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T~e objective of this study is to include all of the important and complicated dynamic
characteristics in a dynamic analysis of linear, multi-de~ree-of-freedom (MDO:-) secondary
S~~sjstems with multiple support points att~ched to linear HODF primary subsystems.
These r.haracteristics include: interaction between t'le two subsystems; cross-correlations
between moticns of the support points and modal responses for stochastic inp~t;

resonance or tuni ng phenomen3 when a set 0 f frequenci es of one sys tern is tuned with one
or mO"e frequencies of the other system; and non-classical damping effects when the damp-
ing ratio of the two subsystems are different. The basic approach of the ana~ysis is to
considf'r the combined primary and secc,ndary subsystems as a single dynamic assemblage.
Such an approach implicitly ;'1cludes t"e effects of interaction, multi~le support motions,
r~sonal~ce, and non-classical damping, but wa5 avoided in the past due to the size and
compledty of the resulting eigenvalue problem and the fact that such systems are non-
classically damped. The main results of the analysis are applied tu several representativE
exaMple systems and cOITI~ared with results obtained from numerical analysis.
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DYNAMIC ANALYSIS Of MULTIPLY n;NED A~D

ARBITRARILY SUPPORTED SECONDARY SYSTEMS

ABSTRA.CT

The subjecl of lhis study is the dynamil: analysIs of linear, multl-degree-ol-fleedom

(MDOF) secondary subsystems with mu:tiple support points allached to linear MDOF primary

subsystems. It is known that such systems possess a number of important and complicated

dynamic characleristics. Th.;:se chalal:teristics inclu(.e· interactIOn between the two subsystems;

cross-correlalions between motions ot" the SUppOl' poinls and modal responses for stocha~tic

input: resonance or tuning phenomena when a set of rrequencies of one system is tuned with

one or more frequencies of the Nher system; and non-classical damping effects when tl}e damp­

ing ratio of the two subsystems are different. In past research. one or more of thesf' dynamic

characteristics have not been given full or adequate at,~ntion; the objective of this study i., to

Include all of these charaCleristics in a dynamic analysis' of the complete system.

Pte basic approach of the analysis is to consider the combined pnmary and seconduy

subsystems as a single dynamic assemblage. Such an approach implicitly includes the effect::. oJf

interaction. multiple support motions. resonance, and non-classical damping, bu~ was avoided in

the past due to the size and c/)mplexity cf the resulting eigenvalue problem an" the fact that

such systems are non-dassically damped. These problems are resolved in this study 10 the fol­

lowing manner: (l) A modal decomposition method is developed for non-classically dampeJ

syslems wilh closed-form expressions for combining medal responses. Derivations ?re inchlded

for stationary stochastic input sPt:cified by the power spectral density or response spectra and

indications are ~iven for considering non-stationary input. (2) Perturt"tion methods are sys­

tematically applied to the analysis of the complex-valued eigenvalue problem to reduce ihe

analysis inlO a physically meaningful and mathematically manageable form. Expre"sions :ue
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subsequently denve';! for the modal properties, which are in closed form for all but multipl~'

luned modes

The analysis of Ihe systems follows a logical developme'1l, beglOnmg ~lth the simplesl 2­

DOF system and progressing l(1 the most general ~~DOF system Fur wmplcteness. frequcnl'y

response fur.ctlOn analysis is presented and wmp;,red wilh modal decomposition results Ah".

as one extensIOn of thl: theory. the results are simplified to thl: Imporlilnt cas~ of non­

mteractlng subsystems where till.' ~econ,lar} stl~system mas~e~ arc suffi! lcntly small In \.(:m

rarison with the pnmary subsystem masses. Finally, the main results of the analysis arc Cii'plied

to several representative example ~ystems and compared with results obtained from numencal

.In.!iysis. Favorable agreement is found for all cases.
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CHAPTER I

INTRODUCTION

1.1 GenerAl Remarks

Complex structural systems wmposed of light secondary components or suhsystem~

rltached to heavier !>rimary subsystems are frequently encountered in civil engineering. Piping

systems. electrical equipment, laboratory instruments. antennas. computer hardware, and safety

devices are a few e",amples of the allachments which may be found in multi-slory buildings and

industrial plants and facilities. In many cases the secondary subsystems perform vital tasks or

are valuable in themselves and lhe response of these systems to base excitalions have long been

of engineering interest.

In the following, the properties of such systems are described. and a detailed literature

survey of the studies on lhese systems is presented. concentrating on the methodology used

and the difficulties encountered in the analysis. Then a method to overcome these difficultie~ IS

introduced and:: plan of analysis. which constitutes the main body of this study. is outlined.

1.2 Description of the Problem

1.2.1 l:haracterlstlcs of. General Prlma{y-Secondary System

Primary-Secondary (PS) systems have a variety of differen~ forms and characteristics. and

in thi~ thesis. those systems tht possess certdin well·defined. standard properties are studied.

These properties are as ro!lows:

! . The primary and secondary subsystems are viscously and classically damped. linear-eillstic

systems.

2. The mass of the sel.Ondary subsystem is considerably smaller than that of the primary

subsystem (mathematical criteria are given in Chapter 3).



3. The s~'stem docs nol indudc the mtcraclJon elfeds of a foundation, l:asl:aded tertiary or

higher level ';ubsystcms, or (ltner sl'par:lte sewndary subsystems that may be allal:hed to

the primary 'iuhsystcm. It is assumed that any such effects. if signilicant, arc acwunteu

for by properly modifying the Input eXl:itation (in the case of int~~racttng found<JtlOn) OJ

Ihe properties of the primary subsystem (In the case of other sel:ondary subsystems}.

4 All ,tll,lchmcnt point, of the PS system to the hase arc subjedt~d to the same Input exclta­

tllm.

PS sy'stems th<J1 huve tile aDove properties arc quite general and havc a number of impor­

tant dY;lamic charactcristics which h,ne been topics of intense study in the past Th-: main

dy namil' l'h<Jral':eristil'~ ,Ire:

I. Multi·degree-of-freedom (MDOFJ subsystems: Both prim<Jry and secondary subsystems

,He in gl:neral MOOF systems. Either subsystem can be composed of more than one

independent subsystem.

2. General attachmenl configuration: The ",econdary subs}'ste01 may be attached to the pri­

mary subsystem in an arbitrary number "f locations and may also be attached to the base

:)1' the combined system. The secondary subsystem may be attached to more than one

prlm,try suhsystem.

3 General reSOnanl'e (tuning) characteristics: Ally number or the frequencies of one subsys­

tem may be ,trbitrarily llose to or coinlident with 'he frequencies of the other subsystem.

ThiS condition is known ~~ t~niii~. '" hen a group of closely spaced frequencies of any

subsystem is tuned with one or more frequencies of the other suhsystem, the frequencies

are said to be In multiple tuning.

4. Dynamic interaction: For arbitrary PS systems, the primary and secondary subsystems

inl:-oract wilh each other, particularly if the secondary subsystem modal masse., ar<:: non­

negligible and the frequencies of the Iwo subsyslenls arc luned.

S. Slochastic correlalion: for stochastic input, the effects or .:orrelation Cilnnot be neglected,
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and for PS systems, this etfecI i3 an Important. integral part (II' their uynamll: behavior

for lUned systems, the cro~s'currelatj(JnshetweclI mod,.1 responses issigniti<:ant and must

be accuratl'ly determined in any dynamic analysis Also, motions al various support

pornts of the sClondary subsystem are, in general. correlated.

6. Non-L1assical ddmping: ThIs elft:.:t Oc(urs in systems whll'h have d'tfcrt:nt d,H'1ping ratios

in the nrimary and sccondaq: subsystems and is particularly signilkant at tuning.

1.2.2 Common Restrictions and Approximations

In pnnl:ipJc, (he theoretically exacl response of a g,eneral sCl:ondary subsystem which

includes the above effects c;;n oe obtained uSlIlg stanC·'rO methods of analYSIS on thc wmblllcd

PS system. However, (his procedure presents a number of dlf'kulties The nur:lba or degrees

of freedom (I)OFJ of the combined system h usually rrohibitivc:ly large and the differences in

the nwgnitudes of the stiffness, damping, and mass terms between the primary and secondary

subsystems pose serious numerical problems 148) Also, the analysis and design of the SCl'Ofl­

dary subsystem is usually performed well after the design and analysi~; of the primdq subsystem

is completed and several secondary subsystem may be attached 10 a single primary subsy·stem

Consequently, altt'rnative methods of analysis for this problem are p>Quired.

In general, .,;"cJrchers have used several well-defined approximations and restri.:tions on

the physical and dynamic p:-,'pcrtics of PS systems to reduce the analysis to a simpler and more

manageable form. In these restrictions and approximation... ()!'lC G, marc of the six dynamic

characterisli~< ,,4' nr Jp,"'hiS listed above are not given full or accurate considcwtion, or arc

neglected altogether. For installce, some studies neglect interaction, some consider sl~condary

systems with only a single OOF. anu others assume that none of the l'1orlcs are tuned Many

times, a combination of restrictions are used.

In order to present an o~ganizec1 review of the hteraturt:, four cat,'gorics are l'On:.idered

Studies which wake the non-interaction approximation arc reviewed first, followed by those

works which include the inter:'ction effec\. Then, works which consider mUlliply supported sy~-
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terns an: d ....cussed Finall~, in Sedion 14, sevcral rcn;nI s!tillie, "hKh pr(J\ I(k the bad.·

ground 10 Ih.:: 1I11:ory and mcthlllh of analysIS in this the"" a'e ('xamln.::d

1.3 Utt>ratuft> Sunt>,

1.3.1 ~on-I nfer.clion Studies

.., ("('mnwn)! lls.::d method of an~:lysls "hleh Ileg;cch InkraLtHHl is Ii'll' floor f<'SI'On\L'

sp 'cHum mdhod 111 thl., Illethm! the motH.ns of the supppri po,nts of (he sc("(,ndar) .,ubsys·

tcm ,He Cth:u!atcd I'll' timc hIStory" .malys..s of lhe primary subsyst':m The respon"L' spce1r~1 of

the "UI'POfI Ilollon., ,If(: known a., floor spedra which arc used as input to the sccond,w, sub·

sy'slem Rcalillng thaI th,., nl<:thod i., lengthy allll Iflcftklenl . .,evcra) author., have dLveloped

more (Ined methods of finding l100r .,perlra using the modal properties of the primdry suosy.,·

t.;nl and thl' :!round response spectrum Bigg., and Roe.,set I(,J devdllped an cmplrKal rule for

~mlling the nom spedra uSing thc modal properllCs of the primary sub.,yslenL ... hidl was later

modified hy I\.tpur and ShaD 125) uSIng nlOn: Illathcmatically based prell1!.,e., An alll:rnate

approach based on Fourier transforms .....as developed by Scanlan and Sarhs 1381. SlI1gh 1401.

( hakravartl and Vanr.l,lrke (1)1. Singh 1411. and Vanmarke 1461 II1corporated ideas from random

Vibration th·.:ory

All of thes.: methods have been shown to give reasonable dccurdn for slIlg.k-dcgree·of·

freedom (SDOF) secondary subsY'itcms with relatively small masses and frequencies that arc

not lUned to d frequcnl'y of the primary subsystem. Ito\\>cver, whw the two subsystems arc

tunce to each other. the methods consistently fail. One problem is that the effect of imeraction

becomes important and as pOinted out by ('mndall and Mark [Ill, Singh 1411. and KJpur dnd

Shao 1251. signitiednt error is Introduced in the apalysis of surh secondary subsystems if this

clfet.:t is neglected. The other problem is inhcretlt in the dnalysis. Many formulations (hat were

derived in the above works yield infinite results at tuning. Singh 1421 and Peters, c\. .II. [35]

providc rough approximations for perfectly tuned systems. but these results continue to ignore

interaction and arc inaccurate for nearly ;u;]ed systems, where [he tuneJ frequellt.:ies arc not
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exactly UlInlloent Srnn: 'uning I~ l"Omldercd Importanl and. frequently' t:l'lI..: ...1 In the analy~i~

of sel'tll1uary ~y~tems 121. il IS dear Ihal tht.' ahove 1l(,n-intcraclIon ~tulhc~ arc not adequate for

" proper anal,.~i~ 0' such syslems,

1.3.2 Studie!o ('onsiderinK Intuattion

r\ number :If analyll..:a) mclh()lls have hecil developed to a..:count for the dynaOlIL' 1II1·~rae·

lion between the prlmitry and secondary suhsystem In these mClhm!" tne ..:omblned equations

of mO'lon must bt.' analy/ed wilhout deUlUl'ling 10 ,Kloum for flllS elk,l Crandall :>nd Mark

III J us"tj the exact equations for a combmed 2-DOF system to compute the rool-mean'square

response 10 statIOnary eXlIl.ltion In other studies. approxlmati(Jns arc madc t(l redut.'c and sin'­

plify the analhl', (,f tile comhint:d system Pcntjen and Chopr,l (.141 rcdut.' ... a systcm composed

of an ~·[)()I pl~lI1ar) sut,systcm and a singlt: DOl-' (S()OF! sccond<ny subsy\tem to a series of

.. 2-DOI' ... ubsy"kr·l .... howner. the anaIY'ii'i IS .n terms of 2·[)<1I response spedra. whit.'h art:

not gent:r;l!,y a\ailab:e. ,IOU the n:'iponse~ arc wntbll.ed with the squJre-fOot-of-sum-of·squares

(SRSSI rule whICh I'i Inaewrak at tunlJ1g

Newmark 1331 used a notHln of etfec\)\~ mass rittio to oot"in appr()Ximal~ moue shapes

and frequcm:ic'i and t.'onlbmed modal reSplll1SCS with the con~crvatj\C dhsoluh; sum rule, This

-ncthod WilS imp'ovcd by: Nakhata cl. ill. IJ I J. These two modal approaches have sound

thcoretical ~lases. however a I:erl<lin levcl of a,;~'uracy is rcquired both in lhe formulations for

the modal propcrt-ies and the I:ombination of modal response ljuantities to oblain good apnroxi·

malions for the system response 1481 Thi~ accural:Y was not altJlneu unlil later works. as

detailed ir. Section 1.4.

J.3.3 Multiple ";upport Excitations

As stated l'arlier. a common assumption ir. the analysis of PS systems" that the sCI.'on·

dary subsystem has only one DOl-' or is allacheu 10 Ihe primary subsvslcm at a single roint.

This aSSUlnption is salisfactory for simple systems or ror oOlaining OrJor spectra. Howcver. for

more general secondary suhsy·;,tems, It.e important effect of ml'ltiple supporl excitations must
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rtJ"I:I'Il, .tfC 'uh'':lju.:ntll 1l1l'UI I,ltll Ihe: cljUdlliilh of 111"I.on IlJr lhl' ,e' I>lHI;,11 'Uh'I'h.:m I.' 'I

rrCllS': prol'durl' I, glvcn to determlnc the ddssilkallon of lhe \upporl motion" th,_'refore !he

anal~", hClorne, ,uhjecllVl' In n,llure

1'1 thL' industry, it is l'onsiuen:u standard til d.:cnmpose lhe resp,l:lSl' Ill' the: ''':l'lIl1dar) "4lh.

,nLm into "inerllal" or "dynam,c" elT,.,cl'; and effect, due to "r:.:lati',\: susmil ,upport disl,lall"

ment," or "rseudo-st,.lic tTl"!llll'" /21 However. thl' artificial formuldllOn coml'lil'atc, lire

analysl'. [1arljcularl~ in :he con' ,deration of l'<lrrc!ation hetween thl nun'':rDIlS iJel'omposcd

respon,e 4uantitics,

kecent!y, Lee 126] introduced a methou hased on freljuem:y re,ponse apaly,is In Include

the l'orr,:lalion he tween support motions anll modal rt.:sponse,. lIowever, the freljL,'· ..

n'·ponsc formulations arc not readily useful in the ,malrsls of secondary 'lJhsy,tcm,. (kr

Kiureghian, el. al. (I~, I<}) used a modal appro,.~h 10 develop ;1 pral'lil'al response .,peclrum

method of i.naly·,i., -:-he hasis of their method is the theory or !1I:rlurhiltions. \\hich i~

cXl'laincu in terms of scmnuary subsystcm~ in the next sell Ion

Reproduced from
best available copy
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).4 The Perturbation Approa"h

Th-: [lerturb,ltlon rnelh,)d and II'. as'iOl:latcl! them:, of asymptotIc expansions arl' long esta­

blished l'lOls Df mathematl';s (20! During the past 4U,Jrlcr u;n'ury, appllCall0n., Ilf Ihesl'

methods havc been made In fluid dynaml(s and rcldll'd br,ln~'hes of hllJrau"'-' cnglllcerlnl! D21.

which havc rcsulted in conSiderable dc.c1opmenl., III thc'c lleld" These mdhod- h,,\c abo

been used In ",allow; branche', of mcch;lI1ildl and .,truclural cngillcerlll~. howc\er w.,lemallc

application., of thcsc methods 10 PS s}:sl~:ms ha'i not heen carried out unIt! vcr. rClcnlly

1....2 Put Applications In PS Systems

Perturbation methods arc useful in "(llving differential cqu<ltions ... hid! mlll'lin "m;:'1

parameters. Such equatIOns oCCJr in thc analysi, of PS .,ystems~ thc 'rnall parameter., arc thl

mass. stiffness. and damping terms of the secondary subsystem Salkm;1ll and Kelly 13"'1 were

among the firsl to rel'ognile thiS and tht)' were ablc I,) l'ast a new form to the cquall'lns

deslrihing the PS system using perturbation melhods, With this new formulation. they were

,.011' to dccurately analyze tuned 2-DOr systems .... hieh. 10 prcvinu~ works, WeiI' treated In a

rough. approximate manner, and obtain closed form expressions f(.r the frequencies. These

resulls were sub!'.quently used in an <lnalysis of more general PS systems with a single DOr

secondary subsy~tem using laplace tmnsforms.

Other research work in thi!'. area has used th:: modal approac'h to the ;lr, ,; .. ,i., of PS sys­

tems 136.48, )ll, i 9). Basically, the modal ap[lroach is as follows: Perturha!lon techniques are

useu to obtain approximations for the moJe shapes md frequencies of the L'omhined syslem.

From these modal properties, the modal rCS[lonses ,lfe found which are suhscljuen:ly l'Omhined

using a modal combination rule. This approach is standard in the analySIS of most linear sHue­

tural systems (J OJ, however :'01 rs systems spccial problems Jrc encountered. For systems with

even slight differences of the damping ratios in the ro'~::lary and serondary subsy·stcms. the

mode shapes are complc)(-valued, Also, fer tuned SUbsysicms. some of the frequencies of the



,oll1hllled ,y'klll dlt' ,,'n d"'l'l,\ -'p,I,"d .. nd !h..: '''([I.~,pII:ldln~ mod..: ,h"l'l'" ;,le I..r~t: <I1ll!

r1l'MiI oPI"l"ll' Jfl '1!!11 COlh<.:4LJ..:1l11\, tht: mmLd rt:,p,lIl'.t:" I1lU" I'll' lOl11hlnl.'d III .I "1 <:l'I'" ;iIld

th,'(lI,II"tlll ",lind lll.tIllll'l In lh,.- 1(lllo~IllI!, .. ,unc:y (If "1.'\ <.:r,,1 IL',"111 'Iudll''. h,"t:ll "n pL'I'

lUlhdlltl11 '1'1'1".111<'11' 10 1lI0lbi ,1ll,tI\"" of I'S '.~"ll.'m, '" l'il."t:llh:tI and Ih,' llJltil.ulllL" ,'n,oUIl­

1,'I,'d .lIt' d""u",'d

I{U/lllo..1 .IntI Rllhll1,oll I.\bl "hl,lIl1nl \\1:1,''''1011, 1m Ih,' l11l>lLtll',ol'I'rll," ,,11.11,1:. !!L'I1Lf.t1

I'S ",,,kill". h(l\\t:\L'I, the Impoll.lllt 1l1111-,'1.t",".i1 d.. I11PIl11' ,h.II;III.:rhlll. \\.,,, I!I\ ,'11 "nil .111

.\l'pro\lI11,Ih' :"I',,,I.:I.,'.I(ln Abo. th,' rL',pon,L' ;I'1;i1y", \\.1' 1t1 krllh ,,! the I olHI,'r 11,lIhf"rm

III tht: I!fUdnd 11)"11011, Vohll'h I'. i!enl',.dl~ 1101 d~dilahk \'i1I.i\l'flk ..nd "L'~\nl.lr~ [4HI Ll.II<.:<:r1·

lr .. tt:d thCII dlolh Oil ,,'Il'nt, Vollh "nl, 0'1': (Ir 1\\(, ,Itt.ldlflll'nl !,Olllh, \\hrdl re,tllllL'd thCIr

,11\."1"1'. -\1,,11. th,' llon"!.\'''l.i1 U.11ll1'1Il1! dlcd \1,;1, not glL'n prl'l"l' Irl' .. tl1>~nl 111 :h':lr ',\orl--.

\)<:1 to.lurq:hl.\11 el "I 111\, I\)) "lulllnl ,,)',IL'm, r""lrJL'!l'd lo,ml!-k IHlI 't:1.l1l1Uarl ,uh-..:,-..tL'l1l-"

.llltl t1,l""L:d lbmpmg .1m! ohl,lJnl'u n::allwly I!ood r.:,ulh lor Ihe nwd;;1 propt:rlic, of tht:''': ... \,­

(em" .IIlU lkfl\ ed thL' re,pOn'il' to ~roul1d mollon ......pn'llied 0) Iht:lr I C'I'Olht: "P<'lII.1 ()t:1

KlurL'l!hl,1J1, L'I al 117J c\ll'nde'l Ihl' f1lL'I'lou to at.YOu '1 I for muillplt: 'Upp(lrl CX<'II.llion, h:,

ddtnln~ LII,.,.,·11001 ,pedra whllh .I'L' In lum, of lhl' uo,..·,-orlt:lallon... hl'l"t:t:n \"(1 SIlOI

o,LI\la\O" .I lI.1.:hL'U10 the ...arnL' prJnl.IrY SUO"\''itL'1l1 Howclcr, Ihl .. !all"l approa(h In II'> prc,enl

'nrmul.illOn uot: ... Ihlt aLI.'l nm I lor Inleracllon 1\1 ...0, n(lnL' of IhL' ,lho\,l: Illcn!loneu ... ludic: ... (on~

"dered thc Ill1p,'rl.tJlt La,e 01 mulllpk 1Unll1~

I'rom the abm c work.... It i.. (\e,1I Iha\ the tlerturbation approach i, a po\\crlul tuill in

anal)'1inl!- PS ...yslelTls, I!owc'.icr. ,t .. usc has been Ilmiled and ils l''ll''lbiliti.:-.. haH' on" p.1/ tJally

been ulIltlcd The IlTIportant dfeds Ill' non-lhlsslcal d.lmping. multil'le tunlnl!-, and inlt:ra,'tion

arc )1:1 to he I'-Illen ilCI:ura1l.: con"uerallon,

1,4.3 Plan of Analysis

In the prescnt thesis, the mcthlll!s of perturbJlion Jnalysis Me applied to gcneral PS sys­

tem ... in a logical. systematic manner. Thc cmpha,,, i.. on completeness and Ihc Iimilations

imposed on thc prcvious works dlsl:ussl:d aholle arl: lifted Thu ... all of Ihc imp(lrlanl
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charill·tt:f1S1h:S Itslt:d In SedlOn I 21 art: InL:luded 1"1 the analysis The c4uations of motion .'re

'jet ur for inlcrartin/l, muItHh:llree-of'frel'dom subsystems '~ith fcncr,ll alt..tl'1menl

l.'onliguratlOr. and 'he modal properties an.: oOI,lIncd from a ulmple\ eigcnvalue fOrmul..tllon

whll.'h e\plll'ltly ,Il'counts for n(ln-classical damping and g.:neral luning l'haraden.,llcs of the

combined system Finall~', methods of random \Ibr,ltwns art: used In rombllllng moual

rcspon .cs to mdul1e the etfeds ot cor,clauon hct ...·ecn mO(Jal responses and bcl"c..:n tllc

motions of the altachment points This analysIS pro~'edllre aroears to be stra:ghtfor"~lrd, hoI"

ever, several important rules must be closely and ctrl:;'ully followed tn Ihe plan of analyst, to

insure ill'l'uraq' and l.'olOplcten.:ss in the resJlts

All of lhe an":\sis revolve.s <lround the lPmrlclC t:(juations of motion of lhe combtnt:d PS

syslem The separatH>!1 of the coordinates intn dvnamll' and statil' parts arc not ne(CS.,i,r' .,in'T

all of the ,'oOidinates of the primary and .,c(ondary subsystems al C considered IOgether as

l}vnanltC responses to Ihl' IXtst: mO\lon Also, Ihe behavior <II the surport 1'0'1"" , r':ed nfJt be

explicitly analyzed: this complex effect is in~luJed implicitly in the analYSIS since the rs system

is conSidered as a single dynamiC assembl<tge, Thu." by' treating the PS system as <: whole, the

analysis bcc3mes, in many ways, simpler and more direct. This approal'h .... iI., avoided until

recently partly hecause the aprlicability 01 perturbation methods in such an analysis WilS not

explOited, However, this application of perturbation Mdhnds is t..y no means trivial. and the

studi,,~ dlSl'VS',cd abow in Section 1.4,2 Lid !lot fully and aCl'urately apply these methods to the

analySIS of general PS systems.

