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ABSTRACT

The two main objectives of the present study are (a) to
review and compare through a case study currently available methods
for the analysis of earth retaining Structures, and (b) to provide
an alternative, probabilistic approach to the assessment of the safety
of such structures when subjected to a seismic loading. The latter
objective is achieved through a quasi-static stability analysis that
accounts for the movement experienced by the wall during loading.

The resulting distribution of the lateral pressure along the structure
is ﬁarabolic—like (rather than the customarily assumed linear varia-
tion) and, thus, it is in closer agreement with experimental and field
observations. Four modes of possible failure are considered in the
analysis (i.e., overturning, base sliding, bearing capacity of the
foundation and overall sliding) and the probability of failure in each
mode is determined.

The examined conventional methods and the new probabilistic
approach are applied in a case study involving the safety of a gravity
wall during an earthquake and the obtained results are presented and

discussed. It is concluded that the provided probabilistic analysis

is an improved alternative to conventional procedures because 1t accounts

for the uncertainties associated with important material and seismic
parameters while, at the same time, it takes into consideration the

movement experienced by the wall during the ground shaking.
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CHAPTER 1

INTRODUCTION

Damage of earth retaining structures, resulting from
moverents and increased lateral pressures induced by earthquakes,
is a common phenomenon. As a consequence, special efforts must be
undertaken by geotechnical engineers in order te describe the load-
ing cénditions and secure the safe design of such structures when
subjected to a seismic environment.

Historically, the earliest method of determining the
seismic effect on the force acting on a retaining wall was developed
by Okabe (1926) and Mononobe (1929). This method, commonly referred
to as the Mononobe-Okabe procedure, is basically the Coulomb sliding
wedge approach in which two additional forces are included: the hor-~
izontal and vertical components of the seismic inertia of the backfill
material. A simplified version of the Mononobe-Okabe procedure was
proposed by Seed (Seed, 1969; Seed and Whitman, 1970), while Prakash
and Basavanna (1969) attempted to improve upon the procedure through
an analysis that would satisfy the additional condition of equilibrium
of moments on the sliding wedge.

In the Mononobe-Qkabe procedure, the movement of a retaining
wall is nct considered as a factor with an explicit influence on the
pressure distribution along the wall., This is in contrast to an earlier
recognifion (Meem, 1910) that, for example, the difference between the
earth pressures along rigid and flexible walls is a function of the
difference in the movements that occur along these two types of struc-

tures,



Terzaghi (1936) interpreted lateral earth pressure measurements in
terms of the associated deformations while Ohde (1938) attempted a
mathematical formulation of the relationship between the two quan-
tities.

A simple, analytical procedure for the determination of the
pressure distribution along retaining walls that is also capable
of accounting for the wall movement was proposed by Dubrova (1963).
Although it was initially developed for static conditions, the
Dubrova method was easily extended to provide the analytical expres-
sion for pressure distributions that result from the occurences of
earthquakes (e.g., Saran and Prakash, 1977).

1.1 Scope of the Present Study

In all the above methods, the safety of retaining walls
during earthquakes is measured in terms of the customary factor of
safety. In order to overcome the shortcomings associated with this
measure of safety (e.g., A-Grivas, 1977, etc.) and, also, to account
for the uncertainties that are involved in material parameters, load-
ing conditions, analytical procedures, etc., geotechnical engineers
have suggested the use of a more rational approach to design, i.e.,
one based on probability theory and reliability analysis (e.g., Wu et.
al., 1970; Hoeg and Murarka, 1974; Vanmarcke, 1977; Harr, 1977, eté.).
It %s the objective of this‘gndeavor to provide such an approach to
the analysis and design of scil retaining structures during earthquakes.

A detailed presentation of the procedures capable of deter-

mining the active earth pressures against retaining walls under static



and seismic conditions is given in Chapter 2. Chapter 3 presents a
probabilistic description of the seismic loading while the reliability
analysis of retaining walls is given in Chapter 4. The conventional
and probabilistic approaches are applied in a case study, a detailed
description of which is given in Chapter 5. Finally, Chapter 6 pre-
sents the results of a parametric study which explores the effect of
important material and loading parameters on the pressure distribution

along retaining walls and the corresponding safety measure.



CHAPTER 2

REVIEW OF AVAILABLE PROCEDURES

In this chapter, a review is presented of the procedures
currently available for the determination of the pressure system behind
earth retaining structures and of the associated safety measures.

4

2.1 Procedures Used Under Statie Conditions

2.1.1 The Coulomb Method. The Coulomb method (Coulomb, 1773)

is based on the notion that failure of a retaining wall is accompanied
by a sliding of the soil mass located behind the wall.

The soil sliding is assumed to occur along a plane surface
and the expression for the thrust on the wall is obtained by consider-
ing the equilibrium of the forces acting on the sliding soil mass.

In Fig. 2.1la is shown schematically a Coulomb type trial
wedge that consists of cohensionless soil with horizontal free surface
and is in contact with a vertical retaining wall. If, for the moment,
the shearing forces at the back of the wall are assumed to be zero and
the possibility of cracking in the tension zone is ignored, then the
force system on the wedge consists of its weight W; the force P between
the wedge and the wall; and thé force F along the sliding surface {with
normal component N and shearing component T). This is shown in Fig.
2.1la while the peolygon of forces appears in Fig. 2.1.b.

The weight W of the wedge is known in both magnitude and dir-
ection, The resultant forces P and F have known directions but unknown

magnitudes. The equations of equilibrium along the vertical and

4
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Figure 2.1 Equilibrium of Forces on a Trlal Wedge for Simple Retalning Wall
(active case)



horizontal directiom produce the following expressions for P and F,

respectively:

YH=20 : P =V tan (6-¢)
“ (2-1)
IV =0 s = 23;26:57

Replacing in the first of the expressions above the weight W by its equal
(1/2)YHcot6, where Yy is the unit weight of the material, H is the
height of the wall and © is the inclination with respect to the horizontal

of the sliding surface, one has
P = %-YHZ cot® tan (6-¢)

In order to determine the critical value ecr of O that pro-
duces the maximum value of the thrust P, one has to consider the der-

ivative of P with respect to 8; i.e.,

ap 1 . .2 sind cos(206-¢)

._._..=.-.'YH
%0 2 [sind cos(8—¢)}2

(2-2)

The derivative OP becomes zero when cos(286 -$) = 0, or 20 _-¢ = 90°,
%5 cr cr
or Gcr = 45°+-%. The corresponding value for the thrust, i.e. the

active force P, on the wall, is expressed as

A

P = % YH2K (2-3)



in which

1

(1/cos$) + (tané + tand)’

2
/21

The winimum value of the thrust, i.e., the passive force PP on the wall,

is expressed as

av]
Nl

L%k
2 P
in which

1

KP =

[ ]
(1/cosd)~ {tan2¢ +(tan¢)?/2

(2-4)

2

The above expressions can be found similarly for the general

case where the backfill forms an angle i with the horizontal and

there exists a friction angle § between wall and soil. These con-

ditions are illustrated in Fig. 2.2. Thus,one has

1.2
are” 2™ K p

d
i

in which

[ cscB sin{B-¢)

(2-5)

KA/P= 1/2

]
1/2

{sin(8+6)}i {sin(¢+8) sin(¢-i)/sin(B-1)}



(a) Trial Wedge , (b) Polygon of Forces

Figure 2.2 Equilibrium of Forces on a Trial Wedge for Simple Retaining Wall (active case)



where the positive sign in the denominator of the above expression
corresponds to the active and the negative to the passive case.

2.1.2 The Dubrova Method. Coulomb provided no analytical

basis for the distribution of earth pressure against a wall. He simply
assumed the pressure distributions to be quasi-hydrostatic and considered
the resultant earth force to act at a distance above the base of the wall
equal to one third of its height. Results, however, of large-scale

model tests by Terzaghi (1943) and Tschebotarioff (1951) have demon~
strated the validity of this distribution for very rigid retaining

walls with sand backfills. For other modes of motion, such as a

rotation about the top or center of a wall or translational movements,
test results indicate a parabolic-like distribution of pressures.

A procedure that appears to have considerable merit for deter-
mining the pressure distribution behind retaining walls is the one pro-
posed by Dubrova (1963). This is based on the method of redistribution
of pressure and is illustrated in Fig. 2.3.

For the wall movement shown in Fig, 2.3, Dubrova assumed that
force F, acting on the failure plane passing through the bottom of
the wall,is inclined at an angle +¢ to the normal; while the angle between
force F and the normal to the failure plane passing through the top qf
the wall is equal to -¢. The wall may rotate around any point 'O' along
its height and, therefore, distance hl (Fig. 2.3) can receive any value
between 0 and H. Dubrova further assumed that the angle between the force
and the normal to any failure line, denoted by ¥, is limearly distributed

over the depth receiving values between -9 and +9¢.
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Thus, for example, in the case of a wall rotating around its
mid-point, ¥ is equal to

4

Y o=¥) = 26 Z ¢ (2-6)

in which
z 1is the particular value of the depth,
H is the height of the wall, and
¢ dis the strength parameter of the'backfill material.
The corresponding value of the force P at any depth z
along the wall has an expression similar to that provided by Coulomb,

the only difference being that ¢ is repleced by ¥ and H by z. That is,

i
1 z cosy

2
5Y

1720 -1

o]
I

(c056)1/2+ {sin(¥Y + 8)siny}

oY,

P= L] 1
2cosé 1/2
(1/cosy) + {tany(tany+tand)}

(2-8)
In Table 2.1 are given the expressions for ¥ = y(z) for
various points of rotation along the height of the wall.
The corresponding pressure distributions are shown in Fig.

2.4,



Table 2.1 Expressilons of Tunction ¥ ={i(z) for Various Points of
Rotation of a Retaining Wall. ‘

Case Point of Rotation U= Y(z)
a Top (outwards) Y= %%

b Top (inwards) ¥ =..%f
c! Toe {outwards) Y = ¢—f%5
d Toe (inwards) . ¢ = %% -¢ .
e Center (upper half inwards) Y o= %?5 -

[Al
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The Dubrova method has been verified by Scott et al. (1972),
on the basis of results obtained through field measurements. These
are shown in Figs. 2.5, 2.6 and 2.7. Following Scott et al. (1972), the

expression for the horizontal component of the active force PA on the

wall is given as

P = Y [ z ' ]2
A2 (1/cosy) + (tanzw + tany tan(S)}'/2

(2-9)

2.2 Procedures Used Under Seismic Conditions

2.2.1 The Mononobe-Okabe Method. The earliest procedure that

aimed to describe the lateral pressures on earth retaining structures

under seismic conditions was proposed by Okabe (1926) and Mononobe (1929).

Applicable only for the case of backfills consisting of dry cohesionless

soils, the Mononobe-QOkabe procedure was based on the following additional

assumptions (Seed and Whitman, 1970):

(1) The wall yields sufficiently during an earthquake to produce minimum
active pressures.

(2) When the minimum active pressure is attained, a soil wedge behind
the wall is at the point of incipient failure and the maximum shear
strength is mobilized along the potential sliding surface.

