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ABSTRACT

Two basic procedures may be used for modeling the inelastic behavior

of beams and columns. In the "fiber" type of model, the element cross

section is divided into a number of small areas (fibers), and the behavior

is governed by the stress-strain characteristics of the fiber material.

Detailed and accurate results can be obtained, but the computational cost

is high. In the "section" type of model, inelastic behavior is defined

for the cross section as a whole, not for individual fibers. Action

deformation relationships for the cross section must be devised, consider

ing the stress-strain characteristics of the cross section material.

Models of this type are less accurate than fiber models, but more effi

cient computationally.

The purpose of the research has been to explore in depth the theory

and computational techniques for the "section" type of model. In develop

ing the model, inelastic interaction between bending moments, torque and

axial force has been considered by means of yield interaction surfaces

and a flow-rule type of plasticity theory. Emphasis has been placed on

the ability to consider arbitrary loading-unloading cycles of the type

likely to be induced by an earthquake. The study has considered both

stable hysteretic action-deformation characteristics and relationships

involving stiffness degradation.

Three separate inelastic beam-column elements, which share similar

concepts, have been developed, as follows.

(a) An element with distributed plasticity and nondegrading stiffness,

for the computer programs ANSR and WIPS. This element is most

suitable for modeling inelastic behavior in piping systems.



(b) An element with lumped plasticity and nondegrading stiffness, for

the ANSR program. This element is most suitable for modeling

inelastic steel beams and columns in buildings.

(c) An element with lumped plasticity and degrading stiffness, for the

ANSR program. This element is most suitable for modeling inelastic

reinforced concrete beams and columns in buildings.

The theory and computational procedure are described in detail for each

element.

Five example structures have been analyzed to test the elements and

to assess their acceptability for different applications. The examples

include a steel tubular beam-column; a steel tubular braced frame; a

reinforced concrete cantilever beam under biaxial bending; a reinforced

concrete frame subjected to earthquake excitation; and a pipe undergoing

large displacements following pipe rupture.
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AI. INTRODUCTION

Al.l GENERAL

In frame structures the multi-dimensional motion of an earthquake has its greatest effect

on column loading. The columns, especially those at the building corners, are subjected to

biaxial bending from combined longitudinal, transverse, and torsional motion of the structure,

with added axial loads due to overturning. It is well known that the bending strength in any

particular direction is decreased by the existence of a simultaneous moment along another axis.

Recently, a number of papers have been published on the earthquake damage to building struc

tures during the 1971 San Fernando earthquake. In these studies, the effect of two-dimensional

earthquake motion on the response of structural members was recognized to be substantially

more significant than had been previously anticipated [14,15,16,18,29].

In order to obtain true evaluations of seismic safety, strong motion response analyses

which consider the dynamic structural properties in the inelastic range are essential. Such ana

lyses must be able to trace the damage process of the structural members in detail. A detailed

analysis of the dynamic evolution of a structure subjected to intense ground motion requires

realistic modeling of the restoring force characteristics of the constituent members. One of the

difficulties in this regard is the idealization of the three-dimensional interaction of the restoring

forces in members subjected to biaxial bending with varying axial force. An identification of

the characteristics of this class of dynamic behavior is important to the understanding of the

nature of severe damage in structures of a variety of types.

Two basic procedures may be used for modeling the inelastic behavior of beams and

columns. In the "fiber" type of model, the member cross section is divided into a number of

small areas (fibers). Each area is assumed to be uniaxially stressed and to have behavior

governed by the hysteretic stress-strain characteristics of the material it stimulates. Detailed

and accurate results can be obtained from models of this type, but the computational effort

required makes them expensive for practical application. In the "section" type of model, it is

Preceding page blank 3



assumed that inelastic behavior is defined for the cross section as a whole, not for individual

fibers. Force-deformation relationships for the cross section must be specified, each governed

by the cross section dimensions and the hysteretic force-deformation characteristics of the

member material. Models of this type tend to be more difficult to use and less accurate than

fiber models, but more efficient computationally. The research described in this report has

been concerned only with the "section" type of model.

There are two basic approaches used in modeling the inelastic behavior of a structural ele

ment using a "section" model, as follows.

(a) "Distributed" Plasticity Approach:

It is assumed that yielding is distributed over the element length. The structural charac

teristics of the element are calculated by assuming a displaced shape for the element axis,

with internal forces calculated at various sections from the resulting curvatures and axial

strains. The element stiffness is then determined by integrating along the element.

Mutli-dimensional action-deformation relationships must be specified for the cross sec

tions, so that the effects of interaction among bending moment, axial force, and other

actions can be taken into account. These relationships will be in terms of action quanti

ties, such as moment and axial force, and deformation quantities, such as curvature and

axial strain.

(b) "Lumped" Plasticity (Plastic Hinge) Approach:

Yield is assumed to take place only at generalized plastic hinges of zero length, and the

beam between hinges is assumed to remain linearly elastic. In this approach, multi

dimensional action-deformation relationships must be specified for the hinges, in terms of

moment and axial force actions, as before, but with deformations such as hinge rotations

and axial extensions.

Lumped plasticity models are particularly suitable for the analysis of building frames

under seismic loads, because plastic action in such structures is usually confined to small

regions at the beam and column ends. The distributed plasticity approach tends to be

4



preferable for structures in which the plastic zone locations are not known in advance. A par

ticular application is the analysis of pipe whip, in which a plastic wave may move along the pipe.

A1.2 HISTORICAL BACKGROUND

Many studies of inelastic frames under earthquake forces have been described in recent

years. Comprehensive surveys of early investigations of plane frames have been provided by

Powell [1] and Otani [2]. A brief history of more recent studies is presented here.

The action-deformation relationships assigned to a member can have a significant

influence on the calculated response. As a result, nonlinear analysis has concentrated on the

modeling of stiffness changes in the members and the establishment of realistic hysteretic

behavior.

Hidalgo and Clough [3] investigated a number of analytical models for the response pred

iction of a two-story, single bay frame, which they also tested on a shaking table. Starting with

a two-component, elasto-plastic element, they attempted to improve the correlation between

analysis and experiment by adding degradation effects to the model. One method of including

degradation effects was to impose empirical changes in the value of the elastic modulus at

specified times during the excitation. A second technique was based on degradation of the gen

eralized stiffness of the first mode of vibration of the structure. Although these techniques can

provide accurate results for specific frames, they are not convenient for general purpose applica

tion.

Takeda [4] examined the experimental results from cyclic loading of a series of reinforced

concrete connections, and proposed a hysteresis model which was in agreement with these

results. Several investigators have used this model, in both its original and modified forms.

Litton [5] adopted a modified Takeda model for a reinforced concrete beam element for the

DRAIN-2D computer program. This element consists of an elastic beam element with inelastic

rotational springs at each end. A similar type of element has been suggested by Otani [6]. This

element consists of a bilinear beam element with an inelastic rotational spring and a rigid link at

5



each end. Neither of these models considered biaxial interaction effects.

Riahi and Powell [7] have described a 3D beam-column element and incorporated it into

the ANSR [8,9] computer program. The element is assumed to be made up of three parallel

components, two elasto-plastic components to represent yielding and one elastic component to

model strain hardening. Interaction for biaxial bending and axial force are considered, but the

element does not have stiffness degrading characteristics.

Takizawa and Aoyama [lO] have developed the basic formulation for a reinforced con

crete column model acted upon by biaxial bending moments. This model incorporates a two

dimensional extension of various nonlinear models for one-dimensional response analysis, in

particular a degrading trilinear stiffness model. The theory demonstrates how degradation

effects can be considered, but it does not account for axial forces and was not applied in a com

plete beam-column element.

Morris [lI] presented a procedure for three-dimensional frames by employing an approxi

mate interaction equation by Tebedge and Chen [l2] for I section columns under biaxial bend

ing. However, complete loading-unloading cycles and hysteretic behavior at the plastic hinges

were not studied. Uzgider [13] adapted this method to study the hysteretic behavior at plastic

hinges for three-dimensional dynamically loaded frames. The elasto-plastic action-deformation

relationship at the ends of the frame member was represented by an equation which

corresponds essentially to the inverse of the Ramberg-Osgood representation. Inelastic interac

tion of biaxial end moments and axial force was included.

A1.3 SCOPE OF STUDY

The purpose of the study described in this thesis has been to explore in depth the theory

and computational techniques for the "section" type of model, considering both the distributed

plasticity and lumped plasticity approaches. In developing the model, inelastic interaction

between bending moments, torque and axial force was considered by means of yield interaction

surfaces and a flow-rule type of plasticity theory. Emphasis has been placed on the ability to

6



consider arbitrary loading-unloading cycles of the type likely to be induced by an earthquake.

The study has considered both stable hysteretic action-deformation characteristics and relation

ships involving stiffness degradation.

Three separate inelastic beam-column elements, which share similar concepts, have been

developed, as follows.

(a) An element with distributed plasticity and nondegrading stiffness has been developed and

incorporated into the computer programs ANSR [8,9] and WIPS [31]. This element is

most suitable for modeling inelastic behavior in piping systems.

(b) An element with lumped plasticity and nondegrading stiffness has been developed and

incorporated into the computer program ANSR. This element is most suitable for model

ing inelastic steel beams and columns in buildings.

(c) An element with lumped plasticity and degrading stiffness has been developed and incor

porated into ANSR. This element is most suitable for modeling inelastic reinforced con

crete beams and columns in buildings.

AI,4 REPORT LAYOUT

Sections B, C, and D are self-contained reports, one for each of the three elements.

Examples using all three of the elements and general conclusions are contained in Section E.

7





B. DISTRIBUTED PLASTICITY BEAM-COLUMN ELEMENT
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Bl INTRODUCTION

The beam type element provides a more economical means of modeling inelastic pipe

behavior than the pipe type element.

In the pipe element, the stress-strain relationship for the pipe material is specified. The

inelastic material behavior is then monitored at several points on the pipe cross section, and the

moment-curvature and torque-twist relationships are calculated by the computer code. In the

beam element, the moment-curvature and torque-twist relationships must be specified by the

analyst, and the inelastic behavior is monitored for the cross section as a whole, not at indivi

dual points. The beam element is more efficient computationally, but it is likely to be less

accurate than the pipe element, and less information is calculated on the stresses and strains in

the pipe. Only straight beam elements are permitted, and preliminary calculation is required to

determined the moment-curvature and torque-twist relationships.

The essential features of the element are as follows:

(1) The element may be arbitrarily oriented in space, but it must be straight. Elbows can be

approximated using a number of straight elements.

(2) The element is an inelastic beam-column. Inelastic behavior is defined using stress

resultant-strain resultant (e.g. moment-curvature) relationships.

0) Multilinear stress resultant-strain resultant relationships may be specified. Kinematic

strain hardening is assumed for cyclic loading. Strain rate effects may be considered if

desired.

(4) Interaction between bending moments, torque and axial force is considered by means of

yield interaction surfaces. The kinematic hardening rule corresponds to translation of the

yield surface without change of size or shape.

(5) The effects of cross section availing and internal pressure cannot be considered directly.

If these effects are important, they must be reflected in the stress resultant-strain resultant

11 Preceding page blank



relationships.

(6) Cross section plasticity is monitored at two cross sections in the element and is assumed

to be distributed over the element length. Element lengths, must be chosen so that yield

ing takes place more or less uniformly over the length of any element (i.e. is not concen

trated in short plastic hinge regions at the element ends).

(7) Large displacement effects may be considered, if desired, using an engineering theory (Le.

not a consistent continuum mechanics approach).

A general description of the element properties is presented in Se~tion B2. Theoretical details

are presented in Sections B3 and B4. Details of the computer logic are described in Section B5.

An element lJ,se:c &;uic.e for the ANSR program is presented in Section B6.

12



B2 ELEMENT PROPERTIES

B2.1 AXES

Element properties and results are specified in the local coordinate system x,y,Z, defined

as shown in Fig. B2.1. If node K is not specified, its location is assumed as follows.

(a) If IJ is not vertical, node K is at Y = +00. The xy plane is then the vertical plane con

taining the element.

(b) If IJ is vertical, node K is at X = +00. The xy plane is then parallel to the XY plane.

B2.2 MODELING OF INELASTIC BEHAVIOR

B2.2.1 General

It is assumed that yielding is distributed over the element. To satisfy this assumption in

regions of large moment gradient, it will generally be necessary to specify fairly short elements.

Yielding is monitored at two cross sections in the element, located at the Gauss points

(Fig. B2.1). Tangent stiffness relationships between the stress and strain resultants at the

Gauss points are modeled using a plasticity theory similar to the Mroz theory for yield of

metals. The element stiffness is then determined by Gauss integration (i.e. the conventional

finite element technique).

B2.2.2 Section Properties

The relationships between actions (stress resultants) and deformations (strain resultants)

must be specified for the cross sections at the Gauss points. The relationships at the two points

in any element will typically be the same, but may be different if desired.

Relationships must be specified as shown in Fig. B2.2 for each of four action-deformation

pairs, namely (1) bending moment, My, and corresponding curvature, ljJ y; (2) bending

moment, Mz , and corresponding curvature, ljJ z; (3) torque, M.'O and corresponding rate of

twist, ljJ x; and (4) axial force, F, and corresponding strain, E. Each relationship may have up to
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four linear segments, as shown. The relationships may be of different shape for each stress

resultant. For example, for material with an elastic-perfectly-plastic stress-strain relationship,

the torque-twist and force-extension relationships will also be elastic-perfectly-plastic, whereas

the moment-curvature relationships will exhibit strain hardening behavior (Fig. B2.3). It is

necessary, however, for the deformation values at changes in stiffness to have the same ratios

for all relationships, as shown in Fig. B2.2. This restriction is necessary to avoid inconsistencies

in the plasticity theory, as explained later.

The relationships between actions and deformations may be determined by separate

analysis or may be obtained from experiments. If beam elements are used to represent pipe

elbows, the relationships should account for ovalling effects.

B2.2.3 Interaction Surface for First Yield

The actions My, M z, M x, and F interact with each other to produce initial yield of the

cross section. For modeling of pipes, the influence of axial force on yield will usually be small

and can be ignored. For other applications, however, all four actions may have significant

effects. Because the beam element is not intended only for piping, a general theoretical formu

lation is used. For the special case of piping, it is recommended that the influence of axial

force on yield be eliminated by specifying a very large value of SuI (Fig. B2.2) for axial effects.

The interaction effect is determined by an interaction surface (yield surface). To allow for

a variety of applications, provision is made in the theory for five different interaction surfaces.

These surfaces are all four-dimensional (j.e. My, Mz, Mx , and F), and hence cannot be shown

easily using diagrams. The surfaces differ, however, mainly in the way in which the axial force

interacts with the three moments. Hence, the differences can be illustrated using the three

dimensional diagrams in Fig. B2.4. In these figures, the M i and M j axes indicate any two of

the moments, and the Faxis indicates axial force. The equations defining the interaction sur

faces are shown in the figure.

Surface 1 is elliptical and is the simplest mathematically. Surfaces 2, 3, and 4 allow more
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realistic modeling of moment-force interaction for cases in which axial force effects are substan

tial. For all of these four surfaces, the interaction among My, M z, and Mx is elliptical, and

only the force-moment interaction changes. For piping, the influence of axial force on yield

can be ignored, and hence the four surfaces are the same for practical purposes. Interaction

surface 5 is of a different form than the other four and is included for greater generality in spe

cial cases. For piping, it is recommended that interaction surface 1 be specified, with a very

large value for yield under axial force.

B2.2.4 Interaction Surfaces for Subsequent Yield

For modeling a slice with nonlinear material properties, it is assumed that the behavior is

elastic-plastic-strain-hardening, as shown in Fig. B2.5. First yield is governed by the initial yield

surface; and for each change of stiffness, there is a corresponding "subsequent" yield surface.

These surfaces are assumed to have the same basic form as the surface for first yield. How

ever, because the action-deformation relationships may be of different shape for each action,

the surfaces for the first and subsequent yield will generally not have identical actual shapes.

An example in 2D stress resultant space is shown in Fig. B2.5. In this example, yield surfaces

considering axial force and moment are produced from corresponding force-strain and

moment-curvature relationships.

B2.2.5 Elastic and Plastic Stiffnesses

The initial slopes, K j, for the action-deformation relationships are defined as the elastic

stiffnesses and are expressed as:

K se = diag [ Ely Elz GJ EA ]

where E = Young's modulus, G = shear modulus, I = flexural inertia, J

(B2.0

torsional inertia,

and A = section area. The slopes of subsequent segments of the action-deformation relation

ships are denoted as K 2, K 3, and K 4 and are defined as the post-yield stiffnesses. They must be

specified to provide appropriate post-yield behavior.

The assumed multi-linear action-deformation relationship for each force component can
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be modeled as a set of springs, consisting of an elastic spring and a series of rigid plastic

springs, as shown in Fig. B2.6. The plastic stiffnesses, K p , of the rigid-plastic springs can be

related to the post-yield stiffness values, K. The relationship between plastic stiffness, K p;, and

post-yield stiffnesses, K; and K;+h can be obtained as:

K;K;+l
K p; =

K;-K;+l

For each rigid plastic spring, a plastic stiffness matrix is defined as:

(B2.2)

(B2.3)Ksp = diag [ KMy KMz KMx KF ]

where KMy, KMz, KMx , and KF are the plastic stiffnesses of the individual action-deformation

relationships, obtained from Eqn. B2.2.

B2.2.6 Hardening Behavior

After first yield, the yield surfaces are assumed to translate in stress resultant space, obey-

ing a kinematic hardening rule (translation without change of shape or size). An extension of

the Mroz theory of material plasticity is used to define the hardening behavior. Because the

interaction surfaces are generally not exactly similar, overlapping of the surfaces can occur (as

described in detail in Section B3.7); and, as a result, the hardening behavior is more complex

than in the basic Mroz theory. For example, in Fig. B2.5b, the current stress resultant point,

A, lies on yield surfaces YS h YS 2, and YS 3. Hence, all three plastic springs (Fig. B2.6) have

yielded, and the direction of plastic flow is a combination of the normal vectors 11 10 !l. 2, and !l. 3.

B2.2.7 Plastic Flow

Interaction among the stress resultants is considered as shown diagrammatically in Fig.

B2.5. Yield begins when the first yield surface is reached. The surface then translates in stress

resultant space, the motion being governed by the plastic flow of this first yield surface. Trans-

lation of the first surface continues until the second surface is reached. Both surfaces then

translate together, governed by a combination of plastic flow on both of the surfaces. For any

yield surface. plastic flow is assumed to take place normal to that surface. If two or more sur-
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faces are moving together, the total plastic deformation is equal to the sum of the individual

plastic deformations for each yield surface, directed along the respective normal directions at

the action point. After some arbitrary amount of plastic deformation, the situation might be as

illustrated in Fig. B2.5b.

On unloading, the elastic stiffness values, K h govern until the first surface is again

reached (Fig. B2.5b). The surface then translates as before.

B2.3 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces

of the joints rather than at the theoretical joint centerlines. This effect can be approximated by

postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. B2.7.

B2.4 INITIAL FORCES

For structures in which static analyses are carried out separately (i.e. outside the ANSR

program), initial member forces may be specified. The sign convention for these forces is as

shown in Fig. B2.8. These forces are not converted to loads on the nodes of the structure but

are simply used to initialize the element end actions. For this reason, initial forces need not

constitute a set of actions in equilibrium. The only effects they have on the behavior of the

system are (a) to influence the onset of plasticity and (b) to affect the geometric stiffnesses.
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B3. THEORY

B3.1 DEGREES OF FREEDOM

The element has two external nodes and two internal Gauss stations, as shown in Fig.

B3.la. The external nodes connect to the complete structure and have six degrees of freedom

each, three global translations and three global rotations. After deletion of the six rigid body

modes for the complete element and transformation to the local element coordinates, the six

deformation degrees of freedom shown in Fig. B3.lb remain.

The transformation from global displacements to element deformations is:

9.!.

in which

vT = [Vh V2, ••• vJ are the element deformations (Fig. B3.lb);

r T = h,r2,'" rd are the global displacements (Fig. B3.1a);

and the transformation 9. is well known.

B3.2 SHAPE FUNCTIONS

(B3.I)

The element slice at each Gauss station has six deformations, namely, axial deformation,

rotational deformation about each of the local x, y, z axes, and shear deformation along the y

and z axes. These deformations are arranged in the vector 1f, where 1fT = [WI> W2, ... , wJ.

The shape functions for a uniform elastic beam are assumed to be applicable, in both the elastic

and yielded states. These shape functions define the deformations at any location as:

1f (x) l! (x) 1: (B3.2)

in which

B ll E I2 0 0 0 0
0 0 B n B 24 0 0

!l ex) 0 0 0 0 1/L 0
0 0 0 0 0 1/L (B3.3)

B Sj B S2 0 0 0 0
0 0 B63 B M 0 0
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and

Bll =

B l2 =

B 23 =

B 24 =

B 51

B 63 =

f3 y =

f3z =

8y

8z

~Tx)

-1_1- (-41 L +6xlL 2_/3/L);
+f3y

-1_1- (-2IL +6xIL 2+f3y/L);
+f3y

-1-
1

- (-4I L +6xIL 2+f3zIL);
+f3z

1 ;f3z (-21 L + 6xlL 2+f3zl L);

f3 y .
2(1 + f3 y) ,

/3z .
B 64 = 2(1 +f3z) ,

12Ely .

GA'L 2 'y

12Elz .

GA'L 2 'z

-f3y •

2(1+f3)'

-f3z .
2(1 + /3 z) ,

[W1(X),W2(X), ... ,W6(X)] = deformations at location x in the element; and

:!. T = [V 1> V 2, . • . , vJ = element deformations defined by Eqn. B3.1.

The slice deformations are simply the deformations at the slice locations.

B3.3 SLICE FLEXIBILITY

B3.3.t General

In one-dimensional stress resultant space, a slice can be modeled as an elastic spring con-

nected in series with rigid-plastic springs (Fig. B2.6). This concept can be expanded to multi-

dimensional space, as follows.

The tangent slice stiffness changes as the cross section yields. For any state of the ele-

ment, a 4 x 4 elastic slice flexibility matrix is first formed, in terms of the section actions

(stress resultants) My, Mz, Mx , and Fx at each Gauss station. This matrix is then modified by

adding in the plastic flexibility on each active yield surface to give a 4 x 4 elasto-plastic slice
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flexibility. This flexibility is inverted to obtain a 4 x 4 slice stiffness (computationally, the

Sherman-Morrison formula rather than inversion is used). This stiffness is then expanded to a

6 x 6 slice stiffness by adding stiffnesses to account for shear deformations along ~he y and z

axes. These stiffnesses are

in which GA;

along the z axis.

Ky GA;

K z GA;

effective shear rigidity along the y axis and GA;

(B3.4)

(B3.5)

effective shear rigidity

In the elasto-plastic state, it is assumed that any deformation increment can be divided

into elastic and plastic parts. That is,

(B3.6)

in which

active yield surface number;

d't!. = total deformation increment;

c&.e = elastic deformation increment; and,

d't!.Pi = plastic deformation increment for each active yield surface.

The slice flexibility relationship can thus be written as:

(B3.7)

in which

[s total slice flexibility;

[se = elastic slice flexibility (diagonal, containing inverses of the elastic stiffnesses,

[sP; = plastic flexibilities of each active yield surface.

It is necessary to determine [sP; for each active yield surface and then sum to obtain the total

plastic flexibility [sP'
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B3.3.2 Yield Function

Each slice is affected by four stress resultants (My, M z, Mx , and F) with four correspond

ing deformations. The behavior is elastic-plastic-strain-hardening for each stress resultant indi

vidually, as shown in Fig. B2.2. Different yield values and stiffnesses may be specified for each

stress resultant.

Initial yield of any slice is governed by a yield function (interaction relationship). Any

one of five different yield functions may be specified, as considered in Section B2. After yield,

each slice follows a kinematic hardening rule (that is, the yield surface translates in stress resul

tant space without change of shape or size). The hardening theory is a modification of the

Mroz theory for plasticity in metals.

B3.3.3 Plastic Flexibility for a Single Yield Surface

Consider a single yield surface. Let §. be the vector of stress resultants, where

(B3.8)

(B3.9)

Assume that the slice is rigid-plastic, and let ~p be the vector of plastic slice deformations.

That is, Wpl = plastic flexural deformation about axis y; wp 2 = plastic flexural deformation

about axis z; Wp 3 = plastic rate of twist about axis x; and Wp4 = plastic rate of extension along

axis x.

A flexibility relationship for the slice is required in the form

d~p = [sp d§.

in which [sp = slice flexibility matrix. The following assumptions are made:

(1) Let 1> be the yield function, as considered in Section B3.3.2. The yield surface translates

in stress resultant space. After some amount of hardening has taken place, the yield func

tion is 1> (§. - f!), where f!. = vector defining the new location of the yield surface origin.

In two-dimensional space, this is illustrated in Fig. B3.2.
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(2) From any given plastic state (Le. a point on the yield surface), any action increment (d~)

will produce increments of deformation (d!y'p) and yield surface translation (d!;!). The

direction of d§ may be arbitrary. It is assumed that the direction of d~p is normal to the

yield surface (i.e. an associated flow rule is assumed). The direction of d!;! is determined

by the hardening rule (as defined later) and is not necessarily parallel to either d§ or d!y'p.

This is illustrated in Fig. B3.2 for a two-dimensional space.

(3) The direction of the outward normal to the yield surface is the gradient of the yield func-

tion. That is,

!l

in which

(B3.10)

yield function gradient; and

11 unit normal vector.

Hence, the deformation increment, d!£p is given by

dw = n'dw'-p - p

in which dwp' = scalar which defines the magnitude of the plastic deformation.

(4) Let the component of d§ in the direction of!l be d~n (Fig. B3.2). Hence,

(5) Assume that d§n and d!y'p are related by

in which

(B3.11)

(B3.12)

(B3.13)

(B3.14)

(B3.15)

is a diagonal matrix of the plastic stiffnesses from the individual action-deformation rela-

tionships for the slice, as defined in Section B2.2.5.
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(6) From the definition of dSn (Eqn. B3.13), it follows that

(B3.16)

Substitute Eqns. B3.14 and B3.12 into Eqn. B3.16 to get

(7) Solve for dv; as

(B3.17)

dw' =p
nT·dS

nT·K 'n_ _ sp_
(B3.18)

(8) Hence, substitute Eqn. B3.18 into Eqn. B3.12 and use Eqn. B3.9 to get

dw =-p
n·n T

T d§. = [sp d§.
n ·K 'n_ _ sp_

(B3.19)

Equation B3.19 is the required plastic flexibility relationship for any active yield surface.

B3.3.4 Elasto-Plastic Flexibility for Multiple Yield Surfaces

The 4 x 4 elasto-plastic flexibility of the slice, Is, follows from Eqn. B3.7 as:

[s = [se + I. [sP/ (B3.20)

where i = active yield surface. The flexibility for any active yield surface, as derived in Section

B3.3.3, can be written as:

n . n T
_I _I

n T . K . n
_I _sp/ _I

in which

!1i = normal vector to the surface; and,

K sp, = plastic stiffness matrix for the surface.

