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HBSTRACT

A time damain finite element method that efficiently solves the three dimensional
soil-structure interaction problem is presented. In addition to all the factors
currently considered by frequency domain approaches the new method allows the
consideration of the nonlinear effects in the structure and foundation (separation of

base mat from soil or nonlinear materialh

The general equations of motion for the linear cases are expressed in terms of the
relative displacements of the soil-structure system with respect to those of the
nodes at the foundation level, This formulation allows the load vector to be an
exclusive function of the free field accelerations at the soil-structure interface, In
aorder to avoid the scattering problem the dynamic displacements can be defined with
respect to those of the buried part of the structure. The nanlinear case requires
that the equations of motion be established in terms of the total interaction

displacements.

The energy radiation through the boundaries of the finite element madel is accounted
for by using frequency independent radiation boundaries obtained from a frequency
dependent boundary defined at the fundamental frequency of the soil-structure
system. The effects of this approximation are shown to be minimal for typical

structures,

The soil-structure system is divided into substructures, namely the structure (one
or more) and the soil. The latter is modelled with three dimensional solid elements
in the near field and axisymmetric elements in the far field, The coupling between
them is enforced by expanding the displacements of the solid elements in terms of
the axisymmetric ones. & new method for the reduction in the number of degrees of
freedom is presented that is based on component mode synthesis technigues and on
the use of orthogonal sets of Ritz functions, These functions are obtained in a
simpler and computationally faster way than the eigenvectors,; while yielding

improved accuracy,



In the linear case, the resulting reduced set of equations of motion is integrated by
uncoupling the system using the complex mode shapes. The latter procedure becomes
exact for piece-wise linear type of excitation and is computationally as efficient as

the step—by—step methods for reduced systems.

For linear problems the present method becomes numerically far more efficient than
the existing frequency domain approaches, This difference leads to substantial

savings in computer time and storage,
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CHAPTER 1

I RODITCTION

Soil-structure interaction problems bave been studied for the last three decades.
The need for analyzing a given structure not as if it were isolated, but rather as a
part of a seismic environment and as a part of an ensemble of soil and other
structures interacting between rach other, is making soil-structure analysis
imperative for an increasing range of structures, Many aspects need be studied in
order to completely analyze a soil-structure interaction problem., Some of these
aspects are! the seismic environment, the dynamic properties of soils, the site
response, impedance problems and structural analysis. The solutions to ali these
problems have required the attention of many researchers in the three different

areas of seismology, geotechnical engineering and structural engineering.

Much has been written about soil-structure interaction problems. In recent years
saeveral authors, Lysmer{1%78), Idriss and Kennedy({1977), Rosenblueth (1980); have
summarized the dispersed literature by writing different veports that tend to
classify the analytical inethods, analyze their differences, study the nature of input
motions, and discuss the future possibilities for solving the different types of
problems, This literature is concerned principally with frequency domain methods,

There are two main reasons!

1} This domain permits, through the use of frequency dependent impedance

coefficients, the splitting of the problem into separate studies of soil and structure.

2) The radiation boundaries that count for the transmission of energy through the
edges of the finite element model,and that have been obtained from wave

propapation theory, are frequency dependent,




AN

So far these two reasons have been powerful enough o inhibit the time domain as
the effective environment for the solution of the soil-structure problem. However
this trend has to have an end,; because of certain limitations of the method.
Frequency domain techniques can not solve true nonlinear soil and structural
problems; and they hecome numerically inefficient for three dimensional problems.
The purpose of this dissertation is to present efficient numerical techniques in the
time domain that can solve the soil structure interaction problem in 3 dimensions,
and at the same time to leave the door open for the solution of true nonlinear

problems, feasible only in the time domain,
The presentation of this research is organized as follows!

An extensive review of the analytical methods in the frequency domain are discussed
in Chapter 2. The complete, substructure, and hybrid methods are formulated and
compared to each other. Special attention is given to the substructure methods, and
more concretely to the recently introduced volume methods that eliminate the need

for solving the scattering problem.

Chapter 3 deals with the analytical solutions to the soil-structure interaction

problem in the time domain, The complete, boundary, and volume methods are

- formulated, The last one constitutes an innovation within the time domain

framework. The substructuring approach, as done in the frequency domain, cannot be
adopted in the time domain due to the practical impossibility of splitting the system
and solving independently the equations of the soil and structure, Bubstructuring
énncepts in the time domain are used in the sense of reducing the number of
egquations in each of the substructures that subsequently are assembled and solved

simultaneously.

Chapter 4 deals with the vesearch towards the finding of a frequency independent
radiation boundary to be used in the time domain computations. Results are given
which demonstrate that the use of frecuency independent boundaries defined at the
fundamental Fréquency of the system leads to very good approximations in two and

three dimensional problems.



The reduction in the number of degrees of freedom by the use of Ritz functions is
described in Chapter %, One, two, and three dimensional examples are given which
demonstrate their accuracy in solving not only structural problems but wave
propagation problems as well, Genaval Technigues for the reduction of the system of
equations and dynamic substructuring are also exploved, A new method of
substructuring is presented that is not only suitable for soil-structure interaction
problams, but for general dynamic substructuring as well, The results of a numerical

example show the efficiency of this new technigue,

The analytical methods formulated in Chapter 3 are extended in Chapter 6 for the
solution of the scattering and nonlinear problem. The formulation of the nonlinear
problem is mostly suited for the cese of the existance of local nonlinearities at the
foundation level, like uplifting of the structure or plastic behaviour of the seil close
to the foundation. The proposed modeling of the near and far fields of the ensemble
soil-structure system is presanted in Chapter 7. The near field part of the soil is
modeled with solid finite elements and the far field with axisymmetric elements that
are coupled at the boundary interface with the solid ones, Some considerations are
made regarding the material damping in the soil and the structure, and the numerical
integration of the raduced set of squations. Hesults of a three dimensional problem

are shown in Chepter 3. Conciusions of this research are summarized in Chapter 2,



CHAPTER 2

HITHLL. Y TICAal. METHOIDS I
THE FREQUEMNMCY DOMAILIIN

2:1- INTRODUCTION:

The following discussion summarizes all the curvent analytical methods with their
complete formulations, for the sclution of soil-structure interaction problems in
the frequency domain, All the analysis is made under the assumption that the finite

element method is the analytical tool used for the discretization of the problem.
The methods in the frequency domain are divided into three categories!

a) Complete methads
Cantinuum
b} Substructure methods 4 Boundary
Velume
¢} Hybrid methods

The complete methods, Lysmer (1974} and (1975), solve the ensemble soil- gstructure
system simulianeously in terms of the total displacements. The motion is specifisy
at the bottom of the model; which is supposed to be rigid, and is abtained from the

control motion at the surface by the deconvolution process.

The substructure methods, Chopra (1973), Gutierrez (1976), Kausel and Roesset
(1979) and Kausel (1978}, make use of the principles of compatibility of forces and
displacements at the foundation level to split the complete model into two parts!
soil and structure, The frequency dependent impedance coefficients, obtained in
closed form solutions for a few cases {(generally surface structures) and by finite
elements for the rest, are attached to the foundation. By introducing the free field
motion at the foundation level the dynamic response of the structure can be

obtained independently.



It is possible to distinguish hetween surface and embedded structures, and in the
latter between boundary and volume methads, depending upon at which points the
motion is specified, For the boundary methods the motion is specified at the
interface between soil and structure. For the volume methods the motion is specified

at all the nades of the structure that are buried.

The hybrid methods eliminate the impedance problem at the houndary between the
soil and the structure, and create a far field impedance problem that is solved by
syatem identification techniques, A detailed formulation of all these methods will be

given below.

20 SIMPLIFIED MODEL.

In order to better illustrate the concepts upon which the general formulations in
both time and frequency domains, are based, a simple 2 degree of freedom problem
will be analyred first, The formulation for more complicated seil-structure systems
with thousands of degrees of freedom is only an extension of this small case, the

concepts do not vary,

Let T, and ¢, be a system of two masses connected by a beam of stiffness b, as

shown in Figure (.1} The system is vibrating due te a specified ground motion
g
applied at rr.,. No external forces are acting in the system, The equations of

motions in total coordinates arel
w0l [u [ k,d [ v o \
; o 4 L y 5 l ‘*i g (Z.l)
[«] 7] (A 4 . W,
o E 5 23 = %b 4 < J

Since the system has no support the matrix K is singular, The first equation of the

41

asystem (2,1} is]

m"\}l%: + ky \!,L&’” + My Vg = Q

ar

.o t L o
myE o+ ke = ki Vg (2.2)

In (2.2); the input vector is defined in the RH.G. of the equation. A step further can
e taken if we write the total displacements as the sum of the dynamic and

b
pseudostatic components. The dynamic displacements represent the relative



Fig Z.,1,~ Simplified 2 degree of freedom model,
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dirplacements of degvee of freedom | with respect to degree of freedom 2. The
pseudostatic ones recult from a static support displacement, (In this sarticular case
it 15 a rigid body motion,)

A A AT I Vg (%.3)

The substitution of (Z.3) in (€,2) yields?

n, .‘}i o k‘N v, o kmvﬁ e Wiﬁ ?\'zﬁ o k” V? (.2 ,4-)
however
kyvg + kypvy = © (2.%)

because a rigid body motion imposed in an unsupported structure ( ke is singular)
does not create any internal forces. It may be seen also, that (2.9) comes from (2.4)
by eliminating all the dynamic terms in ity Therefore (3.4) becomes?
msK}s + by = - mei}*ﬁ

which is the well known equation of motion of a single degree of freedom system
under ground excitation (ses Figure Z,1), The concepts outlined in this simple
problem will be vsed throughout the Time and frequency domain formulations, The
next step will be to extend them to the general case of a lavge continuum or discrete

model of a soil-structure systen.

73~ COMPLETE METHODRE, Lysmer {1774} and (1973)

Complete methods are defined as methods in which the motions of the goil and the
structure are determined simultaneously, The equations of motion arve derived with
reference to Figure (2,2) which lllustrates a complete, discretized soil-structre
system, The soil degrees of freedom are designated by LI those of the structurs
by L and the ones at the basement-rock by L The concepts seen above for the
2 degree of freedom system apply similarly in this case, The equations of motion of

the complete system in total coovdinates are!

B



|

Fig Z.2,- Finite element mesh for the complete methods,

g



The input motion is specified at the basement-rock, and therefore no external forces
are applied on the R.H.S, of the equation. The coupling terms expressing forces at

the base level that correspond to the prescribed motion at the base of the model,

can be transferred to the R.H.S, as done in the simple model (Equation 2,2, and 2.4)

becomes!

Mgy Mgq A + s Csa 4 + kes ke |f ¥ - ©
[mﬁ, mml {:‘} {% caj {ﬁf} L» k«l ra {‘"‘«h"‘f*%ﬁ‘f ~ kg ¥
or in a simplified notation (2.7)

MFE p Crt 4 Kt = Qg (2.8)

where G‘!F is the input force vector with oniy nonzero elements at the base of the
moadel, (See Figure 2.1)

This method does not use any superposition of displacements, therefore it has the
advantage over the substructure methods of the possibility of including nonlinear
effects by making use of the equivalent linear method, Lysmer (197%5), However, it
requires a much larger computational effort and overall it is numerically inefficient,
The extension to three dimensional analysis is currently prohibitive., Another
problem arises from the fact that the motion is specified at the boundary of the
mesh, which leads to canflict with the radiation elements situated on it, The
solution adopted in FLUSH is to assume that the lower boundary is rigid and specify

the input motion at this location,

2.4~ SUBSTRUCTURE METHODS,

Z4,1,~ BOUNDARY METHODS! Chopra(1973),Gutierrez (1974); Roesset(1%75),
Kausel(1978)

Formulation in total displacements!

The ensemble soil-structure may be divided as shown in Figure 2.2, L reprasents
the motions at the structure,r‘b and Rb the motions and the contact forces at the
boundary with the soil respectively, The displacements at the soil are designated as

LA and those at the boundary as o



10

<\rs
” —+< P
7t N\g,
Vs
N Rea
ND T
/| L
V>P’

Fig 23+~ Finite element mesh partition for the boundary methods.,
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The equations of motion for each of the substructures are!

For the structure!

my, o | Cos  Cap |( W kes ke | % o
WA + = (29)
o my v, s Cip r‘:’ Kie k% Y‘d’ Ry,

where Rb is the interaction forces between the soil and the structure that would
not exist if the influence of the structure upon the soil were negligible. Note that
the stiffness matrix is singular, that is the structure is vibrating as the 2 degree of
freedom model model studied above with the addition of the interaction forces, as

shown in Figure 2,2,

For the soill

- ‘0 g - o & v
M © ) % S || % kg k|| Ry,
+ + = CZJO)
Lo Mo § | 1Cof oo ’:': L kot Kaa r'd’ 4]
The free field equations for the soil part are (scattering problem)!
w =0 o . -~
m,  © o ¢ Sl kee Re (% o
+ ._ 4+ = (&)
o O *
Lo Mel| Lt Sl | Ta L lkas laad | w2 o

if we define the interaction displacements asi

+ ]
r{_ny}..r%

(]

LI P

a

and subtract (Z.11) from (2,10) we obtain}

»8 o

m, QI 4 S| % ke R e -Ry,
LU h T = (2.42)
o m, j1 v Cof  Caa il Ya ket  kagdl v, o

It should be noted that up to this point everything has been done in the time
domain, The continuation of the substructure method in the time domain is possible
by using influence coefficients that lead to a system of Volterra integro differential
equations, but this poses a complicated and certainly inefficient technique of
analysis, The frequency domain offers a much easier solution, as it will be seen in

what follows.
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Equation (Z.12) may be written in the frequency domain as !

A £y
mg O S o k, k T - Ry,
o + B | A (2.13)
”
o me Cab  Tag, ket  kao Ya °

where the symbol ® stands for the Fourier transform. The vibration of the soil due
to forces --IEAQb(u\.e)L=_&iWt applied at the soil-structure interface and without the
excitation at the lower boundary is also governed by Equation (2,13), This
constitutes the impedance problem. Equation (2.13) may be condensed for each

frequency s to the F degrees of freedom to obtain:

A~ P
Sp ) Fpw) = R (0) (2.14)
Compatibility between soil and structure leads for each frequency to!
o,
e =Rt (2.18)

The substitution of (Z.15) and (2,14) in (Z.9) yields!

A
Jfme o e <o ke Keb A o
- + W + ~ =
® o my, Tl Syl k’bﬁ kbb V‘: - 5‘% (_a)) ?b
now (24@)
P

I\% A° l\_t Ao

and {Z,1&) becomes!

m, o _ Tess s ke kep, { b o
-G 4+ W + -~ = &
“ o y, Se  Cbb kps  RtSeljl B 5P 5
{2.7)
Equation (2,17) governs the motion of the structure in total coordinates with

i

interaction effects due to any prescribed free field motions at the soil-structure

interface, At this stage it is worth pausing to make some observations?

1) For surface structures and certain soil conditions (half space or single layer)

analytical solutions for Bf(w) are available, thus saving the effort of the impedance
problem. The frequency dependency of Sf(w) can be eliminated approximately by

introducing the static values of EF plus a virtual mass of the soil associated with
the structure,
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Several authors, Tsai, Niehof, Swatta, and Hadjian (1974) have demonstrated that the
use of freguency independent impedance coefficients SF’ defined at w=(3, leads to
excellent results, The use of coefficients defined at the fundamental frequency of
the system will lead to more accurate solutions than those obtained with the static

values,

2) If the structure is emhedded the free field motions e at the interface do not

coincide with those at the surface, even in the case when the boundary is rigid.
Since Yo areun known, a scattering problem must be solved first, This consists of
solving the free field problem with the shape of the embedded structure in it, as
shown in the Figure (2,2), but without the interactions forces, so as to obtain the
free field motions at the interface . Due to the lack of closed form solutions, this

problem can only be solved at the present moment by finite element techniques,

Formulation in relative displacements,

First Case: Free field motions are identical at all nodal points.

In this case the structure behaves as if it were subjected to a single support

excitation rbD=v y where ~_ is the ground motion at the interface level, and v ©

g g b
is defined in {Z,17) The total displacements may be divided into the dynamic plus the
pseudostatic components, as done with the 2 degree of freedom system in the

previous section.

e % gt
" + 2.8
it { n :} e ( )

where L and ¥, are the dynamic components, and r‘sq and r‘bD are the free field

and the quasi-static components respectively, Substituting (2.18) in (2,17}

A

A . q.
[-apm +img + k]4=1a] © L [@Meivg + K]{ ™} (2.9)
S I E 0y

T, C and ¥ are defined in (2.17) The SF terms vanish in the RS, yielding?

afme o o= s ke Mgt (A
- + +
O my, Clpg Ty, kbs kbb ?bo
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The quasi~static displacements can be defined in terms of the free field ones
"'._3 = TV,
° ~ 3
s
r is a matrix containing zeros and ones, because the quasi-static displacements are

rigid body motions, Since EC is singular BIZv=0,thus if the damping terms are

neglected (2,17) becomes:

N
[-&"M +iBC + K& r"’} = -2 MY (@)
PaS
v
ar b
m, © es  Ssb kes kg, ¢5 m, O} . -
-a‘)z W + A = A C)
o m, S Cu, ks R J1L T, o m,

-3
(2.20)
Equation (2.20) expresses the dynamic equilibrium of the structure as a function of

the ground accelerations, considering that these are all the same at the soil

structure interface, and in terms of the relative displacements.