(3) .The backfill behaves as a rigid body and therefore, the acceleration

.. field is uniform throughout the soil mass.
The effect of the ground motion on the wall-backfill system is
introduced in this procedure in terms of two additional inertia forces act-

ing at the center of gravity of the sliding soil mass: a horizontal force,
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(a) wall rotating about top (b) wall rotating about H/4

Figure 2.5 Pressure Distributions along a Wall for Various Centers of Rotation
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(a) Wall rotating about top and moving (b) Wall rotating about top
out laterally

Figure 2.7 Pressure Distribution Along a Wall for Various Centers of Rotation
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denoted as kh W, and a vertical force, denoted as kv W, where W is the
weight of the sliding soil mass. Quantities kh and kv are the
horizontal and vertical earth pressure coefficients, respectively. This
is shown schematically in Fig. 2.8,

The active force PAE on a wall during an earthquake is deter-
mined using Coulomb's methoed in which the additional forces kh W and
kv W are considered. The critical sliding surface is also that of the
Coulomb method. The expression for the active force against the wall

is given as (Seed and Whitman, 1970)

= Low? (1- -
4p = SYH (I-k)) K (2-10)

F AE

in which KAE is the earth pressure coefficient for the active case and

is equal to

. | cos” (6-0-8)
AR 2, sin($+8)sin(é-6-1),1/2 .2
cos® cos B cos(8+B+8)[1 + { cos(6+8+9)cos(i—8)} ]

and

g = tan—l( kh )
1-k 7

Y = the unit weight of soil,

H = the height of the retaining structure,
¢ = the angle of internal friction of the soil mass,
§ = the angle of wall-soil friction,

i = the inclination of the backfill,
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Figure 2.8 The Force System on the Sliding Soil Mass in Accordance with the Mononobe -Okabe
Method.
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™
L]

the angle between the back side of wall and the vertical,

coefficient of horizontal ground acceleration in g's, and

kh

1

coefficient of vertical ground acceleration in g's,

v
The horizontal component PAEh of the active force PAE is equal
to
PAEh = PAE cos {&+B) (2-11)
OI,
P, = IyH®(1-k K, cos (8+B)
AEh 2 v’ AE ,

For the special case of a wall with a vertical back side

(i.e., B=0), Eqn. (2-11) is reduced to

A -12
PAEh = SYH"(1-k K, cosé (2-12)

The total force determined by the Mononobe-Okabe approach is
considered to act a;.a height eéual to H/3 above the base of the wall.
.Thus, the resulting pressure distribution along the wall is linear
with depth.

The passive force that corresponds to the Mononobe-Okabe mefhod
is obtained in a manner similar to the one described above and may be

expressed as (Kapila, 1962)
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. i ;3: )

in which

cosz(¢+6-9)

“E c058c0528c05(6-6+6) [ 1- {2izgi:g;iizggfé;gg}l/2 ]2

and all pérameters entering the above expression are given in Eqn. (2-10).
The validity o¢f the Mononobe-Okabe method was in&estigated in
a study by Ishii, et al. (1960). |
The approach taken by the authors provided a magnitude for
the maximum.lateral force against a retaining wall that was approximately
equal to that determined using Moncnobe-Okabe procedure while its point
of application was found to lie between 0.33H to 0.4E above the base of

the wall.

2.2.2 The Simplified M-0Q Method. For the simple but commonly

encountered cases of vertical walls retaining horizontal dry backfills,
Seed (1969) proposed a simplified procedure for determining the Mononobe-
Ckabe earth pressure. This is based on the notion that the total maximum
seismic active force PAE may be considered to consist of two terms: one,

the initial static force PS and, another, the seismic force increment

APAE; i.e.,

PAE = PS + QPAE (2.14)
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in which

KA_= the coefficient of active earth pressure,

it

Y the unit weight of the backfill material, and

H = the height of the wall.

For the case where the friction angle of the backfill material

is about 35° (¢=35°), the seismic force increment AP,_ is found to be

AE
approximately equal to the inertia force on a soil wedge extending a
distance 0.75 H behind the crest of the wall. This is shown schematic-

ally in Fig. 2.9, Thus,

~ 1 2
Mpyp =3 075 Iy VE (2~15)

in which kh is the horizontal seismic coefficient.

Introducing the expressions for PS and AP into Eqn. (2-14)

AE
one has that the total maximum active force'PAE is approximately equal
to
P =2y H (K + 0.75 k) (2-16)
ap 53 Y HOAR +0.75 Ky

A comparison of the numerical values of KAE’ found from the

M-0 analysis, and the coefficient K\ + 0.75k, , appearing in Eqn. (2-16),has

4%

shown that the simplified method is adequate for a wide range of values
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Figure 2.9 Soil Wedge Required to Determine the Seismic Force Increment (after Seed
and Whitman, 1970).
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of kh.

The seismic force increment APAE,found in accordance with the
above simple ruie, is assumed to act at a height 0.6H above the base of
the wall.

Finally, Seed (1969) recommended that the critical failure
surface (which depends on the magnitude of the horizontal seismic coef-
ficient kh) be taken to lie anywhereA;ithin the region 0BC, shown in

Fig. 2.9.

2,2.3 The Prakash and Basavanna Method. Experimental obser-—

vations on the force system behind retaining walls have indicated that,
even under static conditions, pressure distributions are different from
hydrostatic. Furthermore, Terzaghi (1936,1941) has shown that, if the
earth pressure distribution is assumed to be hydrostatic, the forces
acting on the sliding wedge do not satisfy the condition of equilibrium
of moments. Thus, the M-0 anélysis based on Coulomb's theory and there-
fore on a hydrostatic-like distribution of pressures, violates both
experimental evidence and the conditions of static equilibrium.

Prakash and Basavanna (1969) atfempted to improve upon the M-0
procedure through an analysis that would satisfy the conditions of equil-
ibrium of moments. Their approach is based on the following assumptions:
{a) the backfill material consists of cohesionless soil, |
(b} the failure surface is a plane along which shear resistance is

fully mobilized,
(c) vertical pressures aleng planes parallel to the ground surface

(which may be inclined) are constant, and



25

(d) the principle of superposition of forces is valid.

In Fig. 2.10 is shown schematically the use of the principle
of superposition of forces as employed by Prakash and Basavanna (1969).
Figure 2.10 (b) shows the force system on the sliding wedge for only
horizontal body forces and Fig. 2.10 (¢) for only vertical body forces.
From the condition of equilibrium of moments around point A of the
base of the wall, Fig. 2.10 (a), the following expression was obtained
.for the active force PA:

VYHQ sin2(8l + i) [cot (Bl +i) + cot(6-1i)

Fa

[
2 sin Blsin(ﬁl + i =8)

{1+ av)sini + a, cosi} tan (B1 + i -6)

h
tan (81 + i -¢§) + tan (8-i~9)

+

.\ (1+ av) cosi + a, sini : (2-17)

cot (B +i-8) + cot (8 -i-¢)

in which
B, =5 -B.
The distance of the point of application of PA from the base
of the wall was,found using the expressions of the moment M, of the

A

force system around point A (Fig. 2.10) and of the active force P,» as

given in Eqn. (2-17).
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Figure 2.10 Superpositionof Forces Acting on the Sliding Wedge

{c¢) Only Vertical Body
Forces

(after Prakash and Basavanna, 1969)
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Finally, Prakash and Basavanna (1969) assumed that the active

seismic pressure p(z) at a depth z along the wall has the form
plz) = Kz"

in which K and m are constants determined from the conditions of equil-

ibrium of the wall.

2.2.4 The Richard and Elms Method. The previously described
methods of analysis of retaining walls under seismic conditions were

concerned exclusively with the change in the intertia of the sliding soil

mass during an earthquake. In a more recent study, Richard and Elms
(1979) noted that, for the displacement-governed gravity walls, a force
increase, in addition to that predicted by the Mononobe-Okabe analysis may
occur because of the inertia effects of the wall itself, This was attri-
buted to the fact that it is the weight of gravity wall that provides

most of the resistance to the wall movement that is caused by the ground
shaking. Thus, a précedure was developed by the authors that calculates

the weight of the wall required to prevent motion greater than any

specified wvalue.

The needed design relationship for gravity walls that may fail

in sliding was derived by Richard and Elms (1979) by considering the

force system appearing in Fig, 2.1l. From the conditions of force

equilibrium of the wall along the vertical and horizontal directions,

it is found that (Fig. 2,11)

N = (l-kv) ww + EAE sin (&8+B) (2-18)
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Figure 2.11 Forces Acting-on a Retaining Wall in the Richard
' and Elms = Method



29

F = EAE cos(6+8) + kh Ww | (2-19)

in which,
Ww = the weight of the wall,
EAE = the total active thrust,
kh = coefficient of horizontal ground acceleration in g's,
kv = coefficient of vertical ground acceleration in g's,
B = the angle between the back side of wall and the

vertical, and

§ = the angle of wall-soil friction.

From the above equations, the expression for the weight of the wall is

found as
WW = CIE EAE : (2-20)
in which,
c = cos(§+B)-sin(&+B) tanéd
IE 5 b
(l—kv)(tan¢b—tan )
= L2 gl
EAE = 3 YH™ (1 kv) KAE
and
KAE = the earth pressure coefficient (Eqn. (2-10)),
¢b = the angle of internal friction at the base of the wall, and
3] = tan-l —EE

1-k
v
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In this form, the weight Ww of the wall is essentially the
seismic thrust KAE’ as computed by the Mononobe~Okabe method, multiplied
by a wall inertia factor CIE' Thus, Eqn. {2-20) incorporates in the same
expression the increase in the driving force due to both the increase
in the inertia force of the sliding wedge and the increase in the inertia
of the wall itself,.

In order to examine the réiative importance of the two seis-

mic effects, Richard and Elms (1579) introduced twe normalized quanti-

ties, namely, a soil thrust factor (FT) and a wall inertia factor (FI)

defined as

. - KAE(l~kv)
T KA (2-21)
F ..—_.(_:.;E
1 CI (2-22)
in which, 2
cos” (¢-B)

. P —3y.1/2
B cosBeos(org) [1 +(ER(EH) I () 1/2y2.

and

cos(6+8)—sin(6+8)tan¢b

CI =

tan(bb

The safety factor Fw with respect to the weight of the wall

that accounts for soil pressure and wall inertia was defined as the
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product of F,., and FI; i.e.,

T

F, = Fp F (2-23a)

or,

(2-23b)

in which

W = the weight of the wall required for equilibrium under
static conditions.
The design procedure for walls that can sustain a specified
but limited displacement was derived using a progressive failure model

based on the observations that: (a) the total displacement of a wall

due to an earthquake takes place in a series of smaller displacements;

and (b) a more critical loading is due to earthquakes with high velocity,

rather than accelerat:i.cm‘9 peaks. The specific stages of the design
procedure are as follows:

1. Decide upon an acceptable maximum displacement d. If wall connec-
tions are present, they have to be capable of allowing for this dis-
placemgnt. !

2. Obtain the value of kh that corresponds to the maximum displacement
d. In locations within the United States, the value of kh may be

obtained in terms of the Effective Peak Acceleration (Aa) and

Effective Peak Velocity (Av) as follows:
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4 O‘ZAV)I/Q
K, =4, Ad (2-24)

in which Aa and Av have values that can be found in the draft-code
16cation maps of  the Applied Technology Council (ATC) and 4 is
measured in 1lnches.

3.  Use Eqn. (2-20) to obtain the required wall weight W

4., Apply a suitable safety factor, say 1.5, to determine Ww.

2.2.5 The Dubrova Method Including Seismic Effects. The

Dubrova method, described in Section 2.1.2, can be easily extended to
provide the lateral earth pressure distribution along a retaining
wall under seismic»conditions,

Thus, Saran and Prakash (1977) expressed the total active (P,)

and passive (PP) forces against a retaining wall of a height H (Fiz. 2.12)

as
) -
P = l-YHQ (1+ av) cos (w-ll + R)
Al 2 3 [
cosklcos Beos (mH+ S+Xl)
1 ]2
sin(Y4m) sin(P F i-A,)
1+ 1{ 1_ 4172
— © cos(B-i)cos(my+ B+ Al) (2-25)
in which,
P = the total active earth pressure (taking upper s'j_gn

of the expression).
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P. = the total passive earth pressure (taking lower sign of

the expression),

§ = the angle of wall-socil frictionm,
i = the inclination of the backfill,
£ = the angle between the back side of the wall and the vertical,
Rl = tan_l %h s
1t+a

: v
y = the unit weight of thé soil,
g = coefficient of horizontal ground acceleration in g's,
a, = coefficient of wvertical ground acceleration in g's, and

™ a factor less than unity.

