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ABSTRACT

Two basic procedures may be used for modeling the inelastic behavior
of beams and columns. In the "fiber" type of model, the element cross
section is divided into a number of small areas (fibers), and the behavior
is governed by the stress-strain characteristics of the fiber material.
Detailed and accurate results can be obtained, but the computational cost
is high. 1In the "section" type of model, inelastic behavior is defined
for the cross section as a whole, not for individual fibers. Action-
deformation relationships for the cross section must be devised, consider-
ing the stress-strain characteristics of the cross section material.
Models of this type are less accurate than fiber models, but more effi-
cient computationally,

The purpose of the research has been to explore in depth the theory
and computational techniques for the "section' type of model. 1In develop-
ing the model, inelastic interaction between bending moments, torque and
axial force has been considered by means of yield interaction surfaces
and & flow-rule type of plasticity theory. Emphasis has been placed on
the ability to consider arbitrary loading-unloading cycles of the type
likely to be induced by an earthquake. The study has considered both
stable hysteretic action-deformation characteristics and relationships
involving stiffness degradation.

Three separate inelastic beam-column elements, which share similar
concepts, have been developed, as follows.

(2) An element with distributed plasticity and nondegrading stiffness,
for the computer programs ANSR and WIPS. This element is most

suitable for modeling inelastic behavior in piping systems.

| -C



(b) An element with lumped plasticity and nondegrading stiffness, for
the ANSR program., This element is most suitable for modeling
inelastic steel beams and columns in buildings.

(c) An element with lumped plasticity and degrading stiffness, for the
ANSR program. This element is most suitable for modeling inelastic
reinforced concrete beams and columns in buildings.

The theory and computational procedure are described in detail for each

element,

Five example structures have been analyzed to test the elements and
to assess their acceptability for different applications. The examples
include a steel tubular beam-~column a steel tubular braced frame; a
reinforced concrete cantilever beam under biaxial bending; a reinforced
concrete frame subjected to earthquake excitation; and a pipe undergoing

large displacements following pipe rupture.
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Al. INTRODUCTION

Al.1 GENERAL

In frame structures the multi-dimensional motion of an earthquake has its greatest effect
on column loading. The columns, especially those at the building corners, are subjected to
biaxial bending from combined longitudinal, transverse, and torsional moticn of the structure,
with added axial loads due to overturning. [t is well known that the bending strength in any
particular direction is decreased by the existence of a simultaneous moment along another axis.
Recently, a number of papers have been published on the earthquake damage to building struc-
tures during the 1971 San Fernando earthquake. In these studies, the effect of two-dimensional
earthquake motion on the response of structural members was recognized to be substantially

more significant than had been previously anticipated {14,15,16,18,29].

In order to obtain true evaluations of seismic safety, strong motion response analyses
which consider the dynamic structural properties in the inelastic range are essential. Such ana-
lyses must be able to trace the damage process of the structural members in detail. A detailed
analysis of the dynamic evolution of a structure subjected to intense ground motion reguires
realistic modeling of the restoring force characteristics of the constituent members. One of the
difficulties in this regard is the idealization of the three-dimensional interaction of the restoring
forces in members subjected to biaxial bending with varying axial force. An identification of
the characteristics of this class of dynamic behavior is important to the understanding of the

nature of severe damage in structures of a variety of types.

Two basic procedures may be used for modeling the inelastic behavior of beams and
columns. In the "fiber" type of model, the member cross section is divided into a number of
small areas (fibers). Each area is assumed to be uniaxially stressed and to have behavior
governed by the hysteretic stress-strain characteristics of the material it stimulates. Detailed
and accurate results can be obtained from models of this type, but the computational effort

required makes them expensive for practical application. In the "section” type of model, it is

Preceding page blank 3



assumed that inelastic behavior is defined for the cross section as a whole, not for individual

fibers. Force-deformation relationships for the cross section must be specified, cach governed

by the cross section dimensions and the hysteretic force-deformation characteristics of the

member material. Models of this type tend to be more difficult to use and less accurate than

fiber models, but more efficient computationally. The research described in this report has

been concerned only with the "section” type of model.

There are two basic approaches used in modeling the inelastic behavior of a structural ele-

ment using a "section” model, as follows.

(a)

(b)

"Distributed" Plasticity Approach:

It is assumed that yielding is distributed over the element length. The structural charac-
teristics. of the element are calculated by assuming a displaced shape for the element axis,
with internal forces calculated at various sections from the resulting curvatures and axial
strains. The element stiffness is then determined by integrating along the element.
Mutli-dimensional action-deformation relationships must be specified for the cross sec-
tions, so that the effects of interaction among bending moment, axial force, and other
actions can be taken into account. These relationships will be in terms of action quanti-
ties, such as moment and axial force, and deformation quantities, such as curvature and

axial strain.
"Lumped” Plasticity (Plastic Hinge) Approach:

Yield is assumed to take place only at generalized plastic hinges of zero length, and the
beam between hinges is assumed to remain linearly elastic. In this approach, multi-
dimensional action-deformation relationships must be specified for the hinges, in terms of
moment and axial {orce actions, as before, but with deformations such as hinge rotations

and axial extensions.

Lumped plasticity models are particularly suitable for the analysis of building frames

under seismic loads, because plastic action in such structures is usually confined to small

regions at the beam and column ends. The distributed plasticity approach tends to be



preferable for structures in which the plastic zone locations are not known in advance. A par-

ticular application is the analysis of pipe whip, in which a plastic wave may move along the pipe.

A1.2 HISTORICAL BACKGROUND

Many studies of inelastic frames under earthquake forces have been described in recent
years. Comprehensive surveys of early investigations of plane frames have been provided by

Powell [1] and Otani [2]. A brief history of more recent studies is presented here.

The action-deformation relationships assigned to a member can have a significant
influence on the calculated response. As a result, nonlinear analysis has concentrated on the
modeling of stiffness changes in the members and the establishment of realistic hysteretic

behavior.

Hidaigo and Clough [3] investigated a number of analytical models for the response pred-
iction of a two-story, single bay frame. which they also tested on a shaking fable. Starting with
a two-component, eiasto-plastic element, they attempted to improve the correlation between
analysis and experiment by adding degradation effects to the model. One method of including
degradation effects was to impose empirical changes in the value of the elastic modulus at
specified times during the excitation. A second technique was based on degradation of the gen-
eralized stiffness of the first mode of vibration of the structure. Although these techniques can
provide accurate results for specific frames, they are not convenient for general purpose applica-

tion.

Takeda 4] examined the experimental results from cyclic loading of a series of reinforced
concrete connections, and proposed a hysteresis model which was in agreement with these
results. Several investigators have used this model, in both its original and modified forms.
Litton [5] adopted 2 modified Takeda model for a reinforced concrete beam element for the
DRAIN-2D computer program. This element consists of an elastic beam element with inelastic
rotational springs at each end. A similar type of element has been suggested by Otani [6]. This

clement consisis of a bilinear beam element with an inelastic rotational spring and a rigid link at



each end. Neither of these models considered biaxial interaction effects.

Riahi and Powell {7} have described a 3D beam-column element and incorporated it into
the ANSR [8,9] computer program. The element is assumed to be made up of three paraliel
componenis, two clasto-plastic components to represent yiclding and one elastic component to
model strain hardening. Interaction for biaxial bending and axial force are considered, but the

element does not have stiffness degrading characteristics.

Takizawa and Aoyama [10] have developed the basic formulation for a reinforced con-
crete column mode! acted upon by biaxial bending moments. This model incorporates a two-
dimensional extension of various nonlinear models for one-dimensional response analysis, in
particular a degrading trilinear stiffness model. The theory demonstrates how degradation
effects can be considered, but it does not account for axial forces and was not applied in a com-

plete beam-column element,

Morris [11] presented a procedure for three-dimensional frames by employing an approxi-
mate interaction equation by Tebedge and Chen {12} for I section columns under biaxial bend-
ing. However, complete loading-unloading cycles and hysteretic behavior at the plastic hinges
were not studied. Uzgider [13] adapted this method to study the hysteretic behavior at plastic
hinges for three-dimensional dynamically loaded frames. The elasto-plastic action-deformation
relationship at the ends of the frame member was represented by an equation which
corresponds essentially to the inverse of the Ramberg-Osgood representation. Inelastic interac-

tion of biaxial end moments and axial force was included.

Al.3 SCOPE OF STUDY

The purpose of the study described in this thesis has been to explore in depth the theory
and computational techniques for the "section” type of model, considering both the distributed
plasticity and lumped plasticity approaches. In developing the model, inelastic interaction
between bending moments, torque and axial force was considered by means of yield interaction

surfaces and a flow-rule type of plasticity theory. Emphasis has been placed on the ability to



consider arbitrary loading-unloading cycles of the type likely to be induced by an earthquake.
The study has considered both stable hysteretic action-deformation characteristics and relation-

ships involving stiffness degradation.

Three separate inelastic beam-column elements, which share similar concepts, have been

developed, as follows.

(a) An element with distributed plasticity and nondegrading stiffness has been developed and
incorporated into the computer programs ANSR [8,9] and WIPS [31]. This element is

most suitable for modeling inelastic behavior in piping systems.

(b) An eclement with lumped plasticity and nondegrading stiffness has been developed and
incorporated into the computer program ANSR. This element is most suitable for model-

ing inelastic steel beams and columns in butildings.

(c) An element with lumped plasticity and degrading stiffness has been developed and incor-
porated into ANSR. This element is most suitable for modeling inelastic reinforced con-

crete beams and columns in buildings.

Al.4 REPORT LAYOUT

Sections B, C, and D are self-contained reports, one for each of the three elements.

Exampiles using all three of the elements and general conclusions are contained in Section E.






B. DISTRIBUTED PLASTICITY BEAM-COLUMN ELEMENT
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Bl INTRODUCTION

The beam type element provides a more economical means of modeling inelastic pipe

behavior than the pjpe type element.

In the pipe element, the stress-strain relationship for the pipe material is specified. The

inelastic material behavior is then monitored at several points on the pipe cross section, and the

moment-curvature and torque-twist refationships are calculated by the computer code. In the

beam element, the moment-curvature and torque-twist relationships must be specified by the

analyst, and the inelastic behavior is monitored for the cross section as & whole, not at indivi-

dual points. The beam element is more efficient computationally, but it is likely to be less

accurate than the pipe element, and less information is calculated on the stresses and strains in

the pipe. Only straight beam elements are permitted, and preliminary calculation is required to

determined the moment-curvature and torque-twist relationships.

(1

(2)

(3)

(4)

(5)

The essential features of the element are as follows:

The element may be arbitrarily oriented in space, but it must be straight. Elbows can be
approximated using & number of straight elements.

The element is an inelastic beam-column. Inelastic behavior is defined using stress

resultant-strain resultant (e.g. moment-curvature) relationships.

Multilinear stress resultant-strain resultant relationships may be specified. Kinematic
strain hardening is assumed for cyclic loading. Strain rate effects may be considered if

desired.

Interaction between bending moments, torque and axial force is considered by means of
yield interaction surfaces. The kinematic hardening rule corresponds to translation of the

yield surface without change of size or shape.

The effects of cross section ovalling and internal pressure cannot be considered directly.

If these effects are important, they must be reflected in the stress resultant-strain resultant
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relationships.

(6) Cross section plasticity is monitored at two cross sections in the element and is assumed
to be distributed over the element length. Element lengths must be chosen so that yield-
ing takes place more or less uniformly over the length of any element (i.e. is not concen-
trated in short plastic hinge regions at the element ends).

(7) Large displacement effectsr may be considered, if desired, using an engineering theory (i.e.

not a consistent continuum mechanics approach).

A general description of the element properties is presented in Section B2. Theoretical details

are presented in Sections B3 and B4. Details of the computer logic are described in Section BS.

An element ussr gulde for the ANSR program is presented in Section Bb.
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B2 ELEMENT PROPERTIES

B2.1 AXES

Element properties and results are specified in the local coordinate system Xx,y,z, defined

as shown in Fig. B2.1. If node K is not specified, its location is assumed as follows.

(a) If 1J is not vertical, node K is at Y = +oo, The xy plane is then the vertical plane con-

taining the element.

(b) If 1J is vertical, node K is at X = +oo. The xy plane is then parallel to the XY plane.

B2.2 MODELING OF INELASTIC BEHAVIOR

B2.2.1 General

It is assumed that yielding is distributed over the element. To satisfy this assumption in

regions of large moment gradient, it will generally be necessary to specify fairly short elements.

Yielding is monitored at two cross sections in the element, located at the Gauss points
(Fig. B2.1). Tangent stiffness relationships between the stress and strain resultants at the
Gauss points are modeled using a plasticity theory similar to the Mroz theory for yield of
metals. The element stiffness is then determined by Gauss integration (i.e. the conventional

finite element technique).

B2.2.2 Section Properties

The relationships between actions (stress resultants) and deformations (strain resultants)
must be specified for the cross sections at the Gauss points. The relationships at the two points
in any element will typically be the same, but may be different if desired.

Relationships must be specified as shown in Fig. B2.2 for each of four action-deformation
pairs, namely (1) bending moment, M,, and corresponding curvature, #,; (2) bending
moment, M, and corresponding curvature, 4., (3) torque, M, and corresponding rate of

twist, ,; and (4) axial force, F, and corresponding strain, e, Each relationship may have up to
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four linear segments, as shown. The relationships may be of different shape for each stress
resultant. For example, for material with an elastic-perfectly-plastic stress-strain relationship,
the torque-twist and force-extension relationships will also be elastic-perfectly-plastic, whereas
the moment-curvature relationships will exhibit strain hardening behavior (Fig. B2.3). It is
necessary, however, for the deformation values at changes in stiffness to have the same ratios
for all relationships, as shown in Fig. B2.2. This restriction is necessary to avoid inconsistencies

in the plasticity theory, as explained later.

The relationships between actions and deformations may be determined by separate
analysis or may be obtained from experiments. If beam elements are used to represent pipe

elbows, the relationships should account for ovalling effects.

B2.2.3 Interaction Surface for First Yield

The actions M,, M,, M,, and F interact with each other to produce initial yield of the
cross section. For modeling of pipes, the influence of axial force on yield will usually be small
and can be ignored. For other applications, however, all four actions may have significant
effects. Because the heam element is not intended only for piping, a general theoretical formu-
lation is used. For the special case of piping, it is recommended that the influence of axial

force on yield be eliminated by specifying a very large value of S, (Fig. B2.2) for axial effects.

The interaction effect is determined by an interaction surface {(yield surface). To allow for
4 variety of applications, provision is made in the theory for five different interaction surfaces.
These surfaces are all four-dimensional (i.e. M, M, M,, and F), and hence cannot be shown
easily using diagrams. The surfaces differ, however, mainly in the way in which the axial force
interacts with the three moments. Hence, the differences can be illusirated using the three-
dimensional diagrams in Fig. B2.4. In these figures, the M, and M, axes indicate any two of
the moments, and the F axis indicates axial force. The equations defining the interaction sur-

faces are shown in the figure.

Surface 1 is elliptical and is the simplest mathematically. Surfaces 2, 3, and 4 allow more
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realistic modeling of moment-force interaction for cases in which axial force effects are substan-
tial. For all of these four surfaces, the interaction among M,, M,, and M, is elliptical, and
only the force-moment interaction changes. For piping, the influence of axial force on yield
can be ignored, and hence the four surfaces are the same for practical purposes. Interaction
surface 5 is of a different form than the other four and is included for greater generality in spe-
cial cases. For piping, it is recommended that interaction surface 1 be specified, with a very

large value for yield under axial force.

B2.2.4 Interaction Surfaces for Subsequent Yield

For modeling a slice with nonlinear material properties, it is assumed that the behavior is
elastic-plastic-strain-hardening, as shown in Fig. B2.5. First yield is governed by the initial yield
surface; and for each change of stiffness, there is a corresponding "subsequent” yield surface.
These surfaces are assumed to have the same basic form as the surface for first yield. How-
ever, because the action-deformation relationships may be of different shape for each action,
the surfaces for the first and subsequent yield will generally not have identical actuai shapes.
An example in 2D stress resuitant space is shown in Fig. B2.5. In this example, yield surfaces
considering axial force and moment are produced from corresponding force-strain and

moment-curvature relationships.

B2.2.5 Elastic and Plastic Stiffnesses

The initial slopes, K|, for the action-deformation relationships are defined as the elastic

stiffnesses and are expressed as:

K, = diag [ EI, EI, GJ EA ] ' (B2.1)

where E = Young’s modulus, G = shear modulus, I = flexural inertia, ] = torsionai inertia,
and A = section area. The slopes of subsequent segments of the action-deformation relation-
ships are denoted as X, K3, and K4 and are defined as the post-yield stiffnesses. They must be

specified to provide appropriate post-yield behavior.

The assumed multi-linear action-deformation relationship for each force component can
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be modeled as a set of springs, consisting of an elastic spring and a series of rigid plastic
springs, as shown in Fig. B2.6. The plastic stiffnesses, K,, of the rigid-plastic springs can be
related to the post-yietd stiffness values, K. The reilationship between plastic stiffness, K,;, and

post-yield stiffnesses, K; and Ky, can be obtained as:

K,KH.}
PRl L B2.2
Kn = % pm (82.2)

For each rigid plastic spring, a plastic stiffness matrix is defined as:
Ky = diag [ Ky Ky, Ky Kr (B2.3)
where KM, KM,, KM,, and Ky are the plastic stiffnesses of the individual action-deformation

relationships, obtained from Eqn. B2.2.

B2.2.6 Hardening Behavior

After first yield, the yield surfaces are assumed to translate in siress resultant space, obey-
ing a kinematic hardening rule (transiation without change of shape or size). An extension of
the Mroz theory of material plasticity is used to define the hardening behavior. Because the
interaction surfaces are generally not exactly similar, overlapping of the surfaces can occur {as
described in detail in Section B3.7); and, as a result, the hardening behavior is more complex
than in the basic Mroz theory. For example, in Fig. B2.5b, the current stress resultant point,
A, lies on yield surfaces YS;, ¥S,, and YS; Hence, all three plastic springs (Fig. B2.6) have

yielded, and the direction of plastic flow is a combination of the normal vectors a1, n;, and n;.

B2.2.7 Plastic Flow

Interaction among the stress resultants is considered as shown dizgrammatically in Fig.
B2.5. Yield begins when the first yield surface is reached. The surface then translates in stress
resultant space, the motion being governed by the plastic flow of this first yield surface. Trans-
tation of the first surface continues until the second surface is reached. Both surfaces then
translate together, governed by a combination of plastic flow on both of the surfaces. For any

yield surface, plastic flow is assumed to take place normal to that surface. If two or more sur-

16



faces are moving together, the total plastic deformation is equal to the sum of the individual
plastic deformations for each yield surface, directed along the respective normal directions at
the action point. After some arbitrary amount of plastic deformation, the situation might be as

illustrated in Fig. B2.5b.

On unloading, the elastic stiffness values, K|, govern until the first surface is again

reached (Fig. B2.5b). The surface then translates as before.

B2.3 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces
of the joints rather than at the theoretical joint centerlines. This effect can be approximated by
postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. B2.7.

B2.4 INITIAL FORCES

For structures in which static analyses are carried out separately (i.e. outside the ANSR
program), initial member forces may be specified. The sign convention for these forces is as
shown in Fig. B2.8. These forces are not converted to loads on the nodes of the structure but
are simply used to initialize the element end actions. For this reason, initial forces need not
constitute a set of actions in equilibrium. The only effects they have on the behavior of the

system are (a) to influence the onset of plasticity and (b) to affect the geometric stiffnesses.
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B3. THEORY

B3.1 DEGREES OF FREEDOM

The element has two external nodes and two internal Gauss stations, as shown in Fig.
B3.1a. The external nodes connect to the complete structure and have six degrees of freedom
each, three global translations and three global rotations. Afier deletion of the six rigid body
modes for the complete element and transformation to the local element coordinates, the six

deformation degrees of freedom shown in Fig. B3.1b remain.

The transformation from global displacements to element deformations is:

(B3.1)

Ie

]
I
I~

in which
vT = [v,vy, - - - vgl are the element deformations {Fig. B3.1b);
rT = [ryry - -+ ryil are the global displacements {Fig. B3.1a);

and the transformation a is well known.

B3.2 SHAPE FUNCTIONS

The element slice at each Gauss station has six deformations, namely, axial deformation,
rotational deformation about each of the local X, y, z axes, and shear deformation along the y
and z axes. These deformations are arranged in the vector w, where LvT = {w|, Wy ..., wgl.
The shape functions for a uniform elastic beam are assumed to be applicable, in both the elastic

and vielded states. These shape functions define the deformations at any location as:

w(x) = By (B3.2)
in which
811 B;g G 0 0 O
g 0 By 8 ¢ 0
N\ 0 6 0 1/4 0 |
£0x) 0 0 0 0 o 1z (83.3)
B By O 0 0 0
0 0 Beg By 0 0
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and

1 2
= —d Ll— .
By 75, /L +6x/ B,/L{;
1 2
- —2/L +6x/L?+8,/L);
S S 2 .
323 1+Bz 4/L +GX/L +,BZ/L N
RS S 2 .
By = Y 2/L +6x/L*+8,/L|,
_ _ By .
B = 85 = 200+,
B:
Bo = Bu = ~3055)°
g - 1281,
¥ GA, LY
12E1,
B:= ; 2;
GA, L
5, = ——Pr
y 200+8,)°
Y
2(1+8,)
wly = [wilx),wax),...,we(x)} = deformations at location x in the element; and
yr = [vy,vy -+ ,vg = element deformations defined by Eqn. B3.1.

The slice deformations are simply the deformations at the slice locations.
B3.3 SLICE FLEXIBILITY

B3.3.1 General

In one-dimensional stress resultant space, a slice can be modeled as an elastic spring con-
nected in series with rigid-plastic springs (Fig. B2.6). This concept can be expanded to multi-
dimensional space, as follows.

The tangent slice stiffness changes as the cross section yields. For any state of the ele-
ment, a 4 x 4 elastic slice flexibility matrix is first formed, in terms of the section actions
(stress resultants) M,, M., M,, and F, at each Gauss station. This matrix is then modified by

adding in the plastic flexibility on each active yield surface to give a 4 x 4 elasto-plastic slice
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flexibility. This flexibility is inverted to obtain a 4 x 4 slice stiffness (computationally, the
Sherman-Morrison formula rather than inversion is used). This stiffness is then expanded to a
6 x 6 slice stiffness by adding stiffnesses to account for shear deformations along the y and z
axes, These stiffnesses are

K, = G4, (B3.4)
K, = G4, (B3.5)

in which GAy' = effective shear rigidity along the y axis and GA, = effactive shear rigidity

along the z axis.

In the elasto-plastic state, it is assumed that any deformation increment can be divided

into elastic and plastic parts. That is,

dw = dw, + 3 .dw, (B3.6)
i
in which
i = active yield surface number;
dw = total deformation increment;
dw, = elastic deformation increment; and,
dw,; = plastic deformation increment for each active yield surface.

The slice flexibility relationship can thus be writien as:
dw = f;d3 = [fse + Z.Zsp,]ds (B3.7)
i
in which

[s = total stice flexibility;

L = elastic slice flexibility (diagonal, containing inverses of the elastic stiffnesses,
K.); and,
L, = plastic flexibilities of each active yield surface.

It is necessary to determine j_”spj for each active yield surface and then sum to obtain the total

plastic flexibility f,.
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B3.3.2 Yield Function

Each slice is affected by four stress resultants (M), M,, M,, and F) with four correspond-
ing deformations. The behavior is elastic-plastic-strain-hardening for each stress resultant indi-
vidually, as shown in Fig. B2.2. Different yield values and stiffnesses may be specified for each
stress resultant.

Initial yield of any slice is governed by a yield function (interaction relationship). Any
one of five different vield functions may be specified, as considered in Section B2. After yield,
each slice follows a kinematic hardening rule (that is, the yieid sur_face translates in stress resul-
tant space without change of shape or size). The hardening theory is a modification of the

Mroz theory for plasticity in metals.

B3.3.3 Plastic Flexibility for a Single Yield Surface

Consider a single yield surface. Let S be the vector of stress resultants, where

ST = [M, M, M, F] (B3.8)
Assume that the slice is rigid-plastic, and let w, be the vector of plastic slice deformations.
That is, w,; = plastic flexural deformation about axis y; w,, = plastic flexural deformation
about axis z; w,3 = plastic rate of twist about axis x; and w,4 = plastic rate of extension along

axis x.

A flexibility relationship for the slice is required in the form

dw, = fg, dS (B3.9)

in which f,, = slice flexibility matrix. The foilowing assumptions are made:
{1} Let ¢ be the yield function, as considered in Section B3.3.2. The yield surface translates
in stress resultant space. After some amount of hardening has taken place, the yield func-
tion is ¢(S —qa), where « = vector defining the new location of the yield surface origin.

In two-dimensional space, this is itlustrated in Fig. B3.2.



(2)

(3)

(4)

(5)

From any given plastic state (i.e. a point on the yield surface), any action increment (dS)

will produce increments of deformation (dw,} and yield surface translation (da). The

direction of dS may be arbitrary. It is assumed that the direction of dw, is normal to the

yield surface (i.e. an associated flow rule is assumed). The direction of dea is determined

by the hardening rule (as defined later) and is not necessarily parallel to either dS or dw,.

This is illustrated in Fig. B3.2 for a two-dimensional space.

The direction of the outward normal to the yield surface is the gradient of the yield func-

tion. That is,
Y
n = —_T"_—Vz'
[st'gas
in which

i

ol = |o#/oM, 8¢/oM, dd/oM. ¢/aH]
= yijeld function gradient; and
2 = unit normal vector.

Hence, the deformation increment, dw, is given by

L]
dw, = n-dw,

in which dwp' = gcalar which defines the magnitude of the plastic deformation.

Let the component of 4S in the direction of »n be 45, (Fig. B3.2). Hence,

as, = n- (ﬂng)

Assume that 4S, and dw, are related by

s, = Kgdw,

in which

K, = diaglKy Ky, Ky Kl

(B3.10)

(B3.1D

(B3.12)

(B3.13)

(B3.14)

(B3.15)

is a diagonal matrix of the piastic stiffnesses from the individual action-deformation rela-

tionships for the slice, as defined in Section B2.2.5.
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(6) From the definition of &S, (Eqn. B3.13), it follows that

nlds = nTds, (B3.16)
Substitute Eqns. B3.14 and B3.12 into Eqn. B3.16 to get '

nT-dS = nT-K, n-aw, (B3.17)
(7) Solve for dv, as
. T.dS
dw, = ———22 B3.18)
" ET'Ksp'ﬂ (

{8) Hence, substitute Eqn. B3.18 into Eqn. B3.12 and use Eqn. B3.9 to get

n- IIT

h T. Bp
Equation B3.19 is the required plastic flexibility relationship for any active yield surface.
B3.3.4 Flasto-Plastic Flexibility for Muitiple Yield Surfaces
The 4 x 4 elasto-plastic flexibility of the slice, f;, follows from Eqn. B3.7 as:
fs = Lot 2 .lfsp, (B3.20)

where i = active yield surface. The flexibility for any active yvield surface, as derived in Section

B3.3.3, can be written as:

T
nyon
' ”iT : _‘Kspi ]
in which
#, = normal vector to the surface; and,
K., = plastic stiffness matrix for the surface.

