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ABSTRACT

The earthquake induced lateral forces on a structure computed under the assumption that
the foundation and soil remain in complete contact will often produce a base overturning
moment that exceeds the available overturning resistance due to dead weight, thus implying
that one edge of the foundation would uplift terporarily. Experiments on building frames with
columns permitted to lift-off during vibration, conducted on the Berkeley shaking table,
demonstrated that allowing column uplift under an extreme earthquake would enhance the
chances of a structure surviving in a functional condition, with damage held to a minimum.
Analytical studies have also indicated that uplifting tendency of the foundation may materially
reduce the magnitude of the dynamic effects transmitted to the strulcture. The flexibility of
supporting soil was ignored in these studies; it was not incorporated into the shaking table test

either.

The objective of this study is to develop a better understanding of the effects of transient
foundation uplift on response of siructures, so that the related reduction in earthquake forces
can be considered in design of structures. The mathematical models chosen are simple, but
incorporate the most important effects of soil flexibility and realistic mechanics of uplifting and
impact. In its fixed base condition, the structure itself is idealized as a single-degree-of-
freedom system attached to a rigid foundation mat which is flexibly supported. The flexibility
and damping of the supporting soil is represented by two alternative idealizations: (1) two
spring-damper elements, one at each edge of the foundation mat, or (2) Winkler foundation

with spring-damper elements distributed over the entire width of the foundation mat.

Analytical examination of the governing equations and system properties and the numeri-
cal results obtained in this study indicate that the earthquake response of uplifting structures is
controlled by the following system parameters, listed in more or less descending order of

importance:

i<



@ natural vibration frequency « of the rigidly supported struct: e
® slenderness-ratio parameter o
® ratio v of foundation mass to superstructure mass

¢ B = u,/w where w, is the vertical vibration frequency of the system with its foun-

dation mat bonded to supporting elements
@ damping ratio £ of the rigidly supported structure

® damping ratio €, in vertical vibration of the system with its foundation mat bonded

to the supporting elements.

In order to study the effects of foundation-mat uplift on the maximum response of build-
ings, response spectra are presented, For each set of system parameters the maximum base
shear is plotted against the natural vibration period of the corresponding rigidly-supported struc-
ture for two conditions of contact between the foundation mat and the supporting spring-
damper elements: (a) bonded contact preventing uplift and (b) unbonded contact with uplift

permitted. A study of these response spectra plots leads to the following conclusions:

1. The base shear developed in structures with relatively long vibration periods is
below the static value at incipient uplift and the foundation mat does not uplift from

its supporting eiements.

2. For short period structures, the base shear exceeds the incipient-uplift value if
foundation-mat uplift is prevented, for such structures, permitting uplift has the 4
effect of reducing the base shear -- to values somewhat above the critical value.

3. Because the response of a structure with foundation mat permitted to uplift is con-

trolled by the critical base shear, which is independent of the ground motion, the

base shear is affected only slightly by earthquake intensity.



4.  The foundation mat of a slender structure has a greater tendency to uplift resulting

in greater reductions in base shear.

5. Because the critical base shear increases with mass ratio y so does the maximum

earthquake induced base shear.

=2

The shape of the response spectrum is affected little by the frequency ratio 8, but it
does have the effect of shifting the response spectrum to the left with larger shift for

smaller 8, i.e. for the more flexible supporting elements.

Because foundation uplift is shown to reduce the structural deformations and forces, there
is no need to prevent it but, on the contrary, it is desirable to permit it. The foundation,
underlying scii and structural columns should be properly designed to accommodate the tran-

sient uplift and the effects of subsequent impact on contact.

it
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1. INTRODUCTION

In dynamic analysis of response of buildings to earthquake ground motion it is usual fo
postulate that the free-field ground motion is directly transmitted to the base of the structure
without any modification. Implicit in this approach are the assumptions that the soil underlying
the structure is perfectly rigid and the structural foundation is firmly bonded to the soil. In
reality soils are not infinitely stiff and the structural foundations are supported on the soil only

through gravity forces.

During recent years considerable research has been devoted to removing the approxima-
tion implied by the first of these assumptions. By idealizing the underlying soil medium as a
viscoelastic half space or as a system of finite elements, procedures have been developed to
include the effects of soil-structure interaction arising from soil flexibility and inertia in the
dynamic response of structures. These effects have been shown to be especially significant in
the response of some types of structures, such as nuclear power plants and offshore structures.
However much of the extensive work on soil-structure interaction was based on the second of
the above mentioned assumptions, i.e. the foundation of the structure is firmly bonded to the

50il.

Whether soil-structure interaction effects are considered or not, the earthquake induced
lateral forces on a building, computed by dynamic analysis under the assumption that the foun-
dation and soil are firmly bonded, will often produce a base overturning moment that exceeds
the available overturning resistance due to gravity loads. The computed overload implies that a
portion of the foundation mat or some of the individual column footings, as the case may be,
would intermittently uplift for small time durations during an earthquake. Such uplift has been
observed in several earthquakes. Several examples of towers and oil tanks uplifting from the
underlying soil during Arvin Tehachapi (1952), Alaska (1964), and Imperial Valiey (1979)
earthquakes are cited in a recent work [1]. Uplift of multistory building foundatiens has rarely
been observed because the uplift is expected to be small and the foundation-soil interface is

often inaccessible for observation.



Until a few vears ago the possibility of foundation uplift was not considered in the practi-
cal design of buildings because the design code forces were typically not large enough to initiate
uplift. The situation changed after the San Fernando earthquake when the new hospital code
required that hospitals in California be designed for much larger forces. In some cases the
resulting base overturning moments exceeded the available overturning resistance due to grav-
ity loads and to prevent uplift the designers anchored the foundation, a very expensive under-
taking.

Housner was the first to recognize the correlation between foundation uplift and the good
performance of secmingly unstable structurcs during earthquakes [2]. During the Chilean
earthquakes of 1960, several goif-bail-on-a-tee type of elevated water tanks survived the ground
shaking whereas much more stable appearing reinforced concrete elevated water tanks were
severely damaged. Motivated by this anomalous behavior, Housner systematically investigated
the dynamics of a rigid block rocking on a rigid horizontal base. He demonstrated that there is
a scale effect which makes the larger of two geometrically similar blocks more stable than the
smaller block. Moreover, the stability of a tall slender block subjected to earthquake motion is
much greater than would be inferred from its stability against a static horizontal force. In order
to take advantage of the beneficial effects of base uplift, it was proposed [3] to design the tall
piers of a bridge to rock from side-to-side with vertical separation of parts of the pier from the
supporting foundations. An earlier experimental study [4] suggested that tall structures allowed

to rock on their foundations would be surprisingly stable during earthquakes.

Idealizing the structure as a bne—degree-of-freedom oscillator, Meek was apparently the
first to analytically investigate the effects of foundation uplift on the earthquake response of a
flexible structure [5]. He concluded that foundation uplift leads to reduction in the structural
deformation. Later he extended his study to multistory, braced-core buildings [6], and found
that significant reduction in structural deformation can again be obtained by permitting uplift of
the rigid base of the core. Experiments on steel building frames with columns permitted to

lift-off during vibration, conducted on the Berkeley shaking table (7,81, demonstrated that



allowing column uplift under an extreme earthquake would enhance :he chances of a structure
surviving in a functional condition, with damage held to a minimum. In other words, it was
demonstrated that the strength and ductility requirements for the frames can be reduced by per-
mitting column uplift. The flexibility of the supporting soil was ignored in these analytical stu-

dies [5,6]; it was not incorporated in the shaking table tests either {7,8].

On the other hand, elaborate procedures have been developed to consider the effects of
foundation uplift in the earthquake response of nuclear reactor structures, For example, the
finite element method has been employed to model the nuclear reactor as well as the founda-
tion in one study [9]. In another investigation, the nuclear reactor was idealized as a lumped
mass system with many degrees-of-frecdom and the foundation by equivalent translational and
rotational stiffness and damping elements with their properties determined from elastic half
space analyses [10]. These procedures, although suitable for analysis of particular structures,
are not the most convenient to investigate, for a wide range of parameters, the effects of foun-

dation uplift on structural response.

Recently, Psycharis [1] studied these effects using two simple models to represent founda-
tion flexibility and cnergy dissipation: (a) two spring-damper elements symmetrically placed
under the base of the structure, and (b) Winkler foundation with spring-damper elements dis-
tributed over the base of the structure. Considering the superstructure as a rigid block, he
examined the undamped free vibration proverties of the rigid block supported on the two foun-
dation models for two situations: {(a) small initial velocity not causing base uplift, and (b) large
initial velocity resulting in motion dominated by base uplift most of the time. By matching the
free vibration period and the displacement of the rigid block, excitation-dependent relations
between the properties of the two foundation models were derived. In an effort to account for
energy loss due to inelastic impact, radiation in the form of stress waves, and soil damping,
three energy dissipating mechanisms were examined. It was concluded that the damping effects
can be most efficiently represented by dashpots in parallel to the elastic springs. He also formu-

lated the equations of motion for flexible structures supported on a foundation with two



spring-damper elements, and presented a procedure for analysis of str::ctural response. Finaily,
he examined the effects of base uplift on the dynamic response of one example single-story
structure and one mutistory superstructure. Based on theses results, he concluded that “for
flexible superstructures, it seems that uplift always increases the angle of rotation of the foun-
dation mat but the effects on the structural deflection and the resulting stresses are not clear.
In general, it cannot be concluded whether uplift is beneficial to the structure or not, since this

depends on the parameters of the system and the characteristics of the excitation.”

The objective of this investigation is to develop a better understanding of the effects of
transient foundation uplift on building response, considering a wide range of the important sys-
tem parameters. For this purpose it is appropriate to choose structural idealizations that are
relatively simple but realistic in the sense that they incorporate only the most important
features of foundation uplift. In its fixed base-condition, the structure is idealized as a single-
degree-of-freedom (SDF) system attached to a rigid foundation mat which is flexibly supported.
Two different models are employed to represent the flexibility and damping of the supporting
soil: (a) two spring-damper (in parallel) elements, one at cach edge of the foundation mat, and
{b) Winkler foundation with spring-damper elements distributed over the entire width of the

foundation mat.

In this investigation, the work of Psycharis is extended to include the following: The
response of structures to horizontal ground excitations on the two foundation models are stu-
died independently with equal emphasis; no equivalence relation between the two foundation
models is assumed. Important system parameters are identified in nondimensional form. The
effects of foundation uvplift are studied by examining the time hist_ories of free vibration
responses and the response spectra of the structure-foundation systems, over a complete range
of frequencies, to earthquake excitations for two conditions of contact between the foundation
mat and the supporting spring-damper elements: (a) bonded contact preventing uplift, and (b)
unbonded contact only through gravity with uplift permitted. A detailed parametric study on

the sensitivity and the qualitative functional dependence of the dvnamic response to each of the



important parameters is also conducted.

This report is organized in two major parts, chapters 2 and 3, corresponding to these two
foundation models. At the expense of some duplication each chapter is -developed to be self
contained for easier reading. The conclusions of this work, presented for both foundation

models, are summarized in chapter 4.
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2. STRUCTURE ON TWO SPRING-DAMPER ELEMENT FOUNDATION

2.1 System Considered

It is desirable to begin with the simplest possible structural systefn, so for this purpose we
consider the idealized representation of a one-story structure shown in Figure 2.1. It is a linear
structure of mass m, lateral stiffness £ and lateral damping ¢, which is supported through the
foundation mat of mass m, resting on two spring-damper elements, one at each edge of the
foundation mat, connected to the base which is assumed to be rigid. The column(s) is (are)
assumed to be massless and axially inextensible, the foundation mat is idealized as a rigid rec-
tangular plate of negligible thickness with uniformly distributed mass, and it is presumed that
horizontal slippage between the mat and supporting elements is not possible. The mass and
damping coeflicients of the foundation model are assumed constant, independent of displace-
ment amplitude or excitation frequency. Thus the frequency dependence of these coefficients,
as for a viscoelastic half space [11], is not recognized; nor is the strain dependence of these

coefficients for soils [12] considered in this study.

Prior to the dynamic excitation, the foundation mat rests on the spring-damper elements
only through gravity and is not bonded to these supporting elements. Thus a supporting ele-
ment can provide an upward reaction force io the foundation mat but not a downward pull.
During vibration of the system this upward reaction force will vary with time. At any instant of
time the total reaction force -- which for a supporting element consisting of a spring and
damper in parallel is the sum. of the elastic and damping forces -- reaches zero, one edge of

foundation mat is in the condition of incipient uplift from the supporting element.

In particular, if the damper is absent, the relation between the reaction force and displace-
ment of an edge / ( left or right ) of the foundation mat is shown in Figure 2.2a. The upward
reaction force is related linearly to the downward displacement of the foundation mat through
the spring stiffness k,, but no reaction force is developed if the displacement is upward, the
displacements are measured from the unstressed position of the springs. If the foundation mat

were bonded to the supporting elements the force-displacement relation will be linear, as shown

Preceding page blank
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FIGURE 2.1 Flexible structure on two spring-damper element foundation.



in Figure 2.2a, valid for downward as well as upward displacements.

Consider the foundaticn mat and its supporting elements without the superstructure with
a static force p acting in the downward direction at its center of gravity { c.g }. The relation
between the static moment M applied at the c.g and the resulting foundation-mat rotation 6,
limited to angles much smaller than the slenderness ratio b/ 4, is shown in Figure 2.2b for
unbonded as well as bonded conditions. If the mat is not bonded to the supporting elements
the A —6 relation is linear until the foundation mat uplifts from one of the supporting efe-
ments; thereafter no additiornial moment can be developed. Uplift occurs when the rotation
reaches 8, = p/2k,b with the corresponding moment M, = pb. The downward force is
p = {m+ m,) g, the combined weight of the superstructure and foundation mat, prior to any

dynamic excitation, but would vary with time during vibration.

Next consider the entire structural system with a gradually increasing force f applied in
the lateral direction. If the foundation mat is bonded to the supporting elements, which along
with the structure have linear properties, the lateral force can increase beyond limit if the over-
turning effects of gravity forces are neglected. However, if the mat is not bonded to the sup-
porting elements, one edge of the foundation mat is at incipient uplift when the lateral force
reaches f.. = (m + m, ) gb/ h . Thus the maximum base shear that can be developed under
the action of static forces is

V. =(nvz+m(,)g-il (2.12)

The structural deformation associated with this base shear is

_ (m+m,)g p

T h (2.1b)

U,

and at incipient uplift, the foundation-mat rotation
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_ (m+m,)g

6.
‘ 2k b

(2.1¢)

which is consistent with the preceding paragraph and Figure 2.2b.

The basc excitation is spccified by the horizontal ground motion with displacement u, (1)
and acceleration #,(r) . The vertical component of ground motion is not considered in this

study.

Under the influence of this exgitation the foundation mat would rotate through an angle
8 (1) and undetrgo a vertical displacement v{(¢), defined at its c.g relative to the unstressed posi-
tion. Prior to dynamic excitation, the vertical displacement is v, = (m + m,) g/2k, , the
static displacement due to the total weight of the superstructure and foundation mat. During
the dynamic excitation, the vertical displacement v will remain constant at the initial static
value if the foundation mat is bonded to the supporting elements, but it will vary with time in

the unbonded case.

The displaced configuration of the structure at any instant of time can be defined by the
deformation u (¢}, foundation-mat rotation 6{r), and vertical displacement v (¢) at the center of

gravity of the foundation mat.

