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ABSTRACT

The two main objectives of the present study are (a) to

review and compare through a case study currently available methods

for the analysis of earth retaining structures, and (b) to provide

an alternative, probabilistic approach to the assessment of the safety

of such structures when subjected to a seismic loading. The latter

objective is achieved through a quasi-static stability analysis that

accounts for the movement experienced by the wall during loading.

The resulting distribution of the lateral pressure along the structure

is parabolic-like (rather than the customarily assumed linear varia­

tion) and, thus, it is in closer agreement with experimental and field

observations. Four modes of possible failure are considered in the

analysis (i.e., overturning, base sliding, bearing capacity of the

foundation and overall sliding) and the probability of failure in each

mode is determined.

The examined conventional methods and the new probabilistic

approach are applied in a case study involving the safety of a gravity

wall during an earthquake and the obtained results are presented and

discussed. It is concluded that the provided probabilistic analysis

is an improved alternative to conventional procedures because it accounts

for the uncertainties associated with important material and se~smic

paLameters while, at the same time, it takes into consideration the

movement experienced by the wall during the ground shaking.

xiii





CHAPTER 1

INTRODUCTION

Damage of earth retaining structures, resulting from

movements and increased lateral pressures induced by earthquakes,

is a common phenomenon. As a consequence, special efforts must be

undertaken by geotechnical engineers in order to describe the load­

ing conditions and secure the safe design of such structures when

subjected to a seismic environment.

Historically, the earliest method of determining the

seismic effect on the force acting on a retaining wall was developed

by Okabe (1926) and Mononobe (1929). This method, commonly referred

to as the Mononobe-Okabe procedure, is basically the Coulomb sliding

wedge approach in which two additional forces are included: the hor­

izontal and vertical components of the seismic inertia of the backfill

material. A simplified version of the Mononobe-Okabe procedure was

proposed by Seed (Seed, 1969; Seed and Whitman, 1970), while Prakash

and Basavanna (1969) attempted to improve upon the procedure through

an analysis that would satisfy the additional condition of equilibrium

of moments on the sliding wedge.

In the Mononobe-Okabe procedure, the movement of a retaining

wall is not considered as a factor with an explicit influence on the

pressure distribution along the wall. This Is in contrast to an earlier

recognition (Meem, 1910) that, for example, the difference between the

earth pressures along rigid and flexible walls is a function of the

difference in the movements that occur along these two types of struc-

tures.
1
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Terzaghi (1936) interpreted lateral earth pressure measurements in

terms of the associated deformations while Ohde (1938) attempted a

mathematical formulation of the relationship between the two quan-

tities.

A simple, analytical procedure for the determination of the

pressure distribution along retaining walls that is also capable

of accounting for the wall movement was proposed by Dubrova (1963).

Although it was initially developed for static conditions, the

Dubrova method was easily extended to provide the analytical expres-

sion for pressure distributions that result from the occurences of

earthquakes (e.g., Saran and Prakash, 1977).

1.1 Scope of the Present Study

In all the above methods, the safety of retaining walls

during earthquakes is measured in terms of the customary factor of

safety. In order to overcome the shortcomings associated with this

measure of safety (e.g., A-Grivas, 1977, etc.) and, also, to account

for the uncertainties that are involved in material parameters, load-

ing ·conditions, analytical procedures, etc., geotechnical engineers

have suggested the use of a more rational approach to design, i.e.,

one based on probability theory and reliability analysis (e.g., Wu et.

al., 1970; Hoeg and Murarka, 1974; Vanmarcke, 1977; Harr, 1977, etc.).

-
It is the objective of this endeavor to provide such an approach to

the analysis and design of soil retaining structures during earthquakes.

A detailed presentation of the procedures capable of deter-

mining the active earth pressures against retaining walls under static
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and seismic conditions is given in Chapter 2. Chapter 3 presents a

probabilistic description of the seismic loading while the reliability

analysis of retaining walls is given in Chapter 4. The conventional

and probabilistic approaches are applied in a case study, a detailed

description of which is given in Chapter 5. Finally, Chapter 6 pre­

sents the results of a parametric study which explores the effect of

important material and loading parameters on the pressure distribution

along retaining walls and the corresponding safety measure.



CHAPTER 2

REVIEW OF AVAILABLE PROCEDURES

In this chapter~ a review is presented of the procedures

currently available for the determination of the pressure system behind

earth retaining structures and of the associated safety measures.

2.1 Procedures Used Under Static Conditions

2.1.1 The Coulomb Method. The Coulomb method (Coulomb, 1773)

is based on the notion that failure of a retaining wall is accompanied

by a sliding of the soil mass located behind the wall.

The soil sliding is assumed to occur along a plane surface

and the expression for the thrust on the wall is obtained by consider­

ing the equilibrium of the forces acting on the sliding soil mass.

In Fig. 2.la is shown schematically a Coulomb type trial

wedge that consists of cohensionless soil with horizontal free surface

and is in contact with a vertical retaining wall. If, for the moment,

the shearing forces at the back of the wall are assumed to be zero and

the possibility of cracking in the tension zone is ignored, then the

force system on the wedge consists of its weight W; the force P between

the wedge and the wall; and the force F along the sliding surface (with

_ normal component N and shearing component T). This is shown in Fig.

2.1a while the polygon of forces appears in Fig. 2.1.b.

The weight W of the wedge is known in both magnitude and dir­

ection. The resultant forces P and F have known directions but unknown

magnitudes. The equations of equilibrium along the vertical and

4
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horizontal direction produce the following expressions for P and F,

respectively:

~H = 0

L.V = 0

P = W tan (6-<j»

W
F = ---:-~-=--cosC6-<j»

(2-1)

Replacing in the first of the expressions above the weight W by its equal

C1/2)yHcot6, where y is the unit weight of the material. H is the

height of the wall and 6 is the inclination with respect to the horizontal

of the sliding surface, one has

1 2P = - yH cot6 tan (6-<j»2

In order to determine the critical value 6 of e that pro­cr

duces the maximum value of the thrust P, one has to consider the der-

ivative of P with respect to e; i.e.,

sin<j> cos (28-<j»
. 2

[sine cosce-<j»]
(2-2)

..
or ecr

The derivative (jp becomes zero when
de

45' + l The corresponding

cos (26 -<j» = 0, or 26 -<j> = 90°,cr cr

value for the thrust, i.e. the

active force PA on the wall, is expressed as

P = 1. YH~
A 2 A

(2-3)



in which

7

1
K :::

A
2

[----------1/2]
(l/cos~) + (tan2~ + tan~)

The minimum value of the thrust, i.e., the passive force P on the wall,
p

is expressed as

in which

p ::: 1:. YH~
P 2 P

(2-4)

The above expressions can be found similarly for the general

case where the backfill forms an angle i with the horizontal and

there exists a friction angle 0 between wall and soil. These con-

ditions are illustrated in Fig. 2.2. Thus, one has

1 2
PA/p='ZYH K",/p (2-5)

in which

cscS sineS-g,)K :::
AlP 1J2

{sin(S+o)} ±
]2

1/2
{sin(~o) sin(~-i)/sin(S-i)}
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where the positive sign in the denominator of the above expression

corresponds to the active and the negative to the passive case.

2.1.2 The Dubrova Method. Coulomb provided no analytical

basis for the distribution of earth pressure against a wall. He simply

assumed the pressure distributions to be quasi-hydrostatic and considered

the resultant earth force to act at a distance above the base of the wall

equal to one third of its height. Results, however, of large-scale

model tests by Terzaghi (1943) and Tschebotarioff (1951) have demon­

strated the validity of this distribution for very rigid retaining

walls with sand backfills. For other modes of motion, such as a

rotation about the top or center of a wall or translational movements,

test results indicate a parabolic-like distribution of pressures.

A procedure that appears to have considerable merit for deter­

mining the pressure distribution behind retaining walls is the one pro­

posed by Dubrova (1963). This is based on the method of redistribution

of pressure and is illustrated in Fig. 2.3.

For the wall movement shown in Fig. 2.3, Dubrova assumed that

force F, acting on the failure plane passing through the bottom of

the wall, is inclined at an angle ~ to the normal; while the angle between

force F and the normal to the failure plane passing through the top of

the wall is equal to -~. The wall may rotate around any point '0' along

its height and, therefore, distance hI (Fig. 2.3) can receive any value

between 0 and H. Dubrovafurther assumed that the angle between the force

and the normal to any failure line, denoted by ~, is linearly distributed

over the depth receiving values between -¢ and +¢.



hi

Figure 2.3 Variation of t-parameter along the wall in the Dubrova Method

.....
o
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Thus, for example, in the case of a wall rotating around its

mid-point, W is equal to

w = W(z)

in which

z
2</> - -</>

H
(2-6)

z is the particular value of the depth,

H is the height of the wall, and

</> is the strength parameter of the backfill material.

The corresponding value of the force P at any depth z

along the wall has an expression similar to that provided by Coulomb,

the only difference being that </> is replaced by wand H by z. That is,

or,

1P =-y
2

z cos~ 2

[1/2 1/2]
(coseS) + {sin(1J! + eS)sin1J!}

z

(2-7)

p = 2~[
(l/cos1J!) +

]2

{tanW(tanW+tano)}l/2

(2-8)

In Table 2.1 are given the expressions for 1J! = W(z) for

various points of rotation along the height of the wall.

The corresponding pressure distributions are sho~~ in Fig.

2.4.



Table 2.1 Expressions of Function ~ =~(z) for Various Points of
Rotation of a Retaining Wall.

Case Point of Rotation ~ = ~(z)

a Top (outwards) ~ =
~z
H

b Top (inwards) ~ =-~
H

c l Toe (outwards) <j>z
~ = <j>--

H

d Toe (inwards) ~ = ~ -<j> -H

e Center (upper half inwards) ~ = ~-~
H

......
N
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The Dubrova method has been verified by Scott et ale (1972),

on the basis of results obtained through field measurements. These

are shown in Figs. 2.5,2.6 and 2.7. Following Scott et ale (1972),the

expression for the horizontal component of the active force P
A

on the

wall is given as

[ z ) ]2

(l/cos~) + (tan2~ + tan~ tano)1/2 (2-9)

2.2 Procedures Used Under Seismic Conditions

2.2.1 The Mononobe-Okabe Method. The earliest procedure that

aimed to describe the lateral pressures on earth retaining structures

under seismic conditions was proposed by Okabe (1926) and Mononobe (1929).

Applicable only for the case of backfills consisting of dry cohesionless

soils, the Mononobe-Okabe procedure was based on the following additional

assumptions (Seed and Whitman, 1970):

(1) The wall yields sufficiently during an earthquake to produce minimum

active pressures.

(2) When the minimum active pressure is attained, a soil wedge behind

the wall is at the point of incipient failure and the maximum shear

strength is mobilized along the potential sliding surface.

(3) The backfill behaves as a rigid body and therefore, the acceleration

field is uniform throughout the soil mass.