The expression for the Y parameter depends on the mode of
movement expected to be experienced by the wall., Thus, for the active
case and for a rotation about the base of thé wall, ¥ is equal to
Y =0 —%Eu in which ¢ is the angle of intermal friction of the soil mass,
z is the particular value of the depth, and H is the height of the wall.

For a rotation around the top of the wall, Y becomes equal to ¥ = 93-_ For

H -
the passive case and for a rotation about the base of the wall, ¥ is equal
_ bz . _ %z
to P = -5 while, for a rotation around the top, ¥ = B $.

The pressure distribution is obtained by forming the deriva-

tive of the expression for total force (PA/P) with respect to z; i.e.,

S J
Dy jp(2) = min (2-26)

The point of application of the total pressure from the base

of the wall is given as
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H aPA/P

[(—=">4dz
ajp S H - 8 1?z (2-27)
: e

A modified version of Dubrova's method was also used by A-Grivas
(1978) for the assessment of the reliability of retaining structures
during earthquakes. In Fig. 2.13 is shown the polygon of forces that
was employed in the analysis. The total force (Q) is inclined at
an angle B with respect to the vertical direction and has a magnitude
equal to

2 g 112
Q=W [(l-av) + a, 1 = W(l—av)/coss (2-28)

ﬁhere a and a  are the horizontal and vertical ground accelératibns,
respectively. The derived expression for force PAE against the wall

as a function of the Y parameter has the form

Y(l-—a.v)z2 sin(45- %'+ B) ‘
Pap = [ ] (2-29)
cosB tan (45 -l-lg-)sin (45 + a+§2’i)

while the distribution of the lateral pressure pAE(z) with depth z, fouhd

by forming the derivative of Eqn. (2-29) with respect to z,'is equal to

Y(1-a )
pAE(Z) = v [ n(yY) ] (2-30)

cosB tan® (45 + -lg-)sin(45+6-i—‘g)

in which
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2
n(y) = tan (u) Sin(v)[Zzsin(W)‘% cos(w) (%3:')]"

2
_ _‘;i Sin(W) {tan(v)COS(W) + Sin(W) secz(u)l (%}5)’
v =45 + § +%’~ , and
w = 45 -%’-4— B

2.3 Comparison of Procedures

Commen to all the procedures described in the previous sec-
tion are the following characteristics:

1. two dimensional conditions;

2. the backfill material is a rigid body; and

3. so0il sliding occurs along a plane surface.

In Table 2.2 is given a summary of the important additional
assump;ions:nade in each method. Finally, Table 2.3 provides a comparison
of the various procedures with respect to their consideration of wéll
movement, ground motion parameter used, point of application of thrust,

shape of pressure distribution, and conditions of equilibrium satisfied.



Table 2-2

WETHODS -

r:ononobe-okabe

Richard-EZ=

simplified =7

prakash-Bass=

- .——ummary of
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Important Assumptions Made in Each Method.

ASSUMPTIONS

,"cjudln‘s
r(.fri‘ﬂ

The wall yields sufficiently during an earthquake to produce
minimum active pressures.

When the minimum active pressure is attained, the maximum
shear strength is mobilized along the potential sliding
surface.

1t satisfies the equations of equilibrium of forces (hori-
zontal and vertical) but does not satisfy equilibrium of
moments, ’

The total maximum seismic force PAE acts at a height H/3
from the base of the wall.

The total maxioum seismic active force P, consists of two
terms: the initial static force P_, actifig at H/3; the

selswic force increment APAE’ acting at 0.6H from the base
of the wall.

The shear resistance along the plane rupture surface is fully
mobilized,

The vertfcal pressure on planes parallel to the groun sur-
face 4is constant.

The principal of superpositien holds true.
Satisfies of three equations of equilibrium
It s based on deformation limits.

It accounts for the change of the inercia of the wall during
earthquakes. The mass of the wall is considered tc provide
most of the resistance to movement caused by an earthquake
(gravity walls). ’

The total displacement of the wall occurs in geries of
smaller displacements.

The magnitude and distriburion of the force against the wall
depends on the type of movement- experienced by the wall.

During zn earthquake the wall may rotate around any point.




Table 2.3 Comparison of Procedures

METHOD GCONDITELON
Considers wall Ground Motion Point of Shape of Pressure| Condition of
Movement Parameters Application distribution Equilibrium
Monenobe - Okabe Peak llorizontal and
{M-0) No Acceleration H/3 Linear Vertical Forces
Static Component: Horizontal and
Simplified Peak H Linear Vertical Forces
J
{M-0) Ro Acceleration Dynamlc Components
0.61
I Peok From equilibrium Horizontal and
- ) Vertical Forces .
Prakash-Basavanna Ho Acceleration of moments around Linear
and Equilibriua
the toe of the wal) of Momenta
Penk Horizontal and
Richard=-Elms Yes Acceleration H/3 Linear v 1F
Peak Velocity ertical Forces
Maximum DHgy-
placement
Dubrova including Peak From equilibrium | Non-linear Horizontal snd
Seismic effects Yes Accelervation of moments (depends on the

around tha toe of
the wall

type of wall
movement)

Vertical Forceas

6€



CHAPTER 3

DESCRIPTION OF THE SEISMIC LOADING

3.1 Probabilistic Description of the Earthquake Magnitude

The empirical formula most commonly employed to yield the
number of earthquakes n exceeding a certain magnitude m is Richter's

log~linear relationship expressed in the form
lognm = a -bm (3-1)

where a and b are regional constants. If mo and ml denote the lower

and upper limits of m, respectively, Eqn. (3-1) becomes
lognm = a‘-b(m—mo), mOS m < my (3-2)

or,

B
[

10% exp [-B(w-my)]

where

w
]

bln 10

From Eqn. (3-2), one has that the expected number of earthquakes

(nm ) with magnitude greater than the assumed lower bound (mO) is equal
0
to

40
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a
n = 10" exp (—Bmo)

0

The ratio of n_ over m_ signifies the probability with which
0
the earthquake magnitude M is greater than m. Thus,

n a
P[M > m] _.m _ _ 10" exp (-fm)
nmo 102 exp (-Bmo)
oT,
P[M > m] = exp [vB(m—mo)], mOS m < m,, _ (3-3)

The cumulative density function F(m) of the earthquake mag-

nitude m is equal to
F(m) =P M <m) = 1-P[M> )

Introducing Eqn. (3-3) into the above expression, it is foundrthat
F(m} = 1 -exp[-B(w-mg)] (3-4)

A normalizing factor is required so that F{m) becomes unity

when m receives maximum value o, . If this factor is denoted by k, from

Eqn. (3-4) one has
F(m) =k {l-exp[-B(m,-mj)]} =1 (3-5)

from which
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k = {1-exp [-B(ml - mo)}}—l

Thus, F{m) may be written as

0 m < my
T (m) =< k {l—exp[-S(m~m0)I m, < mg m {3-6)
1 y ml <

The probability density function f(m) of the magnitude m can be found

by forming the derivative of Eqn. (3-6) with respect to m. Thus,

0 m

< mo
F(m) =<B k exp [—B(m—mo)], mo £ m £ ml
0 m < om (3-7)

The mean value m and variance Var(m) of the earthquake magnitude m can

be found from Eqn (3-7) as

my
m = f mf (m) dm
29
(3-8)
- M, -2
var(m) = [ (m-m) "~ f{(m)dm
)

ﬁherg f(m) is the probability density function of m, given in Eqmn. (3-7).
Substituting the latter into Eqns. (3-8) and performing the indicated

integrations, one has



43

Tekilng+g- @+ e [-B@-n)1)
(3-9)
Var(m) = k {m(z) - mi axp {-B(ml-—mo)]} + EBE}. _'52

3,2 Attenuation Relationship for Maximum Horizontal Ground Acceleration

The attenuation relationship for maximum horizontal ground
acceleration a o« 1s commonly expressed in the form  (A-Grivas, 1979)

-b3

eP28 (p 4 g B (3-10)

qpax bl
where 2 ax is measured in cm/secz, m is the earthquake magnitude, R is the
distance between source and site (in km) an§ b, b2’ b,, b, are regional
parameters.
Conparisons made between observed and computed values of the
~ ground motion parameters have indicated that their ratio follows closely
a log-normally distributed random variable. Denoting the latter by

€ and introducing it inte Eqn. (3-10), the latter becomes

b

2m ~-b ~
ax 1 ¢ (R + bg) 3 & {(3-11)

where € is log-normally distributed variable with median equal to one

and standard deviation varying between 0.5 and 1.0.
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3.3 Types of Earthquake Sources

The construction of a model for the earthquake source is an
attempt to represent, using only a few parameters, the complex moveﬁents
that take place within the crust of the earth. The simplest possible
model of an earthquake source requires the specification of only two
parameters: the location of the hypocenter and the magnitude of the
earthquake. A more complex model requires the additional specification
" of the fault surface and the directions along the latter of the slip
that occurs during the seismic activity. An even more complex model
would also inglude the length and width of the slip area and the time
required for each point along the slip to reach its maximum offset.
Thus, as the model becomes more realistic, the number of the required
parameters increases and so does the complexity of the task associated
with the representation of the seismic source.

In engineering applications, the most commonly employed rep-—
resentation of the earthquake source is that provided by Cornell (1968).
Three types of seismic sources are distinguished in Cornell's model,
namely, (a) a point source, (b) a line source (or, fault), and (c) an
area source.

A point source, shown schematically in Fig. 3.1, represents
thg_fundamental source model that has been used in studies aiming at
the determination of the seismic hazard of a region. It may be used in
cases where the seismic activity is concentrated in an area that is

small compared to the distance between the source and the site of interest,
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A line (or, fault) source, shown schematically in Fig. 3.2,
is used in cases where earthquakes are associated with clearly identi-
fied faults, or if a string of earthquakes have occurred over a period
of time along a well defined line, When this is not the case, or when
historical data and other information available on the seismicity of a
region are very limited, a description of the earthquake socurce as an

)

area source may be considered. This is shown schematically in Fig. 3.3,

3.4 Probabilistic Description of Maximum Horjzontal Ground Acceleration.

3.4.1 Case of Point Source., Using the concept of transform-

ation of variables (Harr, 1977), the probability density function of
the maximum horizontal ground acceleration a .. can be cbtained from

Eqn. (3-9) as l

f (m)
fla_ ) = s (3-12)

max I aamax(m) |

om

where fm(m) is the probability density function of the earthquake mag-
d9a__  (m)

max

nitude, and Sm

is the absolute value of the derivative of amax

with respect to m. The latter is found from Eqn. (3-10) to be equal to

(m) Cbom -b _

2 nax 2 3
=b b, e (R + ba) Y o= b2 a o (3-13)

om 172

Combining Eqns. {(3-7), (3-12) and (3-13), it is found that
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- k1
f(amax) - b2 a

exp {—B(m-mo)] (3-14)
max

Solving Eqn. (3-10) for m and substituting into the Eqn. (3-14), the

probability density function of 3 x is obtained as

_ k 1 1 ®nax »
f(amax) = b ;f;; exp [-B( b, in ———-————:E;»- mO)]
= b, (R+d,)

(3-15)