2.2 Equations of Metion

The differential equations governing the small-amplitude motion of the system of Figure
2.1 can be derived by considering the lateral equilibrium of forces acting on the structural mass
m, and moment and vertical equilibrium of forces acting on the entire system ( Appendix B ).
Assuming that the structural-foundation system and excitation are such that the amplitudes of
the resulting displacement and rotation responses are small so that sind and cos® may be

approximated by 6 and 1, respectively, these equations may be expressed as

mii + m (hO) + cit + ku = — miiy (1) (2.2a)
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m,b® . b b .
—57,5_(}19) ~ cil +elq,-7,-§,-(h9) +escy o
b2 b
(m + mg) v +€[Cl/"} +€2Q/ %(hg) “}'E[kjv +Ezk,‘%(/’19) = — (m + mo)g (220)

where €, and €, depend on whether one or both edges of the foundation mat are in contact with

the supporting elements:

12 contact at both edges
AL ] left or right edge uplified
-1 left edge uplified
€ = 0 contact at both edges
1 right edge uplifted

A supporting spring-damper element provides an upward reaction force to the foundation mat
Ri(t) = — k(1) — v (8), i = 1r (2.3a)
where
v, (1) = v(t) £ 69(8), i = Lr (2.3b)

As mentioned earlier, a downward reaction force cannot be developed because the foun-
dation mat is not bonded to the supporting elements, i.e. R, (¢) 20,7 = [,r. If, at some

instant of time, this condition is not satisfied at the left or right edge of the foundation mat, i.e.

R{1) <0 i=1 or r (2.4a)
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that particular edge uplifts from the supporting element which no !¢ .ger provides any reaction
to the foundation mat. Because the spring-damper element cannot extend above its initial
unstressed position, i.e. v, (1) € 0,7 = /,r, an edge of the foundation mat would uplift at the

instant of time this condition is not satisfied, i.e.

v(1) >0 i=1 or ¢ (2.4b)

The two uplift criteria, equations 2.4a and 2.4b, are equivalent if each supporting element

included only a spring.

The earthquake response of the system depends on the following dimensionless parame-

ters:
w =/k /[ m, tihe natural frequency of the rigidly supported structure

¢ = ¢/ 2muw, the damping ratio of the rigidly supported structure

B = ow,./w, where w, =+/2k; / (m+m,) is the vertical vibration frequency of the sys-

tem of Figure 2.1 with its foundation mat bonded to the supporting elements

¢, =2¢c,/2(m + m,) w,, the damping ratio in vertical vibration of the system of Figure

2.1 with its foundation mat borided to the supporting elements
a = h/b, aslenderncss-ratio parametcr
vy = m, [ m, the ratio of foundation mass to superstructure mass

When the equations of motion and uplift criterion are expressed in terms of these dimension-
less parameters, for a given excitétion, it is observed that, under the small-amplitude assump-
tion, the foundation-mat rotation response § depends on the width of the foundation mat; how-
ever, u, the structural deformation, 84, the product of the foundation-mat rotation and half
base width, and v, the vertical displacement, do not depend on the size of the structure. If we
were to consider the large-amplitude motion of the structure including the possibility of its
overturning, the size parameter # would play an important role, just as in the dynamics of rigid

blocks [2]. However, the foundations of most buildings are expected to undergo only smail
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rotations and uplift displacements. At these small-amplitude motions the deformation response

of the system depends on the A/ b ratio but not separately on 4.

The equations of motion for the system of Figure 2.1 are nonlinear as indicated by the
dependence of the coefficients €; and €, { equation 2.2 ) on whether one or both edges of the
foundation mat are in contact with the supporting elements, the left edge is uplifted, or the
right edge is uplifted. However, for each of the three contact conditions the governing equa-
tions are linear, but they depend on the contact condition. Thus, during the time duration that
one particular contact condition is valid, the system behaves as a linear system, but the vibra-
tion properties of the linear system are different for the three contact conditions. Thus the
dynamic response of the nonlinear system of Figure 2.1 can be viewed as the sequential

response of three linear systems.

The equations of motion can be specialized for the undamped system with massiess foun-
dation mat by substituting m, = 0, and ¢ = ¢, = 0. In particular, the inertia and damping
terms in equation 2.2b are zero and, following the usual appreoach to static condensation, 8 can

be expressed in terms of v and v from

)
— ku +€lkf'%(h9)+52kf%‘-’ =0 2.5)

and substituted into equations 2.2a and 2.2¢. The reduced system consists of the resulting two
differcntial equations in the two unknown dynamic degrees-of-freedom. As discussed later, this
reduced system of equations provides a basis for approximate analysis of the systems with

damping and foundation-mat mass, i.e. ¢0, ¢,#0, and m,=0.

2,3 Natural Vibration Frequencies and Modes

It is useful to study the vibration properties of the three linear systems. These vibration
properties will be examined in detail for the special case of massless foundation mat, ie.,

v =0 ; the effect of foundation-mat mass will be examined subsequently. For the special case
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of y = 0, the natural frequencies and mode shapes of the system cf Figure 2.1 can be deter-
mined by solving the eigenvalue problems associated with the reduced version of equation 2.2.
The resulting 2-DOF eigenvalue problem is solved for the three linear systems corresponding to

the three sets of values for €; and e .

The natural frequencies of the linear system with both edges of the foundation mat in

contact with the supporting elements are

| = ww (2.6a)
w, =, = of (2.6b)
where
w; = 4232—2— (2.6¢)
a”+ B

and the corresponding mode shapes are
¢ =< @’ (1w 0> (2.72)
=<0 0 1> (2.79)

where the three terms in each mode shape are ordered to correspond to

As shown in Figure 2.3a, the system vibrating in the second mode undergoes uncoupled verti-
cal motion, without lateral deformation of the structure or rotation of the foundation mat, at
the natural frequency o, defined earlier. The motion of the system vibrating in the first mode
consists of lateral deformation of the structure and rotation of the foundation mat without any

vertical displacement of its c.g  relative to its static equilibrium position ).



(a) CONTACT AT BOTH EDGES OF FOUNDATION MAT

MODE 2

7

(b) UPLIFT AT ONE EDGE OF FOUNDATION MAT

FIGURE 2.3 Free vibration mode shapes for two cases: (a) Foundation mat in contact
with supporting elements at both edges, and (b) One edge of the foundation mat
uplifted.

91
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The natural frequencies of the linear system with uplift at one cdge ( left or right edge )

of the foundation mat are
A =0 | (2.82)

)\.2 = w)\z (28b)

where

- 2 2
N2 = - /%%%?— (2.80)

and the correspornding mode shapes are
' =<0 1 +1/a > (2.92)
v, =< X (1-X7%)  Ta > (2.9b)

Equations 2.8 and 2.9 are applicable to the system with uplift at left or right edge of the foun-
dation mat. Wherever both algebraic signs appear simultaneously the upper sign applies to
uplift at the left edge and the lower sign to uplift at the right edge. The mode shapes described
by equation 2.9 are plotted in Figure 2.3b relative to an initial reference position ( shown in
dashed lines ) which is somewhat arbitrary. The system vibrating in the first mode undergoes
rigid body rotation about one edge of the foundation mat, whereas in the second mode motion
occurs in all three degrees of freedom: lateral deformation of the structure, vertical displace-
ment and rotation of the foundation mat. If the frequency ratio 8 exceeds the slenderness-ratio
parameter «, which in turn is much larger than unity, it can be shown that Xz is close to «, the
value determined directly for the structure of Figure 2.1 but supported directly on the rigid base

without the spring-damper elements [5].

For the general case with some foundation-mat mass { y=0 ), the natural frequencies and

mode shapes can be determined by solving the eigenvalue problem associated with equation
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2.2. The 3-DOF eigenvalue problem is solved for the three linear systems corresponding to the
three sets of values for €, and ¢, . The resulting analytical expressions are available { Section
C.1.1, Appendix C ) and will not be repeated here. For the present purpose it suffices to

numerically study the dependence of frequencies and mode shapes on the mass ratio y.

For the linear system with both edges of the foundation-mat in contact with the support-
ing elements, the first two natural frequencies and modes are described by equations 2.6a and
2.6b and Figure 2.3 even when the foundation mat has some mass. However, now w; depends
also on ¥ and is no longer described by equation 2.6¢. Because the natural frequency and the
shape of the first mode involves @, ( equations 2.6a and 2.7a ), they also depend on y. The
numerical results presented in Figure 2.4 display the influence of v on w, which decreases
monotonically as y becomes smaller. For a fixed value of the frequency ratio 8, the natural
frequency and shape of the second mode is independent of the mass ratio y. A third vibration
mode appears { Figure 2.3a ) when the foundation mat has some mass. Just like the first
mode, the third mode includes lateral deformation of the structure and rotation of the founda-
tion mat without any vertical displacement of its c.g ( relative to its static equilibrium poesi-
tion ). It can be shown through numerical results and a mathematical limiting process that the
natural frequency of the third mode is at [east an order of magnitude higher than the other two

frequencies, and it tends to infinity as the mass of the foundation mat approaches zero.

For the linear system with uplift at one edge of the foundation mat, the first two natural
frequencies and modes are described by equations 2.8 and 2.9 and Figure 2.3b, even when the
foundation mat has some mass. lHowever, Xz is no longer described by equation 2.8¢ and
depends on vy, as indicated by the numerical results presented in Figure 2.4. The effect of mass
ratio y on the natural frequency and shape of the second mode decreases monotonically with .
The natural frequency and shape of the first mode, which is a rigid body mode, is independent
of the mass ratio v. The third vibration mode, which appears when the foundation has some
mass, includes displacements in all the three degrees of freedom just as in the second mode.

Just as in the earlier case, the natural frequency of the third mode is at least an order of
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magnitude highér than the second mode frequency and it tends to iniinity as the foundation-

mat mass approaches zero.

2.4 Free Vibration Response

Before studying the response of the system of Figure 2.1 to earthquake excitations,
wherein we will have to depend entirely on numerical computations, it is useful to analytically
examine some features of the system in free vibration. Restricting this section to massless
foundation mats, the response of undamped systems is studied first, followed by the effects of

damping.

2.4.1 Undamped System

Starting with the initial state of the structural system of Figure 2.1, wherein both edges of
the foundation mat are in contact with the supporting clements, the response of the system to
any initial displacements and velocities can be determined as the superposition of the free
vibration responses in the two modes of vibrations ¢, and ¢,. In particular, if an initial velo-
city x(0) is imparted in the lateral direction to the mass m of the superstructure, the second
vibration mode will not be excited and the response will be entirely due to the first mode. The

structural displacement vector 1’ = < u ho v > is then described by

r(s) = %dx]sinwlt — v (2.10)

1

provided the motion is small enough that both edges of the foundation mat remain in contact
with the supporting elements. From equation 2.10, the structural displacements at the point of

incipient uplift of one edge of the foundation mat are



u, = 5= (2.11a)
aw”
he, = ﬁ‘;‘iz (2.11b)

These displacements are same as those presented in equation 2.1, specialized for massiess foun-

dation mat, which were obtained from static considerations.

The critical velocity x(0), is defined as the initial velocity that results in the maximum
displacements r(s) , from equation 2.10, equal to the displacements given by equation 2.11. It

can be shown that

x(, =Y*x T8 & (2.12)

and it depends on the slenderness-ratio parameter « and frequency ratio 8. For purposes of the

subsequent discussion it is useful to introduce the normalized initial velocity

30 = x(0)/x(0), (2.13)

If the initial velocity is less than the critical velocity, i.e., x{0) < 1, both edges of the founda-
tion mat will remain in contact with the supporting elements and no uplift will occur; the free

vibration response will be described by eguation 2.10.

If the initial velocity exceeds the critical velocity, i.e., x(0) > 1, equation 2.10 will be
valid only until the first uplift occurs. One edge of the foundation mat will uplift at the time
instant u(r) given by equation 2.10 reaches the u, value of equation 2.11a. During the time

duration that uplift of this edge continues, the displacement response can be expressed as

g? + C]?'i' C3 l[l]

14 a’

(1) = [¥%

. — 1
Chsin (Aot +8) + —
2 2 A??

@
+ PR —
1 +a?
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wherein 1 is the time measured from the onset of uplift and, where two algebraic signs appear,
the upper sign is to be used if the left edge of the foundation mat uplifts and the lower sign
applies to uplift of the right edge. The four constants Cy, C,, C3 and 8 can be determined
from the displacements and velocities of the system at the onset of uplift, by transforming

them to modal coordinates.

After vibration of the structure for some time with one edge of the foundation mat
uplifted, as described by equation 2.14, the foundation mat will re-establish contact with sup-
porting elements at both its edges. Measuring time ¢ from this instant, the response of the

structure during the time span it continues to vibrate without uplift is given by

l'(f) = l)}(b]Siﬂ((u][J + 81) + DQ(bQSiH (wgf’ + 82) - Vﬁf’z (215)

Both vibration modes may now contribute to the response, in contrast to equation 2.10 wherein
the second vibration mode did not appear. The four constants D, D,, 8, and 8, can be deter-
mined by standard procedures from the displacements and velocities of the structure at the time

contact at both edges of the foundation mat is re-established.

Numerical results for the response of a structure to normalized initial velocity x(0) =2
are presented in Figure 2.5 for two conditions of contact between the foundation mat and the
supporting spring-damper elements: {a) bonded contact preventing uplift and (b) unbonded
contact only through gravity with uplift permitted. The response quantities presented as a func-
tion of time are deformation u, foundation-mat rotation @, total lateral displacement
x = y+h8, vertical displacements v; and v, of the left and right edges of the foundation mat,
and uplift index which is zero if there is no uplift, +1 if the left edge uplifts and -1 if the right
edge uplifts.

If the foundation mat is bonded to the supporting elements, the structural response is
described by equation 2.10 for all time. The frequency of this simple harmonic motion is o,

defined in equation 2.6a, and the amplitudes of the response quantities are given by the critical
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value of equation 2.11 multiplied by the normalized initial velocity, which is 2 in this case.

The structural response is initially described by equation 2.10 even when uplift is permit-
ted, resulting in response identical to the bonded case. When the deformation u« and
foundation-mat rotation @ reach their critical values { equation 2.11 ), the left edge of the mat
uplifts at time @ ( Figure 2.5 )} and the subsequent response is described by equation 2.14.
The deformation u oscillates with frequency X, about a value = (a/1 + ?) (g/w’) which
for a wide range of « is close to u,. ( equation 2.11a ). This higher frequency response appears
also in vy (f) and v,(¢) and slightly in #(¢), but the total lateral displacement x{¢) varies
smoothly with time without any noticeable contribution of the higher frequency mode. Contact
at both edges of the foundation mat is re-established at time & and the response is described
by equation 2.15 until the right edge uplifts at time ¢; at which time equation 2.14 takes over
again until contact at both edges is re-established at time ¢ and equation 2.15 is back in the pic-
ture. This response behavior is repeated during every cycle of free vibration as seen in Figure
2.5. However, the response is almost, but not precisely, periodic because the initial conditions
are not exactly repeated at the beginning of each vibration cycle. Whereas no vertical velocity
is imparted to the structural mass when free vibration is initiated at + = 0, a small vertical velo-
city may be present at the beginning of subsequent cvcles of free vibration. In addition to the
slight differences in the response details from one cycle to the next, this perturbation can pro-

duce additional very short duration uplift episodes, as seen in the fowest portion of Figure 2.5.

Because of uplift of the foundation mat, the maximum structural deformation u is
reduced but the maximum values of all the other response quantities -- 8, x, v, and v, -- are

increased.

Noting that the time scale in Figure 2.5 is normalized with respect to the natural vibration
period T of the rigidly supperted structure, it is apparent that the flexibility of the supporting
elements has the effect of lengthening the vibration period to T, and uplift of the foundation

mat results in even a longer period 7,. From equation 2.6a the period ratio
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+L -3 (2.16)

wherein, for a fixed mass ratio v, @; depends only on o and 8 and not on x(0) or T, in partic-
ular it is given by equation 2.6¢ if y = 0. An analytical expression for the period ratio T,/T
does not appear to be derivable because the system is nonlinear when uplift of the foundation
mat is permitted. However, based on numerical results it can be shown that, for a fixed value
of v, T,/T depends on «, 8 and x(0) but, over a useful range of parameters, it does not
depend on 1. Because as discussed earlier the mass ratio y has little effect on the vibration
properties of the three linear systems ( Figure 2.4 ), its influence on these period ratios is also

small.

