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CHAPTER I

INTRODUCTION

I.l GENERAL INTRODUCTION

The research work presented in this report is concerned, in general,

with the earthquake response analysis of long-span suspension bridges

when subjected to multiple-support seismic excitations. An earthquake

dynamic-analysis methodology (which includes analytical and numerical

methods; time and frequency domains; and deterministic and probabilistic

techniques) for these structures is developed taking into account, among

other things, the different seismic inputs at the support points of the

bridge, the traveling wave effects, and the flexibility of the soils

surrounding the foundations. The first phase of the investigation deals

with the appropriate definition of seismic inputs (to permit estimation

of relative motions between support points) taking into account the prop

agation, attenuation and phase characteristics of seismic waves as

evident from existing and newly acquired strong-motion records [30]. The

seismic inputs are time functions (such as time histories and cross-cor

relation functions) and/or frequency functions (such as power- and cross

spectral density functions). The form of these time and frequency func

tions is determined with the aid of available strqng motion accelerograph

records, random vibration theory and elastic wave propagation theory. In

the second phase, the methodology of earthquake dynamic analyses of

suspension bridges when subjected to multiple-support excitations is

1
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developed utilizing analytical and numerical techniques (both including

deterministic and probabilistic trea.tments). Earthquake response charac

teristics of three bridges selected to represent a wide band of suspension

bridges are determined in the third phase and lead to definition of

general earthquake resistance guidelines.

In the introductory chapter a compreh.ensive review is made of

the literature related not only to the earthquake response of suspension

bridges but also to their free-vibration dynamic-analysis methodologies.

Existing publications on the characteristics of strong earthquake ground

motions are also examined. And finally, a brief definition of the

problem to be addressed in this report is made at the end of the chapter.

Before beginning the literature review, the following relevant

observations and conclusions merit mentioning [19]:

1. The intensity of earthquake ground shaking attenuates with the

distance from the causative fault more rapidly in the high

frequency range than in the low frequencies. Consequently at

considerable distances from the fault, structures which ~ave

long periods of vibration, such as long-span suspension bridges

will be subjected to stronger shaking than will structures with

short periods of vibration such as short-span bridges.

2. The effect of earthquake-induced differential motions of two or

more foundations upon the dynamic response of the superstructure

of a bridge is a little-understood problem which is of consider

able interest in earthquake engineering [see 6, 17, 25, 24, 32,

42,39,106,90-92]. The state-of-the-art does not yet offer

a practicing earthquake engineer the means for making a good

estimate of the differential pier and abutment (or anchorage)
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displacement to be expected when a bridge is subjected to an

earthquake. In all cases the definition of an appropriate

ground-motion input is the most difficult and uncertain phase

of the problem of predicting structural response to earthquakes.

A common assumption in the usual treatment of earthquake excita

tions is that the same motion acts 'simultaneously at all points

of the structure's foundation. If rotational motions are

neglected, this assumption is equivalent to considering the

foundation-soil to be rigid at least over a scale fully-envelop

ing the structure (though the soil may still be treated very

locally as elastic). Another viewpoint of the same thing is

that the wavelengths of the earthquake ground waves are long

compared to the structural dimensions. Such a hypothesis is

not wholly consistent with the concept of earthquake wave propa

gation; however, if the base dimensions of the structure are

small relative to the vibration wavelength in the soil, the

assumption is acceptable. For example, if the velocity of the

wave propagation is 6,000 ft/sec, a sinusoidal wave of 3.0 Hz

frequency will have a length of 2,000 ft, and a building with

a base dimension of 100 ft will be subjected to essentially the

same motions over its entire length. On the other hand, a long

span suspension bridge, which might have a length of several

thousand feet, obviously would be subjected to drastically

different motions at its foundations. No direct measurements

have been taken of a bridge at two widely separated foundations

during an earthquake; however during the 1971 San Fernando

(California) earthquake (~ = 6.3), the motions recorded by
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instruments located in the basement of Millikan Library at one

end of the campus of California Institute of Technology differed

greatly from those of the instruments in the Caltech Athenaeum

located approximately 800-1000 ft away at the other end [41].

Measurements taken during the 1979 Imperial Valley (California)

earthquake (~ = 6.6), by the instruments of the EI Centro Array

also emphasize the variation of ground motions with separation

distance [30J. It is evident that the motions at the foundations

of a long-span bridge must differ, and this difference could

contribute significantly to the dynamic response of the structure;

so it is important for desi~ purposes to develop analytical

procedures capable of establishing appropriate input motions

and of dealing with mUltiple-support excitations.

In a study made by Abdel-Ghaffar [6,17], of the dynamic

interaction, for incident plane SH-waves, between the soil of

a half-space and a simple two-dimensional bridge model (supported

by rigid end-abutments), it was found that the excitation of

different modes of vibration of the bridge superstructure is

related to the nature of foundation movement for different

angles of incident SH-waves; in particular, it depends on the

relative phase of motion for the two adjacent bridge supports.

Even though the model studied was two-dimensional and there-

fore cannot be employed directly even with laterally elongated

systems, knowledge about the interference phenomenon of waves

scattered around different foundations and the different phasing

of input motions along the extended structure may prove to be

useful in clarifying some of the complexity of the dynamic
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response of a more complicated three-dimensional system. The

objective of such an investigation should not necessarily be

to define all possible cases, but somehow to bound them in a

reasoned way for design purposes.

3. The dynamic analysis of long-span suspension bridges under

earthquake excitations has received some study to date [24, 34,

43, 44, 45, 50, 63, 87, 90-92, 106, and 103] but there remain

aspects of it requiring further examination. For bridges

of long span there are special features of the problem that

differ significantly from the analysis of a typical multi-story

building. Modern building codes have now been developed to the

point where the basic earthquake-resistance requirements to be

imposed on a standard building are specified adequately. A

long-span bridge, however, is a vastly different structure from

a typical building structure. The fundamental period of vibra

tion of a suspension bridge, for instance, is usually long, and

it is necessary to include a relatively large number of modes

of vibration in 'order to obtain a reasonable representation of

the response. Also, as discussed above, the piers or abutments

of the bridge may be so far apart that the general motions at

the two ends of the bridge are only partially correlated or are

uncorrelated. In addition, bridges to date have not generally

received the attention that buildings have with regard to full

scale testing, and to permanent earthquake-response instrumen

tation, which could provide data to correlate with linear or

nonlinear response analyses.
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4. Both theoretical dynamic analyses (including analytical and

finite element techniques) and low-level full-scale ambient

vibration tests of suspension bridges have indicated [I, 9,

24, 31, 43, 44, 87, 103] that modes of free-vibration of the

structure can be separated into two groups. 0 In one group, the

displacements of the stiffening structures and cables are pre

dominant, and in the other group, the displacements of the towers

are predominant. Consequently, with proper attention to modeling,

investigation of the earthquake response characteristics of dif

ferent major parts of the suspension bridge may be made separate

ly. For example, an earthquake-response analysis may be made

in which the influences of the cables and suspended structures

are represented by the proper masses and spring stiffnesses at

the top or support points of the towers. Definition of the

exact methodologies needed for such modeling of analysis can be

extremely useful in design.

5. From the three-dimensional finite element analysis of San

Francisco's Golden Gate Bridge by Baron and his co-worker [24],

it was observed that the modes of vibrations of such a bridge

can conveniently be grouped into four kinds of simply conceived

oscillatory motions, namely: vertical, lateral, torsional and

longitudinal. For certain bridges, especially those with

straight and level decks, the vertical and torsional motions

are quite well decoupled, if one considers only small vibrational

amplitUdes (linear theory). But for other bridges (the Rucok-a

Chucky [35] or the Lions' Gate [3l,67J designs, for example) such

decoupling does not occur, due to geometric effects.
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6. Assurance of the aerodynamic stability of suspension bridges

does not in any way imply the safety of the structures during

earthquake ground shaking. Both the inputs and the responses,

as well as the possible modes of failure, are different for the

two kinds of excitation. In particular, analysis of torsional

and flexural-torsional vibrations is central to studies of the

aerodynamic behavior of suspension bridges, whereas its import

ance to earthquake response analysis is less clear.

r.2. FREE-VIBRATION ANALYSIS OF SUSPENSION BRIDGES

The collapse of the Tacoma Narrows Suspension Bridge in 1940 attract

ted the attention of the engineering profession towards studying the vibra

tional characteristics of suspension bridges and their associated aero

dynamic response. The slender bridge vibrated heavily in flexure and

torsion and collapsed in a transverse wind of only 40 miles per hour.

It was quite natural that the engineering profession concentrated its

efforts upon the aerodynamic response of suspension bridges at this time,

delaying the analysis of earthquake response of such structures until

fairly recently. Researchers such as F. Bleich [26-28], T. Von Karman

[96), G. Woodruff, C. McCullough, C. Scruton [74], G. Vincent [93-95],

L. S. Moisseiff [60,61], F. Smith, F. Farquharson [33], D. B. Steinman

[80-84],0. H. Ammann [20,21], A. Selberg [76~78], R. Frazer

and R. H. Scanlan [72,73] are well-known for their work in the aerodynamic

response of suspension bridges. Lately, the response of suspension

bridges to other dynamic loadings, such as railway impact loadings

(Hirai and Ito [36]), and seismic disturbances have been investigated

with more enthusiasm.
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The earliest treatments of the dynamic analysis of suspension bridges

for their natural modes and associated natural frequencies began with

Rohrs' [69] analysis in 1851 of an inextensible horizontal cable for the

first two natural modes. Not much significant dynamic 'analysis occurred

until the Tacoma Narrpws collapse, at which time investigations by Rannie

[68], Von Karman [96], and Vincent [79,94] analyzed the vibration of a

three-span cable. In addition, in 1941-43, Steinman [81] proposed simpi

fied formulae for the calculation of vertical and torsional frequencies

and modes of vibration. Later, Bleich f26] proposed the analysis of free

torsional and vertical vibration by the exact 'solution of the fourth order

differential equations of motion. He also proposed a Rayleigh-Ritz pro

cedure for obtaining the first few modes and frequencies of vertical and

torsional vibration. Other formulae appeared by Smith and Vincent [79]

but were misleading because the cable was assumed inextensib1e, and its

gravity stiffness, which Pugsley had examined [64-66], had been ignored.

In the early 1960's, the dynamic analysis of suspension bridges

received considerable attention by Konishi, Yamada, Takaoka, and other

Japanese investigators [43-49,101-106]. These authors examined the

vertical and lateral vibration of,the bridge as well as the vibration of

the tower-pier system using a lumped-mass matrix structural analysis

approach. They pointed out that both the ground-acceleration and the

ground-disp1acement are required as inputs for the computation of earth

quake response of suspension bridges. They also suggested that since

the modes of the suspended structure and the tower-piers are fairly well

decoupled, the tower-pier vibration problem may be approximately analyzed

separately from the suspended structure, as long as the elastic restraint

at the top of the tower provided by the cables is accounted for properly.
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In this manner, the effect of foundation-soil stiffness upon the tower

pier response can be examined rather efficiently. They indicated that

in the first few modes of lateral vibration, the suspended structure and

cables vibrate as a double pendulum, while in higher modes the system

vibrates independently and there is no coincidence of nodal points of

the cable and suspended structure.

Similar investigations were performed by Tezcan and Cherry [87,88]

in 1969, considering the effect of geometric nonlinearity arising from

large deflections of suspension bridges. An iteration scheme for the

nonlinear static analysis·was performed by means of tangent stiffness

matrices, and these matrices were used to solve for the free vibration

modes of the structure. The bridge was idealized as a three-dimensional

lumped mass system subjected to three orthogonal and uniform ground

motion components producing horizontal, vertical and torsional vibrations.

A similar design analysis for the tower-piers of the Tagus River Bridge,

using a lumped mass system which was interconnected by elements having

shearing and bending stiffnesses, was pursued by Housner, Converse, and

Clough [37]. In this work, the rotational stiffness of the foundation

was also considered.

The most recent significant advances in the linear dynamic analysis

of suspension bridge structures appeared in the 1970's through the work

of Abdel-Ghaffar [1,5,6,9,13,18J. This involved methods of analyzing

the free vibration of suspension bridges utilizing finite element methods

and linearized deflection theory. Abdel-Ghaffar analyzed vertical, torsion

al, and lateral vibration of suspension bridges for natural frequencies,

mode shapes, and energy storage capacities of different members of the

structure. His methods were based upon specification of the potential and
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kinetic energies of the vibrating members of the real continuous struc

ture, derivation of the equations of motion for each type of vibration

(vertical, lateral, and torsional), linearization of these equations for

small amplitudes, finite element discretization of the structure, deriv

ation of stiffness and inertia properties of the structure, and formulation

of the matrix equations of motion and eigenvalue problems using Hamilton's

principle. Detailed examples were presented by Abdel-Ghaffar, including

an analysis of the free vibration modes of the Vincent-Thomas Bridge, in

Los Angeles, California. The applicability of such methods was demonstra

ted by comparing analytical results with full-scale ambient vibration-

test results [1,3,7,8]; an excellent agreement was attained. The

effects of cable extensibility, tower stiffness, and suspended structure

continuity were closely examined by Abdel-Ghaffar [1].

In the 1980's, Abdel-Ghaffar and Rubin investigated the large ampli

tude geometrically nonlinear coupled vertical-torsional vibrations of

suspension bridges [10,11]. Their analysis involved a continuum approach

for the nonlinear free coupled vertical-torsional vibrations of suspension

bridges with horizontal decks. Approximate solutions to the nonlinear

coupled equations were developed using the method,of multiple scales (a

perturbation technique), and compared to direct numerical integration

of these equations of motion. The geometric nonlinearities included in

the analysis arose from the large deflections of the cables, the axial

stretching of the stiffening structure when hinges were immovable, and

the nonlinear curvature of the stiffening structure. The amplitude

frequency relationships were investigated, and the exchange of energy

between torsional and vertical modes closely-spaced in the frequency

domain was observed. It was found 'that the geometric nonlinearities are

only important under very high amplitude vibration. Therefore, in most cases,

a geometrically linear analysis is appropriate for suspension bridges.
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I.3. EARTHQUAKE RESPONSE ANALYSES OF SUSPENSION BRIDGES

During the last two decades, the seismic response of suspension

bridges, using the concept of a discrete spring-mass system as well as

the finite element approach, received considerable attention by Konishi,

Yamada, Takoaka, Kuribayashi, and other Japanese authors [43-49,51-57,86,89

101-106]. In their approach the authors separated the bridge into the

tower-pier system and the suspended structure system, each type of vibra-

. tion to be studied separately. Thus, the response analysis of the tower

pier system was made separately from the vertical and lateral response

of the suspended structure and cables by utilizing a partial model where

the tower and physically equivalent effects of cables were considered in

an approximately applicable manner. This enabled the response of the

tower-pier system, the most critical element in the suspension bridge,

to be examined more closely. For example, in 1969, Takaoka [86] examined

the effect of foundation flexibility upon the dynamic response of the

tower-pier. His results indicated that the flexibility of the foundation

is very important in designing the tower-pier system of long-span suspen

sion bridges that are founded on relatively soft soil. The flexibility

affected the natural frequencies and modes of vibration of the tower,

and increased the response bending stresses. In 1969, Konishi and

Yamada [45] also pointed out that the rocking motion of the pier has a

significant effect on the response stresses and bending moments in the

tower, and thus the estimation of properties of the soil underlying the

foundation is quite important. They suggested that if an accurate esti

mation of these soil properties is unavailable from field tests, a range

of values must be considered in the design process. In the analysis of

the response of the suspended structure and cables, Konishi and Yamada [43]
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assumed the ground motion as a simple harmonic, and applied this motion

to each support point (anchorages and tower-piers) separately. Since the

towers and anchorages are connected by cables, both acceleration and dis

placement ground motion inputs were needed. Phase differences of ground

motion at support points were accounted for by adding the response results

graphically to obtain maximum bending moments and maximum stresses. It

was found in both the vertical and lateral response studies that the

higher mode contribution to the bending moment was fairly significant,

that is, the inclusion of many modes was needed for an accurate determina

tion of the response of suspension bridges.

In 1969, Tezcan and Cherry analyzed the three-dimensional response

of suspension bridges to three orthogonal components of uniform earthquake

ground motion [87]. They concluded that the vertical vibration of the

tower and the longitudinal vibration of the bridge deck are small and

thus may be neglected. They considered the torsional vibration of the

bridge deck coupled with lateral vibration of the towers as well as the

vertical vibration of the bridge deck coupled with· the horizontal vibra

tion of the· towers in the longitudinal direction. In 1980, Irvine [40]

proposed a simplified formula to ca~culate the peak additional cable

tension that can be expected in a suspension bridge undergoing uniform

earthquake excitations. In his analysis, the inputs to the cable were

assumed in phase, so that the effect of longitudinal inputs cancelled each

other, and only vertical inputs remained. With the phasing of inputs not

considered, Irvine seriously underestimated the additional response cable

tension. Also, the effects of the stiffening truss as well as the tower

compliance were completely neglected in his analysis.
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Abdel-Ghaffar and Rood [14,70] presented a simplified analysis to

study the earthquake response of the suspension bridge tower using a

continuum model. Their study consisted of two parts: the free vibration

of the tower, and the earthquake response of the tower using selected

earthquake ground motions. Also investigated was the influence of the

suspended deck and the soil flexibility upon the alteration in modal

configuration of the suspension bridge tower. The response stresses,

displacements, and shear forces for the Golden Gate and Vincent-Thomas

bridge towers were determined for a simplified model fixed at the base,

using modal analysis, by both time integration and response spectra

techniques. High values of live load earthquake-induced stresses were

predicted by the simplified model. The main criticism of their method

lies in the averaging of the properties of the tower over its height

inherent in the continuum formulation as well as the neglect of the pier

foundation system. Usually, the properties of the tower vary considerably

over its height, and hence a finite element formulation would be more

appropriate. Also, the response was only evaluated for the fixed base

case; that is, the effect of foundation flexibility was not considered.

However, their study did show that the stresses expected in a suspension

bridge tower during a seismic event are to be considered significant

live loads in the design of such a structure.

1.4. MULTIPLE-SUPPORT SEISMIC INPUT PROBLEM

A common assumption in the usual treatment of earthquake excitations

is that the same ground motion acts simultaneously at all points of the

structure, which is equivalent to stating that the wavelengths of the

ground waves are long compared to the structure's dimensions. For a long
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extended-in-p1ane structure such as a suspension bridge, it is obvious

that the structure would be subjected to different motions at its founda

tions. Konishi and Yamada [43] realized this when they accounted for

phase differences at support points by graphically adding the results from

each input to obtain maximum bending stresses. This method was rather

crude however and the need to develop procedures capable of establishing

appropriate input motions and of dealing with multiple-support excitations

soon became apparent.

In 1965, Bogdanoff, Goldberg, and Schiff were among the first investigators

to consider the transmission time of a seismic disturbance in considering

the response of a long-span suspension bridge [29]. Their suspension

bridge model was a simplified spring-mass arrangement, and they analyzed

the random response in terms of extreme values, that is, in terms of

return periods and probabilities of survival. They utilized a random

input to the structure, which resembled a decaying sinusoid, and was

assumed to propagate from left to right at constant velocity. Thus phase

delays existed at the support points of the bridge (anchorages and tower

piers). The equations of motion of the structure were derived using

Lagrange's equations, with viscous damping included in the analysis. The

results of this response analysis showed that the transmission time,

and therefore the phasing of support motions, are very important in 10ng

span structures. Their results showed that compared with the case of

simultaneous support excitations, the propagating input resulted in a

much more severe response. Therefore, the transmission time of a seismic

disturbance cannot be ignored when considering the safety of long-span

structures.
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In 1976, Abdel-Ghaf~ar [2,4,17] studied the dynamic interaction, for

incident plane SH-waves, of a simple two-dimensional bridge model with the

soil half space. He found that the excitation of different modes of vibra

tion of the bridge superstructure depends on the relative phase of motion

for the two adjacent supports. Specifically, when two abutments move in

phase there is a tendency to excite symmetric modes of girder vibration,

and conversely, when the two abutments are moving out of phase the anti

symmetric modes are excited effectively. He also showed similar conclusions

by studying a simply-supported horizontal beam subjected to sinusoidal

motions of varying phase at its supports. Research work done by Masri

[59,60] on the response of beams and cooling towers to propagating bound

ary exci tations exhibi ted similar behavior.

In 1979, Werner, Lee, Wong and Trifunac [ 97-l00J developed methods

to analyze the three-dimensional response of simple bridge structures on

an elastic halfspace subjected to incident P-waves, S-waves, and Rayleigh

waves. Their results showed that the importance of traveling wave effects

upon the response, becomes more pronounced when the wavelengths of the

incident waves are equal to or less than the foundation dimensions. They

noted that non-vertically incident SH-waves lead to the torsional excita

tion of the structure, non-vertically incident P-waves and SV-waves lead

to rocking excitation, and traveling Rayleigh waves can excite all six

components of response. They also pointed out the lack of suitable record

ed strong-motion data necessary to speci£y spatially varying input motions

for seismic analysis, and the lack of available engineering guidelines for

assessing the behavior of structures subjected to traveling seismic waves.

They concluded that phase differences in the input ground motions applied

at the bridge foundations can have significant effects upon the bridge
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response, and that it is important to consider traveling wave effects

when designing earthquake resistant long-span structures, using real

spatially varying ground motion records as inputs.

In 1976, Baron, Arikan, and Hamati [24] analyzed "The Effects of

Seismic Disturbances on the Golden Gate Bridge." This report was intended

to supplement the studies made by the designers of the bridge. They

studied the response of the bridge to both uniform and propagating ground

motions. He utilized the 1952 records of the Taft earthquake and an

artificially-generated ground motion intended to be above 8.0 in Richter

magnitude. The artificially-generated earthquake was used for the

propagated ground motion, as well as a more basic type consisting of

three consecutive sine waves propagating at a constant speed. They per-

formed time-history and response spectra analyses for the uniform input

case and time-history analyses for the propagating cases, calCUlating

maximum values of response stresses for selected elements of the bridge.

These calculations indicated that certain elements of the bridge (notably

at the tower base) could be overstressed (exceed their yield value) dur

ing a strong earthquake (above 8.0 in Richter magnitude). Therefore,

the earthquake loading of suspension bridges is most important for design

purposes.

From the above-mentioned investigations it seems that the accuracy

of calculated response characteristics for long-span bridge structures

depends upon a sound knowledge of the expected ground motions at different

supporting sites. EarthqUake ground motions in the three orthogonal

directions of a long-span bridge may be transmitted to the superstructure

through the two tower bases (piers) and the two abutments or anchorages,

as illustrated by Fig. I-I for a suspension bridge. The bridge may be
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long with respect to the wavelengths of motion in the frequency range

of importance to its earthquake response. Because of this fact, differ

ent portions of the bridge can be subjected to significantly different

excitations, a problem not normally important for buildings. The

essential feature of this problem is that the motion at the supporting

points a given distance apart on the surface of the ground may receive

long period earthquake motions that are nearly equal, but experience

short period motions that are dissimilar and uncorrelated. In general,

the correlation of the motion at these support points (Fig. I-I) is

extremely complicated, particularly in the case of a long-span bridge,

with different foundation conditions, subjected to seismic waves with

different angles of incidence and different travel paths (reflections

and refractions, etc.). In that case, marked differences in amplitude

as well as phase could occur over distances of the order of a few wave

lengths of the motion. However, when the dynamic behavior of a bridge

structure subjected to multiple seismic excitations is investigated,

some types of correlational relations (based on real observations or on

reasonable assumptions) can be drawn between the seismic inputs.

For determining appropriate seismic. inputs to be used in earthquake

response analysis of these long structures, it may be suggested as a

first step to adequately assess the differences that might occur at

separate support points. First, the input motion has to be resolved

into its apparent horizontal velocity and wavelength along the line

determined by the points of concern. This resolution is necessary because

waves of the same propagational speed may have different apparent veloci

ties and wavelengths, depending on the angles of horizontal and vertical

incidence. Secondly, estimation of the frequencies at which the problem
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of phase and amplitude correlation may start to appear has to be made.

This is perhaps best approached by examining the relation between wave~

length and frequency (or period). For bridges located within the epi-

central region (approximately 10-15 miles from the epicenter) the exciting

shear motion comes directly from the fault slipping, while for bridges

at some distance from the epicenter the exciting shear motion could

result from propagating surface waves such as Love and Rayleigh waves;

Fig. I-2 shows the different particle (or ground) motions in a typical

earthquake. Assuming, as in the latter case, that the transverse support

motion is due to a shear wave propagating in a direction parallel to the

longitudinal axis of a long-span bridge (where particle motion is in the

transverse direction) the uniformity of the support motion becomes a

function of the span length as shown in Fig. I-3a. The shear wave veloc-

ity cs
in firm basement rocks ranges from 1000 to 2000 ft/sec, and the

pre90minant earthquake period T
s

causing maximum ground accelerations

lies between 0.2 and 0.5 seconds [75]. Hence the wavelengths of the

propagating waves (given by A = C T )
s s

are of the order of 200 to 1000 ft

for a reasonable uniform base excitation [71]; (i.e.,

and consequently for the case of earthquake motion approaching the bridge

parallel to its axis, a span of or less than say 50 to 250 ft is necessary

A
t(or t

l
) < 4)·

Thus, if one-fourth of a wavelength is taken as a characteristic length

beyond which significant differences in phase might occur, and if two

wavelengths are taken as a representative length beyond which the motion

may be poorly correlated in amplitude as well as phase (as suggested by

Jennings, Ref. 41), the following relations result:

t
2C

or and 4t
C

or (I-I)
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In ~ese relations, Te is the period in seconds beyond which phase

differences may be a prob~em, TA is the period beyond which amplitude

correlations may be weak, t (or ~l) is the separation distance of two

support points (center or side span length), and C is the horizontal

velocity of the assumed wave motion in the direction of concern.

An oblique angle of approach of a traveling shear wave, as shown

in Fig. I-3b, raises the possibility of phase differences in the trans

verse (lateral) exciting motion when one considers the magnitude of the

support length relative to the effective wavelength A/cos a in the trans

verse direction. Also, in such a case, as indicated by Fig. I-3b, longi

tudinal as well as lateral vibrations would be induced in the bridge.

Phase differences in the support motions (in both transverse and longi

tudinal directions) would considerably influence the nature of the dynamic

response of a bridge to an earthquake.

Based on the above discussion an effort may be made to consider the

following cases in defining the seismic inputs [19]:

1. Earthquake motion is idealized as a single (non-dispersive)

wave, propagating horizontally (as shown in Fig. I-3). In this

case the differences in excitation at two separate support points

are limited to differences in phase, and some amount of time

delay between the support points has to be considered.

2. Earthquake motion is idealized (as either a single or train of

wave(s» such that the effects of topography, different angles

of incidence, different travel paths and different local geology

conditions are considered. In this case, marked differences in

amplitude as well as phase are encountered. steady-state excita

tions with different amplitudes and phases at different support

points, could make a good approximation to examine this case.
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3. Statistical study of some existing strong earthquake ground

motion records is pursued in this analysis (by using time and

spectral analysis of classical random vibration theory). This

step clarifies the differences between ground motions at one

location and at another nearby (within the range of a bridge

span) from the viewpoint of the propagation, attenuation and

phasing of the seismic waves. And conditions are sought which

most fully "exercise" the given structure, given the basic

equation (or curve) spectra at the input points. The study

does however require knowledge of the absolute time of the

recorded traces to en~le accurate synchronization of accelero

graphs located at any distance so that exact phase relationships

can be established.

For a statistical description of appropriate ground shaking

at different supporting points, well-recorded earthquakes such

as the 1971 San Fernando (California) earthquake (M
L

= 6.3) and

the 1979 Imperial Valley (California) earthquake (M
L

= 6.6), where

numerous scattered records were recovered at different distances

from the causative fault, are utilized as demonstrated by Fig. I-4a.

Cross-correlation and cross-spectral density functions are produced

indicating the probabilistic character of the multiple-seismic

inputs of the earthquake problem. This procedure supports the

view that the most appropriate procedure for selecting design

earthquake ground motions is to extrapolate directly from com

parable recorded accelerograms, or to use artificially simulated

earthquakes conforming to the anticipated seismic exposure. In

this analysis the above computed curves are smoothed and then
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used in the earthquake response analysis. This family of curves

could also be useful for studying the response of other extended

structures, such as pipelines, power lines and large darns, to

earthquakes.

It should be noted that in all three of the above cases certain sophis

tications of the design inputs should be included to allow for several

parameters which, varying from site to site, could have a significant

effect on the reliability of the-proposed inputs; such parameters include:

surface waves, oblique transmission of waves through the soil, the effect

of reflection and refraction at the interfaces of different soil layers

(or deposits) underlying the structure, the source mechanism of the earth

quake producing the ground motion, the distance of the earthquake source

from the site, and the local geology conditions of the supporting site.

It also would be of use to statistically study the frequency of occurrence

of strong earthquakes in zones where a wide class of suspension bridges

are (or are planned to be) located. Even considering these factors, it

must be remembered that the design ground shaking will not by itself

predict how a specific suspension bridge will perform during a specific

future earthquake, but it can be helpful in realistically creating and

modifying the rules and regulations used in the design, strengthening or

repair of bridge structures.

I • 5 • SCOPE OF PRESENT STUDY

The present study intends to investigate (analytically and numerical

ly) the earthquake response of long-span suspension bridges when subjected

to mUltiple-support seismic excitations. For many types of structures,

the vertical component of ground motion may not be important; however,
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for long-span suspension bridges vertical ground motion is important in

itself as well as in its excitation of three-dimensional motion of the

bridge. Support motions applied in anyone of the three orthogonal

directions (see Fig. I-I) will generally yield dynamic forces about the

three axes of the bridge. For instance, the vertical component of ground

motion is likely to excite vertical, torsional and coupled flexural

torsional vibrations and possibly longitudinal vibration, while the trans

verse component is likely to excite lateral, torsional and coupled bending

torsional motion, and finally the longitudinal component is likely to

excite both vertical and longitudinal vibrations of the bridge. Factors

such as coupled vibration, multiple-support excitations, and long natural

periods of vibration all tend to increase the participation of a large

number of modes in the total response of the structure. An important

question to be answered in this proposed study is~ how many modes are

needed for a representative response of these flexible structures?

Another question: is the current response spectrum method of dynamic

analysis applicable in any sense to this problem and what is its range

of applicability? Also, the interaction of superstructure components

wi th each other and wi th the substructure will be studied.

The dynamic response analysis methodology is developed and refined

taking into account the different seismic inputs at the support points

of the bridge (anchorages and tower-piers). Appropriate ground motion

inputs are taken from existing ground motion records recorded at time

synchronized closely-spaced stations, such as the 1979 Imperial Valley

El Centro Arrays. The El Centro 1979 earthquake records were chosen

because the recording stations (or arrays) were closely spaced to each

other in the vicinity of the causative fault and were aligned approximately
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along and transverse to the fault. The 1979 earthquake, which is con

sidered to be the largest in California in the last quarter century,

generated the most comprehensive set of data on ground shaking yet

recorded from a damaging earthquake anywhere in the world (and can be

appropriately used for studies of multiple-supported and extended

structures). An equivalent seismic study of suspension bridges by

Stringfellow [85] investigated the effect of propagating ground motions

upon bridge response. In" the present study, different ground motions are

simultaneously applied at the bridge's support points, and the response

of the bridge is calculated.

In the definition of the three-dimensional suspension bridge struc

ture appearing in Fig. I-I, the main structural elements of the bridge

are the tower-piers, anchorages, cables, and stiffening structure. The

motion of a horizontal suspension bridge may be classified as vertical,

torsional, and lateral, as shown in Fig. I-5 [1]. In the vertical motion,

all points on a given cross section of the bridge move the same amount

in the vertical direction, and they remain in phase (Fig. I-Sa). In the

torsional motion, each cross section of the bridge rotates about an axis

which is parallel to the longitudinal axis of the bridge and which is in

the same vertical plane as the centerline of the bridge. Points on

opposite sides of the roadway move with equal displacements, but with

opposite phase (Fig. 1-5b). Finally, lateral motion involves the

pendular swinging of each cross section in its own vertical plane, with

an upward movement of the cables and suspended structure associated with

their lateral movements (Fig. I-5c).

As shown in Fig. I-I, the seismic inputs to the bridge are the three

orthogonal components of ground motion (vertical, transverse, or lateral,
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and longitudinal) occurring at each support point of the bridge (anchor

ages and tower-piers). It is very important to note that the motions at

each support point are different from each other because of different

foundation conditions, subject to seismic waves with different angles

of incidence and different travel paths. Therefore, differences in ampli

tude as well as phase could occur for any long-span structure, such as

a suspension bridge. Figure I-3 [19] shows, in a qualitative manner, the

phase differences which could arise from a shear wave traveling along

the longitudinal axis of the bridge or at an oblique angle to this axis.

It is seen that because the seismic wavelengths are of the same order of

length as the bridge span lengths, marked differences in phase occur at

the bridge's support pointso In addition to these phase differences,

one would also anticipate amplitude attenuation as well as differences

in frequency content due to faster attenuation of the high frequency

components of ground motion. Because of all these inherent complications,

it was decided that the utilization of real ground motions recorded at

separation distances consistent with the dimensions of a suspension bridge

would be most valuable for this tyne of extended structure. It should

be mentioned that although the analysis in this report deals most directly

with suspension bridges, the proposed methodology, when cast in its most

general sense, can be applied to any extended-in-plane lifeline structure.

For example, Iliescu [38] utilized some of these methodologies in

analyzing the Melloland Bridge, a fairly short-span highway bridge. In

this analysis the traveling wave effect was found to be significant upon

the response of this bridge, even with its relatively short-span length.

The study which follows develops methods to analyze the dynamic

response of suspension bridges to multiple-support seismic excitations.
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These methods are utilized to analyze the response characteristics of

three different suspension bridges: The Golden Gate Bridge in San Fran

cisco, California, a relatively long-span bridge; The Tacoma Narrows

Bridge in Tacoma, Washington, an intermediate-span bridge; and the

Vincent Thomas Bridge in Los Angeles, California, a relatively short-span

suspension bridge. The input ground motions utilized are mostly taken

from the 1979 Imperial Valley earthquake, from the El Centro Arrays which

are closely-spaced recording stations. In addition, selected responses

are calculated using 1971 San Fernando ground motion records, as well as

artificially-generated ground motions. for the sake of comparison.

As indicated previously, investigation of the earthquake response

of different members of a suspension bridge may be made in'separate parts.

Accordingly, the earthquake response analysis of suspension bridges may

be separated into the following sections:

i. Analysis of the Towers: An equivalent finite element model of

the towers, subjected to longitudinal ground motion at the base

will be developed and studied. The idealization of the tower

and its various components will take into account the effects

of substructures (pier systems), foundations and surrounding

soils to obtain an adequate description of the various types

of vibrations that can occur and to produce realistic results

consistent with the input ground motions.

ii. Analysis of Cables and Suspended structures: The coupled vibra

tional response of the cables and suspended structures to multiple

support excitations is considered; both an analytical model of
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continuous structure and a finite element model is analyzed.

For the general inputs, symmetric (or in-phase) and antisymmetric

(or out-of-phase) cases can be treated separately in the linear

analysis of the cables and suspended structures as shown in

"Fig. I-6, and the response of the structure can be obtained by

superposition of the response to each independent input. The

analytical approach (as a first step) is a reasonable way to

determine the importance of various parameters controlling the

bridge performance, to explore the critical requirements of"

analysis and design, and to pave the way for a more economical

and reliable use of the finite element technique.

The analysis developed here will provide a basis for establishing

new earthquake-resistant design criteria and acceptable damage levels for

a wide class of suspension bridges. Procedures for enhancing the seismic

resistance of existing bridges will also be discussed.

From the earthquake engineering and structural dynamics points of

view, the minimum number and proper location of permanent instruments to

record strong ground motion, on and in the vicinity of suspension and

cable-stayed bridges, is very important. Proper placement will yield

information about the response of the bridge components, the nature of

different modes of vibration and the coupling of these modes. Information

indicating the effects of soil-bridge interaction and, possibly, the damp

ing of the structure as well as the phase differences in the ground

motions at the piers and anchorages may also be obtained. Suggestions

regarding the type and ~ocation of strong-motion instruments best suited

for measuring earthquake response will be made, assuming both an ideal

set of circumstances and economic limitations.
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Fig. I-6. Symmetric and antisymmetric response studies.
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The report is divided into six chapters, the first of which is this

literature review and scope of work chapter. Some of the work appearing

in the following chapters have appeared in published form in less detail

than will be presented herein [see 12,15,16]. Chapter II deals with

the vertical vibration of suspension bridges to multiple~support seismic

e~citations. The equations governing the response displacement, moments,

stresses, and shear forces in the suspended structure, as well as the

vibrationally induced cable tension are presented in the time domain and

the frequency domain (using random vibration theory as well as convolu

tion integrals). The vertical responses of the three previously mentioned

suspension bridges are calculated in the time domain and are compared to

the root mean square frequency domain results in order to ,estimate an

appropriate peak factor for the vertical vibration problem. Chapter III

investigates the torsional response of suspension bridges to the multiple

support rotational and torsional components of ground motion. A proced

ure is proposed for estimating maximum torsional and rotational components

of ground motion from the corresponding three orthogonal recorded trans

lation components. The torsional response of the suspended structure of

the Golden Gate Bridge is calculated in the frequency domain as well as

the torsionally induced vibrational cable tension, and an appropriate

peak factor is utilized to estimate the peak torsional displacements,

stresses, and cable tensions. Chapter IV investigates the lateral

response methodology of suspension bridges to multiple-support excitations.

Equations governing the lateral displacement of the cables and suspended

structure, and laterally induced stresses, moments, and shear forces

in the suspended structures, as well as cable tensions, are presented

in the time and frequency domains. Peak responses for the Golden Gate
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Bridge are calculated in the time domain and are compared to the root

mean square results in order to estimate an appropriate peak factor

for the lateral vibration problem. Chapter V concentrates on the

longitudinal response of the Golden Gate's San Francisco tower-pier.

The analysis methodology proposed is quite general, and includes the

effect of surrounding water, and the flexibility of the soil underlying

the foundation, and its associated geometric and hysteretic damping.

The soil parameters are varied in order to observe the effect of soil

flexibility upon the tower-pier response, which is again calculated

in both the time and frequency domains.
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CHAPTER II

EARTHQUAKE-INDUCED VERTICAL VIBRATIONS

OF LONG-SPAN SUSPENSION BRIDGES

II.l INTRODUCTION

As mentioned previously in Chapter I, the design of a suspension

bridge for a region where severe earthquakes may be expected is a problem

which has received little study to date. The relatively flexible and

extended-in-plane configuration of such a structure makes it susceptible

to a unique class of vibration problems. The fundamental period of vibra

tion of the suspension bridge may be quite long, and thus it may be

necessary to include a relatively large number of modes of vibration in

order to obtain a reasonable representation of the total response. In

addition, several of the bridge's natural frequencies may be closely

spaced, hence the dynamic analysis must include the possibility of inter

action among the various modes. The suspension bridge is excited by

ground motion at each of its support points (anchorages and tower-piers) •

In addition, the vertical (or flexural) vibration of the cable-suspended

structure turns out to be excited not only by vertical ground motions at

each of the bridge's supports, but by longitudinal motions at its anchor

ages as well (as will be shown later).

The accuracy of calculated response characteristics for a long-span

bridge depends upon a sound knowledge of the expected gnound motions at

its support points as well as a solid understanding of the mathematical

Preceding page blank
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theory of suspension bridges. The bridge may be long with respect to

the wavelengths of ground motion in the frequency range of importance to

its earthquake response. Because of this fact, the support points of

the bridge can be subjected to sign~ficantly different excitations. For

such a complicated problem in which a number of excitations act together,

the complication does not arise simply from the added number of excitations,

but from the possibility that the different excitations are in some way

related, so that their correlation (or interaction) must be taken into

account. In general, the correlation of the motions at these support

points is extremely complicated, particularly in the case of a long-span

bridge, with different foundation conditions, subjected to seismic waves

with different angles of incidence and different travel paths (reflections

and refractions, etc.). However, such complications may be surpassed by

utiliZing existing strong motion records to define representative and

appropriately-correlated multiple-support seismic inputs. Some of the

ground motion records taken from the Imperial Valley (El Centro), Califor

nia, earthquake (~ = 6.6) of October 15, 1979 are utilized predominantly

in this chapter to define the input support motions. However, for com

parison purposes, some ground motions recorded during the 1971 San

Fernando earthquake (~ = 6.3) are used as inputs at one point in the

chapter, and artificially generated earthquake ground motion records are

used as inputs at another point in the chapter [12]. It should be noted

that both the El Centro and San Fernando ground motion records were

recorded at instrument locations whose horizontal separation distances

are consistent with the suspension bridge's in-plane dimensions.

The usual methods of dynamic analysis involve response calculations

in either the time or frequency domains. The analysis presented herein
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includes both methodologies as well as a response spectra approach (which

is based upon the summation of modal maxima obtained by time domain analy

sis). The frequency domain (random vibration) approach is seen to have

the following advantages over the time domain:

1. The frequency domain has a computational advantage, since it is

based upon product terms instead of convolution integrals as

required in time-history analysis.

2. The frequency domain provides a clear picture of the contribution

of each mode to the total response.

3. The effects of input correlation are more easily isolated in the

frequency domain.

4. The effects of modal interaction (due to closely-spaced modes)

are more easily handled in the frequency domain.

5. The state of the art in utilizing ground motion records is moving

toward emphasis upon frequency content, in terms of Fourier

amplitude spectra, power spectral density functions, etc.

Along with its advantages pointed out above, the frequency domain

does have a disadvantage in that it results in the prediction of root mean

square (RMS) response values rather than the peak responses which are vital

parameters for the designer. However, peak responses may be related

statistically to the root mean square values bya peak factor which is

obtained through an approximate solution of the so-called "first passage

problem." So it seems that the frequency domain provides for a clearer

understanding of the various factors affecting the response.

As was mentioned previously in Chapter I, it was found (1,5)

that suspension bridge vibration can be separated into two parts. In one

part, the vibration of the tower-pier system is dominant, while in the
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other part, the suspended structure vibration dominates. The vibration of

the suspended structure may be further decomposed into its vertical (or

flexural) motions, torsional motions, longitudinal motions and lateral

motions. In this chapter, the dynamic analysis methodology for the

vertical vibration of suspension bridges subjected to multiple-support

excitations is outlined. Calculation of vertical response displacements,

stresses, shear forces, and dynamically induced additional cable tensions

are examined in both the time and frequency domains. . Available methods

for estimating the expected peak response values from the frequency domain

root mean square results are reviewed, and finally the method for estimat-

ing vertical response using a response spectra approach is presented.

II. 2 • COORDINATE SYSTEMS OF THE BRIDGE MODEL

The coordinate systems used for the typical three-span suspension

bridge is shown in Fig. 11-1. For the purpose of stUdying the vertical

vibration, the following is considered [1]:

1. For the cable, the X.-axis of the
~

.th
~ span is defined as the

horizontal line passing through the left support of each span

shown in Figure II-I, while the cable ordinate Yi , of the .th
~

span is measured downward from the closing chord of each span

(the closing chords are shown dotted in Fig. II-I).

2. For the stiffening structure (girders or trusses), the x.-axis
~

of the i th span is defined along the centerline of the span

with the origin located at the left support of that span.

3. The vertical vibration v. (x. ,t) of each span is measured down
1. ~

ward from the centerline of the stiffening structure.
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4. As will be shown at a later point, the vertical vibration is

excited not only by vertical ground motion at the bridge's

support points, but by longitudinal motion as well. In Fig. II-I,

the vertical ground motions at supports A, B, C, and D (anchorages

and tower-piers) are denoted flet), f
2

(t), f
3

(t), and f
4

(t)

while the corresponding longitudinal motions are denoted fS(t),

II.3. FUNDAMENTAL ASSUMPTIONS

The following assumptions and approximations are made for the purpose

of simplifying the vertical vibration analysis [1]:

1. All stresses in the bridge remain within the elastic limit and

therefore obey Hooke's law.

2. The initial dead load is carried by the cable without causing

stress in the stiffening girders (or trusses) •

3. The stiffening structure in the . th
J. span is hinged at both ends,

while the cable is continuous over all three spans.

4. The cables are of uniform cross section and of parabolic profile

under dead load, and are roller supported at the tower tops.

5. The cables are assumed to be perfectly flexible, that is the

flexural stiffness of the cables can be neglected.

6. The suspenders (or hangers) are considered inextensible and are

assumed to remain vertical during vertical vibration. Therefore

the vertical displacement of the cable and the stiffening

structure are identical.

7. The vibrational suspender forces are considered as distributed

loads as if the distance between the suspenders are very small.
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Thus the suspenders form a continuous sheet or wall without

shearing resistance.

8. TO stay within the linear theory, small vibrational displacements

are assumed.

9. The tower-piers move as rigid bodies under ground motion excita-

tion. This is a reasonable first assumption to investigate

vertical vibration because the tower-pier is much stiffer than

the suspended structure.

10. The initial curvature of the stiffening structure is considered

small in comparison with the cable curvature, and is therefore

neglected.

11. The mass and elastic properties of the bridge can be taken as

uniform along each span.

II.4. EQUATIONS OF MOTION GOVERNING EARTHQUAKE-INDUCED VERTICAL VIBRATION

span of a suspension

Under the previous assumptions, the linearized equation of

.th
~motion governing the vertical vibration of the

bridge is given by [1,2]:

* 2 4 2 *Wi a Vi aVi a v. a v. w.
E.I.

~
H --~- + H~ H(t)---+ c. --+ ---

g at2 ~ at 1. 1, 4 w a 2ax. x. w
~ 1.

0, i 1,2,3 (2.1)

.th *where v. = v. (x. , t) is the vertical response of the 1, span; w. is
1. ~ l. ~

the dead weight of the bridge per unit length of the .th
E, and1. span;

1.

I. are respectively, the modulus of elasticity and moment of inertia of
1.

th ,th 'ff'e 1, st~ enl.ng structure; g is the gravitational acceleration

constant; c.
1.

is the vertical damping coefficient in the 'th1. span;

H is the initial (dead-load) horizontal component of cable tension; and
w
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R(t) is the additional (vibrational) horizontal component of cable tension

given by [1,2]

R(t}
E A 3

= -2-.£ I
LE i=l

~ (x. ,t)Cc ~

dy.
~

+ dx v.
• :1.

:1.

V.dx~
:1. ~

(2.2)

in which E is the cable's modulus of elasticity; A is the cable's
c c

cross-sectional area; Uc is the longitudinal cable displacement at the

tower tops and anchorages; R..
:1.

is the length of the .th
:1. span; is

the cable's virtual length defined as [1,2]

dx.
:1.

(2.3)

where s. is the coordinate measured tangent to the cable in the
:1.

.th
1.

span; and y. = y. (x.) is the cable ordinate measured from the closing
1. :1.:1.

chord of the i th span (Fig. II-I). This dead-load cable profile is

expressed as [1,2]

*

U:~J [:~JJw.R..
Yi (xi)

:1. :1.
i 1,2,3, (2.4)= =2Hw

It should be noted from Eqs. 2.1 that the vertical vibrations of each

span of the suspension bridge are coupled together by the vibration of

the cable through H(t). Also, the boundary conditions at the tower-

piers and anchorages are time-dependent and can be written as

v. (O,t) = f. (t)
:1. :1.

v."(O,t) = 0
:1. .

v."(R., ,t) = 0
:1. :1.

i = 1,2,3 (2.5)
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where f.(t), (i = 1,2,3,4,), are the vertical ground displacements at
~

supports A, S, C, and D of Figure II-I. Note that the double prime denotes

differentiation with respect to x .•
~

Also note, by using Eqs. 2.4 and

2.5, the first two terms of Eq. 2.2 can be written as

3

I
i=l

u (x. ,t)
c ~

3

I
i=l

and

(2.6)

3 dy. I~iL dx~ v. (x. ,t) =
i=l i ~ ~ 0

3

L
i=l

*w.~.
.2:.-!.'[f. (t)
2H ~+l

w
+ f. (t) ]

~
(2.7)

where f.(t), (i = S,6,7,8) are the longitudinal components of ground
~

motion at supports A, S, C, and D of Fig. II-I. Therefore, the additional

horizontal component of cable tension (Eq. 2.2) becomes:

'I ~ t

E A 3 w. i
H ( t) = -£...£ I .2:. J

LE i=l Hw 0

:.~. 1
Vidxi - 2~w~(fi+l(t) + fi(t)~

+ (f.(t) - f 5 (t»1 (2.8)

From Eqs. 2.1 and 2.8 it can be seen that the bridge's vertical

motion is excited not only by the vertical ground input motions fl(t),

f 2 (t), f 3 (t), f 4 (t), but also by the two longitudinal ground displace-

ments at the end anchorages, fS(t) and f 8 (t). Furthermore, the

additional horizontal cable tension is not only a function of the response

~(x.,t) but it is also a function of the input ground displacements at
~ ~

the supports of the bridge.
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II. 5 • GENERAL SOLUTIONS

In order to conveniently satisfy the time-dependent boundary condi-

tions (Eqs. 2.5) the Mindlin-Goodman solution is adopted [14], that is,

the vertical displacement is separated into two parts

4
v.(x.,t} = Tl.(x.,t} + l: g .. (x.}f.(t}, i = 1,2,3,

1 1 ~ 1 j~l J1 1 J
(2.9)

where is the relative or vibrational vertical displacement of the

i th span and g., (x.) are the quasi-static (or influence) functions which
J1 1

give the vertical displacement at

of the suspended structure at the

x. due to a unit vertical displacement
1

.til
J support.

