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ABSTRACT

Theories and computational techniques for three inelastic pipe

elements are presented. The elements can be used for inelastic stress

and deformation analysis of three~dimensional piping systems, pipelines

and tubular structures. The "fiber" procedure has been used to model

the inelastic behavior of the pipe section in all three cases. The

specific elements are as follows.

(1)

(23

(3)

A straight pipe element assuming a cubic shape function has been
developed and incorporated into the computer programs ANSR and
WIPS. This element is suitable for modeling inelastic behavior
of straight segments in piping systems, assuming closely-spaced
nodes.

A curved pipe element has been developed and incorporated into
the computer programs ANSR and WIPS, This element is based on

a combination of beam and shell theories, retaining the essential
features of a beam element but introducing aspects of shell
behavior to account for cross-section ovalling. This element is
suitable for modeling inelastic behavior of curved segments in
piping systems, again assuming closely-spaced nodes.

A straight pipe element which automatically determines an appro-
priate shape function as the analysis progresses has been developed
and incorporated into the computer program ANSR. This is a beam-
column element suitable for modeling inelastic straight tubular
frame members, not necessarily with closely-spaced nodes.

The elements are all applicable for either small or large displace-

ments analysis. The first two elements also include optiomns for the

effects of internal pressure and temperature change.



A number of example structures have been analyzed to test the
elements and to assess their acceptability for different applications.
These examples include; a pipeline sidebend subjected to internal
pressure and temperature changes; a pipe undergoing large displacements
following a postulated pipe rupture; and a tubular steel beam—column

with development of plastic zones near the member ends.
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A. OBJECTIVE AND SCOPE

This report is divided into four sections (A, B, C, and D). Section A explains the objec-

tive and scope of the research and explains the contents of Section B, C, and D.

—t






Al. INTRODUCTION

Al.l GENERAL

The research described in this report is concerned with the inelastic stress and deforma-
tion analysis of piping systems, pipelines and tubular structures. Specific applications which

have been considered are as foliows.

(1) Analysis of pipe whip in power piping systems. The structurai elements described in this
report are applicable to two- or three-dimensional pipe whip analysis, with consideration of

pipe yield, ovalling at pipe elbows, and large displacements of the piping system.

(2) Analysis of pipelines. The structural elements are applicable to both buried and above-
ground pipeline systems, accounting for pipe yield, temperature changes, internal pres-

sure, and large displacements.

(3) Analysis of tubular frame struétures, with particular application to steel offshore plat-
forms. Analyses of piping systems and pipelines typically require that the piping be
divided into short elements, so that vielding is approximately uniform over any element.
Hence, "standard” finite element techniques using predetermined shape functions can be
applied to characterize the element behavior. For analysis of tubular frames, however, it
is desirable to use longer elements, such that the amount and location of vieiding can vary
within a single element. In this case, standard finite element techniques may not work
weil. To account for this problem, a new technique has been developeci in which the
shape functions are updated as the analysis progresses and the staie of the element

changes.

A1.2 PIPE ELBOW ELEMENT

In the analysis of piping systems, it is essential to distinguish between straight and curved
segments, because a curved pipe is more flexible than a straight pipe of the same cross section.
This is due to the fsct that the cross section of a curved pipe will deform (oval), which substan-

tially reduces both the stiffness and strength of the pipe. Straight segments of pipe can, in
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general, be modeled adequately using straight beam-column elements with circular cross sec-
tions. Curved segments are more complicated, however, and require special consideration,

especially when inelastic behavior is to be taken into account.

A commonly used procedure for the analysis of pipe bends is to use simple curved beam
theory, but with the flexurai stiffness scaled by a flexibility factor to account for ovalling [A1].
This is a simple and cheap approach, but it i-s applicable only for linear anelysis. A more accu-
rate procedure would be to use a mesh of shell finite elements to model each pipe bend. How-
ever, this approach has the obvious disadvantage that computation costs are likely to be too
high for economical analysis of a complete piping system. A compromise procedure is to use
elements based on a combination of beam and shell theories, retaining the essential features of
# beam element but introducing aspects of shell behavior to account for cross-section ovalling
[A2,A3,A4]. Elements of this type can greatly reduce the computation cost compared to the
use of shell elements, while still providing good accuracy. A new element based on this

approach is described in Section B of this report.

For the special case of a straight element, the theory is substantially simpler. The straight

element theory and computational procedure are glso described in Section B.

Al.3 TUBULAR BEAM-COLUMN ELEMENT

in the analysis of tubular frame structures, beam-column finite elements based on
assumed cubic displaced shapes are commonly used. The use of a cubic shape function implies
a linear variation of curvature along the element length. This is correct for & uniform elastic
element but may be quite incorrect after yielding occurs. For accurate modeling, therefore, it
may be necessary to use short elements in the inelastic regions. 1t is generally not desirable,
however, to divicje & beam-column member into short elements, because it increases the
numbers of nodes and elements which must be specified. A procedure is described in this
report which allows & long, inelastic beam-column member to be modeled accurately using a
single elemeni. The procedure is based on varying the element shape function as the state of

the element changes, without introducing additional nodes or elements. The details of the



element are presented in Section C.

Al.4 FIBER VERSUS SECTION MODELS

Two basic procedures may be used for modeling the inelastic behavior of a beam-column.
In the "section” type of model it is assumed that inelastic behavior is defined for the cross sec-
tion as a whole, whereas in the "fiber” type of model the member cross section is divided into a
number of small areas (fibers}). In the section model, stiffness and strength properties are
specified for the complete section, and only the stress and strain resuitants need to be moni-
tored. In the fiber model, properties are defined for the fibers, and the stresses and strains in
each fiber must be monitored. The fiber model thus tends to be more expensive computation-
ally. However, the calculation of cross section properties for the section model may be a

difficult task, so that the fiber model tends to be both easier io use and more accurate.

For the pipe elbow element described in Section B, only the fiber type of model is
appropriate, whereas the beam-column theory described in Section C is spplicable to either the
section or fiber type of model. In this report, however, only a fiber model has been developed,
for the particular casse of a tubular cross section. Other elements could be developed following

similar principles.

Al.5 SCOPE

The purpose of the study described in this report has been to explore theoretical and com-
putational techniques for modeling inelastic straight and curved pipe members using the "fiber”

type of model. Three separate elements have been developed, as follows.

(1) A strazight pipe element assuming & cubic shape function has been developed and incor-
porated into the computer programs ANSR-III [A5] and WIPS [A6]. This element is suit-
able for modeling inelastic behavior of straight segments in piping sysiems, assuming

closely-spaced nodes.



(2) A curved pipe element has been deveioped and incorporated into the computer programs
ANSR and WIPS. This element is suitable for modeling inelastic behavior of curved seg-

ments in piping systems, again assuming closely-spaced nodes.

(3) A straight pipe element which automatically determines an appropriate shape function as
the analysis progresses has been developed and incorporated into the computer program
ANSR. This element is suitabie for modeling inelastic straight tubular frame members,

not necessarily with closely-spaced nodes.

The elements are all applicable for either small or large displacements. The first two ele-
ments include options for internal pressure and temperature change effects, making them suit-
able for inelastic analysis of pipelines and piping systems, The third element has been
developed in only a preliminary form. Further work is needed on this element to add practicai

features.

Al.6 REPORT LAYOUT

Section B presents the theory of the inelastic straight and curved pipe elements. Section
C presents the inelastic beam-column element for tubular frames. Both sections have been
written as self-contained reports. Examples using all three of the elements are contained in

Section D.



Al

A2,

Al

A4,

AS.
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B. PIPE ELEMENT

This section describes the theory of the straight-curved pipe element. The basic features of
the element are described in Chapters B1 and B2. Details of the theory and computational pro-
cedure are described in Chapter B3 for a curved (elbow) element and in Chapter B4 for a
straight element. Chapter B3 contains references, and Chapter B6 describes the input data

required for the ANSR-IIT computer code.
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1)

¥}

3)

@
(5)
(6)

B1. INTRODUCTION
The pipe type element has the following features.
The element may be straight or curved, and arbitrarily oriented in space.

If the element is straight, it is treated as a three-dimensional beam column. Inelastic
behavior is considered by dividing the cross section into subelements (or fibers), and
monitoring the behavior of each subelement. Longitudinal, circumferential, and torsional

stresses are considered.

If the element is curved, it is similar in many respecis to a straight element, but includes
additional deformations to account for ovalling. A number of simplifying assumptions are

made in developing the ovalling theory.
The Mroz material model is used, with allowance for strain rate dependence if desired.
The effects of internal pressure on ovalling stiffness and material yield are considered.

Large displacement effects may be considered, if desired, using an engineering theory (i.e.

not a consistent continuum mechanics approach).

A general description of the element properties is presented in Chapter B2. Theoretical

details for the curved eiement are presented in Chapter B3 and for the straight element in

Chapter B4.

Preceding page blank
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B2. ELEMENT PROPERTIES

Beam-column finite elements based on assumed cubic displaced shapes are commonly
used for elastic and inelastic analysis. The straight pipe element is exacily of this type, and the
curved pipe element is essentially of this type. However, there are several complicating factors
introduced when the element is curved rather than straight. The assumptions and properties
are described in physical terms in this chapter. Full theoretical details are presented in Chapters

B3 and B4,

The element geometry and coordinate axes are shown in Fig. B2.1. Each element con-
nects two nodes, each with three translational and three rotational degrees of freedom. For a
straight element the assumed deformed shape is cubic. For a curved element, however, an
assumed cubic shape is inconsistent in a finite element sense. If cubic interpolation aleng the
element axis is assumed, then rigid body motions can be significantly restrained. If cubic inter-
polation along the element chord is assumed, constant strain states do not exist. For this rea-
son, the deformed shape is assumed to be the e¢xact shape for a curved elasric element. This
shape can be calculated for any element geometry, as explained in Chapter B3. The element
stiffness is formed by numerical integration (Gauss quadrature). The detailed behavior is mon-
itored at two cross sections located at the Gauss points (Fig. B2.1). At each point the pipe
cross section is divided into a number of subelements (typically 12), as shown. The pipe wall at
each subelement is assumed to be subjected to hoop stress (due to pressure), axial stress (due
to pressure, bending moment and axial force), and shear stress (dus tc torsional moment).

The inelastic behavior of each subelement is monitored, using the Mroz material theory.

For a curved element a major factor in the behavior is ovalling of the pipe cross section.
For in-plane bending, the longitudinal tensions and compressions in the extreme fibers produce
opposing forces which compress or extend the pipe section, as shown in Fig. B2.2a. This oval-
ling can substantially modify the iongitudinal stress distribution, so that instead of a linear
stress variation over the pipe depth, the variation is strongly nonlinear, as indicated in Fig.
B2.2a. This effect can greatly reduce the bending stiffness of the pipe, and because the ovalling

Preceding page blank

13



is resisted if internal pressure is present in the pipe, this stiffness depends on the pressure.

Ovalling is also produced by out-of-plane bending of a curved element. However, the
ovalling deformation is inclined at 45 degrees to the moment axis, as shown in Fig. B2.2b. This

type of ovalling also reduces the bending stiffness and modifies the bending stress distribution.

In an actual curved pipe, the longitudinal, hoop, torsional and ovalling deformations all
interact with each other to produce very compiex behavior. In the curved element theory, the

complexity is reduced by ignoring several of the interaction effects. In particular:
(1) In-plane and out-of-plane ovalling deformations are assumed to be uncoupled.

(2) Bending stresses in the pipe wall due to ovalling are assumed not to affect yield of the
pipe under the membrane stresses produced by internal pressure, bending and torsion in

the pipe (and vice versa).

(3) Ovalling at any cross section is assumed not to be affected by ovalling at any other cross
section. In particular, if a pipe elbow is connected to a straight pipe, the straight pipe is

assumed not to restrain the ovalling near the ends of the elbow.

In addition, only two ovalling "modes” are considered, namely, the in-plane and out-of-plane
modes shown in Fig. B2.2. Detaijled analyses of pipe elbows have shown that it may be neces-
sary to consider higher order ovalling modes to obtain accurate elastic stress distributions. It is

assumed, in effect, that these higher modes are less important for inelastic behavior.

In spite of the many simplifications which have been made, the curved element has
predicted results in close agreement with experiment. The curved eiement is also, in spite of
the simplifications, quite complex theoretically, as shown in Chapter B3. The straight element

is less complex, and the theory follows well-established procedures.

14



B3. CURVED ELEMENT THEORY

B3.1 PROCEDURE AND ASSUMPTIONS

The stiffness and state determination calculations for the element are based on a combina-

tion of beam and shell theory.

The element is modelled as shown in Fig. B3.1. At each of the two Gauss integration
points a beam slice is considered, and each slice is divided intc a number of cross-section subele-
ments. The subelement stiffnesses are constructed first, allowing for elasto-plastic behavior of
the pipe steel. The slice stiffnesses are constructed from the subelement stiffnesses by summa-
tion. The complete element stiffness is then constructed from the slice stiffnesses by Gauss

quadrature.

The slice deformations consist of six beam-type deformations plus two ovalling deforma-
tions. The beam deformations consist of axial deformation, torsional twist, in-plane and out-
of-plane curvatures, and in-plane and out-of-plane flexural shear deformations. One ovalling
deformation is associated with in-plane bending, and the second with out-of-plane bending (Fig.

B3.2).

The beam deformations at each slice are related to the element node displacements by a
deformation shape function. The ovalling deformations in any slice are assumed to be indepen-
dent of the ovalling deformations at other slices. Hence, no shape function is assumed for vari-
ation of ovalling along the element length. The ovalling deformations are internal degrees of
freedom at each slice and are condensed out before the element stiffness is construcied from

the slice stiffnesses.

Each subelement is assumed to be in a state of plane siress, with axial, hoop, and shear
stresses. The axial strain in any subelement is affected by axial deformation and curvature of
the slice and by the ovalling deformations. The effects of axial deformation and curvature are
determined assuming plane {but not necessarily circular) cross sections. The effects of ovalling

are determined using the membrane equations for an axisymmetric shell. The shear strain in



any subelement is assumed to be affected by torsional twist only. Flexural shear effects are
assumed to be negligible at the subelement level and are ignored (they are introduced at the
slice level). The subelement shear strains due to twist are determined assuming plane, circular

cross sections.

Hoop strains are not determined from strain-displacement relationships. Rather, the hoop
stresses are governed by the equilibrium relationship between internal pressure and hoop stress.
The hoop strain in any subelement thus becomes an internal degree of freedom for the subele-

ment and is condensed out before the slice stiffness is constructed.