The tht:~js I, f)I!:a:lized tf) fOllow a logiClI pliln of ilnalysis beginning witll the slmplesl PS

system wher;: both priJTlary and secondary subo;:'stems have only a o;inglc DOr. .!Od progressing

to the mo'i~ general cast: whLre both subsystems have multiple DOF The reason for this IS

de"l, the JTlost gene~al systems arc ..Iso the most comple", amI many (It' :he important dynamic

characteristics ')f these systems which must be included in the analySIS is ob~ured by the C{lm·

plcxity of the I roblem, Thus, the simplest PS system is c"'amined firs\. where most of Ihe

results of the analysis is formulated in simple closed form expressions, The important dynamic



. I () -

th~' [1C fl lJrr,!!!"n 'li'I'I(),llh .\I~(). th~' "rltclI" for the appli'd\JlJn of till: pl:rturoallCHl m.·'h",h ;HI:

"cre nOl ;tli ade4uatcl~ ,a.:lountcd for 10 previous worll.~. arc inrlwkd in the antl)sis In J

JlI"ihCnld(,lc,lIy prel:isc mai1ncr. 1 his linal rremisc avoids some of the in;Il'L'UraCle" and

IOhcn;nt dcfklenlies found in carlier ""orll.s and provides results thaI arc l:omprehcnsive aod

!hcorcllcally sOL:nd wIthin the . 'pc of the analysIs.

1.S Scope lIInd Limillllions

In Sectinn 1.21. the SL'Ope of thc lype or PS syslems lhut arc being L,lOslucred W<lS

dcsuihed in detail. In th's serlion. the Sl:Ope of the lype of input and the wrrcsp{\nding.

response quantities is discussed.

In the analysis of PS systems presented in this study. two a/lernale formulations deserih-

109 lhe 'lynami:: rHII1Crties of these systems arc presented. One is In l:?rms of the frcquenq

•
response (unl:tion of lhe response of the second"ry Subsystem and the other is a mlldal dcsnip-
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tion based on the mode Sh<tPl'S Jnd ITcquenCles ot lhc .:ombmcd 'ysl<.:m The,c f()rmulallons

"aliI.' applie<lllons In <: li<Jrh.:h oi meth{)lh of d~namlc ,lIlah'"s Attcnllol1 hcrt' .s fOl'used on the

resp,lOo;e of PS systems to statlllnan ,,1 OCh,ISI I..:' Input and responsl' 10 sel'01IC Input desl'f1bed h~

the ground rC'llOn,l.: spcdrum

A method for obl,linlng Ihe pO\4er spl.:etral deaslt~ IPSI» 's prmldl'd ,,!1(! cxpre'Sion" tor

lhe firs. few momenh (If thl' I'SI> drl' deri\ed \1us! pr'K,tic.1i n:"I'(,nsl' I.jUanlllics Gill he jound

from these moments, In..:ludln~ the mean '4U,lll' of the respoll'c Jr.d Its IlOk dens;I!!sc. and

for G,lusslan ('xl'lIallon. lhe .:eslll,rse mean freljucn..:~, distrlhutlon of the pL:ak rcspon,>c (Ilier it

specified duratlwl and its mean .m" ..trlanl'e. and the d'''tflhUl1on oj thc pc,lks ..I' thc rc'>p"n ...e,

Thcsr rcsulls L.r01 the baSI' for the rl' ... ponse ... pCl'lruI11 'wthod for seismll' ;ll\;l!ySls of PS sys­

tems

Once the charadcflstll'S of the l'()mhin,~d s~ stems ,.rl' lh:termined. Ihe respo"sl' of PS s~ s­

tems ~an be found IOf more gene!,,' mpuls ~\Kh as llOn-,tatlon,;ry inpuls and prLc..:dufes for

these extensions arc mllIcat..:d In the II xl. hOI"L'\cr. a dctdilcd analYSIS for sUl'h mputs IS be\ollu

the Intended SL:OPC of thIS report

1.6 Approach of Analysis

FlOm the discussion in SectIOn 1.4,2, it is d..:ar that a moJal l'Omllination rule which

correctly av:.:!)unts for correlatIOn between modes With dosely spa::ed frequencies and is gener,ll

enough 10 analyze non-c1.."si~·a:l~ damped systems IS nccco;sary in the modal analysis of PS sys­

tems Consequently. in the tirst;tep of this study, a modal "',Il~bjnallon rule for stationary

response satisfying these properties is devL'lolled Tne method is .. gcneralilation or lhal for

classically damped systems developed by Dcr Kiurct,hian 115, 161. which was found 10 be Suil­

al)le for classically llilmped PS systems 119). The remainder or thc slud~' follows the Ideas out­

lined in Section 1.4.3, A synopsis or the llpproaL:h or the analysi~; rollow:;:

ChApter Z. Mod.1 DKompositlon Mdhod for Stochastic Response of Non-t:lassically

Damped Systems
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Bascd on the (omp!c:l; mode shal'c' ami In:4uenl'lcs 01 nlln-dd',Il'all~ lldmpcd sys­

lems, ~t'ner,d formulae for thc n:sponse PSI) and its moments dre derlvcd The expr<:s­

Slons .He III tcrm.. 01 Ihe noss-,>pC\.'tral mom<:nh b<:t I'Ct'n thc mode'> 01 the S~ .. Icm (om­

p.trIS0lls MC O1.u.k \\,lIh rt'sUlls IOJ da"ilally Jampt'd ,~'Ien;, Jnd l'IIl'ed form SOlutIOns

lor tht: m'Wlcnl,> arc obt'lIneU I'm I'h,h:-nolSt' Inpul I hew rlsult- .He USt'J III fllrmulalc

a rCs\'oI1SC ,>pcctrllm mClh{.d lor sCI,mil ,111,.1\ SIS 01' ~t'rh: r,II '>y,I<:01, II rth 11(J!)('IJ'Sll'.1

Chapin 3. Anal~sis of Ihe BI!'ic l-IlCH' PS S~ ..telll

rhe haslc 2-1)()1 ..~'>It:m " tht: s.mplest I}S S\ ,tern alld lllnSl\(o, 01 a "DOl scwn·

J,I[\ sub,~'ten: an,Kht:u 10 a SI)OF pnm,lfI Sl<b'>YS!LlI1 Th<: frcllUt'nll InpO/hC' ;:jJprl1iil'h

IS useu \0 dCrlvc Jllura\\: do'>ed form e).;lfCSSlons for Ihe PSI) allG it, IiI'" thrce:

mom<:nt,> Aftcr ,I ciHcful <1erl\allOl1 ,tilt! Inl'e:stlgation of the mode ,>h;!()l'S and Irelluen­

c'les, hoth tuned '!TId uclunctl system, ,Ire allaly/ed using the mllodl dt'complh't1on

approach ,lOll a Criterion lor tuning I'> l11alhematlt:ally denved t\ Similar ,lIl,dy,is for \,'r~

IIg.ht eouipmellt IS carned Ollt anLl a malhem;ttil';tl lTlkrton for L1ecounling. between the

prlnl.,r~ ,Inu secondary s~bsystems is dCflvcd

{hap'er 4. Analysis of SIlOF [quipmen. .&.Uachl'd 10 MilOt' Struc.urt..,

(MDOF/SUOF PS ~yslem)

The met~,Ol.ls developed for the analysis of the 2-f)OF system arc genemlilcu for

MDOF/SDOF systems There ;tre morc complex problems to he handled such as multiple

support excitations and mullJplc tuning. however the framcwork estahli ..hed lhrou~h the

perturhation approaeh etTedl\c1y solves thcse problems. as ment;oneLl C'lrlicr

Chapter 5. Analysis of MDOF S~ond.ry Subsystems Attachl'd to SI>OF Primary Sub­

systems (SDOF/MDOF PS System)

The results hr rv.')OF/SDOF syslems are found tn be d(Jsel~ related to tho,t' for

SDOF/MDOF systems, This relatinn is cxplorcll anll utililell to derive l>xpression~ for
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the respcnse of SDOF/W [)OF systems bascd on the results of Chapler 4

Chapter 6. Analysis of Moot- St-condlQ' Subsystems AUached to MOOt- Primary Sub­

systl'nl!' (MOOF/MOen PS System)

All of the results derived In the prevIous chapters i'mOl th\: l,hCI,rC\l\:al "<lckground

for aJ1~IYling this most general <lnd wmplex dass of PS sy"tcOls, By adhering t'.l the rules

laid out in SC~'lIon 143. lhe analysis enwmpasses all L. the dynamic characteristics

des~'ribcd above Multiple SUPPO;! wntigurations. general tuning. nOrl·c1asslCal dampmg.

and intcraction arc Implicitly induded in the equatIOns of mOllon and the correspunding

eigenvalue problem. and a!1 correlation cffects are exphcitly an'ounted for in tile combina­

tion of modal responses.

Numeril:al examples arc presented for each of the ab(lve types of PS systems to

illustrate the acruracy of the proposed methods
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('JfAf'TFR 2

MODAL DECOMPOSITION METHOD FO~ STOCHASTIC

RESPONSE OF NON·CLASSKAI.U OAMPED SYSTEM;")

2.1 Introduction

In dynamic: analysis of linear syskms, suc:h ;IS s[ruclur(;!> suhjcckd to seISmic C\Cltat:or.'>,

it IS c:ommon to assum(; that Ih(; syslem is dassieally damped, Lmkr thiS :1',sUmpllon, [he

euualions of motion c:an be Innsformed into a set of independent modal C:l.jualions usi.1g thl:

real-\al~ed eigcnvcclOrs and eigenvaJ Jes (If the undamped ,>y,>lcm 1101. 1I0wc'va. in rnO'>I real

systems the modal equations arc coupled hy the damping matrix 1491. thcsc '>1 "tcnh arc detined

to be non-dassic:ally dilmped. In pra,·til'e, non-classically damped system., can oe approximaled

hy a dassic'ally damped system, and the results are usually of sufficiellt alTur,tCy One common

approximatiun b to neglect couplmg damping term; in the m<,dal cQuatlo"s. There aTC 1tl1;'OT­

lanl situatlPns, however, where thc: effect of non-dassil'al damping is essential and tr.ust he

induded in the analysis 1491. A~ incic:ated in the introduction, this effect j:-. founll in PS sys­

tems anu numeric'al examples are rresented in this chllptcr.

A dassiclll method for analyzing non-classically damped systems is 10 usc modal decompo­

sition employing the complex-valued eigenvectors ond eigenvaiues (21) This method has been

used in certain applications of detetministic dynamic analysis such as in soil-dynamic:s where the

effect of non-classical damring is significant. Investigators hav·~ also studied response to ran­

dom input. Caughey 18J and Masri (30) considered ncn-stationary mput and r~sponscs and

Debchandhury and Gasparini 114) u~ed a state space approach to the problem. Many of the

results of the analysis of PS systems in the succeeding chuj'ltcrs Cdn be used in the above men­

tioned methods for finding the response to deterministic or non-stationary' random IfIpClt, how­

ever the final results are relatively complex and are not obtainat-Ic in dosed form.
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Singh [..3J applied the modal deL:Omposition approach to the anal J ,i., .•1 ,he .-esponse of

non-classically damped systems and wa., able to denve a response speLlrum method for such

systems. However. his formulations are ;n terms uf a sc' of four s;mullaneous equations which

al e difficult to interpret physically and are unsuitable for analytical purposcs where dosed form

solutions arc sought. In this ch<lpter. a rlcdal de..omposition approach is usee' to develop an

ahernate response spectrum method that is mor~' simlJle .Il1d direct thar. Singh's method in that

the response quantities are given in dosed form expr,:sslOns directly In terms of the modal pro-

perties of the system. This formulation IS particularly well-sullcd for 'he analysIs of gener,tl PS

systems which is carried out in the succeeding chapters. Another advJnt<lge of this method is

that a full probabilistic description of the response is given rather than only the mean of the

peak response as given in Singh's work

The eli1phasis in this study is 01" a second-moment characterilation of the slalion1ry

response, I' (f I, of '.lon-dassicJlly damped systems und~r random eXCilJtion which IS given by

the olle-sided power spectral density function, G" (wI It is wdl know:'l [1),44) that. most

response qu~r.tities of engil]cering interest can be expressed in terms or the first few spectral

momer,ts

c<

A",-fw"'G"dw, m~O.I.2.···.
I

(\)

For exampll:. ~" and A, are the mean squaTe~, of the response and its time-Tate resp~ctiv{;ly

(28). If the excitatiun is Gaussian, as is assumed for most engineering applications. the power

spectral density provides a complete characteriZation (If the reSJlonse process. Many additional

response quanlities in that case are given i~l 'erms of the spectral moments A",. for e:-:ample.

w-.J~clA.o denotes the me..n frequency of the response process [281 and l)z ~(/(A.IIA,I.

known as the shape factor. is a measur(' of the narrow-bandedness of the response I,ower spec-

IraI density shape [44]. (j) ranfp.s b,~tween 0 and I and decreases with increasing narrow-

bandedne'is.l The thrf'~ moments All, AI. and A: also describe several properties of the

envelope process associated with the response (29). L':;ing the envelope pmcess, expressions

have been derived for thf' distribution of the peak response over a specified duration 1451 and
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its ml::an and vaTlance \13. I SI in terms of these three moments, These expreSSion, art: used in

denving thf' r~sponse spectrum method for non-dassll:ally damped sys;ems, For f<Jtlgue stull)

applicatIOns. the moments ).", A." and ~q may be used to Hnd tht: distribution or the pe<Jb of

the Icsponse \71.

Expressions for the spedral moments of the response of it multi-degrce-of-freeLlorr. sys­

tem subJeded to stationarv input have been derived II SI for the case of c1assu:al damping using

a modal dewmpositlOn approach. In this chapter, these results arc generalized to systems with

non-classical damping, First. the basic equations of motion and thea modal coordin.ltes Jre lad

out usmg standard methods uf analysis. These equations arc Integrated and solved In terms of

Duhamel intclFa!s and their derivatives. From this formUlation. the au\o-corrdation funltion

of the response prcKess is obtained which is used 10 derive Ihe \lower spec!TJI demlty function

and ils moments in terms of the modal properties of the original ","stem Attention is ff}(;u-:cd

on the important I:asc of white·nois~ input. for which e)fact dosed form expressivns and simpie

first-order approximations are derived. These expressions are subsequently useJ to formulate i'

response spectrum method using the theory of stationary random vibrations (22) Throughout

the analysis, results for non-c1assil:al damping are compared with rn.:.ious results for dass;l:al

damping

Example studies for simple systems have shown that the efft'ct of non-classical damping

can be highly significant in two types of systems: soil-structure systems, where the difference of

damping ratios is very large; and nearly tuned ~Quipment-structUlt' systems. where the mass

ratio is small and the damj.-.ng ratios are unequal. It is found that in each case as the difl'cr.:nee

of the damping ratios of the two subsystems inc, eases or the mass ratio decreases. the classi­

cally damped apt'ro"imation 10 the response becomes less aCl:urate. Numencal examples for

several typical systems are presented which indicate significiint errors associated with ncgleclin~

the effect of non-classical damping

The results of this chapter form the foundation of the modal analysis of PS systems in the

remainder of this study. The various formlliahons derived here which are in terms of th~ mm-
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plex eigenvalue analysIs of the system art:; particularly well-suited t" the analysis of general

multiply-supported, multiply.tuned secondary systems.

2.2 Response to Base Input in Time Domain

Fir\;t. the equations of mlltion are laid out anJ, for the sake of review. the solution is

derived for dassllally damped sy';lerns Let M, l'. and K be Ihe mass, da~r,ing, and sllffne,s

malril:es of an lI-degrec-,1f-frcedom. visl:Ously damped linear system. For a b...se an:elcr,llIon

i, ftl. the equatiot! for the $ystem relative displacement response xlt) IS

Mx + ('x + Kx = -Mr.\',fr)

wheH: r IS the iniluence vcdor that ((luples the ground motion to the degrees of freedom of the

structure. The mode st;qllS•• ' and natural frel.luem:les, W • 1= I, 2, ... •11, dsso~'iated with

the undtmped system are found from the follClwing "x II eigenvalue problem

(3)

If the damping matrix (' i~; onhogonal with respect to the unJamped mode shapes. , the sys,

tem is said to be claSSically damped, and the equations of motion can be del:oupled into 1/

modal eQuativns. This is accomplished by using the transfo;mation x-CPu in EQ.2, where

4»-'.1.: ..•,,], and in turn premultiplying that equation by. i, The Ith dewupled modal

equation i:> of the form

ii, + 2~.w,u, + w,:1/ = -1',.\',.\1) \4)

in which r,=lt/I/Mr)/M, is the modal participation factor dnd t;,-.,'C.'/2wM, is the

e~timate(j damping r<ltio for mode I, where M, =t/I ,'M~, is the modal mass. The homogeneous

solution of Eq.4 is of the form expls, ~) where

wp, - w,JI-e (5)

and the solution for an input .\'c (,) is given by

I' I

u,(r) - --'-Jx,rdexpl-t,w,Cr-d]Sinw/I,(T-rld, = --I',h,(.)
W'" 0

where h, Ir) is the well-known Dul.amel integral

h,ld - ._J-ji,Ir)Cxpl-t,w,U-rl]sin'''fl (r-T)d7
fl'll/ 0

f6)

(7)



- 18·

In general. the response quaOlity of interest is a linear combmatlon of the COmj10nel1lS of

Ihe displacement vector x.

Ii ,

1- q1x - I:q1eP u - l:q/eP I' h(" = rlbh(r)
I I

where q is an ,,·vedor of l'OnSlants and lb =:q'cPr is kno"n a~ the cllcctivc modal partlcipa-

lion fiKlOr.

For the general rase of non-classical damping. the abovc modal \,;quatiom cannot bc usc(1

and thc dassical mat;) :matical approach 1211 to solve E4.2 is to reformulate it into il lilsl-order

1n·dimensional equation

(9)

where.

(10)

The assocIated eigenvalue equation is

1111

Due to the symmetry of the matrices It and B. the solutions 1•.I. s I occur in conjugate pairs.

From the definition of ~. it is clear Ih'lt. is of the form

( 12/

Also. for the sake of comparison with the case of classical dampIng, the following notation.

which was also used by Singh 1431. is introdl.ced:

where w,. WI>" and t, are determined 17y

fIJ, -Is, I. ~,= -Re(s,l/ls.1 . and fIJI', - w,~'

(13)

(14)

In summary. for non·c1assically damped systems, ;he eigenvalue probleM is complex and

of order 2n and is given by Elj.11 Th.:: resulting mode shapes and frequencies 1., ..\ I occur in

conj'Jgate pairs and can be expressed as in EQs. I 2 ...nd 1.1 For non-classic'll di·mping, eP. arc

comple't vectors, in the special case of classical damping, eP are real.
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At this point. a physical interpretation of the meaning 01 compl;;x mode shapes and fre-

quenc;es is In order. The terms wand f are the natural frequencies and damping ratios of the

system with the same meanine as for classically damlled systems. The ..:omplex values lor the

c'Jordin:ltes of a mode shape lead t(· different phase angles of the free vibrallon harmonic

n.otiflOs of thl' various degrees f'f freedom of the system [2 J1 This l"Ofil'ept is illustraled in

rlg.2. j whic'h shows J 2·DOF system wilh a mode shape given by fbi = I I , ) I and period 1'1

at different time intervals Juring free vibration. It can he observed that the motion of eal'h

degree of freedom IS out-of-phase with the olher

For a classic'ally damped system, hj2 was reduced 10 " decoupled modal equ"tions hy

lTansforming to modal coordinales Likewise, tor non-c1assicall,' damped systems, Eq9 can be

reduced to 2/1 dccoupl.:d modal equations which occur ill mnjugate pairs hy using the modal

wordinates I obtained from the transformation l~ci>, "here ci>=[~I~,' ... 4»", The IIh

modal equation is

.4 :: + B: =. 'F,'" (I)

or alterniltively

=: - s;: = f X, <t)

where

A. = 4»,'Aj,
B, - 4»'84», =-,\, A

f, - .,'rlA, - --.,'Mr/A
The solution of the first-order equatIOn Eq,16, is the integral

,
• - ,,JXg(T)exp[s, ({-rl]dT

II

( 15)

(16)

II 7a)

( 17b)

117cl

(18)

which is analogous to EQ.6 for classically damped systems. Combining mfJdal response quanti-

ties as before, one obtains

v - q'x - I:q'.z, - 'ib.jx,,(T)explsU--rlJdT
,-} I~ I n

where

(19)
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I> ~ Q'lfI,

Sin• .: band S ()\;lur in (onjugatc pairs. ~'II) " alway~ reaL

(20)

~inary Ir. r,l(:t. for su~~h systems

A .~ _• .i- B = -l'l~ 'Kff» -1:lfI'MlfIl = l~.=.:',· ]M (21)
I ,\, -I,

wher..: M =lfI 'Mff» IS thc mnvcntwnal modal mass, llsing EQ.13 lor I and SUbsli1ullflg Ihe

ab<,\<? result in the expression for h yields

(22/

for systems with das~ical damping

Up to thi., point, the .malysis has been a rcvie\'>. and all or the abovl' cquatlOns can be

found in 'tandard tcxtbooks su(h as Ilurl} and Rubinstein (21). lIowl.?\ier. the subscquent

treatment of these equation i., open to invention, Smgh [43J IJscd a straightforward m.'thod of

analysis which led to a set of four simultaneous equations in the Clerivalion of the p</wer spcr-

tral density function of resronse to stationary random input. lIere. these e4~atl(lns arc

expressed In terms of the Duhilml.'1 integrill. which is helpful in deriving simpkr and more

direct l:"prcssions for thc PSD and its mo;m~nts,

Using the fact that band s occur 10 conjugat< pairs, and ktting /),=/) .., and S,=S ..

where the superposed bar denotes the complex conjugate. Eq 19 c.m be wrillen in the expanded

form

dr) - i{b.jx,ITleXPll-e,w+wp,l(f-TlIJr
,I (I

+ bj x, (r)exPI(-~'W'-'W/l)(f-rl)dT}
jl

= 2t{-hnb.j.:< (Tlcxpl-{ ,W, (I-T»)sinw" (r-, )dr
, I 0

+ Reb.j,<IT)expl-~,w,Ii-Tllcosw/l,lf-r)"Tl L.3)
Ii f

For the special ':ase of classical d:lmping. it wa:. noted thal h, is pure imag;nary. therefore only
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the !irst integral term apPC;Jrs III Eq.2J, which is In agreement with h.~8 Fill the F,cneral case

of non·dasslcal damping, a second integral expression with d cosine term .lppcars in Eq.23

whil'h is due to the phdse differences ari!;ing from the complex mode shapes. Th(; first Intcgral

can be directly exprt~ssed in terms of the Duhamel integral. The appearance or the cosine term

in the second Integral suggests that this expression can be obtained in terms of the derivative of

the Duhamel in!cgr<lJ

,

Ii ttl - f.\',tT)eI\P(-~ (IJ (I-rl!cosw" (,-ddT

"
Substitutl/Jg inlO EQ23 ~'iclds

~ w h III 1241

dO"" 2i{-lnr Iw,. II Itl) + RefllJiltl+~ w II IIlI}

- i Ia II It) + (. /, (Ill
I

where,

a - '-2R-:(b)'I, (~2Re(bJ.

(25)

(16)

This formulation is l.:onsiderably simpler than the earlier expression, Lq.2J. It Cdn rC<lJily "I:
evaluated in the time domain for deterministic input using seven.l well-known nurr.'~m:al

methods for evaluatin~ hIll and h. I Il (5). It is also in a form suitable fur ra'1dorr. vibratiun

analysIs, a5 shown in the nel(t section.

Before continuing. several important features of Eq.25 should be pOlnll.;d out. For cJassi-

cal dampmg. we recall that fl. - 1t/J)2w/I, so that (,=0 and 0.-1/1 .• and Eq.15 reduces to Eq.8.

as expected. Also, a rehltionship between c, can be found by observing (hat tor an impulsive

load:( II)-I)( I), wher" ill t) is the Diral.' delta lunct;on, all displacements must lx' zero

immediately after start at time ;-0'. It rollows that 1'10' )-0 and !J, 10' )-0. Also. it ([). )-1.

as can be seen from Eq.24. Substituting into Eq.25

dO') - ~{Q,h,IO') + (,h,(o')} - ~(, ..".0

This fact ~ill b.: Irtpartant in ~ubsequent developments in this paper.