Substituting Eqs. 2.9 into Eqs. 2.1 and 2.8 gives the following

equation governing the vibrational response:

* 2w. a n.
..1:.~_1_ +
9 3t2

2
3 n.

1

2ax.
1

4
- c. l g . . (x. ) f . (t)

1 j=l J1 1 J

*w. 4
_.2:. I goo (x.)f.(t)

g . 1 )1 1 J
J=

*w. E A
1 C C---

*
E A w. [ 3c C 1 \'+-- LL H

E w m=l

*w R,
m mr

'2H"'-fm+l (t)
w
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4
4 2d g .. (x.) dg .. (x.)

l. f. (t) IE.! JJ. J.
- H

J1. l.

J 1. 1. 4 w dx~j=l dx.
J. 1.

* * (n g. (x )dx Iw.
[E'cj

3 w
+~ I H

n i==1,2,3, (2.10)H o In n nw n=l w

Substituting Eq. 2.9 into Eq. 2.5, the boundary conditions upon the

vibrational response become

n.(O,t)
J.

4
= f. (t) - Y. g .. (0) f. (t)

1. j~l J1. J

n. (.R.. , t)
1. J.

4

= fi+l(t) - I
j=l

g .. (.R..a.(t)
J1. 1. J

n'.' (0, t) =
1.

4

I
j=l

g'~. (O)f.(t)
J1. J

i=1,2,3 (2.11)

n'.' (.R. . , t)
1. 1.

4

= - I
j=l

g'~. (.R..) f. (t)
J1. 1. J

The above boundary conditions can be made homogeneous by choosing

g .. (0)

~
= 1 j = i

J.1.

= 0 j ~ i

!gji(2i)} = 1 j = (HI)

)
j=1,2,3,4,

= 0 j ~ (HI)

i=1,2,3,

g'! . (0) = gji (\) = 0 for all i,j
J1.

(2.12)

Now the quasi-static functions are the solutions of the twelve dif-

ferential equations represented by setting the last bracketed term in

Eq. 2.10 to zero (for i=1,2,3 and j=1,2,3,4) subject to the boundary

conditions of Eq. 2.12. These functions have the following form
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2
g .. (x.) = A.. sinh (A.x.) + B .. cosh (A.x.) + C .. x. + D .. x. + E ..
J~ ~ J~ ~ ~ J~ ~ ~ J~ ~ J~ ~ J~

where A. = IH IE.I.
~ w' -J. J.

i=1,2,3,

i=1,2,3,

j=1,2,3,4, (2.13)

(2.14)

and the coefficients A .. , B .. , C .• , D .. ,
JJ. J~ J~ J~

involving the bridge'~ structural properties.

found in Appendix II-a.)

and E.. are constants
J~

(Solution details are

With the quasi-static functions uniquely defined, Eq. 2.10 reduces to

'* 2w. d n.
~ ~---+

g dt2 H
W

2a n.
J.

2dX.
J.

4
- c. L g .. (x.)f.(t)

J. j';'l J~ J. J

'*
w. (E A)- ..2:....£..£ [f (t)
H

w
· ~ 8

n (x ,t)dx Jm m m

'*w. 4
_..2:. l g .. (x.)f. (t)

g j=l JJ. J. J

3

L
m=l

*w i
mm

2H
w

i=1,2,3 (2.15)

and the boundary conditions upon the vibrational response n
i

(xi,t)

become homogeneous, that is

n. (0, t) = n. (i. , t) = 0
~ J. ~

n~(o,t) = n~(i.,t) = 0
J. J. J.

i=1,2,3
(2.16)
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Note that the equation governing the vertical vibrational response (Eq~

2.15) is excited by vertical ground accelerations, velocities and displace-

ments at the anchorages. Although, as indicated by Baron, et al [5], the

contribution to the total response from velocity (damping) terms is often

small when compared to that of the acceleration and displacement terms,

the velocity terms are included in this analysis for completeness.

II.6. EIGENVALUE PROBLEM - FREE VIBRATIONS

The solution to Eq. 2.15 is obtained by modal superposition, that

is the vibrational displacement is taken to be

n. (x. ,t) =
~ ~

00

1:
n=l

<P . (x. ) q (t)
n~ ~ n i=1,2,3 (2.17)

where <p. (x. )
n~ ~

is the thn vertical vibration mode shape in the .th
~

Thegeneralized coordinate.th
nis theq (t)

n

mode shapes and their associated natural frequencies are derived from

span of the bridge and

Eqs. 2.15. With damping and forcing terms set to zero, Eqs. 2.15 become:

* 2w. d n.
~ ~---+

g dt2

4
d n.

~E.l. -4--
~ ~ ax.

~

H
w

2a n.
~

2ax.
~

3*w. [E A
+ H~ ~ C I

w E m=l

* R,

:m J m n (x ,t)dx ] = a
w 0 m m m

i=1,2,3, (2.18)

The thn mode shape and natural frequency, w ,
n

is obtained by

assuming the vibration to be sinusoidal, that is

n.(x.,t)
J J

iw t
n= <P • (x.) e

nJ J
j=1,2,3,

n=1,2,3, •••
(2.19)

in which i = ;.:r-..
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Substituting Eqs. 2.19 into Eqs. 2.18 results in

d4q> . d2q> • * 2 *H w.w w. i=1,2,3,nJ. w nJ. J. n q> + J. H 0-- =4 E.I. 2 E.I.g ni E.I.H n ri=1,2,3, •••dx. ]., J. dx. J. J. J. J. WJ. J.

where the additional horizontal component of cable tension associated

(2.20)

with the thn mode shape, H ,
n is given by:

E A 3
H c c I

n = r:;- j=l
q> •(x.) dx .
nJ J .J

n=1,2,3, ••• (2.21)

The boundary conditions for each mode shape are similar to Eqs. 2.16,

that is

q> • (0)
nJ.

q>", (0)nJ.

= q>ni (t i ) = 0

q>",(t.) 0
nJ. J.

i=1,2,3

n=1,2,3, •••
(2.22)

Because H is independent of x, and may be treated as a constant,
n J

Eqs. 2.20 represent linear, ordinary differential equations of fourth

order with constant coefficients. The general solution of Eqs. 2.20 can

be expressed ~s

[
l1. x .]n.. ( ) A . J.J.

~ni Xi = i sJ.n~ + B,
J. J.

[
l1. X .]

cos ~.J. + CiJ.
[
V. X.]

sinh ...1:..1:.t.J.

* -
[Voxo] w.H

+ D. cosh ~,J. + J. n
J. m.H W

2
J. J. W n

*where m. = w./gJ. 1.

./1/2lli = e. (z. - 1)
1. 1.

V. = 11/2 e. (z, + 1)J. 1. 1.

i=1,2,3,

n=1,2,3, •.•
(2.23)
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~ [4E.I.m. J 2J. ]. J.
Z. = + W

J.
H

2 n
w

H R,~
e. w J.=

J. E.I.
:L J.

n=1,2,3, •••

i=1,2,3,
(2.24)

B. ,
J.

c. ,
J.

and D. are arbitrary constants which are deter
J.

mined in conformity with the boundary conditions (Egs. 2.22).

At this point, it is convenient to separate the investigation of

the symmetric vertical modes from that of the antisymmetric vertical

modes, that is, the problem can be divided into two parts:

1. The symmetric vertical modes of vibration in which there are

an even number of internal nodes along the center span. Here

the additional cable tension, H ,
n

is nonzero, that is, the

center and side span vibrations are coupled through the vibra-

tion of the cable.

2. The antisymmetric vertical modes of vibration which result in

an odd number of internal nodes along the center span. Here

the additional cable tension, H ,
n

is zero, that is, there is

no interaction between the center span and side spans.

The symmetric vertical modes are of the form (see Appendix II-b for

details) :

* -
w.H IJ. n

epni (xi) = ---..;;;;.....;;,;~2 2zi -
2m.H Z.W

J.wJ.n

i=1,2,3,

n=1,2,3, ••. (2.25)
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where the natural circular frequencies,

ing the transcendental equation

w ,
n are determined by satisfy-

LE--=E A
c c

(2.27)

In this report, the modes are normalized so that their highest ordinate

has a unit magnitude.

The antisymmetric vertical modes of vibration involving the center

span are (Appendix II-b)

. m'lfx2= sJ.n-
~2

m=2,4,6 ••• (2.27)

having associated natural circular frequencies

m=2,4,6 ••• (2.28)

The antisymmetric vertical modes of vibration for the side spans

are (Appendix II-b)

(
m7Tx.J

= sin T-J
J

m=l,2,3, •••

j=1,3,

(2.29)

having associated natural circular frequencies

W. = (~~)2
Jm J

H ~~
w ]

2 2
m.m 'If

J

m=1,2,3, •••

j=l,3 (2.30)
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II.7. MODAL SOLUTION - FORCED VIBRATIONS

Substituting Eq. 2.17 into Eq. 2.1S results in

'"w. co

g~ n~l ~ni(xi)~(t) + ci

co

L ~. (x.)q (t)
n=l n~ ~ n

+ E.I.
l. ~

0<) ClO

L ~I~(x.)q (t) - H L
n=l n~ ~ n w n=l

~". (x.)q (t)
nJ. J. ""n

- C.
J.

4

I
j=l

g .. (x.)f.(t)
]J. J. ]

'"w. 4
g~ L

j=l
g .. (x. ) f . (t)

]J. J. J

'"
w. (E A)

- ..2-- -£...£ [f (t) f (t)]
H

w
L

E
8 - 5

*3 w ~

\ m m [f l(t) + f (t)]t. 2H m+ m
m=l w

i=1,2,3 (2.31)

Using Eqs. 2.20 and 2.21, the previous equation can be simplified to

*w.
gJ. I

n=l
~.(x.)q(t)

nJ. J. n
+ C.

J.

00

I
n=l

~ . (x.)q (t)
nJ. J. n

*
w~ co 2

+ ~ L w ~ . (x. ) q ( t) =
g n=l n nJ. J. -n

- c.
J.

4

L
j=l

g .. (x.)f. (t)
]J. J. J

*w. 4
J. L g .. (x.)f.(t)

g j~l )J. J. )

i=1,2,3

*
w. [E AJJ. C C

- ------ [f (t) - fS(t)]
H

w
L

E
8

3 : ~
\ m m
t, ~[fm+l (t) + f (t) J

m=l w m

(2.32)
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<P .(x.),
IIU. ~

integrating over the i th

span (from zero to i. )
~

and summing over all three spans (i=1,2,3).

gives the equation governing the response of the

coordinate

thn generalized

q (t) + 2~ w q (t) + w2q (t)
n n n n n n

4
= eo I R. [2~ w f.(t) + f.(t)]

j=l In n n J J

n=1,2,3, ••• (2.33)

where ~n is the damping ratio of the th vertical mode~n

E A g
c c (2.34 )Ct =

LEHw

*w.i.
t3i

~ ~ i=l,2,3 (2.35)=--2H
w

and R. and P are modal participation coefficients given by
In n

R .. = [.I ;;. Jii g .. (x.)</> . (x.)dx.1/[ I ;;. f~i
Jn i=l ~ 0 J~ ~ n~ ~ iJ i=l ~ 9

p = [I ;;. Ji i <I> • (x. ) dX.J I [r
n i=l ~ 0 n~ ~ ~ i=1

j=l,2,3,4,

n=1,2,3, •••

i. J;;. f ~. <I>
2

. (x. ) dx.
~ 0 n~ ~ ~

n=1,2,3 •••

(2.36)

(2.37)

Note that in the derivation of Equation 2.33, modal orthogonality was

utilized (the details appear in Appendix II-c), that is
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* t.
3 w. f J.\' -!.l. ep . (x.)ep . (x.)dx. = 0

i=1 g 0 n1, 1, mJ. 1, 1,
for m:t n (2.38)

The solution to Eq. 2.33, assuming quiescent initial conditions, is

given by the convolution integral

q (t) 1 .Jt
n = Wnd 0 1[- 2~ W

n n
I R. f. (T~

j=l In J J [

4
- I

j=l

1
_.; W (t-T) ~n n

e sin Wnd(t - T) dT n=1,2,3, ••• (2.39)

where is the damped natural circular frequency of the
th

n vertical

vibration mode, given by:

W = W h _.;2
nd n n

n=1,2,3 ••• (2.40)

The total vertical displacement response is obtained

as the sum of quasi-static and relative responses, that is:

v. ex. ,t) =1, 1,

4 00

L goo (x.)f.(t) + I <I> • (x.)q (t)
j=l J1, 1, J n=l n1, 1, i1

i=1,2,3, (2.41)

The total dynamic bending moment in the i th stiffening structure

may be calculated as

M. (x. ,t)
1, 1,

=E.I.[I g':.(x.)f.(t)+ I <I>".• (x.)q(t0
1, 1, j~l J1, 1, J n=l n1, 1, n J i=1,2,3 (2.42)

where g':. (x.) and <1>". (x.) are the second spanwise derivatives of theJ1, 1, n1, 1,

quasi-static functions and mode shapes, respectively.
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Similarly, the total-dynamic shearing force in the i th stiffening

structure may be calculated as

V. (x. ,t)
~ ~

= E.I.[ I g~~'(x.)f.(t)
~ 1 j~l J1 1 J

+ I <P' ~ I (x.)q (t~
n=l n1 1. -n ]

i=1,2,3, (2.43)

where g~!' (x.) and <P'~'(x.) are the third spanwise derivatives of
J~ 1 nJ. ~

the quasi-static functions and mode shapes, respectively.

Furthermore, the dynamically-induced stresses in the chords of the

'th
1. stiffening structure a. (x. ,t)

J. 1.
may be calculated using the flexural

stress relation

d.
1.

(J, (x. ,t) = -21 M. (x. ,t)
1. 1. ..1. J.

1.

i=1,2,3, (2.44)

where d. is the depth of the stiffening structure in the i th span of
1.

the bridge.

II.8. FREQUENCY DOMAIN RANDOM VIBRATION APPROACH

Because of the advantages of frequency domain analysis pointed out

in Section II.l, a random vibration frequency-domain approach is used

to study the dynamic behavior of long-span suspension bridges when sub-

jected to multiple-support earthquake excitations. For the six displace-

ment inputs, there are six complex frequency response functions. To

determine these functions, each f. (t) ,
J

(j=1,2,3,4,5,8), is taken equal

coordinate excited by the

to exp(iwt), where i =1=1 ,
.th
J

th
and the response of then generalized

input motion is assumed to be of the form:

q .(t) = H . (w)exp(iwt)
"nJ nJ

n=1,2,3, •••

j=1,2,3,4,5,8. (2.45)
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nJ

is the

65

thn complex frequency response due to input displace-

ment f.(t) at the support (see Fig. II-I). Now substituting Eq. 2.45
J

into Eq. 2.33 yields

[(R. w2 + y.P a) - i(2~ W WR. )]
H . (w) = _--""-J.;.;n-:--_......"..J"--n n.....;n~...Jc.;;.n~

nJ [(w2 _ W2 ) + i (21; W W)]
n n n

±P a
H • (W) = _-::-_-:::n~ _

nJ [(w2 _ W2 ) + i(21; W W)]
n n n

where
*

1\
wl.R.1

Yl = =--2Hw

* *
Y2 f\ + 132

wl.R.1 w2.R. 2
= =~+2H

w w

* *
132 + 133

w2.R. 2 w3.R.3
Y3 = =-+--2H 2H

w w

*
133

w3.R.3
Y4 = =--2H

w

j=1,2,3,4.

n=1,2,3, •••

j=5(+)

j=8(-)

n=1,2,3, •••

(2.46)

(2.47)

(2.48)

Taking the finite Fourier transform of Eqs. 2.17 over the duration

of the ground displacement, Tl , yields the Fourier transform of the

vibrational response:

r (x. ,w)
~

00

= l:
n=l

-iwtn(x. ,t)e dt
~

ep • (x. ) 0 (w)
n~ ~-n

i=1,2;3, (2.49)
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where Q (w) is the finite Fourier transform of the generalized coordinate
n

q (t) given by:
n

n=1,2,3, ••• (2.50)

A similar Fourier transformation of Eq. 2.33 yields

where F. (w) is given by:
In

4,5,8
I

j=1,2,3,
F. (w)

In
n=1,2, 3, • 0 • (2.51)

F. (w)
In

2
[(R. W + Y.P a.) - i(2s W WR. )]F.(W)

In J n n n In J

j=1,2,3,4

n=1,2,3 •••
(2.52)

F. (w) = ± (P a.) F . (w)
In n J

j=5(+)

j=8(=)

n=1,2,3,o ••

(2.53)

in which F. (w) is the finite Fourier transform of the input ground
J

displacements f. (t) ,
J

(j=1,2,3,4,5,8), given by:

Tl .

f -~wt
F . (W) = f . (t) e dt

J 0 J
(2.54)

It follows from equations 2.46, 2.47, 2.51, 2.52 and 2.53 that the

Fourier transform of the generalized coordinate can be expressed as:

n=1,2,3, ••• (2.55)

where {H (W)}T denotes the transposed complex frequency response vector
n

given by:
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and {F (w)'} is the Fourier transform vector of the ground-displacement

inputs given by:

{F(W)} ::::

F
l

(w)

F2 (W)

F 3 (W)

. F4 (W)

FS(W)

Fa(W)

(2.57)

Now substituting Eg. 2.55 into Eg. 2.49 enables the Fourier trans-

form of the vibrational response to be expressed as:

00

f(x.,w) =
~

I
n=l

i=1,2,3, (2.58 )

The power spectral density of the relative (or vibrational) response

is given by:

lim 2 *
T

-l>OO -T E [r (x. ,w) r (x. ,w) J
1 1 ~ ~

i=1,2,3, (2.59)

where E[~J represents the expected value of the term inside the brackets,

and the superposed asterisk denotes complex conjugate. An estimate of

Gn can be obtained by simply omitting the limiting and expectation

operations in Eg. 2.59, hence:

2 *Gn(Xi ,w) ::: T r (x. ,w) r (x. ,w)
1 ~ ~

i=1,2,3 (2.60 )

Substituting Eg. 2.58 into Eg. 2.60 yields

00 00

L I $ . (x.)$ . (x.){~ (W)}T[Gff(W)J{H (w)} i=1,2,3. (2.61)
n=l m=l n~ 2 m2 2 .n m
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wher~ any element of the 6x6 spectral matrix of correlated ground-displace-

ment inputs, [Gff(W)], is defined by

. G. . (w) = R.im T2 E[F.(W)F.(W~ ~: ;.(W)F.(W)
1J Tl~ 1 1 J ~ 1 1 J

i,j=1,2,3,4,5,8 (2.62)

The diagonal elements of the matrix [Gff(w)], i=j in Eq. 2.62,

correspond to the power spectral density of the j th displacement input,

f.(t), (j=l,2,3,4,5,8), while the off-diagona~ elements of the matrix
J

[Gff(W)] correspond to cross-spectral densities between the various

input displacements. These cross-spectral terms are present because the

various ground motions originate from the same source and are therefore

related in some way, so that their correlation (or interaction) must be

taken into account. The effect of input correlation upon the vertical

response may be examined quite easily using Eq. 2.61. If the inputs are

assumed to be uncorre1ated, that is, independently applied and unrelated,

Eq. 2.61 reduces to

G ex. ,(0) =n 1

00 00

l L
n=l m=l

<P • (x. ) <P • (x. )
n~ 1 ~ 1

4,5,8

[ 1.
j=1,2,3,

(~ • (W» (H • (w) )G. (w)l
nJ mJ J J

i=1,2,3 (2.63)

in which G.(w) is the power-spectral density of the input displacement,
J

f.(t), which is estimated as
J

G. (w) ::: T
2 IF. (w) 1

2

J 1 J
j=1,2,3,4,5,8 (2.64)

In this uncorrelated case all the off-diagonal of the input matrix are

equal to zero. The results of Eq. 2.61 can be compared to those of

Eq. 2.63 in order to gain a better understanding of the effects of input

correlation upon the response calculations. An alternate interpretation
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of the correlated and uncorrelated ground motion inputs will be presented

in the next section (II.9).

The second characteristic feature of Eg. 2.61 involves the double

summation over the vertical modes and their associated complex frequency

response functions. It should be noted that the complex frequency-response

functions H .(w) peak in amplitude at their associated natural frequen
nJ

cies wand have much lower amplitudes elsewhere along the frequency
n

band. Therefore, when the natural frequencies of vertical vibration are

well separated and damping ratios are small, the effect of the cross-

terms (n ~ m) in Eq. 2.61 becomes much less significant than the diagonal

terms (n = m) [9]. Under these circumstances, the double summation may

be replaced by a single sum, that is:

00

n~l ~~i(Xi){~n(W)}[Gff{W)]{Hn(W)} i=l,2,3. (2.65)

However, due to the flexible nature of the suspension bridge, closely

spaced modes are quite likely to occur. Under such circumstances the

effect of the cross terms (n ~ m) are no longer negligible and an

accurate representation of the response would have to include these modal

interaction cross-terms. For the purpose of this report, Eq. 2.61 is

utilized, that is, the effects of modal interaction are incorporated

through a double summation.

The mean square value of the relative vertical displacement response,

2
~n(xi)' is given by the integration of Gn over the entire frequency

range.

i=l,2,3. (2.66)
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and the square root of Eq. 2.66 is the root mean square (R.M.S.)

vibrational displacement response.

The power spectral density of the total vertical response, v. (x. ,t),
1. 1.

can be obtained by multiplying the Fourier transform of Eq. 2.9 by its

complex conjugate and by (2/Tl), which leads to

where

2 *Gn. (x. ,w) = -T r (x. ,W}F . (w)
J 1. 1 1. J

i=1,2,3. (2.67)

and

co

=.L \'
T L

1 n=l

* T *~ . (x.}{H (W)} {F(W)}F.(W)n1. 1. n J.
i=1,2,3 j=1,2,3,4 (2.68)

2 *G. (x. ,W) ~ -T F. (w)r (x. ,w)In 1. 1 J 1.

co=; I
1 n=l

* T~ . (X.}F . (W){H (W)} {F (w) }
n1. 1. J n

i=1,2,3 j=1,2,3,4 (2.69)

For the uncorre1ated case, and reduce to

co

I *Gn. (x. ,W) = ~ . (x. ) [Hn . (W) ] [G. (W) ]
J 1. n=l n1. 1. J J

co

G. (x. ,w) = I .~ . (x.) [Hn. (w) ] [G. (w) ]In l. n=l n1. 1. J J

i=1,2,3 j=1,2,3,4

i=1,2,3, j=1,2,3,4

(2.70)

(2.71)



71

where H . (w) is given by Eq. 2.46 and G. (w) is given by Eq. 2.64.
nJ J

In addition, the cross spectral terms, Gjk(W} (j ~ k), are equal to

zero in Eq. 2.67 for the uncorrelated case.

The integration of G over the frequency domain provides the mean
v

square value of the total displacement response,
2l/J (x.),
V J.

whose square

root is the root mean square (RoM. S.) total displacement response

where is given by Eq. 2.66, and

(2.72)

l/J~J' (Xi) = ;rr [ [G . (x. ,w) + G. (x. ,w) ldw i=1,2,3
'I 0 11J J. J11 J.

j=1,2,3,4

j,~=1,2,3,4

(2.73)

(2.74)

The procedure outlined in the above section may be used to evaluate

the power spectral density of the vibrationally-induced bending moment

in the i th stiffening structure by simply replacing the mode shapes,

<t> . (x.)
nJ. J.

and quasi-static functions, g .. (x.), by their second spanwise
JJ. J.

derivatives multiplied by the flexural rigidity of the .th
J. stiffening

structure, that is, E.I.<t>". (x.) and E.I.g'~. (x.), respectively. Similar-
J. J. nJ. J. J. J.]J. J.

ly, the power spectral density of the vibrationally-induced shearing force

in the i th stiffening structure may be obtained by replacing the mode
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shapes, and quasi-static functions, g .. (x.), by their third
)1 1

spanwise derivatives multiplied by the flexural rigidity of the .th
1

stiffening structure, that is, E.I.4>' ~ I (x.)
1 1 n1 1

and E.I.g~!'(x.),
.1. 1 J.l. 1

respectively.

Mean square bending moments and shearing forces are obtained by

Eq. 2.72 with the mode shapes and quasi-static functions replaced as

above. Additionally, the mean square stresses in the chords of the .th
1

suspended structure can be related to the mean square bending moments

using the following flexural stress relation~

= (di ) 2
21 .

.1.

i=1,2,3 (2.75)

is the depth of thethe mean square stress in the

is

.th
).

1)12
cr

span,.th
).

d.
1,

span,

is the mean square bending moment in the

i
th

1P,2
M

where

stiffening structure, and I.
.1.

is the moment of inertia of the .th
:L

stiffening structure.

II .9 AN ALTERNATE INTERPRETATION OF 'CORRELATED AND UNCORRELATED
GROUND MOTION INPUTS

At this point it is important to define the concept of correlated

and uncorrelated ground motion ~nputs. Let VI (x,t) be the vibrational

displacement at point x as shown in Fig. 11-2, due to the ground input

fl(t) at the first support. Let v2 (x,t) be the displac~ment at the same

point, due to f
2

(t) at the second support (a different support than

the first). The vibrational displacement due to both excitations is then

v(x,t) = vl(x,t) + v2 (x,t) and the autocorrelation of v(x,t) as a

result of the two inputs is
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u~RESPONSE AT AN
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EXAMPLE OF MULTIPLE -SUPPORT VERTICAL EXCITATIONS
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SYSTEM

'. (t) 'eU) faCt) "t)

ISEISMIC INPUTS I

Fig. 1I-2 Multiple-support vertical seismic inputs.
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and the Fourier transform of the last result is

(2.76)

G (f) =
v

(2.77)

Thus, the autocorrelation or the autospectral function of the vibrational

displacement at the given point x on the bridge due to separate support

excitations fl(t) and f 2 (t) cannot be determined simply by adding the

autocorrelations (in time domain) or the autospectral functions (in

frequency domain) resulting from each support excitation acting separately;

are here referred to as cross-correlationR , R or G , G
v1v 2 v 2v1 v1v2 v2V'1

functions and cross spectral functions and in general are not equal. Thus

the sum autospectral density function requires knowledge of the input cross-

spectral functions as well as their autspectral functions.

Thus for the correlated multiple support excitations

R (T)
v.v.
~ J

or G (f) ~ 0,
v.v.
~ J

i ~ j, i,j=1,2, ••• ,N (2.78)

and for the uncorrelated multiple support excitations

R (T)
V.V.
~ J

or G (f) = 0,
v.v.

I, J
i ~ j, i,j=1,2, ••• ,N (2.79)

In the above equations E[·] represents the expected value of the term

inside the brackets; f is the frequency 1 and N is the number of input

support motions.



75

ILIO. ADDITIONAL HORIZONTAL COMPONENT OF CABLE TENSION H(t)

The additional (vibrational) horizontal component of cable tension

due to multiple-support excitations is given by (Eq. 2.8):

*w. R..
_ J._J. I- 2H""'-fi +1 (t)

w

Substituting Eq. 2.41 into Eq. 2.80 results in:

(2.80)

R(t)
EA

c c
=-

.LE
Yep. (x. )dx.Jq (t)

n=l raJ. J. J. n

:. 4 [JoR.i+ 2 \'
H L.

w j=l
g.. (x. )dxJ f. (t)

]J. J. J. ]

(2.81)

where the generalized coordinates ~(t) are obtained by the convolution

integral of Eq. 2.39.

In order to analyze the cable tension in the frequency domain, the

finite Fourier transform of Eq. 2.81 becomes:

H(W)
E Ac c

=-L
E [

* R.3 w. i
I HJ.

i=1 w [fa

*w.
+2

H
w

I [fR.
i

g,,(X.)dX.]F.(W)
O )J. J. J. Jj=l
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(2.82)

where F. (W) (j=1,2,3,4,S,8) is the finite Fourier transform of the
J

input ground displacement CEq. 2.54) and Q (w) is the Fourier transformn

of the th generalized coordinate, calculatedn as

n=l,2,3, ••• (2.83)

where {H (w)}T is the transposed frequency-response vector corresponding
n

to the nth vertical vibration mode, and {F(W)} is the Fourier trans-

form vector of the ground-displacement inputs (see Eqs. 2.56, 2.57).

Note that for antisynnnetric vertical vibration, the first term in Eq.

2.82 vanishes since the additional cable tension associated with an

antisymmetric vertical vibration mode is equal to zero (see Appendix

II-b).

The power spectrum of H(t) may be approximated as

where TI is the duration of the ground motion and the superposed

asterisk denotes complex conjugate. Substituting Eqs. 2.82 and 2.83

(2.84)

into Eq. 2.84 results in an explicit expression for G. (w) (the details
H

are found in Appendix II-d). For the uncorrelated calculation, only the

terms which involve the input power-spectra are retained, since the

supports motions are assumed to be unrelated, in this case, while

the correlated case retains all of its terms (including the cross-spectra).

Mean square dynamically-induced cable tensions are obtained by

integrating GH(w) over the entire frequency range, that is
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(2.85)

and the square root of Eq. 2.85 is the root mean square (R.M. S •) dynamically-

induced horizontal component of cable tension due to vertical vibration.

II .11. DISCUSSION OF PEAK RESPONSE FACTORS

The frequency-domain analysis results in mean square response values.

For example, Eq. 2.72 gives the mean square vertical displacement response.

The square root of the mean square response is defined as the root mean

square (R.M.S.) response or the standard deviation of the response. From

a practical point of view, the parameter of most interest in the analysis

and design processes is the expected peak value of the response, which

is to be compared with the allowable yield stress lim!t. The statistical

distribution of the maximum response of a single-degree-of-freedom system

is shown by Vanmarcke [17] to depend importantly upon the first three

response spectral moments. In terms of response displacements, for

example'~ these moments become:

A (x.)
m ~

i=1,2,3

m=0,1,2
(2.86)

When m = 0, Eq. 2.86 corresponds to the mean square displacement response

(Eq. 2.72). In addition, when m = 2 Eq. 2.86 defines the mean square

velocity response.

The relationship between peak response and root mean square values

may be written as

v (Xi) = r T ~ (x.)
max liPv ~

i=1,2,3, (2.87)
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where v (x.)max ~
is the expected peak displacement response in the

,th
~

is the peak factor corresponding to a ground

span,

motion duration

square (R.M.S.) displacement in

p.

r
T1iP

and a statistical confidence level

l.J! (x.) = ~O is the root meanv ~

i th span andthe

Several methods for determining the maximum response (or peak

factor) have been proposed in the literature. Davenport [8] bases the

maximum response behavior on a Poisson "threshhold crossing" model, which

gives the mean, ].1, and the standard deviation, (J, of the maximum

response as

(2.88)

(2.89)

where v is the zero-crossing rate of the response, given by

(2.90)

Equations 2.88 and 2.89 imply that the peak factor has a mean and standard

deviation corresponding to the bracketed terms in these equations.

Der Kiureghian [9,10] has shown that Davenport's result tends to

overestimate the mean and underestimate the standard deviation, since

threshold crossings are considered independent in the Poisson model.

Der Kiureghian suggests that in order to account for the dependence

between threshold crossings, a reduced zero-crossing rate, v ,
e

should

be used in Eq. 2.88, which represents an equivalent rate of statistically

independent crossings, in which case
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o < 0.69

o > 0.69

(2.91)

In addition, Eq. 2.89 is replaced by [9,10]

[
1.2

a = ~12;:::::l~n::;(\l=e=T=l::;::)
(2.92)

The parameter 0 in Eq. 2.91 is a measure of the spread in the

frequency content of the response power spectral density function about

its center frequency Q, where

(2.93)

(2.94)

Vanrnarcke [17] calculates the peak factor based upon an approximate

solution of the so-called first passage problem, using the assumption

of suddenly applied time-limited steady-state Gaussian excitations. The

peak factor for this case becomes

where

and 0 is an empirical constant, given by
e

(2.95)

(2.96)

(2.97)
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o , Eq. 2.95 approaches
e

Equation 2.95 has the advantage that the peak factor is directly

(2.98)

predicted rather than its mean and standard deviations. Also, the effect

of dependent threshold crossings were included in Vanmarcke's analysis

from the beginning, rather than being adjusted for at the end of the

analysis.

Using the above relations, peak displacements, stresses, moments,

and vibrational cable tensions can be estimated from the corresponding

root mean square frequency-domain results.

11.12. RESPONSE SPECTRUM APPROACH (UNCORRELATED CASE)

A quick (first hand) estimate for the peak response may be calculated

using response spectra methods. This estimate is unfortunately valid

only for the uncorrelated ground-inputs case. Assuming the damping

ratios, l:'':on' to be equal to zero for simplicity, Eq. 2.33 becomes

•• 2
q (t) + w q (t)

n n n

4 ••
= - l. R. f. (t)

j"';l In J

+ P ex
n

3
L ~\ [fi +l (t) + f. (t)]

i=l ~

n=1,2,3, ••• (2.99)

The solution to the previous equation assuming quiescent initial con-

ditions, is given by the convolution integral



81

q (t)
n

{sin w (t - T)}dT
n

n=1,2,3 ••• (2.100)

The contribution of a typical acceleration input in Eq. 2.100 to the

response of the thn generalized coordinate may be written

R. It ..
q(~) (t) =~ f.(T)sin w (t - T)dT

nJ w ) n
n 0

j=1,2,3,4.

n=1,2,3, •••
(2.101)

The maximum value of the previous equation is given by

Iq (~) (t) I
""IlJ max

= Rjn It ..
w f. (T)sin w (t - T)dT

n ) n
o

= /R. ISD (n)
Jn j

j=1,2,3,4

n=1,2,3 •.• (2.102)

Where is the spectral displacement of the j th vertical support

motion of the thn natural period of the structure and

represents the contribution of the jth vertical support acceleration

to the maximum response of the thn generali zed coordinate.·

Similarly, the contribution of a typical vertical displacement input

in Eq. 2.100 to the response of the nth generalized coordinate may

be written

f.(T)sin W (t - T)dT
J n

i=1,2,3

j=1,2,3,4

n=1,2,3, •••

(2.103)
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Integrating the previous equation by parts, assuming quiescent initial

condi tions, results in

1 Jt ..
f.(t) + - f.(T)sin w (t -
) wn 0 ) n

Ji=1,2,3

T)dj j=1,2,3,4

n=1,2,3 •••

(2.104)

The maximum value of the previous equation may be estimated by combining

its two terms using the square root of sum of squares (SRSS) approach

usually used in response spectra methods. This results in

I

PC
#3'

1

1[ )2 [ )21 1/2
:~ ~ SD~n) + Ifj(t) lmax

(2.105)

i=1,2,3 j=1,2,3,4 n=1,2,3, •••

represents the contribution of the

vertical support

vertical support displacement to the maximum response of the

where If. (t) I is the maximum amplitude of the) max
(dl)

motion, and Iq. (t) I
nJ max

.th
)

.th
)

thn gener-

alized coordinate.

The contribution of a typical longitudinal displacement input in

Eq. 2.100 to the response of the thn generalized coordinate may be

written

(2.106)

i=1,2,3,
P a. Jt

+~ f.(T)sin w (t - T)dT
- wn 0 ) n

j=5(+)

j=8(-)
n=1,2,3 •••

Integrating the previous equation by parts, assuming quiescent initial

conditions, results in

P a.t+ -E-,. _
- 2

W
n

It - ~f. (t) + L f. (T) sin w (t - T) dT
J wn 0 J n

i=1,2,3

j=5(+)

j=5(-)

n=1,2,3••.

(2.107)
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The maximum value of the previous equation may be estimated by combining

its two terms using the square root of sum of squares (SRSS) approach.

This results in

1
1/2

( If. (t) I )2
J max

i=1,2,3

j=5,8

n=1,2,3 ••• (2.108)

where If. (t) I
J max

support motion, and

is the maximum amplitude of
(d

l
)

Iq. (t) I represents
nJ max

the j th longitudinal

the contribution of the

jth longitudinal support displacement to the maximum response of the

th
n generalized coordinate.

The various contributions to the maximum response of the generalized

coordinate, Iq (t) I , may be added by a square root of the sum of
n max

squares approach (SRSS), which essentially neglects the effects of input

correlation and modal interaction in combining the modal contributions.

This results in

I (R.) 2 [SD ~n») 2
j=l In J

2
+ p2 a

n 4w
n

+ P~ :: [Hnlr+ [SD~n)r
n

n=1,2,3... (2.109)
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The peak displacement response may be estimated using Eqs. 2.41 and

2.109 and is given by

Iv. (x. ,t) I < II
J. J. max- '1

J=
[g .. (x.)]2(lf.(t) I )2

JJ.], J max

+ I [cjl. (x,)]2(lq (t) I )2
n=l nJ. J. n max

1/2
i=1,2,3, (2.110)

Peak moments and shearing forces occurring in the
,th
J. stiffening

truss may be obtained by replacing g .. (x.)
]J. J.

and <P • (x. )
nJ. J.

in Eq. 2.110

by their second and third spanwise derivatives multiplied by the flexural

rigidi ty E. I.
J. J.

of the i th suspended structure, that is E.I,g'.~ (x.),
J. J. JJ. J.

E.I.cjl'! (x.), and E,I.g~!'(x,), E.I.cjl'!'(x.), respectively.
J. J. nJ. J. J. J. JJ. J. J. J. nJ. J.

The response spectra approach may be used to estimate the peak value

of the additional horizontal component of cable tension, H(t). Equation

2.80 is used for this purpose, which after introducing the expression for

v, (x.,t) in terms of its quasi-static and modal contributions (Eq. 2.41)
J. J.

becomes

H(t) = (E~Ac) IIrq (t) +
E n=l n n

4
L y.f. (t)

j=l J J

+ f. (t)]
J.

(2.111)

where the factors rand y. are given by
n J
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* R..
3

wi J ~r = L ep ,(x.)dx.
n i=l Hw 0 ~ ~ ~

* R..3
wi J ~Yj

= L g,. (x. )dx.
i=l Hw 0 J~ ~ ~

n=1,2,3 •••

j=1,2,3,4

(2.112)

(2.113)

In order to estimate IH{t) I , the maximum expected horizontal
max

vibrational component of cable tension (for the uncorrelate<i case), the

square root of sum of squares rule can be used to combine the various

contributions in Eq. 2.111. This results in

(EC~ACJIH (t) I <max -

where I~(t) lmax is calculated from Eq. 2.109.

11.13. APPLICATIONS

(2.114)

11.13.1 Vertical Seismic Behavior of the Vincent Thomas Bridge

In this section, the analysis outlined in this chapter is applied

to the Vincent Thomas Suspension Bridge in Los Angeles, California [3]

in order to estimate its vertical response characteristics. Frequency

domain random vibration methods and time domain convolution integrals
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are to be compared. The structural properties of the bridge are summar

ized in Table 11-1. The vertical quasi-static functions are shown in

Fig. 11-3 for unit vertical ground motion displacement at each anchorage

and tower base. The first ten symmetric and antisymmetric vertical mode

shapes are shown in Fig. 11-4, while their associated participation

coefficients appear in Table 11-2. These computed modes (obtained via

Eqs. 2.25, 2.27 and 2.29) compare very well with those computed and measured

in Refs. 1, 2, and 3.

It will be seen in a later section (11.13.3) that the antisymmetric

vertical vibration response turns out to be much smaller than the symmet-

This is due to the modal factor p
n

being zero for the antisymmetric modes (because the net area underneath

ric vertical vibration response.

an antisymmetric mode is identically zero)~ and therefore the longitudinal

ground motions, which excite the symmetric modes very strongly, do not

excite the antisymmetric modes at all. It should also be noted that the

additional horizontal component of cable tension (Eq. 2.80) essentially

contains four contributions:

1. Contribution from pure ground motion displacement inputs (both

vertical and longitudinal) •

2. Contribution from symmetric vertical vibration.

3. Contribution from antisymmetric vertical vibration which turns

out to be identically zero.

4. Contribution from the quasi-static motions.

The contribution from antisymmetric vertical vibration to the additional

cable tension is zero because again the net area underneath an antisym

metric mode is identically zero. In this section, therefore, because of

the higher order nature of the antisymmetric response, and because the
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Table II-l

VERTICAL PROPERTIES OF THE VINCENT THOMAS BRIDGE

Parameter Center Span Side Spans

Span Length R.2 = 1500 ft. R.1 = R.3 = 506.5 ft.

• * • •w. w2 = 3.589 k/ft . w1
= w3 = 3.589 k/ft

.1,

E. E2 = 29000 ksi E
1

= E = 29000 ksi
J. 3

6050 ft
2

in
2

I = 6250 ft
2

in
2

I. I 2 = I 1 =
.1, 3

truss depth d = 15 ft d = 15 ft

Cable Properties

E = 27000 ksic

121.5 in
2

A =
c

~= 3460 ft

H = 6750 kipw
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VINCENT TH~MAS BRIDGE
QUASI-STATIC FUNCTI~NS

VERTICAL GR~UND M~TI~N

/2 -1500'

Fig. II-3 Vertical quasi-static functions of the
Vincent Thomas Bridge.
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Fig. 11-4 Mode shapes of vertical vibration of the
Vincent Thomas Bridge (Eqs. 2.25,2.27 and 2.29).
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Table 11-2

PARTICIPATION COEFFICIENTS OF VERTICAL
EARTHQUAKE RESPONSE OF THE VINCENT THOMAS

SUSPENSION BRIDGE

Mode
Order svmmetricVibration Antisvnmetric Vibration

n .
11.n =R4n ~ -R P ~-R4n ~;-R3n

p
n - 3n n n

1 -0.324 -0.387 0.647 0.00 0.318 0.0

2 0 •.293 0.209 1.158 0.318 0.318 0.0

3 0.092 -0.091 0.023 0.. 00 0.159 0.0

4 0.104 1.116 0.581 0.159 -0.159 0.0

5 0.001 0.127 0.333 0.00 0.106 0.0

6 0.159 -0.159 0.00 0.00 0.079 0.0

7 -0.002 -0.095 -0.032 0.106 0.106 0.0

8 0.106 0.104 0.431 0.00 0.063 0.0

9 0.002 0.072 0.152 0.079 -0.079 0.0

10 0.0 0.057 0.116 0.00 0.052 0.0
-

I
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additional horizontal component of cable tension can be constructed from

knowledge of the synnnetric vertical vibration response as well as

knowledge of the ground motion displacement inputs, only the symmetric

vertical response will be investigated for the Vincent Thomas Bridge.

The complex frequency response functions H (w)
n

for the first four

symmetric vertical modes of the bridge are shown in Fig. 11-5 for 2%

damping (for all modes) and corresponding to anchorage vertical input,

tower vertical input, and anchorage longitudinal input. These functions

measure the magnification (or gain) factor corresponding to a unit

harmonic displacement upon the response of the generalized coordinate

q (t). It can be seen from these figures that the longitudinal anchor
n

age motions contribute greatly to the synnnetric vertical response,

while contributing nothing to the antisymmetric vertical vibration.

For higher modes, similar functions are obtained.

Three symmetric vertical response cases are studied for the Vincent

Thomas Bridge. In the first .case, the vertical motions at the left

anchorage and left tower, fl(t) and f 2 (t), respectively, correspond

to the vertical component of Array No.5 of the El Centro Arrays; the

vertical motions at the right tower and right anchorage, f 3 (t) and

f 4 (t), respectively, correspond to the vertical component of Array No.6;

and the longitudinal motions f 5 (t) and fa (t) at the anchorages are

taken as the associated SSOW components (of Arrays No. 5 and 6) (see

Appendix II-e). It should be mentioned that for the Vincent Thomas Bridge,

the distance between the towers and anchorages is only 506.5 feet, which

is fairly short. Therefore, the left tower and left anchorage are

assumed to move uniformly and are thus exposed to the same ground motion

inputs; similarly the right anchorage and tower are assumed to move
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uniformly and are thus exposed to the same ground motion inputs. The

second response case involves similar correspondences with Array Nos. 6

and 7. The third response case utilizes ground motions recorded during

the San Fernando 1971 earthquake as inputs. In this case, the vertical

motions f 1 (t) and f 2 (t) correspond to the vertical component recorded

at the Athenimn Building. The vertical motions f 3 (t) and f
4

(t)

correspond to the vertical component recorded at the Millikan Library,

and the longitudinal motions f S(t) and fa (t) are taken as the

associated N90E components [11].

The autospectra of midspan displacement for both side and center

spans are shown in Fig. 11-6. for input arrays Sand 6, and in Fig. 1I-7

for input arrays 6 and 7. It is seen that the bridge is responding

mostly in its first two symmetric modes, most likely because their modal

participation factors P are large and their natural frequencies lie
n

wi thin the region of the input spectra where the ground excitation energy

is strong (see the input power and cross spectra - Appendix II-e). Also,

the quasi-static contribution to the total response is small compared

wi th the vibrational response for this case. For this reason, the dis

placements are quite similar in the left and right side spans, and thus

only the results for the left side span are shown. It appears that the

uncorrelated case has a conservative effect, i.e., the inclusion of the

off-diagonal correlated terms in the spectral input matrix [Gff(W)]

tends to reduce the symmetric vertical response for this specific case

as shown in Figs. 1I-6 and II-7.

The autospectra of midspan second derivative (or curvature) res

ponses for side and center spans, which are related to response bending

moments and flexural stresses in the top and bottom chords of the bridge I s
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stiffening structure, are shown in Fig. 11-8 for input arrays 5 and 6

and in Fig. 11-9 for input arrays 6 and 7. Figures 11-10 and 11-11 show

similar spectra for the third derivative response evaluated at the ends

of each span, which is related to the dynamic shearing force. The

arrows on the superimposed bridge in Figs. 11-6, 7, 8, 9, 10, and 11

indicate the points at which the response is calculated. Again, the

uncorrelated case is seen to be more conservative than the correlated

case (for this specific bridge and these specific inputs).

Similar autospectra for the San Fernando 1971 input case are shown

in Figs. 11-12, 13, and 14, and the autospectra of the additional (vibra

tional) horizontal component of cable tension for all three response

cases are shown in Fig. II-IS. It appears that, in general, the first

and second symmetric modes respond most strongly in all cases because of

their sensitivity to longitudinal input motion at the anchorages (P
n

is large -- see Table 11-2) as well as their natural frequencies being

wi thin the spectral region of strong energy input. A graphical summary

of the three response cases appears in Fig. 11-16.

In Table 11-3, the root mean square values of response are summarized

and are compared with the computed maximum responses obtained from the

time domain (Duhamel integral) analysis shown in Figs. 11-17 through

11-23. It seems that the expected value for the peak factor is about

2.2 from Table 11-3. It is also seen from this table that the 1979 El

Centro ground motions excite the bridge more strongly than the 1971 San

Fernando ground motions. The reason for this lies in the closeness of

the El Centro Arrays to the causative fault. In particular, input arrays

No.6 and 7 provide for the largest response. The conservative nature

of input correlation can be seen from this table. Also, the values of
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Fig. II-23 Time history of additional horizontal
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earthquake-induced flexural stresses and cable tensions represent a

significant Iive"'"load condition for this bridge. For example, the peak

stress of 39 ksi occurring in the side spans is quite high as a live

load when compared to the yield stress of 52.0 ksi.

1I.13.2 Vertical Seismic Behavior of the Tacoma Narrows Bridge

In this section, the analysis outlined in this chapter is

applied to the Tacoma Narrows Suspension Bridge, in washington, in order

to estimate its vertical response characteristics. Frequency and time

domain methods are to be compared. The structural properties of the

bridge are summarized in Table 11-4. The vertical quasi-static functions

are shown in Fig. 11-24 for unit vertical ground motion displacement at

each anchorage and tower base. The first eight symmetric and antisym-

metric vertical mode shapes are shown in Fig. 11-25, while their asso-

ciated participation coefficients appear in Table II-S. As in the

previous section and for the same reasons, the sYmmetric vertical

response only will be investigated herein.