The hoop streés in equilibrium with the internal pressure is the average value over the
pipe wall thickness. In addition, ovalling induces pipe wall bending, and hence stresses which
vary through the pipe wall thickness. It is assumed that yielding of slice subelements is not
affected by pipe wall bending, and correspondingly tvhat flexural yield of the pipe wall due to
ovalling is not affected by subelement yield. That is, it is assumed that membrane and bending

effects in the pipe wall are uncoupled.

Although it is not essential to the theory, it is assumed that the centerline radius of the
bend is large compared with the pipe radius. This is not generally true for piping elbows. How-
ever, in view of the many other assumptions made in developing the theory, this assumption is
believed to be reasonable. Ford and Turner [Bl] have shown that the assumption produces

only small errors.
B3.2 SLICE STIFFNESS

B3.2.1 Deformations and Actions

The slice deformation vector is v;, given by

.YSTE <8y, vatry,dw,0, > (B3.1)

in which & = axial strain at pipe axis, ¢ = rate of torsional twist; W, = in-plane bending cur-
vature; ¢, = out-of-plane bending curvature; ¥, = in-plane flexural shear deformation; y, =

out-of-plane flexural shear deformation; @, = in-plane ovalling (Fig. B3.2); and w, = out-of-
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plane ovalling.
The corresponding slice action vector is S;, where

ST=<FM,V,MYV,TQ,0,> (B3.2)
in which F = axial force; T = torsional moment, M, = in-plane bending moment, M, =
out-of-plane bending moment; ¥, = in-plane flexural shear; V¥, = out-of-plane flexural shear,
1, = generalized force for in-plane ovalling, and {1, = generalized force for out-of-plane

ovalling. The forces {1 , and {1, are defined only in a virtual work sense.

B3.2.2 Subelement Strains due to Ovalling

The strain-displacement relationships for an axisymmetric membrane (Fig. B3.3) are as

follows [R2]:
1
- + wsi :
€, Tasing (veos8 + wsing) (B3.3a)
1138y
€ aiao + n] (B3.3b)

in which €, = circumferential strain in membrane (axial strain in pipe) and ¢, = meridicnal
strain in membrane (hoop strain in pipe). If it is assumed that the bend radius is large com-

pared with the pipe radius, Eqn. B3.3a can be approximated by

€, = -1; (vcos§ + wsing) (B2.3¢c)
The two ovalling deformations are shown in Fig. B3.2. These deformations produce both
normal {w) and tangential (v) displacements. It is assumed that the hoop strains, €,, associ-

ated with ovalling are zera. The shape functions for membrane displacement are thus chosen

as
W = w,c0520 + w,sin28 (B3.4a)

and
v = —;— w ,Sin26 + _;—m,c0s20 (B3.4b)

Hence, the strain-displacement relationships are



.3
g, = 30 8 o, + 2089 (1+2sin’0) w, (B3.5a)
r A 2!

B3.2.3 Strain-Deformation Relationships for Slice
Consider slice subelement i, located at angle 8, {Fig. B3.1). The subelement membrane
strains, €, and y,, are related to the slice deformations by
de; = B; dv, (B3.6)
in which v, is defined by Eqn. B3.1;

del = < deg dy, > (B3.7)

and

-sm’ei Cosei(i +251n191)
1 asind® 0 -acosh 0 0
1 1 r 2r (B?! . 8)

This transformation assumes that plane sections remain plane, that the change in ¢ross section
shape due to ovalling is negligible, and that the ratio of cross section radius to bend radius (a/r)
is small. A modification of the transformation to allow for significant change of cross section
shape is considered later.

Note that the shear deformations, y, and y,, are assumed not to influence the subele-

ment strains. The effects of these deformations are considered separately.

B3.2.4 Stress-Strain Relationship for Slice Subelements
Each subelement is assumed to be in a state of membrane stress and strain (plane stress).

The hoop stress is controlled by the internal pressure, according to the well-known equation

- P(“‘?'S') - P:" (B3.9)

Tp
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in which P = internal pressure; a = radius to pipe wall mid-thickness; t = wall thickness; and

a =a-.05:.

The Mroz plasticity theory is used. The details of the procedures used to implement this
theory are described in  reference [B3]. For any given state of subelement i, an

elasto-plastic stress-strain relationship is determined as

dg ;= D,de,; (B3.10)

in which
do 7= < dog dr; doy > (B3.11)
de[= < deg dy, dey > (B3.12)

and in which D; = 3 x 3 elasto-plastic constitutive matrix and the stresses and strains are mem-

brane values. From Eqns. B3.10 and B3.9 it follows that

de ai dU’m'
dih,' a' dP/

in which dP is known. Hence, D, can be reduced, by static condensation, to a 2 x 2 matrix,

D,,, in terms of axial and shear stresses only. If dP = 0, the resuit can be written as:

de 4 do 4
(D] [d'y,-] - [dr,-} (B3.14)

If dP is not zero, an initial stress effect must be included, as described Iater.

B3.2.5 Stifiness Matrix

The transformation matrix B (Eqn. B3.8) considers the effects of axial deformation,
bending, and torsion, and the axial membrane strains due to ovalling. A parrial tangent

stiffness matrix for the slice, kg, which considers only these effects, is thus given by

N
ky =~ 2053 BTD. B (B3.15)
ju
in which N = number of slice subelements around pipe circumference.

The matrix kg, has zero values in the rows and columns corresponding to the shear defor-
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mations y, and y,, because the transformation B does not consider flexural shear effects. It is
assumed that the flexural shear stiffness is not affected by yielding of the pipe wall, and hence,
that the elastic shear stiffness can be used. For an effective shear area equal to one-half of the

cross section area, the shear stiffnesses are defined by

dV, = Gmat - dy, = k, - dy, (B3.16a)

and

dv, = Gmat-dy, = k,-dy, (B3.16b)
in which G = elastic shear modulus. The stiffness coefficients k,(3,3) and k., (5,5) are set
equal to k,,.

The slice stiffness matrix, k.. now includes the influence of ovalling on axial strains but
does not consider bending of the pipe wall due to ovalling. The matrix also does not consider

the effect of internal pressure on ovalling stiffness. These effects are included as follows.

B3.2.6 Ovalling Resistance due to Pipe Wall Bending
Consider the ovalling deformation associated with in-plane bending (Fig. B3.2a). The

radial and tangential displacements, from Eqns. B3.4 are

W = o,c0520 (B3.17a)
and
1 .
v = —?w,,.wn20 (B3.17b)

From the strain-displacement relationships for an axisymmetric shell, the pipe wall curvature in

the hoop direction, &, is

1 lav 3w
Y az[ Py ‘692 {B3.18)
Hence, from Eqns. B3.17,
3
Yw = —gcos2w, (B3.19)

It is assumed that the bending strength of the pipe wall is not affected by the presence of axial
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and hoop membrane stresses. Hence, for any given stee] stress-strain relationship, a moment-
curvature relationship can be determined for the pipe wall. For a given state of strain at loca-
tion 8 on the pipe wall, let the moment-curvature relationshkip be

dm, = j, d¥. (B3.20)

Hence, from Egns. B3.19 and B3.20, a generalized ovalling stiffness can be defined by

9 2
dQt,, = = cos28 - j, - add - dw, (B3.21a)
[
o7
dﬂ hn b kwh dm,, (B321b)

By integrating arcund the pipe circumference, the relationship between {1 ,, and w, can be
determined. When normalized to /2, = | and w/w, = 1, where {1 , and w, = values at first
yield, the relationship depends on the steel stress-strain curve but is independent of the ratio of

pipe radius to wall thickness.

The normalized Q—w relationships have been calculated for three different stress-strain
curves, as shown in Fig. B3.4. It can be seen that the shapes of the curves do not vary greatly.
Hence, for any given stress-strain curve, the {)}—w relationship can be estimated from Fig. B3.4

without evaluating Egn. B3.21.

For analysis, a trilinear relationship is assumed, as shown in Fig. B3.5. The same trilinear
relationship is used for both in-plane and out-of-plane ovalling, and it is further assumed that
the ovalling deformations w, and w, are uncoupled. Hence, the ovalling stiffness, k., is

added to the diagonal terms ks, (7,7) and kg, (8,8) of the slice stiffness matrix.

B3.2.7 Ovalling Stiffness due to Internal Pressure

The equilibrium relationship between internal pressure and hoop stress is given by Eqn.
B3.9. This assumes that the pipe radius, a, remains constant. As the cross section ovals, how-
ever, the pipe radius changes, with the resuit that for constant hoop stress an equilibrium error

develops. This error can be regarded as an unbalanced internal pressure, which tends to resist
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ovalling.
Consider in-plane ovalling, w, (Fig. B3.2a). From Eqn. B3.19, the change in hoop curva-
ture at location # in the pipe wall is
Yo = -3—200529w,, (B3.22)
Hence, the unbalanced pressure, P,, is given by

P, = o,ty, = Pla=051 ¢, (B3.23)

in which P = internal pressure. Assuming t/a is small, it follows from Eqns. B3.23 and B3.22

that

P, = 3—agcos2em,, (B3.24)

Hence, the generalized force associated with P, is given by

3P
0 = 2 [ cos26 - add - w, (B3.25a)
a [
or
0, = 3Prw, = ko, | (B3.25b)

Iv is assumed that the same stiffness applies for both in-plane and out-of-plane ovalling and that
the stiffnesses are uncoupled. Hence, the stiffness k,, is added to the diagonal terms k., (7.7)

and k,,(8,8) of the slice stiffness.

B3.2.8 Condensed Slice Stiffness

After addition of the ovalling stiffnesses, the partial slice stiffness, k., becomes the slice
stiffness, k;. The ovalling deformations are assumed to be internal degrees of freedom for the

slice. Hence, the 8 x 8 matrix can be condensed to a 6 x 6 matrix, k. in terms of the stress

resultants on the pipe cross section.
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B3.3 ELEMENT STIFFNESS
B3.3.1 Choice of Shape Function

For straight beam elements, it is common to use a cubic shape function. For a curved
beam, however, the use of a cubic function may lead to substantial errors. For this reason, a
shape functicn is constructed which is exact for an elastic curved beam element, and this same
shape function is assumed also to apply fbr the inelastic element. The determination of the
shape function requires additional calculation. However, this calculation is performed only
once, at the beginning of the analysis, and does not add significantly to the total cost. The pro-

cedure is as follows.

B3.3.2 Elastic Stiffness

Consider an elastic curved beamn, with nodal degrees of freedom as shown in Fig. B3.6.
The 12 nodal displacements can be transformed 10 6 symmetric-antisymmetric deformation pat-
terns (Fig. B3.7) plus 6 rigid-body displacements. The elastic stiffness in terms of the

symmetric-antisymmetric deformations can be obtained in closed form as follows.

The equilibrium relationship between the slice stress resultants and the symmetric-

antisymmetric generalized forces is

Se = v N (B3.26)
in which
Sl = <FM, VM, V,T> (B3.27)
I_VT w < Ny Ny N3Ny N; Ng > (B3.28}
- =
0 cosf -sinf/rsing
(B3.29)

1 r{cosB-cosd) -sink/sing

0 ginf cosB/rsing

cosf  8inB  -cosdsing

éu'

0 0 =-1/rsing

~sinf  cosf 1 - cosdeosf
sint J
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and B (positive or negative) defines the slice location (Fig. B3.7).

The elastic slice flexibility is defined by

Yo = .[s ;Ssr (B3.30)

in which

Yo <Y,y > (B3.31)

and

o1 o2 1 2
Ls = diag \ o0~ GA oEl GA 3G (B3.32)

in which E = Young’s modulus; G = shear modulus; A = cross section area; I = cross sec-
tion moment of inertia; and « = flexibility factor to account for ovalling. The flexibility factor
follows from the ovalling theory described in the preceding sections (from the reduced slice

stiffness, k,, for the elastic case, determine the effective El value). The result is

2 Y (B3.33)

48 Pr?
+
Eat

a=1-

12

1—v

10 +

xr
1|32

in which v = Poisson's ratic. The flexibility factor given by the well-known von Karman

theory [B4] is (for P=0)

S — (B3.34)
10 + 12 L’,]

which is essentiaily identical to Eqn. B3.33.

From Eqns. B3.26 and B3.30, the element 6 x 6 flexibility matrix, Fy, in symmetric-

antisymmetric coordinates follows as

-+
Fy = fﬁ.&i’wdﬁ (B3.35)
-~

in which r and B are defined in Fig. B3.7. The {flexibility coefficients can be obtained by closed
form integration. The matrix Fy uncouples into two 2 x 2 plus two 1 x 1 submatrices, so that

only 8 coefficients need to be evaluated.
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The element stiffness, Ky, in symmetric-antisymmetric coordinates is easily obtained by

inverting Fy.

B3.3.3 Displacement Transformation
The deformations at a slice, v, can be obtained as follows.

From Eqns. B3.30 and B3.26

Yo = [ by N (B3.36)

Hence,

Yo = Loby Kyn = a,n {B3.37)

in which p contains displacements corresponding to N. A transformation between the

symmetric-antisymmetric deformations and the 12 local displacements (Fig. B3.6a) can easily be
constructed. This can then be combined with the well-known coordinate rotation transforma-
tion from local to global displacements, r, (Fig. B3.6b). A combined transformation between

symmetric-antisymmetric deformations and global displacements follows in the form

h=gar (B3.38)

Hence, from Eqn. B3.37,
Yo = [ by Knva = a,r {B3.35)

Matrix g, is the required transformation between nodal displacements and slice deformations.

B3.3.4 Element Stiffness

The transformation matrix, as, is formed for each slice (Gauss point) in the element.

The element stiffness then follows as
K=3 walk,a. (B3.40)
i

in which w, = Gauss quadrature weighting function and &, is the 6 x 6 slice stiffness.
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B3.4 INITIAL STRESS EFFECTS
B3.4.1 Generz!

The effects of loads which originate at the element leve! are treated as initial stress effects.
Pipe elemenis can, in general, be subjected to initial stresses due to changes in temperature,
changes in internal pressure, and creep. Loads which originaie ai the element level are also
introduced when rate-dependent plasticity is considered. Temperature, pressure, and creep pro-
duce real initia! stresses, with physical meanings. The initial stresses cauéed by strain rate
effects exist only in a mathematical sense.

Initia] stresses affect the analysis in two ways. First, they contribute to the load vector,
and, second, they influence the state determination calculation. lInitial stresses do not affect the

stiffness calcuiation.