ELY A

B3.3.5 Relationship to Basic Mroz Theory

In the special case where the action-deformation relationships for the four actions are all
directly proportional to each other, the yield surfaces are ali of the same shape and the plastic
stiffnesses for each active yield surface are in the same proportion. The plastic stiffness matrix

for each active yield surface can then be formed in terms of the elastic stiffness matrix. That
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is,

Ky = «a; K, (B3.22)
where «; defines the plastic stiffness as a proportion of the elastic stiffness. The plastic flexibil-
ity of a slice can then be written as:

T

1 BB
Ly = Z_J:Sp,- = 2 [Z_} nl K. - n (B3.23)
i i i i e i

Because all the yield surfaces are the same shape, the n; are all the same. Hence, if n; = n,

Eqn. B3.23 can be written as:

_ n-n’
Ly = 2T (YK, 1 (B3.24)

The flexibility given by this equation is the same as that from the basic Mroz material
theory. This shows that the Mroz material theory is a special case of the extended theory

derived here.

B3.4 SLICE STIFFNESS CALCULATION

For a nonlinear slice, a tangent action-deformation relationship is required in the form:

dS = Cy dw (B3.25)

in which
C,, = tangent stiffness matrix for a slice.

The procedure used is to develop a tangent flexibility matrix, then invert this flexibility to
obtain the stiffness matrix, C,,. Computationally, the Sherman-Morrison formula is used rather

than direct inversion. The flexibility of any active yield surface is:

T
n;, - n
p = T (B3.26)
[p, ﬂfr' _.‘rgspf. "R
Define
u = R (B3.27)
[L’f 'Ksp..'ﬁ,]



The elasto-plastic flexibility can thus be expressed as:
fo = Lut T Ly = Lut+ T uul
The Sherman-Morrison formula states that:

A luuT 471

A +uu = 47—
s T WA+ ]

Application of the formula to the inversion of f; gives:

Qu—l).‘!tﬂfgz(r—n
uf Cog—pu + 1

€ = Cun—
in which / = current highest active yield surface.

C, -1 is obtained using the recursion relationships:

Ca = fe' = K

Qz(i—n_l_liﬂirgx(i-l)
w Cri—nt + 1

Q,,— = gt(i-l) -
Hence, substitute Eqn. B3.27 into Eqn. B3.30 to get:

T
Cia-vmni Cou-v

¢ = Cy-n—
L=t T
2 Ca-vm + 1f Ko 1y

(B3.28)

(B3.29)

(B3.30)

(B3.31a)

(B3.31b)

(B3.32)

The stiffness C, is a 4 x 4 matrix. It is expanded to a 6 x 6 matrix by adding the shear

stiffnesses along the y and z axes. The resulting tangent stiffness matrix for the slice, Cy, has

the form:
Cfll C!];" Crl.? Ct” 0 0
oy Gz (;:.13 Crne 4 0
(f'” C*r42 CM} (/'.«‘44 4 0
o0 0 ¢ G4, 0
C0 ¢ 0 ¢ G4,
in which
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Cy = €(i,j) in matrix C;
GA}; = shear rigidity along the element y axis; and,

GA; = ghear rigidity along the element z axis.

B3.5 ELEMENT STIFFNESS

The element tangent stiffness matrix is given by

K = ,[ BT Cy B (B3.34)
in which
C, = tangent stiffness matrix for an element slice at any point; and,
B = transformation relating node displacements to slice deformations, defined by Eqn.
B3.2.

The integration is carried out numerically using Gauss quadrature. Hence, tangent stiffnesses

are needed only for the two slices at the Gauss stations.

B3.6 EQUILIBRIUM NODAL LOADS

Nodal loads in equilibrium with the slice actions in any given state are given by

R = [BTSu& (B3.35)
L

in which

,‘ST = [Sl? S27 S37 S41 SSa SG
(i.e. the actions corresponding to the element deformations v); and the matrix B is given by

Eqn. B3.2. The integral is evaluated numerically using Gauss quadrature.



B3.7 HARDENING RULE

B3.7.1 Geometrical Interpretation

The relationship between the actions and deformations at a slice is multi-linear. The
interaction among the stress resultants (M,, M,, M,, and F) is defined by the yield interaction
function, as described earlier. After initial yield occurs, the behavior at a slice obeys a
kinematic hardening rule (that is, the yield surface translates in action space without change of
shape or size). The specific rule followed is a modification of the Mroz strain hardening rule

which has been proposed for yield in metals.

B3.7.2 Modified Mroz Hardening Rule

For purposes of illustration, consider a two-dimensional M-F space as shown in Fig.
B3.3a. In this figure, it is assumed that the current state (point P,} is on yield surface YS,, and
that loading is taking place towards surface YS;. It is necessary to define the direction in which

surface Y§,; translates.

As indicated in Fig. B3.3a, corresponding points P; and P, can be identified on Y§, and
YS;. The relationship between the actions at these two points (S; at P; and §; at P)) is

obtained as follows.

Figure B3.3b shows a yield surface transformed into a normalized action space. In this
space, surfaces YS; and Y§; have identical shapes. Hence, points P; and P, coincide. The loca-
tions of P; and P, in Fig. B3.3a follow by transforming back to the naturatl action space. If the

vector of actions at P, is §,, it follows that the vector of actions at P, is given by:

8 = SulSi—a) +a (B3.36)
in which
§; = vector of stress resultants at point Py,
a;and ¢; = vectors defining the current origins, O, and O;, of yield surfaces

YS; and Y§;, respectively,
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M, My T, F;
Mym’ Mzui Tui Fui

§mj = di ag

It is assumed that the direction of translation of yield surface YS; is along the line connecting

point P; to point P;, as shown in Fig. B3.3a. That is, the direction of motion of surface S, is

defined by:
da; = [g, - §,-]da ‘ (B3.37)
in which
da’ = scalar which defines the magnitude of translation of yieid surface YS;;
da, = vector defining the incremental shift of the origin of yield surface ¥3,.

The magnitude of da "~ is determined as explained in the following section. For the hardening
rule originally formulated by Mroz, all yield surfaces are geometrically similar in natural action
space. The rule then ensures that the surfaces never overlap. For the modified Mroz rule, the
yield surfaces are assumed to be geometrically similar only in normalized action space. As a
result, overlapping of yield surfaces is allowed, This aspect of the model is considered further

in a later section.

B3.7.3 Mathematical Formulation

Substitute Eqn. B3.36 in Eqn. B3.37 to get:

da; = [(Su—DS — (Syei—a)|da’ (B3.38)
The usual normality rule for plastic flow is assumed. That is, the plastic deformation incre-
ment, dw,, is assumed {o be directed along the outward normal to the yield surface at point P;.

The yield surface can be defined by:

The requirement that the action point remain on the yield surface is:

dp = 0 = ¢7-dS,~¢ 7 da, (B3.40)
Substitute Eqns. B3.37 and B3.38 into Eqn. B3.40 to get:

. RN
Q,q(§u:j“l)§i - (§wj£i—£j)]
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Hence, substitute Eqn. B3.41 into Eqn. B3.37 10 get da; as:

|Sum=Ds, = Guai—ap|sTas

da (B3.42)

‘. =
o 1[(Su-DS - Suei—a))]
For any current state, defined by S;, a,, and a;, Eqn. B3.42 defines, for an action increment

dS,, the translation of yield surface ¥S; for loading towards surface ¥S,.

B3.7.4 Last Yield Surface

For the case when the action point lies on the largest yield surface, the hardening rule can
be obtained by assuming that an additional infinitely large yield surface exists. The direction of
translation for this case is then along the radial direction connecting the origin of the current
yield surface to the current action point. This is exactly Ziegler’s hardening rule. It can be

expressed as:

da, = (S, —a,)de’ (B3.43)
in which
n = number of largest yield surface;
da” = scalar which defines the magnitude of translation of the yield surface, as before;
a, = vector defining the yvield surface origin;
da, = vector defining the incremental shift of the origin.

For this case, Eqn. B3.42 becomes:

_ T,
da, = (§2¢ ;!("S)%; )dg” (B3.44)

B3.7.5 Overlapping of Yield Surfaces

In the original Mroz hardening rule, it is assumed that the yield surface, YS,, is geometri-
cally similar to the yield surface YS;. This assumption is reasonable for metal plasticity in stress
space because it is reasonable to assume as isotropic material. However, for dealing with stress

resultants, each action-deformation relationship (M,~,, M~y ., M,—¢ ., and F—e¢), depends
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on the cross section shape in a different way, and the behavior is not isotropic in action space.
That is, the yield surfaces will, in general, not be geometrically similar. The authors have con-
sidered a number of strategies in an attempt to obtain "correct” behavior while preventing yield
surface overlap. None of these strategies proved satisfactory, and it was finally concluded that

overlapping should be allowed.

B3.8 PLASTIC DEFORMATIONS

The equations for calculation of plastic strain resultants are derived as follows. The defor-

mation increment for a slice is given by:

dw = [fo dS + dw, (B3.45)

in which

dw, = Zdyp, is the increment of plastic deformation, summed over all active yield sur-
i

faces.

Premultiply Eqn. B3.45 by [, K to get:

.fsp Kedw = .[sp as + Ls K, dﬁp (B3.46)

in which

fo = 2 L, is the plastic flexibility of the slice; and,

LodS = dw, (B3.47)

Substitute Eqn. B3.47 into Eqn. B3.46 to get:

I+ L Ke) dw, = [o Keedw (B3.48)

From Eqn. B3.48, the plastic deformation increments can be obtained in terms of the total

deformation increment as:
dw, = (I + [, K) [ Ky dw (B3.49)
B3.9 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuing plastic flow to be distinguished from

elastic unloading, for any current plastic state and any specified deformation increment. Two
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procedures are of general applicability, as follows.

(1) Postulate that the slice has unloaded an infinitesimal amount, so that the current state lies
just within the yield surface. Calculate the elastic action increment, dS,, corresponding to
the specified deformation increment. If the state moves outside the yield surface, the
assumed elastic state is incorrect, indicating continuing plastic flow. If the state moves

within the yield surface, the elastic assumption is correct, indicating unloading.

(2) For the specified deformation increment, calculate the magnitude parameter for the plastic
deformation increment. A positive magnitude indicates continuing plastic flow, and a

negative magnitude indicates unloading.

By the first of these two procedures, continued loading on yield surface i is indicated if dS, has
a positive component along the outward normal, »;, of the yield surface. That is, continued
loading occurs if
al-ds, 2 0 (B3.50)
To consider the second procedure, first assume that the current plastic flow directions of
all active yield surfaces are the same (that is, n, = n for all i). Hence, the plastic deformation
increment for the slice is given by:

dw, = n dw, (B3.51)

Premuitiply Eqn. B3.45 by n” - f,- K|, to get:

T
. n' fo, K, dw
dwy = 2 LpRed¥ (B3.52)
L+n" Ly Ken
Substitute Eqn. B3.21 into Eqn. B3.52 to get:
T
. ran'ds,
dw, = —=% :
W, L+7, (B3.53)
in which r, and r; are scalars defined as follows:
nT-K.-n
p o= _— = B3.54
] ZJ n d '_.Kspi *h ( :
R S S— (B3.55)
i n d ‘551}: ‘n



Because the matrices K, and K, are always positive definite, the scalars r; and r; always
exceed zero. Hence, the sign of dwp' is the same as the sign of n”-dS,. This is the same cri-

terion as Eqn. B3.50.

In general, the plastic flow directions for the active yield surfaces are not the same.
Hence, it is possible for n7dS, to be greater than zero for some yield surfaces and less than
zero for others (i.e. continued loading on some, but unloading on others). This possibility is
iltustrated in Fig. B3.4. For computation, it is assumed that unloading is governed by the
highest active yield surface. If unloading occurs on this surface, unloading is assumed to occur
on all active surfaces. If the situation happens to be as shown in Fig. B3.4 (which is unlikely),
reloading will immediately occur on one or more of the lower yield surfaces, and the analysis

will continue.

B3.10 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces
of the joints rather than at the theoretical joint centerlines. This effect can be approximated by
postulating rigid, infinitely strong connecting links between the nodes and the element ends, as
shown in Fig. B2.7. The displacement transformation relating the increments of node displace-
ments, dr,, 1o increments of displacement at the element ends is easily established and can be
writien as:

dr = a,dr, (B3.56)
This transformation is used to modify the stiffness and state determination calculations to allow

for end eccentricity effects.

B3.11 TOLERANCE FOR STIFFNESS REFORMULATION

Each time a new hinge yields or an existing hinge unloads, the element stiffness changes.
Moreover, because the direction of plastic flow may change, the stiffness of a yielding element
will generally change continuously. The change in stiffness results from differences in the

directions of the normal to the yield surface as the actions at the hinge change. If the angle



change is small, the change in stiffness will be small and can be neglected to avoid recalculating
the stiffness. In the computer program, an option is provided for the user to set a tolerance for
the anglte. If a nonzero tolerance is specified, the element stiffness is reformed only when the
change in state is such that the angle between the current yield surface normal and that when
the stiffness was last reformed exceeds the tolerance. A tolerance of about 0.1 radians is

recommended.
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B4. STRAIN RATE EFFECTS

B4.1 GENERAL

The mathematical formulation for an element slice with rate-independent elasto-plastic
behavior was presented in the preceding chapter. An extension to include strain rate effects is

presented in this chapter.

A physical model for a slice is first constructed for one-dimensional behavior. This model

is then generalized for the multi-dimensional case.

B4.2 MODELING OF STRAIN RATE EFFECTS

B4.2.1 Physical Model

In one dimensicn, elasto-plastic-strain-hardening behavior can be modeled using a linear
spring in series with a number of rigid-plastic springs (Fig. B2.6). To include strain rate effects,
a dashpot is added to the assemblage as shown in Fig. B4.1. With this model, the elastic
behavior is independent of the strain rate, but the post-yield resistance is the sum of the static
resistance plus that of the dashpot. The dashpot resistance depends on its stiffness and on the

plastic strain rate in the material.

B4.2.2 Dashpot Properties

In order to establish a stiffness coefficient for the dashpot, information is needed on the
strength increase of the element for different plastic deformation rates. If the physical modeli
represents steel loaded in uniaxial tension or compression, the dashpot coefficient can be
obtained from test results measuring the strength of the steel as a function of strain rate.
Although the plastic strain rate is not necessarily equal to the total strain rate, the two will be
essentially equal as the maximum strength is approached. Hence, a graph of strength increase
versus total strain rate can, for practical purposes, be assumed to be the same as a graph of

strength increase versus plastic strain rate. Such a graph might be as shown in Fig. B4.2.
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For numerical analysis, the graph is assumed to be approximated by linear segments, as
shown in Fig. B4.2. The relationship between force in the dashpot and the dashpot deformation

rate can be written, for any linear segment, as:

dSy; = C.dw, (B4.1)
in which
45, = increment in dashpot force;
dw, = increment in dashpot deformation rate; and

f
C, = slope of segment.
For application to the beam element, this concept is generalized to the multi-dimensional

action-deformation case and implemented numerically.

B4.2.3 Damping Matrix for a Slice
For a slice of a beam element, a relationship in the form of Eqn. B4.1 is required, relating
damping action increments to corresponding increments of plastic deformation rate. That is,

the refationship must be in the form:

asqy = C,dw, (B4.2)
in which
dS, = vector of damping action increments;
dw, = vector of plastic deformation rate increments corresponding to dS,; and
C, = diagonal matrix containing the slopes of the individual relationships between

action and deformation rate (dashpot coefficient values).

For axial force, F, the strain rate effect is the same as that of the beam material. For
bending moment, however, a somewhat different relationship can be expected, because the
strain rate varies over the cross section as the beam bends (the strain rate effect can thus be
expected to be relatively somewhat less for bending than for axial force). For torque, a

different strain rate effect may also be obtained, because it depends on the relationship between



shear strength and shear strain rate, which may be different from that for behavior in tension.
In practice, it is unilikely that detailed knowledge of the strain rate effects will be available.
Hence, for simplicity in the theoretical formulation, different dashpot coefficient values are not
allowed for each of the four actions. Instead, a single generalized relationship is used for all

four actions. The relationship is derived as follows.

(1) For the steel of which the pipe is made, first obtain the o, versus €, relationship (stress

increase versus strain rate) as in Fig. B4.3.

(2) Reduce to a dimensionless relationship (except for time) by dividing o, by the yield
stress (or nominal yield stress) of the steel and dividing €, by the yield strain (yield stress

divided by Young’s modulus).

(3) Approximate the relationship by a multi-linear curve. Let the slope of any segment be
C,, a generalized dashpot coefficient relating dimensionless stress to dimensionless strain

rate increment. That is,

= C’iép_

z "o E (B4.3)

in which o, = yield stress and E = Young’s modulus.
Hence,

doy = C/ E dé,
so that, from Eans. B4.2 and B4.3,

C, = CE
{4) Assume that the same dimensionless relationship can be extended to actions and deforma-
tions of a slice, as illustrated in Fig. B4.4. For example, for bending about the z axis,

assume the relationship is:

dM,; = C; EI, dy, (B4.4)

in which C, is as before. It follows that the matrix C, is given by:

C, = C' K, (B4.5)
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in which K, = elastic (diagonal) slice stiffness matrix.

B4.3 MATHEMATICAL FORMULATION

B4.3.1 Basic Equations
The equations for strain rate effects are derived as follows.

(1) Force Equilibrium:

dS = dS, = dS, + dS, (B4.6)
in which
dS = total action increment,
dS, = elastic action increment;
dS, = action increment due to plastic deformation;
dS,; = action increment due to strain rate effects.
(2) Deformation Compatibility:
dw = dw, + dw, = dw, + 3. dw, (B4.7)
"
in which
dw, = elastic deformation increment;
dw, = plastic deformation increment;
dw, = plastic deformation increment for active yield surface i; and
i = active yield surface number.
(3) Rate Independent Flow Rule:
dwy = n, dw, (B4.8)

in which

n, = normal vector for current active yield surface i; and
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4)

(%)

(6)

dwp',- = scalar which defines the magnitude of plastic deformation along the normal

direction of vield surface i.
Step-by-Step Integration:

The dashpot relationship depends on the step-by-step integration rule being used. Two

options have been considered, as follows:

(a) B4.ackwards difference rule:

dh’ . A dﬁ‘ |
dS; = Q[Tf - Wl = C'Ke .rz[-;;f- - W, (B4.9a)
in which
€, = diagonal matrix of dashpot coeflicients, as defined previously.
(b) Trapezoidal rule:
dw
dsS,; = 2§,l‘/z ;tp - i"p] (B4.9v)

These equations strictly apply only for finite time increments, A¢. The theory is
developed on terms of dt for consistency with previous equations, but a finite Az is used
for actual numerical implementation. The backwards difference rule is used in the follow-

ing derivations and is recommended for use in actual computation.

Plastic Relationships:

T
;B
I i T 10
Define:
.[sp = 2 .fspf
Hence,
dﬂp = .fsp d*_gp (B4.11)
Elastic Relationships:
‘dS, = K dw, (B4.12)
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or

dw, = £, dS, (B4.13)

in which K, and f, are the elastic slice stiffness and flexibility matrices, respectively.

B4.3.2 Derivation of Stiffness Equation
Substitute Eqns. B4.11 and B4.13 into Eqn. B4.7 to get:

dw = fyo dS + £, dS, (B4.14)

Substitute Eqns. B4.6 into Eqn. B4.14 to get:

dw = (fe + .fsp) das — [y dSa (B4.15)

Substitute Eqns. B4.9, B4.7, and B4.13 into Eqn. B4.15 and rearrange to get:

[t Lo+ Lo Cnfu) 8 = U+ L, C)dw = £,Cp  (B416)

Substitutve Eqn. B4.5 into Eqn. B4.16 to get:

C’ !
Lo+ A+ -2V [) dS = U+ [y Cr) dw = [y C b, (B4.17)

Premultiply Eqn. B4.17 by (f,, + (1 + C,/d0) f,) ™! to obtain:

as = C,aw + dS, (B4.18)
in which
C: - 1
C = (et U+ U+, C ) (B4.19)
dt dat
and
C’ o .
ds, = (L + (1+ _(5‘") .fsp) fspgr."_"p (B4.20)

Eqn. B4.18 is the required tangent stiffness relationship for a slice, including the effects of
plastic strain rate. The term C, is the tangent stiffness of the slice. The term dS; is an initial
stress effect associated with the strain rate effect. For a finite time step, A¢, an initial stress

term AS, is included in the element effective load vector for the time step.

When strain rate effects are zero, the terms C, and ds, become zero, and the relationship

" of Eqn. B4.18 becomes the rate-independent relationship:

40



dS = C,dw (B4.21)

in which
C = e+ [} - (B4.22)

B4.3.3 Plastic Deformation

The plastic deformation increments are obtained as follows. Substitute Eqns. B4.13 and

B4.6 into Eqn. B4.7 to get:

dw = [ (dS, + dSy) + dw, (B4.23)

Premultiply Eqn. B4.23 by [, K. 1o get:

-[SP Kedw = Ly d.’Sp + .fsp dsy + .fsp K dﬂp (B4.24)

Substitute Eqns. B4.9 and B4.11 into Eqn. B4.24 and rearrange to obtain:

1 .
u +.£sp (o E +.£sp _Kse) dﬂp = fsp K, dw "{"Isp.gr ¥y (B4.25)
or
dw, = ( + Lo Cr % + Ly K.) -1 (fsp K dw + Lo <, "'i’p) (B4.26)

Eqn. B4.26 gives the plastic deformation increment in terms of the total deformation incre-

ment, including strain rate effects.

B4.4 LOADING/UNLOADING CRITERION

The unloading criterion remains unchanged from the rate-independent case. That is,

nf-ds, > 0 (B4.27)
indicates continued loading, in which n, is the normal vector for the highest active yield sur-

face.
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B5. COMPUTER LOGIC

B5.1 STATE DETERMINATION

The state determination calculation for an inelastic element requires evaluation of the

equation
Ay
AS = _[ K, dv (B5.1)
in which
AS = finite action increment for element corresponding to the finite deformation incre-
ment Ay; and
K, = eclement tangent stiffness, which in general varies during the increment.

The computation procedure for state determination of the element is as follows:

(1) From the given nodal displacement increments, calculate the element deformation incre-

ments from
Ay = a Ar (B5.2)
in which
Ar = vector of nodal displacement increments, in global system;
Ay = vector of element deformation increments, in local system; and
a = displacement transformation matrix.

(2) Calculate the slice deformation increments at the Gauss stations from

Aw = Blx)Ay (B5.3)
in which
Aw = slice deformation increment;
Ay = element deformation increment; and
B(x) = shape function matrix defined by Eqn. B3.2.
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(3) Perform state determination calculations at each slice, as follows:

(a)

(b)

(c)

(d)

(e)

-

Check unloading. If unloading occurs, do elastic state determination. Otherwise,

continue,
Calculate plastic deformation, Aw,, using Eqn. B4.26.
Calculate dashpot forces, AS,, using Eqn. B4.9.

Calculate total force increments, AS, using:

AS = K. (Aw—Aw,) (B5.4)

Calculate plastic force increments, AS,, using:

AS, = AS - AS, (B5.5)
The new action point, §,+AS,, must lie on the yield surface. If the error is within
a specified tolerance, the state determination is complete. If the error exceeds the

tolerance, or if a new yield event occurs, the deformation increments are subdivided

into smaller increments. The procedure is described in the following section.

(4) Calculate the internal resisting forces for the element from the slice forces, using
L
R = fo BT S dx (BS.6)
in which
S = slice force vector; and
B(x) = strain displacement transformation matrix defined by Eqn. B3.2.
B5.2 YIELD SURFACE TOLERANCE

It is possible for the new action point, calculated assuming constant K, to lie significantly

outside the

nonparallel

current yield surface. This will occur particularly when AS and Aea are distinctly

(Fig. B5.1). In this case, the calculation is assumed to be sufficiently accurate, pro-

vided the new action point lies within a tolerance zone (iypically 1% of the yicld surface size).

If nvot, Aw

is scaled, K, is reformed, and the calculation is repeated for the balance of Aw.
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The scale factor is conveniently determined by the procedure illustrated for M-F space in
Fig. B5.1. In this figure, the current action point is P, and the new action point, obtained by
applying Eqn. B5.4, is at Q. Hardening is affected only by the component of AS parallel to the
yield surface normal. Hence, the yield surface translates as shown. Point @ lies outside the
new yield surface, the amount being defined by e,, which is the length of the "radial" error vec-

tor, e,. This error must not exceed the allowable tolerance.

Computationally, it is convenient to consider the "tangential" error, e,, which is the length

of vector P’Q. If the yield surface is assumed to be locally quadratic, then

e, = 05¢2 (B5.7)
The value of e, is calculated from this equation. If e, is within the allowable tolerance, point Q
is scaled to the new yield surface and the computation continues (this scaling introduces an
error which is assumed to be acceptable). If e, exceeds the allowable tolerance, it is assumed
that e, varies linearly with slice deformation. A scale factor to set e, equal to the tolerance is
then calculated using Eqn. B5.7; the AS and A« increments are scaled by this factor; and the
new action point is scaled to the yield surface, The slice stiffness is then reformed, and the
process is repeated for the remainder of the deformation increment. If AS is parallel toc S —-a,
no scaling will be required. If AS makes a large angle with S —a, the slice deformation incre-
ment may be subdivided into several subincrements, depending on the magnitude of Aw and

the value specified for the error tolerance.

The slice deformation increment is also subdivided if a new yield surface is reached. In
this case, the new action point is permitted to go beyond the yield surface by an amount equal
to the allowable radial error. The proportion of the deformation increment required to reach
this state is calculated; the new action point is scaled to the yield surface; the slice stiffness is

reformed; and the calculation proceeds for the remainder of the deformation increment.
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B6. USER GUIDE

3D DISTRIBUTED PLASTICITY BEAM-COLUMN ELEMENT

The ANSR element does not allow for strain rate effects. These effects are considered
only in the WIPS version of the element {31].

B6.1 CONTROL INFORMATION - Two Cards

B6.1.1 First Card

Columns Note Name Data

5(D NGR Element group indicator (=7).

6-10(I) NELS Number of elements in group.

11-15(D MEST Element number bf first element in group.
Default = 1,

16-25(F) DKO Initial stiffness damping factor, 3,.

26-35(F) DKT Tangent stiffness damping factor, 8 ;.

41-80(A) GRHED Optional group heading.

B6.1.2 Second Cards

Columns Note Name Data

1-5(D) NMBT Number of different strength types (max. 20).
Default = 1.

6-10(D NECC Number of different end eccentricity types

(max. 15). Default = zero.

11-15(D NPAT Number of different initial force patterns (max.
30). Defauit == zero.

B6.2 STRENGTH TYPES
NMBT sets of cards.

B6.2.1 Strength Type Number

Columns Note Name Data

1-5() Strength type number, in sequence beginning
with 1.

B6.2.2 Bending Properties About Local y-axis

Columns Note Name Data
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1-10(F) Flexural rigidity (effective elastic EI value, EI,
) about y axis.

11-20(F) Flexural rigidity (EI,) about y-axis.
21-30(F) Flexural rigidity (EI3) about y-axis.
31-40(F) Flexural rigidity (EIQ about y-axis.
41-50(F) Yield moment (YS1) about y-axis.
51-60(F) Yield moment (YS2) about y-axis.
61-70(F) Yield moment (YS3) about y-axis.
71-80(F) Elastic shear rigidity (G4;) for bending about

y-axis. May be zero.

B6.2.3 Bending Properties about Local z-axis

Columns Note Name Data

1-80(F) z-axis bending rigidities, yield moments, and
shear rigidity, it the same sequence as in Card
B6.2.2.

B6.2.4 Torsional Properties

Columns Note Name Data

1-70(F) Torsional rigidities (effective GJ) and vyield
torques, in same sequence as in Card 5.2(b).

B6.2.5 Axial Properties

Columns Note Name Data

1-70(F) Axial rigidities (effective EA) and yield forces,
in the same sequence as in Card 5.2(b}.

B6.3 END ECCENTRICITY TYPES

NECC Cards.
Columns Note Name Data
1-5(D 1 End eccentricity type number, in sequence
beginning with 1.
6-15(F) X, = X eccentricity at end i.
16-25(F) X; = X eccentricity at end j.
26-35(F) Y, = Y eccentricity at end i.
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36-45(F)
46-55(F)

56-65(F)

Y; = Y eccentricity at end j.
Z; = Z eccentricity at end i.