Presented in Figure 2.6 are the ratios T,/T and T,/T as a function of the frequency ratio
B for three values of the slenderness ratio parameter «. Whereas the ratio 7,/ 7T is independent
of x(0), because the system is linear if uplift of the foundation mat is not permitted, 7,/T
does depend on this parameter and the results of Figure 2.6 are for x(0) = 4. For a fixed «,
the period ratios decrease as the frequency ratio B increases, approaching their asymptotic
values as 8 increases, The asymptotic value for T./T = 1 because T, approaches T as the sup-
port system becomes stiffer. Beyond a certain value of 8, which depends on «, the period
ratios are affected little by further increase in 8. The lengthening of vibration period due to
support flexibility and foundation-mat uplift is greater for the larger value of «, i.e., for the

more slender buildings.

As mentioned eatlier, T,/T depends on « and 8 but not on x(0) , T, or v, and T,/T
depends on «, 8 and x(0) but not on 7 or v. Numerical results have demonstrated that the
ratio 7,/ T. depends on the normalized initial velocity X(0) as shown in Figure 2.7, essentially
independent of all other parameters. For a known 7 and given system properties « and g3, the
periods T. and 7, can be estimated from equation 2.16, wherein @; can be computed from

equation 2.6¢, and Figure 2.7.
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FREQUENCY RATIO B:=w, /w

FIGURE 2.6 Variation of period ratio with g8 and «. Results for 7,/ T are indepen-
dent of x(0), but T,/ T values correspond to x(0) = 4.
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FIGURE 2.7 Variation of period ratio T,/ T, with normalized initial velocity x{0).
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2.4.2 Effects of Damping

Expressed as a combination of modal contributions, the response of the undamped system
to an initial velocity was given by equation 2.10 during the time that both edges of the founda-
tion mat remain in contact with the supporting elements, by equation 2.14 during the time one
edge is uplifted, and by equation 2.15 after contact has been re-established at both edges.
When damping in the structure and the supporting elements is included, the responses of a sys-
tem with massless foundation mat will be described by equations 2.10, 2.14, and 2.15 with ap-
propriated modifications to account for modal damping. In equations 2.10 and 2.15, these in=

t - ' . s )
En®a and e g”m”', respectively; and substitution of the damped

clude exponential decay terms ¢
frequency o', instead of @, in the harmonic terms, where »', = w,~/1 — ¢ and the modal .
damping ratios are

3 2 ‘
£, =(aTB,@2)3/?(§+%§v) (2.17a)

In equation 2.14 only the harmonic term is modified to include the exponential decay term
e " and the damped frequency \'; is substituted instead of the undamped frequency A,

where A'; = A2/ 1 — ¢ and the damping ratio

_BU+a))” 20
(2a2+’82)3/2 (§+ {33

ga £,) (2.18)

Consider first the case of the structure with both edges of the foundation mat in contact
with the supporting elements. The damping ratio for the second vibration mode -- which
involves uncoupled vertical motion without lateral deformation or base rotation -- is simply £,,
the damping ratio of the structure in vertical vibration ( equaticn 2.17b ). In the first mode
which includes lateral deformation of the structure coupled with rotation of the foundation mat

about its c.g, the damping ratio is a linear combination of &, and £, where the latter is the
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damping ratio of the rigidly supported structure in lateral vibration.

For the linear system with uplift at one edge, the first vibration mode is a rigid-body
mode without any damping. The damping ratio for the second vibration mode, which includes
lateral structural deformation coupled with foundation-mat rotation, is a linear combination of
£, and £.

The response of the structure considered earlier, but now including damping in the struc-
ture as well as supporting elements, to normalized initial velocity x(0) = 2 is presented in Fig-
ure 2.8. From the selected values £ = 0.05, and ¢, = 0.4, equations 2.17 and 2.18 lead to
£ =003, & =04 and ¢, = 0.25. If the foundation mat is bonded to the supporting ele-
ments and its uplift is thus prevented, the deformation u# and base rotation 6 decay exponen-
tially at a rate defined only by the first mode damping ratic £;, because the second mode does

not contribute to these response quantities.

Several observations regarding the effects of damping can be made by comparing the
responses of the structure, with uplift of the foundation mat permitted, in Figures 2.5 and 2.8 :
The tendency of the foundation mat to uplift, is reduced, resulting in the uplift duration
decreasing with each vibration cycle; after a few cycles the foundation mat remains in a con-
tinuous contact with the supporting elemen.ts and the responses i, 0 and x decay exponentially
at a rate controlled by £,. The vibratory term in the response during the time one edge is
uplifted { equation 2.14 ) decays exponentially at a rate defined by {;, which in this case is
large and results in a quick decay of the high-frequency oscillations in # about the u, value,
and the maximum deformation is essentially equal to u.. The corresponding high-frequency
effects in the other responses also disappear.

Based on the above discussion and numerical results of Figure 2.8, we can examine the
dependence of damping effects on the normalized initial veloeity X{0) . If x(0) exceeds 1 only
slightly, the foundation mat will uplift from its supporting elements only for relatively short

durations of time; for most of the time, neither edge of the foundation mat will uplift. The



29

—————— BONDED CONTACT, UPLIFT PREVENTED
UNBONDED CONTACT, UPLIFT PERMITTED

S
|

L

i
~
I’l
=g
-
~
~
S
r
-
’
-
r
-
~
[N
~
~
L]
I
r
”
p.
"~
]
f
o
I
r
N
L)
1
1]
rd
s
>
’
£
2
4
‘)

T T

6]
!

™~ O 2T w\ﬂ . )\ o N_—
) s ~ - NS - S » Sa P Wk -
oy E ’ \ h / - S - - ~ : \ :; - <
\\\ . f‘ b -~ -” > \ﬁ"‘ h/ --—’ = u-”.
-3 .. - -
~ O “"‘/\ .Y /‘\ i,
. ¥ g u ws
[ ’I \‘\ r N, R AT ',l ‘-\‘
- - -~
> gy Ny - -

UPLIFT INDEX
o

—I 1 1 3 1. 1 L 1 L I bl

0 5 10
t/ T

FIGURE 2.8 Response of a damped structure (¢ =0.05, £, =04, « =10, B8 = 8§,
y = 0) to initial velocity x(0) = 2, for two conditions of contact between the founda-
tion mat and the supporting elements: (a) Bonded contact preventing uplift, and (b)
Unbonded contact only through gravity with uplift permitted.
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response of the structure will therefore be dominated by equation 2.15. The second mode does
not contribute to the structural deformation, which will therefore decay exponentially at a rate
controlled by the damping ratio £ for the first mode. As discussed earlier, this damping ratio is

a linear combination of € and €,.

If the normalized initial velocity x(0) is much larger than 1, the _foundation mat will
remain in contact with its supporting elements only for a small fraction of a vibration cycle, too
short to cause any significant decay of response. The left or right edge of the foundation mat
will be uplifted during a major part of a vibration cycle. In this condition, the rotation and vert-
ical displacement of the foundation mat are primarily due to the undamped rigid-body mode.
The high-frequency { = A, ) contributions to the structural deformation and vertical displace-
ments at the edges of the foundation mat ( Figure 2.5 ) essentially disappear due to damping
( Figure 2.8 }, because they are due to the second mode ( equation 2.14 ) which has a modal
damping {,. For typical parameter values, A, is several times higher than the overall frequency,
thus several vibration cycles of the second mode occur during each uplift phase ( Figure 2.5 ).
The number of cycles is sufficient to essentially eliminate this high frequency response for a
wide range of values of damping and other structural parameters. Considering that the rigid
body mode is undamped and the high frequency response is eliminated by damping, the struc-
tural deformation response is insensitive to the damping values ¢ and &, if x(0) is significantly

larger than 1. This conclusion is supported by numerical results not presented here.

2.5 Analysis Procedure

The response of the system of Figure 2.1 to specified ground motion can be analyzed by
numerical solution of the equations of motion { equation 2.2 ). These equations are nonlinear
as indicated by the dependence of the coefficients €; and e, on whether one or both edges of
the foundation mat are in contact with the supporting elements. For each of the three contact
conditions -- contact at both edges, left edge uplifted, and right edge uplifted -- the governing

equations are linear, but they depend on the contact condition. Thus, during the time duration
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that one particular contact condition is valid, the system behaves as a linear system, but vibra-
tion properties of the linear system are different for the three contact conditions. Thus, at any
time, the numerical analysis of response over the next time-increment consists of two steps: (1)
determining the contact condition valid for that time increment, and (2) solution of the equa-

tions of motion with the corresponding vatues for €, and €,

As mentioned earlier, for each contact condition the linear system has three degrees-of-
freedom and the natural frequency of the third mode is at least an order of magnitude higher
than the second mode frequency, and it tends to infinity as the mass of the foundation-mat
approaches zero ( Section C.2, Appendix C ). Because the time-increment employed in
numerical analysis of response is controlled by the vibration frequency of the highest mode,
very short time increments must be used to accurately represent the contributions of the third
mode. Because its frequency is at least an order of magnitude higher than that of the second
mode, the time-increment would be so short to be almost impractical. Fortunately, the contri-
bution of the third mode to the response of each of the three linear systems ( corresponding to
the three contact conditions ) is negligible ( Section C.3, Appendix C ). By eliminating the
effects of this high frequency mode in the numerical analysis, the time increment will be con-

trolled by the natural frequencies of the first two vibration modes.

The obvious procedure to eliminate the high frequency effects is to express the structural
displacements as a linear combination of the first two vibration modes of the system for the
appropriate contact condition. However, this approach has the disadvantage that the choice of
the time-varying modal coordinates depends on the contact condition. The more convenient
approach is to transform the equations of motion to a set of displacements that can be used for
all contact conditions. To this end the rotation € is expressed in terms of ¥ and v from equa-

tion 2.5:
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Substituting the transformation of equation 2.20 into equation 2.2 and premultiplying both sides
by the transpose of the transformation matrix T leads to a reduced system of two differential

equations in the two unknown u and v.

The eigenvalue problem associated with the reduced system of two differential equations
was solved. The resulting natural frequencies and shapes of the two vibration modes were
compared with the ’exact’ values for the lower two modes, obtained from analysis of the origi-
nal 3-DOF eigenvalue problem. The agreement was found to be excellent over a wide range of
the system parameters y, a and 8 ( Section C.3, Appendix C ). Thus the reduced system of
equations accurately retains the vibration properties of the lower two vibration modes, while

eliminating the high-frequency third mode.

The reduced system of equations is integrated numerically using an implicit method with
linear variation of acceleration in each time-step. Appropriate governing equations are used,
consistent with the contact condition at the beginning of the time-step. Appropriate
modifications are incorporated if the contact condition changes during a time-step ( Appendix
D ). By eliminating the high-frequency, third vibration mode it was possible to employ a much

larger integration time-step than would otherwise be practical. The integration time-step
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At = 0.0] sec. used in this investigation is ten times longer than that necessary to accurately
solve the original equations of motion [1], resulting in considerable saving in computational

effort.

The procedure described above to eliminate the contributions of the high-frequency, third
vibration mode may be viewed as an application of the classical Rayleigh-Ritz method, wherein
the two Ritz vectors are described by the columns of the transformation matrix T. If the foun-
dation mat is masstess, this procedure is equivalent to the static condensation approach outlined

in Section 2.2,

2.6 Earthquake Responses

The response of a structural system to the north-south component of the El Centro, 1940,
ground motion computed by the numerical procedures described in Section 2.5 is presented in
Figure 2.9. Responses are shown for two conditions of contact between the foundation mat and
the supporting spring-damper elements: (a) bonded contact preventing uplift and (b) unbonded
contact only through gravity with uplift permitted. In the first case, the structural response is
entirely due to the first natural vibration mode of the system with both edges of the foundation
mat in contact with the supporting elements ( see Section 2.3 ). Thus the response behavior is
similar te a SDOF system. When uplift of the foundation mat is permitted, the response
behavior is much more complicated. During the initial phase of the ground shaking, both
edges of the foundation mat remain in contact with the supporting elements. As the ground
motion intensity builds up, thé two edges of the foundation mat alternately uplift in a vibration
cycle. In this example uplift occurs every vibration cycle during the strong phase of ground
shaking, with the duration of uplift depending on the amplitudes of foundation mat rotation.
As the intensity of ground motion decays toward the later phase of the earthquake, the founda-

tion mat no longer uplifts, and both edges remain in contact with the supporting elements.

The effects of foundation-mat uplift on the maximum response of the structure due to



34

earthquake ground motion are similar to those observed in Section 2.4 during free vibration.
The maximum deformation of the structure is very close to u. ( equation 2.11a } when
foundation-mat uplift is permitted, which is a significant reduction compared to the response
when foundation-mat uplift is prevented. Because of damping, the small-amplitude oscillations
at the frequency A, ( Figure 2.5 ) damp out and are not present in the earthquake response
results of Figure 2.9. The rotation of the foundation mat and vertical displacements of the two
edges of the foundation mat are significantly increased due to the rigid body rocking mode of
the system, permitted by uplift. This mode provides the dominant contribution to these

responses during uplift but does not affect the structural deformation.

In order to study the effects of foundation-mat uplift on the maximum response of struc-

tures, response spectira are presented. The base shear coefficient

2

U max

—_— 2.2
T (2.21)

szlx kumux _ 2
g

where V., is the maximum base shear and w is the weight of the superstructure, is plotted as
a function of the natural vibration period of the corresponding rigidly supported structure. For
each set of system parameters «, 8, y, € and £, such a response spectrum plot is presented for
two conditions of contact between the foundation mat and the supporting spring-damper ele-
ments: {a) bonded contact preventing uplift, and (b} unbonded contact only through gravity
with uplift permitted. Also presented are the results for the corresponding rigidly supported
structure, which is simply the standard pseudo-acceleration response spectrum, normalized with
respect to gravitationat acceleration. Included in the response spectra plots is V., the critical
base shear coefficient associated with the maximum value of base shear, V., obtained from

static considerations ( equation 2.1a ):
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and (b) Unbonded contact only through gravity with uplift permitted.
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A%
v, =t =1ty (2.22)
w o
This critical base shear coefficient depends on the mass ratio y and slenderness-ratio parameter

a, but is independent of the vibration period T.

The response spectra presented in Figure 2.10 are for systems with massless foundations
(y = 0) and a fixed set of system parameters «, 8, £, and £, subjected to the El Centro
ground motion. The differences between the response spectra for the two linear systems, the
structure with foundation mat bonded to the supporting elements and the corresponding rigidly
supported structure, are due to the change in pericd and damping resulting from support flexi-
bility ( equations 2.6 and 2.17 ). The base shear developed in structures with relatively long
vibration periods is below the critical value and the foundation mat does not uplift from its sup-
porting elements. If foundation mat uplift is prevented, the maximum base shear at some
vibration periods may exceed the critical values; for the selected system parameters and ground
motion Figure 2.10 indicatés that the critical value is exceeded for all vibration periods shorter
than the period where the linear spectrum first attains the critical value. If the foundation mat
of such a structure rests on the spring-damper elements only through gravity and is not bonded
to these elements, uplift occurs and this has the effect of reducing the base shear. However,
the base shear is not reduced to as low as the critical value based on static considerations
( equation 2.1a ). Although foundation-mat uplift is initiated at the time instant the base
shear in a vibrating structure reaches the instantaneous dynamic critical value, depending on
the state -- displacement, velocity and acceleration -- of the system the deformation and base
shear may continue 1o exceed the critical values. Furthermore the dynamic, critical base shear
may exceed the static critical value because the time-dependent vertical force p may exceed the
gravity loads, see section 2.1. Because the base shear developed in linear structures
( foundation-mat uplift prevented ) tends to exceed the critical value by increasing margins as

the vibration period decreases, the foundation mat of a shorter-period structure has a greater
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tendency to uplift, which in turn causes the critical base shear to be e wceeded by a greater mar-

gin, although it remains well below the linear response.