The effect of the ground motion on the wall-backfill system is

introduced in this procedure in terms of two additional inertia forces act-

ing at the center of gravity of the sliding soil mass: a horizontal force,
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denoted as ~ W, and a vertical force, denoted as kv W, where W is the

weight of the sliding soil mass. Quantities ~ and k
v

are the

horizontal and vertical earth pressure coefficients, respectively. This

is shown schematically in Fig. 2.8.

The active force P
AE

on a wall during an earthquake is deter­

mined using Coulomb's method in which the additional forces ~ W and

k Ware considered. The critical sliding surface is also that of the
v

Coulomb method. The expression for the active force against the wall

is given as (Seed and Whitman, 1970)

(2-10)

in which K
AE

is the earth pressure coefficient for the active case and

is equal to

K
AE

=

and

cos6

cos2 (p-6-8)

e -1 ~= tan (_"_)
l-k 'v

y = the unit weight of soil,

H = the height of the retaining structure,

<1> = the angle of internal friction of the soil mass,

0 = the angle of wall-soil friction,

i the inclination of the backfill,
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Figure 2.8 The Force System on the Sliding Soil Mass in Accordance with the Mononobe-Okabe
Method.
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B = the angle between the back side of wall and the vertical,

~ = coefficient of horizontal ground acceleration in gis, and

k = coefficient of vertical ground acceleration in g's.
v

The horizontal component P
AEh

of the active force P
AE

is equal

or,

PAE cos (0+1) (2-11)

For the special case of a wall with a vertical back side

(i.e., 1)=0), Eqn. (2-11) is reduced to

= IYH2 (I_k)K coso
2 v AE

(2-12)

The total force determined by the Mononobe-Okabe approach is

considered to act at a height equal to H/3 above the base of the wall.

Thus, the resulting pressure distribution along the wall is linear

with depth.

The passive force that corresponds to the Mononobe-Okabe method

is obtained in a manner similar to the one described above and may be

expressed as (Kapila, 1962)
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(2-13)

in which

and all parameters entering the above expression are given in Eqn. (2-10).

The validity of the Mononobe-Okabe method was investigated in

a study by Ishii, et al. (1960).

The approach taken by the authors provided a nagnitude for

the maximum lateral force against a retaining wall that was approximately

equal to that determined using Mononobe-Okabe procedure while its point

of application was found to lie between 0.33H to O.4H above the base of

the wall.

2.2.2 The Simplified M-O Method. For the simple but commonly

encountered cases of vertical walls retaining horizontal dry backfills,

Seed (1969) proposed a simplified procedure for determining the Mononobe-

Okabe earth pressure. This is based on the notion that the total maximum

seismic active force P may be considered to consist of two terms: one,
A'£

the initial static force P and, another, the seismic force increment
s

!5.PAE; Le.,

(2.14)
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in which

1 2
Ps = "2 KAyH ,

K = the coefficient of active earth pressure,A

y = the unit weight of the backfill material, and

H = the height of the wall.

For the case where the friction angle of the backfill material

is about 35 0
(~=35°), the seismic force increment ~PAE is found to be

approximately equal to the inertia force on a soil wedge extending a

distance 0.75 H behind the crest of the wall. This is shown schematic-

ally in Fig. 2.9. Thus,

(2-15)

in which ~ is the horizontal seismic coefficient.

Introducing the expressions for P
s

and ~PAE into Eqn. (2~14)

one has that the total maximum active force -P
AE

is approximately equal

to

1 2
PAE ::: "2 y H(~ + o. 75 ~) (2-16)

A comparison of the numerical values of K
AE

, found from the

M-O analysis, and the coefficient K + 0.75k_, appearing in Eqn. (2-16).hasA -11

shown that the simplified method is adequate for a wide range of values
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Figure 2.9 Soil Wedge Re~uired to Determine the Seismic Force Increment (after Seed
and Whitman, 1970). N
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of ~.

The seismic force increment b.PAE,found in accordance with the

above simple rule, is assumed to act at a height O.6H above the base· of

the wall.

FinallY,Seed (1969) recommended that the critical failure

surface (which depends on the magnitude of the horizontal seismic coef­

ficient ~) be taken to lie anywhere within the region OBC, shown in

Fig. 2.9.

2.2.3 The Prakash and Basavanna Method. Experimental obser­

vations on the force system behind retaining walls have indicated that,

even under static conditions, pressure distributions are different from

hydrostatic. Furthermore, Terzaghi (1936,1941) has shown that, if the

earth pressure distribution is assumed to be hydrostatic, the forces

acting on the sliding wedge do not satisfy the condition of equilibrium

of moments. Thus, the M-O analysis based on Coulomb's theory and there­

fore on a hydrostatic-like distribution of pressures, violates both

experimental evidence and the conditions of static equilibrium.

Prakash and Basavanna (1969) attempted to improve upon the M-O

procedure through an analysis that would satisfy the conditions of equil­

ibrium of moments. Their approach is based on the following assumptions:

(a) the backfill material consists of cohesionless soil,

(b) the failure surface is a plane along which shear resistance is

fully mobilized,

(c) vertical pressures along planes parallel to the ground surface

(which may be inclined) are constant, and



25

(d) the principle of superposition of forces is valid.

In Fig. 2.10 is shown schematically the use of the principle

of superposition of forces as employed by Prakash and Basavanna (1969).

Figure 2.10 (b) shows the force system on the sliding wedge for only

horizontal body forces and Fig. 2.10 (c) for only vertical body forces.

From the condition of equilibrium of moments around point A of the

base of the wall, Fig. 2.10 (a), the following expression was obtained

,for the active force PA:

{(l + av)sini + ahcosi} tan (B
l

+ i -0)

tan (B
l

+ i -0) + tan (6-i-¢)
+

in which

(1 + av) cosi + ahsini
+----'--------"''-------

cot (Bl+i-o) + cot (6 -i-¢)
] (2-17)

The distance of the point of application of P
A

from the base

of the wall was found using the expressions of the moment MA of the

force system around point A (Fig. 2.10) and of the active force PA, as

given in Eqn. (2-17).
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(a) Forces on Sliding Wedge (b) Only Horizontal Body
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(c) Only Vertical Body
Forces

Figure 2.10 Superpositionof Forces Acting on the Sliding Wedge (after Prakash and Basavanna, 1969)
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Finally) Prakash and Basavanna (1969) assumed that the active

seismic pressure p(z) at a depth z along the wall has the form

mp(z)=Kz

in which K and m are constants determined from the conditions of equil-

ibrium of the wall.

2.2.4 The Richard and Elms Method. The previously described

methods of analysis of retaining walls under seismic conditions were

concerned exclusively with the change in the intertia of the sliding soil

mass during an earthquake. In a more recent study, Richard and Elms

(1979) noted that, for the displacement-governed gravity walls) a force

increase, in addition to that predicted by the Mononobe-Okabe analysis may

occur because of the inertia effects of the wall itself. This was attri-

buted to the fact that it is the weight of gravity wall that provides

most of the resistance to the wall movement that is caused by the ground

shaking. Thus) a procedure was developed by the authors that calculates

the weight of the wall required to prevent motion greater than any

specified value.

The needed design relationship for gravity walls that may fail

in sliding was derived by Richard and Elms (1979) by considering the

force system appearing in Fig. 2.11. From the conditions of force

equilibrium of the wall along the vertical and horizontal directions,

it is found that (Fig. 2.11)

N = (l-k ) W + E sin (6+8)
v w AE (2-18)
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EAE

------ -~-

Figure 2.11 Forces Acting-on a Retaining Wall in the Richard
and Elms Method



in which,

F = EAE cos(o+p) + ~ 'Hw
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(2-19)

W = the weight of the wall,
w

E
AE

the total active thrust,

~ = coefficient of horizontal ground acceleration in gIs,

k = coefficient of vertical ground acceleration in gIs,
v

B = the angle between the back side of wall and the

vertical, and

o the angle of wall-soil friction.

From the above equations, the expression for the weight of the wall is

found as

(2-20)

in which,

cos(o+B)-sin(o+B) tan¢b

(l-kv) (tan¢b-tan8)

and

K
AE

= the earth pressure coefficient (Eqn. (2-10»,

the angle of internal friction at the base of the wall, and

e -1 ~
tan l-k

v
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In this form, the weight W of the wall is essentially the. w

seismic thrust K
AE

, as computed by the Mononobe-Okabe method, multiplied

by a wall inertia factor CIE • Thus, Eqn. (2-20) incorporates in the same

expression the increase in the driVing force due to both the increase

in the inertia force of the sliding wedge and the increase in the inertia

of the wall itself.

In order to examine the relative importance of the two seis-

mic effects, Richard and Elms (1979) introduced two normalized quanti-

ties, namely, a soil thrust factor (FT) and a wall inertia factor (Fr )

defined as

in which,
2

cos (.-B)

(2-21)

(2-22)

K =A

cos(o+B)-sin(o+B)tan¢b

tan·b

The safety factor F with respect to the weight of the wallw

that accounts for soil pressure and wall inertia was defined as the
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product of F
T

and F
I

; i.e.,

F = F
T

F
I (2-23a)w

or,
W

F w=
w W (2-23b)

in which

W = the weight of the wall required for equilibrium under

static condi tions •

The design procedure for walls that can sustain a specified

but limited displacement was derived using a progressive failure model

based on the observations that: (a) the total displacement of a wall

due to an earthquake takes place in a series of smaller displacements;

and (b) a more critical loading is due to earthquakes with high velocity,

rather than acceleration, peaks. The specific stages of the design

procedure are as follows:

1. Decide upon an acceptable maximum displacement d. If wall connec-

tions are present, they have to be capable of allowing for this dis-

p lacement.

2. Obtain the value of ~ that corresponds to the maximum displacement

d. In locations within the United States·, the value of ~ may be

obtained in terms of the Effective Peak Acceleration (A ) and
a

Effective Peak Velocity (A ) as follows:v
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(2-24)

in which A and A have values that can be found in the draft-codea v

location maps of· the Applied Technology Council (ATC) and d is

measured in inches.

3. Use Eqn. (2-20) to obtain the required wall weight W .
w

4. Apply a suitable safety factor, say 1.5, to determine W •
w

2.2.5 The Dubrova Method Including Seismic Effects. The

Dubrova method, described in Section 2.1.2, can be easily extended to

provide the lateral earth pressure distribution along a retaining

wall under seismic conditions.

Thus, Saran and Prakash (1977) expressed the total active (PA)

and passive (Pp) forces against a retaining wall of a height H (Fig. 2.12)

as

I 2
PAlp = "2 yH

in which,

1 + {

1
sin(W+m~)sin(w + i-AI)

cos (/3-i) cos (m~+ /3 + AI) (2-25)

PA = the total active earth pressure (taking upper sign

of the expression).
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= the total passive earth pressure~aking lower sign of

the expression),

= the angle of wall-soil friction,

i

y

= the inclination of the backfill,

= the angle between the back side of the wall and the vertical,

-1 a
= tan (--!!.) ,

l+a
v

= the unit weight of the soil,

~ = coefficient of horizontal ground acceleration in g' s,

a = coefficient of vertical ground acceleration in g's, and
v

m = a factor less than unity.