Z; = Z eccentricity at end j.

B6.4 INITIAL ELEMENT FORCE PATTERNS

NPAT Cards.

Columns Note Name
1-5(D (2)

6-15(F)

16-25(F)

26-35(F)

36-45(F)

46-55(F)

56-65(F)

B6.5 ELEMENT DATA GENERATION

Data
Pattern number, in sequence beginning with 1.
Initial moment M, at end i.
Initial moment M, at end i.
Initial moment M,, at end j.
Initial moment M, at end j.
Initial axiat force, F.

Initial torque, M.

As many sets of cards as needed to generate all elements in group.

B6.5.1 Card One

Columns Note Name
1-5¢D) (3)

6-10(D NODI
11-15(D NODIJ
16-20(D) INC
21-254)

26-30(D

31-35(D
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Data

Element number, or number of first element in
a sequentially numbered series of elements to
be generated by this card.

Node Number 1.
Node Number J.

Node number increment for element genera-
tion. Default = 1.

Number of a third node, K, lying in the xy
plane, for definition of the local y axis orienta-
tion. Default = automatic orientation of y-
axis.

Strength type number at element Gauss point
1. No default.

Strength type number at element Gauss point
2. No default.



36-40(D ‘ End eccentricity type number. Default = no
end eccentricity.

41-45(D) Initial force pattern number. Defauit = no ini-
tial forces. :

46-50(D Interaction surface type.

51-55(D - Displacements code:

(a) Blank or zero = small displacements.

(b) 1 = large displacements (engineering
theory).
56-60(D Large displacement theory code:

(a) Blank or zero = Euler procedure.
(6) 1 = midpoint procedure.
61-65(D Response output code:
(a) Blank or zero = no response printout.
(b) 1 = response output required.

66-75(F) @ - Stiffness reformulation angle tolerance, « (radi-
ans). Default = zero.

B6.5.2 Card Two . :

Columns Note Name Data

1-106(F) Parameter for yield surface type, a;.
11-20(F) Parameter for yield surface type, a,.
21-30(P) Parameter for yield surface type, a;.
31-40(F) Parameter for yield surface type, as
B6.6 NOTES

(1) All eccentricities are measured from the node to the element end (Fig. B2.7), positive in

the positive coordinate directions.

(2) See Fig. B2.8 for the positive directions for initial element actions. Refer to Section B2.4

for a description of the effects of initial element actions.
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(3) Cards must be input in order of increasing element number. Cards for the first and the
last elements must be included (that is, data for these two elements cannot be generated).
Cards may be provided for all elements, in which case each card specifies the data for one
element, and the generation is not used. Alternatively, cards for a series of elements may

be omitted, in which case data for the missing elements is generated as follows:

(a) All missing elements are assigned the same node "K" (NODK), slave nodes (NSI
and NSJ), strength types, end eccentricity type, initial force pattern type, interaction
surface type, codes for large displacements and response output, and stiffness refor-
mulation angle tolerance, as thoée for the element preceding the missing series of

elements,

(b) The node numbers I and J for each missing element are obtained by adding the

increment (INC) to the node numbers of the preceding element. That is,

NODI(N} = NODI(N-1} + INC

NODJ(N) = NODJ(N-1) + INC

The node increment, INC, is the value specified with the element preceding the

missing series of elements.

{4) Refer to Section B3.11 for a description of the stiffness reformulation tolerance.
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Cl. INTRODUCTION

The element described in this report is intended primarily for modeling inelastic effects in
steel beams and columns for buildings, with particular emphasis on three-dimensiona.l behavior.
The element takes account of moment-force interaction for columns and of bending moment
interaction for biaxial bending. Yielding is assumed to take place only in concentrated (i.e. zero
length) plastic hinges located at the element ends. The part of the element between the hinges

is assumed to remain linearly elastic.

Initial elastic stiffnesses must be specified for axial extension, torsional twist, and bending
about two axes. Flexural shear deformations and the effects of eccentric end connections can
be considered, if desired. The element strengths may be different at the two ends, and the

elastic stiffnesses can include the effect of varying cross section along the element length.
The essential features of the element are as follows:

(1) The element may be arbitrarily oriented in space but must be straight.

(2) Inelastic behavior is confined to zero-length plastic hinges at the element ends.

(3) The hinges are assumed to have rigid-plastic-strain-hardening behavior. Strain hardening
stiffnesses must be specified for the moment-rotation and force-extension relationships of

the hinges. Multi-linear relationships (max. 4 segments) are assumed,

(4) Interaction between bending moments, torque, and axial force is considered by means of
four-dimensional yield surfaces. A kinematic hardening rule {extended Mroz theory) is
assumed for post-yield behavior (i.e., transiation of yield surface without change of size or

shape).

(5) Options are available for small displacements, second order (P- A) theory and full large
displacement effects. Large displacements are considered using an "engineering” theory

(i.e., not a consistent continuum mechanics approach).
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(6} Eccentric end connections may be specified to model rigid joint regions, and rigid

diaphragm slaving may be specified to model floor slabs.

A general description of the element properties is presented in Chapter C2. Theoretical details
are presented in Chapter C3. Details of the computer logic are described in Chapter C4, An

elemeni user guide for the ANSK program is presented in Chapter CS.



C2. ELEMENT CHARACTERISTICS AND PROPERTIES

C2.1 GENERAL CHARACTERISTICS

The three-dimensional steel beam-column element is formulated to model steel beams
and columns, which exhibit hysteretic behavior when subjected to cyclic loads. EIe“ments may
be arbitrarily oriented in the global XYZ coordinate system. The element properties are
specified in a local xyz coordinate system. The orientations of the local axes are defined as
shown in Fig. C2.1a. Necde K, together with nodes I and J, defines the plane containing the

local y axis.

Inelastic behavior of the element is governed by axial force, two flexural moments, and
the torsional moment. Yielding may take place only in concentrated plastic hinges at the ele-
ment ends. Strain hardening is approximated by assuming that the element consists of a linear
elastic beam element with a nonlinear hinge at each end, as shown in Fig. C2.1b. For analysis,
each hinge is subdivided into a series of subhinges., The action-deformation relationships for
each subhinge are represented by bilinear functions. The bilinear action-deformation relation-
ships for a series of subhinges combine to produce a muliti-linear function for each complete

hinge, and hence, also multi-linear relationships for the complete element.

The elastic beam properties are defined by an axial stiffness, two flexural stiffnesses, a tor-
sional stiffness and two effective shear rigidities (if shear deformation is to be taken into
account). Elements of wvariable cross section can be considered by specifying appropriate
flexural stiffness and carry-over coefficients, and by using average cross section properties for

the axial and torsional stiffnesses.

For each subhinge, bilinear relationships can be specified separately for moment-rotation
about the element y and z axes, torque-twist, and force-axial extension. Different yield

strengths can be specified at the hinges at each end, if desired.

Interaction among the two bending moments, torsional moment, and axial force at a

hinge is taken into account for determining beth initial yield and subseguent plastic flow. The
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force-deformation and interaction relationships will typically be based on observations of the

behavior of steel members loaded by single actions and by multiple actions in combination.

Options are available for small displacements, second order (P-A) theory, and full large
displacement effects. Large displacements are considered using an engineering theory (i.e., not
a consistent continuum mechanics approach). Eccentric end connections and rigid diaphragm
slaving may be specified. Initial element forces may be specified. These initial forces affect ele-

ment vield but do not contribute to the nodal loads.

C2.2 AXES

Element properties and results are specified in the local coordinate system x,y,z, defined

as shown in Fig. C2.1. If node K is not specified, its location is assumed as follows.

(a) If IJ is not vertical, node K is at Y = +ee. The xy plane is then the vertical plane con-

taining the element.

(b) If IJ is vertical, node K is at X = +oo. The xy plane is then parallel to the XY plane.
C2.3 MODELING OF INELASTIC BEHAVIOR

C2.3.1 General

Yield is monitored at the potential hinges. Tangent stiffness relationships between the
actions and deformations at a yielding hinge are established using a plasticity theory which is an
extension of the Mroz theory for yield of metals. Each hinge is initially rigid, so that the initiat
stiffness of thevcomplete element is the stiffness of the elastic beam. As the moments and
forces at the elemeﬁt ends (the hinge actions) increase, the hinges can vield, causing a stiffness
reduction in the element. Under increasing deformation, the hinges strain harden, following
multi-linear action-deformation relationships. If the actions at a hinge decrease, the hinge
becomes rigid again and the element unloads. The overall element behavior is thus multi-

linearly inelastic, as illustrated in Fig. C2.2.
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C2.3.2 Hinge Properties

The rigid-plastic-strain-hardening relationships between hinge actions and deformations
must be defined for the two hinges. The relationships at the two hinges in any clement may be

different, if desired.

Relationships as shown in Fig. C2.3 must be defined for each of four action-deformation
pairs, namely (1) bending moment, M,, and corresponding rotation, 8,; (2) bending moment,
M., and corresponding rotation, 8,; (3) torque, M,, and corresponding twist, ¢ ,; and (4) axial
force, F,, and corresponding extension, §,. Each relationship is rigid-plastic-strain-hardening
and may have up to three linear segments, as shown in Fig. C2.3. The relationships may be of
different shape for each action. For material with an elastic-perfectly-plastic stress-strain rela-
tionship, the torque-twist and force-extension relationships will be rigid-perfectly-plastic,
whereas the moment-rotation relationships will usually exhibit strain hardening behavior (Fig.
C2.5). It is required that the deformations at changes in stiffness have the same ratios for all
relationships, as indicated in Fig. C2.2. This restriction is necessary to avoid inconsistencies in

the plasticity theory.

It may be noted that the assumption of a zero-length hinge implies infinitely high strains

as a hinge deforms. This is inherent in any plastic hinge type of theory.

C2.3.3 Interaction Surfaces for First Yield

The actions M,, M., M,, and F, interact with each other to produce initial yield of the
hinge. The interaction effect is determined by a yield (interaction) surface. To aliow for a
variety of applications, provision is made in the theory for five different yield surfaces. These
surfaces are all four-dimensional (i.e., M,, M, M,, and F,), and hence, cannot be shown
easily using diagrams. The surfaces differ, however, mainly in the way in which the axial force
interacts with the three moments. Hence, the differences can be illustrated using the three-
dimensional diagrams in Fig. C2.4. In these figures, the M, and M, axes indicate any two of

the moments, and the £, axis indicates axial force. The origin of the yield surface can be
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shifted along the axial force axis, if it is desired to have grealer compressive capacity than ten-
sion capacity. The F-M interaction surface can then approximate that for a reinfocrced concrete

column. The equations defining the yield surfaces are shown in the figure.

Surface 1 is elliptical and is the simplest mathematically. Surfaces 2, 3, and 4 allow more
realistic modeling of moment-force interaction for cases in which axiaf force effects are subsian-
tial. For ali of these four surfaces, the interaction among M,. M,, and M, is elliptical and anly
the force-moment interaction changes. Surface S is of a different form than the other four and

is included for greater generality in special cases.

C2.3.4 interaction Surfaces for Subsequeni Y feid

For modeling a hinge with nonlinear material properties, it is assumed that the behavior is
rigid-plastic-strain-hardening for each action individually, as shown in Fig. C2.3a. In one
dimension, the rigid-plastic-strain-hardening behavior can be modeled using a series rigid-plastic
subsprings, as shown in Fig. C2.3b. Th.is model can be extended io the multi-dimensional case
using a series of rigid-plastic "subsprings”, with the yield of any subhinge governed by a yield
surface. First yield occurs at the first subhinge and is governed by the initial yield surface. For
each change of stiffness, there is a corresponding yield surface, cach corresponding o a
subhinge. These surfaces are assumed to have the same basic form as the surface for firsi
yield. However, because the action-deformation relationships may be of different shape for
each action, the surfaces for the first and subsequent subhinges will not have, in generzl, ident-

ical actual shapes. An example in 2D action space is illustrated in Fig. C2.6.

2.3,5 Plastic Stiffnesses: Axial Force and Torque

The hinge yield strengths and the plastic stiffnesses of the hinge action-deformation rela-
tionships (K,;, K,,, and K,; in Fig. C2.3) must be specified to provide appropriate post-yield
stiffening of the compliete element. The procedure is straight-forward for axial force and toraue

but more complex for bending.

Consider axial force, and let the force-exteusion relationship for the complete element be
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as shown in Fig. C2.7a. The steps are as follows.
(a) FElastic axial rigidity of beam = FEA4 = K- L.

(b) Strength at first yield surface = F,,;.

K K
(c) Plastic stiffness after first yield surface = K, = okl Mo L3
Kp~Kpa
(d) Strength at vield surface i = F,;.
_ Kp-Kri+p

(e) Plastic stiffness after yield surface i = K, .
? KFi - KF(i+1)

The same procedure applies for torque, as follows (Fig. C2.7¢c).
(a) Elastic torsional rigidity of beam = GJ = K- L.

{b) Strength at first yield surface = 7.

K K
{c) Plastic stiffness after first yield surface = K,; = n_n
Krn—Kn
{d) Strength of yield surface i = T},.
 Kp Krgen

(e) Plastic stiffness after yield surface i = K,; = .
a KT;‘ KT(:‘+1)

C2.3.6 Plastic Stiffnesses: Bending

A complication in specifying the flexural plastic stiffnesses arises from the fact that

moment-curvature nonlinearities are modeling using concentrated hinges. In an actual beam

the moment typically varies along the length, and plastic deformations occur over finite regions.

Consequently, the flexural stiffness depends on the moment variation along the beam. In a

concentrated hinge model, it is not possible to account for all possible moment variations; and

hence, assumptions must be made in specifying the hinge properties.

Three options are available in the computer program for assigning bending stiffness pro-

perties to the hinges. The first option is for a uniform beam with essentially constant moment

along the element (Fig. C2.8a). This option is applicable, in general, only for a structure which

is modeled using short beam-cclumn elements, such that the bending moment does not vary
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greatly over a single element. The relationship between bending moment and end rotation for
the initial lecading of the element is as shown in Fig. C2.8b. The steps in establishing the hinge

properties are as follows:
(a) Elastic flexural rigidity of beam = El = K- L/2.
{b) Shear rigidity of beam assumed to be infinite {no shear deformations).

{(c) Hinge strength at first yield = M.

L . Ky Kan
(d) Plastic stiffness after first yield surface = K,; = ———rr".
Kyi— Ky
{e) Strength at yield surface i = M,,.
Kus - Kot
{f)  Plastic stiffness after yield surface i = K, = M MU
KM{ - KM(/'+1)

The second option is applicable for a uniform b‘eam in which a linear variation of bending
moment can be assumed over the element length, with equal and opposite values at the ends
(Fig. C2.92). This option will typicatly apply for columns in an unbraced frame building. An
equivalent cantilever for each half of the element is used, as shown in Fig. C2.9b. It is
required that the relationship between the tip load and tip displacement of the cantilever be

known (Fig. C2.9¢). This relationship can then be used to obtain hinge stiffness as follows.
(a) Elastic flexural rigidity of beam = EI = K ,L°/24.
{b) Shear rigidity of beam assumed to be infinite (no shear deformations).

(c) Hinge strength at first yield = P,- L/2.

(d) Plastic stiffness after first yield surface = K KKy L l
a lrines su = - _
stic y ol K =KD
(e} Strength at yield surface i = P~ L/2.
K,-Kip - L

{f) Plastic stiffness after yield surface i = K, = KK
A YRS |

For these first two options, the computer program calculates the K, values, given the moment-

rotation relationships (for Option 1) or load-deflection relationship {for Option 2). The third
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option provides the user with more flexibility by requiring that the EI/L and K, values be
specified directly. In addition, with this option it is not necessary for the element to be of uni-

K, ,and X

i K ;» which depend on the variation of

form section. Flexural stiffness coefficients, K
the beam cross section, may be specified {for example, for a uniform element, K, = K;=40

and K,; = 2.0). Also, an effective shear stiffness (GA’) can be specified.

C2,3.7 Plastic Flow

Interaction among the actions is considered as shown diagrammatically in Fig. C2.6. Yield
begins when the yield surface of the first subhinge is reached. The surface then translates in
action space, the motion being governed by the plastic flow of the first subhinge. Translation of
the first surface continues until the second surface is reached. Both surfaces then translate
together, governed by a combination of plastic flow on both yielded subhinges. For any
subhinge, plastic flow is assumed to take place normal to the yield surface of that subhinge. If
two or more subhinges are yielded, their yield surfaces move together, and the total plastic
deformation is equal to the sum of the individual plastic deformations for each subhinge,
directed along the normal directions of their respective yield surfaces at the action point. After
some arbitrary amount of plastic deformation, the situation might be as illusirated in Fig.

C2.6b.

On unloading, the elastic stiffness values, K;, govern until the yield surface of the first

subhinge is again reached (Fig. C2.6b). The surface then translates as before.

C2.3.8 Hardening Behavior

After first yield, the yield surfaces of the yielded subhinges are assumed to translate in
action space, obeying a kinematic hardening rule (translation without change of shape or size).
An extension of the Mroz theory of material plasticity is used to define the hardening behavior.
Because the yield surfaces of the yielded subhinges are generally not exactly similar, overlap-
ping of the surfaces can occur, as described in detail in Section C3.5. As a reéult, the harden-

ing behavior is more complex than in the basic Mroz theory. For example, in Fig. C2.6b, the



current action point, A, lies on yield surfaces Y5, ¥5, and ¥S,; Hence, all three subhinges
(Fig. C2.3b) have yielded, and the direction of plastic flow is a combination of the normal vec-

tors ny, 13 and #; Details of the theory are given in Sections C3.2.5 and C3.2.6.

C2.4 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces
of the joints rather than at the theoretical joint centertines. This effect can be approximated by
postuiating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. C3.5.

C2.5 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that each floor diaphragm
is rigid in its own plane. To introduce this assumption, a master node at the center of mass of
each ﬂdor may be specified, as shown in Fig. C3.6. Each master node has only three degrees of
freedom as shown, which are' the disptacements of the diaphragm horizontally as a rigid body.
If any beam-column member is connected to these master displacements, its behavior depends
partly on these displacements and partly on the displacements which are not affected by the

rigid diaphragm assumption.

C2.6 INITIAL FORCES

For structures in which static analyses are carried out separately (i.e. outside the ANSR
program). initial member forces may be specified. The sign convention for these forces is as
shown in Fig. C2.10. These forces are not converted to loads on the nodes of the structurs but
are simpiy used to initialize the clement end actions. For this reason, initial forces need not
constitute a set of actions in equilibrium. The only effects they have on the behavior of the

system are (a) to influence the onset of plasticity and (b) to affect the geometric stiffnesses.
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C3. THEORY

C3.1 DEGREES OF FREEDOM

The element has two external nodes and two internal nodes, as shown in Fig. C3.1a. The
external nodes connect to the complete structure and have six degrees of freedom each, namely
X,Y.,Z global translations and X.,Y,Z, global rotations. After deletion of the six rigid body
modes for the complete element and transformation to local element coordinates, the six defor-
mation degrees of freedom shown in Fig. C3.1b remain. FEach hinge has four deformations,
namely an axial deformation plus rotations about each of the local x,y,z axes (i.e., shear defor-

mations in the hinges are zero).

The transformation from global displacements to element deformations is:

y=4ar (C3.1)
in which
vT = [vy, vy ..., v4] = element deformations (Fig. C3.1b);
T = {ry ry ..., rp] = global displacements (Fig. C3.1a);

and the transformation matrix a is well known.

The vector of degrees of freedom, w, for the elastic element (Fig. €3.2a) is defined as:

!T = [wlv Wi, oy W6I

The complete hinges at ends I and J have degrees of freedom defined by:

wh o= [vy=wp) (i—wy (vs—we' (ve—wy'l

and

wh = [ry—w) (vy—wy) (vs—we" (vg—w"l
in which v,, i=1,4 and w,, i=1,4 are as shown in Fig. C3.1a and C3.2a, and in which:
(VS— WS)' -+ (VS—- Ws)” = Vs— W;s
(ve—we)' + {vg—we" = ve— wg

That is, the torsional and axial hinge deformations are shared between the hinges at ends I and

J. The proportions in which the deformations are shared are determined naturally during the
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numerical computation and do not need to be defined in advance. Each complete hinge is
modeled as three subhinges in series (Fig. C3.2b). Each subhinge has four deformation
degrees of freedom wy,, such that the sum of the w,, deformation for the three subhinges gives
the hinge deformation, w,. The proportions of any hinge deformation which are contributed by

the separate subhinges are determined automatically during the computation.
C3.2 ELEMENT STIFFNESS

C3.2.1 Basic Procedure

The beam element connecting the internal nodes remains elastic, but the tangent
stiffnesses of the hinges may ‘change. For any state of the complete element, a 6 x 6 flexibility
matrix is first formed for the elastic beam in terms of the degrees of freedom w, through w
This matrix is then modified by adding the flexibilities of the hinges to give a complete element
flexibility matrix in terms of v, through vs This matrix is inverted to obtain a 6 x 6 element
stiffness (computationally, the Sherman-Morrison formula is used, not direct inversion).

Finally, this stiffness is transformed to the 12 x 12 giobal stiffness.

C3.2.2 Beam Element Elastic Flexibility

The local y,z axes are assumed to be the principal axes of the beam cross section. The

local ¥ axis is assumed to be both the centroidat axis and the axis of torsional twist.

The beam element stiffness relationships can be written as follows:

{‘%f} sl gfi] {Z’L";} (€3.22)
{%1] - ELI" [gj zj {Z:ji} (C3.20)
M = % dws (C3.2¢)
s = % dws (C3.2d)

82



in which

KHYK
El, EI, = effective flexural rigidities;

;-K;; = flexural stiffness factors;

M,,M, = bending moments,
i,j = element ends;
M, = torsional moment,
F,. = axial force;
L = element length;
EA = effective axial rigidity; and,

GJ = effective torsional rigidity.

The flexural stiffness factors can be used to account for non-uniform elements. For a uniform

element, K; = K;; =4.0and K; = 2.0

Equations C3.2a and C3.2b are inverted to obtain flexibilities and are modified, if neces-

sary, to allow for shear deformations by adding the shear flexibility matrices, f,, and [, where

L= = (C3.3)

in which GA’ = effective shear rigidity,

C3.2.3 Hinge Plastic Flexibility

The plastic deformation increment of a hinge is the sum of the deformations of its yietded

subhinges. That is,

aw, = 3 dwg, (C3.4)
!
in which
dw,, = plastic deformations of each subhinge; and
dw, = plastic deformation increments of complete hinge.

In multi-dimensional action space, each hinge has a 4 x 4 flexibility matrix in terms of its axial,
torsional, y-flexural, and z-flexural deformations. The flexibility matrix before yield for any
hinge is null (i.e. rigid hinge), and hence, has no effect on the complete element flexibility.
After yield, the hinge flexibility is finite and contributes to the overall element flexibility. The

hinge at end I affects degrees of freedom vy, v3, vs, and ve of the compiete element. The hinge



flexibility coefficients are simply added to corresponding beam coefficients. Similarly, the hinge
at end J affects degrees of freedom v, v4, vs, and v Although the six deformation degrees of
freedom are largely uncoupled for the elastic beam (Eqn. €3.2), this is not the case after yield.
The complete element flexibility matrix will generally be full {except for zero values for f 14 and
I

The hinge flexibility, in turn, is the sum of the flexibilities of the yielded subhinges. That

is, a hinge flexibility relationship can be written as:

dw, = [,dS = Y. fu dS (C3.5)
in which
L = plastic flexibility of subhinge i;
[, = flexibility matrix for the hinge; and
dS = action increment on the hinge.

The problem thus reduces to the determination of f, for each yielded subhinge.

C3.2.4 Yield Function

Each subhinge is effected by four actions (M,, M,, M,, and F,), with four corresponding
deformations. The behavior is rigid-plastic-strain-hardening for each action individually.

Different yield values and stiffnesses may be specified for each action component.

Yield of any subhinge is governed by a yield function (interaction relationship). Any one
of five different vield functions may be specified, as considered in Section C2.2.3. After yield,
each subhinge follows a kinematic hardening rule (that is, its yield surface translates in action
space without change of shape or size). The hardening theory is a modification of the Mroz

theory for plasticity in metals.

C3.2.5 Plastic Stiffness Matrix

A plastic stiffness matrix for a subhinge is defined as:

Espi = diag [ K Myr K Mz K Mxi K Fxi ]
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where Kagi, Kapiv Kapir and K are the plastic stiffnesses after. vield on surface i from Section

C2.3.6.

C3.2.6 Plastic Flexibility for a Single Subhinge

Consider a single subhinge. Let § be the vector of actions, where
ST = | M, M, M, F] (C3.6)
Assume that the subhinge is rigid-plastic, and let w, be the vector of plastic subhinge deforma-
tions. That is, wg,; = plastic flexural deformation about axis y; wg,; = plastic flexural deforma-
tion about axis Z, wy3 = plastic rate of twist about axis x; and wy,4 = plastic rate of extension

along axis x.

A flexibility relationship for the subhinge is required in the form:

dwgy = [y dS (C3.7)

in which f,, = subhinge flexibility matrix. The following assumptions aré made:
(1) Let ¢ be the yield function, as considered in Section C3.2.4. The yield surface translates
in action space, After some amount of hardening has taken piace, the yield function is
¢ (S —a), where @ = vector defining the new location of the yield surface origin. This is

illustrated in Fig. C3.3 for a two-dimensional space.

(2) From any given plastic state (i.e. a point on the yield surface), any action increment (dS})!
will produce increments of deformation (dw,) and yield surface translation (da). The
direction of dS may be arbitrary. It is assumed that the direction of dw,, is normal to the
vield surface (i.e. an. associated flow rule is assumed). The direction of dg is determined
by the hardening rule (as defined later) and is not necessarily paralle! to either dS or dwsp.

This is illustrated in Fig. C3.3 for a two-dimensional space.

(3) The direction of the outward normal to the yield surface is the gradient of the yield func-

tion. Define,

&

-t 3.8
27 g Te)" (@8
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(4)

&)

(6)

(N

(8)

in which

&0 = [9¢/0M, 3¢/3M, 84/0M, 3b/4F | (€3.9)
yield function gradient; and ‘

n = unit normal vector.

Hence, the deformation increment, dw,,, is given by:

dwg, = n - dwg (C3.10)

in which dws; = scalar which defines the magnitude of the piastic deformation.

Let the component of dS in the direction of # be 43, (Fig. C3.3). Hence,

ds, = n-(nT-dS) (C3.11)

Assume that dS, and dwg, are related by:

@S, = K, dw,, (C3.12)

in which

.Ksp = diag [KMy KM: KMx KF] ’ (C3.13)
is a diagonal matrix of the plastic stiffnesses from the individual action-deformation rela-

tionships for the subhinge, as defined in Section C2.3.7.

From the definition of 4S, (Eqn. C3.11), it follows that

n’dS = n'ds, (C3.14}
Substitute Eqns. C3.12 and C3.10 into Eqn. C3.14 to get:

T dS = n" K, n-adw, (C3.15)

- —

Solve for dw,, as:

T.4s

n
(C3.16)
nl - K, n

L
dwg, =

Hence, substitute Eqn. C3.16 into Eqn. C3.10 and use Eqn. C3.7 to get:

T
n-n
dwg, = al K, n ds = [ dS (C3.17)

Equation C3.17 is the required plastic flexibility relationship for any active subhinge.
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€3.2.7 Plastic Flexibility for Complete Hinge

The 4 x 4 plastic flexibility of the complete hinge, f,, follows from Eqn. C3.5 as:

L= Y Lo . (C3.18)
i
where i = active subhinge, The flexibility for any active subhinge, as derived in Section
C3.2.6, is given by:
T
n,' N n,'
;= e (C3.19)
[SP ”tT' .Igsp; i '
in which
n, = normal vector to the surface; and
K, = plastic stiffness matrix of the subhinge.