The complex frequency response functions H (W)
n

for the first four

symmetric vertical modes of the bridge are shown in Fig. 11-26 for 2%

damping (for all modes), and corresponding to anchorage vertical input,

tower vertical input, and anchorage longitudinal input. The same two

symmetric vertical response cases are studied for the Tacoma Narrows

Bridge as for the Vincent Thomas Bridge (the first involving Arrays

5 and 6 as input and the second involving Arrays 6 and 7 as input) .

The autospectra of midspan displacement for both side and center spans

are shown in Fig. 11-27 for input arrays 5 and 6, and in Fig. 11-28

for input arrays 6 and 7. It is seen that the side span response is
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Table II-4

VERTICAL PROPERTIES OF THE TACOMA NARROWS BRIDGE

Parameter Center Span Side Span

Span Length 12 = 2800 ft. t 1 = t 3 = 1100 ft$

* * * *w. W = 4.33 k/ft. WI = w3 = 4.33 k/ft.
1. 2

E. E = 29600 ksi E1 = E
3

= 29600 ksi
1. 2

I = 47520 ft
2

in
2

I 3 = 47520 ft
2

in
2

Ii I =2 1

truss depth d = 33 ft. d = 33 ft.

Cable Properties:

E = 26500 ksic

Ac = 252 in
2

~ = 6080 ft.

H = 15155 kip
W
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TRC~MR NRRR~W5 BRIDGE
QUASI-STATIC FUNCTI~N5

VERTICRL GR~UND M~TI~N

Fig. II-24 Vertical quasi-static functions of the
Tacoma Narrows Bridge.
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TRCOMR NRRROWS BRIDGE
SYMMETRIC MODES OF
VERTICRL VIBRATION

TRCOMA NRRROWS BRIDGE
ANTI-SYMMETRIC MODES

OF VERTICRL VIBRRTION

HODE 1 T- 6.B851l SEC.

MODE 1 T- 7.1853 SEC.

~. ""-7
HOOE 2 1- 11.9439 SEC.

HOOE 3
\J

T- 2.11619 SEC.

SEC.

f\

V
T= 1.2185 SEC.

vvvvv

f\ f\

VvVV
B T= 0.11684 SEC.

f\f\f\f\f\

vv
11 T- 1.6326 SEC.

A

V
HODE 7

HOOE

MClOE

V
H!:IOE 5

f\f\f\vvv
HOOE 6 T= 0.7815

I\f\

!\
T- 1.6B02 SEC.

f\!\!\
MODE 11

vvV
MODE 7 r- 0.7806 SEC.

A f\ 1\ f\
V V

HODE 8 r- 0.5729 SEC.

f\f\f\f\f\

\TV
HOOE 5 T- 1.6326 SEC.

!\ !\
V V

MODE 6 T= 0.9186 SEC.

f\f\f\f\

Fig. II-25 Node shapes of vertical vibration of the
Tacoma Narrows Bridge.
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Table II-5

PARTICIPATION COEFFICIENTS OF VERTICAL
EARTHQUAKE RESPONSE OF THE TACOMA NARROWS

SUSPENSION BRIDGE

Mode Symmetric Vibration Antisymmetric Vibration
Order

R
1n

= R
4n

R
2n

= R
3n

P R =-R R =-R ~
n n In 4n 2n 3n n

1 -0.330 -0.339 0.398 0.0 0.318 0.0

2 0.075 -0.141 0.373 0.318 0.318 0.0

3 0.043 0.071 1.357 0.0 0.159 0.0

4 -0.001 0.126 0.330 0.159 -0.159 0.0

5 0.159 -0.159 0.0 0.0 0.106 0.0

6 -0.001 0.090 0.193 0.106 0.106 0.0

7 0.106 0.106 0.446 0.0 0.079 0.0

8 0.0 0.070 0.145 0.0 0.063 0.0
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dominated by the third symmetric mode, most likely because of its high

modal participation factor P, and its natural frequency lies within
n

the range of the input spectra where the ground excitation energy is

strong. The center span response is dominated by the first two symmetric

modes, the third symmetric mode being absent because of its zero ordinate

at midspan. Similar characteristics, as before, are found as to the

conservative nature of the uncorre1ated case, and the similarity of left

and right side span response.

The autospectra of midspan second derivative (or curvature) responses

for side and center spans, which are related to response bending moments

and flexural stresses in the top and bottom chords of the bridge's

stiffening structure, are shown in Fig. 11....29 for input arrays 5 and 6

and in Fig. II-3D for input arrays 6 and 7. Figures 11-31 and 11-32

show similar spectra for the third derivative response, evaluated at

the ends of each span, which is related to the dynamic shear force.

Theautospectra of the additional (vibrational) horizontal component of

the cable tension for both respbnse cases are shown in Fig. 11-33. The

large contribution to the cable tension from the third symmetric mode

arises from the modal factor P being large, i.e., its sensitivity to
n

longitudinal input at the anchorages, and the area under this mode shape

being large, and the associated cable tension being directly proportional

to this area, and its natural frequency being in the frequency range of

strong input excitation.

In Table 11-6, the root mean square values of response are summarized

and are compared with the computed maximum responses obtained from the

time domain (Duhamel integral) analysis shown in Figs. 11-34 through 11-40.

It seems that the expected value for the peak factor is about 2.5 from
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TAC~MA NARR~WS BRIDGE
SYMMETRIC VERTICAL M~OES
VIBRATI~NAL CABLE TENSI~N

UNC~RRELATED CRSE
- - - C~RRELRTED CRSE

MODE 3

EL CENTRO 1979 E.Q.

_ ARRAYS 6, 7.

0.2 0.4 0.6
FREQUENCY - CYCLES/SEC

TAC~MA NARR~WS BRIDGE
SYMMETRIC VERTICAL M~DES
VIBRRTI~NAL CABLE TENSI~N

UNC~RRELRTED CRSE
- - - C~RRELRTED CRSE

u
w
(f) ARRAYS 5,6.

MODE 3 MODE I T=7JB53 SEC

~

::S::' MODE 4 T=l6802 SEC

--1\ 1\ !\.--Vv
°0 0.2 0.4 0.6

FREQUENCY - CYCLES/SEC

Fig. II-33 Autospectra of additional '(vibrational) cable tension.
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TACDMA NARRDWS BRIDGE
VIBRATIONAL CABLE TENSION

EL CENTRO 1979 E.Q.
ARRA)'S 5 AND 6

MAX= 103Y0738 KIPS AT Ta 80880SECl

UlO
ZLf)
Wo
I-- .....~---<-----........-.-----------

10 10 20 30 40
TI ME (SECONDS)

VIBRATIONRL CRBLE TENSION
EL CENTRD 1979 E.Q.

ARRA'(S 6 AND 7
MAX= 13770059 KIPS AT T= 60560SEClCl

o
U:;::r
0... ......

UlO
Zo
W:=rI-- ...... ~---<-lI.....+-- _

10 10· 20 30 4Ci

TIME (SECONDS)

.~

Fig. II-40 Time history of additional horizontal
component of cable tension.
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Table II-6, however there is considerable scattering about this value.

It is seen that Arrays 6 and 7 excite the bridge more strongly than

arrays 5 and 6. Also, the values of earthquake-induced flexural stresses

and cable tensions represent a significant live-load condition for this

bridge. The uncorrelated RMS value of 20.6 ksi live load stress is quite

large when compared to the yield stress of 46.0 ksi.

II.13.3 Vertical Seismic Behavior of the Golden Gate Bridge

In this section, the analysis outlined in this chapter is applied to

the Golden Gate Suspension Bridge, in San Francisco, California, in order

to estimate its vertical response characteristics. Frequency domain,

time domain (convolution integral), and response spectral methods are

compared in this section, and the determination of appropriate peak

factors are studied in detail. The structural properties of the bridge

[5] are summarized in Table II-7. The vertical quasi-static functions

are shown in Fig. II-41 for unit vertical ground motion displacement at

each anchorage and tower base. The first ten symmetric and antisymmetric

vertical mode shapes are shown in Fig. 1I-42, while their associated

participation coefficients appear in Table II-B. Because the modal

factor P is zero for the antisymmetric modes, the effect of antisym
n

metric vertical vibration is suspected to be of a higher order nature.

This ass\.Ullption will be examined in this section as well. The frequency

response functions H (w)
n

for the first four symmetric and antisyrnmetric

vertical modes of the bridge are shown in Figs. II-43 and II-44 for 2%

damping, and corresponding to anchorage vertical input, tower vertical

input, and anchorage longitudinal input. These functions measure the

magnification (or gain) factor corresponding to a unit harmonic
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Table 1I-7

VERTICAL PROPERTIES OF THE GOLDEN GATE BRIDGE

Parameter Center Span Side Spans

Span Length 12 = 4200 ft. 1 = 1 = 1125 ft.
1 3

'" '" '" '"w. w2 = 11.45 k/ft. wI = w3 = 11.55 k/ft.
J.

E. E2 = 29000 ksi E1 = E3 = 29000 ksi
J.,

-
43200 ft

2
in

2
2S000 ft2in

2
I. I = 1. = I =

J. 2 J. 3

truss depth d = 25 ft. d = 25 ft.

Cable Properties:

E = 29000 ksic

Ac 831.9 in2=

L = 7698 ft.
E

H = 53467 kip
w
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GeLDEN GRTE BRIDGE
QUASI-STATIC FUNCTIONS
VERTICRL GROUND MOTION

I
.....;: WI•• ·".... • 11381125.4"

1~.~11l.:8~11=25.~~~'.....------.:--::=:0-------.. "... .. '
1 28 4200'

~i(Xi) 9ZI(X1)

f 2(t)=1

Fig. 1I-4l Quasi-static functions of the Golden Gate Bridge.
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GOLDEN GATE BRIDGE
SYHHETRIC HODES OF
VERTICAL VIBRATION 1=10.5580 SEC.

GOLDEN GATE BRIDGE
ANTI-SYHHETRIC HODES

OF VERTICAL VIBRATION

'(7
HODE 2 T- 5.5106 SEC.

110DE 1
T- s.nso SEC.HaDE 1

/\
HOOE 3

V
T= i,j. 9238 SEC.

\./v
~ T- 2.9759 SEC.

(\f\f\

[\ /\
HOOE

V
r.. 1.9966 SEC.

V
1100E 6

f\f\f\f\

HOOE

f\vvv
6 T- 2.ijD03 SEC.HODE

AAvv Vl)

Fig. II-42 Mode shapes of vertical vibration of the
Golden Gate Bridge.
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Table II-8

PARTICIPATION COEFFICIENTS OF VERTICAL
EARTHQUAKE RESPONSE OF THE GOLDEN GATE

SUSPENSION BRIDGE

Mode Symmetric Vibration Antisymmetric Vibration
Ordern I\ -R R

2n
=R

3n
P R =-R R =-R P

n 4n n In 4n 2n 3n n

1 -0.,287 -0.467 0.478 0.0 0.318 0.0

2 -0.163 -0.018 0.258 0.318 0.318 0.0

3 0.039 -0.081 0.894 0.0 0.159 0.0

4 0.017 0.084 0.323 0.0 0.105 0.0

5 -0.002 0.,090 0.289 0.159 -0.159 0.0

6 0..159 -0.159 0.0 0.0 0.079 0.0

7 -0.001 0.070 0.168 0.0 0.063 0.0

8 0.105 0.104 0.488 0.106 0.106 0.0

9 0.,001 0.059 0.165 0.0 0.052 0.0

10 0.0 0.049 0.102 0.079 -0.079 0.0
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displacement upon the response of the generalized coordinate ~<t). It

canoe seen as before from these figures that the longitudinal anchorage

motions contribute greatly to the symmetric vertical response, especially

in the first three symmetric modes.. For higher modes, similar functions

are obtained.

Several symmetric vertical response cases are studied for the Golden

gate Bridge. Because of the long center and side spans the vertical

motions are taken to be different. In the first case, 'the vertical

motions fret), f 2 <t), f 3 <t), and f 4 {t} correspond to the vertical

components recorded at arrays Nos. 4, 5, 6, and 7 (1979 El Centro earth

quake), respectively, while the longJ.tudinal tnotions f 5{t) and faCt}

are taken as the associated SSOW components (of arrays No.4 and 7).

The second response case involved similar correspondences with arrays

No.5, 6, 7, and 8 (vertical and longitudinal motions).

In addition to the above symmetric response cases, three reference

cases are studied in order to investigate the effects of the longitudinal

displacement inputs upon the bridge response as follows:

L Reference case-I involves a uniform vertical excitation;. f
1
(t),

f
2

(t), f
3

<t), and f
4

(t) are all taken as the vertical

uniform component at array No.8, with no longitUdinal excita

tion, i.e., fS(t} =faCt} = o.

2. Reference case 2 involves the same vertical motion as in Refer

ence case I, with f
S

(t) taken as the SSOW component at array

No. 5 and with fa (t) "" O•.

3. Reference case 3 is swlar to reference case 2, but having

fs(t) being taken from the S50W component of array No.6 instead

of array No.5.
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In addition to the above symmetric response cases, the antisymmetric

response is studied for input arrays No.4, 5, 6,'and 7 as well as input

arrays No.5, 6, 7, and 8. Also, the symmetric response is studied

using a set of artificially generated earthquakes as inputs [12].

The autospectra of midspan symmetric displacement for both the

center and side spans are shown in Figs. 11-45 for input arrays No.4,

5, 6, and 7, and in Fig. 11-46 for input arrays No.5, 6, 7, and 8. It

is observed that the quasi-static contribution to the total response

is small, and therefore the displacements are quite similar in the left

and right side spans. The first and third symmetric modes appear to

dominate the response of the center span, most likely because their modal

participation factors, P are large (Table 11-8) and their natural
n

frequencies lie within the spectral region of strong ground motion input.

The first three symmetric modes dominate the response of the side spans,

with the third mode having the largest contribution. It appears that

the uncorrelated case is conservative, i.e., the "inclusion of the off-

diagonal correlated terms in the spectral matrix [Gff{W)] tends to

reduce the symmetric spectral response (root mean square response) as

shown in Figs. 11-45 and I1-46.

The autospectra of midspan second derivative responses for side and

center spans, which are related to response bending moments and flexural

stresses in the top and bottom chords of the bridge stiffening structure,

are shown in Fig. II-47 for input arrays No.4, 5, 6, and 7 and in Fig.

11-48 for input arrays Nos. 5, 6, 7, and 8. Figures11-49 and II-50

show similar spectra for third derivative response, evaluated at the

ends of each span, which is related to the dynamic shear force. The

arrows on the superimposed bridge in Figs. II-45 through II-50 indicate



_.
U IL

l
II

'!
JC 2

:
U

_I
II

II
IU....

II
ll
Il

lI

GO
LD

EN
GA

TE
BR

iD
G

E
SY

M
M

ET
RI

C
V

ER
TI

CA
L

M
OD

ES
LE

FT
SP

AN
TO

TA
L

RE
SP

ON
SE

IU
NC

OR
RE

LR
TE

D
CR

SE
I

IC
Cl

RR
EL

RT
ED

CA
SE

I

D
IS

PL
RC

EM
EN

T

'E
L-

CE
N

1R
O

19
79

EA
RT

HQ
UA

KE
I

l
l
~
t
J
4
4

AR
RR

YS
5

.6
.1

.8
;

0 0
,

0:
4

1
•

0.
7

fR
EQ

UE
NC

Y
-

CY
CL

ES
/S

EC
CE

NT
ER

SP
AN

TO
TA

L
RE

SP
O

N
SE

__
__

_
IU

NC
OR

RE
LA

TE
D

CA
SE

I
-_

._
._

IC
Cl

RR
EL

AT
ED

CA
SE

I
II

ll
Il

lI
T

-
.
o

"
,

'J
W

'L
"'

...
...

..
I'/

liI
o1

CI
1I

t
III

C
IO

ar
II

ll
Il

lI
T

oI
lII

O
'
"

IlU
In

G
aL
~

/"
\.

/"
\.

V
V
'
~

II
ll
Il

lI
T

o
U

IJ
il
lt

-/\
.

/\
.

,....
V
~
~

1.
0

11
10

5

1.
0

11
05

u w en J
" ::E
:

UU IL
l

en k u

EL
-C

EN
TA

O
1

9
7

9
EA

RT
HQ

UA
KE

AR
RA

YS
q

.5
.6

.7
.

D
IS

PL
A

CE
M

EN
T

_I _I_.GO
LD

EN
GR

TE
BR

ID
GE

SY
M

M
ET

RI
C

V
ER

TI
CR

L
M

OD
ES

LE
FT

SP
AN

TO
TA

L
RE

SP
ON

SE
--

--
--

IU
NC

OR
RE

LA
TE

D
CA

SE
I

_
_

._
_

IC
Cl

RR
EL

AT
ED

CR
SE

I

01
,,4

1"
.

V
I'

-
•

I
•

I
o

0.
4

0:
1

fR
EQ

UE
NC

Y
-

CY
CL

ES
/S

EC
CE

N
lE

R
SP

AN
TO

TA
L

RE
SP

O
N

SE
--

--
-

IU
NC

OR
RE

LA
TE

D
CA

SE
I

_
._

-'
.

IC
Cl

RR
EL

AT
ED

CA
SE

I
2.

0
11

10
5

1.
0

al
0

5

u w en ~ u

-
I

I-
'

W N

_
.

.T
'II

lII
IO

li
t

r
V
\
.
/
\
~

..
•

01
J
~
m

.IN
A.

.
..

.
..

.
T

'l
M

ll
tl

lt
1

1
I;

'
1

1\
1

\
I\

J
\

o
0.

..
't'

n,
fR

EQ
UE

NC
Y

-
C

Y
C

LE
S/

SE
RI

G
H

T
SP

AN
TO

TA
L

RE
SP

O
N

SE
__

__
__

IU
NC

Cl
RR

EL
AT

ED
CA

SE
I

-_
._

._
IC

Cl
RR

EL
AT

ED
CA

SE
I

~

01
I
l
\
~
~

1
I

•
I

o
n

4
0.

1
fR

EQ
UE

NC
Y

-
CY

CL
ES

/S
EC

1.
0

11
10

5

U IL
l

If
)

J
" ::E
:

U
~

01
.
/
"
.

1
"\

~
.

I
o

0.
4

fR
EQ

UE
NC

Y
-

CY
CL

ES
/S

EC
RI

G
H

T
SP

AN
TO

TA
L

RE
SP

O
N

SE
--

--
...

.
IU

NC
OR

RE
LA

TE
D

CA
SE

I
_.

_.
_-

IC
OR

RE
LA

TE
D

CA
SE

I

O
.

1
I
y

y
=

v
~

•
1

1
,

o
00

4
~
7

fR
EQ

UE
NC

Y
-

CY
CL

ES
/S

EC

1.
0

11
10

5

u w en ~ u

F
ig

.
1

1
-4

5
A

u
to

sp
e
c
tr

a
o

f
m

id
sp

an
d

is


p
la

ce
m

en
t.

In
p

u
t

a
rr

a
y

s
4

,
5

,
6

,
7

.

F
ig

.
1

1
-4

6
A

u
to

sp
e
c
tr

a
o

f
m

id
sp

an
d

is
p

la
c
e
m

e
n

t.
In

p
u

t
a
rr

a
y

s
5

,
6

,
7

,
8

.



II
ll
Il

lI

GO
LD

EN
GA

TE
BR

ID
G

E
SY

M
M

ET
RI

C
·V

ER
TI

CA
L

HD
OE

S
LE

fT
SP

AN
TO

TA
L

RE
SP

DN
SE

2N
D

D
ER

IV
--

--
-

IU
N

CO
RR

EL
A

TE
D

CA
SE

I
_

_
._

_
(C

O
R

R
EL

A
TE

D
C

A
SE

I

EL
-C

EN
TR

D
19

79
EA

RT
HQ

UA
KE

AR
RA

YS
5

.6
.7

.B
.

~
1I

ll
Il

l4

oj
I
W
J
~

I
I

I
•

o
O

A
0.

7
fR

EQ
UE

NC
Y

-
CY

CL
ES

/S
EC

CE
NT

ER
SP

AN
TO

TA
L

RE
SP

O
N

SE
2N

D
D

ER
IV

IU
N

CO
RR

EL
A

TE
D

CA
SE

I
_

._
._

(C
O

R
R

EL
A

TE
D

C.
A

SE
I

M
lII

IE
1

II
ll
Il

lI
'_

1
0

li
lt

./"
"'-

...
.

2.
5

x1
0-

8

u W tn ':'>
<

to


L
l.10

0

11
0-

9

~

GO
LD

EN
GA

TE
BR

ID
G

E
SY

M
M

ET
RI

C
V

ER
TI

CA
L

M
OD

ES
LE

fT
SP

AN
TO

TA
L

RE
SP

O
N

SE
2N

D
D

ER
IV

(U
N

C
O

R
R

EL
A

TE
D

C
A

SE
I

•.•
.•.

__
(C

O
R

R
EL

A
TE

D
C

A
SE

I

~
L
-
C
E
N
T
R
O

19
79

EA
RT

HQ
UA

KE
-
a
s

AR
RA

YS
ij

.5
.6

.7
.

....
01

I
jU

V
\
Q

..
..

.
I

I
I

o
0.

4
0.

7
fR

EQ
U

EN
CY

-
C

Y
C

LE
S/

SE
C

CE
NT

ER
SP

A
N

TO
TA

L
RE

SP
O

N
SE

2N
D

D
ER

IV
(U

N
C

O
R

R
EL

A
TE

D
C

R
SE

I
_

_.
_

(C
O

R
R

EL
A

TE
D

C
A

SE
I

2.
0

xl
O

"

10
.0

11
er

'

u W tn ,.. to


L
l. 10

0
x1

0-
9

1I
ll

Il
l4

10
1l

1t
1O

li
t

r
J
'\

/
\

/'
\r

..
.

..

u w ~ to


L
l.

II
ll
Il

lI
M

lII
IE

I

°b
....

.'
,L

"
014

fR
EQ

U
EN

CY
-

C
Y

C
LE

S/
SE

C
RI

G
H

T
SP

A
N

TO
TA

L
RE

SP
D

N
SE

2N
D

D
ER

IV
--

--
--

IU
N

C
O

R
R

E
L

A
T

E
D

C
A

SE
I

-.
--

IC
O

R
R

E
L

A
T

E
D

C
A

SE
I

u w ~ to


L
l.

o 6

10
0

11
0-

9

,
-
"
,
,
-

"'"
II

ll
Il

lI
,4

lI
II

ll
ll
t

'"
'"

..
..

..
..

..
.t
1
I
V
~

~
\I

M
lI

Il
llI

I
II

ll
Il

lI
,.
.
.
.

1
It

,.
..

,/
\
/
\
0

.
V
~

II
ll
Il

lI 1II
IIl:

,1.
11111

1l
4

II
II

Il
I

II
ll
Il

lI
'
_

l
i
l
t

•
•

I
1

1
\1

\1
\1

\
0.

4
\I

V
\
T

-
fR

EQ
UE

NC
Y

-
CY

CL
ES

/S
EC

RI
G

H
T

SP
AN

TO
TA

L
RE

SP
O

N
SE

2N
D

D
ER

IV
-
-

lU
N

CO
RR

EL
A

TE
D

C
A

SE
I

-
-
-

(C
O

R
R

EL
A

TE
D

CA
SE

I

.... w w

u w ~ to


L
l.

u w ~ to


L
l.

01
,
H

I
..

..
..

..
.
V
~

lA
o

I
,

I

o
0.

4
0.

7
FR

EQ
UE

NC
Y

-
C

Y
C

LE
S/

SE
C

01
I

A
.b

=
;;

r<
/\

\+
I

,
I

I

o
~

ro
fR

EQ
UE

NC
Y

-
CY

CL
ES

/S
EC

F
ig

.
1

1
-4

7
A

u
to

sp
e
c
tr

a
o

f
se

c
o

n
d

d
e
ri

v
a


ti
v

e
re

sp
o

n
se

a
t

m
id

sp
a
n

.
In

p
u

t
a
rr

a
y

s
4

,
5

,
6

,
7

.

F
ig

.
1

1
-4

8
A

u
to

sp
e
c
tr

a
o

f
se

c
o

n
d

d
e
ri

v
a
ti

v
e

a
t

m
id

sp
a
n

.
In

p
u

t
a
rr

a
y

s
5

,
6

,7
.

8
.



lI
lI

lI
Il

EL
-C

EN
TR

O
19

19
EA

RT
HQ

UA
KE

AR
RR

YS
ll

.5
.6

.1
.

0:
4

fR
EQ

U
EN

CY
-

C
Y

C
LE

S/
SE

C
RI

G
H

T
SP

A
N

TO
TA

L
RE

SP
O

N
SE

3R
O

D
E

flI
V

lU
N

C
D

R
R

EL
R

TE
D

C
A

SE
I

_.
_.

_
_

.lC
D

R
R

EL
R

TE
D

C
A

SE
l

I-
'

W ~

....
,..

,..
.

D
f\

A
..

I\
D

~
.x

u
_

n
1f

It
tt

lI
lI

lI
I.

GO
LD

EN
GA

TE
BR

ID
G

E
SY

M
M

ET
RI

C
V

ER
TI

CA
L

M
OD

ES
LE

fT
SP

AN
TO

TA
L

RE
SP

O
N

SE
3R

D
O

ER
IV

lU
N

C
O

R
R

EL
R

TE
D

C
A

SE
I

lI
lI

lI
I.

-
_

.
-

lC
O

R
R

EL
R

TE
D

C
R

SE
I

I
EL

-C
EN

TR
O

19
19

EA
RT

HQ
UA

KE
AR

RA
YS

5
.6

.7
.8

.

I
lI

lI
lI

Il
,,)

/1
..
..

lI
lI

lI
Il

.
.
.
.

to
uo

e•
•

o
I

A
"
J
"
t

(
'

1\
1\

1
\

1\
o

0.
4

\I
V

V
fR

EQ
UE

NC
Y

-
C

Y
C

LE
S/

SE
C

RI
G

H
T

SP
AN

TO
TA

L
RE

SP
O

N
SE

3R
D

D
E

ftl
V

IU
N

C
D

R
R

EL
R

TE
D

C
R

SE
I

IC
D

R
R

EL
R

TE
D

C
R

SE
I

01
I'

''
,,

"
,
4
.
\
~

,
I

•
I

o
~

ro
fR

EQ
UE

NC
Y

-
CY

CL
ES

/S
EC

CE
NT

ER
SP

AN
TO

TA
L

RE
SP

O
N

SE
3R

D
D

ER
IV

_
lU

N
C

D
flR

EL
A

lE
D

C
A

SE
I

_
._

-
IC

C
IR

R
El

A
IE

D
C

R
SE

I
_

_
_

_
ar

lI
lI

lI
Il
A
~

li
t

C
II

ta
L

.
~

"'"
"'"

'*
"'

='
lI

lI
lI

Il
lI

lI
lI

Il
,
.
.
-
.

/'
\.

/'
\.

V
~
~

lI
lI

lI
Il

,.
.
.
.
.

0
/
'\

/
'\

_
O
~
~

u w en (:. LL
. 10

.0
_1

0-
83

u w 'iJ .... LL
. 5.

0
_1

0-
845.
0

_i
O

-1
4

1
.1

1
1

lI
lI

lI
IJ

lI
lI

lI
Il

~

GO
LD

EN
G
~
T
E

BR
ID

G
E

SY
M

M
ET

RI
C

V
ER

TI
CA

L
HO

DE
S

LE
fT

SP
AN

TO
TA

L
RE

SP
O

N
SE

3f
tD

D
ER

I
V
_

_
lU

N
C

D
R

R
EL

A
TE

D
C

A
SE

I
_

_
._

IC
D

R
R

EL
A

TE
D

C
A

SE
I

0:
4

0.
7

FR
EQ

UE
NC

Y
-

C
Y

C
LE

S/
SE

C
CE

NT
ER

SP
A

N
TO

TA
L

RE
SP

O
N

SE
3R

D
D

E
R

I
"
_

lU
N

C
D

flR
EL

A
TE

D
C

A
SE

I
_

_
._

._
IC

D
R

R
E

L
R

T
E

D
C

R
SE

I

0
0 0 0

u U
J ~ .... LL
.

u w en ;::. LL
. 10

.0

-1
0'

·4

1
_1

0'1
3

11
0•

•4

u w ~ .... LL
.

u w ~ .... LL
.

01
./V

,I
I
V
~

I
I

I
,

o
~
4

~
7

FR
EQ

UE
NC

Y
-

C
Y

C
LE

S/
SE

C

01
,
I
U

..
..

A
M

.
I

,
,

I
o

M
~

fA
EQ

UE
NC

Y
-

CY
CL

ES
/S

EC

F
ig

.
1

1
-4

9
A

u
to

sp
e
c
tr

a
o

f
th

ir
d

d
e
ri

v
a


ti
v

e
re

sp
o

n
se

a
t

e
n

d
sp

a
n

.
In

p
u

t
a
rr

a
y

s
4

,
5

,
6

,
7

.

F
ig

.
II

-5
0

A
u

to
sp

e
c
tr

a
o

f
th

ir
d

d
e
ri

v
a


ti
v

e
a
t

e
n

d
sp

a
n

.
In

p
u

t
a
rr

a
y

s
5

,
6

,
7

,
8

.



135

the points at which the response is calculated. Again, the uncorrelated

case is more conservative than the correlated case. The autospectra of

the additional (vibrational) horizontal component of cable tension for

both response cases are shown in Fig. 1I-51. It appears that, in general,

the third mode responds most strongly in all cases because of its

s.ensitivi ty to longitudinal input motion at the anchorages (P is
n

large - See Table II-B).

In Table II-9, the expected peak values of the symmetric response

predicted by Vanmarcke's and Der Keureghian's methods [9,10,17] are com-

pared with the computed maximum response obtained from the time domain

(Duhamel integral) analysis shown in Figs. II-52, 53, and 54. It appears

that a peak factor of approximately 3.5 can be used to convert root mean

square response values to expected peak values for this multimode multi-

input problem. Peak displacements, stresses, shear forces, and dynamic

cable tensions are shown for the Golden Gate Bridge in Table II-IO (based

upon a peak factor of 3.50) and are compared to results obtained by the

response spectral method. It should be mentioned that the response

spectral method deals with the input excitations as being uncorrelated

(independently applied). Therefore, the response spectral method should

be compared to the uncorrelated frequency domain cases, which gives

reasonable agreement.

For the correlated case the expected peak value of additional cable

tension (expressed as a fraction of the static tension due to dead load,

H = 53467 kips) is 6.4% for input arrays 5, 6, 7, and 8 and 15.7% for
w

arrays 4, 5, 6, and 7. Baron, et aI, [5] have predicted the same range

of cable tension in a study of the response of the Golden Gate Bridge

subjected, to the propagating ground motion of the Taft, 1952, earthquake
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(M
L

= 7.7). This additional cable tension is a significant live load

condition in a suspension bridge. Furthermore, the values of earthquake-

induced flexural stresses in the stiffening structure are high for a live load

as shown in Table II-IO when compared to the yield stress of 50.5 ksi.

Figure II-55 shows the side and center span midspan displacement

response for the three reference cases. By comparing these reference

cases, as well as their peak responses shown in Table 11-10, it is seen

that uniform vertical ground motion (Ref. case 1) is not a good assump-

tion in calculating the vertical vibration of a suspension bridge, since

longitudinal motions contribute greatly to the vertical bridge response

(Ref. cases 2 and 3). The same conclusion may be reached by comparing

response spectral calculations under the uniform ground motion assump-

tion (Table II-II) against those calculations which involve longitudinal

inputs (Table 11-10). Figure II-56 serves as a graphical summary of

the Golden Gate synnnetric response cases. This figure shows that the

vibrational spectral response is fairly similar to the total spectral

r~sponse; i.e., the effect of the quasi-static displacements is of

a higher order nature; however, this effect is incorporated in the

This trend shows itself again in theparticipation factors R .•
In

comparison of left span versus right span displacements; since the modes

considered are symmetric, the only difference in these midspan displace-

ments arise from quasi-static motions. The figure also emphasizes the

importance of the longitudinal inputs upon the vertical response.

To check that the effect of antisymmetric vibration is of a higher

order nature because the longitudinal anchorage ground motions do not

excite the antisymmetric modes (since P = 0n
for antisymmetric nodes),

two antisymmetric vertical response cases are studied. In the first case,



LO
11

0"

U LI
J

tf
) ~ U

GO
LD

EN
GA

TE
BR

ID
G

E
SY

M
M

ET
RI

C
V

ER
TI

CA
L

M
OD

ES
LE

FT
SP

AN
TO

TA
L

RE
SP

O
N

SE
1

0
(R

E
fE

R
E

N
C

E
C

AS
E

11
•

fi
ii

ii
li

C
1iIC

IIIIS
,.

1
\0

4
IIl

IIf
IC

.IL
\II

IlW
1C

lN
.
.

•
'4

14
10

li
e

./
"
',

.
~

~
u

.
.

2
'o

U
II

O
li
t

LI
J

~
~

II
')

V
V

V
...

.
:J

:
.
.
.

T
·l
_

_
•

U
ro

...
A

.
/
)
.
0

v
v
"
"
"

GO
LD

EN
GA

TE
BR

ID
G

E
SY

M
M

ET
RI

C
V

ER
TI

CA
L

HO
DE

S
CE

NT
ER

SP
AN

TO
TA

L
RE

SP
O

N
SE

~
1
l
F

C
II1

lC
A

L
~

'"
'.-

...
0.

_
.

L
"'

.
'4

11
11

11
11

~
I
~

_
.

'o
U

II
O

•

~
r"

\.
.

V
'
7

V
.
.
.
.

.
.
_

T
o

U
II

I.

0
1

\.
/\

.
r.

..
,
,
~
~

..... "'"l\
)

(R
E

fE
R

E
N

C
E

C
AS

E
31

D
IS

PL
A

CE
M

EN
T

..
..

·E
L-

CE
N

TR
O

19
79

EA
RT

HQ
UA

KE

...-
01

.}
\

1
.6.

I
,

1
I

o
Q

4
0.

7
FR

EQ
UE

NC
Y

-
C

Y
C

LE
S/

SE
C

....

"
4

T
4

lt
II

O
.

0
1

d
V

\.
"
"
"
/
\
/
,
(
'

•
1

\
•

•
•

•
•

o
~

~
FR

EQ
UE

NC
Y

-
CY

CL
ES

/S
EC

(R
E

fE
R

E
N

C
E

C
AS

E
2)

1.2
:

_1
05

u w en .... :J
:

U

D
IS

PL
A

CE
M

EN
T

~
...-

2.
0

Id
EL

-C
EN

TR
6

19
79

EA
RT

HQ
UA

KE

.
.

I

II
Q

Il
I

1I
C

IlI
l_

U 4
J

II
') .... :J
:

U

"
4

T
4
t
'
~

oj
,.

..
/

..~
~

0
'

O
A

'
0:7

~
FR

EQ
UE

NC
Y

-
C

Y
C

LE
S/

SE
C

11
0"

I
-:

.
(R

E
fE

R
E

N
C

E
C

AS
E

21

u w II
') .... :J
:

U
..

.2

u w II
')

JC :J
:

u
~

01
•I

..
..

..
..

.
1

i>
I

•
,

i

o
n

4
~
7

FR
EQ

UE
NC

Y
-

C
Y

C
LE

S/
SE

C
01

,I
Y

\-
,

I
~

,
,

,
I

o
~

~
fR

EQ
UE

NC
Y

-
CY

CL
ES

/S
EC

F
ig

.
II

-5
5

A
u

to
sp

e
c
tr

a
o

f
m

id
sp

an
d

is
p

la
c
e
m

e
n

ts
.

R
ef

er
en

ce
c
a
se

s.
E

ff
e
c
t

o
f

lo
n

g
it

u
d

in
a
l

m
o

ti
o

n
.



143

Table II-11

UNIFORM VERTICAL MOTION [ARRAY *6]
[f5 (t) • f 8 (t) • 0; Response spectral approach]

rroTAL RESPONSE Left Span Center Span Riqht Span

Displacement at midspan (em) 37.2 51.9 37.2

Bending stress at midspan (ksi) 3.44 5.73 3.44

Shear force at left side 48.2 206.2 48.2
of each span (kips)

Cable tension (kips) 2318.1 kips
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the inputs are taken as El Centro Arrays No.4, 5, 6, and 7, while the

second case involves input arrays No.5, 6, 7, and 8. The autospectra

of displacement at three points on the bridge are shown in Fig. II-57

for the first input case and in Fig. II-58 for the second input case.

Figures II-59 and 1I-60, show similar autospectra of response stresses.

In these figures, Point 1 corresponds to the displacement (or stress)

at the midspan of the left side span, Point 2 corresponds to the dis

placement (or stress) at quarter span of the center span (2
2
/4) and

Point 3 corresponds to _displacement (or stress) at the 4/10 span of

the center span (0.4 • 2
2
). Figures 1I-6l and 11-62 show the autospectra

of shear force at the left side of each span. For these figures, Point

1 corresponds to the left end of the left side span and Point 2 corres

ponds to the left end of the center span. The root mean square (R.M.S.)

response values due to antisymmetric vertical vibration are summarized

in Table II-12, and clearly, when compared to Table II-IO, show that the

antisymmetric vibration is of a higher order nature.

In order to further investigate the symmetric vertical response of

the Golden Gate Bridge, as well as gain more confidence in the statis

tical peak factors, the vertical seismic response of the Golden Gate

Bridge is investigated using artificially generated earthquake ground

motions as inputs. These inputs are described in detail in Ref. 12

and appear in Appendix II-e. The Type A and Type B models, which

intend to represent the acceleration in a magnitude 8 shock and magnitude

7 shock, respectively, are utilized in this study. The acceleration,

velocity, and displacement ground motion histories for the various inputs

are shown along with their associated power spectral density of displace

ment functions. The artificial earthquake ground motion A-3 is
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Fig. II-57 Autospectra of antisym
metric displacement
response. Input arrays
4, 5, 6. 7.

Fig. II-58 Autospectra of antisym
metric displacement
response. Input arrays
5,6,7,8.
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Fig. II-59 Autospectra of antisym
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Input arrays 4, 5, 6, 7.
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metric response stresses.
Input arrays 5, 6, 7, 8.
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Table II-12

EXPECTED ROOT MEAN SQUARE

VALUES OF DISPLACEMENTS, BENDING STRESSES,

AND SHEAR FORCES

DUE TO ANTISYMMETRIC VERTICAL VIBRATION

TOTAL RESPONSE Correlated Uncorre1ated Array

PT 1 PT 2 PT 3 PT 1 PT 2 PT 3 Numbers

. 15eO 6.25 8.97 9.17 5.52 6.24 4,5,6,7.

Displacement (em) 10.8 3.30 5.40 9.39 3.94 5.44 5,6,7,8

Bending Stress 1.36 0.43 0.87 0.83 0.36 0.64 4,5,6,7
(ksi)

0.82 0.25 0.63 0.79 0.28 0.59 5,6,7,8

Shear Force at 17.2 19.9 17.2 10.9 15.2 10.9 4,5,6,7
Left Side of Span

(kips) 10.4 13.9 10.4 10.2 13.2 10.2 5,6,7,8
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taken as the vertical input motion f
l

(t), A-4 is taken as f
2

(t) ,

B-1 is taken as f
3

(t) , B-2 is taken as f 4 (t), and the longitudinal

inputs f
5

(t) and f
8

(t) .are taken as the artificial motions A-I and

A-2, respectively.

The autospectra of midspan symmetric displacement response to the

artificially-generated inputs are shown in Fig. 11-63 while the auto

spectra of midspan stresses are shown in Fig. II-64. The autospectra

of shear force at the endspans are shown in Fig. 11-65, while the auto

spectra of the additional (vibrational) component of the cable tension

is shown in Fig. 11-66. In Table 11-13, the expected peak values of

the symmetric response predicted by Vanmarcke's and Der Kiureghian's

methods are compared with the computed maximum response obtained from

the time domain (Duhmael integral) analysis shown in Figs. 11-67 and

11-68. It again appears that a peak factor of approximately 3.5 is

appropriate to convert root mean square values to expected peak values,

with the possible exception of the cable tension response, whose

calculated peak factor is quite high (6.64).

It should be remembered that both Vanmarcke's and Der Kiureghian's

analyses deal with a single, Gaussian, suddenly applied, steady-state

input. It would seem that the multiple-support excitation problem may

be quite more complicated, and additional studies may be necessary to

completely comprehend the complex nature of the peak factors. Figure

11-69 shows the peak factor distribution for one of the displacement

response cases. It is seen that Vanmarcke's and Der Kiureghian's peak

factor distributions are fairly similar. Also, it is seen that for

95% confidence, one should take the peak factor to be about 3.5, and

the expected value (or mean) of the peak factor should be about 2.1.
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From Tables II-9 and II-13, it can be seen that the actual peak factors,

obtained by dividing the time domain results by the associated root

mean square frequency domain results, are all fairly high, that is,

they do not appear to have an expected value of 2.1, but rather an

expected value close to 3.5. This indicates that for the multiple

support excitation problem, additional analysis may be necessary in order

to accurately predict peak factors.
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APPENDIX II-a

solution for the.Vertica1 Quasi-Static Functions

A. Unit displacement at Left Anchorage:

The solution for the quasi-static function corresponding to unit

displacement at support A of figure II-1 is obtained by satisfying the

2
d g1' (x.)

~ J.
- H

w
E.I,
~ 1,

following three equations:

4
d gl' (x.)

~ ].

= 0

i = 1,2,3 (II-a-l)

subject to the boundary conditions

gIl (0) = 1

gIl (tl) = 0

g12(0) = 0

g12(22) = 0

g13(0) = 0

g13(23) = 0 (II-a-2)

9 "(0) = 9 "(0) = g "(0) = 011 12 13

9 "(1) = g "(1) = 9 "(1) = 011 1 12 2 13 3

The form of the solution can be taken as

i = 1,2,3 (II-a-3)



where i = 1,2,3
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(II-a-4)

Substituting Eqs. II-a-3 into Eqs. II-a-l results in the following three

equations:

2H C1 ,w J.,

'*W,
:1.=-

H
w

EAt 3
( ~ c) 1

E n=l

*w
n

H
w

[
AAnIn [cosh(A !l, ) -1]

nn

i = 1,Z,3 (II-a-5)

Equations II-a-3 and II-a-S can be used in conjunction with the

boundary conditions (II-a-2) in order to solve for the 15 unknown coef-

ficients present in Eq. II-a-3, hence uniquely defining the first quasi-

static function gl'(x,),
:1. :1.

Introducing gll(Xl ) from Eq. II-a-3 into the boundary conditions

results in the equations

Bll + Ell = 1

2
BllAl + 2Cll = 0

(II-a-Q)



1
- t

1
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From the previous equations, the coefficients All' CII , 011' and Ell

can be written in terms of B
U

as

Ell = 1 - Bll

2
-BllAI

Cn - 2

BIl[cosh(Al~l)-l]

ainbOl ~l)

2
BllAl ~l

Dll = 2

Similarly, introducing g12(x2) into the boundary conditions gives

(II-a-7)

(II-a-8')

Again, the coefficients A
12

, C12 , 012 , and E12 can be written in terms of
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E12 = -B12

-B12[cosh(~2t2)-1]

A12 = sinh(~2t2)

2
B12~2 t 2

D12 = 2

(II-a-9)

Introducing g13(x
3

) into the boundary conditions gives

which results in

(II-a-lO)

A t
= - B tanh (2...l)

13 2
(II-a-ll)
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From Eqs. II-a-S, the following relationship is. apparent:

=
C13

=-*-
w

3

(II-a-12)

Using Eqs. II-a-7, 9, 11 the previous equation can be written

Therefore,

= = (II-a-13)

*w A
B

12
= B

ll
(/) (..1:.) 2

wI
A2 (II-a-14)

*w A
B13 = Bn

(2) (..1:.) 2
* A

3wI

Substituting Eqs. II-a-7, 9, 11, and 14 into Eq. II-a-S, and solving for B11

*wI
-( -)

H
w

*w. 2
(-1:.)
H

w

\2
(-)A.

1.

2 3
2

A.R.. A. R..
J. 1. 1. J.(r tanh -2- + 12

1.

(II-a-IS)

Once Bll is known, the quasi-static function gli(xi ) is completely

determined since the coefficients Ali' Bli , cli' Dli , and Eli appearing in

Eq. II-a-3 can all be defined in terms of the coefficient Bl1 using

Eqs. II-a-7, 9, 11, 14.
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B. Unit Displacement at Left Tower-pier

The solution f~r the quasi-static function corresponding to unit

displacement at support B of figure II-I is obtained by satisfying the

following three equations:

E.I.
~ :1.

- H
w

2
d g2' (x.)

J. J.

i "" 1,2,3

subject to the boundary cond~tions

(II-a-16)

g21(0) = 0

g21(!1) = 1.

g22(O) := 1

g22 (R,2) = 0

g23(O) = 0

g23(R.3 ) = 0

g "(0) = g "(0) = g "(0) = 0
21 22 23

g21"(R.l) = g22"(R.2) = g23"(t3) = 0

The form of the solution can be taken as

2+ C
2

,x, + D
2

,x, + E
2

,
J.J. J.J. ~

(II-a-17)

(II-a-18)

i := 1,2,3
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where A. is defined by Eq. II-a-4. Substituting Eqs. II-a-18 into Eqs. II-a-16
1.

results in the following three equations:

2H c2 'w 1.

11
w,

1.=-
H

w Lt *wn
H

w
[

AAn2n [cosh (A t ) - 1]
nn

i = 1,2,3

Introducing g21 (xl) from Eq. II-a-18 into the boundary conditions

results in the equations

From the previous equations, the coefficients A21 , c21 ' D21 and E21 can

be written in terms of B21 as

(II-a-19)

(rI-a-20)
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Similarly, introducing g22(x2) into the boundary conditions gives

(I!-a-21)

(II-a-22)

(II-a-23)
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Introducing g23(x3) into the boundary conditions gives

B23 + E23 = 0

2
B23A

3
+ 2C

23
= 0

which results in

E23 = - B23
2

C
23

B23A
3

:: - 2

(II-a-24)

= -
B

23
[cosh (A

3
t 3) - 1]

sinh (A
3

t
3

)

From Egs. II-a-19 the following relationship is apparent:

(II-a-25)

C21
-*- =
w.
~

(II-a-26)

Using Egs. II-a-21, 23, 25, the previous equation can be written

= (II-a-27)
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Therefore,

Substituting Eqs. II-a-21, 23, 25, 28 into Eqs. II-a-19, and solving

(II-a-28)

* '* 'If

wI E A witl w2t 2
-(-) (~) (2H' + '2H"")H LEB21

w w w
(II-a-29)= 'iii -

A.
2
t.

3 -~i)J~3 (Wi) 2
A 2 A.t.

A 2c c ! (.2:.) 2 ]. ]. ]. ].
(- tanh -- + 12 + H

~ i=l
H A. A. 2 1 w

W l. ].

once B21 is known, the quasi-static function g2i(xi ) is completely

determined since the coefficients A2i , B2i , c2i ' D2i , and E2i appearing

in Eq. II-a-18 can all be defined in terms of the coefficient B21 using

Eqs. II-a-21, 23, 25, 28.

C. Unit Displacement at Right Tower-Pier

The solution for the quasi-static function corresponding to unit

displacement at support C of figureII-1 is obtained by satisfying the

following three equations



E,!.
.1. .1.

4
d g3' (x,)
_.-,;;.,;.1.~.=.1.__ H

dx,4 w
.1.
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2
d g3' (X,)

.1. .1.

* 'It3 w n[! -E.~n=l Hw 0

i = 1,2,3

9
3

(x )dx ~ = 0
n n n~

(II-a-30)

subject to the boundary conditions

g31 (0) = 0 g33(0) =< 1

g "CO) = 9 "(0) = 9 "(0) = 0
31 32 33

q "(t) = 9 "(1) = 9 "(1) = a
31 1 32 2 33 3

The form of the solution can be taken as

q3~ (x.) = A
3

, sinh (A.x·.) + B
3

, cosh (A.x.)
.1..1. .1. .1. .1. .1. .1. .1.

2+ c3 ·x. + D3 ·x. + E3 ,
.1. .1. .1. .1. .1.

i = 1,2,3

where A. is defined by Eq. II-a-4. Substituting Eqs. II-a-32 into Eqs •
.1.