Second case! The free—field motion is different at each point of contact between
soil and structure.

The structure is subjected now to a multiple support excitation., Again the total
displacements can be decomposed into the dynamic and pseudostatic components!
[Py LA [
= ~ <+ n
r!} y (N
where the first term in the R.H.5, represents the dynamic components and the second
the free~field and quasi-static components. The latter ones are the displacements

produced in the structure due to unit displacements at the base.

N
| S ksb rj' o
A - A
Thus,
A
ksﬁ rsq‘ + ksy?: = O
or

A - A
th = - ke kg = LW
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where -1
L= - ke kg

Y"E ? L ~o
s Yy
u{"“ = ~ -}- “ b (2..2\)
, L L

[
Now substituting (2,21} in (2,17) yields }

therefore

* o Le°
[-5*M+ g + kR ®} = - -E%M + WS+ K b
T 5, 6, - v
"y ' b

The SF term vanishes in the R.H.5,, and after some manipulation it becomes:

o A
m, o] Cop sl kﬁ{: kg.b LY

-5 + W + n =
o m, Sy Cpp L s Ry f 1 Y

L N
m, LY L$ o
s LV : L.
- sttt T ¢ P R w3 (2.22)
mb Vs" Vﬂ w E V‘j

Where
; -1
k’h = k}”b - kbsk“ ksh
This is the most general Equation of the boundary methods, Note that if there is no

sopil-structure interaction the term LA vanishes and Equation (2,72) represents a

standard multiple support excitation problem.

242+ VOLUME METHODS, (Lysmer 1%81)

The volume methods avoid the scattering problem present in the boundary methods,
They basically consider the interaction effects between soil and structure not only
at the interface nodes but in all the buried degrees of freedom (see Figure (2.4)). The
trick necessary to accomplish this is to reduce the mass, stiffness, and damping of

the embedded structure by the corresponding properties of the excavated soil.

Formulation in total displacements:

As in the boundary methods, the structure and the soil are considered separately,

The same notation is vsed in this case,
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Fig Z.4.- Finite element mesh partition for the volume methods.
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Structuret!

m, o 'r": [ ?: ke ko]l vt o
ap |t | o (2.25)
(o] mh+ m* V’b C% (‘,w r Kbs k% Y‘b R’b

The interaction forces are now acting in all the buried degrees of freedom.
m, 0
O m,

32 e b -h -f

\7 [ C{, Y, k k{, Y, Rb

tzf{ + H &X 's + ﬁ * © = (2-24)
v SO L kg kag A\ o

It is clear that if we sum up (2.22) and (2,24) we will obtain the Equations of the

Soilt

assembly as in the case of the boundary methods, The free field Equations now
refer to the whole soil system without the excavated part} thus a scattering problem

need not be solved,

Fm, o (¥ Coe g 7 ke ke, 173 (o
S (e
= ™y, Yo Caf Can Lo k’o& am Yo Q

Subtracting (2,25 from (2,24} vields

m, o v, "¢ ¢, ¥, k. e, Y. { -r.
! R “’k e [ * *"1 ) o= *1 (220
0 LS Ya St Can, Yo kut koux Yo o

. I S = o b
whare v‘{:—t"F T"F and Ta»r& r

b

N

Equation (2.26) defines the impedance problem; which will have move unknowns than
the corresponding impedance problem in the boundary method. Thus at the cost of
having to solve an impedance problem with more unknowns, the volume methods
eliminate the need to solve the scatiering problem. Transferring to the frequency
domain, defining the impedance relation as Sf(w)rb(w) = R_f(W)g and following the

same procedure as in the boundary methods, Equation (Z.23) becomes!

m o 1 €y Cab k kg rt o
S 85 5
-R* + 4 ap f = o o Cﬁﬂ-’?)
o g ¢ i ky, KuptSg kel LY Se(W) vy

el

Equation (2.27) defines the motion of the structure in terms of the total
displacements and as a function of the free-field ground motion at the buried
degrees of freedom. The free field motion may be obtained from a site response

analysis. Assuming one dimensional vertical propagation of P and § waves, Schnabel
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(1972) 4 the problem becomes very simple, More complicated wave patterns, like
inclined P and 5 waves and surface waves, can be considered also, Gomez-Masso
(1279}, Chen {1981}, and Wolf (1982),

Formulation in Relative Displacements:

Bince the free-field motion is different at each point of the buried degrees of
freedom, a multiple support analysis is needed, The formulation is identical to that

described for the boundary methods and there is no need to proceed in much detail.

Again
& o A
LA v r‘sﬁ-
k ) 4 ¥ 3 °
b b b

are obtained from static condensation as!
A A
A o= Ly

where .
L= =g kyy

Substituting in (2271

o A
) \r o] L
[ﬁa;zm + iRC + K} i - [-@*M + ARG & 5] *’}
A LX) ~

N 5% 7
Since
Keg ksb
K = K
Kis, Myt S~ Keg
tﬁe SF term vanishes on the R.H.S, Thus!
. g, o - < k ™
O wmy-mg Cup= % ki kit S~ kel] LV,
~ A
ms L.va ‘l Lba { Q }
FEe o) [
A m bt : + ey S (ﬁnZS)
m, ¥, \f K* ¥,
where { 23 3 3

k* = kbb - kbs k;; kﬂ, - k-ﬁ‘-
Equation (Z.,28) constitutes the most general Equation for the structural

displacements in terms of the free—field motions at the buried structural degrees of

fresdom;



19

24,3~ IMFEDANCE FROBLEM:

In order to obtain the frequency dependent impedance matrix SF » Equation (Z,13)
has to be solved as many times as the number of frequencies in the frequency range

of interest, Equation (Z,13) can be written as!

r* G‘{ml ?fﬁw)} . Ry (2.29)
Qs G | | T o
where

Clee = =@ g + WCg + log

Ol = W S, Mo

-2 : e
Qe = D M, + W Co + Kog

Two methods are commonly used to determine the impedance matrix SF H

a} Static condensation may be applied to the e degrees of freedom?
T -t N s
(.G(;; - Qe Clon Glos)) 5 = Ry
and
" T -t
54:0") = Qe = Go Hao Aa (2.50)

Because &
aa

excessive computational effort,

and C',-}” are usually very large matrices, this method requires

b) An alternative procedure is to first calculate the dynamic flexibility matrix for
the foundation. This involves the direct solution of Equation (2,13) for unit harmaonic
lpads applied at the boundary interface to obtain the displacements at the
correspondent degrees of freedom. The impedance matrix is the inverse of the

dynamic flexibility matrix}

S (@) = F ()
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It is worth noticing that all the cperations have to be repeated for each frequency.

However since the impedance matrix £, typically varies slowly with frequency, a

f
common simplification is to analyze the soil region at a relatively coarse frequency
interval and then calculate SF at intermediate frequencies by interpolation,
Another important point to consider is the fact that frequency depsndent radiation

boundaries may be used at this stage to reduce the size of the finite element mesh,

No attempt has yet been made te reduce the size of the system of Equations (2,13 by
the use of Ritz functions. As shown in more detail later in this thesis, the use of a
total number of Ritz functions equal to 10% of the total number of degrees of
freedom of the impedance problem leads to results within 4% accuracy, The main
consequence of this is that typical wave propagation problems can be analyred very

accurately using Ritz functions,

Another important aspect to take into consideration is that the impedance problem
has been solved analytically for cases of surface structures under certain conditions
regarding the number of soil layers and the rigidity of the foundation., This
eliminates the need to solve Equation (Z,13) with finite elements, and the impedance
caoefficients can be directly assembled in the stiffness matrix of the structural
system, This type of solution constitutes the basis of the so-called "continuum

methods", that may be considered as a particular case of the subsiructure methods,

Analytical solutions to the impedance problem are provided in the literature. Lysmer
and Richart (1%44), Luco and Westman {1971); Veletsos and Wei (1971) obtained the
impedance functions for the case of rigid massless circular plates resting on
homogeneous isotropic elastic half-space. Arneld (1955),Bycroft (1936), Warbuton
{1937), Kashio (1970}, Wei {1%71) and Luco (1974) have provided solutions for a
layered elastic half-spare, Sclutions for a viscoelastic half-space are given by
Veletsos, Verbic and Nair (1973) and (1974) and Chopra (197%5); and for viscoelastic
layered systems by Luco (1974), Impedance functions for rigid strip footings have
been obtained by Qien (1%71) and Luco (1972). Luco (1977) and Savidis (1977) have
pbtained the response of rectangular footings to horizontally propagating waves in
a half-space, Flexible rectangular footings on a half-space have been studied by
Iguchi (1931), and rigid foundations of arbitrary shapes in a half-space by Rucker
(1782) and Wang (1974)
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In all the cases the solutions are obtained for surface structures, or at the most for
one layer, Studies of the effect of foundation embedment on the response have been

rather limited and only a very small number of continuum solutions, all for very

special cases, are now available,

In summary then, for the impedance problem of surface structures a limited number
of closed form solutions are available, for embedded structures however, the only
general approach to the impedance problem, now available is to solve Equation

{Z,13) by the finite element method as explained at the beginning of this section,

Z.5~ HYBRID METHODS! (Gupta, Lin, Penzien and Chen (19800

Except for the cases for which 2 continuum solution is available, the solution for
the impedance functions poses the major computational problem in the substructure
approach, Since continuum solutions are only available for surface structures,
whenever any structural embedment is present a three dimensional finite element
model will have to be analyzed (Equation 2.13) for a wide range of frequencies of
excitation. Since a three dimensional analysis is still very impractical, due to the
tremendous amount of degrees of freedom involved, two dimensional approximations
are made under the assumption of plane strain conditions, which are not always

satisfactory, Lysmer and Seed (1%77) and Idriss and Kennedy (1%79)

In order to avoid the impedance problem for the case of buried structures, Gupta,
Lin, Penzien and Yen (1980) developed a hybrid method which basically consists of
partitioning the soil into a near field and a far field. The far field is modeled in the
form of an impedance matrix. In other words, the substructure concepts are extended
in such a way that the superstructure contains not only the building but the near

field part of the =oil as well, {See Figure (2,3)) Equation (2,17) holds in this case!

m, o© : k rE
-G)z[ ® + i Cos  Cob + Kse eb v = ©
~ - A
Q m, Cos  Cip kpe ki re SeCB) 2
; represzents the total displacements of the structure in the near field, and r‘t;'

-
represents those at the boundary of the model, which include the far field

coefficients.
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Fig 2.5~ Finite element layout for the hybrid methods.
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The only problem remaining is to define the far field coefficients, Analytical

solutions are only available for torsional excitation with a spherical boundary (Luco
1974), Gupta and Penzien solve the problem by system identification techniques, by
insuring that the resulting hybrid model reproduces the known compliances of a rigid
circular plate on an elastic half-space, Once the impedance coefficients are obtained
they are assembled to the stiffness matrix and the Equations of motion can be
solved in terms of the total displacements (Equation 2.,17), or the relative ones

{Equation 2.20),

A limitation of this method is that a scattering problem, involving the half-space in
the absence of the near field, needs to be solved to define the input motions at the
interface, Gupta and Penzien neglect this effect and assume that the input motion is
uniform along the boundary and equal to the free-field motion. This assumption is
generally not appropiate since large variations in the free-field motions are

expected to occur along the boundary.

Tsong (19721) extended this method to the case of two dimensional problems. Again a
method of system identification is vsed to determine the two dimensional far field

frequency dependent impedance functions,

2ob- SUMMARY OF FREQUENCY DOMAIN METHODS!

As has been shown above, the frequency domain methods can be classified into three
major groups! complete, substructure, and hybrid methods. The substructure methods
may be subdivided into continuum, boundary and volume methods. Figure (2.4)
summarizes the steps involved in each one of them, The complete methods only
require a site response analysis (deconvolution) to define the motions at the
bedrock, These are introduced as input in the complete structure and soil analysis,
The continuum approach aveids the site response and scattering problems. The
impedance functions are obtained analytically and the input motion for the last stage
is directly the surface ground motion. The boundary and velume methods are similar,
The main advantage of the flexible volume methods is to eliminate the scattering
problem, which requires a complete finite element solution, by paying a higher price
in the impedance problem. A dramatic reduction in the size of the model can be

obtained with frequency dependent radiation boundaries, In the hybrid methods the
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finite element solution of the impedance problem is avoided by using system

identification techniques.

The free field solution {site response problem) is vsually obtained assuming one
dimensional vertical propagation of elastic waves, Chen (1981) and Lysmer (1980)
have studied the free field problem including inclined body waves and horizontal
(Rayleigh, Love) waves, They have demonstrated that, for both soil sites and rock
sites, the major part of the response is due to vertically propagated P and 5§ waves.
An exception is the case of buried structures, such as pipelines and tunnels, for

which an analysis assuming horizontally propagating waves is needed.

In the case of axisymmetry of material properties and geometry, the number of
degrees of freedom of the three dimensional problem may be reduced by using
axisymmetric elements, and by expanding the load and displacements in terms of

Fourier Series.
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CHAPTER =2

HTTATI.VTICAIL METHODS
IM THE TIME DOMAIRN

21~ INTRODUCTION,

Chapter 2 has outlined the formulation of the common methods in the frequency
domain, As pointed out at the beginning, the reasons for the popularity of the
frequency domain approach are, firstly, the possibility of dividing the preblem into
substructures that can be analyzed independently; and secondly; the frequency
radiation boundaries that help to reduce considerably the size of the finite element
models. As a consequence very little attention has been given to the time domain
approach, In fact there is only one formal method, the one presented in Dynamic of

Structures, Clough and Penzien (1975), for the solution of the problem in this domain.

The following discussion will describe the current analytical methods and their
complete formulations for the soil-structure interaction problem in the time domain,
and then will extend them to eliminate the scatteing problem {volume methods)
These approaches constitute the basis for the formulation of the scattering and
nonlinear problems that will be discussed in Chapter &, The methods in the time

domain can be divided into three main groups!
1) Complete methods.
2) Boundary methods,

3) Volume methods.

The complete methods are formulated as was done for the frequency domain. By
virtue of the principle of superposition the total displacements may be divided; as
explained below, into the free field displacements and the interaction displacements.
By doing so the input motion may now be established, not at the bottom boundary,

but at either the interface between soil and structure (boundary methods), or at the

26
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buried part of the structure (volume methods), These formulations simplify the
problem and make the use of frequency independent boundaries more feasible, since
the source of excitation is not close to the boundary as in the complete method but
far away from it. The volume methods have never been proposed before in the time
domain, and have, as shown later, a major advantage over the boundary methods by

eliminating the scattering problem.

A drastic reduction of the size of the problem can be achieved by using Ritz
functions, and by dynamic substructuring, These methods will be discussed later in

this work.

It should be noted that the substructure concept used in the frequency domain is not
similar to that of the time domain. The splitting of the model, as done in the
frequency domain, is very cumbersome in the time domain due to the need of using
Volterra integro-differential equations. In ovder to avoid this problem the
gquations of moticon of the soil-structure ensemble have to be solved

simultaneously. Therefore when we refer to substructuring concepts in the time
domain we refer to the reduction in the number of degrees of freedom in certain
parts of the system, structure and soil, that subsequently, are assembled and solved

simultaneously.,

22+~ COMPLETE METHODS.

There is no difference in formulation of the complete methods between the time and
frequency domains, The only difference is in the numerical technique used for the
solution of the set of equations. In one case transformation to the frequency domain
iz done by means of the Fast Fourier Transform. and in the other case a direct

implicit or explict integration is done with a time step scheme,

Because of obvious limitations, the use of frequency dependent transmitting
boundaries is not possible in this case, and in general large models will have to be
used to avoid spurious results coming from the reflections and refractions of
elastic waves in the boundary of the finite element model. Currently a three
dimensional analysis of a soil-structure interaction problem by a complete method is

prohibitive due to the large ampount of computer time and storage that is neeard.
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A3~ BOUNDARY METHODS,

The complete problem may be divided, as shown in Figure (3.1), into a free field
problem without the excavated part of the soil (scattering problem), and a source
problem in which the input is defined only at the interface boundary between the spil

and the structure.