The effects of ground motion intensity on the dynamic response of structures is displayed
in Figure 2.11, wherein the response spectra for El Centro ground motion amplified by a factor
of 2 are compared with the corresponding plots for the unscaled ground motion. If the founda-
tion mat is bonded to the supporting elements and it can not uplift, the structural system is
linear and the response spectrum is amplified by the same factor of 2. However, the response
of a structure with foundation mat permitted to uplift is controlled by the critical base shear
coefficient ¥, which is a property of the system, independent of the ground motion intensity.
Thus, the base shear is increased only slightly although the earthquake intensity is doubled.
Because the base shear attains its critical value at a siightly longer period when earthquake

intensity is increased, uplift of the foundation mat is initiated at a slightly longer period.

The response spectra presented in Figure 2.12 are for two values of the frequency ratio 8
with all other system parameters kept constant. As mentioned earlier, the differences in the
response spectra for the two linear systems, the structure with foundation mat bonded to the
supporting elements and the corresponding rigédly supported structure, are due to the change in
period and damping resulting from support flexibility ( equations 2.6 and 2.17 ). The period
change appears as a shift in the response spectrum to the left, with larger shift for smaller
values of 8, i.e. for the more flexible supporting elements. The nonlinear response spectrum
for the structure with foundation mat permitted to uplift shifts similarly to the left, with uplift
initiated at longer periods as 8 inéreases. But for the period shift, the shape of the linecar as

well as nonlinear response are affected little by the frequency ratio B.

As presented in equation 2.22, the critical base shear coefficient is inversely proportional
to the slenderness-ratio parameter «. This would suggest that maximum base shear will be
smaller for relatively slender structures, which is confirmed by response spectra presented in

Figure 2.13. The foundation mat of a slender structure has a greater tendency to uplift
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resuiting in greater reductions in the base shear. Uplift of the foundation mat occurs at all
vibration periods shorter than the period where the linear response spectrum attains the critical
value. This period depends on the slenderness ratic « in a complicated manner, because the
critical base shear coefficient as well as the period shift of the linear response spectrum ( rela-
tive to the standard pseudo-acceleration spectrum ) both depend on «. For relatively slender
structures the critical base shear coefficient is smaller { equation 2.22 ), but the period shift is

larger ( equation 2.6 ).

The critical base shear coefficient increases with mass ratio y as indicated by equation
2.22; for systems with massless foundation mat ( y = 0 ) this coefficient is 1/« and it increases
to 2/ for systems with equal foundation-mat and structural masses ( y = 1 ). The response
spectra for these two mass ratios are presented in Figure 2.14 which indicate that the effects of
foundation-mat mass are to reduce the short period range over which the foundation mat
uplifts; to approximately double the maximum base shear over this period range; and to intro-
duce a period shift in the linear response spectrum, with littie influence on the shape of the

spectrum.
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3. STRUCTURE ON WINKLER FOUNDATION

3.1 System Considered

The effects of transient foundation uplift on the dynamics of the simplest possible struc-
tural system were studied in Chapter 2 wherein the foundation mat was supported on two
spring-damper elements, one at each edge. In order to make the supporting system more
representative of actual conditions, the two spring-damper elements are replaced by a continu-

ous series of elements resulting in the well known Winkler foundation.

The resulting system shown in Figure 3.1 consists of a linear structure of mass m , lateral
stiffness & and lateral damping ¢, which is supported through the foundation mat of mass m,
resting on a Winkler foundation, with spring-damper elements distributed over the entire width
of the foundation mat, connected to the base which is assumed to be rigid. The column(s) is
{are} assumed to be massless and axially inextensible, the foundation mat is idealized as a rigid
rectangular plate of negligible thickness with uniformly distributed mass, and it is presumed
that horizontal slippage between the mat and supporting elements is not possible. The mass
and damping coefficient of the foundation model are assumed constant, independent of dis-
placement amplitude or excitation frequency. Thus the frequency dependence of these
coeflicients, as for a viscoelastic half space [11], is not recognized; nor is the strain dependence

of these coefficients for soils [12] considered in this study.

Prior to the dynamic excitation, the foundation mat rests on the Winkler spring-damper
elements only through gravity and is not bonded to ithese supporting elements. Thus the sup-
porting elements can provide an upward force to the foundation mat but not a downward pull.
During vibration of the system this upward resultant reaction force will vary with time. At any
instant of time when one edge of the foundation mat reaches the natural unstressed level of the
spring elements, that edge is in the condition of incipient uplift from the supporting elements.
As the upward displacement of that edge continues, an increasing portion of the foundation mat

uplifts from the supporting elements.

Preceding page blank
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In particular, if the dampers are absent, the relation between the displacement and reac-
tion force per unit width of the foundation mat is shown in Figure 3.2a. The upward reaction
force is related linearly to the downward displacement through k,., the spring stiffness per unit
width, but no reaction force is developed if the displacement is upward; the displacements are
measured from the unstressed position of the springs. If the foundation mat were bonded to
the supporting elements the force-displacement relation will be linear, as shown in Figure 3.2a,

valid for downward as well as upward displacements.

Consider the foundation mat and its supporting elements without the superstructure with
a static force p acting in the downward direction at its center of gravity ( c.g ). The relation
between the static moment M applied at the c.g and the resulting foundation-mat rotation 9,
limited to angles much smaller than the slenderness ratio &/ 4, is shown in Figure 3.2b for
unbonded as well as bonded conditions. If the mat is not bonded to the supporting elements
the M-8 relation is linear, implying constant rotational stiffness, until one edge of the founda-
tion mat uplifts from the supporting elements; thereafter the rotational stiffness decreases
monotonically with increasing ¢, which implies an expanding foundation-mat width over which
uplift occurs. Uplift is initiated when the rotation reaches 8, = p/2k, b’ with the correspond-
ing moment M, = pbh/3. The M—0 curve asymptotically approaches the critical moment,
M, = pb, corresponding to uplift of the entire foundation mat from the supporting elements
except for one edge. The downward force is p = (m + m, ) g, the combined weight of the
superstructure and foundation mat, prior to any dynamic excitation, but would vary with time
during vibration.

Next consider the entire structural system with a gradually increasing force f, applied in
the lateral direction. If the foundation mat is bonded to the supporting elements, which along
with the structure have linear properties, the lateral force can increase without limit if the over-
turning effects of gravity forces are neglected. However, if the mat is not bonded to the sup-

porting elements, one edge of the foundation mat is at incipient uplift when the lateral force

reaches fy, ={m +m,) g 5% Thus the corresponding base shear at incipient uplift under
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the action of static force is

= b
Vv, —(m+m(,)g3/1

The structural deformation associated with this base shear is

o (m+mn)gi
" k 3k

and the corresponding foundation-mat rotation

m+m)eg
2k, b?

H

which is consistent with the preceding paragraph and Figure 3.2b.

(3.12)

(3.1b)

(3.1¢)

As the lateral force continues to increase beyond f,,, the lateral force corresponding to

incipient uplift, the foundation mat separates over increasing width from its supporting ele-

ments. Finally when the lateral force reaches f,. = (m + m,) g% the separation extends to

the entire width and the contact is reduced to one edge. Thus the maximum base shear that

can be developed under the action of static forces is

V. =(m+m,,)g—£—

The structural deformation due to this base shear is

_ (m+m0)g£

He k A

(3.1d)

(3.1e)

The base excitation is specified by the horizontal ground motion with displacement u, (1)

and acceleration i, (f). The vertical component of ground motion is not considered in this

study.



50

Under the influence of this excitation the foundation mat wou!d rotate through an angle
6(r) and undergo a vertical displacement v(¢), defined at its c.g relative to the unstressed posi-
tion. Prior to the dynamic excitation, the vertical displacement is v, = {m + m, } g/ 2k, b, the
static displacement due to the total weight of the superstructure and foundation mat. During
the dynamic excitation, the vertical displacement v will remain constant at the initial static
value if the foundation mat is bonded to the supporting elements, but it will vary with time in

the unbonded case.

The displaced configuration of the structure at any instant of time can be defined by the
deformation u(t), foundation-mat rotation 6(z), and vertical displacement v(7) at the center of

gravity of the foundation mat.

3.2 Equations of Motion

The differential equations governing the small-amplitude motion of the system of Figure
3.1 can be derived by considering the lateral equilibrium of forces acting on the structural mass
m, and moment and vertical equilibrium of forces acting on the entire system ( Appendix B ).
Assuming that the structural-foundation system and the excitation are such that the amplitudes
of the resulting displacement and rotation responses are small so that sin8 and cos#® can be
approximated by # and 1, respectively, these equations may be expressed as

m{u + ho)

p (Vv +g) (3.2a)

mii + m (h8) + cir + ku = — mii, (1) +

m, ,f,2
3/12 (h&)—cu+(l+e Yo, — (/'f9)~+—(1—£1)52cM 57V

,}

—ku + (1 +€)k, 3 (1'19)+(1~e])v52kW 2" v =0 (3.2b)
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b?

(m+m)v+(1+e)c,bb+ (1 —ef>ezc,,.2h (h9)

, ,
+ (1 +e )k, by + (1 —ef)ezkw—zqg(hﬂ) =—(m+m,)g (3.2¢)

where contact coefficient € is equal to unity during full contact but depends continuously on

foundation-mat rotation # and vertical displacement v during partial uplift as follows:

contact at both edges

= 1 ’
€17 v/ b8 left or right edge uplifted (3.3a)

and contact coefficient €, depends on whether one or both edges of the foundation mat are in

contact with the supporting elements:

-1 left edge uplified
€ = 0 contact at both edges (3.3b)
1 right edge uplified

The vertical displacements at the edges of the foundation mat, measured from the initial

unstressed position, are

v =v £ b8(t) i=1r (3.4a)

Because the Winkler foundation cannot extend above its initial unstressed position an edge of

the foundation mat would uplift at the time instant when

v (1) >0 i=1r (3.4b)

The foundations of most buildings are expected to undergo only small rotations and uplift dis-
placements, so that complete separation of the foundation mat from its supporting elements is
unrealistic, i.e. the vertical displacement v;{(t) will be always less than zero at one of the edges

of the foundation mat.
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The earthquake response of the system depends on the following dimensionless parame-

ters:
w =fk [/ m, the natural frequency of the rigidly supported structure -

¢ = ¢/2muw, the damping ratio of the rigidly supported structure

B =uw,/w, where w, =-/2k,b/(m + m,) is the vertical vibration frequency of the

system of Figure 3.1 with its foundation mat bonded to the supporting elements

&, =2¢,6/2(m+ m,)w,, the damping ratio in vertical vibration of the system of Fig-

ure 3.1 with its foundation mat bonded to the supporting elements
« = h/ b, a slenderness-ratio parameter
v = m, [ m, the ratio of foundation mass to superstructure mass

The foundations of most buildings are expected to undergo only small rotations and uplift
displacements, far short of overturning. At these small amplitude motions, and if p—& effects
represented by the second term in the right side of equation 3.2Za are neglected, for a given
excitation, the deformation response of the system depends on the slenderness parameter but
not separately on the size. This can be shown by expressing the equations of motion and uplift
criterion in terms of the above mentioned dimensionless parameters; the deformation response
is seen to depend on h/ b ratio but not separately on k. If we were to consider the large-
amplitude motion of the structure including the possibility of its overturning, the size parame-
ter 4 would play an important role. Similarly the size parameter would influence the small-
amplitude response if p—8 effects are considered, but, as will be seen later, these effects appear
to be insignificant for most buildings.

The equations of motion for the system of Figure 3.1 are nonlinear as indicated by the

dependence of the coefficients €, and €, { equation 3.3 ) on whether the foundation mat is in

full or partial contact with the supporting system; and on the degree of uplift.
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The equations of motion can be specialized for the undamped system with massless foun-
dation mat by substituting m, =0, and ¢ = ¢, = 0. In particular, the inertia and damping
terms in equation 3.2b are zero and, following the usual approach to static condensation, 8 can

be expressed in terms of v and v from
—-ku+(1+ef)kw—bi(h9)+(l—£12)eg—b~2ﬂv=.0' (3.5)
3h? 2h ‘

and substituted into equations 3.2a and 3.2c. The reduced system consists of the resulting two
differential equations in the two unknown dynamic degrees-of-freedom. As discussed later, this
reduced system of equations provides a basis for approximate analysis of systems with damping

and foundation-mat mass, i.e. ¢7=0, ¢, #0, and m, 0.

3.3 Equivalent Two-Element Foundation System

The equations of motion for the idealized one-story structure supported thro‘ugh a founda-
tion mat resting on a Winkler foundation were presented in Section 3.2 and those for a two-
element foundation in Section 2.2. If the foundation mat is bonded to the supporting elements
the equations of motion for the structure supported on Winkler foundation are identical to
those for the same structure on a iwo-element foundation with the following properties:
ky = bk,, ¢; = be, and half base-width = b/~/3. This two-clement foundation is exactly

equivalent to the Winkler foundation if uplift is not permitted.

Consider the foundation mat and its supporting elements without the superstructure with
a static force p acting in the downward direction at the center of gravity ( ¢.g }. If the mat is
not bonded to the supporting elements, the relation between the static moment A applied at
the ¢.g and the resulting foundation-mat rotation is shown in Figure 3.3 for the two systems.
The M—#9 relation is linear with the same rotational stiffness for the two systems until 8 reaches
8, = p/2k,b? when one edge of the foundation mat on Winkler foundation is at incipient

uplift. For larger rotation angles the M —# relation for the two systems are different. The
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constant rotational stiffness implied by the linear M—@ relation cr.itinues to apply for the
equivalent two-element supporting system until 8 reaches #,/3 when one edge of the founda-
tion mat uplifts from one of the supporting elements; thereafter no additional moment can be
developed. On the other hand the M —# relation for the Winkler supporting system is non-
linear for § > @, with the rotational stiffness decreasing monoténically with increasing 8. The
M~—8 curve asymptotically approaches the critical moment A, = pb. Whereas the equivalent
two-clement supporting system is an exact representation of the Winkier foundation system for
rotation angles 6 < €, it is at best an approximation if the ground motion is intense enough to
cause significant uplift. Figure 3.3 suggests that the approximation is likely to deteriorate for

the larger angles.

The parameters of a two-element foundation system, which is equivalent to the Winkler
system after uplift, can also be determined. Because the width of the foundation mat in contact
with Winkler foundation varies with time, the parameters of such an equivalent two-clement
system will be time-dependent. Constant parameter values were obtained by using the temporal

average of the contact width during free vibration of the structure [1].

Thus, it is possible to establish relations between the parameters of the two-element and
Winkler models so that the two models are equivalent for the two cases of full contact and
uplift. Howewver, if the structure vibrates in both states for significant portions of the response,
neither of these parameter sets is expectled to provide a good agreement between the responses
of the two models. The two parameter sets have been combined to obtain general expressions
valid for both regimes of response [1]. These expressions are based on free vibration response
of the undamped structure and are not directly extendable to a damped structure subjected to
arbitrary earthquake excitation. Consequently these general expressions for parameters of the
equivaient two-element system are not utilized in this investigation. Instead the parameters

defined earlier for the case of foundation mat bonded to the supporting elements are used.
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3.4 Analysis Procedure

The response of the system of Figure 3.1 to specified ground motion can be analyzed by
numerical solution of the equations of motion ( equation 3.2 ). The equations are nonlinear
as indicated by the dependence of the stiffness and damping coefficients on whether the founda-
tion mat is in full contact with the supporting elements or it has partially uplifted; in the latter
case, the coefficients depend continuously on €, which is a measure of the contact width
( equation 3.3 ). However, a linear system corresponding to any instantancous contact condi-
tion of the foundation mat can be defined. This linear system has three degrees-of-freedom
and the natural frequency of the third mode is at least an order of magnitude higher than the
second mode frequency and it tends to infinity as the foundation-mat mass approaches zero.
Because the contribution of the third mode to the instantaneous response of this linear system
is negligible, it can be eliminated with the advantage that the integration time-step would not be

controlled by the very short vibration period of the third mode.