The range of variation of 3 ax can be found by introducing
the lower and upper limits of magnitude m inte Equ. (3-10). Thus,

bam, ~b,4 bomy -b3
b, e (R + b,) <a __<£hb.e (R +b,) (3-16)

max 1
The cumulative distribution F(a__ ) of a can be obtained
_ max max
through an integration of Eqn. (3-14) with respect to a x° The res-—
ulting expression is

b
a x(R +b4) 3

_ 1 ma . -
F(a_ ) =k {1-exp[-B( bzin b, mo)]} (3-17)

3.4,2 Case of Line (or, Fault) Source. The cumulative dis-

tribution F{a ) of the maximum acceleration a when 86 = 90° (Fig.3.2)
= max max

has the form (Grivas and Howland, 1979)

B
a - ——
Fla__ ) = 1-[(1-K) + k exp (Bmy) ( gix) P2 1) (3-18)
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where k, B, mO, bl bz, b3 were defined above and I is the integral

“b.B
1= [O2R W e (3-19)
D Q(R?-[g)llz 2

in which R, T, D and £ are shown in Fig. 3.2,
The probability density function of 8 ax? found by forming the
derivative of Eqn. (3-18) with respect to a8 has the following

expressions:

B
- (E; + 1) |
%—— I (Bmo) (amax) | (3-20)
2 bl

I
f(ama:vc) - b1

3.4.3 Case of Area Source. In this case, the probability

with which the maximum acceleration Amax receives values larger than

a is equai to (Tong, 1975),

max
P[Amax> amax] = (1-k) + 25:;5“ k [exp(ﬁmo)}bl 2 Hamax (3-21)
where
-b -b
_3 B+2 3 B+2
2 4 bo
h [1 - GE) ]
= ; (3-22)
by
— B-2
b
2 (3-22)

The cumulative distribution F{a Y of a can be obtained
max max

as the complement of the above expression; i.e.,
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B/b,  -B/b,

2
F(amax) =1 -{(1-k) + ';E:;§~ kexp (Bmo)bl H 3 % 1 (3-23)

The frequency distribution f(amax) of a o is found from Egn. (3-23)

by forming the derivative of F(amax) with respect to a _, or
B_
S/b2 -( oo T 1
2k By g (Bm,) 2 (3-24
f(amax) _62_h2 b2 exp 20/ 8nax —24)

3.4.4 Statistiecal Values of Maximum Horizontal Ground

Acceleration (Point Source,) The exact expressions for the mean value

Emax and variance Var(amax) of the maximum horizontal acceleration can

be obtained using the probability density function f(amax) of a .. as

follows:

(ol
i

[ a___fla__) da
max max = max max

S (3-25)
|« )Zf(a Yda

Var{(a ) a _-a
max max = max max’  max

where f(amax) is given in Eqn. (3-15) and the limits of the integration
(minimum and maximum values of.amax) are giveg is Eqn. (3-16),.

An altermative convenient way to obtain estimates of the mean
value amax and variance Var(amax) of a_  is to apply a Taylor series

expansion of the function amax(m) around the value amax(a), where m is

the mean value of the magnitude m. The resulting estimates of Em and
Var(amax) are then equal to (Grivas and Howland, 1979)
2-

a
-— _ —_— i max v
a .= amax(m) + 3 o2 ar (m) (3-26)
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da 2
Var(a . ) = (—T25) Var{(m) (3-26)

max
om

Introducing into the above expressions derivatives cf a

max
with respect to m, obtained from Eqn. (3-10), one has
- blebzm 1.2
a = = [ 1+ E-bz Var{(m) ]
mAX (R + b,)"3
= (3-27)

blbzebzm
Var(amax) =I~——~—B-] Var (m)

(R+0Db 4) 3

where the mean value m and variance Var(m) of the magnitude m are given

in Eqns. (3-9)

3.5 Other Strong Ground Motion Parameters.

With the excepfion of the method developed by Richard and Elms
(1979), all other procedures presented in Chapter 2 and which are
currently employed for the determination of the force on retaining walls
during earthquakes introduce the seismic effect in terms of the maximum
ground acceleration.

In the method provided by Richard and Elms (1979), the maximum
horizontal ground acceleration kh is obtained using an empirical rela-
tionship between kh and the maximum ground displacement d (Franklin and

Chang, l977).i This was given in Equn. (2-24) as
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0.2 Az 1/4
Yy

% = 4 S

a

in which Aa and Av are effective peak acceleration (EPA) and effective
peak velocity (EPV), respectively, as provided in the provisions of the
Applied Technology Council (ATC 3-06, 1978).

It should be noted that parameters A_ and A do not have a pre-
é¢ise definition in terms of their physical meaning. They should be con-
sidered as normalizing factors used for the comstruction of smooth
elastic response spectra for ground motions of normal duration (Newmark

and Hall, 1969). Thus, A.a and A.v are related to the peak ground acceler-

ation and peak ground velocity, respectively, but are not necessarily
the same with or even proportional to these quantities.

Finally, it has been observed (McGuire, 1975) that, if very high
frequencies are present in the ground motion, Aa may be significantly
less than the peak acceleration ; and that Av will generally be greater
than the peak velocity at large distances from the epicenter of a

major earthquake.



CHAPTER 4
PROBABILISTIC SAFETY ANALYSIS

OF EARTH RETAINING STRUCTURES

4,1 Definition of Failure

In general, the stability of any soil structure is counven-
tionally measured in terms of a factor of safety (FS), defined as the
ratio of two point estimates: one, for the capacity c, of the structure
(its available resistance against failure) and, another, for the démand

DO on the structure (the applied loading). That is,

I

FS (4-1)

7|

In many practical geotechnical situations, however, both
the capacity C and the demand D of a structure exhibit a considerable
degree of variation, This observation has led to a consideration of
C and D as random variables (A-Grivas and Harrop-Williams, 1978), and
their analytical description through their probability density functions,
fC(C) and fD(D), respectively. This is shown schematically in Fig.
4,1,

The difference between the capacity C and the demand D is
also a random variable which, in  probabilistic parlance, is called

the "safety margin SM'; i.e.,

SM = C -D (4-2)
54



NORN

PROBABILITY DENSITY FUNCIION

!

£,(D)

fC(C)

Y fre — e o —

|
i
I
1
I
l
}
!
i
s

(@1
[@]

min min "0 4] max max

CAPACITY, DEMAND

Figure 4.1 Probability Density Function of the Capacity (C) and Demand (D)

<SS



56

If the statistical values (e.g., mean values, standard de-

viations, etc.) of the capacity C and demand D were known, then from
Eqn. (4-2) one could easily obtain the corresponding statistical values
of the safety margin SM., Thus, if €, D and s Op denote the mean

values and standard deviations of C and D, respectively, the mean value

SM and standard deviation Ogy of SM are equal to (Harx, 1977)

C-D

0
=
1l

9 1/2
M (oc + OD) (4~3)

QqQ
1]

Failure of a structures is defined as the event whereby its

safety margin SM receives a value.smaller than or equal to zero; i.e.,

"Failure" = [SM < 0] = [C-D < 0] (4=4)

The possibility for failure exists if the lower limit of the

capacity (Cmin) becomes smaller than the upper limit of the demand

(D Y. Thus, the interval (C__, ,D
max min’ “max

), shown in Fig. 4.1 as shaded area,
defines the region where it is possible for the capacity C to receive
a value smaller than that of the demand D (C < D).

4,2 Possible Modes of Failure.

A retaining wall, like the one shown schematically in Fig.
4.2, may fail in any of the following four modes:

(1) overturing around any point on the plane of the wall;



(1)

s T/

Figure 4.2 The Four Modes of Failure of a Retaining Wall

(2)
(3)
(4)

Overturing
Base Sliding
Bearing Capacity

Overall Sliding
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{2) bearing capacity of the foundation of the wall;

{3) sliding along the base of the wall; and

(4) overall sliding of the wall and the backfill material.

In Table 4.1 are provided the capacity C and demand D of the
above four modes of failure. Their analytical expressions are given

below in Section 4.3..

4.3 Probability of Failure of an Earth Retaining Structure.

Let SMi = Ci - Di’ i=1, ...,4, denote the safety margin of
any mode i of possible failure of a retaining wall. The capacity Ci and
demand Di’ i=1, ...,4 are given in Table 4.1. From Eqn. (4-4), one
has that failure along the i-th mode is defined as the event whereby
SMi receives a value smaller than or, at most, equal to zero, i.e.,

[SMi <0 1.
The probability of the occurence of this event is equal to

the probability of failure Ps of the wall along mode i, Thus,
i

pp = PIsM, < 0], di=1,...4 (4-5)
i
where P [ ] denotes the probability of the event in brackets.
Furthermore, let fSM.(SMi) represent the probability density
function of the safety margin ;Mi along mode i. As the area under
‘fSM;(SMi) up to a particular value provides the probability with which
SMilis smaller than or at most equal to that value, one has that Pg is
i

the area under fSM (SMi) and in front of zere. This is shown schemat-
i

ically as the shaded region in Fig. 4.3. Recalling the definition of



Table 4.1 Capacity and Demand of the Various Modes of Failure

MODE OF FAILURE

CAPACITY C

DEMAND D

Overtruning

Moment of resisting
forces around center
of rotation

Moment of forces
causing rotation
around same- point

Bearing Capacity

Bearing capacity
formula for the
foundation of the wall

Force acting on the
wall plus weight of
wall

Base Sliding

Vertical component of
the demand in bearing
capacity times frictiom
coefficient

Horizontal components
of the demand in
bearing capacity

Overall Sliding
(Slope Type)

Resisting forces
along failure
surface

Driving forces
along failure
surface

6%
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Figure 4.3 Schematic Representation of Probability Density Function
fSMi(SMi) and Cumulative Distribution FSMi(SMi) of SMi'
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the cumulative distribution F (SM,) of SM, as
SM, i h

SM

. B i ' -
FSMi(SMi) = o{, fSMi(SMi) d(sk,) (4~6)

one has that p,. 1is equal to F (SM.) for SM, = 0; or
fi SMi i i

The complement of the probability of failure Ps (i.e., the
i

probability of success) is defined as the reliability Ri of the wall in

mode 1 ; i.e.,

Ri =1 - pfi s L - 1,...4, (4-8)

To obtain a measure for the total probability of failure Pe
of a retaining wall, the latter may be considered as a "system” with
four modes of failure. As failure in any element (mode) will cause
failure of the entire system (wall), elements 1, 2, 3 and 4 are said
to form a configuration in-series. If, furthermore, the four modes of
failure are independent, then the total probability of failure Pe of

the wall is equal to (Harr, 1977)
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4
p, =1 -1 (l-p. ) (4-9)
f . £,
i=1 i
Finally, the complement of pf is the total reliability of

the wall and is equal to

R = l—pf

or
R= I R, (4-10)
i=1 T

4.3.1 Overturning. In the case of failure of the wall in
overturing, from Table 4.1 one has that the capacity C is equal to the
moment of resisting forces around the center of rotation while the
demand D is given by the moment of the forces causing rotation around
the same point. A typical wall eross-section including the applied
forces is shown schematically in Fig. 4.4.

The expressions for the capacity and the demand in this case

are
C = Moment of Resisting Forces Around Point 0

or,
cC= (1+ av) Wwﬁ -+ PA B sind, (4~113)_
D = Moment of Forces Causing Rotation Arcund O

or,

D= PAhACOSC + athh (4-12)
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in which
PA = the total forces on the wall,
Ww = trhe weight of the wall, and
¥ = the unit weight of the backfill material.

4,3.2 Bearing Capacity. In this case, from Table 4.1 one

has that the capacity of the wall is given as the bearing capacity of
its footing while the demand is equal to the sum of the external forces
acting on the back of the wall plus the weight of the wall itself. A
typical cross-section of the wall together with the forces acting on

it are shown schematically in Fig. 4.5.