The notation corresponding to each part of the problem is as follows! w represents
the motions at the structure, Vg represent those at the seil-structure interface and

vy the soil displacements. Furthermore

~

':;-'c’ Ec' H‘c are the properties of the system in free field motion, meaning without

the structure,
. fod ~

°

W VL v are the free field motions,

T, H‘c are the properties of the added system (building) and

ot ';fz, vz are the added or interaction motions resulting from locating the

building in the site,

The partitions of the displacements are!

v o
\If = V;’ } ﬁs’id '\;& = vg (_?95")
V:f } Vo
and the property matrires!
m my O a o] O
m, = |or my O o=| O gy g (&2)
& O Q o ﬁ‘&g ‘%m.
and in the same manner for the stiffness and damping matrices.
The free field equations arel
m, o, 1V e 1% ke % | 3
o b &e * < . b ':c + ~1 fb ”c = ngg)
My My 1Y, S Cepll Vb kp R L V% Y
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The first matrix equation leads to!

.

-~ @ e Lo o e

s
+
e

MV, + €

where the R.H.S: represents the input motion at the base of the model, When the
building is superimposed on the foundation, the properties and motions on the L.H.S.
of Equation (3.4} are modified by the added building and displacements, However, the
input motion remains the same. This is due to the fact that far from the structure
the input is not considered to be modified by the presence of the structure, even
when the basement is not rigid, as in the case of a half-space, The Equation that

controls the motion of the whole system in total coordinates is$
LA +m{V + 2} +[E+ UV + v+ Lhor kI {T+vi)=
= "“;ﬂb;}b - Eb:lb = kh‘;b (3::5)

By substituting (2.4} in (3,5) and reducing terms (3.5} becomes:

~ oo & -~ o \4,.{-' ~ k.l V% «mf}ﬂc\'f "*k‘{;
[+ m ] v® + LS, +c. T Vv + [ k.+ = Vo Ve Ve

(B)

This is the Equation for the added motions which corresponds to Figure 2.1.c By

substituting (Gu1) and (3:2) in (3.4} (54) becomes!

3]
3 “g { gk%

Laig+ m{ut} + [E+ V] 4 (Rt kW] ~qmgg 10y ~fcug b Ve ~4kgg | ¥y
o o) o
(,as.?)

It is important to note, firstly, that the input motion is defined only at the interface
between the soil and the structure, as shown in Figure 3., and secondly, that the
added motions in the structure are total displacements; and conseguently Equation
(3.7} is suitable for nonlinear analysis in the structure. For a surface structure, the
input motion % _coincides with the free field at the surface. For embedded
structures, Cf'*g contains the different free field motions at the interface nodes. In
- this case, unless direct data are available or an assumption is made regarding these

motions, a scattering problem must be solved in order to obtain ?fgg
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In the case of a rigid foundation,the same input motion may be specified at all the
contact nodes, and equal to the surface motion, In general, however, a scattering
problem will be needed, which is an inconvenience that may be avoided by using the

volume methods described below.

Equation (3,7) may be further simplified by dividing the added displacements in two
parts! a dynamic component, Voo plus a pseudostatic component, VCS, The
psevdostatic displacements may be derived from (2,37) by eliminating the dynamic

terms, Hence!

f ;‘9
LEc-t-k]Vf = - kﬂg vﬂ
o
or (2.8)
V: = V‘c ~3
where
le.,
o~ ~1 3
= - Y. k¢: + kc] kﬂﬁ CB.@)
(o]
Thus
vi. v + rc'\"la @.10)
Substituting (3.10) in (3,7) we get!
m, .
[+ m ]V + [+l Vet [ketk]ve = ~4 [Mm +m]v + mﬂi ;}s (W)
<

The main advantage of Equation (3.11) is that the R.H.5, is in terms of the free field
accelerations only, This is so because the displacements have dropped out, and the
velocity effects are usually neglected., Once the dynamic displacements v are

obtained from (3.11) the total forces + may be obtained as follows!

v o e (s
'F=[_k°+k] Va +V‘°V3+ v, ‘-‘-ch-i'k] Vgl + {',9 l - k93 \";9

)

Vo, Vo Vi, Ve, o]
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The forces in the superstructure are!

fo = kv + kyvg (342)
Note that these forces depend only on the dynamic displacements w and Vgt and

therefore no superposition with the free field motion is needed,
Up to this point there are two major disadvantages!

1) No energy radiation mechanism at the boundary has been considered, To avoid

reflections very large models will be necessary,

2} The final Equaticn (3,11} is expressed in terms of all the geometric degrees of
freedom of the system, For most cases their number will be very large (several
hundred to several thousands), The reduction of this system to normal coordinates
requires obtaining the eigenvectors which can be very costly, Also since the damping
is nonproportional the system will be coupled. Therefore mode superposition will not
be applicable and a step-by-step integration or the uncoupling the system with

complex mode shapes will have to be carried out for the numerical integration.

These disadvantages and the scattering problem may be avoided in the following

mannert

1) The scattering problem may be eliminated by using the volume methods described

below.

2) Energy radiation may be accounted for by using frequency independent radiation
boundaries which; as will be seen later in this work; prove to be very efficient. The

resulting boundary will add new terms in the damping ; stiffness, and mass matrices.

2) The final Equation of motion (3,11) may be reduced by Wilson—-Yuan Ritz vectors,
Hileon,; Yuan and Dickens (1%82), which can be obtained more easily than the

undamped sigenvectors, while yielding a better accuracy.

4) The resulting set of coupled equations can be uncoupled by the damped mode
shapes and integrated exactly for lingar type of excitation, avoiding the inaccuracies

inherent in the step-by-step procedures.
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244~ VOLUME METHODS,

The complete problem may be divided now, as shown in the Figure (3.2), into a free
field with the excavated soil included, plus the source problem for the added
motions, in which the input is defined only at all the buried structural nodes, and in
which the structure properties at its embedded level are reduced by those of the
so0il. The formulation of this method, though different, will follow the same line as

that of the ’boundary methods. Up to Equation (3.,4), the same formula apply,

however the partitions are now as follows!

vt !’ o

+ "

v, V,

+ 1 v £
Vp = . and Ve ® . (_3.\3)

Vg Vg

V: qﬂ.

where vt represent the total motions at the structure, v‘:t

at the buried part, vat
at the soil and Vst at the boundary of the model. The partitions for the property

matrices are!

a " - 1
m mg o] o} v 0 o Q]
m, wm,-Mm, Wg-th, O o m " o
e = % HTH g g g 6 49 A (3. ‘4.)
O oy r'i'zs* Maq o o] 379{ ﬁ"l% Mga.
Ko o o} o 0 © g i,

and in the same manner for the stiffness and damping matrices, Substituting (2,13)
and (3.14) in {3.4), (3.4) becomes!

L+ m I {02] + L&+ <J{Ud) + (R + kIlvd] =

~ -

R e N A R e N | R L | R G

Myt = My Mg (Vg ‘% w1V Wk kg (U
o] ¢ : o Lo} o o
To simplify the notation let the matrices on the R.H.5. be called, Xm, }CC, and }Ck
respectively, The L.H.5, of Equation (3,15} is identical to that of Equation (3.7}, The
R.H.5., although more involved, has the main advantage of being defined in terms of

the free field motion without excavation, and therefore no scattering problem need

he solved,



3k

swatqoad

UOT}IBABIUT UR pU® PIaT4 2843 © OJUT wa1qoad ayaidwod ayy 40 uoisiAY] -7 Big

NOILOW LNdNI e

(37) SNOILOW Q3aav (9)

(°A) @314 3344 (9)

(1)0
S Tt

&

C

i 4

( 3n+°n)

W31808d 3L371dNOD (D)




35

The free field motions at the embedded nodes may be obtained assuming a desired
wave propagation pattern. The simplest one, as mentioned already, is to assume
vertical propagation of P and 8 waves, The added displacements may be written, as

done before, as the sum of the dynamic and pseudostatic components.

v

£
vEeve + Vv = v 4 ‘_} (316)

v,

] 3

againi -
ke ]
"~ k ""'~ k -;

no=~{Rkoek] | H o ke (z47)

kgt~ gt kgg

1O (o]

substituting (3.17) into (3,154

S

[Re+m ] Yo+ [E4 ] ¥+ LR+ k] Ve = ~{[ Mot mc]ve + Xy

It can easily be seen that the forces in the nonburied part of the structure will
depend only on the dynamic displacements, However, the forces in the buried part
will now depend on the dynamic as well as on the free field displacements, Their
computation will be a little movre involved than in the case of the boundary methods,
With the inclusion of the radiation boundaries the only problem left is the reduction

of the number of degrees of freedom,

25 SUMMARY OF TIME DOMAIN METHODS,

A classification analogous to that done with the frequency domain methods is
illustrated in Figure (3,3) for the time domain. The site response problem needs to
be =olved prior to any analysis, except for the case of surface structures for which
the control motion is directly the ground motion at the surface. The scattering
problem needs to be solved for the boundary methods only. The input motion is
defined in different places as shown in the Figure (3.3), depending on the different
methods. The main difference with the frequency domain methods is the need to
solve the whole system of equations simultaneously, This is why the use of
radiation boundaries and the reduction in the number of degrees of freedom is

crucial,
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CHAPTER 4

RADIATION BOUMNIDDARIES

The finite element model of the soil-structure system has to account for the energy
radiation at the boundaries. Boundary conditions that are not adequate will produce
reflections of wave fronts that will impinge back in the structure producing spurious
results, One way of solving the problem is by extending the finite element mesh as
much as necessary in order to prevent the reflected waves from reaching the
structure during the time of the analysis, This approach will certainly lead to very

large models and the computational effort may be extraordinary.

Following this line of thought, Day (1977) proposed a method for attenuation of
waves based on prolonging the finite element mesh with elements whose size
gradually increase with increasing distances from the structure. The zone of growing
grid is made dissipative with intevrnal viscous damping, and terminates at a large
distance from the structure, The method is successful depending on the rate of grid
growth and viscous damping, Day proposes a constant viscous damping and a factor

for element size increase equal to 1.1,

Another approach to the problem of mesh finiteness is due to Smith (1974). In his
method first order reflections from plane boundaries are rigorously eliminated by
averaging independantly computed solutions for the Dirichlet and Newman boundary
conditions, The method requires i independent solutions, where n is the number of
boundaries at which reflections are canceled. and it does not eliminate higher order
reflections {the waves that impinge in the boundary more that once). Therefore even
though the theory is exact, the efficiency of the technique is limited since at least

Vi

y : - .
72 solutions are necessary for a given problem.
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Cundall et al (1978) devised an ingenuous trick that is based on Smith’s theory of
superposition and is formulated in finite differences. The trick consists of

superimposing the solutions not in all the domain but in two small meshes attached
at the boundaries of the model; where the reflections are to take place. The
superposition is carried out every few time steps and consequently the reflections
do not propagate out of the small meshes. In order to aveid the numerical shock
created by the sudden jumps in accelerations and velocities due to the Newman and
Dirichlet conditions, they use constant force and constant velocity as boundary
conditions., The method gives good results but so far it has only been implemented

in two dimensions, Kunar and Ovejero (1980),

Boundary conditions obtained by the integration of wave equations at the boundary
of a given model are only available in the frequency domain because of the frequency
dependency of the problem. Lysmer and Kulhemeyer (1969) presented an approximate
transmitting boundary based on the assumption of energy being transmitted in the
form of P and S waves through the bottom of the model and the fundamental mode of
Rayleigh waves through the sides of the model, The results were quite good for
relatively small models, Waas (1972) perfected the method and solved the case of a
steady state plane motion of a system of horizontal layers of infinite lateral extent,
terminated below by a rigid boundary. The theory has been sxtended to include
axysimmetric geometries, Waas (1972) and Kausel et al {1973), but it is still
restricted to horizontal layers with rigid bottom boundaries, and to steady state
problems. No theoretical solution for the boundary element is available in the time

domain,

The following discussion gives some examples that demonstrate that the use of
frequency independent radiation boundaries obtained in a very simple way from a
frequency dependent one defined at the fundamental frequency of the soil-structure
system, leads to very acceptable approximations. Prior to the examples, however,

some observations will be made about the nature of a radiation boundary.
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4,2,~ NATURE OF THE RADIATION PROBLEM.

4,7,1- One dimensional case.

The perfect absorbing energy mechanism in the one dimensional case is a frequency
independent viscous dashpot. In order to find its characteristics let’s consider a
semi-infinite bar. The expressions for the displacements and velocities at a point x
due to an outgoing harmonic wave are!

U= Awi e.i(‘wb = k)

where w is the frequency, ko is the wave number and A is the amplitude of the

wave, Al a certain point x the horizontal stress will be!

o= E & = - EALke (WE= ko

Expressed in terms of the velocities, this yields

0‘=—Ei)k

e

w
now

w
kKa —
Ve

thust

S = -V?_P‘:’ (4,‘)

Relation (4.1} is satisfied at any point of the bar, The stress is identical to the one
produced by a simple damped oscillator with a damping value equal to -"-’-?’pf '
Therefore if we cut the bar at any location and colocate as boundary a dashpot equal
to Vp}a ¢ tractions will be applied to the boundary which will be equal in magnitude
and opposite in direction to the stresses caused by the incident wave, thus becoming
the one dimensional perfect energy absorbing mechanism, Bince its characteristics do
not depend upon frequency, it can be used equivalently in the time or frequency

domains.,
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4,2+~ Two and three dimensional cases.

The general equation for the propagation of a plane wave in a general anisotropic

medium is! (Synge (1754))
{v} = A{n} expiw ({xT{r]-4)] (4.2)

where w1 is the vector of particle displacrements, v is the vector of direction
cosines, k. is the horizontal wave number vector, ¥ is the vector of particle
coordinates, w is the frequency of the wave and, £ is its amplitude. For
simplicity, only the two dimensional case as done by White (1977), will be considered,
The extrapolation te the three dimensional case is straightforward, Eguation (4.2)

has two independent solutions for the plane case,
2
0 ¢ 2 An{nad e Liw (%} {r} - ]
The strains are!

e,‘ = U"e" s 1w ii ,Am L4 N km QD‘? L‘iw Q{km}‘v{,r} - 'kjl
€y = Ugyg = iw Zg. A ﬁwj km‘j exp Liw({.km}T{?} - ‘%ﬁ

Q,nj = U"‘n‘j + U‘.‘hx

The velocities will be §
Uy = - i’wi A Ny @XP [fi"" C{km}‘.{v} '“E)‘l
2
Oy = = 1w Aprmy exp [in (e} {r}-+)]

The strains can be expressed (as done in the one dimensional case) in terms of the

velocities as follows!
€= BO
9 S M

where

in which
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The normal and shear stresses at a given boundary can be expressed as!
O = ]:.;) gf:.! = Bm )

where XD is the matrix representing the constitutive characteristics of the
material, It must be noticed that the matrix E3° is independent of frequency and
amplitude of the waves, and only depends on the physical characteristics of the
material and the direction of the wave propagation. Therefore, if we knew the
direction of propagation of a given wave we could get the perfect energy absorbing
frequency independent mechanism by simply satisfying the boundary condition!
T s -B%0 »

This ideal solutien is impessible to carry out due to the practical impossibility of
finding in a given finite element mesh all the directions of all the wave trains
impinging at the boundaries. This is why analytical solutions to the radiation
boundary, based on wave propagation theory have not been obtained in the time
domain. It is because of this that all the methods mentioned in the introduction have

heen developed.

4,3~ FREQUENCY INDEPENDENT RADIATION BOUNDARY.

4,3:1~ One dimensional cases.
a) Single dof!

Consider a 5DOF system with the characteristics shown in Figure (4,1), As can be
seen the damping varies parabolically with respect to frequency from the value ¢ at
w =0 to &0 at we=40, At the fundamental frequency Wy the damping value is 20,
which corvesponds to a damping ratio of 10%, The expression for the dynamic

amplification factor is}
~3
PAE (@) = [ k(-md® + ifie(@)]

Figure (4,2) shows the results obtained computing the DAF with the damping
depending on frequency and with the frequency independent damping that has been
matched at the fundamental frequency w1=10; As we can see they are practically

the same, and the maximum response is obviously perfectly matched.
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Fig 4.1~ Characteristics of a SDOF system and damping variation with frequency.
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A — —— CONSTANT DAMPING
s |- ; —— VARIABLE DAMPING

Fig 4,2,~ Dynamic Amplification Factor versus frequency for constant and variable
damping,
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Figure (4.3) shows a second example in which the variation of damping with respect
to frequency is increased, At the fundamental frequency the damping value is equal
to 80, which corresponds to a damping ratio equal to 40%, In this case due to the high
damping ratio the fundamental damped frequency differs from the undamped
frequency and is equal te 9.27, The values of the DAF considering frequency
dependent and independent damping are shown in Figure (4.4), This Figure also
includes the results obtained by matching the damping at the undamped fundamental

frequency.

b} Multidegree of freedom systems !

