pR&H - 111 4CT

A PROBABTLISTIC PROCEDURE FOR
DETERMINING THE SEISMIC LOAD AGAINST
RETAINING WALLS THAT ACCOUNTS FOR
STRENGTH VARTABILITY

by

D.A, Grivas and 5. Slomski

Report No, CE-82-8

Department of Civil Engineering
Rensselaer Polytechnice Insittute
Troy, New York 12181

Sponsored by the Earthquake Hazard Mitigation Program
of the National Science Foundation under Grant No.
PFR-7905500

REPRODUCED BY )
NATIONAL TECHNICAL
INFORMATION SERVICE

ULS. DEPARTMENT OFf COMMERCE
SPRINGFIELD, YA, 72181

July 1982

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do net necessarily reflect the views
of the National Science Foundation,






. . P T e P SRTEERERE SRR S B el AR

80272101

RT MENTATION L REPORT NO, b X Racipient's Accessi o.

REPORT et NSF/ CEE-82200 , PEE G ITTES 7

4. Thie 9nd Subtitie L. L. K Report Date
Probabilistic Procedures for Determining the Seismi¢ Load July 1982
Against Retaining Walls That Accounts for Strength Variability [«

7. Author(s) 8. Performing Organization Rept. No.
D.A. Grivas, S. Slomski CE-82-8

9. Performing Organization Name and Address 10. Project/Tesk/Work Unit Ne.
Rensselaer Polytechnic Institute ° .
Department of Civil Engineering §1. Contract(C) or Grant(G) No.
Troy, NY 12181 ©

w CEE7905500
12 sp ing Orgenization Name snd Address 13. Typs of Raport & Pariod Covered

Directorate for Engineering (ENG)
National Science Foundation

1800 G Street, N.W. 16,
Washington, DC 20550

15. Supplementary Notes

Submitted by: Communications Program (OPRM)
National Science Foundation

_ Washington, DC 20550

16. Abstract (Limit: 200 words)

Methods available for the determination of the force system acting on rigid retaining
walls under static or seismmic conditions are reviewed. The function of random soil
parameters is described statistically. Two techniques capable of providing approxi-
mations to the statistical valtues of functions of random soil properties are investi-
gated. It is determined that the point estimates method is more accurate and easier
to implement than the series approximation method. In a similar investigation of
procedures available to describe the spatial variability of soil properties, it is
concluded that the quasi-stationary autoregressive method provides a better approach
than the average mean-crossings distance method or the moving average method. The
effect of important material, loading, and model parameters on the force system
against rigid retaining walls is considered.

17. Document Analysis s. Descriptory

Soils _ Soil properties Dypamic structural response
Walls Mathematical models  Earthgquake resistant structures
~Retaining walls Earthquakes Computer programs

Loads {structures)

b. identifiers/Open-Ended Terms .
Ground motion _ D.A. Grivas, /PI

&. COSAT! Field/Group

18 Avsilability St "t . 19. Security Clsss (This Report) 25. No. of Pages
NTIS 20. Security Class (This Page} 2. Price
(S0 ANSL-Z29.18) . Soe instructions on Reverse OPTIONAL FORM 272 (4-77)

(Formerly NTIS-35)
. Dep nt of C




TABLE OF CONTENTS

LIST OF TABLES »* * - . . - ’ * * » L] . . . . - * . * . -

LIST OF FIGURES . . . . & & & v 4 o v & o o & o &

LIST OF SYMBOLS & ¢ 4 v ¢ ¢ ¢ 4 4 & & o s o « « o o o

PREFACE + .t e s v ¢« o o s & o o o o o o o s &« 2 s o 4+ s

ABSTRACT, v v v v 4 4 6 & o o & s o o o o o « o o o o« »
1. TECHNICAL BACKGROUND . . . &+ +v & 4 v v o o« o &

1.1 Theoretical Methods . . . ¢ &« « &« &« o &« &+ &

1,1.1 The Coulomb Method . . . . . . . . . .

1.1.2 The Mononobe-~-0Okabe Metheod. . . . . . .

1.1.3 The Prakash-Basavanna Method . . . . .

1.1.4 Other Methods. . v « + ¢ ¢ v « o « + W

1.2 Observations During Model Tests . . . . . . .
1.3 Scope of the Present Study. . . . . . + « « &

STATISTICAL VALUES OF FUNCTIONS OF RANDOM SOIL
PARA}E TERS - - L[] . * . - . * * - . - * . [ * - L -

2.1 Soil as a Statistically Homogeneous Medium,
2.2 Exact Statistical Values of Functions of

Random Parameters . . . . . e e e e
.3 Series Approximation Method (SAM) s e e e e
.4 Point Estimate Method (PEM) . . . . . . . . .

2.4.1 Two-Point Estimates. . . « . « « « «
2.4.2 Three-Point Estimate . . . . . . . . .

2.5 Comparison of Approximate and Exact Methods .
VARIABILITY OF SOIL DEPOSITS . « +v v ¢ = v « ¢« « «

3.1 Spatial Variability of Soil Properties. ., . .
3.2 Soil Properties as Random Functions of Depth.
3.3 The Autocorrelation Funetion., . . . . . . . .
3.4 Modeling the Soil Profile Using the

Autocorrelation Function. . . . . . . . . . .

3.4.1 The Average Mean—Crossings Distance
Method (AMCDM) ~. . . . . . N
3.4.2 The Moving Average Method (MAM) . e

ii

Page

vii

xiii

xiv

(el o W o o ol

N D

14
14
15
16
17

17
19

23
32
32
33
36
37

38
43



TABLE OF CONTENTS

(Continued)
Page
3.4.3 The Quasi-Stationary Autoregressive
Method (QSARM). . . . . . . ¢« ¢« &« ¢« « o .+, 47
3.5 Case Study . « . . e e e e e e e e e e e e 51

SEISMIC EARTH THRUST AGAINST RETAINING WALLS. . . . . . . 61

4.1 Vertical Variability of the Frictional

Component of Backfill Strength . . . . + « « + « 4+ . 61
4.2 Determining the Seismic Earth Thrust

Considering Moment Equilibrium and

Vertical Variability . . . « .« + « ¢ « ¢« v ¢ « v . . b4

4.2.1 8Single Layer Representation of the

Backfill. . . . . . . . e e e e 65
4.2.2 Multi-Layered Representation of the

Backfill. v v ¢ ¢ ¢ & ¢ o o 4 & s o o+ « « . 69

PARAMETRIC STUDY. + « + + + v v v v o v e v o e v e v s T7
5.1 Parameters and Conditions Considered . . . . . . . . 77
5.2 Expected Value of the Actiwve Earth Thrust. . . . . . 80

2.1 Effect of the Backfill Medel. . . . . .« . e 80
2,2 Effect of the Angle of Intermal Frlctlon . . 88
.2.3 Effect of the Maximum Ground Acceleration . . 88
2.4 Effect of the Angle of So0il~-Wall Friction . . 88
2.5 Effect of the Inclination of the Retaining

Wall, o v v o o v o v o o s 4 e o v 0 e 4 a s 88
5.2.6 Effect of the Inclination of the Backfill , . 95

5.3 Coefficient of Variation of the Active

Earth Thrust + v v v v ¢ o o o o o s o o o o o & o = 95
. 5.3.1 Effect of the Backfill Model. . . . . e 95
5.3.2 Effect of the Angle of Internal Frlctlon . . 95
5.3.3 Effect of the Maximum Ground Acceleration . . 95
5.3.4 Effect of the Angle of Soil-Wall Friction . . 96
5.3.5 Effect of the Inclination of the Retaining

Wall- LI S T S S Y S S S A 2 T T T T SR S | 96
5.3.6 Effect of the Inclination of the Backfill . . 96

5.4 Expected Value of the Point of Application of the
Active Earth Thrust. « + « « v ¢« v o o ¢ o v o v o« 97

iii




Effect
Effect
Effect
Effect
Effect
Wall.

Effect

6. COMPARATIVE STUDY

13

TABLE OF CONTENTS
(Continued)

Page

of the Backfill Model. . . . . . « . . 97
of the Angle of Internal Friction. . . 97
of the Maximum Ground Acceleration . . 97
of the Angle of Soil-Wall Friction . . 103
of the Inclination of the Retaining

S o K
of the Inclination of the Backfill . . 103
- . * . . . 3 . . * . » . . . - . . . 1.04

6.1 Comparison Between Model Tests and Present
Procedure,

6.2 Comparison Between the Mononobe-Okabe

O 1074

Method and Present Procedure . . . . + « « + « + « . 107

7. DISCUSSION.

.

B &

8. SUMMARY AND CONCLUSIONS . . + « & + o o v o o o v o o o« . 121
9.  REFERENCES. + v = o v o o v e e v v e e e e e e e e 125
APPENDIX — COMPUTER PROGRAMS « + + « o v o o « o o « o « o + . 128

iv



Table
Table
Table
Table

Table
Table
iable
Table
Table

Table
Table
Table

Table

1.1

2.1

2.2

2'3

2'4

2.5

3.1

3.2

3.3

3.4

3‘5

3.6

3.7

LIST OF TABLES

Model Test Results of Rigid Walls Under
Earthquake~Like Loads. . . . . . . . . . . .

" Comparison of the Exact and Approximate

Expected Values of Several Functions . . . .

Effect of Coefficient of Skewness on the
Expected Value of Several Functions. . . .

Statistical Parameters of Three Symmetrical
Distributions. + « & ¢ &+ + ¢« 4 4 6 4 4 4 e o

Effect of the Coefficient a on the Expected

Value of Exponential Functions for Symmetric
Distributions. . . . « + ¢« v ¢ v ¢ v 4 4 . .

Effect of the Coefficient a on the Variance
of Exponential Functions for Symmetrical
Distributions. « + ¢« ¢« 4+ ¢ ¢« 4 4 e 4 0 0w

Procedure for Estimating the Correlation
Length & of a Soil Property Using the
Average Mean-Crossings Method. . . . . . . .

Procedure for Estimating the Correlation
Length % of a Soil Property Using the
Moving Average Method. . . . . . . . . « . .

Procedure for Estimating the Correlation
Length & of a Scoil Property Using the
Quasi-Stationary Autoregressive Methed . . .

Values of 5 at Various Depths along
A_l Borehole . . . » . » . + - . » . . . *

Values of S at Various Depths along
A-2 Borehole .+ « « ¢« 4 v v 0 v s e e s e e

Values of Su at Various Depths along
B-1 Borehole . . « + & v v « 4 4 4 . . s

Values of Su at Various Depths along
B"Z Borehole - . - . - - - - . . - . . * . .

Page

16
24
26

28

29

30

42

48

53
54
55
56

57



LIST OF TABLES
{Continued)

Page

Table 3.8 Numerical Values of Parameters for the Four
Boreholes in the Case Study. . . + ¢ + ¢« .+ « . . 58

Table 3.9 ‘Values of the Correlation Length, Number
and Thickness of Independent Layers for
the Case Study « . v ¢ ¢« v ¢ ¢ ¢ 4 ¢ o s o o & @ 60

Table 5.1 Point Estimates of the Angle of Internal
Friction and the Ground Acceleration for
the Single-Layer Model of Backfill . . . . . . . 81

Table 5.2 Point Estimates of the Angle of Internal
Friction and the Ground Acceleration for
the Multi-lLayer Model of Backfill. . . . . . . . 82

Table 7.1 Reported Values of the Correlation Length
of the Undrained Shear Strength of Clays . . . . 119



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1.1

1.2

1.3

2.1

301

302

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

LIST OF FIGURES

Force SBystem on the 8liding Soil Mass in
Accordance with the Coulomb Method. . . . .

-Force System on the Sliding Soil Mass in

Accordance with the Mononobe-Okabe Method .

Superposition of Forces Acting on the
Sliding Wedge (After Prakash and
Basavanna, 1969). . . . . . . < . . . . .
The Effect of the Coefficient in the
Exponent of y=e °° on the Expected Value

of F. . v 0 i e e e e e e e e e e e e e

Schematic Representation of the Vertical
Variability of Undrained Shear Strength Su
for Normally Consolidated Clays . . . . . .

Vertical Distance Between Two Points
Appearing in the Autocorrelation Function .

Two Examples of Vertical Variability of a
Soil PropeTty X + o + o o o & s o v o o o .

Soil Profile for the Average Mean-Crossings
Distance Model. . . . . . . . « & &+ + &« o &

Soil Profile for the Moving Average Method.

Variance Reduction Function of the Spatial
Variances of Soil Property x. . . . . . . .

The Assumed Soil Profile for the Quasi-
Stationary Autorepgressive Method. . . . . .

The Two Represéntations of the Backfill
Medium as Obtained From the Autocorrelation
Function. . + v ¢« ¢ v o 4« ¢ v 4« 4 e s s e s

Force System on Sliding Scil Mass . . . .

Location of Backfill Slices for the Multi-
Layer Backfill Model. . . . . . . . . . . .

vii

Page

31

34

35

39

41
44

46

52

63

66

70



Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1

Figure 5.2
Figure 5.3

Figure 5.4
Figure 5.5

Figure 5.6

Figure 5.7
Figure 5.8
Figure 5.9

Figure 5.10

LIST OF FIGURES
(Continued)

Forces on the i-th Slice of the Backfill
Medium. . & ¢ & v ¢ « 4 ¢ o & o o & 2 e o = . .

‘The Unknown Forces on the Backfill for

the Multi-Layer Model . . . ., . . . . . ., . .

Definition of Elemental Weights Appearing
in Equations (4.11) and (4.12). . . . . . . . .

Geometry and Material Parameters of the
Retaining Wall Used in the Parametric Study . ..

Effect of Mean Value of the Angle of Internal
Friction on Expected Value of Active Earth

Thrust. L) . - [ . . » . . * L] * . L3 L] - * * L] - ’

Effect of Direction of the Max. Vertical Ground
Acceleration on Expected Value of Active Earth
Thrust. . . * L] » - * . [ * . - * . . * * . . *

Effect of Angle of Soll-Wall Friction on
Expected Value of Active Earth Thrust . . . . .

Effect of Inclination of the Back Face of
Wall on Expected Value of Active Earth Thrust .

Effect of Inclination of Backfill on Expected
Value of Active Earth Thrust. . . + « « . « . .

Dependence of Coefficient of Variation of
Active Earth Thrust on Mean Value of the Angle
of Internal Fricection. .« .+ ¢« + « ¢ o ¢ ¢ o v o

Dependence of Coefficient of Variation of
Active Earth Thrust on Direction of Max.
Vertical Ground Acceleration. . « +. .« « &+ + + .

Dependence of Coefficient of Variation of
Active Earth Thrust on Coefficient of
Variation of Max. Ground Acceleration . . . . .

Dependence of Coefficient of Variation of
Active Earth Thrust on Angle of Soil-Wall

Friction., +« & & o = ¢ ¢ o & o« o 2 4 o & o & & o

vidii

.

Page

72
74
75

78
83

84
85
86

87
88
90
91

92



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure

Figure

5.11

5.12

5.13

5.14

5.15

5.16

5.17

6.1

6‘2

6.3

6.4

7.1

7.2

LIST OF FIGURES
{Continued)

Dependence of Coefficient of Variation of
Active Earth Thrust on Inclination of the

"Back Face of Wall. . v v v v ¢ v o« o « o &

Dependence of Coefficient of Variation of
Active Earth Thrust on Inclination of
Backfill . v & v ¢ 4 6 b e e h e e e e e e

Effect of Mean Value of Angle of Internal
Friction on the Expected Location of Active
Earth Thrust . . . . . . . .+ ¢« « « o . ..

Effect of Direction of Max, Vertical
Acceleration on the Expected Location of
Active Earth Thrust., . &+ « « « + o o ¢ o o &

Effect of Angle of Soil~-Wall Friction on
the Expected Location of Active Earth Thrust

Effect of Inclination of Back Face of the
Wall on the Expected Location of Active
Earth Thrust . .+ + ¢ 4 o o o o o « o s o o«

Effect of Inclination of Backfill on the
Expected Location of Active Earth Thrust . .

The Active Earth Thrust Against a Model
Retaining Wall (after Mononobe and Matsuo,
1929) . * » . . . . . . . - - » 0 . - . - « a

The Active Earth Thrust Against a Model
Retaining Wall {after Jacobsen, 1939). . . .

Limitation of the Mononobe-Okabe Analysis
For Determining the Active Earth Thrust. . .

Limitation of the Mononobe~Okabe Analysis
For Determining the Active Earth Thrust. . .

Two Mean Value Functions of the Undrained

Shear Strength for Borehole B-1. . . . . . .

Dependence of the Mean Value of Undrained
Strength on the Origin . . « + o « &+ ¢ &+ + &

ix

Page

93

94

98

99

100

101

102

105

106

109

111

115

117



ENGLISH CHARACTERS

k*

4

LIST OF SYMBOLS

Horizontal component of maximum ground acceleration
Vertical component of maximum ground acceleration

Distance between the base of the wall and the point

of application of active earth thrust

Thickness of the equivalent statistically independent

layers
Expected value of the quantity in brackets.
Force normal to interface between slices

Probability density function of the quantity in

parenthesis
Acceleration of gravity
Height of retaining wall

Distance between base of retaining wall
and point of application of interslice normal

force

Inclination with the horizontal direction of surface

of backfill material
Constant
Number of data point included in spatial averages

Parameter entering the variance reduction function



ENGLISH CHARACTERS (Continued)

Correlation Length

Number of data points

Number of equivalent statistically independent layers
Active earth thrust (under static conditions)

Active earth thrust (under seismic conditions)
Passive earth thrust (under seismic conditions)

Probabilities associated with the point approximation

of a random variable
Resultant force on failure plane
Autocorrelation funetion

Undrained shear strength

Ratio of material parameter x(z) over depth =z

Spatial averages of k consecutive points
Coefficient of variation

Shear force along interface between slices
Variance of the quantity in brackets

Weight

Random variable

Function'of the random variables in parenthesis
Depth

Distance between two consecutive uniformly-spaced

points along a borehole

x1



GREEK CHARACTERS

Coefficient of skewness (normalized third central

moment )

Coefficient of kurtosis (normalized fourth central

moment )

Inclination with the vertical direction of the back face

of the retaining wall

Parameters used in the quasi-stationary autoregressive
method

Unit weight of the backfill material

Variance reduction function

Angle of séil—wall friction

Distance between two.consecutive mean-crossings of

the value of a material parameter
Error term

Inclination of the failure plane with the horizontal

direction

Angle of rotation of the direction of maximum accelera-

tion (in Mononobe-Okabe analysis)

Central moment

‘Variance

Spatial wvariance for k consecutive points
Correlation coefficient

Angle of internal friction of the backfill material

xii



PREFACE

This is the second in a series of reports on the research
pfoject entitled "Reliability of Soil Retaining Structures during
Earthquakes". This study is sponsored by the Earthquake Hazard Miti-~
gation Program of the National Science Foundation under Grant No.
PFR-7905500, and 1s directed jointly by Dr. Dimitri A. Grivas, Associlate
Professor of Civil Engineering, Rensselaer Polytechnic Institute, and
Dr. Milton E. Harr, Professor of Civil Engineering, Purdue University.
Drs. Ralph B. Peck and Neville C. Donovan serve as advisors to the
project of which Dr.‘Miéhael Gaus is the Earthquake Hazard Mitigation
Program Manager. |

The authors are thankful to the National Science Foundation
for sponsoring this research. Special thanks are also extended to

Mrs. Betty Alix and Mrs. Jo Ann Grega for their typing of this report.