II-a-30 results in the following three equations

(II-a-31)

(II-a-32)
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*w
n

H
w

i = 1,2,3 (II-a-33)

Introducing g3l(xl ) from Eq. II-a-32 into the boundary conditions

results in the equations

(II-a-34)

From the previous equations, the coefficients A31 , c
31

' D
31

, and E31 can

be written in terms of B
31

as

(II-a-35)
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Similarly, introducing g32(x
2

) into the boundary conditions gives:

Again, the coefficients A32 , C32 ' D32 , and E32 can be written in terms

of 8
32

as

(II-a-36)

= -
8 32 [cosh (~2t2) - 1J

sinh (A2t2) = - (II-a-37)

Introducing g33(x3) into the boundary conditions gives:

which results in

(II-a-38)
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(II-a-39)

From Eqs. II-a-33 the following relationship is apparent

(II-a-40)

Using Eqs. :II-a-35, 37, 39, the previous equation can be written

2 2 2B31A1 B32A2 B33"3
= =

* #I *WI w2 w3

Therefore,
#I
W A

B32 = ~3l <+-) (.-!.) 2
WI "2* --
w "B33 = B31 (#1

3
) (2.)2

WI "3

(II-a-41)

(II-a-42)

Substituting Eqs. II-a-35, 37, 39, 42 into Eq. II-a-33 and solving for B3l

* * #I
W E A w

2
12 w3R.3- (-1) (....£...£) (2"H + """2H)H

~B31
w w w=

* A. 21. 3 -til] +
E A [ ; w. " 2 A.1.

A 2.....£...£ L (..2:.) (.....!)2 (- tanh~ +
1- 1-

H
~ i=l H A. A. 2 12 1 w

w 1- 1-

(II-a-43)

Once B3l is known, the quasi-static function g3i(xi ) is completely

determined since the coefficients A3i , B3i , c3i ' D3i , and E3i appearing

in Eq. II-a-32 can all be defined in terms of the coefficient B3l using

Eqs. II-a-35, 37, 39, 42.
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D. Unit Displacement at Right Anchorage

The solution for the quasi-static function corresponding to unit

displacement at support D of figure II-l is obtained by satisfying the

following three equations

E.I.
1. 1.

4
d g4' (x,)

1. 1.
- Hw

2
d g4' (x,)

1. 1.

i = 1,2,3

subject to the boundary conditions

(II-a-44)

(II-a-45)
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The form of the solution can be taken as

g4'(X,) = A4 · sinh (A.X.) + B4 . cosh (A.X.)
11111 1 1 1

2+ C4 ·X. + D4 ·X, + E4 "
1 1 111

i=l,2,3

where A. is defined by Eq. II-a-4. Substituting Eqs. II-a-46 into Eqs.
1 .

II-a-44 results in the following three equations

(II-a-46)

2H c4 'w 1

*W.
1=-

H
w

EA{3
(...£...£) ~
~ 'n=1

*w
n

H
w

[~:n [cosh (A t ) - IJn n

B C t 3 D t 2 ]}
+ 4n 'h (A t ) + 4n n + 4n n + E

4n
t
n

'-A-- S1n n n 3 2
n

i=I,2,3 (II-a-47)

Introducing g41 (Xl) from Eq. II-a-46 into the boundary conditions

results in the equations

(II-a-48)
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From the previous equations, the coefficients A41 , c41 ' 041' and E41

can be written in terms of B41 as

E41 = - B41
2B41A

1
C = - 2. 41

(II-a-49)

Similarly, introducing g42(x2) into the boundary conditions gives

(II-a-50)

Again, the coefficients A42 , C42 ' D42 , and E42 can be written in terms of

(II-a-51)



174

Introducing g43 (x3) into the boundary conditions gives

B43 + E43 = 0

which results in

E43 = -B43

(II-a-52)

A3~3
=- -843 tanh (-2-)

(II-a-53)

From Eqs. II-a-47 the following relationship is apparent

(II-a-54)

Using Eqs. II-a-49, 51, 53 the previous equation can be written

(II-a-55)
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Therefore,

*w A
B42 = B4l

{.2} {-.!} 2
* A

2wI

*w A
B43 = B4l

(2-) (-.!) 2 (II-a-56)
* A

3wI

Substituting Eqs. II-a-49, 51, 53, 56 into Eq. II-a-47 and solving

for B
41

*wI
-{ -H}

w

2 A.R..
1. 1.

(- tanh -- +A. 2
1.

A 2 H
1 w

(II-a-57)

once B4l is known, the quasi-static function g4i(xi ) is completely

determined since the coefficients A4i , B4i , c4i ' D4i , and E4i appearing

in Eq. II-a-46 can all be defined in terms of the coefficient B41 using

Eqs. II-a-49, 51, 53, 56.
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APPENDIX II-b

Solution for the vertical Mode Shapes and Natural Frequencies

If it is assumed that the mass of the bridge as well as its

elastic properties are uniform along the i th span, the eigenvalue problem

assumes the form

E.I.
J. J.

4a n.__J.__
4ax.J.

2an.
H J.w' --2-

ax.J.

*w.
+~

H
w [

E A 3
..£.-£ I

LE m=l
n (x ,t)dx Jm m m

;:: 0

i ;:: 1, 2, 3 (II-b-l)

where the bracketed term in Eq. II-b-l represents the additional hori

zontal component of cable tension HCt). The nth vertical mode shape and

natural frequency is obtained by assuming the vibration to be sinusoidal,

that is

n. (x. , t)
J. J.

iw t
n= <p • (xi)enJ.

i ;:: 1, 2, 3 n ;:: 1, 2, 3 ••. (II-b-2)

in which i ;:: /:l and w is the nth natural circular frequency of vertical
n

vibration. Substituting Eq. II-b-2 into Eqs. II-b-l yields the equations

of motion in the form

4
d rj> .nJ.

4
dX,

J.

H 2 2
d rj> .m.ww nJ. J. n--------rj> +

E. I . d 2 . E. I . niJ. J. X. J. J.J.

*W.
J. H

E.I,H nJ. J. W

;:: 0

i ;:: 1, 2, 3 n ;:: 1, 2, 3••• (II-b-3)
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*W.

J.m. =-
J. g
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i = 1, 2, 3 (II-b-4)

and the additional horizontal component of cable tension associated with

the nth vertical mode shape, H , is given by
n

* . 9..
~ E A 3 w, JJ
H =-E-£ I ~
n LE j=l Hw o

~ ,(x.)dx.
nJ J J

n = 1, 2, 3 ..• (II-b-S)

Because H is independent of x. and may be treated as a constant,
n J

Eqs,II-b-3 represent linear, ordinary differential equations of fourth

order with constant coefficients. The general solutions of Eqs.II-b-3

are expressed as

(~.x.) (~iXi)<p ,(x.) A. sin -1:....!. + B. cos --nJ. J. ]. 9.. ]. 9..J. ].

* -
(V' X') (V. x

. )
W.H

+ C. sinh ~ + D. cosh ~iJ. +
]. n

J. 9.. J. 2
J. m.H wJ.wn

i = 1, 2, 3 n = I, 2, 3 (II-b-6)

where ~i =J~ e. (Z. - 1)
J. ].

=~tv. e. (Z. + 1)
]. ]. ].

( 4E.I.m.) 2J. J. ].
Z. 1 + 2 w

].
H

n
w

H i:
e. w J.=--

J. E.!.J. ].

i = 1, 2, 3

n = I, 2, 3 ...

(II-b-7)
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and A., B., C., and D. are arbitrary constants and are determined in
1. 1. 1. 1.

conformity with the boundary conditions at the supports of the i
th

stiffening girder (or truss). The first four terms in Eq. II-b-6

represent the general solutions of the homogeneous equations (H = 0),. n

while the last term of the same equation represents the particular solu-

tions of' the complete differential equations.

It is convenient to separate the investigation of the sym-

metric vertical modes from that of the antisymmetric vertical modes;

that is, the problem can be divided into two parts:

1. The symmetric vertical modes of vibration in which

there are an even number of internal nodes along

the center span. Here H is not zero.
n

center span.

2. The antisymmetric vertical modes of vibration which

result in an odd number of internal nodes along the

Here H is zero.
n

Symmetric Modes of Vertical Vibration

Assuming the stiffening structures to be simply supported at

the towers and anchorages, the boundary conditions become

d
2

lP '
for = 0 <Pni = 0, E.I, n1. = 0x.1. 1. 1.

dx~ 2,n = 1, 31.

d
2

<p • i = 1, 2, 3
for = £. <Pni = 0, E.I. n1. = 0x.1. 1. 1. 1. dx~

1.

(II-b-8)

expressing the fact that the displacement and moment are zero at the sup-

ports of each span. Introducing Eq. II-b-6 into the above boundary

conditions establishes the symmetric vertical modes as
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'* -w.H
~ n

<P • (x.) ::: --=-:::'-"""'2-
n~ ~

2m.H Z.lll
1. W ~ n

Zi +1

cos (1l./2)
1.

Z. - 1
1.

cosh (V./2)
1.

i = 1, 2, 3 n ::: 1, 2, 3 .•• (II-b-9)

Finally, substituting Eqs .. lI-b-9 into Eg. II-b-S in order to

obtain the frequency equation, the following transcendental equation upon

the natural circular frequency, III , is obtained:
n

L
E--=E A

c c

3

I
i=l

l). = 1, 2, 3 •••

Antisymmetric Modes of Vertical Vibration

(II-b-lO)

An antisymmetric vibrational deflection of the cable and stiffening

girder causes no additional cable tension H. Therefore, there is no
n

interaction between the center span and side spans. For this reason,

two types of independent vibration in a three-span bridge are possible.

Setting H = 0 in Eg. II-b-6 yields:
n
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(LX,) (lJ.X
,)

V,X,

</> • (X, ) A. sin ..2:..2:. + B. COS ~.]. + C, . h ].].= s].n ~n]. J. J. R., ]. ].
J. J. ].

(v,x. )
+ D, cosh ~o].

].
].

n = 1, 2, 3 ••• i = 1, 2, 3 (II-b-ll)

The boundary conditions for the center span are:

d
2

<P

for 0 <l>n2 0 E
2

12
n2

0x
2

= ;::; =
dx

2
2 1, 2, 3.

d2<p
n = . ,

R.2
for <l>n2 0 E21 2

n2x2 =- = ---= 0
2

dx
2
2 (II-b-12)

The second part of Eq. II-b-12 indicates that the center of

the span remains at rest and is also an inflection point.

Substituting Eq. II-b-ll into the boundary conditions (II-b-12),

the frequency equation is derived in the form:

,lJ2
sJ.n 2"' = 0

from which may be seen

lJ2 = 2rr, 4rr, 6rr •••

(II-b-13)

(II-b-14)

The antisymmetric vertical modes of vibration for the center

span then become:

m = 2, 4, 6 ••• (II-b-15)
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Substituting this last expression into equation II-b-3 (with

H = 0), the natural circular frequencies for the center span are deter
n

mined:

m = 2, 4, 6

The boundary conditions for the side spans are:

(II-b-16)

d2

for xj = 0 ~nj
;: 0 E,I,

.. <Pnj = 0
J J 2

2,ax. n = 1, 3 ...
J

d2
j = 1, 3

for x. = t <Pnj = 0 E.I.
·4>nj

= 0
J j J J 2

<ix.
J

(II-b-17)

Substituting Eq. II-b-ll into the above boundary conditions, the

frequency equation is derived in the fonn:

sin 1.1. ;: 0
J

from which may be seen

ll. = TI, 2TI, 3TI .e.
J

j = 1, 3

j = 1, 3

(II-b-18)

(II-b-19)

The antisymmetric vertical modes of vibration for the side

spans then become

. (ltI1TX.)= A. sm ---l.
J R..

J

m = 1, 2, 3 ••• j (II-b-20)
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Substituting this last expression into Eqe II-b-3 (with H = 0),
n

the natural circular frequencies for the side span vibration are determined:

w.]m

H R,~
W J

2 2
m.m 'IT

)

m = 1, 2, 3 • e. j = 1, 3 (II-b-21)
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APPENDIX II-c

Orthogonality of Vertical Mode Shapes

The nth vertical mode shape </> • (x.) satisfies the equation
n~ ~

*.. 2 wi IV
-00 - ell • (x.) + E. I. </>. (x .) - H cfI ." (x. )n g n~ ~ ~ ~ n~ ~ w n~ ~

*w.
~

+ 
H

w
[

E A 3
-.£...£ l
~ j=l

n = 1,2,3, ••• i = 1,2,3 (II-c-l)

where 00 is the nth natural circular frequency of vertical vibration.n

The mth vertical mode shape, cflmi(xi ), satisfies a similar equation,

that is:

*
2~ ~ "

-00 - 4> • (x.) + E. I, cfl, (x,) - H cflm--~ (X~)
m g ~ ~ ~ ~ m~ 1. w......

+ * 1 [ * ·f~w. E A 3 w. j
..2: ~ ! --l
H L..- 'lH

w ~ J= w 0
cfl . (x . ) dx.1 = 0
mJ J jJ

m = 1,2,3... i = 1,2,3 (II-c-2)

Multiplying Eq. II-c-l by cfl . (x.), integrating from zero to t., and
m1. 1. J.

summing over all three spans (i=1,2,3), results in
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n i=l

* .JR..w. ~

-2:. 4». (x.)
g n~ ~

o
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'JR. ]
3 i IV

4» • (x.) ax.] + [' ~ E. I. 4». (x, ) <I> • (x. ) ax. '
m1 ~ ~ i=l ~ ~ n~ ~ m~ ~ ~

o

- Hw [
3 . IR.i ]r 4» •"(x. H . (x. ) ax.

i=l n~ ~ ~ ~ ~

o

[
* .Ii3 w. i 3

Y H~ 4» .(X,)dx.] [ !
i=l w m1. ~ 1. j=lo

* 'IR.· ]w. J

H
J /fl. (x . ) dx .

nJ J J
w 0

n = 1,2,3~~.

= 0

(II-c-3)

Multiplying Eq. II-c-2 by <Pni (xi)' integrating from zero to Q,i' and

summing over all three spans (i=I,2,3), results in

[ 3 *' It. ] [3 Jt. J" 2 wi 1. 1. IV
-00 i - /fin'; (x.H . (x.).dx. + i E.I. <1>. (x.H. (x.)dx.

m i=l g - ~ m1 1. 1. i=l 1. 1. m~ 1. n1. ~ 1.
o 0

- H [£ 'Jii <I> ."(x,) <I> ' (X,)ax)
w i=l m1. 1. n1. 1. ~

o

= 0

m = 1,2,3 •.. (II-c-4)
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Subtracting Eg. II-c-3 from Eg. II-c-4 yields

. 2 . 2
(w - w )n m

* 'fR.3 w. i
! 2. </l. {x.)</l • (x.)dx.

i=1 g 0 n~ ~ ~ ~ ~

+
3

!
i=1

.fi.
E.I. ~

]. ].

o

IV IV
[~. (x.)t!J. (x.) - 4>, (x.)4>. (x,»dx.
~. ~ n~ ~ n]. 1. ~ 1. 1.

3 'JR.i
- H .!

w i=1 o

n = 1 ,::t,3, •.• m = 1,2,3, ••• (II-c-5)

Now the last two bracketed terms in Eq. II-c-5 can be shown to vanish

by integrating by parts. For example

'ft. £.
J. 4> ," (x, ) 4> , (x. ) dx, = 4>. (x.) 4> .' (x, ) ].

nu. ]. n~ ]. J. nJ. J. nu. 1.

o , t, e

J1$ .f(X,)</l ,'(x.)dx.e m1. 1. n1. ]. J.

=_'J1
i

$ .'{x.)</l .'(x.)dx.
m]. ]. nJ. ]. ].

o

n=1,2,3, ••• m=1,2,3, ••• (II-c-6)

since 4> • (0) = 4> • (1.) = 0 from the boundary conditions.
nJ. nJ. J.
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Similarly,

<fI' ! (x. ) ~ . (x. ) dx . =
n~ 1 m1 1 1

~ . (X. H .' (X. )
nu .1. n.l. 1 o

_'I1i~ .'(X'.)4l .'(x.}dx.
m.l. 1 n1 .1. .1.

o

= -" I:i ~mi'(Xi)~ni'(Xi)dxi

Also it can be seen that

n :: 1,2,3, ••• m = 1,2,3, ••• (II-c-7)

1.
1

IV
cjl . (x.)cjl . (x.)dx. = $ . (x.)$ ."'(x.)

IlU 1. n.l. 1. 1. n1 1. m1 J.
o

1 .
.1.

= - ~.'(x.)$ ."(x.)
nJ:; 1 m.l. .1.

o

.It.
= . J.$ ." (x. ) ~ -.l-" (x. ) dx.

mJ. J. n. J.. J.

o

$ .'" (x. ) <f> ' • (x. ) dx .
m.l. J. n1. 1. 1.

n=1,2,3 •••
(II-c-8)

m=1,2,3 ..•

since $ '~. (0) :: <f> • (1.) = 0 and $." (0) = <f> ." (1.)' = 0 from the boundary
n..; n.l..l. nJ:; nJ:;.l.

conditions.

Similarly,
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IV

~. (x.)~. (x.)dx.o nJ. J. ~ J. J.
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R..' J1.J. J.
= 4> s (x G ) q, . I , , (X. ) - 4>. ' I , (x e ) <f> • I (x. ) dx .

mJ. J. nJ. J. 0 nJ. ]. mJ. ]. ].

o

= - I
t.

!fl .'(x.)!fl ."(X.) J.
m]. J. nJ. ]. 0

.JR..
+ ].!fl. " (x. )!fl ." (x. ) ax.

m]. ]. nJ. J. J.

o

~ ."(xJ!fl ."(x.)dx.
mJ. i nJ. J. J.

n =1,2,3, ••• m = 1,2,3••• (II-a-g)

Substituting Egs. II-c-6, 7, 8, 9 into Eg. 11-0-5 yields modal

orthogonality of the form

[
* . JR-., 2 - 2 ~ Wi i

(w - w) I.. - ,
n m i=l g

o
<fl • (x. ) <fl • (x. ) dx.J = 0

nJ. J. mJ. J. J.

That is

n = 1,2,3, ••• m = 1,2,3, ••• (II-c-IO)

3

2
i=l

Wi'JR-
i

<fl • (x.)~ . (x.)dx. = 0g nJ. J. mJ. J. J.
o

for n #- m (1I-c-11)
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APPENDIX II-d

Cable Tension Response in Frequency Domain (Calculational Details)

The finite Fourier transform of the vibrational horizontal component

of cable tension is given by

H(w)
E Ac c=--
~

~ .(X.)dx.]Q (~)
n1 1 1 n

4
w. ~

+ -! L
Hw j=l

g .. (x.)dx. ] F. (~)
)1 1 1 )

.,.
w.t. J

- 2~w
1

[fi+l (w) + Fi (W)]·

(II-d-l)

where F.(w) (j=1,2,3,4,5,8), is the finite Fourier transform of the jth
J

input ground displacement over the duration of the ground motion, TI ,

and Q (w) is the finite Fourier transform of the nth generalized co
n

ordinate given by

F. (w)
J

f. (t) e-iwt dt
J

j=I,2,3,4,5,8. (II-d-2)

n=1,2,3 ••• (II-d-3)
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.. T
where {H (w)} is the transposed complex frequency-response vector

n

corresponding to the nth vertical vibration mode,: and {F(w)} is the

Fourier transform vector of the ground-displacement inputs.

The power spectrum of H (t) may be approximated as

where Tl is the duration of the ground motion and the superposed

asterisk denotes complex conjugate.

(II-d-4)

Substituting Eqs. II-d-l and II-d-3 into the previous equation results

in an expression involving sixteen different terms. These will be taken

one at a time in order to isolate the effects of input correlation.

A) Pure relative re~nse

In performing the multiplication of Eq. II-d-4, one of the terms

encountered involves the first term of Eq. II-d-l multiplied by its

complex conjugate, that is

(i *

{[tE A w. CD

GA(w) = (.-£....£) 2 2 (2.) 2 .~ . (X.)dx]Q (W)})LE Tl H n~ ~ ~ n
W n=l

*

{[t ~tni (Xi) dxi] Q,. (W)} )Cw. CD

. t (-2) iHj=l w m=l

which can be written:

(II-d-S)
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~ i
n=l m=l
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*r r Q (w) 0 (w)nm n '"1n

co co

i i rnfm {~n(~)}T tGff(w)] {Hm(W)}
n=l m=l (II-d-6)

where the modal factors r are given byn

* 0JR,3 w. i
r = l HJ. 41 . (x. ldx.

n • 1 nJ. J. 1,
J.= W 0

n=1,2,3 ••• (II-d-7)

and [Gff(w)] is the 6X6 spectral matrix whose terms are defined by

2 *G.. (w) = - F. (w) F. (w)
J.J Tl:l. J

i,j = 1,2,3,4,5,8 (II-d-8)

Now for the correlated case, the spectral matrix is full, while for

the uncorrelated case, only the diagonal terms (i=j in Eq. II-d-8) are

retained.

B. Pure ~asi-Static Re§POnse

This involves the second term in Eq. II-d-l nmltipled by its complex

conjugate, that is

E A 2
G() 2(~)

B
w =-

Tl ~

(II-d-9)
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* 'rR.'
w, .1.

H
.1. . q, , (x,) dx .

)J..1. .1.
W 0

j=1,2,3,4. (II-d-lO)

and Gjk(oo) is defined by Eg. II-d-8.

For the correlated case, all power and cross-spectral terms are

included in Eq. II-d-9, while for the uncorrelated case, only the

diagonal terms remain, that is Eq. II-d-9 reduces to

(II-d-ll)

where G, (00) is the power-spectra of the j th input support displacement
)

(j=1,2,3,4) given by:

. 2IF. (00) I
)

(II-d-12)

C. Response Due to Vertical Support Displacements

This involves the third term in Eg. II-d-l multiplied by its complex

conjugate, that is

2 EcAc 2 ~ ~ *.,
= - (-L-) l L B.S.' {F_+1(oo)

T ..1. J .1.1 E ,i=l )=1

* .+ F. (00) }
.1.

+ G'+l . (00) + G. ,(oo)}
.1.,J .1., J

(II-d-13)
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which, for the uncorrelated case reduces to:

D. Response Due to Longitudinal Support Displacements

This involves the fourth term in Eq. II-d-l multiplied by its

complex conjugate, that is

which for the uncorrelated case reduces to:

E. Cross term: relative and quasi-static responses

(II-d-14)

(II-d-lS)

(II-d-16)

This involves the complex conjugate of the first term in Eq. II-d-l

multiplied by the second term in this equation, that is
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4 *y. r Y.Q (W)F. (W)
j~l n J n J

(II-d-l7)

where r was defined in Eq. II-d-7, and y. was defined in Eq. II-d-IO.
n J

Using Eq. II-d-3, the previous equation may be written:

4

1.
j=l

*.. T *r y. {H··· (W)} {F (W) }F . (W)
n ) n J

(II-d-18)

which, for the uncorrelated case reduces to

GAB (w)

E A co

= (~C)2 ~
~ n=l

4

~
j=l

r y. H • (w) [G. (w) ]
n J nJ J

(II-d-19)

where H . (w) is the complex frequency-response function corresponding
nJ

to the nth vertical vibration mode and the jth vertical input motion.

F. Cross-term: Relative response and response due to vertical support

clisplacements

This involves the complex conjugate of the first term in Eq. II-d-1

multiplied by the third term in this equation, that is

co

~
n=l

3 *
~ r S. Q (w) (F. +1 (w) + F. (w) )

i=l n 3. n 3. ].

(II-d-20)

which, for the uncorrelated case, reduces to

E A co 3

(~) 2 2: ~ r fL [H . (w) G. (w) + tI .+1 (w) G~ +1 (w) ]
LE n=l i=l n 3. n3. l. n,l. -

(II-d-21)
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G. Cross-terttl: Relative Response and Response Due to Longitudinal

Support Dieelacements

This involves the complex conjugate of the first term in Eg. II-d~l

multiplied by the fourth term in this equation, that is

E A CXI

2 (....£..£) 2 ~ *GAD (U» =- r Q (U» £F8 (U» - FS(U»]Tl ~ n=l
n n

EA CXI

r {~ (oo)}T {;(~)}2 (....£..£) 2 ~ [Fa (00) - F
S

(00)]=-T1 ~ n=l
n n

(II-d-22)

which, for the uncorrelated case, reduces to

H. Cross-term: Quasi-Static Response and Response Due to vertical

Support Displacements

(II-d-23)

This involves the complex conjugate of the second term in Eq. II-d-l

multiplied by the third. term in this equation, that is

4

~
j=l

(II-d-24)

which, for the uncorrelated case, reduces to

= -
EA
(~Ec)2 ['Y181G1 (oo) + 'Y2 (B1+ B

2
)G2 (oo)

(II-d-25)
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I. Cross-term: Quasi-Static Reeeonse and Re~nse Due to Longitudinal

Support Displacements

This involves the complex conjugate of the second term in Eg. II-d-l

multiplied by the fourth term in this equation, that is

2 EcAc 2 4 *
GBD(W) =- (~) i y.F.(w) [Fa(w) - FS(wll

Tl ~ j=l J J

which reduces to zero for the uncorrelated case.

J. Cross-term: Response Due to Vertical Support Displacements and

ReSponse Due to Longitudinal Support Di~lacements

(II-d-26)

This involves the complex conjugate of the third term in Eq. II-d-l

mUltiplied by the fourth term in this equation, that is

which reduces to zero for the uncorrelated case.

Power Spectrum of H(t)

(II-d-27)

The power spectrum of HCt) is given by Eg. II-d-4, which can be written

as

GH(W) = GACw) + GBCw) + GC(w) + Gn (w)

*+ [GAB(w) + GAB(w)]

*+ [GAC(w) + GAC (w) J

*+ IGAD(w) + GAD (w»)

*+ [GBC {w} + GBC (w)]

*+ [GBD (00) + GBD(w)]

+ [GCD(W) *+ GCD(W)J (II-d-28)
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where the terms on the right hand side of Eq. II-d-28 have been previously

,defined, and the superPOsed asterisk denotes complex conjugate.
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APPENDIX II-e

MULTIPLE SUPPORT SEISMIC INPUTS



198

SOME OF STRONG-MOTION GROUND STATIONS DURING
THE IMPERIAL VALLEY. CAe EARTHQUAKE 15 OCT. 1979

• SMAT -1 GROUND STATION

o 10, , , , , ,
KILOMETERS

ARRAY.
NO.1

.BONOS
CORNER

HOLTVILLE

•

• NO.2

• NO.3

I BRAWLEY
,..FAULT

• NO.4
NO.6 ·NO.5•NO.7.

EL CENTRO
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Fig. II-e-17 Acceleration, velocity and dispLacement time histories
of artificial earthquake motion A-3.
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CHAPTER III

TORSIONAL RESPONSE 9F SUSPENSION BRIDGES

TO MULTIPLE-SUPPORT EXCITATIONS

III.l. INTRODUCTION

This chapter presents the dynamic analysis methodology for earthquake

induced torsional vibrations of suspension bridges. The interesting

feature in this problem arises from the torsional vibration being excited

by the torsional (or horizontal ground rotation about a vertical axis)

and rocking (or vertical motion about a horizontal axis that is parallel

to the longitudinal axis of the bridge) components of ground motions

occurring at the bridge's support points (anchorages and tower-piers)

as illustrated in Figs. III-l through III~4. Because the current state

of the art involves recording only the three perpendicular translational

components of earthquake ground motion (two horizontal in addition to

vertical), the rocking and torsional ground input components can at best

be estimated from these recorded translational components using wave

propagation theory,

As in the analysis of Chapter II, a frequency-domain random vibration

approach is used in this chapter to take into account the differences

in ground motion inputs as well as the correlation among the various

input motions. In general, the correlation of the motions at these support

points is extremely complicated, particularly in the case of a long-span

bridge, with different foundation conditions, subjected to seismic waves
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TOWER

Fig. III-2 TORSIONAL VIBRATION OF THE BRIDGE
INDUCED BY TOWER PIER ROCKING MOTION

\ .
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with different angles of incidence and different travel paths (reflections

and refractions, etc.). However, as mentioned previously, such complica

tions can be surpassed by utilizing existing strong motion translation

records along with simplified propagation assumptions to define representa

tive and appropriately correlated multiple-support rotational seismic

inputs. Ground motion records taken from the Imperial Valley (El Centro),

California, earthquake (M
L

= 6.6) of October 15, 1979 are used in defining

the input support motions (see Appendix II-e). These ground motion records

were recorded at several instrument locations whose separation distances

are consistent with the suspension bridge's dimensions.

Finally, the torsional response of the Golden Gate Suspension Bridge,

in California, is investigated in order to estimate its earthquake response

characteristics. Two cases of torsional response are considered. In the

first case, the ground motions recorded at Arrays No.4, 5, 6, and 7 (of

the 13 E1 Centro Arrays; see Appendix II-e) are utilized to define the

rotational input motions at support points (anchorages and tower-piers) ,

while the second response case uses the records at Arrays No.5, 6, 7,

and 8 to define the rotational inputs. Mean square torsional response,

as well as mean square horizontal components of cable tension due to

torsional vibration, are obtained and peak responses are estimated by

using a peak factor of about 3.5 (obtained from Chapter II).

III. 2. COORDINATE SYSTEMS

The coordinate systems used for the typical three-span suspension

bridge are the same as the ones used in ~hapter II for vertical vibration

(see Fig. I1I-4) • In addition, for the purpose of studying the torsional

vibration, the following is considered [1,2]:
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1. The principal vibrational torsional modes are identical to the

corresponding vertical modes, except that the two sides of the

deck and the two cables each move in opposite directions, i.e.,

1800 out of phase as shown in Fig. I11-3. Certain differences

between the frequencies of these two comparable modes -- flexural

and torsional - arise, however, from the different stiffness

and inertial conditions involved. In the flexural modes, the

vertical motion of the deck is uniform across anyone cross-

section~ in the torsional modes, one side is rising when the

other is going down, and the midpoint of the deck remains

stationary.

2. The torsional vibration e(x.,t) of each span is measured as a
1.

clockwise rotation of the stiffening structure from its

originally horizontal orientation.

3. As will be shown at a later point, the torsional vibration is

excited by rocking ground motion ( about a horizontal line

parallel to a longitudinal axis of the bridge) at the bridge's

support points as well as torsional (horizontal rot~tion) ground

motion. In Fig. III-4, the rocking ground motions at supports

A, B, C, and D (anchorages and tower-piers) are denoted

~l (t), ~2(t), ~3(t), and ~4(t) while the corresponding

torsional ground motions are denoted ~l(t), ~2(t) ~3(t),

and ~4 (t) •
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III.3. SIMPLIFYING ASSUMPTIONS

Certain simplifying assumptions are introduced here in addition to

the fundamental assumptions adopted in the earthquake analysis of vertical

vibration (Chapter II). Not only is it assumed that the hangers are

vertical and inextensible, the cables parabolic, and only small deforma-

tions allowed, but also the following simplifying assumptions are intro-

duced [1,2J:

1. The cross section of the bridge deck is assumed to be symmetric

about the center of the section. This cross section consists

of four horizontal chords (or flanges) and four shear web systems

(either diagonal and vertical truss members or web plates) •

2. The suspenders (or hangers) are considered inextensible and are

assumed to remain vertical during torsional vibration.

3. The tower-piers undergo rocking and torsional motions as rigid

bodies under ground motion excitation. This is a reasonable

first approximation to investigate torsional vibration since

the tower-pier is much stiffer than the suspended structure.

III. 4. EQUATION OF MOTION GOVERNING TORSIONAL VIBRATION

Under the previous assumptions, the linearized equation of motion

governing the torsional vibration of the i th span of a suspension bridge

is given by [1,2]:

I .
IlU.

E.r.
~ ~

*w.b
H: H(t) = 0, i=1,2,3. (3.1)
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where e = e. (x.,t) is the torsional response of the
~ ~

the dead weight of the bridge per unit length of the

.th *~ span, w. is
~

.th
I is~ span;
mi

the equivalent mass polar moment of inertia of the bridge cross section

in the
.th
~ span (including the contribution of the two cables) per

unit length; E. is the modulus of elasticity of the suspended structure
~

in the
.th
J. span; r. is the warping constant of the cross section (see

~

Ref. 1) in the .th E.r. is the warping rigidity of the~ span; cross
J. J.

section in the .th
G. is the shear modulus of the .th

J. span; J. span;
J.

J.
J.

is the torsion constant of the .th
J. span; G.J.

~ J.
is the torsional

is the torsional damping coefficient for the H is thew

rigidity of the .th
3. span; b is the deck width of the bridge;

.th
J. span;

c.
~

initial (dead-load) horizontal component of cable tension; and H(t)

is the additional (vibrational) horizontal component of cable tension

given by [1,2]:

H(t)
E A 3

=...£...£ L:
LE j=l

dx. + U (x. It)
J c J

(3.2)

in which E is the cable's modulus of elasticity; A is the cable's
c c

cross sectional area; u is the longitudinal cable displacement at the
c

tower tops and anchorages; t.
J

is the length of the .th
J span;

is the cable's virtUal length defined as [1];

I ft i (dS i 13dx.
i=l 0 dxiJ J.

where s. is the coordinate measured tangent to the cable in the
J.

.th
J.

is the cable ordinate measured from the closingspan; and YJ' = y. (x. )
J J

chord of the jth span (Fig. 111-4). This dead load cable profile is

expressed as [1,2]:
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(3.4)

It should be recognized from Eqs. 3.1 that the torsional vibrations

of each span of the suspension bridge are coupled together by the vibra-

tion of the cable through H(t). In torsional vibration, the two cables

vibrate in their vertical planes in opposite phase. The downward movement

of the cable tends to increase its length and thus increase the horizontal

component of cable tension, while the upward movement of the cable tends to

reduce its length and thus reduce the horizontal component of cable tension.

The boundary conditions at the tower-piers and anchorages are time dependent

and can be written as

e. (0, t) = 1/J, (t)
]. ].

i=1,2,3.

e~I(O,t) = 0
].

e~' (R,. ,t) = 0
]. ].

where 1/J. (t), (i=1,2,3,4), are the rocking components of ground motion
].

displacement at supports A, B, C, and D of Fig. 11I-4. Also note

(3.5)

that by integrating Eq. 3.2 by parts and utilizing Eg. 3.4 the

additional horizontal component of cable tension can be given by

H(t)
E A

c c=-- 3 [:.b JR,j b[dY'J.L.2i- e.dx. +'2if e.
J=1 w 0 J J J J

+ U (x., t)
c J 0.6)

The last tWo terms in Eg. 3.6 may be written as

3 b[dY'JL -...:J..e
j=l 2 dx j j

*
b 3 w·R,'r

- '2 .L ~L1/Jj+l (t)
J=l w

0.7)
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and

3

I
j=l

u (x"t)
c J

(3.8)

where ¢.(t), (j=1,2,3,4), are the torsional components of ground motion
J

displacement at supports A, B, C, and D of Fig. 1II-4.

Therefore, the additional horizontal component of cable tension

(Eq. 3.6·) becomes

H(t) e.dx.
J J

*w.t.
- ~[ljJj+l (t)

w

From Eqs. 3.1 and 3.9, it can be seen" that the bridge I s torsional

motion is excited not only by rocking ground motion inputs IjJl(t), 1jJ2(t),

1jJ3(t), and 1jJ4(t) (that i~by the vertical rotation of the ground about

a horizontal axis parallel to the longitudinal axis of the bridge), but

also by the two torsional ground motion inputs (that is, the horizontal

ground motion rotation about a vertical axis) at the end anchorages,

III.5. GENERAL SOLUTION

In order to conveniently satisfy the time-dependent boundary condi-

tions (Eq. 3.5), again the Mindlin-Goodman solution is adopted [7],

that is, the torsional displacement is separated into two parts

8. (x. ,t) = n. (x. ,t) +
~ ~ ~ ~

4

I
j=l

g .. (x.)IjJ.(t)
J~ ~ J

(3.10)
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is the relative or vibrational rotation of the
.th
J. suspended

span and gji (xi) is the quasi-static (or influence) function which

gives the rotation at x. due to a unit rotation of the suspended
J.

structure at the
.th

support.]

Substituting Eqs. 3.10 into Eqs. 3.1 and 3.9 gives the follow-

ing equation governing the vibrational response:

2 4a n. a n.
J. J.

I . -2- + E.r. -4--
mJ. at J. J. ax.

J.

(G.J.
J. J.

2
b

2
) a ni

+H --w 2 .... 2
aX.

J.

.,.
an. w,b

+ c J. J.
i -a-t- + -H-

w
[C~:c) (~)

- I .
mJ.

4

Y. gJ'i (xi)t/JJ' (t)
j=l

- c
i

4

L
j=l

g .. (x.)t/J.(t)
]J. J. J

+ [:~b] [E(c] [%]
3

L
n=l

*W 5/,
n n

2H
W

I t/J.(t){E,r,g~(x.) - (G.J, + H b22Jg~~(x.)
.] J. J.]J. J. J. J. W ]J. J.

j=l

+ [::b] [E(c] [%]
3 * 5/,

I Wn J n
n=l Hw 0

g. (x )dx } ,
]n n n

i=1,2,3. 0.11)
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Substituting Eqs. 3.10 into Eq. 3.5, the boundary conditions upon the

vibrational response become

n. (O,t)
1.

4
= 1/J. (t) - \' 9 .. (0) 1/J . (t)

1. j;l JJ. J

4
n. (i. ,t) = 1/Ji +1 (t) - L 9 .. (i. ) 1/J . (t)

J. J.
j=l J1. 1. J

i=1,2,3
4

n ~ I (0, t) = o - L g~~(O)1/J.(t)
J. j=l J1. J

4
n~'(i.,t) = o - I 9 ~ ~ (i. ) 1/J . (t)

1. J. j=l JJ. 1. J

The above boundary conditions can be made homogeneous by choosing

(3.12)

r 1 j = i
g .. (0)

J1. 0 j =I i

r 1 j = i + 1
gji (ii)

i=1,2,3.

0 j =I i + 1
(3.13)

j=1,2,3,4.

g~ ~ (0) = g~ ~ (i.) = 0 for all i,j
J1. J1. J.

Now the quasi-static functions are the solutions of the twelve

equations represented by setting the last bracketed term in Eq. 3.11

to zero (for i = 1,2,3, and j = 1,2,3,4) subject to the boundary

conditions of Eq. 3.13. These functions have the form

2
g .. (x.) = A .. sinh(A.x.) + B .. cosh(A.X.) + C.. X. + D.. X. + E ..

J1. 1. J1. J. 1. J1. J. 1. J1. J. J1. 1. J1.

i=1,2,3.

j=1,2,3,4.
(3.14)
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where

, i=1,2,3 (3.15)

and the coefficients A.. , B .. , C.. , D, ., and E.. are constants
J~ J~ J1 J~ J1

involving the bridge's structural properties (solution details are found

in Appendix III-a).

with the quasi-static functions uniquely defined, Eq. 3.11 reduces to

2a n.
I.--~+

m:L at2
E.r.
~ ~

4a n.
1

-4--
ax.

~

2a n.
--~- +

2ax,
1

3

L
n=l

n dx J=n n
- I .

nu.

4
L g.,(X.)1jJ.(t)

. 1 J~ ~ J
J=

- c
i

4
L g.. (x. ) ljJ • (t)

j=l J~ ~ J

*3 w t
I 2~ n (\f.!n+l (t)

n=l w
+ \f.! (t)]

n

* [w.b E A
- .2:..- --£...£J (£) (<l> ( t)

H
w

L
E

2 4
i=1,2,3 (3.16)

and the boundary conditions upon the vibrational response

homogeneous, that is

n, (0, t) = n. (t. , t) = 0
~ 1 ~

n. (x. ,t)
~ ~

become

n~'(O,t) = n~ '(t.,t) = 0
1 1 ~

i=1,2,3. (3.17)

Note that the equation governing the torsional vibrational response

(Eq. 3.16) is excited by rocking ground motion acceleration, velocity,

and displacement terms at each support point, as well as torsional ground

motion displacements at the anchorages. Although, as indicated by Baron,
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et al [3], the contribution from velocity terms is often small when com-

pared to the displacement and acceleration terms, the velocity terms

are included in this analysis for completeness.

III.6. EIGENVALUE PROBLEM - FREE VIBRATIONS

The solution to Eq. 3.16 is obtained by modal superposition, that

is the vibrational displacement is taken to be

00

I
n=l

a . (x.)q (t)
III 1. n

i=1,2,3. (3.18)

where e . (x.)
nl. 1.

is the th
n torsional vibration mode shape in the .th

1.

span of the bridge and q (t)
n

is the
th

n generalized coordinate. The

mode shapes and their associated natural frequencies are derived from

Eqs. 3.16. With damping and forcing terms set to zero, Eqs. 3.16 become

2a n.
I . __1._ +
nu at2

E.r.
1. 1.

4a n.
1.---

4ax.
1.

a2n.__1._

2ax.
1.

+ :ib[[YC) [%]
w E

n (x ,t)dx1 = 0
n n nJ

i=1,2,3. (3.19)

The
th

n torsional mode shape and natural frequency, w ,
n

is

obtained by assuming the vibration to be sinusoidal, that is

n. (x. , t) = e . (x.) exp (iw t)
J J nJ J n

in which i = i-I.

j=1,2,3.

n=1,2,3 •••

(3.20)

·Substituting Egs. 3.20 into Eg. 3.19 results in

E.r.
1. 1.

- [G.J. +
1. 1.

2
H b

2
)d ani _

w 2 dX~
1.

2
I .w a .
nu n nl.

*w.b ~

+ _1._ H
H n

w

o (3.21)

i=l,2,3
n=1,2,3 •••
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where the additional horizontal cable tension associated with the th
n

torsional mode shape, H ,
n

is given by

H
n

3

1:
j=l

n=1,2,3 ••• (3.22)

The boundary conditions for each torsional mode shape become similar

to Eqs. 3.17, that is

e . (0) = e .(~.) = 0
n~ n~ ~ i=1,2,3.

n=1,2,3 •••
(3.23)

Because H is independent of x. and may be treated as a constant,
n J

Eqs. 3.21 represent linear, ordinary differential equations of fourth order

with constant coefficients. The general solution of Eqs. 3.21 can be

expressed as

where

(
v.x· 1+ Di cosh ~,~J +

~

*w,bH
~ n

2
I .H W

llU. W n

i=1,2,3.

n=1,2,3 ••• (3.24)
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41 .t.W

Z. = 1 + IDJ. ~ n

~ O~[G.J. +
~ ~ ~

b
2

)H -w 2
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O. = t.
~ ~

i=1,2,3

n=1,2,3 ••• (3.25)

B. ,
~

and D. are arbitrary constants which are determined
~

in conformity with the boundary conditions (Eqs. 3.23).

At this point, it is convenient to separate the investigation of

the symmetric torsional modes from that of the antisymmetric torsional

modes, that is, the problem can be divided into two parts:

1. The symmetric torsional modes of vibration in which there are

an even number of internal nodes along the center span. Here

the additional cable tension, H ,
n

is nonzero, that is, the

center and side spans are coupled through the vibration of the

cable.

2. The antisymmetric torsional modes of vibration which result in

an odd number of internal nodes along the center span. Here

the additional cable tension, H ,
n

is zero, that is, there

is no interaction "between the center span and side spans.

The symmetric torsional modes are of the form (see Appendix I11-b

for details) :

-C-O-:'::~-(-~-il-:l_2""") COShh [} - ~~JJ} .
i=l,2,3

n=1,2,3 ••• (3.26)
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_Z=i_+_
l
_ tan (~i)

~i

(3.27)

It should be noted that the amplitudes of the symmetric torsional modes

in Eq. 3.26 are arbitrary. In this report, the modes are normalized so

that their highest ordinate has a unit magnitude.

The antisymmetric torsional modes of vibration involving the center

span are {Appendix III-b) :

having associated natural circular frequencies

m=2,4,6 •••

m=2,4,6 •••

(3.28)

(3.29)

The antisymmetric torsional modes of vibration involving the side

spans are (Appendix III-b) :

F
1TX

.)e . (x.) = sin~
mJ J N.

J

having associated natural circular frequencies

j=l,3.

m=1,2,3 •••
(3.30)
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( b2) 2
G.J. +H -2 t.
)) W )

2 2
I .m 1T

m)

j=1,3

m=1,2,3 ••• (3.31)

III. 7. MODAL SOLUTIONS - FORCED VIBRATIONS

Substituting Eqs. 3.18 into Eqs. 3.16 results in

00 00 00

I. 2 0. (x.)q (t) + c. 2 0. (x.)q (t) + E.r. 1: 0I~(x.)q (t)
m1 n=l n~ 1 n 1 n=l n1 1 n 1 1 n=l n1 1 n

- (G.J.
1 1

b
2

)+H -
W 2

00

1:
n=l

0' ~ (x.)q (t)
n1 1 n

* t

I {t- I j [I 0 . (x.)q ( t)] dx .}
j=l W 0 n=l n) ) n )

4 4
= - I. 1: g .. (x.)ljJ.(t) - ci 1: g .. (x.)ljJ.(t)

m1 j=l )1 1 ) j=l )1 1 )

+ ~ib[EcAcJ (~J .~ ~nR.n[ljJ (t) + ljJ (t)]
H L

E
2 £1 2H n+1 n

W n= W

- ~ib[EcAc] (£.1 [<p (t) - <P
1

(t)]
Hw L

E
2J 4

i=1,2,3 (3.32)

Using Eqs. 3.21 and 3.22, the previous equation can be simplified to

00 00

I. 2 0.(x.)q(t)+c. 1: 0.(x.)q(t)
m1 n=l n1 1 n 1 n=l n1 1 n

00

+ I \ w20. (x.)q (t) = - I .
mi l. nn1 1 n m1

n=l

4

1:
j=l

g .. (x.)ljJ.(t)
)1 1 )
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4
- c. L g .. (x.)1/I.(t)

1. j=l )1. 1. J

_ ;ib[ECAC] (~) [</> (t) </> (t)]
H

w
L

E
2· 4 - 1

Now, multiplying Eqs. 3.33 by 0 . (x.),
m1. 1.

i=l,2,3.

integrating over the

(3.33)

.t:h
1.

span (from zero to i. )
1.

and summing overall three spans (i = 1,2,3)

thgives the equation governing the response of the n generalized

coordinate

q (t) + 2~ w q (t) + w2
q (t) =

n nnn nn

4

I
j=l

R. 1/1. (t)
)n J

n=l,2,3 ••• (3.34)

where ~n is the damping ratio of the
th

n torsional mode:

i=l,2,3

(3.35)

(3.36)

and R. and P are modal participation coefficients given by
)n n

[

3 ii J
y. I . J g .. (x.)0 . (x. ) dx.

i~l m:L a )1. 1. n:L1. :L

[

3 i. JL I . J 1. 02
. (x.)dx.

i~l m:L 0 n1. 1. 1.

j=1,2,3,4.

n=1,2,3 •••
(3.37)
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[

* i

b
2

2 I Wi f i 8 . (x. ) dX.]
i=l g 0 n~ ~ 2

= --=[::..=.....:~::"'-1·--;fi -i --=-J
L 8

2
. (x. ) dx.

i=l ~ 0 n2 ~ 2

n=l,2,3 ••• (3.38)

where g is the gravitational acceleration constant. Note that in the

derivation of Eq. 3.34, modal orthogonality was utilized (the details

appear in Appendix III-c), that is

3

I
i=l

I .
~

8 .(x.)8 . (x.)dx. = 0
n~ 2 m2 ~ 2

for m ~ n (3.39)

The solution to Eq. 3.34, assuming quiescent initial conditions,

is given by the convolution integral

1 ft {[-2'nWn
4

R. $.(T~ [ 4 R. $.(~q (t)
= Wnd 0 I - In

j=l In J j=l In J

rna
3

Wi (Tl ~ - $l(Tl} •+ I Si {1/Ji+l ('r) + - P
n

cd<P4 (T)
i=l

{

-~ W (t-T) }
e e n n sin wnd(t - T) n=1,2,3 ••• (3.40)

where w
nd

is the damped natural circular frequency of the nth torsional

vibration mode given by

W = W 11 - ~n2nd n n=1,2,3 ••• (3.41)

The total torsional response is obtained as the sum of quasi-static

and relative responses, that is

8. ex. ,t) =
2 2

4 00

I g .. (x. ) 1/J . (t) + I
j=l J~ 2 J n=l

8 . (x.) q (t)
n2 2 n

i=l,2,3. (3.42)
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IILB. FREQUENCY-DOMAIN: - RANDOM VIBRATION APPROACH

The frequency domain is utilized to study the torsional vibration.

For the six rotational ground motion inputs, there are six complex frequency

Tb determine these functions, eachresponse functions.