B3.4.2 Pressure and Temperature Changes

Al a slice subelement, i, the tangent stress-strain relationship, including initial stress

effects, is

do g, de g~ oad
dr, = [D] dy; o (B3.41)
a’dP/ de m‘"dd

in which dP = pressure increment, dT = temperature increment, and a« = coefficient of ther-

mal expansion. Eqn. B3.4] can be condensed to the form
do de do 4o
{dr;] = [D,} [d%] + l"""”‘ (B3.42)
or

dg, = D, de;+ dg,, (B3.43)

Application of the procedures of Section B3.2 produces the slice stiffness relationship

dS; = k, dv,+ dS, (B3.44)

in which X is as defined in Section B3.2.8, and

ma’dP
0
2 N 0
as,, = L3 BTdg..+ 0 (B3.45)
frm) 0
0
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is the initial slice force. The last term in this equation is the axial force in the contained fluid
{pipe inside area times fluid pressure). Because the increment of slice ovalling forces is zero,

Eqgn. B3.44 can be condensed to the form:

a3, = kg dv, + dS,, (B3.46)
By the procedure of Section B3.3, this relationship can be transformed to the following relation-

ship in symmetric-antisymmetric coordinates:

dN = Ky dn+ dN, (B3.47)

in which N, and X are as defined in Section B3.3.3, and
AN, =~ F W, g5 dSe (B3.48)
i

in which w; = Gauss weighting factor at slice i and the transformation a, is defined by Eagn.
B3.37. Finally, dN, is transformed to global coordinates using the transformation of Eqn.

B3.38.

- B3.4.3 Strain Rate Effects

The general theory for material strain rate dependence has been presented by Mosaddad
[B3]. Certain additional assumptions have been made in applying this theory to the pipe ele-

ment. A summary of the assumptions is as follows.

(a) It is assumed that strain rate effects influence only the membrane stresses. The bending

stiffness of the pipe wall is assumed 1o be rate independent.

(b} Strain increments are divided into elastic and plastic components:

de = de, + de, (B3.49)

(c) Stress increments are divided into plastic and damping components:

dg = do,+ do, (B3.50)

(d) Total stress increments and elastic strain increments are related by Hooke's law:

da = D.de, (B3.51)
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(e}

(f)

@

Mroz effective plastic stress increments are related to effective plastic strain increments by

the rate-independent Mroz model.

do, = nl doa, = Kde, (B3.52)
in which do ; = effective plastic stress increment, de ,,' = effective plastic strain incre-

ment; gZ = unit vector normal to the yield surface; and K = tangent plastic modulus.

The damping stress increment is defined by:

doy = C %d_e_,,n_e;,] (B3.53)
in which C = damping coefficient, dt = time step, and ¢, is the plastic strain rate. This
equation assumes that the backward difference integration scheme is used.
The ftow rule is defined by:
de, = n, de, (B3.54)

With these assumptions, the governing equations are obtained as follows. Premultiply

Eqn. B3.50 by n] and substitute Eqns. B3.52 - B3.54 into Eqn. B3.50 to get the effective

plastic strain increment as:

L‘Z dg + C.'.’:é::

de, = = cra (B3.55)
By virtue of Eqns. B3.51, B3.54, and B3.55, Eqn. B3.49 can be written as:
T T
_ | p-ty _Jlello Cnoép
de [_QI, + i C/dt] dg + Kt co/a e (B3.56)
Inversion of Eqn. B3.56 by the Sherman-Morrison formula results in:
dg = D de+ do,, (B3.57)
in which
D = D, - Cl(Qe_’.’u)(.Qe.’.’o-)T (B3.58)
dg o = —C,Cnié, - Deng (B3.59)
and
c -1
Ci = (27 Do+ K+ — (B3.60)



For a finite time step, dt is repiaced by Az. The last term in Eqn. B3.57, do,,, is then treated
as an initial stress. In each time step, the initial stresses, do,,, are transformed to initial ele-

ment forces and assembled into the effective load vector for the step.

B3.4.4 Round-Off in Mroz Material Calculations

In the state determination calculation for the Mroz material, the stresses cajculated assum-
ing linear behavior are scaled so that the stress point lies exactly on the yield surface. This
means that the calculated hoop stress in any slice subelement may not exactly satisfy Eqn. B3.9.
If this error is not corrected, it may accurmnulate over a number of load increments and reach a

significant magnitude.

The error is corrected by determining, for each subelement, the interna! pressure
corresponding to the calculated hoop stress. The difference between this pressure and the
actual pressure is then a pressure error. At each iteration, this value is added to dP in Eqn.

B3.4] and treated as an initial stress effect. This prevents accumulation of error.

B3.5 CHANGE OF SECTION GEOMETRY DUE TO OVALLING

Ovalling may produce significant changes in cross section geometry. One result of this is
that an elbow is stronger for in-plane bending which increases the bend angle (and thus
stretches the cross section) than for bending which decreases the bend angle (and thus collapses

the section). This effect is taken into account as follows.

At each stiffness reformulation, a deformed slice geometry is determined, taking into
account the total ovalling deformation. Modified strain-deformation relationships for the slice

element (Eqn. B3.6) are then written as

eiad 2
. =min 91 ccsel(zain 914-1)

de Lo(x  +dx) 0 =(y_ +8y) 0 O 5
ai . ot i o i 4 r . (33.61)
—na
dTi 0 0 0 o] 0 a o 0
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in which

Xy =™ acos®,;
Ax; = (w,c0s28,) cosd; — 1 (w,sin28;) sind;
Yoi = asind;

Ay, = {(w,c0s28)sin8, — A (w ,5in28,) cosl,

and w, is the total in-plane ovalling deformation. The slice stiffness is then formed using the

same procedures as before.

B3.6 STATE DETERMINATION

When an increment of global displacement, Ar, has been determined, the state determi-

nation proceeds as follows.

o))

(2)

(3)

4)

(5)

Calculate element deformation increment:

An = a, Ar (B3.62)
Calculate the beam-type deformation increments for each slice:

Ay, = a,n (B3.63)

Calculate the ovalling deformation increments:

[i:’):} = T Ay, + K2 (AQ.—AD,) (B3.64)
in which T; is the transformation matrix obtained during condensation of the slice
stiffness from 8 x 8 to 6 x 6; K, is the slice stiffness associated with ovalling deforma-
tions; A{l. is the error in generalized ovalling force due to nonlinearity in the preceding

state determination; and A} , are generalized initial forces from terms S,,(7) and §,,(8)

in Eqn. B3.45.

Calculate the generalized ovalling forces, {1 ,, associated with bending of the pipe wall.

tpdate the ovalling stiffness, if necessary.

Calculate axial and shear strain increments using Eqn. B3.6 or Eqn. B3.61 if change of

cross section due to ovalling is considered.
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(6)

(7)

(8)

9

Calculate hoop strain increments from the axial and shear strain increments, taking into
account any unbalanced hoop stresses due to either internal pressure change or errors
from scaling the stresses to the yield surface. The hoop stress error can be obtained from:

t

Aoy = ff-— o (B3.65)
in which P = current internal pressure and o, = current hoop stress. Hence,
Sey = (80 wi— Dy ben— Dy by} Dy (B3.66)
in which Dy = term in the constitutive matrix D,
Obtain subelement stresses by Mroz material state determination.

Obtain slice forces by summing the stresses over the cross section. Add the axial force
inthe fluid column. Calculate the generalized ovalling forces as

Q=a,+0,+a, (B3.67)
in which Q ,, ,. and Q , are ovalling forces associated with axial strain, pipe wall bend-
ing, and internal pressure, respectively. The force Q , is obtained at Step (4). The forces

1, and {1 , are obtained from

fa = =N '}_llcra,- {O.Scos(),(Zsinzai-f—]) (B3.68)
and
@
, = 3""[0,','} (B3.69)

Because the generalized ovalling forces are assigned zero values, it follows that

Q, = -0 (B3.70)

Calculate the element resisting forces in symmetric-antisymmetric modes:

E = 2 W:‘£$§srf (3371)
i

(10) Transform to global coordinates to obtain the element resisting force as

R' = a/N (B3.72)
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B4. STRAIGHT PIPE THEORY

B4.1 PROCEDURE AND ASSUMPTIONS

The stiffness and state determination calculations for the element are based essentially on

beam theory.

The element can be modeled as either a "Gauss slice™ model (Fig. B4.1a) or as an "end
slice" mode! (Fig. B4.1b). For WIPS, the default option is the Gauss model. At each of the
two integration points, a beam slice is considered, and each slice is divided into a number of
cross section subelements. The subelement stiffnesses are constructed first, allowing for elasto-
plastic behavior of the pipe steel. The slice stiffnesses are constructed from the subelement
stifinesses by summation. The complete element stiffness is then constructed from the slice
stiffnesses by either Gauss quadrature (for the Gauss model) or by closed form integration (for

the end slice model).

The slice deformations consist of six beam type deformations, namely axial deformation,
torsional twist, in-plane and out-of-plane curvatures, and in-plane and out-of-plane fiexural

shear deformations.

The complete element has six nodal degrees of freedom at each end (Fig. B4.2), which
provide six rigid body modes plus six element deformations. In addition, two iniernal degrees
of freedom are considered to allow linear variation of axial strain and torsional twist along the
element length. These degrees of freedom are added to avoid excessive constraint by allowing
linear strain variation along the element axis. A typical beam formulation allows only constant
strain, which is reasonable if the element axis is also the centroidal axis of the beam. In an ine-

lastic element, however, the effective centroidal axis will shift as the cross section yields.

The slice deformations are related to the element deformations by shape functions which
include the effects of shear deformation. Each subelement of a slice is assumed to be in a state
of plane stress, with axial, hoop, and shear stresses. The effects of axial deformation and cur-

vature on axial strains are determined assuming plane, circular cross sections. The shear strain

Preceding page blank
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is assumed to be affected by torsional twist only. Flexural shear effects are assumed to be
negligible at the subelement level and are ignored (they are introduced at the slice level). The

subelement shear strains due to twist are determined assuming plane, circular cross sections.

Hoop strains are not determined from strain-displacement relationships. Rather the hoop
stresses are governed by the equilibrium relationship between internal pressure and hoop stress.
The hoop strain in any subelement thus becomes an internal degree of freedom for the subele-

ment and is condensed out before the slice stiffness is constructed.
B4.2 SLICE STIFFNESS

B4.2.1 Deformations and Actions

The slice deformation vector, v,, is given by:

W= <, by Ve (B4.1)

in which 8 = axial strain at pipe axis; ¢, = bending curvature about element z axis; ¢, =
bending curvature about y axis; ¢ = rate of torsional twist;, y ., = fiexural shear deformation in

x-y plane; and ¥, = flexural shear deformation in x-z plane.

The corresponding slice action vector is S;, where

ST = <F M, M, TV, V> (B4.2)
in which F = axial force; M, and M, = bending moments; T = torsional moment; and V,,

and V. = flexural shear forces.

B4.2.2 Strain-Deformation Relationships for Slice

Consider slice subelement i, located at angle §; (as for a curved element, Fig. B3.1). The

subelement membrane strains, €, and y,, are related to the slice deformations by:

de; = B, dy (B4.3)

in which v, is defined by Eqn. B4.1;

del = <de,dy;> (B4.4)



and

1 asinf; —acosé; Q
a

00
8 =1y o 0 00 (B4.5)

This transformation assumes that plane sections remain plane and circular. It is also implied

that the pipe thickness is small compared to the pipe diameter.

Note that the slice shear deformations, v,, and y ., are assumed not to influence the

subelement strains. The effects of these deformations are considered separately.

B4.2.3 Stress-Strain Relationships for Slice Subelement

Each subelement is assumed to be in a state of membrane stress and strain (plane stress).

The hoop stress is controlled by the internal pressure, according to the well-known equation

_P(a-—O.Sl) o P’
f {

(B4.6)

T
in which P = internal pressure; a = radius to pipe wall mid-thickness; t = wall thickness; and
a = a— 0.5t

The Mroz plasticity theory is used. The details of the procedures used to implement this
theory have been described by Mosaddad [p3] and are not repeated hers. For any given state

of subelement i, an elasto-plastic stress-strain relationship is determined as

dg ;= D;de; (B4.7)

in which
dg-'T - < d(Tm' d?“ dU’M > (B4.8)
ds,r- < dEa,' d‘}‘i dﬁm > (B49)

and in which D, = 3 x 3 elasto-plastic constitutive matrix and the stresses and strains are mem-

brane values. From Eqns. B4.7 and B4.6 it follows that

de da
Dy = {dy;t = dr; (B4.10)
dE hi a'dP/

in which dP is known. Hence, D, can be reduced, by static condensation, to a 2 x 2 matrix,
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D,;, in terms of axial and shear stresses only. If dP = 0, the result can be written as:

de g da g
[_I_),,-]ldyi] - ld"i} (B4.11)

If dP is not zero, an initial stress effect must be included, as described later.

B4.2.4 Stiffness Matrix
The transformation matrix B8 (Eqn. B4.5) considers the effects of axial deformation,
bending, and torsion. A tangent stiffness matrix for the slice, k;, which considers only these

effects, is thus given by:

N
k = mT Y BTD, B (B4.12)
joa]

in which N = number of slice subelements around pipe circumference.

The matrix k has zero rows and columns corresponding to the shear deformations y,,
and vy ., because the transformation B does not consider flexural shear effects. It is assumed
that the flexural shear stiffness is not affected by yielding of the pipe wall, and hence, that the
elastic shear stiffness can be used. For an effective shear area equal to one-half of the cross

section area, the shear stiffnesses are defined by:

dVy = Gmat-dy, = k, dyy (B4.13a}

and

dVy = Grmat - dy,, = k, dy, (B4.13b)

in which G = elastic shear modulus. The stiffness coefficients &,(5,5) and ,(6,6) are set

equal to k,.
B4.3 ELEMENT STIFFNESS

B4.3.1 Deformations and Actions

The element degrees of freedom, after deletion of the six rigid body modes, are given by:

o= <u0,0,0,0,0, Uy 8,m> (B4.14)
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in which u, = axial extension; 8, = z-axis rotation at element end i; 8, = z-axis rotation at
end j, 8, = torsional twist, #,, = y-axis rotation at end i; §,; = y-axis rotation at end j; Uy, =
additional axial degree of freedom at element midpoint (displacement relative to the element
ends); and @,, = additional torsional deformation at element midpoint (twist relative to ele-

ment ends).

The corresponding element action vector is S, where

ST = <F. My M, T, M; M,; Frp, o> (B4.15)

The forces F,, and T, are defined only in a virtual work sense and are assigned zero values.