Following Meyerhof (1953}, the expressions for the capacity

C and the demand D are given as

1 .2 - -

C=5YBN + YD BN +NB c (4-13)

2 2.1/2
D = (DV + Dy") (4-14)

in which

Nq = tan2(45 + %Je ﬂtan¢,
N =(N-1)t 1.4

v ( q ) an( ¢)9
Nc = (Nq—l) cotd,

- 2e
B" =B (1- 'B—),
DH = PA cosd + Wwah, and
Dv = PA sind + Ww(l+av)
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4,3.3 Base Sliding., In this case (Table 4.1), the capacity

of the wall is equal to the vertical component Dv of the demand D, as
given in Equn. (4-14), multiplied by the footing-soil friction coefficient.

The demand is equal to the horizontal companent D_, given in Eqn. (4-14).

H
A typical cross—section of the wall together with the forces
acting on it are shown schematically in Fig. 4.4.

The expressions for the capacity C and the demand D of the

wall for the case of base sliding are

C = [PAsin6 + Ww(l + av)] tang (4-15)

D = PAcosé + wwah (4-16)
in which,

PA = the total force on the wall, and

W = the weight of the wall.
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4.3.4 Overall Sliding.

This is a slope type failure that may occur if the sloping
backfill slides and takes the wall along with it. From Table 4.1, one
has that the expressions for the capacity and the demand are given as
the reéisting and driving forces (or, moments), respectively, along
the surface of failure.

Any method of seismic slope stability analysis can be used
for the assesment of the safety of the wall-backfill system in overall
sliding. In Fig.4.6 are shown schematically the conditions correspond-
ing to the simple method of slices. The effect of the earthquake is
introduced by considering additional horizontal and vertical components
of the inertia forces. Thus, from Fig. 4.6 one has that the expression

for the capacity C and the demand D are equal to

i=n
¢ = Rizl{ CAQi + [Wi(l+av)] tan¢cos@i} (4-17)
i=n i=n
D= R(izlwi51n6i) (I+a ) + glwiahyi) + P, vy, (4-18)
in which
Ni = Wicosei = [Wi(l+av)] cos@i,

R

1

the radius of the circle of failure,

yA = the vertical distance of PA from fhe center

of the failure circle, and
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Figure 4.6 Forces on the Wall and on the Failure Surface for Overall Sliding.
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Yi = the distance between the center of gravity
of the i-th slice and the wvertical line that

passes through the center of the failure circle.



CHAPTER 5

CASE STUDIES

The procedures reviewed in Chapter 2 and the probabilistic
approach described in Chapter 4 are applied in a case study in order to
determine: (a) the megnitude and distribution of the pressures behind
a wall, as provided by each procedure, and (b) the corresponding values
of the safety measure.

The wall under examination is shown schematically in Fig. 5.1.
It has a height H = 16 ft (4.8m), average thickness 5.7 ft (1.73m) and
retains a horizontal backfill consisting of granular soil. The back
side of the wall is inclined at an angle B =-5° with respect tq the
vertical direction. The backfill material has a ¢ parameter of strength
equal to 34° (¢ = 34°) while the wall-soil friction angle is 15.5° (8 =
15.5°). The unit weights of the soil and concrete are Yy = 100 pef (15.7

3 3
kN/m™) and Y.~ 150 pef (23.55 kN/m ), respectively.

5.1 Static Condition.

5.1.1 The Coulomb Method. The expression for the active

thrust against the wall provided by the Coulomb analysis was given in

Eqn. (2-3) as

in which

70
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Geometry:

H =16 ft (4.8m)

B = 8,55 ft (2.6m)
b = 2.85 ft (0.87m)
h=6.7 ft (2.04m)
£ = 6.2 fr (1.%m)
8= -5°

i=0°

Material Parameters:
o = 34°

§
v = 100 1b/£t3 (15.7kN/m>)
Y = 150 1b/£t> (23.5kN/md)

AN

7 | Q____—_l

o

Figure 5.1 Geometry and Material Parameters of the Retaining Wall Used in the Case Study
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- cos” (4=6) :

sin(5+6) sin(d=1) 1/2]2
cos{&+R) cos(B-1i)

COSZBCOS(G + B)[1 + {

-
1

the unit weight of soil, and

2=}
il

the height of the wall.

¥or the geometry and material parameters of the wall under
examination, Fig. 5.1, one has that H =16 £t (4.87 m), ¢ = 34°,
g =-5°, § =15,5°, i = 0°., Substituting these values into the express-—
ion for KA’ it is found that K, = 0.224 and the total force P, against

A A
the wall is

PA = (%) (100) (256) (0.224) = 2867 1b/ft (40.15 kN/m)

. _H _
A is at hA =3 5.33 ft

(1.62m) above the base of the wall. The resulting pressure distribution

The point of application of P

is shown in Fig. 5.2,
The value of the factor of safety FS of the wall is deter-

mined for two possible modes of failure, namely, (a) overturning and (b)
base sliding.

(a) The expression of FS in overturning (FSO) is
o D (5-1)
in which € is the moment around the base of the wall of the forces res-

isting failure and D the moment of the forces causing failure. From

Fig. 5.1, one has that
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Figure 5.2 Pressure Distributions Along Wall in Accordance with
the Coulomb and Dubrova Methods.
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Cc = wW £+ P B sin {(5+B)

A

(5-2)

D= P cos (6+B)

A hA

where WW the weight of the wall,
% = the horizontal distance of the center of gravity

to the point of rotation 0, and

=
I

the width of the base of the wall.
Introducing the numerical values of the geometry and mat-

erial parameters shown in Fig. 5.1 into Eqn. (5-2), it is feund that

It

¢ = 89277.3 lbs-ft/ft (401.7kN-m/m)

D = 15021.33 1bs ~ ft/ft (67.6 kN-m/m).

From Eqn. (5-1), one has

89277.33 1bs-ft/ft(40.17kN-m/m) _

P80 = 15021.33 1bs—Ft/ft(67.6kN-m/m)

5.9

(b) Similarly, the factor of safety against sliding (FSS) at the wall

along its base is given as
- £
FSS = 3

in which C and D are given in Eqns. (4-15) and 4-16) for a_ = a, = 0.

That is

@]
|

= [P,sin(&+B) + WW] tand

A
PAcos(6+B)

(5-3)

(=)
i
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Introducing the numerical values of the geometry and material parameters

into the above expressions, it is found that

cs _ 9572.01 Ibs - £t/fr (43.07KN-m/m)
s~ 2818.26 1bs - ft/ft (12.68kN-m/m) ~ -39

5.1.2 The Dubrova Method., For the active case, with rotation of the

wall around its base, the expression for the pressure distribution along
the wall if found by forming the derivative of Egn.(2-7) with respect

to z. Thus,

p(z)_  zcosy
Yy  (3+l.2sindZcos$

[ cost - 2( ) (5-4)

in which ¥ = ¢ (1-9).
Introducing into Eqn. (5-4) the numerical values of the geo-
metry and material parameters shown in Fig. 5.1, the pressure distribu-

tion along the wall becomes

P(z)_  zcos(0.59 - 0.0362) '
N, [(1+1.25in(0.59-0.0362) ]< 0.963

[ c0s(0.59-0.0362)-0.036z]ft

This is shown in Fig., 5.2, The total force PA behind the wall is found
from Egn. (2-7) to be egual to

P, = 12,314 1b/ft  (179kN/m)
The point of application of PA is found from equilibrium of moments

around point 0 (Fig. 5.1) to be hA = 3.96 ft (1.20m).
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The value of the safety measure as provided by the Dubrova
method is determined for the overturning and base sliding modes of
failure as follows:

(a) The expression for the factor of safety in overturning
(FSO) is given by Eqn. (5-1) in which the capacity C and demand D are

equal to

]
It

W 4+ P B sind
w A

PAha cosd (5-5)

)
Il

Introducing the numerical values of the geometry and material parameters,

shown in Fig. 5.1, into Egms. (5-5), it is found that

C = 114,094.55 1b - ft/fr (513kN-n/m)

D = 48,897.92 1b - ft/fc (220kN-m/m).
Thus,

rS = 114,094.55 1b - ft/ft _ 2 33

o 48,897.92 1b - ft/ft
(b) Similarly, the factor of safety against sliding (FSS)
of the wall along its base is given by Eqn. (5-2a) in which C and D are
equal to

C

(PA81n6 + WW) tan¢

D

PAcosd (5-6)

Introducing the numerical values of the geometry and the material para-

meters into the above expressions, it is found that
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Fs = 115534.561b - ft/ft (51.9 kN-m/m) _
s 12,33.6 1b - EC/ft (55.5kN-m/m) ~ 093

5.2 Seismic Conditions.

In the conventional methods of the seismic analysis of the
safety of the retaining wall shown in Fig. 5.1, the effect of the
earthquake 1s expressed in terms of the maximum horizontal and vertical
ground accelerations (ah and a_s respectively) expected to be experienced
at the site of the wall. For the purpose of this case study, the maxi-
mum ground acceleration is assumed to be equal to 24% of the acceler-
ation of gravity g (ah = 0,24g) while the value of the vertical maximum
ground acceleration a, is assumed to be equal to two-thirds that of the

= 0.16g.

. . 2
horlzontgl, l.e., a =38,

5.2.1 The Mononobe-Qkabe (M-0) Method. The expression for the

active thrust against the wall provided by the Mononobe-~Okabe analysis is

given in Eqn. (2-10) as

HJ
I

L2
> YH (l—kv) KAE

in which

cos” ($-6-B)

ey SO

K =

AR 2
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the coefficient of horizontal ground acceleration

=

(k, = a, = 0.24g)

=
I

the coefficient of vertical ground acceleration
(kv =a, - 0.16g).

Introducing the values of the geometry and material parameters
of the wall under examination, Fig. 5.1, one has that the resulting value
of K is

AR

K, = 0.432

The value of the total force PAE against the wall is then equal

to

P~ () (100) (256) (0.84) (0.432) =4,644.8 1b/5t (65.02Km)

while its point of application is at h, - % = 5.33 ft (1.62m) above the

base of the walil.

In Fig. 5.3 is shown the pressure distribution along the wall as
provided by the Mononobe-Okabe method.

The value of the factor of safety of the wall is found for the
overturning and sliding modes of failure

(a) The expression for FS in overturning (FSO) is given by
Egn. (5-1), in which C-and D are equal to

C

(34k ) W .2 + P, B sin(&+R)
v W

A
PAhApos(é+B) + kh Ww h

(5-7)

D
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Introducing the numerical values of the geometry and the
material parameters into the above expressions, it is found that

- C

il

105,934.46 1b-ft/ft (476kN-m/m),

D

46,140.54 1b-fe/ft (207.63kN).

Thus,

_105,934.46 1b-fr/ft 2,99

¥ = T46,140.54 Ib-ft/ft _

(b) Similarly, the facter of safety against sliding (FSS)
of the wall along its base is given by Eqn. (5-2a) in which C and D

are equal to

o
I

[PAsin(6+B) + WW (l+kv)]tan¢

(5-8)

o
]

PA cos (6+B) + Ww kh

Introducing the numerical values of the geometry and the material para-

meters into the above expression, it is found that

- 11,260.821b - ft/ft (50.67kN-m/m) _
s 7,812,8641b - ft/ft (35.15kN-m/m)

FS 1.44

5.2.2 The Simplified M-O Method. From Eqn. (2-16), one has

that for the simpliefied M-0 method, the expression for the active thrust

against the wall is
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in which,

K, = the active thrust coeoefficient, given in
Eqn. (2.5), and
k, = the horizontal ground acceleration, assumed
to be equal to 0.24g,
Introducing the numerical values of the goemetry and material

parameters shown in Fig. 5.1 into the above expression, one has

3

- &
= (3) (100) (256) (0.224 + 3

PAE 0.24) = 5171 1b/ft (72.4kN/m)

The point of application of P = 5.33 ft (1.62m)

AE B

W

is at hA =
above the base of the wall.