(j = 1,2,3,4), and each $kCt),

l/J. (t) ,
J

(k = 1,4) is taken equal to exp(iwt),

where i = ;.:r- 6 and the response of the th
n generalized coordinate

excited by the j th and kth input motions are assumed to be of the form

q .(t) =H . (w)exp(iwt)
nJ nJ j=1,2,3,4,

k=1,4

n=1,2,3 •••
(3.43)

th
n complex frequency response due to input rockingis theWhere H .

nJ

rotation l/J. (t)
J

at the support (see Fig. III-4) and Hnk is the
th

n

complex frequency response due to input torsional rotation $k(t) at

the support (see Fig. 1II-4). Now slJbstituting Eq. 3.43 into Eq. 3.34

yields

~R. w
2

+ ,.P a) - i(2~ w WR. ~
Jn J n n n Jn

H . (w) =nJ

~w~ - W2
) + i (2Z'; w W)]

n n

± P a
H

nk
(w)

n
=

~ 2 2(w
n

- w ) + i(2~WW~n n

where

j=1,2,3,4

0=1,2,3 •••

k=1 (+), k=4 (-)

n=1,2,3 •••

(3.44)

(3.45)
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(3.46)

Taking the finite Fourier transform of Eqs. 3.18 ove~ the duration

of the ground displacement, T
l

, yields the Fourier transform of the

vibrational response

-T

A(x. ,w) fo

l
-iwt

= n.(x.,t)e dt
1. 1. 1.

00

= I e . (X.)Q (w) i=1,2,3
n=l

n1. 1. n

where Q (w) is the finite Fourier transform of the generalized
n

coordinate ~(t) given by

(3.47)

Q (w)
n

q (t)e-iwt dt
n

n=1,2,3 ••• (3.48)

A similar Fourier transformation of Eq. 3.34 yields

2 2
-W Q (w) + 2i~ w wQ (w) + w Q (w) =

n nn n nn

where 'l'. (w) is given by
In

6

I
j=l

'l'. (w)
In

n=1,2,3 ••• (3.49)

'l'. (w) = [(R. w
2 + y.P et.) - i(2~ w WR. )]'l'.(w)

In In J n n n In J

j=1,2,3,4.

n=1,2,3.~.
(3.50)

n=1,2,3 ••• (3.51)
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in which '1'. (w) is the fini te Fourier transform of the ground motion
J

rocking inputs ,p. (t),
J

(j = 1,2,3,4 ), and ~. (<i.l)
J

is the finite

Fourier transform of the ground motion torsion inputs

given by

<t>. (t) ,
J

(j = 1,4),

T1 .
'1'. (w) = J 1jJ. (t)e-~wt dt

J 0 J

T
l

J
-iwt

~ . (w) = <t> . (t) e dt
J 0 J

,

,

j=1,2,3,4

j=1,4

(3.52)

It follows from Eqs. 3.44, 3.45, 3.49, 3.50, and 3.51 that the Fourier

transform of the generalized coordinate can be expressed as

n=1,2,3 ••• (3.53)

where {H (W)}T denotes the transposed complex frequency response
n

vector given by

n=1,2,3 •••

and {~(w)} is the Fourier transform vector of rotational ground

motion inputs given by

{3.54}

'1'1 (w)

'¥2(W)

{'¥{w)}
'1'3 (w)

= (3.S5)
'1'4 (w)

~l (w)

~4(W)



253

Now substituting Eq. 3.53 into Eq. 3.47 enables the Fourier trans-

form of the vibrational response to be expressed as

00

A(xi,w) = 1.
n=l

, i=1,2,3. (3.56)

The power spectral density of the relative (or vibrational) response is

given by

i=1,2,3 (3.57)

where E[o] represents the expected value of the term inside the brackets,

and the superposed asterisk denotes complex conjugate. An estimate of

G
n

can be obtained by simply omitting the limiting and expectation

operations in Eq. 3.57, hence

i=1,2,3, (3.58)

Substituting Eq. 3.56 into Eq. 3.58 yields

00 00

G ex. ,w) =n ~
l

n=l
l 0. (x.)0 . (x.){~ (w) }T [G

ff
(w) J {H (w)}

n~ ~ IlU ~. n m
m=l

i=1,2,3 (3.59)

where any element of the 6x6 spectral matrix of correlated rotational

ground motion displacement inputs [Gff(W)] is defined by

[Gff(W)] =
lim
T~

1
; E[{~(W)}T{~(W)}]

1

(3.60)
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The diagonal elements of the matrix IGff(W)], i = j in Eq. 3.60,

correspond to the power spectral density of the jth rotational displace-

ment inputs 1jJ. (t) ,
J

(j = 1,2;3,4), and ~l (t) , ~4(t), while the off-

diagonal elements of the matrix [Gff(W)] correspond to cross-spectral

depsities between the various rotational ground motion displacement inputs.

These cross-spectral terms are present because the various ground motions

originate from the same source and are therefore related in some way,

so that their correlation (or interaction) must be taken into account.

The effect of input correlation upon the torsional response may be

examined quite easily using Eq. 3.59. If the inputs are assumed to be

uncorrelated, that is, independently applied and unrelated, Eq. 3.59

reduces to

G (x. ,w) =n ~

00

I
n=l

i=1,2,3 (3.61)

in which G. (w) is the power spectral density of the rotational
J

ground motion input 1jJ. (t)
J

which is estimated as

G. (W)
2

1'1'. (w) 1
2

~

J Tl J

G. (W)
2 I<PI (w) 1

2
~-

J T
1

2 2
G. (W) ~- I<P4 (W) I

. J T
l

j=1,2,3,4

j=5

j=6 (3.62)

The results of Eq. 3.59 can be compared to those of Eq. 3.61 in order to

gain a better understanding of the effects of input correlation upon

the response calculations.
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The second characteristic feature of Eq. 3.59 involves the double

summation over the torsional modes and their associated complex frequency

response functions. It should be noted that the complex frequency response

functions H .(w) peak in amplitude at their associated natural fre
n]

an~have much lower amplitudes elsewhere along the frequencyw ,
n

band. Therefore, when the natural frequencies of torsional vibration

quencies

are well separated and damping ratios are small, the effect of the cross-

terms (n ~ m) in Eq. 3.59 becomes much less significant than the

diagonal terms (n = m) [6]. Under these circumstances, the double

summation may be replaced by a single sum, that is

00

G (x.,w) = L 0
2

. (x.){~ (W)}[Gff(W)]{H (w)}
n ~ n=l n~ ~ n n

i=1,2,3. (3.63)

However, due to the flexible nature of the suspension bridge, closely-

~paced modes are quite likely to occur. Under such circumstances, the

effect of the cross terms are no longer negligible, and an accurate

representation of the response would have to include these modal inter-

action terms. For the purpose of this report, Eq. 3.59 is utilized,

that is, the effects of modal interaction are incorporated through a

double summation.

The mean square value of the relative torsional response,
2

tVn(xi )

is given by the integration of Gn over the entire frequency range

i=1,2,3 (3.64)

and the square root of Eq. 3.64 is the root mean square (R.M.S.)

vibrational response.
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The power spectral density of the total torsional displacement

response can be obtained by multiplying the Fourier transform of Eq. 3.10

by its complex conjugate and by (2/T1), which leads to

4
= Gn(X.,W) + L [G .(x.,w) + G. (x;,w)]g .. (x.)

.1. • 1 nJ.1. In 1. J.1..1.
J=

where

4

+ L
j=l

4
L goo (X·)gk· (x.) [G·k(W)]

k=l J1. 1. 1. .1. J
i=l,2,3 (3.65)

2 *G
n

: (x. ,w) = -T A(x. ,w)'l'. (w)
J.1. 1.1. J

and

00

= ~ L
1 n=l

* T *e . (x.){H (W)} {'l'(W)}'l'.(W),
n1. 1. n J

i=1,2,3

j=1,2,3,4. (3.66)

2 *G'n(X. ,w) = -T 'l'. (w)A(x. ,w)
J.1. 1 J 1.

00

=; L
1 n=l

* Te . (x. ) 'l' . (W) {H (W)} {'l' (W) }
n1. 1. J n

i=1,2,3

j=1,2,3,4 (3.67)

For the uncorrelated case, G .
nJ

and G. reduce toIn
00

L
n=l

*e . (x. ) [H . (w)] [G. (w)]
n.1. 1. nJ J

i=1,2,3

j=1,2,3,4 (3.68)

00

G·n(x, ,w) = L
J 1. n=l

e . (x.) [H . (w)] [G. (w)]
n.1. .1. nJ J

i=1,2,3

j=1,2,3,4 (3.69)

where H .(w) is given by Eq. 3.44 and G.(w) is given by Eq. 3.63. In
~ J

addition, the cross-spectral terms Gjk(W), (j ~ k), are equal to zero

in Eq. 3.65 for the uncorrelated case.
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The integration of Ge over the frequency domain provides the mean

square torsional response, 2
l/I e(xi ), whose square root defines the root

i=1,2,3

mean square (R.M.S.) torsional response

2 4

gji (Xi) [l/I~j (Xi ~= l/In(Xi) + L
j=l

4 I g .. (x·)gk·(x·)[l/I~k(x,~+ I
j=l k=l J1 1 1 1 J 1

2
where l/In(Xi) is given by Eq. 3.64, and

2
= ~TI I: [Gnj(xi,W)

i=l,2,3l/I . (x. ) + G. (x. ,W»)dw
nJ J. In 1 j=l,2,3,4

(3.70)

(3.71)

i=l,2,3

j,k=l,2.3,4 (3.72)

111.9. ADDITIONAL HORIZONTAL COMPONENT OF CABLE TENSION H(t)

The additional horizontal component of cable tension due to multiple

support torsional excitations is given by (Eq. 3.9)

[
E A J( J{ 3 [~. I~i ~.~. j

H(t) = ~c ~) i~l H: 0 eidxi - 2~wJ.l.l/Ii +1 (t)

(3.73)
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Substituting Eq. 3.42 into Eq. 3.73 results in

H{t) 'f e. {X.)dx.}q (t)
n=l n~ ~ ~""Xl

*w. 4
+.2:. I

Hw j=l {J~i g .. (X.)dx.}1JJ.{t)
o J~ 1 ~ J

*
w.~,{
~ ~

- ~ 1JJi +l (t)
w

(3.74)

where the generalized coordinates ~(t) are obtained by the convolution

integral of Eq. 3.40.

In order to analyze the cable tension in the frequency domain, the

finite Fourier transform of Eq. 3.74 becomes

[ J
* ~E A b 3 w. i

H(W) = ~c [;:] idH: {fa Ie. (x,) dx.}Q (w)
n=l n~ ~ ~ n

*w. 4
+.2:. I

Hw j=l {J~i g .. (X.)dx.}'¥,(W)
o J~ ~ ~ J

*w.~. {
~ ~

- ~ '¥i+l (w)
w

(3.75)

where '¥.(w), (j = 1,2,3,4) is the finite Fourier transform of the
J

rocking input ground motions (Eq. 3.52), ~. (w) ,
J

(j = 1,4) is the

finite Fourier transform of the torsional input ground motions (Eq. 3.52),

and Q (w)
n

is the Fourier transform of the thn generalized coordinate,

calculated as
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n=I,2,3 ••• (3.76)

where

to the

{H (W)}T is the transposed frequency response vector corresponding
n
th

n torsional vibration mode, and {,¥ (w)} is the Fourier trans-

form vector of the rotational ground motion inputs (see Eqs. 3.54, 3.55).

Note that for antisymmetric torsional vibration, the first term in Eq.

3.75 vanishes, since the additional cable tension associated with an

antisynunetric torsional vibration mode is equal to zero (see Appendix

III-b).

The power spectrum of H(t) may be approximated as

2 *GH(W) =-- H(W)H(W)TI

where T
I

is the duration of the ground motion and the superposed

asterisk denotes complex conjugate. Substituting Eqs. 3.75 and 3.76

(3.77)

into Eq. 3.77 results in an explicit expression for GH(W), (the

details are found in Appendix III-d). For the uncorrelated calculation,

only the terms which involve the input power spectra are retained,

since the rotational support motions are assumed to be unrelated in ~~is

case, while the correlated case retains all of its terms (including

cross-spectra).

Mean square dynamically-induced cable tensions are obtained by

integrating GH(W) over the entire frequency range, that is

2 I [1)JH = 21T GH(w) dW
o

and the square root of Eq. 3.78 is the root mean square (R.M.S.)

additional horizontal component of cable tension due to torsional

vibration.

(3.78)
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11.10 DEFINITION OF TORSIONAL AND ROCKING GROUND MOTION INPUTS

In order to implement the analysis presented in this chapter,

appropriate rotational (rocking and torsional) seismic inputs are required

at the bridge's support points (Figs. 111-1 to 111-4). Because currently

available strong motion accelerographs only record the three orthogonal

translational components of ground motion, the rotational inputs can at

best be only estimated. This section presents a simplified approach,

based upon wave propagation theory, toward defining reasonable rotational

ground motion inputs from recorded translational ground motion records.

The method developed in this section is applied to the 1979 El Centro

translational records of Arrays No.4, 5, 6, 7, and 8 (see Appendix

II-e) in order to develop rotational inputs to the bridge. The main

assumptions are as follows [10,11]:

1. The vertical component of ground motion is assumed to be the

result of an SV wave approaching from the epicenter and

striking the ground surface at an incidence angle

This wave motion results in the rocking (vertical rotation

about a horizontal axis parallel to the longitudinal axis

of the bridge) input.

2. The horizontal components of ground motion are assumed to be

the result of the superposition of two independent sa waves

propagating along two perpendicular directions. The total

torsional (horizontal rotation about a vertical axis) input

is the sum of the torsional effect due to each wave.

3. The wavelengths of the seismic waves are long compared to the

in-plane dimensions of the anchorages and piers. Thus each

foundation can be assumed to rotate as a point.



261

Consider an SV wave propagating from the earthquake's epicenter

toward the recording site and striking the ground surface at an incidence

angle 6
0

= 4So as shown in Fig. III-S(a). Under these conditions,

the incident sv wave reflects as an in-phase SV wave (a Lame reflection

mode), and the resulting horizontal and vertical soil particle motions

become

and

(3.79)

u = AO sin 60 {exp[iKo(X sin 60 - z cos 60 - cst)]z

:+ exp[iKO(X sin 6
0

+ z cos eO - cst)]} (3.80)

where c is the shear wave velocity, i = 1-1, 8
0

is the incidence
s

angle (6
0

= 45°) , and K
O

is the wave number defined by

w
c

s

where w is the circular frequency of the incident waves.

From Eqs. 3.79 and 3.80, the horizontal and vertical displacement

components at the ground surface (z = 0) become

uxjz=o
= 0

Uzlz=o
= 2A

O sin 60 {exp [iKO(x sin eo - cst»)}

(3.81)

(3.81)

(3.82)
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IUZ

FREE SURFACE
--t!==~--!-~b--"':"::'=::::"::=':':=' ---e"~~uJL

WAVEFRONT

Cs SV-WAVE

WAVEFRONT

Fig. 111-5 Definition diagram for rotational ground motion inputs
(a) sv wave propagating in x direction, (b) SH wave
propagating inx direction, (c) SH wave propagating
in y direction.
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The rotational motion about the y-axis (rocking input) is given by

(3.83)

At the ground surface (z:; 0) this becomes

(3.84)

From Eqs. 3.82 and 3.84, along with the conservative assumption that

e = 45°o

I (-iw r.:-J I14J = - v2 u
Y z=O 2cs z z=O

(3.85)

Taking the Fourier transform of Eq. 3.85 gives

1jJ (w)
y

= - iw ~ u (w)
2c z

s
(3.86)

where U (w) is the Fourier transform of the recorded vertical groundz

is the Fourier transform of rocking14Jy (W)

displacement ground motion (at the ground surface). From the previous

motion displacement and

equation, one can estimate the Fourier transform of the rocking displace-

ment inputs as being proportional to iwu (w),z
the Fourier transform

of the recorded vertical velocity components.

For the purpose of computing the torsional (horizontal rotation

about a vertical axis) component of ground motion, it is proposed that

the surface horizontal ground motion can be considered as the super-

position of two independent SH waves propagating along two perpendicular
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directions as shown in Fig. 1II-5(b) and (c). The total rotational

effect is equal to the sum of the rotational effect due to each wave [11].

One possible interpretation for the above would involve one SH wave

originating from the earthquake's epicenter and the other SHwave

arriving from the nearest fault location.

The horizontal soil.particle motion resulting from an SH wave

propagating in the x-direction and reflecting from the free surface as

an in-phase SH wave is

c t)]
s

which at the ground surface (z = 0) becomes

The horizontal rotation about the z-axis (torsion) is given by

(3.87)

(3.88)

which at the ground surface (z = 0) becomes

(3.89)

(3.90)

From Eq. 3.88 and Eq. 3.90, the torsion caused by the SH wave propagating

in the x direction becomes
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iK
O

.
<P I = -2-<sin 80) u I = ~Wc <sin 80) u I

z. z=O Y z=O s Y z=O
(3.91)

It can be seen from Eq. 3.91 that the worst torsional input results

when the horizontal motion in the Y direction is caused by an SH wave

incident at 8
0

= 90° (the grazing angle). For this case

The horizontal soil particle motion resulting from an SH wave

propagating in the y direction and reflecting from the free surface

as an in-phase SH wave is

Ux = Ao{eXP[iKo<Y sin 80 - z cos 60 - cst)]

+ exp[iKo(Y sin 60 + z cos 60 - cst)]}

which at the ground surface (z = 0) becomes

The horizontal rotation about the z-axis (torsion) is given by

(3.92)

(3.93)

(3.94)

which at the ground surface (z = 0) becomes

c t)]
s

(3.95)

(3.96)
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From Eq. 3.94 and Eq. 3.96, the torsion caused by the SH wave propagating

in the y direction becomes

<pzl
z=O

= - iw (. e) I
~ s~n 0 Uxs z=O

(3.97)

Again, the worst case of torsional input occurs when the incidence

angle eo = 90° (the grazing angle). For this case

iw I= - 2c ux 0
s z=

(3.98)

Adding the results of Eqs. 3.92 and 3.98 gives

Taking the Fourier transform of Eq. 3.99 results in

(3.99)

<P (w) =z
iw
2c

s
[u (w) - u (w)]

y x
(3.100)

where U (w) and U (w) are the Fourier transforms of the recorded
y x

ho~izontal ground motion displacements and 'l' (w)
z

is the Fourier trans-

form of horizontal torsional displacement ground motion (at the ground

surface). From the previous equation, one can estimate the Fourier

transform of the torsional displacement inputs as being proportional

to the difference between iwu (w) and iwu (w), that is, the differ-
y x

ence between the Fourier transforms of the recorded horizontal velocity

components.

The ground motion records utilized to define the rotational inputs

are those of the 1979 Imperial Valley (El Centro) earthquake, (M
L

= 6.6).

Among the valuable records recovered from this earthquake were the

translational components of arrays no. 4, 5, 6, 7, and 8 from the 13



267

arrays comprising the El Centro Array (see Appendix II-e). After

assuming the propagation direction (from the epicenter) to be predominantly

in the N400W direction, the power spectra of rocking and torsional

inputs can be computed for various shear wave velocities and are shown

in Fig. 111-6. A comparison of these figures shows that for rocking

motion, Array No. 6 is the most intense location. Also, the torsional

motions are seen to be stronger in Arrays No.4, 5, and 6 (arrays west

of the Imperial Fault). At each site, the torsional component of ground

motion is stronger than the rocking motion component, and also, the

slower the shear wave velocity, the more intense are the input rotational

spectra. Because of this last comment, as well as the fact that the

stiffness of the soil (and hence the shear wave velocity) may decrease

considerably under high amplitude vibration, a very conservative shear

wave velocity estimate of 500 ft/sec is used in the following analysis.

III .11. APPLICATION; TORSIONAL SEISMIC BEHAVIOR OF THE GOLDEN GATE BRIDGE

The analysis outlined in this chapter is applied to the Golden Gate

Suspension Bridge in San Francisco, California in order to estimate its

earthquake-induced torsional response characteristics. The structural

properties of the bridge are summarized in Table III-I. The torsional

quasi-static functions are shown in Fig. 111-7 for unit rocking ground

motion displacement at each anchorage and tower base. The first eight

symmetric and antisymmetric torsional mode shapes are shown in Fig.

111-8, while their associated participation coefficients appear in

Table 111-2. It is noted at this point that the symmetric torsional

vibration of the cable-suspended structure is excited very strongly by

the torsional (horizontal rotational) ground motion inputs occurring
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Imperial Valley Earthquake of October 1979

Power Spectral Density
Torsional Ground Displacement

Array No.4

----- C • SOD FT/SEC
----- C • 1000 FT/SEC
----- C • SOOO FT/SEC
----- C • 10000 FT/SEC

Rocking Ground Displacement

----- C • SOD FT/SEC
----- C • 1000 FT/SEC
----- C • SOOO FT/SEC
----- C • 10000 FT/SEC

,.. .
I II)
o.....••u
CD •
Cl)C')
)( .

N~ C'I
'd
as •a:-
~ 0 ~~~~~~~r:-:.~~....._~

o 1 2 3 4 5 e 7 8 9 10
Period In Seconds.

Fig. 1II-6a Power spectra of the torsional and rocking
ground input motions.
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Imperial Valley Earthquake of October 1979

Power Spectral Density

Torsional Ground Displacement

Array NO.5

----- C • SOD FT/5EC
----- C • JOOO FT/SEC
----- C • SOOO FT/SEC
----- C • JOOOO FT/SEt

1 2 3 4 5 6 7 8 9 10
Period in Seconds

Rocking Ground Dispracement

----- C • SOD FT/5Et
----- C • JOOO FT/Sft
----- c • SOOO 'T/5EC
----- C • JOOOO FT/5Et

10

Power spectra of the torsional and rocking
ground input motions.
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Imperial Valley Earthquake of October 1979

Power Spectral Density
Torsional Ground Displacement

Array No.6

----- C • 500 FT/SEC
----- C • 1000 FT/SEC
----- C • 5000 FT/SEC
----- C • 10000 FT/SEC

1 2 3 4 5 6 7 8 9 10
Period in Seconds

Rocking Ground Displacement

----- C • SOO FT/5EC
----- C • 1'000 FT/SEC
----- C • 5000 FT/5EC
----- C • 10000 F1/SEt

Fig. 1II-6c Power spectra of the torsional and rocking
ground input motions.
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. - C • SOD FT/SEC
----- C • 1000 fT/SEC
----- C • SOOO fl/SEC
----- C • 10000 fT/SEC

Imperial Valley Earthquake of October 1979

. Power Spectral Density
Torsional Ground Displacement

Array NO.7

• 0

()~

CDU)
0.-.,.
)( .

(\1_ 0
0U)

'a •
GU)

5C'!
o ~~~~:b.""'~"" _

o 1 2 3 4 5 6 7 8 9 10
Period in Seconds

Rocking ..Ground Displacement

----- C • SOD FT/SEC
----- C • 1000 FT/SEC
----- C • 5000 fT/SEC
----- C • 10000 fl/SEC

1 2 3 4 5 6 7 8 9 10
Period in Seconds

Fig. 1II-6d Power spectra of the torsional and rocking
ground input motions.
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----- C • SOO FT/SEC
----- C • 1000 FT/5EC
----- C • SOOO FT/SEC
----- C • 10000 FT/SEC