Consider now the case of a bar with the characteristics given in Figure (4.5), that is
modeled with linear finite elements and subjected to harmonic loads at its tip, as
shown, The damping constant attached at the end of it varies parabolically as
illustrated in the same Figure. The value of <=1 corresponds to the case of perfect
energy transmission, The variation of o with respect to frequency is considerad
sharp enough to give a good idea of how much effect the consideration of frequency
dependent coefficients has on the system response, Impedance coefficients attached
at the foundation of building models experience a proportionally smaller variation
than those considered here, The amplitude of the complex response function at the

degrees of freedom 1 and 2 are illustrated in Figures (4,4) and (4,7) respectively.

As we can see, the differences between both structures are very small for degree of
freedom 1 and almost negligible for degree of freedom 2. It is worth noticing that
the maximum response is always computed exactly at the fundamental frequency of
the system and that both solutions practically coincide along the part of the
frequency spectrum where the maximum responses are expected. These results are in
agreement with those obtained by Tsai, Niehoff, Swatta and Hadjian (1974) with the
difference that they took the static values of the frequency dependent impedances.
Due to this fact they do not obtain total agreement in the peak response given by

the two approaches at the fundamental frequency of the system,
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Fig 4.3+~ Characteristics of a SDOF system and damping variation with respect to
frequency.
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D.A.E - VARIABLE DAMPING
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Fig 4.4.~ Dynamic Amplification Factor versus frequency for variable and constant
damping,
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Fig 4.5~ Modelling of a discrete bar and variations of the dashpot characteristics
with respect to frequency,
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Fig 4.6 and Fig 4.7 «~ Amplitude of the complex response functions at degrees of
freedom 1 and Z of the discrete bar,
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4,32~ TWO DIMENSIONAL CASES,

As mentioned before, Lysmer and Kulhemeyer (19&9) developed a frequency
dependent boundary under the assumption of energy being radiated in the form of
body waves through the bottem of the model and in the form of Rayleigh waves
through the lateral boundaries. They obtained rather good approximations with
relatively small models for the case of a vertical vibration of a rigid footing in an
elastic half-space. The improvement over a frequency independent solution capable
of radiating only body waves through both the lateral and the bottom boundaries was

significant,

The aim in this case (as in the one dimensional case) is to demonstrate that the
assumption of a frequency independent boundary, matched at the fundamental
frequency of the system leads to very good approximations in the frequency range of

interest,

Three examples are considered in this case, The first two are the vertical and
horizental excitations of a rigid footing in an elastic half-space with characteristics
shown in Figure (4.8), The third corresponds to the horizontal excitation of a single
layer over a bedrock. For each case two different models of different dimensions are
considered, The first one has a length equal to four times the radius and depth equal
to three times the radius. For the second model, the depth does not change and the
length is doubled to eight times the radius. To see the influence that the material
damping in the soil has in the response, the same models are considered including

viscous Rayleigh damping with a damping ratio equal to 20%.,

For all cases the fundamental frequency of the system is computed at which the
frequency independent boundary is defined. The responses in the form of compliance
functions are obtained by subjecting the system to harmonic unit loads with varying
frequencies, The compliance functions of the models that do not include viscous
damping are checked against the exact solutions for the half-space that are given
by Luco and Westman (1972) and Oien (19?71). The compliances for the cases that
consider viscous damping can not be checked against any exact solution, however
their purpose is to show the influence that the viscosity has in the frequency

independence of the boundary,
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Figures (4,9) and (4,10} illustrate the results in the half-space for the vertical cases
without and with internal viscous damping respectively, Figures (4,11) and (4.12)
illustrate those corresponding to the horizontal cases. In view of these resulis the

following conclusions may be drawn!

Vertical excitation in the half-space!

a) The differences between the results obtained with frequency dependent and
independent boundaries are small for the small model (L=4R), and almost negligible
for the large model (L=8R), In both cases the approximations achieved for the

frequency range of interest are very significant,

b} The errors that both solutions give with respect to the exact solution in the low
frequency range is due to the limited size in the vertical direction of the finite

element models and the limitations of the Lysmer- Kulhemeyer boundary itself,

¢) In the two dimensional vertical case most of the energy is dissipated in the form
of P and 5 waves., The energy radiated through the lateral boundary in the form of
Fayleigh waves is not significant. Therefore, the differences between a frequency

dependent and independent Rayleigh boundary are not important.

d) Viscous damping in the soil tends to decrease the differences between the
results abtained with both types of boundaries. In this particular case both sets of

results completely coincide.

Horizontal excitation in the half-space!

a) Figures (4,9} and (4.10) show that the differences between the results obtained
with both boundaries are small {within 10%), This differences are smaller for the
large model than for the small one, which tends to indicate that the frequency

dependency of the boundary decreases when the size of the model increases,

b} Enlarging the model has a definite effect on the importance in the results, Not
only does the frequency dependency lose importance, but also the response gets much
closer to the exact solution., This leads to the conclusion that the

Lysmer-Kulhemeyer boundary should only be applied at a moderate distance from the

structure (68 times the semi-width of the footing)
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Fig 4.9 Vertical compliances of a rigid strip footing on an elastic halfspace.

a) Dimensions L=4R, H=3R, b) Dimensions L=8R,; H=3R,
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Fig 4,10,- Vertical Compliances of a rigid strip footing resting on a viscoelastic

halfspace. Dimensions of the model L=2R and h=3R,
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Fig hil.~ Horizontal compliances of a rigid footing resting on an elastic halfspace,

a) Dimensions L=4R and A=3R. b Dimensions L=8R and H=3R,
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Fig 4,12, Horizontal compliance of a rigid strip footing resting on a viscoelastic
halfspace, Dimensions of the model L=8R and H=2R,
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c) Since the nature of the wave propagation in this case is such that most of the
energy is dissipated through the lateral boundaries in the form of Rayleigh waves,

the results obtained demonstrate the validity of the proposed approachs

d) Again the inclusion of viscous damping decreases the differences between both

methods to such an extent that they become almost negligible,

Horizontal excitation in one laver over a riqid base,

Results in the large model for the frequency dependent and independent boundaries
are so close in this case that their corresponding plots are superimposed on each
other. Figure (4.12) shows the differences between the responses of the large model

=8R and a model of length L=14R, It can be seen how close both solutions are, In
both cases there is no difference between the frequency dependent and independent

boundary.,

4,33~ THREE DIMENSIONAL CASES,

The Lysmer-Kulhemeyer boundary is again used to obtain the vertical compliance of
a rigid circular footing bonded to an elastic half—space. Since the results in the two
dimensional cases gave a good idea of the dimensions of the model, only one finite
element model will be used for the three dimensional problem, Its length and depth
are L=4R and H=3R., The material damping is not considered in this example., The
results are illustrated in Figure (4,14),where they are compared to the exact

solutions obtained by Luco and Westman (19713

The boundary is defined at a frequency equal to 6.5 rd/sec which corresponds to an
adimensional frequency of &=0.5, The differences between the exact and the
approximate solution at that particular frequency are due to the size of the finite
element model and the limitations of the viscous Lysmer-Kulhemeyer boundary
itself, Overall, the approximations obtained with the frequency independent
boundary over the frequency range of interest are quite good, especially in this case
where, according to Miller and Pursey (1953), 7% of the energy is transmitted in
the form of Rayleigh waves that are suppased to be radiated with frequency

dependent radiation boundaries only,
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Fig 4,13, Horizontal compliances of a rigid footing resting on a layer over a rigid

base for different dimensions of the finite element model,
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Fig 4.14,~ Vertical compliance of a circular footing resting on an elastic halfspace.
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4,3.4,- CONCLUSIONS,
Two important conclusions can be drawn from these results.

a) The frequency dependent viscous Lysmer-Kulhemeyer boundary provides quite
good results for two and three dimensional models with moderate sizes (length equal
to &-10 times the semi-width of the footing). This consideration is in agreement

with the results obtained by Roesset and Ettorney (1%77),

b) For those cases in which the frequency independent boundary is obtained from the
frequency dependent one by defining it at the fundamental frequency of the system
good approximations are obtained, Errors decrease when the size of the model is

increased and when internal viscous damping is included.



CHAPTER S

REDUCTION IN THE SIZE
OF THE PROBLEM

The utilization of the frequency independent boundary allows us to limit the size of
the finite element model;, and consequently to vreduce the computational effort
involved in this ordinarily large problem. The use of sets of Ritz functions will
further reduce the system of equations and render a solution of acceptable acouracy.
He will see in this chapter that reduced systems of equations obtained with
Wilson-Yuan Ritz functions yield very good results in solving not only structural
problems but wave propagation problems as well, In this way the computational

effort involved in solving the original set of equations is greatly reduced.

Sel = RITZ FUNCTIONS TECHNIQUES,
ul.1e- Introduction.

It is a well known fact that the use of only a few eigenvectors of a structural
system renders a sufficiently accurate approximation to the total response of that
system to an earthquake type of loading, Wilson, Yuan and Dickens (1932) have
cemonstrated that the use of subspaces expanded by a set of Ritz functions that are
generated taking into account the spatial distribution of the load, yields meove
sccurate results than the approximations obtained with the subspace expanded with

the same number of eigenvectors,

Hilson and Yuan used typical building and cantilever cases to show their vesults.
The following discussion will demonstrate by the use of several numerical examples
tow well these Ritz vectors approximate wave propagation and impedance type of
froblems in one, two and three dimensions. The Ritz vectors are automatically
cenerated in a much faster and less costly way. than the eigenvectors and therefore
they become excellent candidates for the reduction of large systems of equations,

i:es the soil-structure systems,

60
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Siv1Ze- One dimension.

Figure (5.1) shows the the problem of the transmission of a wave generated in a
semi-infinite bar by a rectangular pulse applied at its tip. According to wave theory
the pulse will propagate to infinity leaving a constant deformation S in the bar as
shown in the lower half of figure (5.1) In order to check the efficiency of the Ritz
vector approach in modeling the problem, the bar, whose characteristics are given in
the same figure, is modeled with linear elements. The total number of degrees of
freedom is 20, & dashpot is attached to the right end of the bar to simulate the

infinite length of the bar,

Sets of 2,5, and 7 Ritz functions are used to veduce the systems of equations, The
analysis is carried out by step~by~-step integration using the Newmark method,
Newmark (1957), Figures (5:2),(3.35(3.4) and (3.3) show, firstly the approximation to
the exact splution obtained by the finite element approach, and secondly the degree
of accuracy with which the Ritz functions approximate the finite element solution.
As can be seen, the wave pattern and final deformation in the bar are approximated
very well by the sets of 5 and 7 Ritz functions, The solution given by the set of 3
Ritz vectors ehows significant dispersions at several points. It may be concluded
that only a few Ritz vectors provide an excellent approximation to wave propagation

problems in one dimension.

313 Two dimensions.

The impedance problem shown in Figure (4.8} is now solved again using different
sets of Ritz functions, Two cases are considered? first, the horizontal excitation in
the half-space, and second, the horizontal excitation of one layer over a rigid
bedrock, In both cases the dimensions were L=3R. Internal viscous damping and a
frequency independent boundary are included, The total number of degrees of

freedom in the first and second cases was 422 and 400 respectively,

Tables (3.1) and (5.2) show how the results obtained with sets of 5,8,12,16,20,25,33,
and 50 Ritz vectors compared with those obtained with the complete set of
equations, Maximum errors over the frequency range of study are also shown. By
increasing the number of Ritz vectors the approximation converges to the exact

solution, and as seen in the tables, the results are outstanding.
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DIFFERENT SETS OF RITZ VECTORS ngg&~
R o R
W(rdgsec] 5 8 12 16 20 25 35 50 | L28

2.6 .591] .600} .604| .610| 614 | .61k} .618] .622| .645

3.9 | .550| .556| .563] .571 572 .572| .575| .577| .613

i

6.5 L4681 4891 .498] .501) 498 .500f .500] .496| k92

% 9.16 | .373! .408| .L09! .4O5 -402§
©13.0 | 3200 .320] .315 .313] .314 .313| .312| .312' .310

1

4021 4011 400} .395

19.5 | .291] .223| .218] .217| .217: .217| .217| .217 .217
26,0 | .238 .158! .159| .159| .159 | .159! .159] .159: .159
¢ Max '

;Error%g 33.0;75.365 4,737 3.79 3.15? 3.lO§ 2.5 l.89§

TABLE 5.1 - Amplitudes of the horizontal compliances of a rigid
strip footing resting on a viscoelastic halfspace.
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'bIFFéRENT SETS OF RITZ VECTORS - ng )
W(rdke) 5 8 12 i ‘16 20 25 35 50 MeYe)
% 3.9 5831 .583 -584§ .5851 .5851 .585| .585{ .585 | .587
i‘ 6.5 | 752, .757 -760§ 7631 7681 768 770 .770 | 777
| 9.16 | .5&12 .531: .520 . .509 ¢ .504 | .502} .496 | .hok ! 482
170! 326 | 33| 337 b | 3| 346 | L3HB 1 349 | 354
19.5 g 264 | 235! '235, 235 | .235; .235] .235] .235 | .235
;Efiir%ilo-9l 9.22 7,30; 5.305 b.35 3.985 2.821 2.23

i

TABLE 5.2 - Amplitudes of the horizontal compliances of a rigid
strip footing resting on a layer over a rigid base.
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Fig 5.1.~ One dimensional wave propagation example,
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For a set of 25 Ritz vectors {less than 10% of the total number of degrees of
freedom) the maximum error over the freguency range is 2,.5%. The rapid convergence
of the Ritz functions to the complete solution for high frequencies is due to the

attenuation cavsed by the viscous damping.

Fel4- Three dimensions.

The impedance problem shown in Figure (4.,14) is solved again using a set of 63 Ritz
vectors which correspond to 10% of the total number of degrees of freedom. Table
(5,3) shows the amplitude of the compliance functions obtained with the Ritz vectors
and with the complete set of equations, This time no viscous damping is considered.
The results show, as expected; more discrepancy in the high frequency range, This is
contrary to the two dimensional case where the high frequency content was damped

out by the material damping,

CONCLUSIONS.

It has been shown that a small number of Ritz functions suffice to give an excellent
approximation not only to structural problems, but to wave propagation problems as
well. The necessary number of functions will depend on the degree of accuracy
desived for the high frequency content, Global functions fail to represent the
propagation of high frequency waves. However, since in general material damping
will be included in the soil, the high frequency content will be attenuated and a small
set of Ritz functions will provide an excellent approximation throughout the

frequency range.

Moreover, for most cases the major part of the structural response is contained in a
few modes that are located in the low-medium frequency range. For this range the

Ritz vectors provide an excellent approximation as seen above.



W(rd/éeC)RitEBYect. CoggéSet Er;or
6.5 .873 .871 0.23
g 13.0 .862 .822 4,64
é 19.50 617 636 2.99
5 26,00 400 Ll 10.51

TABLE 5.3 - Amplitudes of the vertical compliances
of a rigid circular footing resting on
an elastic halfspace.
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S~ SUBSTRUCTURES,

The dynamic substructuring concept is closely related to the idea of reducing the
number of degrees of freedom of a certain structural system while retaining at the
same time a high accuracy in its dynamic response, The reduction is not done globally
as mentioned above, but at the substructure level, and compatibility of
displacements and forces atr the substructure interfaces genevates the complete set
of gguations of the complete structure, Soil-structure interaction problems invite
the idea of dynamic substructuring because of the size of the proble. and bhecause
the structure (or structures) and the scil can be reduced separately to be coupled

together for the glokal solution,

Many methods have been proposed for dynamic substructuring, The Guyan, Hurty,
Hintz, and McNeal methods are several of the most used. Dickens (1980} analyzes
them extensivaly and compares them with the subspace iteration algovithm. In what
follows the concepts of each of the methods will be summarized, and a new method

will be proposed that is more suitable for soil-structure interaction systems.

%eZ.1,— Beview of the existing methods of substructuring.

a) Guyan method?

Guyan (1945) proposed a method by which the degrees of freedom of each
substructure are divided into master and slave. The slave degrees of freedom are
defined in terms of the master ones by means of static condensation. The free

vibration equations of a substructure are!