*

viil



ABSTRACT

A procedure is presented for the determination of the force
system acting on rigid retaining walls located in an earthquake environ-
ment, This is based on a guasi-static, Coulomb type analysis that satis-
fies the additional requirement of equilibrium of moments and, at the same
time, it accounts for two important uncertainties: the spatial (vertical)
variability of the strength of the backfill material and the randomness
in the value of the seismic loading. The latter is introduced intoc the
analysis in tefms of the maximum ground accelerétion expected to occur
at the site of the retaining wall during an earthquake.

As a part of this study, an investigation is made of two tech-
niques capable of providing approximations to the statistical-valﬁes of
functions of random soil properties (case of statistically homogeneous
soil deposits). It is concluded that the "point estimates method" is
more accurate and easier to implement than the "series approximation
method". Moreover, in a similar investigation on procedures currently
available for the description of the spatial variability of soil proper-
ties (case of heterogeneous soil deposits), it is concluded that the
"quasi-stationary autoregressive method" provides a better approach than
>the “a?erége mean-crossings distance method" and the "moving average
method". This is particularly true for the commoﬂly encountered situations

of limited data available or of soil properties exhibiting a trend (e.g.,



increase) with depth.

The quasi-stationary, autoregressive method is subsequently
employed to describe the verticzl variability of the strength of cchesion-
less backfill.materials, This results to two distinct but equivalent
models for the backfill (a single-layer and a multi-layer representation)
both of which are presented and discussed.

The effect of important material, locading and model parameters
on the force system against rigid retaining walls is examined in a com-
prehensive parametric study, the findings of which are presented in a

series of figures and tables.






CHAPTER 1

TECHNICAL BACKGROUND

A brief review is presented herein of the methods available
for the determination of the force system acting on rigid rétaining
walls under static or seismic conditions. This is followed by a summary
of the knowledge that has been acquired on the subject through tests
performed on models of ?etaining walls under simulated earthquake con-
ditions. ¥Finally, the scope of this study is presented together with

an overview of its content.

1.1 Theoretical Methods

1.1.1 The Coulomb Method

The first procedure for the determination of the earth thrust
against retaining walls was proposed by Coulomb in 1776. It is based on
the notion that failure of a retaining wall is accompanied by a sliding
of the s0il mass located in the back of the wall and on the following
assumptions:

(a) the failure surface has a planar shape;

(b) the shear strength of the soil material is fully

mobilized‘élong the failure plane; and

(c) the lateral earth pressure on the wall increases

linearly with depth.



The first two assumptions are valid if the wall experiences
a sufficient movement during failure. While the third assumption
is valid only in the case of smooth, vertical walls with a horizontal
backfill (Terzaghi, 1936). Moreover, results obtained with model walls
have shown that the third assumption is definitely imnvalid for walls
under dynamic loading conditions (Matéuo and Ohara, 1960; Ichihara,
1965; Nazarian and Hadjian, 1979; etc.).

In Fig, 1.1 is shown schematically the force system acting on
a retaining wall and its backfill material in accérdance with the Coulomb
method. This includes the weight of the backfill, W, the resultant of the
shearing forces, R, and the earth thrust against the wall, P. The value

of the latter was found by Coulomb to be equal to

» o YE ran(e-9)

A 2 tanf 1.1
in which
v = the unit weight of the backfill,
H = the height of the retaining wall,
$ = the angle of intermal friction of the backfill
material and
‘8 .= the angle ﬁétwéen the failure plane and the

- horizontal directiom (B8 = 45° + ¢/2).
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FIGURE 1.1 FORCE SYSTEM ON THE SLIDING SOIL MASS IN ACCORDANCE WITH THE COULOMB METHOD



1.1.2 The Mononobe-0Okabe Method

The Coulomb theory was considered to be sufficient for the
design of retaining walls for approximately one and a half century.
The 1923 earthquake in Xwanto, Japan, however, brought to the attention
of the engineering community the effects that earthquakes Eave on retain-
ing walls which, in turn, generated considerable interest on the subject.
Thus, in the late 1920's Okabe (1926) and Mononcbe (19%29) proposed a
method for determining the "dynamic" loads on retaining walls due to
earthquakes. This method commonly referred to as ‘'the Mononobe-Okabe
Method" is basically a simple extension of Coulomb's theory which
includes the seismic force on the backfill material. The additional
assumption was made that the acceleratién of the backfill is uniform
;hroughoﬁt the soil mass. This allowed the seismic forces to be expressed
as two additional body forces egual to.aﬁwvand avW élong the horizontal
and vertical direction, respectively. The resulted force system on the
sliding edge is shown schematically in Fig. 1.2.

The dynamic active earth thrust P

AE

shown in Fig. 1.2, was given by Mononobe (1929) as

against the retaining wall,

2
e .
Par =3 §1+av) L (1.2)

in which
cos? (¢-6-0)

2 rsin(o4+8)ein(¢$-6-1)+1/2.2
cosBeos acos(5+a+e)[l+{cos(5+a+9)005(i—a) ]

K =




: h 4
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FIGURE 1.2 FORCE SYSTEM ON THE SLIDING SOIL MASS IN ACCORDANCE WITH THE
MONONOBE~CKABE METHOD



Y = the unit weight of the backfill material,

H = the height of the retaining wall,

$ = the angle of internal friction of the backfill
material,

6 = the angle of soil-wall friction,

i = the inclination of the backfill with the horizontal,
¢ = the inclination of the back face of the wzall,
a
-1 h
§ = tan (l+a )s
v

a = the coefficient of the maximum horizontal ground
acceleration, in g's, and
a = the coefficient of the maximum vertical ground

acceleration, in g's.

Finally, it should be noted that the Mononobe-Okabe method
provides a dynamic component for the earth thrust that acts at the
nmidpoint of the retaining wall. This has been shown by model tests
to be unrealistic (Mononobe and Matsuo, 1929; Prakash and Nandakumaran,

1673; etec.).

1.1.3 The Prakash-Basavanna Method

Prakash and Basavanna (1969) proposed a method of determining
the éaéth thrust against a retaining wall and its point of application by
satisfying the additional requirement of equilibrium of moments. This
additional condition was used to derive (rather than assume, as was the
case for the Coulomb and Mononobe-Okabe methods) the point of applica-

tion of the earth thrust along the retaining wall.



The following assumptions were made in this method:

{(a) the pressure at any point is geostatic, and

(b} the principle of superposition is valid.

In fig; 1.3 is shown schematically the use of the principle
of superposition of forces as employed by Prakash and Basavanna.
Fig. 1.3(b) represents the force system on the soil mass for only hori-
zontal body forces and Fig. 1.3(c) that for only vertical forces. From
the conditions of equilibrium of moments around point A located at the
base of the wall, Fig. 1.3(a), the following expreésion was obtained for

the active earth thrust PAE:

- _ y#%sin(B+1) [cot(B+i)+cos (8-1)]

P (1.3)
AL ZSinZBsin(B+i-6)
[{(1+av)sini+ahcosi}tan(8+i-6) . (l+av)cosi+ahsini ]
tan(B+i-6)+tan(B-i~0) “cot(R+i-6)4cot (B-1i-¢)

in which 8 is the inclination of the failure plang with the horizontal,

The distance dA between the point of application of PAE and

the base of the wall was found using the expressions of the moment MA

of the force system around point A (Fig. 1.3) and of the active thrust

P given in Egqn. (1.3).

AE’



(a) Forces on Sliding Wedge (b) Horizontal Forces {(c) Vertical Forces

FIGURE 1.3 SUPERPOSITION OF FORCES ACTING ON_ THE SLIDING WEDGE (AFTER PRAKASH AND BASAVANNA, 1969)



1.1.4 Other,Methods

Other methods of determining the earth thrust against a
retaining wall have been presented in the literature. Dubrova (19635
developed a statlic method including the movement of the wall, while
Saran and Prakash (1977) extended Dubrova's theory to include seismic
conditions. Finally, Richar& and Elms (1979) developed a procedure
that is applicable for gravity walls only and includes a maximum limit
of acceptéble wall movements during earthquakes. A detailed presenta-

tion of these methods can be found in Vlavianos (1981).

1.2 Observations During Model Tests

]

Several investigators have performed tests on models of re-
taining walls in an attempt to determine the magnitude and distribu-‘
tion of the earth thrust behind the wall.

In general, these model tests were conducted with metal-
lined boxes filled with uniform clean sand., The wall was represented
by one sidé of the box which was hinged so movements could occur. The
soil pres#ure against thé hinged wall were measured by pressufe gaugés
whicﬁ were eithér buried in the fill near the wall or mounfed between

" the wall and a stationary support. The accelet“ations of the fill were
~induced by a shaking table or a falling pendulum.

Model test ?esuits for earthquake-like loads are summarized

in Table 1.1. There is general agreement that the height h, of the dy-

d

namic component of the earth thrust above the base of the wall varies



TABLE 1.1

MODEL TEST RESULTS OF RIGID WALLS UNDER EARTHQUAKE-LIKE LOADS

INVESTIGATORS TEST CONDITIONS FINDINGS
Mononobe and Matsuo (1929) Models of Retaining Walls 1. gynfmaﬁaforce at.
Apparatus: Metal lined box with a door hinged at base d
Pressure gauge 4.5 ft. above base (hd measured from
Mounted on a shaking table "wall base)
Dimensions: 4 £t high, 9 to 12 ft long .2, Worst Case:
Material 3 Uniform clean dry sand a toward wall
ngditions: Horizontal accelgra;iqn’.ﬂfq‘ﬁ_ah < 0.4¢g a, upward
Matsuo and Ohara (1960) ° Models of Quay Walls X 1. Dynamic force at
: Apparatus: Metal- or glass—lined box ) hd ~ 0.55H
Fixed or hinged at base
Pressure cells on wall centerline at 3
heights '
Mounted on shaking table
Dimengions: 0.4m high, 1.0m long
Material : Uniform clean sand, dry and saturated
Conditions: 0.2g E_ah < 0.4g
Ichihara (1965) Models of Retaining Walls . 1. 0.36H < hy < 0.44n
Apparatus: Metal lined wall inside a box
8 11s on wall face 2. Dynamic pressure =
pressure ce ‘ parabolic
Shakling table struck by falling pendulum 3. Failure plane located

Dimensions: 1m high, 5m long
Material : Uniform clean dry sand
Conditions: horizontal shock acceleration

3.3 < a < 4.2g

at B8 < 45° + ¢/2,
cr
slightly concave

(-
(o]



TABLE 1.1

(continued)
INVESTIGATORS . TEST CONDITIONS FINDINGS
Prakash et al. (1973) Models of Retaining Walls 1. 0.36H < h, < 0.444
Apparatus : Metal-lined wall inside a box 2. Dynamic pressure =
8 pressure cells on wall face araboldc
Shaking table struck by falling pendulum P
Dimensions: 1 m. high, 5 m. long 3. PFailure plane located
Material : Uniform clean dry sand at 0 < 45° + ¢/2,
| Conditions: horizontal shock acceleration
3.3g < a, < 4.28 slightly concave
Nazarian et al. (1979) Reviewed previously done model tests, including those by 1. hd'increases
Nandakumaran and Joshi :
parabolically as §
decreases
2. hd decreases with B
3. hd increases with
surcharge
4, hd increases linearly
with increasing ah
0.33H < h, < 0.66H

[
[
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between 0.35H and 0.65H, where H is the height of the wall.

1.3 Scope of the Present Study

In general, although a large amount of experience has
accumulated concerning the design and performance of retaining walls,
geotechnical engineers still face considerable uncertainties when
analyzing thelr stability. These refiect the variability of the mat-
erial parameters, the randomness associated with the applied loading
conditions, as well as the uncertainty associated with the employed
analytical proéedures.

None of the methods presented above considers the uﬁéertainties
involved in either the material parameters (including their spatial
variability) or the loading conditions. To explicitly qccoﬁnt for these
uncertainties and to provide a statistical description of the force
system on retaining walls during earthquakes is the overall objective
of the present study.

A statistical description of the functions of random soil
parameters 1s presented in Chapter 2. In Chapter 3 are given in detail -
methods available for the determination of the spatial variability of
soll properties together with a case study in which these methods are
épplied-aﬁd compared. Chépter 4 presents a procedure developed to
determine the earth thrust against a retaining wall which accounts for
the spatial variability of the strength of the backfill material and the

uncertainty around the exact value of the seismic loads. The results
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of a parametric study on the effect of important material, loading and
modeling parameters on the force system acting on retaining walls are
presented in Chapter 5. Finally, Chapter 6 provides a comparison of
results obtained from the developed procedure and those measured during

previously conducted model tests.



CHAPTER 2

STATISTICAL VALUES OF FUNCTIONS OF RANDOM SOIL PARAMETERS

2.1 Soil as a Statistically Homogeneous Medium

In geotechnical practice, the numerical values of soil
parameters are determined on the basis of measurements taken during
a few, relatively simple, field or laboratory tests. Because of the
inherent variability of the soil material and the errors that are
intrinsic to all experimental methods, the numerical value of any
measured soil parameter is expected to exhibit some degree of varia-
tion. This variation is properly accounted for by introducing soil
parameters as random variables, an approach that has been systemati-
cally pursued in recent applications of probabilistic methods in
geotechnical engineering.

Let x denote a random soil parameter and fx(x) its proba-
bility density function. If the statistical values (e.g., mean,
variance, etc.} and the probability density function of x remain
constant anywhere within a soil layer, then the latter is said to

represent a statistically homogeneocus medium. In this case, the

statistical characteristics of x may be obtained simply'by performing
a statistical analysis on the values of x as determined in the field
{measured at different points within the sazme soil layer) or in the
laéératory (measured through tests on samples drawn from different
locations of same soil laver).

In practice, however, one is often interested in the stat-

istical characteristics of a function of one or more random variables.

14
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An example of such a function is the expression for the earth thrust
against a retaining wall, in which the anglelof internal friction rep-
resents the random variable x; or, the expression for the factor of
safety of a slope under drained conditions, in which the soil cohesion
and its angle of internal friction are the random variables. A geo-
technical engineer's ability to provide a statistical description of

such functions 1s essential for a probabilistic formulation of the

problem at hand.

2.2 Exact Statistical Values of Functions of Random Parameters

Let y represent a function of a random variable x, i.e.,

y = y{(x) (2.1)

; probabilistic study of a geotechnical problem usually requires the
determination of the first two central moments of y, i.e., its ex-
pected value E[y] and variance V[y]. If fx(x) denotes the probability
density function of x, then the general expressions for E[y] and

Viy] are given as (Papoulis, 1965)

Elyl =y =/ vy £ (x) dx

-0

(2.2)

-4

Vivli=[ (-9 £(x) dx

-

For relatively simple functions of y and fx(x), the inte-
grations denoted in Eqns. (2.2) may be easy to perform analytically.
1f, however, the expressions for y and/or fx(x) are complicated, then

the indicated integrations may be difficult to accomplish. In this
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case, one has to perform a numerical integration or use some alter-
native, approximate method to obtain the statistical values of y.
Statistical theory provides two approximate ﬁethods of
determining Equns. (2.2): one, based on a Taylor's series approxi-
mation of y, ;nd, another, using a point estimate technique. These

two methods are presented below.

2.3 Series Approximation Method (SAM)

When the first and second derivatives of y(x) with respect
to x can be détermined, then a Taylor's series approximation of y
can be employed in order tc perform the integration appearing in
Eqns. (2.2).
A Taylor's series expansion of function y(x) about the

mean value X of the variable x has the following expression:
= - " - ~ !"(;() =2
yE) = y(x) + ¥y (X)X + 5 )T A (2.3)

in which the number of primes denotes the order of the derivative of
v(x) evaluated at the mean value X. By retaining only terms up to
the second order, the first two central moments of y are equal to

(Hahn and Shapiro, 1967)

o L
Ely] v(x) + CR (x) Ux
. (2.4)

iyl = '@ o

in which O is the standard deviation of x and all derivatives are

evaluated at X.



2.4 Point Estimate Method (PEM)

A general procedure for estimating the statistical moments
of a function of one or more variables was proposed for the first
time by Rosenblueth (1975). It is based on evaluations of the func-
tion at two oé more discrete points which can be easlly determined
from the statistical values of the random variables,

Thus, in the case of a function ¥ ¢f only one random vari-
able x, i.e., ¥y = y(x), the method requires that the continuous
probability density function of x be replaced by an equivalént dis—
crete distribution Px(xi) whose statistical values (e.g., mean,
variance, ete.) are identical to those of the continuous wvariable x.
The number and magnitude of the discrete values %, depend on the

statistical values of x and on the desirable level of accuracy.

2.4.1 Two-Point Estimates

The simplest possible representation of x by a discrete
variable Xy is one in which x is considered to be concentrated at
only two points.“These points may be conveniently denoted.as x_
and X, and correspond to values of x below and above its mean wvalue
X, respectively. There are two weights, P_ and P, that are assoc-
iated ﬁith the two point'éstimaﬁes of x and represent the perceﬁtage
of the density function fx(x) that is concentrated at x_ and X,

respectively. In discretizing %, the following conditions must be

satisfied:

17
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P+ x, + P_ X_ =X

(2.5)
-2 -2 2
P+(:;+ -x)" + P'(x_ - %) = o
-3 -3 _
P+(x+ -x)7 + P_(x_ -x)" = Gy O

in which a3 is the coefficient of skewness of x defined as

When the statistical values (x, cx, 33) of x are known,

from Eqns. (2.5) one can determine the corresponding values of X.»