(C3.2.8 Relationship to Basic Mroz Theory

In the special case where the action-deformation relationships for the four actions are ail
directly proportional to each other, the yield surfaces are all of the same shape and the plastic
stiffnesses for each active yield surface are in the same proportion. The plastic stiffness matrix

for each active subhinge can then be formed in terms of the elastic stiffness matrix. That is,
Ky = o K, (C3.20)
where «; defines the plastic stiffness as a proportion of the elastic stiffness. The plastic flexibil-

ity of a complete hinge can then be written as:

_ -3 |4 n - nf (€3.21)
.[ll - Zi.[spt i o, £;T'1_<e “n -

Because all the yield surfaces are the same shape, the p; are all the same. Hence, if n, = &,

Eqn. C3.21 can be written as:

T

Zr = ﬁ"[gflﬁe'ﬂ

(C3.22)

The flexibility given by this equation is the same as that from the basic Mroz material
theory. This shows that the Mroz material theory is a special case of the extended theory

derived here.
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C3.3 ELEMENT STIFFNESS

For the complete element, a tangent action-deformation relationship is required in the

form:

s — K,dv (C3.23)

in which K, = 6 x 6 tangent stiffness matrix for the element.

From the preceding derivation, the procedure is to develop the tangent flexibility matrix
and then invert to obtain the stiffness matrix. Computationally, the Sherman-Morrison formula

rather than inversion is used, as follows,

The flexibility of any subhinge is given by:

T
ncn;
fop = —2 2 (C3.24)
¥ L’fr' _]_{:pi i
in which
n; = normal vector of active yield surface i;
K, = plastic stiffness matrix of active yield surface i; and
i = active subhinge number.
Define
n;
g = T (C3.25)
(EiT‘ K, n) &

Bxpand g, (4 x 1) to u; {6 x 1) by adding two zero terms corresponding to the two flexural
deformations of the hinge at the other end of the element. The tangent flexibility of the com-

plete element can then be expressed as:
fo= Lo+t Xu-ul (C3.26)
in which £, is the elastic element flexibility matrix.

The Sherman-Morrison formula states that:

-1

" (€3.27)

-1, ,T.
[A+E'HT]_1=:‘1_]*ATM_1" A
u' A ru+

Iz

Application of this formula to the inversion of f,, gives:
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T
Ky uu Koy

K, = K- - (C3.28)
! uf Kyg-n wy+1
in which
! = the current highest active subhinge,
Ky = .!fe—l = K.
and K, is obtained using the following recursion relationship.
Kooyt ul K-
!gu — K;(,‘—ll" D=1 T Hp A (i-1) (C329)

Ul Koy u, + 1

Equation C3.28 defines the tangent stiffness matrix for the complete beam element.

C3.4 EQUILIBRIUM NODAL LOADS
Nodal loads in equilibrium with the element actions in any given state are given by:
R =4a"8§ (€3.30)
in which

ST = [51, SQ, . Sﬁ]; and

displacement transformation matrix relating element deformations to global displacements.

"IN
i

internal resisting forces for the element;

C3.5 HARDENING RULE

C3.5.1 Geometrical Interpretation

The relationship between any action and its corresponding deformation at a subhinge is
multi-linear. The interaction among the actions (M,, M,, M,, and F) is defined by the yield
surface, as described earlier. After initial yield occurs, the behavior at a subhinge obeys a

modification of the Mroz strain hardening rule for yield in metals [30].

(C3.5.2 Modified Mroz Hardening Rule

For purposes of illustration, consider a two-dimensional M-F space, as shown in Fig.
C3.3a. In this figure, it is assumed that the current state (point P,) is on vield surface Y§, and

that loading is taking place towards surface YS,. It is necessary to define the direction in which
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surface Y3, translates.

As indicated in Fig. C3.3a, "corresponding” points P; and P, can be identified on Y§, and
YS;. The relationship between the actions at these two points (S, at P, and S at Pj) is

obtained as follows,

Figure C3.3b shows a yield surface transformed into a normalized action space. In this
space, surfaces ¥S, and YS, have identical shapes. Hence, points P; and P; coincide. The loca-
tions of P, and P, in Fig. C3.3a follow by transforming back to the natural action space. If the

vector of actions at P, is §,, it follows that the vector of actions at P, is given by:

S; = Su (8 —a) +g (C3.31)
in which
§; = vector of actions at point P;
a; and a; = vectors defining the current origins, O; and O, of yield surfaces YS; and

YS,, respectively; and

My, Mn Ty £y

Suy = 98\ M Ta Fa

It is assumed that the direction of translation of vield surface Y§; is along the line connecting

point P; to point P;, as shown in Fig. C3.3a. That is, the direction of motion of surface ¥§; is

defined by:
da; = (§;— S)da’ (C3.32)
in which
da” = scalar which defines the amount of translation of yield surface YS,; and
da; = vector defining the direction of translation.

The magnitude of do” is determined as explained in the next section. For the hardening rule
originally formulated by Mroz [30,33], all yield surfaces are geometrically similar in natural
action space. The rule then ensures that the surfaces never overlap. For the modified Mroz
rule, the yield surfaces are assumed to be geometrically similar only in normalized action space.

As a result, overlapping of yield surfaces is allowed.
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C3.5.3 Mathematical Formulation
Substitute Eqn. C3.31 into Eqn. C3.32 to get:

da; = (§w‘j_'l) S — (:Suijﬁl - Ej) da. €C3.33)

The vield surface is defined by:

¢(§,’”‘2f) = 1 (C334)

The requirement that the action point remain on the yield surface is:

dp = 0 = ¢,7dS,—¢,lda; (C3.35)
Substitute Eqns. C3.32 and C3.33 into Egn. C3.35 to get:
» és Srd_‘s_'i

d = C3.36
* &, [(Sy,— 1} S, — (Suyai—a,)] ( )

‘Hence, substitute Eqn. C3.36 into Eqn. C3.32 to get da; as:

| Su=D 5~ Swa—ap|efas,

da;, = (C3.37)

Q,sr[ (§u:j—1) S = @uijgi—ﬁj)]
For any current state defined by §,, «;, and a;, Eqn. C3.37 defines, for an action increment

dS;, the translation of yield surface Y§, for loading towards surface Y§;.

C3.5.4 Last Yield Surface

For the case when the action point lies on the largest yield surface, the hardening rule can
be obtained by assuming that an additional infinitely large yield surface exists. The direction of
translation for this case is then along the radial direction connecting the origin of the current
yield surface to the current action point. This is exactly Ziegler’s hardening rule [34]). It can be
expressed as:

da, = (§,— a,)da’ (C3.38)
in which

n = number of largest yield surface;
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da’ = scalar which defines the amount of transiation of the yield surface, as before;
a, = vector defining the yield surface origin; and
da, = vector defining the direction of translation.

For this case, Eqn. C3.37 becomes:

(.‘Sn—ﬂn) Qasr' as,

0TS a0 (€3.39)

C3.5.5 Overlapping of Yield Surfaces

In the original Mroz hardening rule, it is assumed that the yield surface YS§, is geometri-
cally similar to the yield surface ¥S,. This assumption is reasonable for metal plasticity in stress
space because it is reasonable to assume an isotropic material. However, for dealing with stress
resultants, each action-deformation relationship depends on the cross section shape in a
different way, and the behavior is not isotropic in action space. That is, the yield surfaces will,
in general, not be geometrically similar. The authors have considered a number of strategies in
an attempt to obtain "correct” behavior while preventing yield surface overlap. None of these

strategies proved satisfactory, and it was finally concluded that overlapping should be allowed.
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C3.6 PLASTIC DEFORMATION

The flexibility relationship of the element can be written as:

dv = f,dS = f,dS + dv, (C3.40)
in which
f. = the element elastic flexibility matrix; and

dy, = Y. dv,, is the plastic deformation increment summed over all active subhinges.

i

Premultiply Eqn. C3.40 by £, X, to get:

Ly Ke-dv = f,-d5 + [, K, dy, (C3.41)

in which
K, = the clement elastic stiffness matrix; and

fp = 2 fu is the total plastic flexibility (the total of all the current active yield surfaces at
i

both ends of the element), so that:

L dS = av, (C3.42)
Substitute Eqn. C3.42 into Eqn. C3.41 to get:

U+ fK)dv, = [, Kewav (C3.43)

Hence,

dv, = U+ [, K7 £, Koy (C3.44)
Equation C3.44 gives the plastic deformation increments of the complete element in terms of

the total deformation increments.

C3.7 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuous plastic flow at a subhinge to be dis-
tinguished from elastic unloading for any current plastic state and any specified deformation

increment. Two procedures are of general applicability, as follows.
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(1) Postulate that all subhinges have unloaded an infinitesimal amount, so that the current
state lies just within‘ﬂ‘the yieid surface, and the element is elastic. Calculate the elastic
action increments, dS,, corresponding to the specified deformation increments. If the
state for any subhinge moves outside the vield surface, the assumed unloaded state is
incorrect, indicating continuing plastic flow. If the state moves within the yield surface,

the assumption is correct, indicating unloading.

{2) For the specified deformation increment, calculate the magnitude parameter for the plastic
deformation increment of the subhinge. A positive magnitude indicates continuing plastic

flow, and a negative magnitude indicates unloading.

By the first of these two procedures, continued loading of subhinge i is indicated if dS,
has a positive component along the outward normal, n,, of the yield surface. That is, continued
loading occurs if
nf-dS, > 0 (C3.45)

To consider the second procedure, first assume that the current plastic flow directions of
all active subhinges are the same {(that is, n, = n for all i}). Hence, the plastic deformation
increment for a complete hinge is given by:

dy, = n-dv, (C3.46)

Premuitiply Eqn. C3.40 by n” - £, K, to get:

. Ty, -K.d
do; = 2L Rl (C3.47)
1+n ‘pr'Ke'E

Substitute Egn. C3.19 into Eqn. C3.47 to get:

T
. o ds,

in which r; and r; are scalars defined as follows:

nT-K,-n
o=z —;T—;e:; (C3.49)
[ Shspi T 1
)
=3 n_T_ﬁ (C3.50)
;o Dgpi " 1
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Because the matrices K, and K, are always positive definite, the scalars r, and r, always
exceed zero. Hence, the sign of dvp' is the same as the sign of ﬂr, dS.. This is the same cri-

terion as Eqn. C3.45.

In general, the plastic flow directions for the active subhinges are not the same. Hence, it
is possible for g,-r- dS, to be greater than zero for some subhinges and less than zero for others
{i.e. continued locading on some; but unloading on others). This possibility is illustrated in Fig.
C3.4, For computation, it is ass(xmed that unioading is governed by the highest active subhinge.
If unloading occurs on this subhinge, unloading is assumed to occur on all active subhinges. If
the situation happens to be as shown in Case A of Fig. C3.4 (which is unlikely), reloading will

immediately occur on one or more of the lower subhinges, and the analysis will continue.

Figure C3.4, Case B, illustrates another possible consequence of yield surface overlap. In
this case, unloading occurs from both surfaces, but on reloading the higher yield surface is
reached first. The solution algorithm recognizes this, so that yield occurs at point P, on the
higher yield surface. The lower yield surface is then translated to pass through point P, and the

analysis continues.

C3.8 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces
of the joints rather than at the theoretical joint centerlines. This effect can be approximated by
postulating rigid, infinitely strong connecting links between the nodes and the element ends, as
shown in Fig. C3.5. The displacement transformation relating the increments of node displace-
ments, dr,, to increments of displacement at the element ends is easily established, and can be

written as:

dr = a,dr, (C3.51)
This transformation is used to modify the stiffness and state determination calculations to allow

for end eccentricity effects.



C3,9 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that gach floor diaphragm
is rigid in its own plane. To introduce this assumption, a "master” node at the center of mass
of each floor may be specified, as shown in Fig. C3.6. Each master node has only three degrees
of freedom, as shown, which are the displacements of the diaphragm horizontally as a rigid
body. If any beam-column member is connected to these "master" displacements, its behavior
depends partly on these displacements and partly on the displacements which are not affected

by the rigid diaphragm assumption.

The displacement transformation relating the master (diaphragm) displacements, dry, to

the displacements at a "slaved" node is as follows.

drnl 10 4& d”x
drost = {01 ~ax] {ar, (C3.52)
dr,,s 00 1 dl’g
or
dlns = gddfd (C352b)

The "slaved" displacements at element ends i and j can thus be expressed in terms of the dis-
placements at the master node (or nodes). The corresponding coefficients of the element
stiffness matrix are transformed to account for the slaving. The resulting element stiffness
matrix is assembled in terms of the three master degrees of freedom pius the three local

degrees of freedom dr,,, dr,q4, and dr,q at each node, which are not affected by slaving.

C3.10 TOLERANCE FOR STIFFNESS REFORMULATION

Each time a new hinge vields or an existing hinge unloads, the element stiffness changes.
Maoreover, because the direction of plastic flow may change, the stiffness of a yielding element
will generally change continuously. The change in stiffness results from differences in the
directions of the normal to the yield surface as the actions at the hinge change. If the angle
change is small, the change in stiffness will be small and can be neglected, to avoid recalculat-

ing the stiffness. In the computer program, an option is provided for the user to set a tolerance
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for the angle. If a nonzero tolerance is specified, the element stiffness is reformed only when
the change in state is such that the angle between the current yield surface normal and that
when the stiffness was last reformed exceeds the tolerance. A tolerance of about 0.1 radians is

recommended.
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C4. COMPUTER LOGIC

C4.1 STATE DETERMINATION

The state determination calculation for an inelastic element requires evaluation of the

equation:
Ay
AS = {E,d‘ (C4.1)
in which
AS = finite action increment for the element corresponding to the finite deformation
increment Av; and
K, = element tangent stiffness, which, in general, varies during the increment.

(1)

(2)

The computational procedure for state determination of the element is as follows.

From the given nodal displacement increment, calculate the element deformation incre-

ment from:

Ay = a - Ar (C4.2)

in which

Ar = vector of nodal displacement increments;

Av = vector of element deformation increments; and
a = displacement transformation matrix.

Calculate linear action increments for the element from:

AS = K, Ay (C4.3)

and hence determine hinge action increments as:

AS, = bAS (C4.4)

in which
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AS = linear action increment for element corresponding to the finite deformation

increment Ay;

K, = element tangent stiffness matrix;
AS, = linear action increments for hinges; and
b = (ransformaticn matrix from AS to AS,, which is easily formed.

(3) Check for a noniinear "event" in the current increment, and calculate the corresponding

event factor for each complete hinge. The possible events are as follows:

{a) If the current state is elastic, calculate the proportion of the deformation increment
required to reach the next yield surface. If this proportion is greater than 1.0, the
state continues to be elastic and the event factor is 1.0. Otherwise, an event occurs

and the event factor is set equal to the caleulated proportion.

{b) If the current state is plastic, calculate nfdS,. If the value exceeds zero, continued
loading is indicated. The event factor is then calculated for the next yield surface,
allowing a tolerance as described in Section C4.2. Otherwise, unloading occurs. In
this case the stiffness matrix is reformed as the elastic stiffness, and the calculation

proceeds from Step 2.
(4) Calculate the element plastic deformation, Ay,, using Eqn. C3.44.

(5) Select the smallest event factor, FACM, from the event factors for the two complete

hinges at the element ends.

(6) Use the event factor, FACM, to compute new hinge forces, new total piastic deforma-

tions, and new origins of all subhinges, as

a, = o, + FACM*Aqx, (C4.6)
v, = v, + FACM*Ay, (C4.7)

The new action point, §,, must lie on the yield surface if the subhinge is yielded. If the

action point is not on the yield surface, scale the actions radially back to the yield surface.
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{7) <Calculate the complement of the even: factor as:

SS = 1. — FACM (C4.8)
(8) Reform the tangent stiffness matrix for the element if any event has occurred.
(9) If all of the displacement increment for the element has been used up, go to Step 11.

Otherwise, continue to the next step.

(10} Calculate the remaining element displacement increment for the next cycle from:

Ay = 85 -Ay (C4.9)

Then go to Step 2.

(11) Obtain the element actions, S, using:

S = bTS, (C4.10)

(12) Calculate the internal resisting force for the element, R, using:
R =475 (C4.11)

C4.2 YIELD SURFACE TOLERANCE

It is possible for the new action peint, calculated assuming constant X,, to lie significantly
outside the current yield surface. This will occur particularly when AS and Agq are distinctly
nonparallel (Fig. C4.1). In this case, the calculation is assumed to be sufficiently accurate, pro-
vided the new action point lies within a tolerance zone (typically 2%-5% of the yield surface
size}. If not, Av is scaled, K, is reformed, and the calculation is repeated for the balance of
Av.

The scale factor is conveniently determined by the procedure iltustrated for M-F space in
Fig. C4.1. In this figure, the current action peint is P, and the new action point, obtained by
applying Eqn. C4.3, is at Q. Hardening is affected only by the component of AS parallel to the
yield surface normal. Hence, the yield surface translates as shown. Point Q lies outside the
new vield surface, the amount being defined by e,, which is the length of the "radial” error vec-

tor, ¢,. This error must not exceed the allowable tolerance.
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Computationally, it is convenient to consider the "tangential” error, ¢,, which is the length

of vector P’Q. If the yield surface is assumed to be locally quadratic, then

e, = 0.5¢] (C4.12)
The value of e, is calculated from this equation. If e, is within the allowable tolerance, point Q
is scaled to the new yield surface and the computation continues (this scaling introduces an
error which is assumed to be acceptable). If e, exceeds the allowable tolerance, it is assumed
that e, varies linearly with element deformation. A scale factor to set e, equal to the tolerance
is then calculated using Eqn. C4.12, the AS and Ag¢ increments are scaled by this factor, and
the new action point is scaled to the yield surface. The element stiffness is then reformed, and
the process is repeated for the remainder of the deformation increment. If AS is parallel to
S—a, no scaling will be required. If AS makes a large angle with S5—a, the deformation incre-
ment may be subdivided into several subincrements, depending on the magnitude of Ay and

the value specified for the error tolerance.

The deformation increment is also subdivided if a new vield surface is reached. In this
case, the new action point is permitted to go beyond the vield surface by an amount equal to
the allowable radial error. The proportion of the deformation increment required to reach this
state is calculated; the new action point is scaled to the yield surface; the stiffness is reformed;

and the calculation proceeds for the remainder of the deformation increment.



C5. ANSR USER GUIDE

3D STEEL BEAM COLUMN ELEMENT (TYPE 5)

C5.1 CONTROL INFORMATION - Two Cards

C5.1.1 First Card

Columns Note Name Data

5(D NGR Element group indicator {=35).

6-10(I) NELS Number of elements in group.

11-15(D MFST Element number of first element in group.
Default = 1.

16-25(F) DKO Initial stiffness damping factor, 8,.

26-35(F) DKT Tangent stiffness damping factor, 8 7.

41-80(A) GRHED Optional group heading.

C5.1.2 Second Cards

Columns Note Name Data

1-5¢I) NMBT - Number of different strength types (max. 20).
Default = 1.

6-10(I) NECC Number of different end eccentricity types

{max. 15). Default = zero.

11-15(D NPAT Number of different initial force patterns (max.
30). Default = zero.

C5.2 STRENGTH TYPES
NMBT sets of cards.

5.2.1 Strength Option

Columns Note Name Data

1-5(D Strength type number, in sequence beginning
with 1.
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10(1)

11-20(F)

21-30(F)

31-40(P

41-50(F)

51-60(F)

61-70(F)

INPT

Input options for element flexural stiffnesses,
as follows. See Section C2.3.5.

(a) INPT=1: Procedure assuming essentially
uniform bending moment over element length.
Leave rest of this card blank,

(b) INPT=2: Procedure assuming double-
cantilever behavior. Leave rest of this card
blank.

(c) INPT=3: General option. Complete rest
of this card.

Coefficient X; for bending about local y-axis.
Defauit = 4.

Coeflicient K; for bending about local y-axis.
Default = 2,

Coefficient K;; for bending about local y-axis.
Default = 4,

Coeflicient K; for bending about local z-axis.
Default = 4,

Coefficient K; for bending about local z-axis.
Default = 2.

Coeflicient K;; for bending about local z-axis.
Default = 4.

C5.2,2 Bending Properties About Local y-axis
(a) OPTN=1: Specify beam moment-rotation relationship. See Fig. C2.8. One card.

Columns
1-10(F)

11-20(F)
21-30(F)
31-40(F)
41-50(F)
51-60(F)

61-70(F)

Note

Name

Data
Stiffness K.
Stiffness Kz
Stiffness X 3.
Stiffness K yss
Yield moment M ;.
Yield moment M,,.

Yield moment M,;.
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(b) OPTN=2: Specify cantilever P-§ relationship. See Fig. C2.9. One card.

Columns Note Name Data

1-10( Stiffness K.

11-20(F) Stiffness K ;.

21-30(F) Stiffness K ;.

31-40(F) Stiffness K.

41-50(F) Yield force P,;.

51-60(F) Yield force P,

61-70(F) Yield force P,;.

(¢} OPTN=3: Specify beam elastic stiffness and hinge moment-rotation relationships. Two

cards.

Columns Note Name Data

Card 1

1-10(F) Flastic flexural stiffness, EI/L.

11-20(F) Flastic shear rigidity, GA4,, along z-axis (i.e.
shear associated with y-axis bending). If zero,
shear deformation is neglected.

21-30(F) Piastic stiffness K, of left-end hinge.

31-40(F) Plastic stiffness K ,, of left-end hinge.

41-50(F) Plastic stiffness K3 of left-end hinge.

51-60(F) Yield moment M,; of left-end hinge.

61-70(F) Yield moment M), of left-end hinge.

71-80(F) Yield moment M,; of left-end hinge.

Card 2

1-10(F) Plastic stiffness K,; of right-end hinge.

11-20(F) Plastic stiffness K ,; of right-end hinge.

21-30(F) Plastic stiffness K,; of right-end hinge.

31-40(F) Yield moment M, of right-end hinge.

41-50(F) Yield moment M, of right-end hinge.



51-60(F)

Yield moment M, ; of right-end hinge.

C5.2.3 Bending Properties About Local z-axis
As for Section €5.2.2, but specify z-axis properties.

C5.2.4 Torsional Properties

Columns Note Name
1-10(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

C5.2.5 Axial Properties

Columns Note Name
1-10(F}

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

71-80(F) (L

C5.3 END ECCENTRICITY TYPES
NECC Cards. See Fig. C3.5

Columns Note Name
1-5(D) (2)
11-20(F)
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Data
Torsional stiffness Kr.
Torsional stiffness Kp,.
Torsional stiffness K ;.
Torsional stiffness Kps
Torsional strength T,;.
Torsional strength 7).

Torsional strength T3

Data
Axial stiffness K.
Axial stiffness K.
Axial stiffness Ky
Axial stiffness K4
Axial strength Fj;.
Axial strength F,.
Axial strength F;.

Axial strength F,, Input as a positive value.
Default = F,,.

Data

End eccentricity type number, in sequence
beginning with 1. ‘

X, = X eccentricity at end .



21-30(F)
31-40(F)
41-50(F)
51-60(F)

61-70(F)

X; = X eccentricity at end j.
Y, = Y eccentricity at end i.
Y, =Y eccentricity at end j.

Z; = Z ecceniricity at end i,

£; = Z eccentricity at end j.

C5.4 INITIAL ELEMENT FORCE PATTERNS
NPAT Cards.

Columns
1-5(I)

11-20(F)
21-30(F)
31-40(F)
41-50(F)
51-60(F)
61-70(F)

C5.5 ELEMENT DATA GENERATION

Note

(3)

Name

Data
Pattern number, in sequence beginning with 1.
Initial moment M,, at end i.
Initial moment M, at end i.
Initial moment M,, at end j.
Initial moment M, at end j.
Initial axial force.

Initial torque.

As many pairs of cards as needed to generate all elements in group.

Columns

1-5(D

6-10(I)
11-15(D)

16-20(1)

21-25(D)

26-30(D

Note

(4)

Name

NODI
NODI

INC

NODK

NSI
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Data

Element number, or number of first element in
a sequentially numbered series of elements to
be generated by this card.

Node Number 1.
Node Number J.

Node number increment for element genera-
tion. Default = 1.

Number of a third node, K, lying in the xy
plane, for definition of the local y axis. Default
= gutomatic orientation of y-axis.

Number of node {diaphragm node) to which
end I is slaved. If not slaved, leave blank.



31-35(D

36-40(D)

41-45(D

46-50(1)

51-55(D

56-60(1)

61-65(1)

66-70(D)

71-80(F)

CARD 2

1-10(F)

NSJ

NSTR

[ECC

NIT

KTYP

KGEOM

KSD

KGUT

(5)

Number of node to which end J is slaved. For
a description of the siaving procedure, see Sec-
tion C3.9.

Strength type number.

End eccentricity type number. Default = no
end eccentricity.

Initial force pattern number. Default = no ini-
tial force.

Interaction surface type:

(a) 1 = yield surface type 1

1
f

{b) 2 = yield surface type 2
{c} 3 = yield surface type 3
(d) 4 = yield surface type 4
(e} 5 = yield surface type 3

Large displacement code:

(a) 0 = small displacemenis

(b) 1 = P-3 effect only
{¢) 2 = true large displacements
Large displacement procedure code:

(a) 0 = Euler procedure

i

(b} 1 = Midpoint procedure

The Euler procedure is recommended.
Time history output code:

{a) 1 = output time history results
(b) 0 = no output

Stiffness reformulation angle tolerance (radi-
ans).

Parameter, a4, in interaction surface equation.
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11-20(F) Parameter, g,, in interaction surface equation.

21-30(F) Parameter, a3, in interaction surface equation.
31-40(F) Parameter, a,, in interaction surface equation.
C5.6 NOTES

(1) The value of F,4 as shown in Fig. C2.2, allows the origin of the yield surfaces to be

shifted along the F-axis. The strengths in tension and compression are then different.

(2)  All eccentricities are measured from the node to the element end (Fig. C3.5), positive in

the positive coordinate directions.

(3) See Fig. C2.10 for the positive directions of initial element actions. Refer to Section C2.6

for a description of the effects of initial element actions.

(4) Cards must be input in order of increasing element number. Cards for the first and the
fast elements must be included (that is, data for these two elements cannot be generated).
Cards may be provided for all elements, in which case each card specifies the data for one
element, and the generation is not used. Alternatively, cards for a series of elements may

be omitted, in which case data for the missing elements is generated as follows:

(a) All missing elements are assigned the same node "K" (NODK), slave nodes (NSI
and NSJ), strength types, end eccentricity type, initial force pattern type, interaction
surface type, codes for large displacements and response output, and stiffness refor-
mulation angle tolerance, as those for the element preceding the missing series of

elements.

(b) The node numbers I and J for each missing element are obtained by adding the

increment (INC) to the node numbers of the preceding element. That is,

NODI(N) = NODI(N-1) + INC

NODIJ(N) = NODJ{N-1) + INC
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The node increment, INC, is the value specified with the element preceding the

missing series of elements.

(5) Refer to Section C3.10 for a description of the stiffness reformulation tolerance.

110



z

NODE K DEFINES X-Y PLANE

(a) ELEMENT AXES

POTENTIAL HINGE

™~
™

INTERNAL NODE

ELASTIC BEAM

\EXTERNAL NODE

(b) ELEMENT IDEALIZATION

FIG. C2.1 ELEMENT AXES AND IDEALIZATION
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(E) SURFACE TYPE 5

FIG., C2.4 INTERACTION SURFACES (CONT'DD
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D. LUMPED PLASTICITY ELEMENT WITH STIFFNESS
DEGRADATION
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D1. INTRODUCTION

The element described in this report is intended for modeling inelastic effects in rein-

forced concrete beams and columns for buildings, with particular emphasis on three-

dimensional behavior. The theory takes account of moment-force interaction, bending moment

interaction for biaxial bending, and stiffness degradation under cyclic loading. Yielding is

assumed to take place only in concentrated (i.e. zero length) plastic hinges located at the ele-

ment ends. The part of the element between the hinges is assumed to remain linearly elastic.