The expression for the ~ parameter depends on the mode of

movement expected to be experienced by the wall. Thus, for the active

case and for a rotation about the base of the wall, ~ is equal to

~ =<1> -~, in which <I> is the angle of internal friction of the soil mass,

z is the particular value of the depth, and H is the height of the wall.

d>zFor a rotation around the top of the wall, ~ becomes equal to ¢ 11" For

the passive case and for a rotation about the base of the wall, ¢ is equal

to ¢ = - ~ while, for a rotation around the top, ¢ = <l>Hz - <1>.

The pressure distribution is obtained by forming the deriva-

tive of the expression for total force (PA/p) with respect to z; i.e.,

p Alp (z)
dPA/p
=~ (2-26)

The point of application of the total pressure from the base

of the wall is given as



.h/ =H-A 1? .

H
I
( dPAlP

o dZ ) dz

PAlP
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(2-27)

A modified version of Dubrova's method was also used by A-Grivas

(1978) for the assessment of the reliability of retaining structures

during earthquakes. In Fig. 2.13 is shown the polygon of forces that

was employed in the analysis. The total force (Q) is inclined at

an angle S with respect to the vertical direction and has a magnitude

equal to

2 2 1{2
Q = W [(I-a) + a ] = W(l-a )/cosS

v h v
(2-28)

where a
h

and av are the horizontal and vertical ground accelerations,

respectively. The derived expression for force PAE against the wall

as a function of the Wparameter has the form

P
AE

2y(l-a )z
v

cosS

sin(45- ~ + 13)
]

tan(45 -1) sin (45 + 0+~)
(2-29)

while the distribution of the lateral pressure PAE(z) with depth z, found

by forming the derivative of Eqn. (2-29) with respect to z, is equal to

in which

y(l-a )
v

cosS

[ n(1/!)

tan
2

(45 + ~) sin (45+0-1)
] (2-30)
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2
n(~) = tan (u) sin (v) [2zsin(w)-I cos(w) (~)]-

2
- ~ sin(w)[tan(v)cos(w) + sinew) sec

2
(u)] (~),

u 45° + ~
2 '

v = 45 + o+~ , ~d2

w = 45 _W+ B2

2.3 Comparison of Procedures

Common to all the procedures described in the previous sec-

tion are the following characteristics:

1. two dimensional conditions;

2. the backfill material is a rigid body; and

3. soil sliding occurs along a plane surface.

In Table 2.2 is given a summary of the important additional

assumptions made in each method. Finally, Table 2.3 provides a comparison

of the various procedures with respect to their consideration of wall

movement, ground motion parameter used, point of application of thrust,

shape of pressure distribution. and conditions of equilibrium satisfied.
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Table 2.2
-~ary of Important-Assumptions Made in Each Method.

{ Mf.1i\ODS--
y.ononobe-Okabe

1.

ASSUMPTIONS

The wall yields sufficiently during an earthquake to produce
minimum active pressures.

2. When the minimum active pressure is attained, the maximum
shear strength is mobilized along the potential sliding
surface.

3. It satisfies the equations of equilibrium of forces (hori­
zontal and vertical) but does not satisfy equilibrium of
moments.

4. The total maximum seismic force PAE acts at a height H/3
from the base of the wall.

Simplified
The total maximum seismic active force PAE consists of two
terms: the initial static force Ps ' acting at H/3; the
seismic force increment ~AE' act1ng at O.6H from the base
of the wall.

.----::"':':'
prakash-Bas.;.': "---

1. The shear resistance along the plane rupture surface is fully
mobilized.

2. The vertical pressure on planes parallel to the groun sur­
face is constant.

3. The principal of superposition holds true.

4. Satisfies of three equations of equilibrium

1. It is based on deformation li~its.

2. It accounts for the change of the inertia of the vall during
earthquakes. The mass of the vall is considered to provide
most of the resistance to movement caused by an earthquake
<gravity walls).

During an earthquake the vall may rotate around any point.2.

1.

3. The total displacement of the wall occurs in series of
smaller displacements.

The magnitude and distribution of the force against the vall
depends on the type of DOvement- experienced by the vall.

----
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CHAPTER 3

DESCRIPTION OF THE SEISMIC LOADING

3.1 Probabilistic Description of the Earthquake Magnitude

The empirical formula most commonly employed to yield the

number of earthquakes n exceeding a certain magnitude m is Richter'sm

log-linear relationship expressed in tpe form

10gn = a -bm (3-1)
m

where a and b are regional constants. If mO and m
1

denote the lower

and upper limits of m, respectively, Eqn. (3-1) becomes

(3-2)

or,

where

B = b1n 10

From Egn. (3-2), one has that the expected number of earthquakes

(n ) with magnitude greater than the assumed lower bound (mO) is equal
mO

to

40
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The ratio of n over n signifies the probability with which
m m

O
the earthquake magnitude M is greater than m. Thus,

or,

P[M > m]
n

m=- =
lOa exp (-13m)

lOa exp (Q )-...,m
O

(3-3)

The cumulative density function F(m) of the earthquake mag-

nitude m is equal to

F(m) = P [M ~ m) 1 -P[M > m)

Introducing Eqn. (3-3) into the above expression, it is found that

F(m) = 1 -exp[-B(m-m )]o (3-4)

A normalizing factor is required so that F(m) becomes unity

when m receives maximum value ml • If this factor is denoted by k, from

Eqn. (3-4) one has

(3-5)

from which
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. }-lk ={l-exp [-6(m - m )]1 0

Thus, F(m) may be written as

m < ml
mO < m~ m

l
m

l
< m

(3-6)

The probability density function f(m) of the magnitude m can be found

by forming the derivative of Eqn. (3-6) with respect to m. Thus,

F(m) =f~ k

m < mO
exp [-S(m-mO)]' mO < m ~ ml

m
l < m (3-7)

The mean value m and variance Var(m) of the earthquake magnitude m can

be found from Eqn (3-7) as

(3-8)

Var(m) =
ml _ 2

f (m-m) f(m)dm
mO

wher~ f(m) is the probability density function of m, given in Eqn. (3-7).

Substituting the latter into Eqns. (3-8) and performing the indicated

integrations, one has
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(3-9)

Var(m)

3.2 Attenuation Relationship for Maximum Horizontal Ground Acceleration

The attenuation relationship for maximum horizontal ground

acceleration a is commonly expressed in the formmax (A-Grivas, 1979)

(3-10)

where a is measured in cm/sec 2 , m is the earthquake magnitude, R is themax

distance between source and site (in km) and b l , bZ' b3 , b4 are regional

parameters.

Conparisonsmade between observed and computed values of the

ground motion parameters have indicated that their ratio follows closely

a log-normally distributed random variable. Denoting the latter by

£ and introducing it into Eqn. (3-10), the latter becomes

(3-11)

where £ is log-normally distributed variable with median equal to one

and standard deviation varying between 0.5 and 1.0.
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3.3 Types of Earthquake Sources

The construction of a model for the earthquake source is an

attempt to represent, using only a few parameters, the complex movements

that take place within the crust of the earth. The simplest possible

model of an earthquake source requires the specification of only two

parameters: the location of the hypocenter and the magnitude of the

earthquake. A more complex model requires the additional specification

of the fault surface and the directions along the latter of the slip

that occurs during the seismic activity. An even more complex model

would also include the length and width of the slip area and the time

required for each point along the slip to reach its maximum offset.

Thus, as the model becomes more realistic, the number of the required

parameters increases and so does the complexity of the task associated

with the representation of the seismic source.

In engineering applications, the most commonly employed rep­

resentation of the earthquake source is that provided by Cornell (1968).

Three types of seismic sources are distinguished in Cornell's model,

namel~ (a) a point source, (b) a line source (or, fault), and (c) an

area source.

A point source, shown schematically in Fig. 3.1, represents

the fundamental source model that has been used in studies aiming at

the determination of the seismic hazard of a region. It may be used in

cases where the seismic activity is concentrated in an area that is

small compared to the distance between the source and the site of interest.
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A line (or, fault) source, shown schematically in Fig. 3.2,

is used in cases where earthquakes are associated with clearly identi-

fied faults, or if a string of earthquakes have occurred over a period

of time along a well defined line. When this is not the case, or when

historical data and other information available on the seismicity of a

region are very limited, a description of the earthquake source as an

area source may be considered. This is shown schematically in Fig. 3.3.

3.4 Probabilistic Description of Maximum Horizontal Ground Acceleration.

3.4.1 Case of Point Source. Using the concept of transform-

ation of variables (Harr, 1977), the probability density function of

the maximum horizontal ground acceleration a can be obtained frommax

Eqn. (3-9) as

f (m)
m

oa (m)
max

(3-12)

dm

is the absolute value of the derivative of amax

is the probability density function of the earthquake mag­
d3 (m)

max
nitude, and --=7dm~--

where f (m)
m

with respect to m. The latter is found from Eqn. (3-10) to be equal to

8a (m)
max

am a
max

(3-13)

Combining Eqns. (3-7), (3-12) and (3-13), it is found that
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exp [-f3(m-m )]o
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(3-14)

Solving Eqn. (3-10) for m and substituting into the Eqn. (3-14)1 the

probability density function of a is obtained asmax

1
a

max

(3-15)

The range of variation of a can be found by introducing
max

the lower and upper limits of magnitude minto Eqn. (3-10). Thus,

(3-16)

The cumulative distribution F(a ) of a can be obtainedmax max

through an integration of Eqn. (3-14) with respect to

u1ting expression is

a •max The res-

(3-17)

3.4.2 Case of Line (or, Fault) Source. The cumulative dis-

t~ibution F(a ) of the maximum acceleration a when e = 90° (Fig.3.2)max max

has the form (Grivas and Howland, 1979)

a
l-[(l-k) + k exp (Bma) (~:x) (3-18)
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where k, S, m
O

' b
l

b2 , b3 were defined above and I is the integral

I == dR (3-19)

in which R, r , D and i are shown in Fig. 3.2.
o

The probability density function of a ,found by forming themax

derivative of Eqn. (3-18) with respect to a ,has the following
max

expressions:

f3- (- + 1)
b

2
(3-20)

3.4.3 Case of Area Source. In this case, the probability

with which the maximum acceleration A receives values larger thanmax

a is equal to (Tong, 1975),
max

P [A > a ]
max max

where

(3-21)

-b
_3 S+2

2
h

-b
--2 8+2

d b2
[1 - (h) J

H == ---------'~----
b 3
- 8-2
b 2

(3-22)

(3-22)

The cumulative distribution F(a ) of a can be obtainedmax max

as the complement of the above expression; i.e.,



-Sib
2

]F(a )
max

= 1 -[(l-k) + 2

i_h2
S/b

2
kexp (Sm

O
)b

1
H a

max
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(3-23)

The frequency distribution f(a ) of a is found from Eqn. (3-23)
max max

by forming the derivative of F(a ) with respect to a ormax max'

b

15-( - + 1)
b2

(Smo) amax (3-24)

3.4.4 Statistical Values of Maximum Horizontal Ground

Acceleration (Point Source.) The exact expressions for the mean value

a and variance Var(a ) of the maximum horizontal acceleration canmax max

be obtained using the probability density function f(a ) of a. asmax max

follows:

a = J a f(a ) damax max· max . max

Var(a )= J (a -a l f(a )damax max max max max

(3-25)

where f(a ) is given in Eqn. (3-15) and the limits of the integration
max

(minimum and maximum values of. a ) are given is Eqn. (3-16).max

An alternative convenient way to obtain estimates of the mean

value a and variance Var(a ) of a is to apply a Taylor series
max max max

expansion of the function a (m) around the value a (m), where m ismax max

the mean value of the magnitude m. The resulting estimates of a and
max

Var(a ) are then equal to (Grivas and Howland, 1979)
max

a
max

= a (m) + 1-
max 2

2-d amax

dm
2

Var(m) (3-26)



Var(a .) =
max

Var(m)
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(3-26)

Introducing into the above expressions derivatives of amax

with respect to m, obtained from Eqn. (3-10), one has

a
max

1 2
1 + 2 b2 Var(m) ]

Var(a )max

(3-27)

where the mean value m and variance Var(m) of the magnitude m are given

in Eqns. (3-9)

3.5 Other Strong Ground Motion Parameters.

With the exception of the method developed by Richard and Elms

(1979), all other procedures presented in Chapter 2 and which are

currently employed for the determination of the force on retaining walls

during earthquakes introduce the seismic effect in terms of the maximum

ground acceleration.

