The beginning of the 

formulation is taken from ;Qynamics of Structures (Hurty and Rubinstein 19M) and 

later it is extended by the author to inclLlde the case of earthquake type of 

excitation. 

Consider a system of n equations of motion for a soil-structure system: 

where l...l!g is a given ground motion and p is a load distribution vector. The system 

of second order equations can be transformed into a system of 2n first order 

equationst Foss (1958)t by adding the following matrix identity! 

Thus (C.U becomes: 

or in simplified notation! 

(c. 0 
It is worth noting that A and B are real and symmetric, however neither of them is 

positive deHnite. Therefore the eigen-solution will give complex eigenvalues and 

eigenvectors. The transformation 

I=:1 fI f e.l't (c. r) 
leads to the following eigenvalue problem 
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1.5.5 

After having condensed out all the massless degrees of freedom, B will have an 

inverse and Equation (C.5) can be written as follows: 

or 
(c. c() 

where 

., <:: [k-l ./>::: -.$ 'A ....... :t 

Equation (C.e.) represents a standard eigenvalue problem, but with D being non 

symmetric. The system (C.6) will lead to 2n eigenvalues and eigenvectors that are 

real or complex in conjugate pairs. The llsual procedure in structural dynamics has 

been to solve (C.6) by inverse iteration. Jennings affirms that the reduction of 

Equa.tion (C.l:.) to upper Hessenberg form a.nd the subsequent use of the QR method 

for the eigen-solution leads to a very efficient algorithm for systems of lip to a few 

hundred equations. The total nllmber of operations is approximately 4n8, of which 

only one-fifth are required for the reduction to upper Hessenberg form. Now if 

p will be 

where 

and 

e(::: ~ /( u. '-+ Va) 

~::: - 1/ /(M -+ Vt.) 

For a damped system, D<. is negative and the term eot. t represents the decay of the 

amplitude of the mode. IS represents the damped frequency. If p is expressed in 

polar form: 

t JI' represents the phase angle between velocities and displacements. The 

orthogonality condition of the eigenvectors is easily seen. 
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Hence . 
.I 

and 

The next step is to uncouple Equation (C .4). Pre and postmultiplying by one 

obtains: 

,TApir + ,r.,B'if. =p"Yft) 

or 
~.i,. -I- ~,A' == ", . .,. r tt) 

and substituting (C.S) 

Dividing by Ct. 
1 

Cll i l .. /s' ttl iEJ ::: ~.,. Y (-I) 

Equation (C.9) has a companion complex conjugate given by 

:ila'" -;;,.~.~:::. Ih T y(+)/a;. 

Now 

and 

Thus 

For a general type of load Q(t) the term ¢tTy becomes: 

and for earthquake type of load: 

,lJeTy ~ - ("i) ~ £" ii (f) c{_ JI"~ ~ ijCf) 

( e./o) 
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where p is the load distribution vector and Vg is a given accelerogram. Continuing 

the derivation for the later case, Equation (C.9) becomes: 

(Co /I) 

the discrete representation of a typical ac:celerogram makes v (t) vary linearly in 
9 

each time interval. Thus for each time step Equation (C,ll) becomes: 

Z: - /): ~~"::: (a .+-Jt)~ 

where.lj is complex and equal to! 

and the coefficients a and bare 

(.(= ~ (~) 

I> ~ ( Vj a.,) a ~ (f.))/At 

The solution to Equation (C.12) is: 
f' 

t ) A 4". -"- C., ,0 «te,4 /. 
~. f. -= 1'''1,'';''' "'i" 7' t;. 

where ,~ aed 
Ai:> ~ "/a . - /' 

~- - g p.-

At the end of the integrationt 7:. will be a. row vector and the n generalized 
1 

coordinates will constitute a matrix of dimensions n*ntt where nt is the total number 

of time steps. The solution in geometric coordinates will be: 

The number 2 comes from the fact that a solution of complex pairs is being SLimmed. 

The imaginary pad vanishes for obvious reasons. 
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