The obvious procedure to eliminate the high frequency effects is to express the structural
displacements as a linear combination of the first two vibration modes of the system for the

instantaneous contact condition:

" Y Yo 7
[hg} == Yy Yo Z; (373)
! da U
or
r =v¥Z (3.7b)

where the eigenvectors ¥, and ¢, depend continuously on the contact cocflicient €;. Substitut-
ing this transformation into equation 3.2 and premultiplying both sides by the transpose of the
transformation matrix ¥ leads to a reduced system of differential equations in the generalized

coordinates Z, and Z,. The stiffness and damping coefficients in the reduced equation system
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are also continuous functions of the contact coefficient «;.

The reduced system of equations is integrated numerically using an implicit method with
linear variation of acceleration in each time-step with dynamic equilibrium satisfied by iteration
at the end of the time-step { Appendix D ). Even though the high-frequency, third vibration
mode was eliminated, the time-step used has to be short enough to ensure convergence within
a few iteration cycles. The integration time-step used is A7 = 0.001 sec., ten times shorter

than that employed for the system with two-element foundation.

3.5 Free Vibration Response

Before studying the response of the system of Figure 3.1 to complex ground motion such
as earthquake excitation, it is useful to examine some features of the system in free vibration.
Restricting this seclion to massless foundation mats, the response of undamped systems is stu-

died first, followed by the effects of damping.

3.5.1 Undamped System

Starting with the initial state of the structural system of Figure 3.1 wherein the entire
width of the foundation mat is in contact with the supporting elements, the response of the sys-
tem to any initial displacements and velocities can be determined as the superposition of the
free vibration responses in the two modes of vibration ¢, and ¢,, which are similar to those
described in equation 2.7 { Section C.1.2, Appendix C ). The system vibrating in the second
mode undergoes uncoupled vertical motion, without lateral deformation of the structure or
rotation of the foundation mat. The motion of the system vibrating in the first mode consists
of lateral deformation of the structure and rotation of the foundation mat without any vertical
displacement at its c.g. In particular, if an initial velocity x(0) is imparted in the lateral direc-
tion to the mass m of the superstructure, the second vibration mode will not be excited and the

response will be entirely due to the first mode. The structural displacement vector
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r’ = <wu he® v>isthen described by
r(t) = (i?) ¢ sinwt — v, | (3.8)
where
W = on, (3.92)
1 = ~ /h—fi—b—; (3.9b)
b, =<a U-zH) 0> (3.9¢)
and
=<0 0 1> (3.99)

provided the motion is small enough that, over its entire width, the foundation mat remains in
contact with the supporting elements, Equation 3.8 is of the same form as equation 2.10 which
describes the initial free vibration motion of the two-element system. The structural displace-
ments in the first mode at the point of incipient uplift of one edge of the foundation mat for

the Winkler foundation are

- _ &
Uy =5 (3.10a)
and
_ _«g
hy = (3.10b)

These displacements are same as those presented in equations 3.1b and 3.1c¢ specialized for

massiess foundation mat, which were obtained from static considerations.



59

The initial velocity x(0), that results in the maximum displacement r(¢), from equation
3.8, equal to the displacements given by equation 3.10 is given by

v 3a?4+p? £

38w (3.11)

).((O)H =

and it depends on the slenderness-ratio parameter « and frequency ratio 8. For purposes of the

subsequent discussion it is useful to introduce the normalized initial velocity

3(0) = x(0)/x(0), (3.12)

If the initial velocily is less than x(0),, i.e. X(0) < 1, both edges of the foundation mat will
remain in contact with the supporting elements and no uplift will occur; the free vibration

response will be described by equation 3.8,

If the initial velocity exceeds x(0),, i.e., x(0) > 1, equation 3.8 will be valid only until
the first uplift occurs. One edge of the foundation mat will begin to uplift from its supporting
elements at the time instant #{s) given by equation 3.8 reaches the incipient-uplift value of
equation 3.10a. Uplift of the foundation mat from the supporting elements will gradually con-
tinue to extend over increasing width with the maximum uplifted width depending on the mag-
nitude of the normalized initial velocity x(0); then followed by a gradual decrease in the
uplifted width until full contact is re-establishcd. During the time duration that this edge
remains uplifted, unlike the two-element system where motion is governed by a linear
differential equation with solution consisting of constant and harmonic vibration parts ( equa-
tion 2.14 ), the displacement response is nonlinear and no analytical expression for the solution
is possible and we must resort to numerical computations. Measuring time ¢’ from the instant
when full base contact is re-established, the response of the structure during the time span it

continues to vibrate without uplift is given by
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(1) = D¢ sin (wlf’ + 3]) + Dy, sin (wyt' + 8,) — v, (3.13)
where

w; =0, =of (3.14)

Both vibration modes may now contribute to the response, in contrast to equation 3.8 wherein
the vertical vibration mode did not appear. The four constants D, D,, 8;, and 8, can be deter-
mined by standard procedures from the displacements and velocities of the structure at the time
contact at both edges of the foundation mat is re-established. Equation 3.13 is also of the same
form as equation 2.15 which describes the subsequent motion of the two-element system during

full contact.

Numerical results for the response of a structure to normalized initiai velocity x(0) = 4
obtained by the procedures described in Section 3.4 are presented in Figure 3.4 for two condi-
tions of contact between the foundation mat and the supporting spring-damper elements: {a)
bonded contact preventing uplift and (b) unbonded contact only through gravity with uplift per-
mitted. The response quantities presented as a function of time are deformation w,
foundation-mat rotation 8, total lateral displacement x = u + /78, vertical displacements v, and
v, of the left and right edges of the foundation mat, and uplift index which is the ratio of
foundation-mat width separated from the Winkler foundation to the full mat-width; the uplift

index is positive for uplift of the left edge and negative for uplift of right edge.

If the foundation mat is bonded to the supporting eclements, the structural response is
described by equation 3.8 for all time. The frequency of this simple harmonic motion is @,
defined in equation 3.9, and the amplitudes of the response quantities are given by the values at
incipient uplift ( equation 3.10 ) multiplied by the normalized initial velocity, which is 4 in this

case.
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FIGURE 3.4 Response of an undamped structure (« =10, 8 =8, y = 0) to initial
velocity x(0) = 4, for two conditions of contact between the foundation mat and the
supporting elements: {a) Bonded contact preventing uplift, and (b) Unbonded contact
only through gravity with uplift permitted.



62

The structural response is initially described by equation 3.8 even when uplift is permit-
ted, resulting in response identical to the bonded case ( Figure 3.4 ). When the deformation u
and foundation-mat rotation # reach their incipient-uplift values ( equation 3.10 ), the left
edge of the mat begins to separate from the supporting elements at time @ ( Figure 3.4 ) and
the subsequent response is nonlinear. The deformation # oscillates at a much higher fre-
quency, analogous to the frequency A, in the two-element case, except that this frequency in
the Winkler foundation case is amplitude-dependent. In this particular example, this is about 8
times the fixed base frequency, which is equal to the frequency of the vertical vibration mode
during full contact, thus demaonstrating the contribution of the second mode even under non-
linear vibration. This higher frequency response appears also in v,{¢) and v, (¢) and slightly in
A{z), but the total lateral displacement x(s) varies smoothly with time without any noticeable
contribution of the higher frequency motion. Full contact of the foundation mat is re-
established at time & and the response is described by equation 3.13 until the right edge begins
to separate from the supporting elements at time c; at which time the reSponsé motion is again
nonlinear until full contact of the foundation mat is re-established at time & and equation 3.13
is back in the picture. This response behavior is repeated during every cycle of free vibration
as seen in Figure 3.4, However, the response is not precisely periodic although it appears to be
nearly so because the initial conditions are not exactly repeated at the beginning of each vibra-
tion cycle. Whereas no vertical velocity is imparted to the structural mass when free vibration
is initiated at 7 = 0 , a small vertical velocily may be present at the beginning of subsequent
cycles of free vibration. The uplift index shows that during a half-cycle of partial separation of
the foundation mat from its supporting elements, the separated width of the foundation mat
remains essentially constant, at about 60 percent in this case, with small fluctuations occurring
at a high frequency as in deformation response u (¢).

Because of uplift of the foundation mat, the maximum structural deformation » for this

system is reduced but the maximum values of all the other response quantities -- 8, x, v, and

v, -- are increased.
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Noting that the time scale in Figure 3.4 is normalized with 1 -spect to the natural vibration
period T of the rigidly supported structure, it is apparent that the flexibility of the supporting
elements has the effect of lengthening the vibration period to T, and uplift of the foundation

mat results in even a longer period 7,. From equation 3.9a the period ratio

_TT; - (3.15)

wherein for a fixed mass ratio y , @, depends only on « and 8 and not on x (0} or T in partic-
ular it is given by equation 3.9b if y = 0. An analytical expression for the period ratio 7,/ T
does not appear to be derivable because the system is nonlinear when uplift if the foundation
mat is permitted. However, based on numerical results it can be shown that, for a fixed value
of v, T,/ T depends on «, 8 and x(0) but over a useful range of parameters, it does not
depend on T. Like the two-element system, the mass ratio y hasg little effect on the vibration
properties thus its influence on these period ratios is expected to be small. Numerical results
for free vibration respoﬁse of several systems with parameters « and B8 varied over a wide range

support this claim.

In order to examine whether the free vibration response behavior observed above is typi-
cal, results are also presented for another system. Compared to the one considered earlier, the
slenderness ratio parameter « for this system is smaller and frequency ratio B is higher.
Numerical results for the response of a structure to normalized initial velocity x{(0} = 4 are
presented in Figure 3.5. Comparing it with Figure 3.4 indicates that the high-frequency
response component is now much more pronounced, to the extent that foundation mat uplift
does not necessarily reduce the maximum structural deformation u. The behavior of a squatty
structure { smaller @ ) with a rather stiff supporting system ( higher 8 ) is dominated by the

rapid fluctuations in the portion of the foundation mat over which uplift occurs.

The response of the system considered in Figure 3.4 is recomputed including the second

term on the right side of equation 3.2a associated with p—& effects and the results are presented
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in Figure 3.6. Comparison of Figure 3.4 and 3.6 indicates that p—9 effects have little influence
on the response of the structure under either contact condition. The response is essentially
unaffected by p—8 effects if the foundation mat is bonded to the supporting elements. If the
foundation mat is permitted to uplift, the total displacement x increases only slightly, by about
8 percent, with a similar lengthening of the vibration period T, whereas the maximum defor-

mation is essentially unaffected.

3.5.2 Effect of Damping

The response of the undamped system to an initial velocity was given by equation 3.8 dur-
ing the time the foundation mat remains fully in contact with the supporting clements. Because
the system is nonlinear with properties depending on the width of the uplifted portion of the
foundation mat, analytical expression for free vibration response during uplift are not derivable,
After full contact has been re-established the response is described by equation 3.13. When
damping in the structure and the continuous supporting elements is included, the responses of
a system with massless foundation mat during initial and subsequent full contact will be

described by equations 3.8 and 3.13 with appropriate medification to include exponential terms

ﬁé!lwl’f, fntd”f

e and e , respectively; and substitution of the damped frequency &', instead of w,

in the harmonic terms, where o', = w,~/ 1 — £? and the modal damping ratios are

P 3o
e o1

& =§, (3.16b)

Like the two-element system, the damping ratio for the second vibration mode -- which
involves uncoupled vertical motion without lateral deformation or base rotation -- is simply £,
the damping ratio of the structure in vertical vibration ( equation 3.16b ). In the first mode

which includes lateral deformation of the structure coupled with rotation of the foundation mat
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about its c.g, the damping ratio is a linear combination of ¢, and ¢, where the latter is the
damping ratio of the rigidly supported structure in lateral motion. Based on the notion of
equivalent base width introduced in Section 3.3, it can be readily seen that equation 3.16a can

be reduced to equation 2.17a.

Although there is no analytical expression available for free vibration during uplift of the
system with Winkler foundation, the damping properties of the system during large base uplift
are expected to resemble qualitatively those of a system with two-element foundation with simi-
lar system parameters. Specifically, the rocking vibration mode is expected {0 be nearly
undamped during large uplift, while the damping ratio for the high frequency mode will be
similar in magnitude to the second modc damping ratio of the two-element system standing on

one edge ( equation 2.18 ). This damping ratio is

2a?

3 2y
B U+af) " (6+2¢,) (3.16¢)

g.? (20{2 +;32)3/2

where £, may be taken equal to the vertical mode damping ratio for the Winkler system. For a
fixed pair of damping ratios ¢ and &,, {, decreases with decreasing slenderness ratio parameter
« and increasing frequency ratio 3. The over all damping effect on the high frequency vibra-
tion mode of the structure with Winkler foundation is thus a function of the vertical damping

ratio during full contact £,, and the estimated damping ratio during large uplift ¢,.

The response of the first structure considered earlier, with « = 10 and 8 = 8, but now
including damping in the structure as weil as supporting elements, to normalized initial velocity
x{0) =4 is presented in Figure 3.7. From the selected values £ = 0.05 and £, = 0.4, and
equations 3.16a, 3.16b and 3.16c, &, = 0.006 and &, = 0.4 and damping ratio for the high fre-
quency mode is of the order of magnitude {, = 0.25 during large uplift. If the foundation mat
is bonded to the supporting elements and its uplift is thus prevented, the deformation u and
base rotation # decay exponentially at a rate defined only by the first mode damping ratio &,

because the second mode does not contribute to these response quantities.
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Unbonded contact only through gravity with uplift permitted.
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Several observations regarding the effects of damping can be made by comparing the
responses of the structure, with uplift of the foundation mat permitted, in Figures 3.4 and 3.7:
The tendency of the foundation mat to uplift, is reduced, resulting in the uplift duration
decreasing slowly with each vibration cycle. Just as in the two-element system the higher fre-
quency oscillations are heavily damped and decay rapidly at a rate closely related to the second
mode damping ratio &, during full contact and to the damping ratio ¢, for high {requency mode
during large uplift. Although uplift of the foundation mat increases the maximum downward
edge displacement in the undamped case, the effect of damping in the second mode during full
contact, and the high frequency mode during uplift, which are excited when uplift is permitted,

is so strong that downward edge displacement is actually slightly reduced by permitting uplifi,

The response of the second structure considered earlier with « = 5 and 8 = 12, but now
including damping is presented in Figure 3.8. From the selected values ¢ = 0.05 and
¢, =04, and equations 3.16a, 3.16b and 3.16¢c, &, = 0.036 and &, = (.4 and the high fre-
quency mode damping ratio {, = 0.05 which is much smaller compared to the system with
o = 10 and 8 = 8 due to reduction in « and increase in 8 as discussed earlier. For bonded
foundation support, the deformation u# and base rotation ¢ decay exponentially at a rate defined

by £, like the response of the first structure.

However, when uplift is allowed, the damped responses differ significantly from those of
the first structure. While the uplift duration decreases with each cycle, the contribution of the
high frequency component to deformation «, base rotation 6, edge displacements v, and v,, and
uplift index remain dominant in thé first few cycles despite of having a greater linear first mode
damping ratio than the first structure. The maximum uplift index remains almost at a constant
high level { approximately 95% ) for each half cycle of the first six and a haif cycles, and then
drops off to a very low level ( approximately 20% ) and becomes negligible after another cycle.
As discussed above neglecting the fluctuations, the structure can be viewed as if it is standing
on two stiff spring elements and the motion resembles that of a structure rocking on a two-

element foundation. Fluctuations in the uplift width are caused by the significantly smailer
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FIGURE 3.8 Response of a damped structure (¢ =0.05, £, =04, a =5, g8 =12,
vy = 0) to initial velocity x(0) = 4, for two conditions of contact between the founda-
tion mat and the supporting elements: (a) Bonded contact preventing uplift, and (b)
Unbonded contact only through gravity with uplift permitted.
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damping of the high frequency mode of the structure during la.;e uplift. This response
behavior alsc leads to the lack of damping effect in the first few vibration cycles, because while
the first mode damping ratic is relatively larger than that of the first structure, it is small in
absolute magnitude. This damping ratio and the large damping ratio of the second mode during
full contact have significant influence onty when the percentage of contact of the foundation
mat with the supporting elements is relatively large. Thus when the average contact area over
the cycle is small, as in the first few cycles, the damping effect based on full contact is also
small. When the uplift duration is reduced, as in the later cycles, the average contact area over

a cycle increases, and so does the damping effect.