In the method provided by Richard and Elms (1979), the maximum

horizontal ground acceleration ~ is obtained using an empirical rela­

tionship between k
h

and the maximum ground displacement d (Franklin and

Chang, 1977). This was given in Eqn. (2-24) as



Aa

o 2 A
2

. v
( Ad)

a

1/4
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in which A and A are effective peak acceleration (EPA) and effective
a v

peak velocity (EPV), respectively, as provided in the ~rovisions of the

Applied Technology Council (ATC 3-06, 1978).

It should be noted that parameters Aa and Av do not have a pre­

cise definition in te.rIDS of their physical meaning. They should be con-

sidered as normalizing factors used for the construction of smooth

elastic response spectra for ground motions of normal duration (Newmark

and Hall, 1969). Thus, A and A are related to the peak ground acceler-
a v

ation and peak ground velocity, respectively, but are not necessarily

the same with or even proportional to these qu~ntities.

Finally, it has been observed (McGuire, ·1975) that, if very high

frequencies are present in the ground motion, Aa may be significantly

less than the peak acceleration; and that A will generally be greater
v .

than the peak velocity at large distances from the epicenter of a

major earthquake.



CHAPTER 4

PROBABILISTIC SAFETY ANALYSIS

OF EARTH RETAINING STRUCTURES

4.1 Definition of Failure

In general, the stability of any soil structure is conven-

tionally measured in terms of a factor of safety (FS), defined as the

ratio of two point estimates: one, for the capacity C of the structure
o

(its available resistance against failure) and, another, for the demand

D on the structure (the applied loading). That is,o - -

FS
C

o
D

o
(4-1)

In many practical geotechnical situations, however, both

the capacity C and the demand D of a structure exhibit a considerable

degree of variation. This observation has led to a consideration of

C and D as random variables (A-Grivas and Harrop-Williams, 1978), and

their analytical description through their probability density functions,

fC(C) and fD(D) , respectively. This is shown schematically in Fig.

4.1.

The difference between the capacity C and the demand D is

also a random variable which, in

the "safety margin SM"; i. e. ,

probabilistic parlance, is called

8M C -D
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(4-2)
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If the statistical values (e.g., mean values, standard de-

viations, etc.) of the capacity C and demand D were known, then from

Eqn. (4-2) one could easily obtain the corresponding statistical values

of the safety margin SM. Thus, if C, D and a
c

, aD denote the mean

values and standard deviations of C and D, respectively, the mean value

8M and standard deviation a SM of SM are equal to (Harr, 1977)

SM C - D

2 2 1/2
(aC + aD) (4-3)

Failure of a structures is defined as the event whereby its

safety margin SM receives a value,smaller than or equal to zero; Le.,

"Failure" [8M < 0] [C-D < 0] (4-4)

The possibility for failure exists if the lower limit of the

capacity (C . ) becomes smaller than the upper limit of the demandmln

(D ). Thus, the interval (C . ,D ), shown in Fig. 4.1 as shaded area,max mln max

defines the region where it is possible for the capacity C to receive

a value smaller than that of the demand D (C < D).

4.2 Possible Modes of Failure.

A retaining wall, like the one shown schematically in Fig.

4.2, may fail in any of the following four modes:

(1) overturing around any point on the plane of the wall;
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(1).... -

.----

Figure 4.2 The Four Modes of Failure of a Retaining Wall

(1) Overturing

(2) Base Sliding

(3) Bearing Capacity

(4) Overall Sliding

V1
-...J
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(2) bearing capacity of the foundation of the wall;

(3) sliding along the base of the wall; and

(4) overall sliding of the wall and the backfill material.

In Table 4.1 are provided the capacity C and demand D of the

above four modes of failure. Their analytical expressions are given

below in Section 4.3 •.

4.3 Probability of Failure of an Earth Retaining Structure.

Let SM. = C. - D., i = 1, ..• ,4, denote the safety margin of
1. 1. 1.

any mode i of possible failure of a retaining wall. The capacity C. and
1.

demand D., i = 1, ••• ,4 are given in Table 4.1. From Eqn. (4-4), one
1.

has that failure along the i-th mode is defined as the event whereby

SM. receives a value smaller than or, at most, equal to zero, i.e.,
1.

[SM. ~ 0 J.
1.

The probability of the occurence of this event is equal to

the probability of failure Pf. of the wall along mode i. Thus,
1.

P [SM. ~ 0 J, i = 1, ••• 4
1.

(4-5)

where P [ J denotes the probability of the event in brackets.

Furthermore, let f SM . (SMi ) represent the probability density
1.

function of the safety margin SM. along mode i. As the area under
1.

a particular value provides the probability with which

than or at most equal to that value, one has that P
f

. is
1

This is shown schemat-the area under f SM . (SMi ) and in front of zero.
1.

ically as the shaded region in Fig. 4.3. Recalling the definition of

f SM . (SMi ) up to
1.

SM. is smaller
1.



Table 4.1 Capacity and Demand of the Various Modes of Failure

MODE OF FAILURE CAPACITY C DEMAND D

Moment of resisting Moment of forces
Overtruning forces around center causing rotation

of rotation around same-point

Bearing capacity Force acting on the
Bearing Capacity formula for the wall plus weight of

foundation of the wall wall

Vertical component of Horizontal components

Base Sliding
the demand in bearing of the demand in
capacity times friction bearing capacity
coefficient

Resisting forces Driving-forces
Overall Sliding along failure along failure

(Slope Type) surface surface

V1
\0
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Area

(a)

(J (J

I SMi I SMi
----..1- -I

I

SM.
1.

Probability Density Function of SM.
1.

SM.
1.

FSM . (SMi )
1.

1. 0 I- --!-__---.:..- =

(b)
SMi

Cumulative Distribution of SM.
1.

SM.
1.

Figure 4.3 Schematic Representation of Probability Density Function
f SM . (SMi ) and Cumulative Distribution F

SM
. (SM

i
) of SM

i
.

1. 1.
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the cumulative distribution FSM . (SM
i

) of SM
i

as
1.

(4-6)

one has that Pf.
1.

is equal to FSM . (SM
i

) for SM
i

1.

FSM. (0)
1.

0; or

(4-7)

The complement of the probability of failure Pf (i.e., the
i

probability of success) is defined as the reliability R. of the wall in
1.

mode i ; i. e. ,

R.
1.

i-I, ••. 4, (4-8)

To obtain a measure for the total probability of failure P
f

of a retaining wall, the latter may be considered as a "system" with

four modes of failure. As failure in any element (mode) will cause

failure of the entire system (wall), elements I, 2, 3 and 4 are said

to form a configuration in-series. If, furthermore, the four modes of

failure are independent, then the total probability of failure Pf of

the wall is equal to (Harr, 1977)
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4
Pf = 1 - IT (l-p ) (4-9)

i=l f i

Finally, the complement of Pf is the total reliability of

the wall and is equal to

R 1-p
f

or,
4

R IT R. (4-10)
i=l l.

4.3.1 Overturning. In the case of failure of the wall in

overturing, from Table 4.1 one has that the capacity C is equal to the

moment of resisting forces around the center of rotation while the

demand D is given by the moment of the forces causing rotation around

the same point. A typical wall cross-section including the applied

forces is shown schematically in Fig. 4.4.

The expressions for the capacity and the demand in this case

are

C Moment of Resisting Forces Around Point 0

or,

C (4-11L

or,

D Moment of Forces Causing Rotation Around 0

D (4-12)
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Jr."--B --..~I

Figure 4.4 Forces on the wall for Overturning and Base
Sliding Failure
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in which

P
A

~ the total forces on the wall,

W ~ the weight of the wall, and
w

y the unit weight of the backfill material.

4.3.2 Bearing Capacity. In this case, from Table 4.1 one

has that the capacity of the wall is given as the bearing capacity of

its footing while the demand is equal to the sum of the external forces

acting on the back of the wall plus the weight of the wall itself. A

typical cross-section of the wall together with the forces acting on

it are shown schematically in Fig. 4.5.

Following Meyerhof (1953), the expressions for the capacity

C and the demand D are given as

1 ... 2 ... ...
C = "2 y B Ny + yDf B Nq + NcBc c (4-13)

D (4-14)

in which

Nq ~ tan2 (45 + ~)e 'IT tan¢ ,

N (N -1) tan(L 4¢) ,
Y q

N = (N -1) cot¢,c q

B'" B (1- 2
B
e),

DH = PA coso + Wwah , and

D P
A

sino + W (l+a )
v w v
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1
A

--j---
1-"-B--·l

(a)

(b)

] D
V l~l

t c

Figure 4.5 Bearing Capacity Failure

(a) Forces on Wall
(b) Forces on Footing
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4.3.3 Base Sliding. In this case (Table 4.1), the capacity

of the wall is equal to the vertical component D of the demand D, as
v

given in Eqn. (4-14), multiplied by the footing-soil friction coefficient.

The demand is equal to the horizontal companent DR' given in Eqn. (4-14).

A typical cross-section of the wall together with the forces

acting on it are shown schematically in Fig. 4.4.

The expressions for the capacity C and the demand D of the

wall for the case of base sliding are

in which,

C

D

[PAsino + W (1 + a )] tan~w v (4-15)

(4-16)

PA the total force on the wal~ and

W the weight of the wall.w
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4.3.4 Overall Sliding.

This is a slope type failure that may occur if the sloping

backfill slides and takes the wall along with it. From Table 4.1, one

has that the expressions for the capacity and the demand are given as

the resisting and driving forces (or, moments), respectively, along

the surface of failure.