X and P+, P_. These are equal to

1/2
R SIS S
P+ =3 1-3@a - 2) ]
3
1+ CEF)
P_=1-FP,
N (2.6)
x, = x + UX(P_/P+)1/2
1/2

L
il
]

x - s (P /P )

The sign preceding the parenthesis in the first of the equatious
ab;ve is opposite that of ds (i.e., po;itive, when @ < 0 and nega-
tive, when Gy > 0)., When aq < 0, the distribution is skewed to the
lower values of x; when g > 0, the distributien is skewed to the

higher values of x; and when ey = 0, the distribution is symmetrical.



19

The estimate of the m-th moment of function y has the

following expression:
E[y"] = P, y(x)" +?_y@&)" (2.7

The expected value Ely] and second moment E[yz] of v can
be found from Eqn. (2.7) by letting m become equal to one and two,
respectively. The variance V[y] of y can be determined by subtracting
the square of the expected value of y from its secondvmoment. Thus,

the expressions for E[y] and V[y] found from Egn. (2.7) are equél to

Elyl =P y(x) +P_y(x)

(2.8)

n

_ Viyl = B y(x+)2 +P_y@)? - Ely)?

2.4.,2 Three-Point Estimate

The point estimate method can be easily generalized to in-
clude more points in the distribution px(xi) in order to increése the
accuracy with which fx(x) is represented by px(xi). In this case,
the determinatioh of the point estimates of x and of the associated
weights require a previous knowledge of higher moments of x.

-A three point estimate can be made by locating the third
point at the mean value of x. In this case, five equations are
needed in order tc specify the distrete distribution of x, i.e.,, the

+

values of x_, x, and those of the probabilities P_, Po and P+ at x_,

X and X, respectively. The first of these equations is obtained as

the sum of the probabilities P_, P , P+, at the discrete values x_,

[}
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E, X, s respectively, equal to one. The remaining four equations are

provided by specifying the mean value, second, third and fourth cen-

tral moments of x. Thus,

P,+P +P_ =1

PLx, +P X+P_x =X

P(x, -0 +P_ . -0 = (2.9)
P+(x+ - §)3 + P_(x_ - §)3 = us oi

P (x, - §)4 +P (x_ - §)4 =, oi

where Po is the probability asscciated with x and e, is the coeffi-

cient of kurtosis of x, defined as

The coefficient of kurtosis refers to the degree of peakedness of the
distribution of x. The normal distribution, frequently used as a

standard of comparison for other distributions, has a value of ey

equal to three (¢, = 3). Thus, when a, < 3, the distribution is
4 4

flatter than the normal distribution, while when a, > 3, the distri-

4
bution is more peaked than the normal.

Equations {(2.9) represent a system of five algebraic equ-
ations with five unknowns: P_, Po’ P+, x_ and X . Solving Equs.
(2.9), it is found that '
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P =1- i
© a - Q
& 3
2 2 2 1/2
o 4oy o
2 -
P_= 2 7 {4+ 3 7t [ 3y 32 =1 1} 1
0.4—0.3 0.4-0.3 0.4*33 (14-(!3
a1
LI 2 P_ (2.10)
4 3
x, =x+0c_ [P (L+P/P )1'1/2
+ X =+ + -
P
- + -
x_=x - 5—-(x+ - x)

in which the sign preceding the brackets in the expression for P_ is
opposite that‘of‘aB'(i;e{,,positive,.whénza3‘< 0 and negative, when
Gy > 0).

In the case of three point estimates, the estimates of the

expected value and variance of y are expressed as

s

Ely]

P+y(x+) + Poy(x) + P_y(x_)
(2.11)

Pyx)? + 2 y®% + Py )? - By’

Viyl

The point estimgte method has been generalized for functions
of several random variables by Harrop-Williams ¢1980) and Howland (1981).

For the case of a2 function y of two symetrically distributed
random variables, i.e., ¥ = y(xl, xz),'whose‘statistical values and
correlation coefficient p are known, . the expression for the m-th

moment of y is equal to



o . . g

a

m. ) m m m m
Ely ] P++y(xl+,xz+) +P+_y(xl+,x2_) +P_+y(x1_,x2+) +P__y(x1_,x2*)
(2.12)
in which
- _ 1+
P TP
= = 1 - e
P+_ P_+ = A ’
and
y(xl+, x?_+) = y(xl *+ le’ *2 * dxz)
Y(Xl+, xz,) = y(xl +to_ ., %, =0, )
: 1 2
y(x;_s X)) = y(x; =0, X, + 0 )
1 2
ylx s %y ) = y(x; -0, %y = 0 ).
1 2
The general expression for Eqn. (2.12), for the case where y is a
function of n symmetrically distributed random variables, may be
written as
o 2 2 2
Blyd= T o L L [yy g Yiq..4) (2.1
1 =1 iz=l i, =1 172 n 172 n
T 1
in which
n-1 n i +i
1 : k2
P, . =— {1+ ) } =D Py o1,
gy @ =1 g+l ke
and
yiliz',”in = ylx, - (-1 le, x, = (1) cxz--..xn-(-l) vxn]

where pk£ is the correlation coefficient for the k-th and &-th variables.
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2.5 Comparison of Approximate and Exact Methods

Three methods of estimating the first two moments of a
function of one random variable have been presented in the previous
sections. These are the Taylor's series approximation, the two-
point estimate and the three-point estimate methods. In this sec-
tion, a comparison will be made between the statistical values of
functions obtained using the exact and the presented approximate
methods.

This is achieved using several expressions for fuﬁctién y
and frequency ﬁistribution fx(x) of the random variable x. Relatively
simple expressions are chosen for y and fx(x) so that the exa?t values
of the moments of y may be determined by the analytical expressions
given in Eqms. (2.2).

The first comparison examines the effects of the type of
distribution ¢f x on the estimated statistical moments of y. The
models used for fx(x) are the uniform, normal, exponential, and beta
distributions; while the functions employed are y = c¢(constant),

Yy =X, ¥ = xz, and y = e X. The results are presented in Table 2.1.

The expected value of the functicn is determined from Egn.
(2.22) and the Taylor's series approximation from Eqn. (2.4). The
discrete distribution of.i for use in the two-poiqt estimate is found
from Eqns. (2.6) and its expected value from Eqn. (2.8a).

From Table 2.1, it can be seen that, for the first three
functions examined, the resulting values of E[y] are equal to the

exact values, regardless of the type of distribution. In the case



Table 2.1 Comparison of the Exact and Approximate Expected Values of Several Functions

Expected Value

v = y(x) fx(x) Exact SAM PEM-2 point
Unilform C C C
Normal C C C
y=¢ Exponential C C C
Beta C C C
" Uniform 0.0 0.0 0.0
Normal 0.0 0.0 0.0
yEx Exponential 1.0 1.0 1.0
Beta 0.5 0.5 0.5
Uniform 3,0 3.0 3.0
9 Normal 1.0 1.0 1.0
yEx Exponential 2.0 2.0 2.0
Beta 0,33 0.33 0.33
Uniform 3.33 2.50 2.92
—x Normal 1.58 1.50 1.54
y=e Exponential 0.500 0.572 0.568
Beta 0.632 0.632 0.632

SAM = Series Approximation Method

PEM-2 = Point Estimate Method Using 2 Points

2
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of y = e-x’ there 1s a difference between the exact and the approxi-
mate values., Furthermore, it can be seen that the two-point estimate
method provides a better approximation than the Taylor's series
method,

The effect of the coefficient of skewness oq of % on the
statistical moments of y is examined by assuming x to follow the
general beta distribution. The lower and upper values of the latter
are taken to be equal to -2 and +2, respectively (i.e., -2 < x < 2),
while the coefficient of kurtosis of x is assumed to bg equal td
2.14. Case I involves a distribution skewed to the left with
as = -2.63; Case II a symmetrical distribution with ay = 0: aﬁd
Case III a distribution skewed to the right with @, = 2.63. The
fesults, obtained for several expressions of function y, are presented
in Table 2.2. They were found using Eqns. (2.4a), (2.8a), and
(2.11a), for the cases of a Taylor's series approximation, the two-
point and three-point estimates, respectively.

From Table 2.2, it is seen that, as in the previous com-
parison, the estimates for the polynomial functions do not differ
from the exact values of the first moment. Also, for the case where
y has an exponential form, the approximations obtained through the
point eétimate method are-better than those found using the Taylor's
series expansion.

Table 2.2 also shows that the three-point estimate is more
accurate than the two-point one. In many cases, the error associated

with the use of the two-point estimate method can be quite large.

For example, when y = xe ¥ and the distribution of X is skewed, the



Table 2.2 Effect of Coefficient of Skewness on the

Expected Value of Several Functions

Case I: fx(x) skewed to the left (u3 = -2.63)
Function Expected Value
I Exact SAM " “PEM-2 point "PEM-3 point
y = x -0.40 ~0.40 -0.40 -0.40
y = x° 0.80 0.80 0.80 0.80
y=e > 1.99 1.97 © 2.08 2.06
y=e ¥ | 238 12.9 22.5 33.8
v = xe>* | —0.20 0.72 0.13 -0.08
Case II: fx(x) symmetric (a3 = 0)
Function Expected Value
y Fxact SAM PEM-2_point PEM-3_point
y = x 0.00 0.00 0.00 0.00
R 0.80 0.80 0.80 0.80
y=e* 1.46 1.40 1.43 1.46
y=e ¥ | 14.0 4.6 7.40 12.4
y = x> | 0.00 0.00 0.00 0.00
Case III: fx(x) skewed to the right (a3 = 2,63)
Function Expected Value
Y. Exact SAM PEM-2 point PEM-3 point
y = x 0.40 0.40 0.40 0.40
g = x° 0.80 0.80 0.80 0.80
y=e>* 0.93 - 0.88 0.87 0.90
y = 3% 4.20 1.17 1.19 2.01
g =xe > | 0.20 | -0.72 —0.13 0.08

SAM = Series Approximation Method
PEM-2 = Point Estimate Method Using 2 Points
PEM-3 = Point Estimate Method Using 3 Points
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two-point estimate was found to have a sign opposite to that of the
exact value.

The final comparison examines the effect of wvarying the
exponent of function y on its statistical values. Function y is as-
sumed to'have-the formy = e—ax’ while coefficient a is allowed to
vary from zero to five (i.e., 0 < a < 5},

Three symmetrical distributions of x are used, all with the
same coefficient of kurtosis (a& = 2,14). The parameters of the d;s—
tributions are given in Table 2.3,

Tables 2.4 and 2.5 present the obtained results for the
expected value and variance, respectively. They were found using
Eqns. (2.8) and (2.11), for the'tWO;point and three-point estimates,
féspectively.

From Tables 2.4 and 2.5, it is seen that, for all cases,
the three-point estimate of the first two ﬁoments is better than that
found using the two-point estimate. However, the three-point estimate
1s not always in clﬁse agreement with the exact value. The error
between the two values increase as the value of the coefficient a in-
creases.

Figure 2.1 illustrates the effect of the coefficient in the
exponent of y on the expected value of y for the second case. It shows
that, as the value of the coefficient a increases, there is an in-
creasing difference between the estimated and the exact expected
value of vy.

¥rom Tables 2.4 and 2.5, it is seen that the point estimates
of the variance diverge more rapidly from the exact values than do the

estimates of the expected value.



Tabie 2,3 Statistical Parameters of Three Symmetrical Distributions

Mean Value Varlance Frequency Distribution Range
- 2
Case X o £ (x) a<x<h
x b’y - =
3 2
1 0.00 1.00 (5-x7) - 5 <x<
20 5
3 2
I1 0.00 0.80 32 (4-x7) -2 <x <2
111 0.50 0.05 6(x—x2) - 0<x <1

BC



Table 2.4 Effect of the Coefficient a on the Expected Value of Exponential Functions for

Symmetric Distributions 1

Coeff. ‘Case T Case II Case III
a Exact | PEM-2 | PEM-3 Exact | PEM-2 | PEM-3 Exact | PEM-2 | PEM-3
0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.60 1.54 1.60 1.46 1.43 1.46 0.622 | 0.622| 0.622
. 2.0 5.10 3.76 4,91 | 3.84 3.08 3.75 0.406 | 0.405| 0.406
3.0 23.2 10.1 19.4 14.0 7.35 | 12.4 0.278 | 0.275| 0.278
4,0 28, 27.3 82.0 61.1 17.9 bbb 0.198 | 0.193] 0.198
5.0 [786. 74.2 | 353, 297. £3.8 | 163. 0.146 | 0.139| 0.146

PEM~2 = Point Estimate Method Using 2 Points
PEM~3 = Point Estimate Method Using 3 Points

6¢



Table 2.5 Effect of the Coefficient a on the Variance of Exponential Functions for

Symmetrical Distributions

[

PEM-3

Point Estimate Method Using 3 Points

| Coeff. Case 1 Case II Case 111
a Exact PEM-2 PEM-3 Exact PEM-2 PEM-3 Exact PEM=2 PEM-3

.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.320 0.272 0.318 0.248 0.214 0.243 . 0.0077 } 0.0076 | 0.0077
1.0 2.55 | 1.38 2.36 1.69 1.04 1.62 0.0193 { 0,0187 | 0.0193

. 1.5 16.0 4,53 12.3 8.98 3.18 7.42 0.0281 | 0.0261{ 0.0280
2.0 101. 13,2 57.9 46. 4 " 8.45 30.4 0.0330 | 0.0289 | 0.0328
2.5 672. 36.6 260, 247, 21.4 118. 0.0348 | 0.0284 | 0.0345
3.0 4640, 100. 1150. 1360. 53.0 449, 0.0346 | 0.0260 | 0.0340

PEM-2 = foint Estimate Method Using 2 Points

og
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Expected Value of y=e
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E[e~ax]
100 +
50 =+
20 -+ :
Exact Value
?EM—Bpoint
10 <+
PEM-2point
5 +
2-—
1 . = — >
0.0 1.0 2.0 3.0 4.0

Coefficient a

FIGURE 2.1 THE EFFECT OF THE COEFFICIENT IN THE EXPONENT OF
y=e 2* ON THE EXPECTED VALUE OF y



CHAPTER 3

VARIABILITY OF SOIL DEPOSITS

3.1 Spatial Variability'of So0il Properties

A fundamental task in geotechnical engineering involves the
establishment of the soil profile and the determination of the values
of soil properties within the various'soil layers. This is commonly
achieved through a geolegical examination of the area, a subsurface
exploration, and a testing program consisting of in situ and/or-

laboratory tests. The latter provide continuous or discrete with

depth records of the numerical values of soil prowerties which are

used to subdivide the soil deposit into laygrs.

B It is well known, however, that even within the same layer
there is an inherent variability in the values of soill properties,
In the case of natural deposits, this variability is due mainly to
the randomness associated with the geological processes that are in-
volved in the formation of the deposits. A similar variability also
exists within layers of man-made soill structures (e.g., random
fluctuations of water content cor relative denmsity within fills, em-
bankments, etc.).

Moreover, if a soil mass 1s composed of approximately hori-
zontal layers, properties within such a mass exhibit two distinct
chéracteristics, namely: (a) their va;iability along a horizontal
direction is considerably smaller than that along the vertical direc-
tion, and (b) their numerical values follow a distinct trend with

depth.

32
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This is illustrated schematically in Fig. 3.1 for the case
where the soil property is the undrained strength Su of a normally
consolidated clay deposit. It can be seen that the trend feollowed
by Su is that of increasing values with depth.

In 6rdér to express the spatial (vertical) wvariability of
a soil parameter, one needs to determine the variation of its mean

value and standard deviation with depth as well as its autocorrelation

function (i.e., the function that describes the correlation between

values of the parameter at different locations).

3.2 So0il Properties as Random Fuanctions of Depth

Let x = x(z) denote a depth dependent soll property and A
and A' two points within the soil mass at depths z and z', respec-
;ively. AThis is shown schematically ﬁn Fig. 3.2. If p and 02 are
the mean value and variance, respecti;ely, of soil property x and
r_ = rx(]z - z'|) is its autocorrelation function evaluated at points

X

A and A', then one has

E{x(2)] = u
E[{x(z) - u}°] = o> (3.1)

E[{x(z) ~ uHz(z') - u}] = o r

X

in which Ef ] denotes the expected value of the quantity in
= - 1 <
brackets and T_ rx(lz z'|) < 1.
A function, such as a soil property x = x(z) which for any

value of depth z is a random variable, is called a random functiom
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or stochastic process. When such a function is independent of the

origin (z = 0) and its statistical values depend only on the rela-
tive position between two points, such as A and A' (Fig. 3.2), it

is called a stationary function or stationary process. Moreover,

if all statistical moments of x are constant anywhere along the 2z

direction, then x{z) is said to be stationary in the strict sense.

L

If only the first two moments of x are constant with z, then

x = x(z) is said to be a stationary process in the wide sense.
Thus, random function x(z)}, defined by Eqns. (3.1), represents é
stationary process in the wide sense. Its autocorrelation function
depends on the vertical distance between two points (Fig. 3.2) at
depths z and z' with rx(z -2z') = rx(z' - z) and rx(]z - z'[) < 1.
- When the expression for the autocorrelation funection
rx(z - 2') 1s known for a given soil deposit and poilnt averages

equal spatial averages (e.g., u = %-fv xdV, where V denotes the

volume of a soil deposit), then the quantity
2, B
n, = H ] r (lz - z']) dz 4z’ (3.2)
oo *

provides the number of equivalent independent layers a soil deposit

-may be -considered to consist of (Asaoka and A-Grivas, 198la).

3.3 The Autocorrelation Function

The autocorrelation function T, of a soil property x may
be conveniently expressed as an exponential decay function of the

form
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=tz - 2']) = exp (- -l—z;—'%']-) (3.3)
in which 2 is called the correlation length and a is a modeling
constant. This form of the autocorrelation function T, decreases
monotonically from unity at z = 2' to zero as the distance |z - z'
approaches infinity.

The correlation length £, éﬁtering the expressiog Ts is
the distance between two points within which the soil property shows
relatively strong correlation (e.g., at two points which lie within
the distance L; the corresponding values of x are likely to be either
both above or both below the mean u), and thus it provides anlapproxi—
mate measure of the distance between two independent observatioms.
_ Substituting Eqn. (3.3) into Eqn. (3.2) and performing the

indicated integration, on has
n, = H°/2a L{H + a L[exp(-H/a ) - 1] (3.4)

From Egn. (3.4), it is found that the thickness of the
statistically independent layers in a soil deposit of depth H is

equal to

Qi = H/ni (3.5)

- 3.4 Modeling the Soil Profile Using
the Autocorrelation Function

Several methods of modeling a soil profile have been pre-
viously reported in the literature (e.g., Alonso, 1976; Matsuo and

Asacka, 1977; Vanmarcke, 1977, etc.). The difference between these
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methods as well as the new approach that is introduced later 1n this
section is due to the assumption made about the stationarity of the
process and the manner whereby the correlation length is determined.