(27)
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2.J Re~ponse to Blse Input in Frequency Domain

In this sel'tion the autocom:lilllon fum'tion and PSI) ,Ire derived The slmp'ICII} pf the

expression 1'01 the response, bl25, alh",,, ... I'm the derivation of rlo~,:d lorm re~:Jlts with ph,sl-

l:al interpretatIOns This allo\I,' for a grcater insIght in the hch,,, lor of non-~\.t""Kally daml'\:tl

system., amt is partil:ularly ,ulteu for the anal\'sls of PS systems in the not l'haptcrs, If thl'

ground motIOn ."', (II IS a stationary random pron'ss, the autol:orrclal'on fUnl:lion of the stalion-

ary response 1,1 f) l:an be obtained as follows'

R, (T! - l:[df)((t+T))

rr{aa,l:lh (tlh,(f+Tl) + a (/:'Ih ({)Ii, (f+Tl)
I I

+ at I:'\li I tlll, (f+TlI + c (' L;.I; It)}i, (I+T)l} (28)

\l i!'i well kn!,wn 1281 that If R,ITl=='I:[h(f)II,(,+r1j represents the I:ross-wrrcl<ltion funulDn

of 'J II) an,! h, (", thcn

fl/l ({)h,(f+dl = R' ,IT)

F(I~ (f)h,(f+Tll '"' -N','d

Euiltlh(f+TI) - -R" ,IT)

(29a)

(}9O)

<29cl

where a pnme Jenoles differenlialll,n with rcspel:t 10 T. Thus the autowrreldtlon function

simphlic', to

R ,(T) = rrla a,R,IT) + a c,R,IT) - a,c R' ,IT! - (f,R" IT)!
I, I

130l

In order to find the power spectral density function of the response, the Fourier

transrorms or the above expressions musl bl.: derivcd. Tile transform (j,l(,,) of th" \.'fOSS-

correlation rum:tir R,t IT) is the cross spe,:tlal density or h, If J ,lnd II (f) ami IS given by

G,/Iw' - (i"lwlH,lwllf,(1II1 (3\)

where /I. (w) is the rrequenl:Y response function for an oscillator of frequency wand damping

II (w) - (2)
w,:-w:+21~,w,w

and Go(w) is the power spectral density rundion or the input process ''':, If) From the basic
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properlies of Fouraer Iransfonr.s. CfwG,lw),R' ,Ir)) and l-w,'(i,(w).R' ,IT)) are Fourier

Iransfornt pairs Thu~. takmg the Fourier Iran~form of Eq.30. Ihe pOo...er spectrill dp.nsit} fune

tion for the response ,,(:) is pbtained:

G,,(wl - I.r.IC, + fwD, -+-/.I,.'t.IG,(w)
1,- I

wl:ere,

C - aa,. D, -Ia ',-a c). and 1:', == C(

l)J)

(34)

This io; a generalilation of the powl:r spectral density functio"l of a system with da""li:a l damp-

109, As was demonstrated earlier. h, is a pure Imaginary n\Jntber for classically damped sys-

tems; therefore. (-<.~O. and D ,-f,=O The remaininv .:oefficient (', is e\la:uated Jsing

EI.l20 and Eq26 It turns out for this l:a~e that Eq,33 redu,'e~ to the well known power spectral

dt:nsity function for c1assil.:ally damped systems [10.151

G" Iw) - I.I.!JJ t/J (i,lw)
, " I

f3Sl

The difference between the abo\le and the more general expression in E433 tor "on-classically

damped systems is the inclusion of extra terms which arise due to the phase effects in the

modal responses,

2.4 Spectral Moments of Response

As stated in the Introduction, most statistical measures of the response that are ('of

engineerinp inrerest are obtained in terms of tne first kw spectral moments A". i,e, for

m-O.1.2. and 4, Substituting [q,33 into the integral in Eq,l. the fo\;owing expression is

obtained for the moth moment

/I "

A", - I.I.IC,ReA". I - D"lmA"" i'l + E"ReA",. ,', ,I
,. I," I

where.

f~ c_

A", 'I - I w"'G"lc.Jldw - I fJJ"'GlllwIH,/fJJ)H,lwldw
(I ,I

cue cross spectral mom~nts associated w:th h, I I) and hi I fl,

061

(37)
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For the case of "a,)!'ii,al damping D, ~ /; ~O ~n(J Eq.36 reduces to

A, - I:.I:.i/J lJJ RCA"
I, '

081

whl~'h IS the 'Jme formulation derived ~,\ Der Kiureghian i ISl, The phase shift m the eigen-

vel'lOrs caused by non-classical dampmg results in the dppt..aram:c of higher order moment

terms in Eq.36.

The next tOPll' to mnsider is the imporliJlll question "f convcrgenl'l:: of tilc Intl.:gral m

E437 In previous \',ork. 'hiS (ppic did nol re,cive adcqw!lc mathcmatil'ill L1arifi"ttion. and

divergent exprcssl'ms were left unresolved /e,g .. V,mmilrkl:, Ref. 44, pp4J 7, 1:4.441 If the

power speClrill density function IS band limited. I.e. if then: IS il CUlotf frequcnq (0" sUl'h that

G, 'w)-Q ior ali frcquenl'ies w greatl'r thun w", then it is dedr that the integral for the noss

speclral mon~ents in Eq.37 mnverges lor all pr,sltive values of /1/ Thus the moments A .

which i!'i a sum of lerms involving A" " A" . I ,. and /I ",': , can be found fOi <tny order. How-

ever. man)' theoret:.!1 power spectral density functions "re not band limited. I'm large "', the

Integrand terms H. (w) and II, (w) have the follOWing behavior:

Rl:W" H (w)If,'(u) - (I)'" ~

Imw' U(wIH,(w) - w'"

(J9a)

I j?bl

Since the enltre inte~rand must be of order smaller than w ' for large w to insure l'(lnw~rgenl'l',

it follows thilt the integral I'm A", will ccnveqze only If Ci,,(wl is of order smaller Il'an (n I" d

for w-oo , For insta.1ce, for wnitc·noise input. wt,ere (i"(wl=Ci,, is a constant. ,>.,,,,, will wn-

verge only for 111<3. It appears that for this i.1p'Jt. the moO'.:nts A" from Eq.36 would only

exist for m=O. Howc\er. for dassically damped systems. ~." is a sum of terms only :nvoiving

An". so the moment exil)ts for m=O,I, and 2. From intuitive co~siderations, the I)ame

moments which CKi"t for classically damped systems should als(' exist for nO;1-c1asstcally

damped systems. In other words, if m-"'I' is the highc~t exi.,thg order fN Ihe cross spectral

moments A", ,,_ then "'" should also be the highest order for the moment /I" for both dassi-

cally damped and non-classically damped structures. TLis hypothesis will be proven, presentl}.

Eq.36 can be rewritten in the followir.g form:
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} + j Re±I.t. ,w'· '(j, {w)aw
II II

(40)

If;,,, , L )(ists. thcn ImA ".. ' also c)(isls from the relatllJns Eqs.39a, h Thus. only the last term

in Eq40 must be tested for wnvergenl·C.

The p~()blei':l is t~at the summation and the Infinite integral cannot be interl:hanged: the

ft)rm of the exp,ession above (;onverges. yet the alternate formulation with the sumrP.ation ou,-

side I:,e Integral diverges This same problc:m ano;es in the p;cviousl} rcferem'l'u equallon in

Vanmarke's study The problem IS solved by rewriting the Integrand term (;, (w) as a sum of

two l'omponents. one Nhich vanishc!» under the sum~ion and the other. defined as a

modified power wectral density (j' ,(w), whld! converges when the summation ard inlegral IS

interchanged.

First, (j' ,(<t.) is found by subtrarting the dominant term hom GII(w). Since H(w)II,(w)

tends to w • for large w. the dominant term is simply tJJ 4(i,,(w). hom partial fraction expan-

sions. it can be shown tha: !he dilferencL,

(j, (w) - w 4(i .. (w) - w "GlI(W) for large w \~·I )

The above could be used for the modified power spectral density G'" (w) except that the second

term diverge~ at w near O. To corret't for this. !he following def.nition is use:~:

where w" is any fixed, arbitrary positive f,eQIJency. The corresponding 11 ,Jified cross-spectral

",oment is

,\',,/ - J ev"G',,(w)dw

"
whilh conver~es because of the rel.llion in EG.41.

(43)

What remains to be shown is that the above expression for A'm. c." can be substituted mto

EQ,36 without changing the value for A",. The last tl"rm in EQ.40 can he ·ewritlen

] Rei. t E"w'" "G" lev) dw
.. 1-)/*1

~(I ••

- fReI.±E"w'''I·'G·,/(wldw + JRettE.,w.. ·~[G·/(ev)+w ~G,,(wlldw
fl / .... 1J"'-) '''tI /""'-1/-1
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(44)

Sin~e I. I. f . I (' I c, - 0 Isee EQ.27), the last integral in tht: abo"t: IS lL:fO. and I: has
I :

been ,ho..... n thaI the remaining expressIOn is well-defined. Thus, tht: original hyputht.:sis is pro-

Yen, and by mmbining the aboye with EQ.40, the tinal expression for the mumo.:nl A, is

obtained:

A, = I.I.tC.RtA.. - D,lmA" _: , + 1:,ReA', _.'
I

(45)

whi~'h exists for the same values for 11/ as the correspondJn!! expression for l'IassiGJII) damped

sy'slems. EqJ8 Note the similarity in form of the expressions in Eqs.45 dnd 36. In the folJ;~w-

ing. the preceding eQu<ltlOn will be used in general with the undersl,tndin~ thaI the primed

moments need be used on" when the unprimed moments do not exist.

The above expressions for lhe spectral moment- of response afC gcneral. Also, the form

of these expressions allow for further analysis anO insight into the properties and uvn<lmir

response of non-dassically dam pea "ystems. The evaluation of ;.... has been sep<lr<lted to two

independellt problems: Ihc calculation of the coefficients C" D" and E" and the dctermina-

tion of the ~encri, cross sp.:ctral moments A", The first problem is one of dynamics and is

con,,;:rncd entirely 'Nith the rropcrtlCs 1)1' tile structural system. Using tools d dynamic

an:t1ysis, this problem ran be routinely SOlved; for PS systems. procedures arc developed for

finding analytical and doscd form solutions in the remaining chapters of this study. The second

problem is one of random vibr..ttions and is vJl1cernc<! witi, the properlics of the IlIput excita-

I!On and the frcquencies and damring ratios of the system. For any stationary input prol'ess

with power "pcctral density function &'..(<0.), Ihc generic integrals in EQs.~7 and 43 can be cilku-

lated eilher by the method of residues, I,anial fractions, or by numencill tntcgration. Bclo\\,

closed form solutions are found for these cros:;-momcnts for the important case of white noise

inp'J!, Thcse results form the basis for a response spcctrum methocJ for seismk response of

non-classically' damped systems which is presented at the end of this chapter.
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The e,,~r~ssion in Eq 25 ~an also be used for the study of nonslalionary mput with results

tll.lt are more general dnd complicated thdn thuse for stationary input. C1c~rly. the generic

cross-corr:latlOn function R,(II.I) = Flh('llh,(,.,l), and ih parti<ll derivatives need to be

evaluated The resLJII~ of such ar approach would be 111 essence equivalent to the me~hod of

Debchandhury el. al [14'. However. thl~ formulatIOn may yield simpler and mor~ tractable

results. This study will be reported in the future.

2.5 R~sponse to Whlte·Noi:-if Input

A:tenlion is drawn til thl: evaluation of s~ructural ll:sponse to while-noise input, where

G,,(eul == G" is a const,tnl TI-:s spcl.'ial case is important from an analytical viewpoint and IS stu-

died rn most random vibratIOns kXlbooks [281 The results of the analysis for ",hitc n\J,se

input arc generally Simple to interpret and are helpful in the study of more general forms of

inpul. In additio:1, 10 Ihi" ~.tudy, the results for the response to white noise input form the

basis for the response spectrum method w be presented in Se<;tion 2.7.

Using the method of partial fraclions and method of residues. closed form solut!l'ns for

Eqs.37 and 43 have been obtained for all cross-spectral moments re:luired for determining the

first three spectral moments All. AI. and Ac of the rc"p( ;lse process. It is noted that moments

higher than A., for the response to white-noise input dc. not exist

The cross spectral moments for response to white·noise input Gil arc

{ }
lTrGIl

ReAli" - w,t+wJ,~

ReAl 'I - {I(w,~+w;,)! +2w,w ,C) ~, tan

If!.:.. " w, } (jll- (w;-w;Hog- -,-e, W, fl."

(46a)

(46b)

(46<;)

(46d)
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1m>.,

where,

, ,_ w:
+ I3w;{,+)!.J,w,e -w,-~ -4w~-(w ~,+w,~ ))Ttan

, i ( j ~ .': : :) W'} G"r -2 -w.+w,+4(w,t.,-u',f) log- ~
WI 1\11

{

~ 4 } rr Gil
! w,-w.-4w,w!(w,~ -w!~')(W'~J+w,f.1 2K,

ReA'" {W ~,lw;+2w:wi--w41 + w,~!I-w;+2w:w;-+w:)

" "} rrG/I- 4ww,«J),L+w,f)(w:~:+w;C) -k
"

/(" = (w,:-w;l' + 4w,U),(w!~,+w,~,)(w!e +w,t)

{J, ... ..jl-g,:

i46d

1460

<46g)

(4611)

(47a)

(47h)

For the calculation of RCA' \. J and RCA', 'J' thc transition frequency w" used in Eq.42 was sel to

1 ;md 1\ respectivelY, Note that results lor these cross-moment terms w0uld be diffr-"nt for

other selections of WIl, but the fina: result for An' would remain unchanged. When the indices I

and j are equal, the imaginary parts of the moments hecom(.' 0 and the real roms reduce to:

'TrGIl

Ao. u ---l
4~,w,

". _17'G~_2_tan I~
AI . " 4t ,w c 17'{J, t I

'Tr Gil
11.:"'--41:

~1<Al,

I~
t,

(48a)

(48b)

(48cl

(48d)

(48e)

Good, simple approximations for the abo"e expressions for the c:ross moments can be made if

the damping terms are reasonably small. The error will be of the order C and e, C g. if the

damping is about 20'Yi, the error is only 4%. The approximations are
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21TG" [ IRCA"" - -K- w.~ +w t,.,

21T G" [ I , I ,10 )
RCA: ! ""~ 4(w,+w)'(~ +~,) - 21T'(W -W:)JOg~

1 ~ 'l ~. -;1ImA I "" ~1TU~ -~, +W,
, K" 2

21TG" [ IReA.' ! "" -K.- 1.ll},+W,( WW,

"

21T G" [ I " , w. w, w, 1ImA, '"" --- -(-w·+w·l,w +w ) - --(w i +w l )Iog-" K" 4 . , ., l' '. , ,- W,

21T Go { I [4 ,. " '4 I-K--;- 4 -1U!~ ,+2w,/I'I~ ,+3w:w; (~,+~ ,)+2w,w,~ ,-W, (

+-.!-l-w4+w:ll()g~)
41T w,

ImA', "" 21TG" [w:-(~)
, 1(, 4

, 21TGoJw,~ 4 ' I 4 Wit, 4 " 4]
ReA, "" --t--(w +2w'w'-w ) + -----(- IV +2w'w'+w )"." K" 2 ' ". 2 ' "

(49a)

(49b)

/49cl

(49dl

(4gel

/49f1

(49g1

(49h)

ReA'l", ReA I.", and ReA :." were previously given in the earlier report by Oer Kiureghi~n

[15] for systems with classical damping, a'i they art the only cross moments needed 10 evaluate

A", AI, and A1 for such systems. The results for ReA o... , ReAl,,, and RcA,,, were also previ-

ously known [15,44]. The remaining solutions shown above, which are needed for non-

classically damped systems, IIrc new results.

For ~urther insight into the nature of the above terms, the following coefficients are intro-

duced:

PIlI.II -

pi,,,.

"'11'.// -

ReA",.I!

JAm./I""""
ReA'", .. j

..J A. '."JollA.' m If

ImA'lil1

~"'I'J

(SOa)

(SOb)

(SOd

Note that PO'i' P :.Ii' and {J4 ... represent correlation coefficients between the zeroeth, fir'll. :liId

second derivatives of 1;,(,) and h,(t). respectively, The coefficip.nts, Po.", P' .. ,! and 'II", are

plotted for various V<..lues of damping and frequency ratios in Fig.2,2. Results for other values
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of mare simll,,; rnd. therefore. ar' not shown /\s expe.:tcd. p ,and p'" , hehave like Lone-

lallon coellkients. diminishing rupiJly ;1' the two fre4ucncles depart. particularly at small damp-

ing, Thus. cross !TI()dill terms RCA", and ReA '" . .", 10 Eq.45 arc signilil'ant only for modes

with dosely spaced frcquem:ies, The plots indic;:te that 71" be~wvcs qUite differently from

p" " For moderately spaced frequencies. it can De seen that while fl ,is negligible, the

corresponding values for "I)", are slgnitkam, It apl'cars that the noss modal terms ImA" .

10 E(~.45 mu} he important with moderately spaced frequencies, However. prelimin<lry example

stuuies have shown that the coeffil:lent~ J), in EqA5 arc generally' ven small

2.6 Examples

The simpl~st system having non-.:lassi\:al damping is the 2-degree-of-frecdom system in

Fig,2.3, This system has been the subject of considerable study in the past Cr<tndall and Mark

(II) and Curtis and Boykin [12] used frequency response function approaches to find th~

response of this system to whitt: noise input. Their mtthods. as well as the mod,d dCl'Omposi-

tion mdhod developed here arc exact, consequently the corresponding re\ults of the an;:ly;is <>'

the 2-DOF system a",ree,

The examples in this Section are chosen te il!ustra.e the effect of non-dassi, •• : damping.

It can be shown that the 2-DOF system is classically damped if ,,'1..1 only if the ralio of spring

stiffncsses is equal to the ratio of dllmping coefficients:

1\1 CI

k: c.'
(', J)

If lhe two ratios are not equ<tl. then in the mathematically strict sense, the S}'stem IS non-

classically dampf'd. As Slated in the introduction. a common approximate approach in the

analysis of non-classically damped structures is to use the free vibration mode shapes and to

ignore the off-diagonal terms of the transformed damping matrix to eliminate moJal coupling.

For certain values of I.I-c parameters of the 2-degree-of-freedom system. this approximation

appears reasonable, However. an analytical and ;'lumerical study of the system revealed ty'O dis-

tincl and well-defined sels of parameter values where thiS c1assic.lIly damped approximation
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becomes inan'urate and inappropriate

The firsl caSt IS the II.dl-known soil-structure system wh.'re rhe damping ratios of tl'·: soil

(substructure I) and structure (substructure i) are sigmfirantly different. The second lase is

the equipme:1t -structure sy~tem wher::: the mass ratio f=",:/", 1 is small, the frequency ratio is

close to 1 \ tunmg). and thr difference of the damping ratios satisfies the followmg inequality

(521

To illustr.ate the differences between the approxir:lalc ciassically d~"lJ1ed JPPf(lJlh <tnd the

exacl non-dassically damped approach. a parameter study was made of Ihe 2-d';gree-of-freedc,m

soil-slructure and eqUlpment-struclure syslems using Ihe 2 merhods of <tnalysis. In the soil

lo.ruclure study, the fo!lowmg fixed p<trameters were ch,)sen: average damping r<ttio

equipment-structure study, the following parameters were chosen: average damping ralio

C -0.04, mass ratio E=O 001. and Ihe frequency ratio wjw 1= 1.0. In both systems, the

independent variable was the difference between the damping ralios {I-{ '. The relati ve dis-

placement between the 111.'0 masses was chosen as the response quantity of Interest. The first

three mom~nts of response to while-lloise input were computed using Etl.38 for the classically

damped approJlimation and Eq.45 for the exaet results.

From the first three moments. the mean square, All. the mean zero-crossing rate.

V-,{A.{AjTT. and the shape fat'lOr, ll=..Jl AI'/(AltA,). were found and compared. The two

approaches ydded very similar values for IJ. however. a more significant difference of values

were founJ for 1\ and A I, and these variables are plotted for the various 2·degrce-of-freedom

..ystems in Fi,;s.2.4 and 2.5 To gain further inslghl to the three sets of terms in the expression

for An. in [q.45. the percenlalle of the contributions of the terms:

!.I.C,ReAII" .
I 0;- I J ~ I

II II

I.I.D"lmAI", and I. I. E"ReA;"
. I f I ,. I,~ 1

(53)

to the lotal sum, All, IS ploued in Fi~.2.6.

For both systems. the r.ondition EqSl is satisfied when the difference of damping ratios is
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u:ro. therefore thc systems arc d'lssl.:ally dampec 'J hus, the dassild:J:, damped ~Irpr{)x imation

yields ('XiKt results. as can be seen in hg:>.2.4 and 25 ,.md the D, and r 'cr,ns arc lem as

sho'An to l'it:l6. As It-t. d,tferen.:c 01 dUnlpmg ratios mcn:ascs. the ,:h,1f~lcler Ill' the s\sh:m

changes from d,ISSll'al damping to non-dassil'al damping. ""om FJg~.2.4 and 2.5 J' IS apparent

that the elfecl of non-dasslCal damping is nol adequately aC"ounh:d I(!r In th~ dass .:,.1 1I'1mp,<18

approximations. ThiS cffed IS abo visible in Fig 2.b. wherc the riel ms be'~(;ml promlOe,l1

for systems wi!h ImTe,hing non-dassical dampmg cha'i.llh:r This ,. ,;"''1ounced in c4u1pmcrll'

strudure systems wlIh prop..:rtlcs s<ltisfyin~ the inequality, h,,52. This phcnor:1cna ,\ dlscu,>seu

more fully In the next ch<lpter

It should be noteu Ih.lt for ull 2-degret:-flf-fret:t1om systems. the /) krms in L445 art:

essentially lero. This phenomenon IS a charadeflstlc of the simplt.ity of the sy sh:i1l itsdf ..\

ml"e t:omplex 3-degree-of-frt:edom system wus stUdH:d ano comp,lIed with the resulls of thc

2-degrcc-of-freed<'m system. Due to the larger number of parameters, lh..: n:lallonships

between the parameters and the degree of non-classical damping was less dear lI()wt:~er, from

the numerical results it ~:ould be gencralizd that the key parameters wert: the same as \\as

observed for the l-degree-of-fre~dom system, Ie., the ditTereill'e of dampmg ratios and Ihe

mass rall'l. However. u'1like the 2-degree-of-ffeedurn systcm. the J) krms in E,J.45 were no

longer negligible, particularl:" for soil-structure-type systems

2.7 Development of the Response SlWctrum Mdhod

In th;s final sec~ion. the above results are extended to inpOJt specified by il'i resrunsc SpCl:­

Irum. Since the response spectrum IS an incomplete llcscription of the input, the method to he

developed is necessarily approximate. The prnpnsec method will be most <ll.'curate when thc

input is wide band, has a long slalionary duration (sctVeral times longer than the fundamental

periool. <lnd the significant modes cf vibration arc within Ihe domlnilnt frequencies of vibra­

tion.

In order 10 develop the response spectrum method, EQ.45 is rewritten in the form



- 33 .

where 1'" ,. p'",I' 'T/", , are defined in Eqs.SO..-c. and

JA", ,A", !!

~!,

(54)

(55)

No~ we introdu~c two sets of approximations. The {jrst approximation is to derive expressions

for the coefficients "", ". 7)",," and M u " in terms of the system parameters and independent of

109 the assumption that th~ JIIput is a wide-band process. and following the plOcedure in Ref.

16. it lan be shown using results in 1-:45.4(-0 for white-noise input. that the following are good

approximations'

po, ::::: R., i4L + ~"w)wul. 1'1"1 =::: R'I (4L - 2w.1 / (w,;7fl!

p~, ::::: R'I (4~a - ~"w.Jwal. 1""1 =::: R" 14€a + w.~/(wJ7f)1

1"4.,/ = PIl'I

where R" - wZ.JtX,/(w3 -1 4wJCI. and

(56a)

(56b)

(S6c)

w,!
"'m,'i - 21<" - ,

lila

for m even

for m odd

(57)

The second approximat;0n applied to Eq54 is to estimate the modal spectral moments

-'.0.. in terms of the IOput responSl' spectrum. Let S1 (w.~) be the mean response spectrum

reprt:senting the mean value of the maximum absolute response of an oscillator over thl: dura-

tion T of its the input excitation. where til and ~ are the oscillator frequency and damping

values. respectively. Then, for w-w, and t-~" the mean response spectrum ordir.ate can be

given in terms of the spectral moment All" (16]

(58~

where p, is a peak factor associated with mode I which can be derived in terms of system

parameters as described below. Suhstiiuting the above into Eq.54 yields. for m-O,I.2.

(59)
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The above equation provide5 a modal sU[ler!,osition rule for the spectral moments of

response directly in terms of the response spectrum ordinates. These moments can be used to

derive various important expressions of the reStl0nse. In particular, the root-Olean-square, and

the mean anu standard deviation of the peak response over duration ,- are given. respectively.

by ~, p.J~. and q-JAII • where p and q are peak factors given by [j 51

p - .J2In", T +-~ and q _ 1.2
"2In,,, T -J2Inv, T

.n which

5.4 (60)

max(2.J. 2l)VT),

(! 63l\"~' - 0.38)"T.

"T.

O<l\~O.1

0.1 <a~O.69

0,69<8~1

(61)

and .' - -JA!/~ljrr and l\ - ~A.?IA.I~' Eqs, (,0 and 61 are also used in deriving the Inodal

peak factors p" in which case II - fJJ,/-rr and a- 2v~Jrr (16). Furthermore. having the three

spectral moments one may derive the probability distribution of the peak response as given by

Ref.45.