3.6 Earthquake Responses

The response of a structural system to the north-south component of the El Centro, 1940
ground motion is presented in Figure 3.9. Responses are shown for two conditions of contact
between the foundation mat and the supporting spring-damper elements: (a) bonded contact
preventing uplift and (b) unbonded contact only through gravity with uplift permitted. In the
first case, the structural response is entirely due to the first natural vibration mode of the sys-
tem with the full width of the foundation mat in contact with the supporting elements ( see
Section 3.5 ). Thus the response behavior is similar to a SDOF system. When uplift of the
foundation mat is permitted, the response behavior is much more complicated. During the ini-
tial phase of the ground shaking, the foundation mat remains in contact with the supporting
elements over its entire width. AS the ground motion intensity builds up, the two edges of the
foundation mat alternately uplift in a vibration cycle, inducing partial separation of the mat
from the supporting elements. In this example the foundation mat uplifts over a significant
portion of its width in every vibration cycle during the strong phase of ground shaking, with the
duration of uplift depending on the amplitudes of foundation-mat rotation. As the intensity of
ground motion decays toward the later phase of the earthquake, the foundation-mat uplift

becomes negligible and full contact is maintained for long durations.



72

------ BONDED CONTACT, UPLIFT PREVENTED
UNBONDED CONTACT, UPLIFT PERMITTED

:33
.
s }
CD:J
~
D
><=
~
=
CD::
L0
™~ 0
>N
-2
12
@ C
e [
™~ )
s F A ,
-12 L
> | ~
8
— 0 E Vm [-\ m f\ [\ nvn e
A vEvEvava:
0D - u 1 1 1 1 1 3
0 10 20 30
TIME t, SEC.

FIGURE 3.9 Response of a structure (a =10, 8 =8, y =0, T =1 sec., ¢ = 0.05,
¢, =04) to El Centro ground motion for two conditions of contact between the
foundation mat and the supporting elements: (a}) Bonded contact preventing uplift,
and (b) Unbonded contact only through gravity with uplift permitted.
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The effects of foundation-mat uplift on the maximum responsc of the selected structure
due to earthquake ground motion are similar to those observed in Section 3.5 during free vibra-
tion. When foundation-mat uplift is permitted, the maximum deformation of the structure is
about twice the deformation u, at incipient-uplift of the foundation ma.t, which is a significant
reduction compared to the response when foundation-mat uplift is prevented. Because of
damping, the smali-amplitude oscillations at a high frequency like those in Figure 3.4 damp out
and are not present in the earthquake response results of Figure 3.9. The rotation of the foun-
dation mat and vertical displacements of the two edges of the foundation mat are sigr;iﬁcantly |
increased due to the rigid body uplift motion of the system. This uplift motion provides the
dominant contribution to these responses during uplift but does not affect the maximum

response of the structural deformation.

The response of the relatively squatty system ( smaller & ) with higher stiffness in the
vertical direction ( larger 8 ) to the El Centro ground motion is presented in Figure 3.10.
While some features of the response are similar to those observed above from the previous
case, important differences can be noted. In particular, foundation-mat uplift causes much
larger rotation 6, and vertical edge displacements v; and v, of the foundation mat. As observed
in the free vibration study { Section 3.5 ) the high frequency component in the deformation
response is now much more pronounced, to the extent that foundation-mat uplift causes hardly
any reduction in response and it leads to a slight increase in the maximum downward displace-
ment of the foundation mat. Unlike in Figure 3.9, where the foundation-mat uplift was gra-
dual, in this case the uplifted width of the foundation mat fluctuates very rapidly; once uplift is
initiated, the uplifted width increases from zero fo maximum value in almost no time; however,
after a few cycles the tendency to uplift decreases. Thus, if uplift occurs in a cycle, the width is

either very small or very near the maximum, but rarely an intermediate value.

In order o study the effects of foundation-mat uplift on the maximum response of struc-

tures, response spectra are presented. The base shear coefficient
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¢, =04) to El Centro ground motion for two conditions of contact between the
foundation mat and the supporting elements; (a) Bonded contact preventing uplift,
and (b) Unbonded contact only through gravity with uplift permitted.
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Mmax - (3.17)

VmilX =

Vmax kumux . 2
w mg

where V., is the maximum base shear, and w is the weight of the Supérstructure, is plotted as
a function of the natural vibration period of the corresponding rigidly supported structure. For
each set of system parameters «, 8, v, £ and £,, such a response spectrﬁm plot is presented for
two conditions of contact between the foundation mat and the supporting spring-damper ele-
ments: (a) bonded contact preventing uplift, and (b) unbonded contact -with uplift permitted.
Alsc presented are the results for the corresponding rigidly supported siructure, which {s simply
the standard pseudo-acceleration response spectrum, normalized with respect to gravitational
acceleration. Inciuded in the response spectra plots is ¥, the base shear coefficient associated
with the value of base shear, V,, at which uplift of an edge of the foundation mat is initiated
{ equation 3.1a ): |

o= Ju 1ty (3.18)

w 3a

Also included is V,, the critical base shear coeflicient associated with the static asymptotic base
shear , V,, { see Section 3.1 ) which corresponds to the uplift of the foundation mat from its

supporting springs over the entire width, i.e. the foundation mat is standing on its edge:

V.

¢

v

= Ye o I¥y (3.19)
w o

These base shear coefficients depend on the mass ratio v and slenderness-ratio parameter «, but

are independent of the vibration period 7.

The response spectra presented in Figure 3.11 arc for systems with massless foundations
(y = 0) and a fixed set of system parameters «, 8, £, and £, subjected to El Centro ground
motion. The differences between the response spectra for the two linear systems, the structure

with foundation mat bonded to the supporting elements and the corresponding rigidly supported
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structure, are due to the change in period and démping resulting from support flexibility
( equations 3.9 and 3.16 ). The base shear developed in structures with relatively long vibra-
tion pericds is below the static value at incipient uplift and throughout the earthquake the foun-
dation mat remains in contact over its entire width with the supporting elements. If foundation
mat uplift is prevented, the maximum base shear at some vibration periods may exceed the
incipient-uplift value. For the selected system parameters and ground motion, Figure 3.11 indi-
cates that this occurs for all vibration periods shorter than the period where the linear spectrum
first attains the incipient-uplift value. If the foundation mat of such a structure rests on the
Winkler spring-damper elements only through gravity and is not bonded to these elements, par-
tial separation occurs and this has the effect of reducing the base shear. However, the base
shear gxceeds the value at incipient-uplift because even under static forces the base moment,
and hence base shear, continue to increase considerably beyond this value ( Figure 3.2b ).
Furthermore the base shear is not reduced to as iow as the critical value based on static con-
sigeraiion. Although this asymptotic value can never be exceeded under static forces, depend-
ing on the state -- displacement, velocity and acceleration -- of the system, the deformation and
hags shser may exceéd thie critical values dujf-iylg dvnamic r¢sponse as seen in Figure 3.11.
Because the base shear developed in linear structures { foundation-mat uplift prevented )
tends w0 exccéd the incipient-uplift value by increasing margins as the vibration period
decreases, the foundation mat of a shorter-period structure has a greaier tendency to upljft ovar
a greater porticn of its width, which in turn resuits irt the incipient-uplift base shear being

exceed by a greater margin although it remains well below the linear response.

Also shown in Figure 3.11 is the response epectrum for the equivalent two-element sys-
tem defined in Section 3.3. This response spectrum is identical to that for the Winkler system
for the relatively long periods because the base shear developed is below the incipient-uplift
value and the foundation mat does not uplift from its supporting elements and for this condi-
tion the two-element supporting system is exactly equivalent to the Winkier supporting system.

Uplift occurs for any structure if the corresponding ordinate of the linear response spectrum
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exceeds the static base shear coefficient at incipient uplift, which is 1/ 3« for a Winkler system
and 1/~/3« for the equivalent two-element system. Because the base shear developed in linear
structures tends to increase as the vibration period decreases, uplift in a Winkler system is ini-
tiated at a longer period compared to the two-element system. However, because the uplift is
limited in extent and duration in the range of periods bounded on the low side by the period at
which uplift is initiated in a two-element sysiem and on the high side by the period at which
uplift is initiated in a Winkler system, the difference between the response spectra for the two
systems is small in this period range. For shorter vibration periods outside this range the
equivalent two-element system consistently underestimates the maximum response -- by a fac-
tor as large as two -- thus demonstrating that the equivalent two-element system does not ade-

quately represent the moment-rotation relation for larger rotation angles ( see Figure 3.3 ).

Presented in Figure 3.12 is the response spectrum for the downward displacement at
either edge of the foundation mat for two conditions of contact between the foundation mat at
its supporting spring-damper elements: (a) bonded contact preventing uplift and (b) unbonded
contact with uplift permitted. The edge displacement is normalized with respect to the initial
static displacement due to gravity. Just like the maximum deformation { Figure 3.11 } the
foundation mat edge displacement tends to be larger for shorter vibration period structures.
Although this response quantity is affected by uplift of the foundation mat, these effects are not
very significant, and over a wide range of periods a conservative estimate is provided by linear

analyses preventing uplift.

The effects of ground motion intensity on the dynamic response of structures is displayed
in Figure 3.13, wherein the response spectra for El Centro ground motion amplified by a factor
of 2 are compared with the corresponding plots for the unscaled ground motion. If the founda-
tion mat is bonded to the supporting elements and it can not uplift, the structural system is
linear and the response spectrum is amplified by the same factor of 2. When uplift is permitted
but the uplift is limited in extent, the response is only slightly reduced from the corresponding

linear values with greater reduction for the more intense earthquake, the response spectrum is
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amplified by a factor sornewhat less than 2. This behavior differs from the two-element system,
where the foundation mat uplifts abruptly changing the state from full contact to no contact,
and the respons¢ permitting foundation-mat uplift is essentially independent of the earthquake
intensity. However, for structures with shorter periods the foundation mat uplifts over greater
width and for more time and the base shear is controfled by the critical value V. which is a pro-
perty of the system, independent of ground motion. Thus like the iwo-element system, the
base shear for short-period systems is increased only slightly although the earthquake intensity
is doubled. Because the base shear attains its incipient-uplifi value at a slightly longer period
wnen earthquake intersity is increased, uplift of the foundation mat is initiated at a slightly

longer period.

The response spectra presented in Figure 3.14 are for iwo values of the frequency ratio 8
with ail other system parameters kept constani. As mentioned earlier, the differences in the
response spectra for the two linear systems, the structure with foundation mat bonded to the
supporting elements and the corresponding rigicly supported structure, are due to the ¢hange in
period and damping resulting from support flexibility ( equations 3.9 and 3.16 ). The period
change appears as a shift in the response spectrum (o the left, with farger shift for smaller
vatlues of 8, i.e. for the more flexible supportiniy elements. The nonlinear response spectrum
for the structure with foundation mat permitted to uplift shifts similarly to the left, with uplift
‘nitiated at longer periods as B increases. But for the period shift, the shapes of the linear as
well as nonlinear response spectra are affected little by the frequency ratio B. These effects of
varying 8 on the response of structures supported on Winkler foundation are similar to those

observed in Section 2.6 for structures on two supporting elements.

As presented in equations 3.18 and 3.19, the incipient-uplift and critical base shear
coefficients are inversely proportiosal 10 the slenderngss-ratio parameter «. This would suggest
that maximum base shear will he sinaller for relatively slender structures, which is confirmed by
response spectra presented in Figure 3.15. The foundation mat of a slender structure has a

greater tendency to uplift resulting in greater reductions in the base shear, Uplift of the
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FIGURE 3.14 Response spectra for structures (a =10, y =0, £ =0.05, £, =04)
subjected to El Centro ground motion for two values of frequency ratio 8 = 4 and 12,
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84

foundation mat occurs at all vibration periods shorter than the period where the linear response
spectrum attains the incipient-uplift value. This period, in general, depends on the slenderness
ratio « in a complicated manner, because the incipient-uplift base shear coefficient as well as
the period shift of tﬁe linear response spectrum ( relative to the standard pseudo-acceleration
spectrum ) both depend on «; however, in this example, this period is essentially independent

of e,

The incipient-uplift and critical base shear coefficients increase with mass ratio v as indi-
cated by equation 3.18 and 3.19; for systems with massless foundation mat (¢ = () these
coefficients are 1/3« and 1/« respectively, and they increase to 2/3« and 2/« for systems
with equal foundation-mat and structural masses ( ¥y = 1 ). The response spectra for these two
mass ratios are presented in Figure 3.16 which indicate that the effects of foundation-mat mass
are to reduce the short period range over which the foundation mat uplifts; to approximately
double the maximum base shear over this period range; and to introduce a period shift in the

linear response spectrum, with little influence on the shape of the spectrum,

These effects of varying parameters «, 8 and y on the response of structures supported on
Winkler foundation are similar to those identified in Section 2.6 from the response of structures

with two supporting elements.

The effects of gravity and inertia forces in the vertical direction ( the so-called p—38
effect ) on the dynamic response of structures is displayed in Figure 3.17 wherein the response
spectra are presented for two cases: (1) p—3 effect neglected and (2) p—8 effect included. Over
a wide range of periods the response spectrum is essentially the same, with or without p—35
effects. For a fixed frequency ratio, the supporting system becomes increasingly flexibie for
structures with longer vibration perieds, and the structure can overturn because of p--8 effects

( Figure 3.17).
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4. CONCLUSION

The effects of transient foundation uplift on the earthquake response of buildings have
been investigated. This study was based on structural idealizations that are relatively simple but
realistic in the sense that they incorporate the most important features of fbundation uplift. In
its fixed base condition the structure itself was idealized as a single-degree-of-freedom system
attached to a rigid foundation which is flexibly supported. The flexibility and damping of the
supporting soil was represented by two alternative idealizations: {a) two spring-damper ele-
ments, one at each edge of the foundation mat, and (b) Winkler foundation with spring-damper

elements distributed over the entire width of the foundation mat.

The critical base shear for a structure under the action of static lateral force, i.e. the max-
imum base shear that can be developed with its foundation mat supported only through gravity
with uplift permitted, depends on the gravity force and slenderness-ratio parameter, and is the
same for both idealizations of the supporting soil. The base shear in the structure at incipient
uplift of the foundation mat depends on the model employed to represent the supporting soil.
Uplift of the foundation mat supported on two-element foundation is not initiated until the
base shear attains the critical value. In the case of Winkler foundation, uplift of the foundation
mat is initiated when the base shear reaches one-third of the critical value; and as the base
shear increases further the foundation mat separates over increasing width from its supporting

elements.

The equations of motion for the structure with its foundation mat permitted to uplift are
nonlinear with foundation stiffness and damping parameters dependent on whether the founda-
tion mat is in contact with the supporting systems at one or both edges; and also on the extent
of uplift in case of the Winkler foundation. However a linear system corresponding to any
instantancous contact condition of the foundation mat can be defined. This linear system has
three degrees-of-freedom and the natural frequency of the third mode is at least an order of
magnitude higher than the second mode frequency and it tends to infinity as the foundation-
mat mass approaches zero. Because the contribution of this high frequency mode to the

response is negligible, the Rayleigh-Ritz concept was employed to eliminate this mode from the
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analysis. It was then possible to employ a much larger integration time-step than would other-

wise be practical, resulting in considerable savings in computational effort.