Figure 3.3 illustrates schematically the various assump-
tions made cohcerning the vertical variability of a soil property.

In Fig. 3.3a is shown a stationary process in the wide sense with a
constant mean value and standard deviation, while Fig. 3.3b repre-

sents a non-stationary process with a linearly increasing mean and

standard deviation.

Once the process describing the variation of a soil pro-
perty with depth has been assumed, the correlation length iS'ﬁeter-
mined using the test data and boring log found from the testing pro-
gram. The test data is used to determine the numerical value of the
correlation length, while the boring log is used to indicate differ-
ent soil types in the soil mass. It 1s important that each soil type
is analyzed separately, since combining data from different soils
will give erroneous results.

Three methods are currently available for the determination
of the correlation length of a given property within a soil deposit,
namely: (a) the average mean-crossings distance method, (b) the moving
‘average‘method, and (¢) ﬁﬁe quasi-stationary autoregressive method.

A description cf each of these methods and a review of their appli-

cability and limitations is given below,

3.4.1 The Average Mean-Crossings Distance Method (AMCDM)

This method may be used to determine the correlation length
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2 of s0il properties that represent a stationary process. It’is il-
lustrated in Fig. 3.4 in which LI i=1,2...,N, denotes the value
-of the soil property measured at a depth z; within the deposit. The
mean value x and variance ci of. the N measured values of x, are

i

equal to

(3.0

The correlation length & is defined as the average dis-
tance between the points of intersection of the trace of the measured

values x = x(z) and the mean value x (Fig. 3.4). That is,

™
]
B~

(3.7)

I e~1d
o

in which Gi is the length of the interval between intersections 1 and

i+l of x(z) and i, and 1 is the total number of such intervals. i
The autocorrelation function T, in accordance with this

method is expressed as a squared exponential decay function of the

form (Rice, 1944)

2

ﬁ2 Az :
r_(Az) = exp (- 5 )l (3.8)

in which Az = z - 2'.
A summary of the average mean-crossings distance method

is given in Table 3.1.
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Table 3.1 Procedure for Estimating the Correlation
Length 2 of a Soil Property Using the

Average Mean-Crossings Method

Values of soil property x at various depths z
Data along 2 borehole; i.e., ¥ 0= x(zi), z2ys
i=1,2,...N,
Find the mean value of x of x
1
Step 1 N
x=x ] x
N 121 i
Find the depths Ci at which the linear extra-
Step 2 polation of x(z) between two consecutive points
equals x, where i = 1,2,...m+l.
Find the length of the intervals between inter-
sections of x(z) and x
Step 3
6: - -
1 Ci+l Ci’ i l,2,...m.
Find the correlation length ¢ given by Eqn. (3.7)
Step 4 o
1
L== 3 ¢
m L2y i
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3.4.2 The Moving Average Method (MAM)

The moving average method has been applied in geotechnical
engineering for the first time by Vanmmarcke (1977) to model the
spatial variability of a soil property x. The latter is assumed to
follow a statlonary process (Fig. 3.3a) and, therefore, its mean
value and variance are constant with depth and rx(Az) = rx(—Az).

In accordance with this prééedure, the autocorrelation
function is found by obtaining the variance of average values along
a series of space intervals. This variance is then expressed as a

decreasing function of the number of the interval, called the variance

reduction function, and is used to determine the correlation length.

In Fig. 3,5 are shown schematically the values of z soil
property x measured at equal distances Azo {i.e., the vertical dis-
tance between two adjacent samples), The vertical line represents
the mean value X of x determined on the basis of all data points
Xy i=1,2 ...,N, where N is the total number of data. To obtain
the‘correlation length £, one must first find the spatial averages
Gk and the spatial variances 02

k

number of adjacent observations of x that are used 1in the averaging

from the test results, where k is the

schene.

The k-th spatiéi average is formed by first determining the
averages of sets of k consecutive observations of x (e.g., if
xlzxz, 12213, ces fﬁ:%ifﬂ) and then averaging these values.

The spatial variation is found in a similar manner., For N data points

k = 2;

the values of Gk.and Ui are equal to
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N-k+1 i+k-1

o e S 7 U
TR LA o 3
(3.9)
N-k+l o d+k-1
2 1 - .2
% = E%E Lo1G 1 %) -5l

1=1 3=i

where Xj is the value of property x at depth zj = jAz0 and

k=2,3,...81.
The spatial variance may be normalized by forming the ratio

2 2
of ok over oxi i.e.,

r(k) = (3.10)

q,o
L T ol

in which Tz(k) is the variance reduction function. The variance re-
duction function 1s plotted against the spatial distances k, as shown
schematically in Fig. 3.6 by the dashed line. A best fit of the re-

sults shown in Fig. 3.6 can be made to prdvide'a relationship between

Pz(k) and k of the form

r2(x) = (3.11)

* :
in which k¥ is determined by a least sguared error analysis (i.e.,

* ;1 N1 °§ 2,..2 2
k= Min [g55 ) (— - T7(K))”} where I'“(k) is given by Eqn. (3.11)).
k=1 .
X

Equation (3.11) is plotted as a solid line in Fig. 3.6.

The correlation length £ is then equal to (Vanmarcke, 1977)
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4 = 24z {&n] (k+1) /(k*—l) 1} (3 .ll 2)
The autocorrelation function T, for the moving average method, the
nunber of equivalent independent layers n,, and the thickness of
such a layer are determined by substituting Eqn. (3.12) into Egns.
(3.3), (3.4), and (3.5), respectively, with the modeling constant
equal to one-half (i.e., a = 1/2).

The moving average method is summarized in Table (3.2).

3.4.3 The Quasi-Stationary Autoregréssive Method (QSARM)

The two methods of determining the correlation length of a
soil preperty x discussed above are based on the assumption ghat X
follows a stationary process. 1f, however, x exhibits a trend with
depth, then x represents a non-statiahary process, therefore, the
above methods canmnot be applied.

An alternative procedure is preéented herein that is appli-
cable for the commonly encountered situations in which the mean value
x = x(2) and standard deviation 0y = cx(z) of x increase linearly with
depth z. It 1s based on the observation that x(z)} can be reduced to
a stationary process by forming the ratio of x(z) over z (hence the

term qgasimstationary process). Furthermore, it is observed that the
value of x at a foint zg Aepénds on the value taken by x at Zy 1 where
i=1,2,...N, an attribute of autoregressive processes.

Let g(zi)_denote.the value of . a soil property x at depth Zys

where i = 1,2,...N, and let uy be the ratio of x(zi) over z,, i.e.,
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Table 3.2 Procedure for Estimating the Correlation
Length £ of a Soil Property Using the
Moving Average Method

Values of soil property x at constant sampling
Data intervals AzO along a borehole; i.e.,

X, = x(i-Azc), i=1,2,...N,

Find the spatial averages Ek and spatial variance
2 i

Step 1 Uk of Xys where k = 1,2,...N-1

N-k+1 i+k-1
1 [l. z x.]
N-k+1 k bl

x i=1 j=1

1 N§k+l 1 i"zl:'k-l - .2
= == [G x.) -~ uwl
k- Kk 5 DT Y

Q
I

%*
Find k¥ by using a least squared error method

Step 2 given by

Find the correlation lemgth 2 given by Eqn. (3.12)

Step'3 - -1

% = 2Az0 {an[(k*+1)/(k*-1)1}-
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(3.13)

Quantity uy represents a quasi-stationary process as (a) the
mean value x(z) of x is a linearly increasing function of depth,
(b) the coefficient of variation of x is constant, and (¢) the auto-
correlation functions of x and u are identical. These conditions are

expressed analytically in the followiﬁg form:

E{x(z)] = x(2) = kz

= c¢constant (3.14)

rx(Az) = ru‘Az) witha=1

- Furthermore, successive values of LY and Uy s evaluated at
constant intervals Azo, are related in the following manner {(the auto~

regressive character of u):
uy =Bt Bpug ey (3.15)

in which B and B, are parameters to be determined from availlable data
and £, is an error term the mean value and variance of which are con-
stant for all i's and equal to zero and qg, respectively. Furthermore,

the errors e, are assumed to be independent of each other, i.e.,

_ 2
E[ei x ej] = Gijice

in which &, , is Kronecker's Delta (i.e., ¢

13 =1, 1i=3j; Gij =0, 14¢ 3.

ij
The expected value E[ui}, variance V[ui], and autocorrelation
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function T, of u, can be expressed as (Cox and Miller, 1965)

i
B
Efu,] = —2
i l-Bl
o (3.16)
V[ui] = 5 16
1—61

_ Lk
ru(k—Azo) = Bl

2 1 N1
in which ¢ = === } [u
N-2 |
i=1

B -8B 2 N denotes the number of

1~ %o 1 %0

samples, and k is the number of sampling intervals Azo between two points

lzi B z1+k|
and z within the soil deposit (i.e., k = —————).

2y i+k Az
[o]

Substituting in the above expression u, by x{(z)}, found from

i

Eqn. (3.13), one has that the mean value, variance, and autocorrelation

function of x are equal to

8
Elx(z)] = X(2) = —=—z
1-6,
2 2, -
Vix(2)] = o (2) = g 5 2 . (3.17)
1-87

rx(k-AzD) = R

Moreover, substituting the last of Eqms. (3.17) into Eqm. (3.3), it is
seen that the correlation length £ for the quasi-stationary autoregres-

sive method is

5 = ) (3.18)



The number of equivalent independent layers n, and their
thickness di can be determined by substituting Eqn. (3.18) into Egns.
(3.4) and (3.5), respectively, in which a = I.

In Fig. 3.7 is shown schematically the values of soil pro-
perty x measured at equal distances Azo. The mean value x(z) and
standard deviation cx(z) of x as determined by the quasi-stationary
autoregressive method (Egns. (3.17)) are represented by the lower and
upper lines, respectively.

Finally, the guasi-stationary autoregressive method is

summarized in Table 3.3.

3.5 Case Study

The three procedures in the preceding section are applied to
évaluate the spatial variability of the undrained shear strength Su
of a soft clay deposit. Two sites, denoted as A and B, are selected
for this purpose from the general area investigated in.connection with
the West Side Highway in New York City. Values of Su along two bore-
holes are used to describe each site. Tables 3.4 and 3.5 list the
values of Su from Boreholes A-1 and A-2; while Tables 3.6 and 3.7
list the values of Su from Boreholes B-1 and B-2. The sampling dis-

.. tance Azo is equal to 3.3 feet for all boreholes.

The numerical values of k*, Bl’ and Bo were found for both
boreholes at each site using the procedures outlined in Tables 3.2 and
3.3. The results are listed in Table 3.8 along with the thickness of
the clay deposit and the number of samples takenlin each borehole.

The correlation length £ provided by the average mean-
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Table -3.3 Procedure for Estimating the Correlation

Length £ of a Soil Property Using the
Quasi-Stationary Autoregressive Method

Data

Values of soll property x at constant sampling
intervals Azo along a borehole; i.e.,

x, = x(zi), z; = iQZO, i=1,2,...N.

Step 1

Find the ratio of x(zi) over z., denoted by u,
x(z,)

i = z;

s 1 =1,2,...N

Step 2

Find the parameters Bo and Bl using a least

square fitting technique of u,

1o1 and u., i.e.,

2
Zui_l Zui - Eui_l u
)

N‘Zu? = (Zu
l—

e

2

1

1 i-1

, i=2,3,...N

N Zui—l u, - Eui-l Zui

N Zu? 2
1-

g
1
- 1B y)

Step 3

Find the correlation length 2 given by Eqn. (3.18)

L= -
2n|Bll




Table 3.4 Values of Su at Various Depths along A-1 Borehole

DEPTH BELOW UNDRAINED
GROUND SURFACE SHEAR STRENGTH

ft : ksf
47.9 0.42
51.2 0.42
54.5 0.39
57.8 ~ 0.58
60.5 0.71
63.7 0.68
67.0 0.74
70.3 0.72
73.6 0.77
76.9 0.62
80.3 0.74
83.5 0.98
86.8 0.79
90.1 1.33
93.4 1.35
96,7 1.37
100.0 1.11
103.3 1.12
106.7 : 1.06
110.0 1,14
113.3 1.47




Table 3.5 Values of Su at Various Depths along A-2 Borehole

DEPTH BELOW UNDRAINED
GROUND SURFACE SHEAR STRENGTH
ft ' ksf
52.3 0.57
55.3 0.79
58.8 0.72
62.1 0.75
65.4 0.72
68.6 0.63
73.1 0.61
76.8 0.82
81.6 0.78
84.9 0.85
88.2 0.92
91.5 0.96
94,7 0.99




Table 3.6 Values of Su at Various Depths along B-1 Borehole

DEPTH BELOW UNDRATNED
GROUND SURFACE SHEAR STRENGTH

£t ksf

29.0 0.05

32.2 0.09

35.5 0.11

38.8 0.13

41.6 0.15

44.8 A 0.22

48:1 0.23

51.4 0.23




Table 3.7 Values of Su at Various Depths along B-2 Borehole

DEPTH BELOW : UNDRATNED
GROUND SﬁRFACE SHEAR STRENGTH
ft ksf
29.4 0.06
32.7 0.09
36.0 0.09
39.3 0.12
43.4 0.11
46.6 . 0.24
49.9 0.24
53.2 0.33
56.4 0.30




|
TABLE 3.8

NUMERICAL VALUES OF PARAMETERS FOR THE FOUR BOREHOLES
IN THE CASE STUDY

PARAMETER SITE A SITE B
A-1 A-2 B-1 B-2
SAMPLE SIZE 21 13 8 9
DEPOSIT THICKNESS 65.4 ft. 42,7 ft. 22,4 f¢t. 27.0 ft.
K* 3.0 1.3 1.9 2.0
By 0.490 0.484 0.651 0.624
B, 5.62x10° |5.52x1073 1.60x10 2.82x1073

BS
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crossings distance method, the moving average method, and the quasi-
stationary autoregressive method are obtained using Tables 3.1, 3.2,
and 3.3., respectively. The number of equivalent independent layers
n, and their thickness di obtained by Eqns. (3.4) and (3.5), respec-
tively, are found for the moving average method in which a =-% and

for the quasi-stationary autoregressive method in which a = 1, The

results are listed in Table 3.9.



TABLE 3.9

VALUES OF THE CORRELATION LENGTH, NUMBER AND THICKNESS OF
INDEPENDENT LAYERS FOR THE CASE STUDY

SITE A SITE B’
PARAMETER METHOD A-1 A-2 B-1 B-2
Correlation QSARM 4,6 4.5 7.7 7.1
length, MAM 9.5 3.2 5.6 6.0
L, feet AMCDM 2.7 7.8 - 4.3
Number of QSARM 7.6 5.2 2.2 2.3
independent layers MAM 7.4 13.7 4.5 5.1
ny
Thickness of QSARM 8.6 8.2 10.4 10.1
independent layer
di’ feer MAM 8.8 3.1 4.9 5.3

QSARM-Quasi-Stationary Autoregressive Method
MAM -Moving Average Method
AMCDM-Average Mean-Crossings Distance Method

09



CHAPTER 4

SEISMIC EARTH THRUST AGAINST RETAINING WALLS

4.1 Vertical Variability of the Frictiomnal

Component of Backfill Strength

The'vertical variability of a scll property was examined
in the preceding chapter and three mg?hods were presented for its
description. The present chapter will apply the quasi-stationary
autoregressive method to analyze the vertical variability of the ¢
parameter of s;rength of granular materials located behind re- %
taining walls. The results of this analysis will be incorporated
into an available procedure to determine the earth thrust‘against
a retaining wall during an éarthquake.

Let u, 02, and r¢(Az) denote the expected value, variance,
and autocorrelation function, respectively, of the ¢ parameter of

strength., From Equns. {3.1), one has

E[4(2)] = v
E[{¢(z)-1}°] = 0° (4.1)

E[{6(2)-4}{6(z")-}] = ,(42) o2

Under the assumption that ¢(z) represents a stationary

2
process, one has that y and ¢ are constant with depth,

r¢(Az) = r¢(-Az), and lr(Az)l < 1. Furthermore, if H denotes the
thickness of the backfill material, Eqn. (4.1) may be written in

the form

61
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1 H
‘E['gf $(z) dz] = u
0 (4.2)
1 B 2
V[ﬁvf $(z) dz] = 0/n
0
in which n is given in Eqn. (3.4) as
n = H (4.3)

20{H + 2[exp(~ %) - 11}

Quantity n represents the number of statistically indepen-
dent layers the backfill material is composed of. Numericaily,'n
is an integer the value of which is obtained when the right-hand
side of Eqn. (4.3) 1s rounded to the nearest integer other than zero
(i.e., @ > 1). This is illustrated schematically in Fig. 4.1,
Figure 4.la shows the equivalent statistically independent layers
of the backfill {(n = 5). Within each of these layers, the ¢ param-
eter of strength is a random variable having mean value and variance
equal to u and 02, respectively. This is denoted as ¢: (u, 02)
and is shown in Fig. 4.la. -

An alternative representation of the soll medium behind a
retaining wall is shown in Fig. 4.1b. Here, the backfill is consid-
~ered to comsist of a single layer, the ¢ parameter of which has a
mean value equél to ¢ and variance eﬁual to czln,.where n=>5. The
distribution of ¢ for this representation of the backfill is denoted
as ¢: (u, 02/5) and is shown in Fig. 4.1b.

The two models 'for the backfill material that are illus-

trated in Figs. 4.1, i.e., the statistically independent layered
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FIGURE 4.1 THE TWO REPRESENTATIONS OF TEE BACKFILL MEDIUM AS
OBTAINED FROM THE AUTOCORRELATION FUNCTION
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moedel {(Fig. 4.la) and the single layer model (Fig, 4.1b), represent
two procedures capable of providing the vertical wvariation of the ¢
paraneter of strength. The difference between the two is in the
number of random variables that are employed Iin theilr representation
of the backfiil. Thus, the statistically independent layered model
requires n independent variables, one for each layer, with mean
value p and variance 02 (i.e., ¢I: (u, 02), ¢2: (u, 02), cesd n:

(u, 02). While the single layer model requires only ome variable ¢

with mean value ¢ and reduced variance 02/n (i.e., é: (u, czln)).