B3.3.5 Relationship to Basic Mroz Theory

(B3.21)

In the special case where the action-deformation relationships for the four actions are all

directly proportional to each other, the yield surfaces are all of the same shape and the plastic

stiffnesses for each active yield surface are in the same proportion. The plastic stiffness matrix

for each active yield surface can then be formed in terms of the elastic stiffness matrix. That
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is,

(B3.22)

where a i defines the plastic stiffness as a proportion of the elastic stiffness. The plastic flexibil-

ity of a slice can then be written as:

1
1 I n· . n

T

[sp = L,. [sp; = L,. -;-,. -n-='i-'K"':::--'.n-.
_/ _e _I

(B3.23)

Because all the yield surfaces are the same shape, the !1i are all the same. Hence, if !1i = !1,

Eqn. B3.23 can be written as:

[Sp (B3.24)

The flexibility given by this equation is the same as that from the basic Mroz material

theory. This shows that the Mroz material theory is a special case of the extended theory

derived here.

B3.4 SLICE STIFFNESS CALCULATION

For a nonlinear slice, a tangent action-deformation relationship is required in the form:

d§. = £SI d'!l.

in which

£SI = tangent stiffness matrix for a slice.

(B3.25)

The procedure used is to develop a tangent flexibility matrix, then invert this flexibility to

obtain the stiffness matrix, £SI' Computationally, the Sherman-Morrison formula is used rather

than direct inversion. The flexibility of any active yield surface is:

n . . n T
_, _I

nT . K . n_, _SPj _,

Define
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The elasto-plastic flexibility can thus be expressed as:

The Sherman-Morrison formula states that:

A-I TA- I
[,4 + Y Y T] -1 = A -1 _ U U

yT,4-1y + I

Application of the formula to the inversion of is gives:

Ct(l-OYlylCt(l-I)
£t = £t(l-I) - T I

YI £t (I-I)YI +

in which , = current highest active yield surface.

£t(l-O is obtained using the recursion relationships:

C 1 - i-I = K_t - Sf! _se

Hence, substitute Eqn. B3.27 into Eqn. B3.30 to get:

(B3.28)

(B3.29)

(B3.30)

(B3.31a)

(B3.3Ib)

(B3.32)

The stiffness £1 is a 4 x 4 matrix. It is expanded to a 6 x 6 matrix by adding the shear

stiffnesses along the y and z axes. The resulting tangent stiffness matrix for the slice, £st, has

the form:

I
e,]) ('7! 12 CrlJ Ctl4 0 0,-, em Cm ['
\--:2J. '--" 124 0 0

/_., -- C/31 e132 em C'34 0 05:~ ~\./
(',<1) C'42 ('143 C'44 0 0 (133.33)

t
II 0 0 0 (;4 I 0." y
0 0 0 0 0 GA'z J

in which
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GA; shear rigidity along the element y axis; and,

GA; = shear rigidity along the element z axis.

B3.S ELEMENT STIFFNESS

The element tangent stiffness matrix is given by

in which

£st = tangent stiffness matrix for an element slice at any point; and,

(B3.34)

B = transformation relating node displacements to slice deformations, defined by Eqn.

B3.2.

The integration is carried out numerically using Gauss quadrature. Hence, tangent stiffnesses

are needed only for the two slices at the Gauss stations.

B3.6 EQUILIBRIUM NODAL LOADS

Nodal loads in equilibrium with the slice actions in any given state are given by

R

in which

(B3.35)

s.T = [SI> S2, S3, S4, Ss, S6]

(i.e. the actions corresponding to the element deformations ~); and the matrix !l is given by

Eqn. B3.2. The integral is evaluated numerically using Gauss quadrature.
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B3.7 HARDENING RULE

B3.7.1 Geometrical Interpretation

The relationship between the actions and deformations at a slice is multi-linear. The

interaction among the stress resultants (My, M z , M x , and F) is defined by the yield interaction

function, as described earlier. After initial yield occurs, the behavior at a slice obeys a

kinematic hardening rule (that is, the yield surface translates in action space without change of

shape or size). The specific rule followed is a modification of the Mroz strain hardening rule

which has been proposed for yield in metals.

B3.7.2 Modified Mroz Hardening Rule

For purposes of illustration, consider a two-dimensional M-F space as shown in Fig.

B3.3a. In this figure, it is assumed that the current state (point P) is on yield surface YS;, and

that loading is taking place towards surface YSj • It is necessary to define the direction in which

surface YS i translates.

As indicated in Fig. B3.3a, corresponding points Pi and Pj can be identified on YS; and

YSj • The relationship between the actions at these two points (~i at Pi and ~j at P) is

obtained as follows.

Figure B3.3b shows a yield surface transformed into a normalized action space. In this

space, surfaces YSi and YSj have identical shapes. Hence, points Pi and Pj coincide. The loca-

tions of Pi and Pj in Fig. B3.3a follow by transforming back to the natural action space. If the

vector of actions at Pi is ~i' it follows that the vector of actions at Pj is given by:

S' = s' (S - a) + a-J _UlJ_1 _I -J

in which

~j = vector of stress resultants at point Pj,

(B3.36)

~i and ~j = vectors defining the current origins, 0; and OJ, of yield surfaces

YS i and YSj , respectively,
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It is assumed that the direction of translation of yield surface YS i is along the line connecting

point Pi to point Pj, as shown in Fig. B3.3a. That is, the direction of motion of surface YS i is

defined by:

in which

da·_I [So - S.)da"-J _I
(B3.37)

da • scalar which defines the magnitude of translation of yield surface YS i ;

d~i = vector defining the incremental shift of the origin of yield surface YSi.

The magnitude of da' is determined as explained in the following section. For the hardening

rule originally formulated by Mroz, all yield surfaces are geometrically similar in natural action

space. The rule then ensures that the surfaces never overlap. For the modified Mroz rule, the

yield surfaces are assumed to be geometrically similar only in normalized action space. As a

result, overlapping of yield surfaces is allowed. This aspect of the model is considered further

in a later section.

B3.7.3 Mathematical Formulation

Substitute Eqn. B3.36 in Eqn. B3.37 to get:

(B3.38)

The usual normality rule for plastic flow is assumed. That is, the plastic deformation incre-

ment, d!fp, is assumed to be directed along the outward normal to the yield surface at point Pi'

The yield surface can be defined by:

The requirement that the action point remain on the yield surface is:

d~ = 0 = ,/,. T. dS. - ,/,. T. da·
~,s _, ::t!..,S _,

Substitute Eqns. B3.37 and B3.38 into Eqn. B3.40 to get:

(B3.39)

(B3.40)

da"
~,q(~Uij - D~i - (~Ulj~i - ~j)]
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Hence, substitute Eqn. B3.41 into Eqn. B3.37 to get dQ.i as:

[ (§.Ui)-D§.i - (§.Ui}Q.i-Q.) ].<2.,;d§.i

.<2.I[ (§.Ui)-D§.i - (§.Ui}Q.i - Q.j) ]
(B3.42)

For any current state, defined by §.i' Q.i' and Q.j, Eqn. B3.42 defines, for an action increment

d§.i' the translation of yield surface YS i for loading towards surface YSj •

B3.7.4 Last Yield Surface

For the case when the action point lies on the largest yield surface, the hardening rule can

be obtained by assuming that an additional infinitely large yield surface exists. The direction of

translation for this case is then along the radial direction connecting the origin of the current

yield surface to the current action point. This is exactly Ziegler's hardening rule. It can be

expressed as:

dQ.n

in which

n = number of largest yield surface;

(B3.43)

da· = scalar which defines the magnitude of translation of the yield surface, as before;

Q.n = vector defining the yield surface origin;

dQ.n = vector defining the incremental shift of the origin.

For this case, Eqn. B3.42 becomes:

B3.7.S Overlapping of Yield Surfaces

(Sn-Q.n).<2.'; . d§.n

.<2.,;(§.n-Q.n)
(B3.44)

In the original Mroz hardening rule, it is assumed that the yield surface, YSh is geometri-

cally similar to the yield surface YSj . This assumption is reasonable for metal plasticity in stress

space because it is reasonable to assume as isotropic material. However, for dealing with stress

resultants, each action-deformation relationship (My-l/J y' Mz-l/J z' Mx-l/J x' and F-e), depends
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on the cross section shape in a different way, and the behavior is not isotropic in action space.

That is, the yield surfaces will, in general, not be geometrically similar. The authors have con-

sidered a number of strategies in an attempt to obtain "correct" behavior while preventing yield

surface overlap. None of these strategies proved satisfactory, and it was finally concluded that

overlapping should be allowed.

B3.8 PLASTIC DEFORMATIONS

The equations for calculation of plastic strain resultants are derived as follows. The defor-

mation increment for a slice is given by:

dw

in which

[se d§ + dJf.p (B3.45)

d:!!.p Ld:!!.Pi is the increment of plastic deformation, summed over all active yield sur-
i

faces.

Premultiply Eqn. B3.45 by [sp Kse to get:

in which

[sp d§ + [sp K se dJf.p (B3.46)

[sp L [sp is the plastic flexibility of the slice; and,
I

i

[spd§

Substitute Eqn. B3.47 into Eqn. B3.46 to get:

(B3.47)

(B3.48)

From Eqn. B3.48, the plastic deformation increments can be obtained in terms of the total

deformation increment as:

(B3.49)

B3.9 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuing plastic flow to be distinguished from

elastic unloading, for any current plastic state and any specified deformation increment. Two
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procedures are of general applicability, as follows.

0) Postulate that the slice has unloaded an infinitesimal amount, so that the current state lies

just within the yield surface. Calculate the elastic action increment, ~e, corresponding to

the specified deformation increment. If the state moves outside the yield surface, the

assumed elastic state is incorrect, indicating continuing plastic flow. If the state moves

within the yield surface, the elastic assumption is correct, indicating unloading.

(2) For the specified deformation increment, calculate the magnitude parameter for the plastic

deformation increment. A positive magnitude indicates continuing plastic flow, and a

negative magnitude indicates unloading.

By the first of these two procedures, continued loading on yield surface i is indicated if d§.e has

a positive component along the outward normal, !1i, of the yield surface. That is, continued

loading occurs if

!J.l· ~e ~ 0 (B3.50)

To consider the second procedure, first assume that the current plastic flow directions of

all active yield surfaces are the same (that is, !1i = !J. for all i). Hence, the plastic deformation

increment for the slice is given by:

d!j!,p = !1 dwp'

Premultiply Eqn. B3.45 by !1 T •[sp' Kse to get:

(B3.51)

dw' =p
!J.T[spKsed!j!,

l+n T .[ ·K 'n_ sp _se _
(B3.52)

Substitute Eqn. B3.21 into Eqn. B3.52 to get:

in which '\ and '2 are scalars defined as follows:
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Because the matrices KSPi and Kse are always positive definite, the scalars r1 and r2 always

exceed zero. Hence, the sign of dw; is the same as the sign of !J. T. d§e' This is the same cri

terion as Eqn. B3.50.

In general, the plastic flow directions for the active yield surfaces are not the same.

Hence, it is possible for !J.ld§e to be greater than zero for some yield surfaces and less than

zero for others (i.e. continued loading on some, but unloading on others). This possibility is

illustrated in Fig. B3.4. For computation, it is assumed that unloading is governed by the

highest active yield surface. If unloading occurs on this surface, unloading is assumed to occur

on all active surfaces. If the situation happens to be as shown in Fig. B3.4 (which is unlikely),

reloading will immediately occur on one or more of the lower yield surfaces, and the analysis

will continue.

B3.10 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces

of the joints rather than at the theoretical joint centerlines. This effect can be approximated by

postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. B2.7. The displacement transformation relating the increments of node displace

ments, d!.u, to increments of displacement at the element ends is easily established and can be

written as:

d!. = Qe d!.u (B3.56)

This transformation is used to modify the stiffness and state determination calculations to allow

for end eccentricity effects.

B3.11 TOLERANCE FOR STIFFNESS REFORMULATION

Each time a new hinge yields or an existing hinge unloads, the element stiffness changes.

Moreover, because the direction of plastic flow may change, the stiffness of a yielding element

will generally change continuously. The change in stiffness results from differences in the

directions of the normal to the yield surface as the actions at the hinge change. If the angle

33



change is small, the change in stiffness will be small and can be neglected to avoid recalculating

the stiffness. In the computer program, an option is provided for the user to set a tolerance for

the angle. If a nonzero tolerance is specified, the element stiffness is reformed only when the

change in state is such that the angle between the current yield surface normal and that when

the stiffness was last reformed exceeds the tolerance. A tolerance of about 0.1 radians is

recommended.
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B4. STRAIN RATE EFFECTS

B4.1 GENERAL

The mathematical formulation for an element slice with rate-independent elasto-plastic

behavior was presented in the preceding chapter. An extension to include strain rate effects is

presented in this chapter.

A physical model for a slice is first constructed for one-dimensional behavior. This model

is then generalized for the multi-dimensional case.

B4.2 MODELING OF STRAIN RATE EFFECTS

B4.2.1 Physical Model

In one dimension, elasto-plastic-strain-hardening behavior can be modeled using a linear

spring in series with a number of rigid-plastic springs (Fig. B2.6). To include strain rate effects,

a dashpot is added to the assemblage as shown in Fig. B4.1. With this model, the elastic

behavior is independent of the strain rate, but the post-yield resistance is the sum of the static

resistance plus that of the dashpot. The dashpot resistance depends on its stiffness and on the

plastic strain rate in the material.

B4.2.2 Dashpot Properties

In order to establish a stiffness coefficient for the dashpot, information is needed on the

strength increase of the element for different plastic deformation rates. If the physical model

represents steel loaded in uniaxial tension or compression, the dashpot coefficient can be

obtained from test results measuring the strength of the steel as a function of strain rate.

Although the plastic strain rate is not necessarily equal to the total strain rate, the two will be

essentially equal as the maximum strength is approached. Hence, a graph of strength increase

versus total strain rate can, for practical purposes, be assumed to be the same as a graph of

strength increase versus plastic strain rate. Such a graph might be as shown in Fig. B4.2.
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For numerical analysis, the graph is assumed to be approximated by linear segments, as

shown in Fig. B4.2. The relationship between force in the dashpot and the dashpot deformation

rate can be written, for any linear segment, as:

(B4.l)

in which

dSd = increment in dashpot force;

dwp = increment in dashpot deformation rate; and

C, = slope of segment.

For application to the beam element, this concept is generalized to the multi-dimensional

action-deformation case and implemented numerically.

B4.2.3 Damping Matrix for a Slice

For a slice of a beam element, a relationship in the form of Eqn. B4.1 is required, relating

damping action increments to corresponding increments of plastic deformation rate. That is,

the relationship must be in the form:

(B4.2)

in which

d~d = vector of damping action increments;

d11:.p = vector of plastic deformation rate increments corresponding to d~d; and

S;, = diagonal matrix containing the slopes of the individual relationships between

action and deformation rate (dashpot coefficient values).

For axial force, F, the strain rate effect is the same as that of the beam material. For

bending moment, however, a somewhat different relationship can be expected, because the

strain rate varies over the cross section as the beam bends (the strain rate effect can thus be

expected to be relatively somewhat less for bending than for axial force). For torque, a

different strain rate effect may also be obtained. because it depends on the relationship between
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shear strength and shear strain rate, which may be different from that for behavior in tension.

In practice, it is unlikely that detailed knowledge of the strain rate effects will be available.

Hence, for simplicity in the theoretical formulation, different dashpot coefficient values are not

allowed for each of the four actions. Instead, a single generalized relationship is used for all

four actions. The relationship is derived as follows.

(1) For the steel of which the pipe is made, first obtain the fF d versus Ep relationship (stress

increase versus strain rate) as in Fig. B4.3.

(2) Reduce to a dimensionless relationship (except for time) by dividing fF d by the yield

stress (or nominal yield stress) of the steel and dividing Ep by the yield strain (yield stress

divided by Young's modulus).

(3) Approximate the relationship by a multi-linear curve. Let the slope of any segment be

c;, a generalized dashpot coefficient relating dimensionless stress to dimensionless strain

rate increment. That is,

(B4.3)

in which fFy = yield stress and E = Young's modulus.

Hence,

dfF d C; E dE p

so that, from Eqns. B4.2 and B4.3,

C, = C; E

(4) Assume that the same dimensionless relationship can be extended to actions and deforma-

tions of a slice, as illustrated in Fig. B4.4. For example, for bending about the z axis,

assume the relationship is:

dMzd = C; Elz dljJz

in which C; is as before. It follows that the matrix ~, is given by:

~, = C; K se
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in which K se = elastic (diagonal) slice stiffness matrix.

B4.3 MATHEMATICAL FORMULATION

B4.3.1 Basic Equations

The equations for strain rate effects are derived as follows.

(1) Force Equilibrium:

~p+~d

in which

dS total action increment;

~e elastic action increment;

~p action increment due to plastic deformation;

d~d = action increment due to strain rate effects.

(2) Deformation Compatibility:

(B4.6)

dw (B4.7)

in which

dY!.e elastic deformation increment;

d~p plastic deformation increment;

dY!.pi plastic deformation increment for active yield surface i; and

= active yield surface number.

(3) Rate Independent Flow Rule:

in which

!1i = normal vector for current active yield surface i; and
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dw; = scalar which defines the magnitude of plastic deformation along the normal

direction of yield surface i.

(4) Step-by-Step Integration:

The dashpot relationship depends on the step-by-step integration rule being used. Two

options have been considered, as follows:

(a) B4.ackwards difference rule:

[
dwp IdS =C~-W_d _r dt -p

in which

[ . I• d}fp .•
Cr K se !l. -;j[ - wp (B4.9a)

fr = diagonal matrix of dashpot coefficients, as defined previously.

(b) Trapezoidal rule:

(B4.9b)

These equations strictly apply only for finite time increments, at. The theory is

developed on terms of dt for consistency with previous equations, but a finite at is used

for actual numerical implementation. The backwards difference rule is used in the follow-

ing derivations and is recommended for use in actual computation.

(5) Plastic Relationships:

n.· nT
d}fp Lisp; d~p L

-, -,
d~p

nT'K ·n·i _, _SP;_I

Define:

isp Lisp;

Hence,

d}fp isp d§.p

(6) Elastic Relationships:

'dS K se d}fe_e

(B4.10)

(B4.11)

(B4.12)
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or

d!£e = [se d§.e (B4.13)

in which K se and [se are the elastic slice stiffness and flexibility matrices, respe.ctively.

B4.3.2 Derivation of Stiffness Equation

Substitute Eqns. B4.11 and B4.13 into Eqn. B4.7 to get:

d!£ = [se d§. + [sp d§.p

Substitute Eqns. B4.6 into Eqn. B4.14 to get:

d!£ = ([se + [sp) d§. - [sp d§.d

Substitute Eqns. B4.9, B4.7, and B4.13 into Eqn. B4.15 and rearrange to get:

(B4.14)

(B4.15)

1
([se + [sp + [sp {;, dt [se) d§.

Substitutve Eqn. B4.5 into Eqn. B4.16 to get:

<J. + [sp {;, ~t) d!£ - [sp {;, l!'P (B4.16)

c'
([se + (I + d;) [sp) d§. = <J. +[sp~, ;t) d!£ - [sp~, l!'p

Premultiply Eqn. B4.17 by ([se + (I + C,/dt}[sp)-l to obtain:

in which

c;) -1 1
([se + (I + dt [sp) (1 + [sp~, dt)

and

(B4.17)

(B4.18)

(B4.19)

(B4.20)

Eqn. B4.18 is the required tangent stiffness relationship for a slice, including the effects of

plastic strain rate. The term ~t is the tangent stiffness of the slice. The term d§.q is an initial

stress effect associated with the strain rate effect. For a finite time step, ilt, an initial stress

term il§.q is included in the element effective load vector for the time step.

When strain rate effects are zero, the terms C; and d§.q become zero, and the relationship

of Eqn. B4.18 becomes the rate-independent relationship:
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in which

B4.3.3 Plastic Deformation

d!i (B4.21)

(84.22)

The plastic deformation increments are obtained as follows. Substitute Eqns. B4.13 and

B4.6 into Eqn. B4.7 to get:

d}!! = [se (d!ip + dfid) + d}!!p

Premultiply Eqn. B4.23 by [sp K se to get:

[sp K se dJY. = [sp d!ip + [sp dfid + [sp K se dJY.p

Substitute Eqns. B4.9 and B4.11 into Eqn. B4.24 and rearrange to obtain:

1
(I +[sp ~r dt +[sp K se ) dJY.p = [sp K se d}!! + [sp ~r!!'p

or

(B4.23)

(B4.24)

(B4.25)

(B4.26)

Eqn. B4.26 gives the plastic deformation increment in terms of the total deformation incre-

ment, including strain rate effects.

B4.4 LOADING/UNLOADING CRITERION

The unloading criterion remains unchanged from the rate-independent case. That is,

!1T· d!ie ~ 0 (B4.27)

indicates continued loading, in which !11 is the normal vector for the highest active yield sur-

face.
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B5. COMPUTER LOGIC

B5.1 STATE DETERMINATION

The state determination calculation for an inelastic element requires evaluation of the

equation

in which

~s

llv

f Ift d)2
o

(B5.I)

~§ = finite action increment for element corresponding to the finite deformation incre-

ment ~)2; and

K t = element tangent stiffness, which in general varies during the increment.

The computation procedure for state determination of the element is as follows:

(I) From the given nodal displacement increments, calculate the element deformation incre-

ments from

(B5.2)

in which

~!. = vector of nodal displacement increments, in global system;

~.!' vector of element deformation increments, in local system; and

~ = displacement transformation matrix.

(2) Calculate the slice deformation increments at the Gauss stations from

in which

~1f slice deformation increment;

~ v element deformation increment; and

B ex) = shape function matrix defined by Eqn. B3.2.
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(3) Perform state determination calculations at each slice, as follows:

(a) Check unloading. If unloading occurs, do elastic state determination. Otherwise,

continue.

(b) Calculate plastic deformation, ~.!!'P' using Eqn. B4.26.

(c) Calculate dashpot forces, ~~d, using Eqn. B4.9.

(d) Calculate total force increments, ~~, using:

~s = K (~w-~w)_ _se _ _p

(e) Calculate plastic force increments, ~~p, using:

(B5.4)

(B5.5)

The new action point, ~p +~~p, must lie on the yield surface. If the error is within

a specified tolerance, the state determination is complete. If the error exceeds the

tolerance. or if a new yield event occurs, the deformation increments are subdivided

into smaller increments. The procedure is described in the following section.

(4) Calculate the internal resisting forces for the element from the slice forces, using

R

in which

S slice force vector; and

(B5.6)

B (x) = strain displacement transformation matrix defined by Eqn. B3.2.

B5.2 YIELD SURFACE TOLERANCE

It is possible for the new action point, calculated assuming constant K/l to lie significantly

outside the current yield surface. This will occur particularly when ~~ and ~£ are distinctly

nonparallel (Fig. B5.0. In this case, the calculation is assumed to be sufficiently accurate, pro-

vided the new action point lies within a tolerance zone (typically 1% of the yield surface size).

If not, ~.!!' is scaled, KI is reformed. and the calculation is repeated for the balance of ~.!!'.
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The scale factor is conveniently determined by the procedure illustrated for M-F space in

Fig. B5.1. In this figure, the current action point is P, and the new action point, obtained by

applying Eqn. B5.4, is at Q. Hardening is affected only by the component of A~ parallel to the

yield surface normal. Hence, the yield surface translates as shown. Point Q lies outside the

new yield surface, the amount being defined by en which is the length of the "radial" error vec

tor, £,. This error must not exceed the allowable tolerance.

Computationally, it is convenient to consider the "tangential" error, £;, which is the length

of vector P'Q. If the yield surface is assumed to be locally quadratic, then

e, .;. 0.5 e,2 (B5.7)

The value of e, is calculated from this equation. If e, is within the allowable tolerance, point Q

is scaled to the new yield surface and the computation continues (this scaling introduces an

error which is assumed to be acceptable). If e, exceeds the allowable tolerance, it is assumed

that er varies linearly with slice deformation. A scale factor to set e, equal to the tolerance is

then calculated using Eqn. B5.7; the A~ and A~ increments are scaled by this factor; and the

new action point is scaled to the yield surface. The slice stiffness is then reformed, and the

process is repeated for the remainder of the deformation increment. If A~ is parallel to ~ -~,

no scaling will be required. If A~ makes a large angle with ~ - f!, the slice deformation incre

ment may be subdivided into several subincrements, depending on the magnitude of Alf and

the value specified for the error tolerance.

The slice deformation increment is also subdivided if a new yield surface is reached. In

this case, the new action point is permitted to go beyond the yield surface by an amount equal

to the allowable radial error. The proportion of the deformation increment required to reach

this state is calculated; the new action point is scaled to the yield surface; the slice stiffness is

reformed; and the calculation proceeds for the remainder of the deformation increment.
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B6. USER GUIDE

3D DISTRIBUTED PLASTICITY BEAM-COLUMN ELEMENT

The ANSR element does not allow for strain rate effects. These effects are considered
only in the WIPS version of the element [31].

B6.1 CONTROL INFORMATION - Two Cards

B6.1.1 First Card

Columns

5(1)

6-10(1)

11-15(1)

16-25 (F)

26-35 (F)

41-80(A)

Note Name

NGR

NELS

MFST

DKO

DKT

GRHED

Data

Element group indicator (= 7) .

Number of elements in group.

Element number of first element in group.
Default = 1.

Initial stiffness damping factor, f3 o.

Tangent stiffness damping factor, f3 T.

Optional group heading.

B6.1.2 Second Cards

Columns

1-5(1)

6-10(1)

11-15(1)

Note Name

NMBT

NECC

NPAT

Data

Number of different strength types (max. 20).
Default = 1.

Number of different end eccentricity types
(max. 15). Default = zero.

Number of different initial force patterns (max.
30). Default = zero.

B6.2 STRENGTH TYPES

NMBT sets of cards.

B6.2.1 Strength Type Number

Columns Note Name

1-5(1)

Data

Strength type number, in sequence beginning
with 1.

B6.2.2 Bending Properties About Local y-axis

Columns Note Name
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1-10(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

71-80(F)

B6.2.3 Bending Properties about Local z-axis

Flexural rigidity (effective elastic EI value, Ell
) about y axis.

Flexural rigidity (EI 2) about y-axis.

Flexural rigidity (EI~ about y-axis.

Flexural rigidity (EIJ about y-axis.

Yield moment (YSl) about y-axis.

Yield moment (YS2) about y-axis.

Yield moment (YS3) about y-axis.

Elastic shear rigidity (GAs) for bending about
y-axis. May be zero.

Columns

1-80(F)

Note Name Data

z-axis bending rigidities, yield moments, and
shear rigidity, in the same sequence as in Card
B6.2.2.

B6.2.4 Torsional Properties

Columns Note Name

1-70(F)

Data

Torsional rigidities (effective GJ) and yield
torques, in same sequence as in Card 5.2(b).

B6.2.5 Axial Properties

Columns Note

1-70(F)

Name Data

Axial rigidities (effective EA) and yield forces,
in the same sequence as in Card 5.2(b).

B6.3 END ECCENTRICITY TYPES

NECC Cards.

Columns

1-5 (I)

6-15 (F)

16-25(F)

26-35 (F)

Note

(1)

Name
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Data

End eccentricity type number, in sequence
beginning with 1.

Xi = X eccentricity at end i.

Xj = X eccentricity at end j.