Initial elastic stiffnesses must be specified for axial extension, torsional twist, and bending

about two axes. Flexural shear deformations and the effects of eccentric end connections can

be considered, if desired. The element strengths may be different at the two ends, and the

elastic stiffnesses can include the effect of varying cross section along the element length.

(1)
(2}

(3)

(4)

(5)

(6)

The essential features of the element are as follows:
The element may be arbitrarily oriented in space but must be straight.
Inelastic behavior is confined to zero-length plastic hinges at the element ends.

The hinges are assumed to have elastic-plastic-strain-hardening behavior. Strain harden-
ing stiffnesses must be specified by moment-rotation and force-extension relationships for

the hinges. Trilinear relationships are assumed.

The stiffnesses of hinges may degrade when reversed loading is applied. The degradation

is controlled by user specified coefficients.

Interaction between bending moments, torque, and axial force is considered by means of
four-dimensional yield surfaces. A kinematic hardening rule (extended Mroz theory) is
assumed for post-yield behavior (iranslation of yield surface without change of size or

shape).

Options are available for small displacements and second order (P- A) theory.
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(7} Eccentric end connections may be specified to model rigid joint regions, and rigid
diaphragm slaving may be specified to model floor slabs.

A general description of the element characteristics and properties is presented in Section D2.

Theoretical details are presented in Section D3. Details of the computer logic are described in

Section D4. An element user’s guide for the ANSR program is presented in Section DS.



D2. ELEMENT CHARACTERISTICS AND PROPERTIES

D2.1 GENERAL CHARACTERISTICS

The three-dimensional beam-column element with degrading stiffness is formulated to
model reinforced concrete beams and columns, which characteristically exhibit degrading
stiffness properties when subjected to cyclic loads. Elements may be arbitrarily oriented in the
global XYZ coordinate system. The element properties are specified in a local x,y,z coordinate
system. The orientations of the local axes are defined as shown in Fig. D2.1a. Node K,

together with nodes I and J, defines the plane containing the locatl y axis.

Inelastic behavior of the element is governed by axial force, two flexural moments, and
the torsional moment. Yielding may iake place only in concentrated plastic hinges at the ele-
ment ends. Strain hardening and stiffness degradation are approximated by assuming that the
element consists of a linear elastic beam element with a nonlinear hinge at each end, as shown
in Fig. D2.1b. All plastic deformation effects, including the effects of degrading stiffness, are
introduced by means of the moment-rotation, torque-torsional twist, and force-axial extension

refationships for the hinges.

For analysis, each hinge is subdivided into two subhinges which can be identified as
"cracking" and "yielding" subhinges. The action-deformation relationships for each subhinge are
represented by bilinear functions. The bilinear action-deformation relationships for the two
subhinges combine to produce a trilinear function for each complete hinge, and hence, also tri-

linear relationships for the complete element.

The elastic beam is defined by an axial stiffness, two flexural stiffnesses, a torsional
stiffness and an effective shear rigidity (if shear deformation is to be taken into account). Ele-
ments of variable cross section can be considered by specifying appropriate flexural stiffness

coefficients, and by using average cross section properties for the axial and torsional stiffnesses.

For each subhinge, bilinear relationships can be specified separately for moment-rotation

about the element y and z axes, torque-twist, and force-axial extension. Different vyield
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strengths can be specified at the hinges at each end, if desired. Different strengths can also be
specified for axial tension and axial compression.

Interaction among the two bending moments, torsional moment, and axial force at a
hinge are taken into account for determining both initial yield and subsequent plastic flow. The
force-deformation and interaction relationships will typically be based on observations of the
behavior of reinforced concrete columns, considering loading by both single actions and by
multiple actions in combination.

Element deformations are assumed to be small. A true large displacements option is not
available, but P-A effects can be ceonsidered, if desired. Eccentric end connections and rigid
diaphragm slaving may be specified. Initial element forces may be specified. These initial

forces affect element yield but do not contribute to the nodal loads.

D2.2 AXES
Element properties and results are specified in the local coordinate system X,y,z, defined
as shown in Fig. D2.1a. If node K is not specified, its location is assumed as follows.
(a} If 1J is not vertical, node K is at Y = +eo. The xy plane is then the vertical plane con-
taining the element,

(b) If 11 is vertical, node K is at X == +ec. The xy plane is then parallel to the XY plane.
D2.3 MODELING OF INELASTIC BEHAVIOR

D2.3.1 General

Yield is monitored at the potential hinges at the element ends. Each hinge is initially
rigid, so that the initial stiffness of the complete element is the stiffness of the elastic beam.
As the moments and forces at the element ends (the hinge actions) increase, the hinges can
yield, causing a stiffness reduction in the element. The overall element behavior is illustrated
in Fig. D2.2. Under increasing deformation, the hinges strain harden, foltowing trilinear

action-deformation relationships. Tangent stiffness relationships between the actions and defor-
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mations at a yielding hinge are established using a plasticity theory which is an extension of the
Mroz theory for yield of metals. If the actions at a hinge decrease, the hinge unloads, but does
not become rigid again. Instead, an unloading hinge is assigned a finite stiffness based on the
amount of plastic deformation in the hinge. Hence, under cycl%c loading the stiffness of the

element degrades. Details of the degrading procedure are described later.

D2.3.2 Hinge Properties

Rigid-plastic-strain-hardening relationships between hinge actions and deformations must
be defined for initial loading of the hinges. The relationships at the two hinges in any element

may be different, if desired.

Relationships as shown in Fig. D2.3 must be defined for each of four action-deformation
pairs, namely {1} bending moment, M,, and corresponding rotation, §,, (2) bending moment,
M,, and corresponding rotation, 9,; (3) torque, M,, and corresponding twist, ¢ ,; and (4) axial
force, F,, and corresponding extension, 8,. The relationships may be of different shape for
each action. For material with an elastic-perfectly-plastic stress-strain relationship, the torque-
twist and force-extension relationships will be rigid-perfectly-plastic, whereas the moment-
rotation relationships will usually exhibit strain hardening behavior (Fig. D2.5). It is required
that the deformations at changes’in stiffness have the same ratios for all relationships, as indi-

cated in Fig. D2.2. This restriction is necessary to avoid inconsistencies in the plasticity theory.

It may be noted that the assumption of a zero-length hinge implies infinitely high strains

as a hinge deforms. This is inherent in any plastic hinge type of theory.

D2.3.3 Interaction Surfaces for First Yield

The actions M,, M,, M,, and F, interact with each other to produce initial yield of the
hinge. The interaction effect is determined by a yield (interaction) surface. To allow for a
variety of applications, provision is made in the theory for five different yield surfaces. These
surfaces are all four-dimensional (i.e., M,, M, M,, and F,), and hence, cannot be shown

easily using diagrams. The surfaces differ, however, mainly in the way in which the axial force
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interacts with the three moments. Hence, the differences can be illustrated using the three-
dimensionat diagrams in Fig. D2.4. In these figures, the M, and M, axes indicate any two of
the moments, and the F, axis indicates axial force. If desired, the origin of the yield surface
can be shifted along the axial force axis. This permits an element to have greater compressive
capacity than tension capacity, with a yield surface which approximates the F-M interaction sur-
faces for actual concrete columns. The equations defining the yield surfaces are shown in the

figure.

Surface 1 is elliptical and is the simpiest mathematically. Surfaces 2, 3, and 4 allow more
realistic modeling of moment-force interaction for cases in which axial force effects are substan-
tial. For all of these four surfaces, the interaction among M,, M,, and M, is elliptical and only
the force-moment interaction changes. Surface 5 is of a different form than the other four and

is included for greater generality in special cases.

D2.3.4 Interaction Surfaces for Subsequent Yield

For modeling a hinge with nonlinear material properties, it is assumed that the behavior is
initially rigid-plastic-strain-hardening for each action individually, as shown in Fig. D2.3a. In
one dimension, the rigid-plastic-strain-hardening behavior can be modeled using two rigid-
plastic “subsprings" in series, as shown in Fig. D2.3b. This model is extended to the multi-
dimensional case. Each of the two subsprings becomes a "subhinge”, with yield governed by a
yield surface. First yield oceurs at the cracking subhinge, which is governed by an initial yield
surface. Second yiefd occurs at the yielding subhinge, which is governed by a larger yield sur-
face. The second surface is assumed to have the same basic form as the surface for first yield.
However, because the action-deformation relationships may be of different shape for cach
action, the two surfaces will not have, in general, identical actual shapes. An example in 2D

action space is illustrated in Fig. D2.6.
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D2.3.5 Plastic Stiffnesses: Axial Force and Torque

The yield strengths and the plastic stiffnesses of the hinge action-deformation relation-
ships (Kpl and K,; in Fig. D2.3) must be specified to provide appropriate post-yield stiffening
of the complete element. The procedure is straight-forward for axial force and torque but more

complex for bending.

Consider axial force, and let the force-extension relationship for the complete element be

as shown in Fig. D2.7a. The steps are as follows.
(a) Elastic axial rigidity of beam = £4 = Kp; L.

(b) Strength at first yield surface = F,.

K- K
(c) Plastic stiffness after first yield surface = K, = —a a0
' Kr—Kra
(d) Strength at second yield surface = F,.
Kiy - Ky
{e) Plastic stiffness after second yield surface = K, = —f2 o8
Kry— Kp3

The same procedure applies for torque, as follows (Fig. D2.7¢).
(a) Elastic torsional rigidity of beam = GJ = K- L.

(b) Strength at first yield surface = T,

Kri-K
{c) Plastic stiffness after first yield surface = K,; = Sl et £
Krn—Kn
{d) Strength at second yield surface = 1,2
. . B Ky Kpy
(e) Plastic stiffness after second yield surface = K,y = ————=.
Kr—Kn

D2.3.6 Plastic Stiffnesses: Bending

A complication in specifying the flexural plastic stiffnesses arises from the fact that
moment-curvature nonlinearities are modeling using concentrated hinges. In an actual beam
the moment typically varies along the length, and plastic deformations occur over finite regions.

Consequently, the flexurat stiffness depends on the moment variation along the beam. In a
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concentrated hinge model, it is not possible to account for all possible moment variations; and
hence, assumptions must be made in specifying the hinge properties.

Three options are available in the computer program for assigning bending stiffness pro-
perties to the hinges. The first option is for a uniform beam with essentially constant moment
along the element (Fig. D2.8a). This option is applicable, in general, only for a structure which
is modeled using short beam-columns elements, such that the bending moment does not vary
greatly over a single element. The relationship between bending moment and end rotation for
the initial loading of the element is as shown in Fig. D2.8b. The steps in establishing the hinge

properties are as follows:
(a) Elastic flexural rigidity of beam = EI = K;1-L/2.
(b) Shear rigidity of beam assumed to be infinite {no shear deformations).

(¢) Hinge strength at first yield = M,,.

K" K
(d) Plastic stiffness after first yield surface = K, = M.
Ky — K
(e) Strength at second yield surface = M.
Kura» K

(f)  Plastic stiffness after second yield surface = K,; = ——————.
Ky — Ky

The second option is applicable for a uniform beam in which a linear variation of bending
moment can be assumed over the element length, with equal and opposite values at the ends
(Fig. D2.9a). This option will typically apply for columns in an unbraced frame building. An
equivalent cantilever for each half of the element is used, as shown in Fig. D2.9b. [t is
required that the relationship between the tip load and tip displacement of the cantilever be
known (Fig. D2.9c). This relationship can then be used to obtain hinge stiffness as follows.

{a) Elastic flexural rigidity of beam = Ef = K,L%/24.

{(b) Shear rigidity of beam assumed to be infinite {no shear deformations).
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(c) Hinge strength at first yield = P,,-L/2.

K{-K;- L
(d) Plastic stiffness after first yield surface = K,; = 2([2t—2K2) .
(e} Strength at second yield surface = P, L/2.
Ky K3+ L

lastic stiff ft ield = = m———,
(f)  Plastic stiffness after second yield surface = K, 2K, = K

For these first two options, the computer program calculates the K, values, given the moment-
rotation relationships {for option 1) or load-deflection relationship (for option 2). The third
option provides the user with more flexibility, by requiring that the EI/L and K, values be
specified directly. In addition, with this option it is not necessary for the element to be of uni-
form section. Flexural stiffness coefficients, K;, K;, and K;, which depend on the variation of
the beam cross section, may be specified (for example, for a uniform element, K, = K; = 4.0

and K; = 2.0). Also, an effective shear stiffness (GA’) can be specified.

D2.3.7 Pilastic Flow

Interaction among the actions is considered as shown diagrammatically in Fig. D2.6.
Yield begins when the first yield surface is reached. The surface then translates in action space,
the motion being governed by the plastic flow of the cracking subhinge. Translation of the first
surface continues untit the second surface is reached. Both surfaces then iranslate together,
governed by a combination of plastic flow on both the cracking and yielding subhinges. For any
subhinge, plastic flow is assumed to take place normal to the yield surface of that subhinge. If
both subhinges are yielded, their yield surfaces move together, and the iotal plastic deformation
is equal t¢ the sum of the individual plastic deformations for each subhinge, directed along the
normal directions of their respective yield surfaces at the action point. After some arbitrary

amount of plastic deformation, the situation might be as illustrated in Fig. D2.6b.

D2.3.8 Hardening Behavior

After first yield, the yield surfaces of any yielded subhinge is assumed to translate in

action space, obeying a kinematic hardening rule (translation without change of shape or size).
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An extension of the Mroz theory of material plasticity is used to define the hardening behavior.
Because the vield surfaces for the two subhinges are generally not exactly similar, overlapping
of the surfaces can occur and the hardening behavior is more complex than in the basic Mroz
theory. For example, in Fig. D2.6b, the current action point, A, lies on yield surfaces Y5, and
YS, Hence, both subhinges have yielded, and the direction of plastic flow is a combination of

the normal vectors ny and #, Details of the theory are given in Sections D3.2.5 and D3.2.6.

D2.4 STIFFNESS DEGRADATION

Stiffness degradation is introduced when reversed loading is applied. It is assumed that
the stiffness degrades independently for each force component of each subhinge, in inverse pro-
portion to the largest previous hinge deformation, as shown in Fig. D2.10. This figure also

shows the reloading assumptions for both large and small cyclic deformations.

The unloading stiffnesses, K’; (for the cracking subhinge) and K', (for the yielding
subhinge), depend on the previous maximum positive and negative hinge deformations and are
controlled by the input coefficients, a; and @, (for the cracking subhinge) and A, and 8, (for
the vielding subhinge). These coefficients control the unléading stiffnesses by locating the load-
ing point, R*, as shown in Fig. D2.10a. The reloading stiffnesses, K", {cracking) and K",
(vielding}, also depend on the previous maximum negative and positive hinge deformations
and are governed by the same coefficients, «, and B,, as shown in Fig. D2.10b. The
coefficients control the reloading stiffnesses by locating the point, R~. Regardless of the values
of o, and B, the unloading or reloading slope is not allowed to be less than the strain harden-
ing stiffnesses K, (cracking) or K, (vielding). That is, minimum stiffness coefficients @, and
w> must be specified for each force component, either by the user or by default, to guarantee:
K € wiK, (D2.1a)
Ky € w3;K,; (D2.1b)

The behavior for small amplitude cycling, as illustraied in Fig. D2.10¢, is based on the
position X between R and A. The unloading or reloading stiffnesses are interpolated between

K’y and K"y (for cracking subhinge) or K’y and K", (for yielding subhinge), in the same
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proportion as X is positioned between R and A.

D2.5 P-DELTA EFFECT

Even for small displacements, changes in the shape of a structure can have a significant
effect (the P-delta effect) on the equilibrium of the structure. This effect can be accounted for
by adding a geometric stiffness to the element stiffness. The geometric stiffness assumed for
the element is that for a truss bar in three dimensions, which depends on the axial force only.
The geometric stiffness is changed each time the element stiffness changes, using the current
axial force, but is othérwise assumed to remain constant. In addition, a modification is made to

the internal resisting force for the element, to take account of the P-delta effect.

D2.6 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces
of the joints rather than at the theoretical joint centerlines. This effect can be approximated by
postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. D3.5.

D2.7 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that each floor diaphragm
is rigid in its own plane. To introduce this assumption, a master node at the center of mass of
each floor may be specified, as shown in Fig. D3.6. Each master node has only three degrees of
freedom as shown, which are the displacements of the diaphragm horizontally as a rigid body.
If any beam-column member is connected to these master displacements, its behavior depends
partly on these displacements and partly on the displacements which are not affected by the

rigid diaphragm assumption. The theary is described in Section D3.9.

D2.8 INITIAL FORCES

For structures in which static analyses are carried out separately (i.e. outside the ANSR

program). initial member forces may be specified. The sign convention for these forces is as
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shown in Fig. D2.11. These forces are not converted to loads on the nodes of the structure but
are simply used to initialize the element end actions. For this reason, initial forces need not
constitute a set of actions in equilibrium. The only effects they have on the behavior of the

system are (a) to influence the onset of plasticity and (b) to affect the geometric stiffnesses.
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D3. THEORY

D3.1 DEGREES OF FREEDOM

The element has two external nodes and two internal nodés, as shown in Fig. D3.1a. The
external nodes connect to the complete structure and have six degrees of freedom each, namely
X,Y,Z global translations and X,Y,Z, global rotations. After deletion of the six rigid body
modes for the complete element and transformation to local element coordinates, the six defor-
mation degrees of freedom shown in Fig. D3.1b remain. Each hinge has four deformations,
namely an axial deformation plus rotations about each of the local x.y,z axes (i.e., shear defor-

mations in the hinges are zero).

The transformation from global displacements to element deformations is:

Yy =ar (D3.1D
in which
vT = [y, vy ..., vg] = element deformations (Fig. D3.1b);
rT = Iry, ry ..., ria] = global displacements (Fig. D3.1a);

and the transformation matrix g is well known.

The vector of degrees of freedom, w, for the elastic element (Fig. D3.2a) is defined as:

wl = [wy, wy, ..., wgl

The complete hinges at ends I and J have degrees of freedom defined by:

wi = [r=—w) (v3=wp Gs=w9' (ve=wg]]

and

_Wu.Tl = [(v;=wy) (vy—wy (vs—ws)" (vg—we"]

in which v;, i=1,4 and w;, i=1,4 are as shown in Figs. D3.1a and D3.2a, and in which:

(VS—W5)‘ + (VS— Ws)” = Vg Ws
(vg—wg)' + (vg—wg)" = vg— wg

That is, the torsional and axial hinge deformations are shared between the hinges at ends I and

J. The proportions in which the deformations are shared are determined naturally during the
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numerical computation and do not need to be defined in advance. Each complete hinge is
modeled as two subhinges in series (Fig. D3.2b). Each subhinge has four deformation degrees
of freedom, wy, such that the sum of the w,, deformations for the two subhinges gives the
hinge deformation, w,. The proportions of any total hinge deformation which are contributed

by the separate subhinges are determined automatically during the computation.
D3.2 ELEMENT STIFENESS

D3.2.1 Basic Procedure

The beam element connecting the internal nodes remains elastic, but the tangent
stiffnesses of the hinges may change. For any state of the complete element, a 6 x 6 flexibility
matrix is first formed for the elastic beam in terms of the degrees of freedom w) through wg
This matrix is then modified by adding the flexibilities of the hinges to give a complete element
flexibility matrix in terms of v, through v, This matrix is inverted to obtain a 6 X 6 element

stiffness. Finally, this stiffness is transformed to the 12 x 12 globai stiffness.

D3.2.2 Beam Element Elastic Flexibility

The local y,z axes are assumed to be the principal axes of the beam cross section. The

local x axis is assumed to be both the centroidal axis and the axis of torsional twist.

The beam element stiffness relationships can be written as follows:

dMyf Ely K:'iy Kl'jy dWl
= T D3.2
[dM.VJ L K iy K v dw, ( a)
dMil E15 Kuz K!jz dW3
[szj- T L Ky K {d"’4 (D3.2b)
M, = “C,;:{ dws (D3.2¢)
&, = ‘Eii dwg (D3.2d)
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in which

K, K;,K; = flexural stiffness factors;
EL EI, = effective flexural rigidities,
M,,M, = bending moments;

i = element ends;

ivJ
M, = torsional moment,
F, = axial force;

L

= clement length;
E4 = effective axial rigidity; and

GJ = effective torsional rigidity.

The flexural stiffness factors can be used to account for non-uniform elements. For a uniform

element, K, = K;; =4.0and K, = 2.0.

Equations D3.2a and D3.2b are inverted to obtain flexibilities and are modified, if neces-

sary, to allow for shear deformations by adding the shear flexibility matrices, f, and f;, where

1 [1 1
in which GA’ = effective shear rigidity.
D3.2.3 Hinge Plastic Flexibility

The deformation increment of a hinge is the sum of the increments for the two

subhinges. That is,

dw, = X dw, (D3.3a)
i
in which
dwg, = deformation increment of subhinge 1; and
dw, = deformation increment of complete hinge.

In multi-dimensional action space, each subhinge has a 4 x 4 flexibility matrix in terms of its
axial, torsional, y-flexural, and z-flexural deformations. The flexibility matrix before yield for a
subhinge is initially null (rigid subhinge). After yielding, or yielding followed by unloading,
each subhinge has a finite 4 x 4 flexibility matrix. The hinge flexibility is the sum of the flexi-

bilities of its two subhinges.

145



The hinge at end [ affects degrees of freedom v, vi, vs, and v, of the complete element.
The hinge flexibility coefficients are simply added to the corresponding beam coefficients. Simi-
larly, the hinge at end J affects degrees of freedom v,, vs4, vs, and ve Although the six defor-
mation degrees of freedom are largely uncoupled for the elastic beam (see Eqn. D3.2), this is
not the case, in geperal, after yield. The complete element flexibility matrix will generaily be

full {except for zero values for /4 and f13).

The hinge flexibility relationship can be written as:

dw, = [, as = z.[suf as (D3.5)
i
in which
fai = flexibility matrix of subhinge i;
fu = flexibility matrix for the complete hinge; and
dS = action increments on the hinge.

The problem thus reduces to the deiermination of £, for each yielded hinge.

D3.2.4 Yield Function

Each subhinge is effected by four actions (M,, M., M,, and F,), with four corresponding
deformations. The behavior is initially rigid-plastic-strain-hardening for each action individu-

ally. Different yield values and stiffnesses may be specified for each action component.

Yield of any subhinge is governed by a vield function {interaction relationship). Aay one
of five different yield functions may be specified, as considered in Section D2.3.3. After yield,
each subhinge follows a kinematic hardening rule (that is, its vield surface translates in action
space without change of shape or size). The hardening theory is a modification of the Mroz

theory for plasticity in metals,

D3.2.5 Subhinge Stiffness

A subhinge is initially rigid-plastic, so that its stiffness matrix is initially infinite. After
reversed loading is applied, the stiffness degrades and becomes finite. An elastic stiffness

matrix for each subhinge is defined as:
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Kse = dlag [K’My K'MZ K'Mx K,F] . (D36)

where K'yp, K'azs K'pe, and K'p are elastic stiffness after unloading.

When a subhinge yvields, a plastic stiffness matrix is defined as:

KSP = diag [K!Myp K'sz K’Mxp K'Fp] (D3.7)

in which the plastic stiffnesses after yield are given by:

, K"K,
Ky = o=k (D3.8)

and in which the stiffnesses K’ are the current elastic stiffnesses; and the stiffnesses K, are ini-
tial plastic stiffness before any degradation. For first yield, the K'; values are infinite, and the

K’, values are identical to K.

D3.2.6 Plastic Flexibility for a Single Subhinge

Consider a single subhinge. Let S be the vector of actions, where

ST = [M, M, M, F1 (D3.9)
Assume that the subhinge is elastic-plastic, and let w,, be the vector of subhinge deformations.
That is, w,,, = flexural rotation about axis y; wg,; = flexural rotation about axis z; w3 = plas-

tic twist about axis x; and wy,4 = plastic extension along axis x.

A flexibility relationship for the subhinge is required in the form:

dwg, = [fo dS (D3.10)

in which f,, = subhinge flexibility matrix.

The flexibility of the yielded subhinge, f,, is the sum of its elastic and plastic flexibility

matrices. That is,

Lsw = Lee ¥ Lo (D3.11)

in which

[ = elastic flexibility matrix of subhinge; and

[ = nplastic flexibility matrix of subhinge.

The plastic flexibility matrix is derived as follows. The following assumptions are made:
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(1

(2)

(3)

(4)

(5)

Let ¢ be the subhinge yield function. As the subhinge yields, the yield surface translates
in action space. After some amount of hardening has taken place, the yield function is
(S —a), where @ = vector defining the new location of the yield surface origin. This is

illustrated in Fig. D3.3 for a two-dimensional space.

From any given plastic state (i.c. a point on the yield surface), any action increment (dS)
will produce increments of deformation (dwg,) and yield surface translation (da). The
direction of dS may be arbitrary. It is assumed that the direction of dw,, is normal to the
yield surface (i.e. an associated flow rule is assumed). The direction of da is determined
by the hardening rule (as defined later)} and is not necessarily paraliel to either ¢S or AWsp.

This is illustrated in Fig. D3.3 for a two-dimensional space.

The direction of the outward normal to the yield surface is the gradient of the yield func-

tion. Define:
D5
- D3.12
= (Qv sT' ¢, s) 4 ( :
in which
6,7 = [8d/0M, 8p/aM, d/9M, 9¢/0F | (D3.13)

yield function gradient; and

# = unit normal vector.

Hence, the defermation increment, dw,, is given by:

dwg, = n - dw, (D3.14)

in which dws; = scalar which defines the magnitude of the plastic deformation.

Let the component of ¢S in the direction of n be dS, (Fig. D3.3}. Hence,

as, = n-(n"-ds) (D3.15)

Assume that ¢S, and dw,, are related by:

s, = K., dw (D3.16)

Dsp Wirgy

in which

§5P = diag [K'Mrn K'M:p K’Mxp K’Fp] (D3.17)
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is a diagonal matrix of the plastic stiffnesses from the individual action-deformation rela-

tionships for the subhinge, as defined in Section D2.3.5.

(6) From the definition of 4§, (Eqn. D3.15), it follows that

nTdS = n'ds, (D3.18)

Substitute Egns. D3.16 and D3.14 into Eqn. D3.18 to get:

o dS = n' Ky n-dwg (D3.19)
(7} Solve for dwy, as:
r
. n' - ds
awg, = —p—=— D3.20)
Y al Ky n (

(8) Hence, substitute Eqn. D3.20 into Eqn. D3.14 to get:

oon T
dwy = A dS = [,dS (D3.21)
h Ryt A

Equation D3.21 is the required plastic flexibility relationship for any active subhinge.