coo
~~~~~~~--.....l

0 0 1 234 5 6-7 8 9 10
Period In Seconds

Imperial Valley Earthquake of October 1979

Power Spectral Density
Torsional Ground Displacement

Array NO.8

Rocking Ground Displacement

----- C • 500 FT/SEC
----- C • 1000 FT/SEC
----- C • 5000 FT/5Et
~~--- C • 10000 F1/5EC

,..., .
I 10
o.,.., .
.~

o
CD ~

fIJ(f'J
~ ~

"",,('I

'd
as •a:-

- 0 ~...c,..,;-....-.e:':';;"+"";;':~~~_""'_-lo 1 2 3 4 5 6 7 8 9 10
Period in Seconds

Fig. 1II-6e Power spectra of the torsional and rocking
ground input motions.
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Table III-l

Torsional Properties of the Golden Gate Bridge

Parameter

Span Length

*W.
:1

E.
:1

I .
IlI:t

r
i

G.
:1

J.
:1

Truss Depth

Span width

Center Span

,Q. 2 = 4200 ft

*w
2

= 11.45 k/ft

E
2

= 29,000 ksi

2
I m2 = 859.9 k·sec

r
2

= 1.357xl08ft4in2

G
2

= 11,600 ksi

J
2

= 25,815 ft2in2

d
2

= 25 ft

b = 90 ft

Side Spans

t =t = 1125 ft
1 3

* *WI = w2 = 11.55 k/ft

E
1

=E
3

= 29,000 ksi

I
rnl

=Im3 = 869.9 k·sec2

r =r = 8.751xl07ft4in2
1 3

G
1

=G
3

= 11,600 ksi

J
1

=J
3

= 25,815 ft2in2

d
1

=d
2

= 25 ft

b = 90 ft

Cable Properties E = 29,000 ksi
c

831.9 in
2

A =c

L
E = 7,698 ft

H = 53,467 kips
W
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GOLDEN GRTE BRIDGE
QUASI-STATIC FUNCTIONS
FOR TORSIONAL RESPONSE

./1
~ I

1

(e)

(4)

Fig. III-7 Golden Gate Bridge, torsional quasi-static functions.
(a) Unit rocking at left anchorage, (b) unit rocking
at left tower-pier, (c) unit rocking at right tower
pier, (d) unit rocking at right anchorage.
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. V
,. 2.6230 SEC•

"aDE 2 ,. 2.1610 SEC.

GDLDEN GRTE IRIDGE
ANTJ-5T""E'RJC MaDES

OF TORSIONAL VIBRRTION

"ODE J ,- 5."6' SEt.GOLDEN GAlE I~IDGE

'T""n.ut MODES ."
tORSIONAL VIIRA'10N

"ODE 1 1. ~.'299 SEt.

~

V
1- 1.201" 5EC.

Af\AA

. f\ A

f\

vvv
"OQE S ,. 1.5601 SEt.

f\

V\J
"ODE , ,- J.6827 SEC.

f\f\f\

MaDE I T. 0.1315 Stt.

¥' ¥
"ODE ~\J\JJleJl6·SEC.

Fig. 111-8 Torsional mode shapes of the Golden Gate Bridge.
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Table III-2

Participation Coefficients of Torsional

Earthquake Response for the Golden Gate Bridge

Mode Symmetric Vibration Antisymmetric Vibration
R
1n

= R . R2n = R
3n

p R
1n = -R R =-R POrder 4il n 4n 2n 3n n

I nI
-0.268 1.413 0.318 0.0I 1 -0.352 0.0I

I 2 -0.117 0.657 0.657 0.318 0.318 0.0
1
I

1 3 0.151 0.125 2.686 0.0 0.159 0.0I

i 4 0.013 0.140 0.955 0.0 0.106 0.0
I
1
I

5 -0.0003 0.091 0.390 0.159 -0.159 0.0I
I
I

0.159I 6 -0.159 0.0 0.0 0.079 0.0,
! 7 -0.0005 0 •.070 0.265 0.0 0.063 0.0j

I 8 0.106 0.105 0.770 0.106 0.106 0.0
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at the tower-piers and anchorages. The antisymmetric torsional vibra-

tion, on the other hand, is not excited at all by the torsional (horizontal

rotational) ground motion inputs, but only by the rocking (vertical

rotational) inputs (because of the modal participation factors P being
n

identically zero for antisymmetric modes). Therefore, analogous to the

vertical vibration findings, the antisymmetric torsional vibration

response turns out to be much smaller than the symmetric torsional

vibration response. It should also be noted that the additional

(vibrational) horizontal component of cable tension as in the vertical

vibration case (Eq. 3.75) essentially contains four contributions

1. Contribution from pure ground motion rotational inputs (both

torsion (horizontal rotation) and rocking (vertical rotation»,

as seen in the second through fifth terms of Eq. 3.75.

2. Contribution from symmetric torsional vibrational deflection e

as seen in the first term of Eq. 3.75.

3. Contribution from antisymmetric torsional vibration which

turns out to be identically zero.

4. Contribution from the quasi-static motions as in the second

term of Eq. 3.75.

The contribution from antisymmetric vibrational torsional displacement

to the additional cable tension is zero because the net area underneath

an antisymmetric mode is identically zero. In this section, therefore,

because of the higher order nature of the antisymmetric response, and

because the additional horizontal component of cable tension can be

constructed from knowledge of the symmetric torsional vibration response

as well as knowledge of the ground motion inputs, only the symmetric

torsional response will be investigated herein.
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The frequency response functions H (W)
n

for the first through

fourth symmetric torsional modes of the bridge are shown in Fig. III-9

for 2% damping, and corresponding to anchorage rocking input, tower

rocking input, and anchorage torsional input. These functions measure

the magnification (or gain) factor corresponding to a unit harmonic input

upon the generalized coordinate q (t).
n

It can be seen as was stated

previously that the torsional inputs contribute more significantly than

the rocking inputs to the torsional response by examining these magni-

fication factors.

Two symmetric torsional response cases are studied for the Golden

Gate Bridge. In the first case, the rocking motions ~l' ~2' 1)J3' and ~ .
4

correspond to the calculated rocking motions at arrays No.4, 5, 6, and

7, respectively, while the torsional motions ~l and ~4 correspond

to the associated torsional components (of Arrays No.4 and 7). The

second response case involves similar correspondences with Arrays No.

5, 6, 7, and 8 of the 1979 El Centro earthquake.

The autospectra of mid-span torsional displacement for both the

center and side spans are shown in Fig. III-lU for input Arrays 4, 5, 6,

and 7. It ·is observed that the quasi-static contribution to the total

torsional response is small, and therefore the response is quite similar

. in the left and right side spans. The quasi-static contribution is

Thus, it(Eq. 3.37).inherent in the participation coefficient R.
In

is erroneous to conclude that the quasi-static functions have no

influence upon the response and consequently should be ignored. Without

their presence, the participation ~actors would be altered, and differ-

ent response values would result. The first and third symmetric torsional

modes appear to dominate the response, most likely because of their modal
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GOLDEN GATE BRIDGE
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Fig. 1II-9a Complex frequency response functions.



280

0.70
FREQUENCY - CPS

GOLDEN GATE BRIDGE
SYMMETRIC MODE 2

ROCKING MOTION AT ANCHORAGEcc.., .
8'"-.-.J
Go
Z
~

.., C I -------E~~~::::========;::::=::;===t~~ '!'"c=
Go .
."

""c·
• I-=~=a;; •

....f')

. ,

ROCKING MOTION AT TOWER

0.70
FREQLJEtliCT - CPS

~~ TORSIONRL MOTION AT ANCHORRGE
==... -.
.J
Go
Z
~

""=~=I.:===!======:::::~+~;:==::::::E=--------c . T
~ = 0.70
~ FREQUENCY - CPS
.
0=
~=....=•

Fig. III-9b Complex frequency response functions.
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GOLDEN GATE BRIDGE
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Fig. 1II-9d Complex frequency response functions.
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GOLDEN GATE BRIDGE
LEFT SPAN TORSIONAL RESPONSE

----- CORRELATED CASE
UNCORRELATED CASE

0.7

EL CENTRO /979
EARTHQUAKE
ARRAYS 4.5.6.7.

,
MOOE I :

II
It

""""I
I
I
I
I

IIODE I I
?,
""'.I

I
I
I

0.1l
FREQUENCY - CYCLES/SEC

CENTER SPAN TORSIONAL RESPONSE
----- CORRELATED CASE

UNCORRELATEO CASE

u
UJ
(f)

...""o
a:
a:

u
UJ
U')

...""
CJ
c:
a:

11 .. 0

Xl 0·"

3 .. 0

Xl 0-3
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:-.......--~----.--~0.70.11
FREQUENCY - CYCLES/SEC

0.-._-+-__
o

Fig. III-lO Autospectra of midspan torsional displacement
response of Golden Gate Bridge.
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P being large (Table 1II-2).
n

similar torsional

response spectra for input Arrays No.5, 6, 7, and 8 are shown in

Fig. 1II-11.

It should be noted that flexural stresses induced by torsional

vibration in the chord members of the suspended structure may be calculated

by replacing the mode shapes, o . (x.), and quasi-static functions
n~ ~

g .. (x.), by E. (b/2) (d/2)0'!(x.) and E.(b/2)(d/2) g~!(x.) respectively,
J~ ~ ~ n~ ~ ~ J~ ~

where E. is the modulus of elasticity of the i th suspended structure;
~

b is the deck width; and d is the depth of the suspended structure.

Thus, Eq. 4.42 becomes

a. (x. ,t)
1. ~

= E. (b/2) (d/2)
~

g!!(x.)1j!.(t) +
J~ ~ J

00

I
n=l

0'!(x.)q (t~
n1. ~ n J

i=1,2,3 (4.101)

where a.(x.,t)
1. 1.

is the stress in the chords of the .th
~ suspended

structure; and g'.! (x.)
J~ ~

and 0' ! (x.)
n~ 1.

are the second spanwise derivatives

of the quasi-static functions and mode shapes, respectively.

It should be noted that with reference to the vertical vibration

problem (Chapter II) it was found that the uncorrelated calculation is

usually conservative in nature. However, from Figs. III-la, 11, 12,

and 13 it can be seen that this is not necessarily the case in torsional

vibration. The power spectral density of the flexural stresses induced

by torsional vibration can be calculated by Eq•. 3.65 with the mode shapes

and quasi-static functions replaced as above. The autspectra of torsional

response stresses appear in Figs. II1-l2 for both input cases, while

the autospectra of the additional (vibrational) horizontal component of

cable tension appears in Fig. III-13. As a final note, mean square

responses can be determined by integrating under the spectra of Figs.
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III~lO, 11, 12, and 13. The square root of the mean square responses

are known as the root mean square responses (R.M.S.) and are shown in

Table 111-3. Estimated peak responses can be determined by multiplying

the root mean square values by a peak factor taken as 3.5 (see Chapter

II). The peak reSponses are shown in Table III-3, along with the peak

vertical deflections at the edge of the suspended structure, equal to

(b/2) multiplied by the peak rotational values (where b is the width

of the suspended structure). The maximum torsionally-induced stress

of 34.55 ksi occurring at center span for the uncorrelated case (Arrays

4, 5, 6, 7) is a high value of live load when compared to the yield

stress of 50.5 ksi.
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Fig. III-II Autospectra of midspan torsional displacement
response of Golden Gate Bridge.
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Fig. III-l2 Autospectra of midspan torsional stress response
of Golden Gate Bridge.
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Fig. III-13 Autospectra of additional (vibrational) cable
tension due to torsional vibration of Golden
Gate Bridge.
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Appendix III-a

Solution for the Torsional Quasi~Static Functions

A. Unit Rotation at Left Anchorage

The solution for the quasi-static function corresponding to unit

rotation at support A of Fig. 111-4 is obtained by satisfying the fol-

dx~
l.

E,r.
1. 1.

lowing three equations:

4
d gl' (x,)

l. l.

*w,b
+ ..2:.

H
W

gl (x )dX]n n n
= 0

i = 1, 2, 3 (III-a-l)

subject to the boundary conditions

g12(0) = 0

9 "(0) = g "(0) = g "(0) = 0
11 12 13

(III-a-2)

The form of the solution can be taken as

gl' (x,)
1. l.

2= AI' sinh(A.X.) + Bl , coshCA,x.) + Cl.X,
l. 1. 1. 1. . 1. l. l. l.

+ D1,X. + E
l

,
l. 1. 1.

i = 1, 2, 3 (III-a-3)
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where

i = 1, 2, 3 (III-a-4)

Substituting Eq. III-a-3 into Eq. III~a-l results in the

following three equations:

*
w,b .(EA )~ c c=-- ---H

w
L

E

. B C R,3
+ In sinh(A R, ) + l~ n +
Ann

n

i = 1, 2, 3 (III-a-5)

Equations III-a-3 and III-a-5 can be used in conjunction with the boundary

conditions (Eq. III-a-2) in order to solve for the 15 unknown coefficients

present in Eq. III-a-3, hence uniquely defining the first quasi-static

function gl' ex.).
~ ~

Introducing gIl (Xl) from Eq. III-a-3 into the boundary condi-

tions results in the equations

(III-a-6)
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From the previous equations, the coefficients. All' CII' DIl , and Ell

can be written in terms of BII as

- Bll (cosh (AliI) - 1)

~l = sinh (AliI)

(III-a-7)

Similarly, introducing gl2(X2) into the boundary conditions

gives

(III-a-8)

Again, the coefficients A
12

, C
12

' D
12

, and E
12

can be written in terms

of B
12

as

(;I:II-a-9)
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Introducing gI3(x
3

) into the boundary conditions gives

(III-a-10)

which results in

;:: -

- B13(cosh(A3~3) - 1)

Al3 ;:: sinh(A3~3)

(III-a-ll)

From Eq. III-a-S, the following relationship is apparent:

b
2 2 2

Cll (GlJl
+ H -) C

12
(G

2
J

2
+ H ~) C

13
(G

3
J

3
+ H ~)

w 2 w 2 2 2
;:: ;::

* * *wI w
2

w
3

(III-a-12)

using Eqs. III-a-7, 9, and 11, the previous equation can be written

2
2 2 2

+ HE....) 2 +H E-) 2. . . b )
BnAl(GlJl B12"'2 (G2J 2 BU A

3
(G3J 3 + H -w 2 w 2 . w 2

*
;:: ;::

* *WI w
2 w

3

(III-a-13)
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Therefore:

(GlJl
b

2

* * 2
+ H -)w 2

B12 = B
ll

(w
2
/w

l
) (1..

1
/1..

2
)

b2
(G

2
J

2
+ H -)

w 2

2

'*. * 2
(GlJl

+ HE-)
w 2

B
13

= Bll"Cw3/wl) (A.1/A.3)
b2

(G3J 3 + Hw 2) (III-a-14)

Substituting Eqs. I11-a-7, 9,11, and 14 into Eq. 111-a-S and solving

~ 2 3H2) (2 ".R,. ".R,.w _ tanh -!..2:. +~ _
b2 Ai 2 12

H -w 2

(II1-a-lS)

/

Once Bll is known, the quasi-static function gli (xi) is com-

pletely determined since the coefficients Ali' Bli , eli' Dli , and Eli

appearing in Eq. 111-a-3 can all be defined in terms of the coefficient

B
li

using Eqs. 111-a-7, 9, 11, and 14.

B. Unit Rotation at Left Tower-pier

The solution for the quasi-static function corresponding to

unit rotation at support B of Fig. 111-1 is obtained by satisfying the

following three equations:



E.r,
~ ~

4
d g2' (x.)

~ ~
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2
b 2 . d g2 { (xi)

(G J + H -) ...
- i i w 2 dx~

~

* * .9-

+ :ib
(E~AC)(~)[ I :n Jn

w E n=1 w 0

i = 1, 2, 3

g2 (x }dx] = 0n n n

(III-a-16)

subj ect to the boundary conditions

g21 (O) = 0 g23(0) = 0

9 "(0) = 9 "(0) = 9 "(0) = 021 22 23 .

o (III-a-17)

The form of the solution can be taken as

g2' (x.)
~ ~

2
= A2osinhlA.X.) + B

2
,cosh(A.X.) + c

2
·x,

~ . ~ ~ ~ ~ ~ ~ ~

+ D
2

,x. + E
2

,
~ ~ ~

where A, is defined by Eq. III-a-4.
~

i = 1, 2, 3 (III-a-18)

Substituting Eq. III-a-18 into Eg. III-a-16 results in the

following three equations:
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[~ ~
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-l}

i = 1, 2, 3 (III-a-19)

Introducing g21 (Xl) from Eq. III-a-18 into the boundary con

ditions results in the equations

(III-a-20)

From the previous equations, the coefficients A
21

, C
21

, D
21

, and E21 can

be written in terms of B21 as

E21
= - B21

1 2
C21 = - '2 B2lAl

- B21 (cosh (\ i l ) - 1)
(AliI)A21 = = - B tanh--

sinh (\i1 ) 21 2

1 2 (l/i
l

)D21 = '2 B21A1i 1 + (III-a-21)
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Similarly, introducin~ g22(x2) into the boundary conditions

gives

(III-a-22)

From the previous equations, the coefficients A22 , C22 , D22 , and E22

can be written in terms of B22 as

- B22 (cosh (A2~2) - 1)

sinh (A2~2)

Introducing g23(x3) into the boundary conditions gives

(III-a-23)

a (III-a-24)
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which results in

= -

(III-a-2S)

From Eq. III-a-19, the following relationship is apparent:

2
C21 (G1J

1
+ Hw ~ )

-.:;;;.=-..::..,*-=---~- =
WI

(III-a-26)

Using Eqs. III-a-21, 23, and 25, the previous equation can be written

B21A.~ (GIJI + Hw ~2) B22A~ (G2J 2 + Hw ~\
* := --.---:*~---~- =
WI w2

Therefore:

2 b
2

Bft.. (G J + H -)
23 3 3 3 w 2

11
w

3

(III-a-27)

(III-a.,28)
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Substituting Eqs. 1I1-a-21, 23, 25, and 28 into Eqs. 111-a-19 and solving

* 2 * * *
B2l = - t~c)G~: )G~:' + :;:2Vr~c)(~2)LtG: )2

(2 A.,t. A~,t~ )~~ ~ . ~ ~

- tanh -- + -- - ,t
A. 2 12 i
~

(III-a-29)

Once B
21

is known, the quasi-static function g2i (xi) is CORr

pletely determined since the coefficients A
2i

, B
2i

, C2i , D2i , and E
2i

appearing in Eq. 11I-a-18 can all be defined in terms of the coefficient

B
21

using Eqs. I11-a-21, 23, 25 and 28.

C. Unit Rotation at Right Tower-Pier

The solution for the quasi-static function corresponding to

unit rotation at support C of Fig. 111-4 is obtained by satisfying the

following three equations:

E.r.
~ ~

_ IG . J. + H b
2

)
\' ~ ~ w 2

2
d g3' (x.)

1. ~

2
dx.

~

:n J,I!,n
w 0

g3 (x )dx ] = 0n n n

i = 1, 2, 3 (III-a-30)
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subject to the boundary conditions

g3l (0) = 0

9 "(0)= 9 "(0) = 9 "(0) = 0
31 32 33

The form of the solution can be taken as

(III-a-3l)

g3' (x.)
~ 1,

+ D
3

,X, + E
3

,
1, 1, 1,

where A, is defined by Eq. III-a-4.
1,

i = 1, 2, 3 (III-a-32)

Substituting Eq. III-a-32 into Eq. III-a-30 results in the

following three equations:

2[G.J.
1, 1,

B C 02,3
3n 3n n

+ -A-- sinh(~nR,n) + 3 +
n

D R,2
3n n +

2

i = 1, 2, 3 (III-a-33)

Introducing 9
31

(xl) from Eq. III-a-32 into the boundarY con

ditions results in the equations
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(III-a~34)

From the previous equations, the coefficients A
31

, C31 , 031' and E31

can be written in terms of B
31

as

- B31 (cosh (.\R.
l

) - 11

A31 = sinh (AI £1 )

(III-a-35)

Similarly, introducing g32(X2 ) into the boundary conditions

gives

(III-a-36)

Again, the coefficients A
32

, C
32

, 032' and E
32

can be written in terms

of B
32

as
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- B
32

(cosh(A
2

t 2 ) - 1)
= -

sinh (A
2

R.2 )
tanh (A2t 2)

B32 2

Introducing g33(x
3

) into the boundary conditions gives

(III-a-37)

which results in

E33 = 1 - B33

1 2
C33

= - 2" B3i3

- B
33

(cosh (A
3

R.
3

) - 1)
( A3 R. 3 )A33 = =- B

33
tanh -2-

sinh (A 3£'3)

1 2
(1/t

3
)D33 = 2" B3i3£3 -

(III-a-38)

(III-a-39)

From Eq. III-a-33, the following relationship is apparent:

(III-a-40)
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. Using Eqs. III-a-35, 37, and 39, the previous equation can be written

(III-a-41)

Therefore:

2
(GlJl + Hw ~)

2

(a3
J 3 + Hw ~ )

(III-a-42)

Substituting Eqs. III-a-35, 37, 39, and 42 into Eq. III-a-33 and solving

2 3

(2
A.R-. LR-.

- tanh .2:-2:. + 2:..2:. -
A. 2 12

. .l

(III-a-43)

Once B
31

is known, the quasi-static function 9
3i

(x
i

) is com

pletely determined since the coefficients A
3i

, B
3i

, C
3i

, D
3i

, and E
3i
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appearing in Eq. III-a-32 can all be defined in terms of the coefficient

B
31

using Eqs. III-a-35, 37, 39, and 42.

D. unit Rotation at Right Anchorage

The solution for the quasi-static function corresponding to

unit rotation at support D of Fig. 111-4 is obtained by satisfying

the following three equations:

E.r.
]. ].

I
- lG.J,

\ ]. ].

2
b 2 ) d g4' (x,)+H _ ].].

w 2 dx~
].

i = 1, 2, 3

9
4

(x )dx ] = 0n n n

(III-a-44)

subject to the boundary conditions

g4l (0) = 0

g "(0) = 9 "(0) = g "(0) = 041 42 43

The form of the solution can be taken as

(III-a-45)

9
4

, (x.)
]. ].

2= A4·sinh(A~x~) + B
4

,cosh(A.X.) + c
4

,x,
]. . ]. ]. ]'.]. ]. ]. ].

+ D
4

,X, + E
4

,
]. ]. ].

i = I, 2, 3 (.III-a-46)

where Ai is defined by Eq. III-a-4.
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Substituting Eq. III-a-46 into Eq. III-a-44 results in the

following three equations:

*
2hJi + H" nC4i = :~b ('~"c) (~) -l}

B
+ ,4n sinh(A t )

1\ . n n
n

C t
3

D t
2

] }+ 4nn+~+E t
3 2 4n n

i = 1, 2, 3 (III-a-47)

Introducing g41 (Xl) from Eq. III-a-46 into the boundary con-

ditions results in the equations

(III-a-48)

From the previous equations, the coefficients A
41

, C41 , D
41

, and E
41

can be written in tenns of B41 as

(III-a-49)



306

Similarly, introducing g42Uc2} into the boundary conditions

gives

B42 + E42 = 0

(III-a-50)

Again, the coefficients A
42

, C
42

, D
42

, andE
42

can be written in terms

of B42 as

A42 ==
- B42 (cosh (A2R.2) - II

sinh (A
2

R.2)

Introducing g43(x3) into the boundary conditions gives

B
43

+ E
43

= 0

o (III-a-52)
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which results in

- B43(cosh(A3~3)- 1)

sinh (A
3

R.3 )

(III-a-53)

From Eq. III-a-47, the following relationship is apparent:

(III-a-54)

Using Eqs. III-a-49, 51, and 53, the previous equation can be written

2 b
2 2 b2 2 b

2
B

41
A

l
(G

I
J

1 + Hw "2) B42A2(G2J2 + H -) B4}3(G3J 3 +~
-)

w 2 2
= =

* * *WI w2 w
3

(III-a-55)

Therefore: .

2

* * 2
(G

1
J

l
+ H £...)

w 2
B42

= B
41

(w2/w
l

)(Al /A2 ) 2
(G

2
J

2
+ H £...)

w 2

2

* * 2 «(;IJ 1 + H £...)
w 2B43

= B41 (w3/w
l

)(A1!A3 ) 2
(G3;J'3 + H £...) (III-a-56)

. W 2
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Substituting Eqs. III-a-49, 51, 53, and 56 into Eq. III-a-47

and solving for B41

* 2 * *
6 = _ (EcAC ) (W1b ) (Wl 3)0(EcAc)(b2

) [ I (Wit (AIt
41 L

E
2H 2H L

E
2 . 1 H A.w w. J.= w . 3.

+ Hw ~2) (2 \~i' A~~~ )J-tanh---- R,
'b2 A. 2 12 i+H _ . J.

VI 2

(III-a-57)

Once 641 is known, the quasi-static function g4i (Xi) is com

pletely determined since the coefficients A4i , B
4i

, C4i ' D4i , and E4i

appearing in Eq. III-a-46 can all be defined in terms of the coefficient

641 using Eqs. III-a-49, 51, 53, and 56.
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Appendix III-b

Solutions for the Torsional Mode Shapes

If it is assumed that the mass of the bridge as well as its

. h .th h' l· blelastic properties are un1.form along t e 1. span, t e e1.genva ue pro em

assumes the form

2a n.1.
I . --2- +

m1 at
E,r.

1. 1.

4a n.1.
-4--
ax,

1.

( G.J. +
1. 1.

2
b

2
) Q ni

H ---
w 2 a 2x,

1.

i = 1, 2, 3 (III-b-l)

where the bracketed term in Eq. III-b-l represents the additional

horizontal component of cable tension H(t).

The nth torsional mode shape and natural frequency is obtained by assuming

the vibration to be sinusoidal, that is

n. (x ~ ,t)
J J

iw t
n

= e . ex.)e
nJ J

j = 1, 2, 3 n = 1, 2, 3 ••• (III-b-2)

in which i = I::l and w is the nth natural circular frequency of tor
n

sional vibration. Substituting Eq. III-b-2 into Eq. III-b-l yields

the equations of motion in the form

d
4

(;) .E.r . n41. - (G .J .
1. 1. dx. 1. 1.

1.

2
b

2
) d Glni+H-----

w 2 dx~
1.

2
I .w (;) .
ml. n nl.

*w.b _
+ _1_ H = 0

H n
w

i = 1, 2, 3 n = 1, 2, 3 •.. C.III-b-3)
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where the additional horizontal component of cable tension associated

with the nth torsional mode shape~ ~ ~ is given by
n

* R..

- (EcAc)(b) 3w, I JH=- - I-J.
n LE :2. 1 H

J= w o
e . Cx.)dx.

nJ J J

n = l~ 2~ 3 ••• (III-b-4)

Because H is independent of x. and may be treated as a constant,
n J

Eq. III-b-3 represents linear, ordinary differential equations of fourth

order with constant coefficients. The general solutions of Eq. III-b-3

are expressed as

(~.x.) (P,X,) (V ,x ')e . ex.) A.
• :L :L

+ Bi cos ~,:L + C. sinh· ~,:L= S:Ln --
n~ ~ 1., ~i ~

:L J.

*(V'X') w.b H
+ D, cosh ~ J. + ~ n

2J.
i I .H wmJ. w n

i = 1, 2, 3

where

11 = 0 rz;+T
'"'i il~

n = 1, 2, 3 ••• (III-b-5)

z. =
~

<>. = t.
J. J.

2 2
4 I .t.wmJ. 1, n

2
~2 ( + H £..-)v. G.J. . w 2

J. J. J.

E.r.
J. J.

i = 1, 2, 3 n = 1" 2, 3••• (III-b-6)
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and A., B., C., and D. are arbitrary constants determined in conformity
~ ~ ~ ~

with the boundary conditions at the supports of the i
th

stiffening struc-

ture. The first four terms in Eq. III-b-S represent the general solu-

tions of the homogeneous equations (H ~ 0), while the last term of the
n

sarne equation represents the particular solutions of the complete dif-

ferential equations.

It is convenient to separate the investigation of the symmetric

torsional modes from that of the antisymmetric torsional modes; that

is, the problem can be divided into two parts:

1. The symmetric torsional modes of vibration in which there

are an even number of internal nodes along the center span.

Here H is not zero.
n

2. The antisymmetric torsional modes of vibration in which

there are an odd number of internal nodes along the center

Here H is zero.
n

S~etric Modes of TOrsional Vibration

When the bridge is a three-span symmetric type in which the

stiffening structure of each span are simply supported by cables held

on top of the towers bv roller suPports. the boundary conditions become

for

for

x. = O·
~

x. = R,.
~ ~

o . = 0
n~

e . = 0
n~

i = 1, 2, 3

d
2eniE.r.
dX:

0
~ ~

~

d2e
E.r. ni

02~ ~
dx.

~

n = 1, 2, 3 ... tIII-b-7)
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expressing the fact that the angle of twist and the normal stresses

are zero at the supports of each span. Introducing Eq. I11-b-5 into the

above boundary conditions establishes the symmetric torsional modes as

*w,bH
J. no . (x,) = ---=--..:::.....~2

nJ. ]. 21 .R Z,w
mJ. w ]. n

i = 1, 2, 3 n = 1, 2, 3 ••• (III-b-8)

Finally, SUbstituting Eq. 1II-b-8 into Eq. III-b-4 in order

to obtain the frequency equation, the following transcendental equa-

tion upon the natural circular frequency w is obtainedn

LE (b2){3 (~i)2-= - E -
E A 2 '1 Hc c ].= W

tan (~i)

n = 1, 2, 3 ...

Antisymmetric Modes of Torsional Vibration

(II1-b-9)

An antisymmetric vibration deflection of the cable and stif-

fening structure causes no additional cable tension H. Therefore,
n

there is no interaction between the center span and side spans. For
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this reason, two types of independent vibration in a three-span bridge

are possible. Setting H = 0 in Eq. III-b-5 yields
n

e . (x.)
n~ ~

= Ai sin (ll;~i) + B
i

cos (}J~~i)
~ ~

i = 1, 2, 3 n = 1, 2, 3 ••• (III-b-lO)

The boundary conditions for the center span are

e = 0n2

for

for

= 0 en2 = 0

q2en2
E

2
r

2
---= 02

dx
2

E
2

d
2e

n2
0-=

2
dx

2
2

n = 1, 2, 3 .•. (III-b-ll)

The second part of Eq.llI-b-ll indicates that the center of

the span remains at rest and is also an inflection point.

Substituting Eq. III-b-lO into the boundary conditions (Eq.

III-b-ll), the frequency equation is derived in the form

sin (~2)= 0

from which it may be seen

llZ = 2n, 4n, 6n •••

(III-b-12)

(III-b-13)
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The antisymmetrictorsional modes of vibration for the center

span then become

• m'l1'x2= A
2

S1n 
R.2,

m = 2, 4, 6 .•. (III-b-14)

Substituting this last expression into Eq. III-b-3 (with

H = 0), the natural circular frequencies for the center span are deter
n

mined

w =
2m .

m = 2, 4, 6 •••

The boundary conditions.for the side spans are

for x. = 0
J

for x. = R..
J J

e . =0
nJ

e . = 0
nJ

d
2e

nj
E.r. = 0

J J 2
dx.

J

d
2e

njE.r. = 0
J J dx~

J

n =: 1, 2, 3 ... (III-b-16)

Substituting Eq. III-b-lO into the above boundary conditions,

the frequency equation is derived in the form

sin ]1j = 0 j ;:: 1, 3 (III-b-17)
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from which it may be seen

~. = rr, 2rr, 3rr •••
J

j = 1, 3 (III-b-18)

The antisyrnmetric torsional modes of vibration for the side

spans then become

em' (x.)
J J

j = 1, 3 m = 1, 2, 3 •.• (III-b-19)

Substituting this last expression into Eq. III-h-3 (with

H = 0), the natural frequencies for the side span vibration are deter
n

mined

E.r.
~+
I .

mJ

( G.J. + H b2)9.~
JJ w2L-2

2 2
I . m rr

mJ

j = 1, 3 m = 1, 2, 3 ••• (III-b-20)
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Appendix III-c

The

Orthogonality of Torsional Mode Shapes

thn torsional mode shape, e ,(x.), satisfies the equa..,
nJ. :1,

tion

- w
2

1 . e . (x.) + E. r, eI'Y (x.) - (G, J, + H b
2

2
) e" . LX,)n m:1, n].]. ].]. n].]. :1,]. w n].].

e j (X.ldx.] = 0n J J

i = I, 2, 3 n = I, 2, 3 ... (III-c-l)

where w is the nth natural circular frequency of torsional vibration.
n

th
The m torsional mode shape, e . (x,), satisfies a similar

m]. ].

equation, that is

* * R..

+ (:i
b

) [(E~Ac)(~) } i- JJ em' (X')dx'] = 0
w E J=l w J J J

o

i = I, 2, 3 n = 1, 2, 3 •.. (III-c-2)

MUltiplying Eq. III-c-l bye. (x.), integrating from zero to
IlU. ].

t. and summing over all three spans, (i = 1, 2, 3), results in
].
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o.(x. ) 0 . (x.) ax.JnJ. J. nu. J. J.

+ [I E.r. JoR.

i

i=l J.].
IV Jo . (x.) 0 . (x.) dx .
nJ. J. nu. J. J.

e". (x. >e . (x. )dx.JnJ. J. mJ. J. J.

e . (x. )dx.J
mJ. J. J.

e . (X.)jX.] :: 0
nJ J J

n = 1, 2, 3 .•. (III-c-3)

Multiplying Eq. III-c-2 bye. (x.), integrating from zero to
nJ. J.

t., and summing over all three spans, (i:: 1,2,3), results in
J.

2 [ 3- w I
rn i=l

I .mJ.
e . (x.) e . (x.)dx .]

nJ. J. mJ. J. J.

+ [. I E.r.
i=l J. J.

IV ]e . (x.)0 . <X.)dx.nu. J.. nJ. J. J.

[
J

R.i

_ I (G.J. + H~2)
i=l J. J. W

. 0

e". (x.)0 . (x. )dx.]rnJ. J. nJ. J. J.
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( b
2

). [. r :i
2 . 1 H

].= w
o . (x. )dX']nJ. J. J.

= 0

m = 1, 2, 3

SUbtracting Eq. 111-c-3 from Eq. 1I1-c-4 yields

(1II-c-4)

[ J

R.i
22 3

(w - w) L I .
n m.

l mJ.
J.= o

e . (x.) 0 . (x. ) dx .]
n]. J. mJ. ]. ].

+ [. I E.r. foR.

i

i=l J.].

IV IV
{0 . (x. ) 0 . (x. ) - 0 . (x.)0 . (x.)

mJ. J. nJ. J. nJ. J. mJ. J.

- 0 n
• (x.)0 . (x.) }dx.J

nJ. J. mJ. J. J.
= 0

n = 1, 2, 3 .•. m = 1, 2, 3 ... (III-c-5)

Now the last two bracketed terms in Eq. III-c-5 can be shown

to vanish by integrating by parts. For example:



r
o

319

0" . (x. ) 0 . (x. ) dx. = 0 . (x. )(2)' . (x. )
~ 1 n1 1 1n1 1 m1 1

o

0' . (x.) 0' . (x. ) dx .
m1 1 n1 1 1

= - 0' . (x.) 0' . (x.) dx.
m1 1 n1 1 1

n = 1, 2, 3 ••• m = 1, 2, 3 .•. (III-c-6)

since 0 . (0) = 0 . (t.) = 0 fram the boundary conditions.
n1 n;L;L

Similarly,

9..

f 1 0". (x. ) 0 . (x.) dx. = 0 . (x. ) 0-' . (x.)
n1 1 m1 1 ;L m1 1 n1 1

o

t.
J.

o

-c 0' . (x.) 0' . (x. ) dx .
m1 1 n1 J. 1

0'. (x. )0'. (x. )dx.
m1 1 n1 1 ;L

n = 1, 2, 3 ..• m = 1, 2, 3 ••• (III-c-7)
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t.
~

= - e'.(X.)e".(X.)
m~ 1. n1. 1.

o

e" . (X. ) en. ()C. ) dx.
m~ ~ n~ 1. 1.

e" . (x.) e" . ()C. ) dx.
~ 1. n1. 1. 1.

n = 1, 2, 3 .•• m = 1, 2, 3 •• 0 (III-c-9)

Substituting Egs. III-c-6, 7, 8 and 9 into Eq. III-c-S yields

modal orthogonality of the form

I .
m1.

e . (x. ) e . (x. ) dx . ] = 0
n~ 1. ~ 1. 1.

That is

n = 1, 2, 3 ••• m = 1, 2, 3 •.• . (III-c~lO)

3

I
i=l

e . (x.) e . (x. ) dx. = 0
n1. 1. m~ 1. ~

for n:jm

(III-C-ll)
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Appendix III-d

cable Tension Response in Frequency Domain

The finite Fourier transf.brm of the vibrational horizontal

component of cable tension is given by

H(w)

(III-d-l)

where ~. (w), (j = 1, 2, 3, 4), is the finite Fourier transform of the
]

j th ground motion rocking input and ~. (w), (j = 1, 4) is the finite
. J

F · f f h .th d·' . l' hour1er trans orm 0 t e J groun mot1on tors10na 1nput over t e

duration of the ground motion T
l

, and Qn(w) is the finite Fourier trans

th
form of the n generalized coordinate given by

~. (w) =t ~. (t)e-iwt dt
J J

0

~. (w) = C<P. (t)e-iwt
dt

J ]

j 1, 2, 3, 4

j = 1, 4

n = 1, 2, 3 ••.

(III-d-2)

(III-d-3)
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where {H (w)}T is the transposed complex frequency response \Tector cor
n

responding to the nth torsional vibration mode, and {'if (w)} is the Fourier

transform vector of the rotational ground motion displacement inputs.

The power spectrum of H(t) may be approximated as

::: ;~(w) H(w)
1

(III-d-4)

where T
l

is the duration of the ground motion and the superposed asterisk

denotes complex conjugate.

Substituting Eqs. III-d-l and III-d-3 into the previous

equation results in an expression involving sixteen different terms.

These will be taken one at a time in this section in order to isolate

the effects of input correlation.

A. Pure Relative Response

In performing the multiplication of Eq. III-d-4, one of the

terms encountered involves the first term of Eg. III-d-l mUltiplied

by its complex conjugate, that is

L
n=l

e . (x, ) dx ,1 Q (w) } J
n~ ~ Jj-n

which can be written

L
m=l

e ,(X.)dx.]Q (W)}]
m~ ~ ~ m

(III-d-5)



324

co co

*L L r r Q (w)Qm(w)
n=l m=l n m n

co co

L L r r {~ (w) HG
ff

(w) ] {H (w)}
n=l m=l n m n m

(III-d-6)

where the modal factors r are given by
n

3 :. J~i
r = L H~ e ,(x,)dx ,
n '1. n~~ J"

~=.w a
n == 1, 2, 3

(III-d-7)

and [Gff(w)] is the 6 x 6 spectral matrix whose terms are defined,by

2 * T[Gff(w)] = ~ {~(w)} {~ (w)}
1

(III-d-8)

Now for the correlated case, the spectral matrix is full, while

for the uncorrelated case, only the diagonal terms (i =: j in Eq. III-d-8)

are retained.

B. Pure Quasi-Static ReSponse,

This involves the second term in.Eq. III-d-l mUltiplied by

its complex conjugate, that is

(III-d-9)
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3 :. J'~\
y. = I H~ g:.(x,)dx.

J . 1 J~ ~ ~
~= w 0

j = 1, 2, 3, 4 (III-d-lO)

and Gjk(w) is defined by Eq. III-d-B.

For the correlated case, all power and cross-spectral terms

are included in Eq. III-d-9, while for the uncorrelated case, only the

diagonal terms remain, that is Eq. III-d-9 reduces to

(III-d-H)

where G. (w) is the power-spectra of the j th rotational input support
J

displacement, (j = 1, 2, 3, 4) given by

. 1
2

G. (w) =; I'P . (w)
J 1 J

C. ReSponse Excited by Rocking Ground Motion Inputs

(III-d-12)

This involves the third term in Eq. III-d-l multiplied by its

complex conjugate, that is

G (w)
c

3 3 . *
I I 8.8·{'P'+1(w)

~ J ~
i=l j=l

= (ELcAEc ) 2 (:e.2 ) 2 i=f
1

J'=~ll. l. 8.8. £G'+l '+l(w) + G. '+l(w)
~ J ~ ,J ~,J

+ G, 1 ,(w) + G. , (w) ]
~+ ,J ~J (III-d-13)



326

which for the uncorrelated case reduces to

D. Response Excited by Torsional Ground Motion Inputs

(III-d-l4)

This involves the fourth term in Eq. III-d-l multiplied by its

complex conjugate, that is

(III-d-iS)

which for the uncorrelated case reduces to

E. Cross-term: Relative and Quasi-Static Responses

(III-d-16)

This involves the complex conjugate of the first term in Eq.

III-d-l mUltiplied by the second term in this equation that is
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co 4

I L
n=l j=l

*r y. Q (w)'l'. (w)
n J n J

(III-d-17)

where f
n

was defined in Eq. III-d-7 and Yj was defined in Eq. III-d-lO.

Using Eq. III-d-5, the previous equation may be written

GAB(W) = (
EA)2 co

...£.£ (~)2 1:
~ n=l

4

L
j=l

. * T *r y.{H (w)} {~(w)}~.(w)
n J n )

(III-d-18)

which, for the uncorrelated case reduces to

GAB'W)
co 4
I l

n=l j=l
r y. H . (w) G. (w)

n J nJ J

(III-d-l9)

where a . (w) is the complex frequency response function corresponding
nJ
th . 1 ib' d d h .th k" t .to the n tors~ona v rat~on mo e an t e J roc ~ng mput mo ~on.

F. Cross-term: Relative ReSponse and Response Due to Rocking Ground

Motion Inputs

This involves the complex conjugate of the first term in

Eq. III-d-l multiplied by the third term in this equation, that is

(E~:Cy co 32 (~)2 L L *GAC(w) = -- r S. Q (w){~'+l (w)T1 n=l i=l
n ~ n 1.

+ ~. (w) }
~

e~cY
co 32 (~)2 I L * T *= -- r S.{a (w)} {~(w)}(~'+l(w)

T
1 n=l i=l

n 1. n ~

+ ~. (w)}
~

(III-d-20)
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which, for the uncorrelated case reduces to

co 3
(~)2 L 1:

n=l i=l
*r 13. IH • (w) G. (w)

n 3. n3. 3.

*+ Hn,i+l (w) Gi +l (w)] (III-d-21)

G. Cross-term: Relative Response and Response Due to Torsional Ground

Motion Inputs

This involves the complex conjugate of the first term in

Eq. III-d-l multiplied by the fourth term in this equation, that is

GAD(w) *IrQ (w)r~4(w) - ~l(w)]
n=l n n

- ~l (w)]

cor r {; (w)}T{;(W)}I~4(W)
n=l n n

(III-d-22)

which for the uncorrelated case reduces to

GAD(W) (
EA)2 00

= ~ c (~) 2 L
E n=l

(III-d-23)

H. Cross-term: Quasi-Static Response and Response Due to Rocking

Ground Motion Inputs

This involves the complex conjugate of the second term in

Eq. III-d-l multiplied by the third term in this equation, that is
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4 3 *L L Y.S.~. (w) [~'+l (w)
j=l i=l J 1 J 1

+ ~. (W)]
1

(III-d-24)

which for the uncorrelated case reduces to

(III-d-25)

Io Cross-term: Quasi-Static Response and Response Due tb Tbrsional

Ground Motion Inputs

This involves the complex conjugate of the second term in

Eg. III-d-l multiplied by the fourth term in this equation, that is

(
ECLA

EC
) 2 (£2) 2 4 '*L Y. ~ . (w>I~4 (w) - ~l (w) J

j=l J J

(III-d-26)

which reduces to zero for the uncorrelated case.

J 0 Cross-term: Response due to Rocking Ground Motion Inputs and Response

Due to Torsional Ground Motion Inputs

This involves the complex conjugate of the third term in

Ego III-d-l multiplied by the fourth-term in this equation, that is
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3 ok

L S. ['i'. 1 (00)
i=l 1, 1,+

(III-d-27)

which reduces to zero for the uncorrelated case.

Power Spectrum of H(t)

The power spectrum of H(t) is given by Eq. III-d-4, and

can be written as

* '*+ [GAC(OO) + G
AC

(00) J + [GAD (00) + GAD (00)]

* *+ [GBC(oo) + GEe (00) J + IGoo (00) + G
BD

(00)]

*+ [GCD(OO) + G
CO

(oo)J (III-d-28)

where the terms on the right hand side of Eq. III-d-28 have been pre-

viously defined, and the superposed asterisk denotes complex conjugate.
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CHAPTER IV

LATERAL EARTHQUAKE RESPONSE OF SUSPENSION BRIDGES
TO MULTIPLE-SUPPORT EXCITATIONS

IV.I INTRODUCTION

This chapter presents the dynamic analysis methodology for earthquake-

induced lateral vibrations of suspension bridges. A suspension bridge is

excited into lateral motion by lateral (or transverse) horizontal com-

ponents of ground motion occurring at its support points (anchorages

or tower-piers). As will be seen later, the lateral vibration of the

suspended structure and cables within the center span are uncoupled from

the other side spans under small vibrational (linear) amplitudes.

However, within each span the lateral vibrational deflections of the

cables and suspended structure are strongly coupled. The hangers (or

suspenders) which connect the suspended structure to the cables cause

the two systems to interact so that the deformation of one system

exerts an influence on the other. The resulting coupled equations of

motion are quite complicated, and as yet have not been solved in closed

form. For this reason, the method chosen to analyze the lateral vibration

in this chapter involves a matrix finite element approach, which was

originally developed by Abdel-Ghaffar (1,2) for the analysis of free

lateral vibrations of suspension bridges, and is utilized here to study

the multiple-support seismic ~ateral excitation problem.

Preceding page blank
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A frequency-domain random vibration approach is used in this chapter

to take into account the differences in lateral ground motion inputs

at each of the bridge's support points as well as the correlation among

the various input motions. In general, the correlation of these motions

is extremely complicated, particularly in the case of a long-span bridge,

with different foundation conditions, subjected to seismic waves with

different angles of incidence and different travel paths (reflections

and refractions, etc.). However, such complications can be overcome

by utilizing existing strong motion records, to define representative

and appropriately correlated multiple-support lateral seismic inputs.

Ground motion records taken from the Imperial Valley (EI Centro) ,

California, earthquake (M
L

= 6.6) of OCtober 15, 1979, are, again, used

in defining the input support motions (Appendix II-e). As mentioned

previously, these ground motion records were recorded at several instru

ment locations whose separation distances are consistent with a long-span

suspension bridge's dimensions.

Finally, the lateral response of the Golden Gate Suspension Bridge,

in California, is investigated in order to estimate its lateral earth

quake response characteristics. Three cases of lateral response are

compared. In the first case, the S400E components of ground motions

recorded at Arrays No.4, 5, 6, and 7 (of the 13 El Centro Arrays;

see Appendix II-e) are utilized to define the lateral input support

motions (at anchorages and tower-piers), while the second case involves

a similar correspondence with Arrays No.5, 6, 7, and 8. The third case

involves a uniform-lateral ground motion assumption over all four

supports with the records of Array No. 5 used as input. Root mean square

lateral response displacements, stresses, shear forces, as well as
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horizontal components of cable tension due to lateral vibration are

obtained for each response case, and peak responses are estimated by

using a peak factor of 3.5 originally obtained from Chapter II of this

report (vertical vibrations), and found to be appropriate for lateral

vibrations as well. Selected time domain (convolution integral)

analysis cases also are shown in this chapter in an attempt to verify

these peak factors.

IV.2 COORDINATE SYSTEMS

The coordinate system used for the typical three-span bridge is shown

in Fig. IV-I, For the purpose of studying the lateral vibration, the

following is considered (1,2)

1. For the suspended structure (girders or trusses), the x.-axis
1.

of the i
th

span is defined along the centerline of the span

For the cables, the2.

with the origin located at the left support of that span.

x.-axis of the i
th

span is defined as
~ .

spanof thespan, while the cable ordinate Yc(xi )

the horizontal line passing through the left support of each

. th
1.

is measured downward from the closing chord of each span. The

cable ordinate h(x.) is measured upward from the centerline
~

of the suspended structure.

3. The vibrational displacements of the suspended structure are

plane and themeasured from the

directions are denoted

Xi - Yi

These displacements in the Y
i and z.

~

x. - Z.
1. ~

plane.

as v (x.,t) and w (x.,t), respectively.
s 1. s 1.
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Fig. IV-1 Laterally vibratin~ suspension bridge definition
diagrams (Ref. 1)



337

4. The vibrational displacements of the cables are measured

vertically and horizontally from the static position of the cable.

These displacements in the Yi and z. directions are denoted
~

as v (x., t) and w (x .,t) , respectively.c ~ c ~

IV.3 FUNDAMENTAL ASSUMPTIONS

The following assumptions and approximations are made for the purpose

of simplifying the lateral vibration analysis (1,2):

1. All stresses in the bridge remain within the elastic limit

and therefore obey Hooke's law.

2. The cables are of uniform cross section and of parabolic

profile under dead load.

3. The cables are assumed to be perfectly flexible, that is the

flexural stiffness of the cables can be neglected.

4. The suspenders (or hangers) are considered inextensible during

lateral vibration.

4. Small vibrations about the equilibrium position are assumed,

that is, the vibration amplitudes are sufficiently small so

that the stiffness of the structure may be taken to be constant

during the motion.

6. The tower-piers move as rigid bodies under ground motion excita-

tion. This is a reasonable first assumption to investigate

lateral vibration because the tower-pier system is much stiffer

than the suspended structure-cables system.

7. The initial curvature of the stiffening structure is considered

small in comparison with the cable curvature and is therefore

neglected.
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8. The coupling between lateral, torsional, and vertical motions,

which has significant influence only for large amplitude dis-

placements, is neglected.

9. The upward vibrational-displacements of the cables and the

suspended structure incidental to their lateral movements may

be approximated by

2
w (x. ,t)

c ~- v (x., t) =: ~~;;;...~
C ~ 2yc(x

i
)

i=1,2,3 (4.1)

-. v (x., t) ~
S J.

2 2
w (x. ,t) [w (x. ,t) - W (x. ,t)]
~c~~~"-:_ + _.;;;s;.....-..;;~~.,........,.._.;;.c_,;;;~;...-__
2y (x.) 2h(x.)

c ~ ~

i=1,2,3 (4.2)

IV.4 EQUATIONS OF MOTION GOVERNING LATERAL VIBRATIONS

Under the previous assumptions, the linearized equation of motion

governing the lateral free vibration of the i th span of a suspension

bridge is given by (1,2):

*m
c

2H
w

i=1,2,3 (4.3)

for the cable; and

*m.
s~

2a W s a2
-.-+--

2 2at ax.
~

[
2 ]E I d W * w" s ss~ s~ ax~ + WSi (

J.

i=1,2,3 (4.4)

for the suspended structure; where W = W (x"t)
C C J.

is the lateral vibra-

tional response of the cables in the .th
J. span; W = W (x., t)

s S J.
is the

lateral vibrational response of the suspended structure in the .th
1. span;



339

* *w and m are respectively, the dead weight and mass of both cablesc c

per unit span length; *W.
sJ.

*and m .
sJ.

are respectively, the dead weight

I. is the area moment of inertia of the
SJ.

span;

is the modulus of elasticity of the suspendedE .
SJ.

.th
J.

the

and mass of the suspended structure (both trusses) per unit length of

.th
J. span;

structure in the

suspended structure about its vertical axis, in the .th
J. span

(includes the contribution from the two stiffening trusses as well as

the contribution from the lateral bracing systems); H is the initial
w

(dead-load) horizontal component of cable tension~ and y (x.)
C J.

is the

parabolic dead-load cable profile given by:

i=1,2,3, (4.5)

where i.
J.

is the length of the .th
J. span, and hex. )

J.
is the cable

ordinate as measured from the centerline of the suspended structure

(see Fig. IV-I).

It is seen from Eq. 4.3 and Eq. 4.4 that under linear assumptions,

the lateral vibration of each span of the suspension bridge are uncoupled.

This occurs because the additional (vibrational) horizontal component

of cable tension H(t) due to lateral vibration contains only nonlinear

terms, as follows (1):

[E AJ 3 [1 t rawer t [,V J[dY]H(t) = ~Ec iII "2 dx. + o ax: dX:
dx.o dX i

J. J.

1 ~i ['V r ]+ 2 fa ax: dxi
(4.6)
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where v (x.,t) is the upward deflection of the cables incidental toc ).

their lateral deflection (Eq. 4.1); E and A are respectively, the
c c

where

span,

modulus of elasticity and cross-sectional area of each cable; and L
E

is the cable's virtual length defined as (1):

3
S!.. CSif dx.~ = L fa). (4.7)

dx. ).
i=l ).

is the coordinate measured tangent to the cable in the
,th

s. ).
).

and S!.. is the length of the
.th
). span.

].

Although the lateral vibrations of each span are uncoupled, within

each span the lateral deflections of the cables and suspended structure

are strongly coupled. The hangers (or suspenders) which connect the

suspended structure to the cables cause the two systems to interact

so that the deformation of one system exerts an influence on the other.

The governing equations of motion (Eqs. 4.3 and 4.4) are thus coupled

together, and are in addition of the variable coefficient type. To date,

no closed form solutions of these equations are known. For this reason,

an approximate finite element solution originally proposed by Abdel-

Ghaffar (1,2) will be utilized here in order to analyze the earthquake-

induced lateral vibrations.

IV.5 MATRIX EQUATIONS OF MOTION: A FINITE ELEMENT APPROACH

Because the lateral vibration of the center span can be treated

separately from the side spans, the earthquake response analysis

methodology is presented here for the center span; the side span analysis

being quite similar. Furthermore, since the towers are relatively rigid

in the lateral direction, it is assumed here that the ground motion
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input to the support of the suspended structure is equal to the ground

motion input to the cable saddle at the top of the tower; both inputs

being identical to the lateral tower base input. Because of the long

span of the structure, the ground motions are in general different at

each of its support points.

The equations of motion of lateral vibration of the center span (with

N degrees of freedom as shown in Fig. IV-2) when subjected to seismic

excitations at the tower bases and cable supports in the lateral direction

can be expressed in matrix form as:

[MJ{u} + [C]{~} + [K]{u} • {OJ (4.8)

where [M] is the mass matrix which includes the masses of the suspended

structure and the cables; [K] is the stiffness matrix which includes

the stiffness contribution from the elastic deformation of the cables

and suspended structure, as well as the gravitational stiffness of the

cables and suspended structure arising from their upward incidental

motion; [C] is the damping matrix; and {u} is the total vibrational

displacement vector.

The formation of the stiffness and mass matrices is derived in

Ref. 1, and is summarized in Appendix IV-a of this report. Basically,

the finite element technique involves idealizing the cable by a set of

pretensioned string or truss elements, while idealizing the suspended

structure by a set of beam elements. These two sets of elements, con

nected by rigid hangers, form the bridge elements (Fig. IV-2). The

total vibrational displacement vector, {u}, thus contains degrees of

freedom corresponding to displacements of the cables and suspended

structure as well as degrees of freedom corresponding to rotations of



342

FINITE ELEMENT ANALYSIS OF SUSPENSION BRIDGES
LATERAL VIBRATION
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the suspended structure, as shown in Fig, IV-2. The stiffness and

inertia properties can be formed for each set of elements and then

assembled to obtain the global stiffness and mass matrices.

Now Eq, 4.8 may be written in partitioned form as (3);

Css
gs

[
c

+ CSS

gs
+ Gss

gs

where the subscript "g" designates the degrees of freedom corresponding

to the points of application of ground motions (i.e., the displacement

degrees of freedom at the two tower connections; Fig. IV-2); and the

subscript "s" corresponds to all other structural degrees of freedom

of the bridge.

IV.6 GENERAL SOLUTION

The nodal displacements may be decomposed into quasi- (or pseudo-)

static displacements and relative (or vibrational) displacements. Quasi-

static displacements are those resulting from the static application of

support displacements (degrees of freedom with subscript g) at any

time t. Thus the displacement can be written as

= I:::I + (4.10)

where the subscript "p" denotes the pseudo-static displacements and

the subscript "v" denotes the vibrational displacements.

The pseudo-static displacement vector can be expressed as

4

I
i=1

(4.11)
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are the quasi-static functions that result from

unit displacement at the left and right ends of the suspended structure,

respectively; and are the quasi-static functions that

result from unit displacement at the left and right ends of the cables,

respectively; fl(t) and f
3

(t) are the input displacement motions

to the left and right ends of the suspended structure, respectively;

f 2 (t) and f
4

(t) are the input displacement motions to the left and

right ends of the cables, respectively; and gpgi is a 4 x 1 vector whose

i
th

element is equal to unity with all its other elements being zero.

Substituting Eqs. 4.11 and 4.10 into Eq. 4.9 gives:

[M ]{u } + [C ]{~ } + [K ]{u } =
ss vs ss vs ss vs

4

L
i=l

.
([M M ] f. (t) + [c C ] f. (t)

ss sg 2 5S sg 2

+ [K K ] f. (t»IgpsiI
ss sg 2 g.pg2

The previous equation can be simplified by noting that for an

unloaded bridge with a static condition of support displacements,

one has

Substituting Eq. 4.11 into Eq. 4.13 yields

(4.12)

(4.13)

4
I [K K ]

i=l ss sg
(4.14)
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Thus, the quasi-static vectors can be defined in the following manner:

{g .} = -[K ]-l[K ]{g ,}
PS1 ss sg pg1

i=1,2,3,4 (4.15 )

and the equation governing the lateral vibrational response (Eq. 4.12)

reduces to

. -

+ [C
88 (4.16)

Note that the previous equation is excited by lateral ground accel-

eration and velocity terms. Although, as indicated by Baron, et al

(3), the contribution to the total response from velocity terms is

often small, the velocity terms are included in this analysis for

completeness.

III.7 EIGENVALUE PROBLEM - FREE VIBRATIONS