In Fig. 5.3 is shown the pressure distribution along the wall
as provided by the simplified M-0 method,

The factor of safety of the wall is determined for the éver—
turning and base sliding modes of failure as follows:

(a) The expression for FS in overturning (PSO) is given by
Egn. (5-1). Introducing the numerical values of the geometry and
material parameters (shown in Fig. 5.1) into Eqn. (5~7), it is found

that

o}
]

106866.65 1b-ft/ft (480.9kN - m/m)

()
il

49090.72 1b-ft/ft (220.9kN - m/m)
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and, thus,

106,866.65 1b-ft/ft
49,090.72 1b-ft/ft

FS = = 2.17
0

(b} The factor of safety against sliding (FSS) of the
wall along its base is given by Eqn. (5-2a). Introduclng the
numerical values of the various parameters (Fig. 5.1), it is found

that

_ 11,329.88 1b-ft/ft (50.98kN - m/m) _
s 8,367.61 1b-ft/ft (37.65kN - m/m)

ES 1.35

5.2.3 The Prakash and Basavanna Method. 1In Eqn. (2-17)

is given the active thrust P, against the wall as provided by the

A

Prakash and Basavanna method., For the conditions shown in Fig. 5.1

(i = 0), Egn. (2-17) becomes

p =12 sin’(90°-)[cot(90°-B) + cotb]
A 2 sin (90~B) sin(90-B-4)
ay tan{90°-8-06) I+ a
v

tan{90°-R-8) + tan(6-0d) + cot{90°-B-8) +cot(8—¢)}

Introducing into the above expression the numerical values of

the geometry and material parameters (¥Fig. 5.1) and letting 6 = 45°-+g},
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it is found that PA is equal to

P, = %~) (100) (256) (0.35) = 4480 1b/ft (62.72kN/m)

wim

The point of application of P, is at h, = = = 5.33 ft

A A
(1.62m) above the base of the wall. The corresponding pressure
distribution is shown in Fig. 5.3.

The factor of safety of the wall is determined for the over-

turning and sliding modes of failure as follows:

(a) The expression of the factor of safety
is given by Eqn. (5-1) and the capacity and demand D by Eqns.(5-7).
Introducing the numerical values of the geometry and material

parameters, shown in Fig. 5.1, into Eqmns. (5-7), it is found that

C = 105357.89 1b - ft/ft (474.1 kN - m/m)

D= 45469.9 1b - ft/ft (204.6 kN - m/m)
and, thus,

pg . 105357.89 1b - ft/ft _ 2.31

o 45469.9 1b - ft/ft

(b) The factor of safety against sliding”(FSs) of the wall
along its base is given in Egn. (5-2a) and the expressions of the
capacity C and demand D in Eqns. (5-8). Introducing the numerical

values of the various parameters (Fig. 5.1), it is found that
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pg = LL245.12 1b - fe/fe (50.6KN - m/m) _ , .o
s 7687.04 1b - ft/ft (34.59kN- m/m) :

5.2.4 The Richard and Elms Method.

The expression for the active thrust against the wall used

in this method is given by Eqn. (2-20) as
1. .2
PAE = 5 YH (l—kv)KAE

in which

. cos? (¢H6+6)

18 cosseas”icosConeen) 1 + BRI

the coefficient of horizontal ground acceleration and

n
kV

the coefficient of vertical ground acceleration

2

Letting kh =a = 0.24g and kv “a, =3a = 0.16g, and introducing into

the expression for K, _ the values of the geometry and material parameters

of the retaining wall under examination (Fig. 5.1), the resulting value

of KAE is KAEz 0.432 and the value of the total force PAE against the

wall is equal to

P = ( %) (100) (256) (0.84) (0.432) =4 phk.8 1b/Et (65.021N/m)

H
The point of application of PAE is at hA =3 = 5.33 ft (1.62m)

above the base of the wall. The corresponding pressure distribution is
shown in Fig. 5.2. The corresponding pressure distribution is shown in

Fig. 5.2.
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Introducing the value of kh = 0.24g into Eqn. (2-24) and
assuming Aa = Av = 0.2, one has that the resulting magnitude of the
maximum displacement d between the wall and the backfill, given in

Fqn. (2-24), is equal to

or,

3 4

=227 02y _ 402 in (5m)

0.2 0.24

That is, for the examined conditions, the magnitude of the
maximum displacement d is very small (approximately equal to zero).
Thus, the Richard and Elms method provides the same results as the

Mononobe-Okabe procedure (FSO = 2.29 and FSS = 1.44).

5.2.5 The Extended Dubrova Method. In Egn. (2-25) is given

the expression for the active thrust against the wall provided by Saran

and Prakash (1977) as

2
v 9 (1 + av)cos (W~A1—B) 1 2
PA=§YH 7 [1+ 1/2]
cosklcos Bcos(6+8+ll) sin(¢+6)sin(w—kl)
{cosBcos(6+B+ll)

(5.9)



86

in which ¥ = ¢(1 - g). This corresponds to the case where the wall
rotates around point O (Fig. 5.1). Introducing the numerical values
of the geometry and material parameters shown in Fig. 5.1, it is found
that |

PA = 16,995 1b/fr (237.93kN/m)

The point of application P, is found from equilibrium of moments around

A
point 0 (Fig. 5.1) to be at hA = 3,85 ft (1.17m) above its base.

The pressure distribution is obtained by forming the deriv-

ative of the above expression with respect to z; i.e.,

dPA
PA(Z) P {5-10)
The factor of safety of the wall is determined for the over-—

turning and base sliding modes of failure as follows:

(a) The expression for FS in overturning (FSO) is given

by Eqn. (5-1) in which

@]
]

(1 + kv(wwﬁ + P,B sin{S+R)

A

o}
Ik

PAhacos(6+B) + kh th

" Introducing the numerical values of the geometry and the

material parameters into the above expressions, it is found that



= _2Z
b= (-2
2 F _
ay 0.24g
= 34°
4 + o)
§ = 15.5°
6 o
- -5
2
[0 8 L. O
=
=)
a0
5
5 10
Q: .
e
s
£ -
L 12
l4r
16 =% p,(2)
1 2 3
Z(ft)V' Magnitude of Earth Pressure (x1071b/ft)

Figure 5.4 Pressure Distribution Along Wall in Accordance with the Extended

Dubrova Method.

L8
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C = 126,224.37 1b~-ft/ft (568kN-m/m)

D = 86,315.86 lb~ft/ft (338kN-m/m).
Thus,

FS = 126,224.37 1b-ft/ft

o~ 786,315.86 1b-fr/fr ~ 1-%4b

{b) Similarly, the factor of safety against sliding (FS )
s
of the wall along its base is given by Eqn. (5-22) in which the

capacity C and the demand D are equal to

(]
L]

[PAsin(5+B) + ww(l+kv)] tang

v
I

PAcos(5+B) + ww kh

Introducing the numerical values of the geometry and the

material parameter into the above expressions, it is found that

12,780.37 1b=ft/ft (57,51kN-m/m) _
19,989.28 1b-ft/ft (89.95kN-m/m)

Fs_ = 0.64
s

5.3 Comparison of Results

In Table 5.1 is given a summary of the values of the factors

of safety found using each available procedure. It can be seen that

the Dubrova (static) and the extended Dubrova (seismic) procedures

resulted to more critical values for the factor of safety while, in
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Table 5.1 Values of Factor of Safety for the Various

Methods Examined

Factor of Safety

Conditions Method
Overturning Sliding
Coulomb 5.9 3.39
Static
Dubrova 2.33 0.934
Mononcbe 2.29 1.44
and Okabe
Simplified -
M—0 2.167 1.35
Seismic
Prakash and .31 146
Basavanna
Richard
and 2.31 1,44
Elne
Extended
Dubrova 0.64

1.46
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the case of the seismic conditions, the most critical value for the

factor of safety correspond to the base sliding mode of failure.

5.4 Probabilistic Analysis.

The probabilistic approach described in Chapter 4 1s applied
to determiné the safety of the retaining wall shown in Fig. 5.1. Tt
is assumed that the wall is located in an earthquake area exhibiting
the characteristics of Northeast United States, and that earthquakes
are caused by a point Source {(Section 3.4.1).

The expressions for the mean value and variance of maximum

horizontal ground acceleration are given in Eqns. {3-27) as

b eme
2 =L = [1+%b§Var(m)]
max (R +b,) 3
b=
blbze 2™ 2
var(a ) = [——— 1 Var (m)
max (R+ bh) 3

in which bl’bz’b3’b4 are regional parameters. For the case of the

Northeast U.S., these parameters may be assumed to be equal to

(Donovan et al., 1973) bl = 1,100, b, = 0.5, b, = 1.32, and

2 3

b4 = 25.
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Introducing these values into Eqns. (3-9), and letting
my = 2, m, = 6.3 and B = 1.35 (A-Grivas, et al., 1979), it is found

that

m= 2,72

and

Var(m) = 0.492

Substituting the above values for m, Var(m), and regional

parameters bl’ b2, b3, b4 into Eqns. (3-27), and assuming that

R = 1 km, one has that

a = 0.63g

max

and

Var(amax) = 0.426 (Ga = 3.0208g)

max

Furthermore, for the purposes of this example, it is assumed
that the angle of internal friction ¢ and cohesion ¢ of the backfill
material are correlated random wvariables with mean values, standard

deviations and correlation coefficient equal to

-+
tt

. L] U - . o
34.86 s b 9.13

2
0.795 kips/ft2(37.36kN/m ),

(]
1]
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o ='0.665 Kips/Et? (31, 25kN/m?)

=-0,2
QC’¢ 93

The active thrust PA against the wall is found using the ex-
tended Dubrova Method for a rotation of the wall around its base. From

Eqn. (2-25), one has

, (1 +a )cos” (=2 -8)

P = E'YH 1 ]2
A 2 2
cosklcos Bcos(6+8+kl) sin(¢+6)sin(¢—Xl) 1/2
+{cosBcos(6+B+Kl)
in which

- z
v=o (1 -2

5.4.1 Overturning. In the case of the overturning mode of
failure of the retaining wall, capacity C and demand D are given by

Eqns. (4-11) and (4-12), respectively, as

= - 3 t
C (1 + av) Ww 2+ PA B sind
- '
D PAhAcosé + a, wwh
in which &' = 8+8 and all other parameters are shown in Fig. 5.1.

From the above expressions, 1t can be seen that € and D are

functions of two random variables, namely, (a) the maximum horizontal
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ground acceleration 25 and (b) the ¢ parameter of soil strength (both

a, and ¢ enter the expression for the total active thrust PA). That is,

C=¢C (ah,qb)
(5-11)
D = D (ah3¢)

The mean values and standard deviations of C and D can be
found using the "point estimates method" presented for the first time
by Rosenblueth (1975). In accordance with this method, the mean value

of C is expressed in the form

c=ElC] =P, ,C +P C +P_C +P_ C _ (5-12)

in which C,, C C

e Cos C__ are the point estimates of £, shown in Fig.