In practical applications. the mean of the peak response is of most interest. If the ratios

of peak factors pip, arc dpproximato::d by unity [I61, a simplified expression for the :nean peak

response ii, is

ii, -(t±(C,JPIIIJ - D,,'FII.,/WI.,/ + E,/Pl.UW1.")s,,s,,)' (62)
,-\,-1

This expression is a generalization of the CQC method introduced in Refs. 16 and 50 for c1a~i-

cally damped syst.:-ms.

As an example application of the response spectrum method, a simple system composed

ui a foundation. structure, and light equipment. described in Fig.2.7 and Table 1, is studied.

The modes of edch fixed base subsystem have different damping ratios, as shown in Table 2.

and as a result, the combined assemblage is characterized by non-classical damping.

Twenty simulated motions and their mean response spectrum were used for input in the

analysis. The mean and standard deviation of the peak response of the equipment displacement



reiative to the foundation were obtained b~ USIn~, the modal combination rule of the proposed

response spectrum method and the results compared with solutions obtained by lhe r.1()(lal

dtxomposition rule USing a Chlssll'al ddmpmg assumptifln li,e,. off-dl,tgonal tern'\ In the modal

damping matnx were ignored) and e);.dct solu~ion., obt, llll·d lrom the numerical integrdtloll of

the ground time hist:lfies. The results of the lompanson, shown in Table .1. show that the

response spectrum method is in dose agreement with thl' !,..llUli.Jll(ln result., i.Jnd lhal thc dlect

of non-classical damping can not be Ignored In the an,tlysls

2.11 Summary and CondusloR~

The resl'onse of multi-degr'~e-()f-freedomnon·das~lcally damped linear systems Ie sti.Jtion­

ary input excitalion i., examined and a m\ldal del'Ompositlon method IS devel,'ped eTl'plo}lOlg

the complex eigenvalues and eigenvectors of the system. A general formula for thc speltral

moments is derived and lompareu With the resul" for the spella( ,..Ise of llas.,;lal damping.

The evaluation of these exprc.;sions in\'ohes two relatively ;ndependent prohlems. One IS it

dynamiCs problem in finding a set of coellicients in terms of th _ free vlhration modal properties

of lhe system under stuoy. The olher is a random Vibrations problem in flndtng the cross­

<>pectral 'l1oments in terms of tr.e input process Prol:edlJres for finding thc coefficients for PS

systems are derived in the next chapters For other ~ystems, standard eigenvalue methods can

be applied, The cross-spectral moments lan be computed by the method uf residues, partial

fractions, or by direct integr.:tion for general input processes.

C(osl:d form solutions f"r the cross-moments have been derived for the impoltdnt case of

white-noise input These results were subsequently used to develop a resp"nse spectrum

method of analysis ~or non-classically damped systems. This method is based on a scI of

approximations that wcrc sUl:ccssfully used in prcvi<Jus works for dassical1y damped ~,.·stems

[16,501 and includes peak fa('tors in the formulation. wh!':h arc knewn 10 be of importance III

the study of PS systems [181.

Example studies for silOl1le systems have shown thal non-classical damping occurs pri­

marily in two types of systc:ns. soil-stracture-type systems. where Ihe diffcrencc of damping
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ratios is large; and cquipment-strurl:.lre-type systems, 'Ahere the mass r<lliO ., smilll "nd the

dilmping ratil's arc unequal It IS found lh'tt as the diffcrcOl.:e of the d<lmpmg r.dios incrc"ses or

thc mass rallO decreases, the das'jl~'all~' damped approximallon to Ihe response becon'Ies less

In general. fllf slructurl:s WIth dilssical damping or slight non-clas,ical dampJ'1g ~'hilr,Il'­

tCfls'KS. the fn.'e vihration mode' ShiIPC, and Ihe dl:u;!.Jpled mOlhl equalion .... bj.4. pro~lde a

sUlla',1c approximilllon 10 the lrue slruClUral ht'l1avio[ For sU~'h 'ystem.... thc moment, of thl:

po\\cr spl.'r1ral dcnsity fllnrlion of response. Eq3k. havc a fclatlvcl} simple lorm. II m\l'ver.

for strul'lurcs which havc predomlnilntly non-dassical damping rh'lrach:r"tll·~. such as the SClIl­

strUl'lure and cquipmcr;(·structurc systems. tho.: dampim; matrix produces slgnllilanl rpurling of

the free vibration modc shapes and thc dasslCally dampc'J appfllXlrnation IS no longer

Justiliable This is shown numerically by Ihc examples and mathematically by the more I.·om·

plex cxpn.:ssions fOl the moments of response, "qAS
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Table 2.1. Physical Properties of
Example System

r SUbSYSlcm_-1t-_
I
-_'re_

Q
_",n<YTi>;mpin~f-;- ~ lrad/~)' I RailO

Equipment 120(11--0-0100

ISIrUl:lurc 4.~ll' O.Ol~Jl

I 12.00 I 0.0500
Foundation 11.70 I 0.3000

Table 2.2. Modal Properties of
fixed Base Subs:,!stems

--
ass Interstory Intcrstory

kg) Sllffness Damping
(kN/m) lk'Wlm/s))._-f-------,--

01

I
14.4 0024

.0 11000. 91 b
0 11000 91.6
.0 I 82100. 4210.0 I~

Table 3. Analysis Results: Equipment Response

Response. m Exact Approll. Clas3ical

R, 0.106 0.113 0.046

IT H. T
0.020 0.020 0.011
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e
Q
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(O'il.l.4. Response Parameters' and lo for Sull-Strudure Stull)'



4000

- 42 -

6000 1-----------------------,
--- PROPORTIONAL DAMPING

APPROXIMATION,.
EXACT

eo a (el + ~t )/2 :: 0.04
E :: mt/m,:: 0.001

2000

o L...- --'- -~-----....I...--------'

0.05,---------------

I--~-~-~-~-=-------~-----~---
0.04

8 0.03

0.08

0.02

0.01 '-- --'- .L..- .....L-l ---J

o 0.02 0.04 0.06

DIFFERENCE OF DAMPING RATIOS <e.- ez)

Fil.l.5. Response Parameters a and Ao for Equipment-Structure Study
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eo =(el ... e2)/2 .. 0.04
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CHAPTER .~

ANALYSIS Qt' lHE BASIC TWO-DE(.RU:-OF-FRHDOM

EQIJIPMENT-STRUl'TVRE SYSTEM

3.1 Inlrodu~lion

The study of PS ~)stems is best ii'troduced with the simplest and most fundamt·r.tal 2­

DOF assemblage shown in FigJ!. This system is commonly referred to as an equipment­

structure (ES) system with the structure and equipment corresponding 10 the primary and

secondary subsystems. respectively. A thorough stuJy of this system is important for seve.:ral

reasons: the analysis of more general and wmplex MDOF systems is based on the results of the

study of the 2-DOF system: the 2·DOF system conlains the essenti<ll propertIes that character­

ize more general PS systenl.'; and the simplicity of this system enables one to identih thcsl:

prope~tics easily. Also, simple closed form formul~e arc derived for tnc 2·[)OF system which

illustrate clearly anrl ~vm:isely the important relationships between the parameters of the sys­

tem. The concepts and techniques developed in detail in this chapter will prepare the reader for

the study of more complex MDOF PS systems in the followiflg l·hapters.

As stated in the Introdul" numerous studies have been made on equipment-structure

systems. In this chapter, two different approaches will be developed. The first approach is

based on the frequency response function of the system. Using perturbatbn methods based on

Ihe light equipment assumption it is possible to reduce the expressions derived by Crandall and

Mark for the mean-squar~ response of general 2·DOF systems [Ill to rather simple formulae

Closed form cltprcssions for other useful response quantities can be derived as well. The

second approach utilizes the modal decomposition method developl:d in the oreceding chapler.

The results are a generalization of lhe previous study by Der Kiurcghian. el. al. 118.191: the

primary difference is that the i"1 ....ortant effect of ,lon-classical damping. which OI.:l:urs even a,

sl:ght differences of damping ratios. is fully u':L'ounted for The two appro'JChes developed in
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this SIU<.!~ yield different formulations for It-'l same response quanlitie,>. however ;\ IS shown

that the two formulations are eqUIvalent.

3.2 Definitions

3.2.1 P.rllm~l~rli

The analysis of the 2·()OF equipmer.t·struclure s~'stcrn in Flg3.1 will be in te,rm of the

~IJramf'ters (,I' the individual fixed base SDOF structure and equipment oscillators The ph:. SiDI

properties of the Iwo ~ub·systems are: masses, m ~ damping ralios, ~ : and natural Irl'"uen,ies.

w , where ,-) refers 10 the structure and 1=2 refers to the equipmcnl The (hspl;;,cmcnls x

are relative to the ground. Using these properties. Ihe following non-dimensiclllal paramclcrs

arc defined:

CI+{ .
E ~ -'-2-' = average damping

~ ,I - E: -~: - difference of damping

m;
" = _ ... = mass rutin

1111

WI-W,
f3 - ---' - deluning parameter

(1)/1

where

w,+w'
w" - -2--'- - average frequency

3.2.2 Rnlew of perturbation methods

<l a)

(\ bl

lid

lid)

{leI

A nOl1·dimensional parameter f:J IS defined I'J be small if ils absolule value IS much

smaller than I: this is writlen symbolically as

1131 « I

For example. the damping ralios in struclur~, syslems are generally small parameters. Simi·

larly. a parameter (j I is defined to be 01 a sn'aller order of magnitude than ,mother parameter 13.'

if the ratio 1f:J dl 1f:J.' I satisfies
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By multiplying both sides of the above inequality by l~.:. the order relationship can be rewrit·

ten symbolically as

(4)

finally, two parameters ~ I and ~: are j~fined to be of the same order of magnitude if neither

(5a)

are \rue. This is written symbolically as

(Sb)

where 0(131) denotes a t(rm of the Older of magnitude of th~ parameter ~!. Note that the

above rel'~llonship docs not imply equality. For example, if the damping ratios €1-5% and

€:-2%. they are not c10SP. to equality. yet they are considered to ce of the same order of mag-

nitude.

In engineering applications, the above relationships are put in the context of relative

errors. In this study, the parameter e denotes the order of magnitude of the relative error that

i~ allowed in the approximations.

Using the above definiti0ns. a mathematical description can be given to equipment-

structure systems. The system in Fig.3.1 is defined to be an equipment-structure system if the

parameters f u and ·Ji are smaIL The system is tuned if ~ is also small, otherwise the system is

detuned. A more precise deflOition of detuni"l will be developed later in this chapter.

As mentioned in the introduction, the key to the analysis ot the l::quipment-structure sys-

tems is the use of perturbation methods. Only the most elementary techniques of perturbation

theory are used in this study. For instance, using Taylor's series the quantity e] (J +fa)-' can

be expanded

f 0 (~l t I } (6 )t +fa - f 0 I - ~ u + f Q - \ ~ + . . . a

For small €Q' the above can be approximated to the following degrees of accuracy:
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(6d)

The accurac:y of the above three appr,1ximations car. be observed from the graph in Fig.J.2.

Clearly the second order approximation is the most accurate; however the alg::brllic expression

is also the most complicated. Since this is a study for engineering applicatIOns, a high level of

ac:curac:y is not required and simple, manageable results are sought, therefore lowest order

approximations are used Occasionally firs. and second order expressions are derived for

obtaining IOtermediale results

Most expressions encountered in this study involve a combindtion of several small param-

eters, l:nd it is important to note the order relationships between the various parameters. In

this chapter, it is a~sumed that f and~" are of the same order of magnitude, i.e.

L - O(f )

and if theystem is tuned, then

ThUS, an expression such as

~+f - f +~(}_I: +1:]- ... )I+L ,. ~u \"

in !~e case of tuning can be approximated to

::::: f.' +P(J-E u ) first order

=::: f +P lowest order

(7a)

(7b)

(8a)

(8b)

(Sel

(3d)

One final note: In a real problem, the 'lrder relationships in Eqs. 7a, b may not always

appear to be valid. For instance, the deluning parameter p may happen to be exactly 0, in

which case the order relationships would seem to be

P«t and P«Eu (9)

Consequently. the lowest order approximation for the expression itt EQ.3a would be

no'
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The difference between Eq.8d and the above expression lies in the generality of the approxima-

tion. El'!.Sd is valid if either of the relationships EQ.9 or EQs.7a.b are satisfied, howe"er the

above approximation is valid only if Eq.9 is sahsfied. There:-ore, in order to obtain the most

general results, it is assumed that EQ.7a applies to detuned systems and Eqs.7a,h applies to

tuned systems.

3.3 Frequency Response Funcllon Approach for TUDed Systems

3.3.1 Introducllon

The frequency response function approach is well-suited for deriving the response of the

equipment for tuned "ystems. By using perturbation methods. s':Cond-order results are

obtained. These results are the basis of the response of I'll tuned PS systems and are used in

the remainder of this study. Detuned systems are evaluated more elsily usi".g the modal

approach and are studied in the next section.

3.3.2 Frequencies of tbe System

Let M,e. and K be the mass, damping, and stiffness matrices of the system in Fig.3.t.

Using the parameters defined previously.

I
I 0) ItIWI+E'~2 -Et~2) IWf~Wi

M-m,O C-2ml ~ ~ K-ml 2« -E'j,]Cdl f'j,]Cd) -f11l2

The equation of the response of the system to base input is

Mil + ei + Ks - -Mrxl/(t) (3)

where J:-(XI Xl) T is the vector of displacements relative to the base llJ'd r-illV is the

innuence vector coupling the input '0 the DOF of the system. Taking the Fourier transform of

Eq.13 and rearranging terms

X(W) - -H(fII)MrXI/(w) (14)

where X(W) and "1/«(1/) are Fourier transforms of J:(t) and ;(1/(1), respectively, and H(w) is the

complex frequency response matrix

(J 5)
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Substituting Eq.12 into the above,

where

(,lwl - III 1(-lcJ' + 2dt IWI+f{.,w.,lw + Iwi+fw.:'lI

KI (w) - m.[-w·' + 21~ .,w~w + w;J

fllW I - -m.,121{ .'W.'W + w.d

d(wl ~ XI(wHi!(w) - / i (wI

(Ib)

( 17a)

/I7b)

()7d

() 7d)

Note that }!, (w) I~ the reciprocal of the complex frequ.;-nc'y response function of the secondary

subsystem The fum:tion (i (w) dosc:~ resemble:; the reciprocal of the complex frequency

response function of the primary subsystem The difference IS in the terms with the paramcier

f which arise from tne small additional stiffness and damping contributed from the secondary

subsystem The function f I (w) represents the coupling between the two subsystems. Also,

d(w) is the charal.'teristic polynomial of the system.

Using the frequt:ncy response fU(1ction H (w) defined aoove many properties of the systf>nJ

can be derived. The first sct of properties that will be investigated are the frequencies of the

system, whIch are found by solving the quartic equation

OS)

It is possible to find second-order approximations to this equation by a straightforward yet tedi-

ous application of Ferrari's formula for solving quartic equations (3). However, a more elegant

approach based on perturbation methods can be used to sol-.e Eq,l8, The derivation is

presented in detail 10 illustrate how perturbation methods can be effectively applied to the

equipment-structure problem. 01her researchers have found other forms for the expressions

for the frequencies of the 2-DOF ES system (37, 36), hO\"~ver the perturbation method, as it is

applied III thIS chapter, yields expressions which are of the same level of accuracy, yet algebrai-

cally simples than the previous formulations. These simple forms of the frequencies will be

used to derive several new expressions of the response of the system,

It was stated that the parameters ~ a, {j, and f are small for tuned systems. It is instruc-



- 5\ -

live 10 examine ihe properties of Ihe system when the mass ratio ( is of a small~r order of mag-

nilude than the other parameters, i.e.

( «max(~u,/H (\9)

In this case, the first h:rm in Eq.17d dominates the expression for.d(w) and the ~econd term

can be neglected

d(w) == K1lw)G, (w) (20)

It is well known [II) that this is equivalent to ignoring the interaction forces between the

equipment and str'Jcture and this point will be discussed later in this chapter. The low-order

approximation for the frequencies of this system can be obtaine~ by solving Eq.18. Using the

ab<we apprc"imation for d(w). Eq.18 is equivalent to

G1(w) - 0 or RI(w) - 0 (2!)

The roots of G, (w) are approxImately equal to the frequencies of the primary substructure and

the frequency with positive real part can be written to first order as

WI'::::: wl(I+/~I) <22a)

The superiJQsed asterisk is used hereafter to indicate that these properties are associated with

the combined system. Similarly. the roots of g I (w \ are the frequencies of the se~ondary sub·

structure and the frequency with pcsitive real part can be written to first order as

w;:::: w2(1+1~) (221.»

The frequer.cies in the left half plane. which are located symmetrically with respect to the ima-

ginary axis. are not explicitly written for darily of nOlation. This convention will be lIsed

throughout the study.

On physical grounds. the above result is not surprising: For very small values of the mass

ratio. the secondary system would be very light relative to the primary system and the dynamic

behavior of the two subsystems would be essenliall!, independent If each other. Therefore, the

frequencies of the combined ES system would be very close to the frequenc~es of each subsys­

tem, which is the result obtained above.

If« is of the same order of mllinitude as €" or IJ. the above analysis wO:Jld no longer be
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valid. Both terms of the characteristic polynomial d(w) must be included in Eq.17d. As a

result, the solutions for the frequencies of the system would be slightly shilled or perturbed

from the above values. To preserve the inherent symmetry of the problem. this perturbation

will be measured Irom the avcrilge of the frequencies in Eqs.22a.b. If Il. is dell ned to be the

perturbatif):) variilble. the frequency w can be wrinen 10 the following form

w - w.,(J+/L+I!)

liy rearranging terms. the v;;,: ..blc 11. can be expressed in terms of w

(23)

(24)

Reformulilling E4s.17a-,- in terms of p. and relilining only the lowesl order terms, the new

expressions are

GI(W) :::: W!"'I ({j + ltd -2/L)

Kllw) :::: -w,;m2(fJ + rt.: + 211.)

fl(w) ~ -w';m2

Substitution of the above into EQ.17d yields

(25a)

(25b)

(2Sc)

d(w) ==w:rnlm?II-{3-/CI-2p.)(I3+rt,,-2p.)-E)

-(..,,~m,m.•(41l.:-(~+r~,);-t) (26)

and its roots arc readily found. The usefuln;;ss of the perturbation analysis becomes clear: The

original quartic polynomial d(w) has been reduce!! to a simple quadratic polynomial in ~erms of

/L. Denoting the solutions for 11. by Il.:, the lowest urder result is

IJ.:== ±tv'f+litd+f3)2

It follows from Eq.23 that the frequencies f1J: are

The accuracy Of lhe above solution is shown numerically in Table I.

(27)

In J:igs.3.3a-c. the e1l8ct values of w: which are found from solving Eq.l8 are I'lotted

along with the above approximation for various values of the parameters. Figure 3.3a

represents a general illustration of the behavior of the frequencies. The natural frequencies and

damping ratios of the two subsystems are chosen 10 be unequal, and the location of these
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freQuenl:les on the (llmplcx plane art' mdll:atl:u by the sOlid squares. Then, for scwral values

of the mass ratio fi, the corrcspondlO3 pairs of frcqucncles of the ~-omplete system arc plo\led

and l'.belcd by the lellel' A - D Figures 33b Jnd 3Jc are SImilar. except 10 the form,~r the

frequenl:ics W I and w' arc l:hosen to be equal. and ill (he lalh:r the damping ri,tios ~: anu t.· arc

equal

It is in'ilructive to explore thl' meaning of J-'q2~ 'jnd the corresponding charac."nstlcs that

~'an be onserved In FlgsJJa-c. 1 he followm~ arc some of the more revealing facts

I. The frcqucn~'ics of the combIned s~stem arc located symmetrically with respect to thc

average fre4uenq W" (1 + If:,,) on thl' complex plane. Tni.s is apparent 10 illl of the figures

3 )a-c'.

2. For very small values of €. the value ollJ. . is approximately

(29a)

129b)

which. when substiiutcd in Eq23. yidds the same rcsult obtair..:d earlier in bls.22a.b.

However. if fi is not negligible. it was explained I::Hlier in hueristll' terms that the frequen-

cies become displaced or perturoed from the frequencies in Eqs.22a.b. ThIS perturbation

is accounted for mamematically by the presence of the r,arantcter f in the radkal in E4.28.

This phenomena l',·i. bc o"serwd in Figs.3.3a-c, where for f=.0005, the frequencies of

the combined system nearly coll1~'ide with the subsystem frequencies. whereas they

become displaced for largu values of the mass ratio.

3. If the frequencies WI and w.' arc equal, then {3=0 which is usually referred to as the ·pcr,

feet tuning" condition 137). In this case. the frequencies of the wmbined system can be

in one of two configurations.

a. If ~';<E, then thl' frequencies would be

W.";:::. Wall ±tJf -(/+tE.,l

which. on the complex plane. woulJ lie to tnc right and left of the average at a dis-

tance of .Jf-~,;. The damping ratios would both be el;U:llt., C and the natural frc-
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qu~nl'l~~ would be uncqual

b. If E >f, thcn the :rel.luencles would he

. I !~-'lI.J) :::= I.J) I + ,([ ± - -f +( ,.)" ., 2 "

~ In thiS l'ilse. the frcqu~nclcs "lluld both be cqllal to w" 'lnd the damping

r,ltills "llulJ he unel.lual

Ihl'~e lharaderi~tll's ar~ \I~ihk In hg3Jh: fllr pOints A anLl fi. h.j 29b appht:s. and for

POints ( JnJ J). I-:q 29l aflpllcs.

4. II' th~ dampin~ ratio., t and E' arc t:qual. then the frequencie., "ould hc

129dJ

which. on the complex pbnL would ah4ays hc parallel to the real axi~ at a distance "~1J~

frllm the a\crJge frequenq, a, shown in h~.3JL'

3.3.3 Spectral Densit~ of [quipment Response

N':xt wn.,idcl (he PSI> of the response to stationary input. The primary response variab:,:

of mterest h the displacement r! () of the cquipment re);Hi \e to ::IC structurc and is gl \en hy

1'(/' = .\,1/) -X:li) = q'xl') UO,I

where q= [- I I J I, The Fourier transform ) lw) of the response .1' (/) IS found by taking the

transform of both sides of the above equation and using Eli.14

¥(w)~, ql~(W) = -q'H(w)MrX,(w) (JI)

By definition. the frequenq response funl,tion Ii,lw) for the response .1'(/) to the input :x, (//

satisfies thc relation:

t'lw) = II, (w)X, lw)

II follows from Ih~ previous two eql., :ions that II, (w) is given b~'

(32)

JI,(w)=-q'H(w)Mr OJ)

It is well known 110. 2RJ that the Poil) function G" (eu) of the responsc can bc found in Icrms

of the frcquency response function by the relation
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where T" (w~ is the transfer fundion
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(34a)

T'" IW) = Ih (wll: U4bJ

and (',. (w) IS the PSLJ of the ,"put~, It) By expanding T" (w) through the use of Ljs 16 and

33 and keeping sew:ld older terms, the following is ohtained

W 1 + 4~ i WI'''' ' , ,
T (w) :::= ------- III i /" '

Ii(w)d(-w)
(J5)

A plot for r., (w) is shown In hg 3,4 for WI= 1.0, 10'= 1.04, t = J)O 1, and twu sets of ,alues

for the damping ratios It is arparent that 7" (w) is highly pe<:ked fer ,alues of w thai lic In a

small neighborhood of w" and that the peak ;s higher for smalle; damping v"iu('s The cxpl<l-

nation of this phenomc";l can oe seen hy examining the denominator of the transfer function

The polynomial d(w) can he fadllrel!

Ii(w) = (w,I)+I(,+/-lI·'--wJ(w"il+Ir,-+/J.:'-w]

(w d I -I + '(, -ii. )-wJ(w d (- i +/(, -ii.:) -wl"'l III ~

When w lies ncar the average freljUenq w" thcn the crder of d(tu) is

d(w; - ()(L;Jw,;'/1 m,

(36)

(37)

From Eq,36. ij is clear th~' the same order relationship holds for d(-",) Returning t(; the

expression for tt;e transfer function, It follows that

T" Cw) .. ()(~" J) for w :::=: w" (8)

This chara,:teristic of T" (wI will be useful in making approximat....ns

3.3.4 Spedrll Moments of Respnns('

The spect,al moments ~" of the response of the secondary system can he obtained by

integrating the PSI) function G" (wi

0:))

For general forms of the input PSI) U,'" (wJ, the above integral can be evaluated numerically.

However, for the important case of white-noise input closed fClrm second-order approximations

can be derived. For ",=0 and 2 the following integnlion formula I~; used (I II:
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f ~w)dw Trl Q.j(-Q 1b,+o,b.,) + h,(o;-o,o.,)

II q(w)q(··w) = T o~(tI;'+aia~-a;a:a;}

whrre tht' polynomials p(w) and q(w) arc given by

(40a)

plio) = b,w' + b.,w·' + b, (40bJ

q(w) = o,w'+o'w:+o,w+o.j (40d

and the root, of q (wl arc required tn b~ in the upper half plane Sinn: G, '(0) == (j is d wn-

stant for white-noise input and th.: roots 'If d(w) all lie m the upper h,lIf plane, the formula

above can be used directly to solve Eq.39 for All and II:. The calculations arc raid)' extensive

yet straightforward with the following resulh:

All = ~~l'; [2C+ 3f:J~ ,J+ IOf:J:~<I+£ (4~" +{"J+ 16e,;~ ,I
w,;

Tr(1,," l '1A, = -D 2~,,+{3f.J+~€,+8L~i
WI' .

where the denominator D is

(4Ib)

(41C)D = J6[~,~(4L'+{:I:J +£~;:)

NOle trat second order ;Jpproximations are derived for the numerators in the abo,c u~pres-

:,ions. These arc nel'essary to derive further results in this section.