M, o % W K, % o
s } el SN (=)
O Myl Fm Rems  Komm || *m Q

From static condensation

om

=
Xy = = Wogs Ko Xen (52)
thus

= an
Ko I (s.3)
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Note that (5.3) represents a set of Ritz vectors which are equal to the static
displacements at the slave degrees of freedom obtained from unit displacements at
the master degrees of freedoms Using (5.3) as a transformation of coordinates,
Equation (Z.1) can be reduced to

Mum ® + R By = O (e.4)
where

Mmm @ Mm & Kvws K;; ﬁv’ia K.;i Ksm
o (8.5)

Kmm = E}’QV‘% o Km$ K55 bﬁm

The application of this technigue to dynamic substructuring is very simple. The
houndary and selected internal nodes are taken as the master nodes. The inclusion of
the boundary nodes allows the divect assemblage of all the substructure Equations,

as in the divect stiffness method,

b} Hurty methed (Component mode synthesish

Hurty (1%71) used two types of vectors to reduce the substructure system of
Eguations. Firet, like in the Guyan’s method, the slave degrees of freedom are
statically condensed to the boundary ones. In order to represent the dynamic
characteristics of the substructure a second set of Ritz functions is formed with the
eigenvectors obtained hy fixing the boundary. Only a few of these eigenvectors are

usvally needed, The governing Equations aret

5, ) S TS I B
]p ”
'?ij? [ I L\ Yen

where the subindices "s" and "m" represent slave and master respectively, The
reduction of (5.1} according to (G.4) vields the following transformed stiffness and

mass matricest
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As in the Guyan method all the boundary degrees of {freedom have been retained and
therefore the aessemblage of each of the substructures into the total system is

direct.

o) Hintz and Mcieal methods!?

Hintz (1976} used the same concept as that the component mode synthesis and
proposes ag a set of Ritz vectors the eigenvectors of the unrestrained substructure
plus a set of vectors obtained from the static selution of unit forces at the boundary

degress of freedom. The transformation is now

é b, - K K ¥i | ] 9,
I, i P, s, %,

The sxpressions for the reduced mass and stiffness become move involved for this
vase and will not be included heve, Bowever this is not the main inconvenience. In
arder to assemble the subsivuctures in the total system, compatibility conditions
have to be met, I g and Hoy represent the boundary displacements between
substructure 1 and 2 respectively; the condition to be met is Hopy 15 M This means
that

I'

LCb)( (LA ) 1‘%“ 5 b= {re S Crgl) ,;;% ; (.7)
%

Thus orior to the assemblage of each of the substructures into the total system the
above compatibility conditions have to imposed at gach set of connecting

substructures,

Mcleal’s method (19711 is basically the same as the Hintz method with the exception
that the sigsnvectors are now pbtained with at least a statically determinate set of
boundary degrees of freedom restrained, 4gain compatibility conditions have to be

satisfied before the assemblage of substructures can be carried out,

[od

2.2 ~Reduction of Eouations and dynamic substructuring.

The problem is now to find a substructuring procedure that will most conveniently

suit the characteristics of soil-structurs interaction systems,
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The starting point will be the general Equation of motion in terms of the relative
displacements derived for the boundary methods in Section 2,3.2, (The procedure will

apply identically the same for the volume methods,) Equation (2.11) is vewritten

again here
° L d
[Fiorm ]V + (v Ve + [kt kIVes = | [M4m]v, + myq Yy (8)
o

The subindex "g" may represent either the boundary degrees of freedom for the
boundary method or all the buried structural degrees of freedom for the volume
methods, In this manner all the subsequent formulation can be applied to both

methods simultaneausly,

As mentioned before, one way of reducing the total system is by using global Ritz
functions, Even though this can not be considered a real substructuring technigue it
is mentioned here because it will be used later to compare its results with those of
the proposed substructuring procedure, Several methods of reducing the Equations of

motion of the soil-structure systems are described next.

a) Define the following displacement transformation:

Yo

v5=cf>Y

Va.
Where v _, vg and W, are the displacements at the structure, boundary interface,
and soil respectively, and cp is a set of gleobal Ritz vectors, Substituting this
transformation into Equation (5.8) and premultiplying by r{f; leads to!

o
M*7 + C*Y + kY = = $T[(Frme) v + {mgl] Vg (59)
o
where
W § [t )4
kK*= &7 ke + ko4 (5.10)

c*= ¢l +E]P

Call 51 the procedure defined by Equation (5.9),
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b} The R.H.S. of Eguation (5.9} may be obtained once the mass and the stiffness have
already been reduced. This would yield the following Equations!

OV, ~
M2y 4 C*Y o+ K*Y = _,LM* Ve + ¢1‘ {m5} ‘\}5 CS.H)
o
where I, " and BC are defined in Equation (5,10}, and
" kg
fex = ()¢ kssg
o
Equation {3.11) defines the procedure 52,

Equation (5.11) may be obtained formally from the Equations of motion (3.7) {(Section
203,20 that is expressed in terms of the total added displacements by defining the

following transformation

b

vE = v;% = ¢t (s42.)

where ¢ is the same set of global Ritz functions as that defined in part a. Applying

the transformation defined by (5,12}, Equation (2.7) becomes!

o o ks
. e, kgt “ % v
MPFE 4 €50 4 KN = 4T magll, - $Tcgo Vg T k(T (243
o o o

Now we can express }f: as the summation of a dynamic component plus a pseudo-
static one. Following the same procedure as that of Section (3,3.2), the generalized

coordinates can be expressed asi
L3

N d a . -l T 3 -
AL A AU Yo - (x*) 4 k‘iﬁ Ve
o

<

thus

Q
VR TR ab AR St Al I Vil M S TR R (5.14)
o)}

where EC*, & and " are defined in (5,10 and Y. is!

=y e kﬁ
re =-(K*) 474 kyg
Q
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Mote that the L.H.S, of Eguations (5.14) and (3,11) are identical, The R.H.S. of (3.14)
is the Ritz approximation to the R.HS, of (5.11) Once Equation (5:14) is solved for
the generalized displacements, the relative coovdinates will be ~w= ? » « The

total forces in the structure can bhe obtained from w .,

o) A substructuring procedure that may suit the characteristics of soil-structure
interaction problems ran be obtained by extending the concepts of the component
mode synthesis techniques, Consider the structure—soil system shown in Figure 5.1,
The structure and soil can be separated into two different substructures,. The
displacements of the first may be expressed {as in component mode synthesis} in
terms of a set of Ritz vectors obtained considering the structure fixed (see Fig S.1),
plus a set of vectors that statically condensate the structural degrees of freedom to

the foundation. The transformation is then!

T e e

V,
J
where @s is the set of Ritz vectors and 3 _ is the generated Ritz coordinates,

Figure S.1c shows the second substructure, which consists on the soil system plus

Superstructure:

the foundation. This system is reduced entirely by Ritzr vectors according to the

following expressiont

HANE

The assemblage of both substructures can not be done divectly, since the boundary
displacements in the soil have been expressed in terms of the Ritz coordinates. As
in the Hintz method compatibility conditions are necessary at the interface degrees

of freedom. These constraints are defined by the first set of Egquations of (G160

Vg = by Ya (8aT)

The substitution of (G.17) into (5,19) yields!

G S e T e = ()



78

*SWarqo.d UoTIIRIE3UT B4NONAYS-TI0S 404 poylaw Buranianiisgng —ovg Brg

3Sv8 g3Xid
NOILVYANNO4 '8 TOS (9) NO J¥NLONYLS (9)

PA

+
|

WILSAS
JENLINYLS-10S (D)




79

Equations (5,17) and (5,12) allow the direct assemblage of the substructure reduced
matrices, The reason why a Hurty type of substructuring has not been used here is
because the number of degrees of freedom at the foundation w will generally be
large. They need be reduced as those in other paris of the total system. The
compatibility condition imposed in Equation (3,17} is not difficult to implement
numerically, since it merely consists of backsubstituting the vectors é‘zjin the
already triangularized superstructure stiffness matrix, Therefore, the vector
—KSS—I I-ng can be obtained directly, without the need toinvert Kss' It is

worth noting that the expesed substructure procedure is equivalent to a global

transformation defined by the following expression?

Vg 4’5 - K;é Kﬁ‘ﬁ, ‘#3
o VS =z O (%95 Ys
{‘va . O ¢, e

Once the displacements transformation matrices have been defined, the reduction of

the substructure mass, stiffress and damping matrices is straightforward!

Structure! Soili
; . +
ME = EImg B, Ml = 3oMaZa
* T - % -+ "
Cs = §s(“5 %‘» Co = §0. Ca Do
K = §-; L K»i = & kaBa

The assemhlage of the substructure matrices will yield the total matrices M%,

C*, and Hi*. Due to the particular nature of the soil-structure interaction
problem, the load vector has to be computed once the mass,stiffness and damping of
the total system have been formed. After assembling, the Equations of the system

are similar to Equation (5,14)

[o] -~
M%‘??’,- + C*{/ A K’g'y = Em M“Tq’ - é‘v Wkw} ':\_?3 (5"@)
O
where
i<
RS, 3
ee - (k') & S (5:20)

and @Z is given by Equation (5.18)
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Substituting (3.18) in {5,20) and (3.19), the R,H.S, of (5.19) becomes!
+
e kg o

- ® Y *
CD i dg) T e,

Note that the vectors (1) and (2) in (5.21) may be formed in the structure at the
substructure level, The last step is to compute M* (K* }-1 + The complete
reduced system is now ready for numerical integration. Equation (5.21) defines the

procedure 83 for subsequent computations,

S5:.2.3~Numerical example,

To check the methods considered in section 5,3.2 a small numerical example is
carried out, A fictitious soil-structure system is modeled with a & degrees of
freedom shear beam model that is illustrated in Figure 5.2, The fundamental period
of the structure on a fixed base is 0.4 sec, and that of the soil alone is 0.3 sec, The
fundamental period of the ensemble is 0,425 sec, which shows that there is

significant interaction between both systems.

The seil-structure model is subjected to a free field motion equal to the W-E
component of the Taft earthquake. The Equations of motion are integrated
numerically by the Newmark step-by-step integration procedure, The time step is
chosen sufficiently small to avoid numerical perturbation, The system is solved

using the following different approaches!
1~ & complete run is made (B dofs) to obtained the master solution,

Zyv- The system is reduced with sets of 1,2,3, and 4 eigenvectors and solved

according to the procedure S1 explained above,

3~ The system is reduced with sets of 1,2,3, and 4 Wilson-Yuan Ritz vectors and

solved according te the procedure 51,

4.~ The system and load vector are reduced with sets of 1,2,3 and 4 Wilson~ Yuan

Ritz vectors and solved according to procedure 52,

S~ The system is solved with sets of Wilson-Yuan vectors in the soil and structure
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?3 >STRUCTURE ’
kg l 2 3 4 5 6 7 8
¢4 MASSES 12.35 24.7 347 247 834 7.4 1174 174
ks| < Ib-sec >
85 0% ft
ke
’ 06 SHEAR STIFFNESS: kg = 39520
G
o7 dsoiL Ck/ft) kg = 120250
ke
@8
ke 7 LENGTH OF THE ELEMENTS Lg= 8.33ft
7mrrrrrT lLg = 50.0ft

Fig 5.7~ Characteristics of a fictitious soil~structure system,

81
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-using the substructuring procedure 83,

The maximum displacements and story forces obtained by the different methads are
given in Table 4. Comparisons are made with respect to the complete model. In view

of the results the following comments may be made:

# All the methods give good results that converge to the complete solution as the

number of Ritz vectors is increased.

# Differences between the third and fourth appreaches are very small. This
demonstrates that the assumption of approximating the R.H.S, of the Equation of

motion with Ritz vectors is feasible.

# Ervors resulting from reducing the system with eigenvectors in one side and Ritz
functions in the other are of the same order D‘F magnitude. The eigen solution
provides an approximation to the the exact solution from below, whereas that
provided by the Wilson~Yuan Ritz vectars ascillates with respect to it, For instance,
the three vector solution with Wilson-Yuan Ritz vectors gives a better response
that the eigenvectors, while the four vector solution is better using the

eigenvectors, although the differences between them are very small.

# The substructuring approach also gives very good vesults, The solution obtained
with two Ritz functions in the structure and 2 in the soil gives an approximation of

the same prder as that obtained with four global vectors.
Conclusion:

a) The Wilson-Yuan Ritz vectors and the eigenvectors give solutions with the same
degree of approximation, 5ince the Ritz vectors are obtained with much less
computational effort than the eigenvectors, they become a better candidate for the
splution of soil-structure interaction problems where the sizes of the models are

quite large.

b) The substructuring procedure defined in Section 5,3.7 renders very good results,
Again due to the effectiveness and the simple way by which the Ritz vectors are
obtained, this substructuring method becomes not only ideal for soil-structure

interaction problems, but also for general dynamic substructuring,
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CHAPTER &

SOIL.UTION TO THE SCATTERING
ASNID NON-LINEAR PROBIL.EMS

£01,- SCATTERING PROBLEM!

As we have seen throughout the time domain formulation, in order to solve the
soil-structure interaction problem of an embedded structure by the boundary method,
a scattering problem needs to be solved first. This is the only way in which the
motions at the interface between soil and structure may be computed. So far, in the
literature that deals with this problem, the only method that is given to solve the
scattering problem iz to model the scattering field with finite elements and to

intreduce the input motion at the rock basement, as shown in the figure below,

In what follows, a new method is presented that makes use of the superposition
principle to define the equations of motion in terms of the free field accelerations
at the excavated part of the soil. Since the motion is defined at the soil-structure
interface (inside the model) the input does not interfere with the transmitting
boundaries placed at the edges of the model. A reduction on the size of the model can

be achieved by using the Wilson-Yuan Ritz functions as explained in Chapter S

Using the principle of superposition the free field problem can be divided into two
parts as illustrated in Figure &.1. The first one corresponds to the scattering
problem and the second to the interaction problem. The general equations for the

total system are! (Dampi'ng terms are not included for simplification.)
Mi + Ku = QCk) (e.\)

and for the scattering:

84
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applying the superposition principle!

U= O % U{. (6.3}
ar

The substitution of (6.4) and (6.1) in (6.2) yields!
MU - MU+ Keu - KUy = MU & Ku
arranging terms!
M‘FU;‘ + Kgu; = (Mg~ M)ﬁ & (K_;-— K)U <)

Equation (4,4} can be solved for the added motions and L may be obtained from
(430

The physical property matrices arel

(meg © O { Kee Kep O
M = [« mb Lu) K= kb‘ kbb kb&
Lo O mg L © Koo Kaa
and N
L) ') o " © o) ©
M#‘m o] m@ le) . K.? = S k& kbu,
Lo o m, LO ko Kan

Equation (5.4} becomes!

o © 01 [ o o olfar g O O (U, “Re ke U
o wm o } Gile o K kylupl=| © wi-m o { b+ |-, K-k, o© v,
o o m (i) lo ke wallwi) [0 0 ollid Lo o o llu

The first equation vanishes, The second and third become!

(my, o] 08) [k, Ky 0 ub mEmy Y, “kpeUe ~ Kpu
‘;,”, ol ba |l sloi™ ™G, « beYe = KLY (65)
L@ il Oy Kapy koo Il Vo o o

Equation {4£,5) is in terms of the added displacements, Note that the load vector is
defined at the interface degrees of freedom.
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Once the added motions ubl are known, the motions of the scattering problem are

obtained from:
3
Ut = Yoo Yy
Equation (4.5} can be expressed in terms of the accelerations by simply considering

the total displacements as the sum of quasi~static plus dynamic displacements:

U

1

= Ur + ¥ (,62-6)
Ue

ut

thus

=

Kaly koa o O

Substituting (&) into (4,5) we get!

m: - Yy, .. Ub

MU” + KU = ty, + Mv €o.T)
O

Equation (6.7) is expressed in terms of the accelerations only, This equation may be

further simplified by reducing the number of degrees of freedom by the techniques

explained in Chapter S,

&Z~ NONLINEAR ANALYSIS:

The concepts used so far can be easily extended to include nonlinearities in the soil
near the foundation of the structure. Consider the case of a soil-structure system
in which the portion of soil close to the foundation (see Figure (4.2)) may behave

nonlinearly due to the uplifting of the structure or plastic behavior of the material.

As shown in the Figure, vt, vnt, ng and v; represent the total motions at the
structure,the nonlinear part of the soil, the boundary interface, and the linear part
of the soil respectively, The total displacements may be divided, as done in the

boundary methods, into the added vz plus the free field :‘;’c ¢

" a v

o
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As can be seen the added motions contain the total displacements of the structure
and the nonlinear part of the soil, Therefore Equation (3,7) that is rewritten below

is perfectly suitable for nonlinear analysis in those regions.

) o o
[+ m] ¥ & (8 +c] VE e [kark]vt=- " O ~ s ("}73 Bh %
M9 a9 k«ﬁ
O [e} lo)

The solution to this problem may be achieved in two steps!

1) Solve the scattering problem according to Section é.1, in order to nbtain the
motions at the boundary, ‘:'g, that constitute the input of the interaction problem,
{Equation (2.7

Z) Solve Equation (3,7) for the added displacements. The total displacements in the
nonlinear part of the soil and the structure will be given directly. Since the
nonlinearities are localized at the foundation level,; the elastic parst of soil and
structure can be reduced by using Wilson—-Yuan Ritz functions and the substructuring
techniques explained in Chapter S, The reduced elastic components can then be
coupled to the nonlinear part, and only the latter needs to be modified during the
response analysis, Clough and Wilson {(1979).