5.5, and P, P P are the so-called "weights" of C. TFor the

-t

case of two uncorrelated random variables, the weights are a1l equal ,

i.e.,

The second moment of C, denoted as E[Czj, is found from the

following expression:



Point Estimates

b, = 0 +0
? 5 =7 -
e.p A ah+ = 5h+ o]
A s
R
C,, =C (d,a. )
c,_=¢ (¢)+,a
¢ |C,=¢C (b a
C _=2C(¢_,a
b_=b-0, $ ¢+=5fr O D,, =D (d,.a
1 1 - (i) D D+_ = D (¢+’a
a,= gh-ga \ \ \ Ij——+ =D (¢_’ah+
h \ \ \ \ D__ =D (A

\\\\

ah+=5 \

Figure 5.5 Illustration of the Point Estimates of C and D.

v6
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E [CZ] = P C + P, C +P  C +P C (5-13)

The standard deviation UC of C is determined from the mean

value and second moment of C as follows:

: 2 2,12
Og = {E [C"] - (E[cDH} (5-14)

Similarly, the mean value and standard deviation of the demand

D are expressed as

p=©E€E{pl]=P,, D ,+P D +P D +P D (5-15)

5 5 1/2
o= {E[D"] - (EIDH 1} (5-16)

2
in which E[D"] is the second moment of D.
Introducing the numerical values of the mean values (gh’g) and
standard deviations (Ua s U¢) of a, and ¢ into the expressions for the

h
point estimates of C and D, the latter are found to be equal to

]
il

112,131.9 1b-ft/ft (504, 6kN-m/m)

++

€, = 112,090.9 1b-ft/ft(504. 4ki-m/m)
C_, = 108,915.5 1b-ft/ft (490, 1kN-m/m)
C = 108,902.0 1b-ft/ft(490 IN-m/m)
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D,, = 56,438.3 lb-ft/ft (254 ki-m/m)

D, = 63,627.2 lb-ft/ft (286.3kN-m/m)
D_, = 51,161.3 1b-ft/fr (230.2kN-m/m)
D = 58,276 1b-ft/ft (262.2kN-m/m)

After the above values of the point estimates and weights
of C and D are introduced into Eqns. (5-12), (5-14), (5-15) and (5-16),

it is found that

C = 110,510 1b-ft/ft (497.3kN-m/m)

0o = 1,601 Ib—ft/ft (7.2 kN-m/m)
D = 57,376 1b-ft/ft (20, kN-m/m)
@, = 4,455 Ib-ft/ft (20. kN-m/m)

The wvalue of the central factor of safety in overturning is

then equal to

_ 110,501 Ib-ft/ft _ 1.92
57,376 1b-ft/ft :

]

W

{
i e

The mean value SM and standard deviation GSM of the safety

margin SM are found from Eqn. (4-3) to be equal to

SM=C-D = 53,134.4 1b -ft/ft (239, kN-m/m)

2,1/2

_ 2
Q... = (OC + OD)

= 4,734.1 1b-ft/ft (21.3 kN-m/m)

Finally, assuming that the safety margin SM follows a normal
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distribution, the probability of failure Pe in overturing is found from
o
Fqn. (4-5) to be equal to

_ _ SM-SM 0-5,313.4
g = FPISM Ol =715, §,734.1

e} SM

]

IA

_ SM-SM
g = SM-SM

Ism

expression can be written as

If denotes the standardized normal variate, then the above

P, =P [SM < 0] =Pluc-11.3]
o

From tables of the standard normal distribution {(Harr, 1977), and

has that P [u £ 11.3] = 0.0 and, therefore,

5.4.2 Bearing Capacity. In the case of bearing capacity

of the wall foundation, capacity C and demand D are given by Eqns.

(4-13) and (4-14), respectively; i.e.,

1 /2 - A
C= ZYB N, + YD BN +NBe
1/2

2 2

D= (0 "+ D)
in which

DH = PA cos (6+B) + ah Ww
Dv = Pa sin(6+B8) + (1 + av) Ww
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and all other parameters are shown in Fig. 5.1. In this case, C is
a function of two correlated random variables, namely, the cochesion ¢

and angle of internal friction ¢ of the foundation material, or

C=2C (c,$)

while demand D is a function of two uncorrelated random variables ay

and ¢, or

D= D(ah,¢)

The numerical values of the point estimates of C and D are

equal to

C,, = 1,108.4 1b (5.0kN)
C,_ = 393 1b (1,8kN)
C, = 163.3 1b (0.1kN)
c_ = 31.3 1b (0.1kN)
D, = 22.4 1b (0.1kN)
D, = 22.4 1b (0.1kN)
D = 21.4 1b (0.1kN)
D = 21.4 1b (0.09kN)

As the correlation coefficient (pC ¢) of ¢ and is equal to
3

-0.293 (pc ¢ = -0.293), the numerical values of the weights for the
3
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of the weights for the capacity C are

1+
= = c,d __1-0,293 _
P++ =P _ 7 4 0,176

1-p
_ - ;¢ _ 1+ 0.293 _
P, =P, . 7 = 0.323

while the weights for demand D are all equal to %u

Introducing the above values of the point estimates and weights

of C and D into Egmns, (5-12), (5-14}, (5-15) and (5-16), it is found that

C = 380.3 1b (1.71kN)
0o = 360.9 1b (1.6 k)
D = 21.9 1b (0.09kN)
oy = 0.6 1n (0.003kN)

The value of the central factor of safety in bearing capacity

is then equal to

_ 380.3 1b

= 919 1p - 1738

o
el
(o] lTeY

From Eqn., (4-3), the mean value SM and standard deviation O

of the safety margin SM are found to be equal to

SM=C~- D= 358.4 1b (1.6kN)

20652 361 0 1p (1. 6K10)
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Assuming that the safety margin SM follows a normal distri-

bution, the probability of failure Pe in bearing capacity is found
be
from Eqn. (4-5) to be equal to

P, =P[sM< 0] = P[SM{I~ M. 0‘323'3

be SM

]

If u= S§~SM denotes the standardized normal variate, then
SM
the value of P, may be determined using tables (Harr, 1977) as
be
Pf = P[SM < 0] = P[u < - 0.99] = 0.162
be

5.4.3 Base Sliding. 1In the case of failure of the retaining

wall in base sliding, capacity C and demand D are given by Egqns. (4-15)

and (4-16) in the form

(@]
H

[PA sin(S+B) + ww(l + av)] tand

o]
]

PA cos(8§+B8) + a, W

The geometry of the wall and the parameters of the backfill
material are shewn in Fig. 5.1. In this case, C and D are functions

of the two uncorrelated random variables a, and ¢; i.e.,
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C = C(ay,%)
D = D(ah’q))

The point estimates for C and D are

C., =76,360 1b (73.6 KN)
C,_ =8,169.41b (36.8 )
C_, =15,900.21b (71,6kN)
C__ =7,941.11b (35.7kN)

D, = 14,690 1b (66.105kn)
D, =14,660 1b (65.97kN)
D_. =13,610 1b (61.24kN)
D__ =13,600 1b (61.2 k)

while the values of the weights for both C and D are equal to Lt
Introducing the above values of the point estimates and weights

of C and D into Egns. (5-12),(5-14), - (5-15) and (5-16), it is found that
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C = 12,092.67 1b (54.41 kN)

o.= 4,041.52 1b (18.18 kN)
D = 14,140 1b (63.63 kN)

o, = 535.1 1b (2.4 kN)

The value of the central factor of safety in base sliding is

then equal to

_12,092.67 1b

C _
s 3 T 14,140 1b = 0.85

From Eqn. (4-3), the mean value SM and standard deviation

GSM of the safety margin SM are found to be equal to

SM=C-D=-2,047331b (-9.21kN)

Ty = 4,076.79 1b (18.34kN)
Assuming that the safety margin SM follows a normal distribu-

tion, the probability of failure Pg in base sliding is determined as
s

p, = PIsM < 0] = p[ 0 < 212,047,393
5 sM 4,076.79

SM-SM . .
If u = ~6fv**in the standardized normal variate, then the value

SM
of Pe is found from tables to be
s
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5.4.4 Overall Sliding, In the case of fallure of the retain-

ing wall in overall sliding, capacity C and demand D are given by Eqns.

(4-17) and (4-18), in the form (Figs. 4.6 and 5.1)

o
L]

c R ZAQi + R (1+av) tan¢[Ewi cosei]

)
It

R [ZW151nGi] (1+av) + ah(Zwiyi) + PAyA

In this case, capacity C is a function of three random vari-
ables, namely, cohesion (c), angle of internal frictiom (¢), and
maximum horizontal ground acceleration (ah), two of which (i.e., c, &)

are correlated; or,

4]
l

- C(ah,¢,c)

Demand D is a function of two random variables (¢ and ah);

i.e.,

)
I

=D (a,,9)

Using the numerical point estimates method, one has that the

mean values and standard deviations for C and D are equal to



+ P

C

—t et

o= 1 E) - @led?}

C +

RS

it

%

+P, C.
+P,__C__
+P C

P

c + P

o T

(E[1?] - (EIp?D)
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P+ Gy
+P_, C_, +
1/2

L C P _C

2'}1/2

Introducing the numerical values of the mean values (ah’

$, ¢) and standard deviations (Gah, G¢, OC) of & $ and ¢, the

corresponding values of the point estimates of C are

O
1l

(9]
il

@]
I

|}
I}

(@]
It

©
il

(@]
I

while those of D are

2,208.0
2.188.7

869.0

= 1,828.4

869.0
1,318.3
889.2

498.6

1b

1b

1b

1b

1b

1b

- ft/ft
- ft/ft
- fe/ft
- fr/ft
- ft/ft
- ft/ft
- ft/ft

- ft/ft

(9.9
(9.8
(3.9
(8.2
(2.9
(8.2
(4.0

(2.2

kN-m/m)
kN-m/m)
kN-m/m)
kN-m/m)
kN-m/m)
kN-m/m)
kN-m/m)

kN-m/m)
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D,, = 485.6 1b-ft/ft (2.2 kN-m/m)
D, = 477,7 1b-fr/ft (2.2 kN-m/m)
D_, = 460,9 1b-ft/ft (2.0 kN-m/m)
D = 453,3 1b~ft/ft (2.0 kN-m/m)

The numerical values of the weights for capaclty C are equal to

1+p .
= = = - cs$ _ 1-0.293 _
Py =P =P, =P |=——g—-= %= =0.088

1-»
_ ~ o cd | 140.293
L e A = 3 = 0.161

while those of D are

1
+ P = = = -
P P P 3

Introducing the above values of the point estimates and
weights of C and D into Egns. (5-12), (5-14), (5-15) and (5-16), it is

found that

C = 1,375.99 1b-ft/ft (6.19kN-m/m)

o, = 602.01 lb-ft/ft (2.70kN-m/m)
and

D =  469.35 1b-ft/ft (211kN-m/m)

Ty = 13.03 1b-ft/ft (0.058kN-m/m)

The value of the central factor of safety in overall sliding

is then equal to
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1,375.99 1b = ft/ft _ , o4
4€9.35 1b - ft/ft

2

W

u
o jOol

From BEqn. (4-3), one has that the mean value SM and standard

deviation Ogy, of the safety margin EM are equal to

T -D = 906.6 1b-ft/ft (4.1 kN-m/m}

2 2 . 1/2
= (OC + oy )]

921
=
it

= $02.2 1b ~ ft/ft (2.7 kN~m/m)

Q
{

Assuming that the safety margin SM follows a normal distribu-

tion, the probability of failure pg in overall sliding is found from
bs

from Eqn. (4-5) to be equal to

p SM~SM _ 0-906.64
£ = P SM<D = P < LTt
s (sM = 1 [GSM - 602.15 ]

If u = SM-SH is the standardized normal variate, then the value
SM

of De {5 found from tables to be
o5

Pg = PisMm<0}="PF [u<-1.5} = 0.067
oS

5.4.5 Summary of Results. In Table 5.2 is given a summary

of the obtained results, including the statistical values of capacity
and demand, the values of the central factor of safety, and the corres-

ponding values of the probability of failure for each mode of failure

examined.