B4.3.2 Choice of Shape Function

For straight beam elements, it is common to use a cubic hermitian polynomial shape
function, which is exact for a uniform elastic beam. If shear deformations are included, the
shape can no longer be obtained from kinematic considerations only. Rather the equilibrium
relationship between moments and shears must be considered, with the result that the shape
function depends on the ratio of the flexural and shear stiffnesses. If a shape function is deter-
mined using the elastic stiffness values, then when the beam becomes inelastic it is implied that
the ratic between the flexural and shear stiffnesses remains constant. This is unlikely to be
correct. A more reasonable assumption, in general, is that the flexural stiffness changes
whereas the shear stiffness remains constant. This assumption is made for the formulation of
the slice stiffness and must be retained at the element level to avoid inconsistencies. For this
reason, the shape function is continually updated as the analysis proceeds, using a strain energy

minimization procedure as follows.

B4.3.3 Elastic Beam

A shape function is "exact” if it satisfies both the homogeneous governing equation for
the element and the displacement boundary conditions at the element ends. An important pro-
perty of an exact shape function is that it corresponds to a strain energy which is an “absolute"

minimum.
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For a uniform elastic beam element loaded only at its ends, the governing equation is a
homogeneous fourth order differential equation, and the exact displaced shape is at most cubic.
If shear deformations are ignored, the exact shape is the well-known cubic hermitian polyno-
mial. If shear deformations are considered, the exact shape can be obtained by solving the
differential equation directly, or alternatively by using a linear combination of polynomials up to

cubic and choosing the combination factors to minimize the strain energy.

For a finite element formulation, the alternative method is preferable. Consider a uni-
form beam in which both flexural and shear deformations are present. Impose a unit rotation
at the end x = 0, with the end x = L fixed (Fig. B4.3a). The beam will have bending defor-
mation plus a constant shear deformation, y. If v(x) defines the transverse displacement of
the beam axis, the boundary conditions are:

v(0) = O
V(0) = 1—4

v(L) = 0
V(L) = —y

A combination of cubic and quadratic polynomials which satisfies these boundary conditions is:

2x? | X} 1—¢ x? '
vix) clx— —L—+ 7 + I (B4.16)
in which
c o= 1-2y (B4.17)
The strain energy of the beam is:
U - vzf EICv"()2dx + 1% GA'L (y o) (B4.18)
o

Substitution of Eqns. B4.16 and B4.17 into Eqn. B4.18, and minimization with respect to ¢

results in:

(B4.19)

in which
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o, - —-i—f'Ef bx_ 3l a0 (B4.20)
GA'L? % L* L

and
4 f 6x_3) 12E7
X
- E dx B4.21
b= GaL? d I[L’ L] GA'L? (B4.21)

These equations define the shape function.

B4.3.4 Inelastic Beam

For an inelastic beam, the stiffness along the element length can vary, and hence, the
governing differential equation is generally not known. Thus, it is not generally possible to
obtain the shape function by a closed form solution. A simple and effective procedure is to
apply strain energy minimization with certain assumptions. In Eqn. B4.16, the shape function
depends on the ratio of flexural stiffness to shear stiffness. As an approximation, the diagonal
terms of the slice stiffness matrix are assumed to define effective flexural stiffnesses, and the
slice shear stiffnesses are assumed to remain constant. The shape function is then obtained, as

described in Section B4.3.6.

B4.3.5 Internal Degrees of Freedom

The two internal degrees of freedom, «,,, and 8,,, are included to allow for linear varia-
tion of axial and torsional deformations along the element axis. The shape functions associated
with these degrees of freedom do not involve flexural or shear deformations. No strain energy
is associated with these deformations because the corresponding generalized forces are assigned

zero values.

B4.3.6 Shape Functions
Displacement shape functions relating elemeni deformations to the longitudinal,
transverse, and twisting displacements along the element are obtained by strain energy minimi-

zation. They can be expressed as:

du(x)
a0 b o Nx) dv,, (B4.22)



in which u = longitudinal displacement; v and w = transverse displacements in the y and z

directions, respectively; ¢ = twist; and N is given by:

xéL ﬁ? p? 0 8 0 ﬁgv 8
2 M 0 0
0 0 0 x/L g 0 0 Ng
in which
42
Ny = Ng = ? +4
l+az 2.’&‘2 x3 Bz—a’z X2
Ny = 148, X 2 +L2 +m2(1+ﬁ;) X-"'-"E
N 1—-a; .53.... _.*"_2. wﬁz+a‘ .5_2._;
AT+, (L2 L 2048) | L
1+a), 2x? X By'—ay X2
NMs = 3, "L e sy [T
Ne = Ty (X X Bytay 1
7 1+s, (L2 L 2048) | L

The shape functions relating the element degrees of freedom to the slice deformations are

obtained by differentiating the displacement shape functions. They can be expressed as:

dvy = a dv, (B4.24)
in which dv, and dv,, are defined by Eqns. B4.1 and B4.14, and

o o B4.25)

in which the transformation g is defined in terms of dimensionless coordinates q (Fig. B4.3b)

as:
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—6(1+a,)
8y = —————q+1;

(1+8,)
—6(l-a,) )
az (H'ﬁz) q ’
~6(1+a,) +1
a3 a+g,) 77"
-6(1—a,) _
a3s ‘—(1—_;57)—‘!]‘ ;
(:Bz_az) .
@51 = Fispy &
B.+a,) L
a5 = 20+8)
(B,~a,) .
des = WI-,
(B, +a,)
9% = 20158, =
%
24
- 2,2
a, GAL2:‘; k,(2,2)g dg
%
144 )
8. GA,L;,J;kS(z,z)q dg
%
24
a, = m‘!ﬁ k,(3,3)q dq
IA
144 2
By GA'Lz _fv2k$(3,3)q dq

For the Gauss model, the integrals are obtained by Gauss quadrature. For the end slice model,
the integrals are evaluated in closed form, assuming that &, (2,2) and &, (3,3) vary linearly

along the element length.

The shape function is updated at each element stiffness reformulation. If shear deforma-

tions are ignored, reformulation is not necessary.

B4.3.7 Element Stiflness

For the Gauss model, the shape function, g, is formed at each slice (Gauss point) in the

element. The element stiffness then follows as:
E - z w; _air_’fsi g; (B4.26)
-

in which w; = Gauss quadrature weighting function at slice i, and & is the 6 x 6 stiffness at
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slice i.
For the end slice model, the element stiffness is calculated assuming that the slice
stiffness, k., varies linearly along the element length. Hence, the element stiffness can be

obtained by closed form integration as:

%
K=L[a"kada (B4.27)

_.IA -
The additional axial and torsional degrees of freedom at the element midpoint are internal
degrees of freedom for the element. The 8 x 8 element stifiness, K, is thus condensed to a 6 x
& matrix in terms of element actions at pipe ends. This stiffness is expanded to include ele-

ment rigid body displacements and then transformed to a 12 x 12 global stiffness. The transfor-

mations are well known and are not repeated here.

B4.4 STATE DETERMINATION
When an increment of global displacement, Ar, has been determined, the state determi-

nation proceeds as follows.

(1) Calculate element deformation increment:

Ay, = aA, (B4.28)

(2) Calculate axial and torsional deformation increments at element midpoint:

[A'Uxm} = TAy,, + K,‘?x [;gmi—.‘Soi} (B4.29)

in which T is the transformation- matrix obtained _during condensation of the element
stiffness from 8 x 8 to 6 x 6; K, is the element stiffness associated with axial and tor-
sional deformation at the element midpoint; S, is the equilibrium error in the general-
ized axial force and torsional moment at the element midpoint due to nonlinearities in the
preceding state determination; and S, is the equilibrium error in the generalized force and

moment due to initial stress effects.
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(3)

€Y

(5)

(6)

(7N

(8)

1))

Calculate the slice deformation increment using Eqn. B4.24.
Calculate axial and shear strain increments using Eqn. B4.3,
Calculate hoop strain increments from the axial and shear strain increments, taking into
account any unbalanced hoop stresses due to either internal pressure change or errors
from scaling the hoop stresses to the yield surface. Use Eqns. C1.3.65 and C1.3.66,
Obtain subelement stresses foliowing the state determination procedure for the Mroz
material.
Obtain the slice forces, §;, by summing the stresses over the cross section. The slice axial
force due to internal pressure is also added.
Calculate the element resisting forces:

%

Sn = Lf .Qré's dq (B4.30)
_-IA

For the Gauss slice model, the integral of Eqn. B4.25 is carried out using Gauss quadra-
ture and, for the end slice model, it is obtained in closed form assuming linear variations

of slice actions along the element length.

Because the generalized axial force and torsional moment at the element midpoint are

assigned zero values, it follows that:

Fum Sn(7)
o= ) - {22 e
Transform the resisting forces at the pipe ends to global coordinates,

R! = a5, (B4.32)
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B6. ANSR-III USER GUIDE
INPUT DATA

INELASTIC STRAIGHT-CURVED PIPE ELEMENT

1. GROUP DATA CONTROL INFORMATION

Columns Rote Name Data

1 - 5D Element type number. Input 4.

6 - 10(I) Number of elements in group.

11 - 15(1) MFST Element number of first element in group,
Default = 1,

16 - 25(F) Initial stiffness damping factor, Bo“

26 - 35(F) Current stiffness damping factor, f.,

36 - 40 Not used.

41 - 80(A) GRHED  Optional group heading.

2. CROSS SECTION AND MATERIAL CONTROL INFORMATION

Columns Note Name Data

1 - 5D NOMAT Number of different materials.

6 - 10(1) NOSEC  Number of different cross sections.

3. MATERIAL PROPERTIES

NOMAT sets of cards, two cards per set.

3(aj FIRST CARD

Columns Rote Rame Data

1 - 1) Material number.

6 - 10(I) (1) NPT Number of linéar segments in stress-strain
curve (max. 3\

11 - 20(F) Poisson's ratio in elastie range.

21 - 30(F) (2) Yield overshoot tolerance., Default = ,02.

Preceding page blank

47



Columns Rote Name

31 - 40(F) (3)
41 - 80(F)

3(b) SECOND CARD

Columns Note Name
1 - 16(F)
11 - 20(F) (1)

21 - 60(F)

Data

Angle tolerance for stiffness reformulation.
Default = 0.1 radian.

Coefficient of thermal expansion.

Data
Modulus (in uniaxial tension or compression).
Stress at which modulus changes.

Etc., repeat for NPT segments,

4. CROSS SECTION PROPERTIES

.NOSEC sets of cards, two cards per set.

4(a) FIRST CARD

Columns Note Name

1 5(1) (4)

)

6 - 10(I) (5)

11 - 15(1)
16 - 25(F)
26 - 35(F)

Data

Number of subelements in ecross section

(max. 12). Default = 12.

Type of model: :
(a) 0 = End slice model (straight pipe only).
(b) 2 = Gauss model with 2 Gauss slices.

Flexural shear deformation code:

(&) 0 = shear deformations included.
(b) 1 = shear deformations ignored.
Outside diameter.

Wall thickness.

4(b) SECOND CARD - BLANK IF STRAIGHT PIPE

Columns Note Name

1 - 5) (6) .

B - 15

Data

Large Ovalling Code:
(8) 0 = small ovalling,
(b) 1 = large ovalling,

‘Not used.
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Columns

16

21

31

41

S.

20(1)

30(F)

40(F)

60(F)

ELEMENT SPECIFICATION

Mote

(7)

(8)

(9)
(9)

Name

Data

Number of linear sepments in generalized
force~ovalling curve (max, 3).

Factor for ovalling stiffness (to account for
stiffening effect of adjacent straight pipel
Default = 1.0.

Factor for ovaliing yield. Default = 1.0.

Strain hardening ratios for inelastic ovalling
{NNC values, in ten-column fields),

As many cards as needed to specify all elements,

Columns

1~ 5(1)
6 - 10(1)
11 - 15(1)
16 - 20(1)
21 - 25(I)
26 - 30(1)
31 - 35(1)
36 - 40(1)
41 - 45(1)

Notle

(10)

Name

INODJ

Dats

Element number, or number of first element
in a series,

Node 1.
Node d.
Node K. Default for straight element =
automatic assignment. Must be bend center

for a curved element,

Node number increment for generation.
Default = 1.

Number of elements to be generated in this
series. Default = 1,

Material number. Default = 1.

Output code:

(a) 1 = output actions at nodes only.

(b) 2 = also output actions and
deformations at slices.

~{e) 3 = also output stresses and strains at

slices,
Defsuit = 2.

Cross section number. Default = 1.
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Columns

46 - 50(I)
51 - 55(1)
56 - 60(I)

Note

(11)

(12)

Name

Data

Large displacement code:

(a) 0 = small displacements,

(b) 1 = large displacement analysis ignoring
change in bend radius.

(¢) 2 = large displacement analysis
accounting for change in bend radius.

Curved element code:
(8) 0 = straight.
(b) 1 = curved.

Symmetry code:

(2) 0 = full 3D motion,
(b} 1 = motion in element xy-plane only.
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NOTES: INELASTIC STRAIGHT-CURVED PIPE ELEMENT

(1)

(2)

3)

4)

(5)

(6)

(7)

(8)

The actual stress-strain cumve must be approximated by & number of
linear segments. A maximum of 3 segments (trilinear curve) is ellowed.
The maximum stress in the last 'segmentznmust be set very high, (The
default value in the computer code is 10¢")

In the event-to-event procedure, if zero tolerance were used, a new step
would be required each time an element yielded, and the number of steps
could be excessive, A degree of overshoot of the nominal yield value is
permitted, At the end of any substep, all elements which are between
their nominal yieid stresses and the permissible overshoot values are
assumed to yield simultaneously.

When the element yields, the tangent stress-strain relationship can, In
general, change continuously, and hence, the structure stiffness should
strictly be modified in every load step. In many cases, however, the
stiffness change from one step to the next may be small, and it may be
reasonabje to retain the same stiffness for several steps. This tolerance
enables the user to control the frequency of stiffness reformulation,

The number of subelements in a cross section must be an even number,
so that the cross section has symmetry about the two prinecipal axes, If
symmetry (motion in element xy-plane) is specified, the maximum number
of subelements in the eross section is 24 (i.e. 12 in half section).

The pipe element may be straight or curved, If the element is straight,
the slice locations may be at the element ends (end slice model) or at
the two Gauss points inside the element (Gauss slice model). If the
element is curved, the Gauss slice model must be specified.

For curved elements, ovalling may produce significant changes in cross
section geometry. If large ovalling is specified, a deformed slice
geometry is determined, taking into account the total ovalling deforma-
tion, Thus, a curved pipe is stronger for in-plane bending which
increases the bend angle than for bending which decreases the bend
angle.

A normelized force-ovalling relstionship for pipe wall bending is
developed based on the trilinear stress-strain curve. The approximation
of the actual curve is done by approximating the normalized ecurve by a
number of linear segments, A maximum of three segments (trilinear
eurve) is allowed.