CEHAPTER 7

MODEILING ANMD SOILLUTION OF
SOIL-STRUCTURE INTERACTION
PROBIL.EMS I THE TIME DOMATN

7.1, MODELING THE SOIL-STRUCTURE SYSTEM!

8o far all the technigues presented are aimed at modeling the soil-structure problem
in the time domain. The main concern in saving computer time and storage is o
reduce the size of the finite element model and maintain at the same time a high
level of accuracy. Thus, the frequency independent boundary and the reduction of the
number of degrees of freedom by substructuring techniques are of most importance,
In this section a general technigue for geometrically modeling the soil-structure
system is explained. This technique is based on the combined use of solid and

axisymmetric elements to model the soil in the near and far field respectively.

Figure {7.1) shows the way of modeling a geneval soil-structure system. A certain
structure will be represented with standard finite elements. The foundation of the
structure will be attached to 8 to 27 node  solid elements (see Appendix B) that will
gxtend throughout the near field region of the soil. At a certain distance from the
structure the behavior tends {o be similar to that of an axisymmetric system with
non axisymmetric loads. The far field then; can be modeled by several harmonic

expansions of axisymmetric finite elements (See &ppendix A

In order to couple both the near and the far fields, the displacements corresponding
to the solid elements at the boundary between both regions are expanded in terms of
Fourier saries. The corresponding displacement transformation matrices are used to
transform the solid mass, stiffness; and damping matrices of the solid elements in
contact with the axisymmetric mesh, All the operations are carried out at the

element level. (See Appendix B

90
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The frequency independent boundary can now be attached to the edges of the model,
and the substructuring techniques can be used to reduce the systems of equations,
The maximum size of the element is controlled by the size of the wave length
corresponding to the maximum frequency to be corvectly transmitted through the
finite element mesh, For linear elements the size recommended is b= A /& for
lumped mass matrices, where b is the length of the element and A is the minimum
wave length to be transmitted accurately, Lysmer and Kulhemeyer (1973}, For

quadratic elements the size of the element can be extended to A 4,

742~ DAMPING,

Generation of damping matrices presents special difficulties. The internal energy
dissipation mechanisms in soils and structures depend on many factors that are
difficult or almost impossible to account for analytically in a deterministic way,
Usually all the damping effects are considered by defining damping ratios in the
natural modes of vibration. Some of the bases for assigning those values are
harmonic vibration tests, ambient vibration measurements and recorded response

during earthouakes,

Damping ratios are different for different materials, and for a given material they
vary with the level of strain at which that material is behaving. Thus for a soil-
structure system different damping vatios will be defined} those corresponding to
the different structural materials (steel-concrete), and to the different types of soil
composing the site, The vse of distinct damping ratios leads ivrremediably to
nonproportional damping matrices that can not be diagonalized by the undamped mode
shapes and frequencies, Due to the variation of damping ratios for different parts of

the structure, the damping matrices will have to be defined at the element level.

Viscous damping has been the common assumption in time domain calculations. For a

viscous mechanism the viscous forces are proportional to the velocity!
£, = QI

Where (T is the viscous damping matrix,
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RAYLEIGH DAMPING
& — —-— MASS PROPORTIONAL DAMPING
A S STIFFNESS PROPORTIONAL DAMPING

Fig 7.2+ Variation of the Rayleigh damping ratio with respect to frequency.
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The matrix € can be defined in terms of Caughey series (1960}

o
=2 a,M(MK)"

nae
This provides a proportional damping matrix. The Rayleigh damping model; proposed

by Rayleigh much before the Caughey series were developed; happens to coincide

with the first two terms of these series!

Qg &.m'ﬁ”bﬁ

The coefficients a and b are obtained by matching the damping ratio at two different

frequencies. Their general expression is! (Clough and Penzien 1973}

@,E _ 2e {mn Wm}
by Wy W i (1)
where Wy and s, are the frequencies at which a certain damping ra.tio'g ig

specified. The damping ratio at other frequencies is defined by the following

relationt
4= B2 4 bw
2 2

The variation of % with respect to frequency is shown in Figure (7.2}, A viscous

damping mechanism yields an energy loss per cycle that is dependent an frequency!
E=1e Afw

where e is the frequency and £ the amplitude of a harmonic excitation,
Consequently, this formulation leads to large damping ratios and increasing energy
loss at highn freaguencies, which means that the high frequency content of the
response will be numerically much more damped than the low frequency content. This
behavior although in agreement with the comportment of fluids and gases,; is in
contrast with the observation that for structural and soil materials, damping ratios

differ very slightly with respect to frequency,

As a consequence, the Expression {(7.1) has to be used very judiciously when applied

to soil~structure systems, by selecting those values of wv, and W, that will keep

i
the varviation of the damping ratio as constant as possible within the desired
frequency interval. Kalvhati (1981), developed an optimized Rayleigh damping based
on the application of least squares techniques to minimize the distance between a

horvizontal line of constant damping and the Rayleigh damping curve,



95

The hysteretic type of damping leads to a damping ratio and an energy dissipation
mechanism that are independent of frequency, and consequently becomes a better
candidate for the representation of soil and structural damping. A hysteretic
damping mechanism is defined as that for which the damping forces are proportional

to the amplitude of the displacements but have the direction of the velocity?
vl M~ 7.2
fy= pkivigh (7.2)

It can be demonstrated that the damping ratio is now constant throughout the

frequency range. The energy lose per cyrle is frequency independent and equal to!
E= 28 kA2

where @ is a hysteretic damping coefficient and k the generalized stiffness. Again

£ is the amplitude of the response,

The direct use of Expression (7.2) leads to a nonlinear set of dynamic equations, The
nonlinearity can be eliminated in a step-by-step integration by defining the damping
terms at the beginning of each time step from the values of displacements and
velocities of the previous step, and by transferring them to the R.H.S. of the
eguation, Since the damping forces are generally small; the errors introduced are
negligible provided that the numerical integration is carried out with a small time
step. Kalvhati (1278), This will insure that sudden jumps in the absolute values of

the displacements or the direction of the velocity do not take place,

The relation between the hysteretic damping coefficient and the damping ratio can be

stated by equating the energy loss per cycle, This yia!a’.s the following relationt
2BKA* = TcAw

Thus
=TTy

In the frequency domain the hysteretic damping can be accounted for by the use of

complex stiffness matrices, The damping force is defined as
£, = inky

where ke is the stiffness matrix and ry the hysteretic damping factor.
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The energy loss per cycle is again independent of frequency and equal to

E = Trnka®

Again by equating the energy loss per cycle for a viscous and hysteretic mechanism,
we can get the following relation between the damping ratio and the hysteretic
damping coefficient?

n= 28

The general transfer function in the frequency domain becomes!

HE®) = [k - m&® + ink]

It can be seen how easy it is to implement this type of damping in the frequency

domain, but for obvious reasons is not possible to use it in the time domain,

After this discussion, the guestion still remains as to what is the best solution for

the time domain approach. Two alternate solutions are proposed!

#—- The first one is to introduce hysteretic damping at the element level witha
hysteretic coefficient equal to Pl =& ., The time step integration of the equations
of motion can be carried out explicitly by transferving the damping terms to the
R.H.8, of the equation of motion and by defining them at the beginning of each time
step according to the velocity and displacement of the previous step, The time step

will have to be kept small for accuracy reasons.

#.~ The second method consists of using several terms of the Caughey series, as
explained below; so that as constant a damping vatio as possible can be maintained

throughout the freguency range of intevest.

In order to construct a damping matrix of those characteristics, a method is
provided; Clough and Penzien (1273), to obtain the coefficients S Ay e &, of
the Caughey series. These coefficients are determined by expanding the generalized

damping for each mode in terms of the Caughey series,
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The final expression for the coefficdents is!

H 4 r‘% w‘ PR !,_92;.'-3 1
i A
‘@ i = L W, 2 2
M 2] : .
i " 2032
t e, W Wi

Where is the constant damping ratio, W, are the selected freguencies and &, are

the coefficients to be determined,

& good selection of the freguencies W W e W should provide a fairly
{ should be the

fundamental frequency of the system. In order to select the rest of the frequencies a

constant damping vatio ever the desired range of frequencies, w

certain knowledge of the frequency characteristics of the sail-structure system is
needed, Once the coefficients @, are knaown the calculation of the damping matrices

will be carried out at the element level,

Wilson and Penzien (1972) propused a method to compute directly the damping matrix
uf the system in terms of the generalized modal damping, The expression for the
total damping is in this casel
33
c = mizi ZSntin, %.ﬂ’lm
- l M“ :
where o is the mass matrix, are the specified damping ratios, o the modal
frequencies, Mn the generalized modal masses and <b“ the mode shapes. This

method has the inconvenience of having to obtain the mode shapes and frequencies

for which damping ratins are specified.

Figures {(7.3) and {7.4) show the variation of damping with respect to frequency for a
system with damping defined with an even number of terms of the Caughey series,
and by the Wilson-Penzien approach respectively. As can be seen, the latter provides
a zero damping ratio for frequencies higher than e Consequently, this approach is
not recommended unless provisions ave made to damp the high frequency content of

the system,
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Fig 7.3~ Damping ratio versus frequency for "i" terms of the Caughey series.
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Fig 7.4~ Variation of the damping ratio obtained with Wilson’s and Penzien’s

approach,
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7.3~ NUMERICAL INTEGRATION,

Once the system of equations is formed and reduced by Ritz vectors or
substructuring techniques; its numerical integration can be carried out by one of

three possible ways in the time domain,

The first method is modal apalysis. This well known technique makes use of the
undamped eigenvalues and eigenvectors to decouple the system of equations., Each
uncoupled modal equation can be solved exactly for earthquake type of loading by the
linear force method. Since the major part of the response is contained in only a
limited number of modes, this procedure would be perfect if it were not for the fact
that, as shown above, the damping matrix is not proportional and therefore can not
be decoupled by the undamped mode shapes and frequencies, Some approximate
methods have been deviced to overcome this limitation. They are based on energy
considerations and use different damping ratios for each mode; Roesset (1973) and
Tzai (1974), However, they are more suited for structural systems rather than
soil-structure ones, where due to the big discontinuities in damping characteristics,

specially at the radiation boundary, the mentioned methods may not be accurate,

The second way is direct integration. The term "direct integration" encompasses a
large and increasing number of time marching schemes that solve the equations of
motions in small increment of time, Typical examples are Newmark’s method (1959),
the Wilson- & method (1973}, the ¢ method etc, (Bathe and Wilson (19730, New
methods continue to be developed to suit the specific characteristics of particular
problems, Common troubles of all the direct integration methods are the spurious
perind elongation and amplitude madifications, which depend directly on the chosen
time step, Hilbert (1974), These problems can only be overcome by shortening the
time step at the expense of more time and storage. Regardless of these difficulties,
the time step methods are very good candidates for the solution of linear dynamic

systems and the only ones for nonlinear systems,
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The third method which is valid for linear systems is to decouple the equations of
motion using the complex sigenvectors, This method is prohitive for large systems
becavse of its numerical ineffidency, but becomes competitive with the time steps
methods when the number of equations of the reduced system does not exceed 200,
The main advantages of this approach being that for piece-wise linear excitation,
once the set of equations is uncoupled, the time integration can be carried out
inexpensively and without introducing the numerical ervors inherent in the
step-by-step procedures, & detailed description of this method is given in Appendix
c.



CHAPTER &

MNMUMERICAIL EXAMPILE

The procedures explained above have been implemented in the computer program
SAP20, Wilson 1980, for the solution of soil-structure interaction problems in the
time domain. To evaluate their effectiveness, a three dimensional soil structure
system, whose characteristics are shown in Figure 8.1, is analyzed, The
superstructure consits of a 2 degree of freedom system attached to a rigid massless
circular foundation with a radius equal to 42 ft, The lumped masses are connected by
frame elements, The foundation is attached to a semi-infinite halfspace with the
characteristics depicted in Figure 8,1, The half-space is discretized with
axisymmetric finite elements: The length and depth of the model are 5.5 and 5.8
times the radius respectively, with a total number of degrees of freedom equal to
714,

The material damping is assigned a constant value for all the frequency range and
equal to 7 %, In order to represent‘this behaviour in the time domain 2 terms of the
Caughey series are used (Rayleigh damping). The frequencies taken to match the
given damping ratio are 22 and 70 rd/sec. This will insure a variation of the damping
ratio of less than 0.%% {ie. &.1 to 7.2 %) over the frequency vange of 21 { w £ 87
rd/sec. Attached to the edges of the moedel is the Lysmer-Khulemeyer viscous
damping boundary defined at the fundamental frequency of the system, which has

been previously computed to be 258 rd/sec,

The frequencies of 'the.:Z degree of freedom model on a fixed base are 34,24 and 83,38
rd/sec, The significance of the soil-interaction effects in the dynamic response of
the system is apparent from the fact that the first resonant frequency for the
structural reéponge has been reduced from 34,24 to 25.80 vd/sec, The second
resonant frequency varies to a lesser degree from 85,38 to 80.42 rd/sec, which

means that the interaction effects will be concentrated in the first resonant mode,
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The total system of equations is reduced globally with 2 different sets of Ritz
vectors, the first one has 19 Ritz functions and the second 40 (Z,1 and 5.4 % of the
total number of degrees of freedom respectively). By running these two cases the
convergence of the Ritz vector approach can be checked. The system is to be
subjected to the vertical component of an earthquake excitation represented by the
first & seconds of a given accelerogram, discretized at time intervals of 0,01 seconds

and with maximum aceceleration equal to 0.26 g.

The results obtained with S8AP30 are to be compared with those obtain‘ed by the
computer program SASSI (Lysmer et al 1981), SASSI solves the problem in the
frequency donain following the volume methods explained in Chapter 2, It uses
frequency dependent radiation boundaries, and complex stiffness coefficients (as

explained in Chapter 7) to account for the constant damping ratio,

Figures 8.2 and 8.2 show the accelerograms at the top and bottom masses of the
structural model obtained first by SAPR0, with 15 Ritz functions and with numerical
integration by the complex eigenvectors, and second by SASSI. As can be seen both
accelerograms show minor differences only in the peak responses. The total maximum

accelerations in "g" obtained by both programs are!l

DOFL - DOF2
SASST -(.440 —0.393
SAPZ0 ~(L456 ~0.402

The maximum discrepancy is 3:.6%. Figures 3.4 and &.5 show the response spectra at
both degrees of freedom for 5% damping, &= can be seen both solutions are very

close. The discregancy between the two solutions at the peak of the spectrum is 9%,

Figures 8.4 and 8.7 show the accelerograms obtained by SAPE0 with 40 Ritz
functions, and 5A85I, Both solutions are extremely cldse, sxcept for minor
differences in the peak responses. This case is also solved with a Newmark constant
average acceleration step~by-step method. The results are practically identical with
those obtained with the complex eigenvalues, and it is not consider necessary to plot

them here.
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The tatal maximum accelerations at both degrees of freedom are now?

DOF1 DOF2
BAGST 0,440 -0,393
SAPEO (step-by-step)  ~0.4460 ~0,376
SAPZO (complx eigver)  ~(.452 =0.400

The maximum discrepancy is now 2.5%, The response spectra for 5% damping shown in
figures 8.2 and 8.7 show how close both solutions are, The differences in the
interval of periods between 0.2 and 0,3 seconds are due to the different ways by
which both methods represent the material damping, The maximum discrepancy at the

peak is now 2,5%,

In order to see how important the interaction effects ave in this case, the two
degree of freedom model is analyzed for the given input considering its base fixed.
The maximum accelerations obtained in this way are 0.447 g and 0.424g, which
indicates that the reduction achisved by considering the interaction effects is of
the order of 30%. This difference increases substantially when comparing the
response spectra of the model with and without interaction effects, as illustrated in
Figures 8.10 and 2,11, They show the drastic reduction of the response and the
shifting of the resonant periods due to the interaction. A third resonant period

appears at 0,293 seconds due to the particdpation of the soil,

The program SAP20 was run using a VAX 780 and SAS51 using a CDC 7600 computer.

The cpu time used by both methods are depicted in the table below!

PROGRAM METHOD OF INTEGRATION COMPUTER  CPU TIME (SEC)

SAPS0 (15 func) (Complax Eigvec) VAX 720 220
SAPS0 (40 func) {Complex Eigvec) VAX 780 515
SAPE0 (40 func) (Step-by-step) VAX 780 504

SAS55I (Freq domain) CDC 7600 174
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Assuming a factor of 16 in speed between the CDC 7400 and the VAX 780 (UNIX
system), a time domain analysis may be accomplished 5 to 13 times faster than the

frequency domain analysis depending on the number of Ritz vectors that are used.