4.2 Determining the Seismic Earth Thrust

Considering Moment Equilibrium and
Vertical Variabllity

The earth thrust against a retaining wall is determined
from Coulomb's theory by comsidering only equilibrium of the forces
that act on the sliding soil mass. Equilibrium of moments is satis-
fied only in the special case of a smooth vertical retaining wall
with horizontal backfill. An important feature of the present ﬁro-
cedure 1is that it satisfies all three equations of equilibrium:  the
sum of the forces along the horizontal and vertical directions and
that of the moments aroup@ any point on the cross~section of the
retaining wall and backfill are equal to zero. Moreover, it in-
cludes the effect of an earthquake expressed in terms of equivalent
seismic forces as well as the verticalvvariability of the internal

friction of the backfill material.

The two models presented in the preceding section for the
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description of the backfill material, i.e., the statistically inde-
pendent layered model and the single layered model, preduce different
force systems on the backfiil and, therefore, require different as-
sumptions for the seismic earth thrust against the wall.

Cominonn to both models are the following assumptions:

(1) the backfill material is cohesionless;

(2) fallure occurs along ajplanar surface;

(3) shear strength i1s fully mobilized along the

failure plane;

(4) the shear strength is a frictional force propor=-

tional to the vertical pressure at a point; aﬂd

(5) the backfill behaves as a rigid body (i.e.,

- acceleration is uniform throughout the medium).

Figure 4.2 shows schematically the geometry of a rétaining
wall and its backfill material. The-values of the angles and forces,
as shown in the figure, are comsidered to be positive. In accordance
with the fourth assumption abéve, the resultant force (denoted by R)
acts at one third the distance from the base of the retaining wall

along the failure plane.

-4.2,1 -Single Layer Representation of the Backfill

The single layer model of a retzining wall and its back-
£fill are shown schematically in Fig. 4.2. The three unknown quan-
tities to be determined from the threé equatioﬁs of equilibrium are
the seismic earth thrust PAE’ the point of application of seismic

earth thrust dA’ and the resisting force along the failure surface R.
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For ‘the active case, the equations of equilibrium of

forces along the horizontal and vertical directions are expressed

as

-W(1 +-av) + R cos{(B-¢) + PAE cos(B-8) = 0

(4.4)

-W a, - R sin{(6-9) + PAE sin(R-8) = 0

in which W = the weight of the soil wedge which is equal to
2 .
W= YH [1 + tan i(tan 6 + tan B)][tan 8 + tan B]
2 tan R(tan 6 - tan i)” "tan § tam B

and H = the height of the retaining wall;

Y = the unit weight of the backfill material;

¢ = the angle of internal friction of the backfill
material;

§ = the angle of soil wall frictionj

i = the inclination of the backfill with the horizontal;

8 = the angle of inclination of the back of the retaining

wall;

ah = coefficient of the maximum horizontal ground
acceleration, in g's;

a, = coefficient of the maximum vertical ground acceleration,

in g's; and
& = the angle of inclination of the failure plane

(8 = 45° + 4/2).
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Solving the first of Eqns. (4.4) with respect to force R
and introducing the resulting expression into the second of Eqns.

(4.4), the active force PAE against the retaining wall is found to

be
+ (1 + a ) tan(8-¢)
Pas = Ty [ : ] (4.5)
sin(B-$§) 1 + tan (6-¢)
tan' (B-38)

while the resisting force R is

_ v -a, + (1 + av) tan(B-38)

~ sin(0-¢) {1 _ tan (B-8)
tan (6-4)

] : (4.6)

Taking moments about polnt 0, Fig. 4.2, and substituting

. Eqns. (4.5) and (4.6) for P,_ and R, respectively, the distance dA

AE
from the base of the wall to the point of application of PAE is

found to be equal to

n, "8 tan 8
dA = _?;{P sin(B=8) {1+ t—an_B_I 4+ [1 - cot 6 cot(B-6)] .

AE
(4.7

tan 8 tan i(tan & + tan R) | _ -1
-1 - tan 8 tan B(tan 8 - tan i)]} (1 + cot B cot(g-8)]

For the passive case, the expressions for the thrust

against the wall PPE and its location dp may be found in a manner

similar to the one described abowve. Thus, one has

-2, + (1 + av) tan(8+¢)
1 - tan (6+¢)

tan (B+6)

- LA
PE ~ sin(g+d)

P ] (4.8)
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W ah tan €

. =3 §;QEIE?E;§T (1 + EEE_E] + [1 + cot 8 cot(f+8)]

’_Lﬂ:

d
(4.9)

tan 6 _ tan i(tan 6 + tan B)

-1
tan 8 tan B({tan 6 ~ tan i)]} [1 - cot B cot(g+d)]

{1-

in which 8 = 45° -~ ¢/2,

In the case of a smooth, vertical wall with a horizontal
backfill under static conditions (i.e., § = 1 = ah = av = 0 and
B = 90°), Eans. (4.5) and (4.6) are reduced to the expressions pro-

vided by Coulomb's theory; i.e.,

P - 2 tan(lG-T-q))
AE/PE 2 tan 9

(4.10)

a dA/P

Wl

in which the upper and lower signs édrrespond to the active and

passive cases, respectively.

4,2.2 Multi-Lavered Representation of the Backfill

The statistically independent layered model of the back-
fill considers the latter to be divided into a series of n horizon-
tal layers each with a thickness equal to H/n. This is shown
schematicélly in Fig. 4.3; The value taken by the angle of intermal
friction for each layer is independent of the values taken by any
other layer. However, each layer has the same distribution of the

angle of internal friction.
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A procedure similar to the method of slices: often used
in slope stability analysis, 1is employed to determine the forces

in this case. This is illustrated in Fig. 4.3.

The forces acting on the i-th slice are shown in Fig.
4,4, An examination of the forces and their points of application

on the i-th slice reveals that there are four unknowns (i.e., F,,

i
Vs hi’ and Ry, defined in Fig. 4.4), The magnitude of the inter-
slice forces Fi—l and Vinl and their point of application hi_l,‘on
the right-hand side of the i-th slice are known from the analysis
of slice i-1. The location dRi of the resultant force Ri is known
as it is considered to act at the center of gravity of the slice.
Therefore, there are 4n unknown quantities and 3n equations (i.e.,
Ehree equations of equilibrium for each slice).

Hence, for the force system to become statically deter-
minate, n additibnal equations are required. If the interslice

shear” forces Vi are assumed to be equal to zero (i.e., V, = 0),

i
n-1 equations are introduced (the n-th shear force is not equal to
zero since it acts on the retaining wall). 1In addition, the direc-
tion of the resultant of the forces on the left-hand side of the
.n~th slice is known to be equal to the angle of the soil wall
friction 8. This provides the last additional equation required.

Thus, the unknown quantities in the equivalent statisti-

cally independent layered model are: hi’ Fi’ and Ri’ for
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FIGURE 4.4 TFORCES ON THE i-th SLICE OF THE BACKFILL
MEDIUM
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i=1,2,...n-1, and Rn’ P E? and dA‘ These are shown in Fig, 4.5.

A
The numerical values of these quantities are found by
considering that, for the general i-th slice, the three equations of

equilibrium may be expressed as

g
[}

g = Fy_g F [Q20-20+0)W, 0,4 (21-1)W, 1 [a, +(1+a ) tan(e-¢,) ]

(l+av)[(2n—2i+l)W2+W3+(21-1)W4]

Ry = cos (8= ) (4.11)

- if . .
d, F, = Fy 4o +d 41+ R151n(6—¢i)dRi+ahH{(2n-21+1) W, -

2 ey 2
i 4+ tan i + 0= 2niti " -i-1/3 tan i

n tan R zn2 - 2n1i+n tan 6

.,[

2

i tan 1 317 - 1
Tt ean g W Pyl
in which
L. (1+av) H[(bn - 61 + 4) w2+3w3+(61-4) Wél
Ri Ri cos(® -~ ¢i)

and the element weights (i.e., Wl, Wz, - We) are defined in Fig.

4.6,
For the n-th slice, the equations of equilibrium yield
n
[ah+(l+av)tan(8—¢n)] {w1+i£l{(2“"21+1)W2+W3+(21’1)W43+w5+“6}
Pax = tan (8-¢_)

sin(8-6) 11+t t5) )
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W. = vHd tani (tan9+tan8)

1 2 tanf ‘“tanBtanf
YH2 tani
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2n tan B
W = YHZ tanzi
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yHE? 1
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W = IEE 1
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d = H] ]

tan (tanf-tani)

]

FIGURE 4.6 DEFINITION OF ELEMENTAL WEIGHTS APPEARING IN
EQUATIONS (4.11) AND (4.12)
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(1+a )[w +(2n-1)w +w6]-PAE cos(R=68)

Rn = cos (6-¢ ) (4.12)
n
di-1 1 %R
dA = H{Fn-l[—3f_-+ ;J + Rn cos(9-¢n)[tan(6~¢n) + cot ¢] 5
" tan i tan i 2
+ WZ[ah(l + tan B 3n tan B) -+ av} 3n tanB]
tan i 1
* w3[ah(l + 2tan 8) -a+ av) 2n tane]
3n2- 3n-2
+W[a( )-(l+ v) “3ntan6]
tan i 1
+W{ah(1+ )+(1+a)3tanB]
T4 wW [ah 3 + (1 + a ) 3tan B]}/]? cos{B-8) [tan(f-8) + cot B]
in which
o - (1 + a ) H [ZWZ 33_ . (Zn—Z)WA ) tan B(W 6)]
R n cos(e -4 ) 3n 2n 3n 3tan B

and Fn—l and dn—l are obtained from Eqms. (4.11).



CHAPTER 5

PARAMETRIC STUDY

5.1 Parameters and Conditions Considered

This chapter examines the effect of material and model

parameters on

the magnitude and point of application of the active

earth thrust against a retaining wall. The specific parameters that

are investigated are the following:

(1)

(2)

(3
(4)
(5)
(6)

The
in Fig. 5.1.
are assumed:

2)

the single- and multi-layer representation of the
"backfill material;

the angle of internal friction of the backfill
material;

the maximum ground acceleration;

the angle of soil-wall friction;

the inclination of the back face of the wall; and

the inclination of the backfill with respect to the
horizontal direction.

retaining wall under examination is shown schematically

For the purposes of this study, the following conditions

the backfill material, when considered as a multi-layer
system, consists of four equivalentlstatistically inde-
pendent layers (i.e., n = 4);

the angle of internal friction is a random variable with

mean value 5 and coefficient of variation V¢ equal to

77
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3)

4)

5)

6)
7)

8)

79

35 degrees and 20 percent, respectively (i.e., ¢ = 35°

and V¢ = 20%);

the maximum ground acceleration is considered to be 2

random variable with its coefficient of variation equal

to 10 percent (i.e., v, = 10%);

the ratio of the vertical to the horizontal compenents

of the maximum ground acceleration, a, and a,, respec-

h
tively, is equal to two~thirds and is directed downward
(i.e., a, = % ah);

the angle of soill-wall friection § is equal to ope-half

the angle of internal friction (i.e., § = %-5);

the back face of the wall is vertical (i.e., B = 90°):

the backfill is horizontal (i.e., i = 0°); and

the angle of internal friction is considered to be

independent of the maximum ground acceleration.

The expected value E[PAE] and variance V[PAE] of the active

earth thrust and the expected value of its point of application E[d

4l

are estimated using the two-point estimate method for independent

symmetrically distributed random variables given by Egn. (2.13).

Estimates of E[PAE], V[PAE], and E[dA] are made for both the single-

and multi-layer model of the backfill.

For the single-layer mecdel, the mean value $ and coefficient

of variation V, of the angle of internal friction ¢ are found to be

¢

equal to (Egqns. (4.2)) 35° and 10%, respectively. The expressions

for the active earth thrust P

AE"and its point of application dA are
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given in Eqnmns. (&.5; and (4.7), respectively. In Table 5.1 are pre-
sented the wvalues of the point estimates of ¢ and ay used in this
study for the single~layer model,

The mean value 6 and coefficient of variation V¢ of the
angle of intefnal friction ¢ for each of the four lavers of the
multi-layer model are equal to 35° and 207, respectively. The point
estimates of ¢i and 2 where 1 = 1,2,3,4, are presented in Table 5.2.
The active earth thrust PAE and 1ts point of application dA are found
from Eqgns. (4.12) for the multi-layer model of the backfill.

The expected values of PAE and dA found in this stqdy are
made dimensionless by forming the ratios of E[PAE] over YHZ and
E{d,] over B (i.e., E[PAE]/Y}IZ and E[d,]/H), in which vy denotes the

unit weight of the backfill material and H denotes the height of the

retaining wall.

5.2 Expected Value of the Active Earth Thrust

The expected value of the active earth thrust E{PAE] is
presented in Figs. 5.2 through 5.6 for values of the mean maximum

horizontal ground acceleration varying from 0.0g to 0.5g.

5.2.1 Effect of the Backfill Model

From Figs. 5.2 thrdugh 5.6, it is seen that the expected
value of active earth ;hrust E[PAE] is not affected by the model as-
sumed to represent the backfill. For all conditions examined, it
was found that the value of E[PAE] for the single-and multi-layer

models were equal.



TABLE 5.1

POINT ESTRMATES OF THE ANGLE OF INTERNAL FRICTIOK AND
THE GROUND ACCELERATION FOR THE SINGLE-LAYER
MODEL OF BACKFILL

PARAMETER POINT ESTIMATES
Angle of Internal ¢, d+0 b 38.5°
Friction _

Horizontal . a.h+ Zh-i- Oa 1. 1Zh

Acceleration - —
2 4%, 0.9y

Vertical a_, - 2/3ah+

Accelerathn a,_ _ 2/3ah

" Note: T V¢ ¢/ n = 0.2 x 35°/ J& = 3,5°

o, = Va a = 0.1 a
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TABLE 5.2
POINT ESTIMATES OF THE ANGLE OF INTERNAL FRICTION AND
THE GROUND ACCELERATION FOR THE MULTI-LAYER
MODEL OF BACKFILL
PARAMETER POINT ESTIMATES
Angle of Internal Friction ¢l+ o+ Uqb 42°
Layer I ¢1— 3 - 0¢ 28°
Angle of Internal Friction ¢2+ $+ 0¢ 42°
Layer 2 ¢2~ 5_0(10 28°
Angle of Internal Friction ¢>3+ ¢+0¢ 42°
Layer 3 ¢3“ $*0¢ 280
Angle of Internal Friction ¢A+ ¢>+0¢ 42°
Layer 4 ¢4- E‘Uq) 28°
Horizontal Acceleration a. ﬁi-o‘a l.lah
ay _ -0, 0.9a,
Vertical Acceleration ) B+ - 2/3ah+
; a__ - 2/3a,

Note: Sy = v¢ ® = 0.2 x 35° = 7.0°
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5.2.2 Effect of the Angle of Internal Friction

In Fig. 5.2 is shown the effect of the mean value of the

angle of internal friction 5 on the expected value of P It can

AE®
be seen that the magnitude of E[PAEJ decreases considerably for in-

creasing values of §.

5.2.3 Effect of the Maximum Ground Acceleration

The effect of the mean value Eh of the maximum horizontal

ground acceleration on the expected value of PAE is shown in Figs.
5.2 through 5.6. E[PAEI is seen to be linearly dependent on Eh for
all cases examined.

Figure 5.3 shows the dependence of E[PAE] on the direction
gf the maximum vertiqal ground acceleration a. The most critical

case is seen to be when.av is directed downward (i.e., a_ > 0) and

the least critical case is when a  is directed upward (i.e., a < 0).

5.2.4 Effect of tﬁe Angle of Soil-Wall Friction

In Fig. 5.4 is shown the effect of the soil-wall friction

angle 6§ on the expected value of P, The value of E[PAE] increases

Eo

slightly as § increases.

'5.2.5 Effect of the Inclination of the Retaining Wall

Figure 5.5 shows the dependence of the expected value of

PAE on the angle of inclination of the back face of the wall B. It

can be seen that E[PAE] increases considerably as B decreases.
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5.2.6 Effect of the Inclination of the Backfill

The effect of the angle of the backfill i with respect to
the horizontal direction on the éxpected value of PAE is shown in

Fig. 5.6. E[PAE] increases moderately as 1 increases.

5.3 Coefficient of Variation of the Active Earth Thrust

Values of the coefficlent of wvariation of the active earth

thrust Vp for this study are presented in Figs. 5.7 through 5.12.

5.3.1 Effect of the Backfill Model

From Figs. 5.7, 5.8, and 5.10 to 5.12, it is seen that the

value of the coefficient of variation of PA is greater for the

E
multi-layer model of the backfill than for the single-layer model.

This occurs because the latter has a reduced variance of the ¢

strength parameter, i.e., o, is equal to V¢$/‘J§'(i.e., V¢ = 10% for

¢
the single layer model).

5.3.2 Effect of the Angle of Internal Friction

In Fig., 5.7 is shown the effect on the coefficient of
variation of PAE of the mean value $ of the angle of internal fric-
tion of the backfill material. The value of VP can be seen to in-

crease considerably as $ increases.

5.3.3 Effect of the Maximum Ground Acceleration

The effect of the maximum vertical ground acceleration a,
on the coefficient of variation of PAE is shown in Fig. 5.8. The

value of V, is greater for a downward acceleration (av > 0) than for
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an upward acceleration (av < 0).

The effect of the coefficient of variation of the maximum
ground acceleration Va on the value of the coefficlent of wariation
of PAE is shown in Filg. 5.9. For values of Va less than 15 percent,

the value of VP decreases over the entire range of a_ examined;

h

while, for values of Va greater than 15 percent, the value of VP

initially decreases and then increases at Eh = 0.1g to Eh = 0.3g.

5.3.4 Effect of the Angle of Soil-Wall Friction

Figutre 5.10 shows the dependence of the coefficient of

variation of PAE on the angle of scil-wzll friction 8. The value

of VP can be seen to decrease as § increases from zero to %-5.

5.3.5 Effect of the Inclination of the Retaining Wall

In Fig. 5.11 is shown the effect of the angle of inclina-
tion of the back face of the wall 8 on the coefficient of variation

of PAE' It can be seen that the value of VP decreases as B de-

creases.