Analytical examination of the governing equations and system properties and the numeri-
cal results obtained in this study indicate that the earthquake response of uplifting structures is
controlled by the following system parameters, listed in more or fess descending order of

importance:
® natural vibration frequency w of the rigidly supported structure
® slenderness-ratio parameter «
8 ratio 4 of foundation mass to superstructure mass

® 8 =w,/w where o, is the vertical vibration frequency of the system with its foun-

dation mat bonded to supporting elements
¢ damping ratio £ of the rigidly supported structure

¢ damping ratio £, in vertical vibration of the system with its foundation mat bonded

to the supporting elements.

If we had considered the large-amplitude motion of the structure including the possibility of its
overturning the response of a structure would be influenced also by its size. Similarly the size
influences even the small-amplitude response if p—8 effects are considered, but the results

presented indicate that these effects are insignificant for most buildings.

In order to study the effects of foundation-mat uplift on the maximum response of build-
ings, response spectra were presented. For each set of system parameters the maximum base
shear was plotted against the natural vibration period of the corresponding rigidly-supported
structure for two conditions of contact between the foundation mat and the supporting spring-
damper elements: (a) bonded contact preventing uplift and (b) unbonded contact with uplift

permitted. A study of these response spectra plots led to the following conchusions:
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1. The base shear developed in struciures with relatively irng vibration periods is
below the static value at incipient uplift and the foundation mat does not uplift from

its supporting elements.

2. For short period structures, the base shear exceeds the incipient-uplift value if
foundation-mat uplift is prevented; for such structures, permitting uplift has the

effect of reducing the base shear -- to values somewhat above the critical value.

3. Because the response of a structure with foundation mat permitted to uplift is con-
trolled by the critical base shear, which is independent of the ground motion, the

base shear is affected only slightly by earthquake intensity.

4. The foundation mat of a slender structure has a greater tendency to uplift resulting

in greater reductions in base shear.

5. Because the critical base shear increases with mass ratio y so does the maximum

earthquake induced base shear.

6.  The shape of the response spectrum is affected little by the frequency ratio 8, but it
does have the effect of shifting the response spectrum to the left with larger shift for

smaller B, i.e. for the more flexible supporting elements.

The possibility of transient uplift of a portion of the foundation mat or of a few individual
footings, as the case may be, should be considered in the analysis of response of structures sub-
jected lo intense earthquake ground motion. Because foundation uplift has the effect of reduc-
ing the structural deformations and forces, there is no need te prevent it but, on the contrary,
it is desirable to permit it. The foundation, underlying soil and the structural columns should
be properly designed to accommodate the transient uplift and the effects of subsequent impact

on contact.

Note that the conclusions drawn in this study are based on the dynamic response of struc-
tures to horizontal ground excitations only, the vertical component of the ground excitation is

assumed to be negligible for simplicity. However, this component of the ground motion may
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have significant influence on the dynamic response of the flexible structure under some combi-
nations of structure-foundation system parameters and ground excitations. This is especially
true if the dominant frequency of the vertical excitation is close to the vertical free vibration
frequency of the structure-foundation system, leading to large amplification in the vertical

response and hence large influence on the uplift response.

Although the results of this work have provided an understanding of the basic effects of
transient foundation uplift on the earthquake response of structures, there is an important limi-
tation in the application of these results to actual buildings. In reality the foundation stiffness
and damping parameters depend on the displacement amplitude and, excitation frequency, in
contrast to the constant parameters employed in this work. In either case, the foundation
parameters are very difficult to evaluate because they would depend on the details of the foun-
dation design, including the degree of foundation embedment and the base deformability. Reli-
able methods to evaluate foundation parameters for actual buildings need to be developed, so

that the beneficial effects of foundation uplift can be considered in the design of buildings.
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APPENDIX A: NOTATION
half width of foundation mat
lateral damping cocfficient of superstructure
damping cocfficient of supporting element of two-element foundation
damping coefficient per unit width of Winkler foundation
lateral force applied to superstructure

maximum static lateral force on structure at full uplift of foundation mat with con-

tact reduced to one edge

static lateral force on structure at incipient uplift of foundation mat on Winkler

foundation

acceleration of gravity

height of superstructure

moment of inertia of foundation mat

lateral stiffness of superstructure

stiffness of supporting element of two-element foundation
stiffness per unit width of Winkler foundation

mass of superstructure

mass of foundation mat

static base moment applied at c.g of foundation mat

maximum static base moment at full uplift of foundation mat with contact reduced

to one edge

static base moment at incipient uplift of foundation mat supported on Winkler foun-

dation
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P static vertical force on foundation mat

R, upward reaction of left supporting element of two-glement foundation

R, upward reaction of right supporting element of two-element foundation

r displacement vector for structure-foundation system

T reduced displacement vector of structure-foundation system

et time measured from a specified reference

T natural vibration period of the rigidly supported structure

T. rocking vibration period of flexibly supported structure with uplift prevented

T, rocking vibration period of flexibly supported structure with uplift permitted

T displacement transformation matrix defined in equation 2.20a

u structural deformation

U, maximum structural deformation under the action of static lateral force

u, (1) horizontal ground displacement

i, (1) horizontal ground acceieration

U max maximum structural deformation during an earthquake

U, static structural deformation at incipient uplift of foundation mat on Winkler foun-
dation

v vertical displacement of cg of foundation mat

v vertical displacement of left edge of foundation mat

v, vertical displacement of right edge of foundation mat

Vg vertical displacement of foundation mat under the action of gravity forces

Vimax a base shear coefficient = V. / w



x(0)

x(0),

x(0),,

x(0)
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& base shear coefficient =V,/w

a base shear coefficient =V, /w

maximum base shear that can be deveolped under the action of static lateral force
static base shear at incipient uplift of foundation mat on Winkler foundation
maximum base shear

weight of superstructure

lateral displacement of structure relative to supporting foundation = u + 4@
initial velocity of structure

minimum initial velocity of structure inducing foundation-mat uplift of structure

supported on two-element foundation

minimum initial velocity of siructure inducing foundation-mat uplift of structure

supported on Winkler foundation
normalized initial‘velocity of structure
vector of generalized coordinates Z,
slenderness ratio parameter
=, /w
ratio of foundation mass io superstructure mass
integration time-step
contact coefficients ( defined in sections 2.2 and 3.2 )

damping ratio of the f‘th

vibration mode after uplift
rotation of foundation mat

static rotation of foundation mat at full uplift with contact reduced to one edge

static rotation of foundation mat on Winkler foundation at incipient uplift
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h

undamped natural vibration frequency of the " mode after uplift

damped natural vibration frequency of the fm mode after uplift

damping ratio of the rigidly supported structure

damping ratio in vertical vibration of the system of Figure 2.1 with its foundation
mat bonded to the two-element foundation

damping ratio of the #h vibration mode of system with both edges of foundation mat
in contact with foundation

damping ratio in vertical vibration of the system of Figure 3.1 with its foundation

mat bonded to the Winkler foundation

" element of the j‘r[7 free vibration mode ¢;

F’h vibration mode of system with foundation mat in contact with both edges of

foundation

M element of the jm free vibration mode 4,

f'[h vibration mode of system after uplift
displacement transformation matrix ( see equation 3.7a )

natural vibration frequency of the rigidly supported structure

natural vibration frequency of the im mode of system with both edges of foundation

mat in contact with supporting clements

vertical vibration frequéncy of the system with its foundation mat bonded to the

supporting elements

w,; modified by damping
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APPENDIX B: DERIVATION OF EQUATIONS OF MOTION

B.1 Equilibrium Equations

Free body diagrams of the top mass and the structure including fou'ndation-mat mass and
inertia are shown in Figures B.la and b, respectively. Equations of motion for both systems
with two-element as well as Winkler foundations can be derived by considering: (1) equilibrium
of forces of the top mass in the horizontal direction, (2) equilibrium of moment of the entire
structure about the center of the foundation mat and (3} equilibrium of forces of the entire

structure in the vertical direction. The displacement of the top mass and the rotation of the

foundation mat are assumed to be small enough that sin (8 + %) can be replaced by

(0+ %) and cos (8 + %) by unity. Except for the p—8& effects due to gravity acting on the

top mass, all secondary nonlinear effects including the contribution of moment about the center
of the foundation mat by the horizontal reaction forces of the supporting medium due to eccen-

tricity are assumed to be negligible.

First, considering the top mass as a free body ( Figure B.1a ), equilibrium of forces in

the horizontal direction ( 3" F, = 0) yields
mii + m (h6) + i + ku =—mfjg(t)—mﬁ’——%”i)—(v+g) (B.1)
and in the vertical direction ( 3. F, = 0) yields
p=mi(i+g) (B.2)

Then, considering the entire structure as a free body ( Figure B.1b ), equilibrium of moment

of the structure about the center, o, of the foundation mat ( 3’ M, = 0) yields

LA+ mh (i + h8) + M, = —mhii, (t) + m (u + h8) (V + g) (B.3)
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and equilibrium of forces of the structure in the vertical direction ( 3 F, = 0) yields

(m+m)v—~F =—(m+m)g . (B.4)

The thickness of the rigid foundation mat is assumed to be small compare to the width 24 so
that /, = m,b°/3. Equations B.1, B.2 and B.4 form a set of general equations governing the
motion of the structural system for both types of foundation support. While equation B.1 is

already in explicit form equations B.3 and B.4 need further specialization for each system.

B.2 Structure on Two-Element Foundation

For the system with two-element foundation, the upward reaction force, F,, and restoring
moment, M,, about the c.g of the foundation mat, are the sum and the moment of the reaction
forces of the two elements, £, and F,, acting at the left and right edges of the foundation mat

respectively ( Figure B.2a ) :

F =F +F, (B.5a)
and
M; = b(F,—F) (B.5b)
where
— k(v +88) —c, (b + bO) left edge in contact
Fr = { 0 left edge uplifted (B.6a)
and
~ kv —08) — ¢, (Vv — BO) right edge in contact
F, ={ | 0 right edge uplifted (B.6b)
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Substituting equations B.5 and B.6 into equations B.3 and B.4 and simplifying using equation
B.1, the equations for equilibrium of moment about the c.g of the foundation mat and equili-

brium of forces in the vertical direction become

j—z—”:; (h8) — cit + elc_/%zz—(hé) + ech%i’
~ ku +e1k,-—22(h9) +52kf%v =0 (B.74)
and
(m 4+ m,)V +ec,v+ e %(hé) + €k v +ezkf—g(h9) = —(m+m,)g (B.70)

respectively, where €, and ¢, depend on the contact conditions:

_ | 2 comtact at both edges
SCT Y left or right edge uplified (B.8a)

and

—1  left edge uplifted
€ = 0 coniact al both edges (B.8b)
1 right edge uplified

Equations B.7a and b together with equation B.1 constitute the equations of maotion 2.2

presented in Chapter 2.

B.3 Structure on Winkler Foundation

For the system with Winkler foundation, evaluation of the reaction force, F,, and restor-
ing moment about the c.g of the foundation mat, M, are more complicated with partial uplift

than with full contact, and the two cases are discussed separately.
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B.3.1 Full Contact

During full contact, the force-displacement and moment-rotation relations at the c.g of
the foundation mat are linear and uncoupled. The upward reaction force, F,, is dependent only
on vertical displacement, v, and velocity v, alone but is independent of base rotation # and an-
gular velocity @; whereas the restoring moment, M, is a function of base rotation ¢ and angu-
lar rotation @ alone but is independent of vertical displacement, v, and vertical velocity, v.

These relations may be expressed as follow:

Fr == 2k,bv — 2¢,bv (B.9a)
and
- 2 30 1 2 . 13
My = 5 kb6 4 S et (B.9b)

B.3.2 Partial Uplift

For the case with partial uplift, the upward reaction force, ¥, and the restoring moment,
M, about the c.g of the foundation mat can be obtained by integrating the distributed force
and moment about center o, due to elastic spring reaction and damping, over the region of con-

tact ( Figure B.2b ).

b+ d b
F = f kWIO)xdx—fcw(f)+ezéx)dx
0

—d

(B’ —d*)

(b+d)? 2 (B.10a)

= ki,
3 2

[0l ~cd (b+d)v + e

and
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b+ d b

M, = fk”‘()(x—d)xdx+ezfcw(f)+egéx)xdx
0 —d

(B.10b)

- 2 bl — 3 3y,
_ L2 d)é(b+d)9+cw & ( : >1.}+€2(b ;rd)e

where

— 1 left edge uplified
€, = 0  contact at both edges (B.11a)
1 right edge uplifted

The distance, 4, from the point where partial uplift begins to the c.g of the foundation mat, o,

is a function of the vertical displacement, v, and rotation of the c.g of the mat:

=/ l 9| 820 partiaily uplified
d = b contact at both edges

and

laf < b

Note that when the system is at incipient uplift or during full contact, the distance between the
point of separation and c.g is equal to b, i.e. d = b and equations B.9 and B.10 are identical.
Thus equation B.9 can be considered as a special case of equation B.10. Defining €, as the quo-

tient of d and half-base-width &, i.e.

{(B.11b)

m
Hi
SHEN

and substituting equations B.11a and b into equations B.3 and B.4 and simplifying the resulting

expressions using equation B.1 vield:
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m, bt .. bl b?
4 A 3 A .2 PR
vE (h8) —cii + (1 +¢€i)c, 3h2(h9)+(1 €) €0, T
e, 2 (ne) + (1 2)' b, =0 (B12)
— ki + (1 + g kw'é—;;j(hg + (1 — ¢ fzkwﬁv" .
.. ) b? :
(m+m,,)v+(1+e})c,,.bv+(l—ef)egc,,."z-g(hé')
2
(L +e) hybr+ (1 —ef)eshy 2 (h0) =— (m +m,) g (B.13)

" 2h

Equations B.12 and B.13 together with equation B.1 constitute the equations of motion for the

system with Winkler foundation ( equation 3.2 ) presented in Chapter 3.
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APPENDIX C: MODAL RESPONSE CONTRIBUTIONS

C.1 Frequencies and Mode Shapes

The frequencies and mode shapes of the systems with two-element as well as Winkler

foundations can be obtained by solving the well known eigenivalue problem
[k—w}m]qs, -0 ©1

where m and Kk are the mass and stiffness matrices respectively, and ¢;, i/ = 1,..., n, are the
mode shapes corresponding to the » frequencies w;’s of the n-DOF system considered. The
mass and stiffness matrices for the two-element and Winkler systems can be derived from equa-
tion 2.2 in Chapter 2 and equation 3.2 in Chapter 3 respectively. These matrices are put into
symmetric form by adding the first row of each matrix to their corresponding second row before

solving the eigenvalue problem for each system.

C. 1.1 Structure on Two-Element Foundation

As discussed in section 2.3, the linear sysiems representing the system with two-element
foundation during full contact and after uplift have different vibration properties. These linear

systems are studied separately in the following subsections.

Full Contact

During full contact, the symmetric mass matrix, m, and stiffness matrix, k, can be
obtained from equation 2.2 by using the appropriate values for the contact coefficients { ¢, = 2

ﬂﬁdfz :O)
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m ] 0
bZ
m=|mmii 0 (C.20)
3h
0 ¢ i+ m,
and
kK 0 0
bZ
k=1{0 21;,—}17 0 (C.2b)
0 0 2k,

W] = W]
wy; = Q),B (C3a)
w; = wa-)_g

with corresponding mode shapes
¢1T={ &l (1-af) 0 }

% =l 60 0 1 } (C.3b)

where
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w3 = (C.3¢)

and

T =(1+‘y),32+a2+—§—

and @, and w; corresponding to the upper and lower signs respectively.