I'{lr the first moment;' " the integrand in Eq ~9 i~ an odd-powered pol)'nomial, therefore

h.js.40a-c cannot be used. The obvious alternative is the meth(,d of residues: ~sing the fre-

qucncic.i derived in the pre<:cding section with some mathemalical manipulation. lhe second-

order approximation for II I can be found 123J

I: is noted that the lowest order exprcssions for the t/"tree moments are very similar:

(4Jd)

for m = 0,1,2 (4Ie)

Graphs comparing the expressions for;' .. in Eqs.41a-d wilh exact results obtained b}' numerkal

integration arc pre~cnted in Figs.3.5a-~.

As stated in the Introduction, the tirs three spectral moments can JC used to derive

several important response quantities. The first of thcse quantities to be examined arc the
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me,m squares of the displacement response '':' and the velocit~· response IT:' which are glve'~ I;,

, 1I"~"G,.,

'T,- -8", ..'i~:~.,(4(;+~') +tEJ

11"(. <i,.
---:----:

8w" [EI[,(4~';+~') +~O
(42111

N'.Jte th'~ pre~ence of the parameter t' The response of the cljuipmcnt to ground motion is not

indcpcl1llcnt oj the mass r,ltio as is ,'omm(\n1r ~Issumcu in the ,'urrent design practice In L.c!.

as the value for t inere,,~es. the me<ln square of the response deneases. as shown in Fig.J.5d

This behavior r.-; a umsequcnC f? of the interac!ion hctw('.;n the equipment ,md thc structure, as

was described by Newmark [33) and others 131.371.

Fur perfectly tuned systems, Eq.42a r..::rluccs to

This c<ln be compared with the expression dUI\,cd br Der Kiureghlall. el. ,'1 IIY]

(43)

(T :::::: (44)

which was b<lscd on th..:: assumption that the system W<lS classic<llly dampclJ The two expres-

sions arc tn <lgreement only when ~ ;=(" which. as noted in the previous chapter corresponds

to the classical d<lmping condition. As the difference between the damping ratios incre'lses, the

system becomes non-classically damped, and Eq.44 tends to underestimate the tru..:: value for

f1 :', particularly for sl1lall values of t. The pInts of 'T;' in FigJ.5e using thc abon: formulae:

dernonstrate this phenomena. This was also shown 111 Chapter 2 using modal decomposition

methods (see Fig.2.S). Notl that for small differences of damping ratios. the formula hast.'d

on c1assie<l1 damping will yield reasonable results.

For systems that are not perfedly tuned. the squ<lrc of the detuning parameter ~ appears

in the denominator in Eq.42a. Thus. as the system becomes increasingly dctuncd. the mean

square of the response will dccrciJse, as is expected. This behavior W,IS exhibited in FigsJ 5a-c:

note th<lt fT,' is symmetric with respect to {3.
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Other useful quantities that can be derived frol!l the spedral momcnh ,He thl.: mean zero

CT'lssing rate" = ~/Tr amI the shape factor Ii = .JI~AI:;(A"A.

expressions for A. In EqsAla-d, the followmg arc derived

,,= ~[I_f3~"--]
TT 2~"

[
(l: I /:;', I I Ili= -1--, +-£+E(,
4 4(,: 4 I .•

l'sm~ .he: sc,,'ond order

145a)

145b)

fhe accuracies of the above formulae arc shown in Figs.J.6a-c. The fac;or I IS physll'ally Inter-

preted as the an:rage frequenq' of zero cro'isings of the resptlllSC process 144] and the above

el<presslon is in agreement with thIS interpretlllion The shape factor Ii is a measure of the

band-width of the response prorcss (44]. Fr,r a soor OSl:illJtor with fn:\.Iucnr; W <llld dJmplng

ratio (,

For small values of E, h is small reflecting the fact that 1;',C response rror.:css is very narrowl>

handed. For the 2·DOr ES system, f> is a more comph:x function of the I)arameters jj, E , and

£. The general behavior of a is as follows:

I. for perfeclly tuned systems Jnd wry small mass ratios, f> = ,/f:r~ which is J[1 oTlkr of

magnitude smaller thiln the s"ape f'Kior for a SDOF osrillator in Eq46.

2 As £ inrreases, 0 increases (see Fig.3.6b). i"hls rel1e.:ts the fact that the frequencies of

(he system are moving apart which inaeases the band-width of the response.

J. As 13 increases, li inneases for the same reason as above (see Fig.J.6c1.

All of the results derived in (his section are based on white-noi!'e input. For a gcr.cral

input specified by ,HI arbitrary PSD G" I,u), two alternative mcthnds can be used to find Ihe

response. The most straightforward method i'i numerical integration: t'le spectral moments ..an

be computed using EQ.39 for any mput PSI). However, if Gee. (w) is a smoothly varying and

wide-banded function such as the PSU for the Kanai·Tajimi filtered whitc-noise Input [24). the

highly peaked property of thc transfer function Til (w) permits the approl<imate use of the same
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expressions i'or l-." as thllse for white-noise Input The only dltTerem:e is thai the term (i. A in

Eq~-41a-e is repla,'cd by the valu.. of the PSDF at the peak of T" Iw), Le. (i" (w u )'

3.4 Modal Decomposition Approach

3.4.1 Introduction

An alternative method of deri"ing lhe spe((r~1 mome'lts of response of general 2-DOF

systems is through the modal decomposition approach for non-dassically damped systems. as

developed in Chapter} The analysis will begin WIth tuned systems and the resulls compared

With those uf the previous section. It will be ShO"il thaI !h.: two srls of results are eqUivalent,

the primary difference being the order of the approximation: Only lowest order expressions can

be readily calculated in the modal <lppro<lC~1. The an<llysis of the equipment-structure system is

extended to detuncd systems with results similar to those of previOl':s Investigators Ii 8, 19.351

To wnclude tiw modal analysis. general expressions which apply for both tuned and

detuned systems are formulated using mat,'hmg techniques from perturbation theory.

3.4.2 Tund Systelils

3.4.2.1 Mode shapes

The basic relationship between the mode shapes 41: and frequencies w,' of a general struc-

tural system is given by the eigenvalue prcblem

(47)

For the 2·DOF system. the frequencies w: have been derived earlier by solving the characteris-

tic equation. Consequently, Ihe mode shapes can be computed readily by substituting the

expressions in Eq.12 for the mass. damping, and stiffness matrices and the expressions in Eq.28

for the frequencies. Using the notation .:-!u, I! I , the <:quations for the eigenvectors are

[~II((:,'~ ';:;::~lb'l- [81
Solving for a, and laking lowest order terms Yields

(48)
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(49)

Note that the numerator IS simpl~' the ulflcrencc bctwct:n the trl'411en<.:~ "I tht: lixL' base

scwnUJry subs~sl<:m and the frequency of the .:ombinl'd systcm. Suhstl(utin:! 1.4J!l tor w' thc

eigcnvalue. e,gen\Cl'lor solution [lairS for Eq47 arc

WI' = W , II + ,L + tJ ~ + ( ,L + ~) ~J .

w,,' = w, II I- 1£", - t~'L +~I"J,

(SOa)

(50b'

Thc componellt <t· is .:omllared with eX.lct vi.lllics. computct! by numnically s, 'h in~ the l'igen-

valuc problem, in Table 2 The cxact and approxlm•• tc valuc, Dt et <lrt: ,11'10 plolled In

hgs.J.7a-c using the si.lme v'llues tor the parameters used !n hgs.3.Ja-\· 1 he key; llationships

between the mode shapes~' and the system pa;ameters <lre.

I. For very small viJlut:s or Ihe mass mtio ~. a.' is very ne<lrly zero. <lnd the mode shape ~.'

is dominated by' equipment motion Similarly. mode 1 is assOl:iah:d With the structure

subsystem and UI is approximately -2(13+1(,). This is indicated In Figs.J.7a,b ..... here (f

arc shown to convc;ge to the limiting values 0 <lnd - 2(~+tE,;l for small valuc:s pI { This

corresponds to Ihe convergence (If the frequencies of t\1c combined s,\ ·,tem to those of the

suhsystems for increaSIngly smaller v<llues of the mass ratio. E

2. If the system is perfectly tuned <lnd (; < ". then !Y I and,.., would be gi\l:n b~'

al - -/~,;-J~-(;

(~.' = -/L+J~-(;

(Sla)

(51 b)

whiLh have the same absolute value. Thus, the characteristics of the tWll subsystems

would be distributed equally to both modes; it is no longer possible to associate a mode

with either subsystem. This demonstrates some of the symmelry of the syslem. This is

shown graphically in Fig.3.7b for points A and 8, where the coordinates n lie to each

side of the imaginary a'lis at a GJ.,tancc of approximately .J,,-f..;.

3. The mode shapes will be real-valued only when the dampmg ralios of the cquipmerH and

structure arc equal. This follows since the damping matrix would h... proportional 10 the
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stl:fness matrix to lowest order terms, amI the system, by dehnllion, alt.Jins classical

,jampmg. This can be observed in Flg.3. k, where Ihe imaginary componCnls of (w ,t<'o'

rclativdy small.

4 Fin~li) . the produl'l or (} I ~nd u, is

n.lk:"'-' (52)

whil:h is cons' tn! with resplxl to J3. ~ ,. and t, ThiS relation will be used :n the nex t sec'-

lion.

3.4.2.2 SlW\tnll Mom..nts

The modal (lecomposililn melhod elln bt' ilpphed diret'lly to the results In h,ls.50a,b 10

obtilln the speclri,1 moments 01 response

First, nev. l10tatlun will be introduced. Following ~he convention In Chapter 2. the fre-

quenclCs W • ca!1 be rewritten

whc~e wand i are the undamped frequencies and the damping mlios. respectively, which are

associated with w • and are given by

ro = Iw'j ::::= Rcw
Imw:

and ~. =
(0,

(53bl

In general, the ~,yslem parameters wand f are not related to the original parameters w, and

~ . howevcr. the averages are the same. This fact is verified by referring to the expressions in

Eq,SOa,b

w,+w: Re(w·,·+w~)
2 ~ 2 = w~

{,+e~ I II01w\' Imw:'} I Ilm(w,'+w~) }
------+- =-t ::::o{,

2 2 w, W.. 2 w" '

It is useful to define the differences

Fro.'Tl Eqs.50a,b and Eq.53b, it can be shown by jirect substitution that

(54a)

(S4bl

ISS)
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This re!i~tl(>n .... i11 01: usdullO l();llP'lllOg ihe spertr,!l monknt ...

Tht' lirst ... It:p 10 the modal dt:ronlposlllOn method IS the e\;!Iuatloll or the Ihlet: ,ds of

constants ( ,IJ, and r delined III 1:4s.226 and 2.34. In or,kr to ootaln thcse 4uantl!les,

21u +"t lw.

,
---~------

A =. fA. :0:: 2J(~ JM~ w. ~ 1,(0 +tJm~J..

h = -I !_;~r Iq;. ~ -2;(~0+::L~ :0::

The formula for h l'an oe expressed ill terms of II and Il h} using r'l52

I>=::_~U
2",. III -".)

157h)

L'i!O

Nl'tc thilt h = 1>, The (onstant... u ,lOll ( deli ned O} 1:4.226 ran he evaluated In terms of h

using the relation \ ='w

C :0:: 4(1).0:nl> )(Imh) /) =:: 0 t.. =:: 4/Reh IIReh.!

( = 2Reh

The lo ....e ... t order terms for (', , [), ' a;-lll r arc calL'ulated .'slllg I-:q.2.34

(60)

«590)

/60;

It was noted in Chapter 2 that the coeffiCient D, was always nearly ClIual to lero in the numeri·

ull stuliles of the tuned 2-DOF eqUlpnlent-strrlcture system, The expressions above lonfirm

that result.

The next step in the modal del'omplJ ... itlOn method is the cvalualion of the cross spcctral

moments A" . f'lr whitc-nnise illf)UI. B) using the parameters IV and ~ , the computation IS

straightforward usmg Eqs.249a-h The imaginary parts of A" , arc nearly lUO due to the fact

that the frequencies w arc dosel) s,.cd for tuned systems. Thercfon:. only the real parts of

the cross moments arc needed, The leroeth cross moments arc

7TG"

4w,;~
I~U
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~;r(I"li Iw,+r,w,)
RCA" 1 ' = - ;--, ~- ------;:---'---'-----.----- -

- 10.. 1 -0..;1' + 4I t wl+E,w:HE,w,+E.'w!)wlw,
(61 b)

As ,m mltial lo .... ·order approximatIOn, higher c'mss moments can he obtained br uSing Ill- 101·

'h2)

....hlch .... ill yl:ld Jow ordn expressions for II"

The tinal step 10 the modal dc.,;omposilloll method is Ih'~ e\,du.ltlon of A .. hy s..Ihstltulll1g

the prcleding results IOto 1'4 2]0 Thc lo..... est order expressIOn for A, is

., 4w,:lfl IIReA" -+ RCA. - 2RcA,. I,j

(64)

The term ih: I' is found hy suhstituting b.js.50a.b mto 1'4.58 and utilizing [Q.56

.. I I .J t' t I" "jlIh I :::: 16r"" f+l/C+J:I)I = J6-{~ {J'+E,i

After ~ubstitutJng Eqs6la,b and 64 into [(.j.63. the expression for the Oloment A" redu.,;es to

1T G" t"
II = ------~----

" 8w,' " ~1~.'(i3'+4f)

This on be compared with ttle formula for II" in the preceding seetinn which, 10 lowesl order

IS

TrG..c L
A" = 8w,; " (E,L(,B.'+4f) +fE;)

(t>5b)

The lalter expression is entirely in terms of the original parametcrs w .• E • and t whilc

the former is in tcrms of the derivcd paramctcrs W. and i The mass ratio f. which is present

in Ea.65b is implicitly induded in [q,65a in the derived parameters It can be shown thaI the

two expressions are equivalent hy rewriting the derived parameters in terms of the origirul

parameters.

Higher order refinements can be made 10 the expression in Eq.65a for //I >0 by using Ihe

results of Sel,tion 3.3.4. From the defJnilion~ of the faclors t! and Ii. il is possible 10 derive the

following relalionships between the first three moments:
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I/)/))

SUbslitullnb the c')(preSSlOns for j' and [, from E.js4Sa.b into the above. h,~her Ordi:i relatlolls

arc (,btalfll'd whll'h arc ef.juivalt:nl 10 the expressIOns in Eqs41

3.4.3 l>etunt1l Systems

3.4.3.1 Introduction

Thus 1'.11. the an.li\sIS of the 2-[)(/1 ellulpmenl-strul'lure s~ ... tem h,I'" hecn rl'<nLteL! "I

strdlghtlorward through the appliutloll of the modal tkcomp(I\'tion method,

3.4.3.2 Frlituencie.. and Mode Shapes

The elgeO\;tlue prohlem for the 2- DOl' system lall he n:wlIllcn as

n,,,)tf>'=O

where

(/)7al

[I,,, 0,

w

1
(; rw ') I, (w ~) I
fl(w 0) /i.(w I

To bct"" the analysis. the followmg approximallOns for the frequencies ,.nu moue shapes arc

used

=w (~+I~)

••'" = l~] .;'" = m
The () sUlwrscript is useu to mdlcate tha! the above arc initial approximations. L(Jw-oruer

rdhemenls of lhese rough eslimates arc possible using pe:turbalioll techniques. Details 'Ire

presented for modt· I which is assoCiated with the structure mode.

The above approximations h,I\(' ernrs. which ..re found by direcl substitution into lhe

left· hand-side of Eq.67a

(69)
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Using E\l"i 17J-( 10 .:valualt: th~ above polyn;,miab, thl order 01 iTlilgnitud.: of the above errors

,an be found

r { "").1.'''' ~ lOk '} , (70)w, '1', OlE I //I,w,

To reau,e the above errors, a refined mode "hape and frc\luency. Ilohll:h wili be deno:e1 41'"

and w' '. will be derived.

The (ir"t step in redUCing the errors is finding a suitable value for lhl cqUlpmt:nt wm-

poncnt 01 41" Ii} examining Ec.,J69. it is dear Ihal if the following valu~ is gl\t.:1 to the

rehned mode share

I
:lw:"")

the error in the sel'Ond wordinate in Eq.69 would be zero and the new crrnr terms would be

«7lb)

The error In the first coordinate ,an he reduced by findi ng Ihe relined freq uenc} w;" Ihat

satisfies

Let 4w,-w:<I,-w:"". Then (i,(W) can be reduced to a linear functIon in 4wI by using the

de~iv,Hivc approximatio'1

d .• '''') A.::= -(J"W' ~Wl
dw

The solution to J1w, is found hy combining Eqs.72 and 73

(I' '( "") 1
A

1_ . i w, _ G ( .11')
w, 2 '01 I W,m,w, K,(WI )

II is clear that 4w, - O(E)W\ from the definitions of fl' KI. and (;\

(73)

(74)

By comparing each ele·
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mcr.l or the m,t'rix [( ... :"1 with the: ,orrespondinl! cleme:nt in [Iw;'''l, il can h~' "h,)\\n thai

rlw' '.' -1~~::::l"';WI
Thus, the relined mod..: shap': anu frequency have errors an order of magl1ltulh: sm<lller than

thosl' of the initial solutions Further refinements arc possilollc, hOwl','cr the smilll second order

dImt, partlcular l , In cngineering .lppJicalions LJsII11! 'he • nO(<Jli"n 1'01 the tinal I".... -order

apprll'limatlons. the ahovl' eXllrco.;sions reduce til

1761

w;--[·)

Although the expressIOn for WI' , is not used in the IInal resul1, Il.s deriva\lon is nCl'cssary to

prn,e that the 'lolulions 4J' I' <lnu 'JI I'I' redul:e the error in the eigenvalue pro~lem This proof

justitles th;lt the solutions in Eq.76 arc v<lEd low-order appmximalions.

In a very similar procedure, relined solutions l:an be obt<lJned for thv: m()u~ shape and the

freQuenq of moue 2, which is associated wilh the equipment mr,de The high-orJfr exprcs'

sions ,Ill':

(77)

which reduce to Ihe fol!o .... ing. Iloa: low-order approximations

EW'
,

Wi- W .'
Dl!l

Note the similarity hetween the almvc results for mode 2 and .:lOs~ for mode I.

The mode sh'jpes and f.equencics for dctuned systems have an .:n!irely different eharal:ter

than 1l1ose 01 tuned systems. The mode shapes arc real, indicJlinl! that dctuned systems <lrc

classically damped. Also, the frequ::m:ics of the combined syslem a.'e ..:IO,",C to tile t1xed hdSC

frequencies of each subsystem indicati!l~'. lhat inIN~("Iinn !,!;~y~ :: r,;;e)igilJ,v: wit: in oetuned srs-

terns.
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3.4.3.3 Spectral Moments of Response

As in Section 34.2.2, the modal decompos;tion approach can Ix applied directly to the

above mode ~hapes and frequem'ies to obtain the spectr,,) moment!'> of rCSpOT1'iC. Sin.·e detunec!

systems arc dassil:<llIy damped, Ihe method for dassically damped systems, as Jeveloped by Ocr

Klure~hian (Ib!. can be used Tne effective parlil-ipation f..lCtor lb is glllcn by

(1/'."(. "Mr)
lb -------

M
(79)

where M = .. 'M. is the modal mass. By substituting the preceding expressions for" into

Eq.79 and taking h~cst-order terms, the rc',ull is

w,
lb' :::0 - --;---. til: ~ -1/11

wi-W.'

The expr~ssions for the moments it. " arc easily found in 'erms of W

180)

(:.ll)

As for the cross-sr,ectral moments A" /. it has neen established that the cross spectral moment~

A" ': =:: l) for well-spaced modes \15) It Will be shown in Section 3.4.4.3 that detuned modes

are well-spaced: therefore this approximation for A", " is applicable here

The spectral moments arc CJkulated using the formula Eq238

A" - I:.I>Ji,l/!,A" , :::0 (~l' rrC" (~ + WS"']
, _ I,. 1 W i-W5 4 l I ~ !

(82)

The most notable characteristic of the above exp!ession is that it. 'n decreases as the system

becomes increasingly deluned This is illustrated In Fig.J.B,

3.4.4 Comparison belween Tuned and Deluned Syslems

3.4....1 Inlrodudlon

The 2-00F system has been considered jS being either tuned or dctulled with different

sets of expressions derived for each case. However. for practical applications d general expre~-

belween the luned and detuned categories. This is accomplished by matching, which is a
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'ilandard proc~l!urc Irom perturballOn method'i 1.12) Also. gUlddJn<:~ ,Hl' c~labll~I1·:,' to deler·

3.4.4.2 A (;l'nl'ral f:xpression for k

Thl' Idea hehlnd mall'htn~ I~ 10 combine Iwo expressiolls Into one geneT.II <:\;1r<:,Slon thai

I'm .,y.,ll'ms With large values of 13. the dl'luneu Olomenl in l.ljl\2 \\ouh.l he IN:J. ,Iml for

lonsldered tuned. both expre~slons for'" would be aprlll'IOk:. The dL'luned V<:I.,jO!1 can bo.:

rc\\ nllcn In terms lIf /3

UJ'rrli w "f. ,-f,o· "t·

w

whcre the tI 'iupcrs('ript denotes uctunint/- I he luned vcrsion C~1I1 be n:wnllc!1 to a(('ount frn

the n.:latl\cl} largc valuc for f3

1T (J" IE +E .)
Ibf3 'w,; "E IE -

(H41

whl're the ( superscripl denoles luning. Sinc'c the two expressions abovc arc derived using

different il.,SUl "tions on the panlmcler IJ. Ihe}' arc slightly diff:::renl. Ilowe\cr. It j" ,'Iear that

,mall mnditicalions can be made to ..... so that the expressIOns would .Jgrcc. or mLlllh If Ih..:sc

modiflcauons arc applied 10 the original expression for A,', In Eq.6Sb, the result would be

(85)
•w, WI' "{I+W,,' "~:

IE IE ,14(;+/3-'+tE ,:)

Note tl'L1t when p is smaa. WI ::::- w- and the above expression reduces to Ihe original expression

in Eq65b. For larger values of ~. I. .. <tbove will closely ilpproximale thl' dctuncd moment A;'.

This can be dearly seen in Fig.3.9.
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3.4.4.3 Deluning Criteria

for systems wIth large values for the parameter {3, the detuned moment A:,' in hl.83

would be in close agreement with the general expression for A,,, in Eq 85. However. systems

with suffiriently srml! values for {3 would be rharacterized by tuning and A;,' and A" >"ould no

longer be in agreemenl.

If the relative error tolerance is {'. then a system will be defined to be detuned if the

difference between A:,' and A" is less than {', ie

reliltive = _A,_;'-_A_,_,
error < (' (86)

(87)

Substituting Eqs.8J and 85 into the abov!: ,'ields

relative ~.;(4~ l~:+td
- ----- < ('

error tit :/f

This error IS plotted in Flg.J. 10; dearly in the vicinity of perfect tuning (/3-0) the error

becomes very large. ROHiting the above in lerms of 13 yields

(88)

which will IJe u~ed hereafler to define de,uning.

It was noted earlier that detuned systems have widely-spaced modes. This hyp~thesis will

be proven, presently. In t:1C conteK. of the present study. two modes are defined to be widely

spaced if the correlation coefficients for while .'oise input P'" "1« \ for m=O.\ ,2 and I"t.. j.

This relation will be shown to be true for the 2-00F detuned system for IIl-O; similar proofs

hold for", -1 and 2

Using Eq.2.~6a. the expression for PII.I: can be written in terms of the parameters of the

~s system:

Plll~ -

J"[J;(4t" + l3~d)

4t,; + {3'

The relation in Eq.88 can be sirnplillet1 to

(89)

(90)
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whil.'h. when substituted for the first summand in the numerator of b~.89. Yldll~

,./f:{;O.Je + L)f3
PII.I.' < -- 4~ ,; + 13"---

Dividing Ihrough by fJ. dropping the first summand In the denl,minator. and substituting Eq90

to the remaining summand In the denominator. the above simplifies to

Findlly, using the fact that the geometric mt.:'10 is less than or equal 10 the dflthmcti, !TIedn. the

above reduces to the following inequality

1'" I. < (' + I/).Jr ~,' « I

which proves that detuned modes are widely spaced.

3.5 Non-Interaction Results

(93)

All of the result~ derived thus far in this challler l:orrectly dlmunt for the effect of

interactu-.n between the structure and the equipment. A Question with praL'tical implicltions is:

What is the diffC'rence between these results and the results which would be obtained if interac·

lion was neglected?