Yi = Y eccentricity at end i.



36-45 (P)

46-55 (P)

56-65(P)

Yj = Y eccentricity at end j.

Z; = Z eccentricity at end i.

Zj = Z eccentricity at end j.

86.4 INITIAL ELEMENT FORCE PATTERNS

NPAT Cards.

Columns

1-5(1)

6-15(P)

16-25(P)

26-35 (P)

36-45 (P)

46-55 (P)

56-65(P)

Note Name Data

Pattern number, in sequence beginning with 1.

Initial moment Myy at end i.

Initial moment Mzzat end i.

Initial moment M yy at end j.

Initial moment M zz at end j.

Initial axial force, P.

Initial torque, M xx .

86.5 ELEMENT DATA GENERATION

As many sets of c~lfds as needed to generate all elements in group.

86.5.1 Card One

Columns

1-5 (I)

6-10(1)

11-15(1)

16-20(1)

21-25(1)

26-30{l)

31-35(1)

Note

(3)

Name

NODI

NODJ

INC
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Data

Element number, or number of first element in
a sequentially numbered series of elements to
be generated by this card.

Node Number I.

Node Number J.

Node number increment for element genera
tion. Default = 1.

Number of a third node, K, lying in the xy
plane, for definition of the local y axis orienta
tion. Default = automatic orientation of y
axis.

Strength type number at element Gauss point
1. No default.

Strength type number at element Gauss point
2. No default.



36-40(1) End eccentricity type number. Default
end eccentricity.

no

41-45(1)

46-50(1)

51-55(1)

56-60(1)

61-65(1)

66-75 (F)

B6.5.2 Card Two

Columns

1-10(F)

11-20(F)

21·30(F)

31-40(F)

B6,6 NOTES

(4) .

Note Name

Initial force pattern number. Default = no ini
tial forces.

Interaction surface type.

Displacements code:

(a) Blank or zero = small displacements.

(b) 1 = large displacements (engineering
theory).

Large displacement theory code:

(a) Blank or zero = Euler procedure.

(b) 1 = midpoint procedure.

Response output code:

(a) Blank or zero = no response printout.

(b) 1 = response output required.

Stiffness reformulation angle tolerance, a (radi
ans). Default = zero.

Data

Parameter for yield surface type, a \.

Parameter for yield surface type, a 2.

Parameter for yield surface type, a 3.

Parameter for yield surface type, a4-

(1) All eccentricities are measured from the node to the element end (Fig. B2.7), positive in

the positive coordinate directions.

(2) See Fig. B2.8 for the positive directions for initial element actions. Refer to Section B2.4

for a description of the effects of initial element actions.
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(3) Cards must be input in order of increasing element number. Cards for the first and the

last elements must be included (that is, data for these two elements cannot be generated).

Cards may be provided for all elements, in which case each card specifies the data for one

element, and the generation is not used. Alternatively, cards for a series of elements may

be omitted, in which case data for the missing elements is generated as follows:

(a) All missing elements are assigned the same node "K" (NODK), slave nodes (NSI

and NSJ), strength types, end eccentricity type, initial force pattern type, interaction

surface type, codes for large displacements and response output, and stiffness refor

mulation angle tolerance, as those for the element preceding the missing series of

elements.

(b) The node numbers I and J for each missing element are obtained by adding the

increment (INC) to the node numbers of the preceding element. That is,

NODI(N) = NODI(N-I) + INC

NODJ(N) = NODJ(N-I) + INC

The node increment, INC, is the value specified with the element preceding the

missing series of elements.

(4) Refer to Section B3.11 for a description of the stiffness reformulation tolerance.
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C. LUMPED PLASTICITY BEAM-COLUMN ELEMENT
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Cl. INTRODUCTION

The element described in this report is intended primarily for modeling inelastic effects in

steel beams and columns for buildings, with particular emphasis on three-dimensional behavior.

The element takes account of moment-force interaction for columns and of bending moment

interaction for biaxial bending. Yielding is assumed to take place only in concentrated (j.e. zero

length) plastic hinges located at the element ends. The part of the element between the hinges

is assumed to remain linearly elastic.

Initial elastic stiffnesses must be specified for axial extension, torsional twist, and bending

about two axes. Flexural shear deformations and the effects of eccentric end connections can

be considered, if desired. The element strengths may be different at the two ends, and the

elastic stiffnesses can include the effect of varying cross section along the element length.

The essential features of the element are as follows:

(1) The element may be arbitrarily oriented in space but must be straight.

(2) Inelastic behavior is confined to zero-length plastic hinges at the element ends.

(3) The hinges are assumed to have rigid-plastic-strain-hardening behavior. Strain hardening

stiffnesses must be specified for the moment-rotation and force-extension relationships of

the hinges. Multi-linear relationships (max. 4 segments) are assumed.

(4) Interaction between bending moments, torque, and axial force is considered by means of

four-dimensional yield surfaces. A kinematic hardening rule (extended Mroz theory) is

assumed for post-yield behavior (j.e., translation of yield surface without change of size or

shape) .

(5) Options are available for small displacements, second order (P- a) theory and full large

displacement effects. Large displacements are considered using an "engineering" theory

(j.e., not a consistent continuum mechanics approach).
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(6) Eccentric end connections may be specified to model rigid joint regions, and rigid

diaphragm slaving may be specified to model floor slabs.

A general description of the element properties is presented in Chapter C2. Theoretical details

are presented in Chapter C3. Details of the computer logic are described in Chapter C4. An

element user guide for the ANSR program is presented in Chapter C5.
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C2. ELEMENT CHARACTERISTICS AND PROPERTIES

C2.t GENERAL CHARACTERISTICS

The three-dimensional steel beam-column element is formulated to model steel beams

and columns, which exhibit hysteretic behavior when subjected to cyclic loads. Elements may

be arbitrarily oriented in the global XYZ coordinate system. The element properties are

specified in a local xyz coordinate system. The orientations of the local axes are defined as

shown in Fig. C2.la. Node K, together with nodes I and J, defines the plane containing the

local y axis.

Inelastic behavior of the element is governed by axial force, two flexural moments, and

the torsional moment. Yielding may take place only in concentrated plastic hinges at the ele

ment ends. Strain hardening is approximated by assuming that the element consists of a linear

elastic beam element with a nonlinear hinge at each end, as shown in Fig. C2.1b. For analysis,

each hinge is subdivided into a series of subhinges. The action-deformation relationships for

each subhinge are represented by bilinear functions. The bilinear action-deformation relation

ships for a series of subhinges combine to produce a multi-linear function for each complete

hinge, and hence, also multi-linear relationships for the complete element.

The elastic beam properties are defined by an axial stiffness, two flexural stiffnesses, a tor

sional stiffness and two effective shear rigidities (if shear deformation is to be taken into

account). Elements of variable cross section can be considered by specifying appropriate

flexural stiffness and carry-over coefficients, and by using average cross section properties for

the axial and torsional stiffnesses.

For each subhinge, bilinear relationships can be specified separately for moment-rotation

about the element y and z axes, torque-twist, and force-axial extension. Different yield

strengths can be specified at the hinges at each end, if desired.

Interaction among the two bending moments, torsional moment, and axial force at a

hinge is taken into account for determining both initial yield and subsequent plastic flow. The
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force-deformation and interaction relationships will typically be based on observations of the

behavior of steel members loaded by single actions and by multiple actions in combination.

Options are available for small displacements, second order (P-~) theory, and full large

displacement effects. Large displacements are considered using an engineering theory (j.e., not

a consistent continuum mechanics approach). Eccentric end connections and rigid diaphragm

slaving may be specified. Initial element forces may be specified. These initial forces affect ele

ment yield but do not contribute to the nodal loads.

C2.2 AXES

Element properties and results are specified in the local coordinate system x,y,z, defined

as shown in Fig. C2.1. If node K is not specified, its location is assumed as follows.

(a) If IJ is not vertical, node K is at Y = +00. The xy plane is then the vertical plane con

taining the element.

(b) If IJ is vertical, node K is at X = +00. The xy plane is then parallel to the XY plane.

C2.3 MODELING OF INELASTIC BEHAVIOR

C2.3.1 General

Yield is monitored at the potential hinges. Tangent stiffness relationships between the

actions and deformations at a yielding hinge are established using a plasticity theory which is an

extension of the Mroz theory for yield of metals. Each hinge is initially rigid, so that the initial

stiffness of the complete element is the stiffness of the elastic beam. As the moments and

forces at the element ends (the hinge actions) increase, the hinges can yield, causing a stiffness

reduction in the element. Under increasing deformation, the hinges strain harden, following

multi-linear action-deformation relationships. If the actions at a hinge decrease, the hinge

becomes rigid again and the element unloads. The overall element behavior is thus multi

linearly inelastic, as illustrated in Fig. C2.2.
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C2.3.2 Hinge Properties

The rigid-plastic-strain-hardening relationships between hinge actions and deformations

must be defined for the two hinges. The relationships at the two hinges in any elem~nt may be

different, if desired.

Relationships as shown in Fig. C2.3 must be defined for each of four action-deformation

pairs, namely (1) bending moment, My, and corresponding rotation, (J y; (2) bending moment,

Mz, and corresponding rotation, Oz; (3) torque, Mx, and corresponding twist, 1Jx; and (4) axial

force, F.'O and corresponding extension, 8x' Each relationship is rigid-plastic-strain-hardening

and may have up to three linear segments, as shown in Fig. C2.3. The relationships may be of

different shape for each action. For material with an elastic-perfectly-plastic stress-strain rela

tionship, the torque-twist and force-extension relationships will be rigid-perfectly-plastic,

whereas the moment-rotation relationships will usually exhibit strain hardening behavior (Fig.

C2.5). It is required that the deformations at changes in stiffness have the same ratios for all

relationships, as indicated in Fig. C2.2. This restriction is necessary to avoid inconsistencies in

the plasticity theory.

It may be noted that the assumption of a zero-length hinge implies infinitely high strains

as a hinge deforms. This is inherent in any plastic hinge type of theory.

C2.3.3 Interaction Surfaces for First Yield

The actions MY' Mz , Mx> and Fx interact with each other to produce initial yield of the

hinge. The interaction effect is determined by a yield (interaction) surface. To allow for a

variety of applications, provision is made in the theory for five different yield surfaces. These

surfaces are all four-dimensional (i.e., My, Mz , Mx , and F), and hence, cannot be shown

easily using diagrams. The surfaces differ, however, mainly in the way in which the axial force

interacts with the three moments. Hence, the differences can be illustrated using the three

dimensional diagrams in Fig. C2.4. In these figures, the M, and M j axes indicate any two of

the moments, and the Fr: axis indicates axial force. The origin of the yield surface can be
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shifted along the axial force axis, if it is desired to have greater compressive capacity than ten

sion capacity. The F-M interaction surface can then approximate that for a reinforced concrete

column. The equations defining the yield surfaces are shown in the figure.

Surface 1 is elliptical and is the simplest mathematically. Surfaces 2, 3, and 4 allow more

realistic modeling of moment-force interaction for cases in which axial force effects are substan

tial. For all of these four surfaces, the interaction among My, M" and M", is elliptical and only

the force-moment i.nteraction changes. Surface 5 is of a different form than the other four and

is included for greater generality in special cases.

C2.3.4 Interaction Surfaces for Subsequent Yield

For modeling a hinge with nonlinear material properties, it is assumed that the behavior is

rigid-plastic-strain-hardening for each action individually, as shown in Fig. C2.3a. In one

dimension, the rigid-plastic-strain-hardening behavior can be modeled using a series rigid-plastic

subsprings, as shown in Fig. C2.3b. This model can be extended to the multi-dimensional case

using a series of rigid-plastic "subsprings", with the yield of any subhinge governed by a yield

surface. First yield occurs at the first subhinge and is governed by the initial yield surface. For

each change of stiffness, there is a corresponding yield surface, each corresponding to a

subhinge. These surfaces are assumed to have the same basic form as the surface for first

yield. However, because the action-deformation relationships may be of different shape for

each action, the surfaces for the first and subsequent subhinges will not have, in general, ident

ical actual shapes. An example in 2D action space is illustrated in Fig. C2.6.

C2.3.5 Plastic Stiffnesses: Axial Force and Torque

The hinge yield strengths and the plastic stiffnesses of the hinge action-deformation rela

tionships (KpJ, K pb and K p3 in Fig. C2.3) must be specified to provide appropriate post-yield

stiffening of the complete element. The procedure is straight-forward for axial force and torque

but more complex for bending.

Consider axial force, and let the force-extension relationship for the complete element be
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as shown in Fig. C2.7a. The steps are as follows.

(a)

(b)

(d)

(e)

Elastic axial rigidity of beam = EA = KF) . L.

Strength at first yield surface = Fyi.

KF)' K n
Plastic stiffness after first yield surface = K pl = ----=-=-

KFl-Kn '

Strength at yield surface i = Fyi'

PI "ff f . Id f . K K Fi • KFU+1)ashc sh ness a ter Yle sur ace I = pi = K K .
Fi - F(i+l)

The same procedure applies for torque, as follows (Fig. C2. 7c).

(a)

(b)

(d)

Elastic torsional rigidity of beam = GJ = K Tl . L.

Strength at first yield surface = Tyl'

Kn·Kn
Plastic stiffness after first yield surface = K pl =

Kn-Kn '

Strength of yield surface i = Tyj '

K Ti • K TU+1)
Plastic stiffness after yield surface i = K pi = ----

K Ti -K TU +1) .

C2.3.6 Plastic Stiffnesses: Bending

A complication in specifying the flexural plastic stiffnesses arises from the fact that

moment-curvature nonlinearities are modeling using concentrated hinges. In an actual beam

the moment typically varies along the length, and plastic deformations occur over finite regions.

Consequently, the flexural stiffness depends on the moment variation along the beam. In a

concentrated hinge model, it is not possible to account for all possible moment variations; and

hence, assumptions must be made in specifying the hinge properties.

Three options are available in the computer program for assigning bending stiffness pro-

perties to the hinges. The first option is for a uniform beam with essentially constant moment

along the element (Fig. C2.8a). This option is applicable, in general, only for a structure which

is modeled using short beam-column elements, such that the bending moment does not vary
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greatly over a single element. The relationship between bending moment and end rotation for

the initial loading of the element is as shown in Fig. C2.8b. The steps in establishing the hinge

properties are as follows:

(a)

(b)

(d)

Elastic flexural rigidity of beam = El = KM1 . L/2.

Shear rigidity of beam assumed to be infinite (no shear deformations).

Hinge strength at first yield = M yl'

K M1 'KM2
Plastic stiffness after first yield surface = Kpi = K Mi -KM2

.

Strength at yield surface i = My;.

., . .. KMi . KM(;+1)
Plastic stiffness after Yield surface I = Kpi = K K -.

Mi - M(;+J)

The second option is applicable for a uniform beam in which a linear variation of bending

moment can be assumed over the element length, with equal and opposite values at the ends

(Fig. Cl.9a). This option will typically apply for columns in an unbraced frame building. An

equivalent cantilever for each half of the element is used, as shown in Fig. Cl.9b. It is

required that the relationship between the tip load and tip displacement of the cantilever be

known (Fig. C2.9c). This relationship can then be used to obtain hinge stiffness as follows.

(a)

(b)

(c)

(d)

(e)

Elastic flexural rigidity of beam = EI = K IL 3/24.

Shear rigidity of beam assumed to be infinite (no shear deformations).

Hinge strength at first yield = Pyi . Lil.

Strength at yield surface i = Py;' Lil.

(f) Plastic stiffness after yield surface i = K p;
K,·K;+I·L

2(Ki - K,+I) .

For these first two options, the computer program calculates the Kp values, given the moment-

rotation relationships (for Option 1) or load-deflection relationship (for Option 2). The third

78



option provides the user with more flexibility by requiring that the EIIL and K p values be

specified directly. In addition, with this option it is not necessary for the element to be of uni

form section. Flexural stiffness coefficients, K ii , K jj , and Kij, which depend on the variation of

the beam cross section, may be specified (for example, for a uniform element, Kji = K jj = 4.0

and Kij = 2.0). Also, an effective shear stiffness (GA') can be specified.

C2.3.7 Plastic Flow

Interaction among the actions is considered as shown diagrammatically in Fig. C2.6. Yield

begins when the yield surface of the first subhinge is reached. The surface then translates in

action space, the motion being governed by the plastic flow of the first subhinge. Translation of

the first surface continues until the second surface is reached. Both surfaces then translate

together, governed by a combination of plastic flow on both yielded subhinges. For any

subhinge, plastic flow is assumed to take place normal to the yield surface of that subhinge. If

two or more subhinges are yielded, their yield surfaces move together, and the total plastic

deformation is equal to the sum of the individual plastic deformations for each subhinge,

directed along the normal directions of their respective yield surfaces at the action point. After

some arbitrary amount of plastic deformation, the situation might be as illustrated in Fig.

C2.6b.

On unloading, the elastic stiffness values, K j, govern until the yield surface of the first

subhinge is again reached (Fig. C2.6b). The surface then translates as before.

C2.3.8 Hardening Behavior

After first yield, the yield surfaces of the yielded subhinges are assumed to translate in

action space, obeying a kinematic hardening rule (translation without change of shape or size).

An extension of the Mroz theory of material plasticity is used to define the hardening behavior.

Because the yield surfaces of the yielded subhinges are generally not exactly similar, overlap

ping of the surfaces can occur, as described in detail in Section C3.5. As a result, the harden

ing behavior is more complex than in the basic Mroz theory. For example, in Fig. C2.6b, the
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current action point, A, lies on yield surfaces YS J, YS 2, and YS 3. Hence, all three subhinges

(Fig. C2.3b) have yielded, and the direction of plastic flow is a combination of the normal vec

tors fl], fl band fl3' Details of the theory are given in Sections C3.2.S and C3.2.6.

C2,4 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces

of the joints rather than at the theoretical joint centerlines. This effect can be approximated by

postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. C3.5.

C2.5 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that each floor diaphragm

is rigid in its own plane. To introduce this assumption, a master node at the center of mass of

each floor may be specified, as shown in Fig. C3.6. Each master node has only three degrees of

freedom as shown, which are the displacements of the diaphragm horizontally as a rigid body.

If any beam-column member is connected to these master displacements, its behavior depends

partly on these displacements and partly on the displacements which are not affected by the

rigid diaphragm assumption.

C2.6 INITIAL FORCES

For structures in which static analyses are carried out separately (i.e. outside the ANSR

program), initial member forces may be specified. The sign convention for these forces is as

shown in Fig. C2.10. These forces are not converted to loads on the nodes of the structure but

are simply used to initialize the element end actions. For this reason, initial forces need not

constitute a set of actions in equilibrium. The only effects they have on the behavior of the

system are (a) to influence the onset of plasticity and (b) to affect the geometric stiffnesses.
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C3. THEORY

C3.1 DEGREES OF FREEDOM

The element has two external nodes and two internal nodes, as shown in Fig. C3.la. The

external nodes connect to the complete structure and have six degrees of freedom each, namely

X,Y,Z global translations and X,Y,Z, global rotations. After deletion of the six rigid body

modes for the complete element and transformation to local element coordinates, the six defor-

mation degrees of freedom shown in Fig. C3.lb remain. Each hinge has four deformations,

namely an axial deformation plus rotations about each of the local x,y,z axes (j.e., shear defor-

mations in the hinges are zero).

The transformation from global displacements to element deformations is:

a ,

in which

(C3.l)

[vj, V2, , v&]

['j, '2, , '12]

element deformations (Fig. C3.lb);

global displacements (Fig. C3.1a);

and the transformation matrix a is well known.

The vector of degrees of freedom, .!f, for the elastic element (Fig. C3.2a) is defined as:

The complete hinges at ends I and J have degrees of freedom defined by:

and

.!f;E = [( V 2 - W 2) ( v4 - W J (V 5- W 5)" (v 6 - wJ"]

in which Vi' i=I,4 and Wi, i=I,4 are as shown in Fig. C3.la and C3.2a, and in which:

( V 5- w5)' + (v 5 - w5) "

(V6- wJ' + (V6- wJ"

That is, the torsional and axial hinge deformations are shared between the hinges at ends I and

J. The proportions in which the deformations are shared are determined naturally during the
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numerical computation and do not need to be defined in advance. Each complete hinge is

modeled as three subhinges in series (Fig. C3.2b). Each subhinge has four deformation

degrees of freedom ..!fsp, such that the sum of the ..!fsp deformation for the three subhinges gives

the hinge deformation,..!fp' The proportions of any hinge deformation which are contributed by

the separate subhinges are determined automatically during the computation.

C3.2 ELEMENT STIFFNESS

C3.2.t Basic Procedure

The beam element connecting the internal nodes remains elastic, but the tangent

stiffnesses of the hinges may change. For any state of the complete element, a 6 x 6 flexibility

matrix is first formed for the elastic beam in terms of the degrees of freedom WI through W(j.

This matrix is then modified by adding the flexibiJities of the hinges to give a complete element

flexibility matrix in terms of v I through v6. This matrix is inverted to obtain a 6 x 6 element

stiffness (computationally, the Sherman-Morrison formula is used, not direct inversion).

Finally, this stiffness is transformed to the 12 x 12 global stiffness.

C3.2.2 Beam Element Elastic Flexibility

The local y,z axes are assumed to be the principal axes of the beam cross section. The

local x axis is assumed to be both the centroidal axis and the axis of torsional twist.

The beam element stiffness relationships can be written as follows:

IdM
YiI Ely [KliY Kijy] Idw'ldMyj L K ,jy Kjjy dW2

IdMz'l
Elz

[K
llz

K
ijzll

dW3
1dMzj L K,jz Kjjz dW4

d-""f.t
GJ
- dws
L

dFx
EA
- dW6
L
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in which

Kjj,Kij,Kjj flexural stiffness factors;

Ely,Elz effective flexural rigidities;

My,Mz bending moments;

i,j element ends;

Mx torsional moment;

Fx axial force;

L element length;

EA effective axial rigidity; and,

GJ effective torsional rigidity.

The flexural stiffness factors can be used to account for non-uniform elements. For a uniform

element, K j; = K jj = 4.0 and Kij = 2.0.

Equations C3.2a and C3.2b are inverted to obtain flexibilities and are modified, if neces-

sary, to allow for shear deformations by adding the shear flexibility matrices, [sy and [$I' where

1 [1 1]
[s = GA'L 1 1

in which GA' = effective shear rigidity.

C3.2.3 Hinge Plastic Flexibility

(C3.3)

The plastic deformation increment of a hinge is the sum of the deformations of its yielded

subhinges. That is,

in which

1: d~sPj (C3.4)

d~sp; plastic deformations of each subhinge; and

d~p plastic deformation increments of complete hinge.

In multi-dimensional action space, each hinge has a 4 x 4 flexibility matrix in terms of its axial,

torsional, y-flexural, and z-flexural deformations. The flexibility matrix before yield for any

hinge is null (i.e. rigid hinge), and hence, has no effect on the complete element flexibility.

After yield, the hinge flexibility is finite and contributes to the overall element flexibility. The

hinge at end I affects degrees of freedom Vj, V3, Vs, and V6 of the complete element. The hinge
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flexibility coefficients are simply added to corresponding beam coefficients. Similarly, the hinge

at end J affects degrees of freedom V2, V4, Vs, and V6. Although the six deformation degrees of

freedom are largely uncoupled for the elastic beam (Eqn. C3.2), this is not the case after yield.

The complete element flexibility matrix will generally be full (except for zero values for fI4 and

The hinge flexibility, in turn, is the sum of the flexibilities of the yielded subhinges. That

is, a hinge flexibility relationship can be written as:

(C3.5)

in which

[spi plastic flexibility of subhinge i;

[p flexibility matrix for the hinge; and

d§. action increment on the hinge.

The problem thus reduces to the determination of [SPi for each yielded subhinge.

C3.2.4 Yield Function

Each subhinge is effected by four actions (My, M z, Mx , and FJ, with four corresponding

deformations. The behavior is rigid-plastic-strain-hardening for each action individually.

Different yield values and stiffnesses may be specified for each action component.

Yield of any subhinge is governed by a yield function (interaction relationship). Anyone

of five different yield functions may be specified, as considered in Section C2.2.3. After yield,

each subhinge follows a kinematic hardening rule (that is, its yield surface translates in action

space without change of shape or size). The hardening theory is a modification of the Mroz

theory for plasticity in metals.

C3.2.5 Plastic Stiffness Matrix

A plastic stiffness matrix for a subhinge is defined as:
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where K Myi , K Mzi , K Mxi , and K Fxi are the plastic stiffnesses after. yield on surface i from Section

C2.3.6.

C3.2.6 Plastic Flexibility for a Single Subhinge

Consider a single subhinge. Let § be the vector of actions, where

(C3.6)

Assume that the subhinge is rigid-plastic, and let .!!:'sp be the vector of plastic subhinge deforma-

tions. That is, wspl = plastic flexural deformation about axis y; wsp2 = plastic flexural deforma-

tion about axis z; wsp3 = plastic rate of twist about axis x; and W sp4 = plastic rate of extension

along axis x.

A flexibility relationship for the subhinge is required in the form:

d.!!:'sp = [sp d§

in which [sp = subhinge flexibility matrix. The following assumptions are made:

(C3.7)

(1) Let f/J be the yield function, as considered in Section C3.2.4. The yield surface translates

in action space. After some amount of hardening has taken place, the yield function is

f/J (§ - f!), where a = vector defining the new location of the yield surface origin. This is

illustrated in Fig. C3.3 for a two-dimensional space.

(2) From any given plastic state (j.e. a point on the yield surface), any action increment (d§) \

will produce increments of deformation (d.!!:'sp) and yield surface translation (df!). The

direction of d§ may be arbitrary. It is assumed that the direction of d.!!:'sp is normal to the

yield surface (i.e. an associated flow rule is assumed). The direction of df! is determined

by the hardening rule (as defined later) and is not necessarily parallel to either d§ or d.!!:'sp.

This is illustrated in Fig. C3.3 for a two-dimensional space.

(3) The direction of the outward normal to the yield surface is the gradient of the yield func-

tion. Define,

11
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in which

1!-,[ = [Br/J/BMy Br/J/BMz Br/J/BMx Br/J/BF]

yield function gradient; and

!! unit normal vector.

Hence, the deformation increment, d]£sp, is given by:

d]£sp = !! . dws~

in which dws~ = scalar which defines the magnitude of the plastic deformation.

(4) Let the component of d§. in the direction of 11 be d§.n (Fig. C3.3). Hence,

dS = n' (n T • dS)_n _ _ _

(5) Assume that d§.n and d]£sp are related by:

d§.n = Kp dJtsp

in which

(C3.9)

(C3.10)

(C3.10

(C3.12)

(C3.13)

is a diagonal matrix of the plastic stiffnesses from the individual action-deformation rela-

tionships for the subhinge, as defined in Section C2.3.7.