After Uplift

When one of the edges is uplifted from its supposting element, the mass matrix, m,

remains unchanged. However, the stiffness matrix, k, derived from equation 2.2 with appropri-

ate contact coefficients (¢, = 1 and €, = F1 ) becomes
k0 0
h? b
k=)0 k,—5 = 4
b

The resulting frequencies obtained by solving equation C.1 are:

)\[ =0
AQ = (JJXQ (CSﬂ)
)\3 = w;\.-3

with corresponding mode shapes



% =

pi =
where

XQ‘J =
and

with X, and A; corresponding to the upper and lower signs respectively. Note that ¢,

corresponding to a zero frequency, is a rigid body mode; and the upper and lower signs in ¢,

Mo

2
73 F [Tzz——ng'B (4y + 3a? +3)

108

_ ~ A3

(1 - oM
A7
o 1—25-2-

_ — A2
(17D (1 3_)
%
a 1*2@

Ty =

2
37

0 By
v+ 53

b

and ¥ correspond to left and right edge uplifted, respectively.
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C.1.2 Structure on Winkler Foundation

Because the system with Winkler foundation during partial separation of the foundation
mat from the supporting elements is continuous and nonlinear, no conventional discrete fre-
guencies and mode shapes exist. Thus only the case with full contact is considered here.
Modal analysis of the system with partial uplift using the notion of instantaneous frequencies

and modes is discussed in section 3.4.

Full Contact

For the system during full contact, the symmetric mass mafrix, m, and stiffness matrix, k,

derived from equation 3.2 with contact coefficients €; = I and €; = 0 are:
m m 0
o b
m=1|mm-+ m;z 0 (C.6a)
3h
0 0 m 4+ m,
and
k 0 0
2, &
=10 =k, = 0 C.
0 0 2k,
respectively.

The associated frequencies are:

wy = wf (C.7a)
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with corresponding mode shapes

¢ﬁ”={o 0 1} (C.7b)

where
Y
4 ”
T F ITZ — 57(1 + 'y)le
(‘;]73 - 7 {C.7c)
3 Y
with
_a+ v) B° b
T -—-——-———2 + a4 3

and @; and ®; correspond to the upper and lower signs respectively. Because there is an
equivalent relation between the systems with two-element and Winkler foundation during full
contact  see section 3.3 ) only the two-element system need to be considered in the subse-

quent linear analysis in this appendix.

C.2 Limiting Values of High Frequencies

In general, the range of the numerical values of the base mass varies from as low as negli-
gible ( v = 0 ) to about the same as the top mass ( v = 1 ). While the frequency coefficients
@, ( =) during full contact and A; ( = 0 ) After uplift are independent of v, &, and A, do

not vary significantly for most combinations of aspect ratio parameter o and frequency ratio 8.
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On the contrary the two coefficients for the high frequency modes, «; during full contact and
X; after uplift are very sensitive to the variations in the mass ratio + in this range and approach
infinity as y approaches zero. This observation can be demonstrated mathematically by first

rewriting the expressions for w; and X;as follows:

2
ag~%|1+ - 43’/—1—*”11—‘1]} (C.84)
<Y
3
v h
_ 3 2 :
- _%_[H 1_2);3 (4y+ic; +3)] } (C.3b)
L r 2
3

Taking the limit as y — 0
Ty = ‘Bz + a2

_ B+ 2t
‘ 2
and the second term inside the large square brackets in both equations C.8a and b approach

zero, thus

4] 2
1B+l 3BT+ a?)
0 { 2y/3 ] l v

' i Y
2 2 2 2
lim = (B +2a)/2_2 - | 3(8%+ 2e%) — oo
¥y—0 2')’/3 27'

Hence, for a given fixed-base frequency, o, the frequency of the third mode during full contact
( w3 = wo; ) and after uplift ( A; = wh; ) approach infinity as the mass ratio y approaches

Zero.
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C.3 Relative Contribution to Deformation Response

It is well known that for linear systems, the contribution of high frequency modes to the
dynamic response of the system subject to earthquake type ground exeitations are usually neghi-
gible. In this section the significance of the contribution of the high frequency modes to the
deformation response, v, during full contact and after uplift, for the system with two-element

foundation are examined.

C.3.1 FEquations of Motion in Modal Coordinates

Denoting the matrix formed by the mode shapes during full contact, ¢, and after uplift,
¥, the displacement response in geometric coordinates, v, of the two-element system may be

expressed in terms of modal coordinates, Z, during full contact as

v = ®Z (C.9a)
and after uplift as
v=¥Z (C.9b)
where
o =|¢ ¢ ¢3; (C.10a)
V=14 ¥ ¥ | {C.10b)
and

ZT =[21 22 23] (C].OC)



113

The equations of motion in modal coordinates can be obtained by substituting equation C.9 into
the original equations of motion (2.2) and premultiplying the resufting matrix equation with the

transpose of equation C.10.

MZ + Ci + Kz = P(1) (C.11)
whete

M=¢"md (C.12a)
C=&"cd (C.12b)
K=0"kd (C.12¢)
P=a&"p | (C.12d)

during full contact, and
M=¥"mv¥ (C.13a)
C=%"c¥ (C.13b)
K=%"kv¥ (C.13c)
P=%"p (C.13d)

after uplift.
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C.3.2 Modal Contributions to Deformation Response

During full contact, the vertical vibration mode, ¢,, which does not contain structural de-
formation, u, is uncoupled with the rocking modes, ¢ and ¢;, and will not be excited by hor-
izontal ground motion. Thus the deformation response, u, is equal to the sum of the deforma-

tion responses of the first and third mode, i.e.,

u =7+ o2y = 0,°Z) + &y° 73 (C.14)

After uplift, the rigid-body mode, ¢;, does not contain structural deformation, and the defor-
mation response, i, is equal to the sum of the deformation responses of second and third

mode.

U =UnZy F U2y = A7, + A2, (C.15)

The relative contributions of the high frequency modes to deformation, ¥, may be determined

by examining their complex frequency response functions.

C.3.3 Complex Frequency Responses

Neglecting the static response due to gravity ( i.e. the constant terms in the load vector

p ) and assuming the horizontal ground motion to be a complex excitation of the form

i, (6) = a e (C.16)

where « is a real constant representing the magnitude of the ground acceleration. Then, the

steady state response in modal coordinates are also of the form
Z =17 e« (C.17)

where Z is a function of the ratio of the excitation frequency, &, to the fixed-base frequency,

w, of the structure alone. Successive differentiation of equation C.17 with respect to time, r,
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yields the velocity and acceleration vectors
Z = inl e (C.18a)
and

7 = — 27 & (C.18b)

Substituting equations C.16-18 into equation C.11 and cancelling the time dependent expongn-
tial term, ¢’“/, from both sides, a complex matrix equation as a function of the ratio of excita-

tion frequency, w, to the fixed-base frequency, w, alone is obtained:
[K~WM+@CZ=§ (C.19)

It can be shown that P is real and constant during full contact as well as after uplift. However,
the generalized coordinates vector Z, which is obtained by formally inverting the complex
matrix equation C.19, is in general complex. Once the complex frequency response in modal
coordinates of the system is known, the relative contribution of the high frequency modes dur-
ing full contact and afier uplift can be determined by examining the relative magnitudes of the
pseudo acceleration responses normalized with respect to maximum ground acceleration a,

including the high frequency modes contributions

) w’l @’z + wy¥z3|/ a full contact
= — — C.20
|’ |/a w X%z, + wilzy |/ a after uplift ( a)

and neglecting the high frequency mode contributions
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o’ wi’zy |/ a full contact

w?|X7z;]/ a after uplift (C.20b)

|w?u'|/a =

respectively.

The normalized pseudo acceleration responses as functions of the frequency ratio w/ w for
a series of typical two-element systems with mass ratio y = 0, varying slenderness ratio param-
eter o and frequency ratio B for both full contact and after uplift are obtained by solving equa-
tion C.19 numerically. Small structural and foundation damping ratios { & = (.05 and
£, = 0.15 ) are used to emphasize the responses. It was observed that for the case with full
contact, the pseudo acceleration responses including and neglecting the high frequency mode
are practically identical, whereas the agreement between the two responses for the case after
uplift is also very good with maximum difference of less than 5 percent in relative magnitude.
Further more, varying mass ratio y, aspect ratio parameter «, and frequency ratic 8 does not

seem to affect the quality of the agreement between the two responses.

Thus the contributions of the high frequency modes to the deformation response during
full contact and after uplift are negligible and can be analytically eliminated in the numerical

study of the behavior of the structural foundation system.
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APPENDIX D: NUMERICAL PROCEDURES

The reduced systems of equations of motion of a structure on two-element foundation
described in Section 2.5 and a structure on Winkler foundation described in Section 3.4 are
integrated directly using the Newmark method assuming linear variation 6f acceleration. For
systems with constant mass, stiffness and damping matrices, this implicit method, which
satisfies dynamic equilibrium at the end of each time-step, is unconditionally stable. The details
are well documented and will not be repeated here.* At each time-step, the displacement v, 4,

is obtained by solving the following matrix equation:

K.via =Ry, (D.1)

where K, and R, ., are the effective stiffness matrix and effective load respectively. For the
structural systems considered here, the effective stiffness matrices are two-by-two and equation
D.1 can be solved efficiently using Cramer’s rule. Because the transformation matrices used in
reducing the original equations of motion -- T { equation 2,20 } -- for the system with two-
element foundation and -- ¥ ( equation 3.7 ) -- for the system with Winkler foundation as
well as the stiffness and damping matrices for both systems depend on the contact condition
through the contact coefficients €, and e, ( equations 2.2 and 3.2 )}, the effective stiffness
matrix for both systems also depend on the contact condition. Satisfying equilibrium at the end
of the time-step requires that the effective stiffness matrix K, used in obtaining the displace-
ment v, a, be constant over the entire time interval Az and correspond to the contact condition
at time t+Ar governed by the yet unknown displacement v,.,,. To ensure this correspon-

dence, special procedures are incorporated into the original integration scheme.

S —
Bathe, K -J., and Wilson, E.L., Numerical Methods in Finite Flement Analysis, Prentice-Hall, 1976.
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D.1 Structure on Two-Element Foundation

As discussed in Section 2.2, there are three contact conditions for a structure on two-
element foundation: (1) contact at both edges, (2) left edge uplifted, and (3) right edge
uplifted. Under each contact condition, the mass, stiffness, damping as well as the transforma-
tion matrices are constant. Based on numerical resuits observed, the effective stiffness matrix
corresponding to each contact condition differ significantly from the others. Constancy of the
effective stiffness matrix over the entire interval of integration implies that the contact condi-
tion corresponding to the displacement at the end of the time-step must be the same as the one
at the beginning of the time-step. Otherwise, the interval of integration has to be divided into
two subintervals with the first ending at incipient uplift or recontact so that within each subin-
terval constant effective stiffness matrix corresponding to the same contact condition may apply.
Fortunately, due to the nature of the system and the excitations, the displacement response
varies smoothly with time. The system stays under each particular contact condition for rela-
tively long periods of time and only a few transitions from one contact condition to another

occur over the entire duration of the response.

To avoid recomputation of the effective at each time-step, the effective stiffness matrices
K, ;, j = 1,23, for the three contact condition are stored. At each time-step, the effective
stiffness corresponding to the contact condition at the beginning of the time-step is used in
equation D.1 to obtain the displacement v,,,,. Then the contact condition at the end of the
time-step corresponding to v,,,, is evaluated. If the resulting contact condition is equal to the
one at the beginning of the time-step, the integration for the time-step is completed and no

iteration 1S necessary.

However, in the few occasions when the contact condition corresponding to the displace-
ment at the end of the time-step is not equal to the assumed one, i.e. a transition occurs, itera-
tion is required to ensure that the edge involved is at incipient uplift or recontact, i.e. v, =0,

i = | or r, at the instant effective stiffness matrix is changed in the integration procedure. The
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time-step is divided into two subintervals: nAr and (1 — % )}A¢, with ¢ + nArs being the time at
which one edge of the foundation mat is at incipient uplift or recontact. The ratic n is obtained
iteratively base on the ratio of the magnitude of the edge displacement from v, at time ¢ to
V, i4mar = 0 at time r+mA¢ to the magnitude of displacement from v, .., at time £ to v; 44, at
time t+A¢ assuming no transition has occurred. This linear interpolation is repeated until the
magnitude of the edge displacement obtained at time f+nA+ is less than a predetermined toler-
ance limit. The displacement, velocity, and acceleration at corresponding to this transition time
t+mAt is determined. Then the integration is carried out for the remaining part of the time-
step with step size equal to (1 —x)Ar using the new contact condition and the displacement,
velocity, and acceleration at the transition as initial vatues. The typical step size used in this
procedure is Ar = .01, which is significantly larger than that required to accurately integrate

the original three degrees-of-freedom system as discussed in Section 2.5.

D.2 Structure on Winkler Foundation

The reduced sysiem of equations is integrated numerically using the same implicit New-
mark method assuming linear variation of acceleration as mentioned above. At each time-step
the displacements in modal coordinates Z,.,, is obtained by solving iteratively the nonlinear

matrix equation

K, (el ) Zn =Ry (D.2)

where the effective stiffness matrix‘K(, {e,}) and the effective load R,.4,; depend continuously
on contact coefficient €,. Unlike the system of a structure on two-element foundation, the sys-
tem of a structure on Winkler foundation has, theoretically, infinitely many contact conditions
due to the continuous nature of supporting spring-damper elements, Fortunately, like the sys-
tem supported on a two-element foundation, the displacement response of the system sup-
ported on a Winkler foundation is also smooth. Under this assumption, the changes in the

coefficients of the stiffness, damping, transformation, as well as effective stiffness matrix over
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the time interval At are small for sufficient small Af’s, and the requirement for matching con-

tact conditions at the beginning and ending of the time-step may be relaxed.

To avoid costly computation of the effective stiffness matrix K, (e} at each iteration
corresponding to the new set of foundation-mat rotation and vertical displacement, only a finite
( yet sufficiently large ) number ( say n ) of effective stiffness matrices { K, ,...., K., |

corresponding to a set of discrete values of contact coefficient { €1, 5o € } are determined and

stored. At each time step, dynamic equilibrium is satisfied at the end of the time step with the

effective stiffness matrix K, ; =K, (e;}) chosen from the ones stored corresponding to the
contact coefficient €, closest to the one given by equation 3.3a using the foundation-mat rota-

tion and vertical displacement obtained from the previous iteration. Convergence is achieved at
the /" cycles when the effective stiffness matrix K, ¢ used for the particular iteration is ident-

ical to the effective matrix K, ;41 corresponding to contact coefficient €1 e given by the

resulting displacement { 484D v %P | which are in turn derived from the generalized dis-

placement vector 7.4} through the transformation equation 3.7; or equivalently convergence

is achieved whene; . =¢€ .

This procedure to eliminate the contribution of the high frequency component is similar
to the Ritz method used in the two-element system analysis. If the foundation mat is massless,
this procedure is equivalent to the static condensation approach outlined in section 3.2. The
typical step size used in this procedure is 0.001 second. Such small step size is needed to obtain
stable and accurate solutions and ensure convergence of the solutions of equation D.2 within a

few cycles at each time-step.

The numerical procedure may be summarized as follows:
1, For i =0, using the known generalized displacement Z,, velocity i, and
acceleration Z, at time step ¢ as initial estimate of generalized displace-

ment, velocity and acceleration of the system Z%h,, Z. %, and Z9,
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respectively, determine contact coefficient €10 effective stiffness matrix
K. ;i;y, and effective load R/, based on { 48y, vih, )} derived from
Z!(-;-)Ar'

Solve equation D2 to obtain the new values of generalized displacement,

velocity and acceleration:

G+l) g l+l) 77 (41
ZzwILA.' 5 ZH—AJ 5 ZfJ[rAt .

Evaluate new coefficient of contact e; =~ base on { PR A S

derived from Z, (%),

Check convergence:

6 —
Goen o Sl

If yes, iteration for this time step has completed.

Otherwise, using the new €, determine new effective stiffness matrix

(i+1)?

K. +1) and evaluate new effective load R [%) .

Advance counter: / =/ + 1 and repeat procedure starting at step 2.
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