The solution to Eq. 4.16 is obtained by modal superposition, that

is the vibrational displacement is taken to be

{u } =
vs

N

L
n=l

{<j> }q (t)
n n

(4.17)

where {<j> }
n

is the th
n lateral vibration mode shape in the center

span; q (t)
n

is the
th

n generalized coordinate; and N corresponds

to the total number of degrees of freedom in the finite element model.

Usually, the number of modes necessary for an accurate response analysis

will be significantly less than the number of degrees of freedom N,
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which is an inherent advantage of using the modal superposition method.

The lateral mode shapes and corresponding natural circular frequencies,

ware obtained from the solution of the matrix eigenvalue problem
n

(_W2 [M ] + [K ]){¢} = {a}
n ss ss n

IV.8 MODAL SOLUTIONS - FORCED VIBRATIONS

n=l,2,3 ••• (4.18)

Substituting Eqs. 4.17 into Eq. 4.16 results in

N
I ([M H¢ Hi (t) + [C H¢}~ (t) + [K ]{¢}q (t») =

n=l ss n n ss n in 5S n J1

4
1.' ([M M ] ~. (t)

i=l ss sg 1.
. Ig·1+ [C Clf. (t») pSJ.

ss sg J.

gpgi

(4.19)

(4.20)

Now, multiplying Eq. 4.19 by

(see Appendix IV-b), that is

{¢}T and using modal orthogonality
m

n :I m

yields the governing equation for the

qn(t) + 2~ w q (t) + w2a (t) •
n nn non

thn generalized coordinate

n=1,2,3 •••

(4.21)

where is the damping ratio of the thn lateral vibration mode,

and the modal participation coefficients a.. and
nJ.

B .nJ.
are given by

and

t

i=1,2,3,4,

n=1,2,3 •••
(4.22)
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i=1,2,3,4

n= 1,2,3 •..
(4.23)

It is important to note that for the purpose of calculating the

modal participation factors, B ., involving the damping matrix [C],
nJ.

the following approach is used. For each mode, the damping matrix is

assumed diagonal. Those degrees of freedom corresponding to the transla-

tion of the suspended structure are entered as *[(2l;wm)eL]
n n s where

*m is the mass of the suspended structure per unit length and L is thes

element length (Fig. IV-I). Those degrees of freedom corresponding to

the translation of the cables are entered as *[(21;wm)eL]
n n c

*where -m
c

is the mass of the cables per unit length. The matrices [C ]
ss

and

[C ] are isolated from the diagonal [C] matrix, and the modal
sg

participation coefficients B. can be calculated using Eq. 4.23.
nJ.

The solution to Eg. 4.21, assuming quiescent initial conditions

is given by the convolution integral

~ (t)

4 ••
I (a.f.(T)

i=l nJ.]"
+ S . f. (T»)In]" 1. l -l; W (t-T) I

• e n n sin WndCt-T) dT

n=1,2,3 ••• (4.24)

where Wnd is the damped natural circular frequency of the nth lateral

vibration mode, given by:

W
n

n=1,2,3 ••• C4.25)

The total lateral displacement response is obtained as the sum of

quasi-static and relative responses, that is
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(4.26)

For the purpose of calculating dynamically-induced bending moments,

flexural stresses, and shear forces in the suspended structure, it

becomes necessary to define the vectors and as quasi-

static rotation and modal rotation vectors which are extracted from the

original quasi-static and modal vectors in such a manner that only

those degrees of freedom corresponding to the rotations of the suspended

structure are entered in the overbarred vectors. Under such a definition,

the dynamic bending moment about the suspended structure's vertical axis

may be written as

Es2 I s2 ( r.{g' .}f. (t) + r {~I}q (t»)
i=l PS1 1 n=l n n

where {M} is the vector of dynamic bending moments corresponding to
s

(4.27)

the structural degrees of freedom; Es2 is the modulus of elasticity

of the center span suspended structure; I
s2

is the area moment of

inertia of the center span suspended structure about its vertical axis;

and the prime denotes the first spanwise derivatives (of the quasi-

static and modal rotational degrees of freedom) •

Similarly, the total dynamic lateral shearing force at any point

in the suspended structure may be calculated as

{V}-E I (~{g-".}f.(t)+ ~ {~lI}q(t»)
s - s2 s2 i~l PS1 1 n:l n n

where {V} is the vector of shearing forces corresponding to the
s

structural degrees of freedom; and the double prime denotes the second

(4.28)
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spanwise derivatives (of the quasi-static and modal rotational degrees

of freedom).

Furthermore, the dynamically induced lateral flexural stresses may

be related to the bending moments by the following relation

{cy} b {M}
s = 2I

s2
s (4.29)

where {CY} is the vector of laterally-induced flexural stresses in the
s

suspended structure's chord members~ and b is the deck width of the

bridge.

IV.9 FREQUENCY-DOMAIN, RANDOM VIBRATION APPROACH

In order to study the lateral dynamic behavior of long-span suspension

bridges when sUbjected to multiple-support earthquake excitations, a

random vibration approach is utilized. For the four displacement inputs

of the center span, there are four complex frequency response functions.

To determine these functions, each input

generalized coordinate excited by the

taken

th
n

equal to exp (iwt) f where i =

f.(t), (j = 1,2,3,4), is
J

;:r--, and the response of the

j th input motion is

assumed to be of the form

q . (t) = H . (w) exp (iwt)
-oJ nJ

j=1,2,3,4

n=1,2,3 ••.
(4.30)

where H .
nJ

is the
th

n complex frequency response due to input displace-

ment fj(t) at the support of the suspended structure or the cables.

Now substituting Eg. 4.30 into Eq. 4.21 yields

2
-w a + iwB

H0 • (w)· 2 oj 2 oj
J (w - w ) + i(2~ w w)

n n n

,
j=1,2,3,4

n=1,2,3, •••

i = I=l

(4.31)
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Taking the finite Fourier transform of Eq. 4.17 over the time duratioD

of the ground motion input displacement, T1 , yields the Fourier

transform of the vibrational response

= ·fo
Tl

{u (w)}
vs

. N
{u }e-~wt dt = ~ {~}Q (w)

vs n=l n n
(4.32)

where Q (w) is the finite Fourier transform of the generalized
n

coordinate ~(t), given by

n=1,2,3 ••• (4.33)

A similar Fourier transformation of Eq. 3.21 yields

2 4 2
[(00

2
- w ) + i(2~ 00 wJ]Q (w) - I [-wanj + iwBnj]Fj(w)

n n n n j-l

n=1,2,3 •••

(4.34)

in which Fj (w) is the finite Fourier transform of the j th disp1ace-

ment input f. (t),
J

given by

T1 .
F . (w) = f f . (t) e-J.wt dt

J a J
j=1,2,3,4 (4.35)

It follows from Eqs. 4.31 and 4.34 that the Fourier transform of the

generalized coordinate can be expressed as

n=1,2,3 ••• (4.36)

where {a (w)}T denotes the transposed complex frequency response
n

vector given by

{a (w)}T = {a l(w) a 2(w) a 3(w) a 4(W)}n n n n n n=1,2,3 ••• (4.37)
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and {F(W)} is the Fourier transform vector of displacement inputs

given by

F
l

(w)

F
2

(W)

iF (W)} = (4.38)
F

3
(W)

F
4

(w)

Now substituting Eq. 4.36 into Eq. 4.32 enables the Fourier transform

of the vibrational response to be expressed as

{u (w)} =
vs

N

I
n=l

(4.39)

The relative-displacement power-spectral density function is given by

where E[·] represents the expected value of the term inside the

brackets and the superposed asterisk denotes complex conjugate. An

estimate of {G } can be obtained by simply omitting the limiting
uvs

and expectation operations in Eq. 4.40, hence

Substituting Eq. 4.39 into Eq. 4.41 yields

(4.40)

(4.41)

{G } =
uvs

N

l.
n=l

(4.42)

where any element of the 4x4 spectral matrix of correlated displacement

inputs [Gff(W)] is defined by
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lim 2 *' 2 *'G. . (w) = T -+00 -T E[F. (W)F.(W)] ::: -T F. (W)F.(W)
~J 1 1 ~ J 1 ~ J

i=l,2,3,4

j=l,2,3,4 (4.43 )

The diagonal elements of the matrix [Gff(W)], i=j in Eq. 4.43,

correspond to the power spectral density of the jth displacement

input f. (t) ,
J

while the off-diagonal elements of the matrix

correspond to cross-spectral densities between the various displacement

inputs. These cross-spectral terms are present because the various

input motions originated from the same source, and are therefore related

in some way so that their correlation (or interaction) must be taken

into account. The effect of input correlation upon the lateral response

may be examined quite easily using Eg. 4.42. If the inputs are assumed

to be uncorrelated, that is, independently applied and unrelated, Eq. 4.42

reduces to

{G } =
uvs

N

r
n=l

N

L
m=l

4 *'I (H .(W»)(H .(W»)G.(W)
j=l nJ mJ J

(4.44)

in which Gj(W) is ~e power spectral density of the jth displacement

input f.(t) which is estimated as
J

j=l,2,3,4. (4.45)

The results of Eq. 4.42 can be compared to those of Eq. 4.44 in order

to gain a better understanding of the effects of input correlation upon

the response calculations.

The second characteristic feature of Eq. 4.42 involves the double

summation over the lateral modes and their associated complex frequency

response functions. It should be noted that the complex frequency

response functions H . (w)
nJ

peak in amplitude at their associated
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natural frequencies wn ' and have much lower amplitudes elsewhere

along the frequency band. Therefore, when the natural frequencies of

lateral vibration are well separated and damping ratios are small, the

effect of cross-terms (n ~ m) in Eq. 4.42 becomes much less significant

than the diagonal terms (n = m) (4). Under these circumstances, the

double summation may be replaced by a single sum, that is

However, due to the flexible nature of the suspension bridge, closely-

spaced modes are quite likely to occur. Under such circumstances, the

effect of the cross terms are no longer negligible, and an accurate

representation of the response would have to include these modal

interaction terms. For the purpose of this chapter, Eq. 4.42 is

utilized, that is, the effects of modal interaction are incorporated

through a double summation.

(4.46 )

The mean square value of the relative lateral response {'¥2 } is
uvs

given by the integration of

that is

{G }
uvs

over the entire frequency range,

1
27T

{G }dw
uvs

(4.47)

and the square root of Eq. 4.47 is the root mean square (R.M.S.)

relative lateral response.

The power spectral density of the total lateral displacement

response can be obtained by multiplying Eq. 4.26 by its complex conjugate

and by (2/Tl ), which leads to
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I
G I 4 4 g fus • l L psk {g
G j=l k~l Ig psj

ug pgk

. where

+ IG
jUVS l) {o f gpsj

g } + IGuvs l
pgj 0 f (4.48)

2 * .
{G ,} = -T {u (w) }F. (Ul)

uvsJ 1 vs J

and

N

I
n=l

* T *{~ }{H (Ul)} {F(Ul)}F.(Ul)
n n J

j=1,2,3,4 (4.49)

2 *{Go } = -T F.(Ul){U (Ul)}
JUvs 1 J vs

N

L
n=l

j=1,2,3,4 (4.50)

For the uncorre1ated case {G .} and {Go } reduce to
uvsJ JUvs

{G o} =
uvsJ

{G. } =
JUvs

N

I
n=l

N

r
n=l

*{~ } [H 0 (Ul) ] Go (Ul)
n nJ J

{~ } [H 0 (Ul) JG. CUl)
n nJ J

j=1,2,3,4,

j=1,2,3,4

(4.51)

C4.52)

where H .(Ul) is given by Eq. 4.31 and G.(Ul) is given by Eq. 4.45.
nJ J

In addition, the cross-spectral terms Gjk(Ul), (j ~ k), are equal to

zero in Eq. 4.48 for the uncorrelated case.

The integration of {G } and {G } over the frequency domain
us ug

provides the mean square total lateral displacement response,
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1:~1 1 fa 1:US I dw= 27T
us ug

V:VSI 7

2 I T T
4 :VSj qPSj! 4 4 gPskWPSj! 2

= + L + I L '¥jk (4.53 )
j=l gpgj j=l k=l gpgk gpgj

where {'¥2 } is given by Eq. 4.47, and
uvs

{'¥2 ,} 1 ro ({G .} + {G. })dw=-
uvsJ 27T uvsJ JUvsa

j=l,2,3,4

j=1,2,3,4

k=1,2,3,4

(4.54)

(4.55)

The procedure outlined in the above section may be used to evaluate

the power spectral density of the vibrationally-induced bending moment

in the center span suspended structure by simply replacing the mode

shapes, and quasi-static functions by and

ES2IS2{g~Si}' respectively, where Es2I s2 is the lateral flexural

rigidity of the center span; and the overbarred vectors are extracted

from the original quasi-static and modal vectors in such a manner that

only those degrees of freedom corresponding to the rotations of the

suspended structure are entered in these vectors.· Similarly, the power

spectral density of the vibrationally-induced lateral shearing force

in the suspended structure may be obtained by replacing the modes and

quasi-static functions by E I {~1I}
s2 s2 n

and E 2I 2{g I I , },
S S ps~

respectively.

In addition, the autospectra of laterally~induced flexural stresses

in the suspended structure's chord members is given by the following

flexural stress relation
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(4.56)

where {G
M

} is the autospectra of lateral response bending moments;

{Ga} is the autospectra of lateral response stresses; b is the width

of the suspended structure; and I
s2

is the area moment of inertia

of the center span suspended structure about its vertical axis.

Mean square lateral bending moments, shearing forces and bending

stresses are obtained by using Eq. 4.53 with the mode shapes and quasi-

static functions replaced as described above.

IV.lO ADDITIONAL HORIZONTAL COMPONENT OF CABLE TENSION H(t)

The additional horizontal component of cable tension due to multiple-

support lateral excitation H(t) is given by

H(t) = H (t) + H (t)
v P

where H (t) is the vibrational (relative) contribution to the cable
v

tension and H (t) is the quasi-static contribution to the cable
p

(4.57)

tension. The vibrational contribution to the cable tension, H (t),
v

is given by (Eq 4.6)

H (t)
v

dx.
~

dx.
~

(4.58)

where w (x., t)
c ~

is the relative lateral motion of the
.th
~ suspended

structure; v (x. ,t)
c ~

is the upward deflection of the cables incidental
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to their lateral deflection (Eq. 4.1); y (x.)
c ~

is the parabolic cable

profile (Eq. 4.5); E and A are respectively, the modulus of
c c

elasticity and cross sectional area of each cable; and LE is the

virtual length (Eq. 4.7).

It should be noted that Eq. 4.58 contains only nonlinear terms.

The procedure utilized in this section involves using the linear lateral

displacement response solution obtained in the previous sections in order

to provide an estimate for the vibrational cable tension H(t), which

is expected to be quite small in comparison with the dead load horizontal

component of cable tension H •
w

Now substituting Eqs. 4.1 and 4.5 into

Eq. 4.58, and integrating the second term in Eq. 4.58 by parts results in

H (t)
v

dx. +
~

dx.
~

1+
2

t. [ [2 J]2 Jr ~ d w____c_ dx
JO dXi 2yc i

(4.59)

*where w is the dead weight of both cables per unit span length;
c

.*
w. is the dead weight of the suspended structure per unit length of
s~

the .th
~ span; and H is the horizontal component of dead load

w

cable tension.

In order to analyze the cable tension in the frequency domain, the

finite Fourier transform of Eq. 4.59 becomes

H (w)
v dx. +

~

dx.
~

1+
2

(4.60)
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where ; (x.,w) is the finite Fourier transform of the cables'
c ~

lateral vibrational response in the .th
~ span. This equation can be

solved by considering the cables' response at its discrete degrees of

freedom, which was obtained from the previous lateral displacement

response analysis, that is

W-(x. ,w) =
·c ~

N.
~

L
n=l

ep (x.) Q • (w)
n ~ n~

(4.61)

where ep (x.) is the cables' configuration in the nth lateral mode
n ~

shape of the .th
~ suspended span; o . (w)

-n~
is the Fourier transform

are the degrees of freedom corresponding to the cables in the

of the thn generalized coordinate of the
.th
~ span (Eq. 4.~6);

.th
~

x.
~

span; and N.
~

are the number of degrees of freedom utilized in the finite

element modeling of the i th suspended span. The procedure involves

substituting the results of Eq. 4.61 into Eq. 4.60 and then integrating

Eq. 4.60 numerically to obtain the vibrational displacement contribution

to the Fourier transform of the additional horizontal component of

cable tension.

The quasi-static contribution to the cable tension in the frequency

domain can be evaluated similar to Eq. 4.60, that is

H (W)
p

dx. +
~

[; +;'Jc s~

2H
w

v dx.
g J.

1+
2

(4.62)
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where w (x.,w) is the finite Fourier transform of the cables'
g ~

lateral quasi-static response in the i th suspended span, given by

4
w (x.,W) = I g .(x.)F .. (W)

g ~ j=l c] ~ ]~
i=1,2,3 (4.63)

in which F .. (w) is the finite Fourier transform of the jth lateral
J~

input displacement in the . th
1. span; and g . (x.)

cJ 1.
is the

.th .
] quas~-

static cable configuration in the .th
~ span. The finite Fourier trans-

form of the cables' incidental upward quasi-static motion in the .th
~

span, vex. ,W) ,
g ~

is given by

v (x.,W) =
g ~

2

L
j=l

[
g . (x.) _ (1 _Xi~ 2
c] ~ R..

1.

2y (x.)
c ~

F .. (W)
J1.

+
4

I
j=3

lx. J2-t-- g ,(x.)
i cJ 1.

2y (x.)
c ~

F .. (W)
J1.

i=1,2,3, (4.64)

Again, by substituting the results of Eqs. 4.63 and 4.64 into Eq. 4.62

and integrating this equation numerically, the quasi-static contribution

can be evaluated.H (w)
p

The power spectral density of the additional horizontal component

to the Fourier transform of the cable tension,

of cable tension (for the correlated case) can be approximated as

(4.65)

where T
l

is the time duration of the ground motiori input and the

superposed asterisk denotes complex conjugate. Finally, mean square

dynamically-induced cable tensions are obtained by integrating GH(W)

over the entire frequency range, that is



\}I 2 I
H = 27T fooo GH(W)dW
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(4.66)

and the square root of the previous equation is the root mean square

(R.M.S.) dynamically-induced horizontal component of cable tension

due to lateral vibration.

IV.ll APPLICATION: LATERAL SEISMIC BEHAVIOR OF THE GOLDEN GATE BRIDGE

IV.II.l Correlated Case

The analysis outlined in this chapter is applied to the Golden

Gate Suspension Bridge in San Francisco, California, in order to

estimate its lateral response characteristics. The structural properties

(needed in lateral dynamic analysis) of the bridge are summarized in

Table IV-I. The lateral quasi-static functions are shown for the

center span and left side spans in Fig. IV-3, corresponding to unit

displacement of the cables or suspended structure at each of the bridge's

support points (anchorages and tower piers). The quasi-static functions

for the right side span are simply antisymmetric to those of the left

side span, and therefore are not explicitly shown. The first six

symmetric and six antisymmetric modes of both center and side span lateral

vibration are shown in Fig. IV-4, while their associated participation

coefficients appear in Table IV-2 and Table IV-3. It can be seen quite

clearly from Fig. IV-4 that there is a strong coupled (double-pendulum

type) motion between the cables and suspended structure in the center

span of the bridge, while in the side span this coupled motion appears

in the lower modes only. One should also note that for the center span

symmetric lateral modes, the participation coefficients anI and

are equal, as are and and and and
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Table lV-l

Lateral Structural Properties of the Golden Gate Bridge

Parameter Center Span Side Spans

Span Length R,2 = 4200 ft i = R, = 1125 ft1 3

Span Width b = 90 ft b= 90 ft

* * * *w
Si WS2

= 16.02 k/ft w
S1

= w
S3

= 16.42 k/ft

ESi ES2 = 29000 ksi ES1
= E

S3
= 29000 ksi

lSi l S2 = 1,100,100 in2ft 2
lSI = 1S3 = 1,100,100 in2ft 2

Cable E = 29000 ksi
Properties C

A = 831. 9 in2
C

~= 7698 ft

~v = 53467 kips

*w = 6.68 k/ft
c
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GOLDEN GRTE BRIDGE (LEfT SPRN)
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Fig. IV-3 Lateral quasi-static functions of the center and side
spans of the Golden Gate Suspension Bridge.
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Fig. IV-4a Lateral modes of vibration of the Golden Gate Bridge
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Similarly, for the center span antisymmetric lateral modes, a
nl

= -a
n3

,

an2 = -an4 , and so on. The above equivalences among modal participation

coefficients results from the structural symmetry of the center span.

For the side spans, this symmetry does not exist, and therefore the

modal participation coefficients are all individually different.

The center span lateral analysis incorporates six symmetric modes

and five antisymmetric modes which lie within the frequency band of the

forThe frequency response functionsearthquake inputs. H . (w)
n]

the center span modes, corresponding to 2% damping, are shown in Fig.

IV-5. These functions measure the magnification (or gain) factor

corresponding to a unit harmonic inpct upon the response of the generalized

coordinate, ~(t). Again, because of the inherent symmetry of the

center span, the frequency response functions H
n3

(W) and H
n4

(W) are

simply equal to Hnl(W) and Hn2 (W), respectively for.the symmetric

modes, or -Hnl(W) and -Hn2 (W) for the antisymmetric modes. The side

span lateral analysis incorporates two symmetric modes and one anti-

symmetric mode which lie within the frequency band of the earthquake

for the side spanThe frequency response functions H . (w)
n]

modes, corresponding to 2% damping, are shown in Fig. IV-6. Because of

inputs.

the lack of structural symmetry in the side spans, the four complex

frequency response functions are in general different. Therefore, all

four complex frequency response functions are shown in this figure for

the left side span, with the right side span being similar.

Three cases of lateral response are studied for the Golden Gate

Bridge. In the first case, the lateral input motions at each support

point, Fl(t), F
2

(t), F
3

(t), and F4 (t) respectively correspond to

the S400E components of horizontal ground motion recorded at Arrays



368

GOLDEN GATE BRIDGE GOLDEN GATE BRIDGESYMMETRIC LATERAL MODE I SYMMETRIC LATERAL MODE 3
.~

FREQ. RESP. HI (CENTER SPAN) FREQ• RESP. HI (CENTER SPAN)•!r ::.
us r _us

=:8

I~:0 £AI. o. '10 ..
0.10flIIlMlICT - CPS .. REALII! . flIIOUEltT - crs:-IMG. r--.w;.... •

II!~ •
;~.....

I ...-
S FREQ. RESP. H2 (CENTER SPAN)

.~
FREQ. RESP. H2 (CENTER SPAN)

i·r ::.
1..... n....

10
0.10 &0 0.10..

I;..
,._ICT - crs 'II£OurICT - CPSII! II!

oS
i~II! •....

I

SYMMETRIC LATERAL MODE 2 SYMMETRIC LATERAL MODE q

~~
FREQ. RESP. HI (CENTER SPAN)

I~
FREQ. RESP. HI (CENTER SPAN)

r .., IKIlUI.US r
... '" ......... ....
&0 , '

0.10 &0 0.10.. " REAl. .. 'II£OUEICT - CPS.. I
'II£OUEIltT - crsr I lI!f-IMAG. REAL

:S oiS
0: • II! •... ..-. I

i~
FREQ. RESP. H2 (CENTER SPAN)

i~
FREQ. RESP. H2 (CENTER SPAN)

... r:;•..... ,'\. =:s....
I .. 0.70 10 0.10.. II 'II£OUEICT - CPS.. ,.llUEICT - CPSr II!.~ ....
II!. II!":..... .. ...

I ,

Fig. IV-Sa Complex frequency response functions of center span
lateral vibration.



369

D.'D
AEQIlEIiCT - CPS

0.7D
FREDUENCT - CPS

0.70
'IIEDUENCT • CPS

D. 'D"_IItT -CPS

., .

GOLDEN GATE BRIDGE
ANTISYMMETRIC LATERAL MODE I
FREG!. RESP. HI (CENTER SPANJ

FAEQ. AESP. H2 (CENTER SPRN)

ANTISYMMETRIC LATERAL MODE 2
FREG!. RESP. HI (CENTER SPAN)

FREQ •. RESP. H2 (CENTER SPAN)

I~=.
i
tlg
I ..
II
II!
,,;gr .....
I~
c'
1

I.'D ==I,;
r...
r~....

I..
I~...
::.
l
=:8
~ ..
~
It
ci ..
r~
... N

~~

r.........
I ..
II
II!........
c·.....

'RElunCT - CPS

"1U!1ItT - CPS

FAEQ. RESP. H2 (CENTEA SPAN)

GOLDEN GATE BAIDGE
SYMMETRIC LATEAAL MODE 5

FREQ. RESP. HI (CENTER SPAN)

FREQ. AESP. H2 (CENTEA SPAN)

SYMMETRIC LATERAL MODE 6
FRED. RESP. HI· (CENTER SPAN)

~g
c·....

II
I ..

r
-=8 I ---------=::::-.~h....:;:=::;I .. ,..

=

II
!7
f
~8 1 =:::::;........+....,._
I .. r
:;
II!

Fig. IV-5b Complex frequency response functions of center span
lateral vibration.



370

GOLDEN GRTE BRIDGE
RNT15YHHETRIC LA1ERAL HODE 5
FREQ. RESP. HI (CENTER SPAN)

FREQ. RESP. H2 (CENTER SPRNI

GOLDEN GRTE BRIDGE
RNTISYHHETRIC LRTERRL HODE 3

I~
FREQ. RESP. HI (CENTER SPRN) ..

I::
::. ::.
l i
::g n
10 8.70 10
I;
r '._lItf e Cl" II... ....... ... ..
e· e·..... ...-

I •.. FREQ. RESP. H2 (CENTER SPRN)
I~I::

::. rt
I
»== 18
I .. 0.70 I .... ....

nt:OUflltf - Cl'S
..

l! r... .:.... r.e·...- ....
I

RNTISYHHETRIC LRTERRL HODE 4 I

!~
FREQ. RESP. HI (CENTER SPRN)

...
MOOUL:::;

I:...........z •.... 0.70.... 'MaUfNCf - CPS..
c REAl............ .....
..~ FREQ. RESP. H2 (CENTER SPRN)
g..
::.
oJ

I:..........
I .... 0.70..... 'MourNef - CPS..........
c·....

I

Fig. IV-5c Complex frequency response functions of center span
lateral vibration.



371

GOLDEN GRTE BRIDGE GOLDEN GRTE BRIDGESYMMETRIC LRTERRL HODE I SYMMETRIC LATERAL HODE 2

~~
FREQ. RESP. HI (LEFT SPRN)

51 FREQ. RESP. HI (LEFT SPAN)
~ei

f r .'=:8
I~

" \.
lei 1.0 1.0• .._IItT - CPS

'MounCT - CPSI r
08 0"r. .. ..
"'l!: C •.....

I
I

!i!
FREQ. RESP. H2 (LEFT SPAN)

~~
FREQ. RESP. H2 (LEFT SPRN)

r r us

.... =:g....
lei 1.0 lei 1.0• R£AL 'REaUENCT - CPS • 'MaUENCT - CPSlit r.... ogI"! r·...- ....
.. FREQ. RESP. H3 (LEFT SPAN)

I~
FREQ • flESP. H3 (LEFT SPRN)

!~
=~ r...
i
=8 =g... . ,

lei..... \. 1.0 1.0.. .... I 'MaUENCY - CPS .. 'REaUENCY • CPSlit
~ r.... .. ...... r":c·

~~ ...-
!~

FREQ. RESP. H4 lLEFT SPRN)
~~

FREQ. RESP. H4 lLEFi SPRN)

r r
n =g
lei

,
" lei 1.0.. .. 1.0 •.. : 'REaUENCY - CPS 'REaUENCY • CPS... rc
~.... "Slit": : r ...... .....

Fig. IV-6a Complex frequency response functions of left side span
lateral vibration.



372

GOLDEN GRTE BRIDGE
RNTISYMMETRIC LRTERAL MODE 1

I:> FREQ. RESP. HI (LEFT SPAN)
I:>....

1:>_=::+......
Z
II:

",0
"'0Z •
IDO

1.0...
'" f'1I£ClU£NCT - Cf'S'"...
oe
",0a: •...-

0 FREQ. RESP. H2 (LEFT SPAN)
"'~
~ ...
::+...
"-Z
II:

"'0
"'0z .
IDO 1.0"-
'" FREClUENCT - Cf'S'"c
00
",0
c·... ",

0 FREQ. RESP. H3 (LEFT SPRN)
"'~
~O

::-...
"-Z
II:

"'0
"'0z .
IDO 1.0"-
'" FREflUENCY - CPS'"c
oe
",II>
c·
... 0

0 FREQ. RESP. Hij CLEFT SPAN)
"'~§ ...
::+......
z
ct:

"'0
"'0Z.
IDO 1.0"-
'" FREQUENCT - CPS'"c
00
..,0....... ",

.'

Fig. IV-6b Complex frequency response functions of
left side span lateral vibration.



373

No.4, 5, 6, and 7 of the 1979 El Centro Arrays (see Appendix II-e);

while the second case involves similar correspondences among Arrays

No.5, 6, 7, and 8. The third lateral response case involves a uniform

lateral ground motion applied to all supports. The S40E component

recorded at Array No. 5 is utilized for this purpose. Time histories

and power spectra correspondi?g to these inputs appear in Appendix II-e

of Chapter II of this report.

The autospectra of lateral displacement of the cables and suspended

structure (for the correlated case) at the quarter points of each span

appear in Fig. IV-7 for mput Arrays 4, 5, 7, and 7. The response is

separated into vibrational (relative or modal) response, shown in dotted

lines, and the total response which includes quasi-static contributions,

shown in solid lines. It is fairly clear that a relatively large number

of modes participate in the total lateral response. In contrast to the

vertical response analysis, the antisymmetric vibrations are no longer

of a higher order effect, that is, both symmetric and anti symmetric

modes contribute to the lateral response. Also, the quasi-static

contributions to the lateral response are seen to be more significant

than in the vertical vibration problem. One notices this from the non

structural response peaks, corresponding to the predominant frequencies

of strong input motion, which occur and which are of a purely quasi

static nature. Even in those response cases where the quasi-static

contribution to the response is small or seemingly negligible, it should

be remembered that the quasi-static contribution is inherent in the

participation coefficients (Eqs. 4.22 and 4.23) and thus it is erroneous

to conclude that the quasi-static functions have no impact upon the

response.
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Similar autospectra of lateral displacement are shown in Fig. IV-8

for input Arrays 5, 6, 7, and 8, while the autospectra of response

flexural stresses for both sets of arrays are shown in Fig. IV-9 (for

the correlated case). The responses obtained for each set of input

arrays are seen to be remarkably differeRt in character due to the

different frequency content of each input, as well as the phasing between

the inputs. Figure IV-IO shows the autospectra of lateral displacement

response under the uniform lateral motion assumption (correlated case),

while Fig. IV-II shows the corresponding autospectra of response

stresses. Table IV-4 summarizes the root mean (R.M.S.) lateral displace-

ment response values (for the correlated cases) obtained by integrating

each autospectrum over the entire frequency range and taking the square

root of the results of the integration. Figure IV-12 shows the auto-

spectra of the additional horizontal component of cable tension, H(t),

for all three lateral response cases. The root mean square (R.M.S.)

cable tensions in these figures range from about 22 kips to 28 kips,

which is very small in comparison with the cable tension due to dead

loads, H = 53467 kips.w Therefore, as was initially expected, the

additional horizontal cable tension due to lateral vibration is very

small and thus can be neglected.

Figure IV-13 shows the autospectra of the lateral shear force (for

the correlated case) occurring at the left side of each span for both

sets of multiple-support lateral inputs. Again, it is seen that the

higher modes can contribute significantly to the response. Table IV-5

summarizes the root mean square (R.M.S.) stresses and shear forces for

the correlated excitation cases.
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The frequency domain random vibration analysis results in root mean

square (R.M.S.) response values. From a practical point of view,

the parameter of most interest to the design and analyst engineers is

the expected peak value of the response, which is compared with the

allowable yield limit. The estimation of appropriate peak factors,

based upon the response spectral moments, was described in section 11.10

of this report. Table IV-6 summarizes the estimation of peak factors

for two of the center span lateral displacement response cases. The

peak factors proposed by Vanmarcke and Der Kiureghian seem to indicate

that a peak factor of about 3.5 would be appropriate to convert root

mean square values to expected peak responses. However, from the results

of a time domain analysis, shown in Fig. IV-14 and summarized in Table

IV-6, it is seen that the predicted peak factors deviate considerably

from the actual time domain (convolution integral) results, up to a

factor of almost 2.0 in some response cases. This could possibly be

due to the nonstationarity and/or non-Gaussian character of the inputs.

(Vanmarcke1s and Der Kiureghian1s analyses assume stationary Gaussian

inputs), or due to the separation of the displacement into quasi-

static and vibrational portions for analysis.

IV.ll.2 Uncorrelated Case,

The uncorrelated calculations involve assuming the lateral

inputs to be independently applied and unrelated. Under such assumptions,

all input cross-spectral terms vanish. Two lateral uncorrelated response

cases are studied for the Golden Gate Bridge. In the first case, the

lateral input motions, Fl(t), F2 (t), F3 (t), F4 (t), at the bridge's

support points correspond to the S40 0 E components of horizontal ground
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motion recorded at Arrays No.4, 5, 6, and 7 of the El Centro Arrays,

respectively; while the second case involves similar correspondences

with Arrays No.5, 6, 7, and 8.

The autospectra of lateral displacement of the cables and suspended

structure at the quarter points in each span are shown in Figs. IV-IS for

input arrays 4, 5, 6, and 7. The response is separated into vibrational

(relative or modal) response shown in dotted lines, and the total

response, which includes quasi-static contributions, shown in solid

lines. ·Similar autospectra of lateral displacement are shown in Fig.

IV-16 for input arrays S, 6, 7, and 8, while the autospectra of response

stresses for both sets of arrays are shown in Fig. IV-17. The responses

obtained for each set of input arrays are seen to be different in

magnitude due to the different frequency content of each input. Figure

IV-18 shows the autospectra of the lateral shear force occurring at

the left side of each span for both sets of input arrays. Table IV-7

summarizes the ~oot mean square displacements for both input cases

for the uncorrelated case, while Table IV-8 is a similar table corres

ponding to R.M.S. laterally induced flexural stresses and shear forces.

Based upon a peak factor of 3.S (Chapter II), the maximum expected stress,

for the uncorrelated case, is seen to occur at the midpoint of the

right side span, and is approximately 3.5 x 7.18 ~ 25 ksi, which is a

significant live load condition in a suspension bridge when compared

to the yield stress of 50.5 ksi. The maximum expected shear force,

for the uncorrelated case, is seen to occur at the ends of the center

span with approximate magnitude of 3.5 x 1254 ~ 4390 kips, which appears

to be significant.
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Fig. IV-16e Autospectra of the
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displacement (right
side span).

Fig. IV-16f Autospectra of the
cables' displacement
(right side span).
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It should be noted that with reference to the vertical vibration

(Chapter II) it was found that the uncorrelated calculation is usually

conservative in nature. However, by examining Figs. rv-7 through IV-IS

as well as Tables IV-4 through IV-S, it can be seen that this is not

necessarily the case in lateral vibration.
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Appendix IV-a

Details of Mass and Stiffness Matrices

The general procedure as outlined by Abdel-Ghaffar (l) involves

discretizing each span into elements (Fig. 111-2). Each element,

as shown, has six degrees of freedom; two corresponding to the cables'

deflections (modeled as a string element) and four corresponding to the

suspended structure' s deflections and rotations (modeled as a beam ele-

ment). Linear interpolation functions are used to model the cables,

while hermite polynomials are utilized in modeling the beam elements.

The mass and stiffness matrices can be set up on the element level,

and then assembled into the global mass and stiffness matrices. The

global mass and stiffness matrices are symmetric, positive-definite,

banded matrices.

The mass matrix has two contributions, one arising from the

kinetic energy of the suspended structure and one arising from the

kinetic energy of the cables, that is

IM] = 1M ] + 1M ]s c
n
el

n
el

= r fm ] + r Lm ] (IV-a-l)
e=l

s e
e=l

c e

where eM gl is the contribution from the suspended structure to the

global mass matrix; [Me] is the contribution from the cables to the

global mass matrix; [ms]e and [mc]e are the corresponding matrices on

the element leveli and the summation over the number of elements (nel)

involves assembling each element mass matrix into the global mass

matrix in its proper position.
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The element mass matrices are (1)

156 -22L a 54 l3L a

-22L 4L2 2

*
a -13L -3L a

ems] e
msL

0 0 0 0 0 0= --
420

54 -13L 0 156 22L a

13L
2

22L 4L
2

0-3L 0

0 0 0 0 0 0

(IV-a-2)

*where ms is the mass of the suspended structure per unit span length and

L is the length of the element and

*m Lc
= --

6

o

a

o

o

o

o

o

o

o

o

o

o

o

a

2

o

o

1

o

a

o

o

o

o

o

o

o

o

o

o

o

o

1

o

o

2

(IV-a-3)

The stiffness matrix has four contributions, one arising from

the elastic stiffness of the suspended structure, denoted IK
SE

]; one

arising from the elastic stiffness of the cables denoted [K
CE

]; one

arising from the gravity stiffness of the suspended structure, denoted

[K
SG

]; and one arising from the gravity stiffness of the cables, denoted

IKec;]' that is

= (IV-a-4)
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where [ksEJ e , [ksGJ e , [kCE]e' and IkQG]e are the corresponding matrices

on the element level; and the summation over the nmnber of elements

(n
el

) involves assembling each element stiffness into the global stiffness

matrix in its proper position.

The element stiffness matrices are as follows (1):

12 -6L 0 -12 -6L 0

-6L 4L
2

0 6L 2L2
0

EsIS 0 a a 0 0 0
[kSE]e =-

L
3

-12 6L 0 12 6L 0

-6L 2L
2

0 6L 4L
2

0

0 0 0 a 0 0

(IV-a-5)

156

-22L

-22L -147

4L
2

21L

54

-13L

13L

2
-3L

-63

14L

-147

54

13L

-63

21L

-13L

_3L2

14L

-63

-14L
h

70(1 + ~)
Ye

-63

156

22L

-147

-14L

-21L

h
70(1 + ~)

Ye
-147

-21L
h

140 (l + ~)
Ye

(IV-a-6)
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0 0 o· 0 0 0

0 0 0 0 0 0

2H
W 0 0 1 0 0 -1

£k ] =-CEe L
0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

.. *w + w 0 0 2 0 0 1
+ s c

6 y
e 0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 2 (IV-a-7)

0 0 0 0 0 0

*
0 0 0 0 0 0

Wc L

[keG] e =-"- 0 0 2 0 0 1
6 Ye

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 2 (IV-a-8)

where he and Ye are element cable ordinates defined in Fig. IV.-2; Iiw
..

is the initial (dead-load) horizontal component of cable tension; Ws..
and Wc are the dead weights of the suspended structure and cables,

respectively; E
S

and IS are the modulus of elasticity and lateral
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moment of inertia of the suspended structure, respectively; and L is

the length of the element.
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Appendix IY- b

Orthogonality of Lateral Mode Shapes

th .
The n lateral mode shape# {¢ }, satisfies the equation

n

n = 1, 2, 3 ... (IV-b-l)

thThe m lateral mode shape, {¢ }, satisfies a similar equa
m

tion, that is

m = 1, 2, 3 ••• (IV-b-2)

Premultiplying Eq. IY-b-1 by {¢m}T, pr~ltip1ying Eq. IV-b-2

T
by {¢.} and subtracting gives

n

n = 1, 2, 3

m = 1, 2, 3 (IV-b-3)

Because the stiffness and mass matrices resulting from the

finite element method are symmetric and positive-definite, Eq. IV-b-3

reduces to

m = 1, 2, 3

n = 1, 2, 3 (IV-b-4)
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which yields modal orthogonality, with respect to mass matrix weighting,

of the form

m'ln (IV-b-S)
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CHAPTER V

LONGITUDINAL RESPONSE OF SUSPENSION BRIDGE
TOtiER-PIER SYSTEMS TO EARTHQUAKE GROUND MOTION

V.l INTRODUCTION

Analytical and numerical dynamic analysae of free vibration

of suspension bridges (1,4,15) show that modes of the structure can be

divided into two groups, one in which the suspended structure and cables

dominate and the other where the displacement of the tower dominates.

Thus, the tower can be separated from the rest of the structure at

least in an approximate fashion and its earthquake response can be

studied separately, While the transverse response analysis of suspension

bridge tower-pier systems is quite conventional, being simply a free-

standing beam supported by the soil elastic halfspace, the longitudinal

response analysis methodology is more difficult. This difficulty

results from the cable restraint in the longitudinal direction at the

top of the tower. This chapter presents the dynamic analysis methodology

for earthquake-induced longitudinal vibrations of suspension bridge

tower-pier systems. The method accounts for the underlying and sur-

rounding soil flexibility, as well as its geometric and hysteretic

damping characteristics. The effect of surrounding water is taken

into account using the concept of the added mass (or virtual mass)

which intends to represent that quantity of water which vibrates along

with the pier. The analysis is carried out in the time domain and

Preceding page blank
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compared to the frequency domain (random vibration) results in order to

determine appropriate peak factors for the tower-pier vibration problem.

Finally, the longitudinal response of the Golden Gate's San

Francisco tower-pier system is investigated in order to estimate its

earthquake response characteristics. The San Francisco tower-pier

system is partially embedded, and is also partially submerged so that the

effect of surrounding water must be taken into account. The soil

stiffness and damping for rocking, translation, and coupled translation

rocking of the pier are calculated using existing techniques (13), and

are converted to equivalent modal damping and generalized modal stiffness

(18). Because the underlying and surrounding soil characteristics may

change under high amplitude vibration, a parametric study is performed

in this chapter using four different soil conditions. The first case

involves the pier being completely fixed at its base, hereafter

referred to as the "fixed-base case." The second case corresponds to

the pier being founded on rock type soil; the "rock case." The third

case corresponds to a "moderately stiff soil," while the fourth case

corresponds to "soft soil."

Three different earthquake ground motion records are applied

longitudinally at the base of the Golden Gate's San Francisco pier.

These correspond to the SSOW component of El Centro's (1979) Array

No. 5 (see APpendix II-e), the S16°E component of the 1971 Pacoima

Dam Record (see Appendix V-c or Ref. II), and an artificially generated

earthquake ground motion (see Appendix II-e or Ref. 10). The longitudinal

displacement response is compared for each earthquake at selected

points on the tower as well as the resulting stresses and shear forces.
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v . 2 COORDINATE SYSTEM

The coordinate system used for the general longitudinal tower-pier

vibration problem is shown in Fig. v-l. For the purpose of studying

the longitudinal vibration of the tower-pier system, the following is

considered:

1. The x-axis is defined as the vertical line passing through the

base of the pier.

2. The y-axis is defined as the horizontal line measured in the

longitudinal direction of the bridge passing through the

base of the pier.

3. The longitudinal vibration of the centerline of the tower

U(x,t) is measured horizontally in the longitudinal direction

of the bridge.

4. As will be shown at a later point, the longitudinal vibration

of the tower-pier system is excited by the longitudinal

component of ground motion acting at the pier's base. In

Fig. V-I, this ground motion displacement is denoted as f(t).

V.3 FUNDAMENTAL ASSUMPTIONS

The following assumptions and approximations are made for simplify

ing the tower vibration analysis (1):

1. All stresses in the tower remain within the elastic limit and

therefore obey Hooke's law.

2. To stay within the linear theory, small vibrational longitudinal

displacements are assumed.

3. The soil flexibility may be represented by equivalent rotational

and translational soil springs, whose determination is discussed

in Appendix V-b.
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4. The elastic restraint by the cables at the top of the tower

can be simulated by a spring of stiffness k ,
e

whose

determination is discussed in Appendix V-e.

5. The effect of the mass of the suspended structure which

vibrates along with the tower is neglected.

6. The additional axial force pet) at the top of tower arising

from the vertical--component of the additional (vibrational)

cable tension is small with respect to the dead load axial

force P and is thus neglected.
w

7. The only excitation included is the ground motion input at

the base of the tower. The effect of anchorage inputs is

neglected.

V.4 EQUATION OF MOTION GOVERNING LONGITUDINAL TOWER-PIER VIBRATION

Under the previous assumptions, the linearized equation of motion

governing the longitudinal vibration of the tower-pier ofa suspension

bridge is given by (1)

where [M] is the mass matrix which includes the masses of the tower

vertical elements, diagonals and struts as well as the masses of the

pier elements and the virtual mass of water surrounding the pier, the

(5.1)

details of which appear in Appendix V-a; [K] is the stiffness matrix

which includes the stiffness contribution from the elastic flexural

deformation as well as the geometric stiffness arising from the axial

component of the dead load cable tension, P ,
w

and the soil springs

and equivalent cable spring restraints, the details of which appear in

Appendix V-a, and [el is the damping matrix.
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Equation 5.1 may be written in partitioned form as (3)

in which the sUbscript "g" designates the degrees of freedom which

(5.2)

correspond to the points of application of ground motions, that is, the

ends of the two translational soil spring elements (Fig. V-I). The

subscript "s" corresponds to all other structural degrees of freedom

of the tower-pier system.

V.5 GENERAL SOLUTION

In order to handle the statical indeterminacy of the structural

model, and its associated time-dependent boundary conditions, the nodal

displacements may be decomposed into quasi-static (or pseudo-static)

displacements and relative (or vibrational) displacements. Quasi-

static displacements are those resulting from the static application

of support displacements (degrees of freedom with subscript g) at

anytime t.Thus the displacement can be wri~ten as

where the subscript "p" denotes the pseudo-static· displacements and

the subscript "v" denotes the vibrational displacements.

The pseudo-static displacement vector can be expressed as

(5.3)

(5.4)
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is the quasi-static function that results from unit displace-where gps

ment of the ground surrounding the pier; f(t) is the longitudinal

is a vector whose dimensioninput ground-motion displacement; and gpg

is equal to the number of soil translation springs taken in the model

(equal to two in the case of the Golden Gate Bridge Tower; Fig. V-2),

and whose elements are all equal to uni ty •

Substituting Eqs. 5.4 and 5.3 into Eq. 5.2 gives

[M ]{u } + [C ]{; } + [K ]{u }
ss vs ss vs ss vs

- ([M M ]f(t) + [C C ]f(t) + [K K ]f(t»)
\1 sg S5 sg S5 sg SS

(5.5)

The previous equation can be simplified by noting that for an

unloaded tower-pier system with a static condition of support displace-

ment, one has

[K K.] Iu
pg

\. - {O}
sg ss u

ps

(5.6)

Substituting Eq. 5.4 into Eq. 5.6 yields

[K K ]
sg ss

{a} (5.7)

Thus, the quasi-static vector can be defined in the following

manner:

{g }
ps

-[K ]-l[K ]{g }
ss sg pg

(5.8)
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and the equation governing the tower's vibrational response (Eq. 5.5)

reduces to

[M ]{u } + [C ]{~ } + [K ]{u } =
ss Vs ss vs ss vs

- (eM M Jf (t) +sg ss Igpg
[C C Jf (t»sg ss g

ps
(5.9)

Note that the previous equation is excited by ground acceleration and

velocity terms. As indicated by Baron (3,4), the contribution to the

total response from velocity terms is small; therefore the velocity

terms are neglected hereafter in this analysis.

V.6 EIGENVALUE PROBLEM - FREE VIBRATIONS

The solution to Eq. 5.9 is obtained by modal superposition, that is

the vibrational displacement is taken to be

{u } =
vs

(5.10 )

where {ep }
n

is the thn longitudinal tower vibration mode shape;

q (t)
n

is the thn generalized coordinate; and N corresponds to the

number of degrees of freedom in the finite element model. Usually,

the number of modes necessary for an accurate response analysis will

be significantly less than the number of degrees of freedom N, which

is an inherent advantage of using the modal superposition method. The

longitudinal tower-pier mode shapes and corresponding natural circular

frequencies, W, are obtained from the solution of the matrix
n

eigenvalue problem
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n ss ss n
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n=1,2,3 •.• (5.11)

It should be noted that the stiffness matrix [K ] includes the trans
ss

lational and rotational soil stiffnesses (see Appendices V-a, V-b).

Therefore, as one varies the soil parameters, the mode shapes and

associated natural frequencies of vibration of the tower-pier will change

accordingly.

V.7 MODAL SOLUTIONS - FORCED VIBRATIONS

After neglecting input velocity terms, substituting Eq. 5.10 into

Eq. 5.9 results in

N
I ([M ]{~}q (t) + [c ]{~}q (t) + [K ]{~}q (t»)

n=l ss n n ss n n ss n n

- [M M ]
sg S5

1
gpg!"

f (t)
gps

(5.12)

Now multiplying Eq. 5.12 by {~m}T, using modal orthogonality

of the undamped vibration modes (see Appendix V-d), that is,

n74n (5.13)

and using the procedure presented in Appendix V-c for determining the

equivalent modal damping ratio req
"'n '

combining structural damping

with soil geometric and hysteretic damping, yields the equation govern-

ing the response for the thn generalized coordinate

eq • 2ij 1t) + 2l;; W q (t) + w q (t) = a fIt)
n n n n n n n

n=1,2,3 .•• (5.14)
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where the modal participation coefficient

-{ep }T[M M ] Igpgl
n sg ss gex = -'-_p~s

n {ep }T[M ]{ep}
n ss n

ex
n

is given by

n=1,2,3 ••• (5.15)

The solution to Eq. 5.15, assuming quiescent initial conditions

is given by the convolution (Duhamel) integral

q (t)
n = :n Ito

nd

eq
-l; w (t-'O

fJT)e n n n=l, 2,3. •• (5.16)

where is the damped natural circular frequency of the th
n

longitudinal tower mode, given by

n=1,2,3 ..• (5.17)

The total longi tudinal tower displacement response is obtained as

the sum of quasi-static and relative responses, that is

\::1 gpgI N I:J ~(t)= f(t) + L (5.18)
gps n=l

For the purpose of calculating dynamically induced bending moments,

flexural stresses, and shear forces in the tower, it is necessary to

utilize the second and third space derivatives of the quasi-static

functions and mode shapes. For example, the dynamic bending moment

about the tower's lateral axis may be written as

N

{M } = {E
t

It g"}f(t) + \ {E I ~"}q (t)
see ps n~l· te te~n n

(5.19)
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where {M} is the vector of dynamic bending moments corresponding to
s

the structural degrees of freedom; Ete is the modulus of elasticity

of the tower elements; I
te

is the area moment of inertia of the tower

elements about its lateral axis; and the double prime denotes the second

spacewise derivatives (of the quasi-static functions and mode shapes).

Similarly, the total dynamic longitudinal shearing force at any

point in the tower may be calculated as

{v } =
s

{E I g"'}f(t) +
te te ps

N

I
n=l

{E I <p"'}q (t)
te te n n

(5.20)

where {V} is the vector of shearing forces corresponding to the
s

structural degrees of freedom; and the triple prime denotes the third

spanwise derivatives (of the quasi-static functions and mode shapes).

Furthermore, the dynamically induced longitudinal flexural stresses

may be related to the moments by the following flexural relation

{o }
s =l~M ~2I s

te
(5.21 )

where {o} is the vector of induced flexural stresses in the tower;
s

and b is the longitudinal width of the tower at the particular
e

element cross-section of interest.

V.8 FREQUENCY-DOMAIN, RANDOM VIBRATION APPROACH

In order to study the longitudinal dynamic behavior of suspension

bridge tower-piers when subjected to earthquake excitations, a random

vibration approach is utilized (5). For the ground motion displacement

input at the pier base, there are complex frequency response functions

associated with each vibration mode. To determine these functions
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f(t) is taken equal to exp(iwt), where i = ;.:r-, and the response

th
n generalized coordinate is assumed to be of the form

q (t) = H (w)exp(iwt)
n n

n=l, 2 I 3 ••• (5.22)

where H (w)
n

is the
thn complex frequency response due to input

displacement f(t). Now substituting Eq. 5.22 into Eq. 5.14 yields

n=1,2,3, •••

i = I=l
(5.23)

Taking the finite Fourier transform of Eq. 5.10 over the time

duration of the ground motion input displacement, TI' yields the