5.3.6 Effect of the Inclination of the Backfill

Figure 5.12 shows the effect of the angle of the backfill
i, with respect to the horizontal direction, on the coefficient of
variation of PAE' The value of VP can be seen to be independent of
i %ﬁr the single-layer model of the backfill; while for the multi-

layer model, VP decreases as i increases.
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5.4 ZExpected Value of the Point of Application
of the Active Earth Thrust

The expected values of the point of application of the
active earth thrust E[dA] for the parameteric study are given in

Figs. 5.13 through 5.17.

5.4.1 Effect of the Backfill Model

From Figs. 5.13 through 5.17, it can be seen that the
expected value of dA determined for the single-layer medel of the
backfill is greater than that determined for the multi-layer model.
The values of E[dA] for the two models do not seem to converge at

any point, but tend to remain parallel for the range of ;h examined.

5.4.2 Effect of the Angle of Internal Friction

Figure 5.13 shows the dependence of the expected value of
dA on the mean value ¢ of the angle of .internal friction of the back-
£ill material. EIdA} can be seen to be not affected by the value of

9 for the range of ¢ studied.

5.4.3 Effect of the Maximum Ground Acceleration

The effect of the mean value Eh of the maximum horizontal
ground acceleration on the expected value of dA is shown in Figs.
75.13 té 5.17. The valueléf E[dA] can be seen' to increase with ;h'

In Fig. 5.14 is shown the affect on the expected value of
dA of the direction of the vertical component a, of the ground ac-

celeration. It can be seen that fpr a, >0 (di.e., a, directed down),

the point of application of PAEuiS lower than when a, < 0 (i.e., when
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a, is directed upward).

5.4.4 Effect of the Angle of Soil-Wall Friction

Figure 5.15 shows the dependence of the expected value of

d, on the angle of soil-wall friction &. It can be seen that E[d

A Al

increases considerably as 8 increases.

5.4.5 Effect of the Inclination of the Retaining Wall

In Fig., 5.16 1s shown the effect of the angle of inclina-
tion of the back face of the wall B on the expected value of dA;
The value of EtdA] inéreases slightly as the wall deviétes from the
vertical {i.e., as B decreases). A tendency for E[dA] to conﬁerge

to approximately 0.45H as ;h increases can be seen in Fig. 5.16.

5.4.6 Effect of the Inclination of the Backfill

The effect of the angle of the backfill i with respect to

the horizontal direction on the expected value of dA is shown in
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Fig. 5.17. E[dA] can be seen to increase considerably as 1 increases.



CHAPTER 6

COMPARATIVE STUDY

6.1 Comparison Between Model Tests and Present Procedure
| The_present moment equilibrium method of determining the

active earth thrust against a retaining wall is compared with values
determined by model tests. Model tests performed by Mononobe and
Matsuo (1929) and Jacobsen (1939) are used for this purpose.

Mononobe and Matsuo (1929) performed model tests of a
retaining wall to determine the mangitude of the active earth thrust
during an earthquake. They used a‘é.ft. x 4 ft. x 9 fr. box fitted
with a metal line and filled with a uniform, clean, dry, river sand.
The square ends of the box were hinged at the bottom edge and were
éllowed to rotate after the backfill was plaéed. The pressure oﬁ
the square end was measured 4.5 ft. above theahinge. The box was
vibrated horizontally by an eccentric mass to simulate an earth-
quake.

Mononobe and Matsuo's model test results and the approxi-
mate conditions of the test are presented in Fig, 6.1.

Jacobsen (1939) performed similar model tests on a smaller
-wall having a height equal to 3 ft. The model test results and
approximate conditions of the tests are presented in Fig. 6.2.

In Figs. 6.1 and 6.2, the solid line represents the active
earth pressure determined for the singie—layer ﬁodel of the moment

equilibrium method. The values were obtained from Egqn. (4.5). The
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dashed line represents values of the active earth thrust determined
from Mononobe-Okabe's method (Egqn. 1.2).

From Figs. 6.1 and 6.2, it is seen that ﬁhe present method
underestimates the active earth thrust against a retaining wall, while

the Mononocbe~0Okabe methed seems to f£it the model test data rather well.

6.2 Comparison Between the Mononobe-Okabe Method

and Present Procedure

The Mononobe-Okabe analysis of a retaining wall and iFS
backfill is the most commonly used method of examining the effects
of an earthquake on the earth thrust against the wall. However, it
has several limitatioms that are not present in the developed pro-
cedure,

‘ The first limitation of the Mononobe-Okabe method is that
it does not accurateiy determine.the point of application of the
earth thrust. The static component is assumed to act at one-third '
the height of the wall above the base; the dynamic component is as-
sumed to act at the midpoint of the wall. As a conseguence of these
assumptions, the retaining wall is not in moment equilibrium and,
therefore, an impossible situation is analyzed.

In addition, for certain conditions, the Mononobe-~Okabe
method does not always provide a value for the earth thrust. If the
guantity ¢—8—ivis negative in which ¢ denotes the angle of intermal
friction of the backfill, & denotes the rotation of the acceleration

and is equal to tan-l(izg—ﬁ, and i denotes the slope of the backfill;
v

Mononobe-Okabe's method cannot be evaluated. Therefore, there exists
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a value of the maximum ground acceleration beyond which the Mononobe-
Okabe method cannot be applied.

The limit of applicability of the Mononobe-Okabe method is
illustrated in F;g. 6.3. The retaining wali examined is inclined
20 degrees frsm the vertical, the backfill is inclined 10 degrees from
the horizontal, the angle of internal)friction of the backfill material
is equal to 35 degrees, and the angle of soil-wall friction is equal
to one-third ¢ (l.e., B = 70°, & = 10°, ¢ = 35°, and 6 = 5 ¢). The
vertical component of the maximum ground acceleration is assumed to
be directed quard and equal to two-thirds the horizontal component
(i.e., a, =~ %-ah).

The solid line in Fig. 6.3 represents the active earth thrust
obtained for the moment equilibrium method (Eqn. (4.5)), while the
dashed line represents the active earth thrust found from Mononobe~
Okabe's method (Eqn. (1.2)). The limiting value of the maximum hori-
zontal ground acceleration beyond which the Mononobe-Okabe method
cannot be applied, can be seen to be approximately 0.35g. However,
the moment equilibrium method seemed to be applicable beyond this
point.

Finally, the last limitation of the Mononobe-Okabe method
is that the most critical coﬂdition is assumed to occur when the
vertical component of the acceleration is directed upward. An upward

directed acceleration maximizes the angle of rotation of the accelera-

%n

1+a
v

tion field & f£rom zero for the static case to tan-l( ) for a given

earthquake. However, this does mot always provide the critical value
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of the active .earth thrust, a downward directed component of equal
magnitude may provide the critical value.

The dependence of the active earth thrust on the direction

of the veftical acceleration component Is 1llustrated using a verti-
cal retaining wall with a horizontal backfill. The angle of internal
friction of the backfill material ¢ is equal to 35 degrees and the
angle of soil-wall friction is assuméé toe be one-third ¢ (i.e.,
B =10°, 41 =0°, ¢ = 35°, and & = %-¢). The active earth thrust ob-
tained using the moment equilibrium and Mononobe-Okabe methods are
denoted by thersolid and dashed lines, respectively, iﬁ Fig, 6.4.

The Mononobe-Okabe method has the downward directed verti-

cal acceleration being the critical case for a, between zero and

h

Q.4g. However, an upward directed acceleration is the critical case

for ay greater than 0.4g.
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CHAPTER 7

DISCUSSION

In general, measured or inferred parameters that are used
in geotechnical gngineefing practice exhibit some degree of varia-
tion in their numerical values, This variation causes uncertainty
in the results of the analysis which in turn affects the sclution
given to the problem at hand.

For statistically homogeneous solls, the uncertainty as-
sociated with the variability of soll parameters has been accounted
for by treating soil parameters as random variables (Lumb, 1970;
Asaocka and A-Grivas, 198la; etc.). The central tendency and degree
of variation of parameters of such media are described in terms of
Ehe mean values and variances, respectively.

The uncertainty assoclated with the functions of random
variables was examined in Chapter 2, Due to the complexity of ex-
pressions encountered in geotechnical engineering, an exact evalua-
tion of the variability of functions of random soill parameters may
often be impractical or even impossible to obtain. Thus, of neces-
sity, one must employ some of the approximate methods that are
.available in order to achieve this task.

The comparison of ghe available approximate methods given
in Section 2.5 indicated that the two-point estimate method provides
more accurate estimates of a function of a random variable than the
series approximation method. This accuracy may be increased further by
including a third point in the discrete approximation of the involved

11z
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random variable.

The inherent variability of a soil mass often involves a
depth dependent trend in the values of random soil parameters. In
the case of natural deposits, this tremd and its associated randomness
can be attridbuted mainly to thesnature of the geological processes
involved in the‘formation of the deposits, A similar trend often
exists in the variability of soil parameters within layers of man-
made earth structures (e.g., water content of embankments or fills,
ete. ).

An important function used to describe the depth depen-
dent characteristic of scil parameters is its autocorrelation,func-
tion. This describes the correlation between values of the parameter
at different locations within the soil mass and is expressed analyti-
cally in terms of a smooth exponential function of the ratio of the
distance between two points within which the parameter shows rela-
tively strong correlation.

The mefhods of estimating the correlation length that were
reviewed in Sections 3.4.1 and 3.4.2, i.e., the average mean-crossing
distance method and the moving average method, respectively, did not
considgr the depth dependent nature of soil parameters. This was
accounted for through the—quasi—stationary autoregressive method pre-
sented in Section 3.4.3.

All three methods were applied to a case study involving
actual data of the undrained,shear strength of a natural soil de-

posit. From Table 3.9, it is seen that the average mean-crossings



distance method provided the most inconsistent estimates of the
correlation length. In one case (i.e., Borehold B-~l), an estimate
was impossible to obtain as the depth variation of the value of
the undrained shear strength crossed its mean value line only once.
The shortcomings of the average mean-crossings distance

method are illustrated in the case study associated with Borehole
B-1, From Fig. 7.1(a), it is seen th;t the mean value is constant
and intersects the trace of Su found from the test data only once,
Thus, the correlation length cannot be estimated. If the mean ’
Valué of Su waé represented as a linearly increasing function of
depth, as shown in Fig. 7.1(b), the trace of S, would be equai to
its mean value four times allowing then an estimate to be made of
;ts correlation length. ‘

| From Table 3.9, 1t is seen that the moving average method
is a better procedure for determining the correlation length than
the average mean-crossings distance method. However, this method
resulted iﬁ a considerable variation in the estimated correlation
lengths in both sets of borings. The variation in the estimated
thickness of an independent layer, determined using Eqn. (3.5), was
found for both sites to be approximately 25 percent. This large
.amount of‘variation is atfriﬁuted to the unrealistic assumption

of a2 constant mean value of Su with depth.

- The quasi-stationary autoregressive method was found to
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provide the most cdnsistent estimates of the correlatiom length of
the undrained shear strength as can be seen in Table 3.9. The
thickness of an independent layer ai was found at both sites to
vary by only 5 percent. This is due to the proper representation
of the mean value of Su as a linear function of depth.

In the quasi-stationary autoregressive method, the esti-
mate of the correlation length depen&; on the 1ocatioh of the origin
of the depth axis. In this study, the origin was placed at the
ground surface (approximately 50 feet above the top of the clay’
layer) and the-correlation lengths for boreholes A-1 and A-2 were
equal to 4.6 ft, and 4.5 ft., respectively. Using the same déta
but placing the depth origin at the mudline (approximately 25 feet
above the top of the clay layer), Asaoka and A-Grivas (1981b) found
the correlation lengths at boreholes A-1 and A-2 to be equal to
4,0 ft. and 10.2 ft., respectively.

.The effect of the location of the depth origin is shown
schematically in Fig. 7.2, Point O denotes the location of the depth
origin at the ground surface; Point O' denotes the location of the
depth origin for the "best fit" of the data; and point 0" denotes
the location of the depth origin at the mudline. Lines 0A, OTA',
'and C"A" fepresent the mean value §u(z) of the undrained shear
strength with depth for each of these cases (i.e., OA = §u(z) for
z = 0 at the ground surface, etc.).

The quasi-stationary autoregressive approach requires that

the mean value of the soil parameter is equal to zero at the origin
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(i.e., §u(z=O) = 0). Thus, for any assumed origin, a linear repre-
sentation of §u(z) that passes through the origin can be made so
that an estimate of the correlation length is obtained. The resulting
values of the correlation length will vary depending on the location
of the origin; The "'true" or "best fit" correlation length can be
found by locating the origin at POint,O" as is shown in Fig, 7.2

The estimates of the correlation length obtained in this
study were presented in Table 7.1. For comparison purposes, the same
table lists the values of the correlation length obtained by Maésuo
and Asaoka (1977) for marine clays found in Japan. It can be seen
from Table 7.1 that all values obtained are within a reasonable
range.
- The vertical vériabilit& of the ¢-parameter of strength
of the backfill material was used to describe the force system on
a retaining wall (Chapter 4). Employing all three equations of
equilibrium, the active earth thrust against a retaining wall PAE
and its point of application dA were determined., The results ob-
tained for the parametric study are presented in Figs. 5.2 through
5.17. 1In Figs. 5.2 through 5.6, it is seen that the expected value
of PAE_is independent of the number of lavers of the backfill ma-
terial, while it is linearly dependent on the value of the maximum
horizontal acceleration. In Figs. 5.7 through 5.12, it can be seen
that the coefficient of variation of PAE is dependent on the number

of layers the backfill material is considered to be comprised of.

The multi-layer model provides higher values of the coefficient of
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TABLE 7.1

REPORTED VALUES OF THE CORRELATION
LENGTH OF THE UNDRAINED SHEAR
STRENGTH OF CLAYS

METHOD CORRELATION LENGTH,

L, m

Average Mean-Crossings

Distance Method 0.8 < & < 2.5

Moving Average Method : 1.0< 4 < 3.0

Quasi-Stationary Auto-

regressive Method 1.0 < 2 < 2.5

Matsuo and Asacka (1977) | 0.5< £ < 1.5
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variation of éAE than does the single-layer one. In Figs. 5.13
through 5,17, it can be seen that the expected value of the point
of application of PAE (i.e., E[dA]) is dependent on the type of
model assumed for the backfill. The single-layer backfill model

provides higher values of E[dA} than the multi-layer omne.

4



CHAPTER 8

SUMMARY AND CONCLUSIONS

A procedure was developed for the determination of the
force system acting on rigid retaining walls located in an earthquake
environment. It was based on a quasi-static Coulomb type analysis that
satisfied the additional requirement of equilibrium of moments and, at
the same time, accounted for two important uncertaiqties: the spatial
variability of. the strength of the backfill material and the randomness
in the value of the seismic loading. The latter was introduced in terms
of the maximum horizontal ground acceleration expected to be experienced
at the site of the retaining wall during an earthquake.
R As a part of this study, an investigation was made of the
statistical techniques capable of describing characteristics of functions
of random soil properties (case of statistically homogeneous soil depos-
its). In all cases examined, it was found that the "point estimates
method" was more accurate and easier to implement than the "series appro-
ximation method". A similar investigation was made of procedures current-
ly available for the description of the spatial (vertical) variability of
-80il properties (case of heterogeneous soil deposits). It was found that
the 'quasi-stationary autoregressive method" provided a better description

of the vertical variability of soil properties than the "average mean-

crossings distance method" and the "moving average method", especially for
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the commonly encountered situations of soil properties that exhibit a
trend te.g;, increase) with depth. The quasi-stationary autoregressive
method was subsequently employved in this study to describe the vertical
variability of the strength of cohesionless backfill materials. This
resulted to two distinct but equivalent models for the backfill of
retaining walls: one, involving a sinéle—layer medium and, another,
consisting of an equivalent multi-layer system.

Finally, the effect of material, loading and model parameters
on the force s&stem against a retaining wall located in an earthquake
prone area was eXamined in a case study and the results were ﬁresented
in a series of figures and tables.

_ On the basis of the analysis and results obtained in this study,
the following conclusions can be drawn:

1. The point estimate method provides a better approximation
for the statistical moments of a function of random vari-
ables than the series expansion method. Moreover, it is

- applicable to situations where the series approximation
method is impractical or impossible to employ.

2, The accuracy of the point estimate method in estimating the
statistical moments of a function of random variables is
improved by using three points in the discrete approxima-

tion of the input wvariables.



123

Among all methods considered, the quasi-~stationary
autoregressive procedure provides the best description

of the vertical wvariability of a soil parameter that

increases with depth.

The single-~ and multi-layer models of the backfill
material provide identical values for the active earth
thrust against a retaining wall.

The single layer model of the backfill results in a
position for thg point of application of the éctive
earth thrust that is slightly lower than that provided
by the multi-layer model.

The ekpected value of the activg earth thrust against

a retaining wall depends on: the magnitude and direction
of the ma%imum ground acceleration; the magnitude of

the angle of internal friction of the backfill material;
the‘angle of inclination of the back face of the wall;
and the slope of the backfill.

The e#pected value of the point of application of the
active earth thrust depends on: the assumed model of
the backfill; the magnitude and direction of the maximum
ground acceleration; the magnitude of the angle of soii-

wall friction; and the slope of the backfill,
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The coefficient of variation of the active earth thrust
depends on: the statistical moments of the angle of

internal friction of the backfill material and maximum

_ground acceleration; the magnitude of the angle of soil

wall friction; and the angle of inclination of the back
face of the wall.
The inclusion of the equilibrium of moments in analyzing

the force system on a retaining wall emables the deter-

‘mination of the point of application of the earth thrust.

It produces a lower limit" for the value of the active

‘earth thruétragainst the'wal; as compared to model test

results,



. 10~

11.

12.

CHAPTER 9.

REFERENCES

Alonso, E.E. (1976), "Risk Analysis of Slopes and its Appli-
cation to Slopes in Canadian Sensitive Clays", Geo-
technique, Vol. 26, No. 3, pp. 453-472.

Asaoka, A. and A-Grivas, D. (198la), "Short-Term Reliability
of Slopes Under Static and Seismic Conditions", Transpor-
tation Research Record 809, "Frost Action and Risk Assess—
ment in Soil Mechanics™.

Asaoka, A. and A~-Grivas, D. (1981b), "Spatial Varianility of the
Undrained Strength of Soft Clays"™, Submitted for Publication
in the Canadian Geotechnical Journal.