It is worth noticing the little diference in computer time resulting from integrating
the system of equations by step-by-step methods or by using the complex
eigenvectors. The conclusions that may be drawn from this example are left for the

next Chapter.



CHAPTER ¢

COMCLUSITONS

The main conclusions of this study may be summarized as follows!

& time domain finite element method has been developed that solves the three
dimensional soil-structure interaction problem. This new method can consider the
following factors! structural embedment, arbitrary soil profile, flexibility of the
foundation, spatial variations of the free—field motions, interaction between two or
more structures and nonlinear effects in the structure and foundation (separation of

the base mat and the soil; or nonlinear behavior of the materiais),

Two different formulations may be constituted, namely the boundary and the volume
methods.: In the boundary methods the total soil-structure displacements are divided
into the scattered and the interaction displacements. The latter are subdivided into
the quasi~static and the dynamic relative displacements. This subdivision allows the
load vector to be expressed only in terms of the free field accelerations at the
boundary interface between the soil and the structure. Computation of the total
displacements is not needed, since the total forces at the superstructure depend
only on the dynamic rvelative displacements. The boundary methods require the

solution of the scattering problem.

In the volume methods, the total motions are divided into the free field and the
interaction motions. This division is possible if the properties of the buried portion
of the structure are reduced by those of the soil at the same level, The subdivision
of the interaction displacements into the quasi-static and the dynamic displacements
leads again to a load vector that is an exclusive function of the free field
accelerations. The total forces in the superstructure will depend now upon the
dynamic plus the guasi-static displacements., The volume methods eliminate the need

of solving the scattering problem.
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Prior to any soil-structure interaction analysis a site response problem needs to be
solved in order to obtain the free field motions. Even though some methods are now
available that include the effect of different wave patterns, no method has yet
solved the problem of considering the variation of the free field due to the fault
rupture mechanism, or the location of the site with respect to the fault source or
hypocenter of a given earthquake, These effects are important for sites that are
located in the vicinity of active faults, and their study constitutes one of the most
important problems in strong motion seismology. Until these problems are solved the

input motion will remain an uncertainty,

A frequency independent radiation boundary is developed that accounts for the
enargy radiation through the boundaries of the finite element model, Thiz
transmitting boundary is obtained from a frequency dependent boundary defined at
the fundamental frequency of the soil-structure system. This approach leads to very
good approximations in soil-structure interaction problems where the total response
of the structure is concentrated in a few modes close to the fundamental mode, An
extensive parametric study is carried out for two and three dimensional cases with
different soil conditions. Results show that placing the frequency independent
transmitting boundary at distances equal to or greater than six times the radius of
the foundation leads to very small errors in the compliance functions over a wide
range of frequencies. The errors become neglegible when material damping is
included in the soil. The results obtained from the numerical example presented in

Chapter & corroborate these findings.

Several methods have been presented for the reduction of the total number of
equations of the soil-structure system that are based on the use of Ritz vectors
techniques., The Ritz functions are either used globally to reduce the entire system
or locally to reduce the soil and structure components separately, Following this
last approach, a new method of dynamic substructuring based on component mode
synthesis techniques has been developed, in which compatibility of forces and
displacements between soil and structure (one or more) are achieved by imposing

certain restraint conditions to the Ritz vectors,
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A small numerical example is carried out that shows the excellent approximations
obtained with all these methods. Regults are also shown that demonstrate that the
Ritz vectors give the same or greater accuracy than the classical eigenvectors of the
system, The reason for this comes from the fact that the selected Ritz functions
take into account the spatial distribution of the load whereas the eigenvectors are
obtained independently from them. Also, since these Ritz vectors are pbtaired in a
much simpley and computationally much faster way than the eigenvectors they become

better candidates for dynamic problems,

A constant damping ratio over a desired frequency range can be achieved by taking
several terms of the Caughey series, and computing its coefficients according to the
method outlined in Chapter 7. The results of the numerical example shown in Chapter
& reveal the complete adequacy of this method. In order to account for the spatial
variation of the material damping, the damping matrices can be calrulated at the

element level,

The snil is modeled with three dimensional 3 to 27 solid elements in the near field
and axisymmetric elements in the far field, Efficient computer codes have been
developed for the construction of the respective stiffness and mass matrices, and
for the coupling between the solid and the axisymmetric parts of the finite element
mesh, Several numerical rules are tested for the integration of the 27 node solid
element, The 3x3x2 Gauss quadrature provides the best results for 21l the examples

chosen,

Nonlinear effects at the foundation level due to the uplifting of the structure and
the plastification of the soil have not been given enough attention as yet, and their
influence on the response of the structure are not completely known, The existing
frequency domain methods cannot for cbvious limitations solve these problems in a
direct manner. & new formulation in the time domain has been presented to account
fot these nonlinearities. The dynamic substructuring techniques proposed in Chapter
T can still be applied at the elastic parts of the system, thus, making this
formulation an efficient technique of analysis. Further research is needed Yo put
this formulation into practice to explore the consequences that the nonlinear
behaviour of foundations, including soil-structure interaction effects, have on the

response of structures,



120

The numerical integration of the reduced set of equations can be carried out by
step~by-step procedures or by decoupling the system with complex eigenvectors and
solving each of the uncoupled equations by the linear force method. The second
approach becomes exact for piece-wise linear type of excitation, while the first
always introduces errors in the amplitude and periods of the response, For reduced
systems of equations {up to 100 mode shapes) the complex eigenvector approach is
equivalent to the step~-by-step procedures in computational efficiency and therefore

becomes a better candidate for the numerical integration.

From the results obtained with the numerical example illustrated in Chapter 8, the

following conclusions may be drawn?

1.~ The total response of a soil-structure interaction problem is concentrated in

only a few modes of vibration.

2.~ A limited number of Ritz functions (10-40) in the soil suffice to represent the

major effects of the wave propagation problem.

3.~ The use of frequency independent transmitting boundaries defined at the

fundamental frequency of the system gives satisfactory results,

4,~ A ronstant damping ratio over a desired frequency range can be achieved by'using

only a few terms of the Caughey series. {2 in the example shown in Chapter 8)

S~ The computational work needed to solve the reduced set of equations is equal for
both the step-by-step procedures and the method of complex eigenvectors. In
addition, the latter approach eliminates period and amplitude errors associated with

the former technigue.

b~ The savings in computer time and storage obtained by carrying out the
soil-structure analysis in the time domain when compared to the frequency domain

are outstanding.

The purpose of this research has been to develop efficient numerical techniques to
solve soil-structure interaction problems in the time domain. The computer program
SAPS80 has been used as a tool for all the numerical computations carried out
throughout these studies, However, the implemedation of these numerical techniques

has not vet been completed for industrial use.
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AFPPENDIX A

FIMNITE EILEMENT FORMYII.ATION
OF AXISYMIMIETERICO SOILLIIDS WLTE
WMOM—-AXNISYMMETRIOC I.O0ATDS

in this Appendix a general formulation of an axisymmetric element is given that can
include any number of terms in the Fourier expansion, The coordinate system is
taken as the cylindrical basis r,ég,z. Since the solid is a solid of revolution, its
shape is completely defined by any plane where & = constant, The body shape is
defined using a finite slement model for the r-1 plane, Fach element generates a
solid torus and each node a nodal circle, The shape functions for the & direction
are trigonometric functions, sine and cosine, that are appropiate due to their

periodic characteristics for 00 229

The displacement expansion is!

A N
/dr[npviz) = 2 (U;'.u (5’3;.) e ud + Wra @&'MMQ)

©

"(9(”912)3 é:(%w (nﬁjmea&»{-l«fzs'um‘uue) @O

ﬂ?(ﬂ&gg) = 2 (D%ea {V;B{-)ma&4 2 4&’%%&)

©

Where LB+ L3y and Ly, are the radial; circumferential, and vertical displacements
raspectively, and «(r,z) and w7 are the interpolation functions, Note that for
=0 Equation (A.1) gives the displacement expansion for the axisymmetric
components r,z, and for the pure torsion problem & . The functions Vn(f'yZ) and

wn(v,z) can be expressed in terms of the nodal shape functions (4 to ? node

elements)
V. ("4?) iy N N
Vo (n2) ={ Vs (ri2) =a§ & (n?)g; (4.2)
25;-»\ (ﬁ?)
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Wrw (F}@) ¢ N .
We. (r8) = { Wou (v,2) =a§/‘f (ni',) we s (_A?)
Wau ()

where NI are the element shape functions and v and w® are the nodal unknowns,

Substituting (A.2) and (A,3) into (A,1) yields

I 4 7 4 N e .
M= F Z/(/“(ng) coné p:“-.;. SN {r,a)oc'uns Wy ],
~  pzs Las] ]

where
A U | We
M= o gﬁ: Up acwel Wa=y Ws
rearranging terms gives the following expression?
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the reascn for this rearrangment is,as will be seen later, that the stiffness matrix

becomes uncoupled for each of the parts, Splitting Hna, {A.4) becomes
N g

«”55'(55“ ,{(&g‘:&j

™ kpe awd
The strain displacement relationship according to the notation and sign criteria

given in Figure (A.1) is}
f;r =Mr.r
Seo= Yr Hop+ Ar/r
Eza= Us,s
v/ Us, r - e )
ﬁ&: z&t’g /f‘ﬂr‘,@‘f“ [ of MI"‘
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Fig A.l,~ Stresses and sign criteria for axisymmetric problems.
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Sustituting (4.4} in (A.E’n), the following relation for each harmonic can be obtained:

g - (e)
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or in simplified notatmn
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P

&
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It is worth noting that without considering the sin and cos the following relation is

2= £ (-n)

Equation (4.8) can also be expressed in the following manner!

satisfied

&F o af 02: ol
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Muq

where 3 represents the strain-displacement transformation matrix of the whole

element,

The constitutive equations for cflindrically orthotropic or isotropic materials are!
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STIFFNESS MATRIX.
The strain energy functional for an element is!

iy & oaf ”
2= 7 / TS LD BV rdboth (A.11)
> /T R T

Due to the orthogonality conditions of the trigonommetric functions, the double

summation in {(4.11) can be converted in a single one,

& = r
Z=t fngzgg’rg?ng rolA f;zf //i :'f: (4.12)

a) Each harmonic rm will produce an uncoupled stiffness matrix.

It is worth noting that |

b) the vector »r contains & degrees of freedom per node and per harmonic, & planar 9

node element will therefore give 7x4=54 degrees of freedom.

c) The matrix X2} is éx54 therefore the product BtDB will providea stiffness
matrix of order 54x54, Due to the rearrangent shown above the stiffness matrix can
be divided into two of order 27x27, For simplicity we can carry out the product

shown above by the subdivision of B3 as given in Equation (A&) and depicted in

ﬁxm/ﬁréé p«;)(\/ﬁ/?(rdﬂd&
~ e T e
Tz £ &

After integrating with respect to # yEC ,, becomes!

Figure (A.2)

where

]P' -y

o T

» 17 Ton T V/
nm T
{’&‘,:Z 7i % ﬂZ,‘«?fQ% rdA glﬁ//Eg]wdd

g -7 Toa mTas
e ~Tn 733 |

The numerical integration will be carvied out in the following manner!

ft = 5 wilTl [T n

Cey
where M represents the total number of Gauss points used in the integration,
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NODE | 2 3 4 5 6 7 8 9

Fig A.2.~ Element matrix per harmonic, The order of each cell is &xé.



135

MASE MATRIX,

The element kinetic energy is
Ly re Togp. 0 ) K
Z=¢zjlff£gf{u gu 77’»(‘*4’4_’&!;4

where Hn is defined in Equation (A.4). Again taking into account the orthogonality
of the trigonommetic functions, the functional can be expressed as
f 3
Téfﬁffﬂ'[/ﬂn/’wrd{]g
»ap

Each l‘harrm:)mr w111 produce.an uncoupled mass matrix, The consmtent mass will be

Met = g'n'/fHu Ho rold -

This can be lumped to the diagonal ’cerms by «:calingt
%Q“ (?“jf/{du ﬁ"".m rdA) f/{t
&

where I:«':Ii,c represents the total mass of the element. Numerical integration will

(4.12)

+

give ¢

»t
Maa= 3 1 1T §1 p (Mt ): (Hao), i 22

5 Hae.

BODY FORCES,

The energy term corresponding to ane element is}

E:-ﬁ “TJ gV = f v’/{ Ke« Ja//m/ (A.,l‘!)

hood

The body forces can be expanded in terms of the Fourier Series

I'4 2
4r w2008 + s 26 | W
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and (A.14) becomes
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Again due to orthogonality conditions!
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After impossing the stationarity condition to the energy functional one can cbtain

the nodal forces for a given harmenic n.

A gw VL r 4 (A.17)

Aree

TEMPERATURE LOADS,

Again the energy term is!

T T TR D (1T )t
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where the temperature distribution has been expanded as a Fourier series, &t are

the coefficients of thermal expansion, Substituting (A.17) in (A.16)
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By the stationarity of the functional the thermal loads become!
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PRESSURE LOADS.

They can be treated as body forces, Expression (A,15) can now be used but

integrating not over the volume but over the area where the pressure is applied

g(gs 5?1’( 3};’4/@“ 4‘4

now
VI
Jun{poh = ZHIP
o /03

and the pressure loads can be expanded in fourier series (ca,a(ing to}
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APFPENIDIX B

= TO 27 NODE SsOIL.ID
FINITE ELEMENT

A solid isoparametric finite element is defined in this Appendix that has a variable
number of nodes (8~-27), Also, some aspects concerning numerical integration are
considered. Finally, an expansion of the displacements in the solid element in terms
of Fourier series is developed so that a solid finite element can be coupled with an

axisymmetric mesh.

B.1.~ FORMULATION.

The system of local coordinates for each element is defined in Figure (B.1}. In an

isoparametric element the coordinates can be defined in terms of the shape
&

¥ .;2" Hi ( f;g,ﬁ-) X

Hi (ns&) ye ¢

H‘%‘ (7‘: fg é'.) &

functions!

¥ =
£a

“My My

The same functions are used to expand the displacements!
Al = ;thf;(n 564"
sy= £ Hilrs®) & (8.2
Up = ;f He(nst us

The shape functions are defined by a serendipity type of formulation that starts
with the basic nodal linear functions to which the quadratic terms are added. Table
1 shows all the basic interpolation functions, Table Z illustrates the generation of

the shape functions by the serendipity approach.
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Fig B.1.~ Local numbering and coordinate system.
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Table B.1.~ Basic interpolation functions,



11

141

SUOTIOUNG BdPYs JO UOTIRIBUAL —*7'F BIqEL

1%
(aales

|

nugo\z\\N\\.
\vﬂ»\&ﬂ.#wﬁ\\l
VYT
LA A
uw\u\\u \%»
gw\N\\ NW\N\-
ﬁw\m\\n ~“\“.
gy
‘M\N\. J\~\\|
\Vl\x Q‘N\\-
_M\N\\a R\ wv-
«w\N\- ﬁ&. Yy e re J1Y Yy
— oww\n \\\ \ 4
3 -4 Yy
by A ‘*\N\\ .
7 Y- VYT
-7 Y \m\ -
| 777 - o
TN Y YASNAZ
\«..\\«\» v\:‘w*- aw,\w\-w\@-
3
- ey hya VY- . 175
d\“\.m\xx&“# w\N‘\M -l n.M\\\\.. w\w\ \\
o e Ve

=Sy
= rﬂ\v\
oy
= N&s
oy
oy
= E\\
= .:\{
= ey
= w%\
=ty
= niy

“N\\\



142

The displacement functions given in (B.Z) can also be written in the following form

- 4%
&
Ay = Z{lo M oj{at}|®2Hatt
- Y]
ﬂa} 6 o Ma)|us
The strain-displacement relationship is?
&:‘ ﬂ&ﬁ
2? =2 ﬂr'v{
Sow ﬂﬂ}&'
= ALy + Uy, n
PR Uy, + Uy
ﬁx w Ugn + Unz
Combining (B,5) and (B.3), gives
N[ e
g;c T- Mﬂlﬁ 9 o J!&
u
£ o My o ! -
Mﬁa‘ g a
% o o Ma s 2 Da 4
Fiy Moy M D
}E@ 0 M,a MQ;Y
Jea LM&,; ©  Aax]

(€2)

(8.4)

Considering the case of orthotropic or isotropic materials the constitutive equations

take the following form:

o

Uz Gn Gy Gig 8 o o
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STIFFNESS MATRIX.

The stiffness matrix is obtained from the strain energy expression as was done for

the axisymmetric case!
€ r
Xé{ 9/& (_’.’4& dfl’( (&Z)
~ h¢ ~ ot N

where R:ab represents the 342 matrix shown in the figure { A.2), The computation of

k= =Bar(;‘ I-‘Bb is straightforward. By using numerical quadrature!

ah
A
4l = 3w (k) | T

~

MASS MATRIX.