D3.2.7 Flexibility for Complete Hinge

The 4 x 4 plastic flexibility of the complete hinge, f,, follows from Eqn. D3.5 as:

L = 2 [sui {D3.22)
where i = number of subhinge. The flexibility of any subhinge, as derived in Section D3.2.6,
can be written as:

fo = fut £y —2E (D3.23)
sui 50 Spl LIIT‘ Ksp, ‘ Lz’. .
in which
[ = —m al (D3.24)
i ﬂ:‘r' :Kspi " h; .
#, = normal vector to the surface; and,
K, = plastic stiffness matrix of the subhinge.
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D3.2.8 Relationship to Basic Mroz Theory

In the special case where the action-deformation relationships for the four actions are all
directly proportional 1o each other, the yield surfaces are all of the same shape and the plastic
stiffnesses for each active yield surface are in the same proportion. The plastic stiffness matrix

for each subhinge can then be formed in terms of the elastic stiffness matrix. That is,

K

By = &y Ke (D3.25)

where «, defines the plastic stiffness as a proportion of the elastic stiffness. The plastic flexibil-

ity of a complete hinge can then be written as:

;

1 ﬂ[ ' _’11’

.[u = z.fspr = 2 {_—] (D326)
i P | ¥ B "

Because all the yield surfaces are the same shape, the n; are all the same. Hence, if n, = n,

Eqn. D3.26 can be written as:

T

fo= o7 [ia"] % (D3.27)

The flexibility given by this equation is the same as that from the basic Mroz material
theory. This shows that the Mroz material theory is a special case of the extended theory

derived here.
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D3.3 ELEMENT STIFFNESS

For the complete element, a tangent action-deformation relationship is required in the

form:

dS = K,dv (D3.28)

in which X, = tangent stiffness matrix for the element.

A 6 x 6 flexibility matrix f, is first formed for the elastic beam, in terms of degrees of
freedom w, through w¢ This matrix is then modified by adding the flexibilities of f, of the
two complete hinges at the ends, to give a complete element flexibility matrix f, in terms of v,

through ve This matrix is inverted to obtain a 6 x 6 element stiffness, X,.

D3.4 EQUILIBRIUM NODAL LOADS

Nodal loads in equilibrium with the hinge actions in any given state are given by:

R =4a""§ (D3.29)

in which

ST = (8, 84 ..., Sel;

internal resisting forces for the element; and

1=
It

displacement transformation relating element deformation to global displacements.

I
I

D3.5 HARDENING RULE

D3.5.1 Geometrical Interpretation

The relationship between any action and its corresponding deformation at a subhinge is
muiti-linear. The interaction among the actions (M,, M,, M., and F) is defined by the yield
surfaces, as described earlier. After initial yield occurs, the behavior at a subhinge obeys a

modification of the Mroz strain hardening rule for yield in metails [30].

D3.5.2 Modified Mroz Hardening Rule

For purposes of illustration, consider a two-dimensional M-F space, as shown in Fig.

D3.3a. In this figure. it is assumed that the current state (point £;) is on yield surface YS$, and

151



that loading is taking place towards surface ¥S, It is necessary to define the direction in which
surface S, translates.

As indicated in Fig. D3.3a, corresponding points P, and P, can be identified on ¥S, and
YS, The relationship betweeh the actions at these two points (§, at P, and S; at Py is
obtained as follows.

Figure D3.3b shows a yield surface transformed into a normalized action space. In this
space, surfaces Y5, and YS; have identical shapes. Hence, points Pi and P, coincide. The
locations of P; and P;in Fig. D3.3a {ollow by transforming back to the natural action space. If
the vector of actions at P is S, it follows that the vector of actions at P, is given by:

S = 85, (S —a)+ar (D3.30)
in which
S, = vector of actions at pqint Py
da; and da; = vectors defining the current origins, O and O, of yield surfaces ¥S; and

YS,, respectively;

Mvu2 Mzul Tu2 Fuz

My, My Ta Fg

S, = diag

It is assumed that the direction of translation of yield surface Y§, is along the line connecting

point P to point P,, as shown in Fig. D3.3a. That is, the direction of motion of surface ¥S, is

defined by:
da; = (S;— S)da’ (D3.31)
in which
da” = scalar which defines the amount of translation of yield surface YS,; and
day = vector cieﬁning the direction of transiation.

The magnitude of da * is determined as explained in the next section. For the hardening rule
originally formulated by Mroz [30,33], all yield surfaces are geometrically similar in natural
action space. The rule then ensures that the surfaces never overlap. For the modified Mroz

rule, the yield surfaces are assumed to be geometrically similar only in normalized action space.



As a result, overlapping of yield surfaces is allowed.

D3.5.3 Mathematical Formulation

Substitute Eqn. D3.31 into Eqn. D3.32 to get:

da) = {(§,- DS, — (é"ual—“az)] da’ (D3.32)
The yield surface is defined by:
¢(§1"Q¢_1) = 1 (D3.33)
The requirement that the action point remain on the yield surface is;
dp = 0 = ¢,7dS\—¢,]da, (D3.34)
Substitute Eqns. D3.32 and D3.33 into Egn. D3.35 to get:
T
. .5 dS
da’ = — &5 b (D3.35)
s LSy =1D) S~ (S 01— a)yl
Hence, substitute Eqn. D3.36 into Eqn. D3.32 to get da; as:
[5u-D 8- Suar~ad |o.7as5)
day = (D3.36)

0./ (S=D 51~ Suai—a0 |
For any current state defined by Sy, «), and «a;, Eqn. D3.37 defines, for an action increment

dS |, the translation of yield surface YS, for loading towards surface ¥S,.

D3.5.4 Second Yield Surface

For the case when the action point lies on the second yield surface, the hardening rule can
be obtained by assuming that an additional infinitely large vield surface exists. The direction of
translation for this case is then along the.radial direction connecting the origin of the second
yield surface to the current action point. This is exactly Ziegler’s hardening rule [30]. It can be
expressed as:

day = (S;— ay)da’ (D3.37)

in which
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da' = scalar which defines the amount of translation of the yield surface, as before;
a; = vector defining the yield surface origin; and
da, = vector defining the direction of translation.

For this case, Eqn. D3.37 becomes:

($r—ay o, dS,

b, (Sr—ay (D3.38)

day =

D3.5.5 Overlapping of Yield Surfaces

In the original Mroz hardening rule, it is assumed that the yield surface is geometrically
similar to the yield surface ¥S; This assumption is reasonable for metal plasticity in stress
space because it is reasonable to assume an isotropic material. However, for dealing with stress
resultants, each action-deformation relationship depends on the cross section shape in a
different way, and the behavior is not isotropic in action space. That is, the yield surfaces will,
in general, not be geometrically similar. The authors have considered a number of strategies in
an attempt to obtain "correct” behavior while preventing yield surface overlap. None of these

strategies proved satisfactory, and it was finally concluded that overlapping should be allowed.
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D3.6 PLASTIC DEFORMATION

The flexibility relationship of the element can be written as:

dv = fidS = f.dS+dy,

in which
dv, = Y. dvy is the element plastic deformation increment; and
-
Lo = the element elastic flexibility matrix.

Premultiply Eqn. D3.39 by f, - X, to get:
Lo Kerdv = f-dS+ [ K, dy,

in which

K, = the element elastic stiffness matrix;

—_—t

£, = Y f, isthe element total plastic flexibility.
L[p dS =dy,

Substitute Eqn. D3.41 into Eqn. D3.40 to get:

(1+fp!ge) dv, = [, Ko dy

Hence,

dy, = (}+fp'£e)_lfp'£e'dl’

(D3.39)

(D3.40)

(D3.41)

(D3.42)

(D3.43)

Equation D3.43 gives the plastic deformation increments of the element in terms of the total

deformation increments.

D3.7 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuous plastic flow at a subhinge to be dis-

tinguished from elastic unloading for any current plastic state and any specified deformation

increment. Two procedures are of general applicability, as follows.

{1) Postulate that the subhinge has unloaded an infinitesimal amount, so that the current

state lies just within the yield surface. Calculate the elastic action increments, 4S,,

corresponding to the specified deformation increments. If the state moves outside the

yield surface, the assumed elastic state is incorrect, indicating continuing plastic flow. If
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the state moves within the yield surface, the elastic assumption is correct, indicating

unloading.

(2) For the specified deformation increment, calculate the magnitude parameter for the plastic
deformation increment. A positive magnitude indicates continuing plastic flow, and a
negative magnitude indicates unloading,

By the first of these two procedures, continued loading of subhinge i is indicated if dS,
has a positive component along the outward normal, n;, of the yield surface. That is, continued
loading occurs if

nT-ds, 2 0 (D3.44)

To consider the second procedure, first assume that the current plastic flow directions of
both active subhinges are the same. Hence, the plastic deformation increment for the subhinge
is given by:

dv, = n-dv, (D3.45)
Premultiply Eqn. D3.39 by n7 - f?- K, lo get:

. Tr - K,dw
dy = —2 L Bed (D3.46)
14107 £, K n
Substitute Eqn. D3.24 into Eqn. D3.46 to get:
T
. rnds,
dv, = L7 (D3.47)
in which ry and r are scalars defined as follows:
r _
n'" K. n
ry = ==t = (D3.48)
: 21‘ Ji T 'ﬁspi H
1
1= ) (D3.49)
’ 2: h d 'L(spi ‘n

Because the matrices K, and K, are always positive definite, the scalars r, and r; always

2 5p
xceed zero. Hence. the si f dv, is th he si f nT-dS,. This is th i-
e (5] ence, € si1gn o Vp 1S € same as tne sign o R AP 1S 1§ the same cri

terion as Eqn. D3 .44,

In general, the piastic flow diractions for the yielded subhinges are not the same. Hence,
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it is possible for n7 dS, to be greater than zero for one subhinge and less than zero for the
other (i.e. continued loading on one, but unloading on the other). This possibility is illustrated
in Fig. D3.4. For computation, if both subhinges are yielded, it is assumed that unloading is
governed by the second subhinge. If unloading occurs on this subhinge, unloading is assumed to
occur on both subhinges. If the situation happens to be as shown in Case A of Fig. D3.4
{which is unlikely), reloading will immediately occur on the first subhinge, and the analysis will

continue.

Figure D3.4, Case B, illustrates another possible consequence of yield surface overlap. In
this case, unloading occurs from both surfaces, but on reloading. the second yield surface is
reached first. For this case, calculate the action on the second yield surface for reloading, then
translate the first vield surface to attach the second yield surface at this action point, and the

analysis continues,

D3.8 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces
of the joints rather than at the theoretical joint centerlines. This effect can be approximated by
postulating rigid, infinitely strong connecting links between the nodes and the element ends, as
shown in Fig. D3.5. The displacement transformation relating the increments of node displace-
ments, dr,, to increments of displacement at the element ends is easily established and can be

written as.

dr = a,dr, (D3.50)
This transformation is used to modify the stiffness and state determination calculations to allow

for end eccentricity effects.

D3.9 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that each floor diaphragm
is rigid in its own plane. To introduce this assumption, a "master node” at the center of mass

of each floor mav be specified, as shown in Fig. D3.6. Each master node has only three degrees
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of freedom, as shown, which are the displacements of the diaphragm horizontally as a rigid
body. If any beam-column member is connected to these "master” displacements, its behavior
depends parily on these displacements and partly on the displacements which are not affected
by the rigid diaphragm assumption.

The displacement transformation relating the master (diaphragm) displacements, dry, to

the displacements at a "slaved" node is as follows.

dr 10 4] |é@r:
drosp = |0 1 —dx| {dr, (D3.51a)
drnS 00 1 dra
or
drys = a, dry (D3.51b)

The "slaved" displacements at element ends i and j can, thué, be expressed in terms of the
displacements at the "master" node (or nodes). The corresponding coefficients of the element
stiffness matrix are transformed to account for the slaving. The resulting element stiffness
matrix is assembiled in terms of the three master degrees of freedom plus the three local

degrees of freedom dr,», dr,s, and dr,, at each node, which are not affected by slaving.

D3.10 TOLERANCE FOR STIFFNESS REFORMULATION

Fach time a new hinge yields or an existing ’hinge unloads, the element stiffness changes.
Moreover, because the direction of plastic flow may change, the stiffness of a yielding element
will generally change continuously. The change in stiffness results from differences in the
directions of the normal to the vield surface as the actions at the hinge change. If the angle
change is small, the change in stiffness will be small and can be neglected to avoid recalculating
the stiffness. In the computer program, an option is provided for the user to set a tolerance for
the angle. If a nonzerc tolerance is specified, the element stiffness is reformed only when the
change in state is such that the angle between the current yield surface normal and that when
the stiffness was last reformed exceeds the tolerance. A tolerance of about 0.1 radians is

recommended.
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D4. COMPUTER LOGIC

D4.1 STATE DETERMINATION

The staie determination calculation for an inelastic element requires evaluation of the

equation:
Av
AS = [ K,dv (D4.1)
0
in which
AS = finite action increment for the element corresponding to the finite deformation
increment Ay; and
K, = clement tangent stiffness, which, in general, varies during the increment.

The computational procedure for state determination of the element is as follows.

{1) From the given nodal displacement increment, calculate the element deformation incre-

ment from:

Ay = g - Ar (D4.2}

in which

Ar = vector of nodal displacement increments;

Ay = vector of element deformation increments; and
a = displacement transformation matrix.

(2) Calculate linear action increments for the element from:

AS = K Ay (D4.3)

and hence determine hinge action increments as:

AS, = bAS (D4.4)
in which
AS = linear action increment for element corresponding to the finite deformation

increment Ay



(3)

4)

(5)

(6)

K, = element tangent stiffness matrix;
AS;, = linear action increment for hinges; and
b = transformation matrix from AS to AS,, which is easily formed.

Check for a nonlinear "event" in the current increment, and calculate the corresponding

event factor for each complete hinge. The possible events are as follows;

(a) If the current state is elastic, calculate the proportion of the deformation increment
required to reach the next yield surface. If this proportion is greater than 1.0, the
state continues to be elastic and the event factor is 1.0. Otherwise, an event accurs

and the event factor is set equal to the calculated proportion.

(b) If the current state is plastic, calculate 1 7dS,. If the value exceeds zero, continued
loading is indicated. The event factor is then calculated for the next yield surface,
allowing a tolerance as described in Section [34.2. Otherwise, unloading occurs. In
this case, the elastic degrading stiffness and the corresponding plastic stiffness matrix
for each subhinge are calculated from the total plastic deformation. The stiffness
matrix is then reformed as the elastic stiffness, and the calculation proceeds from

Step 2.
Calculate plasiic deformation, Aw,,, for each yielded subhinge by using Eqn. D3 .44,

Pick up the smatlest event factor, FACM, from the event factors for the two complete
hinges at the ends of the element.
Use the event factor, FACM, to compute new hinge forces, new subhinge total plastic

deformations, and new origins of all subhinges, as:

a, = a, + FACM*Aq, (D4.6)
Wh = Wi+ FACM*Aw, (D4.7)

The new action point, S, must lie on the yield surface if the subhinge is yielded. If the

action point is not on the yield surface, scale the actions radially back to the vield surface.
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(7} Calculate the complement of the event factor as:

S§S = 1. — FACM (D4.3)
{8) Reform the tangent stiffness matrix for the element if any event has occurred.
(9) If all of the displacement increments of the element have been used up (i.e. SS = 0), go

to Step 11, Otherwise, continue to the next step.

(10) Calculate the remaining element displacement increment for the next cycle from:

Ay = S5 - Ay (D4.9)

Then go to Step 2.

(11) Obtain the element actions, S, using:

S = »'S, (D4.10)

(12} Calculate the internal resisting force for the element, R, using:
R =475 (D4.11)

D4.2 YIELD SURFACE TOLERANCE

It is possible for the new action point, calculated assuming constant X,, to lie significantly
outside the current yield surface. This will occur particularly when AS and A« are distinctly
nonparallel (Fig. D4.1}. In this case, the calculation is assumed to be sufficiently accurate, pro-
vided the new action point lies within a tolerance zone (typically 2%-5% of the yield surface
size). If not, Ay is scaled, KX, is reformed, and the calculation is repeated for the balance of

Av.

The scale factor is conveniently determined by the procedure illustrated for M-F space in
Fig. D4.1. In this figure, the current action paint is P, and the new action point, obtained by
applying Eqn. D4.3, is at Q. Hardening is affected only by the component of AS parallel to the
yield surface normal. Hence, the yield surface translaies as shown. Point Q lies outside the
new yield surface, the amount being defined by e¢,, which is the length of the "radial" error vec-

tor, ¢,. This error must not exceed the allowable tolerance.
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Computationally, i1 is convenient to consider the "tangential" error, ¢,, which is the length

of vectior P'Q. If the yield surface is assumed to be locally quadratic, then

e, = 0.5¢2 (D4.12)
The value of e, is calculated from this equation, If e, is within the allowable tolerance, point Q
is scaled to the new yield surface and the computation continues (this scaling introduces an
error which is assumed to be acceptable). If e, exceeds the aliowable tolerance, it is assumed
that e, varies linearly with element deformation. A scale factor to set e, equal to the tolerance
is then calculated using Eqn. D4.12, the AS and Aa increments are scaled by this factor; and
the new action point is scaled to the yield surface. The element stiffness is then reformed, and
the process is repeated for the remainder of the deformation increment. If AS is parallel to
S—q, no scaling will be required. If AS makes a large angle with S—a, the deformation incre-
ment may be subdivided into several subincrements, depending on the magnitude of Av and

the value specified for the error tolerance.

The deformation increment is also subdivided if a new yieid surface is reached. In this
case, the new action point is permitted to go beyond the yield surface by an amount equal to
the allowable radial error. The proportion of the deformation increment required to reach this
state is calculated; the new action point is scaled to the yield surface; the stiffness is reformed;

and the calculation proceeds for the remainder of the deformation increment.
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DS. ANSR USER GUIDE

3D REINFORCED CONCRETE BEAM COLUMN ELEMENT

D5.1 CONTROL INFORMATION - Two Cards

D5.1.1 First Card

Columns Note
(D
6-10(1)

11-15(D)

16-25(F)
26-35(F)

41-80(A)

D5.1.2 Second Card

Columns Note

1-5(D

6-10(I)

11-15(D)

DS.2 STRENGTH TYPES
NMBT sets of cards.

D5.2.1 Strength Option

Columns Note

1-5¢D

Name
NGR
NELS

MEST

DKO
DKT

GRHED

Name

NMBT

NECC

NPAT

Name

Data
Element group indicator (=4).
Number of elements in group.

Element aumber of first element in group.
Default = 1.

Initial stiffness damping factor, 8,.
Tangent stiffness damping factor, 8 7.

Optional group heading.

Data

Number of different strength types (max. 20).
Default = 1.

Number of different end eccentricity types
(max. 15). Default = zero.

Number of different initial force patterns (max.
30). Default = zero.

Data

Strength type number, in sequence beginning
with 1.
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10(D INPT Input options for element flexural stiffnesses,
as follows. See Section D2.3.5.

(a) INPT=I1: Procedure assuming essentially
uniform bending moment over element length.
Leave rest of this card blank.

{(b) INPT=2: Procedure assuming double-
cantilever behavior. Leave rest of this card
blank. :

(c) INPT=3: General option. Compiete rest
of this card.

11-20(F) Coefficient K; for bending about local y-axis.
Default = 4,

21-30(F) Coefficient K; for bending about local y-axis.
Default = 2.

31-40(F) Coefficient K, for bending about local y-axis.
Default = 4.

41-50(F) Coefficient K; for bending about local z-axis.
Default = 4

51-60(F) Coefficient K; for bending about local z-axis.
Default = 2.

61-70(F) Coefficient K;; for bending about local z-axis.
Default = 4.

71-75(F) (D Coeflicient of stiffness degradation coupling

parameter for first subhinge.

76-80(F) (2) Coefficient for second subhinge.

D5.2.2 Bending Properties About Local y-axis
(a) OPTN=1. Specify beam moment-rotation relationship. See Fig. D2.8. One card.

Columns Note Name Data
1-10(F) Stiffness K.

11-20(F) Stiffness K.

21-30(F) Stiffness K.

31-40(F) Yield moment M,,.

41-50(F) Yield moment M,,.

51-55(F) Degrading stiffness parameter, a;.
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56-60(F) Degrading stiffness parameter, a,.
61-65(F) Degrading stiffness parameter, 3,.

66-70(F) Degrading stiffness parameter, 8-,
(b) OPTN=2. Specify cantilever P-5 relationship. See Fig. D2.9. One card.

Columns Note Name Data

1-10{F) Stiffness K.

11-20(F) Stiffness X,

21-30(F) Stiffness K ;.

31-40(F) Yield force P,;.

41-50(F) Yield force P,

51-55(F) Degrading stiffness parameter, a.

56-60(F) Degrading stiffness parameter, «.

61-65(F) Degrading stiffness parameter, 3.

66-70(F) Degrading stiffness parameter, 8.

(c) OPTN=3. Specify beam elastic stiffness and hinge moment-rotation relationships. Two

cards.

Columns Note Name Data

Card 1

1-10(F) Elastic flexural stiffness, EI/L.

11-20(F) Elastic shear rigidity (GA,) along z-axis (.e.
shear associated with y-axis bending). If zero,
shear deformation is neglectad.

21-30(F) Degrading stiffness parameter, «;.

31-40(F) Degrading stiffness parameter, a».

41-50(F) Degrading stiffness parameter, 8.

51-60(F) Degrading stiffness parameter, 8,.

Card 2

1-10(F) Plastic stiffness K, of left-end hinge.

11-20(F) Plastic stiffness K, of left-end hinge.
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21-30(F)
31-40(F)
41-50(F)
51-60(F)
61-70(F)

71-80(F)

Yield moment M, of left-end hinge.
Yield moment M), of left-end hinge.
Plastic stiffness K, of right-end hinge.
Plastic stiffness K, of right-end hinge.
Yield moment M, of right-end hinge.

Yield moment M, ; of right-end hinge.

D5.2.3 Bending Properties About Local z-axis
As for Section D5.2.2, but specify z-axis properties.

D5.2.4 Torsional Properties

Columns Note Name
1-10(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-55(F)

56-60(F)

61-65(F)

66-70(F)

D5.2.5 Axial Properties

Columns Note Name
1-10(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-55(F)

Data
Torsional stiffness K.
Torsional stiffness Kp,.
Torsional stiffness Kr;.
Torsional strength 7.
Torsional strength T,
Degrading stiffness parameter, ;.
Degrading stiffness parameter, a.
Degrading stiffness parameter, 8.

Degrading stiffness parameter, 8,

Data
Axial stiffness Kr,.
Axial stiffness K.
Axial stiffness Kp3.
Axial strength F).
Axial strength F,.

Degrading stiffness parameter, «;.
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56-60(F) Degrading stiffness parameter, a;.

61-65(F) - Degrading stiffness parameter, 8.
66-70(F) Degrading stiffness parameter, ;.
71-80(F) (3) Axial strength F,, Input as a positive value.

Default = F,.

D5.3 END ECCENTRICITY TYPES
NECC cards. See Fig. D3.5.

Columns Note Name Data

1-5(1) 4) End eccentricity type number, in sequence
beginning with 1.

11-20(F) X, = X eccentricity at end i.
21-30(F) X, = X eccentricity at end j.
31-40(F) Y, = Y eccentricity at end i.
41-50(F) Y, = Y eccentricity at end j.
51-60(F) Z; = Z eccentricity at end i.
61-70(F) Z; = 7 eccentricity at end j.

D5.4 INTERNAL ELEMENT FORCE PATTERNS

NPAT cards.
Columns Note Name Data
1-5() (%) Pattern number, in sequence beginning with 1.
11-21(F) Initial moment M, at end i.
21-30(F) Initial moment M at end i.
31-40(F) Initial moment M, at end j.
41-50(F) Initial moment M, at end j.
51-60(F) Initial axial force.
61-70(F) Initial torque.

D5.5 ELEMENT DATA GENERATION
As many pairs of cards as needed to generate all elements in group.

Columns Note Name Data

Card 1
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1-5(D

6-10(D)
11-15(D)

16-20(D)

21-25(D)

26-30(D)

31-35(1)

36-40(1)

41-45(D)

46-50(1)

51-55(D)

56-60(1)

(6)

NODI
NODIJ

INC

NODK

NSI

NSJ

NSTR

IECC

NIT

KTYP

KGEOM

Element number, or number of first element in
a sequentially numbered series of eclements to
be generated by this card.

- Node number I.

Node number J.

Node number increment for element genera-
tion. Default = 1.

Number of a third node, K, lying in the xy
plane, for definition of the local y-axis. Default
= automatic orientation of y-axis.

Number of node {(diaphragm node) to which
end I is slaved. If not slaved, leave blank.

Number of node to which end J is staved. If
element generation is used, nodes NSI and NSJ
are the same for all elements in the series. For
a description of the slaving procedure, see Sec-
tion D3.9.

Strength type number.

End eccentricity type number, Default = no
end eccentricity,

Initial force pattern number. Default = no ini-
tial force.

Interaction surface type.

i
=3

(a) =1Y.S. type
(b) =2Y.S. type = 2
() =3YS.type =3
(d) =4YS. type = 4
(&) =5YS. type=235
Geometric stiffness code:

(a) 0 = Geometric stiffness is not to be
included.

{b) 1 = Geometric stiffness is to be included.
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61-65(D) KOUT Time history output code:

(a) 1 = output time history results

(b} 0 = no output

71-80(F) N Stiffness reformutation angle tolerance, y (radi-

ans). See Section D3.10 for explanation.

Card 2

1-10(F) Parameter a; in interaction surface equation,
11-20(F) Parameter a, in interaction surface equation.
21-30(F) Parameter a; in interaction surface equation.
31-40(F) Parameter a, in interaction surface equation.
D5.6 NOTES

(1) Stiffness degradation coupling parameter is defined by input coefficient times the sum of

(2)

(3)

4)

(5)

(6)

degradation parameters for first subhinge (i.e. a;; = coefficient x (a; + ay).

Stiffness degradation coupling parameter is defined by input coefficient times the sum of

degradation parameters for second subhinge (i.e. 8,5 = coefficient x (8; + 82).

The value of F,3 as shown in Fig. D2.2, allows the origin of the yield surfaces to be

shifted along the F-axis. The strengths in tension and compression are then different.

All eccentricities are measured from the node fo the element end (Fig. D3.5), positive in

the positive coordinate directions.

See Fig. D2.11 for the positive directions of initial element actions. Refer to Section D2.8

for a description of the effects of initial element actions.

Cards must be input in order of increasing element number. Cards for the first and the
last elements must be included (that is, data for these two elements cannot be generated).
Cards may be provided for all elements, in which case each card specifies the data for one

element, and the generation is not used. Alternatively, cards for a series of elements may

be omitted, in which case data for the missing elements is generated as follows:
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(N

(a)

(b)

All missing elements are assigned the same node "K" (NODK), slave nodes (NSI
and NSJ), strength types, end eccentricity type, initial force pattern type, interaction
surface type, codes for geometric stiffness and response output, and stiffness refor-
mulation angle tolerance, as those for the element preceding the missing series of
elements.

The node numbers I and J for each missing element are obtained by adding the

increment (INC) to the node numbers of the preceding element. That is,
NODI(N) = NODI(N-1)+INC

NODJ(N) = NODJ(N-1)+INC

The node increment, INC, is the value specified with the element preceding the missing

series of elements.

Refer to Section D3.10 for a description of the stiffness reformulation tolerance.
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E. EXAMPLES
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El. TUBULAR STEEL BRACE AND BRACED FRAME

El.1 PURPOSE OF ANALYSIS

A number of experimental and analytical studies on the inelastic behavior of diagonal
braces and braced structures have been carried out over the past few years. Using the results of
these studies in conjunction with advancements in nonlinear analysis techniques, analytical
models for predicting the behavior of braces and braced frames in the inelastic range have been
proposed and applied. The reliability of predictions of the overall structural behavior depends
on the accuracy of the brace model used. An ideal brace model is one having the capability to
describe axial force-deformation hysteresis loops accounting for the interaction between axial
force and bending moment on a tubular sectior; and accounting for loss of load capacity under
repeated cyclic loading,.