In the cierivation of non-interaction results the response is fir~t found for the structure

alone without accounting for the equipment Then the structural m()tion is used as the base

input to the equipment. In mathematical h.:rms, the equations for the system response which

were coupled in Eq.13 for the intcral.:tion study are decoupled in the non·interaction dnalysi'i.

The strucl.ura! response x!' ",,,,, rclallvl: to the ground is given by

('J4a)

where the superscript (nmr) indil:ates that the variables are the I esulls of the non·interaction

analysis. Thp. motion !it the base ,f the equipment is XI'''''''' + .\,. the:efore the equipment

response y' """ \ relativ~ to the allachment point is

m .•./ ''''',' ,'- (' c)' I "",,' + k:>" ,/," I = -m .'~XI' ''','' I + x,) (94b)

The Fourier transform X,' "",,) (wI and Y' "",,) (lu) of the displacements x; 1",,11 (r) and y I'""" (I) ,Ire
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3.4.4.3 Detunina Crllerl.

For systems with I"rgt.:' ';';:UI;;:I lUI 1:,<: p;l~~!"'eter {3, the deluned moment A',r in '·q.R3

would be ill dose agreement with the general expression for A.,,, in Lq.85. However, systems

wi!h sufficiently small values for {3 would be characterized by tuning and,\.:! and ,'.. would no

longer be in agreemem.

If the relative error tolerance is e, then a system will be defined to be detuned if the

difference belween ,\.;,'. and A,. is less than l', i.e

relall ve 1\ ::. - A".
= ---- < ()

error 1\ ,.

Substituting Eqs.83 and 85 into the above yields

(86)

(87)relative ~ ,; (4{ I~ ~ +El
= <e

error ~ ItdJ'

This error is plotted in Fig.3.1O; dearly in the vicinity of perfect tuning (13=0) the error

becomes very large. Rewriting the above in terms of (3 yields

.' - 4~ I~.' + £ .' = 1l t J .'Ii /' t t to - 4+~ L
I:tl-,;(I e ~I~~

which will be used hereafter to detine detuning.

(88)

It was noted earlier that detuncd systems have widely-spaced modes. This hypothesis will

be proven, presently. In the context of the present study, two modes are defined to be widely

spaced if the correlation coefficients for white noise input p",,,,« I for m-O,l,2 and I ~ j.

This relation will be shown to be true for the 2-DOf delUned system for m-O; simHar proofs

hold for m-\ and 2.

Using Eq.2.S6a. the expression for PH., ~ can be written in terms of the parameters of the

PS system:

.J[;[;(4L +f3~d)

4~,; + 13;

The relation in EQ.88 can be simplified to

(89)

190)
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whid-, when substitu"'~ ~or the first summand in the numerator or Eq.8S, Yldds

.J~ I~ .:( 2,,''; + (, /{3
I' I' < ---------

" . 4~;' + 13.'

DivilL 'through t,y (3, dropping the first summ<tnd in the denominator, and SUoslltuling Eq.90

to the n.:mainillg. summand in the denominator, the above simplifies to

1'" ..' <
.J"f:r12.J( + t ,J
--'---~--

2",
v'e

I LJ2I

Finally, using the fad that the geometric mean is less than or equal to the arithmetic mCiln, the

above rcduc~'s to the following inequality

1'" < f' + ':-J;' (, « )

whiL'h proves that detuned modes arc widely spal'cd.

3.5 Non-Interaction Results

(93/

All of the results derived thus far lil this chapter correctly i1CCOUllI for the effect of

interaction between the strucl<Jrc and the equipment. A Question with lllilctical Implications i,,:

What is the dillcrcnce between these results and the results which would be obt<tined if interac-

tion was neglected'?

In the derivation of non-interaction results the response is first found for the structure

alone without accounling for the equipmen~ Then the structural motion is used as the base

input to the equipmeili. In m~thcmatical terms, the equations for the system response whi.:h

were coupled in Eq.13 for the intcra.:tion study are deccupled in the non-interaction an~lysis

The SHuctural response x:""'" relative to the ground is given I)y

\94a)

where th,~ superscript I mill ) indicates that the variables are the results 01 the non-interOlction

analysis. The m\Jiion at the base ,·f the equipment is X,I" ..", + X I _. j',crefore the equipment

response y' .",,, I relative to the attal'hment r-oint is

,n~;(""'11 + C:J,f ll4 'II_' + k~.iIlHIII ... _",;(XI(lilllll + ~\:l') \LJ4b)

The Fourier transform XI''''''') Iw) and y""''''lw) of the displacements x,'''''''' Itl and .1" ",,,,, (r) are
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XI"""'(w) - -h,(w)m,X,,(w) (95al

r''''''''(w) - -h,,(w)m.,[-w·'X,'"'''' (w) + Xc(wll

- -!7.(w)/II,[w'h,(lolm, + IIX"(,,,) 1l/5b)

where h, (w) and It .,(w l are the ~omplel( frequency response functions of the strUl·turc and

equipment subsystems. respectively, given by

II. (w) = (-w'm + Iwr, + 1..1 I

Using this definition, the expr~ssion for )"'''''''w) can be reduced

(1)6)

r""""(u.) = -h,(w)h,(,uJtn.[w.'",\ + ," I (wlIX,(w)

= -h\(wlh,(w)m.'[/wcj + "IIX" (lL)

= -h,(w)h.'(w)/II,m,12Iwi~,W+WnX,«(... ) (1f7)

It follows from Eq 32 and EqJ4b that the transfer function T,','"'''' (eu) for the relative displace-

ment response is

198a)

.... here

d"""'(w) - hi '(wlh., '(w) (9Rb)

Note the simllarily between Eq.98a and the corresponding e-:pression which indudes interac-

tion, Eq.35. The difference IS in the denominator: in the non-interaction analysis d(w) is

replaced b}' d(w) ''''''''. Comparing Eq,l7d with Eq.911b, it can be seen that

d(w) ~ d(wl"""" + E(addilional terms) (99)

when; the additional terms account for the interaclion between the equipment and the struc-

ture. As the mass ratio ;,;:xomes very small, Ihe additional interal,tion term in the above equa-

lion becomes negligible and dewl approal:he~ d(wJ''''''''. i.e.

lim dl, = d(",)''''''''
• '-11

It follows that a simihr relatiC'''l holds for the transfer function

lim T" (wI = T,',"""'lw)
f -·(1

1\GOal

llOOb)

Using the above fact, the rcderivalion of Ihe spectral moml."nts and other related 4uanli-

ties for the non-inteJa"lion slUdy becomes trivial. Most of the results found earlier can be

adjusted to yield results that do not acccunt for inleraction by setlin~ t 10 zero. i.e., modeli.lg
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lhe ~yu:pmenl a~ a ~ubs,slem wllh negligible mass This mi.tkcs sense intulilvL!} - such e4uip-

ment IS not cxpcl:leJ to "Ifed Ihe motlllfl of Ihe stru,tUI~.

As an cx~!mrle. thc formula for the m(,ments glvcn in 1:1.185 would ,>imrlify \0

rr <i,

Ibw;

(wi "~,-tW;1 '''~:)

~ If,(4~3+~!)
( 101)

Note Ihal Ihc non·intcraetion expression tends 10 ovcrestimalc the true value for A, parlllU

larl}' for luned systlms duc to the absence of the ~ term In lhl.: denominator (·f tq 1111 Isec

Fig.) II)

l, I" InstrUellve \(I investigate how ,mall ( must be in order 10 Insure 1I';tl the non-

Jnteral:lioll cxpreSSl(lOS will yield reasonable arproxlmati()n~ The simplest me",urc of thl'

dilfcrcnlc between the non-Intcraction and exact approaches IS th ... ratio

which. for while-noise input. ,an be cdlcLllatcd from Eqs.85 and 101

(4(;of 13:)f ,f·+t(;
(4(~+/n~,~:

If the I:rror tolerance is c, then the non -interaction results can be used if

.J < i'

or cyuivalen!ly.

(1021

(103)

(104)

(1051

For deluned systems where {3 IS large. the above condition will usually be satisfied and ~,:'" I

Will be a I!ood a!lproxim<ltioll for All as \l. .tS stakd earlicr. Ilowevcr, for !L'ncd ·;ystcms. 13 :,

.mall, and E"t.I05 will be salisfied only if ( IS sufficiently small A conSCH..lIve upper bound

for t IS made by selling {J=O. in which case Eq,105 simplifies to

( 106)

The relationship between the error in ncn-inleraction analY'iis and the sIze of the m'l.,s ratio t is

illustraled FigJ,12,
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3.6 Summary

3.6.1 Discussion

A thorough study of the 2-DOF ES syster.l was made. The mode >hapes and lrelju::m:ies

were derived for tuned and detuncd systems and physical interpretations of these quantities

were given to elucidate the dynamic l'haracteli'ili,'s of the<o;e systems. Two different methods of

analysis were used to hnd the response of the E~: system to stationary input. In the first

approach. the fn:ljuency respollsC fumllon method was uwd for tuned wstcms. and semnd

order expressions were derived for the spectral moments "" for m =Il. 1,2. These expressi,: ils

were subsequently used to find thr shape factors" and S. In the secor.d approdch. the modal

decomposition method was used in analyzing both tuned and detuned s)"stt;ms. The results fOI

tuned systems were compared with those from the' frcljuenl'}' response function ar.:-I)"sl'; and the

two expressions were found to be cljuivalc'1t. Then the results for detuned systems were com-

bi:'led with those for tuned systems to form it general expression applicable for all systems and

to Jevclop a criteria for drtuning. Finally, the c'1mmonly used cJccoupled ellU'!tlOns "I' motion

for the f:S t;ystems were ana:yzed. It was shown that the results of this analysis can be obtained

dlrel:lly from lhe results wni~'h indud"d intcraction by selling the mass ratio f' to ler:>.

a eriterwn for the use of the de.:oupled approximation was established.

Also.

The emphasis of this I:hapter was to understand the und~rlying mathematical relationshlJl!;

that exis sir. the 2-DOF system in preparation of the study of more ji.cnerlll und complex PS

systems.

3.6.2 Results

For future refer~nce. the important results derived in this chapter arc Iist~d below:

Detuning Criteria

, I ( to I'~ > - 4+- (;
e ~k.

Non-interaction Criteria

(88)
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Oetuncd Systems

Tun..:d System..;

t < ~t ./'

Tuned Systems

!(IS I

~ = [~I
w, = w"ll + 1(. +-}.Jt + (,f" +/j)'). "I = I-#-'~'I -..;; + (/L +(:J)') 150a)

/I).; = w.11 + !Ed -~ .Jt ~ I/~" -#):). U·'~ 1-#-/~.1+.Jt + (/L +13)'1 (50b)

J)ctuned Sy stems

w;

tw.'

(JJ(-'..:J.:

Sp':clral \1omcnts

Tuned Systems

(76)

1781

Detuned Systems

All Systems

rrG". w~ w:' ~ l+W.' "t,
A j , -= --------------

16w,~ wi "w.' " tit.'14t;+#:)+E~,:

M-:an z:efO crossing rate and shape fa.:lors for tuneu systems

IJ ~ ~ 11- #t./ J
rr 2~"

(4Ie)

(45al



f
/3-' ( ~ ,; J 1 1&- - )-- +'-f+l: C,
4 4~ ,; 4 SIS.

• 75 •
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Table 3.1 Frequencies for Example System
111.-10, ~-().04. ~.-0.03, ~d-004

rrl°
r

,
3
I

2 I
I ,
()

o

-
b.act Frequency Computcd J'rcljLJcn(y b

E Mode
Real Part Imalt. Part Real Part Imag Part I ll~

0.01 I 0.949 0.022 0.951 I 002l! (J

2 1.050 OU37 ~05~+~J311 __ 'I- 0
0.005 1 0.963 0.019 OlJ64 0.018 O.

2 1.036 0.040 00J6 0041 (~

0.001 I 0.976 0012 G976 0012 (J

2 1.0n 0.047 102 J 0.047 0
"--_L --~-

Table 3.2 Mode Shape Component aj of Example System
w.-1.0, ~-0.04, t.-003, t d-0.04

Mode
Exact a, Ccmputed a Erro~E

Re'il Part I Imalt. Part Imag. Part %Reai Part
0.01 I 0061

1
·0.024 0.058 -0.022 8.9

2 -0.141 -0.055 -0.148 -0063 7.0
0.005 0.03J-~f)lll

-
1 0032 -0.017 3.8
2 -0 113 i -0.061 -0.118 -0.068 6.7

0.001 1 0.006 I -0.005 0.006 -0.005 00
2 -0.086 -0.074 -0.088 -0080 5.0

-
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CIIAPHR .1

ANAnSIS OF SI;'\Ii(,U-Ut:(iRU:·Of'-FRU:UOM EQlIPME~T

ATTACHED TO Ml:LTI-J)HJRPA)F-FRU:OOM STPlrnRES

4.J Introduction

In lhlS chapler. !\1I>OI·/SI>OI· I'S s:,;tcms will he .m.t1y/cu. wht:rc thc strul"lurr sluuit:d in

lh~ prcvious chapler i:-. generali/cd to oriC wllh multipk degrces \If frcel!l:11 and an ,Irhilrary

ronliguralion The equipmenl remains 11 hdye ,I single dq"rec or frt:cd(,m howeyer. It ,'an he

aHached t~) thc slructure at more than one node: it may als! hl' alt<Il'hed \0 the hase.

The Plethods of analysis of the MI:OI·/SDOr I'S system will follow the ,ame appro.lln

dcvclopcJ in thc previous chapter. It wIll he shown that the hasi __ '·l1•• r'Kluisljc, and I'f():-,c r tic,

of cquipmenl-stpJI.'!ure systf~ms.·;uch as luning. intcral.'lion. non·dassical dampmg. .md

dosely-sralcd. wrn:hlted modes Ihat wcre fuund carlier ar__ also present In thc MI>OF/SIJ{)I

system. I iowcyer. the results in Chapler J wIll he generali/cd to accounl for th':? more compkx

IOter-n:lalionships thaI arc possible hctween the mullipk struclure modes and thc cquipment

modc.

It has heen rerognizcd lhal 1hc analysis or \.·ertain M[)()FiS[}OF PS syslems can be

rcdured to lhe analysis 01 tl>l' 2-DOF cquipmenl-slrudure system (37.36] I\owev\:r. It IS

shown that this reduction ran not he utilizl'u in many MDOrlSDOF systems. therefore more

general methods of analysis Will be de .-eloped.

The analysis will begin with a discus~iOl. of tuning and multiple luning. Th\:n, thl' fTe-

queney response fum'tion will be derived for the r6ponsc of th,' 'i1:l:OndaT~ subsystem. l""ext,

expressions for the mode shapcs and frcquencies will be derived whi,h ,Ire suilable for usc in

many dynamic analysis techniques such as those descrihed in the Introduction. F(If further

insight 10 the behaVior of the MDOF/S[)OF system. t:-Jese exrressinns arc used directl~ in the...
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modill de':Dmposi!l.ll. method deveh)ped earlier for finding algebraic forr.1ul.Jtl,·ns for the spc.:-

trdl moments or rc:sponse to white-noise input. In the tinal part of t1";s chapter. non-intcr.c:ion

is considered. The results derived carler In tii:: chapter reduce to simple. lOosed form expn:s·

si<'ns fer all i1rbltrary .:onligurations llr the Iwo subsystems.

4.2 Deftnitions

4.2.1 Parameters

In this section a . et 01 matrices will be developed 10 de'icribc thc MDOF/S\)OF sy,tctrl

whIch will be used in the remainder of this study.

First. the parameters 01 the primary subsystem will be defined. Let N lle the number of

degrees-or. 1'1 eeJom of this subsystem and x I•.••• x, be the di~plilcement l'Oordin:Jtcs relative

to the b:Jsc. Then define the primary subsystem matri.:es

K"" - stiffness matri;.,. IN><N)

C,." - damping matrix (NxN)

M,_,. - mass matrix (~xN)

which are assoCiated wi:h the displacements x, .

: la)

llh)

(te)

It i~. assumed that the primary subsystem in itself ;5 classicilily damped. Therefore by

standard eigenvaiuc analysis the following properties can be derived:

w" - nalural frequencies l2a)

~" - damping ratios (2b)

.,,, - mf1~e shapes I2d

In general, it is not required to obtain all N mode shapes and frequen,,'ics; it is assumed that

the above parameters are obtained for I .. I ..... I. ~ N. From the orthogonal Jlroperties of

the mode shapes. the mass, stiffness. and damping matrices can be diagonalized us:n;.: the

(N x n) tnl!1sform:.tion matrix

41,. - [.,. 1 '" .",,)

with the following result

(3)

(4a)
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4>"'(',,.4>,. - lliagl~m":w,,,t,'1 !f/I,.,w,..(.

cII/K;.;4>, ~ dia!/.lll/, ,w;, /Il". WI" I

14b.1

14d

M . ~ 11/1 I. ('. = 121/1, I"" I: ,I, and K, = 1111. III ',1. I SI

I:(}mbm~d .\ + I DOl' PS ~ystem The lii~t .\' DOl' ';\ ill l'Orr.:spond 10 thc primary ~ubsy,":m

and :hc .\.>-1 DOl w,1I .:orr~sp()lld til the st:l'onll;u) suh~ys.em 'J hus, th~ dlsplJtTmenh an:

ddined hy the .\ +I \cl'\\ir

'-" ., \ . :] .' 161

IOihere .\, ,I IS Iht: dl~plal'cmcn\ of Ih.: ~el:()nt.lary ,ub~y,tcm rel;lti\c III the h.t~c of tht' combined

system Tht:.\ +I x.\ +I ma~.,. d~lmrllng, ;md stillness m<ltril't:~. arc

M, = I:', :,,]
where t' ,( =C/ . M, =M/

" = Ic/',' C"'j( .. (' t'
i' "

. and K I=K/~' art: I x.\' matrices representing. the physical t'OUpI1i1~

bet,;\cen the pnmary and secomJ.try subsystem', The S -+ 1 \ c,'lor r:, I~ dclined to be the

innUln\.t: \l'.:!or C(Juplmg the hast: Input to the displacem·:nts "". !'To;11 these matri,·es. the

cljuatinns of motion for the c(;mbined sy~tcm is given by

M, x" + C, i" + K, x" = -M",r".\, III

where .\\ l,) is the boJ'c input an:eleration.

(8)

To be prCllse. the pnmary subsyslcm matrices Mf"" (',.,. and K/'I' should he replaced h)

more l:Omplicatcd matrtlcs to account for the small added mass. damping.. and stiffness terms

arising fro~ the mOuenc\: of '.he secondary subsystem. However. these terms arc of second-

order m~gnitude in relation h thc Original I'rimary subsyslem matrix clements, Therefore. th.:

use of the l\riginiJ! \.rimary matril:es in the above C1luations is ;·(lIl.;istcnt with the lowest ~md

first-order perturbation an"lysis that will he pcrformed
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The damping and stiffness matril'es c'" anc' K
"
, have a simple physKal interpretation: For

secondary subsystems with a single attilchment point at, SolY, the ,'-th OOF of the priman' sub-

system, these matrices arc given by

l"" = 10 () - 21/1,IW,I~'i 0 °1 ( IOal

K'I -10 o -I/I"W;', 0 ' , , oj ( 10h,

where the nO;1'lt'ro lerms are <I' thl~ I-Ih coordm<tle, For multiply <lllached sccond.u y subsys-

terns. suffness and dampin~ terms would he found in the coordinates wrresponding to CiKh

attachmen: J)oint On the other hand, the mass matrix M 'I' is assumed to be lero srnce PS sys-

terns arc usually modeled with lumped masses,

In general. C. , and K", arc full matrices and ilre difficull to utilize for analysis, For this

reason dynamic il:lalysis of the combined PS system has been J\oided in Ihe pasl. However.

from the above dlsl'ussion it is dear that these matrices can be redu.cd IIsing the tr,lI1sforma"

tion matrix

~ -(~' ;,1 (j :a)

where ~,-IIJ is the 1)( 1 identity' matrix, Using Ihis tmnsformation a new coordinate veclor z,

giyen by the 1/+1 modal coordinates

z-I:,'I' ... :,,,,:,d (JIb)

is obtained through the relation .Z-XII. The mass, damping, and stiffne~s matrices in terms of

these modal coordinates are, to lowest order,

M - ~'M.". - diag[",,>1 ' . , m"" m'l)
2m,>Iw/,I~1'1 0

c - .1 t:,,,. -
() 211ljIIIWI'/I~/" ell

c'lI (',,1 2m,IW,I~,1

"',"Wi' I U "II

K - $'K",,$- 0
,

k",m,ll/Wi",

1;11 k,,1
,

1"\ iW;,

(] 2a)

tJ2b)

<I2cl
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( I ~ :f!,'(' (1201

Ml + r; ~ t(l = - Mr, (II IlJ)

I4hcn: the \cl!or of Tllo,lal I'Iliinpatl1ln tarlor .. r arc gl\en In term, e,' M and r" h~ the ~Ian-

d"nliormu'alllln 1)01

r = M CIl/M r" ( \4)

f.. = -/lew 1.1
= -2/1110 t 1.:

"he r <: 1.,,) deno[<:s lht' I-Ih coorl1inalt.: oj" the v<:dor .;

(I :iaJ

( l'io)

t'OT more I:cnel JI support

,
Then f.. and ( <:an he .... ritlen as

f.. -IH,IW',' l' :::::-21/1,w:f"'~1 (17)

where the tirst eljuallon i,s ex,ll'l. by the definition or, :' and Ihe st.'cond is an approximation.

The approxlmalion is jlJstlfied lor obtaining low-order results for two reasons: (I) it is cxal:t in

the Important CJse of single atl,Khmcnl point. us shown In Lq 1511. (21 this relatively small

lerm has been ncglcded <l!logelher in previous research work without much It'ss of al'CUr,K~

Before going further. a phy..ic<l! inlerprelalion of the term <: .... :11 bc investigatr d, Fo,

systems with <l';nglc all<ll'hmcnt point. , I = '''.1: is the displacement thai the mass of lhe

secondary subsyslem experiences when the primary subsystem is slatil:alll' displal:cd inlo ils

mode shape ..". Pm multiply supported secondary subsyslems. Ihe meaning for , , remains

the same. This is clear from the static equilibr;um equation Kz=O. whi~'h can be ;cwrilh:n II'
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tcr,ns of thc c4ulpment Dor

( Illl

Gl'cn d Unit displ,Kement of the I-th primary mode, I.C., ~ .. \ ,-nd ~ =() lor ,yet, the

~'orreSI)ondlng1I."pl'Kemcnl lor thc cquipment is

=,:
w III

(J 91

A" dn example. lon"iller the J-()O/- s~ ..tem in Fig.4.I. By follo~ing the n1,tl£lX ,tnahsi" oUI-

hned In thl" sellion. if Lan he shown thd'

.i 1 = [~I ( I 1 I I './.: .. - 51 K,/, = -}w'\m,1

from ~hlCh it follows, by dctinitlim. Ihat

l,li = -.75 and '-'I = - 25

(20a)

(20b)

The deflel'llOns ot the primary suhsystem intc it'> mode _hapes arc shown. and it is (.bservcd

that the ((lrrcspondin~stati.: displacement of the c(juipment are Biven exactly by ,

Before l'Ontinumg. it is useful 10 inlroJucc nalalian for mass ratios. Let f he :hc ratio

III. I
E I"

III,.

Als(;. let Y . be the effective mflSS ratio

t 2))

021

whll:h is it gener'dlzation af the effective mass ratio defined by Dcr Kiurcgnian. et al. [18] for

the case of iI single attachment point. !.c,. where '.1 = I.,.L

".2.2 Classlftcatlons for MDOF/SOOF Systems

The 2-DOF PS system has only two simple classification.;: tUlled and lIetuned However.

the MDOF/SDOr PS system has a larger number 01 p,"'ssible relationships between the modes

of the structure and the mode of the equipment. therefore mere classifications arc necessary for

an organized. well-defined analysis of this sysl.em.

First, a definition of tuning for MDOF/S[)Of' systems will be presented. For the 2-DOF
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system the strUl:lurt> mode was fOJnd 10 be l.Jned to the eqUipment mode if

I I',( IIf - ,!::'.-; \-Wd < hl4 + _t__

l W" i' ~d~,'IJ
(23)

where IV" IS the average of W, ' and w,:. This definilion (an be extended to MDOF/SDOF sys·

tems: mode I of Ihe slru(lurc is s<!id 10 be luned 10 Ihe equipment mode if

I
WI' -w, I I" < ~ ~; 14 +~ I

W" ( ~,I~/"

where W., is the average of ·... d arid W" and)' I is the effective mass ratio dcl\ned earlier.

(24)

The above definition is used In define several types of tuning dassif\cations. Let Ir and 1,/

denote the sets of structure moues tuned and deluned fmm the equipment, respectively. i.e.

I, - { I : WI' is tuned 10 "', I }

/" - { I : W, is detuned from w" }

For the 2·DOF system. n-1 and only two dassificalion are possible:

I, - I I I, ,,- II fa: tuned systems

/, - : I. I,f" I I I for detuned systems

125bl

(26a)

<26b)

For MDOF slruclures 'A'here n> I. several relationships must be considered If all primary

modes are dduned from the equipment, the system is totally detuned. Otherwise the system is

singly or multiply tuned. according to the nLlmber of primary modes tuned te.. the secondary

subsystem. Using the above notation,

I, - I I. 1,/ - I I. ... ,n I for detuncd systems (27al

/, - I (I for singly tuned systems (27b)

I, - I Ii. Ii + I, .... k+(-1 \ for mult:ply tuned sysiems l27d

In thl;" last case. I primar)' modes. beginning with the k-th mode. arc tuned tn the equipment.