Table 5.2

Summary of Results

of Probabilistic Analysis

Mode Capacity Demand SEZEzilof Probai;llty
of _ 5 5 . Safety Failure
Failure C C D D g Pg
Overturning 110,510.1| 1,601.4 57,375.7 4,455.0 1.9 0.0
(1b-ft/fe)
Bearing Capacity 380.3 361.0 21.9 0.6 17.38 0.162
[1b/£t]
Base Sliding 12,092.7} 4,041.5 14,140.0 535.1 0.86 0.691
[1b/ft]
Overall Sliding 1,376.0 602.0 469.4 13.0 2.9 0.067
[1b-ft/ft]

L0T
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The value of the total probability of failure P is found

using Egqn. (4-10) to be equal. to Pe = 0.758,



CHAPTER 6

PARAMETRIC STUDY

The purpose of the present parametric study is to examine the
effect on the factor of safety and the pressure distribution along a
retaining wall of (a) the magnitude of the maximum horizontal ground
acceleration, (b) the ¢-parameter of strength, and (c) the inclination
of the backfill material.

The retaining wall used for the purposes of this parametric
study is shown schematically in Fig. 6.1. It has a hedight H = 16 ft
(4.88m) and an average thickness of 6 ft (1.83m). The angle B between
the back side of the wall and the vertical is equal to B = 15°. The back-
fill material has a unit weight equal to Yy = 100 pcf (15.7 kN/mB) while
the unit weight of the concrete is Y. = 150 pcf (23.55‘kN/m3).

The method employed in the parametric study is the extended
Dubrova procedure, described in Section 2.2.5. It is assumed that the
wall rotates around its top and, therefore, the expression for the ¥

function is (Table 2.1)

V(z) =9 &

The total active thrust on the wall is given by Eqn. (2-25)

as

(1+a) c032(¢-x1-8) 2

1
Siﬂ(W+5)Sin(¢—i—A1) 1/2] (6-1)

cos(B—i)cos(6+B+K1)

)

Py = 5vH

2
cosklcos B(5+B+Al) 14+ {
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Figure 6.1 Geometry and Material Parameters of the Retaining Wall Used 1In the Parametric Study.
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in which the geometry and material parameters are shown in Fig. 6.1.

The expression for the pressure distribution PA(z) along the

wall is obtained by forming the derivative of P, with respect to z

A
(Appendix A).

6.1 Effect of the Maximum Horizontal Ground Acceleration

In Fig. 6.2 is shown the resulting pressure distribution pA(z)
along the retaining wall for various values of the maximum horizontal
ground acceleration a

L+ 1t can be seen that the magnitude of pA(z)

increases considerably for increasing values of a . The vertical com-

2

ponent of the acceleration a is assumed to be equal to a =32,

while the other geometry and material parameters are given in

Fig., 6.1 (¢ = 30°, B = 15° and 1 = 5°).

6.2 Effect of the ¢ ~ Parameter of Strength.

The effect of the ¢-parameter of strength on the pressure

distribution pA(z) is shown in Fig. 6.3. The results were obtained

2 o . o . :

for a, = 0.3z, a =3 a, B = 15° and, and i = 5° (Fig. 6.1), Frem
Fig. 6.3, it is seen that the magnitude of the pressure pA(z) decreases

considerably as the value of ¢ increases,

6.3 Effect of the Inclination of the Backfill.

In Fig. 6.4 is shown the effect on the pA(z) of the backfill

. 2 o o
slope i for a, = 0.3g, a, =3 2 ¢ = 30° and B = 15 (Fig. 6.1). It
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Figure 6.3 Dependence of the Pressure Distribution along the Wall on the ¢ Parameter

of Strength.

£TT



10

Depth Along the Wall

12

14

Il

0.3g

it

30°
15°

OO

10°

LN e, ()

16

z(ft) *

2 4 6 8 10 12 14 16

Magnitudé of Earth Pressure

{x lD3lb/ft)

Figure 6.4 Dependence of the Pressure Distribution Along the Wall on the

Inclination of the Backfill i.

PTT



115

can be seen that the dependence of pA(z) on the inclination of the back-~
fill i is not as important as that of the maximum horizontal ground

acceleration ay and the strength parameter ¢,

6.4 The Effect on the Factor of Safety of a_, ¢, and i,

h’

Fig. 6.5 shows the dependence of the factor of safety FS of
the retaining wall in overturning around its top (Fig. 6.1) of (a) the
maximum horizontal ground acceleration, (b) the ¢ parameter of. strength
and {c) the slope i of the backfill material. In its present form, Fig.
6.5 constitutes a nomograph associated with the retaining wall shown in
Fig. 6.1 which can be used to determine the value of the factor of

"safety FS for combinations of values of the>design parameters, ah, P,
and i.

From Fig. 6-5, it is seen that as ¢ decreases and/or ah and

i increase, the corresponding values of the factor of safety FS decrease.

The analytical expression for the factor of safety FS of the

retaining wall in overturning is given in Appendix B,
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Figure 6.5 Dependence of the Factor of Safety FS in Overturning Around the Top of the Wall
of a s ¢ and 1i. '

STT



CHAPTER 7

DISCUSSION

Experience with the performance of retaining walls indicates
that the pressure distribution along such structures depends on the
type and magnitude of the movement they are subjected to during loading.
From among all the procedures reviewed in this study (Chapter 2), only
one is capable of accounting for the occurring movement in order to
arrive at an expression for the magnitude of the pressure and its dis-
tribution along the wall. This is the Dubrova method, initially de-
veloped for static conditions (Dubrova, 1963) and later extended in
order to include seismic loading (Saran and Prakash, 1977; A-Grivas,

_ 1978).

In accordance with the Dubrova method, the pressure distri-
bution along a wall is expressed in terms of the Y function which de-
pends on two quantities: (a) the magnitude of the soil strength
mobilized in the backfill material, and (b) the type of movement the
wall experiences during loading. The wall is allowed to rotate around
any point along its vertical axis and the resulting limiting state of
the backfill material can be either active or passive or partially
active and partially passive. For example, a rotation of the wall a-
round irs mid-point, with the top moving towards the backfill, will pro-
duce a passive state for the upper half of the soil medium while the
" lower half will be in an active state. This is shown schematically in

Fig. 2.4(e). Moreover, the method assumes that all soil strength
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available is mobilized at the extreme points of the backfill medium
(i.e., behind the top and bottom of the wall).

While the Dubrova method considers the type of movement the
wall undergoes during loading, it does not account explicitly for the
magnitude of this movement. That is, for a rotation of the wall around
a given point, the resulting pressure distribution is independent of
the magnitude of the rotation.

The method by Richard and Elms (Section 2.2.4) takes into
consideration the magnitude of the permanent displacement experienced
by the wall during the ground shaking. This is achieved by employing
a previously developed empirical relationship between the maximum per-
manent ground displacement and the effective peak ground acceleration
and velocity. In addition, this method considers the change in the
inertia of the wall that occurs during the seismic loading, a novel
concept that leads to an improved measure for the factor of safety.

In a comparative study, the safety of a retaining wall
(Fig. 5.1) was examined using the various procedures presented in
Chapter 2. Two modes of wall failur were considered, namely, overturning
and base sliding. From Table 5.1, it can be seen that there is a rather
wide scatter in the resulting numerical values of the factor of safety.
Under static conditions, the Dubrova method produced a more critical
value for FS than did the Coulomb method., The extended version of the
Dubrova method also resulted to the most critical value for FS under
seismic loading.

In the presented probabilistic procedure, the seismic leoad
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(Section 5.4) was expressed in terms of the maximum horizontal ground
acceleration (ah) experienced by the retaining wall during an earth-
quake. It was assumed that the vertical component of the maximum

ground acceleration has a value equal to two thirds that of the horizon-
tal component, and that both components act on the retaining wall and
backfill material simultaneously.

The statistical values of the capacity C and demand D of each
mode of fajlure were determined using the point estimates method pro-
vided by Rosenblueth (1975). This is an approximate procedure capable
of providing estimates for the statistical values of C and D on the
basis of the mean values and standard deviations of the material and
seismic parameters.

Finally, from the results obtained during the parametric study
(Chapter 6), it is seen that the maximum horizontal ground acceleration
and the ¢ parameter of strength of the backfill material have a consid-
erable effect on the pressure distribution along the wall and the cor-
responding value of its factor of safety. The effect of the slove of
the backfill material on these two quantities was found to be considerably

smaller.



CHAPTER 8§

SUMMARY AND CONCLUSIONS

The two main objectives of the present study were: (a) to
review and compare the various methods that have been developed to
describe the force system behind earth retaining structures under seis-
mic loading; and (b) to provide a probabilistic analysis of the safety
of such structures. The latter objective was achieved using the method
of redistribution of pressure (Dubrova's method) and by exploring the
variability of iImportant material and loading parameters. Safety was
measured in terms of the probability of failure of the structure rather
than the customary factor of safety. TFour possible modes of failure of
a retaining wall were considered (i.e., overturning, base sliding,
bearing capacity, and overall sliding) and the procedure required for
the determination of the probability of failure in each mode was
described.

The developed probabilistic approach and the available con-
ventional methods were applied in a case study and the obtained results
were compared and discussed. In a parametric study, the effect on the
pressure distribution and the safety measure of important material
and loading parameters was investigated and the results were presented
in a series of charts.

On the basis of the analysis and results obtained in this
study, the following conclusions can be drawn:

1. The extended Dubrova method can account for the movement

experienced by a retaining wall during an earthquake and, therefore,
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it provides a more realistic pressure distribution along the wall.

2. A probabilistic formulation of the safety of retaining
walls during earthquakes is an improved approach over conventional
methods of analysis as it can account for important material and
loading uncertainties.

3. The value of the ¢-parameter of soil strength and the
magnitude of the ground acceleration have an important effect on the
pressure distribution and the factor of safety of the retaining walls

located in an earthgquake environment.
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APPENDIX A
EXPRESSTON FOR THE PRESSURE DISTRIBUTION

USED IN PARAMETRIC STUDY

The expressiocn for the active force on a retaining wall is

given in Eqn. (2-25) as

) Yzz(1+av) cosz(w-xl-s)

1
P - - - ] (A-1)
2cosl100528c05(6+B+K1) 1+ {51n(¢+5)51n(¢—1 Xl) 1/2
cos(B—i)cos(6+ﬁ+Rl)
in which,
i = inclination of backfill,
B = angle between the back side of the wall and the

vertical direction,

¥ = unit weight of the soil,
a
- -1 h
Xl tan (l+av)’

a, = maximum horizomtal ground acceleration in g's,

a_ = maximum vertical ground accelerations in g's,

i = amount of strength mobilized as a result of the movement
experienced by the wall during loading,

8 = angle of wall-scoil friction.

Forming the derivative of Eqn. (A-1) with respect to depth z,
one has that the expression of the pressure distribution pA(z) is equal

to
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in which,
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APPENDIX B
FACTOR OF SAFETY OF A WALL

IN OVERTURNING AROCUND ITS TOP

The expression for the factor of safety in overturning FSD

may be obtained using Eqn. (5-1); i.e.,

C
FSO =3 (B-1)

in which,

C = moment of resisting forces around center
of rotation, and
D = moment of driving forces around same point.

For the given wall geometry, one has that the capacity C and

demand D for a rotation around point ¢ (Fig. 6.1) are equal to

o
i

(1 + av) L il + T
(B-2)
P

w}
I

A Yp * *h Ww hl

in which,

T = [{1 + av) Ww + P, sin{(d+B8)]tand

A

Combining Eqns. (B-1) and (B-2), the expression for FSO is found as

ve = (1 + aV)WQ Ql + [1+ av)Wﬁ+P sin(8+B) Itand

o PAyA + ay, ww hl

A
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