The theory assumes that ovalling at any cross section is unrestrained.
When an elbow is connected to straight pipes, there may be substantial
restraint of ovalling, especially if the elbow is short. The ovalling
stiffness factor allows the wuser to correct approximately for the
restraint by increasing the ovalling stiffness. The nominal ovalling
stiffness (the hoop bending part excluding the effect of internal
pressure) is muitiplied by the specified factor.
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NOTES: INELASTIC STRAIGHT-CURVED PIPE ELEMENT (Continued)

(9)

(10)

(11)

(12)

First yield in ovalling is assumed to occur when the maximum bending
strain due to ovalling reaches the steel yield strein. The subsequent
shape of the curve relating ovalling deformation to ovalling force is
shown in Fig. 4, &and the trilinear approximation used for analysis is
shown in Fig. 2. The first stiffness change in the trilinear curve typi-
cally occurs at about 1.3 times the ovalling &t first yield, and this
factor is used to predict the first yield in ovalling. The ovalling yield
factor allows the user to adjust this first yield value. The second
stiffness change is always assumed to occur at twice the deformation for
the first yield.

If element generation is used, this node is the same for all elements in
the series.

The effect of in-plane element curvature in the element geometry can be
considered. If this option is selected, the bend radius and bend angle
of eurved pipe are updated as the analysis proceeds.

In many cases, the structure is symmetrical and motion occurs only in
the element xy-plane. In such cases, only one half of the element cross
section needs to be considered, and out-of-plane motions ean be ignored.
The computational effort at the element level is thus substantially
reduced, If symmetry is specified, only one half of the element is con-
sidered, Structure loads and masses must be specified taking this into
account.
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BENDING STRESS IN
\:\CURVED ELEMENT

BENDING STRESS IN
STRAIGHT ELEMENT

(NO OVALLING)

{a) IN-PLANE BENDING

{b) OUT-OF-PLANE BENDING

FIG. B2.2 OVALLING IN A CURVED ELEMENT
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FIG. B3.1 CURVED PIPE ELEMENT
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(b} OUT-0OF-PLANE OVALLING

FIG. B3.2 OVALLING DEFORMATIONS
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(a) LOCAL DISPLACEMENTS

(b) GLOBAL DISPLACEMENTS

FIG. B3.6 ELEMENT DEGREES OF FREEDOM -
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FIG. B3,7 SYMMETRIC-ANTISYMMETRIC MODES
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C. MULTI-SLICE TUBE ELEMENT

This section describes the theory of the "multi-slice” tube element. The basic features of
the element are described in Chapters C1 and C2. Details of the theory and computational pro-
cedure are described in Chapter C3. Chapter C4 contains references, and Chapter C5 describes

the input data required for the ANSR-III computer code.
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Ci. INTRODUCTION

C1.1 CONCEPT

For finite element analysis of beam-columns, the use of a cubic polynomial shape func-
tion implies a linear variation of curvaiure along the element length. This is correct for a uni-
form elastic beam. If the bearn becomes inelastic, however, the assumption of linear curvature

variation is no longer correct.

Linear curvature variation within a single element may be reasonable if a complete beam
is subdivided into shorf elements. However, this is usually not desirable because it increases
the numbers of nodes and elements which must be specified. A compromise is to divide a
complete beam into short subelements and treat the beam as a substructure. This also intro-
duces complications, however, one of which is that unbalanced forces will generally be associ-
ated with the internal degrees of freedom of the substructure. The need to eliminate these

unbalances adds to the complexity of the analysis.

An alternative approach is to treat a complete beam as a single elemen! and to vary the
shape function as the state of the element changes. Pecknold et al [C1 ] have used this
approach for reinforced concrete columns, varying the shape function according to predeter-
mined rules as the element yields. Their procedure is applicable, however, only for special
cases in which the deformation modes of the element are known fairly accurately in advance.
For the general case it is not possible (o establish predetermined rules for variation of the shape

function.

A new procedure has been explored for the "multi-slice” element described herein. With
this procedure, it is not necessary to establish predetermined rules for varying the shape func-
tion. Instead, the procedure automatically determines appropriate functions as the analysis

progresses and the state of the element changes.

Preceding page blank
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C1.2 ELEMENT FEATURES

The basic features of the multi-slice element are as follows. A more detailed qualitative
description is presented in Chapter C2. The theory is presented in Chapter C3.
(1) The element must be straight but may be arbitrarily oriented in space.

(2) Only small element deformations are considered (i.e. the element is assumed to remain

essentially straight). However, large rigid body motions are permitted.

(3) The element behavior is monitored at a number of slices, one at each end and up to seven
within the element length. The internal slice locations must be specified by the analyst.
These locations must be selected so that spread of plasticity along the element length is

modeled accurately.

(4) Only a pipe cross section is currently permitted. The cross section is subdivided into a
number of subelements (fibers) at each slice. The inelastic behavior at each subelement

is monitored using the Mroz material theory.
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C2. ELEMENT PROPERTIES

C2.1 ELEMENT GEOMETRY

The element geometry and coordinate axes are shown in Fig. C2L Each element connects
two nodes, each with three translational and three rotational degrees of freedom. The element
does not have any internal degrees of freedom (that is, the theory is not based on substructur-

ing concepts).
€2.2 SLICE LOCATIONS

C2.2.1 General

Yielding of the element is monitored at up to 9 slices along the element length, one slice
at each end and up to 7 internal slices. The number of internal slices and their locations must

be specified by the analyst.

Inelastic behavior of a complete element is modeled by monitoring the inelastic behavior
of each slice and assuming linear variation of the inelastic properties between slices (the details
are presented in Chapter C3). The slices must be located in such a way that this linear varia-

tion provides a close approximation of the true properties.

C2.2.2 Antisymmetrical Bending

Consider, as an example, an element subjected to equal and opposite end rotations {and
hence end moments), as shown in Fig. C22a. For a rotation value below that causing first
yield, the variations of both bending momeni and curvature along the element are linear (Fig.
C2.2b). The governing inelastic property in this example is the EI value, relating moment to
curvature, which for loading below yield is constant along the element length. Hence, the exact
result can be obtained with only two slices (one at each end), and internal slices are not

needed.

If the element end rotations exceed the yield values, the moment variation along the

length is still linear (because it is governed by equilibrium), but the curvature variation



becomes nonlinear (Fig. C2,2¢). In this case, if only two slices are assumed, the curvature
variation in the mathematical mode! is still linear, and the relationship between the actual and
calculated curvatures would be as indicated in Fig. C22d. The maximum curvature would thus

be grossly underestimated.

If, however, four slices are assumed, the curvature variation can be multilinear, for exam-
ple, as shown in Fig. C22e. A much better approximation of the true curvature variation can
thus be obtained, and the maximum curvature can be predicted more accurately. It may be
noted that the theory actually assumes a linear variation of slice Aexibility, represented in this
case by the value 1/EI. When this is combined with the linear moment variation, a quadraric
curvature variation can result. This permits a closer approximation of the true curvature than

the multilinear variation shown in Fig. C2.2e.

As the number of slices is increased, the element becomes progressively more accurate.
This is the case, however, only if the additional slices are placed in the part of the element
which yields. Consider the same antisymmetric loading, and assume an elastic-perfectly-plastic
material. For this material, the bending shape factor for a2 pipe cross section is 1.28. Hence,
the maximum end moment is 1.28 M,, where M, = moment at first yield, and the maximum
exfent of yield in the element is as shown in Fig. C2,3a. In this case, the best resuits would be
obtained by placing a slice at each end, a slice at the end of each region of potential yield, and
additional slices within the regions of potential yield (Fig. C2.3b). It must be noted, however,
that for materials which are not elastic-perfectly-plastic, the regions of potential yield will be
longer. The situation is also more complex if the bending moment variation is not known, as

considered in the following section.

C2.2.3 Other Benﬁlng Moment Variations

Antisymmetrical (or essentially antisymmetrical) moment loads, as considered in the
preceding section, are commonly imposed on the members of flexural frames. If it is known in
advance that the element loading will be of antisymmetrical type, stice locations can be selected

as indicated in the preceding section. In general, however, the bending moment variation will
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not be known in advance. In addition, (1) the moment variation may change progressively; (2)
loading, unloading, and reloading will occur for dynamic or cyclic static loading; and (3) an ele-
ment will generally not be subjected (o simple uniaxial bending, but to biaxial bending com-
bined with axial force, possibly with substantial torsional moments also present. Because of
these factors, the variations of curvature (and other slice deformations) along the element
length may change greatly as a structure is loaded. The problem is more serious if a single ele-
ment is used to model a Jong structural member, and less serious if long members are subdi-

vided into several short elements.

At the time of writing, very little experience has been obtained with the multi-slice ele-
ment, and resources are not sufficient to perform extensive studies. Hence, no recommenda-
tions can be made on the number of slices required for specific cases, nor on their locations.

The examples in Section D can provide some guidance.

C2.3 SLICE MODELING

For each slice, the pipe cross section is divided into a number of subelements (typically
12), as shown in Fig. C2.1. The pipe wall at each subelement is assumed to be subjected to
hoop stress (due to pressure), axial stress (due to pressure, bending moment and axial force),
and shear stress (due to torsional moment). The inelastic behavior at the center of each
subelement is monitored using the Mroz material theory, Ovalling of cross sections is ror con-

sidered.

C2.4 COMPUTATIONAL PROCEDURE

C2.4.1 Shape Function

The computational procedure is described in detail in Chapter C3. The procedure is

essentially as follows.

At any time, the states of stress and strain at all subelements at all slices are known. A

tangent flexibility matrix (4 x 4) is constructed for each slice. For all other cross sections, the
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flexibility is assumed to vary linearly between the flexibilities of the two adjacent slices. From
the slice flexibilities, a flexibility matrix for the element as a8 whole is formed (by closed form
integration). From this flexibility matrix, a shape function is constructed, which relates the
deformations at the slices to the displacements of the nodes at the element ends. This shape
function can be used to construct the element tangent stifiness matrix (which turns out, not
surprisingly, to be the inverse of the element flexibility matrix). More importantly, the shape

function is used to determine slice deformation increments in the state determination phase.

C2.4.2 Overshoet and Unloading Tolerances

Each time a cross section subelement yields or unloads, the element flexibility changes.
Hence, the element shape function also changes. For an exact result, the bending moments
must vary linearly along the element, and the axial force and torsional moment must be con-
stant. An exact result will be obtained in the state determination phase only if the shape func-

tion is recalculated each time a change occurs in the properties of a cross section subelement.

To avoid the computational cost associated with recalculating the shape function each time
a subelement changes its state, some yield overshoot is allowed at the subelement level. The
amount of overshoot is specified by the analyst (typically 2%-10% of the material yield
strength). The shape function is recalculated only when the stress in any subelement
overshoots the yield value by the specified overshoot. Several subelements may then have

changed state, and the number of shape function recalculations is reduced.

A similar stress tolerance is used for subelement unloading. In addition, it is possible for
the stress at a subelement to move around the Mroz yieid surface so that the direction of plastic
flow changes. Such a change in direction changes the tangent stress-strain relationship, and
hence, also the slice and element stiffnesses. To avoid recalculation of the shape function each
time a flow direction changes slightly, the analyst is required to specify an angle tolerance (typi-
cally about 0.1 radians). The shape function is recalculated only if the flow direction ai any

subelement changes by more than this tolerance.
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C3. THECRY

C3.1 PROCEDURE AND ASSUMPTIONS

The stiffness and state determination calculations for the element are based essentially on
beam theory. The theory is presented herein for & pipe element with a thin-walled circular

cross section. The theory can be modified for other cross section shapes.

The element is modeled as shown in Fig. C3.1. One beam slice is located at each element
end, and a maximum of seven additional slices may be specified at arbitrary locations along the
element length. Each slice is divided into a number of cross section subelements. The subele-
ment stiffnesses are constructed first, allowing for elasto-plastic behavior of the pipe steel. The
slice stiffnesses are constructed from the subelement stiffnesses by summation. The slice flexi-
bilities are obtained by inverting the slice stiffnesses, and a complete element flexibility is con-
structed from the slice flexibilities by closed-form integration. The element stiffness is then

obtained by inverting the element flexibility.

The deformations at any slice consist of six beam-type deformations, namely axial defor-
mation, torsional twist, major plane and minor plane curvatures, and major plane and minor
plane flexural shear deformations. The major plane is assumed to be the local xy plane.

Cross-section warping is not considered in the theory presented herein.

The complete element has six noda)l degrees of freedom at each end, which provide six
rigid body modes plus six element deformations. The slice deformations are related to the ele-

ment deformations by shape functions, which ére progressively updated as the element yields.

Each subelement is assumed to be in a state of plane stiress, with axial, hoop, and shear
stresses. The effects of axial deformation and curvature on the axial strains are determined
assuming a plane, circular cross section. The shear strain is assumed to be affected by torsional
twist only. Flexural shear effects are assumed to be negligible at the subelement level and are
ignored (they are introduced at the slice level). The subelement shear strains due to twist are

determined assuming plane, circular cross sections.
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Hoop strains are not determined from strain-displacement relationships. Rather, the hoop
stresses are governed by the equilibrium relationship between internal pressure and hoop stress,
The hoop strain in any subelement thus becomes an internal degree of freedom for the subele-

ment and is condensed out before the slice stiffness is calculated.
C3.2 SLICE STIFFNESS

C3.2.1 Deformations and Actions

The slice deformation vector, v, is given by:

W= <8 Y, Py YD (c3.n

in which 8 = axial strain at pipe axis; ¥, = bending curvature about element z axis; ¢, =
bending curvature about y axis; ¢ = rate of torsional twist; ¥, = flexural shear deformation in

x-y plane; and y,, = flexural shear deformation in x-z plane.

The corresponding slice action vector is S, where

ST = SFM, M, TVy Vo> (C3.2)
in which F = axial force; M, and M, = bending moments; T = torsional moment; and V,,

and V,, = flexural shear forces.

C3.2.2 Strain-Deformation Relationships for Slice
Consider slice subelement i, located at angle ¢, (Fig. C2.1(b)). The subelement mem-
brane strains, €, and vy, are related to the slice deformations by:
dg" - g,' d_‘}’s (C3.3)
in which
de] ~ <de, dy> (Cl1.4)

€, ™ axial strain in subelement i, y; = torsional shear strain; v, is defined by Eqn. C3.1; and

1 asind; ~acosf; 0 Q0 O
B = o 0 0 20 0 (C3.5)

This transformation assumes that plane sections remain plane and circular, It is also implied
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that the pipe thickness is smalt compared to the pipe diameter.

Note that the slice shear deformations, y,, and y,, are assumed not (o influence the

subelement strains. The effects of these deformations are considered separately.