(6) From the definition of d§.n (Eqn. C3.11), it follows that

Substitute Eqns. C3.12 and C3.10 into Eqn. C3.14 to get:

(7) Solve for dWs~ as:

(C3.14)

(C3.IS)

n T . dS
n T • K . n_ _sp_

(C3.16)

(8) Hence, substitute Eqn. C3.l6 into Eqn. C3.10 and use Eqn. C3.7 to get:

d]£sp = (C3.I7)

Equation C3.I7 is the required plastic flexibility relationship for any active subhinge.
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C3.2.7 Plastic Flexibility for Complete Hinge

The 4 x 4 plastic flexibility of the complete hinge, is' follows from Eqn. C3.5 as:

fp = Lisp; CC3.18)

where i = active subhinge. The flexibility for any active subhinge, as derived in Section

C3.2.6, is given by:

in which

isp;
!!.l· K sp;·!!.;

CC3.19)

!!.; = normal vector to the surface; and

Ksp; = plastic stiffness matrix of the subhinge.

C3.2.S Relationship to Basic Mroz Theory

In the special case where the action-deformation relationships for the four actions are all

directly proportional to each other, the yield surfaces are all of the same shape and the plastic

stiffnesses for each active yield surface are in the same proportion. The plastic stiffness matrix

for each active subhinge can then be formed in terms of the elastic stiffness matrix. That is,

Ksp; = a, Ke CC3.20)

where a; defines the plastic stiffness as a proportion of the elastic stiffness. The plastic flexibil-

ity of a complete hinge can then be written as:

[
1 In. nT

D = L,. isp; = L,. -;;;. -n";;;;;'T~~'K-=-~"-n.
_I _e _I

CC3.2D

Because all the yield surfaces are the same shape, the !!., are all the same. Hence, if !!.; = !!.,

Eqn. C3.21 can be written as:

n·n T
CC3.22)

The flexibility given by this equation is the same as that from the basic Mroz material

theory. This shows that the Mroz material theory is a special case of the extended theory

derived here.
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C3.3 ELEMENT STIFFNESS

For the complete element, a tangent action-deformation relationship is required in the

form:

d§ = Ktd}!.

in which!S.t = 6 x 6 tangent stiffness matrix for the element.

(C3.23)

From the preceding derivation, the procedure is to develop the tangent flexibility matrix

and then invert to obtain the stiffness matrix. Computationally, the Sherman-Morrison formula

rather than inversion is used, as follows.

The flexibility of any subhinge is given by:

[SPi

in which

n . . nT
_, _I

(C3.24)

!!.i = normal vector of active yield surface i;

K p1 = plastic stiffness matrix of active yield surface i; and

= active subhinge number.

Define

n·-,
(n T • K .' n)'(,
_I _pi _I

(C3.25)

Expand 8i (4 x 1) to Y.i (6 x 1) by adding two zero terms corresponding to the two flexural

deformations of the hinge at the other end of the element. The tangent flexibility of the com-

plete element can then be expressed as:

[t = [ + ~ u· u T
e LJ_I _,

in which [e is the elastic element flexibility matrix.

The Sherman-Morrison formula states that:

Application of this formula to the inversion of it, gives:
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KtU-J) 'l!.t 'l!.l- Kt([-J)
K t ([- J) - =-~.:.:.-~--=---:::::.....:.---'-

l!.F Kt([_J) 'l!.1 + I

in which

= the current highest active subhinge,

K t1 = [e- 1 = Ke

and K li is obtained using the following recursion relationship,

Kt(i-l) 'l!.i 'l!.lKt(;_J)
K ti = Kt(;_J) ---:T-------

l!.i ' Kt(;_J) 'l!.i + I

Equation C3.28 defines the tangent stiffness matrix for the complete beam element.

C3.4 EQUILIBRIUM NODAL LOADS

(C3,28)

(C3,29)

Nodal loads in equilibrium with the element actions in any given state are given by:

in which

R (C3,30)

S. T [S h S 2, ... , S 6]; and

g displacement transformation matrix relating element deformations to global displacements,

R internal resisting forces for the element;

C3.S HARDENING RULE

C3.S.1 Geometrical Interpretation

The relationship between any action and its corresponding deformation at a subhinge is

multi-linear. The interaction among the actions (My, Mz, Mx , and F) is defined by the yield

surface, as described earlier. After initial yield occurs, the behavior at a subhinge obeys a

modification of the Mrol strain hardening rule for yield in metals [30],

C3.S.2 Modified Mrol Hardening Rule

For purposes of illustration, consider a two-dimensional M-F space, as shown in Fig,

C3.3a. In this figure, it is assumed that the current state (point P;> is on yield surface YS, and

that loading is taking place towards surface YSj . It is necessary to define the direction in which
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surface YSi translates.

As indicated in Fig. C3.3a, "corresponding" points Pi and Pj can be identified on YS i and

YSj . The relationship between the actions at these two points (~i at Pi and ~j at P) is

obtained as follows.

Figure C3.3b shows a yield surface transformed into a normalized action space. In this

space, surfaces YSi and YSj have identical shapes. Hence, points Pi and P j coincide. The loca-

tions of Pi and Pj in Fig. C3.3a follow by transforming back to the natural action space. If the

vector of actions at Pi is ~i' it follows that the vector of actions at Pj is given by:

S· = S .. (S - a) + a .-J _UIj _, _I -J

in which

(C3.3D

~j = vector of actions at point Pj;

~i and ~j = vectors defining the current origins, Oi and OJ, of yield surfaces YS i and

YSj , respectively; and

. [MYUj Mzuj TUJ FUj 1
~Uij = dlag -u. M T -F

yUI zui ui ui

It is assumed that the direction of translation of yield surface YSi is along the line connecting

point Pi to point Pj, as shown in Fig. C3.3a. That is, the direction of motion of surface YSi is

defined by:

(S· - S) da'-J _I

in which

da' scalar which defines the amount of translation of yield surface YS i ; and

d~i = vector defining the direction of translation.

(C3.32)

The magnitude of da' is determined as explained in the next section. For the hardening rule

originally formulated by Mroz [30,33], all yield surfaces are geometrically similar in natural

action space. The rule then ensures that the surfaces never overlap. For the modified Mroz

rule, the yield surfaces are assumed to be geometrically similar only in normalized action space.

As a result, overlapping of" yield surfaces is allowed.
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C3.5.3 Mathematical Formulation

Substitute Eqn. C3.31 into Eqn. C3.32 to get:

d~i = [(~Uij - D ~i - (~Uij ~i - ~)] cia·

The yield surface is defined by:

The requirement that the action point remain on the yield surface is:

d¢ = 0 = 1!..,[ d~i -1!..,[d~i

Substitute Eqns. C3.32 and C3.33 into Eqn. C3.35 to get:

• 1!..,[d~i
da =

1!..,[ [(~uij- D ~i - (~Uij~i-~)]

Hence, substitute Eqn. C3.36 into Eqn. C3.32 to get d~i as:

(C3.33)

(C3.34)

(C3.35)

(C3.36)

da-,
[ (~Uij-D ~i - (~Uij~i -~) ] 1!..,[d~i

1!..J[ (~Uij-D~i - (~Uij~i-~)]
(C3.37)

For any current state defined by ~h ~i, and ~j, Eqn. C3.37 defines, for an action increment

d~i' the translation of yield surface YS i for loading towards surface YSj .

C3.5.4 Last Yield Surface

For the case when the action point lies on the largest yield surface, the hardening rule can

be obtained by assuming that an additional infinitely large yield surface exists. The direction of

translation for this case is then along the radial direction connecting the origin of the current

yield surface to the current action point. This is exactly Ziegler's hardening rule [34]. It can be

expressed as:

(C3.38)

in which

n number of largest yield surface;
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da' = scalar which defines the amount of translation of the yield surface, as before;

5!n = vector defining the yield surface origin; and

d5!n = vector defining the direction of translation.

For this case, Eqn. C3.37 becomes:

C3.5.S Overlapping of Yield Surfaces

(~n - 5!n) 1!..t. d§n

1!., T(§n - 5!n)
(C3.39)

In the original Mroz hardening rule, it is assumed that the yield surface YS; is geometri-

cally similar to the yield surface YSj • This assumption is reasonable for metal plasticity in stress

space because it is reasonable to assume an isotropic material. However, for dealing with stress

resultants, each action-deformation relationship depends on the cross section shape in a

different way, and the behavior is not isotropic in action space. That is, the yield surfaces will,

in general, not be geometrically similar. The authors have considered a number of strategies in

an attempt to obtain "correct" behavior while preventing yield surface overlap. None of these

strategies proved satisfactory, and it was finally concluded that overlapping should be allowed.
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C3.6 PLASTIC DEFORMAnON

The flexibility relationship of the element can be written as:

in which

[e = the element elastic flexibility matrix; and

(C3.40)

d]!p = L d]!pi is the plastic deformation increment summed over all active subhinges.

Premultiply Eqn. C3.40 by [p . K e to get:

[ ·K 'dvp _e _

in which

(C3.4l)

K e = the element elastic stiffness matrix; and

[p = L fpi is the total plastic flexibility (the total of all the current active yield surfaces at

both ends of the element), so that:

[ OdS
p -

Substitute Eqn. C3.42 into Eqn. C3.41 to get:

(C3.42)

[ OK °dvp _e _ (C3.43)

Hence,

dv = (I + [ .K ) -1 [ 0 K 0 dv_p p _e p _e _ (C3.44)

Equation C3.44 gives the plastic deformation increments of the complete element in terms of

the total deformation increments.

C3.7 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuous plastic flow at a subhinge to be dis-

tinguished from elastic unloading for any current plastic state and any specified deformation

increment. Two procedures are of general applicability, as follows.

93



0) Postulate that all subhinges have unloaded an infinitesimal amount, so that the current

state lies just within the yield surface, and the element is elastic. Calculate the elastic

action increments, d~e, corresponding to the specified deformation increments. If the

state for any subhinge moves outside the yield surface, the assumed unloaded state is

incorrect, indicating continuing plastic flow. If the state moves within the yield surface,

the assumption is correct, indicating unloading.

(2) For the specified deformation increment, calculate the magnitude parameter for the plastic

deformation increment of the subhinge. A positive magnitude indicates continuing plastic

flow, and a negative magnitude indicates unloading.

By the first of these two procedures, continued loading of subhinge i is indicated if d§.e

has a positive component along the outward normal, 11;, of the yield surface. That is, continued

loading occurs if

(C3.45)

To consider the second procedure, first assume that the current plastic flow directions of

all active subhinges are the same (that is, 11; = 11 for all j). Hence, the plastic deformation

increment for a complete hinge is given by:

d:£p

Premultiply Eqn. C3.40 by 11 T. [p' K e to get:

n . dv'
- p

(C3.46)

Substitute Eqn. C3.19 into Eqn. C3.47 to get:

• '2!2 T d~e
dvp = 1 + '1

in which '1 and '2 are scalars defined as follows:

L-=---
I !1T'Ksp;'11
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Because the matrices Ksp; and Ke are always positive definite, the scalars , 1 and '2 always

exceed zero. Hence, the sign of dvp' is the same as the sign of !!:. T . d§.e' This is the same cri

terion as Eqn. C3.45.

In general, the plastic flow directions for the active subhinges are not the same. Hence, it

is possible for !1r d§.e to be greater than zero for some subhinges and less than zero for others

(j.e. continued loading on some, but unloading on others). This possibility is illustrated in Fig.

C3.4. For computation, it is assumed that unloading is governed by the highest active subhinge.

If unloading occurs on this subhinge, unloading is assumed to occur on all active subhinges. If

the situation happens to be as shown in Case A of Fig. C3.4 (which is unlikely), reloading will

immediately occur on one or more of the lower subhinges, and the analysis will continue.

Figure C3.4, Case B, illustrates another possible consequence of yield surface overlap. In

this case, unloading occurs from both surfaces, but on reloading the higher yield surface is

reached first. The solution algorithm recognizes this, so that yield occurs at point P, on the

higher yield surface. The lower yield surface is then translated to pass through point P, and the

analysis continues.

C3.8 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces

of the joints rather than at the theoretical joint centerlines. This effect can be approximated by

postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. C3.5. The displacement transformation relating the increments of node displace

ments, din' to increments of displacement at the element ends is easily established, and can be

written as:

di = Eedin (C3.5D

This transformation is used to modify the stiffness and state determination calculations to allow

for end eccentricity effects.
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C3.9 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that each floor diaphragm

is rigid in its own plane. To introduce this assumption, a "master" node at the center of mass

of each floor may be specified, as shown in Fig. C3.6. Each master node has only three degrees

of freedom, as shown, which are the displacements of the diaphragm horizontally as a rigid

body. If any beam-column member is connected to these "master" displacements, its behavior

depends partly on these displacements and partly on the displacements which are not affected

by the rigid diaphragm assumption.

The displacement transformation relating the master (diaphragm) displacements, did, to

the displacements at a "slaved" node is as follows.

!
dr

n1
\ [1 0 dz J jdr

x
\drn3 = 0 1 -dx dry

dr n5 0 0 1 dro

or

d.!..ns = f!.d did

(C3.52a)

(C3.52b)

The "slaved" displacements at element ends i and j can thus be expressed in terms of the dis-

placements at the master node (or nodes). The corresponding coefficients of the element

stiffness matrix are transformed to account for the slaving. The resulting element stiffness

matrix is assembled in terms of the three master degrees of freedom plus the three local

degrees of freedom drn2, drn4, and drn6 at each node, which are not affected by slaving.

C3.tO TOLERANCE FOR STIFFNESS REFORMULATION

Each time a new hinge yields or an existing hinge unloads, the element stiffness changes.

Moreover, because the direction of plastic flow may change, the stiffness of a yielding element

will generally change continuously. The change in stiffness results from differences in the

directions of the normal to the yield surface as the actions at the hinge change. If the angle

change is small, the change in stiffness will be small and can be neglected, to avoid recalculat-

ing the stiffness. In the computer program, an option is provided for the user to set a tolerance
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for the angle. If a nonzero tolerance is specified, the element stiffness is reformed only when

the change in state is such that the angle between the current yield surface normal and that

when the stiffness was last reformed exceeds the tolerance. A tolerance of about 0.1 radians is

recommended.
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C4. COMPUTER LOGIC

C4.1 STATE DETERMINATION

The state determination calculation for an inelastic element requires evaluation of the

equation:

in which

Av

f Krd!!.
o

(C4.1)

6.~ = finite action increment for the element corresponding to the finite deformation

increment 6.!!.; and

K r = element tangent stiffness, which, in general, varies during the increment.

The computational procedure for state determination of the element is as follows.

(1) From the given nodal displacement increment, calculate the element deformation incre-

ment from:

in which

6.v Q . 6.r (C4.2)

6.r vector of nodal displacement increments;

6. v vector of element deformation increments; and

Q = displacement transformation matrix.

(2) Calculate linear action increments for the element from:

and hence determine hinge action increments as:

in which
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il§. = linear action increment for element corresponding to the finite deformation

increment il..!:;

K{ = element tangent stiffness matrix;

il§.h = linear action increments for hinges; and

b = transformation matrix from il§. to il§.h, which is easily formed.

(3) Check for a nonlinear "event" in the current increment, and calculate the corresponding

event factor for each complete hinge. The possible events are as follows:

(a) If the current state is elastic, calculate the proportion of the deformation increment

required to reach the next yield surface. If this proportion is greater than 1.0, the

state continues to be elastic and the event factor is 1.0. Otherwise, an event occurs

and the event factor is set equal to the calculated proportion.

(b) If the current state is plastic, calculate !J.ld§.e' If the value exceeds zero, continued

loading is indicated. The event factor is then calculated for the next yield surface,

allowing a tolerance as described in Section C4.2. Otherwise, unloading occurs. In

this case the stiffness matrix is reformed as the elastic stiffness, and the calculation

proceeds from Step 2.

(4) Calculate the element plastic deformation, il..!:p, using Eqn. C3.44.

(5) Select the smallest event factor, FACM, from the event factors for the two complete

hinges at the element ends.

(6) Use the event factor, FACM, to compute new hinge forces, new total plastic deforma-

tions, and new origins of all subhinges, as

§.h §.h + FACM*il§.h (C4.5)

a· £, + FACM*il£i (C4.6)-'
..!:p ..!:p + FACM*il..!:p (C4.7)

The new action point, §.h, must lie on the yield surface if the subhinge is yielded. If the

action point is not on the yield surface, scale the actions radially back to the yield surface.
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(7) Calculate the complement of the event factor as:

55 = 1. - FACM

(8) Reform the tangent stiffness matrix for the element if any event has occurred.

(C4.8)

(9) If all of the displacement increment for the element has been used up, go to Step 11.

Otherwise, continue to the next step.

(0) Calculate the remaining element displacement increment for the next cycle from:

~v

Then go to Step 2.

(1) Obtain the element actions, s., using:

55· ~v (C4.9)

(2) Calculate the internal resisting force for the element, B., using:

(C4.IO)

R

C4.2 YIELD SURFACE TOLERANCE

(C4.I1)

It is possible for the new action point, calculated assuming constant K r, to lie significantly

outside the current yield surface. This will occur particularly when ~s. and ~~ are distinctly

nonparallel (Fig. C4. 1). In this case, the calculation is assumed to be sufficiently accurate, pro-

vided the new action point lies within a tolerance zone (typically 2%-5% of the yield surface

size). If not, ~..!' is scaled, K{ is reformed, and the calculation is repeated for the balance of

~v.

The scale factor is conveniently determined by the procedure illustrated for M-F space in

Fig. C4.1. In this figure, the current action point is P, and the new action point, obtained by

applying Eqn. C4.3, is at Q. Hardening is affected only by the component of ~s. parallel to the

yield surface normal. Hence, the yield surface translates as shown. Point Q lies outside the

new yield surface, the amount being defined by er , which is the length of the "radial" error vec-

tor, f.r' This error must not exceed the allowable tolerance.
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Computationally, it is convenient to consider the "tangential" error, !l.t, which is the length

of vector P'Q. If the yield surface is assumed to be locally quadratic, then

e, ~ O.5e/ (C4.12)

The value of e, is calculated from this equation. If e, is within the allowable tolerance, point Q

is scaled to the new yield surface and the computation continues (this scaling introduces an

error which is assumed to be acceptable). If e, exceeds the allowable tolerance, it is assumed

that et varies linearly with element deformation. A scale factor to set e, equal to the tolerance

is then calculated using Eqn. C4.12, the Il~ and Il~ increments are scaled by this factor, and

the new action point is scaled to the yield surface. The element stiffness is then reformed, and

the process is repeated for the remainder of the deformation increment. If Il~ is parallel to

~-~, no scaling will be required. If Il~ makes a large angle with ~--~, the deformation incre

ment may be subdivided into several subincrements, depending on the magnitude of Ill: and

the value specified for the error tolerance.

The deformation increment is also subdivided if a new yield surface is reached. In this

case, the new action point is permitted to go beyond the yield surface by an amount equal to

the allowable radial error. The proportion of the deformation increment required to reach this

state is calculated; the new action point is scaled to the yield surface; the stiffness is reformed;

and the calculation proceeds for the remainder of the deformation increment.
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C5. ANSR USER GUIDE

3D STEEL BEAM COLUMN ELEMENT (TYPE 5)

C5.1 CONTROL INFORMAnON - Two Cards

C5.1.1 First Card

Columns

5(1)

6-10{l)

11-15(1)

16-25(F)

26-35 (F)

41-80(A)

Note Name

NGR

NELS

MFST

DKO

DKT

GRHED

Data

Element group indicator (= 5).

Number of elements in group.

Element number of first element in group.
Default = 1.

Initial stiffness damping factor, f3 o.

Tangent stiffness damping factor, f3 T.

Optional group heading.

C5.1.2 Second Cards

Columns

1-5(1)

6-10 (I)

11-15(1)

Note Name

NMBT·

NECC

NPAT

Data

Number of different strength types (max. 20).
Default = 1.

Number of different end eccentricity types
(max. 15). Default = zero.

Number of different initial force patterns (max.
30). Default = zero.

C5.2 STRENGTH TYPES

NMBT sets of cards.

C5.2.1 Strength Option

Columns

1-5 (I)

Note Name Data

Strength type number, in sequence beginning
with 1.
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10(1)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

INPT Input options for element flexural stiffnesses,
as follows. See Section C2.3.5.

(a) INPT = 1: Procedure assuming essentially
uniform bending moment over element length.
Leave rest of this card blank.

(b) INPT=2: Procedure assuming double
cantilever behavior. Leave rest of this card
blank.

(c) INPT=3: General option. Complete rest
of this card.

Coefficient K ii for bending about local y-axis.
Default = 4.

Coefficient Kij for bending about local y-axis.
Default = 2.

Coefficient Kjj for bending about local y-axis.
Default = 4.

Coefficient K;; for bending about local z-axis.
Default = 4.

Coefficient Kij for bending about local z-axis.
Default = 2.

Coefficient K jj for bending about local z-axis.
Default = 4.

C5.2.2 Bending Properties About Local y-axis

(a) OPTN=l: Specify beam moment-rotation relationship. See Fig. C2.8. One card.

Columns Note Name

1-10 (F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

Data

Stiffness K M1 .

Stiffness K M2•

Stiffness K M3•

Stiffness K M4.

Yield moment My I.

Yield moment My2.

Yield moment M y3.
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(b) OPTN=2: Specify cantilever P-B relationship. See Fig. C2.9. One card.

Columns

1-10(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

Note Name

Stiffness K 1.

Stiffness K 2.

Stiffness K 3.

Stiffness K 4-

Yield force Pyl'

Yield force Py2'

Yield force Py3'

Data

(c) OPTN=3: Specify beam elastic stiffness and hinge moment-rotation relationships. Two
cards.

Columns

Card 1

1-10 (F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

71-80(F)

Card 2

1-10(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

Note Name Data

Elastic flexural stiffness, EI/L.

Elastic shear rigidity, GA z , along z-axis (i.e.
shear associated with y-axis bending). If zero,
shear deformation is neglected.

Plastic stiffness Kpi of left-end hinge.

Plastic stiffness K p2 of left-end hinge.

Plastic stiffness K p3 of left-end hinge.

Yield moment MYI of left-end hinge.

Yield moment My 2 of left-end hinge.

Yield moment MY3 of left-end hinge.

Plastic stiffness Kpl of right-end hinge.

Plastic stiffness K p2 of right-end hinge.

Plastic stiffness K p3 of right-end hinge.

Yield moment My I of right-end hinge.

Yield moment M y2 of right-end hinge.
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51-60(F) Yield moment MY3 of right-end hinge.

C5.2.3 Bending Properties About Local z-axis

As for Section C5.2.2, but specify z-axis properties.

C5.2.4 Torsional Properties

Columns Note Name Data

l-lO(F) Torsional stiffness Kn

11-20(F) Torsional stiffness K T2.

21-30(F) Torsional stiffness K n

31-40(F) Torsional stiffness K T4-

41-50(F) Torsional strength Tyl•

51-60(F) Torsional strength Ty2'

61-70(F) Torsional strength Ty3'

C5.2.5 Axial Properties

Columns

1-10(F)

11-20(F)

21-30(F)

31-40(F)

41·50(F)

51-60(F)

61-70(F)

71·80(F)

Note

(0

Name Data

Axial stiffness K n

Axial stiffness K F2-

Axial stiffness K n

Axial stiffness K F4•

Axial strength FyI.

Axial strength Fy2'

Axial strength Fy3'

Axial strength Fy4' Input as a positive value..
Default = Fyi.

C5.3 END ECCENTRICITY TYPES

NECC Cards. See Fig. C3.5

Columns

1-5 (I)

1l·20(F)

Note

(2)

Name Data

End eccentrICIty type number, in sequence
beginning with 1.

Xi = X eccentricity at end i.
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21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

Xj = X eccentricity at end j.

Yi = Y eccentricity at end i.

Yj = Y eccentricity at end j.

Zi = Z eccentricity at end i.

Zj = Z eccentricity at end j.

CS.4 INITIAL ELEMENT FORCE PATTERNS

NPAT Cards.

Columns

1-5(1)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51·60(F)

61-70(F)

Note

(3)

Name Data

Pattern number, in sequence beginning with 1.

Initial moment Myy at end i.

Initial moment M zz at end i.

Initial moment Myy at end j.

Initial moment M zz at end j.

Initial axial force.

Initial torque.

C5.5 ELEMENT DATA GENERATION

As many pairs of cards as needed to generate all elements in group.

Columns

1-5 (I)

6-10(1)

11-15(1)

16-20(1)

21-25(1)

26-30(1)

Note

(4)

Name

NODI

NODJ

INC

NODK

NSI

Data

Element number, or number of first element in
a sequentially numbered series of elements to
be generated by this card.

Node Number I.

Node Number J.

Node number increment for element genera
tion. Default = 1.

Number of a third node, K, lying in the xy
plane, for definition of the local y axis. Default
= automatic orientation of y-axis.

Number of node (diaphragm node) to which
end I is slaved. If not slaved, leave blank.

107



31-35(1) NSJ Number of node to which end J is slaved. For
a description of the slaving procedure, see Sec
tion C3.9.

36-40(1)

41-45(1)

NSTR

IECC

Strength type number.

End eccentricity type number. Default
end eccentricity.

no

46-50(1)

51-55(1)

56-60(1)

61-65(1)

66-70(1)

71-80(F)

CARD 2

1-10(F)

(5)

NIT

KTYP

KGEOM

KSD

KOUT

Initial force pattern number. Default = no ini
tial force.

Interaction surface type:

(a) 1 = yield surface type 1

(b) 2 = yield surface type 2

(c) 3 = yield surface type 3

(d) 4 = yield surface type 4

(e) 5 = yield surface type 5

Large displacement code:

(a) 0 = small displacements

(b) 1 = P-o effect only

(c) 2 = true large displacements

Large displacement procedure code:

(a) 0 = Euler procedure

(b) 1 = Midpoint procedure

The Euler procedure is recommended.

Time history output code:

(a) 1 = output time history results

(b) 0 = no output

Stiffness reformulation angle tolerance (radi
ans).

Parameter, a b in interaction surface equation.
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11-20(F)

21-30(F)

31-40(F)

C5.6 NOTES

Parameter, a2, in interaction surface equation.

Parameter, a 3, in interaction surface equation.

Parameter, a4, in interaction surface equation.

0) The value of Fy 4> as shown in Fig. C2.2, allows the origin of the yield surfaces to be

shifted along the F-axis. The strengths in tension and compression are then different.

(2) All eccentricities are measured from the node to the element end (Fig. C3.5), positive in

the positive coordinate directions.

(3) See Fig. C2.10 for the positive directions of initial element actions. Refer to Section C2.6

for a description of the effects of initial element actions.

(4) Cards must be input in order of increasing element number. Cards for the first and the

last elements must be included (that is, data for these two elements cannot be generated).

Cards may be provided for all elements, in which case each card specifies the data for one

element, and the generation is not used. Alternatively, cards for a series of elements may

be omitted, in which case data for the missing elements is generated as follows:

(a) All missing elements are assigned the same node "K" (NODK), slave nodes (NSI

and NSJ), strength types, end eccentricity type, initial force pattern type, interaction

surface type, codes for large displacements and response output, and stiffness refor

mulation angle tolerance, as those for the element preceding the missing series of

elements.

(b) The node numbers I and J for each missing element are obtained by adding the

increment (INC) to the node numbers of the preceding element. That is,

NODI(N) = NODI(N-l) + INC

NODJ(N) = NODJ(N-l) + INC
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The node increment, INC, is the value specified with the element preceding the

missing series of elements.