In this example, the element with distributed plasticity and nondegrading stiffness is used
to determine whether it produces results in agreement with experimental results for the inelas-
tic response of a single brace and a complete braced frame. The experimental studies were per-
formed by Zayas, Mahin and Popov [19,20] at the University of California, using one-sixth

scale models of elements typically found in X-braced tubular steei offshore platforms.
E1.2 INELASTIC BUCKLING GF TUBULAR STEEL BRACE

E1.2.1 Assumptions for Analysis

One-half of the tubular specimen (accounting for symmetry) was modeled using five ele-
ments. The experimental stress-strain curve [19] was used to calculate moment-curvature and
force-strain relationships, which were then approximated by piecewise linear functions. The
details of the analysis model are contained in Table E1.1, which is a listing of the ANSR-II

input data for the analysis.
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E1.2.2 Comparison of Analysis and Experiment

The response of the strut is shown in Figs. E1.1 and E1.2 for the experiment and analysis,
respectively. The overall responses are similar, but the analysis predicts substantially iess
stiffness and strength degradation than the experiment. The area of a typical hysteresis loop on
the analysis is approximately 16% more than in the experiment, That is, the analytical model
tends to overestimate the energy dissipation by about 16%. A major weakness of the analytical
model is that is does not predict p‘rogressive degradation of the buckling load with inelastic
cycling. This is probably because the analytical model does not account adequately for the
Bauschinger effect, and hence, overestimates the material tangeni modulus. A second possible
effect is that the model is unable to capture the effects of local buckling in the pipe wall which

were noted in the tests for the later cycles.
E1.3 INELASTIC BEHAVIOR OF TUBULAR STEEL BRACED FRAME

E1.3.1 Test Configuration

Experimental results of one-sixth scale model of an X-braced tubular steel frame have
been reported by Zayas, Mahin and Popov [20]. The test configuration is shown in Fig. E1.3.
The frame was subjected to cyclic inelastic lateral displacements, simulating severe seismic
motions. The frame was designed [20] so that failure would be controlled by yielding and

buckiing of the diagonal braces.

E1.3.2 Assumptions for Analysis

The analytical model is shown in Fig. E1.4. The ANSR-II input data is listed in Table
El.2. The diagonal braces were modeled using the distributed plasticity element, with nonde-
grading stiffness. The horizontal and vertical members were modeled using elastic beam-
column elements because the frame was designed to limit the forces in these members to be
below yield. Multi-linear approximations of the moment-curvature and force-strain relation-

ships were deduced from the experimental stress-strain curves.
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Cyclic displacements were imposed at the top level of the analytical model to match those
imposed in the experiments. A step-by-step procedure, without iteration and with path depen-

dent state determination, was used to analyze the frame.

E1.3.3 Comparison of Analytical and Experimental Results

The typical experimental and analytical results are shown in Figs. E1.5 and E1.6. The
shapes of the hysteresis loops are basically similar for the analysis and experiment, but again
the analysis shows less degradation and the loops for the analysis are significantly "fatter” than

for the experiment. The analytical model thus tends to overestimate the energy dissipation.

El.4 CONCLUSIONS

The reliability of analyiical predictions of the inelastic structural behavior of braced
offshore towers depends to a large extent on the accuracy which the brace hysteretic behavior
can be modeled. The "section” type of model considered here is able to model certain impor-
tant features of brace behavior, in particular compressive post-buckling strength loss and tensile
yield. However, the model does riot adequately account for stiffness and strength degradation,
so that it tends to overestimate both the strength and the amount of energy absorption. The
model must thus be improved to account for degradation effects before it can be used reliably

for this type of structure.
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E2. DEGRADATION COEFFICIENTS FOR REINFORCED CONCRETE

E2.1 GENERAL

In the beam-column element with degrading stiffness, the hinge stiffnesses are degraded
when reversed loading is applied. The amount of degradation is controlled by the four degrada-
tion coeflicients «), a3 B;, and 8, To study the influence of these coefficients on element
behavior, a study has been carried out using experimental data obtained by Takizawa and Aoy-

ama [10] at the University of Tokyo.

The primary purpose of this study has been to devise a procedure for calculation of the
degradation coefficients and to determine whether this procedure can be used to obtain accurate
response predictions. For this purpose, it has been assumed that the stiffness for each separate
action component degrades independently of the other stiffness (i.e. no interaction effects for
stiffness degradation). A secondary purpose has been to perform a preliminary investigation of

the effects of stiffness interaction, with a view to establishing a computational technique.

E2.2 SELECTION OF DEGRADATION COEFFICIENTS

A practical means of specifying the stiffness degradation coefficients is as follows. From
an experiment involving only one of the element actions (e.g. a uniaxial bending test), obtain
the action-deformation relationship for two or three loading cycles. From these results, sketch
an idealized trilinear hysteresis loop that best fits the experimental results for each cycle. From
this idealization, obtain the positive force P, the negative force P, stiffnesses K, K, and

K3, and degraded stiffnesses 111K, 112K 3, ¢1K, and ¢2,K 5, as shown in Fig. E2.1,

The following equations express the relationships among the original stiffnesses, X;, X5,
and K3 the degrading stiffnesses, ;K |, 112K3 21K, and (,K 5; the plastic stiffness K, and
degrading stiffnesses K'| and K"y of the cracking (first) subhinge; and the plastic stiffness K,

and degrading stiffnesses K'; and K", of the yielding (second) subhinge:

= —+ =+ = (E2.1a)
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1 1 1 1
N SN SR I (E2.1b
11K 2 K, * K. K’ ) )
1 1 1 1
—— m e e e (E2.1¢)
tnKy K, K'i K"
1 1 1 1
S UV U (E2.1d)
tnK, K, K., K

The maximum positive plastic deformations, D' of the cracking subhinge and D,* of the

yielding subhinge, are retated to: (a) the force p™; (b) P, and K, of the yielding subhinge; and
(c) the .total plastic deformation D,*, as follows:

+
p - Py
% _ (E2.2a)

¥

DS =
DY = pf- D} . (E2.2b)
The calculation of the degrading stiffness coefficients then proceeds as follows. From Fig.

D2.10(a), for the initial unloading (i.e., a3 = 8, = 0), the coefficients a; and 8, are obtained

as:

2P
= E2.3
oy K’IDC"' ( a)
2P,
= E2.3b)
B KDy (

Hence, from Eqns. E2.1b and E2.1a, the coefficients «; and 3, follows as:

2P, 1 1 1
oy = + — + (E2.4a)
! D} [tnKl K, tlZKl}
2P, ¢ 1 1 1
= — - == E2.4b)
fr= s [flsz KK (

From Fig. E2.1, the maximum negative plastic deformations, D, of the cracking hinge and D~

of the yielding hinge, are obtained as follows:

P -P,
Df = —p— ' (E2.52)

Y
DS = D - D, (E2.5b)
Hence, incorporating Fig, D2.10 with Eqns, E2.1c and E2.1d, the coefficients «; and 3, are

obtained from:

2P/K"| — asD;
@y = = (E2.62)
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2P,/K"y— B1D;

= E2.6b
B, D ( )
and
oy = 2Pc 1 +'L'— 1 _ach_/Dc+ (27&)
K1 Ko 1K,
B, = [2P 1 -—~1———1——ﬁD*/D+ (2.7b)
? ik, Ky K, I '

These calculations give values of a; and 8, for each of the loops. The values for succes-
sive loops should not be greatly different from each other. Values for analysis are obtained by

averaging the values for the individual loops.

E2.3 COMPARISON OF EXPERIMENT AND THEORY

A reinforced concrete cantilever under biaxial bending has been studied experimentally
and theoretically by Takizawa and Aoyama [10], Figure E2.2 shows the dimensions of the test
specimen. Loading was imposed to produce predetermined displacement paths in the x and y

directions at the cantilever tip. Five different paths were considered, as shown in Fig. E2.3.

E2.3.1 Calculation of Degradation Coefficients

Test specimen 1 of the experiment was subjected to uniaxial bending. The results of this
test have been used to define values of the degradation coefficients «, and B, These vaiues
have been then used for analysis of all five specimens. The calculation of the degrading

stiffness coefficients proceeds as follows.

(a) An idealized trilinear hysteresis loop for the first loading cycle is shown in Fig. E2.1a. By

measurement from the figure:

DY = 085 D = 083 (centimeters)

P. =30 P, = 45 (metric tons)

Pt = 475 P =438

K, =220 K,=170 K;= 04 (tons/cm.)

Ky = 7.7 11K, = 54 tykKy) = 7.6 t32K> = 43
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22.0x7.0 1027

¢ K-K;  220-70
KK, 7.0x0.4
== E—3 : £ ‘4
K, K,— K, 7.0—-0.4 0.42

Hence,

From Eqgns. E2.2a and E2.2b:
4.75—-45 _ 0.6

|
>
<
i
et
[ o)
wn

D} =

i

DF =

Then, from Eqns. E2.3:
11t _ 20
S 154

P, 1
pr = %
D} |tk Ky K,
oo e L1 1 | _ 601 1 1],
YUopr K, Ko 1Ko 025 |77 1027 54 "

From Eqns. E2.4:
. P=P, 48-45 _

by = kK, 042 095

D = D~ —-P7 = 083-095 = —0.12

Then, from Eqns. E2.6:
- 1 _ 1t _1i_sp-
Ba = 25, oK, K| Kc] BiDy ]/Dy
1 1 1 _
027 ] 0.76 x 0.95]/0,6 = (.14

|
= 2033 3%

1 1 1 -
+— - —a D7D
Igsz ! ]

[

= 2P, |——
“2 Ky K,
= 160 x | =k 4+ < - =] +0.12}/0.25 = 0.39
1.6 10.27 4.3
Thus,
ay = 1.0, o, =04, B, = 075 and B, = 0.15
(b) An idealized loop for the second loading cycle is shown in Fig. E2.1b. By measurement
from the sketch:
1.3 D7 = 1.05

Dt =
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P, =30 P, =45
Pt = 491 P~ = 506
1 K, = 6.0 11Ky = 473 1K, = 5.66 2K, = 3.64

Hence, by the same procedure as for the first cycle, obtain:

a; = 1.0, ay = 04, B; = 065 and B, = 0.45

{c) Obtain values for analysis as the average values from the two loops. That is,
= 10, Xy = 04, B = 07, and B = 0.3

E2.3.2 Lewer Bound on Unloading Stiffness

Experience has shown that bounds are needed to prevent ridiculous results from being
obtained. If results are available, lower bound values can be obtained from experimental
results with large displacement cycling. In this example, judgement was required because the
imposed displacements for test specimen 1 were not of large amplitude. Bounds as follows

were specified for the cracking and yielding subhinges.

Min. K. = 2" K, (E2.8a)
Min. K, = 2 *K,, (E2.8b)
in which
K., = plastic stiffness before degradation of the cracking subhinge; and
K,, = plastic stiffness before degradation of the yielding subhinge.

E2.3.3 Comparison of Experiment and Analysis

To compare the measured and calculated results, the deflection paths in the analysis were
specified to correspond to the deflection paths observed in the experiments, as shown by the
dashed lines in Fig. E2.3. Comparisons of the load-deflection curves for each case are shown .in
Figs. E2.4 through E2.11. In addition, comparisons of the force-path orbits for cases 3 and 4

are shown in Figs. E2.12 and EZ.13.

The calculated and experimental results are encouragingly close, especially considering the

complexity of the response. Nevertheless, there are substantial differences in the shapes of the
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response curves. The discrepancies are largest for specimens 3 and 4. The force-paths in Figs.
E2.12 and E2.13 are substantially different, with the analysis following the circular form of the
yield surface and the experiment following straighter lines. Also, the hysteresis loops from the
analysis are too "fat" for specimen 3. It may be noted that the results are comparable in accu-

racy to the analytical results of Takizawa and Aoyama [10].

A possible reason for the discrepancies could be that degradation of stiffness in the x and
y directions was assumed to be uncoupled. A further reason, as mentioned in Takizawa’s
report, could be that the loading in the experiment did not provide ideal deflection control.

Fairly large deviations from the planned displacement paths occurred in the experiments.

EZ.4 INVESTIGATION OF STIFFNESS COUPLING

As was noted in the preceding section, the hysteresis loops for specimen 3 were too fat in
comparison with the experimental resulis. This discrepancy could result from ignoring coupling
in stiffness degradation between the x and y directions. To investigate this phenomenon, a cou-
pling option has been included in the computer program, and a preliminary study has been car-

ried out.

For each hinge, it is assumed that the degrading stiffness is based not only on the max-
imum positive and negative plastic deformation in the direction of loading, but also on the
maximum positive and negative plastic deformations in the direction at right angles. The pro-

cedure is as follows.

The diagonal flexibility matrix, F;, of a subhinge can be expressed in the following

manner:

F; = diag [Fyy Fy; Fpu Fyl (E2.9)

in which

Fy = la,D)f +ay, Dy + ayp, (D + D))/2M,,
Fp = (o, D5+ ay, D7 +ayy, (D) + D))/ 2M,,
Fpo = {a,;Df + ay7 D)/2T,
(e p DF + ayr DF)/2E,

o
=~
I



and where

oy, aq, = degradation coeflicients &, o for y bending;
i,y = coefficients for z bending;

ay, oy = coefficient for twist;

ar ¢y = coeflicient for axial deformation;

a;(i#j) = degradation coupling coefficient;

D;', Dy = maximum positive and negative y plastic rotation;
D.;f, D7 = gz plastic rotation;

D, D7 = plastic torsional rotation; and

D#, Df = plastic axial deformation.

Hence, the degraded stiffness matrix, Xy, is:
K, = diag(1/Fy 1/Fp 1/Fy3 1/Fz4] (E2.10)

For analysis of the test specimens, the degradation coupling coefficients were arbitrarily
assumed to be aj; = 1/10(e;+ a3} and By = 1/10(8,+B4. The results of analyses with these
assumed values are shown in Figs. E2.14 to E2.16.

The analysis results show significantly better agreement with the experiment than those
without stiffness degradation coupling. However, because of the complexity of the physical
phenomena governing stiffness degradation coupling, there exists no obvious theory to aid in
choosing the coupling coefficients, and substantial further study is needed.

The study suggests that the influence of stiffness degradation coupling is substantial.
However, at present, experience and judgement provide the only means for choosing the cou-

pling coefficients.
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E3. 3D REINFORCED CONCRETE FRAME

E3.1 GENERAL

A simple 3D building frame of reinforced concrete has been studied experimentally and
analytically by Oliva [21]. The frame has two stories, with one bay in each direction (Fig.
E3.1). It was tesied under uniaxial ground motion, but the frame was inclined in plan so that

the motion produced biaxial response.

Several tests were performed, with progressively increasing ground motion intensity.
Using the degrading stiffness element, analyses have been performed for two of these motions,
namely a low amplitude motion ("T100" of [21], Fig. E3.2) and a high amplitude motion
("T1000" of [21], Fig. E3.3). Elastic behavior was assumed for the T100 motion, and inelastic
behavior with degradation for the T1000 motion. The stiffness degradation coefficients were

varied for the inelastic analyses to study their influence on the computed response.

E3.2 ASSUMPTIONS FOR ANALYSIS

The model used to analyze the frame is shown in Fig. E3.4. Nodes were placed at the
points where the column centerlines intersect with the uncracked neutral axes of the beams.
Short rigid connections were specified from the nodes to the beam and column faces to simu-
late rigid joint regions. Lumped masses were located at the centers of mass of the concrete
blocks and connected to the beams by stiff truss members. Rotational inertia of the concrete
blocks was not considered. The floor diaphragms were modeled using stiff truss members, and

the pitching stiffness of the shaking table was modeled by a set of vertical springs.

For all analyses, uniaxial horizontal table motion was applied (Fig. E3.1a). Gravity load

was ignored, and small displacements were assumed (no P—A effect).

E3.3 ELASTIC ANALYSIS

The analytical model for correlation of "elastic” response {i.e. small amplitude loading)

was as shown in Fig. E3.4, The ANSR-II input data for the analysis is listed in Table E3.1.
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Because the amplitude of motion during the test was small, the pitching motion of the shaking
table was assumed to be negligible and the supporting springs were assumed to be rigid. The
stiffness properties for the structural members were the same as those used by Oiiva [21]. To
ensure elastic behavior, the members were assigned very high strengths. Mass_proportional and
initial stiffness proportional damping {« M + 8, K,) was used, assuming 4% critical damping
at 3.5 Hz (first natural frequency as given by ref. [211), and 3% at 8.5 Hz (second natural fre-
qguency). The imposed horizontal accelerogram is shown in Fig. E3.2. The integration time
step was 0.02 seconds.

Figures E3.5 and E3.6 show time histeries of the measured énd computed horizontal dis-
placements at the first floor. Close correlation was obtained for both the longitudinal and
transverse directions. Previous experience has shown that if agreement between analysis and
experiment is to be obtained for inelastic response, agreement must first be obtained for elastic

response.
E3.4 INELASTIC ANALYSIS

E3.4.1 Analysis Model

For inelastic analysis, the analytical model was again as shown in Fig. E3.4. The support-
ing springs for modeling table pitching were assigned stiffnesses of 150 k/in. each, correspond-
ing to a table rotational stiffness of 21640 in-k/rad. {21]. The action-deformation relationships
for axial force and moment (monotonic loading) were obtained from cross section analyses per-
formed by Oliva [21}. Insufficient experimental data was available for direct determination of
the stiﬁ“ness degradation coefficients. Hence, a limited parameter study has been carried out to

determine the trend in the computed response as the degradation coefficients are changed.

E3.4.2 Parameter Study

Four cases were analyzed, as follows.
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Case 1.

No degradation (coefficients ay, ay, B8y, and 8, all zero), with viscous damping as for the

elastic analysis.
Case 2:

No degradation, with increased viscous damping. Because the assumed viscous damping
is based on the original stiffness, it is possible that the viscous energy absorption can be
overestimated when the structure yields and/or degrades. To study this, the damping

coeflicients, a and 8,, were made ten times larger than for Case 1.
Case 3:

Large degradation coefficients, «;= 1.0 and a; = 0.9, were specified for the cracking
hinges, and zero values for the yielding hinges. The experimental results [21] showed
that the column actions never exceeded the assumed second yield point for column sec-
tion, so that the values of 8; and 8, have no effect on the response. Viscous damping

was the same as for Case 1.
Case 4:

Moderate degradation. The same values for coefficients «; and «; as those of Section E2
(a¢y = 1.0,a; = 0.4) were used for the cracking hinge, with zero values of 8, and 8; for

the yielding hinge. Viscous damping was the same as for Case 1.

The solution strategy was step-by-step without iteration, using path dependent state deter-

mination and a constant integration time step of 0.005 seconds.

E3.4.3 Comparison of Analytical and Experimental Resalts

Comparisons of the results from analysis and experiment are shown in Figs. E3.7 and

E3.8 for Case 1. The analytical results are not close to those obtained in the experiment, the

former having smaller amplitudes and higher frequencies for both the x and y responses.

The results for Case 2 are shown in Figs. E3.9 and E3.10. The analytical results again

deviate from the experimental results. The analytical results for Case 2 are very similar to
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those for Case 1, except that larger drifts are calculated towards the end of the response in Case

1. This result indicates that the effects of the assumed viscous damping are not large.

Figures E3.11 and E3.12 show the results for Case 3. It can be seen that the analysis
predicts a larger amplitude response than was observed in the experiment, indicating that too
much stiffness degradation was assumed in the analytical model. The analysis predicted sub-

stantial drift in the y component of response.

Figures E3.13 and E3.14 show the results for Case 4. The responses agree quite closely
for the x direction response, both in period and amplitude. The y direction responses agree less
well, but are nevertheless close considering the complexity of the problem, The agreement is
significantly closer than that obtained by Oliva [21], which ignored the biaxial interaction

effects.

E3.5 CONCLUSION

The analyses in this chapter, although limited in scope, suggest that the values of the
degradation coefficients «; and «, shouid be approximately 1.0 and 0.4, respectively. In
Chapter E2, these same values were found to give quite close agreement with the tests of Tak-
izawa and Aoyama. For the analyses in this chapter, the coefficients 8, and B, were not used,
because the shaking was not intense enough to exceed the strength of the yielding hinges. If
no better information is available, it is suggested that the values 8, = 0.7 and 8,= 0.3, as

found in Chapter E2, be used for dynamic analyses.
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E4. LARGE ROTATION PIPE WHIP STUDY

E4.1 GENERAL

The distributed plasticity element can be used to analyze thé inelastic whipping motions of
piping systems following hypothetical pipe rupture. Small displacement analyses can be used
for piping confined by pipe whip restraints, whereas large displacements must be considered for
unrestrained pipes. In this example, a high energy pipe system has been analyzed for an
assumed break location which permits the piping to move a distance of over five diameters
before impacting a very stiff wall. The purpose of the analysis is to predict the impact time and
velocity, and to obtain an estimate of the impact force imposed on the wall. The analysis con-
siders material yield, strain rate effects, material nonlinearity, large deflections, gap closure, and
variable direction of the jet load (follower force). The analysis was performed using the distri-

buted plasticity element in the computer program WIPS [31].

E4.2 ASSUMPTIONS FOR ANALYSIS

The idéaiized system is shown in Fig. E4.1. A configuration with similar properties has
been analyzed by H. D. Hibbitt and B. I. Karlsson [28] and D. K. Vijay and M. J. Kozluk {38].
For the pipe elements, the stress-strain relationship shown in Fig. E4.2 was used. Force-strain
and moment-curvature relationships as shown in Fig. E4.2 were obtained by determining
“exact” relationships (using a small special purpose computer program) and constructing tri-
linear approximations. For the elbow elements, the straight pipe stiffnesses were divided 3.5
(the elbow flexibility factor) and the strengths were multiplied by 0.85 (chosen arbitrarily).
Dimensionless damping action versus strain rate relationship was assumed as shown in Fig. 4.3,
using yield stress versus strain rate relationship from J. M. Manjoine [32]. The jet force time
history was as shown in Fig. E4.1. Because the rotation of the break is !large, the blowdown
thrust must be considered as a follower force acting along the pipe at all times rather than fixed
in direction. Impact with the wall was allowed at nodes 2, 4, 6, and 8. The gaps between these

nodes and the wall were modeled using gap elements [31]. The stiffness after gap closure was
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assumed to be 10000 K/in. This value was chosen arbitrarily to represent a very stiff wall.
Because the impact force depends a great deal on the deformability of both the wall and the
pipe, the calculated impact forces are uniikety to be accurate. However, the calculated motion
of the pipe can be expected to correspond quite closely to the actual motion, both before and

after impact. No experimental results are available,

E4.3 DISCUSSION OF ANALYSIS RESULTS

The WIPS analysis was carried out using the Hilber-Hughes-Taylor integration scheme
[39] with a numerical damping factor, «, of -0.05. The calculated pipe shapes at three separate
times are shown in Fig. E4.4. Figure E4.4 shows the time history of displacement at node 6
and the calculated impact force {the sam of the forces in the four gap elements). The results
show a large initial impact force, followed by rebound and new contact. After the second con-

tact, the force transmitted to the wall is of the order of magnitude as the blowdown force.

Analyses with and without strain rate effects were very similar. The caleulated time for
first contact with the wall was 95 miiliseconds for the case with no strain rate effect and 98 mil-
liseconds for the case with strain rate effects, as shown in Fig. E4.5. This result is quite similar

to that obtained by H. D. Hibbitt and B. I. Karlsson [28].
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{a) EXPERIMENT
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FIG. E2.,7 LOAD SEQUENCE 3. Y-COMPONENT.
COMPARISON OF ANALYSIS & EXPERIMENT.
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(c) ANALYSIS, TAKIZAWA
& AOYAMA

FIG. E2.10 LOAD SEQUENCE 5. X-COMPONENT,
COMPARISON OF ANALYSIS & EXPERIMENT.
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FIG. E2.13 FORCE ORBITS, LOAD SEQUENCE 4.
COMPARISON OF ANALYSIS & EXPERIMENT.
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(b) Y-COMPONENT

FIG. E2.15 ANALYSIS WITH DEGRADING STIFFNESS COUPLING,
LOAD SEQUENCE 4.
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(b) Y - COMPONENT

FIG., E2.16 ANALYSIS WITH DEGRADING STIFFNESS COUPLING.
LOAD SEQUENCE 5.
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TABLE En

start popov-zayas strut example

8 0 8
38.18
37,18
27.69 0.012
20,7675 0.024
13.845  0.036
6.9225 0.048
.06
-1, , 06
IRRERRN
001110
001110
001110
001110
601110
001111
111110
1 1

53800. .01

AU N e = O EWN 2 01O EWN =,

1071310. 8600,
101310. 8600,
101310, 8600.
53600. 27. 4
2
101310, 8600.
101310, 8600.
101310, 8600,
53800000, 27.4
3
101310, 8600,
103310, 8600.
101310. 8600,
53800. 27.4
1 2 3 0

2

(U]
=
<

3 b 5 0

.1

20,
20.
20.
10.

20.
20.
20,
10.

20,
20.
20,
10.

100000000. 100000000.

1 2 1 10000,
b 1 0.00000

10,
10,
10.
5.

10.
10,
10,
5.

10.
10.
10,

5.

253

47,
u7,
47.
43.5

47000.
47000.
47000,
43500.

47000.
47000.
47000.
43500.

54,2
54.2
54.2
43.54

54200.
54200.
54200,
43540,

54200,
54200.
5L200,
42540,
1

542,
542,
542,
880.52

542000,
542000.
542000.
880520.

542000.
542000.
542000.
880520.



5 6 1 0 0 L 1 0 0 2 1 0 1
& T 8 0 0 2 2 0 0 2 1 0 1

0 0 0 1 0 1 0 2116000 o 0

0.0025 Q. 0. 0.
imposed force funection (8£10.0)
21 0 O. 0. 16000 -1.
0. 0. 1. 18830000, 2. 0. 3. -18830000.
b, 0. 5. 37660000. 6. 0. 7. -37660000.
8. 0. 9. 56490000, 10. c. 1. -56490000.
12. 0. 13. 75320000, 14, a. 15. -75320000.
16. 0. 17. 94150000, 18. 0. 19, ~04150000.
20. 0.
1 8] 4] 0 0 0
2
dynm
8000 -1 0 1 0 1 1
9 1 1. 2
0 1 1 1 1 1 1
100. 100,
stop

254



TABLE En

o2

start popcv-zayas bracing example
newf

22 22 0 12 0 0 2
1 0. 230. 0.

2 60, 33¢. 0.

3 120. 330. 0.

4 130. 330. 0.

5 0. 270. 0.

6 120. 270. 0.

7 30.6 240.6 0.4242
8 90.6 239.4 0,4242
9 60. 210, 0.

10 30.6 180.6 0.4242
11 90.6 179.4 0,4242
12 0. 150, 0.

13 120, 150. 0.

it 30.06 120.6 0.u4242
i5 90.6 119.4 0.4242
16 60. 90, 0.

17 30.6 60.6 0, u4242
18 90.6 59.4 0.4242
19 0. 30, 0.
20 120. 20. 0.
21 0. Q. 0.
22 120, 0. 0.

1 001000

2 001000

3 001000

] 111111

5 001000

6 001000

12 Q01000

13 001000

19 001000
20 001000
21 111000
22 111000

1 1 1

110000000, €.001
13 u 1

1.

6 31 1 0,001

b

1
81C0715. 10000,
81C0715. 10000,

1000.
1600.

100000000, 100000000,

10C. 2059.54 10000.
100. 5 2059.54 10000.

100000.
100000.



8100715.

422820,
2
406550,
406550,
406550.
95960.
3
79895,
79895,
79865,
42427,
i
171970.
171970.
171970.
73863,
1

2

3

11
12

13

14

16

17
18

19

10000.

100

10000.
10000,
10000,

100

6790.
6790.
6790.

20.

14618.

146

18,

14618.

37.

12

19

12
13
19

20

13

20

12
13
19
20
21

22

1000,
10,

1000.
1000,
10C0.
10.

10.
10,
10,
10.

20.
20,
20.
10,

100,
5'

100.
100.
100.
5.

5.
5.

5.

10.
10,
10.
5.