C3.2.3 Stress-Strein Relationships for Slice Subelement

Each subelement is assumed to be in a state of membrane stress and strain (plane stress).

The hoop stress is controlled by the internal pressure, according to the well-known equation

- P(a-— 0.50 - Pd’
¢ H

(C3.6)

Tp
in which P = internal pressure; a = radius to pipe wall mid-thickness; ¢ = wall thickness; and
a' = a—05¢

The Mroz plasticity theory is used to model subelement yield. The details of the pro-
cedures used to impiement this theory have been described in detail by Mosaddad IC. 2] and
are not repeated here. For any given state of subelement i, an elasto-plastic stress-strain rela-

tionship is determined as

dgi = Qldg_l (C37)

in which
doT =~ < do, dr, doy > (C3.8)
df_iT"‘ < deg dy; dey > (C3.9)

where o, = hoop stress in subelement i {the same in all subelements); €,, = hoop strain in
subelement i; and D, = 3 x 3 elasto-plastic constitutive matrix. From Eqns. C3.7 and C3.6 it

follows that

dﬁa,' dcra,-
2,‘ * d‘)’, - de (CB.]O)
de a'dP/

in which dP is known. Hence, D, can be reduced, by static condensation, to a 2 x 2 matrix,

D, in terms of axia! and shear stresses only. If dP = 0, the result can be written as:

dem dga:
[Q”]{dy.-] - {m,] (€3.11)
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If dP is not zero, an initia! stress effect must be inctuded.

C3.2.4 Stiffness Matrix
The transformation matrix B (Eqn. C3.5) considers the effects of axial deformation,
bending, and torsion. A tangent stiffness matrix for the slice, k,, which considers only these

effects, is thus given by:

k 2 ait 14 T
ko= 2mG 3 BID, B, (C3.12)
jwl

in which N = number of slice subelements around pipe circumference.

The matrix k, has zero rows and columns corresponding 16 the shear deformations v,
and y ., because the transformation B does not consider flexural shear effects. It is assumed
that the flexural shear stiffness is not affected by yielding of the element, and hence, that the
elastic shear stiffness can be used. For an effective shear area equal to one-half of the cross
section area, the shear stiffnesses are defined by:

dVy = Gmat dygy = k, dyy (C3.13a)

and

AV, = Grmat dy = ky, dyy (C3.13p)
in which G = elastic shear modulus. The slice stiffness coefficients k,(5,5) and &,(6,6) are set

equal to «,.

C3.3 BLICE FLEXIBILITY

The slice flexibility, f,. is obtained by inverting the slice stiffness. That is,

L = k7! (C3.14)

In the compuier coding, the 4 x 4 slice stiffness without the shear stiffness is first inverted, and

the flexibility coefficients f,(5,5) and £,(6,6) are set equal 1o 1k,
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C3.4 ELEMENT STIFFNESS

C3.4.1 Deformations and Actions

The element deformations and displacements are shown in Fig. C3.2. The element
degrees of freedom, after deletion of the six rigid body modes, are defined by the vector v,
where:

v = <u, 6,6,6,6,6,> (C3.15)
where u, = axial extension, @, = z-axis rotaiion at element end i; 6, = z-axis rotation at end

J. 8 = torsional twist; 8,, = y-axis rotation at end i; and 8,; = y-axis rotation at end j.
The corresponding element action vector is S,,, where:
ST = <F M, M, T, M, M,;> (C3.18)

C3.4.2 Shape Function Czlculation

For finite element analysis of straight beams, it is common to use a cubic Hermitian poly-
nomial shape function. This permits a linear curvature variation and is exact for a uniform
elastic beam loaded only at its ends. If the beam becomes inelastic, however, the assumption
of linear curvature variation is no longer correct and equilibrium within the element is violated.
This can lead to serious errors. For the multi-slice element, however, it is possible to calculate,
for any state of the element, an "exact” shape function. This shape function is calculated by the

computer program and is progressively updated as the state of the elemen! changes.

A multi-slice shape function can be calculated using either a stiffness or a flexibility
approach. Both approaches have been explored and that based on flexibility has been found to
be superior. For completeness, the steps for both approaches are considered in the following

sections.

C3.4.3 Stiffness Appreach

The stiffness approach is based on substructuring theory, in which a complete element is

regarded as a substructure divided at the internal slices into a number of substructure elements

77



(Fig. C3.3 ). The steps in the computation are as foliows.

(1)

(2)

(3

)

(%)

(6)

(7

For each slice, form the current tangent stiffness, k., using Eqn. C3.12,

Place "external” nodes at the two end slices and an "internal” node at each internal slice,
dividing the substructure into several elements. Each node has three translational and
three rotational degrees of freedom. The properties of each substructure element are

determined by the properties of the two slices which the element joins.

For each substructure element assume a cubic shape function, and assume tha! the
stiffness varies linearly along the element length (i.e., interpolate between the slice
stiffnesses, k,, for the slices which the element joins). With this assumption a stiffness

matrix can be calculated in closed form for each substructure eiement.

Assemble the element stiffnesses to obtain a complete substructure stiffness, in terms of 6
displacements at each internal node and a total of & displacements at the two external
nodes. The external node displacements are conveniently chosen as those shown in Fig.

C3.3.

Select one of the 6 external node displacements. Impose a unit value of this displace-
ment, with the remaining 5 external displacements constrained to be zero and all internal

displacements unrestrained. Solve for the internal displacements.

Using the displacements from Step (5) and the cubic shape functions for the substructure
elements, calculate the slice deformations at the two ends of each element. Two slice
deformation vectors will be calculated for each internal slice, and these will not necessarily

be equal. Average the two vectors to obtain the slice deformations,

The slice deformations from Step (6) define one column of the shépe function for the
complete element (i.e. the deformations at all slices for a unit value of one external dis-
placement). Repeat Steps (5) and (6) for each external displacement in turn to obtain a

complete displacement transformation matrix.
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C3.4.4 Weaknesses of Stiffness Approach

The procedure described in the preceding section has been explored and found to have a
number of weaknesses when compared with the flexibility approach. These weaknesses are as

follows.

(1) The caiculated slice deformations are discontinuous at the internal nodes, and average
values are used to obtain the shape functions. This averaging is not necessary in the flexi-
bility approach.

(2) The calculated element stiffness is only approximate, whereas that obtained by the flexi-
bility approach is "exact".

(3) The computational cost is higher than for the flexibility approach.

C3.4.5 Flexibility Approach

The flexibility approach also considers a complete element as a substructure consisting of
a number of substructure elements. However, the substructure flexibility properties are deter-
mined, rather than its stiffness properties. The flexibility properties are then used to determine
both the stiffness matrix for the complete element and the element shape function. The pro-

cedure is as follows.
(1) For each slice, form the current tangent flexibility, [, using Eqn. C3.14.

(2) Select the displacements shown in Fig. C3.4 as the substructure deformations, and the
corresponding forces as the substructure actions. The substructure is thus statically deter-

minate.

(3) From equilibrium (linear variation of slice actions along the substructure length), express
the actions at each slice in terms of the substructure end actions. This defines a force

transformation matrix.

{4) Assume that the slice flexibility varies linearly between each pair of slices. Hence, using

the force transformation from Step (3), determine the substructure flexibility matrix.
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(5) Obtain the shape function using the substructure flexibility from Step (4), the slice flexi-
bilities from Step (1), and the force transformation from Step (3). The theory is
presented in the next section. Also obtain the substructure {i.e. complete element)

stiffness as the inverse of the substructure flexibility.

C3.4.6 Flexibility Calculation

An element flexibility in terms of the element degrees of freedom after deletion of the six

rigid body modes is first obtained. This flexibility is then used to obiain the shape functions.

The element actions correspond to the six deformations shown in Fig. C3.4. The equili-

brium relationship between the slice actions and the element actions is:

S, = bSn, _ (€3.17)

in which S, and S,, are defined by Egns. (C3.2) and (C3.16), respectively, and

1 0 0 0 0 0
oY L L
-x/L —x
E=1 o o 1 0 0 (C3.18)
0 /L /L O 0 0
0 0 0 0 —-y/L -l/L
A slice flexibility relationship can be written as:
dy; = f. S, (C3.19)

in which [, is the inverse of the slice stiffness, k,, developed in Section C3.2.

Equations C3.17 and C3.19, plus a standard application of the virtual forces principle, lead

to the element flexibility relationship:

dv, = [, dS, (C3.20)
in which
fm = f.b’fsgdr (C3.21)
[0

After transformation to dimensionless coordinates, q, as shown in Fig. C3.5, Eqn. C3.21

becomes:

n ‘A
Ln = X Lif b7 fib dg (C3.22)
-lb

jom]
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in which n = number of substructure elements (equal to the number of slices minus one); and
L, = length of element i. The integration in Eqn. C3.22 can be carried out in closed form if it

is assumed that the slice flexibility, f;, varies linearly between slices.

C3.4.7 Shape Function

The deformation increments at any slice, dv,, can be obtained in terms of the element

deformations (Fig. C3.4 ), as follows.

From Eqns. C3.17 and C3.19:

dvy = f;bdS, (C3.23)
Hence, from Eqn. €3.20:

dvy = Lbfn dvn, (€3.24)
The shape functions relating increments of slice deformation to increments of element defor-

mation can thus be expressed as:
a = [bfy (C3.25)

C3.4.8 Element Stiffness

From the slice stiffness relationship of Eqn. C3.12, the transformation relating slice defor-
mations and element deformations (Eqn. C3.25) and standard application of the virtual dis-
placementis principle, the complete élement stiffness can be obtained as:

L
K = j; a’ kadx (C3.26)

Hence, substitute g from Eqn. C3.25 into Eqn. C3.26, and note that f; = k7', to ger:

L
K= [ 167 [k b 15 dx
0

- ;’f.érfsédr.[;'
0
- s (C3.27)
That is, the element stiffness matrix obtained using the shape function is the same as that

obtained by inverting the element flexibility. Computationally, the element stiffness is obtained
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from Egn. C3.27 and the shape function is thus used only in the state determination phase.
The stiffness K is in terms of element deformations only. It is expanded to include the ele-
ment rigid body displacements, and then transformed to the 12 x 12 global stiffness. The

transformations are well known and are not repeated here.
C3.5 STATE DETERMINATION

C3.5.1 Basic Procedure
The shape function, g, defined by Egn. C3.25 is exact for an infinitesimally small dis-

placement increment. For such an increment, the slice deformation increment is obtained

using the shape function as:

dv, = adv, (C3.28)
Hence, the slice action increment is:
d§s - .l.‘s d.Ys
= K@ dvy (C3.29)

From Eqns. €3.25 and C3.27, this is the same as:

ds, = k. [ 0K dv,
b K dvy, (C3.30)

Alternatively, the slice action increraent can be obtained directly from the equilibrium relation-

ship as:

ds;, =

b g

feope

3
K dvy, (€3.3D)

———

fee

These two approaches thus given the same result, which reflects the fact that the shape function
is "exact” for infinitesimal element deformations. In an actual state determination, however,
the element deformation will be finite. This introduces two complications, one associated with
the material calculations, and a more important one associated with change in the shape func-

tion. These complications are considered in the following sections.
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€3.5.2 Linearity in Mroz Material Cziculations

In the state determination calculation for the Mroz material, the siresses are calculated
assuming linear behavior. They are then scaled so that the stress point lies exactly on the vield
surface. This means that the calculated hoop stress in any slice subelement may not exactly
satisfy Eqn. C3.6. If this error is not corrected, it may accumulate over a number of load incre-

ments and introduce significant inaccuracy in the solution.

The error is corrected by determining, for each slice subelement, the internal pressure
corresponding to the calculated hoop stress. The difference between this pressure and the
actual pressure is then a "pressure error.”" At each iteration, this pressure error is added to dP in

Eqn. C3.10 and treated as an initial stress effect.

C3.5.3 Linearity in Use of Shape Function

If the shape function is assumed not to change for a finite deformation increment of the
element, the slice deformation increments are given by Eqn. C3.28. The strains in the slice,
and hence the subelement stresses and slice actions, then follow. However, if the slice defor-
mation increments are sufficiently large that additional vielding (or unloading) occurs, the shape
function will change, and hence the calculated slice actions will not satisfy the equilibrium
requirement (Egn. C3.17). If equilibrium errors develop and are not corrected, they can accu-

mulate over a number of load increments and reach a significant magnitude.

Internal equilibrium errors may be avoided by either a "prevention™ or a "correction”
approach. In the prevention approach, the state determination calculation is divided into small
steps so thal no signiﬁcani equilibrium errors develop. In the correction approach, large steps
are allowed and equilibrium errors are permitted to develop. These errors are then eliminated
by applyving corrections in subsequent siate determinations. Both approaches have been
explored, and that based on prevention has been found to be more stable. For completeness

the procedures for both approaches are described in the following sections.
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C3.5.4 Prevention Approach

The prevention approach seeks to prevent significant internal equilibrium errors from
developing by adjusting the shape function, g, each time a significant change (an "event”)
occurs in the glement state. An evenl occurs if significant vielding or unloading occurs in any
stice subelement. The definition of "significant” is controlled by means of an overshoot toler-
ance, which allows subelements to go somewhat bevond new yield or unloading before an event

is detected.

When an increment of global displacement, Az, has been determined, the state determi-

nation proceeds as follows.

(1) Calculate the element deformation increment:

Av, = a,Ar (C3.32)

in which g, is a well known displacement transformation matrix.
{2) Calculate the slice deformation increments:
Av, = gly, (C3.33)
using the current shape function, a.
(3) Calculate the subelement axial and shear strain increments from Eqn. C3.3.
{4} Calculate the subelement hoop strain increments from:
Ae, = (Aa,,fv- Dy Ae, ~ DssAy)/ Dy (C3.34)

in which D, = term in the constilutive matrix, D, and the hoop stress error is obtained

from:

Ao f

- ﬂf_ ~ o, (C3.35)

(5) Calculate, for each subelement, an event factor, allowing for overshoot of yield or unload-
ing.

(6) Use the minimum event factor from Step (5) to scale the subelement strain and element

deformation increments. Using the scaled strain increments, obtain the subelement stress
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(7) If no event has occurred, the state determination is complete. If an event has occurred,

recalculate the shape function.
(8) Apply the remainder of the element deformation increment, and repeat from Step (2).

When the final subelement stresses have been calculated, the slice actions are obtained by sum-
mation over the slice cross sections. If the slice actions were to satisfy equilibrium exactly {i.e.
linear variation along the element length), the element end actions would be simply the actions
on the two end slices. In fact, the slice actions will not exactly satisfy internal element equili-
brium, and it is advisable to obtain the element actions using the virtual displacements princi-

ple.