Any method of seismic slope stability analysis can be used

for the assesment of the safety of the wall-backfill system in overall

sliding. In Fig.4.6 are shown schematically the conditions correspond-

ing to the simple method of slices. The effect of the earthquake is

introduced by considering additional horizontal and vertical components

of the inertia forces. Thus, from Fig. 4.6 one has that the expression

for the capacity C and the demand D are equal to

in which

C

D

i=n
R L { c6£. + [W.(l+a )] tan~cose.} (4-17)
i=l ~ ~ v ~

i=n i=n
R\~lWisine i ) (1+a) + i~lWiahyi) + PAYA (4-18)

N. W.cose. = [W.(l+a ») case.,
~ ~ ~ ~ v ~

R the radius of the circle of failure,

YA the vertical distance of P
A

from the center

of the failure circle, and
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Figure 4.6 Forces on the Wall and on the Failure Surface for Overall Sliding.
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y. ~ the distance between the center of gravity
1

of the i-th slice and the vertical line that

passes through the center of the failure circle.



CHAPTER 5

CASE STUDIES

The procedures reviewed in Chapter 2 and the probabilistic

approach described in Chapter 4 are applied in a case study in order to

determine: (a) the magnitude and distribution of the pressures behind

a wall, as provided by each procedure, and (b) the corresponding values

of the safety measure.

The wall under examination is sho\Vll schematically in Fig. 5.1.

It has a height H = 16 ft (4.8m), average thickness 5.7 ft (1.73m) and

retains a horizontal backfill consisting of granular soil. The back

side of the wall is inclined at an angle S =-5° with respect to the

vertical direction. The backfill material has a ¢ parameter of strength

equal to 34° (¢ = 34°) while the wall-soil friction angle is 15.5° (0 =

15.5°). The unit weights of the soil and concrete are y = 100 pcf (15.7

3 3
kN/m) and y = 150 pcf (23.55 kN/m ), respectively.

c

5.1 Static Condition.

5.1.1 The Coulomb Method. The expression for the active

thrust against the wall provided by the Coulomb analysis was given in

Eqn. (2-3) as

in which

70



Material Parameters:

¢ => 34°°= 15.5°
Y = lOa Ib/ft3 (15.7kN/m

3
)

Yc = 150 1b/ft3 (23.5kN/m3)

Geometry:

I H = 16 ft (4.8m)

I S B = 8.55 ft (2.6m)

'-, 1- b = 2.85 ft (0.87m)

I h = 6.7 ft (2.04m)

I
~ = 6.2 ft (1.9m)
S = _5°
i = 0°

ahWw
H

-I l
~__ 1.0 -- -- r

h

1a

(1+a )W
v w

hA

1
/..::/~~"';~,0 I.- .Q,

~I

j--- B ~1

Figure 5.1 Geometry and Material Parameters of the Retaining Wall Used in the Case Study
'-J
f--'
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2
cos (¢-S)K = -::...:::..:::--'-I_--!:~ _:_~--

A 2 {Sin(o+¢)sin(p-i)}1/2]2
cos Scos(o + 13)[1 + cos(o+S)cos(S-i)

y =

H =

the unit weight of soil, and

the height of the wall.

For the geometry and material parameters of the wall under

examination, Fig. 5.1, one has that H = 16 ft (4.87 m), ¢ = 34°,

13 = _5°, a = 15.5°, i = 0°. Substituting these values into the express-

ion for KA, it is found that KA = 0.224 and the total force PA against

the wall is

P
A

= (t) (100)(256)(0.224) = 2867 lb/ft (40.15 kN/m)

The point
H

of application of PA is at hA = 3 = 5.33 ft

(1.62m) above the base of the wall. The resulting pressure distribution

is shown in Fig. 5.2.

The value of the factor of safety FS of the wall is deter-

mined for two possible modes of failure. namely, (a) overturning and (b)

base sliding.

(a) The expression of FS in overturning (FS ) is
o

FS
a

C
D (5-1)

in which C is the moment around the base of the wall of the forces res-

isting failure and D the moment of the forces causing failure. From

Fig. 5.1. one has that



z
ljJ = <jJ(1- -)

H
o I I

a
h

= O.Og

2 ~~ I <P = 34°

B = _5°

:r\\ ~o
H
H / Coulomb
(1j

:>
OJ

,c
8 I \~ \ / Dubrova.j.J

bJ)

c
0

H
<l1 10
,c
oW
0.
aJ

Q 12

14

16 i JII"" PA(z)0.1 0.2 0.3

z (ft) 1 Magnitude of Earth Pressure (x103
1b/ft)

Figure 5.2 Pressure Distributions Along Wall in Accordance with
the Coulomb and Dubrova Methods.
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(5-2)

D P h
A

cos (<5+13)
A·

where W
w

the weight of the wall,

i the horizontal distance of the center of gravity

to the point of rotation O~ and

B the width of the base of the wall.

Introducing the numerical values of the geometry and mat-

erial parameters shown in Fig. 5.1 into Eqn. (5-2), it is found that

c = 89277.3 lbs-ft/ft (401.7kN-m/m)

D = 15021.33 1bs - ft/ft (67.6 kN-m/m).

From Eqn. (5-1), one has

89277.33 1bs-ft/ft(40.17kN-m/m)
15021.33 1bs-ft/ft(67.6kN-m/m) 5.9

(b) Similarly, the factor of safety against sliding (FS ) at the wall
s

along its base is given as

FS
s

C
D

in which C and Dare given in Eqns. (4-15) and 4-16) for ah a O.v

That is

C [PAsin (0+13) + W ] tan(jJw
(5-3)

D PAcos (8+13)
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Introducing the numerical values of the geometry and material parameters

into the above expressions, it is found that

FS
s

9572.01 lbs - ft/ft (43.07kN-m/m)
2818.26 Ibs - ft/ft (12.68kN-m/m) 3.39

5.1.2 The Dubrova Method. For the active case, with rotation of the

wall around its base, the expression for the pressure distribution along

the wall if found by forming the derivative of Eqn.(2-7) with respect

to z. Thus,

p(z)
--=

y
zcosp ~
(1+1.2sin~2cos6 [ cos~ - z( dz) ] (5-4)

in which

Introducing into Eqn. (5-4) the numerical values of the geo-

metry and material parameters shown in Fig. 5.1, the pressure distribu-

tion along the wall becomes

p(z)
--=

y
zcos(O.59 - 0.0362)

[(1+1.2sin(0.59-0.036z)]2 0.963 [ cos(O.59-0.036z)-O.036z]ft

This is shown in Fig. 5.2. The total force P
A

behind the wall is found

from Eqn. (2-7) to be equal to

P = 12,314 Ib/ft (179kN/m)
A

The point of application of PA is found from equilibrium of moments

around point a (Fig. 5.1) to be h
A

= 3.96 ft (1.2Om).
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The value of the safety measure as provided by the Dubrova

method is determined for the overturning and base sliding modes of

failure as follows:

(a) The expression for the factor of safety in overturning

(FS ) is given by Eqn. (5-1) in which the capacity C and demand Dare
o

equal to

D (5-5)

Introducing the numerical values of the geometry and material parameters,

shown in Fig. 5.1, into Eqns. (5-5), it is found that

C 114,094.55 lb ft/ft (513kN-m/m)

D 48,897.92lb - ft/ft (220kN-m/m).

Thus,

FS
o

114,094.55lb - ft/ft = 233
48,897.92 Ib - ft/ft •

(b) Similarly, the factor of safety against sliding (FS )
s

of the wall along its base is given by Eqn. (5-2a) in which C and Dare

equal to

D (5-6)

Introducing the numerical values of the geometry and the material para-

meters into the above expressions, it is found that



FS
s

11;5-1.4 "-=,5,-,,6-::l~b_-----::f:-=t.!..,:/ f:::..:t~(,.=.5.=.1~.9~kN~-m~/~m~) =
12,334.6 lb ft/ft (55.5kN-m/m) 0.93
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5.2 Seismic Conditions.

In the conventional methods of the seismic analysis of the

safety of the retaining wall shown in Fig. 5.1, the effect of the

earthquake is expressed in terms of the maximum horizontal and vertical

ground accelerations (~ and av ' respectively) expected to be experienced

at the site of the wall. For the purpose of this case study, the maxi-

mum ground acceleration is assumed to be equal to 24% of the acceler-

ation of gravity g Ca
h

:;: O.24g) while the value of the vertical maximum

ground acceleration a is assumed to be equal to two-thirds that of the
v

horizontal; i.e., a
v

2
== "3 a

h
:;: O. 16 g •

5.2.1 The Mononobe-Okabe (M-O) Method. The expression for the

active thrust against the wall provided by the Mononobe-Okabe analysis is

given in Eqn. (2-10) as

in which

2
cos (<jl-8-S)

e 20 (~+0+8)[1+·{sin(¢+o)sin(p-8-i)}1/2]2
cos cos f.JCOS U f.J (.t' C-L8) (. Q)cos u+fJT cos l-f.J
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~ the coefficient of horizontal ground acceleration

(~ ~ ah = 0.24g)

k the coefficient of vertical ground acceleration
v

(k ~ a - 0.16g).
v v

Introducing the values of the geometry and material parameters

of the wall under examination, Fig. 5.1, one has that the resulting value

of K
AE

is

K
AE

0.432

The value of the total force P
AE

against the wall is then equal

to

P
AE

= c-i) (100) (256) (0.84) (0.432) = 4,644.8 lb/ft (65.02kNm)

while its point of application is at hA

base of the wall.

H= 3 = 5.33 ft (1.62m) above the

In Fig. 5.3 is shown the pressure distribution along the wallas

provided by the Mononobe-Okabe method.

The value of the factor of safety of the wall is found for the

overturning and sliding modes of failure

(a) The expression for FS in overturning (FS ) is given by
a

Eqn. (5-1), in which Cand D are equal to

C

D

(l+k) W .£ + PAB sin(cS+S)
v w

PA hAcos(6+B) + k
h

W
w

h
(5-7)
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Figure 5.3 Comparison of the Pressure Distribution Obtained Through
Currently Available Procedures.
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Introducing the numerical values of the geometry and the

material parameters into the above expressions, it is found that

C 105,934.46lb-ft/ft (476kN-m/m),

D 46,140.54 lb-ft/ft (207.63kN).

Thus,

FS
o

105,934.46 lb-ft/ft
46,140.54 lb-ft/ft

2.29

(b) Similarly, the factor of safety against sliding (FS s )

of the wall along its base is given by Eqn. (5-2a) in which C and D

are equal to

(5-8)

Introducing the numerical values of the geometry and the material para-

meters into the above expression, it is found that

FS ==
s

1l,260.82lb - ft/ft (50.67kN-m/m)
7,8l2.864lb - ft/ft (35.l5kN-m/m) == 1.44

5.2.2 The Simplified M-O Method. From Eqn. (2-16), one has

that for the simpliefied M-O method, the expression for the active thrust

against the wall is

123
P

AE
== - yH (K + - k )2 A 4-h



81

K
A

the active thrust coefficient, given in

Eqn. (2.5), and

k
h

the horizontal ground acceleration, assumed

to be equal to 0.24g.