".2.3 Eumplr System

To illustrate the major charllcteristics 01 MDOF/SDOF syslems and check the accuracy of

the formulations derived in this chapter. the example system shown in Fig.4.2 is used. The prj·

mary subsystem is co~;'Osed of two parts. a SDOF oscillator and a 2·DOF subsystem, both
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allached to a l'llmmon base The SDOF sel'ondary sub:.~·;tem is allarh(;d t(l both pilrts of the

primary subsystem as well as the base.

Thc dynamic properties of the subsystems arc described in Tahks I and 2 Jnd an: I hosen

so that thl: ll,r'bincd system would exhibit important lhararteristil's found in general

MDOF/SDO! ","sh:ms, For mstanre, the frequency (If the ellulpment IS a \ariable parameter,

whll'h allows for ,In investigation of tuning For w = .38 rad/scl, lhc system is singl~ tuncd as

shown In hg 4 la, ami for u) = If) radisel', thc "stcOl bl:lOn1eS mliltiplj tunld <IS shown In

FI~43h Thl: mass ratio, f. IS alsc) l'hosen to be a variahle paranleter In order t(: slud\ the

innuence (II Ir,lerallion Finally. thl' damping ratio of tht.: t.:qllipment Is unellu,d to the ddmpmr

rallOs of the primary subs:, stCll1 , thus the comhined Sj'stl'm is. In gerH:~al. "1()n-pr()p()rtiol"all~

dampcd

The rcspon"... quanllt~ that "ill h... Invesligdted is the relali\~' dISplacement between the

mass 01 the secondarj subsysterl 'Ind the uprer mass (If the primary subsy"tem 2

4.3 frequ~nq R~spclnse Function Approach

4.3.1 Introduction

The complex frclluency rcsponse matrix will be deriveli for general MDOF/SD )F PS sys-

terns, The transicr function IS ubtained which is used to nnd the power srectral density fum"

tion and its moment' for the respl'I1S<: or the systcm to r,mdom e~dtation, Thc exact form of

the transfer funl:llon IS Lomplicatcd~ however, pcrturbati,m methods arc u~ed to rcduLe th.,;

cllpressions to a relatively s.ulrle dose(1 form r~tlonal poly.lamia\'

4.3.2 The lomplex Frequency Response I\hlrlx

The complex frequency response matrix for the -.ystem described by J-_l~ 3.15 is round by

sL'bstituting thc expressions EllS.12"-l lor the matril:es M. C and K intc the definition Eq 3.15,

The result is

o

(i,,(W) f .. I(w)

f.oIlwl KIwI

08a)
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where

K,(w~ = III,,(-W' + 2/W"E.IW -l- W:'IJ

(j (wI = "'" (-"" + 2IW / ,';",W + w,; I

./ :\WI - -, ,m,,12'W,IC,W +- w:,l

(28b)

<28c)

l28d)

for I = I. ' , ',/1 As in the analy,;is of the 2- DOr system. G, (llJ I and K I (wI a~e the reciprocals

('f the I:omplex frcqu':ncy resl10nse f um'tions for the I-th mode of the prima-)' subsystem and

the sccolldalY subsystem, ;~spectively, The function f,!w) represents the coupling between

these two modes Due '.0 the simple f(,rm of the matrix in Eq 2".t, a ciosed form expression

can be fo.md for the mverse

I1G
Hlwl - _'­

d(wl

-I-Ix ,'- I. 1:::·1
(, \ . 1,,1'1' ('1

111'/'1 .

GIG:

r,d"i
(i I G"

./:1
(j ,

./:,1",
(j :(i"

1':\
G

(sym.\ I

(28el

where d\w) is the characteristic polyn'lmiC1I of the systerr.

d(wl = ;'1 G(KI i 'G"; I
' I I '

The frequencies of the system are the roots of the 2( n+I I order equation

dew) = 0

080

(29)

Unlike the study of 2-uOF systems, general closed form solutions for thc above <;quatioli cit'

not exisl.

Most response variables can be expressed as linear combinations of the original DOF x(r)

Followin~ the notation of chapter 3, a respon.e variable y Ct) can be wrillcn

(0)

For example, if the response of interest is the displacement of the equipment relative to the

attachment point, the vector qu is given by
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q" = I 0 . . . 0 - I 0 ... V I ) 1

where the po:;itlOn of the -I wrresI10nds to the allac~.ment DOF. Transfc,1 rning 10 Ihe '1lOdal

coordinaies z( (), the expressions for ylt) hecomcs

y = q,;x = q,!41z = q' z

where q=41' q".

OJ)

The formula for the frequency respon~e function If. (wI for the response .d II is (.,;;:

Eq.3.3J)

II. (w) = -q'H(w)Mr (2)

By substituting Fq.28e into t',c above, the cxm;t solution for II, (w) l'an he obtained: however,

t"is ex;m~ssion is rather curnber<;omc for frequency response anaiysi~. By using perturbation

methods, it will be shown that the dominant terms of the frequency response matnx arc along

the diagonal and lhc last row.

The order relationships between the elements of the .:omplex frequency response malri,

Hlw) are examined for various values of the frequency w. For values I'f w in .I neighborhood

of "aeh of the detuned primary frequencies W,'! for ) ~ !,I, the order of magnitude of the poly-

nomials f. lw), XI (w), and 0, (w) arc estimated by setting w=w/,,:

[,j(W,,,) a O(e')

for I=}

for I;r!. j
(' 3b)

where e represcnt~ the order of the problem. Substituting the above into EQ.28e.

Ole') (sym)
0«'1) O(r')

I (JJdHlw):= --,-
Old

0(e 1
) 01( 1

) O(e')
Ole') 0(1") O(e') om

where only the loth terms of the diagonal and of the last row are of order Ole},

For values of w th:,t are not in the neighborhood of any of the primary or secondary fre-

quencies,

( J4a)
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and Hlt,d is of the same form as Eq.33c excepl t:'at all of the lerms of the diagenal and the last

row arc of order 0(."'>'

Next. mnsid.:r w ncar Ihe se~ondary subsyslem [reque",:y w, \ for dcluncd syslems. In

Ihis 'asc . .l.'1(W) - ()( •• ~), I,/w) and G,lw) arc as in Eq.34a, ,nd the ordcr rclallonships for

H(w) are

0(1'11 (sym)
01('4) Ole') Ll4h)

I
H(w) =--

0/(")
0(.,4) O(e·) 0((")

Ole') 0(.") Ole') 0(1)

Finally. con-ider tuned systems. where for the sake or notational mnVl'niCnl'C it is assumed rhat

the first I primary subsystem m~)des (not nel'essarily having the lowest I frequcnl'ics) arc the

tuned modes. i,e. I, = I I, .... / I and I" = { f+ I ... , ./I}. For v'dues of tv in a neighbor-

hood of the equipment frequenl'Y w, I

./,,(W,,) - 0(1")

for I~'~I

for 1< f ~f1

(3Sa)

USb)

a.,d

Ole')
Ole') O(e~)

I
Hlw) --­

O(e ')
0(1"') 0(1")

0(1') 0(1')

where, in the last ro',.", the first f

terms are of order /) (e') .

(sym l

USc>

Ole')
0(1") om

terms are of order 0 (el and the f+ lost through the /1-th

In the c..kulation of H, (w), thc malrix H(w) is post muitiplicd by Mr. In this process,

Ihe last column of the matrix is mulliplied ~y a term of order 0(1'-') smaller than the multiplier

for the fir,! f columns, It follows from the order relations abovc that the ~educcd expressior.

for H, (w) is obtained from the diagonal and last row of H(w)

q".,nI... 1',,-+ , - t. q,m,,,r, I
.= I lI, (w)

(36)
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where r is:he I-th component of the influence ve~"or rand !J is the I-th clJmp{)n~nt llf q

By gi ving similar considerations 10 the .-haracteristie polynonllal cI(w I, it can oe shown

that onl;' the telms corresponding to (he tuned frequencie, <lre needed for the summation in

the expression in 1:q281'. Thus, hr (he multiply luned case.

<37J

Th,,' above constItutes a l'onsiderable SiOlplilic'ation for the expression for the Irequenq

f"sponse fundlon II (w) and by observing the order relationships and keeping all dominant

terms. first-order an:uracy 's maintained, The transfer func'tion r. (wI and spel'tral density'

fUIll:tion (j" (rod arc obtained using Eqs.J.J4a,b From the order relationships

be silOwn that for tuned systems the transfer function has a peak of order f) «(' ~ I at w=w, I as

for the 2-DOF system. fhl'fc arc <llso smaller pe.:b of order () I (' I al the detuned frequcn-

A plot of T" (wi for the example system in Fig.4.2 is shown in Figs.4.4:· b. In hg4.4a.

the equipment frequency. W.I = .38 rad/sec. is tuned to the first pnm>iry freQuenc). W,I ~, .374

rad/sec, thus a sharp peak is found for W - W, I. There is also a small peak l'Orr~sponding to

the dctuned primary modes near w ,., 1.00 rad/sec. howev!;:r it is considerably ,mailer than the

first peak and is not visible on the plot. In Fig.4.4b. the equipment frequency, W,: 1.00

rad/sec, is multiply tuned to two primary frequencies. W,,! = .98 rad/sec and WI',; 1.02

rad/sec. and a peak is found for w - W,I. For this case, a smaller peak is also foun<.1 for the

detuncd primary mode at w = W,,,,

4.3.3 Spectral Moments or Response

The spectral moments i." of the response vari ...ble .dO are given by the integral fq.2.1

A" = Jw"(;"dw
\I

OS)

For general forms of the input power spectral density this integral call be obtallled by numeriral

integration. This method of finding thl~ moments was used to find the response "r the example
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sySlelO in Fig4.2 to white-noise base excitation. The results obtained from the dpproximate

and exact forms uf the complex frequency response fum:tion H, (w) derivt:d above are ploned

as a function of the eQuipment frequency, W,I_ and compared in Flgs.4.5a-c. The peaks

correspond to the responses for singly tuned systems (W.I =:: w,;I and multiply tuned systems

(W'i =:: WI'." WI' J. The ditferent'c between aprroximate ant~ "\act results a.e slight. illlJstratint;

the acwracy of the perturbillion methods.

Also. an integration formula which is a generali£ation of Eq,3 AOa-c can be us·~d It) lind

A" for m-O and 2 f,lr a white noise input. Uowever, this formula docs not yield simple rlosed

form solutions as in the previous thapter and the m;:thod is difficult to implement into a com­

puter

4.4 Modal Decomposition Approaclt

4.0\ ~ Mode Shapes ~nd Fr~'lel1cies

First, mode shapes al1,j frequencies will be oerivcd for eiH:h set of modes classified earlier

in this che-pter. An analysis lJf the system requires Ihe solutions to an II + I x II + I order com­

plex eigenvalue problem, however. this problem is reduced significantly using perturbation pTln·

dples. For most modes. simple closed form solutions exi~t for the eigenvalues and eigenvec­

tors; only the multiply tuned case requires the solution of an eigenvaiue problem In the latter

I:a-;e. it ( is the number of modes tuned to the equipment. the size cf the pfl,bl~m is 1+ I x 1+ I

Which. in general, is far smaller than the original 11 + I x 11+) probleM. Thus. given any

MOOF/SDOF PS system, the expressions for the mooe shap",> allll rr~L/uencies C;lf') oe

evaluated numerically_ and (he result:> used directly in the modal decomposition method

developed in Chapter 2, or in any other suitable dynamic analysis method.

In this chapter. the algebraic form of the mode shapes and frequencies are used in the

modal decomposition method to form general approximate o;pressions for the :;p:':'lr~;:

moments for response 10 white noise InIlU\' Closed form solutions "re obta1n..:d for all but the

multiply tuned case. The results are less accurate than the numerical application of 'he
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method. and is nm recommended 1'01 computer ilpplications. tlowever, the dosed form e' prl'S-

sinns arc useful in gaining further insight into the behavior of PS syst~rls. For l'ompulcr appli-

callnns. the direct m:ldal d\:composition appro,ll:h menlJoncd above is more appropriate.

4 .... 1.1 Primary kletuned Modl.'s

The moJcs ,hapes and frequencies dclUned from the scconllary,uosystem are found by

solving Ihe eigenvalue problem

flw">~ = 0

w'lere

()

.fl.lwl

II

G. (IV I

f. ,(wI

09bl

This problem IS similar to the eIgenvalue prohlem In Section 3.4.3.2 Jnd the method of analysis

de .eloped in cetail in that section is used here,

For notational wnve'lience. assume that pnmary mode I is dctum:d. i.e. 1t f.i' Also,

;j~sume Ihal mode I is wiOely s~lacetl from thl: other primary subsyst,~m modes, IThb an"i}'sis

will be rcpeated without this assumption in a later section I The initial approximation for the

mode shape and fre(luency are similar 10 those given in Eq:i,J.68

~,"" -110 ... 0)' 140a'

14Gb)

By applying the same error analYSIS d\:vcloped in Eqs.3.69-7Ia and using the mnre I;cncral form

for the matrix [(wi, a higher order app~()ximation for ~I can be found. Tht' reSUlting mode

shape corresponding to Eq.J.7Ia is

.,'11 _II Ild!1 ." !.~'/::,!... _~ l' (41)
RIG.- KIU" 1:1

where Ihe polynomials f" XI, and G, arc evaluated ilt W=Wi fl' . Note thaI if Ihe I-Ih primar)

mode is closely spaced to mode J. G,(""m) would be relatively small and the corresponding

.:oordinatc in ~IIII woulll be relatively large, invalidating the perturbation ilnalysi~ used 10 dCII',e



.... 11 1.,., .

. 113 •

Therefore, the widely spaced assumption for tho: detuned mode is nCl.:essary in this

analysis.

As for the 2-DOF sysh:p. .. the low-order approximations for lhe mode shape and f-e-

qUCIll'}' arc found from wi'" and .,"1:

142al

WI' = w,.,11 + le/.,) 142b)

Note the similarity betwecn the above results and the results for the 2·[)OF s"stem in Eq.376.

The only significant difference i, 10 the appearance of the roefficit'nt ~., Th:, l:oeffil:lcnt

renel1s the more general form of the physical coupling between the primary and secondary .. ub·

systems in MDOF/SDOF systems

4.4.1.2 Secondary Detuned Mode

If the secondary subsystem mode is detuned f-om the primary subsystem modes. i.e. if

1,-11. thcn t:lC mode shape and frequcm'y for mode 11+1 which is assolialed with the secon-

dary subs}'stem can be derived in a manner parallel to the precedin!! analysb. The initial

appro:o;imalions for q,,,,; and w" _I are

".',';', - [00 ... I I'

w,',':', - w'll~ + I~"I

The higher order expression for."., eorresllOnding to Eq.41 ,s

.'1', _(_~ .. , _~ I ]'
uf G I G"

where the polynomials are evaluated at w=w ,~(:II' The final, low-order results are

143a)

143b)

(44'

• ( w 2,
",,+1 - '1Ifll-,--,

W/~I-W~I

w,:, 1- w.. l) + I~ .. )

145a)

(45b)

where E" are the mass ratios defined in Eq.21. Note the similarities between the above results

and the results for the 2-DOF system in Eq ..l18. Again. the only difference is in the appear-

ance of the coupling coefficient', I·
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4.... 1.3 Slnlly Tuned Modes

The eigenvalue analysis of singly tuned systerrs is simil,u to that of tuned 2·DOr sy,lcms

presented In section 34.2.1. For notational convenience, assume that primary sub.,ystem nH,Je

is tuned to the selondary subsy~tem. i.e. /, - I I L /,1 - I 2, ,/1 I.

The in;tlal approximations for the tuned modes are obtained by neglel'ling the elfect of

the detuned r,wdcs and considenng only the first and 1/+ 1 coordinates or the eigenv<llue proh-

lem in Eqs39a.b. The resulting !Jroblem is essentially the same as thut .,olved for thc 2- UOI·

system in Eq.3.4M The parameters f3. L. L. and w" which were defined in Elj;J.la,b.d.e for

the 2-DOF system arc redefined her~ by~et'ing ~i-i:I'I, i:'-~,I' WI~WI'i' and W.,-W.) Using

thiS notation, the initial approximation., for (he mode shapes and frcquellclcs i.;C nc~lrly identi-

cal to the expressIOns in f.q.3.S0a.b. The only difference is that the mass r;;tio t is rcplaced by

the more general elfec'live mass raiio ')' I

(45bl

(46el

(46a)

(460

(46d

(46d)

Ii" { 1 [ . 'J }WI = W" I + IL + 2' ')',1+(/(1+/31'

w!'" - W,,{ I +- IL - +[')'1 +(It,,+/3)~1 }

.1'''1 = I al"" 0 ill I'
•.;"' = [ a .~UI 0 0 I I I

alii" - _1_{_Il_ 1(1 - IY'I+(I~,,+l3l~1

'"
a.~'" - t{-13 -,~" + IYI:+(/{,,+#l~1

Higher order approximations for the mode shapes arc obtained using the error an;llj sis

developed in Eqs.3.69-71 a. The fir 5t and 1/+ I coordinates remain unchanged and the c()ordi-

nc:tes corresponding to :he detu'1ed modc~ arc similar to those in Eq.44

[ / . ..] /
.'11 _ a fll ) -~ ••. _~~.I I

. 'G, (:,

From the above solutions, the final low· order approximations are

(47)

(48a)

(411 b)
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wherl' ,-1.2 denotes the tW~1 mod\,;s ,,:ising from the slOglc tuning.

4.4.1.4 Multipl) Tuned Modf.'!J

The eigcnv.duc analysIs of d multiply luned MDOFISDOF svslcm IS d gcneralil;llion If

the anal~~.." of slngl~ lunc~1 sy!'lems Although simpie dosed form expressions \:an not he

oblalnC' ~ for lhls syslem. It IS possilJle to reduce lhe analysis (" a small clgenvalue prohkm.

LeI I modes of the primary subsystem be tuned to the seL'ondary suhsystem; for nOla-

tllln;tl ~:onvenienL'e assume thOlt Inc lirst 1 primary subsystem moucs fnol ncn:ssarily p,ning the

lowest / frcqucncies) arc the tune~ modes. i.e. /, = I I. . . I I and /./ = I 1+ I. .. . /I) In,-

(49)

tial appnlXIn1alio'ls are obtained fir (he mode shapes by neglcL'ting the elfel:t of lhc delUned

modes. as in the prcviOl's se('tinn. When lhe detuned coordinates I-~ 1..... /1 arc eliminated from

the origin,J! 1/ + I x 11+ I ordcr eigenvalue problem given in Eq.39a. Ihe result is a re!allvel)' small

1+ 1x 1+ 1 problem

r,lwIII11!cf»i'lij = 0

where f r (wI is ihc submalrix of f(wl corresponding 10 the coordinales 11.2 ..... I, /I + I I. The

I-vector cf»/'" corresponds 10 the first I c00rdinates of the I-th mode shapc ."" and is used in

the milial approximation

·""1.,1111 _ ?
A higher ord~r apprc~imalion is found through an error anaiysis. as before. The result is

,

.... 1111

.,. I,

... tll _ ..&.. iii'

.". "'d,
1

where •.\:" is the n-f vector

cf» III' -1- !.I.:.I,-~ '" - L~l'
d, GI,I U"

(50)

(SIal

and the polynomials are evaluated Ht the frequ...:ncies W,ltll found from Eq.49. finally. the above

can be reduced to the following low-order expressions
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.111)

W =::: WillI

where

(52al

(52b)

(52d

Note the similarity belw<:en the above exrrcssions and Eqs.4lia.b.

4.4.1.5 (l/)!oel) Spact'CI Primary Deluned Modes

'\s noted In S<:l.:tlOn ~411. the analysis of closely spa.:cd d<:luned modes may require

srccial att<:nli'ln. Thl.: theordi.:al method for deriving these mode sharcs whKh is consistent

lNith the results of thc rrCliious senions woulJ require the solution of a smail eige'lva'uc proh-

lem ami is outlined bclol.\i However. it is shown in Section 44 2 5 thilt this derivation IS

unnecess,lfy if \he quanlily of interest is the resronse of the secondary suhsystem. If thc

~xrressiom for the detuncd mode shapes and frequencies in Eqs.42a.b arc used directly. the

resulls for the system resronsc afC shown to be Ihe samc as those oblained fro!.) the Iheoretil:al

mode shapes. Therefore. Ihe mode shapes and frequencies derived in Se~'lion 4.4.1 1 can bL

used for ail dctuned modcs. regardless of the spcing of the frequencies. If the mode shapes of

closely sraced detuned modes a~e themselves CO interest. ihe derivation f'lr the theoretical low-

order expressions given below can be used.

The analysis of systems with dosely spaced detuned modes is similar to the analysis in the

pre,eding section. Assume the lirst I primary modes are closely spaced and detuned from the

secondary SUbS}SI""". The initi<11 approximations for these 1 modes arc obtained by neglecting

the effect of those primary modes that are not among the closely spaced modes Thus. the ori-

ginal n+)xn+1 order eigenvalue problem reduces to the same 1+lxl+l problem in Eq.49.

There are 1+ I solutions to this equd,;on, however only the 1 solutions associated with the pri-

mary SUbsystem are used. The subsequent analysis is essentially the same as in the rrc\ious

sectiun and the final low-order expression for the mode shapes and frequencies arc given by
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hIS.52a-(

...... 1.6 [xample Study

The (ol11plex mo(\alproperlles of t.. ..: t."',,111111(' systel11 In l-ig4.2 were computed IJsmg the

formulations developed in this set'tion and were ~ompared IIIlth eX.!l! rl' ..ult .. obL.lIned b\ u..mg

a I:omplcx ":Ig..:nvalu..: solv..:r from thc IMSl Iihrary (I] lhc Ircljucnl:lcs arl: shown m Tabk J

and arc ;'Iolled in Figs4ha-c fm various values of the el1U1i1ment frequency (0 .' and the l'lode

shares for the multiply tuned l'ase (ie, (0.,; = leo rad/st:c) arc shown in Tahle 41 he nCln­

dassic<.ll damping chara~ter of the multiply tuned system is <.Ipparent In the mode :,hapes. 11\ h.eh

ha\'e imagmary l'Omponents Good agreement between approximate and eX.lCt value .. IS found

in all cases.

The cflect I)f the equipment mass IS illustrated in Fig 4 on, wher\: the frcljuenlles

I:orresponding to E =0 I. .005, and 00 1 arc represt:nted oy pomh ,j, H, and (', respectively

(which can be ~ompi1red with Fig.:.Ja-l· from the 2-DOF system study' Mode J is not atlectd

by the mass ratio be~ause it is detuned. The frequencies l'OrrespondIng to the o'hu modes

~onverge to the subsystem n:.ttural t'rt:ljuencies as was observed in the slud) of the 2-DOF syo,­

tern .

......1 ~pectral Moments

As stated earlier, the most dire~t method for finding the moments is through numefll:<.I1

computation. The mode shapes and fre4uencies of any MDOF/SDOF -,jstem I:an he ~alcJlated

using the formulae developed <.IbGve and the results substituted into the modal decomposition

method developed in Chapter 2. It is straightforward to impleme'lt this procedure into a com­

puter; the complex eigenvalue solution. which is of small order and is only ,cquired for multi­

ply tuned systems. can be solved by routines found in standard libraries such as the IMSL I I J

For the example system in Fig.42. the results of this num.:ric<.I1 computation <.Ire com­

pared with exact results obtained by inlegrating the complex frequcnry r~sflonse function in
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Figs.4.7a-l'. Also. the mean lero-l.To~',ing riltl', I', dnd the sh'iI'e fa,'lor, h, a, e lI;mp:,kd and

plolled In Figs4XOJ,b All plC,ls show gcod comparison hetweclI cxacl .'nJ the propo,.~d ,Iprrox­

imate results.

At luning, th,' reSpllnSe of the equipment IS domm;tlcd O} oSlillallH~ mollon at the l'-lUlp­

m. "! frequenq. thus the meOJn [cro-crossing rate is clme to I' -~ (oj 1/ r. 1191 The lire

rf;pr::senting this ~quation IS pi oiled In 1-'i!l,4.8il and It can he se"n that thc actu .•1 \ ,du-:s 101 I'

approadl thl' Itne attuning For other \dlue, of <v,:' the ,'on.rioullon rrom Iht.: oetun",d mooes

of the pri ~.aq syslem \0 the response motion becomes more slgnltilarl. a.• L1 the UJr.trihution

from those modes with freLluencics whi,'h arc less thall 'oJ i tend to low~r Ihe ,.:Iues 1m the

mean lero·rr:)ssi ng rale.