In applying the virtual displacements principle, the natural approach would be to impose a
virtyal displacement defined by the current shape function, a. This is not essential, however.
It is interesting to note that if the slice actionsisatisfy equilibrium (linear variation}, then any
virtual displacement which satisfies compatibility will give the same result (namely that the ele-
ment end actions equal the actions on the end slices). If the slice actions do not exactly satisfy
equilibrium, then the element end actions calculated by the virtual displacements principle will
nol be the same for all virtual displacerments. However, the differences should be small, and
one virtual displacement is not necessarily better than any other. For the ANSR-IIl implemen-
tation, the linear elastic shape function, g, has been used to define the virtual displacement,
and the element end actions are thus obtained as:

L
Sy = j; af'S, dx (C3.36)

This equation has the advantage that g, defines a linear variation of deformation along the ele-
ment length, and the integral is easily evaluated in closed form. If the current shape function,
a, is used, the deformations vary quadratically, and evaluation of the integral is more difficult.
The use of g, is equivalent to assuming that the element is unloaded by an infinitesimai
amount, so that il becomes elastic bui the slice actions do not change. The "current” shape

function thus becomes a,, which is then used to define the virtual displacement.
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C3.5.5 Correction Approach

The correction approach allows large sieps (o be taken and avoids event calculations.
However, substantial equilibrium errors may result, which must be corrected in subsequent
state determinations. The corrections are made by introducing internal degrees of freedom into
the element to allow the element to adjust its shape internally, and hence, satisfy internal
equilibrium,

One possible approach is to add internal niodes to the element and let the displacements of
these nodes be the internal degrees of freedom. This approach, however, is exactly the same as
substructuring. It requires that the analyst select appropriate internal nodes and substantially

complicates the computational procedure. Hence, this approach was not considered.

An alternative approach is to select one or more generalized internal degrees of freedom
(i.e., not necessarily physical displacements) and to let the shape functions associated with
these degrees of freedom vary during the analysis. This approach is consistent with the variabie
shape function concept used for the element end displacements (the external degrees of free-

dom). It has been explored, as follows, for a single internal degree of freedom.

Let the added internal degree of freedom be v,, and let its shape function at any time be

a, Hence, slice deformation increments are given by:

dvg = adv, + g,dv, (C3.37)
If a set of virtua!l element actions, S,,,, is applied, the following virtual work equation must be

satisfied:
5‘}'!’72 dx - _"m+§l'ffgadx *dv, (C3.38)
L

fbTadc = J (C3.39)
L

in which [ is a unit matrix, and:
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in which 7 is a unit matrix, and:
J6Ta,ac = 0 (C3.40)
L

in which O is a null vector.

Equation C3.39 is satisfied automatically. The shape function associated with the internal
degree of freedom must satisfy Eqn. C3.40. A convenient choice for g, is Aa, which is the
change in @ when it was last reformed. Because Eqn. C3.39 is satisfied for both g (the current
shape function) and @ — Ag (the preceding shape function), it follows that Eqn. C3.40 is

satisfied by g, = Aa. The computational procedure for the state determination is as follows.
(1) Calculate the element deformation increment from Eqn. C3.32.

(2) Calculate the slice deformation increment:

Avy = abdy, + Ay, (C3.41)
in which Ay, is an initial slice deformation increment obtained from the previous state

determination, as described later in Step (10).
(3) Calculate the axial, shear, and hoop strain increments from Eqns. C3.3 and C3.34.
(4) Obtain the subelement stresses by Mroz material state determination.

(5) Reform the shape function, g, if substantial yielding or unloading has occurred. Hence.

also obtain, Aa.
(6) Obtain the slice forces, S, by summing the stresses over the cross section.
(7) Calculate the element end actions, §,,, from Egn. C3.36.

(8) Calculate the equilibrium error at the slices, AS,, as:

AS. = bS5, — S, (C3.42)

(9) Calculate slice force increments associated with a unit increment in the internal degree of

freedom, Av, = 1, as:

AS, = kiAy, = k.a, (C3.43)
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(10) Obtain the value of Av, which minimizes the slice force errors. That is, select Ay, so
that, say, the KMS value of:
A§e —AS,Av,
is a minimum. The slice deformations:
A_Vso bl gaAVa (C3.44)
become initial slice deformaiions to be taken into account in the next state determination

(Step 2).

A number of analyses were carried out to explore this procedure. The results were
encouraging provided only small element deformation increments were allowed in any load
step. If large deformation increments were aliowed, however, the initial slice deformations,
Ay, tended to dominate the response. There was then a tendency for successive yielding and
unloading to occur within the element, leading to numerical instability. For this reason it was

decided to implement only the "prevention” approach in the ANSR-HI element.
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C5. ANSR-IIT USER GUIDE

INPUT DATA
INELASTIC MULTI-SLICE TUBE ELEMERT

1. GROUP CONTROL INFORMATION

Columns Note Name Data
1 - 51 Element type number. Input 5.
6 ~ 10(1) Number of elements in group.
11 - 15(1) NFST Element number of first element in group.
Defauit = 1,
16 ~ 25(F) Initial stiffness damping factor, Bo’
26 - 35(F) Current stiffness damping factor, £.,
36 - 40 Not used.
41 - 80(A) Optional group heading.
2. CROSS SECTION AND MATERIAL DATA CONTROL INFORMATION
Columns Note Name Data
1 - 5(I) NOMAT  Number of different materials (max. 10).
6 - 10(I) NOSEC Number of different cross sections (max. 20).
3. MATERIAL PROPERTIES
NOMAT sets of cards, two cards per set.
3(a) FIRST CARD
Columns Note Name Data
1 - 5(I) Material number.
6 - 10(1) = (1) NPT Number of linear segments in stress—strain
curve (max. 3).
11 - 20(F) Poisson's ratio in elastic range.
21 - 30(F) (2) Yield overshoot tolerance, Default = .02,
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S. ELEMENT SPECIFICATION

As many cards &s needed to specify all elements in group. The cards for the
first and last element in the group must be input. If cards for intermediate
elements are omitted, the data is generated. Elements within the group must
be sequentially numbered, starting with NFST.

Columns Note Name Data
1 - D Element number, or number of first element

in a sequentially numbered series of
elements to be generated by this card.

6 - 10(1) Node 1.
11 - 15(1) Node J.
16 - 20(I) . Node K. Default = automatic assignment.
21 - 25(I) Node number inerement for generation,
Default = 1.
26 - 35 Biank.
36 - 40(I) Material number. Default = 1.
41 - 45(1) Output code:

(a) 1 = output actions at nodes only.

(b) 2 = also output actions and
deformations at end slices,

{c) 3 = also output actions and
deformations at slices in body of

element,
Default = 3.
46 - 50(I) Cross section number. Defsuit = 1,
55(1) Large displacement code:

(a) 0 = small displacement analysis,
(b) 1 = large displacement analysis.

60(1) (1) Symmetry code:
(a) 0 = full 3D motion.
(b) 1 = motion in element xy-plane only.

61 - TU(F) | Internal pressure., Default = 0, Negative
value = external pressure.
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NOTES: INELASTIC MULTI-SLICE TUBE ELEMENTS

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The actual stress-strain ecurve must be approximated by a number of
linear segments, A maximum of 3 segments (trilinear curve) is allowed.
The maximum stres%in the last segment must be set very high. The
default value is 10°",

In the event-to-event procedure, if zero tolerance were used, a new step
would be required each time a subelement yieided, and the number of
steps could be excessive. A degree of overshoot of the nominal yield
value is permitted. At the end of any substep, all elements which are
between their nominal yield stresses and the permissible overshoot values
are assumed to yield simultanecusly.

When the element yields, the tangent stress-strain relationship can, in
general, change continuously, and hence, the structure stiffness should
strictly be modified in every load step., In many cases, however, the
stiffness change from one step to the next may be small, and it may be
reasonable to retain the same stiffness for several steps., This tolerance
enables the user to control the frequency of stiffness reformulation,

The number of subelements in a cross seetion must be an even number so
that the cross section has symmetry about the two principal axes., If
symmetry (motion in element xy-plane) is specified, the maximum number
of subelements in the cross section is 24 (i.e. 12 in half section).

The number of subelements zlong the element length can be from 1 to 8.
A slice is located at each dividing point, in addition to the two slices
at the element ends.

Care must be exercised in specifying the locations of the slices. For
example, in a region of large moment gradient, it may be necessary to
specify closely-spaced slices.

In many cases, the strueture is symmetrical snd motion occurs only in
the element xy-plane. In such cases, only one half of the element cross
section needs to be considered, and out-of-plane motions can be ignored.
The computational effort at the element level is thus substantially
reduced, If symmetry is specified, only one half of the element is
considered. Structure loads and masses must be specified taking this
into account.
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D. EXAMPLES

This section describes a number of examples which have been used to test the straight-

curved pipe and multi-slice tube elements.
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D1. PIPE WITH AXIAL FORCE AND INTERNAL PRESSURE

D1.1. PURPOSE

The purpose of this example is to check the inelastic behavior of the pipe element under
combined axial and hoop sstresses and to verify that the Mroz material model has been

correctly implemented.

D1.2 CONFIGURATION

A cantilever pipe as shown in Fig. D1.1{a) is considered. The pipe length is 100 feet.
with 48-in. outside diameter and 0.6-in. wall thickness. The material stress-strain curve is

assumed to be trilinear, as shown in Fig. D1.1(b). Poisson’s ratio is 0.3.
D1.3 ANSR ANALYSIS MODEL

D1.3.1 Assumptions for Analysis

The cantilever pipe was modeled by a single straight pipe element, with one end fixed and
the other free. The element was specified to have two Gauss points. Because no bending
moment exists, the pipe cross section was subdivided into only two subelements (fibers) around

the pipe circumference.

D1.3.2 Loadings

A uniform internal pressure of 864 psi was first applied. This pressure produced hoop and
axial stresses, with a von Mises effective stress just below yield. An axial tensile load of 2500

kips was then applied at the free end in five equal steps.

D1.3.3 ANSR Input

The ANSR-III input file for the example is listed in Table D1.1.
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D1.4 RESULTS

The computed von Mises effective stresses and strains in the pipe wall are shown in Fig.

D1.1(b). Al points lie on the "virgin" uniaxial siress-strain curve. The variation of axial! stress

with axial strain is shown in Fig. D1.1{(c).

These results were compared with the results obtained from the well-established pipeline
analysis program PIPLIN [D.1], which uses the Mroz theary but with a significantly different

computational scheme. The results from the two analyses were virtually identical.

D1.5 CONCLUSION

This example indicates that the pipe element gives correct results for inelastic behavior

under combined axial and hoop stresses and that the Mroz material model has been correcily

implemented.

104



D2. BURIED PIPE BEND WITH TEMPERATURE AND PRESSURE LOADING

D2.1 PURPOSE

This example tests the inelastic behavior of the pipe element under temperature change,

internal pressure, and bending.

D2.2 CONFIGURATION

The structural configuration is shown in Fig. D2.1(a). It represents a 12-degree, 120-ft.
radius sidebend in a pipeline, with virtual anchors (fixed supports) at both ends. The pipe is
modeled using straight and bend elements, with 48-in. outside diameter and 0.6-in. wall thick-
ness. Because of symmetry, only one-half of the structure needs 1o be modeled, with a roller
support at the axis of symmetry. The pipe material stress-strain curve is assumed to be tri-
linear, as shown inn Fig. D2.1(b). Poisson’s ratio is 0.3, and the coefficient of thermal expan-

sion 0.00001 per degree.
D2.3 ANSR ANALYSIS MODEL

D2.3.1 Assumptions of Analysis

The structure was modeled using six pipe elements, three straight elements for the
straight segment and three curved elements for the curved segment. Each element was
specified to have two Gauss points. The pipe cross section was divided into six subelements

{fibers) around one-half of the pipe circumference.

D2.3.2 Loadings

A uniform temperature and internal pressure (equal values at all nodes) were applied to

the analysis model as follows.
(1) Apply internal pressure of 1750 psi in ten steps.

(2) Decrease internal pressure to zerc in ten steps.
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(3) Re-apply internal pressure to 1750 psi in ten steps.

{4}  Apply ic.aperature change of -100 degrees F in ten steps.

D2.3.3 ANSR Input

The ANSR-III input file for this example is listed in Table D1.2.

D2.4 RESULTS

Load sequence (1) causes initial yiielding of the pipe and causes outward movement of
- the side bend (Fig. D2.2). After the pressure is removed in sequence (2}, a small inward
deflection is present at the midpoint of the model (Fig. D2.2). Re-application of the internal
pressure in sequence (3) returns the sidebend segment back to the location at the end of
sequence {1). The temperature decrease then causes inward movement of the bend (Fig.
D2.2). The computed displacements are shown in Fig. D2.2 and the computed pipe moments
in Fig. D2.3. The corresponding results obtained using PIPLIN are also shown in Figs. D2.3

and D2.5. It can be seen that the results are in close agreement.

D2.5 CONCLUSION
The ANSR results are in agreement with those obtained by PIPLIN, which has been
widely used and carefully validated. This indicates that the pipe element is applicable for inelas-

tic temperature and internal pressure loading.

106



D3. PIPE WHIP WITH LARGE DISPLACEMENTS

D3.1 PURPOSE

This example tests the straight-curved pipe element with large displacements and dynamic

loading.

D3.2 CONFIGURATION

Analyses of a cantilevered pipe with large displacements and impact have been reported

~ by Hibbitt and Karlsson [D.2]. The dimensions of the pipe are shown in Fig. D3.1.

ANSR-III U-bar elements are located at nodes 16 through 19, with initial gaps specified 10
represent a flat surface. Fach element is arbitrarily assigned a stiffness of 10% k/in. which
allows a small amount of flexibility after gap closure. In the anaiysis reported in [D.2], the flat
surface was assigned a very large mass, rather than an elastic stiffness. Because impact of an
actual pipe would involve substantial local deformation of the pipe, and prebably significant
deformation of the impacted wall, the assumption of an essentially rigid surface is not realistic,
and the computed impact forces are likely to be much larger than those which would occur in

actual practice.

The analysis in [D.2] considered a "follower" jet force, acting paralle! to line 19-20.
Because ANSR-III does not currently include a follower force option for dynamic loads, the
analysis was carried out assuming a vertical jet force. The results are thus not direcily compar-
able with those in [D.2], especially after impact. The straight-curved pipe element has also
been incorporated into WIPS [D.3], a special purpose computer code for pipe whip analysis. In
the verification studies for WIPS, a similar analysis has been carried out with a follower jet

force.