Introducing the numerical values of the goemetry and material

parameters shown in Fig. 5.1 into the above expression, one has

PAE (t) (100) (256) (0.224 + ~ 0.24) = 5171 lb/ft (72.4kN/m)

The point of application of P
AE

is at h
A

above the base of the wall.

H3 = 5.33 ft (1.62m)

In Fig. 5.3 is shown the pressure distribution along the wall

as provided by the simplified M-O method.

The factor of safety of the wall is determined for the over-

turning and base sliding modes of failure as follows:

(a) The expression for FS in overturning (PS ) is given byo

Eqn. (5-1). Introducing the numerical values of the geometry and

material parameters (shown in Fig. 5.1) into Eqn. (5-7), it is found

that

C 106866.65 lb-ft/ft (480.9kN - m/m)

D 49090.72 lb-ft/ft (220.9kN - m/m)
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FS
a

106,866.65 1b-ft/ft
49,090.72 lb-ft/ft

2.17

(b) The factor of safety against sliding (FS ) of the
s

wall along its base is given by Eqn. (5-2a). Introducing the

numerical values of the various parameters (Fig. 5.1), it is found

that

FS
s

~ 11,329.88 lb-ft/ft (50.98kN - m/m) =
8,367.61 1b-ft/ft (37.65kN - m/m)

1. 35

5.2.3 The Prakash and Basavanna Method. In Eqn. (2-17)

is given the active thrust P
A

against the wall as provided by the

Prakash and Basavanna method. For the conditions sho~vn in Fig. 5.1

(i = 0), Eqn. (2-17) becomes

I 2
PA = "2 yH

sin
2

C900-B) [cot(900-B) + cote] {
sin (90-B) sin(90-B-o)

tan(900-B-o) + tan(8-¢)

I + a

+ cot(90~-S-O) +cot(8-¢)}

Introducing into the above expression the numerical values of

the geometry and material parameters (Fig. 5.1) and letting 8 = 45° +f '
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it is found that PA is equal to

PA = ( t) (100) (256) (0.35) 4480 1b/ft (62.72kN/m)

H
The point of application of P

A
is at hA = 3 = 5.33 ft

(1.62m) above the base of the wall. The corresponding pressure

distribution is shown in Fig. 5.3.

The factor of safety of the wall is determined for the over-

turning and sliding modes of failure as follows:

(a) The expression of the factor of safety

is given by Eqn. (5-1) and the capacity and demand D by Eqns.(5-7).

Introducing the numerical values of the geometry and material

parameters, shown in Fig. 5.1, into Eqns. (5-7), it is found that

and, thus,

c

D

105357.89 lb

45469.9 lb

ft/ft (474.1 kN - m/m)

ft/ft (204.6 kN - m/m)

FS =
o

105357,89 lb - it/it
45469.9 lb - ft/ft

2,31

(b) The factor of safety against sliding~(FS ) of the wall
s

along its base is given in Eqn. (5-2a) and the expressions of the

capacity C and demand D in Eqns. (5-8). Introducing the numerical

values of the various parameters (Fig. 5.1), it is found that
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FS
s

11,245.12 lb - ft/ft (50.6kN - m/m)
7p87.04 lb - ft/ft (34.59kN- m/m) 1.46

5.2.4 The Richard and Elms Method.

The expression for the active thrust against the wall used

in this method is given by Eqn. (2-20) as

in which

cos
2

(¢+8+S)
KAE = e 2 Q (~+Q+8)[1 +{sin(p+o)sin(P-8-i)}l/2 ]2

cos cos ~cos u ~ cos(o+S+8)cos(i-S)

~ the coefficient of horizontal ground acceleration and

k the coefficient of vertical ground acceleration
v

2
Letting ~ = ~ = 0.24g and kv = av = 3" ah = 0.16g, and introducing into

the expression for K
AE

the values of the geometry and material parameters

of the retaining wall under examination (Fig. 5.1), the resulting value

of KAE is K
AE

= 0.432 and the value of the total force PAE against the

wall is equal to

PAE (t) (100) (256) (0.84) (0.432) =4{J44.8 lb/ft (65.02kN/m)

The point of application of PAE is at hA = ~ = 5.33 ft (1.62m)

above the base of the wall. The corresponding pressure distribution is

shown in Fig. 5.2. The corresponding pressure distribution is shown in

Fig. 5.2.
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Introducing the value of ~ = 0.24g into Eqn. (2-24) and

assuming A = A = 0.2, one has that the resulting magnitude of the
a v

maximum displacement d between the wall and the backfill, given in

Eqn. (2-24), is equal to

or,

d =
0.2A 2

v
Aa

A 4
(~)

~

0.23 0 2 4
d = -- (-'-)

0.2 0.24
0.02 in (5nnn)

That is, for the examined conditions, the magnitude of the

maximum displacement d is very small (approximately equal to zero).

Thus, the Richard and Elms method provides the same results as the

Mononobe-Okabe procedure (FS = 2.29 and FSo s
1. 44) •

5.2.5 The Extended Dubrova Method. In Eqn. (2-25) is given

the expression for the active thrust against the wall provided by Saran

and Prakash (1977) as

1 2
PA = 2" yH

(5.9)
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in which ~ = ~(l - ~). This corresponds to the case where the wall

rotates around point 0 (Fig. 5.1). Introducing the numerical values

of the geometry and material parameters shown in Fig. 5.1, it is found

that

FA 16,995 lb/ft (237.93kN/m)

The point of appl~cation FA is found from equilibrium of moments around

point 0 (Fig. 5.1) to be at hA = 3.85 ft (1. 17m) above its base.

The pressure distribution is obtained by forming the deriv-

ative of the above expression with respect to z; i.e.,

(5-10)

The factor of safety of the wall is determined for the over-

turning and base sliding modes of failure as follows:

(a) The expression for FS in overturning (FS )
o

is given

by Eqn. (5-1) in which

C (1 + k (W ~ + PAB sin(8+B)
v w

Introducing the numerical values of the geometry and the

material parameters into the above expressions, it is found that
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C 126,224.37 1b-ft/ft (568kN-m/m)

D 86,315.86 1b-ft/ft (338kN-m/m).

FS
o

126,224.37 lb-ft/ft
86,315.86 Ib-ft/ft 1.46

(b) Similarly, the factor of safety against sliding (FS )
s

of the wall along its base is given by Eqn. (5-2a) in which the

capacity C and the demand D are equal to

C [PAsin(o+S) + W (l+k )] tan¢
w v

Introducing the numerical values of the geometry and the

material parameter into the above expressions, it is found that

FS
s

l2,780.37lb-ft/ft (57.5lkN-m/m)
19,989r28 lb-ft/ft (89. 95kN-m/m) 0.64

5.3 Comparison of Results

In Table 5.1 is given a summary of the values of the factors

of safety found using each available procedure. It can be seen that

the Dubrova (static) and the extended Dubrova (seismic) procedures

resulted to more critical values for the factor of safety while, in
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Methods Examined
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Conditions Method Factor of Safety

Overturning Sliding

Coulomb 5.9 3.39
Static

Dubrova 2.33 0.934

1'lononobe 2.29 1. 44

and Okabe

Simplified
2.167M-O 1. 35

Seismic

Prakash and
2.31Basavanna 1.46

Richard
and 2.31 1. 44

Elm~

Extended
Dubrova 1. 46 0.64

.-
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the case of the seismic conditions, the most critical value for the

factor of safety correspond to the base sliding mode of failure.

5.4 Probabilistic Analysis.

The probabilistic approach described in Chapter 4 is applied

to determine the safety of the retaining wall shown in Fig. 5.1. It

is assumed that the wall is located in an earthquake area exhibiting

the characteristics of Northeast United States, and that earthquakes

are caused by a point source (Section 3.4.1).

The expressions for the mean value and variance of maximum

horizontal ground acceleration are given in Eqns. (3-27) as

amax
l I + t b; Var(m)]

Var(a )max

in which b
l

,b
2

,b
3

,b
4

are regional parameters. For the case of the

Northeast U.S., these parameters may be assumed to be equal to

(Donovan et al., 1973) b
l

= 1,100, b 2 = 0.5, b 3 = 1.32, and
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Introducing these values into Eqns. (3-9), and letting

mo = 2, m
1

= 6.3 and S = 1.35 (A-Grivas, et a1., 1979), it is found

that

m 2.72

and

Var(m) 0.492

Substituting the above values for m, Var(m), and regional

parameters b
l

, b
2

, b
3

, b
4

into Eqns. (3-27), and assuming that

R = 1 km, one has that

and

amax 0.63g

Var(a )max 0.426 (a
a

max
o.0208g)

Furthermore, for the purposes of this example, it is assumed

that the angle of internal friction ¢ and cohesion c of the backfill

material are correlated random variables with mean values, standard

deviations and correlation coefficient equal to

¢ = 34.86 0 a¢ = 9.13 0

2 2
c 0.795 kips/ft (37.36kN/m ),



(J
c

, 2 2
0.665 kips/ft (3l.25kN/m )
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P =-0.293c,<P

The active thrust FA against the wall is found using the ex-

tended Dubrova Hethod for a rotation of the wall around its base. From

Eqn.(2-25), one has

in which

1

1/2
}

ljJ = <p (1 z
H )

5.4.1 Overturning. In the case of the overturning mode of

failure of the retaining wall, capacity C and demandD are given by

Eqns. (4-11) and (4-12), respectively, as

C (1 + a ) W t + FA B sino'
v w

in which 8' = 8+S and all other parameters are shown in Fig. 5.1.

From the above expressions, it can be seen that C and Dare

functions of DvO random variables, namely, (a) the maximum horizontal
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ground acceleration ah , and (b) the ¢ parameter of soil strength (both

~ and ¢ enter the expression for the total active thrust PA)' That is,

(5-11)

The mean values and standard deviations of C and D can be

found using the "point estimates method" presented for the first time

by Rosenblueth (1975). In accordance with this method, the mean value

of C is expressed in the form

C ;,: E[C] ::= P++-C-++ + P+-C+_ + P_+C-+ + P__C__ (5-12)

in which C++ C+_, C-+, C

5.5, and P++, P+-, P-+, P

are the point estimates of C, shown in Fig.

are the so-called "weights" of C. For the

case of two uncorre1ated random variables, the weights are all equal,

i.e.,

1
== 4

2The second moment of C, denoted as E[C ), is found from the

following expression:



Point Estimates
I

cP+ = ¢ +OcP

¢ I cP = ¢ - a
- cP--

ah = ah+ a
C,D ,

ah I
+ ah-a = a - ah- h ah

-
c++ = C (cP+,ah+)

C+_ = C (cP+' ahJ

C IC_+ = C (¢_,ah+)

C = C (cP_,ahJ

-
¢ =¢-a ~ cP+=¢~ acP

D++ = D (cP+,ah+)
- cP

D D+_ = D (cP+,ah_)
cP D_+ = D (cP-,ah+)

a = a -a
''S;~ ".S '>"

~
h- h ah S D__ = D (cP_,ah_)

< < ~ah

ah+=ah + aa
h

ah

Figure 5.5 Illustration of the Point Estimates of C and D.