Benjamin, J.R. and Cormell, C.A. (1970), Probability, Statistics,

and Decision for Civil Engineers, McGraw-Hill Book Co., Inc.,
New York.

Cox, D.R. and Miller, H.D. (1965), The Theory of Stochastic
Processes, Methuem and Co., Ltd., London.

Dubrova, G.A. (1963), "Interaction of Soil and Structures", Izd.
"Rochnoy Transport", Moscow.

Hahn, G.T. and Shapiro, S.5. (1967), Statistical Models in
Enginee:ing, John Wiley and Sons, New York.

Harr, M.E. (1977), Mechanics of Particulate Media - A Probabilis-
tic Approach, McGraw-Hill Book Co., Inc., New York.

Harrop-Williams, K. (1980), "Reliability of Geotechnical Systems”,
Ph.D. Dissertation, Department of Civil Engineering,
Rensselaer Polytechnic Institute, Troy, New York.

 Hooper, J.A. and Butler, F.G. (1966), "Some Numerical Results

- Concerning the Shear Strength of London Clays', Geotechnique,
Vol. 16, No. 4, pp. 282-304.

Howland, J.D. (1981), "A Simplified Procedure for Reliabiliry
Analysis in Geotechnical Engineering", Ph.D. Dissertation,
Department of Civil Engineering, Rensselaer Polytechnic
Institute, Troy, New York.

Ichihara, M. (1965), "Dynamic Earth Pressure Measured by a New
Testing Apparatus", Proceedings, 6th International Conference
on Scil Mechanics and Foundation Engineering, Montreal, Canada,
Vol. 2, September, pp. 386-390.

125



13.

14‘

15'

16,

17.

18.

19.

20.

21.

22I

23. )

24,

25,

126

Lambe, T.W. and Whitman, R.V. (1969), Soil Mechanics, John
Wiley and Sons, New York.

Lumb, P. (1966), "The Variability of Natural Soils", Canadian
Geotechnical Journal, Vol. 3, No. 2, pp. 74-97.

Lumb, P. (1970), "Safety Factors and Probabilistic Distribution
of Soil Strength", Canadian Geotechnical Journal, Vol. 7,
No. 3, pp. 225-242.

Matsuo, H. and Ohara, S. (1960), "Lateral Earth Pressures and
Stability of Quay Walls During Earthquakes', Proceedings,
2nd World Conference on Earthquake Engineering, Tokyo,
Japan, Vol. 1.

Matsuo, M. and Asaoka, A. (1977), "Probability Models of Un-
drained Strength of Marine Clay Layer”, Soils and Founda-
tions, Vol. 17, No. 3, September, pp. 53-68.

McGuffey, V., Iori, J., Kyfor, Z. and A~Grivas, D. (1981), "The
Use of Point Estimate for Probability Moments in Gectechni-
cal Engineering', Transportation Research Record 809, "Frost
Action and Risk Assessment in Soil Mechanics'.

Mononobe, N. (1929), "Earthquake-Proof Construction of Masonry
Dams", Proceedings, World Engineering Conference, Vol. 9.

Mononobe, N. and Matsuo, H. (1929), "On the Determination of
Earth Pressure During Earthquake', Proceedings, World
Engineering Conference, Vol. 9.

Nazarian, H.N. and Hadijian, A.H. (1979), "Earthquake-Induced
Lateral Soil Pressure on Structures”, Journal of the Geo-
technical Engineering Division, ASCE, Vol. 105, No. GTI9,
September, pp. 1049-1066.

Newmark, N.M. (1965), "Effects of Earthquakes on Dams and Embank-
ments", Geotechnique, Vol. 15, No. 2, pp. 139-160.

Okabe, S. (1926), "General Theory of Earth Pressure”, Journal
of the Japanese Society of Civil Engineers, Vol. 12, Neo. 1,
January.

Papoulis, A, (1965), Probability, Random Variables, and Stochastic
Processes, McGraw-Hill Book Co., Inc., New York.

Prakash, S. and Basavanna, B.M. {1969), "Earth Pressure Distribu-
tion Behind Retaining Wall During Earthquakes™, Proceedings,
4th World Conference on Earthquake Engineering, Santiago,
Chile, Vol. 3, January, pp. 133-148.



127

26, Prakash, S. and Nandakumaran, P. (1973), "Dynamic Earth Pressure
Distribution on Rigid Walls", Symposium, Behavior of Earth
and Earth Structures under Earthquakes and Dynamic Loads,
March, pp. 11-16.

27. Prakash, 5. and Nandakumaran, P. (1979), "Earth Pressures During
Earthquakes", U.S. Earthquake Engineering Conference,
Stanford, California, pp. 613-622.

28. Rice, §8.0. (1944), "Mathematical Analysis of Random Noise',
Bell System Technical Journal, Vol. 23, p. 282, Vol. 24,
p. 46.

29. Richard, R. and Elms, D.G. (1979), "Seismic Behavior of Gravity
Retaining Walls", Journal of the Geotechnical Engineering
Division, ASCE, Vol. 105, No. GT4, April, pp. 449f464ﬁ

30. Rosenblueth, E, {1975), "Point Estimates for Probability Moments”,
Proceedings, National Academy of Science, U.S.A., Vol. 72,
No., 10, October, Mathematics, pp. 3812-3814.

31. Saran, S. and Prakash, S. (1977), "Effect of Wall Movement on
Lateral Earth Pressure", Proceedings, 6th World Conference
on Earthquake Engineering, India, Vol. 3, pp. 2371-2372.

32, Seed, H.B. and Whitman, R.V. (1970), "Design of Earth Retaining
Structures for Dynamic Loads", Specialty Conference on
Lateral Stresses. in the Ground and Design of Earth-Retaining
Strudtures, ASCE, Cornell University, pp. 103-147.

33. Sharma, S.K. (1975), "Seismic Stability of Earth Dams and Embank-
ments", Geotechnique, Vol. 25, No. 4, pp. 743-761.

34, Terzaghi, K. (1936), "A Fundamental Fallacy in Earth Pressure
Computations', Journal of Boston Society of Civil Engineers,
April, pp. 78-79.

35, Tarzaghi, K. (1941), "General Wedge Theory of Earth Pressure",
Transactions of American Socilety of Civil Engineers, Paper
.No. 20099, 106, .pp. 68-97.

36. Tschebotarioff, G.P. (1951), Soil Mechanics, Foundations, and
Earth Structures, MeGraw-Hill Book Co., Inc., New York.

37. Vanmarcke, E.H. (1977), "Probabilistic Modeling of Soil Profiles”,
Journal of the Geotechnical Engineering Division, ASCE, Vol.
103, No. GT11l, November, pp. 1227-1246.

38. Vlavianos, G.J. (1981), "Convention and Probabilistic Evaluations
of Seismic Safety of Rigid Retaining Walls", M.S. Thesis, De-
partment of Civil Engineering, Rensselaer Polytechnic Institute,
Troy, Rew York.



APPENDIX

128



129
APPENDIX

COMPUTER PROGRAMS

The following is a listing of computer programs developed
in the course of this study. The programs are written in BASIC for
the Radio Shack TRS~80 Micro Computer. Together with each program
are given a brief description and an illustrative example showing
both the display and the required input.

The listed programs can be divided into three basic cate-
gories; one, those dealing with the statistical description of random
variables; two, those dealing with methods of determining the cor-
relation length of soil parameters; and finally, those dealing with

the determination of the earth thrust against retaining walls,
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Title MOMENTS

(Statistical Moments and Pearson's K)

Description:

of variation V, coeff. of skewness a

Pearson's K criterion of a set of N data points of a random variable

This program determines the mean value Moo variance ci, coeff,

3

s coeff. of kurtosis a, and

A

x, in which
1 ¥
b =X ‘Z (x.)
i=1
N
2 1 : 2
ol = = b (%, - u)
X (N-1) o7 1
v, = cx/ux
N
1 _ 3,3
%3 TN .g (% Hy) loy
i=1 :
N
1 4, 4
. e, == 1 (x, -u)'/o
4 N =1 T x X
ol (o, + 372
. 3\
o 42, - 30> - 6)(4a, - 3a2)
G5 T 2% 5~ %3
Example: N=>5 x, = 1, 3, 4, 6, & 7
Input Display - Note Input Display Note
RUN INO DATA PTS= 11 MEAN X = 4.2
5 ENTER {VALUE= 12 ENTER |VARIANCE = 5.7
1 ENTER [VALUE= 13 ENTER LOEF VAR=5.68E-01
4 ENTER [VALUE= 1 ENTER BKEWNESS=9.88E-02]
6 ENTER |VALUE= 13 ENTER _ {KURTOSIS=1,101
7 ENTER 16 ENTER JK=-2,45E-03

17

e s or Jon] s ] | N[ e

13

-
(-

10
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Title  moMENTS

Memo:ry content Line number Statements
R 10 | CLEAR:INPUT “NO DATA PTS=". 4
2} counter 20 | FOR B = 1 TO A
3] s 30 | INPUT "VALUE="; J
4] o5 40 | C=C+J:A(B+11)=J:NEXTB
5] Vx 50 | c=c/B
8] %3 60| FOR B = 1 TO A
1| 9 70 | B=A(B+11)-C:I=H*H
8] XMy . 80 | D=D+I : F=F+H*I:G=G+I*I:NEXTB
g Ceyu)” 90 | p=D/(A-1):E= /D/C
10| of 100 | F=F/A/D.1.5:G=G/A/D/D
- 1| K criterion 110 | J=F*F:K<J*(G43) .2/4/

-
N

(2%G-3*%J-6) / (4*G-3*7T)

-—
[ 2

120 | PRINT "MEAN X="; C

130 | PRINT "VARIANCE="3; D

I
—
o

140 | PRINT "COEF .VAR=": E

-
o

150 PRINT "SKEWNES='"; F

-
e

160 | PRINT "KURTOSIS="; G

—-—
o

170 | PRINT "K="; K

—
Lo

180} END

L d
=

~
-

N
N

[ 5]
()

S ]
P

~N
n

i
oy

Nl<ixlgl<|c|A|{n|DipiTio|Z|R|r|X|C|[—|T|OMMOO|T]>
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Title corcorr

Description:

{(Correlation Coefficient)

This program determines the mean values, X and §; variances, ci

|

and ci; coeff, of variation, Vk and Vy; and correlation coefficient p

of a set of W pairs of data points for the random variables x and v,

in which
N
- 1
x=2 1 (x)
i=1 )
N.
i=1
Vx =c /x
N
- 1
y =% 1 (v
N 121 i
N
- 2 1 2
V. =o0/y
vy %Y
1 ¥ - -
Py =& 121 (x; - 0y - /oy of
Example: N =5 X ¥
B 1.4 6.0
- 1.7 5.4 b
“1.0 5.8 T
1.3 6.2
P A 6.1
input Display Note input Display Note
1 RUN| NO DATA SETS= Y4 1.5 ENTER|VALUE OF Y=
2{ _ 5 ENTER| VALUE OF X= - 112} 6.1 ENTER
{3} 1.4 ENTER| VALUE OF Y= 13 MEAN VALUE X=1.3§
4t 6.0 ENTER| VALUE OF X= 1" ENTER | VARIANCE X=0.067
s| 1.7 ENTER| vALUE OF Y= 15 ENTER boE VAR X=1,88E-d1
§| 5.4 ENTER| VALUE OF X= ] - ENTER |MEAN VALUE Y¥=5.9
7| 1.0 ENTER| VALUE OF Y= - 17 ENTER | VARIANCE ¥=0.1
1| 5.8 ENTER| VALUE OF X= i ENTER COE VAR Y=5.36E-(2
1| 1.3 ENTER| YALUE OF Y= 13 ENTER|COR COE=3.67E-01
18| 6.2 ENTER| VALUE OF X= 20
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Title CORCOEFF

Memory content

Line number

Statements

-—
LI

L
=

~
-

ot ]
[t

»~
[ 2]

[
F

N
o

~y
oy

VAL N 10 |CLEAR: INPUT"NO OF DATA SETS="; A
B |2} counter 20|FOR B = 1 TO A
Ci3} * 30 |INPUT "VALUE OF X="; C
D4 x; 40 [D=D+C:E=E+C*C
E|s| % 50 [INPUT "VALUE OF Y="; F
F|l6] vy 60 |G=G+F :H=H+F*F : I=T+C*F
G|7| Iy, 70 |[NEXT B
H|¢ EY% 80 |J=D/A:K=(E-D*D/A)AA-1) :L= JK/J
sy o=y, 90 [M=G/A:N=(H-G*G/A) f(A-1) :0= [F/M
J o) x 100 |[P=(A*I-D*G)/ J((AXE-D*D)* (A*H-G*G))
K[| og 110 [PRINT "MEAN VALUE X="; J
L [12] Vx 120 |PRINT "VARIANCE X="; K
M3 v 130 |PRINT "COE VAR X="; L
N |14] o2 140 |[PRINT "MEAN VALUE Y="3; M
o5 Vy 150 |PRINT "VARIANCE Y="; N
P |15 Pxy 160 |PRINT ¥Cop VAR Y="{ 0 .
Q{17 ‘170 |PRINT - "COR COE=": P
R {18 180 |END
S
T
U
\'S
W
X

1Y
Z
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Title

PEM-1 (Point Estimate Method - 1 Variable)
—
Description:
The point estimate method is used to evaluate the statistical moment
of a2 function of one random variable. Probabilities P+ and P_ at points X,

and x_ are equal to

1/2
1, 1
P = 3 1+ (1 - - 2) )
3
1z (759
P_ =] - P+ J
and
.= 1/2
x, =x+ GX(P+/P_)
1/2

x =‘§ - Gx(P_/P+)

in which x is the mean, O
ficient of skewness of x.
of function y = y(x) are equal to

Ely] = Poy(x) + P _y(x)

is the standard deviation, and a3
The expected value and coefficient of wvariation

is the coef-

2 2 2. 1/2
) Vy = (Py(x)” + P%y(x_) - E[y]")  /E[y].
Example: 2 . . \ .
y=x +3x ~ 4 (Line 200 of PEM-1 contains this
- : function)
X.= 4 .
o. = 1.5
X
ay = 0.5
Input Display Note - Input Display Note
1 RUN | MEAN= 11
2 4 ENTER SID.= 12
{2.5 ENTER | SKEWNESS= i
4] .5 ENTER _ L
5 35.063 5.0278-011 v, Vy 13
6 1s
7 17
1 18
’ 18
10 10
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Title

Memory content

Line number

Statements

o

Al 3 10| INPUT "MEAN="; W,"STD. DEV.="; S,
B|2 | "SKEWNESS="; A
C|3 20| P = 0.5%(1+ (1-1/(1+(4/2) . 2)))
D4 301 =1 ~ P
E|ls 4ol X = wesx{ (2/Q)
Fls] ¥ &§3&D) 501 Y = W=8&J (Q/P)
G|7 60l Z = X:G0SUB200
H|8 70 M = P*F:V=P*F*F
I ]9 8ol Z = Y:60SUB200
J |1 90| M=M+Q*F: V=y (VHQXF*F-M*M) /M
K1 100| PRINT M,V
L |12 110] END
M3 g1y 200l F =2 ., 2 + 3&z - 4
N M 210 RETURN
O {15
P i1s] 4
Qli p_
R |12
Sy o
T |20
U 21
v [22| Yy
W23 x
X {24] *+
1Y ja25) *-
Z |26] Temp. x_, x
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Title PEM-2 (Point Estimate Method - 2 Variables)

il
F

Description:

The expected value and coefficient of variation of a function of two
correlated random variables are determined using the point estimate
method. If xq, 01 and xz, o, are the mean values and standard deviations
of x; and x,, respectively and p is thelr correlation coefficient, one has

P..=P__ = (L4B)/4
P, =P_ = (1-P)/4
¥4 T X T 0
S s T |
Xr = Fp T 9
Xz_ = X2 - 0'2

The statistical moments of y = y(xl,xz) are found from the following
expression: ' ‘

n n n n n
Ely b= P vy ¥ BV vE Y Py
in which Yy = y(xl+,x2+), Yy = y(xl+, xz_), etc,
Exdmple: X + 2x2
B y = g (Line 200 of PEM-2 contains this function)
El = 4.0
Sl = 1.5
' x, = 6.0
02 = 1.0
p = 0,5
Input Display - Note input Display Note
} RUN| MEAN VALUES= 11
2 . 4 ENTER] ? 12
13 6 ENTER| SID. DEVS.= 13
4§} 1.5 ENTER} ? _ 14
s 1 ENTER{ CORR. COEFF= : 13
: .5 ENTER 18
7 5.333 1.90E-01 iy, . Vy |17
1 1t
s 19
18 20
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Title PEM-2
Memory content Line number Statements
Ajl x 10 |CLEAR:INPUT "MEAN VALUES="; A, B,
Bi2| x, "STD. DEVS.="; C, D," CORR.
Ci3| 9 COEF.="; E
D4 % 20 | F=(1+E)/4:6=(1-E) /4
£S5 p ' 30 | B=A+C:I=A~C:J=B+D:K=B-D
Fls] Pos 40 | L=H:M=J:N=F:GOSUB200
G|7! B~ 50 | GOSUB300
Hlsl %1+ , 60 | ¥=K:N=G:GOSUB200 -
1 |s| *1- 70 | GOSUB300
J 10 X, 80 { L=I:M=J:GOSUB200
K {11 %, ' 90 | GOSUB300
L {12 pummy for x; 100 | M=K:N=F:GOSUB200’
M {13 Dummy for x, 110 | GOSUB300
N {14| Dummy for P 120 | Q= (Q-P~2)/P
O 13 v(x;,x,) 130 | PRINT P, Q
Pl v 140 |END
Qi Yy 200 |0 = (L + 2M)/3
R |18 210 |RETURN
S |18 ‘ 300 [P =P +0*N
T |20 310 | = Q+0~2*N
Ul 320 |RETURN
V j22 ‘
Wiz
X |24
Y |25
Z |26
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Title pmv-3

(Three-Point Estimate Method)

e —— —

Description:

The three-point estimate method 1s used to evaluat
moments of a function of one random variable. The prob
P, at points x_, X, and x4, respectively are

e the statigtical
abilities P_, Po and

_ _ 1
?0 1 T az
' 4 73 2 2 2
Qo 4a a 1/2 -1
1 3 + 3 3 2
P = 4+ * +
T a, - a2 { a, - a2 {a - az (a - az) : ’
4~ %3 4~ %3 6~ % 4" %3
- 1
4~ %
and _ P+ -1/2
=X cx [P (1 + ——J]
P
-z __+ o=
X_ =X 7 (x+ x)

in which x is the mean, cx is the standard deviation, o
.of skewness, and oy is thé coefficient of kurtosis of x

is the coefficient
The expected )

.

value and coefficient of variation of the function y = y{(x) are
Ely] = Poy(x) + P y(x) +.P_y(X_) L2
_ 2 -2 -
v, = (B y(x)” + B y(x)” + P y(x)) /Ely]
Example: y(x) = e'SX- (Line 200 of PEM-3 contains this functiomn)
x = 0.0
¢ =1.0
X
a, = 0.0
o, = 2.14
Input Display .. Note Input Display Note

1 RUN |MEAN= &)
¢! 0.ENTER |STD. DEV= 12
1} 1 ENTER }SKEWNESS= 13
4 0.ENTER |KURTOSIS= 1"
51 2.14ENTER 15
6 19.35 1.746 |y, v, [is
3 17
3 1
3 13
1t 20
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~
-t

~
(o)

~y
€ad

>
L

[ ]
un

Title PEM-3
Memory content Line number Statlements
Aijl X 10 |CLEAR:INPUT "MEAN="; A,'" SID.
Bl2| % DEV="; B,"SKEWNESS="; C, .
c 3| °3% af "KURTOSIS="; D
Dl4] o4 a, - o3 20 |1=1:IFC>1 LET L=1
Els| B, 30 |C=C*C:D=D-C:E=1-1/D
Fis| E- 40 |F=2/D/ (4+C/DHL*{ (4%C/D
Gl PB4 + (C/D)~2))
His| *+ 50 {G = 1/D-F .
] 60 [H = A+B/{ (G*(1+G/F))
SR T T 70 |1 = A-G/F*(H-A)
K[l zv% v 80 {M = A:N=E:GOSUB200
L {12  dummy 90 |M = H:N=G:GOSUB200.
M1l qummy x 100 |M = I:N=F:GOSUB200
N |14  dummy P 110 {K =V (K-J*J3)/J
oS v 120 | PRINT J,K
P |16 130 | END
Q7 . 200 |0 = EXP(-3*M)
R (18 210 | J = JHO*N
S |18 220 | K = K+O%O*N
T |20 230 | RETURN
U
Vv
W
X
Y
Z

~
o
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Title AMCDM (Average Mean—-Crossings Distanée Method)

——— e

Description:

This program finds the correlation length % using the average mean-
crossings distance method. The points of intersection of x(z) and x(z)
denoted by C are found by making linear extrapolation of x(z) between the

data points x, and x, , at uniform sampling intervals Az . The correlation
length is found to b& &qual to °
' € -C
¢ = B 3
m

in which C_ and C_ are the depths of the last and first mean-crossings
and m is the numb®r of intervals between crossings.