(5) Refer to Section C3.l0 for a description of the stiffness reformulation tolerance.
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D. LUMPED PLASTICITY ELEMENT WITH STIFFNESS
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Dl. INTRODUCTION

The element described in this report is intended for modeling inelastic effects in rein

forced concrete beams and columns for buildings, with particular emphasis on three

dimensional behavior. The theory takes account of moment-force interaction, bending moment

interaction for biaxial bending, and stiffness degradation under cyclic loading. Yielding is

assumed to take place only in concentrated (i.e. zero length) plastic hinges located at the ele

ment ends. The part of the element between the hinges is assumed to remain linearly elastic.

Initial elastic stiffnesses must be specified for axial extension, torsional twist, and bending

about two axes. Flexural shear deformations and the effects of eccentric end connections can

be considered, if desired. The element strengths may be different at the two ends, and the

elastic stiffnesses can include the effect of varying cross section along the element length.

The essential features of the element are as follows:

(1) The element may be arbitrarily oriented in space but must be straight.

(2) Inelastic behavior is confined to zero-length plastic hinges at the element ends.

(3) The hinges are assumed to have elastic-plastic-strain-hardening behavior. Strain harden

ing stiffnesses must be specified by moment-rotation and force-extension relationships for

the hinges. Trilinear relationships are assumed.

(4) The stiffnesses of hinges may degrade when reversed loading is applied. The degradation

is controlled by user specified coefficients.

(5) Interaction between bending moments, torque, and axial force is considered by means of

four-dimensional yield surfaces. A kinematic hardening rule (extended Mroz theory) is

assumed for post-yield behavior (translation of yield surface without change of size or

shape) .

(6) Options are available for small displacements and second order (P- .6.) theory.
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(7) Eccentric end connections may be specified to model rigid joint regions, and rigid

diaphragm slaving may be specified to model floor slabs.

A general description of the element characteristics and properties is presented in Section 02.

Theoretical details are presented in Section D3. Details of the computer logic are described in

Section 04. An element user's guide for the ANSR program is presented in Section 05.
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D2. ELEMENT CHARACTERISTICS AND PROPERTIES

D2.1 GENERAL CHARACTERISTICS

The three-dimensional beam-column element with degrading stiffness is formulated to

model reinforced concrete beams and columns, which characteristically exhibit degrading

stiffness properties when subjected to cyclic loads. Elements may be arbitrarily oriented in the

global XYZ coordinate system. The element properties are specified in a local x,y,z coordinate

system. The orientations of the local axes are defined as shown in Fig. D2.1a. Node K,

together with nodes I and J, defines the plane containing the local yaxis.

Inelastic behavior of the element is governed by axial force, two flexural moments, and

the torsional moment. Yielding may take place only in concentrated plastic hinges at the ele

ment ends. Strain hardening and stiffness degradation are approximated by assuming that the

element consists of a linear elastic beam element with a nonlinear hinge at each end, as shown

in Fig. D2.1 b. All plastic deformation effects, including the effects of degrading stiffness, are

introduced by means of the moment-rotation, torque-torsional ·twist, and force-axial extension

relationships for the hinges.

For analysis, each hinge is subdivided into two subhinges which can be identified as

"cracking" and "yielding" subhinges. The action-deformation relationships for each subhinge are

represented by bilinear functions. The bilinear action-deformation relationships for the two

subhinges combine to produce a trilinear function for each complete hinge, and hence, also tri

linear relationships for the complete element.

The elastic beam is defined by an axial stiffness, two flexural stiffnesses, a torsional

stiffness and an effective shear rigidity (if shear deformation is to be taken into account). Ele

ments of variable cross section can be considered by specifying appropriate flexural stiffness

coefficients, and by using average cross section properties for the axial and torsional stiffnesses.

For each subhinge, bilinear relationships can be specified separately for moment-rotation

about the element y and z axes, torque-twist, and force-axial extension. Different yield
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strengths can be specified at the hinges at each end, if desired. Different strengths can also be

specified for axial tension and axial compression.

Interaction among the two bending moments, torsional moment, and axial force at a

hinge are taken into account for determining both initial yield and subsequent plastic flow. The

force-deformation and interaction relationships will typically be based on observations of the

behavior of reinforced concrete columns, considering loading by both single actions and by

multiple actions in combination.

Element deformations are assumed to be small. A true large displacements option is not

available, but p-~ effects can be considered, if desired. Eccentric end connections and rigid

diaphragm slaving may be specified. Initial element forces may be specified. These initial

forces affect element yield but do not contribute to the nodal loads.

D2.2 AXES

Element properties and results are specified in the local coordinate system x,y,z, defined

as shown in Fig. D2.1a. If node K is not specified, its location is assumed as follows.

(a) If IJ is not vertical, node K is at Y = +00. The xy plane is then the vertical plane con

taining the element.

(b) If IJ is vertical, node K is at X = +00. The xy plane is then parallel to the XY plane.

D2.3 MODELING OF INELASTIC BEHAVIOR

D2.3.1 General

Yield is monitored at the potential hinges at the element ends. Each hinge is initially

rigid, so that the initial stiffness of the complete element is the stiffness of the elastic beam.

As the moments and forces at the element ends (the hinge actions) increase, the hinges can

yield, causing a stiffness reduction in the element. The overall element behavior is illustrated

in Fig. 02.2. Under increasing deformation, the hinges strain harden, following trilinear

action-deformation relationships. Tangent stiffness relationships between the actions and defor-
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mations at a yielding hinge are established using a plasticity theory which is an extension of the

Mroz theory for yield of metals. If the actions at a hinge decrease, the hinge unloads, but does

not become rigid again. Instead, an unloading hinge is assigned a finite stiffness based on the

amount of plastic deformation in the hinge. Hence, under cyclic loading the stiffness of the

element degrades. Details of the degrading procedure are described later.

D2.3.2 Hinge Properties

Rigid-plastic-strain-hardening relationships between hinge actions and deformations must

be defined for initial loading of the hinges. The relationships at the two hinges in any element

may be different, if desired.

Relationships as shown in Fig. D2.3 must be defined for each of four action-deformation

pairs, namely (D bending moment, My, and corresponding rotation, () y; (2) bending moment,

Mz , and corresponding rotation, () z; 0) torque, M x , and corresponding twist, 1J x; and (4) axial

force, Fx , and corresponding extension, 8x' The relationships may be of different shape for

each action. For material with an elastic-perfectly-plastic stress-strain relationship, the torque

twist and force-extension relationships will be rigid-perfectly-plastic, whereas the moment

rotation relationships will usually exhibit strain hardening behavior (Fig. D2. 5). It is required

that the deformations at changes in stiffness have the same ratios for all relationships, as indi

cated in Fig. D2.2. This restriction is necessary to avoid inconsistencies in the plasticity theory.

It may be noted that the assumption of a zero-length hinge implies infinitely high strains

as a hinge deforms. This is inherent in any plastic hinge type of theory.

D2.3.3 Interaction Surfaces for First Yield

The actions My, Mz' Mx , and Fx interact with each other to produce initial yield of the

hinge. The interaction effect is determined by a yield (interaction) surface. To allow for a

variety of applications, provision is made in the theory for five different yield surfaces. These

surfaces are all four-dimensional (i.e., j'Wy , M:, Mx ' and F,), and hence, cannot be shown

easily using diagrams. The surfaces differ, however, mainly in the way in which the axial force
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interacts with the three moments. Hence, the differences can be illustrated using the three

dimensional diagrams in Fig. D2.4. In these figures, the M j and Mj axes indicate any two of

the moments, and the Fx axis indicates axial force. If desired, the origin of the yield surface

can be shifted along the axial force axis. This permits an element to have greater compressive

capacity than tension capacity, with a yield surface which approximates the F-M interaction sur

faces for actual concrete columns. The equations defining the yield surfaces are shown in the

figure.

Surface 1 is elliptical and is the simplest mathematically. Surfaces 2, 3, and 4 allow more

realistic modeling of moment-force interaction for cases in which axial force effects are substan

tial. For all of these four surfaces, the interaction among My, M z, and M x is elliptical and only

the force-moment interaction changes. Surface 5 is of a different form than the other four and

is included for greater generality in special cases.

D2.3.4 Interaction Surfaces for Subsequent Yield

For modeling a hinge with nonlinear material properties, it is assumed that the behavior is

initially rigid-plastic-strain-hardening for each action individually, as shown in Fig. D2.3a. In

one dimension, the rigid-plastic-strain-hardening behavior can be modeled using two rigid

plastic "subsprings" in series, as shown in Fig. 02.3b. This model is extended to the multi

dimensional case. Each of the two subsprings becomes a "subhinge", with yield governed by a

yield surface. First yield occurs at the cracking subhinge, which is governed by an initial yield

surface. Second yield occurs at the yielding subhinge, which is governed by a larger yield sur

face. The second surface is assumed to have the same basic form as the surface for first yield.

However, because the action-deformation relationships may be of different shape for each

action, the two surfaces will not have, in general, identical actual shapes. An example in 20

action space is illustrated in Fig. 02.6.
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D2.3.5 Plastic Stiffnesses: Axial Force and Torque

The yield strengths and the plastic stiffnesses of the hinge action-deformation relation-

ships (Kp1 and K p2 in Fig. D2.3) must be specified to provide appropriate post-yield stiffening

of the complete element. The procedure is straight-forward for axial force and torque but more

complex for bending.

Consider axial force, and let the force-extension relationship for the complete element be

as shown in Fig. D2.7a. The steps are as follows.

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Elastic axial rigidity of beam = EA = K Fl · L.

St.rength at first yield surface = FyI.

K Fl · K nPlastic stiffness after first yield surface = K p1 = _.:....::...-.:...::-.
KFl-Kn '

Strength at second yield surface = Fy2'

. . . K n · K n
Plastic stIffness after second yIeld surface = K p2 = K K'

n - F3

The same procedure applies for torque, as follows (Fig. D2. 7c).

Elastic torsional rigidity of beam = GJ = K n . L.

Strength at first yield surface = Ty1 '

Kn·Kn
Plastic stiffness after first yield surface = KpI = ---

Kn-Kn '

Strength at second yield surface = Ty2'

Kn·K n
Plastic stiffness after second yield surface = K p2 = ---

Kn-Kn '

D2.3.6 Plastic Stiffnesses: Bending

A complication in specifying the flexural plastic stiffnesses arises from the fact that

moment-curvature nonlinearities are modeling using concentrated hinges. In an actual beam

the moment typically varies along the length, and plastic deformations occur over finite regions.

Consequently, the flexural stiffness depends on the moment variation along the beam. In a
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concentrated hinge model, it is not possible to account for all possible moment variations; and

hence, assumptions must be made in specifying the hinge properties.

Three options are available in the computer program for assigning bending stiffness pro-

perties to the hinges. The first option is for a uniform beam with essentially constant moment

along the element (Fig. D2.8a). This option is applicable, in general, only for a structure which

is modeled using short beam-columns elements, such that the bending moment does not vary

greatly over a single element. The relationship between bending moment and end rotation for

the initial loading of the element is as shown in Fig. D2.8b. The steps in establishing the hinge

properties are as follows:

(a)

(b)

(c)

(d)

(f)

Elastic flexural rigidity of beam = EI = KM1 ' L/2.

Shear rigidity of beam assumed to be infinite (no shear deformations).

Hinge strength at first yield = My 1.

K M1 'KM2
Plastic stiffness after first yield surface = Kp1 = ---K M1 -KM2 .

Strength at second yield surface = Myz.

K MZ ' K M3
Plastic stiffness after second yield surface = K pz = -==-_...:...:..:..-.

K MZ - K M3 '

The second option is applicable for a uniform beam in which a linear variation of bending

moment can be assumed over the element length, with equal and opposite values at the ends

(Fig. D2.9a). This option will typically apply for columns in an unbraced frame building. An

equivalent cantilever for each half of the element is used, as shown in Fig. D2.9b. It is

required that the relationship between the tip load and tip displacement of the cantilever be

known (Fig. D2. 9d. This relationship can then be used to obtain hinge stiffness as follows.

(a) Elastic flexural rigidity of beam = £1 = K l L 3/24.

(b) Shear rigidity of beam assumed to be infinite (no shear deformations).
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(c)

(d)

(e)

Hinge strength at first yield = Py1 ' L/2.

Strength at second yield surface = Py2 ' L/2.

K 2 · K 3 ' L
Plastic stiffness after second yield surface = K p2 = 2(K 2 - K 3) .

For these first two options, the computer program calculates the K p values, given the moment-

rotation relationships (for option 1) or load-deflection relationship (for option 2). The third

option provides the user with more flexibility, by requiring that the EI/L and K p values be

specified directly. In addition, with this option it is not necessary for the element to be of uni-

form section. Flexural stiffness coefficients, K ii , K jl , and Kij, which depend on the variation of

the beam cross section, may be specified (for example, for a uniform element, K ii = K jj = 4.0

and Kij = 2.0). Also, an effective shear stiffness (GA') can be specified.

D2.3.7 Plastic Flow

Interaction among the actions is considered as shown diagrammatically in Fig. D2.6.

Yield begins when the first yield surface is reached. The surface then translates in action space,

the motion being governed by the plastic flow of the cracking subhinge. Translation of the first

surface continues until the second surface is reached. Both surfaces then translate together,

governed by a combination of plastic flow on both the cracking and yielding subhinges. For any

subhinge, plastic flow is assumed to take place normal to the yield surface of that subhinge. If

both subhinges are yielded, their yield surfaces move together, and the total plastic deformation

is equal to the sum of the individual plastic deformations for each subhinge, directed along the

normal directions of their respective yield surfaces at the action point. After some arbitrary

amount of plastic deformation, the situation might be as illustrated in Fig. D2.6b.

D2.3.8 Hardening Behavior

After first yield, the yield surfaces of any yielded subhinge is assumed to translate in

action space, obeying a kinematic hardening rule (translation without change of shape or size).
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An extension of the Mroz theory of material plasticity is used to define the hardening behavior.

Because the yield surfaces for the two subhinges are generally not exactly similar, overlapping

of the surfaces can occur and the hardening behavior is more complex than in the basic Mroz

theory. For example, in Fig. D2.6b, the current action point, A, lies on yield surfaces YS I and

YS 2. Hence, both subhinges have yielded, and the direction of plastic flow is a combination of

the normal vectors iii and ii2' Details of the theory are given in Sections D3.2.5 and D3.2.6.

D2.4 STIFFNESS DEGRADATION

Stiffness degradation is introduced when reversed loading is applied. It is assumed that

the stiffness degrades independently for each force component of each subhinge, in inverse pro

portion to the largest previous hinge deformation, as shown in Fig. D2.1O. This figure also

shows the reloading assumptions for both large and small cyclic deformations.

The unloading stiffnesses, K'I (for the cracking subhinge) and K' 2 (for the yielding

subhinge), depend on the previous maximum positive and negative hinge deformations and are

controlled by the input coefficients, al and a2 (for the cracking subhinge) and f31 and f32 (for

the yielding subhinge). These coefficients control the unloading stiffnesses by locating the load

ing point, R +, as shown in Fig. D2.10a. The reloading stiffnesses, K" I (cracking) and K" 2

(yielding), also depend on the previous maximum negative and positive hinge deformations

and are governed by the same coefficients, a i and f3 i, as shown in Fig. D2.10b. The

coefficients control the reloading stiffnesses by locating the point, R-. Regardless of the values

of a i and f3 i, the unloading or reloading slope is not allowed to be less than the strain harden

ing stiffnesses K p ] (cracking) or K p2 (yielding). That is, minimum stiffness coefficients W I and

W2 must be specified for each force component, either by the user or by default, to guarantee:

K I ~ wlKpl

K 2 ~ W2 K p2

(D2.1a)

(D2.1 b)

The behavior for small amplitude cycling, as illustrated in Fig. D2.10c, is based on the

position X between R and A. The unloading or reloading stiffnesses are interpolated between

K'l and K"] (for cracking subhinge) or K'2 and K"2 (for yielding subhinge), in the same
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proportion as X is positioned between Rand A.

D2.5 P-DELTA EFFECT

Even for small displacements, changes in the shape of a structure can have a significant

effect (the P-delta effect) on the equilibrium of the structure. This effect can be accounted for

by adding a geometric stiffness to the element stiffness. The geometric stiffness assumed for

the element is that for a truss bar in three dimensions, which depends on the axial force only.

The geometric stiffness is changed each time the element stiffness changes, using the current

axial force, but is otherwise assumed to remain constant. In addition, a modification is made to

the internal resisting force for the element, to take account of the P-delta effect.

D2.6 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces

of the joints rather than at the theoretical joint centerlines. This effect can be approximated by

postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. D3.5.

D2.7 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that each floor diaphragm

is rigid in its own plane. To introduce this assumption, a master node at the center of mass of

each floor may be specified, as shown in Fig. D3.6. Each master node has only three degrees of

freedom as shown, which are the displacements of the diaphragm horizontally as a rigid body.

If any beam-column member is connected to these master displacements, its behavior depends

partly on these displacements and partly on the displacements which are not affected by the

rigid diaphragm assumption. The theory is described in Section D3.9.

D2.8 INITIAL FORCES

For structures in which static analyses are carried out separately (j.e. outside the ANSR

program). initial member forces may be specified. The sign convention for these forces is as

141



shown in Fig. D2.11. These forces are not converted to loads on the nodes of the structure but

are simply used to initialize the element end actions. For this reason, initial forces need not

constitute a set of actions in equilibrium. The only effects they have on the behavior of the

system are (a) to influence the onset of plasticity and (b) to affect the geometric stiffnesses.
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D3. THEORY

D3.1 DEGREES OF FREEDOM

The element has two external nodes and two internal nodes, as shown in Fig. D3.la. The

external nodes connect to the complete structure and have six degrees of freedom each, namely

X,Y,Z global translations and X,Y,Z, global rotations. After deletion of the six rigid body

modes for the complete element and transformation to local element coordinates, the six defor-

mation degrees of freedom shown in Fig. D3.lb remain. Each hinge has four deformations,

namely an axial deformation plus rotations about each of the local x,y,z axes (i.e., shear defor-

mations in the hinges are zero).

The transformation from global displacements to element deformations is:

a,

in which

(D3.0

[VI> V2, , V6]

['I> '2, , '12]

element deformations (Fig. D3.lb);

global displacements (Fig. D3.1a)~

and the transformation matrix fl. is well known.

The vector of degrees of freedom, ]!', for the elastic element (Fig. D3.2a) is defined as:

The complete hinges at ends I and J have degrees of freedom defined by:

and

in which Vi, i= 1,4 and Wi, i= 1,4 are as shown in Figs. D3.la and D3.2a, and in which:

(Vs- ws)' + (vs- ws)"

(V6- wJ' + (V6- wJ"

That is, the torsional and axial hinge deformations are shared between the hinges at ends I and

J. The proportions in which the deformations are shared are determined naturally during the
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numerical computation and do not need to be defined in advance. Each complete hinge is

modeled as two subhinges in series (Fig. D3.2b). Each subhinge has four deformation degrees

of freedom, ~su, such that the sum of the ~su deformations for the two subhinges gives the

hinge deformation, ~u. The proportions of any total hinge deformation which are contributed

by the separate subhinges are determined automatically during the computation.

03.2 ELEMENT STIFFNESS

03.2.1 Basic Procedure

The beam element connecting the internal nodes remains elastic, but the tangent

stiffnesses of the hinges may change. For any state of the complete element, a 6 x 6 flexibility

matrix is first formed for the elastic beam in terms of the degrees of freedom W I through W 6-

This matrix is then modified by adding the flexibilities of the hinges to give a complete element

flexibility matrix in terms of VI through V6. This matrix is inverted to obtain a 6 x 6 element

stiffness. Finally, this stiffness is transformed to the 12 x 12 global stiffness.

03.2.2 Beam Element Elastic Flexibility

The local y,z axes are assumed to be the principal axes of the beam cross section. The

local x axis is assumed to be both the centroidal axis and the axis of torsional twist.

The beam element stiffness relationships can be written as follows:

!dMYil
Ely

[K
liy Kijy] !dWIIdMyj L K'jy Kjjy dW2

!dMzil
EI:

[Kliz
K

u
,]!

dW31dMzj L Kijz Kjjz dW4

dMx
GJ
- dws
L

dFx
EA
- dW6
L

(D3.2a)

(D3.2b)

(D3.2c)

(D3.2d)
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in which

Kii,Kij,Kjj flexural stiffness factors;

Ely,Elz effective flexural rigidities;

My,Mz bending moments;

i ,j element ends;

M x torsional moment;

Fx axial force;

L element length;

EA effective axial rigidity; and

GJ effective torsional rigidity.

The flexural stiffness factors can be used to account for nOll-uniform elements. For a uniform

element, K ii = Kjj = 4.0 and Kij = 2.0.

Equations 03.2a and 03.2b are inverted to obtain flexibilities and are modified, if neces-

sary, to allow for shear deformations by adding the shear flexibility matrices, [sy and [sz, where

1 [1 1]
[s = GA'L 1 1

in which GA' = effective shear rigidity.

D3.2.3 Hinge Plastic Flexibility

(D3.3)

The deformation increment of a hinge is the sum of the increments for the two

subhinges. That is,

in which

1: d!Y.sUi
i

(D3.3a)

d!Y.SUi deformation increment of subhinge i; and

d!y'u deformation increment of complete hinge.

In multi-dimensional action space, each subhinge has a 4 x 4 flexibility matrix in terms of its

axial, torsional, y-flexural, and z-flexural deformations. The flexibility matrix before yield for a

subhinge is initially null (rigid subhinge). After yielding, or yielding followed by unloading,

each subhinge has a finite 4 x 4 flexibility matrix. The hinge flexibility is the sum of the flexi-

bilities of its two subhinges.
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The hinge at end I affects degrees of freedom Vb V3, vs, and V6 of the complete element.

The hinge flexibility coefficients are simply added to the corresponding beam coefficients. Simi

larly, the hinge at end J affects degrees of freedom V2, V4, Vs, and V6. Although the six defor

mation degrees of freedom are largely uncoupled for the elastic beam (see Eqn. 03.2), this is

not the case, in general, after yield. The complete element flexibility matrix will generally be

full (except for zero values for f 14 and f 23)·

The hinge flexibility relationship can be written as:

(03.5)

in which

[SUi flexibility matrix of subhinge i;

[u flexibility matrix for the complete hinge; and

dS action increments on the hinge.

The problem thus reduces to the determination of [SUi for each yielded hinge.

D3.2.4 Yield Function

Each subhinge is effected by four actions (My, Mz , Mx , and Fx ), with four corresponding

deformations. The behavior is initially rigid-plastic-strain-hardening for each action individu-

ally. Oifferent yield values and stiffnesses may be specified for each action component.

Yield of any subhinge is governed by a yield function (interaction relationship). Anyone

of five different yield functions may be specified, as considered in Section 02.3.3. After yield,

each subhinge follows a kinematic hardening rule (that is, its yield surface translates in action

space without change of shape or size). The hardening theory is a modification of the Mroz

theory for plasticity in metals.

D3.2.5 Subhinge Stiffness

A subhinge is initially rigid-plastic, so that its stiffness matrix is initially infinite. After

reversed loading is applied, the stiffness degrades and becomes finite. An elastic stiffness

matrix for each subhinge is defined as:
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(D3.6)

where K'My, K'Mz, K'Mx, and K'F are elastic stiffness after unloading.

When a subhinge yields, a plastic stiffness matrix is defined as:

K sp = diag [K'Myp K'Mzp K'Mxp K'Fp]

in which the plastic stiffnesses after yield are given by:

(D3.7)

(D3.8)K' = K"Kp

p K'-Kp

and in which the stiffnesses K' are the current elastic stiffnesses; and the stiffnesses Kp are ini-

tial plastic stiffness before any degradation. For first yield, the K'i values are infinite, and the

K'p values are identical to K p.

D3.2.6 Plastic Flexibility for a Single Subhinge

Consider a single subhinge. Let ~ be the vector of actions, where

(D3.9)

Assume that the subhinge is elastic-plastic, and let l!'su be the vector of subhinge deformations.

That is, Wsul = flexural rotation about axis y; wsu2 = flexural rotation about axis z; wsu3 = plas-

tic twist about axis x; and W su4 = plastic extension along axis x.

A flexibility relationship for the subhinge is required in the form:

(D3.I0)

in which isu = subhinge flexibility matrix.

The flexibility of the yielded subhinge, [su, is the sum of its elastic and plastic flexibility

matrices. That is,

in which

[su [se + [sp (D3.II)

[se elastic flexibility matrix of subhinge; and

[ plastic flexibility matrix of subhinge.sp

The plastic flexibility matrix is derived as follows. The following assumptions are made:
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0) Let 4J be the subhinge yield function. As the subhinge yields, the yield surface translates

in action space. After some amount of hardening has taken place, the yield function is

4J (~ -~), where ~ = vector defining the new location of the yield surface origin. This is

illustrated in Fig. D3.3 for a two-dimensional space.

(2) From any given plastic state (j.e. a point on the yield surface), any action increment (d~)

will produce increments of deformation (d~sp) and yield surface translation (d~). The

direction of d~ may be arbitrary. It is assumed that the direction of d~sp is normal to the

yield surface (i.e. an associated flow rule is assumed). The direction of da is determined

by the hardening rule (as defined later) and is not necessarily parallel to either d~ or d~sp.

This is illustrated in Fig. D3.3 for a two-dimensional space.

(3) The direction of the outward normal to the yield surface is the gradient of the yield func-

tion. Define:

11 (D3.I2)

in which

~J = [fJ4J/fJMy fJf/J/fJMz fJf/J/fJMx fJf/J/fJF]

yield function gradient; and

11 unit normal vector.

Hence, the deformation increment, d~p, is given by:

d~sp = 11 . dws~

in which dWs~ = scalar which defines the magnitude of the plastic deformation.

(4) Let the component of d~ in the direction of 11 be d~n (Fig. D3.3). Hence,

dS = n . (n T • dS)_n _ _ _

(5) Assume that d~n and d~sp are related by:

d~n = K sp d~sp

in which

(D3.13)

(D3.I4)

(D3.IS)

(D3.16)

Ksp diag [K'.Hrp K'.wzp K'.Hxp K'Fp]
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is a diagonal matrix of the plastic stiffnesses from the individual action-deformation rela-

tionships for the subhinge, as defined in Section 02.3.5.

(6) From the definition of d~n (Eqn. 03.15), it follows that

Substitute Eqns. 03.16 and 03.14 into Eqn. 03.18 to get:

n T • dS = n T • K . n . dw'_ _ _ _sp _ sp

(7) Solve for dWs~ as:

n T . dS
n T . K . n_ _sp_

(8) Hence, substitute Eqn. 03.20 into Eqn. 03.14 to get:

(03.18)

(03.19)

(03.20)

d!)!sp =
n . n T

T d~ = [sp d~n . K . /l_ _sp_
(03.21)

Equation 03.21 is the required plastic flexibility relationship for any active subhinge.