\0
~
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(5-13)

The standard deviation G
C

of C is determined from the mean

value and second moment of C as follows:

(5-14)

Similarly, the mean value and standard deviation of the demand

D are expressed as

D (5-15)

in which E [D
2

] is the second moment of D.

(5-16)

Introducing the numerical values of the mean values (~h'¢) and

standard deviations (G
ah

, G¢) of ~ and ¢ into the expressions for the

point estimates of C and D, the latter are found to be equal to

c++ 112,131. 9 1b-ft/ft(504.6kN-m/m)

C+_ 112,090.9 lb-ft/ft(504.4kN-m/m)

C-+ 108,915.5 1b-ft/ft(490.1kN-m/m)

C 108,902.0 lb-ft/ft(490 kN-m/m)
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D+t- 56,438.3 1b-ft/ft (254 kN-m/m)

D+- 63,627.2 1b-ft/ft (286.3kN-m/m)

D = 51,161. 3 1b-ft/ft (230.2kN-m/m)-+
D 58,276 1b-ft/ft (262.2kN-m/m)

After the above values of the point estimates and weights

of C and D are introduced into Eqns. (5-12), (5-14), (5-15) and (5-16),

it is found that

C = 110,510 1b-ft/ft (497.3kN-m/m)

0
C

1,601 1b-ft/ft (7.2 kN-m/m)

D 57,376 1b-ft/ft (20. kN-m/m)

an 4,455 1b-ft/ft (20. kN-m/m)

The value of the central factor of safety in overturning is

then equal to

FS
o

C

D

110,501 1b-ft/ft
57,376 lb-ft/ft 1. 92

The mean value 8M and standard deviation 0
SH

of the safety

margin SM are found from Eqn. (4-3) to be equal to

8M = C - D = 53,134.4 1b -ft/ft (239. kN-m/m)

0
SH

= (0~ + 0~)1/2 = 4,734.1 lb-ft/ft (21.3 kN-m/m)

Finally, assuming that the safety margin 8M follows a normal
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distribution, the probability of failure Pf in overturing is found from
o

Eqn. (4-5) to be equal to

P[SM < 0] P [ 8M-8M
GSM

< 0-5,313.4
4,734.1

If
8M-8M

u = aSM
denotes the standardized normal variate, then the above

expression can be written as

Pf P [SM < 0]
o

P[u < -11.3]

From tables of the standard normal distribution (Rarr, 1977), and

has that P [u ~ 11.3] =0.0 and, therefore,

~ 0.0

5.4.2 Bearing Capacity. In the case of bearing capacity

of the wall foundation, capacity C and demand D are given by Eqns.

(4-13) and (4-14), respectively; i.e.,

C
1 ~2 oN N B~c"2 yB Ny + Y Df B +

q c

(D 2
2 1/2

D + DR )v

in which

DR PA cos (8+S) + a
h

W
w

D P sin(8+S) + (1 + a ) Wv a v w
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and all other parameters are shown in Fig. 5.1. In this case, C is

a function of two correlated random variables, namely, the cohesion c

and angle of internal friction ~ of the foundation material, or

c C (c,~)

while demand D is a function of two uncorrelated random variables a
h

and ~, or

The numerical values of the point estimates of C and Dare

equal to

c++ ::= 1,108.4 lb (5.0kN)

C+_ 393 lb (1,8kN)

C_+ 163.3 lb (O.lkN)

C 31. 3 lb (O.lkN)

D++ 22.4 lb (O.lkN)

D+_ 22.4 lb (O.lkN)

D_+ 21. 4 lb (O.lkN)

D 21. 4 lb (0.09kN)

As the correlation coefficient (p ~) of c and
c,'I'

is equal to

-0.293 (p ~::= -0.293), the numerical values of the weights for the
C,'I'
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of the weights for the capacity Care

1 - 0.293
4

0.176

1 - pc,¢ 1 + 0.293
p+- P = 0.323-+ 4 4

while the weights for demand D are all equal 1
to 4'

Introducing the above values of the point estimates and weights

of C and D into Eqns. (5-12) , (5-14), (5-15) and (5-16), it is found that

C 380.31b (1.7lkN)

0C 360.9 1b (1.6 kN)

D 21.9 1b (0.09kN)

0
D

0.6 In (0.003kN)

The value of the central factor of safety in bearing capacity

is then equal to

C

D

380.3 1b
21. 9 1b 17.38

From Eqn. (4-3), the mean value SM and standard deviation 0SM

of the safety margin SM are found to be equal to

SM = C D 358.4 1b (1.6kN)

0SM = (0~+0~)1/2 = 361.0 1b (1.6kN)
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Assuming that the safety margin SM follows a normal distri-

bution, the probability of failure Pf in bearing capacity is found
be

from Eqn. (4-5) to be equal to

P[SM 2. 0] < 0-358.4]
360.9

the value of Pf
bc

SM-SMIf u = ----- denotes the standardized normal variate, thena
SM

may be determined using tables (Harr, 1977) as

P[SM 2. 0] P[u 2. - 0.99] 0.162

5.4.3 Base Sliding. In the case of failure of the retaining

wall in base sliding, capacity C and demand D are given by Eqns. (4-15)

and (4-16) in the form

C [PA sin(o+B) + W (1 + a )] tan¢w v

The geometry of the wall and the parameters of the backfill

material are shown in Fig. 5.1. In this case, C and D are functions

of the two uncorrelated random variables a
h

and ¢; i.e.,



101

D := D(~,¢)

The point estimates for C and Dare

C-H- = 16,360 1b (73.6 kN)

C+_ = 8,169.41b (36.8 kN)

C-+ l5,900.21b 01.6kN)

C 7,941.l1b (35.7kN)

D -H- = 14,690 Ib (66.105kN)

D = 14,660 Ib (65.97kN)+-

D-+ 13,610 1b (61. 24kN)

D := 13,600 1b (61. 2 kN)

1
while the values of the weights for both C and D are equal to 4.

Introducing the above values of the point estimates and weights

of C and D into Eqns. (5-12),(5-14)" (5-15) and (5-16), it is found that
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C 12,092.67 lb (54.41 kN)

0
C

= 4,041.52 lb (18.18 kN)

D 14,140 lb (63.63 kN)

0
D

535.1 lb (2.4 kN)

The value of the central factor of safety in base sliding is

then equal to

FS
s

C

D

12,092.67 lb
14,140 lb

0.85

From Eqn. (4-3), the mean value SM and standard deviation

0
SM

of the safety margin SM are found to be equal to

SM c D - 2 ,04133lb (-9.2lkN)

0
SM

4,076.79 lb (18.34kN)

Assuming that the safety margin SM follows a normal distribu-

tion, the probability of failure Pf in base sliding is determined as
s

P[SM < 0] p[ SM-SM
0SM

< 0 +2.047.33

4,076.79

of Pf
s

If u = SM-SM in the standardized normal variate, then the value
0

SM
is found from tables to be

P[SM < 0] p[u < 0.5] 0.691
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5.4.4 Overall Sliding. In the case of failure of the retain-

ing wall in overall sliding, capacity C and demand D are given by Eqns.

(4-17) and (4-18), in the form (Figs. 4.6 and 5.1)

C c R L6~. + R (l+a ) tan¢[LW. cose
i

]
1 v 1

D R [LW.sin8.J (l+a ) + ah(LW.y.) + PAYA
1 1 v 1 1

In this case, capacity C is a function of three random vari-

ables, namely, cohesion (c), angle of internal friction (¢), and

maximum horizontal ground acceleration (~), two of which (i.e., c, ¢)

are correlated; or,

Demand D is a function of two random variables (¢ and a
h
);

i. e. ,

Using the numerical point estimates method, one has that the

mean values and standard deviations for C and D are equal to
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o = {c

Introducing the numerical values of the mean values (ah ,

¢, ~) and standard deviations (0 , 0ffi, 0 ) of ah , ¢ and c, the
a

h
't' c

corresponding values of the point estimates of Care

C+t+ = 2,208.0 lb - ft/ft (9.9 kN-m/m)

C-H-- = 2,188.7 lb - ft/ft (9.8 kN-m/m)

C+-+ = 869.0 lb - ft/ft (3.9 kN-m/m)

C_++ = 1,828.4 lb - ft/ft (8.2 kN-m/m)

C 869.0 lb ft/ft (2.9 kN-m/m)+--

C = 1,818.3 lb - ft/ft (8.2 kN-m/rn)
-+-

C = 889.2 lb - ft/ft (4.0 kN-m/rn)
--+

C 498.6 lb ft/ft (2.2 kN-rn/rn)

while those of Dare
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D = 485.6 lb-ft/ft (2.2 kN-m/m)++
D+_ 477,7 lb-ft/ft (2.2 kN-m/m)

D-+ 460.9 lb-ft/ft (2.0 kN-m/m)

D 453.3 lb-ft/ft (2.0 kN-m/m)

The numerical values of the weights for cap~city C ~re equal to

p+++ = P = p++-
1 + P',h

C,\fJ
P_-+= 8 - =

1-0.293
8 0.088

P
+-+

while those of Dare

1 - p
P

c,¢
-+-=--8-- =

1+0.293
8

0.161

Introducing the above values of the point estimates and

weights of C and D into Eqns. (5-12), (5-14), (5-15) and (5-16), it is

found that

C 1,375.99 lb-ft/ft (6.l9kN-m/m)

a 602.01 lb-ft/ft (2.70kN-m/m)c

and

D 469.35 1b-ft/ft (211kN-m/m)

aD 13.03 1b-ft/ft (0.058kN-m/m)

The value of the central factor of safety in overall sliding

is then equal to



FS :0

as
C :0 1,375.99lb ft/ft
D 469.35 lb - ft/ft

2.93
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From Eqn. (4-3), one has that the mean value SM and standard

deviation 0
SM

of the safety margin SM are equal to

D = 906.6 lb-ft/ft (4.1 kN-m/m)

2 1/2+ aD ) = 602.2 Ib - ft/ft (2.7 kN-m/m)

Assuming that the safety margin SM follows a normal distribu-

tion, the probability of failure Pf in overall sliding is found from
bs

from Eqn. (4-5) to be equal to

Pf = P (8M < 0 1
as

= P (SM-3M < 0-906.64 ]
0

SM
602.15

8M-3MIf u = is the standardized normal variate, then the value
a SM

of Pf is found from tables to be
os

Pf P [3M < 0 ] ~ P [u < - 1.5J = 0.067
os

5.4.5 Summary of Results. In Table 5.2 is g{ven a su-L mmary

of the obtained results, in 1 d' hc u ~ng t e statistical values of capacity

and demand, the values of the central factor of safety, and the corres­

ponding values of the probability of failure for each mode of failure

examined.



Table 5.2 Summary of Results of Probabilistic Analysis

Mode Capacity Demand
Central Probability
Factor of of

of ac aD
Safety Failure

Failure C D FS Pf

Overturning 110,510.1 1,601.4 57,375.7 4,455.0 1.9 0.0

[lb-ft/ ft)

Bearing Capacity 380.3 361.0 21. 9 0.6 17.38 0.162
r1b/ftl

Base Sliding 12,092.7 4,041.5 14,140.0 535.1 0.86 0.691
llb/ft]

Overall Sliding 1,376.0 602.0 469.4 13.0 2.9 0.067

llb-ft/ft]

f-'
o
'-J
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The value of the total probability of failure Pf is found

using Eqn. (4-10) to be equal to Pf = 0.758.