Example: N =5 X, = 1.7, 1.0, 2.3, 2.0, 1.5

Azo = 1.0
Input - Display .- Note Input Display Note
] RUN|NO OF SAMPLES= 11
2 5 ENTER}PROP VALUE= 12
3{ 1.7 ENTER{PROP VALUE= 13
4| 1.0 ENTER|PROP VALUE= 1
${ 2.3 ENTER|PROP VALUE= 15
5} 2.0 ENTER|PROP? VALUE= 18
1| 1.5 ENTER . n
3 1.8 2. Lom "
! 19
18 20
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Title amcom -

Memory content

Line number

Statements

Ajl} counter 10 |CLEAR:INPUT "No. of Samples="; B
B |2] No. of samples 20 |[FOR A = 10 TO B + 9
C 13| mean value 30 éNEU;I:‘_'_leESJP VALUE=""7 &(A)
DI depth of Tirst ‘
crossing 50 |INEXT A
E|5] No. of 6. = m 60 |c = C/B:E = -1
F | 8| Depth of crossing 70 |FOR A = 11 TO B + 9
G|7/?% "D 80 |IF (A(A-1)-C)*(A(A)~C)>0 GO TO 130
H|[8[% 90 {1F A(A-1) = A(A) GO TO 130
| {9] corr, length = ¢ 100 {p = (C~A(A-1))/(A(A)-A(A-1))+A-2
J |10}1(10) S0il Prop Pt} 110 {IF E=-1 LETD = F .
K iMa(11) SoilProp Ptd 120 JE=E+1
L |12 f 130 |NEXT A
i3 140 ]¢ = F - D )
N |14 . 150 ég %;OIE%INT "Only one crosslng T
o s poa 2o TP 160 | INPUT "Sample Distance=""; H
at Point B P H
P |16 170 | I = G/E*H
Q|17 180 | PRINT I, E
R {18 190 | END
S |18
T |20
U |21
V {22
w23
1 X {24
Y |25
Z |26
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T't!e MaM (Moving Average Method)

Description:

This program uses the moving average method to determine the correla-
tion length 2 of a set of data. The correlation length is found by
minimizing the error between the varianﬁe reduction function (i.e.,

T’gk) = Gk/O' ) and its best fit (d.e., I'“(k) = k*/k). For N data points,
k™ 1s given by 2
: ) N-1 O
* 1
ko=Mao (g5 § (= - %
k=1 9

The correlation length is found to be equal to
| * *
o= 28z  {an[(k +1)/(k -1)]}

where /_\z0 is the distance between adjacent'samples;

Example: X 3 bz_= 1.0
1.7
- 1.0
1.9
2.3
1.6
input Display - Note input Display Note
1 RUN_INO OF SAMPLFS= 1
2| .5 ENTER IPROP VALUE= 12
3|1.7 ENTER |PROP VALUE= 13
¢11.0 ENTER |PROP VALUE= 14
5{1.9 ENTER |PROP VALUE= 18
/2.3 ENTER |PROP VALUF= 1
11,6 ENTER - 17
! SAMPLE DISTANCE= i
$11. ENTER . 13
10 1.2 8.34E-01 |k*, 2 |2
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Title

Memory content

Line number

Statements

counter for R;

Al ciope: 2 10 [CLEAR:INPUT "No. of Samples="; B
Bl2 No. of Samples;. _
counter: Azn, 20 |FOR A=26 TO B + 25
C 13 counter of n 30 |INPUT "Soil Property="; A(4)
D4t K 40 |NEXT A
E |5]r§; Error 50 |FOR C = 1 TO 15:BEEP C
Fls counter, counter _ - )
for Kx 60 |IF B=C LET C=C-1:G0 TO 180
G |7 in; ooy 70 |p = 0:E =0
H |8} Iry, ErTor min. 80 |FOR F = 1 “T0 B-C+l
[ ]8]Xpun 90 |G = C+F-1:H=0
J 18 r2¢1y 100 |FOR A = F T0 G
K {11} r2(2) 110 |H = H + A(A+25)
L [12] 1%(3) 120 | NEXT A
M [13] 128 130 | D=D+H/C:E=E+(H/C) ~2
N |14} 1%(5) 140 | NEXT F
o {15] r*(6) 150 | A(C+9)=(E-D~2/(3-C+1))/(B~C)
P 18] I2(7) 160 | IF C<>1LET A(C+9)=A(C+9)/J
Q [17] +2(8) 170 | NEXT C
R [18s6i1 Property Pt 1 180 |G = C:B=11:J=1:H=9
S {1915011 Property Pt 2 150 | FOR_F=1 TO 20:BEEP 2
T j20 & 200 | D = 1.042%F:A=—1:E=0
ua . 210 | TF D=B-9 LET B=B+l GO TO 230
vz : | 220 | E=A(B) - (A(A-1)-A(B))*(D-B+10) :E=(1-E)-
W |23|z(3) Soil Prop PtB 230 |FOR C =2 TO G
X |24 ' 240 | IFC<DLETE=E+(1-A{C+(9)~2:A=A+1:COTO26(
Y |25 250 | E=E+(ABS(A(CH+9)~D/C))~2:A=A+1
Z |28 260 | NEXT C
270 { IF H>=E/A LET B=E/A:I=D
280 | NEXT F
290 | BEEP15:INPUT "'Sample Distance="; B
300 § A=2%B/LN((I+1)/(I-1))
310 | PRINT I,A
320 | END

2:2=0
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Title QéARM

Description:

This program uses the quasi-~-stationary autoregressive method to
evaluate the correlation length 2 of a set of data. The modeling
parameters B_ and B, are determined by the least squared error method
of the data. The cSrrelation length is found to be equal to

Az
o

o= QnIBl[

where zg is the distance between adjacent samples

|

Example: x z s Azo = 1.0
1.7 2
1.0 3
1.9 4
2.3 5
1.6 6
Input Display Note input Display Note
1 RUNINO OF SAMPLES= 111 ¢ ENTER | PROP VALUE=
2} .. 5 ENTER|z= 12} 1.6 ENTER
3 2 ENTERIPROP VALUF= 13 SAMPLE DISTANCE=
¢} 1,7 ENTER|z= : 14} 1. ENTER —
5 3 ENTER!{PROP VALUE=. 15 ' -5%-He_02 B0 B
§}/ 1.0 ENTER|z= 1% ENTER | 1.65 9, 2, H
] 4 ENTERIPROD VALUE= - 17
${ 1.9 ENTER|z= 18
! 5 ENTER|PROP VALUE= 18
8 2 2 FNTERlz= 20
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Title QSARM

[
A

[y ]
o

~
(7]

Memeorv content Line number Statements
Ajl Zui 10 {CLEAR: INPUT "No of Samples="; N
Bl2| v 20 |FOR K=1 TO N
Ci3 fuy 30 |INPUT "z="; z, "PROP VALUE="; P
Dl4] -0 ™ 4ly = psz
E | 5| Wworking Space 50 | A= A+ B=BHU*U
F |6 "1 60iy = N +1
G|7] Bo . - 70l1F =1 g0 TO 100
H|8| 2z, 80lc=c+uU
119 Correlation Length 90Ip = p + Uxy T
J {101rhi ckness of Soil 100 V=U:BEEP2: NEXT K
K {1} counter 110 | A=A-U:B=B-U*U:N=N-1
L 12 120! ReN*B-A%A
M {13 130 F=(N*D=A*C) /E
N |14 yumber of Points 140|G=(B*C-A*D) /E
O 15 150] INPUT "SAMPLE DIST.="; H
P |18] s0il Property 160} T=-H/LNABS (F) : J=H*N
Q|17 170| PRINT F,G:PRINT I,J
R |18 180} END
S |18
T {20
U 21| B/z = u,

V|22) vy
W
X
Y
Z

»~
or

Depth
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Title covroms (Coulomb Method-Active)

Description:

This program finds the active earth thrust against a retaining wall
using Coulomb's Theory, i.e., .

2 2
P = 1xH [ _ese B sin(B-¢) ]
A 2 tan 8 1/2
. 1/2 sin(¢-6)sin(d-1)
{sin/B+3)} + { sin(B-1) }
in which PA ="active earth thrust,
vy = unit weight of the backfill,
H = height of the retaining wall,.
¢ = angle of internal friction of backfill,
§ = angle of wall friction
8 = inclination of wall from the vertical, and
1 = inclination of backfill.
Example: H=10 fr.
$ = 30°
§ = 10°
- vy = 100 pcf
B = 5°
i=20°
Input | Display Note input Display Note
1 RUN_IB= 1
2|1 10 ENTER |PHI= 12
3] 40 FNTFR IDELTA= I
4} 10 FNTER IUNIT WGT= L
$1100 ENTER |BETA= 13 s
5| 5 ENTER \{I= s
1| 0 ENTER 1
1 HOULOME, PA=R58.8 | FA '8
3 111
10 20
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Title COULOMB

Memory ccantent

jLine number

Stetements

1y 10 [INPUT "H="; A "PHI="; B, "DELTA="}
2 , C, "UNIT WGT=", D, "BETA=", E,

| s nI=t,; F

4 20 }6G=SIN(E-B)/COSE

5 g 30 ju=4 SIN(E+C)

8| 1 40 |IF E-F<0 PRINT "NO SOLUTION

7| csc g sin(8-9) POSSIBLE":GO TO 80

Bl sin(g+d) 50 {I= (SIN(B+C)*SIN(B-F)/SIN(E-F))
g sig%g—?%ﬁ%n(du—i)/ 60 |J=D*AXA/2% (GXHXT)* (GXH*I)

10| ¥y 70 [PRINT "COULOMB,PA=",J

11 80 |END

-
~y

-
Ly

-
i

-
on

-t
b

—
Loed

-
10

[and
<

~
-ht

(&4
ol

-~y
tud

[ %]
.

[ ]
o

N <|x]gl<clc|4|n|n]|o|v]|o|z|Z2|r|x|c|=|x|0|n|im|ojo|w|>

~
o
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‘Title wm-o (Mononobe—-Okabe Method)

Description:

This program determines the active earth thrust P, . against a
retalning wall for seismic conditions using Mononobe-oﬁgbe's method.

The expression for PAE is
R § 2 .
'PAE =3 3¢ (l+kv) KAE
in which
K _ = cosz(¢—8%8)
AE 2

sin(¢+8) sin(é—6- 1)

2
cos cos"Beos(8+8+6) [1 + cos (§+B8+6) cos(i-B) ]

o
i

the selsmic active earth thrust,

AE
Y = the unit weight of the backfill,
H = the height of the retaining wall,
k= the vertical component of the ground acceleration,
kh = the horizontal component of the ground acceleratioen,
- ¢ = the angle of internal friction of backfill,
B = inclination of wall from the vertical,
i = inclination of backfill,
6 = the angle of wall friction, and
k
-1 h
6 = tan (1+k .
v
Example: vy = 100 pef g =5°
H =10 ft. i=0°
¢ =30° a, = 0.2g
§ = 10 a_ = 0.0g
Input ‘Display - Note Input Display Note
1 RUN |H= 1
12] 10 ENTER {PHI= 12
3| 30 ENTER IDELTA= 33
4| 10 ENTER |BETA= W
3| 5 ENTER |I= 15
$| O ENTER {VERT ACC= 18
'{ 0 ENTER |HORZ ACC= - 17
1 2 ENTER |UNIT WGI= 13
81100 ENTER 19
1 M-0,PAE=2469 . Par  f2o
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Title M-0
Memory content Line pumber Statements
1} H 10 |INPUT"H=";A,"PHI="3;B,"DELTA=";C,"BETA-"
2] 4 p,"I="3E,"VERT ACC=";F,"HORZ ACC=";G
31 5 20 |INPUT "UNIT WGT=":H
4 8 30 T = ATN (G/(1+F))
51 4 40 |IF B-I-E<0 GO TO 120
B x_ 50 |J = COS(B-I-D)~2
11 %, 60 [J=J/COSI/COSD~2/C0OS(CHD+I)
8] v 70 |K=SIN(B+C)*SIN(B-I-E)
3 80 [K=K/COS(C+D+I)/COS(E-D)
10] Kup 90 |k=(1+{ K0 *2:3=3/K
h 11| Working space 100 p=H/2%A~2% (1+F) *J
12) Fax 110 |PRINT "M-0, PAE="; L : GO TO 130
u 120 |ppynT "NO SOLUTION POSSIBLE"
130 |END
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Title

SLM

(Single Layer Model of Wall Backfill)

Degcription:

This program determines E[P

1, Vv

, and E[d,] for a retaining wall
in whiech the backfill is considered to consist of one layer and its ¢

strength parameter is a r.v. with mean ¢ and variance czlni.
acceleration is also a r.v. ' The parameters are defined as follows:

The ground

~ H = height of wall,
¥ = unit weight of backfill material,
§ = angle of wall frictionm,
g = inclination of retaining wall (B # 90°),
i = inclination of backfill,
a = horizontal accelerationm,
a8, = vertical acceleration, and
8 = 45° + 3/2, angle of failure plane.
Example: ;
H = 10 ft. a, = 0.2g
Y = 100 pcf a_ = 0.0g
b = ° =
(] 3C - Vi .10
V¢ = ,20 n, = 4
- § = 10°
B = 85°
i=20°
1  Input ‘Display Note Input Display Note
1 RUN} HB= 1 .1 ENTER| VERT/HORZ=
? 10 ENTERjPHI= 12 0 ENTER]
3| 30 ENTER{VPHI= 13 2319.  7.80E-02 F1FARI>Y
4] .2 ENTER|NI= 8 ENTER| 4. 304 Eld,)
5 4 ENTER|DELTA= 15
4 10 ENTER|BETA= 15
1| 85 ENTER|I= 1
s 0 ENTER|UNIT WGT= 13
$1 100 ENTER{HORZ ACC= 13
10 .2 ENTER| VACC= 20
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Title SIM

Memeory content

Line number

Statements

VGT=""3H

=".
f="3%

I#(1-J)

[ d
o

A

A |1 height B 10 |INPUT"H=";A,"PHI=";B,"VPHI="3;C,NI="3D
B(2] 20 [INPUT"DELTA=";E,"BETA=",F,"I=" 3G UNIT
ci3| Y 30 |INPUT"HORZ ACC=";I,"VACC=";J,"VERT/HOR
D4 ™4 40 |L = 454B/2
E|S| s 50 |M=B*(1+C /D) :N=B#(1-C//D) :0=I* (1+J) :P=
Fls| 8 60 |Q=TANF:R=TANG:S=TANL
G|7] 1 70 |M=TAN(L-M) : N=TAN(L~N)
His v 80 |T=TAN(F-E).:V=SIN(F-E)
[ || 3yi PHY counter 90 |w=n*axA/2 /U* (1%5/Q)* (1+R/Q) / (S-R)
J |1g] Vi PEM counter 100 |X=0:¥=0:2=T:BEEP3 -
K1l a /a 110 |FOR I = 13 TO 14
L 12 6 120 |{FOR J = 15 TO ‘16
M 13 ¢, tan(e-¢) 130 | V=W*(A/3)+(1+A (I)*K)*A(T)) / (1+A(T) /T)
N [14] o3 tanle-¢) 180 |xaq4v/4: Y=Y+V*V/4
O.[15| *h+ 150 {NEXT J
P |16 %, 160 |NEXT 1
Q|17 tanB 170 {Z=A/3%(WkZ/X*(1+5/Q)+(1+1/8/T)
R {1% tani *(1-S/Q+R* (S+Q) /Q/(S-R))) / (1+1/Q/T)
S cane '
T 129 ran (B-8) 180 | v=Vi(y-x*x) /X
U |2l} sin (8-6) 190 | PRINT X.V:PRINT Z
V|23 Fipcemm 200 | END
W |23 Weigh£ of wedge
X 124 v
Y [2s] Ivés v,
Z d