As for the axisymmetric element, the expression for the consistent mass matrix is
7

where Mab constitutes a 3x7 cell of the total element mass matvix, By scaling the

diagonal terms of the consistent mass matrix we can obtain the lumped mass matrixt

Maa = ﬂi“" /{qy}(& dfaf (vf?)
f/‘ﬂdﬂ e -

BODY FORCEE.

From the energy term!
ﬂ”!ag’ﬁ/@é (5 Ha ¢t "‘T) 4 oAyl
vel

and the nodal forces are

;l’ﬁ) -

T
&
Yol ~

é a//p/ (ﬁ /I)

SURFACE LOADS

These loads are defined identically to (B.11)

S H:/o ol Aree.
Sur -

Ll

where p is now the surface pressure, The integration is carried out over the surface

integral instead of over the volume as was done for the body forces,
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R.2- NUMERICAL INTEGRATION

Numerical integration for the calculation of the stiffness, mass and loads matrices
at the element level is carried out by quadrature rules, Same authors have obtained
savings in computer time and storage by adopting quadrature rules with a smaller
number of points than the Gaussian rules. Irons (1971) and Hellen (1272)
demonstrated that quadrature rules that use 13 and 14 points for solid elements
with Z0 nodes are of the same accuracy @s the 3x3x2 Gauss quadrature, The aim of
this study is to find a reduced quadrature that similar to the 20 node element, will
give to the 27 node element the same degree of accuracy as the 3#3#3 Gauss

integration rule.

The general expression for an integration rules is!

] sty e o) + Pl on)efle e
+(;z/’/f"€/“¢}“€) #//—4'4 c)+ -./-/-A/z//(*’?;"’*’)@.) ’f//"{d’ﬂ) f———«/

Where the capital letters represent the weights and the lower case letters the

o

coordinates of the quadrature points. The rules and their respective points and
weights are shown in Table 3, The ervors introduced in the different polynomials

that are included in the stifness matrix are given in Table 4,

The solutions to three different problems! a beam, plate bending and solid
deformation, are illustrated in Tables 5, & and 7, As it can be seen the 14 point rules
give very oscﬂlé'tm'y results and in some cases are totally unreliable; as in the plate
bending and solid problems. The 15 point rule gives much better results, The use of
the central point considerably increases the accuracy of the integration process,
However, for the plate problem it gives some oscillatory results that become much
more pronounced for the solid problem. The use of the 21 point rule does not lead to
noticeable improvements, The ascillations dissapear for the plate problem but
remain in the solid problem. It is worth noticing, that the average of all the
oscillatory results coincides with the master solution given by 3x3x3 Gauss

integration rule.
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Table B.3.~ Points and weights of the interpolation rules,
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The reasons for the oscillatory nature of the response lies in the higher order terms
(see Table 1) in the stiffness matrix that are not integrated exactly. These errors
do not affect the overall response of the structure, because the average
displacements coincide with those given by the 3x3x2 Gauss quadrature, However,

they have a definite influence in the local response at the element level,

Based on the above discusson, it may be concluded that the 15 and 21 point
quadrature rules have to be used carefully, All the results will have to be averaged
at the nodes of each element to obtain reliable answers for solid deformation
problems, However their use, especially the 15 point rule, will lead to substantial

savings in computer time,

B.3.~ COUPLING BETWEEN S0OLID AN AYXISYMMETRIC MESHES,

Accovrding to the sign criteria and the configuration illustrated in Figure (B.2) the x,
y, and 7 components of the displacements can be transformed into the cilindrical

components as follows?
M - O 0 B« L pen S
Ly = - HONRE + Ur 2008 (8.12)
Lz= 3

or in matrix form

L w00 —aen® 01| e
Men { Ay 7= LY Y Ay 3I/ﬁ(r (£-/-?)
Lz & .4 4 Uz

The displacements in cylindrical coordinates are expanded in Fourier series as was

done for the axisymmetric elements,

e = Vo +6"1);¥- S’Wo*ca&&*‘ £ 2 (ﬂ/‘{)
- ~ ~ - A ~ N Ay
where
/) We Ta
% = z’;‘ U =\ Ur Wwn=\ Wr
) Lad Pad
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Fig B.2,~ Transformation of rectangular cartesian coordinates into cylindrical ones.
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and
U o o e o o
A ausdt & .
Cel & tosuwd o :.5" =l © wug®
ry & cond o o A n®

The substitution of (B.12) into (B.14) renders!
L

Az T & 27" 06 TS' W + 7T We #ee -

e e’ hind - pr S PV o Eadihad e
Expression (B.15) defines the general transformation of rectangular coordinates into
a Fourier series expansion. If this transformation is carried out for all the nodes of
the boundary interface between a solid mesh and an axisymmetric mesh, a perfect
coupling may be cbtained., These transformations can be accomplished in an efficient

way at the element level,

For a general isolated mesh, the stiffness matrix will have the shape shown in
Figure (B.3) before and after the transformation. RZS represents the part of the
stiffness that remains in rectangular coovrdinates, Ki the arisymmetric stiffness
for each harmonic, Ksi the coupling stiffness between both parts and Kﬁ
represents the coupling terms between harmonics. If a given solid mesh is a part of
an snsemble that has axisymmetry, the coupling terms between harmonics, Koi’ will
vanigh after adding all the element stiffness matrices along the circumference, (The
harmonics are orthogonal in the interval 0 - 2 X ). As a consequence, the stiffness
matrix will have the form shown in Figure (B.4), where all the coupling terms

between harmonics have vanished.

When using a profile solver a more efficient configuration of the stiffness matrix is

obtained by rearranging the terms as shown in the same Figure.
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KS KSO K'f’)l K‘SZ
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Kz

Fig B.3,~ Layout of the coupled solid-axisymmetric stiffness matrix.

K5 KSO K5l K52
K, Kis
Ko 0 Ka K25
K,
SYM SYM Ke
K2

Fig B.4.- Layout of the stiffness matrix convenient for a profile solver when there

is axysimmetry at the boundary.
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SOIL.UTION OF THE EQUATIONS
OF MOTION WITH THE
COMPI.EX MODE SHAPES

A summary of the analytical method based on the complex eigenvectors for the
integration of the equations of motion is given below, The beginning of the

formulation is taken from Dynamics of Structures (Hurty and Rubinstein 1944) and

later it is extended by the author to include the case of earthquake type of

excitation.

Consider a system of n equations of motion for a soil-structure system!
sz-a- < g+ /_gf ﬁf,’f&‘):'ﬁﬂff*) (KI:{)
where ug is a given ground motion and p is a load distribution vector. The system
of second order equations can be transformed into a system of 2n first order
equations, Foss {1958); by adding the following matrix identity:
m_g - mé =& (C°2)

Thus {C.1) becomes?

S| EIE N H oy e

or in simplified notation!

Af3f+ £feb=Y (e-w)

It is worth noting that A and B are real and symmetric, however neither of them is
positive definite. Therefore the eigen-solution will give complex eigenvalues and

gigenvectors. The transformation

g={#te” (c.5)

leads to the following eigenvalue problem

fﬂ?-ﬁfﬁ':ﬂ
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After having condensed out all the massless degrees of freedom, B will have an

inverse and Equation (C.5) can be written as follows!

A #= Yp o

where
-l k-‘c "k-lm
=-BA~- T o

Equation (C.4) represents a standard eigenvalue problem, but with D being non
symmetric, The system (C.4) will lead to Zn eigenvalues and eigenvectors that ave
real or complex in conjugate pairs. The usual procedure in structural dynamics has
been to solve (C.&) by inverse iteration. Jennings affirms that the reduction of
Equation (C.4) to upper Hessenberg form and the subsequent use of the OR method
for the eigen-solution leads to a very efficient algorithm for systems of up to a few
hundred equations., The total number of cperations is approximately 4n3, of which

only one-fifth are required for the reduction to upper Hessenberg form. Now if

A=t s
P will be
sof -rd'/z?
where
- . 2 2
e A/ (k 417) ('c.?)
A= - T ats oY)
and ¢ g‘ﬂt

}/’-‘ %eﬂ.—:p'eue

For a damped system, &£ is negative and the term a"t represents the decay of the
amplitude of the mode. /3 represents the damped frequency. If [z is expressed in
polar formi . a)% s

P=(+p) €
' }’ represents the phase angle between velocities and displacements, The

orthogonality condition of the eigenvectors is easily seen.
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Hence
r .
KA =aw ; B EL = B
and
Y &+ Be=zo (c.8)
The next step is to uncouple Equation (C.4). Pre and postmultiplying by one
obtains! .
PTAPZ s TELZ =TV (D
or

@‘i- + ﬁa‘.ﬁ- = 9;‘7' Y(‘f‘)
and substituting (C.8)
. r

@i Zs = o i % = ﬂ; Y(*t)

Dividing by ay
L3 r »

=i = ATV S (c9)

Eqguation (C.?) has a companion complex conjugate given by

A N AR TOYLY [e.10)

Now
.? - /i‘ ﬁu /p'f'
($jewe{ute
and ¢ | ,
e (i) = fope™
Thus

m ’figfﬁ}g

For a general type of load () the term ﬂer becomes!

wmy = [T Y5 - T

and for earthquake type of load}

A7V o (R £ 5 0 - KT 08
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where gz is the load distribution vector and ~v_ is a given accelerogram. Continuing

g
the derivation for the later case, Equation (C.¥) becomes!

- i v
L L= | P ) L Y (#)/4,‘ (c. n)
the discrete representation of a typical accelerogram makes ﬁ?g(t) vary linearly in

each time interval, Thus for each time step Equation (C.11) becomes!

oo pi s (asdt) D
where -zf is complex and equal to!

@{fﬁ' ﬂ&' ?/’j/ ‘

and the coefficients & and b3 are
Q= ’0} [%z)
= (iy0h) - 3, (4)/2E

The solution to Equation (C.12) is?

e
Al = At v e’e”
where ,4 Ja@,’ &0&{
Vil /@3 /9
£n . I
T

C= F(AB) - A,
At the end of the integration, 5 will be a row vector and the n generalized
coordinates will constitute a matrix of dimensions n#nt, where nt is the total number

of time steps. The solution in geometric coordinates will be!l
204) = %;&aé’é{ %u?a}

The number 7 comes from the fact that a solution of complex pairs is being summed,

The imaginary part vanishes for abvious reasons,
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by M.A. Manrigque, V.V. Bertavo and E.P. Popov - May 1979(PB 301 11i4)a06
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for Enhanced Safety: %Yolume 1 - Summary Revort," by P.N. Spencer, V.F. Zackay, and E.R. Parker =~
Feb. 1979 (UCB/EERC~79/07) 209
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and H.B. Seed - August 1972(PB 80 101 520)A04

"ARMA Models for Earthguake Ground Motions,” by M.K. Chang, J.W. Kwiatkowski, R.F. Nau, R.M. Oliver
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by U.8.~Japan Planning Group - Sept. 1979(FB 301 407)A06

"Earthqguake-Induced Liquefaction Near Lake Amatitlan, Guatemala," by H.B. Seed, I. Arango, C.K. Chan,
A. Gomez-Masso and R. Grant de Ascoli - Sept. 1979 (NUREG~CRL341)A03

"Infill Panels: Their Influence on Seismic Response of Buildings," by J.W. Axley and V.V. Bertero
Sept. 1979(PB B0 163 371)Al0

“3D Truss Bar Element (Type 1)
{(PB 80 169 709)A02

for the ANSR-II Program,” by D.P. Mondkar and G.H. Powell - Nov. 1979

"2D Beam~Column
G.H. Powell and

Element (Type 5
D.P. Mondkar - Dec.
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for the ANSR-II Program,” by D.G. Row,

"3D Beam~Column
G.H. Powell and
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Structures to Stationary Excitation,” by A. Der Kiureghian - Dec. 1979(PB 80166 929)A03
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"On Response of

"Undisturbed Sampling and Cyclic Load Testing of Sands,"” by S. Singh, H.B. Seed and C.X. Chan
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"Interaction Effects of Simultaneous Torsional and Compressional Cyclic Loading of Sand," by
P.M. Griffin and W.N. Houston - Dec. 1979(ADA 092 352)AlS
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"Barthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction
Effects," by A.X. Chopra, P. Chakrabarti and S. Gupta - Jan. 1980(AD-A087297)Al0
Jan. 1380

"Rocking Response of Rigid Blocks to Earthquakes," by C.S. Yim, A.K. Chopra and J. Penzien -
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"Optimum Inelastic Design of Seismic-Resistant Reinforced Concrete Frame Structures," by $.W. Zagajeski
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"Effects of Amount and Arrangement of Wall-Panel Reinforcement on Hysteretic Behavior of Reinforced
Concrete Walls," by R. Iliya and V.V. Bertero - Feb. 1980(PB81 122 525)a09

"Shaking Table Research on Concrete Dam Models," by A. Niwa and R.W. Clough ~ Sept. 1980(PB81 122 368)a06

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety (Vol 1A): Piping with Energy Absorbing Restrainers: Parameter Study on Small Systems,”
by G.H. Powell, C. Oughourlian and J. Simons - June 1980
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"study of X-Braced Steel Frame Structures Under Earthguake Simulation,” by Y. Ghanaat - April 1980
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"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants for
Enhanced Safety (Vol 1B): Stochastic Seismic Analyses of Nuclear Power Plant Structures and Piping
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"The Design of Steel Energy~Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced safety (Vol 1C): Numerical Method for Dynamic Substructure Analysis," by J.M. Dickens
and E.L. Wilson - June 1980
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"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 2): Development and Testing of Restraints for Nuclear Piping Systems," by
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"U-Bar Restraint Element (Type 11)
July 1980(PB81 122 293)A03

e,

Testing of a Natural Rubber Base Isolation System by an Explosively Simulated Earthquake," by
J.M. Kelly - August 1980(PB81 201 360)A04

for the ANSR-II Program," by C. Oughourlian and G.H. Powell

"Input Identification from Structural Vibraiional Response, " by Y. Hu - August 1980(PB81 152 308)A0S5

"Cyclic Inelastic Behavior of Steel Offshore Structures,” by v.A. Zayas, S.A. Mahin and E.P. Popov
August 1980 (pB81 196 180)AlS

"Shaking Table Testing of a Reinforced Concrete Frame with Biaxial Response," by M.G. Oliva
October 1980(PB81 154 304)Al0

"Dynamic Properties of a Twelve-Story Prefabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger
and R.M. Stephen - October 1980:PB32 117 128)A06

-

"Dynamic Properties of an Eight-Story Préfabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger
and R.M. Stephen - October 1980(PB81 200 313)a05

"Predictive Dynamic Response of Panel Type Structures Under Earthquakes,”
J.G. Bouwkamp - Octobar 1980(PB81L 152 316)A04
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"The Design of Steel Energy-Apsorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 3): Testing of Zommercial Steels in Low-Cycle Torsional Fatigue," by
P. Spencar, E.R. Parker, E. Jongewaard and M. Drory

"The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuclear Power Plants
for Enhanced Safety (Vol 4): Shaking Table Tests of Piping Systems with Energy-Absorbing Restrainers,"
by S.F. Stiemer and W.G. Godden - 3Sept. 1380

"The Design of Steel Energy-Absorbing Restrainers and their Incorvoration into Nuclear Power Slants
for Enhanced Safety (Vol 3): Summary Report,” by P. Spencer

"Experimental Testing of an Energyy-Absorbing Base Isolation System,” Dy J.M.
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Simulating and Analyvezing Artificial Non-Stationary Earthquake
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"Dynamic Response of Embankment, Concrete-Gravity and Arch Dams Including Hydrodynamic Interaction,”
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Bertero - June 1981 (PB82 113 358)all

"The Undrained Shearing Resistance of Cohesive Scils at Large Deformations,” by M.R. Pyles and H.B.
Seed - August 1981

"Experimental Behavior of a Spatial Piping System with Steel Energy Absorbers Subjected to a Simulated
Differential Seismic Input,” by S.F. Stiemer, W.G. Godden and J.M. Kelly - July 1981
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"Studies on Evaluation of Shaking Table Response Analysis Procedures,"” by J. Marcial Blondet - November
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"DELIGHT.STRUCT:

K.$. Pister and E. Polak ~ December 1981 (EB82 213 496)A07

A Computer-pided Design Environment for Structural Engineering," by R.J. Balllng,

“Optimal Design of Seismic-Resistant Planax Steel Frames,“ by R.J. Balling, V. Ciampi, X.S. Pister and
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"Experimental Behavior of a Spatial Piping System with Shock Arrestors and Energy Absorbers under

Seismic Excitation,” by $. Schneider, H.-M., Lee and G. W. Godden - May 1982

*New BApproaches for the Dynamic Analysis of Large Structural Systems,™ by E. L. Wilson -~ June 1982
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"Model Study of Effects of Damage on the Vibration Properties of Steel Cffshore Platforms,” by
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