Lat

o]

2059.54
685. 26
219.631
219,631
219.621
155.52
42,706
42,706
42,706
45.35
81.716
81.71¢
'81.716
78.96
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

10000.
1000,

1000.
1000,
1000.
1000.

56.017
56.017
56.017
b5, 43

108. 438
108.438
108, 438
79. 11

100000.

10000.
16000.
10000,
10000,
10000.
560,17
560.17
560,17
1052.79
1084, 38
1084.28
1084, 38
1178.33
0 0 0.01
0 0 0.0
0 g 0.01
0 00.01
0 0 0.0
0 0 0.01
0 0 0.01
0 0 0.0
0 0 0.0
0 0 0.01
0 0 0.01
0 0 0.0
0 0 0.01
0 0 0.0
0 ¢ 0.01
0 0 0.0
0 00.01
0 00,
C 0 0.01



20 9 10 0 0 3
21 10 12 0 0 3
22 9 11 0o 0 3
23 11 13 0 0 3
24 12 w0 0 4
25 1 16 0 0 4
26 13 15 0 0 4
27 15 16 0 0 &
28 16 17 © 0 &
29 17 19 0 0 4
30 16 18 0 0 4
31 18 20 0 0 &

0 0 0 1 0 1

0.01 C. 0.
imposed force function
58 0 0, 0.
0, g, 1.
b, 0. 5.
8. 0. 9.
12. 0. 13,
16. 0. 17,
20. 0. 21,
24, 0. 25,
28, 0, 29,
2. 0. 3.
36, 0. 37.
40, o, 41,
Ly, 0. 45,
ug. a. ig,
52. 0. 53.
56. 3570000, 57.
-1 -1 -1 0 0 0
dynm
5700 -1 0 1 0 20
1 1 0 1. 3
0 1 1 1 1 1
100. 100,
stop

3 0 0
3 0 0
3 0 0
3 0 0
4 0 0
4 0 0
4 0 0
4 0 0
4 0 0
4 €] 0
4 0 C
Y 0 4]
0 5811400
0.
11400 1,
-460000. 2.
-1080000. 6.
-1060000. 10,
-1250000., 14,
~1250000. 18,
-720000. 22.
-1440000. 26.
’1630000. 30-
-2020000. 34,
-7100000 38 .
-2030000, 42,
-2030000. L6.
-2430000. 50,
-3020000. 54,
4000000,
20

257

0 0,01
0 0.01
0 0.01
0 0.01
0 0.01
0 0.0
0 0.0
0 0.01
0 0.00

0 0.01

0 0.01

(8£10.0)

3.
7.
.
15,
19,
23.
27.
31.
35.
29,
43,
47.
51.
55.

290000.
800000,
990000.
1140000,
1140000.
640000.
1320000.
1510000,
1890000.
640000,
1600600,
1890000.
2310000,
2430000.



TABLE E3.1

start oliva r.c. 2-d frame example
newf
22 22 0 ) 0 10 2
1 72.125 18. 168.5375
2 0. 0. 154,85
3 48,0833 0. 154, 85
4 96,1667 0. 154,85
5 144,25 0. 154,85
6 0. 36, 154,85
7 48,0833 36, 154,85
8 96,1667 36. 154, 85
9 144,25 36, 154,85
10 72,125 18, 97.4125
11 C. 0. 75.725
12 48,0833 0. 75.725%
13 96.1667 O. 75.125
14 144,25 g. 75.725
15 0. 36. 75.725%
16 48,0833 36, 75.725
17 96.1667 36. T%5.725%
18 44,25 36. 75.725
19 0, 0. 0.
20 144,25 Q. 0.
21 0. 36. 0.
22 144,25 36, 0.
19 11111
20 1111
21 111111
22 111111

1 0.02802 0.02802

0.00168750,0016875
5 0.00168750.0016875
& 0.00168750.0016875
9 0.00168750.0016875
10 0.0k9T74 0.04974

11 0.00198250.0018825
14 0,00148250.0019825
15 0,00198250.0018825
18 0.00198250.0019825

no

1 24 1

1

1100000000.0.001 1000000006, 100000000.
1 1 3 7 100.

2 1 y 1 100,

2 1 7 1 100,

4 1 8 1 100.



s 2 7 1 100,
6 3 6 1 100.
7 3 7 1100.
8 3 8 1100.
9 & 7 1100,
0 4 & 1100,
M4 9 1100,
2 5 & 1 100.
1310 12 1 100.
w10 13 1 100.
1% 10 16 1 100.
16 10 17 1 100.
17 11 16 1 100,
1% 12 15 1 100.
19 12 16 1 100.
20 12 17 1 100.
21 13 16 1 100.
22 13 17 1 100.
23 13 18 1 100.
26 1 17 1 100.
¥ 24 10,0006
5 5
13 4, 2.
23317.87 0. 0.
233.2 23,32 1000.
23317.87 O. 0.
233.2 23.32 1000.
23317.87 233,17  23.32
9676.92 96,77 9.677
2 3 Y, 2.
32645, 0, 0.
326.45 32,645  1000.
2645, 0, 0.
326,45 32,645 1000,
3645,  326.45  32.6U5
9851.8  9E.52 9.852
303 4, 2.
26472.78 0. 0,
264,73 26.473  1000.
26472.78 0. 0.
264.73  26.473  1000.
26472.78 264.73  26.473
8019.7  §0.2 8.02
i3 ¥, 2.
1771.25 0. 0.
17,712 .77 1000.
9919. 0. 0.
99,19 9,92 1000.
1594,12  15.9412  1.594
2054.65 20.5465 2.05465
5 3 4, 2.
1665.7  O. 0.
16. 66 1.666 1000,
5552,3% 0., 0.

2.
0.
23.32
0.
22.32
0. o.
0. 0.
2.
0.
32.645
0.
32.6L5
0, 0.
0. 0.
2.
0.
26,473
Oo
26.473
0. 0.
0. 0.
2.
0.
.77
0.
9.92
a, 0.
0. 0.
2.
0.
1,666
0.

4000.

4000.

4000,

4000,

k000,

4000.

4000.

4000,

400g0.



55.52
1665.7
2146.9
14,25
2
3 0.
4 0,
5 0.
1 2
2 3
3 4
4 1
5 12
6 13
7 6
8 7
9 8
10 15
" 16
12 17
13 2
14 5
15 11
16 14
17 2
18 5
19 11
20 14
21 6
22 9
23 15

5.552
16.66
21.47
-4,25
0.
c.
c.
3 1
b 1
5 1
12 1
13 1
14 1
7 1
8 1
9 1
16 1
17 1
18 1
6 1
9 1
15 1
18 1
11 1
14 1
19 1
20 1
15 1
14 3
21 1

1600.
1.666
2,147

20
20
20
20
20
20
22
22
22
22
22
22
21
22
21
21
21
22
21
22
19
20

19

4000.
1000,
1000.

0

0

269

55.52
4000.
4000.
-2.875
0.
a.

1 1
1 0
1 2
2 1
2 0
2 2
1 1
1 0
1 2
2 1
2 0
2 2
3 3
3 3
3 3
3 3
L i
y b
5 5
5 5
y 4
y L
5 5

5.552

0.

a.
-5.6875
-5.6875

¢ 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
Q 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
0 2
O 2
0 2

1000,
0. .
0. .
5.6875

a.

0 o

0 0

Q 0

0 0

0 0

0 0

0 0

0 0

Q Q

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 &

0 0

0 0

0 0

0 ¢

4000,

c.mm
0.01
0.0
0.01
0.01
0.0

0.0

0.01
0.01
0.0
0.01

0.0

.01
0.0
0.01

0.01



24 18 22 1 20 0

0 0 1 0 0 0
0.01952 0. 0. 1
t 100(2) ground accel.

150¢ 0 0.019%2 0.

c 5
0 1500
'5
2600

5 0 2 0 0 0.01
2600 0
(8£10.8)
386.4

-.00108555 .00065332-.00058873 .00264060 .00136855 .00065332 .00214378 .00214378
.00139855-, 00058873 .00115014-,00133366 .00189537-,00034032~,00009191 ,00015650
. 00015650 .00065332-.00034032-.00083714-.00009191 .00189537~-.00282442~,00009191

-.00009191 ,00040491-,00133296-,00356965-.00804103~-, 00555692-,00481170-,00456329
.00015650 .00090173 ,00363424 00413106 ,00139855 , 00040491 ,00115014 , 00040491
,00115014 ,00338583 ,00413106 .00288901 ,00090173 ,00313742 .00512470 00413106

.00462788 .00189537~.00034032

. 00040497

.00239219 .002885901 .00015650~.00083714

-.00257601-.00431488-.00356965-.00158237-.00406647-.00083714-.00034032-.00108555
-.00158237-.002824U42~,00580534-,00332124~, 00506011, 00356965~,00381806~., 00406647

-.00630216~-.00282442 .00139855

. 00437947

.00711198 .00115014 .00239219 .00288901

.0CU87629 .00T736039 .00363424-,00232760 .00015650-,00232760~.00726580~,00779262
.00512470 .00562152 .00040491-.003569€65-.00506011

-.00679898-.00356965 .00115014
-.00655057-,00456329-,00257601
-.00257601-.00456329-, 00307283~
,00611834 , 00860244 , 00860244
.00810562 , 00512470 ,00239219
.00065332 . 00189537 ,00239219
.01282541 ,01779361 ,02027771
.00LU37947 , 00512470 00686357~
-.01474810-.00257601 .000LO4GT-
-. 03437249, 02616225~, 02418768
-.00009191 .02301022 03766641
.02524561 .02027771 .02052612
.00363424 00711198 .00462788-
-.01027672-.00481170-. 00754421~
-.00977930 ,00413106 .01580633
-, 02667179-,02393627-.01027672
.01133495 .00264060-.00655057~
.0148126G .03046252 ,0236G185

.00164696
. 00555693
0081056862
. 00338583
. 00586993
.01903566
.00133396
.00257601
.05027074
.03841164
. 00835403

.00785721 , 00760880 .00611834 ,00288901
-.00605375-.00481170-.00307283 .00338583
.00785721 ,00512470 ,00413106 ,00686357
.00239219 , 00040491 ,00338583~.00282442
.00909926 .00909926 .00860244 .01307382
L01406746 . 01009290 00512470 00586993
~.00555693-.00729580-.01176718-.01524492
-.00928208~-.01996U471-.02865906-.03313045
~-.06144919-,05151279-,04728982-.03163999
.03567913 .03071093 .02301022 .02375545
.00562152-,00034032~-,00133396-,00207919

.00083714-.00828944-,01921948-.01897107-.01474810
.01300023-.01623856-,02542973-,02617496-. 01772902

02276181
.00885085
.01325764
. 02599114

.02027771 .01257700~,00108555~-,01822585
.02201658 .02847524 ,02673637 .01878725
-.01499651-.01400288~.00630216 .00214378
.02151976 .01878725 ,00512470-,00729580

-.01300923-.00903467-.00257601-.00009191 .00313742 .00711198 ,.01307382 .01679997

L01U456428 00562152 .00338583

.00214378-.01127026-.02319405-
-.03760183-, 02095835, 00356965

.01878725 .01953248 . 02773001

. 00537311

.00984449 ,01232859 .01679997 .01058972

.03660819-, 04U060L49-.03909229~. 02443609~-, 03909229

. 00959608
.03791482

. 02474909 .03095934 , 02673637 .02201658
. 02822683 .01307382-,00555693-,01723220

-.01748061-.01176718-.01102195~.01226400~-.02244882-.02692020~.01648697~.02021312

-.01599015~, 00406647 ,CC661516
-,.00828944~, 00058873 ,00413106
-.00406647 .00115014 .COU3TGLT~

., 00586993
00785721
.00182078

.00065332-,00754421~,00953146-,01002831
.01034131 ,00686357 ,00015650-.00456329
-.01375446-,0222C040-.02493291-. 0177743

-.00605375 .00760880 .02027771 .03418867 .04511672 .O4586394 ,03692118 .05530352

.05902965 .05753G22 .04G34169 .04015052 .02946888 .01158336-.00853785-.02145517
-.03039793~, 04704141-,05200961~,05275484-, 03660816~,01737743-, 00356965~. 00356965
-.00555693-,01469651-,02393927-.01971630-,00828944 ,00288901 ,00264060 ,00636675

.01108654 ,00984Lu49 00785721

. 00512470

-.00630216-,01524492-,02418768-,01822585

-, 02766543-,03635978-,03337885-,01946789 ,0001565C 01431587 ,0200293C .01953248
L01481269 .00959608 .01158336 .00984449 00860244 00810562 .00760860 .00909926
.00413106 .00239219-.00009191-.00804103-.01350605-,03288204-,04306684~, 04L4060LY

-.03511773-.03213045-,02791384-,02269723~-.01201559 , 00065332 01481269 ,03021411
L0L4487031 .0LB60917 03443708 02450068 .02201658 02524581 .02375545 ,01878725
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.01678089 .01725679 .00189537-,01599015-,03136158~,02344246~.00530852-.00183078
.00686357 ,01406746 01406746 ,01381905 .01580633 ,00934767 ,01034131 00512470
.00611834 ,00562152 ,00239219-,00257601-.01102195-.01897107-.01772502-, 00953149
-.00108555 00835403 01406746 02127135 ,02872365 02847524 02176817 00537311
~,01276082~,02816225-,02443609~,02294564-,01897107~.01300923-.01102195-.01127036
-.01176718-,01151877-.02046153-.02617496~,02145517-,01300923 ,00090173 ,01506110
.01903566 ,01878725 ,01034131-,00183076~.01052513-.02642337~,03412408-.03238522
-.02170358-.01127036 .00562152 ,02350704 ,03890846 ,04536712 ,03369185 01456428
.01108654 ,01058972 .008602u44-,00481170-.01598015~.017977432-,02393927-.02791384
-.01872267-.01052513-,00754421 , 00264060 , 01034131 ,01729679 .02176817 .02077453
,01829043 ,01406746 .01655156 02325863 02077453 ,00611834~,01276082~.02195199
-.02220040-.01648697~,01595015-, 02418768~,02315405-, 00356965 01481269 .02648796
,02723319 .01903566 ,01953248 ,02549432 ,0254Q432 ,01953248 01853884 .01729679
.01679997 ,00810562+,00307283-.00779262-.01077354~-.00928308-,00356965-.00332124
-,00853785-,01772902-.02443609-. 01921948, 00828g44 , 00437947 .00413106 .00562152
, 00040491, 00058873-.00456329~,00729580~,00729580~, 00828944~,00878626-, 00555693
-.00232760~, 00406647, 00530852, 00332124, 00804103-,00903467-.01002831~, 01400288
-, 01698379-,01698379~.01325764-.00853785-.00754421~. 00530852 .00115014-,00431L88
-.005C6011-,01176718-,01027672~, 00506011 ,00164696-.00083714 00040491 00413106
,00860244 , 01406746 01729679 .02176817 .02623955 02648796 01829043 ,01530951
L01406746~,00009191-,01425128~,01772902-,01052513 .00040491 . 00736039 ,01332223
.01704838 ,01878725 01481269 ,00562152-,00605375-,01696379-.02195199-,02021312
-, 01474810-.00605375~.00307283-.00158237 00313742 ,00313742 ,00264060 .00139855
.00040491-,00207919-,00232760~, 00530852~, 00903467-.01127036=-,00779262 .00239219
.01257700 .01630315 ,00909926 ,01580633 ,02176817 ,0222649% .0170G4838 .00909926
. 00015650-,00779262-,01400288-.,01648697~.01599015-,0144996G-.01176718«.00754421
-.00853785-.01027672~,01425128~,01946789-,01673538-,01077354 .00388265 .01307382
.01779361 ,02002930 .01953248 .00736039 .00661516 ,00984449 ,00512470 ,00189537
.01009290 .C0611834 ,00015650-,00853785-,01499651~.01648697~.01027672-,00183078
.00288901 .00537311 .00537311 .00810562 .00636675-,00083714.,00630216-.00655057
-, 00679898-,01052513-,00530852-.01027672-.01996471-,02070994-,01400288-, 00282442
©.00413106 .01034131 ,01406746 ,01381905 ,01058972 ,01183177 00785721 00413106
00661516 ,00562152 .00313742-.00704733~-.00953149-,00903467~.01276082-,.07748061
~.01698379-.02095835-.01599015~, 00878626 .00661516 02499750 .03518231 .03120775
.02151976 . 03418867 ,03915687 .03120775 .01232859-,00232760-.02021312-.02692020
-.02592655-,01797743~,01151877-, 00580534~,00133396-. 00083714, 00431488, 00580534
~.01077354-,00356965-,00431488 ,00040491 ,00413106 ,00040491 ,00040491~.00332124
-.00555693~.00580534~. 00456329-.00729580-.01151877-.01499651~, 01375446, 00878626
. 00264060 ,00810562 ,01034131 ,00711198 , 00686357 00462788 .00115014-,00431488
-.00779262~,00555693-,00009191 ,01431587 ,02077453 ,01530951 ,01232859 .01853884
.01928407 .01058972 .00288901~.00605375-.00461170-.00729580~.00282442~,00034032
-.00332124~.00406647-,00506011~,00555693~.00506011 ,00139855 ,00363824 , 00810562
.00537311 .00562152 .00413106 .00214378-.00282442-,00853785-,01474810~-.01723220
-.01549333-,01027672-.00977990-,02046153-,02716861-. 0284 1066~.02468450~. 01549333
~.00207919 .00760880 ,01878725 .02872365 .03195298 02648796 ,01704838 ,01506110
.00334767 .00909926-.00083714~.00878626~.01797743-.01300923-,01797743-.02418768
-.02070994~,01549333~.00630216 ,00065332 ,00512470 ,01132495 01530951 .01530951
.C1605874 01034131 .01006290 .00760880 .00uUBT629 .00885085 ,01083813 ,00736039
-.00108555-,01077354~,01425128-,00828944~,00232760~-,00058873 .00040431 .00040491
.00413106 .00115014-.00009191-,00481170-,01449969~,020L46153-,02766543~,02915588
-.02592655-.01872267~-.00580534~, 00034032 .00736039 .01530951 .01530951 .00512470
.000LO0O8g1 ,00040491 ,00313742 00437947 .00711198 ,00835403 ,01108654 .01506110
.02052612 .01903566 ,01530951 ,00711198 ,01208018 ,00984449 ,00115014-,00133396
.00015650-.00207919-. 00U40664T7~.00406647~,00655057-. 00804 103-.00804103~,00729580"
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1

. 00456329~
.00955608
.00779262-
. 00L87629
.00108555-
.00925308-
. 02195199~
. 003959608
.01108654
. 00356965~
.001333%6~
.01077354-
. 00760880
, 00462788
. 00679898~
.00754421
00009191
.00686357
.00661516
.007541421-
00015650
. 00586997
.00413106
. 00785721
.00164696
. 00555693~
00207919
.01183177
. 00456329~
00139855
.00679898-
.00381806-
., 00580534 -
. 00885085
.00115014-
00754421~
.00810562
.00630216-
.00189537
.00133396-
.00065332-
.00512470
. 00058873~
. 00058873~
.00214374
.00363424-
.00257601-
.00481170-
.00257601
.00133396-
.00909926
.003268265
. 00605375
. 00356965~

. 00555693,

.00711198

.00481170-.
.00363424

. 00288901

.0070473g-.
.00356965~.
LLO17977H3-.
. 00760880
. 00512470~
. 00381806~-,
.00381806-,
. 00853785,
.00413106
.00138855

. 00785721

.00611834
. 00189537

. 00628944,

.00264060
.00388265

. 00835403

.00214378
00363424~
.00214378
.00363u424~
.00189537

&

00779262~-.
.01083813

000823714

01002821-.

00332124
00779262

00381806 .00015650 .00338583 .00636675 .00835403
.C1133495 ,00413106-.00034032~-.00034032-.,00630216
.00288901
.00388265 ,00487629 .00736039 .00313742 .00164696

01151877~

. 00065332~
.00115014

00332124,
00009191,
00506011~-.
00164696
.00413106
.00090173

00530852

01027672-.
L01123495
.00562152
.000L0OUGT -,

00G84L4g
00953149~
00158237
00555693~

01127036~

. 01530951

*

00903467-.
.00711168
» 00580534 -,

00388265
00183078~

.0016U4696
00009191-,
.00164696-.

.

.00332124-.

. 00164686
. 00885085

.

.00356965=.

. 00388265

. 005556933-.

.00332124
. 00630216~
. 00934767
.00058873
.00332124
.01332223
.01276082~

.

. 00040491,
.00058873-.
.00207919-,
. 00686357

.00512470

.0CU06647-,

. 00207916~
. 008Y¥5085

-

. 00108555,
.00356965-.

.00332124-
.00239219
.00183078
.00785721
.00313742
. 00356965~
. 00530852~

+

00760880
01176718~

.00L62788
01077354-.
. 00636675

*

01251241~

00133396~

.00512470

00332124,
. 00835403

00661516

.

00282442~
00108555~
00356965~
01009290

. 00686357

00555693-.
. 00586993
00158237~.
. 00040491

01151877-.
. 00934767
.00090173~.
. 00090173
. 01530651
01474810,
00108555,
00183078-.
00083714,
.00388265

00828944~

.00636675

3

00282442~
00512470
00928308~

. 01009290

00058873-

.00661516
.01605474

00679898-,
. 00356965,
.00562152

00760880

00257601-.
00456329-~.
00555693-.
.0C2142378 .00065332-.003072832-.00461170-.00307283

005373114

.00214378
.00760880
.00313742
00381806-,
00282442,

01375446~
00307283~
00108555~
00183078

00481170~
00431488~

00431488~
00704739~
£0207916-

.,00711198

. 00878626~
.00133396-
. 00711198
. 00959608
.01648697-
. 00040491
.0040664T~
.00736039
.0032588265
. 00512470
.01027672~
.01083813
00711198
. 00853785~
.00115014-
.00803u467-
. 00338583
.00108555~
.00636675%
. 00481170~
. 00555693~
. 00481170~
. 00760880
.001849537-
. 00853785~
.00164696~
.00679898~
. 00487629
.00679898-
.00785721
.00183078~
.00760880
.01456428
.01276082-
.00754421-
.00008191-
. 00135855~
. 00388265
. 00655057~
. 00729580~
. 00686357
.00158237-
.00779262~
. 00207919~

.00413106 .00686357 ,00860244

.00853785%-.0067%898~,01002831
.00481170-.01102195~.01872267
.00984449 ,01083813 ,01357064
.01058972 .01232859 .01605474
.01897107~-,01623856~, 00530852
.00363424 ,00736039 ,00363u424
.00605375-.00779262-.00903467
.00959608 00860244 ,00860244
.00413106 .00860244 00760880
.00512470~-,00083714~,00108555
.01151877-.01996471-.01623856
.00338583 ,00040491-.00133396
.00661516 ,01108654 ,01332323
.00481170-.00083714 ,00338583
. 00605375~,00977990~-. 01052513
.00605375-.00183078~.00108555
.00413106 .00661516 .00413106
.00332124-.00083714 .00214378
. 00835403 .00934767 .01158336
.00431488~.00183078~.00232760
.01002831-.00828944-, 00729580
.00506011=-, 00828944, 00605375
.00338583 .00810562 .01058972
.00183078-.00655057-.0070473¢9
.00704739~,00530852~, 00257601
.00207919-.00481170-.00431488
,00630216-,00704739-, 00655057
,00214378 ,00080491-,00356965
.00356965 .00139855 .00785721
.00388265 .00164696-.00133396
. 00580534, 00977990-. 01027672
.01208018 .01133495 .00860244
.01232859 00885085 ,00115014
.00779262-.00257601 ,00214378
.00630216-.00506011-.00332124
. 00058873 .00214378 ,00239219
.00034032 ,00214378 .00U3794T
.00214378-,00083714~-,00232760
. 00520852 ,00015650-,00207919
.00853785-.00605375~-.00063714
. 00586993-,00009191 ,00388265
.00307283 ,00040491-.00158237
. 00655057~, 00406647-, 00506011
.00133396~.00082714 . 00040491

L00214378 ,00214378 ,00413106 ,00760880 .009844kg
.01058972 ,00586993 .00388265 .00586993 .C0512470
.00136855 .00040491-.00232760 .00040491-.00108555
00530852-,00506011-,00307283-,00257601-, 00108555
00133396-.00158237 .00115014 .00015650~.00282442
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-, 00034032 ,00214378 ,00562152 , 00860244 ,00487629 .00562152 .00860244 00611834
,00214378 .00065332-.00183078~,00356965~,00356965~,00506011-.00456329~,00232760
-.00183078 .00139855 ,00090173 .00363424 ,00388265 ,00437947 ,C0736039 00661516
.00711198 .00636675 .00363424 .00562152 .00611834 ,00586993 ,00313742~,00034032
-.00083714-.00183078~,00034032=,00058873~,00083714-,00356965~,00257601=-.003232124
-.00332124~,00456329-, 00655057, 00804103-,00928308-.01127036-.00953145-.01102195
~,00555693-, 00754421-.00720580~,00332124 ,00139855 ,00189537 ,00115014 ,00065332
,00139855 00050173 .0C189537 ,00015650~,00083714-.00024032~.00034032-.00058873
.00015650-,00034032 ,00040491 .00214378~,00058873 ,00189537 .00115014 , 00115014
-.00158237 ,00168537-, 00108555, 00406647-,000863714~,00009191 ,00065332~,00034032
,00065332 .00090173 00239219 ,00090172 ,00239219-,00009191-.00083714~,00058873
.00040491-, 00034032 ,00090173 ,00065332-.00133396-.00058873 .00015650~,00009191
,00000173 .00139855-,00158237 ,00015650-.00058873 .C0015650 .00264060~.00307283
.00015650-,00034032-.00108555~,00183078~,00009191 ,00015650-,00009191 00065332
.00015650 .00164696 ,00313742 ,00090173 ,00040491-.00158237-.00232760~.001086555
-,00083714-.00133396-.00009191~-.00083714 Q0040491 ,001339855 .00040u491 00015650
.0016U4696~,00009191-,00158237 . 00040LG1-,00207919-.00182078 .000G0173-.00083714
-, 0008371k, 00083714 00139855 . 00065332 .00065332 .00090173 ,00015650 , 00115014
.00115014 ,00015650-.00034032~.00108555~,00222760~.00083714-.00207916~.00034032
-.00009161-,00133396 .00090172 .00065332 .00115014 .00040491 ,00115014~,00009191
.00065332-,00207919-.00183078-.00083714~.00009191 .00065332-,00058873 ,00040431
.00065332 ,00115014~,00083714 ,00115014~,00009191 ,00015650-.00183078 .00065332
-.00133396 .00CL40491 .00065332-,00158237~,00034032~,00232760~.00058873-.00108555
.00189537-,00083714~,00058872 ,00139855-,00034032 00115014 .00065332~,00083714
-.00108555-,00009191~,00356965 ,00090173-.00083714~-,00108555 ,00490173 .00015650
.00090173 ,00115014 .00189537-.00083714 . 00065322-.00207979 .00040491-. 00083714
~.00133396 .00015650-,00108555 ,00090173 , 00040491 ,00090173 .00115014 00115014
.00040491 ,00189537-.00183078 .00139855-.00058873-.00108555~,00034032-, 00058873
-.00158237-.00009191-,00058873 ,00090173 ,00164696-.00034032 .00239219-.00009191
.00115014-,00133396 .00139855~.00108555+.00133396~,00108555-,00058873~, 00108555
. 00015650 .00164696-,00058873 ,00164696-.00133396 .00239219-.00133396 . 00040491
-,00009191-.00133396-.00009191-.00058873
-1 -1 0 0 0 0
dynm
512 -1 1 0 0 1 1
1 0 0.906308 0 0.422518 1 ¢ 0,
0 1 1 1 L 1 1
100, 100,

—t

stop
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