CHAPTER 6

PARAMETRIC STUDY

The purpose of the present parametric study is to examine the

effect on the factor of safety and the pressure distribution along a

retaining wall of (a) the magnitude of the maximum horizontal ground

acceleration, (b) the ¢-parameter of strength, and (c) the inclination

of the backfill material.

The retaining wall used for the purposes of this parametric

study is shown schematically in Fig. 6.1. It has a height H 16 ft

(4.88m) and an average thickness of 6 ft (1.83m). The angle 8 between

the back side of the wall and the vertical is equal to 8 = 15°. The back-

fill material has a unit weight equal to y 100

the unit weight of the concrete is y
c

150 pcf

3pcf (15.7 kN/m )

3
(23.55 kN/m ).

while

The method employed in the parametric study is the extended

Dubrova procedure, described in Section 2.2.5. It is assumed that the

wall rotates around its top and, therefore, the expression for the ¢

function is (Table 2.1)

¢(z)
z

<P H

The total active thrust on the wall is given by Eqn. (2-25)

as

1 H2-y
2
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1 +

1
sin(¢+o)sin(¢-i-A l )

{cos(B-i)cos(O+8+A
1

)}

(6-1)
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III

in which the geometry and material parameters are shown in Fig. 6.1.

The expression for the pressure distribution PA(z) along the

wall is obtained by forming the derivative of FA with respect to Z

(Appendix A).

6.1 Effect of the 11aximum Horizontal Ground Acceleration

In Fig. 6.2 is shown the resulting pressure distribution PA(z)

along the retaining wall for various values of the maximum horizontal

ground acceleration a h . It can be seen that the magnitude of PA(z)

increases considerably for increasing values of a
h

• The vertical com-

ponent of the acceleration a is assumed to be equal to a
v v

while the other geometry and material parameters are given in

6.2 Effect of the p - Parameter of Strength.

The effect of the ~parameter of strength on the pressure

distribution PA(z) is shown in Fig. 6.3. The results were obtained

2
for ~ = 0.3g, av = 3 ah , S = 15° and, and i = 5° (Fig. 6.1), From"

Fig. 6.3, it is seen that the magnitude of the pressure PA(z) decreases

considerably as the value of ~ increases.

6.3 Effect of the Inclination of the Backfill.

In Fig. 6.4 is shown the effect on the PA(z) of the backfill

2
slope i for ah = 0.3g, av = 3 ah , ¢ = 30°, and B = 15° (Fig. 6.1). It
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Figure 6.4 Dependence of the Pressure Distribution Along the Wall on the
Inclination of the Backfill i.

f-'
f-'..,.



115

can be seen that the dependence of PA(z) on the inclination of the back-

fill i is not as important as that of the maximum horizontal ground

acceleration a
h

and the strength parameter ¢.

6.4 The Effect on the Factor of Safety of ~, ¢, and i,

Fig. 6.5 shows the dependence of the factor of safety FS of

the retaining wall in overturning around its top (Fig. 6.1) of (a) the

maximum horizontal ground acceleration, (b) the ¢ parameter of. strength

and (c) the slope i of the backfill material. In its present form, Fig.

6.5 constitutes a nomograph associated with the retaining wall shown in

Fig. 6.1 which can be used to determine the value of the factor of

safety FS for combinations of values of the design parameters a ~, h' '1',

and i.

From Fig. 6.5, it is seen that as ¢ decreases and/or a
h

arid

i increase, the corresponding values of the factor of safety FS decrease.

The analytical expression for the factor of safety FS of the

retaining wall in overturning is given in Appendix B,
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CHAPTER 7

DISCUSSION

Experience with the performance of retaining walls indicates

that the pressure distribution along such structures depends on the

type and magnitude of the movement they are subjected to during loading.

From among all the procedures reviewed in this study (Chapter 2), only

one is capable of accounting for the occurring movement in order to

arrive at an expression for the magnitude of the pressure and its dis­

tribution along the wall. This is the Dubrova method, initially de­

veloped for static conditions (Dubrova, 1963) and later extended in

order to include seismic loading (Saran and Prakash, 1977; A-Grivas,

1978).

In accordance with the Dubrova method, the pressure distri­

bution along a wall is expressed in terms of the ~ function which de­

pends on two quantities: (a) the magnitude of the soil strength

mobilized in the backfill material, and (b) the type of movement the

wall experiences during loading. The wall is allowed to rotate around

any point along its vertical axis and the resulting limiting state of

the backfill material can be either active or passive or partially

active and partially passive. For example, a rotation of the wall a­

round its mid-point, with the top moving towards the backfill, will pro­

duce a passive state for the upper half of the soil medium while the

lower half will be in an active state. This is shown schematically in

Fig. 2.4(e). Moreover, the method assumes that all soil strength
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available is mobilized at the extreme points of the backfill medium

(i.e., behind the top and bottom of the wall).

While the Dubrova method considers the type of movement the

wall undergoes during loading, it does not account explicitly for the

magnitude of this movement. That is, for a rotation of the wall around

a given point, the resulting pressure distribution is independent of

the magnitude of the rotation.

The method by Richard and Elms (Section 2.2.4) takes into

consideration the magnitude of the permanent displacement experienced

by the wall during the ground shaking. This is achieved by employing

a previously developed empirical relationship between the maximum per­

manent ground displacement and the effective peak ground acceleration

and velocity. In addition, this method considers the change in the

inertia of the wall that occurs during the seismic loading, a novel

concept that leads to an improved measure for the factor of safety.

In a comparative study, the safety of a retaining wall

(Fig. 5.1) was examined using the various procedures presented in

Chapter 2. Two modes of wall failur were considered, namely, overturning

and base sliding. From Table 5.1, it can be seen that there is a rather

wide scatter in the resulting numerical values of the factor of safety.

Under static conditions, the Dubrova method produced a more critical

value for FS than did the Coulomb method. The extended version of the

Dubrova method also resulted to the most critical value for FS under

seismic loading.

In the presented probabilistic procedure, the seismic load
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(Section 5.4) was expressed in terms of the maximum horizontal ground

acceleration (~) experienced by the retaining wall during an earth­

quake. It was assumed that the vertical component of the maximum

ground acceleration has a value equal to two thirds that of the horizon­

tal component, and that both components act on the retaining wall and

backfill material simultaneously.

The statistical values of the capacity C and demand D of each

mode of failure were determined using the point estimates method pro­

vided by Rosenblueth (1975). This is an approximate procedure capable

of providing estimates for the statistical values of C and D on the

basis of the mean values and standard deviations of the material and

seismic parameters.

Finally, from the results obtained during the parametric study

(Chapter 6), it is seen that the maximum horizontal ground acceleration

and the ~ parameter of strength of the backfill material have a consid­

erable effect on the pressure distribution along the wall and the cor­

responding value of its factor of safety. The effect of the slope of

the backfill material on these two quantities was found to be considerably

smaller.



CHAPTER 8

SUMMARY AND CONCLUSIONS

The two main objectives of the present study were: (a) to

review and compare the various methods that have been developed to

describe the force system behind earth retaining structures under seis­

mic loading; and (b) to provide a probabilistic analysis of the safety

of such structures. The latter objective was achieved using the method

of redistribution of pressure (Dubrova's method) and by exploring the

variability of important material and loading parameters. Safety was

measured in terms of the probability of failure of the structure rather

than the customary factor of safety. Four possible modes of failure of

a retaining wall were considered (i.e., overturning, base sliding,

bearing capacity, and overall sliding) and the procedure required for

the determination of the probability of failure in each mode was

described.

The developed probabilistic approach and the available con­

ventional methods were applied in a case study and the obtained results

were compared and discussed. In a parametric study, the effect on the

pressure distribution and the safety measure of important material

and loading parameters was investigated and the results were presented

in a series of charts.

On the basis of the analysis and results obtained in this

study, the following conclusions can be drawn:

1. The extended Dubrova method can account for the movement

experienced by a retaining wall during an earthquake and, therefore,
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it provides a more realistic pressure distribution along the wall.

2. A probabilistic formulation of the safety of retaining

walls during earthquakes is an improved approach over conventional

methods of analysis as it can account for important material and

loading uncertainties.

3. The value of the ¢-parameter of soil strength and the

magnitude of the ground acceleration have an important effect on the

pressure distribution and the factor of safety of the retaining walls

located in an earthquake environment.
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APPENDIX A

EXPRESSION FOR THE PRESSURE DISTRIBUTION

USED IN PARAMETRIC STUDY

The expression for the active force on a retaining wall is

given in Eqn. (2-25) as

in which,

1 +

1
sin(W+o)sin(¢-i-A

l
)

{cosCS-i)COSCO+S+A
l

)}

]
1/2

(A-I)

i inclination of backfill,

S ~ angle between the back side of the wall and the

vertical direction,

unit weight of the soil,

-1 ah
tan (l+a)'

v
maximum horizontal ground acceleration in g's,

a ~ maximum vertical ground accelerations in g's,v

~ amount of strength mobilized as a result of the movement

experienced by the wall during loading,

o angle of wall-soil friction.

Forming the derivative of Eqn. (A-I) with respect to depth z,

one has that the expression of the pressure distribution PA(z) is equal

to

127



in which,

dP
A

=-=
dz

2 dEl
z ­

dz
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(A-Z)

y(l + a )
D = ...:..v _

22eosAleos Seos(o+S+A l )

E

de
- =
dz

sin(o/+o)sin(~-i-Al)

cos (S-i)eos(O+S+Al )

sin (0/+0)

sin(~-i-Al)

2 eos(~-Al-S) sin(~-A -S) ~1 dz

dEl = _

dz
1

3
[1 + (E)1/2 ]

-1/2
E

dE
dz

d 1 dE2 dE3-.Ji = - (E E )
dz D

1
3 ~ + 2 ~

dEZ = d(o/+o)
dz eos(o/+o) dz



dlj!
dE3 ::: COS (lj!-i-A

1
) dz

dz

do
dD1 = _ sin(8+S+A

1
) dz

dz
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APPENDIX B

FACTOR OF SAFETY OF A WALL

IN OVERTURNING AROUND ITS TOP

The expression for the factor of safety in overturning FS
o

may be obtained using Eqn. (5-1); i.e.,

in which,

FS
o

C
D

(B-1)

C moment of resisting forces around center

of rotation, and

D ~ moment of driving forces around same point.

For the given wall geometry, one has that the capacity C and

demand D for a rotation around point 0 (Fig. 6.1) are equal to

C (1 + a ) W t 1 + T
v w

(B-2)

in which,

T ~ (1 + a ) W + PA sin(o+S)]tan¢v w

Combining Eqns. (B-1) and (B-2), the expression for FS is found as
o

FS
o

(1 + a)W 9-
1

+ (1 + a )H +PAsin(o+S)]tanQ
v w v w
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