D3.2.7 Flexibility for Complete Hinge

The 4 x 4 plastic flexibility of the complete hinge, fu, follows from Eqn. 03.5 as:

[u = 1: [sui (03.22)

where i = number of subhinge. The flexibility of any subhinge, as derived in Section 03.2.6,

can be written as:

in which

[SPi

n . n T
-' -'

!1l· K Spi • !1i

[SUi [se + [spi
n . n T
_I _,

Ill· K SPi • !1i
(03.23)

(03.24)

!1i normal vector to the surface; and,

K SPi plastic stiffness matrix of the subhinge.
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03.2.8 Relationship to Basic Mroz Theory

In the special case where the action-deformation relationships for the four actions are all

directly proportional to each other, the yield surfaces are all of the same shape and the plastic

stiffnesses for each active yield surface are in the same proportion. The plastic stiffness matrix

for each subhinge can then be formed in terms of the elastic stiffness matrix. That is,

KSpi = (Xi Ke (D3.25)

where (X i defines the plastic stiffness as a proportion of the elastic stiffness. The plastic flexibil-

ity of a complete hinge can then be written as:

[u = L: [SPi = ~ [ ~iI n . n T
-' _/

n T . K . n_, _e _I

(D3.26)

Because all the yield surfaces are the same shape, the !!.i are all the same. Hence, if !!.i = !!.'

Eqn. D3.26 can be written as:

[u
n . n T

(D3.27)

The flexibility given by this equation is the same as that from the basic Mroz material

theory. This shows that the Mroz material theory is a special case of the extended theory

derived here.
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D3.3 ELEMENT STIFFNESS

For the complete element, a tangent action-deformation relationship is required in the

form:

d~ = Ktd]!.

in which !it = tangent stiffness matrix for the element.

(D3.28)

A 6 x 6 flexibility matrix Ie is first formed for the elastic beam, in terms of degrees of

freedom WI through W6. This matrix is then modified by adding the flexibilities of lu of the

two complete hinges at the ends, to give a complete element flexibility matrix It in terms of VI

through V6. This matrix is inverted to obtain a 6 x 6 element stiffness, K t .

D3.4 EQUILIBRIUM NODAL LOADS

Nodal loads in equilibrium with the hinge actions in any given state are given by:

R

in which

(D3.29)

S T [S h S 2, ... , S 6];

R internal resisting forces for the element; and

!!. displacement transformation relating element deformation to global displacements.

D3.5 HARDENING RULE

D3.5.1 Geometrical Interpretation

The relationship between any action and its corresponding deformation at a subhinge is

multi-linear. The interaction among the actions (My, M z, Mx , and F) is defined by the yield

surfaces, as described earlier. After initial yield occurs, the behavior at a subhinge obeys a

modification of the Mroz strain hardening rule for yield in metals (30).

D3.5.2 Modified Mroz Hardening Rule

For purposes of illustration, consider a two-dimensional M-F space, as shown in Fig.

D3.3a. In this figure. it is assumed that the current state (point P I) is on yield surface YS 1 and
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that loading is taking place towards surface YS 2. It is necessary to define the direction in which

surface YS I translates.

As indicated in Fig. D3.3a, corresponding points PI and P2 can be identified on YS I and

YS 2. The relationship between the actions at these two points (§Iat PI and §2 at P 2) is

obtained as follows.

Figure D3.3b shows a yield surface transformed into a normalized action space. In this

space, surfaces YS I and YS 2 have identical shapes. Hence, points P I and P 2 coincide. The

locations of PI and P2 in Fig. D3.3a follow by transforming back to the natural action space. If

the vector of actions at PI is ~ J, it follows that the vector of actions at P 2 is given by:

(D3.30)

in which

~2 = vector of actions at point P2;

d~1 and d~2 = vectors defining the current origins, 0 1 and O2, of yield surfaces YS I and

YS 2, respectively;

[
Mvu2 Mzu2 Tu2 FU21S = diag -"- -- - 

_u M
yul

Mzu1 T
UI

FUI

It is assumed that the direction of translation of yield surface YS I is along the line connecting

point PI to point P 2, as shown in Fig. D3.3a. That is, the direction of motion of surface YS I is

defined by:

(D3.30

in which

da· scalar which defines the amount of translation of yield surface YS I; and

d~l = vector defining the direction of translation.

The magnitude of da· is determined as explained in the next section. For the hardening rule

originally formulated by Mroz [30,33], all yield surfaces are geometrically similar in natural

action space. The rule then ensures that the surfaces never overlap. For the modified Mroz

rule, the yield surfaces are assumed to be geometrically similar only in normalized action space.
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As a result, overlapping of yield surfaces is allowed.

D3.5.3 Mathematical Formulation

Substitute Eqn. D3.31 into Eqn. 03.32 to get:

d<.!:.! = [(~u-D~!- (~u<.!:.l- <.!:.2)] det.'

The yield surface is defined by:

The requirement that the action point remain on the yield surface is:

de/> = 0 = 1!..J d~!-1!..J d<.!:.!

Substitute Eqns. 03.32 and 03.33 into Eqn. 03.35 to get:

(03.32)

(03.33)

(D3.34)

det.' = (D3.35)

Hence, substitute Eqn. D3.36 into Eqn. D3.32 to get d<.!:.! as:

[ (~u - D ~! - (~u <.!:.!- <.!:.2) ] 1!..Jd~!

1!..,[[ (~u-D ~i - (~u<.!:.!-<.!:.~] -
(D3.36)

For any current state defined by ~ J, <.!:.J, and <.!:.2, Eqn. D3.37 defines, for an action increment

d~ J, the translation of yield surface YS! for loading towards surface YS 2.

D3.5.4 Second Yield Surface

For the case when the action point lies on the second yield surface, the hardening rule can

be obtained by assuming that an additional infinitely large yield surface exists. The direction of

translation for this case is then along the. radial direction connecting the origin of the second

yield surface to the current action point. This is exactly Ziegler's hardening rule (30). It can be

expressed as:

in which

d<.!:.2
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da' = scalar which defines the amount of translation of the yield surface, as before;

£2 = vector defining the yield surface origin; and

d£2 = vector defining the direction of translation.

For this case, Eqn. 03.37 becomes:

D3.5.5 Overlapping of Yield Surfaces

(~2-£2)rlJ· d~2

rlJ(~2-£2)
(03.38)

In the original Mroz hardening rule, it is assumed that the yield surface is geometrically

similar to the yield surface YS 2. This assumption is reasonable for metal plasticity in stress

space because it is reasonable to assume an isotropic material. However, for dealing with stress

resultants, each action-deformation relationship depends on the cross section shape in a

different way, and the behavior is not isotropic in action space. That is, the yield surfaces will,

in general, not be geometrically similar. The authors have considered a number of strategies in

an attempt to obtain "correct" behavior while preventing yield surface overlap. None of these

strategies proved satisfactory, and it was finally concluded that overlapping should be allowed.
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D3.6 PLASTIC DEFORMATION

The flexibility relationship of the element can be written as:

(03.39)

in which

dl!.p I: dXspi is the element plastic deformation increment; and

Ie the element elastic flexibility matrix.

Premultiply Eqn. 03.39 by 1r .K e to get:

(03.40)

in which

K, the element elastic stiffness matrix;

Ip L !PI is the element total plastic flexibility.

1., . dS = dv
p - -p

Substitute Eqn. 03.41 into Eqn. D3.40 to get:

(03.41)

1 ·K 'dvp _e _ (D3.42)

Hence,

dv = (I + 1 .K )-1 I' • K . dv_p p _e Lp _e _ (D3.43)

Equation D3.43 gives the plastic deformation increments of the element in terms of the total

deformation increments.

D3.7 LOADING/UNLOADING CRITERION

The loading/unloading criterion enables continuous plastic flow at a subhinge to be dis-

tinguished from elastic unloading for any current plastic state and any specified deformation

increment. Two procedures are of general applicability, as follows.

(1) Postulate that the subhinge has unloaded an infinitesimal amount, so that the current

state lies just within the yield surface, Calculate the elastic action increments, d~e,

corresponding to the specified deformation increments. If the state moves outside the

yield surface, the assumed elastic state is incorrect, indicating continuing plastic flow. If
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the state moves within the yield surface, the elastic assumption is correct, indicating

unloading.

(2) For the specified deformation increment, calculate the magnitude parameter for the plastic

deformation increment. A positive magnitude indicates continuing plastic flow, and a

negative magnitude indicates unloading.

By the first of these two procedures, continued loading of subhinge i is indicated if dS.e

has a positive component along the outward normal, !!.i, of the yield surface. That is, continued

loading occurs if

(D3.44)

To consider the second procedure, first assume that the current plastic flow directions of

both active subhinges are the same. Hence, the plastic deformation increment for the subhinge

is given by:

dl!.p = !!. . dv;

Premultiply Eqn. 03.39 by !!. T . [p . K e to get:

Substitute Eqn. 03.24 into Eqn. 03.46 to get:

, 2!!. T dS.edv' =
p 1 + '1

in which, 1 and, 2 are scalars defined as follows:

(03.45)

(D3.46)

(03.47)

(03.48)

(03.49)

Because the matrices !S.Spi and K e are always positive definite, the scalars , 1 and '2 always

exceed zero. Hence, the sign of dvp' is the same as the sign of !!. T. dS.e . This is the same cri-

terion as Eqn. 03.44.

In general, the plastic flow directions for the yielded subhinges are not the same. Hence,
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it is possible for !l.F d~e to be greater than zero for one subhinge and less than zero for the

other (i.e. continued loading on one, but unloading on the other). This possibility is illustrated

in Fig. 03.4. For computation, if both subhinges are yielded, it is assumed that unloading is

governed by the second subhinge. If unloading occurs on this subhinge, unloading is assumed to

occur on both subhinges. If the situation happens to be as shown in Case A of Fig. 03.4

(which is unlikely), reloading will immediately occur on the first subhinge, and the analysis will

continue.

Figure 03.4, Case B, illustrates another possible consequence of yield surface overlap. In

this case, unloading occurs from both surfaces, but on reloading the second yield surface is

reached first. For this case, calculate the action on the second yield surface for reloading, then

translate the first yield surface to attach the second yield surface at this action point, and the

analysis continues.

D3.8 END ECCENTRICITY

Plastic hinges in frames and coupled frame-shear wall structures will form near the faces

of the joints rather than at the theoretical joint centerlines. This effect can be approximated by

postulating rigid, infinitely strong connecting links between the nodes and the element ends, as

shown in Fig. 03.5. The displacement transformation relating the increments of node displace

ments, dIu' to increments of displacement at the element ends is easily established and can be

written as:

(03.50)

This transformation is used to modify the stiffness and state determination calculations to allow

for end eccentricity effects.

D3.9 RIGID FLOOR DIAPHRAGMS

A frequently made assumption in the analysis of tall buildings is that each floor diaphragm

is rigid in its own plane. To introduce this assumption, a "master node" at the center of mass

of each floor may be specified, as shown in Fig. 03.6. Each master node has only three degrees
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of freedom, as shown, which are the displacements of the diaphragm horizontally as a rigid

body. If any beam-column member is connected to these "master" displacements, its behavior

depends partly on these displacements and partly on the displacements which are not affected

by the rigid diaphragm assumption.

The displacement transformation relating the master (diaphragm) displacements, did, to

the displacements at a "slaved" node is as follows.

dr
n1! [1 0 dzIdr n3 = 0 1 -dx

dr n5 0 0 1

or

(D3.51a)

(D3.51b)

The "slaved" displacements at element ends i and j can, thus, be expressed in terms of the

displacements at the "master" node (or nodes). The corresponding coefficients of the element

stiffness matrix are transformed to account for the slaving. The resulting element stiffness

matrix is assembled in terms of the three master degrees of freedom plus the three local

degrees of freedom d'n2, drn4, and drn6 at each node, which are not affected by slaving.

D3.10 TOLERANCE FOR STIFFNESS REFORMULATION

Each time a new hinge yields or an existing hinge unloads, the element stiffness changes.

Moreover, because the direction of plastic flow may change, the stiffness of a yielding element

will generally change continuously. The change in stiffness results from differences in the

directions of the normal to the yield surface as the actions at the hinge change. If the angle

change is small, the change in stiffness will be small and can be neglected to avoid recalculating

the stiffness. In the computer program, an option is provided for the user to set a tolerance for

the angle. If a nonzero tolerance is specified, the element stiffness is reformed only when the

change in state is such that the angle between the current yield surface normal and that when

the stiffness was last reformed exceeds the tolerance. A tolerance of about 0.1 radians is

recommended.
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D4. COMPUTER LOGIC

D4.1 STATE DETERMINATION

The state determination calculation for an inelastic element requires evaluation of the

equation:

in which

~v

f Krd]!.
o

(04.1)

Ii~ = finite action increment for the element corresponding to the finite deformation

increment Ii]!.; and

K r = element tangent stiffness, which, in general, varies during the increment.

The computational procedure for state determination of the element is as follows.

(l) From the given nodal displacement increment, calculate the element deformation incre-

ment from:

in which

liv 9. . lir (04.2)

Ii!. vector of nodal displacement increments;

Ii]!. vector of element deformation increments; and

a = displacement transformation matrix.

(2) Calculate linear action increments for the element from:

and hence determine hinge action increments as:

in which

(04.3)

(04.4)

liS = linear action increment for element corresponding to the finite deformation

increment Ii£;
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K 1 = element tangent stiffness matrix;

6.~h = linear action increment for hinges; and

b = transformation matrix from 6.~ to 6.~h, which is easily formed.

(3) Check for a nonlinear "event" in the current increment, and calculate the corresponding

event factor for each complete hinge. The possible events are as follows:

(a) If the current state is elastic, calculate the proportion of the deformation increment

required to reach the next yield surface. If this proportion is greater than 1.0, the

state continues to be elastic and the event factor is 1.0. Otherwise, an event occurs

and the event factor is set equal to the calculated proportion.

(b) If the current state is plastic, calculate!! Td~e' If the value exceeds zero, continued

loading is indicated. The event factor is then calculated for the next yield surface,

allowing a tolerance as described in Section 04.2. Otherwise, unloading occurs. In

this case, the elastic degrading stiffness and the corresponding plastic stiffness matrix

for each subhinge are calculated from the total plastic deformation. The stiffness

matrix is then reformed as the elastic stiffness, and the calculation proceeds from

Step 2.

(4) Calculate plastic deformation, 6.~su, for each yielded subhinge by using Eqn. 03.44.

(5) Pick up the smallest event factor, FACM, from the event factors for the two complete

hinges at the ends of the element.

(6) Use the event factor, FACM, to compute new hinge forces, new subhinge total plastic

deformations, and new origins of all subhinges, as:

~h ~h + FACM*6.~h (04.5)

5!i 5!, + FACM*6.5!i (04.6)

~;u = ~;u + FACM*6.~;u (04.7)

The new action point, ~h, must lie on the yield surface if the subhinge is yielded. If the

action point is not on the yield surface, scale the actions radially back to the yield surface.
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(7) Calculate the complement of the event factor as:

55 = 1. - FACM

(8) Reform the tangent stiffness matrix for the element if any event has occurred.

(04.8)

(9) If all of the displacement increments of the element have been used up (i.e. SS = 0), go

to Step 11. Otherwise, continue to the next step.

(10) Calculate the remaining element displacement increment for the next cycle from:

dV

Then go to Step 2.

(10 Obtain the element actions, §, using:

55· Av (04.9)

(12) Calculate the internal resisting force for the element, E, using:

(04.10)

R

D4.2 YIELD SURFACE TOLERANCE

(04.10

It is possible for the new action point, calculated assuming constant K r, to lie significantly

outside the current yield surface. This will occur particularly when d§ and d£ are distinctly

nonparallel (Fig. 04.0. In this case, the calculation is assumed to be sufficiently accurate, pro-

vided the new action point lies within a tolerance zone (typically 2%-5% of the yield surface

size) 0 If not, d.E is scaled, K r is reformed, and the calculation is repeated for the balance of

Av.

The scale factor is conveniently det.ermined by the procedure illustrated for M-F space in

Fig. 04.1. In this figure, the current action point is P, and the new action point, obtained by

applying Eqn. D4.3, is at Q. Hardening is affected only by the component of A§ parallel to the

yield surface normal. Hence, the yield surface translates as shown. Point Q lies outside the

new yield surface, the amount being defined by er, which is the length of the "radial" error vec-

tor, fro This error must not exceed the allowable tolerance.
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Computationally, it is convenient to consider the "tangential" error, !it, which is the length

of vector P'Q. If the yield surface is assumed to be locally quadratic, then

e, ,,; 0.5 e/ (D4.12)

The value of e, is calculated from this equation. If e, is within the allowable tolerance, point Q

is scaled to the new yield surface and the computation continues (this scaling introduces an

error which is assumed to be acceptable). If e, exceeds the allowable tolerance, it is assumed

that et varies linearly with element deformation. A scale factor to set e, equal to the tolerance

is then calculated using Eqn. D4.12, the 6.~ and 6.~ increments are scaled by this factor; and

the new action point is scaled to the yield surface. The element stiffness is then reformed, and

the process is repeated for the remainder of the deformation increment. If 6.~ is parallel to

~-~, no scaling will be required. If 6.~ makes a large angle with ~-~, the deformation incre

ment may be subdivided into several subincrements, depending on the magnitude of 6.1' and

the value specified for the error tolerance.

The deformation increment is also subdivided if a new yield surface is reached. In this

case, the new action point is permitted to go beyond the yield surface by an amount equal to

the allowable radial error. The proportion of the deformation increment required to reach this

state is calculated; the new action point is scaled to the yield surface; the stiffness is reformed;

and the calculation proceeds for the remainder of the deformation increment.
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D5. ANSR USER GUIDE

3D REINFORCED CONCRETE BEAM COLUMN ELEMENT

D5.1 CONTROL INFORMATION - Two Cards

D5.1.1 First Card

Columns

5(1)

6-10(1)

11-15(1)

16-25(F)

26·35 (F)

41-80(A)

Note Name

NGR

NELS

MFST

DKO

DKT

GRHED

Data

Element group indicator (=4).

Number of elements in group.

Element number of first element in group.
Default = 1.

Initial stiffness damping factor, f3 o.

Tangent stiffness damping factor, f3 T.

Optional group heading.

D5.1.2 Second Card

Columns Note Name Data

1-5 (I) NMBT Number of different strength types (max. 20).
Default = 1.

6·10(1) NECC Number of different end eccentricity types
(max. 15). Default = zero.

11-15(1) NPAT Number of different initial force patterns (max.
30). Default = zero.

D5.2 STRENGTH TYPES

NMBT sets of cards.

D5.2.1 Strength Option

Columns Note

1·5 (I)

Name Data

Strength type number, in sequence beginning
with 1.
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10(1)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

71-75(F) (D

76-80(F) (2)

INPT Input options for element flexural stiffnesses,
as follows. See Section D2.3.5.

(a) INPT = 1: Procedure assuming essentially
uniform bending moment over element length.
Leave rest of this card blank.

(b) INPT=2: Procedure assuming double
cantilever behavior. Leave rest of this card
blank.

(c) INPT=3: General option. Complete rest
of this card.

Coefficient K;; for bending about local y-axis.
Default = 4.

Coefficient Kij for bending about local y-axis.
Default = 2.

Coefficient Kjj for bending about local y-axis.
Default = 4.

Coefficient K;; for bending about local z-axis.
Default = 4.

Coefficient Kij for bending about local z-axis.
Default = 2.

Coefficient Kjj for bending about local z-axis.
Default = 4.

Coefficient of stiffness degradation coupling
parameter for first subhinge.

Coefficient for second subhinge.

D5.2.2 Bending Properties About Local y-axis

(a) OPTN = 1. Specify beam moment-rotation relationship. See Fig. D2.8. One card.

Columns

1-10 (F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-55(F)

Note Name Data

Stiffness K M1 •

Stiffness K M2•

Stiffness KM3.

Yield moment M yl '

Yield moment My 2.

Degrading stiffness parameter, a I.
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56-60(F)

61-65(F)

66-70(F)

Degrading stiffness parameter, a 2.

Degrading stiffness parameter, /h

Degrading stiffness parameter, f3 2.

(b) OPTN =2. Specify cantilever P-8 relationship. See Fig. 02.9. One card.

Columns

1-10(F)

11-20(F)

21-30(F)

31-40(F)

41·50(F)

51-55(F)

56-60(F)

61-65(F)

66-70(F)

Note Name Data

Stiffness K I.

Stiffness K 2.

Stiffness K 3.

Yield force Pyl'

Yield force Py2'

Degrading stiffness parameter, a I.

Degrading stiffness parameter, a 2.

Degrading stiffness parameter, f31'

Degrading stiffness parameter, f3 2.

(c) OPTN =3. Specify beam elastic stiffness and hinge moment-rotation relationships. Two
cards.

Columns

Card 1

1-10(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

Card 2

1-10 (F)

11-20(F)

Note Name Data

Elastic flexural stiffness, EI/L.

Elastic shear rigidity (GA z) along z-axis (i.e.
shear associated with y-axis bending). If zero,
shear deformation is neglected.

Degrading stiffness parameter, a I.

Degrading stiffness parameter, a 2.

Degrading stiffness parameter, f31'

Degrading stiffness parameter, f3 2.

Plastic stiffness Kpi of left-end hinge.

Plastic stiffness K p2 of left-end hinge.
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21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

71-80(F)

Yield moment Myl of left-end hinge.

Yield moment MY2 of left-end hinge.

Plastic stiffness K pl of right-end hinge.

Plastic stiffness K p2 of right-end hinge.

Yield moment Myl of right-end hinge.

Yield moment MY2 of right-end hinge.

D5.2.3 Bending Properties About Local z~axis

As for Section D5.2.2, but specify z-axis properties.

D5.2.4 Torsional Properties

Columns Note

1-10 (F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-55 (F)

56-60(F)

61·65(F)

66-70(F)

D5.2.5 Axial Properties

Name Data

Torsional stiffness K Tl-

Torsional stiffness K T2-

Torsional stiffness K T3-

Torsional strength Tyl'

Torsional strength Ty2'

Degrading stiffness parameter, oq.

Degrading stiffness parameter, a 2.

Degrading stiffness parameter, fh

Degrading stiffness parameter, (32'

Columns

l-lO(F)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-55(F)

Note Name Data

Axial stiffness Kn

Axial stiffness Kn-

Axial stiffness K F3-

Axial strength Fyi'

Axial strength Fy2'

Degrading stiffness parameter, a I.
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56-60(F)

61-65(F)

66-70(F)

71-80(F) (3)

Degrading stiffness parameter, a 2.

Degrading stiffness parameter, {3I.

Degrading stiffness parameter, (32.

Axial strength Fy 4- Input as a positive value.
Default = FyI.

D5.3 ENO ECCENTRICITY TYPES

NECC cards. See Fig. D3.5.

Columns

1-5 (I)

11-20(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

Note

(4)

Name Data

End eccentricity type number, in sequence
beginning with 1.

Xi = X eccentricity at end i.

Xj = X eccentricity at end j.

Yi = Y eccentricity at end i.

Yj = Y eccentricity at end j.

Zi = Z eccentricity at end i.

Zj = Z eccentricity at end j.

05.4 INTERNAL ELEMENT FORCE PATTERNS

NPAT cards.

Columns

1-5 (I)

11-2I(F)

21-30(F)

31-40(F)

41-50(F)

51-60(F)

61-70(F)

Note

1(5)

Name Data

Pattern number, in sequence beginning with 1.

Initial moment M yy at end i.

Initial moment M zz at end i.

Initial moment M yy at end j.

Initial moment M zz at end j.

Initial axial force.

Initial torque.

05.5 ELEMENT OATA GENERAnON

As many pairs of cards as needed to generate all elements in group.

Columns

Card 1

Note Name
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1-5(1)

6-10(1)

11-15(1)

16-20(1)

21-25(1)

26-30(1)

31-35(1)

(6)

NODI

NODJ

INC

NODK

NSI

NSJ

Element number, or number of first element in
a sequentially numbered series of elements to
be generated by this card.

Node number I.

Node number J.

Node number increment for element genera
tion. Default = 1.

Number of a third node, K, lying in the xy
plane, for definition of the local y-axis. Default
= automatic orientation of y-axis.

Number of node (diaphragm node) to which
end I is slaved. If not slaved, leave blank.

Number of node to which end J is slaved. If
element generation is used, nodes NSI and NSJ
are the same for all elements in the series. For
a description of the slaving procedure, see Sec
tion D3.9.

36-40(1)

41-45(I)

NSTR

IEee

Strength type number.

End eccentricity type number. Default
end eccentricity.

no

46-50(1)

51-55 (I)

56-60(1)

NIT

KTYP

KGEOM

Initial force pattern number. Default = no ini
tial force.

Interaction surface type.

(a) = 1 Y.S. type = 1

(b) = 2 Y.S. type = 2

(c) = 3 Y.S. type = 3

(d) = 4 Y.S. type = 4

(e) = 5 Y.S. type = 5

Geometric stiffness code:

(a) 0 = Geometric stiffness is not to be
included.

(b) 1 = Geometric stiffness is to be included.
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61-65(1)

71-80(F) (7)

Card 2

1-10(F)

11-20(F)

21-30(F)

31-40(F)

D5.6 NOTES

KOUT Time history output code:

(a) 1 = output time history results

(b) 0 = no output

Stiffness reformulation angle tolerance, 'Y (radi
ans). See Section 03.10 for explanation.

Parameter a 1 in interaction surface equation.

Parameter a 2 in interaction surface equation.

Parameter a3 in interaction surface equation.

Parameter a 4 in interaction surface equation.

(0 Stiffness degradation coupling parameter is defined by input coefficient times the sum of

degradation parameters for first subhinge (i.e. a 12 = coefficient x (a 1 + (2».

(2) Stiffness degradation coupling parameter is defined by input coefficient times the sum of

degradation parameters for second subhinge (i.e. f312 = coefficient x (f31 + f3 2»'

(3) The value of Fy3, as shown in Fig. 02.2, allows the origin of the yield surfaces to be

shifted along the F-axis. The strengths in tension and compression are then different.

(4) All eccentricities are measured from the node to the element end (Fig. 03.5), positive in

the positive coordinate directions.

(5) See Fig. 02.11 for the positive directions of initial element actions. Refer to Section 02.8

for a description of the effects of initial element actions.

(6) Cards must be input in order of increasing element number. Cards for the first and the

last elements must be included (that is, data for these two elements cannot be generated).

Cards may be provided for all elements, in which case each card specifies the data for one

element, and the generation is not used. Alternatively, cards for a series of elements may

be omitted, in which case data for the missing elements is generated as follows:
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(a) All missing elements are assigned the same node "K" (NODK), slave nodes (NSI

and NSJ), strength types, end eccentricity type, initial force pattern type, interaction

surface type, codes for geometric stiffness and response output, and stiffness refor

mulation angle tolerance, as those for the element preceding the missing series of

elements.

(b) The node numbers I and J for each missing element are obtained by adding the

increment (INC) to the node numbers of the preceding element. That is,

NODI(N) = NODI(N-l) +INC

NODJ(N) = NODJ(N-I)+INC

The node increment, INC, is the value specified with the element preceding the missing

series of elements.