The stress-strain relationship for the pipe steel is shown in Table D3.1. The blowdown

forcing function is shown in Table D3.2.
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D3.3 ANSR ANALYSIS MODEL

D3.3.1 Geometry, Loading, and Pipe Properties

The PIPE element subdivision is shown in Fig. D3.1. This is similar to the subdivision
used in [D.2]. It may be noted that only a single element is used in the vertical leg between
nodes 19 and 20. This introduces a significant error in the rotational inertia of this leg, and for

practical analysis a larger number of nodes is probably desirable.

Motion was permitted in the XY plane only. The default ovalling strengths and
stiffnesses were assumed for the curved PIPE elements, with small ovalling assumed. Twelve

subelements (the default value) were used in each PIPE element cross section.

The jet force was applied at node 20 in the vertical direction. To allow for the symmetry,
the jet forces shown in Table D3.2 were multiplied by 0.5 (because only half of the element

strengths and stiffnesses are used in symmetrical segmenis of the analysis model).

D3.3.2 Analysis Control Parameters
The Newmark scheme with automatic time step selection was used, with the following
parameters.
Initial time step = 5§ x 10~ sec.
Minimum time step = 5 x 1075 sec.
Maximum time step = 1073 sec.
Initial 8,/At = 0.1

Lower midstep tolerance = 50 k

1

Upper midstep tolerance = 250 k

D3.3.3 ANSR Input

The ANSR-III input file for the example is listed in Table D3.3.
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D3.4 RESULTS

Deflected shapes at several times are shown in Fig. D3.2. This figure demonstrates that
the computational scheme can consider very large displacements. No results are availabie for
confirmation that the analysis is correct. A more detailed comparison with the results from
[D.2] is presented in [D.3], using the WIPS version of the element.

The analysis required a total of 228 time steps, 107 up to gap closure at 0.106 seconds,
and 121 for the remaining 0.029 seconds. The maximum time step was 0.00100 seconds (in
the period before gap closure) and the minimum step was 0.000125 seconds (in the period

shortly after gap closure),
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D4. INELASTIC MULTI-SLICE BEAM COLUMN

D4.1 PURPOSE

This example tests the muiti-slice tube element for its ability to capture the inelastic cur-
vature variation along a single beam-column member. Four different cases have been con-
sidered, each with a different number of slices. The load-deflection relation_ships and the calcu-
lated curvature variations are compared, to study how accurately the different cases predict the
member behavior. This is only a preliminary test of the multi-slice element. Further work is

" needed to test the element thoroughly and to study its characteristics in detail.

D4.2 CONFIGURATION

The tubular beam-column shown in Fig. D4.1{a)} has its bottom end fixed and its top end
restrained by an elastic rotationa.l spring. The spring stiffness of 42,650 k/radian is chosen so
that the bending moments at the top and bottom ends are in essentially the ratio 2:1 in the elas-
tic state. The material stress-strain curves for the pipe steel were as shown in Fig. D4.1(b).

Two different strain hardening ratios were considered for each model, namely 1% and .01%.

Four different models, each with a different number of slices, have been specified. The

numbers of slices and their locations are shown in Table D4.1.
D4.3 ANSR ANALYSIS MODEL

D4.3.1 Assumptions for Analysis
Each slice cross section was subdivided into 8 subelements {fibers) around one-half of the
pipe circumference (to account for symmetry only one-half of the beam-column strengths and

stiffnesses were used in the analysis model),

For each model, a lateral displacement of 2.2 inches (approximately 4 times the yield dis-
placement) was applied at the top end, in two increments. In the first increment a displacement
magnitude of 0.5 inches was applied in one step. This brought the beam-column close to first

yield. In the second increment a displacement of 1.7 inch was applied in twenty equal steps.
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Constant displacement iteration was specified for all cases.

D4.3.2 ANSR Input

The ANSR-IHI input data file for the 7-slice model, with strain hardening 0.01%, is listed

in Table D4.2. The remaining data files were similar and are not listed.
D4.4 RESULTS

D4.4.1 Expected Behavior

In the elastic range, the bending momen! at the bottom of the member is 2.04 times that
at the top. Simple hand calculation shows that first yield occurs at a load of 3.33 k and a
deflection of 0.53 inches. (This load is on one-half of the member because symmetry is

assumed.)

After yield, redistribution of moment occurs, and the top moment increases more rapidly
than the bottom moment. For an elastic-perfectly-plastic material, the collapse load is reached
when plastic hinges form at both the top and bottom of the member. The plastic moment capa-
city is 1.28 times the yield moment for a tubular section. Hence, the rigid-plastic collapse load

is $.75 k.

No exact solution is available for the behavior between first vield and collapse. However,
a load-deflection relationship can be obtained assuming that idea} plastic hinges develop at the
member ends. With this assumption, a hinge forms at the bottom at a load of (1.28)(3.33) =
4.26 k. The stiffness then reduces to one-fourth the elastic value, until a hinge forms at the
top at the collapse load. The strength then remains constant. The load-deflection curve for this

simple "elastic-ideal-hinge" assumption is shown on the figures to provide a reference.

D4.4.2 Load Versus Deflection

The cailculated load-deflection curves for a substantial strain hardening ratio (1%) are
shown in Fig. D4.2. The results for the seven- and nine-slice models are closely similar, and

are believed to be close to the "exact" behavior. The four-slice model gives reasonably accurate
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results. However, the two-slice model gives poor resulis.

The load-deflectiion curves with negligible strain hardening ratio (0.01%) are shown in
Fig. D4.3. Again, the seven- and nine-slice models give closely similar results. In both of
these models, a plastic mechanism forms at approximately two inches deflection, with the
correct collapse strength. Note that the elastic-ideal-hinge model forms a mechanism at 1.84
inches deflection. The four-slice model again gives fair results, and the two-slice model gives

very poor results.

The reason why the two-slice model gives poor results is that the variation of cross section
flexibility between slices is obtained by linear interpolation. With only two slices, this provides
inaccurate values, and the element is much too flexible. With four slices, the flexibility varia-
tion is estimated more accurately, but substantial error still exists. With either seven or nine

slices, the linear interpolation appears to give accurate resujts.

For the seven- and nine-slice models, the ultimate load capacity is some 3% larger than
that predicted for the elastic-ideal-hinge model. Approximately 1% of this difference can be
attributed to strain hardening. The remaining difference occurs because the slice bending
moments in the muiti-slice model do not lie exactly on a straight line. This is because the
shape function is recalculated only at discrete intervals, so that some error can develop. The
result is that the effective end bending moments (obtained by virtual work} are somewhat
larger than the bending moments on the end slices. The calculated strength is thus also slightly

too large. This aspect of the mulii-slice model requires further study.

D4.4.3 Curvature Versus Defiection

The calculated curvatures at the top and bottom of the member are listed in Tables D4.3
and D4.4, for 1% and .01% strain hardening, respectively. For each case the calculated curva-
tures for the four-, seven-, and nine-slice models are of the same order of magnitude. How-
ever, those for the two-slice model are much lower. This again indicates that the two-slice

mode] does not predict the inelastic deformation accurately. The four-slice model is also
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significantly inaccurate, whereas the seven- and nine-slice models give closely similar results.

Note that the calculated curvatures with the clastic-plastic material (0.01% strain harden-
ing) are much larger than for the material with significant hardening (1%). This indicates that
material properties must be carefully specified if ductility demands based on curvature (or

strain) are to be calculated.

D4.5 CONCLUSION

This example, although limited in scope, suggests that the multi-slice element has the
. ability to calculate accurate curvatures and load-deflection relationships for beam-column
members. The example suggests that a seven-slice model should be adeguate for practical com-
putation, and shows that calculated curvatures can be sensitive to the material stress-strain
curve.

Although the results are not shown here, an analysis was also performed with an
extremely low strain hardening ratio (107'%4). For reasons which are not clear, the results
were poor for-all cases (including seven and nine slices). Hence, it is recommended that if the
element is used, a strain hardening ratio of at least 0.01% be specified.

Additional study is needed ‘to test the multi-slice element thoroughly and to develop
guidelines for its.use. Time and resources have not been available to perform these additional
studies under the current project. Nevertheless, it can be concluded that the multi-slice con-
cept is very attractive for modeling beam columns when curvature or strain ductilities are to be

calculated.
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D5. SUMMARY

D5.1 GENERAL

This section has presented three examples using the straight-curved pipe element and cne
example using the multi-slice beam-column element.

The examples with the straight-curved pipe element have all been carried out using the
ANSR-1II computer code and have only exercised the element for two-dimensional behavior,
The element has also been incorporated into the WIPS code [D.3]. In the verification studies
for WIPS, the element was also exercised for three-dimensional behavior. However, these ana-
lyses are not reported here.

The example with the multi-slice element is very limited in scope, exercising the element
only in two dimensions and ignoring axial force and torsion.

Eiements such as those described in this report are very complex. Developing. testing
and documenting them is time-consuming and costly. Time and resources have not permitted
thorough testing. If the elements are used in practical applications, the analyst is cautioned to

perform additional tests to ensure that the elements are performing correcily.
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TABLE D3.1 - STATIC STRESS-STRAIN RELATIONSHIP FOR PIPE STEEL

Stress (ksi) Strain Modulus (ksi)
0 0 26700
26.7 0.601 219
44.0 0.080 2

TABLE D3,2 - BLOWDOWN FORCE RECORD

Time (sec) Force (k)
0 0
0.0001 650
0.0010 880
0.0020 1000
0.0030 880
0.0050 780
0.0200 430

10.0 430
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TABLE D4.1 - SLICE LOCATIONS

SLICE DISTANCE OF SLICE (INCHES) FROM BOTTOM
NUMBER | 2 SLICES | 4 SLICES 7 SLICES 9 SLICES

1 0 0 0 0

2 100 11 10 5

3 89 25 10

4 100 50 20

5 75 50

6 90 80

7 100 90

8 95

9 100
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TABLE D4.3 - CALCULATED CURVATURES.

STRAIN HARDENING = 1%
RATIO (CALCULATED CURVATURE)/(YIELD CURVATURE)

DISL. 2 SLICES 4 SLICES 7 SLICES 9 SLICES
(in) | Bottom | Top | Bottom | Top | Bottom | Top { Bottom | Top
0.500 0.94 0.46 0.94 0.46 0.94 0.46 0.94 0.46
0.585 1.11 0.54 1.14 0.54 1.14 0.54 1.14 0.54
0.670 1.34 0.60 1.57 0.61 1.56 0.61 1.57 0.61
0.755 1.60 0.66 2.25 0.67 2.24 0.67 2.28 0.66
0.840 1.88 0.71 3.14 0.72 3.51 0.72 3.57 0.72
0.925 2.29 0.73 4.02 0.78 477 0.78 4.86 0.78
1.010 2.70 0.75 4.9] 0.83 6.35 0.83 7.69 0.89
1.095 3.11 0.77 5.94 0.88 7.58 0.89 7.69 0.89
1.180 3.52 0.79 7.06 0.93 8.80 0.94 8.98 0.94
1.265 3.93 0.81 8.19 0.98 10.03 0.99 10.26 0.99
1.350 4.34 0.83 9.31 1.03 11.26 1.05 11.55 1.05
1.435 4.75 0.85 10.42 1.12 12.48 1.14 12.83 1.15
1.520 5.16 0.87 11.53 1.20 13.69 1.26 14.10 1.27
1.605 5.63 0.88 12.62 1.35 14.88 1.53 15.35 1.52
1.690 6.09 .89 13.67 1.55 16.05 1.77 16.60 1.78
1.775 6.55 0.90 14.72 1.74 17.12 248 17.75 2.54
1.860 7.02 0.91 15.65 2.13 18.14 3.29 18.85 3.39
1.945 7.48 0.92 16.54 271 19.16 4.09 19.56 420
2.030 7.94 0.93 17.40 3.29 19.78 4,88 20.28 5.02
2.115 8.41 0.94 18.26 | 3.87 20.37 594 | 2094 6.17
2.200 8.87 0.95 19.12 445 20.91 7.22 21.59 7.45




RATIO (CALCULATED CURVATURE)/(YIELD CURVATURE)

TABLE D4.4 - CALCULATED CURVATURES.
STRAIN HARDENING = 0.01%

DISPL. 2 SLICES 4 SLICES 7 SLICES 9 SLICES

(in) Bottom | Top | Bottom | Top | Bottom | Top | Bottom | Top
0.500 0.94 0.46 0.94 | 0.46 094 | 0.46 094 | 0.46
0.585 1.11 0.54 1.14 | 0.54 1.14 | 0.54 1.14 | 0.54
0.670 1.34 0.60 1.58 | 0.61 1.57 | 0.60 1.59 1§ 0.61
0.755 1.61 0.65 232 | 067 2.36 | 0.66 246 | 0.66
0.840 1.90 0.70 329 | 0.72 383 | 0.72 395 | 0.72
0.925 2.33 0.72 427 | 0.1 .57 | 0.77 6.39 | 0.77
1.010 2.76 0.713 536 | 0.82 1569 | 0.82 16.69 | 0.82
1.095 3.20 0.75 19.31 [ 0.86 257N 0.87 26.71] 0.87
1.180 363 0.77 33.18 | 0.89 3574 | 0.92 36.74 | 0.92
1.265 4.07 0.78 47.64 | 0.93 4577 | 0.96 46.77 | 0.96
1.350 4.50 0.80 60.30 : 0.96 55.80 | 1.01 56.80 | 1.01
1.435 4.94 0.81 74.76 | 1.00 65.64 1.08 66.63 1.08
1.520 5.39 0.82 88.62 | 1.03 76.66 | 1.17 76.66 | 1.17
1.605 5.89 0.82 102,14 | 1.09 85.41 1.31 8597 | 1.30
1.690 6.39 0.82 115.53 ' 1.16 94.08 1.54 95.13 1.55
1.775 6.89 0.32 128.91 1.22 | 102.75 1.77 103.92 1.78
1.860 7.39 5,82 | 14084 [ 1.39 | 10895 | 2.59 | 110.05 | 2.63
1.945 7.89 0.82 | 15257 | 1.56 | 113.74 ; 3.50 | 11495 | 3.57
2.030 8.39 0.82 | 16431 | 1.73 | 118.52 | 441 | 119.85 | 4.52
2,115 8.89 082 | 17373 | 2.05 { 123.02 | 536 | 12399 [ 5.67
2.200 9.39 0.82 | 178.78 | 2.64 | 124380 | 7.18 125.77 | 7.45
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FIG. D1.1 CANTILEVER PIPE EXAMPLE
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Rotational Spring
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(a) STRUCTURAL CONFIGURATION
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(b) ANALYSIS MODEL

FIG. D4,1 INELASTIC BEAM-COLUMN EXAMPLE
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