Fourier transform of the vibrational response

{u (w)} =
vs

{u }e-iwt dt
vs

N

L
n=l

{¢ }Q (w)
n n

(5.24)

where o (w)-n is the finite Fourier transform of the generalized

coordinate ~(t), given by

Q (w) ==
n

n=l I 2,3 ••• (5.25 )

A similar Fourier transformation of Eq. 5.14 yields

n=1,2,3 ••. (5.26)

in which F(W) is the finite Fourier transform of the displacement

input f(t), given by

(5.27)
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It follows from Eqs. 5.23 and 5.26 that the Fourier transform of the

generalized coordinate can be expressed as

Q (W) = H (W)F(W)
n n

n=1,2,3 ..• (5.28)

Now substituting Eq. 5.28 into Eq. 5.24 enables the Fourier trans-

form of the vibrational response to be expressed as

{U (W)}
vs

N

L
n=l

{<t> }H (W)F(W)
n n

(5.29 )

by

The relative-displacement power-spectral density function is given

{G (W) }
uvs

lim
T-l'OO

1

2 *--T E[{U (W}}tU (W)}]
1 vs vs

(5.30)

where E[·] represents the expected value of the term inside the brackets

and the superposed asterisk denotes complex conjugate. An estimate of

{G (w)} can be obtained by simply omitting the limiting and expectationuvs

operations in Eq. 5.30, hence

Substituting Eq. 5.29 into Eq. 5.31 yields

(5.31)

{G (w) }
uvs

(5.32)

where G(w) is the power spectrum of the displacement input f(t), given

by

G(W)
lim
T~

1
(5.33)
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It should again be noted, as in previous .chapters, that the double

summation appearing in Eg. 5.32 accounts for modal interaction. The

complex frequency response functions H (w)
n

peak in amplitude at their

associated natural frequencies wn ' and have much lower amplitudes else-

where along the frequency band. Therefore, when the natural frequencies

of the tower are well separated and damping ratios are small, the

effect of cross-terms (n ~ m) in Eq. 5.32 becomes less significant than

the diagonal terms (n = m) 0 and may be neglected. However, in this

analysis all modal interaction terms will be retained, in order to

obtain an accurate representation of the response, even under the

possibility of closely-spaced modes.

The mean square value of the relative tower-displacement response

is given by the integration of {G (W) }
uvs

over the entire

frequency range, that is

{ly2 }::: 1
2

'1'1"

UVS II

{G (w)}dw
uvs

(5.34)

and the square root of Eq. 5.34 is the root mean square (R.M.S.) relative

tower-displacement response.

The power spectral density of the total longitudinal tower-

displacement response can be obtained by multiplying Eq. 5.18 by its

complex conjugate and by (2/T
l

) which leads to

IG Iug N
G = I

us n=l

N

+ L
n=l

T

(~n (w) G{w) (5.35)
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{G } and {G· } over the frequency domain
ug us

provides the mean square total longitudinal tower-displacement response,

I:u22gl
r =~ fa \:::1 00

us

whose square root is the root mean square (R.M.S.) total longitudinal

tower-displacement response.

(5.36)

The procedure outlined in the above section may be used to evaluate

the power spectral density of the vibrationally-induced bending moment

in the tower by simply replacing the mode shapes, {ep }, and quasi
n

static functions {g }
ps

by {E I <P"}te te n
and {E I g"}

te te ps
respectively,

where are the tower element flexural rigidities, and the double

prime denotes the second space derivative. Similarly, the power

spectral density of the vibrationally-induced shearing force in the

tower may be obtained by replacing the modes and quasi-static functions

by {E I ep"'}
te te n and {E I g"'} respectively.

te te ps
In additiop, the

autospectra of maximum tower stresses due to longitudinal vibration

is given by the following flexural stress relation.

where {G
M

} is the autospectra of tower bending moments~ {G
cr

} is the

(5.37)

autospectra of tower maximum stresses; b is the width of the tower
e

at the particular element cross-section of interest, and I
te

is the

moment of inertia of the tower at the same point.
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Mean square bending moments, shearing forces, and bending stresses

are obtained by using Eq. 5.36 with the mode shapes and quasi-static

functions replaced as described above.

V.9 LONGITUDINAL SEISMIC BEHAVIOR OF THE GOLDEN GATE BRIDGE'S
SAN FRANCISCO TOWER-PIER SYSTEM

The analysis outlined in this chapter is applied to the Golden Gate's

San Francisco Tower-pier system, in California, in order to estimate

its longitudinal response characteristics. The finite element model

of this tower-pier system is shown in Fig. V-2, while the structural

properties of the tower-pier elements appear in Appendix V-a: The

longitudinal tower-pier quasi-static functions are shown in Fig. V-3

for unit ground motion displacement at the base of the pier. The first

five longitudinal mode shapes also appear in Fig. V-3, while their

natural periods of vibration appear in Table V-I, and their associated

participation coefficients, an' appear in Table V-2. It should be

noted that the behavior of the soil under high amplitude earthquake

excitation is fairly difficult to model. As the amplitude of vibration

increases, the soil behaves in a softer or yielding manner. In order

to account for this behavior, four different cases are examined which

are intended to represent the complete spectrum of soil properties.

The first case involves the pier being completely fixed at its base,

hereafter referred to as the "fixed-base" case. The second case

corresponds to the pier overlying rock, the "rock case". The third

case corresponds to a "moderately stiff soil," while the fourth case

corresponds to a "soft soil". The soil properties appear in Appendix

V-b. The effect of soil flexibility upon the mode shapes can be
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LONGITUDINAL TOWER MODES AND
QUAS I -STATIC FUNCTIONS
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Fig. V-3 Longitudinal tower modes and quasi-static
functions of the Golden Gate Bridge.
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Table V-I

NATURAL PERIODS OF LONGITUDINAL TOWER VIBRATION (sec.)

SOIL TYPE

FIXBASE(a) ROCK (b)
MODERATELY (c)

SOFT SOIL Cd)MODE ORDER STIFF SOIL

1 1.441 1.442 1.453 1.484

2 0.473 0.473 - 0.484 0.661*

3 0.253 0.253 0.348* 0.470

4 0.162 0.163 0.252 0.264

5 0.106 0.107 0.164 0.190

6 0.072 0.095* 0.112 0.150*

7 0.052 0.072 0.095* 0.103

8 0.039 0.052 0.070 0.071

9 0.031 0.040 0.051 0.051

10 0.020 0.031 0.039 0.039

* indicates a mode whose counterpart does not exist in the fixed-base
case, and which involves significant rocking of the pier.

(a) C = co ft/sec (shear wave velocity)s

(b) C 5900 ft/secs

(c) C = 1900 ft/secs

(d) C = 1076 ft/secs
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Table V-2

PARTICIPATION FACTORS an OF LONGITUDINAL TOWER VIBRATION

TYPE OF SOIL* SURROUNDING AND UNDERLYING PIER
(e)

FIXBASE (a) ROCK (b)
MODERATELY

SOFT SOILed)MODE ORDER STIFF SOIL

1 -0.8641 -0.8735 -0.9923 -1.338

2 0.5974 0.6439 1.777 2.107

3 0.5902 -0.7648 -2.351 -1. 757

4 0.6479 1.229 1.708 0.9438

5 -0.5072 -3.474 -1.075 -1.061

6 0.3994 3.595 1.1680 0.5972

7 -0.3573 -1.159 -0.8629 -0.1309

8 0.3267 0.5536 0.2093 0.0350

9 -0.2784 -0.4782 -0.0673 -0.0149

10 -0.2368 0.6469 0.0294 0.0073

(a) G = 00 ksf (shear modulus)

(b) G = 172,800 ksf

(e) G = 12,960 ksf

(d) G = 3,600 ksf
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clearly seen from Fig. V-3. Also, as the soil becomes softer, additional

~odes emerge whose counterparts do not exist in the fixed-base case,

and which involve significant rocking of the pier.

The frequency response functions H (w)
n

for the first five longi-

tudinal tower-pier modes are shown in Fig. V-4 as a function of soil

type, while their associated equivalent damping ratios (structural plus

soil damping are summarized in Table V-3 (see also Appendix V-c). These

frequency response functions measure the magnification (or gain) factor

corresponding to a unit harmonic input upon the generalized coordinate

q (t).
n

Three longitudinal tower-pier response cases are studied for the

Golden Gate Bridge. The first case utilizes the SSooW component of

El Centro's (1979) Array No. S (see Appendix II-e) as base excitation;

the second case involves an artificially generated earthquake ground

motion (type B-1; see Appendix II-e; Ref. 10); and the third case uses

the S16°E component of the 1971 Pacoima Dam record as input (see

Appendix V-f; Ref. 11).

The displacement, bending-stress, and shear force responses of

the tower are calculated at discrete points along the tower, namely

at O.Oh, 0.2h, 0.4h, 0.6h, O.8h, and l.Oh where h = the height of

the tower, along with the rocking motion of the pier. Calculations

are performed in both the time and frequency domains for the fixed-base

case as well as for the three soil types in order to estimate appropriate

peak factors for the tower-pier vibration problem. Peak displacements

flexural stresses, and shear forces are summarized in tabular form in

Tables V-4, V-S, and V-6 and in graphical form in Figs. V-S, V-6, and

V-7 for the three different applied base excitations. The complete
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Table V-3

Composite Damping Ratios ~eq (Based on Ref. 18)
n

SOIL-FOUNDATION TYPE
MODERATELY

MODE ORDER FIXED BASE ROCK STIFF SOIL SOFT SOIL

1 0.0500 0.0501 0.0508 0.0533

2 0.0500 0.0501 0.0584 0.2479

3 0.0500 0.0502 0.2651 0.0955

4 0.0500 0.0508 0.0744 0.1498

5 0.0500 0.0679 0.0814 0.4444
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time history responses appear in Appendices V-g, V-h, and V-i as a

function of soil type, while the autospectra (frequency domain)

responses appear in Appendices V-j, V-k, V-I, as a function of soil type.

It is seen from these plots that the displacement near the bottom of the

tower is mostly quasi-static (i.e., identical to ground displacement).

Towards the top of the tower, the vibrational portion of the displace

ment becomes more important. It seems that the 1971 Pacoima Dam

record excites the tower-pier's displacement response more strongly

than the 1979 El Centro input record, both being stronger than the

artificial earthquake (type B-1) i~put. The influence of soil condition

upon the displacement response is not as dramatic as in the flexural

stress and shear force response cases, however it still indicates that

softer soil will tend to increase the tower-pier response. For the

purpose of analyzing the response, five modes were utilized. However,

the tower-pier appears to respond predominantly in its first two

natural modes of longitudinal vibration. The flexural stress response

(Appendix V-h) is almost totally vibrational in nature. It seems

that the 1971 Pacoima Dam input gives higher stresses than the artificial

earthquake earthquake (type B-1) input, both being stronger than the

1979 El Centro input case. The softness of the soil results in increased

tower flexural stresses, as can be seen in these figures. The maximum

stress of 30.3 ksi, occurring at 0.8h in the soft soil case, is a

significant live load condition, but is well below the average yield

value of 52.4 ksi for the silicon steel used in the tower (27). Even

after adding the dead load stress of 7.93 ksi (21), stresses are still

below the yield value. The longitudinal shear force response (Appendix

V-i) is greatest at the base of the tower and decreases progressing up
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the tower. The vibrational portion of the shear force dominates the

response. It seems that the moderately stiff soil is critical, as

far as the shear force is concerned, with a maximum base shear (1971

Pacoima Dam record) of 34,100 kips.

The corresponding root mean square (R.M.S.) results obtained from

the random vibration frequency domain approach appear in Tables V-4,

V-5, and V-G. By dividing the peak responses obtained in the time domain

by these R.M.S. values, the estimation of peak factors may be examined.

It can be seen that the peak factors range from 3.5 to 9.1, which is

quite a large variation. The artificial earthquake input, which is

designed to be Gaussian in nature, possesses peak factors which range

from 3.5 to 5.0 which seem more realistic. The real earthquake inputs

develop peak factors which are wider distributed in range. This may be

due to the fact that they are real non-Gaussian inputs. The nature

of the problem, that is the necessity for separation of the total

response into quasi-static and vibrational parts, may also be partly

responsible for the large peak factors.
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Appendix V-a

Details of Mass and Stiffness Matrices

The general procedure as outlined by Abdel-Ghaffar (1)

involves discretizing the tower-pier into elements (Figs. V-I, V-2).

For simplicity, beam elements are used to model both the tower and

the pier, with the moment of inertia of the pier elements set very

high to accomodate only rigid body motion of the pier. Each beam

element, as shown, has four degrees of freedom corresponding to end

deflections and end rotations. The classic hermite polynomials are

used as interpolation functions for the beam elements. The mass

and stiffness matrices can be set up on the element level, and then

assembled into the .global mass and stiffness matrices. Concentrated

masses arising from the tower struts and from the virtual mass of water

surrounding the pier, and the distributed mass of water internal to

the pier may also be added to the global mass matrix. Also, the

effects of the elastic restraint of the cables and the soil stiffnesses

can be added to the global stiffness matrix in the form of spring

elements, as will be discussed. The resulting global mass and stiffness

matrices are symmetric, positive-definite, banded matrices.

The mass matrix of the tower, arising from the kinetic

energy of longitudinal vibration, can be written as

N
el

N
2ST

[M] r [m] + .E mST + r m (V-a-l)t e oje=l ~=l j=l

where [mtJ e are the mass matrices on the element level; mST are the

concentrated masses of the struts which vibrate longitudinally with the
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tower; m . are the concentrated masses added at two of the pier nodes
oJ

in order to represent the virtual mass of the surrounding water which

vibrates with the pier; and the summation over the number of elements

(N
el

) and over the number of struts (N
ST

) involves assembling each

element mass matrix and each concentrated mass into the global mass

matrix in its proper position.

The element mass matrices are (I)

156 -22L 54 13L

mteL 4L2 3
-22L -13L -3L

[mt]e 420
54 -13L 156 22L

l3L
2

22L 4L
2

(V-a-2)-3L

where mte is the distributed mass of the tower-pier element per unit

length and L is the length of the element. The distributed masses,

m
te

, appear in Table V-a-l for the Golden Gate's San Francisco Tower-

Pier.

The added strut masses are calculated from the strut's

dimensions, and are concentrated" at the nodes at which the struts

are located (nodes 9,11,13,17,21, 24, and 27; see Fig. V-2).

These concentrated masses appear in Table V-a-2 for the Golden Gate's

San Francisco Tower-pier.

The added virtual mass of water can be computed by a simplified

procedure (9, 17) which involves taking as added mass a cylindrical

volume of water whose diameter is equal to the width of the pier

(measured in the lateral direction; equals 299 ft for the Golden Gate)

and whose length is equal to the depth of submergence of the pier.
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Table V-a-l

Tower-pier Element Properties (E=29000 ksi = 4,176,000 ksf)

MAss/FT
2 2 (ft4) (ft)ELEMENT (ksec 1ft) INERTIA LENGTH

1,2 168.7 CD 27.0

3 165.1 00 10.0

4 144.8 CD 17.0

5 94.3 00 18.0

6 32.7 00 20.0

7 38.2 00 24.0

8 2.067 34000 32.08

9,10 2.376 14436 40.16, 40.17

11,12 2.376 14436 40.17

13,14,15,16 2.067 14436 35.0

17,18,19,20 1.717 8131 32.5

21,22,23 1.415 5305 36.7, 36.7, 36.6

24,25,26 1.142 3073 33.0

27 1.142 3073 30.25
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Table V-a-2

Additional Concentrated Masses

(Added Water Virtual Mass and Mass of Tower Struts)

2
NODE MASS (ksec 1ft)

3 1889

f
water

4 71

9 7.006 \

11 7.006

13 9.979
I

17 11.04 struts
21 8.280 (
24 8.492 J
27 7.006 /
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A correction factor is then applied to this resulting mass based upon

the ratio of the submerged depth to the diameter. The location of

the centroid of this added mass is determined in a similar manner and

is at a distance of approximately H/3, where H is the submerged depth

in the case of the San Francisco Tower-Pier. In order to account for

this added mass in the finite element model, it is sufficient (since

the pier is assumed to move as a rigid body) to add two nodal concen-

trated masses whose values are adjusted so that the added mass and

its centroidal location are both properly represented. In the case of

the Golden Gate, these equivalent nodal masses (at nodes 3 and 4)

appear in Table V-a-2.

The stiffness matrix has three contributions, one arising

from the elastic stiffness of the tower, into which the elastic

restraint of the cable and the soil's rotational (~ocking) stiffness

can be encorporated, one arising from the geometric-stiffness due to

the compressive dead load cable tension, P , and one arising from the
w

(V-a-3)([k
t

] + [k
t

] ) +
e e g e

[K] =

soil's translational stiffness, that is

N
el
1:

e=l

where [k
t

] are the elastic stiffness matrices on the element level;
e e

[ktg] are the geometric stiffness matrices on the element level; [kTRJ

are the stiffness matrices resulting from the translational soil

springs; and the summation over the number of elements (Nel) and over

the number of translational soil springs (NTR) involves assembling

each element stiffness matrix into the global stiffness in its proper

position.
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The element elastic stiffness matrices, excepting the matrices

for the uppermost tower element and the lowermost pier element, are

as follows (1):

12 -6L -12 -6L

E I -6L 4L
2

6L 2L
2

[kte] e
te te

L
3

-12 6L 12 6L

-6L 2L
2

6L 4L
2

(Y-a-4)

where E I is the flexural rigidity of the individual element;
te te

and L is the element length (see Table V-a-l).

For the uppermost tower element, the elastic stiffness

becomes

12 -6L ~12 -6L

E I -6L 4L2 6L 2L2

[kte]e
te te

3
-12 6L l2+k 6LL e

-6L
2

6L 4L
2 (Y-a-5)2L

where k is the spring stiffness arising from the elastic restraint
e

of the cable estimated by Konishi and Yamada (Refs. IS, 16), and proven

in Appendix V-e, to have a value of:

k
e

(v-a-6)

where E is the cable's modulus of elasticity; A is the cable's cross-
e c

sectional area; and LeI' L
e2

are the virtual lengths defined as (1)

t.

L . = f :l. (dSi ) 3 dx.
e:l. d . :l.

Xl.
o

i = I, 2 (V-a-7)
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ab . h .th fwhere s. is a coordinate measured along the c Ie ~n t e ~ span 0
~

the suspension bridge, and t. is the length of the i th span.
~

For the lowermost pier element, the elastic stiffness becomes

12+k -6L -12 -6L
r

E I -6L 4L
2

6L 2L
2

[kteJ e
= te te

3
-12 6L 12 6LL

-6L 2L
2

6L 4L
2

(V-a-8)

where k is a rotational spring at the pier's base (see Fig. V-2)
r

which accounts for a portion of the rocking stiffness of the soil,

the other portion being taken by the combination of translational

springs. The equivalent structural springs shown in Fig. V-2 can

be calculated from the soil stiffnesses k
O

xx'

lowing relations

(27 ft) k 2 = k~ep

o 0
kx~' k~~ by the fol-

(V-a-9)

A summary of the values of k
l

, k
2

and kr appear in Table V-a-3 for the

Golden Gate's San Francisco Tower-pier system, based upon the soil

stiffness k:X, k~~, k;~ appearing in Table V-b-2 (Appendix V-b).

The element geometric stiffness matrices are as follows (1 )

36 -3L -36 -3L

- P -3L 4L
2

3L
2

-L
[ktg] e

w=-
30L

-36 3L 36 3L

-3L
2

3L 4L
2

(V-a-1O)-L
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Table V-a-3

Equivalent structural Springs

SOIL TYPE k
l

(kips/it) k2 (kips~ft) k (kft/rad)
r

ROCK
7.527 x 107 2.933 x 107 8.242 x lOll(G=172800 ksf)

MODERATELY STIFF
5.679 x 106 2.213 x 106 6.279 x 1010

SOIL
(G=12960 ksf)

SOFT SOIL 1.627 x 106 6.341 x 105 1.892 x 1010

(G=3600 ksf)
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where P is the compressive load arising from the vertical component
w

of dead load of the cables (p = 123,000 kips).
w

The equivalent structural springs k
l

and k2 (which repre

sent the soil stiffness) give rise to stiffness matrices of the form

[

ki -ki ]

-k. k.
~ ~

i = 1, 2 (V-a-ll)

where k. appears in Table V-cr3 for the Golden Gate r s San Francisco
~

Tower-Pier.
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Appendix V-b

Calculation of Soil Stiffness and Soil Damping

For the purpose of calculating the soil stiffness and damping

values, it is first necessary to convert the elliptical cross-section

of the pier to an equivalent circular cross-section. In order to

calculate the equivalent radius for translation, R
t

, it is sufficient

to set the area of the ellipse equal to the area of the circle, that is

2
~Rt = 0.7854 (2A) (2B) (V-b-l)

where 2A is the major axis of ~he ellipse and 2B is the minor axis

of the ellipse. For the Golden Gate Bridge's San Francisco tower,

2A = 299 ft and 2B = 155 ft which results in the equivalent circular

radius for translation, Rt = 107.6 ft.

In order to calculate the equivalent circular radius for

rocking, R , it is sufficient to set the second moment of inertia of
r

the circle equal to that of the ellipse, that is

= .!. AB
3

4 (V-b-2)

For the Golden Gate Bridge's San Francisco tower the equivalent cir-

cular radius for rocking, Rr = 91.3 ft.

For the purpose of calculating the soil stiffness and soil

damping, the following equations are used by Kausel (13)

k k
O

(k
ll

+ ia
o

c
ll

) (1 + 2iS)xx xx

0
ia

o
c

12
) (1 + 2iS)kXIj> = kx lj>(k12 +

klj>lj>
0

+ ia
o

c22 ) (1 + 2iS)= klj>lj> (k22 (V-b-3)
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o 0 0
where kxx ' k~~, kx~ are the static stiffness in translation, rocking,

and coupled rocking-translation. respectively; S is a measure of the

internal hysteretic damping in the soil (taken to be 0.05 in this

report); i = I=l ; and a is the dimensionless frequency = W·R/c ;
o s

where w is the circular frequency of the exciting motion, R is the

radius of the foundation slab, and c is the shear wave velocity; k ..
s ~J

and c .. are frequency dependent coefficients normalized with respect
~J

to the static stiffness and obtained'via halfspace solutions or modi-

fied halfspace solutions.

by radiation.

The coefficients c .. express energy loss
~J

For the static case, kll = k
12

= k22 = 1 (13) and

k: = :~~t (1 + t :t) (1 + 1~) (1 + t ~ )

R (~L - 0.03)
r 5 R

r

3
8GR

r
3(1-\1) (1 + 2~ ) (1 + o. 71 ~)

r
(V-b-4)

where G is the shear modulus of the soil; R is the radius of the founda-

tion; E is the depth of embedment; H is the depth to bedrock; and

\I = Poisson's ratio. The stiffness and damping coefficients k .. and
~J

c .. appear in graphical form in Ref. 13 and will not be repeated here.
~J

In order to use modal analysis, frequency independent stiffness

and damping values are utilized. Since the stiffness coefficients

k.. are slowly varying functions of the dimensionless frequency
~J

a
o

' (13) it appears appropriate to calculate the longitudinal
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tower modes using the static stiffness values CEq. V-b-4). Once the

tower modes and associated natural frequencies are obtained, the damping

coefficients c,. may be computed for each mode from knowledge of the
1J

dimensionless frequency a = w Ric where w is the natural circularo n s n
th

of the n tower mode. The total damping is the sum of internal

hysteretic damping and radiation damping, as follows:

c = kO
( + 2{3)

xx xx aoell

0
cxep

= kxep(aoc12 + 2S)

0c = kq>q>(a
O

c
22

+ 2(3) (V-b-S)
epep

The above methodology was used for three different soil

types, corresponding to rock, moderately stiff soil, and soft soil.

A summary of the soil parameters is shown in Table V-b-l (14). The

resulting soil stiffnesses are shown in Table V-b-2 which are computed

using Eqs. V-b-4. The soil damping values are shown in Table V-b-3

as a function of soil type and natural mode (of the Golden Gate

Tower-pier), which are computed using Eqs. V-b-S.
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Table V-b-l

Soil Properties (Based on Ref. 13)

MATERIAL MODERATELY
PROPERTY ROCK STIFF SOIL SOFT SOIL

C = shear wave 5900 1900 1076
s velocity

(ft/sec)

\) = Poisson's 0.34 0.35 0.40
ratio

G = modulus 172800 12960 3600
(ksf)

Table V-b-2

Soil Stiffnesses (Based on Ref. 13)

SOIL TYPE kO kO
k¢~xx x~

(kips/ft) (kips) (ft kips/rad)

Rock 1.046 x 108 7.920 x 108 8.456 x loll

Moderately
10

6 x 107 x 1010Stiff Soil 7.892 x 5.976 6.440

Soft soil 2.261 x 10
6

1.712 x 107
1.938 x 1010
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Table V-b-3

Soil Damping (Based on Ref. 13)

SOIL TYPE/ c cx¢ c¢¢
MODE ORDER xx

. 6 6 9(x10 ksec/ft) (x10 ksec) (xl0 kftsec/rad)

Rock--
Mode 1 2.411 18.26 19.12
Mode 2 0.8244 6.242 6.319
Mode 3 0.5742 4.348 3.887
Mode 4 1.370 10.37 3.414
Mode 5 1.277 9.669 3.602

Moderately stiff
Soil--
Mode 1 0.1914 1.449 1.478
Mode 2 0.3181 2.409 0.8066
Mode 3 0.3010 2.279 0.8426
Mode 4 0.2890 2.188 0.9143
Mode 5 0.2781 2.106 0.9974

Soft Soil

Mode 1 0.0604 0.4849 0.5072
Mode 2 0.1540 1.166 0.4410
Mode 3 0.1472 1.115 0.4790
Mode 4 0.1397 1.058 0.5370
Mode 5 0.1371 1.038 0.5524
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Appendix V-c

Calculation of Equivalent Modal Damping Ratios

An approximate energy method is utilized here to convert

the soil damping values obtained in Appendix V-b to equivalent modal

damping ratios, in order to proceed directly with a modal analysis

approach. The following procedure was proposed by Novak (18).

Assuming that the undamped vibration modes of the tower

have been determined with the soil stiffnesses taken into account,

the total work done by the soil damping during a period T, as the

pier undergoes hannonic motion in the nth natural mode, is given by (18)

w ro 2
cos w t dt

n

+ 2 IT C
x~

o

which reduces to

2 2
~ u w cos w t dtn n n n

(V-c-l)

w rrw (C u
2

+ c~~ ~2 + 2c u <t> )
n xx n '1''1' n x<t> n n

(V-c-2)

where Cxx ' Cx~' c~~ are the soil damping values (see Appendix V-b);

. th l' 1 f th. .w ~s e natura c~rcu ar requency of the nlong~tud~nal tower mode;
n

and un and u~ are modal translational and rotational displacement at the

pier's base, respectively, taken in arbitrary scale.

The maximum potential energy for the complete tower vibrating

th
in its n mode can be calculated as the maximum kinetic energy and

is given by (18)
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(V-c-3)

where [M] is the mass matrix for the entire tower-pier; and {ep } repre-
n

sents the
th

mode shape for the tower-pier.n

The damping ratio of the structure, due to the geometric

th
and hysteric damping of the soil, in the n mode,

calculated as ~soil = W/(4TIL) which is
n

can then be

e-soil = __1_
"'n 2w M

n n
(V-c-4)

where M is the generalized modal mass
n

(V-c-5)

The total damping ratio is the sum of the structural damping

ratio (taken as 0.05 in all modes) and the damping ratio derived from

the underlying soil (Eq. V-c-4), that is

~eq

n
~st + ~soil
n n

(V-c-6)

This approximate approach is quite accurate since the damping

is very important only in the resonant range. Hence, as long as damping

is small and natural frequencies are well separated, the method works

fairly well (Ref. 18). This energy method is equivalent to neglecting

the off-diagonal terms in the generalized damping matrix {ep }T[C]{ep }.
n n

Table V-c-l summarized the damping ratios of the Golden Gate San Francisco

Tower-pier for the three soil types as compared to the case of a com-
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Table V-c-1

Composite Damping Ratios ~ eq (Based on Ref. 18)
n

SOIL-FOUNDATION TYPE
MODERATELY

MODE ORDER FIXED BASE ROCK STIFF SOIL SOFT SOIL

1 0.0500 0.0501 0.0508 0.0533

2 0.0500 0.0501 0.0584 0.2479

3 0.0500 0.0502 0.2651 0.0995

4 0.0500 0.0508 0.0744 0.1498

5 0.0500 0.0679 0.0814 0.4444
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pletely fixed base pier, where only structural damping is present

(estimated to be 5%).
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Appendix V-d

orthogonality of Longitudinal Tower Mode Shapes

thThe n longitudinal tower mode shape, f~ }, satisfies the
n

W
2

[M ]{¢} = [K sJ{¢ }
n ss n s n

n = I, 2, 3 .•. (V-d-l)

th .
The m longitudinal tower mode shape, {¢ }, satisfies a

m

similar equation, that is

w2 [M ]{~} = [K ]{¢}
m Ss m ss m

m = 1, 2, 3 ... (V-d-2)

Prernultiplying Eq. V-d-l by {~ }T prernultiplying Eq. V-d-2
m '

by {~ }T and subtracting gives
n

n = 1, 2, 3 ••• m = 1, 2, 3 •••

(V-d-3)

Because the stiffness and mass matrices resulting from the

finite element method are symmetric and positive-definite, Eq. V-d-3

reduces to

n = I, 2; 3 ..• m = 1,2,.3 ••• (V-d-4)
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which yields modal orthogonality, with respect to mass matrix weighting,

of the form

m:;'n (V-d-5)
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Appendix V-e

Derivation of Equivalent Spring Constant k
e

The idea of assuming an equivalent spring of stiffness k
e

at the tower top (to simulate the elastic restraint of the cables)

was explained by Abdel-Ghaffar (28).

The elastic strain energy stored in the cable due to change

in tension associated with H. (t) (i = 1, 2, 3) can be written as
J.

v (t)
ce

H~(t) L .
J. eJ.

E A
c c

(V-e-l)

where E
c

is the cable's modulus of elasticity; A
c

is the cable's cross-

sectional area and L . are the virtual lengths defined as (1)
eJ.

L .
eJ. to (

dS i ) 3

d
dx.

x. J.
J.

i = 1, 2, 3 (V-e-2)

where s. is a coordinate measured along the cable in the i th span of
J.

the suspension bridge, and t. is the length of the i th span.
J.

For any tower, the energy stored in the cable in the two

adjacent spans is

v (t)
ce

2
1 H2 (t)L 2+ _ e
2 E A

c c
(V-e-3)

Each term of Eq. V-e-3 is similar to the elastic energy in

an axially loaded truss member which is of the form
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(V-e-4)

EAwhere ~ is the axial rigidity (or stiffness) of the truss member.

Thus, the equivalent stiffness at the tower top can be

approximated by

(V-e-S)
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APPENDIX V-f

PACOIMA DAM RECORD INPUTS

(1971 San Fernando Earthquake)
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APPENDIX V-g

TIME DOMAIN DISPLACEMENT RESPONSE OF THE

GOLDEN GATE TOWER-PIER SYSTEM
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Fig. V-g-14 Time history rocking response of pier to
artificial earthquake B-1 input.
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bottom of tower to 1971 Pacoima Dam input
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Fig. V-g-16 Time history displacement response at
x = O.2h to 1971 Pacoima Dam input.
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Fig. V-g-17 Time history displacement response at
O.4h to 1971 Pacoima Dam input.
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Fig. V-g-18 Time history displacement response at x ~ O.6h
to 1971 Pacoima Dam input.



494

GOLDEN GRTE TOWE.R
DISPLACEMENT RESPONSE AT X = 0.8 H
PACOIMA DAM. COMPo S16E ---- VIBRRTIONAL

-- TDTAL
L1'l
:::r

~ FIXED BRSEu

• 0 -, ""'.
.....J
a...
L1'l I.~
0

L1'l
:::r .

10 20 30 40 5010
TIME (SECONDS)

L1'l
:::r

~ • R~CKu " I

.0 -,
.....J.
a...
L1'l I

", '
Cl

L1'l

~O 10 20 30 40 50
TIME [SECONDS)

Cl
L1'l

~ ,( ; S1 LFF S~ILu

.0 -'I
.....J
a...
(J)

Cl
Cl

L1(0 10 20 30 40 50
TIME (SECONDS)

L1'l
c.D

~ 5~FT 5~ILu

• Cl -
.....J
a...
(J)

Cl
L1'l

Cfo 10 20 30 40 50
TIME (SECONDS)

Fig. V-g-19 Time history displacement response at
x = G.Sh to 1971 Pacoima Dam input.
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Fig. V-g-20 Time history displacement response at top
of tower to 1971 Pacoima Dam input.
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Fig. V-g-21 Time history rocking response of pier to
1971 Pacoima Dam input.
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APPENDIX V-h

TIME DOMAIN FLEXURAL (BENDING) STRESS RESPONSE

OF THE GOLDEN GATE TOWER PIER SYSTEM
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Fig. V-h-1 Time history stress response at bottom of
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Fig. V-h-2 Time history stress response at x = O.2h
to 1979 E1 Centro Array 5 input.
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Fig. V-h-4 Time history stress response at x = 0.6h
to 1979 El Centro Array 5 input.
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Fig. V-h-5 Time history stress response at x = O.8h
to 1979 E1 Centro Array 5 input.
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Fig. V-h-6 Time history stress response at bottom of
tower to artificial earthquake B-1 input.
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Fig. V-h-7 Time history stress response at x = 0.2h
to artificial e,arthquake B-1 input.
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Fig. V-h-B Time history stress response at x = 0.4h
to artificial earthquake B-1 input.
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Fig. V-h-9 Time history stress response at x ~ 0.6h
to artificial earthquake B-1 input.
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Fig. V-h-IG Time history stress response at x = G.Sh
to artificial earthquake B-1 input.
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Fig. V-h-12 Time history stress response at x = O.2h
to 1971 Pacoima Dam input record.



Fig. V-h-13 Time history stress response at x = O.4h
to 1971 Pacoima Dam input record.
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Fig. V-h-14 Time history stress response at x = O.6h
to 1971 Pacoima Dam input record.
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Fig. V-h-15 Time history stress response at x = O.8h
to 1971 Pacoima Dam input record.
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APPENDIX V-i

TIME DOMAIN DYNAMIC SHEAR FORCE RESPONSE

OF THE GOLDEN GATE BRIDGE TOWER-PIER SYSTEM
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Fig. V-i-1 Time history shear force response at bottom of
tower to 1979 E1 Centro Array 5 input.
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Fig. V-i-2 Time history shear force response at x = O.2h
to 1979 El Centro Array 5 input.
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Fig. V-i-3 Time history shear force response at x = O.4h
to 1979 E1 Centro Array 5 input.
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Fig. V-i-4 Time history shear force response at x = O.6h
to 1979 E1 Centro Array 5 input.
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GOLDEN GRTE TOWER
SHERR FORCE RT X = O:SH

ARRAY 5. 550W ----- VIBRATIONAL
° ----- TOTRL
°

~~ FIXED BASE
.....
::c:
° -..

a::
a:
LU
:1:
(/')0

°(\1° 0+----:....-0----2-----------4a1 0 30
I TI ME (SECONDS)

RCJCK

4010 20 30
TI ME [SECONDS)

°a::
a:
LU
:1: 0
(/')0LJ'1+--_-_- _

(\10

40

STIFF SCJIL

°II:
a:
LU
:1: 0
(/')0LJ'1+--_-_-...-- _

enO 10 20 30
TIME (SECONDS)

SCJFT SCJIL

"II
I

o
II:
a:
LU
:1:0
(/')00<--_-_--::- -::"::--_--::--::-+-_--:-:'
.enO 10 20 30 40

TIME (SECONDS)

Fig. V-i-5 Time history shear force response at x = O.8h
to 1979 E1 Centro Array 5 input.



519

FIXED BRSE

GOLDEN GRTE TOWER
SHERR FORCE AT X = O.OH

tRRTHQUAKE B1. VIBRATIONAL
-- TOTALCl

o
o

U;CD
~

~

o
a:
a:
ll.J
:I: 0

(fl gL----.-.:!--~--:-'-::-------::;;::---~~-_c:
CDO 10 20 30 40 50

TI ME (SECONDS)

ROCK

o
a:
a:
ll.J
:I: 0

Ul gL---L....!---:.--::-----::-o;::---~:;_-___c'
-0 10 20 30 40 50
- TIME (SECONDS)

o
o
o

U;-
~-

o
a:
a:
ll.J
:I: 0
UlO

oL_-...!,....- -::---_---::-"'=""__~:::__-~,

tOO 10 20 30 40 50
TIME (SECONDS)

SOIL

o
a:
a:
u.J
:I: 0
Ul O

~0L..---_-l..-------:-'~-----:;0:----;:-'50
~ 10 20 30 4
- TIME (SECONDS)

Fig. V-i-6 Time history shear force response at bottom of
tower to artificial earthquake B-1 input.
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FIXED BASE

GOLDEN GATE TOWER
SHERR FORCE AT X ~ O.2H

EARTHQUAKE B1 ----- VIBRATIONAL
-- TOTRL .o

o
Ul

(i;LO
0..

x::
o

cr
a::
w
:z:o
U10

Ul+--_----'~!.,.I----. -...__ ~

LOO 10 20 30 40 50
TI ME (SECONDS)

_ ROCK

o
a::
a::
w
:z:o
U10o+--_---:-'--........-:- - -_~

r-O 10 20 30 40 50
TIME (SECONDS)

o
o
am(\J

0..-

o
cr
a::
w·
:z:o
U1(:)0+-_--'>----'- -_-__- __

~O 10 20 30 40 50
TIME (SECONDS)

SOFT SOIL

8
(:)

U1
0..-

(:)

cr
a::
w
:z:(:)
U1(:)o+-- -~---.__-_-...___::__-__=_'

::0 10 20 30 40 50
TIME (SECONDS)

Fig. V-i-7 Time history shear force response at x = 0.2h
to artificial earthquake B-1 input.
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GOLDEN GRTE TOWER
SHEAR FORCE AT X ~ O.4H

EARTHQUAKE B1 ----- VIBRATIONAL
-- TOTAL

FIXED BASE

o f-/lJ1H IW,jllll
a:
cr
w
::I: 0
(/)0

('\J!----:--.--~:------:::-~---:-';;:0:;---~50:::r0 10 20 30 4
TI ME (SECONDS)

A~CK

OT""l"n.IUII
a:
cr
w
::I: 0
(/)0

~OL---1-0----=-2'=""0---:::3~O:-----:4~O:;---~5 0
TI ME (SECONDS)

STIFF S~IL

o
o
o

(jlu::l
a...

o
a:
cr
w
::I: 0
(/)0

~Oi----l-O---2=-O::------:;3~O:-·---:4~O:;-------C;50
T I ME (SECONDS)

S~FT S~IL

~\~~~~

o
o
If)

(jlu::l
a...

:O~,~~
w
::I: 0
(/)0

~O""'---1""'O-----=2:-::0:-·--~30 40 50
TIME (SECONDS)

Fig. V-i-8 Time history shear force response at x = O.4h
to artificial earthquake B-1 input.
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GOLDEN GATE TOWER
SHEAR FORCE AT X ~ O.GH

EARTHQUAKE B1 ----- VIBRATIONAL
-- TOTAL

:s::
o

a:
CI:
w
:J:o
lJ'lolfl.l--__....:-__- __-_--+:"-_~.

ruO 10 20 30 40 50
TIME (SECDNDS)

o
o
lfl

(firu
CL-

o
o
en

(fien
CL-

o
a:
CI:
I.I.J
:J:o
lJ'lo.en.l--_-J-- - __-_--+:"-__~
.enO 10 20 30 40 50

TI ME [SECONDS)

Cl
Cl
lfl

(filfl
CL.....

o
a:
CI:
I.I.J
:J:o
lJ'lo
lfl~-_~_------_--~

LOO 20 30 40 50
TI ME' (SECONDS)

o
o
ru

(filfl
CL.....

o
a:
CI:
I.I.J
:J:o
lJ'lo

~O=-----l0~--2---------
u, 0 30 40 50

TI ME (SECONDS]

Fig. v-i-9 Time history shear force response at x = O.6h
to artificial earthquake B-1 input.



Fig. V-i-10 Time history shear force response at x = O.8h
to artificial earthquake B-1 input.
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FIXED BASE

GOLDEN CHTE TOWER
SHEAR FORCE AT X ~ O.OH

PRCeI] MR DRM CeiMP. 516E. V] BRRT lONRl
• -- TOTRlo

o
o

U:;::r
(l.. .....

::s::
o

a:
a:
w
:1:0

(fl gL~-.L~_--:::-~--::;-;:;----;-;-;l-~
::r0 10 20 30 40 SO
..... TI ME (SECONDS)I

o
a:
a:
w
:1:0

(fl g L_--L~---::;::----:;--;:;---;-;n--c:i50
rnO 10 20 .. 30 40
(\J TI ~1 E (SEC 0NOS 1I

SilFF SOIL

a
o
o

~Lf1

~en

::s::
o

a:
a:
w
:1:0

(fl 0oL__~O::----:~--~:;---;-Jn--c:i
Lf10 10 20 30 40 50
en T I ME lS ECON DS1I

o
a:
a:
w
IO

(flgL_L_-__:-:-__~~-__;_;_;:)--~
enO 10 20 30 40 50
(\J TI ME (SECONDS)I

Fig. V-i-ll Time history shear force response at bottom
of tower to 1971 Pacoima Dam input record.
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GOLDEN GRTE T~WER

SHERR FORCE RT X ~ O.2H
PACOIMA DAM. COMPo 516E VIBRATIONAL

o ---- TOTALa
a

(j1N

~- FIXED BRSE......

o
a:
ex:
I.LJ
:J:o
UlO

o!-.....l..~--_--:-<c--~~::-'::"""-_~::--_--;::-;
~O 10 20 30 40 50

. I TIME (SECONDS]

a
a
a

(j1m
~- RDCK

a
a:
ex:
I.LJ
:J:o
Ul O

a !-~-L__-_---:-<c---'-o-~:--::-__~:--_~,

:0 10 20 30 40 50
TIME [SECONDS)

a
a
a

~(.!J

;: .I1"'\f1ll1drl~~.TIFF...SllIL

~a I'
UlO

~O~----:1.....0----:-20-:-------=3"'=0---:4~0:::--~50
~ TIME [SECONDS)

SOFT SOIL
a

a:
ex:
I.LJ
:J:o

U1gl-~L -:--::--__~__~::;-~~
00 10 20 30 40 50
~ TIME [SECONDS]

Fig. V-i-12 Time history shear force response at x = O.2h
to 1971 Pacoima Dam input.
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GOLDEN GHr~ rOWfR
SHEAA FORCE AT X ~ 0.4H

PACDIMA DRM, COM~. SIGc ~--- VlbRRTIONRl
o -- TDTRlo
o;:;:;0

~- FIXED BASE
o

a:
c::
lJ.J
:::Co

V1 25 L-..:..---=--_-::-'::-_-::;::--_-;-;-:::;-_~
0 0 10 20 30 40 50
- TIHE (SECONDS)

ROCK

o
o
o

;:;:;-
~-

o
a:
c::
lJ.J
:::Co
V10

0_0l--------=------=--=----:~0::;---~5 010 20 30 4
- TIME [SECONDS)

51 LFF SO IL

oo
o

lfiru
~-

o
a:
c::
lJ.J
:::Co

V1 gL-~--.L_- ::--::-_--:---:-:-'::;_-___;::"',
ruO 10 2030 40 50
- TIME [SECONDS)

~ SOFT_SOIL

o
o
o

lfi::r
~-

o
a:
c::
lJ.J
:::Co

V1 gL-.!.._--=__-::-::-_~::;_::;_-...---;-;-;::;--~
::r0 10 20 30 40 50
- TI ME lSECONDS)

Fig. V-i-13 Time history shear force response at x = O.4h
to 1971 Pacoima Darn input record.
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GOLDE.N LATE rO~~E.R

SHEAR FORCE RT X ~ G.GH
PRC01MR DRM COMPo 51GE ---- V1BRRTJONRL

• --- TOTRLCJ
CJ
CJ

~ro, FIXED BASE

: CJ,.....~_II"~..I~."'''~--~.........---'_ .........--
a:
w
J:CJ

(f"l gL---~--_::::~-----:;__;:;_--_;j(1-~
roO 10 20 30 40 50

TIME (SECONDS]

ROCK

CJ
ex:
a:
w
J:o

(f"l gL--.J-O::----::0=:-----:;~-~ln--Sl5 0
..... 0 10 20 30 40
- TIME (SECONDS)

o
o
o

u=;-
.0..-

i -'

STIFF SOIL

CJ
o
CJ

Ul m
Il..-

CJ
ex:
a:
w
J:'(f"lg
~OL--1.1-0---:2:;:O--~3:;-;O:;----~4 on-~50
-; TIME lSECONDS)

SOFT SOIL

o
ex:
a:
w
J:CJ

(f"l gL_-~------::-~----:::;-;:;----;-;(=J::-~
00 10 20 30 40 50
..... TIME (SECONDS)

o
o
ou=;o

Il.. .....

Fig. V-i-14 Time history shear force response at x = O.6h
to 1971 Pacoima Darn input record.
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GOLDEN GHTE TOWER
5HERH FORCE AT X ~ 0.8H

DA M COMP. 516E --- - V1SKAT IONALPACOIMA. TOTAL

FIXEQ BASE
I'

C)
C)

lJl
UiI11
ll..

~

C)

a:
a:
w
IO

(f) ~L~~---~:----;-;:;-~~4li07'--Sis010 20 30
1110 TIME lSECOND5]

ROCK

o
o
o

if)r-
ll..

~

o
a:
a:
w
IO

lJl gL-.12...--:...---::::-:::----~;"'n--U1l-~50
r-O 10 20 30 40

TIME [SECONDS)

SfIFF SOIL

o
o
o

if)ro
Q...

~

o
a:
a:
w
Io

(f) gL_J.....:.--:---~;----;-;:;--lm--5io
roO 10 20 30 40

TIME lSECONDS)

50FT SOIL

\.AJvvvvv....-·---------

o
o
o

U=;r
Q...

~

o
a:
a:
w
Io

lJl gL~-'-l-:---::;-2~O--:;3;;::O~-'4JJOl-5150r-O 10
TIME lSECONDS]

Fig. V-i-15 Time history shear force response at x = G.8h
to 1971 Pacoima Dam input record.
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APPENDIX V-j

FREQUENCY DOMAIN DISPLACEMENT RESPONSE

OF THE GOLDEN GATE TOWER-PIER SYSTEM
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1.5

xl0 3

GOLDEN
DISPLACEMENT

ARRAY 5. 550W

FIXED BASE

GATE TOWER
RESPONSE

-----VIBRATIDNAl
--TClTAl

1.5

xlO 3

u U
LW LW
(f) (f)
fOX fOX

~ AT 0.0 H ::L
U U

AT 0.2 H

a 2 4 a 2
FREQUENCY ':';---CiCLES ISEC

8.5

xl0 2

4.5

xl0 2

AT 0.4 H

U
LW
(f)
"'x

AT O. 6 H

42 4 0 2
FREQUENCY - CYCLES/SEC

" 0

'" \

a 2 4 0 '2 4
FREQUENCY - CYCLES/SEC

1.5 5.5

xl0 2 xl 0- 1

MODE 1
INPUT

u u
LW LW

~
(f)

AT'l.OHfOX

~ AT O.8H
:E

u U I

~

" 2

Fig. V-j-l Power spectra of response displacements to 1979
El Centro Array 5 input (fixed base case) •
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GOLDEN GATE TOWER
DISPLACEMENT RESPONSE

ARRAY 5. S50W -----VIBRATIDNAL

ROCK
TDTAL

1.5 1.5

x10 3 1'10 3

u u
AT 0.2 Hw AT O.OH w

(f) (f)
..x ..;<

~ ~

u u

0 2 4 0 2
FREOUENC'l' - C'l'CLES/SEC

8.0 4.5

xlO 2 xl 0 2

U U
w RT 0.·4 H w RT 0.6 H(J1 (J1
..;< ..;<

L z:
U u

/, ,

0 2 4 0 2

FREOUENC'l' - C'l'CLES/SEC
1.5 9.0

. 10 2 xl 0- 1 MODE 1x "
INPUT MODE 2

u u
w w
(J1 (J1
..x ..x

L AT O.8H L RT 1 .0 Hu u

o 2 4 0 .2

FREOUENCr - C'l'CLES/SEC

Fig. V-j-2 Power spectra of response displacements to 1979
El Centro Array 5 input (Rock Soil Case).
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GOLDEN GATE TOWER
DISPLACEMENT RESPDNSE

AARAY 5. 550W -----VIBAATIlJNAL
1.5 1.5 TlJTAL

xlO 3
STIFF SOIL

xl 0 3

U U
W W

~ c.n
AT 0.0 H

..x AT O.2H
~ ~
u u

0 2 1.1 0 2 1.1
FREQUENCr - CrCLES/SEC

8.5 4.5

xl0 2 d0 2

U U
W W
c.n c.n..x ..x

::E: AT O.4H L: AT 0.6 Hu u

a

1.5

xl0
2

INPUT

'.,'J "

a

2 1.1 0 2
FREQUENCr - CrCLES/SEC

S.S

MODE 1

u
w
c.n

o~ 8 H
..x

AT I

::E: \

W 'II,

2 4 0 2
FREQUENCr - CrCLES/SEC

1.1

AT 1.0H

2

4

Fig. V-j-3 Power spectra of response displacements to 1979
El Centro Array 5 input (moderately stiff Soil Case).
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1.51.5

xl D 3
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GOLDEN
DISPLACEMENT

ARRAY 5. 55DW

SOFT SOIL

GATE TOWER
RESPONSE

-----VIBRATIONRL
--TOTRL

u
w
~
~

U

AT O.OH

u
w
(f)
",><

AT 0.2 H

D

7.5

2 4 0 '2
FREQUENCY - CYCLES/SEC

l.1.O

xl 0 2 . INPUT

u u
w w
~

(f)
"'><.

L AT O.4H L AT 0.6 H
u u

f ~\':I
0 2 4 0 2 4

FREQUENCY - CYCLES/SEC
1. 5' 1.5 MOOE 1

xl0 2 xlOO

U U
W W
(f) (f)
..,>< ",><

L AT O.8H L AT 1.0H
u u HODE 2

I ;r
~\i 3

1 11 .1\

D 2 4 0 ·2 4

FREQUENCY - CYCLES/SEC

Fig. v-j-4 Power spectra of response displacements to 1979
El Centro Array 5 input (Soft Soil Case).
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6.0

xl0 2

GOLDEN
DISPLRCEMENT

EARTHQUAKE B1

FIXED BASE

GRTE TaWER
RESPONSE

-----VIBRATIONAL
--TOTAL

5.5

xl0 2

u
w
(J1
..x RT 0.. 0H

U
IJ..J
(J1
..x

L
W

AT 0.2H

0 2 4 a 2 4
FREQUENCY - CYCLES/SEC

ILO 4.5
xl 0 2 INPUT

d0 2

u U
W IJ..J
(J1 RT 0.4 H (J1
..>< ",x RT O.6H
L L
U U

a 2 4 a 2
FREQUENCY - CYCLES/SEC

3.5 5.5

.10 2 .lao
MODE 1

u
w
(J1
..x

AT 0.8H

u
w
if)
.,;x
L
U

AT 1. OH

a

MODE 2

2 4 a 2
FREQUENCY - CYCLES/SEC

MODE 3

4

Fig. V-j-5 Power spectra of response displacements to artificial
earthquake B-1 input (Fixed Base Case).
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6.0

x10 2

GOLDEN
DISPLACEMENT

EARTHQUAKE B1

ADCK

GATE TOWER
RESPONSE

-----VIBRATIONAL
--TOTAL

5.5

x10 2

u U
IJ.J W
<Q (J)
N N

X

~ RT O,.OH ~

u u
AT D.2H

0 2 4 a 2 4
'FREQUENCY - CYCLES/SEC

4.0 4.5

xl0 2 INPUT
xl0 2

u U
W W
(J) (J)
NX

NX

~ AT D. 4 H ~ AT D.6H
u u

42 4, a 2
FREQUENC'I - C'ICLES/SEC

a 2 4 a 2 4
FREQUENC'I - C'ICLES/SEC

3.5 5.5
x10 2 xlOO MODE 1

u u
4.J w
(J) (J)
N

X
N X

~ AT D.8H ~u u AT 1• OH

MODE 2
3

a

Fig. V-j-6 Power spectra of response displacements to artificial
earthquake B-1 input (Rock Soil Case) •
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-6.0

xl0 2

GOLDEN
DISPLACEMENT

EARTHQUAKE 81

STIFF Sell

GATE TDWER
RESPONSE

-----V18RATIONAL
--TOTAL

5.5
2xl0 .

AT G.OH ~

u
AT O.2H

0 2 4 a 2

FREQUENCY - CYCLES/SEC
4.0 5.5

xlO 2 INPUT xl0 2

w U
IJ.J W
(JJ (j")
"'><. J<
~ AT G. 4H ::E: AT G.6Hu u

a 2 4 0 2
FREQUENCr - CrCLES/SEC

4.5 6.5 MODE 1
xl0 2 xIOO

MODE 2

u u
w w
(j") (j")
J< ",x

~ AT G.SH Lu u AT 1 • 0 H

MODE

a 2 4 G 2 4
FREQUENCr - CrCLES/SEC

Fig. V-j-7 Power spectra of response displacements to artificial
earthquake B-1 input (Moderately stiff Soil Case).
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GOLDEN .GATE TOWER
DISPLACEMENT RESPONSE

PACOIMA DAM. COMPo SI6E-----VIBRATIONAL
--TOTAL .

6.0 ROCK 5.5

d0 2 dO 2

u INPUT u
UJ w
(f)

~...X

~ AT 0.0 H ~ AT O.2Hu u

0 2 4 0 2 .4
FREQUENCY - CYCLES/SEC

5.0 1.5

xl0 2 xlO 3

U U
UJ W
(f) (f)

N
X N

X

~ AT O.4H :L
u u AT D.6H

0 2 4 0 2
FREQUENCY - CYCLES/SEC

8.5 1.5

.10 2 xIO MODE 1

u u
w w
~

(J")
N X

~ ~

u AT O.SH u AT 1. 0 H

MODE 2 MODE 3

0 2 4 0 2 4
FREQUENCY - CYCLES/SEC

Fig. V-j-10 Power spectra of response displacements to 1971
Pacoima Dam input (Rock Soil Case).
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xl0 2

GOLDEN GATE TOWER
DISPLACEMENT RESPONSE

PACDIMA DAM. CDMP. S16E-----VIBRATIDNAL
5.0 TDTAL

STIFF SOIL
5.5

xl0 2

INPUT

AT G.GH AT O.2H

0 2 4 0 2
FREQUENCr - CrCLES/SEC

10.0 2.5

xlO 2 xl0 3

U U
W W
(f) (f)
N X

N
X

~ AT O.4H ~ AT G.GHu u

Fig. V-j-ll Power spectra of response displacements to 1971
Pacoima Dam input (Moderately stiff Soil Case) .
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GOLDEN GATE TOWER
DISPLACEMENT RESP~NSE

EARTHQUAKE B1 -----VIBRATIONAL
--TOTAL

6.0

xl0 2

SOFT SOIL 5.0

x10 2

INPUT

r=H n.OH AT O.2H

o

!.l.S

xl0 2

2 !.l

FREQtJENCr
o 2

- CrCLES/SEC
9.0

xlO 2

AT O.4H AT O.GH

0 ·2 4 0 2
FREQUENCY - CYCLES/SEC

6.5 9.5
xlO 2 x10 0 MODE 1

.U uw w
(f) (f)
N

X
N X

L
RT L

MODE RTu G.SH u 1. OH
2

3

2 4 0 2
FREQUENCr - CrCLES/5EC

Fig. V-j-8 Power spectra of response displacements to artificial
earthquake B-1 input (Soft Soil Case).
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GOLDEN GRTE TOWER
DISPLRCEMENT RESPONSE

PACOIMA DAM. COMPo 5l6E-----VIBRATIONAL
--TOTAL

6.0

xlO 2

W
I.LJ

~
L
U

FIXED BRSE

INPUT

RT G.GH

5.5

. xlO 2

L
U RT G.2H

o

5.0

xlO 2

240 2
FREQUENCY - CYCLES/SEC

1. 5]
xlO 3

RT O.4H

U
I.LJ
(f')
..x

RT O.6H

o 2 4 0 2
FREQUENCY - CYCLES/SEC

8.5 1.5
2dO

U
I.LJ
(f')
..x

RT G.SH

dO

U
I.LJ
(f')
..,x

MODE 1

RT 1. OH

MODE 2 MODE 3

o 2 4 0 2
FREQUENCY - CYCLES/SEC

4

Fig. V-j-9 Power spectra of response displacements to 1971
Pacoima Dam input (Fixed Base Case) •
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xlO 2
50FT SOIL

GOLDEN GATE TOWER
DISPLACEMENT RESPONSE

PACOIMA DAM. COMPo 516E-----VIBRATIONAL
5.5 TOTAL

6.0

xlO 2

INPUT

AT D.DH

u
w
(f')
..x

AT D.2H

o

6.5
xlO 2

240 2
FREQUENCY - CYCLES/SEC

1.5

xl 0 3

AT O.4H
L
W RT O.6H

o 2 4 a 2
FREQUENCY - CYCLES/SEC

1.S 2.0

xl0 3 110 1

MODE 1

u.
w
~
~

W

u
w
(f')
..x

AT l.DH
AT D.SH

o

MOOE

240 2
FREQUENCY - CYCLES/SEC

Fig. V-j-12 Power spectra of response displacements to 1971
Pacoima Dam input (Soft Soil Case).
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MODE 2

EARTHQUAKE Bl

ROCK

MODE 1

542

GOLDEN.GRTE TOWER
ROCKING RESPONSE Of PIER

-----VIBRRTIONRL
--TOTAL2.5 1NPU l'

6.0

xl 0-6 xl0-9

ARRR'J' 5. S5DW
u ROCK u
w w
~

(f)
<oX

C) MOoE 1 C)

a: MODE 2 a:
.a: a:

0 2 I.l 0 ·2 I.l
FREQUENCY - CYCLES/SEC

2.0 7.0 ERRTHQUAKE B1

xl0- 9
'I NPU T xl0-6 MODE 2

u w STIFF SOIL
w RRRRY 5. 550W w MODE
(f) (f)
<oX STIFF SOIL <oX 1 MODE 3a C)

a: a:
a: MODE 1 a:

MODE 2

o 2 I.l 0 2
FREQUENCY -.CYCLES/SEC

3.0 9.0
x10-5 MODE 1 MODE 2

u
w
~
a
a:
a:

RRRRY 5. 5S0W

SOFT SOIL

MODE 2
Cl
a:
a:

MODE
1

ERRTHQUAKE B1

SOFT SOIL

2 1.1 D 2
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Fig. v-j-13a Power spectra of pier rocking response.
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APPENDIX V-k

FREQUENCY DOMAIN FLEXURAL (BENDING) STRESS RESPONSE

OF THE GOLDEN GATE TOWER-PIER SYSTEM
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Fig. V-k-8 Power spectra of response stresses to artificial
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Fig. V-k-10 Power spectra of response stresses to 1971
Pacoima Dam input (Rock Soil Case).
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APPENDIX V-l

FREQUENCY DOMAIN SHEAR FORCE RESPONSE

OF THE GOLDEN GATE BRIDGE TOWER-PIER SYSTEM
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Fig. V-1-1 Power spectra of response shear forces to 1979
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560

MODE
xlO 6

GOLDEN GATE TOWER
SHERRING FORCE
5. 550W 8.0 -----v I BRAT! DNAL

.....--TDTAL

STIFF SOIL

1.5- ARRAY

xlO 7

u
w
~
0--

u
w
U1
"'x

AT 0.0 HO---.

MODE 2

RT O.2H

a 2 4 a 2
FREQUENCY - CYCLES/SEC

4.0 2.5

xl a 6 xl a 6

U U
W W
(f) U1
",x .;<

0- 0- RT O.6H- AT O.4H ......
::s::: ::s:::

a 240 2
FREQUENCY - CYCLES/SEC

4

9.0

xl D 5

u
w
~
0-- AT O.SH

024
FREQUENCY - CYCLES/SEC

Fig. V-1-3 Power spectra of response shear forces to 1979
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Fig. V-1-6 Power spectra of response shear forces to artificial
earthquake B-1 input (Rock Soil Case).
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Fig~ V-1-7 Power spectra of response shear forces to artificial
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Fig. V-1-8 Power spectra of response shear forces to artificial
earthquake B-1 input (Soft Soil Case).
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Fig. V-1-9 Power spectra of response shear forces to 1971
Pacoima Dam input (Fixed Base Case).
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Fig. V-1-l0 Power spectra of response shear forces to 1971
Pacoima Dam input (Rock Soil Case).
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Fig. V-1-1l Power spectra of response shear forces to 1971
Pacoima Dam input (Moderately Stiff Soil Case).
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Fig. V-1-12 Power spectra of response shear forces to 1971
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