(7) Refer to Section D3.10 for a description of the stiffness reformulation tolerance.
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AXIAL FORCE
(TENSION)

FY2

FYI

(COMPRESSION)

AXIAL STRAIN

FIG. D2.2 ACTION VS. DEFORMATION FOR ELEMENT
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FIG. 02.3 1-0 MODEL FOR A HINGE
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FIG. D2.4 INTERACTION SURFACES (CONT'D)
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MULTILINEAR
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(c) MOMENT-CURVATURE

FIG. 02.5 DIFFERENCES IN SHAPES OF RELATIONSHIPS
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RELATIONSHIP (CONT'D)
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E. EXAMPLES
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El. TUBULAR STEEL BRACE AND BRACED FRAME

El.I PURPOSE OF ANALYSIS

A number of experimental and analytical studies on the inelastic behavior of diagonal

braces and braced structures have been carried out over the past few years, Using the results of

these studies in conjunction with advancements in nonlinear analysis techniques, analytical

models for predicting the behavior of braces and braced frames in the inelastic range have been

proposed and applied. The reliability of predictions of the overall structural behavior depends

on the accuracy of the brace model used. An ideal brace model is one having the capability to

describe axial force-deformation hysteresis loops accounting for the interaction between axial

force and bending moment on a tubular section and accounting for loss of load capacity under

repeated cyclic loading.

In this example, the element with distributed plasticity and nondegrading stiffness is used

to determine whether it produces results in agreement with experimental results for the inelas

tic response of a single brace and a complete braced frame. The experimental studies were per

formed by Zayas, Mahin and Popov [19,20] at the University of California, using one-sixth

scale models of elements typically found in X-braced tubular steel offshore platforms.

El.2 INELASTIC BUCKLING OF TUBULAR STEEL BRACE

El.l.I Assumptions for Analysis

One-half of the tubular specimen (accounting for symmetry) was modeled using five ele

ments. The experimental stress-strain curve [19] was used to calculate moment-curvature and

force-strain relationships, which were then approximated by piecewise linear functions. The

details of the analysis model are contained in Table E1.I, which is a listing of the ANSR-II

input data for the analysis.
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E1.2.2 Comparison of Analysis and Experiment

The response of the strut is shown in Figs. El.1 and E1.2 for the experiment and analysis,

respectively. The overall responses are similar, but the analysis predicts substantially less

stiffness and strength degradation than the experiment. The area of a typical hysteresis loop on

the analysis is approximately 16% more than in the experiment. That is, the analytical model

tends to overestimate the energy dissipation by about 16%. A major weakness of the analytical

model is that is does not predict progressive degradation of the buckling load with inelastic

cycling. This is probably because the analytical model does not account adequately for the

Bauschinger effect, and hence, overestimates the material tangent modulus. A second possible

effect is that the model is unable to capture the effects of local buckling in the pipe wall which

were noted in the tests for the later cycles.

E1.3 INELASTIC BEHAVIOR OF TUBULAR STEEL BRACED FRAME

E1.3.1 Test Configuration

Experimental results of one-sixth scale model of an X-braced tubular steel frame have

been reported by Zayas, Mahin and Popov [20]. The test configuration is shown in Fig. E1.3.

The frame was subjected to cyclic inelastic lateral displacements, simulating severe seismic

motions. The frame was designed [20] so that failure would be controlled by yielding and

buckling of the diagonal braces.

E1.3.2 Assumptions for Analysis

The analytical model is shown in Fig. E1.4. The ANSR-II input data is listed in Table

E1.2. The diagonal braces were modeled using the distributed plasticity element, with nonde

grading stiffness. The horizontal and vertical members were modeled using elastic beam

column elements because the frame was designed to limit the forces in these members to be

below yield. Multi-linear approximations of the moment-curvature and force-strain relation

ships were deduced from the experimental stress-strain curves.
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Cyclic displacements were imposed at the top level of the analytical model to match those

imposed in the experiments. A step-by-step procedure, without iteration and with path depen

dent state determination, was used to analyze the frame.

E1.3.3 Comparison of Analytical and Experimental Results

The typical experimental and analytical results are shown in Figs. £1.5 and E1.6. The

shapes of the hysteresis loops are basically similar for the analysis and experiment, but again

the analysis shows less degradation and the loops for the analysis are significantly "fatter" than

for the experiment. The analytical model thus tends to overestimate the energy dissipation.

Et,4 CONCLUSIONS

The reliability of analytical predictions of the inelastic structural behavior of braced

offshore towers depends to a large extent on the accuracy which the brace hysteretic behavior

can be modeled. The "section" type of model considered here is able to model certain impor

tant features of brace behavior, in particular compressive post-buckling strength loss and tensile

yield. However, the model does not adequately account for stiffness and strength degradation,

so that it tends to overestimate both the strength and the amount of energy absorption. The

model must thus be improved to account for degradation effects before it can be used reliably

for this type of structure.
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E2. DEGRADATION COEFFICIENTS FOR REINFORCED CONCRETE

E2.1 GENERAL

In the beam-column element with degrading stiffness, the hinge stiffnesses are degraded

when reversed loading is applied. The amount of degradation is controlled by the four degrada-

tion coefficients aj, a2, f3j, and f32. To study the influence of these coefficients on element

behavior, a study has been carried out using experimental data obtained by Takizawa and Aoy-

ama [10] at the University of Tokyo.

The primary purpose of this study has been to devise a procedure for calculation of the

degradation coefficients and to determine whether this procedure can be used to obtain accurate

response predictions. For this purpose, it has been assumed that the stiffness for each separate

action component degrades independently of the other stiffness (i.e. no interaction effects for

stiffness degradation). A secondary purpose has been to perform a preliminary investigation of

the effects of stiffness interaction, with a view to establishing a computational technique.

E2.2 SELECTION OF DEGRADATION COEFFICIENTS

A practical means of specifying the stiffness degradation coefficients is as follows. From

an experiment involving only one of the element actions (e.g. a uniaxial bending test), obtain

the action-deformation relationship for two or three loading cycles. From these results, sketch

an idealized trilinear hysteresis loop that best fits the experimental results for each cycle. From

this idealization, obtain the positive force P+, the negative force P-, stiffnesses K j, K 2, and

The following equations express the relationships among the original stiffnesses, K j, K b

and K 3; the degrading stiffnesses, t 11K j, t 12K2, t2lK], and t12K 2; the plastic stiffness K c and

degrading stiffnesses K'I and K" I of the cracking (first) subhinge; and the plastic stiffness K y

and degrading stiffnesses K' 2 and K" 2 of the yielding (second) subhinge:

1
tllK I
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(E2.1c)

(E2.1d)

(E2.1 b)1 = _1_+_1_+_1_
t12K 2 K I Kc K'2

1 = _1_+_1_+_1_
t21KI K I K"I K"2

_1_ = _1_ + _1_ + _I_
t 22K 2 K IKe K" 2

The maximum positive plastic deformations, D/ of the cracking subhinge and D/ of the

yielding subhinge, are related to: (a) the force p+; (b) Py and Ky of the yielding subhinge; and

(c) the total plastic deformation D/, as follows:

D+ =
Y

D+ =c

(E2.2a)

(E2.2b)

The calculation of the degrading stiffness coefficients then proceeds as follows. From Fig.

D2.10(a), for the initial unloading (j.e., (X2 = f32 = 0), the coefficients (XI and f31 are obtained

as:

2Py

f31 = K'2D/

Hence, from Eqns. E2.1b and E2.1a, the coefficients (XI and f31 follows as:

(E2.3a)

(E2.3b)

(E2.4a)

(E2.4b)

From Fig. E2.1, the maximum negative plastic deformations, D;- of the cracking hinge and Dy-

of the yielding hinge, are obtained as follows:

(E2.5a)

(E2.5b)

Hence, incorporating Fig. D2.10 with Eqns. E2.1c and E2.1d, the coefficients (X2 and f32 are

obtained from:

2Pc/K"j - (X2Dc

D+c
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(E2.6b)

and

(2.7a)

(2.7b)

These calculations give values of a i and {3 i for each of the loops. The values for succes-

sive loops should not be greatly different from each other. Values for analysis are obtained by

averaging the values for the individual loops.

E2.3 COMPARISON OF EXPERIMENT AND THEORY

A reinforced concrete cantilever under biaxial bending has been studied experimentally

and theoretically by Takizawa and Aoyama [10]. Figure E2.2 shows the dimensions of the test

specimen. Loading was imposed to produce predetermined displacement paths in the x and y

directions at the cantilever tip. Five different paths were considered, as shown in Fig. E2.3.

E2.3.1 Calculation of Degradation Coefficients

Test specimen 1 of the experiment was subjected to uniaxial bending. The results of this

test have been used to define values of the degradation coefficients a i and {3 i' These values

have been then used for analysis of all five specimens. The calculation of the degrading

stiffness coefficients proceeds as follows.

(a) An idealized trilinear hysteresis loop for the first loading cycle is shown in Fig. E2.1a. By

measurement from the figure:

D/ = 0.85 D t- = 0.83 (centimeters)

Pc = 3.0 Py = 4.5 (metric tons)

p+ 4.75 P- 4.8

K j 22.0 K 2 7.0 K 3 = 0.4 (tons/cm.)

tllK I = 7.7 t12K 2 = 5.4 t21K I = 7.6 t22K 2 = 4.3
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Hence,

K =c

From Eqns. E2.2a and E2.2b:

K 1K2

K 1-K2

K 2K 3

K 2-K 3

22.0x7.0
22.0-7.0

7.0x0.4
7.0- 0.4

10.27

0.42

Then, from Eqns. E2.3:

4.75-4.5 = 06
0.42 .

0.85 - 0.6 = 0.25

From Eqns. E2.4:

Then, from Eqns. E2.6:

4.8 - 4.5
0.42

0.95

-0.12

132 =

Thus,

[
2P

Y
[_1 1 1_1_ 131Dy-]1D/

t22K 2 K 1 K c

[9.0 x [4~3 - 2;.0 - 10~271- 0.76 x 0.95]10.6

12Pc [·---LK + K
1

- ---LK 1- a 1Dc-]/D/
t21 1 c t22 2

[6.0 x [/6 + 10
1
27 - 4

131 + 0.12]/0.25 ~ 0.39

0.14

al = 1.0, a2 = 0.4, 131 = 0.75, and 132 = 0.15

(b) An idealized loop for the second loading cycle is shown in Fig. E2.1 b. By measurement

from the sketch:

D-r 1.05
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Pc = 3.0

p+ = 4.91

t11K I = 6.0

Py = 4.5

P- = 5.06

t12K2 = 4.73 3.64

Hence, by the same procedure as for the first cycle, obtain:

ell = 1.0, el2 = 0.4, {31 = 0.65, and {32 = 0.45

(c) Obtain values for analysis as the average values from the two loops. That is,

ell = 1.0, el2 = 0.4, {31 = 0.7, and {32 = 0.3

E2.3.2 Lower Bound on Unloading Stiffness

Experience has shown that bounds are needed to prevent ridiculous results from being

obtained. If results are available, lower bound values can be obtained from experimental

results with large displacement cycling. In this example, judgement was required because the

imposed displacements for test specimen 1 were not of large amplitude. Bounds as follows

were specified for the cracking and yielding subhinges.

in which

Min. K c

Min. Ky

2 '* K co

2 '* Kyo

(E2.8a)

(E2.8b)

K co plastic stiffness before degradation of the cracking subhinge; and

Kyo plastic stiffness before degradation of the yielding subhinge.

E2.3.3 Comparison of Experiment and Analysis

To compare the measured and calculated results, the deflection paths in the analysis were

specified to correspond to the deflection paths observed in the experiments, as shown by the

dashed lines in Fig. E2.3. Comparisons of the load-deflection curves for each case are shown in

Figs. E2.4 through E2.11. In addition, comparisons of the force-path orbits for cases 3 and 4

are shown in Figs. E2.12 and E2.13.

The calculated and experimental results are encouragingly close, especially considering the

complexity of the response. Nevertheless, there are substantial differences in the shapes of the
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response curves. The discrepancies are largest for specimens 3 and 4. The force-paths in Figs.

E2.12 and E2.13 are substantially different, with the analysis following the circular form of the

yield surface and the experiment following straighter lines. Also, the hysteresis loops from the

analysis are too "fat" for specimen 3. It may be noted that the results are comparable in accu-

racy to the analytical results of Takizawa and Aoyama [lO).

A possible reason for the discrepancies could be that degradation of stiffness in the x and

y directions was assumed to be uncoupled. A further reason, as mentioned in Takizawa's

report, could be that the loading in the experiment did not provide ideal deflection control.

Fairly large deviations from the planned displacement paths occurred in the experiments.

E2.4 INVESTIGATION OF STIFFNESS COUPLING

As was noted in the preceding section, the hysteresis loops for specimen 3 were too fat in

comparison with the experimental results. This discrepancy could result from ignoring coupling

in stiffness degradation between the x and y directions. To investigate this phenomenon, a cou-

piing option has been included in the computer program, and a preliminary study has been car-

ried out.

For each hinge, it is assumed that the degrading stiffness is based not only on the max-

imum positive and negative plastic deformation in the direction of loading, but also on the

maximum positive and negative plastic deformations in the direction at right angles. The pro-

cedure is as follows.

The diagonal flexibility matrix, Ed, of a subhinge can be expressed in the following

manner:

(E2.9)

in which

Fdl (a ly D/ + a 2y Dy- + a 12y (D/ + Dz-)) /2Myu

Fd2 (a Iz Dz+ + a2z Dz- + a 12z (D/ + Dy-))/2Mzu

Fd3 (alr D !+a 2T Dr)/2Tu

Fd4 (alFD!+a 2F DF)/2Fu
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and where

a ly' a ly degradation coefficients a h a 2 for y bending;

a 1z, a 2z = coefficients for z bending;

alT, a2T coefficient for twist;

a IF, a 2F = coefficient for axial deformation;

a ij (i~ j) = degradation coupling coefficient;

Dt,Di

maximum positive and negative y plastic rotation;

z plastic rotation;

plastic torsional rotation; and

Dt, Di = plastic axial deformation.

Hence, the degraded stiffness matrix, K d , is:

Kd = diag [11 Fdl 11Fd2 11Fd3 11Fd4 ] (E2.10)

For analysis of the test specimens, the degradation coupling coefficients were arbitrarily

assumed to be al2 = 1/10(al +(2) and f312 = 1/10(f31 +f32)' The results of analyses with these

assumed values are shown in Figs. E2.14 to E2.16.

The analysis results show significantly better agreement with the experiment than those

without stiffness degradation coupling. However, because of the complexity of the physical

phenomena governing stiffness degradation coupling, there exists no obvious theory to aid in

choosing the coupling coefficients, and substantial further study is needed.

The study suggests that the influence of stiffness degradation coupling is substantial.

However, at present, experience and judgement provide the only means for choosing the cou

pling coefficients.
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E3. 3D REINFORCED CONCRETE FRAME

E3.1 GENERAL

A simple 3D building frame of reinforced concrete has been studied experimentally and

analytically by Oliva [21l. The frame has two stories, with one bay in each direction (Fig.

E3.0. It was tested under uniaxial ground motion, but the frame was inclined in plan so that

the motion produced biaxial response.

Several tests were performed, with progressively increasing ground motion intensity.

Using the degrading stiffness element, analyses have been performed for two of these motions,

namely a low amplitude motion ("TIOO" of [21], Fig. E3.2) and a high amplitude motion

("TIOOO" of [21], Fig. E3.3). Elastic behavior was assumed for the TlOO motion, and inelastic

behavior with degradation for the TlOOO motion. The stiffness degradation coefficients were

varied for the inelastic analyses to study their influence on the computed response.

E3.2 ASSUMPTIONS FOR ANALYSIS

The madel used to analyze the frame is shown in Fig. E3.4. Nodes were placed at the

points where the column centerlines intersect with the uncracked neutral axes of the beams.

Short rigid connections were specified from the nodes to the beam and column faces to simu

late rigid joint regions. Lumped masses were located at the centers of mass of the concrete

blocks and connected to the beams by stiff truss members. Rotational inertia of the concrete

blocks was not considered. The floor diaphragms were modeled using stiff truss members, and

the pitching stiffness of the shaking table was modeled by a set of vertical springs.

For all analyses, uniaxial horizontal table motion was applied (Fig. E3.1a). Gravity load

was ignored, and small displacements were assumed (no p-t:,. effect).

E3.3 ELASTIC ANALYSIS

The analytical model for correlation of "elastic" response (i.e. small amplitude loading)

was as shown in Fig. E3.4. The ANSR-II input data for the analysis is listed in Table E3.I.
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Because the amplitude of motion during the test was small, the pitching motion of the shaking

table was assumed to be negligible and the supporting springs were assumed to be rigid. The

stiffness properties for the structural members were the same as those used by Oliva [21]. To

ensure elastic behavior, the members were assigned very high strengths. Mass proportional and

initial stiffness proportional damping (a M + Po K o) was used, assuming 4% critical damping

at 3.5 Hz (first natural frequency as given by ref. [21D, and 3% at 8.5 Hz (second natural fre

quency). The imposed horizontal accelerogram is shown in Fig. E3.2. The integration time

step was 0.02 seconds.

Figures E3.5 and E3.6 show time histories of the measured and computed horizontal dis

placements at the first floor. Close correlation was obtained for both the longitudinal and

transverse directions. Previous experience has shown that if agreement between analysis and

experiment is to be obtained for inelastic response, agreement must first be obtained for elastic

response.

E3.4 INELASTIC ANALYSIS

E3.4.1 Analysis Model

For inelastic analysis, the analytical model was again as shown in Fig. E3.4. The support

ing springs for modeling table pitching were assigned stiffnesses of 150 k/in. each, correspond

ing to a table rotational stiffness of 21640 in-k/rad. [21]. The action-deformation relationships

for axial force and moment (monotonic loading) were obtained from cross section analyses per

formed by Oliva [21]. Insufficient experimental data was available for direct determination of

the stiffness degradation coefficients. Hence, a limited parameter study has been carried out to

determine the trend in the computed response as the degradation coefficients are changed.

E3.4.2 Parameter Study

Four cases were analyzed, as follows.
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Case 1:

No degradation (coefficients aJ, a2, fh and (32 all zero), with viscous damping as for the

elastic analysis.

Case 2:

No degradation, with increased viscous damping. Because the assumed viscous damping

is based on the original stiffness, it is possible that the viscous energy absorption can be

overestimated when the structure yields and/or degrades. To study this, the damping

coefficients, a and (3o, were made ten times larger than for Case 1.

Case 3:

Large degradation coefficients, al = 1.0 and a2 = 0.9, were specified for the cracking

hinges, and zero values for the yielding hinges. The experimental results [21) showed

that the column actions never exceeded the assumed second yield point for column sec

tion, so that the values of {31 and {32 have no effect on the response. Viscous damping

was the same as for Case 1.

Case 4:

Moderate degradation. The same values for coefficients a I and a2 as those of Section E2

(a I = 1.0,a 2 = 0.4) were used for the cracking hinge, with zero values of {31 and {32 for

the yielding hinge. Viscous damping was the same as for Case 1.

The solution strategy was step-by-step without iteration, using path dependent state deter

mination and a constant integration time step of 0.005 seconds.

E3.4.3 Comparison of Analytical and Experimental Results

Comparisons of the results from analysis and experiment are shown in Figs. E3.7 and

E3.8 for Case 1. The analytical results are not close to those obtained in the experiment, the

former having smaller amplitudes and higher frequencies for both the x and y responses.

The results for Case 2 are shown in Figs. E3.9 and E3.10. The analytical results again

deviate from the experimental results. The analytical results for Case 2 are very similar to
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those for Case 1, except that larger drifts are calculated towards the end of the response in Case

1. This result indicates that the effects of the assumed viscous damping are not large.

Figures E3.11 and E3.12 show the results for Case 3. It can be seen that the analysis

predicts a larger amplitude response than was observed in the experiment, indicating that too

much stiffness degradation was assumed in the analytical model. The analysis predicted sub

stantial drift in the y component of response.

Figures E3.13 and E3.14 show the results for Case 4. The responses agree quite closely

for the x direction response, both in period and amplitude. The y direction responses agree less

well, but are nevertheless close considering the complexity of the problem. The agreement is

significantly closer than that obtained by Oliva [21], which ignored the biaxial interaction

effects.

E3.5 CONCLUSION

The analyses in this chapter, although limited in scope, suggest that the values of the

degradation coefficients a 1 and (q should be approximately 1.0 and 0.4, respectively. In

Chapter E2, these same values were found to give quite close agreement with the tests of Tak

izawa and Aoyama. For the analyses in this chapter, the coefficients f31 and f3 2 were not used,

because the shaking was not intense enough to exceed the strength of the yielding hinges. If

no better information is available, it is suggested that the values f31 = 0.7 and f3 2 = 0.3, as

found in Chapter E2, be used for dynamic analyses.
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E4. LARGE ROTATION PIPE WHIP STUDY

E4.1 GENERAL

The distributed plasticity element can be used to analyze the inelastic whipping motions of

piping systems following hypothetical pipe rupture. Small displacement analyses can be used

for piping confined by pipe whip restraints, whereas large displacements must be considered for

unrestrained pipes. In this example, a high energy pipe system has been analyzed for an

assumed break location which permits the piping to move a distance of over five diameters

before impacting a very stiff wall. The purpose of the analysis is to predict the impact time and

velocity, and to obtain an estimate of the impact force imposed on the wall. The analysis con

siders material yield, strain rate effects, material nonlinearity, large deflections, gap closure, and

variable direction of the jet load (follower force). The analysis was performed using the distri

buted plasticity element in the computer program WIPS [3l].

E4.2 ASSUMPTIONS FOR ANALYSIS

The idealized system is shown in Fig. E4.1. A configuration with similar properties has

been analyzed by H. D. Hibbitt and B. I. Karlsson [28] and D. K. Vijay and M. J. Kozluk [38].

For the pipe elements, the stress-strain relationship shown in Fig. E4.2 was used. Force-strain

and moment-curvature relationships as shown in Fig. E4.2 were obtained by determining

"exact" relationships (using a small special purpose computer program) and constructing tri

linear approximations. For the elbow elements, the straight pipe stiffnesses were divided 3.5

(the elbow flexibility factor) and the strengths were multiplied by 0.85 (chosen arbitrarily).

Dimensionless damping action versus strain rate relationship was assumed as shown in Fig. 4.3,

using yield stress versus strain rate relationship from 1. M. Manjoine [32]. The jet force time

history was as shown in Fig. E4.1. Because the rotation of the break is large, the blowdown

thrust must be considered as a follower force acting along the pipe at all times rather than fixed

in direction. Impact with the wall was allowed at nodes 2, 4, 6, and 8. The gaps between these

nodes and the wall were modeled using gap elements [31]. The stiffness after gap closure was
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assumed to be 10000 Klin. This value was chosen arbitrarily to represent a very stiff wall.

Because the impact force depends a great deal on the deformability of both the wall and the

pipe, the calculated impact forces are unlikely to be accurate. However, the calculated motion

of the pipe can be expected to correspond quite closely to the actual motion, both before and

after impact. No experimental results are available.

E4.3 DISCUSSION OF ANALYSIS RESULTS

The WIPS analysis was carried out using the Hilber-Hughes-Taylor integration scheme

[39J with a numerical damping factor, ex, of -0.05. The calculated pipe shapes at three separate

times are shown in Fig. E4.4. Figure E4.4 shows the time history of displacement at node 6

and the calculated impact force (the sum of the forces in the four gap elements). The results

show a large initial impact force, followed by rebound and new contact. After the second con

tact, the force transmitted to the wall is of the order of magnitude as the blowdown force.

Analyses with and without strain rate effects were very similar. The calculated time for

first contact with the wall was 95 milliseconds for the case with no strain rate effect and 98 mil

liseconds for the case with strain rate effects, as shown in Fig. E4.5. This result is quite similar

to that obtained by H. D. Hibbitt and B. I. Karlsson [28].
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PRESENT STUDY

(e) ANALYSIS,
TAKIZAWA 8 AOYAMA '-@-=-®-

FIG. E2.13 FORCE ORBITS. LOAD SEQUENCE 4.
COMPARISON OF ANALYSIS & EXPERIMENT.
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(0) X-COMPONENT,

(b) Y - COMPONENT

FIG. E2.14 ANALYSIS WITH DEGRADING STIFFNESS COUPLING.
LOAD SEQUENCE 3.
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(0) X-COMPONENT

(b) Y- COMPONENT

FIG. E2.15 ANALYSIS WITH DEGRADING STIFFNESS COUPLING.
LOAD SEQUENCE 4.
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(a) X-COMPONENT

5.0 '---7@

(b) Y - COMPONENT

FIG. E2.16 ANALYSIS WITH DEGRADING STIFFNESS COUPLING.
LOAD SEQUENCE 5.
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TABLE E1.1

start popov-zayas strut example

.01 100000000.100000000.
2 1 10000.
1 0.00000

2oo

20. 10 .. 47. 54.2 542.
20. 10. 47. 54.2 542.
20. 10. 47. 54.2 542.
10. 5. 43.5 43.54 880.52

20. 10. 47000. 54200. 542000.
20. 10. 47000. 54200. 542000.
20. 10. 47000. 54200. 542000.
10. 5. 43500. 43540. 880520.

20. 10. 47000. 54200. 542000.
20. 10. 47000. 54200. 542000.
20. 10. 47000. 54200. 51+2000.
10. 5. 43500. 43540. 880520.

0 0 2 2 0 0 2 1 0 1

8o

8600.
8600.
8600.
27.4

8600.
8600.
8600.
27.4

2 3

53800.
1
6

8 8
1 38.18
2 37. 18
3 21.69 0.012
4 20.7675 0.024
5 13.845 0.036
6 6.9225 0.048
1 .06
8 -1. .06
1 111111
2 001110
3 001110
4 001110
5 001110
6 001110
7 001111
8 111110
1 1 1
1
1
1
6
3
1

10~310.

101310.
101310.
53800.

2
101310. 8600.
101310. 8600.
101310. 8600.
53800000. 27.4

3
101310.
101310.
101310.
53800.

1

2

3

3

4

4

5

o

o

o

o

3

3

3

3

o

o

o

o

2

2 1

o

o

1
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4 5 6 0 0 3 ~ 0 0 2 0

5 6 7 0 0 1 1 0 0 2 1 0

6 7 8 0 0 2 2 0 0 2 1 0

0 0 0 1 0 1 0 2116000 0 0
0.0025 O. O. O.

imposed force function (8f10.0)
21 0 O. O. 16000 -1.

O. O. 1• 18830000. 2. o. 3. -18830000.
4. o. 5. 37660000. 6. o. 7. -37660000.
8. O. 9. 56490000. 10. O. 11- -56490000.
12. O. 13. 75320000. 14. O. 15. -75320000.
16. O. 17. 94150000. 18. o. 19. -94150000.
20. O.

1 0 0 0 0 0
2

dynm
8000 -1 0 0 1

1 1 0 1- 2
0 1 1 1 , 1 1

100. 100.

stop
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TABLE E1.2

start
newf

popov-zayas bracin~ example

100000.
100000.

10000.
10000.

2059.54
2059.54

255

100.
100.

o 2
O.
O.
O.
O.
O.
O.
0.4242
0.4242
O.
0.4242
0.4242
O.
O.
0.4242
0.4242
O.
0.4242
0.4242
O.
O.
O.
O.

100000000.100000000.

1000.
1000.

12 0
330.
330.
330.
330.
270.
270.
240.6
239.4
210.
180.6
179.4
150.
150.
120.6
119.4
90.
60.6
59.4
30.
30.
o.
o.

o

o.
120.

001000
001000
001000
111111
001000
001000
001000
001000
001000
001000
111000
111000
1 1

22
o.
60.
120.
130.
o.
120.
30.6
90.6
60.
30.6
90.6
o.
120.
30.6
90.6
60.
30.6
90.6
O.
120.

22
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1
2
3
4
5
6

12
13
19
20
21
22

1
1
110000000. 0.001
1 3 4 1 1.
6 31 1 0.001
4
1

8100715. 10000.
8100715. 10000.



8100715. 10000. 1000. 100. 2059.54 10000. 100000.
422820. 100. 10. 5. 685.26 1000. 10000.

2
406550. 10000. 1000. 100. 219.631 1000. 10000.
406550. 10000. 1000. 100. 219.631 1000. 10000.
406550. 10000. 1000. 100. 219.631 1000. 10000.
95960. 100. 10. 5. 155.52 1000. 10000.

3
79895. 6790. 10. 5. 42.706 56.017 560.17
79895. 6790. 10. 5. 42.706 56.017 560.17
79895. 6790. 10. 5. 42.706 56.017 560. 17
42427. 20. 10. 5. 45.35 45.43 1052.79

4
171970. 14618. 20. 10. 81. 716 108.438 1084.38
171970. 14618. 20. 10. 81. 716 108.438 1084.38
171970. 14618. 20. 10. 81. 716 108.438 1084.38
73863. 37. 10. 5. 78.96 79. 11 1178.33

1 1 2 0 0 1 0 0 1 1 0 o 0.01

2 2 3 0 0 1 1 0 0 1 0 o 0.01

3 5 6 0 0 3 3 0 0 1 0 o 0.01

4 12 13 0 0 3 3 0 0 1 0 o 0.01

5 19 20 0 0 3 ':( 0 0 1 1 0 o 0.01

6 5 0 0 1 0 0 0 o 0.01

7 3 6 0 0 1 1 0 0 1 0 o 0.01

8 5 12 0 0 0 0 0 o 0.01

9 6 13 0 0 1 0 0 0 o 0.01

10 12 19 0 0 1 0 0 0 o 0.01

11 13 20 0 0 0 0 0 o 0.01

12 19 21 0 0 1 0 0 1 1 0 o 0.01

13 20 22 0 0 0 0 0 o 0.01

14 2 5 0 0 2 2 0 0 0 o 0.01

15 2 6 0 0 2 2 0 0 0 o 0.01

16 5 7 0 0 3 3 0 0 0 o 0.01

17 7 9 0 0 3 3 0 0 0 0 0.01

18 6 8 0 0 3 3 0 0 0 o 0.01

19 8 9 0 0 3 ':.l 0 a 0 o 0.01..I
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20 9 10 0 0 3 3 0 0 1 1 0 o 0.01

21 10 12 0 0 3 3 0 0 1 0 o 0.01

22 9 11 0 0 3 3 0 0 1 0 o 0.01

23 11 13 0 0 3 3 0 0 0 o 0.01

24 12 14 0 0 4 4 0 a 0 o 0.01

25 14 16 0 0 4 4 0 0 0 o 0.01

26 13 15 0 0 4 4 0 0 1 1 0 o 0.01

27 15 16 0 0 4 4 0 0 0 o 0.01

28 16 17 0 0 4 4 0 0 1 1 0 o 0.01

29 17 19 a 0 4 4 0 0 0 o 0.01

30 16 18 0 0 4 4 0 0 1 0 0 0.01

31 18 20 0 0 4 4 0 0 1 1 0 o 0.01

0 0 0 1 0 1 0 5811400 0 0
0.01 O. O. O.

imposed force function (8f10.0)
58 0 O. O. 11400 1-

O. O. 1• -460000. 2. o. 3. 390000.
4. O. 5. -1080000. 6. O. 7. 800000.
8. O. 9. -1060000. 10. O. 11 • 990000.
12. o. 13. -1250000. 14. O. 15. 1140000.
16. o. 17. -1250000. 18. O. 19. 1140000.
20. O. 2" -720000. 22. o. 23. 640000.
24. O. 25. -1440000. 26. O. 27. 1320000.
28. O. 29. -1630000. 30. o. 3" 1510000.
32. o. 33. -2020000. 34. O. 35. 1890000.
36. o. 37. -710000. 38. o. 39. 640000.
40. O. 4" -2030000. 42. o. 43. 1900000.
44. o. 45. -2030000. 46. o. 47. 1890000.
48. o. 49. -2430000. 50. O. 51. 2310000.
52. o. 53. -3020000. 54. O. 55. 2430000.
56. 3570000. 57. 4000000.

-1 -1 -1 0 0 0
dynm

5700 -1 0 1 0 20 20
1 1 0 1- 3
0 1 1 1 1 1

100. 100.

stop
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TABLE E3.1

start oliva r.c. 3-d frame example
newf

2o 10
168.5375
154.85
154.85
154.85
154.85
154.85
154.85
154.85
154.85
97.4125
75.725
75.725
75.725
75.725
75.725
75.725
75.725
75.725
O.
O.
o.
o.

100000000.100000000.
100.
100.
100.
100.

422 22 0
1 72.125 18.
2 O. O.
3 48.0833 o.
4 96.1667 O.
5 144.25 o.
6 o. 36.
7 48.0833 36.
8 96.1667 36.
9 144.25 36.

10 72.125 18.
110. O.
12 48.0833 o.
13 96.1667 O.
14 144.25 O.
15 O. 36.
16 48.0833 36.
17 96.1667 36.
18 144.25 36.
19 o. O.
20 144.25 O.
21 o. 36.
22 144.25 36.
19 111111
20 111111
21 111111
22 111111

1 0.02802 0.02802
2 0.00168750.0016875
5 0.00168750.0016875
6 0.00168750.0016875
9 0.00168750.0016875

10 0.04974 0.04974
11 0.00198250.0019825
14 0.00198250.0019825
15 0.00198250.0019825
18 0.00198250.0019825

1 24 1
1
1100000000.0.001
1 1 3 1
2 1 4 1
3 1 7 1
4 1 8 1
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5 2 7 1 100.
6 3 6 1 100.
7 3 7 1 100.
8 3 8 1 100.
9 4 7 1 100.

10 4 8 1 100.
11 4 9 1 100.
12 5 8 1 100.
13 10 12 1 100.
14 10 13 1 100.
15 10 16 1 100.
16 10 17 1 100.
17 11 16 1 100.
18 12 15 1 100.
19 12 16 1 100.
20 12 17 1 100.
21 13 16 1 100.
22 13 17 1 100.
23 13 18 1 100.
24 14 17 1 100.

4 24 1 0.0006
5 5
1 3 4. 2. 4. 4. 2. 4.

23317.87 o. o. o. o. O.
233.2 23.32 1000. .lWOO. 233.2 23.32 1000. .11000.
23317.87 o. o. o. o. O.
233.2 23.32 1000. 4000. 233.2 23.32 1000. 4000.
23317.87 233.17 23.32 1000. 4000. O. o. o. O.
9676.92 96.77 9.677 1000. 4000. O. O. o. O.

2 3 4. 2. 4. 4. 2. 4.
32645. O. O. o. o. O.
326.45 32.645 1000. 4000. 326.45 32.645 1000. 4000.
32645. o. o. o. o. O.
326.45 32.645 1000. 4000. 326.45 32.645 1000. 4000.
32645. 326.45 32.645 1000. 4000. O. o. O. O.
9851. 8 98.52 9.852 1000. 4000. O. O. O. o.

3 3 4. 2. 4. 4. 2. 4.
26472.78 o. o. o. o. o.
264.73 26.473 1000. 4000. 264.73 26.473 1000. 4000.
26472.78 O. O. o. O. O.
264.73 26.473 1000. 4000. 264.73 26.473 1000. 4000.
26472.78 264.73 26.473 1000. 4000. O. O. O. O.
8019.7 80.2 8.02 1000. 4000. O. O. O. o.

4 3 4. 2. 4. 4. 2. 4.
1771.25 O. O. O. O. o.
17.713 1.77 1000. 4000. 17.713 1.77 1000. 4000.
9919. o. o. o. o. O.
99.19 9.92 1000. 4000. 99. 19 9.92 1000. 4000.
1594.12 15.9412 1.594 1000. 4000. O. o. O. O.
2054.65 20.5465 2.05465 1000. 4000. O. O. o. O.

5 3 .li. 2. 4. 4. 2. 4•
1665.7 O. O. o. o. O.
16.66 1. 666 1000. 4000. 16.66 1.666 1000. 4000.
5552.33 o. o. o. o. o.
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55.52 5.552 1000.
4000. O. O. o. O.
4000. O. O. o. o.

55.52 5.552
1665.7 16.66
2146.9 21.47

1 4.25
2
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24 18 22 20 o o 5 5 o 2 o o 0.01

o 0 0 0 0 0 1500 2600 0
0.01952 O. o. 1.5

t 100(2) ground accel. (8fl0.8)
1500 0 0.01952 O. 2600 386.4

-.00108555 .00065332-.00058873 .00264060 .00139855 .00065332 .00214318 .00214378
.00139855-.00058873 .00115014-.00133396 .00189531-.00034032-.00009191 .00015650
.00015650 .00065332-.00034032-.00083714-.00009191 .00189537-.00282442-.00009191

-.00009191 .00040491-.00133396-.00356965-.00804103-.00555693-.00481170-.00456329
.00015650 .00090173 .00363424 .00413106 .00139855 .00040491 .00115014 .00040491
.00115014 .00338583 .00413106 .00288901 .00090173 .00313742 .00512470 .00413106
.00462788 .00189537-.00034032 .00040491 .00239219 .00288901 .00015650-.00083714

-.00257601-.00431488-.00356965-.00158237-.00406647-.00083714-.00034032-.00108555
-.00158237-.00282442-.00580534-.00332124-.00506011-.00356965-.00381806-.00406647
-.00630216-.00282442 .00139855 .00437947 .00711198 .00115014 .00239219 .00288901

.00487629 .00736039 .00363424-.00232760 .00015650-.00232760-.00729580-.00779262
-.00679898-.00356965 .00115014 .00512470 .00562152 .00040491-.00356965-.00506011
-.00655057-.00456329-.00257601 .00164696 .00785721 .00760880 .00611834 .00288901
-.00257601-.00456329-.00307283-.00555693-.00605375-.00481170-.00307283 .00338583

.00611834 .00860244 .00860244 .00810562 .00785721 .00512470 .00413106 .00686357

.00810562 .00512470 .00239219 .00338583 .00239219 .00040491 .00338583-.00282442

.00065332 .00189537 .00239219 .00586993 .00909926 .00909926 .00860244 .01307382

.01282541 .01779361 .02027771 .01903566 .01406746 .01009290 .00512470 .00586993

.00437947 .00512470 .00686357-.00133396-.00555693-.00729580-.01176718-.01524492
-.01474810-.00257601 .00040491-.00257601-.00928308-.01996471-.02865906-.03313045
-.03437249-.02816225-.02418768-.05027074-.06144919-.05151279-.04728982-.03163999
-.00009191 .02301022 .03766641 .03841164 .03567913 .03071093 .02301022 .02375545

.02524591 .02027771 .02052612 .00835403 .00562152-.00034032-.00133396-.00207919

.00363424 .00711198 .00462788-.00083714-.00828944-.01921948-.01897107-.01474810
-.01027672-.00481170-.00754421-.01300923-.01623856-.02542973-.02617496-.01772902
-.00977990 .00413106 .01580633 .02276181 .02027771 .01257700-.00108555-.01822585
-.02667179-.02393927-.01027672 .00885085 .02201658 .02847524 .02673637 .01878725

.01133495 .00264060-.00655057-.01325764-.01499651-.01400288-.00630216 .00214378

.0 1481269 .03046252 .03369185 .02599114 .02151976 .01878725 .00512470-.00729580
-.01300923-.00903467-.00257601-.00009191 .00313742 .00711198 .01307382 .01679997

.01456428 .00562152 .00338583 .00537311 .00984449 .01232859 .01679997 .01058972

.00214378-.01127036-.023 19405-.03660819-.04406049-.03909229-.02443609-.03909229
-.03760183-.02095835-.00356965 .00959608 .02474909 .03095934 .02673637 .02201658

.01878725 .01953248 .02773001 .03791482 .02822683 .01307382-.00555693-.01723220
-.01748061-.01176718-.01102195-.01226400-.02244882-.02692020-.01648697-.02021312
-.01599015-.00406647 .00661516 .00586993 .00065332-.00754421-.00953149-.01002831
-.00828944-.00058873 .00413106 .00785721 .01034131 .00686357 .00015650-.00456329
-.00406647 .00115014 .00437947-.00183078-.01375446-.02220040-.02493291-.01797743
-.00605375 .00760880 .02027771 .03418867 .04511872 .04586394 .03692118 .05530352

.05902965 .05753922 .04934169 .04015052 .02946888 .01158336-.00853185-.02145517
-.03039793-.04704141-.05200961-.05275484-.03660819-.01797743-.00356965-.00356965
-.00555693-.01499651-.02393927-.01971630-.00828944 .00288901 .00264060 .00636675

.01108654 .00984449 .00785721 .00512470-.00630216-.01524492-.02418768-.01822585
-.02766543-.03635978-.03337885-.01946789 .00015650 .01431587 .02002930 .01953248

.01481269 .00959608 .01158336 .00984449 .00860244 .00810562 .00760880 .00909926

.00413106 .00239219-.00009191-.00804103-.01350605-.03288204-.04306684-.04406049
-.03511773-.03313045-.02791384-.02269723-.01201559 .00065332 .01481269 .03021411

.04487031 .04660917 .03443708 .02450068 .02201658 .02524591 .02375545 .01878725
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.01978089 .01729679 .00189537-.01599015-.03139158-.02344246-,00530852-.00183078

.00686357 .01406746 .01406746 .01381905 .01580633 .00934767 .01034131 .00512470

.00611834 .00562152 .00239219-.00257601-.01102195-.01897107-,01772902-.00953149
-.00108555 .00835403 .01406746 .02127135 .02872365 .02847524 ,02176817 .00537311
-.01276082-.02816225-.02443609-.02294564-.01897107-.01300923-,01102 195-.01127036
-.01176718-.01151877-.02046153-.02617496-.02145517-.01300923 .00090173 .01506110

.01903566 .01878725 .01034131-.00183078-.01052513-.02642337-.03412408-.03238522
-.02170358-.01127036 .00562152 .02350704 .03890846 .04536712 .03369185 .01456428

.01108654 .01058972 .00860244-.00481170-.01599015-.01797743-.02393927-.02791384
-.01872267-.01052513-.00754421 .00264060 .01034131 .01729679 .02176817 .02077453

.01829043 .01406746 .01655156 .02325863 .02077453 .00611834-.01276082-.02195199
-.02220040-.01648691-.01599015-.02418768-.02319405-.00356965 .01481269 .02648796

.02723319 .01903566 .01953248 .02549432 .02549432 .01953248 .01853884 .01729679

.01679997 .00810562-.00307283-.00779262-.01077354-.00928308-.00356965-.00332124
-.00853785-.01772902-.02443609-.01921948-.00828944 .00437947 .00413106 .00562152

.00040491-.00058873-.00456329-.00729580-.00729580-.00828944-.00878626-.00555693
-.00232760-.00406647-.00530852-.00332124-.00804103-.00903467-.01002831-.01400288
-.01698379-.01698379-.01325764-.00853785-.00754421-.00530852 .00115014-.00431488
-.00506011-.01176718-.01027672-.00506011 .00164696-.00083714 .00040491 .00413106

.00860244 .01406146 .01729619 .02116817 .02623955 .02648796 .01829043 .01530951

.01406146-.00009191-.01425128-.01772902-.01052513 .00040491 .00736039 .01332223

.01704838 .01878725 .01481269 .00562152-.00605375-.01698379-.02195199-.02021312
-.01474810-.00605375-.00307283-.00158237 .00313742 .00313742 .00264060 .00139855

.00040491-.00207919-.00232760-.00530852-.00903467-.01127036-.00779262 .00239219

.01257700 .01630315 .00909926 .01580633 .02176817 .02226499 .01704838 .00909926

.00015650-.00779262-.01400288-.01648697-.01599015-.01449969-.01176718-.0075LI421
-.00853785-.01027672-.01425128-.01946789-.01673538-.01077354 .00388265 .01307382

.01779361 .02002930 .01953248 .00736039 .00661516 .00984449 .00512470 .00189537

.01009290 .00611834 .00015650-.00853785-.01499651-.01648697-.01027672-.00183078

.00288901 .00537311 .00537311 .00810562 .00636675-.00083714-.00630216-.00655057
-.00679898-.01052513-.00530852-.01027672-.01996471-.02070994-.01400288-.00282442

.00413106 .01034131 .01406746 .01381905 .01058972 .01183177 .00785721 .00413106

.00661516 .00562152 .00313742-.00704739-.00953149-.00903467-.01276082-.01748061
-.01698379-.02095835-.01599015-.00878626 .00661516 .02499750 .03518231 .03120775

.02151976 .03418867 .03915687 .03120775 .01232859-.00232760-.02021312-.02692020
-.02592655-.01797743-.01151877-.00580534-.00133396-.00083714-.00431488-.00580534
-.01077354-.00356965-.00431488 .00040491 .00413106 .00040491 .00040491-.00332124
-.00555693-.00580534-.00456329-.00729580-.01151877-.01499651-.01375446-.00878626

.00264060 .00810562 .01034131 .00711198 .00686351 .00462788 .00115014-.00431488
-.00779262-.00555693-.00009191 .01431587 .02077453 .01530951 .01232859 .01853884

.01928407 .01058972 .00288901-.00605375-.00481170-.00729580-.00282442-.00034032
-.00332124-.00406647-.00506011-.00555693-.00506011 .00139855 .00363424 .00810562

.00537311 .00562152 .00413106 .00214318-.00282442-.00853185-.01474810-.01723220
-.01549333-.01027672-.00977990-.02046153-.02716861-.02841066-.02468450-.01549333
-.00207919 .00760880 .01878725 .02872365 .03195298 .02648796 .01704838 .01506110

.00934767 .00909926-.00083714-.00878626-.01797743-.01300923-.01797743-.02418768
-.02070994-.01549333-.00630216 .00065332 .00512470 .01133495 .01530951 .01530951

.01605474 .01034131 .01009290 .00760880 .00481629 .00885085 .01083813 .00736039
-.00108555-.01077354-.01425128-.00828944-.00232760-.00058873 .00040491 .00040491

.00413106 .00115014-.00009191-.00481170-.01449969-.02046153-.02766543-.02915588
-.02592655-.01872267-.00580534-.00034032 .00736039 .01530951 .01530951 .00512470

.00040491 .00040491 .00313742 .00437947 .00711198 .00835403 .01108654 .01506110

.02052612 .01903566 .01530951 .00711198 .01208018 .00984449 .00115014-.00133396

.00015650-.00207919-.00406647-.00406647-.00655057-.00804103-.00804103-.00729580
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-.00456329-.00555693-.00779262-.00381806 .00015650 .00338583 .00636675 .00835403
.00959608 .00711198 .01083813 .01133495 .00413106-.00034032-.00034032-.00630216

-.00779262-.00481170-.00083714 .00288901 .00711198 .00413106 .00686357 .00860244
.00487629 .00288901 .00363424 .00388265 .00487629 .00736039 .00313742 .00164696

-.00108555-.00704739-.01002831-.01151877-.00878626-.00853785-.00679898-.01002831
-.00928308-.00356965-.00332124 .00065332-.00133396-.00481170-.01102195-.01812261
-.02195199-.01797743-.00719262 .00115014 .00711198 .00984449 .01083813 .01351064

.00959608 .00785721 .00760880 .00984449 .00959608 .01058912 .01232859 .01605414

.01108654 .00512470-.00332124-.00953149-.01648691-.01897107-.01623856-.00530852
-.00356965-.00381806-.00009191-.00158231 .00040491 .00363424 .00736039 .00363424
-.00133396-.00381806-.00506011-.00555693-.00406641-.00605375-.00719262-.00903461
-.01017354-.00853785-.00530852 .00164696 .00736039 .00959608 .00860244 .00860244

.00760880 .00611834 .00413106 .00413106 .00368265 .00413106 .00860244 .00160880

.00462788 .00189537 .00139855 .00090173 .00512470 .00512470-.00083114-.00108555
-.00679898-.00828944-.01021672-.01127036-.01027612-.01151877-.01996471-.01623856
-.00754421 .00264060 .01133495 .01530951 .01083813 .00338583 .00040491-.00133396
-.00009191 .00388265 .00562152 .00760880 .00711198 .00661516 .01108654 .01332323

.00686357 .00040491-.00903467-.01176118-.00853785-.00481170-.00083714 .00338583

.00661516 .00835403 .00711198 .00462788 .00115014-.00605315-.00977990-.01052513
-.00754421-.00580534-.01017354-.01251241-.00903461-.00605315-.00183018-.00108555

.00015650 .00214378 .00388265 .00636675 .00338583 .00413106 .00661516 .00413106

.00586993 .00363424-.00183078-.00133396-.00108555-.00332124-.00083114 .00214378

.00413106 .00214378 .00164696 .00512410 .00636615 .00835403 .00934161 .01158336

.00785721 .00363424-.00009191-.00282442-.00481170-.00431488-.00183018-.00232760

.00164696 .00189531 .00164696-.00108555-.00555693-.01002831-.00828944-.00129580
-.00555693-.00332124-.00332124-.00356965-.00481110-.00506011-.00828944-.00605315
-.00201919 .00164696 .00835403 .01009290 .00760880 .00338583 .00810562 .01058912

.01183171 .00885085 .00661516 .00686351 .00189531-.00183078-.00655051-.00704139
-.00456329-.00356965-.00555693-.00828944-.00853185-.00704739-.00530852-.00257601

.00139855 .00388265 .00586993 .00636615 .00164696-.00207919-.00481110-.00431488
-.00679898-.00555693-.00158231-.00282442-.00619898-.00630216-.00704139-.00655051
-.00381806-.00332124 .00040491 .00512410 .00487629 .00214378 .00040491-.00356965
-.00580534-.00630216-.01151877-.00928308-.00679898-.00356965 .00139855 .00185721

.00885085 .00934767 .00934767 .01009290 .00785721 .00388265 .00164696-.00133396

.00115014-.00058873 .00090173-.00058873-.00183078-.00580534-.00977990-.01027672
-.00754421-.00332124 .00090173 .00661516 .00160880 .01208018 .01133495 .00860244

.00810562 .01332223 .01530951 .01605474 .01456428 .01232859 .00885085 .00115014
-.00630216-.01216082-.01474810-.01375446-.01276082-.00179262-.00257601 .00214318

.00189537 .00040491-.00108555-.00307283-.00754421-.00630216-.00506011-.00332124
-.00133396-.00058873-.00183018-.00108555-.00009191-.00058813 .00214318 .00239219

.00065332-.00207919-.00083714-.00183078 .00139855-.00034032 .00214318 .00437941

.00512470 .00512470 .00686351 .00388265 .00388265 .00214318-.00083114-.00232760
-.00058813-.00406647-.00619898-.00481110-.00655057-.00530852 .00015650-.00207919
-.00058873-.00207919-.00356965-.00431488-.00729580-.00853785-.00605315-.00083114

.00214378 .008d5085 .00760880 .00562152 .00686357 .00586993-.00009191 .00388265

.00363424-.00108555-.00251601-.00431488-.00158237-.00307283 .00040491-.00158231
-.00257601-.00356965-.00456329-.00704739-.00779262-.00655057-.00406647-.00506011
-.00481170-.00332124-.00555693-.00207919-.00207919-.00133396-.00083714 .00040491
-.00257601 .00239219 .00537311 .00214378 .00065332-.00307283-.00481110-.00301283
-.00133396-.00183078 .00214378 .00214378 .00214318 .00413106 .00760880 .00984449

.00909926 .00785721 .00160880 .01058972 .00586993 .00388265 .00586993 .00512410

.00388265 .00313742 .00313742 .00139855 .00040491-.00232760 .00040491-.00108555
-.00605375-.00356965-.00381806-.00530852-.00506011-.00307283-.00257601-.00108555
-.00356965-.00530852-.00282442-.00133396-.00158237 .00115014 .00015650-.00282442
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o O.
1 1
o 0.422518
1 1

o
1
1

-1 1 0
o 0.906308
1 1 1

100.

-.00034032 .00214378 .00562152 .00860244 .00487629 .00562152 .00860244 .00611834
.00214378 .00065332-.00183078-.00356965-.00356965-.00506011-.00456329-.00232760

-.00183078 .00139855 .00090173 .00363424 .00388265 .00437947 .00736039 .00661516
.00711198 .00636675 .00363424 .00562152 .00611834 .00586993 .00313742-.00034032

-.00083714-.00183078-.00034032-.00058873-.00083714-.00356965-.00257601-.00332124
-.00332124-.00456329-.00655057-.00804103-.00928308-.01127036-.00953149-.01102195
-.00555693-.00754421-.00729580-.00332124 .00139855 .00189537 .00115014 .00065332

.00139855 .00090173 .00189537 .00015650-.00083714-.00034032-.00034032-.00058873

.00015650-.00034032 .00040491 .00214378-.00058873 .00189537 .00115014 .001'5014
-.00158237 .00189537-.00108555-.00406647-.00083714-.0000919 1 .00065332-.00034032

.00065332 .00090173 .00239219 .00090173 .00239219-.00009191-.00083714-.00058873

.00040491-.00034032 .00090173 .00065332-.00133396-.00058873 .00015650-.00009191

.00090173 .00139855-.00158237 .00015650-.00058873 .00015650 .00264060-.00307283

.00015650-.00034032-.00108555-.00183078-.00009191 .00015650-.00009191 .00065332

.00015650 .00164696 .00313742 .00090173 .00040491-.00158237-.00232760-.00108555
-.00083714-.00133396-.00009191-.00083714 .00040491 .00139855 .00040491 .00015650

.00164696-.00009191-.00158237 .00040491-.00207919-.00183078 .00090173-.00083714
-.00083714-.00083714 .00139855 .00065332 .00065332 .00090173 .00015650 .00115014

.00115014 .00015650-.00034032-.00108555-.00232760-.00083714-.00207919-.00034032
-.00009191-.00133396 .00090173 .00065332 .00115014 .00040491 .00115014-.00009191

.00065332-.00207919-.00183078-.00083714-.00009191 .00065332-.00058873 .00040491

.00065332 .00115014-.00083714 .00115014-.00009191 .00015650-.00183078 .00065332
-.00133396 .00040491 .00065332-.00158237-.00034032-.00232760-.00058873-.00108555

.00189537-.00083714-.00058873 .00139855-.00034032 .00115014 .00065332-.00083714
-.00108555-.00009191-.00356965 .00090173-.00083714-.00108555 .00090173 .00015650

.00090173 .00115014 .00189537-.00083714 .00065332-.002079~9 .00040491-.00083714
-.00133396 .00015650-.00108555 .00090173 .00040491 .00090173 .00115014 .00115014

.00040491 .00189537-.00183078 .00139855-.00058873-.00108555-.00034032-.00058873
-.00158237-.00009191-.00058873 .00090173 .00164696-.00034032 .00239219-.00009191

.00115014-.00133396 .00139855-.00108555-.00133396-.00108555-.00058873-.00108555

.00015650 .00164696-.00058873 .00164696-.00133396 .00239219-.00133396 .00040491
-.00009191-.00133396-.00009191-.00058873

-1 -1 0 0 0 0
dynm

512
1
o

100.

stop
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