The shape lador. ii. which IS ,: measure of the balllJ-wloth or the respoml' process,

hecomes small OJt luning due to the predominance of the response "1' the tuned modes In tile

response mOlion, This is reflected hy the marked dencil,'icd values of Ii III hg4bb at the t\\O

tuning frequenCIes, <v.: ~ .18 and 1.00 rad/sec. For ''', I = 38 radh,cl', it w;" noted 11 .." the

complex frequency response function If, (",/ has only a single peak, thus .he pc,wcr spectral

density function is narro",-banded and 1) has a ',er} small value, For W, I = 100 rad/sec the

complex frequency ~esponse function had two signIficant peaks. one at the tuned freljucncics

and L';>ther at the: detuned frequencies, thus the power spedra! density function is nllt as

narrowly-banded and 1) is not as small as in the previous case.

Alrhough the numerical ctpproac'h 10 finding lh,. spectral moments is useful in pr:,,:tical

applications. it is instructivc tll utilize the ali!ebraic forms for the mode shapes ar.d frequencies

derived in the previous section 10 order 10 oblain expressions for the rcsponse C1psetJ form

solutions will be derived for response to wl'::te noise input for all but the multipiy tuntd svs­

terns, Although these expressions afe not as accurate 'IS the numerical method oiJtlin:d aoovc,

the) previde important inform'tlion about f'S systems which would be hidden in a num.:rical O~

parametric analysis,
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4.4.2.1 Tohdly Dl'lunt'd ~ystl'ms with Well-Spaced Model;

Totally u~tuneu sy'stems v.ilh v.ell·,oaced moues ar~ the slmplesl anu most oa-It' 10

anilly1t.: Smt'e totally uetuned systems arc da,>slcally (tamped anll the t'llrfl:ldtlons hetween

,"ell-spal'eu modcs Me negligible, the moual ue,'ompos!lum methou simplilics \() lhe sq\Jan:·

ro,ll-of·sum-ot·s,,,rares (SRSS) mclhod 116J The expressIOn,> 101 the moue shapes and !ft'-

\luen,le,> which .... ere ueri\l'u In S,Ttlon 44 I :' ,'all be substituted ulrerlly Inlo the formula lor

thc dfelli no' partlt.lpaliOn l<lc1(l['> gl\ell In 14 .1 i 9 Jh ... fador s ass()('Iatl.'d .... 11 h '''l.' pr Jnlary su h·

s\stem modes arc

III ,w"~.p ~ r -----
(I" -Wi'

,/I

anu thaI asslKhllL'd "'Ith the sl.'t:undary subsyslem mod ... IS

.p, ': = '/. 1/1 ",' i, t r, ,:1
OJ;. (lJ I

(53h)

The moments ~ arc gncn by the expn:ssiof1s in E42 4!!a-t: Suhstitutin~ Into 'hl.' fmmula

h.1·2J8 the final expressions tor the spet.'lral momenls arc

Note t I.,t for Il I lhis redul'es to a result similar to the expression for the 2·DOF system in

4.4.2.2 Singly Tuned Systems

In this section. ;;ingly tuned syslem~' with well spal'ed pnmMy suhsystem moues arc mn-

sidered, The well-spal'cd assumption allows a separate analysis of the dc1uned modes and lhe

tuned modes in the modal decomposition method, Thus, the spl.'rlral ["lOmenl ,,<In be

expressed as a sum of lwo aduilive components.

11." - A"" + A,,, ,55)

where A"" an1 A." l'on..;titute the c'ontrib:JtiollS of the detul1ed and tuned modes to the spert.-:.I

moments, respertivety. The detuned moment A"" arises lrom lhe 11-1 detunerJ pnJllar~ mode

shapes and is .imilar to the exprcssi,1O in f:q,S4
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r.(j" 't" .[ 'I". ,W:'I~ I ].' W;..
A"" - --.- ./-,'--.---,- 1'- C/ ---

... '.'J w::-w;. ~j
<56)

where the summation above IS t~ken over the detuneG modes /", '\lotI.' thJI the seLOnd ,um·

m~tion 10 Elj,54 arises from the contributi"n of the sCl:Ondary subsystem ,1l0lh: In the w!ally

delUned syslem. therefore it IS not induded here,

The tuned moment ... ,,, is obtained from the two singly tuned mode shares of the ~!,sh:m

and its dniviltlOn follows ':'1.' analysis 01 tuned :-1)OJ'systl.?m' In Sedlon 34::'::' Taking

lowest order tern"; for the moments. the Jesuit IS idenllcal lCJ the IlJw-ordl'r expression

A.,
1T(i." II". I'I~ I"I~ ,w,;' .

8 ~lll ,(4(;-4-Jj.') + )'11(;
(57)

The detuned moment'" i" is small in l:omparison with the tuned moment A,,, However.

this term is not ignored since II is Importart fer the l'alculallon of the factors " ami b .

...... 2.3 Multiply Tuned Systems

The analysis of multiply lUned systems follows the same line of r,aSOI'Inl! as u'>ed lor

singly timed systems. The expression for the detuned moment """ IS identll:al to Eq,56. how-

ever, there is no simple closed form algebraic solution for the tuned moment A,,,, This qu;,n-

tity must be ~omputed numeri~ally by solving for the tuned mr,de shapes using the rcdu~erl

eigenvalue problem in Sectipn 4.4.1.4 and substituting the results din.:.:!ly into the mod..r

decomposition method.

......1.4 Systems with Closely Spaced Primary :'-odes

In the above, it was assumed that the detuned prim"ry modes arc widely spaced from each

nther, therefore the relatively small correlations between these modes were ignored. However.

if these modes are closely spaced. i he correlations become significant :tn(l another term "."

must be induded in the expressions for the moments A" :

All,' - ~"II' + A"" + A'II'

This term WOUld have (he general form

(58)
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- /), A,,,; I ' + t:,,>. '" '.' I 1 (59)

(60)
_ { pairs of \'Ioselv :;11;\~ed modcs (/ ../) 'f

I .. . .
cxdudlrg pairs 01 tuned modes ,

and the sum includes wrrelations between detuncd primary modes and sing!y or multiply tuned

modes.

Closed form expressIOns for A, can oe obtained only for c1osel,' ~pacc(~ dctuncd rPodc',

Sllch modes arc dasslcall, dilmpcd, therefore. /), = E, = 0 and C = a a, amI the cross tc~m

between modes I and .I r"dlKes to

C A, ~ 1/1 1/1,1'". ,..jA~~,--:;

when,' 1/1 arc the effective partkiplltion faCtors giv.::n in Eq,53a and I)"~

i61 )

coefficients defined in Chapter 2 (ell. . sec Eqs256 for wide-band inputs), r'or delUncd modes

dosely spaced to a tuned mode. such simple lorms for C". IJ". and f" do not exist. and the

wrresponding cross terms in Eq,59 must b~ evaluated numerically

4.4.2.S Syst~ms with Closely Spaced Primary Modes

Assume thal the first f primary subsyst<..m modes arc detuned from the sewndal y subsys-

tern and are very closely spaced and the damping ratl(" ,r these modes are ap;'roximately f'qual.

From physical considerations. it is expected that modes with nearlv identical frequen<:it:s and

damping ralios respond to a comma, I input as a colle;;tive unit. This can be shown rigorously'

using an argumer.t based on frequency rcspol1se methods. Thus, these modes can be replaced

by a single equivalent mode containing their essential properties. The frequency WI and damp-

ing ratio eI c.[ the equivalent mode arc riven by the averages

I I
WI - -~w.I L. I"~

,-I

I I

~I - 11:~"
1,1

(62)

The effective participation factm 1/11 is given by th.:: sum of the modal participation factors t/J,

gillen in Eq.53a

(6~)
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It follows that the detuned moment A,(,,, is simply

A,,,,, = 11/11 I!A", / I + wntribution from other detun~u modes '(,.;,

where A '" II is the spectral moment corresponding to the frequency 1M: and da'l1ping ratio i I

The same solutions for tht· response is ohtained if the mode shape, '!!1d frequencies for

widely spaced detuned modes .lre used. Using the participation fauors ljJ obtained in ~eui()n

4.4.2.1, the express:on for the moment A"" 's

,
A",; ,. I.I.ljJ,ljJ,A,,,,, + other contributions

= II = I

(65)

Since the modes are closely spaced and the damping rallOS are assumed to be approximak'ly

equal,

for all t,) ~ I

Then th~ above expression for A.I", simplifies to

A,,,,, :::: [*~II',l/JI)""'" + other contributions

,. 11/1 I I!A" /I + other contributions (67)

which is the same result as Eq.64. The latter approach is more suitable for computer imrle-

mentation sinee the same solutions for the mode s:lapes, frequencies. and participation factors

are used for closely spaced and widely spaced detuned modes.

4.S Non-Inter.criun ResliUs

4.S.1 Inlrod!'~t!on

The effect of int~r:Ktion between the primary and secondary subsystems has been

included in both the frequency response function analysis in Section 4.3 and the modal deeam-

position method in Sec:ion 4.4. However, for many PS systems, the mass of the second,try

subsystem is considerable smaller tL,n the masses of the primary subsystem ami the results

from Section 3.5 for 2-DOF systems suggest that the interal:lion effcl:t Nould be nelf,ligiblc for

such system,>. Although the results of the preceding sections would remain valid for this case,

it is worthwhile to r,eanalyze the system without a,counting fur interaction for several reasons:
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1. The results are simpler than the results which indude interaction.

2. Closed form expressions will be derived I'm results that wt:re not obtainable in that form

i:l the previous sections.

3. Cl,mparisons can be mad,~ between interaction and non-interactIOn re~ults.

The f~~uen\.·y response analysis is pre,ented firs\. Then, afler deriving closed form 50111-

tions for the mode shapes, the modal de.:omposition method is presented.

4.5.2 Frequencl Response Function AI-proach

The procedure in Section 3.5 is used to obtain the wmplex frcqucnL'y response funCl10n

H, (wl. The equatIOns of motion are decoupled into two sets of equations. The tirst set

corresponds to the respon..e of the iJl'imllry subsystem to the base input and is given by

,=1, ... ,11 (681

and the sc:cond set is an equat;on ,lr the rCJponse of the secondary subsvstem to the motions at

the suppor: points,

,.
i','lll,jl/) + 2W,lt'I.~,'III"1I1 + W,:I:",II,ro,,1 = ~(w:· + 2" W ~ Ir -r ".. - L. ,1-, ~,I ,I· ,>,1 ·,·1,'.

I

(1)9)

where the secondary DOF =, I is idc:ntical to the nodlll wordinate x". 1. The Fourier transforms

Z,~,"""'t<.iJ and zS'''''' (w) of the subsystem responses =,,':''''''(t) and ::,'("'" (t) arc

Z ' ·.."I( ) __ X.(wI"""r, (70a,'
I' W G,(w) ,-I, ... ,n

'''''',1 _ Xe(w) (.f. f,,(w)m,.,r,] (7t)b)
Z,,~I (w) --(-) L. r; () - m,I',,+1

1:1 W ,~I ~, w

from these expressions. the Fourier tran"form Y' "",,' (w) of the responst: variable y (r) - q 1 I

is obtained

"Y''''''''(w) - ~q Z''''''''( ) + q Z""",I ( )~ I I" W ".,.1 ,I W
,-I

_ X (W){t q,,+IIoI(w)mp,r, _ t q,m,,,r, _ q"+lm'lr",.!...\

e ,-1 .':1(W)G,(w) ,_I G,(W' KI(w) J

It follows that the frequency response function is

(7\ )

(72a)
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whc:re

d'"'' '(wI ~ K1lw) Il G (w)
,-I

Inc)

Note the similarity between Eq,72u with [q.30; in the laller Clse 'Y,[ order :erms arc mcluded ir.

the polynomial d'w) to ,tcmunt fIJI interaction, '{hi; important fa:;;t is c:xpresscd malhemati-

cally as

(7))

which indicates that all of the closed form results previollsly obtained in this chilpter can be

applied to the non-interaction study by taking the limit m, i -0, as was done for the 2· DOF sys-

tern.

For the example syst,"m in Fig.4.2, a comparison betw\~en the tran~fer function T, (w) =

IH, (w) I: for interaction and non-interaction analysis is shewn in r;g.4.Q for various values of

I:,e secondary subsystem mass. The diffcrence~ are most notable for values of u) ncar the

luned mode parti.:ul~riy for larger values of the sewndary mass where interaltion is mOle

prominent. For other values of w, the transfer fun\:tion is insensitive 10 interaction. This can

b;: shown analytic.:lly simply by examining the order relationships in the expressions for the

functions H, (w) and H,""""(w).

The spectral moments of the response of the system is found by integrating the transfer

function T.',"'"'' (w) directly with the input power spectral density function as in Section 4 3,3.

In FigA.10, plots of Ihe non-interaction and interaction moments are given for the system in

Fig.4.2 with varying values for the mass lind frequency of the secondary subsystem. The result

is similar to the !lndings in Chapter 3: the difference between All and A\~""'" are greatest at tun·

ing and diminish at detuning.

".5.3 Modal Decomposition MethOli
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4.5.3.1 Introduction

The 'tpproa<.:h taken here IS cssenti,,!ly the same as in Sell ,on 4 ~. the expreSSI\l.1 i, ': inC

mo(ic shapes and frc4ucm:ics arc derived for the l'()mbined system ,:nd the rcsulh suhstituted

1010 the modal decomposition method of Chapt::r 2 IIowcwr. bJ neglcctmg Ifoier,u:tHlO. II is

possibh: t<; obtain closed form expressions for all mode shapes and fre<lu\:n<.:ies, :r.~·!uJ ..1~ rnu:l1'

ply tuned modes due to the sim\llieity of decoupkd PS 5) slem, Furthermore, rlosed form

expressions arc derived for the faoms (I and ( . defined in Eq2 26 ..... hil'h arc key factors for

the modal decomposition me!hod. The tin.il results for the spedral mot:1ents arc ea.•II) obtain·

able from the c)(prcssions for a and ( and Ihe orlgina! p,tramctcrs of the two subsystems

4.5.3.2 Closed Form Exprrssions for th~ Mode Shapes

Thc origimll eigenvaluc problem

f(w,Jc#l . = 0 1741

from Eqs.J9a.b is reinvlstigated. first. the modes associated with the r:lmary suhsystcm arc

analyzed. It is intuitively dear that the frequencies associated wi!h these II modes arc given hy

the original primary subsystem frequencies

u,;o: wI,(.JI-~/, + I~I''> 1=1. .... /1 (75)

The corresponding ml'de shapes are derived by substituting w. into E<I. 1 4 and solvin~ the

eigenvalue problem The solution is

... 0 I 0 . , . 0 - f I (W21'
KI(W,)

"IW;', I'··010 ... 0- .
2(/3, 1+lt,t,\)W,; \

where the unit term is at the Ith c00rdinate and the parameters w"

(76)

I. J3 I, and t.t.1 arc general·

i~alions of the average frequency, detuning. and damping difference parameters USI:<! 10 the

analysis of the 2·DOF system

UJ{j,'! ...
W()/+W,!

2
Wt,,-W,I

{3,I'" ---­
W O ._ I

(7)

The derivation of th\: modal properties associated with the cQuipm~nt is similar to the
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above analysis. The frequency is given by the e:.juipment subsystem frequency

w,;, = w,IIJI-t,'1 + ,el)
which, when substituted into Eq.74. yields the following expressIon for tho? mode 'ihape~

. I'... _ /.I(W".~ I
(I. Cw,:. I)

(78)

(79)

These expressions reduce to the resuhs in SCl:tions 4.4.1.1 and 4.4.1 :~ for the detuned ('lSI"

It appears that the e"pression for the mode shape .... 1 is lIluLlc;minatc since it :i",\olv\:s

an arb,trarily small parameter f j. and the terms (3 . and ~., I in the denominator may also be

small or zero. However, the limit 111 - 0 is not taken until after the coefficient, (i aml ( of

the modal decomposition rule are derived Also, the 11foblem ari~inl.! from the condition {3 :

L. = 0 is resolved after the rr:odal quantities arc combined. as will he shown subsel.;uently

4.5.3.3 Spt"Ctral Moments

As stated earlier. dosed form expressions will be obtained for the fac.ors a i.lnd ( •

defined in Eq.226, which are the key factors of the modal decomposition method. Dar to the

simplicity of the expressions for the mOUe shapes and frequencies. the deriv4ltion is slraightfor-

ward.

By following the matrix multiplications in Eqs.2.17a.l' and 2.20 and t<lking lhe limil nt, I -

0, the following expressions for the factors b, are obtained. which are indep~ndent of lhe mass

ratio t: ,:

(80a)

(SOb)

The faf'IOr !J, and f' are found from Llj.2.26

(Sla)
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(81 c~

ISid)

From :hese eXpreSSIOns, the spectral moments ar;~ easily obtained from Eqs.234 and 236.

which arc repeated here:

C, = a a, J) ~ a c, - acE = /. C,

" 1/

A", = I,I,(C A" " - D,A"',I,' + E"~,,,"! ,)
- il 1

182aJ

f82b)

The frequenL'ies and dllmping ralios needed to calculate the cross-spectral momt"nts arc given

by the origin.. ) su bsystem pilrarru:tcrs as jndic'aled in Eqs. 7~ and 78 Equ.ltions 81 a-d ,tOd the

above l.'ornhinalion rule arc in a form suitable for computer implement;.llion. Thc moments cal-

c'u1ated by the above expressions are compared with exact results for v.nious v<llu..:s oJ the

set:onuary masses in Fig,4.11 The r~sults ale Similar to those obsen'ed m Fig.410

For the case where ~,/, I llnd 13, I arc small or zero i\ suffices to give (: I an arbitrary resl-

dual number (for computer applications, this number would depend on the prel.'ision of the

h<ll't!ware), After w:nhining modal responses. the end result would be consistent wilh previous

results and would be independent of the parameter ~,' ,I: this will be shown presently with 'In

example for Ihe importanl c<'se of perfect tuning.

".5.3.4 Multiply TURN Examrle

Consid;:r a primary subsystem ¥lith all modes perfectly tuned to the secondary system and

sharmg the same damping ratio. i,e. t" ,I - ~,I - 0 for all /. As mentioned earlier. a residual

value ~« 1 is given to t,/ I to keep llll terms well-defined, Then. the factors a. and (' become

a, :::::: 0 1=1. ... ,n

('''':--2A
WjfLl

(83b)

(83d

where "'" is the common frequency of the system modes. Substituting into Eqs.82ll.b. the
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exoression for A" is obtained

,., i •.• 1

A" - r. 1,1: A" , '
, :

, "

=w'II,I,fA" ,+2I.E,,,,,A, ,. +E,t",A ,,1,"

I t I

DOF sy,tcm in EQ.J 65b, The main ditfercm:e is thilt the factpi I> ~ I which represents the

general physical coupling between the primary and secondary subsystems is induded In the

above expression for A"

4.6 Floor Spt'Ctr.

The floor sl'ectrum for a prir.lilry subsystem and a given ground input. is the rcsponse

spectrum assO\;;ated with thl.' motion of the system at il selected alta.:hmcnl p, ,into More pr,"

cisely. it is defined as the mean of the peak displacements of a set of oscillators .... ith variable

values for 'Jam ring ratios and frequencies subjected to the motion of the prim"r)' subsystem at

the selccred atlachrtlent point

Clearly. f1o~)r spectra are speciill cases of the results develol.ed in this chapter. Since the

~econdary subsystem is attached to the primary sub;ystem at a single allachment point. the Vte-

tor «II' is or the form

q" - (0 ., . 0 --I 0 ... 0 1 ) I

where the -I is located at the coordinate associated with the attachment Pl>int.

(85)

The remainder of the analysis is based on the results deriVed In this chapter Frequency

response analysis or the modal dc"Jnlposition method can be employed, and lor the latter

appro<lch, input spel.itled by ilS response spectrum can be used. Finally, interallion (an he

induded or ignored, acwrding to the particular application of the problem.
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Table 4. I. Physical Properties of the
MDOf"/SDOF Example System

Sen\ndary

r::--,------,---------
Subsystem Paraml'lcr Relationships
Primary kr - (1.02):111 I (radians/sec);

k. - 160571:m: (radians/sed"

11': = "'1 I
" -'1) :'", (w. v;~ri:;b~---j
1/1.-~_~~~iilblcJ . _.J

Table 4.2. Modal Properties of the
Fixed Base Subsystems

--
Frequency 1 Damping

\:bsystem
Modal
OOF (rad/s) I Ratio

rimary I I 1.02 i 002
rimary 2 2 0374

j
0023 I

~ 0.98 0.06 Iecondary 4 CU,I 1 0.01

I~
l­
Ip

l::

Table ".3 frequencies for Example System (f I ,=001)

f "',I --r:.ode Exal:t Frequency II Computed Frequency Error I

f (rad/sec) I 'leal Pari 1!l1<,g. Part "Real Par, Ijmag. Pari lY.1 I
O.JJI 1 0.371 0.007 0371 -r 0.007

I 0.0 I
2 0.382 0.005 0.382 flO05 no
3 0.978 0.058 0980 005H 02 !

4 1.019 0.020 1.020 0.020

"';-j1.00 I 0.376 0.008

I
(U74 0008 0.5

2 0.991 0.013 OQ91 oO!} 0.0
J 0.978 0057 0,977 0,057 0.1
4 1.029 0,018 1.028 0.018 OJ

- ._-
1.40 1 0.378 0.008 0.374 0.008 0.2

2 0.978 0.058 O.9ilO 0.058 02
3 1.020 0020 1020 0.020 0.0
4 1.402 0014 1.400 (1.014 0.2
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---rt----;
ShdPC JI Error I

~I~rti ,~.~

~:~1 ~:: i
000 II 00 I

~~~~.~).3
{Ion il ~)o
)()Il :i (I ()

019 i' 00 I

000 00 I
noo "0'01
009 00
01 J () J

000 0.0
---~ --

000 0.0
004 I o.n I

04.1 I 0.4 I
QO~_II_I~__ :

Mode DOF
E"act Mode shapilllmrutcd Mode

Rcal Part Imat; r;;;:l, R~XPart I Im<lg

I I

A~~U:l~;\:JT Z2
3 0000 0000 0000 0
4 0388 0002 03li7 Of

..- ~--- .~

2 J -0002 0 000 -0 002 0
2 0.110

I
-0.300 0,) 10 -0.

J 0.022 0.019 0.022 O.
4 \000 0.000 1.000 O.._- >--

3 I ·0.OC2 0.000 .0 1'02 0
~ i -0.002 -0.009 ·0002 ·0
3 a,053 -001\ 0054 -0
4 1.000 0,000 fl ()~j1_.

·0 om

I
(WOO -0.002 O.

2 -0.005 -0.004 -0.005 -0.
3 -n. J7 5 -0.043 -om lo,
4 /.000 0.000 \.000 O.

..- -
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multiple
tuning

( o
0.378

o 0 ')

0.98 1.02

Primar~ Sub.. ~ ,km
Frt'ql!t'ncies "'pi

(rad/'it'c)

( o
I.UII

') Sl"c:ondar~ Sub,~ .. tem

ht'quende, IIt,j

(rad/'.ed

single
tuning

<

<

o
0.378

o
0.38

00 ~

0.98 1.02

Prima~" Sub,~ ..tt'm
Frequencie, IItpi

(rlld/sed

Secondar~ Subs~stCRI
Frequt'ncit's ",j

(rad/sed

Singly Tuned System, "~1-()J8 rad(se~

Fia.4.3. Distribution or Subsystem Free "ibra'hm Frequencies
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CHAPTER 5

ANALYSIS OF MULTI-DEGREE-OF-FREEDO!\f SECONDARY SYSTEMS

ATTACHED TO SINGLE·D[('REE-OF-FREEOOM PKIMARY SYSTEMS

5.1 Introduction

In this chapter systems consisting of c SDUF primary subsystem supporting d MDOF

secondary subsystem as shown in Fig.5.l will be studied. Although this system appe"rs to be

entirely different from the MDOF/SDOF system studied in the previous ch;ipter. the two sys-

terns are, in fae\' strongly related. In mathL'i"latics. this relationship is called duality' every for-

mula or theorem deriveJ fnr one ~ystem has a nearly identical dual counterpa, t for the other

system. Once this GU<l1 relationship between the two systems has been established. all of the

results oblained for the MlJOF/SDOF system in the previous chapter can be directly reformu-

lated for the SDOF/MDOF system without further analytical derivation.

5.2 Definitions

5.2.1 Pilrameters

The first step in defining a duality' relationship is to establish a one· to-one corresDondcnce

between the pArameters of the two systems. In this case. the parameters defined for the n prj·

mary modes and the single secondary mode of the MD0F/SDOF system are associated with the

parameters defined for the n secondary modes and the single primary mode of the

SDOf/MDOF system. respectively, for instance. the natural frequencies for the subsystems of

the MDOf/SDOf system, which were

(I a)

'Ire associated with the frequencies

(J b)

fm the SDOF/MDOF system. To maintain the above correspondence, the numbering 01 the
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modal degrees-of-freedom for the SOOF/MOOr ~}'stem is as folluw.,; the firsl II degrees of

fr~ed()m corr~spond to the modes of the secOIldary sunsystem an,l the n +) -,h <1egree of free-

dom corresponds with the primary subsystem

Most of Ihc definitions of the previous chdpt'~r arc applied :n this chapler Wllh oh',IOUS

moditications. For instance, J, IS the SCI of all secolldary subsystem modes tuned to the pn-

miiry subsystem mode

Thl.re were several expressions used in the prevIous chapter with two indices. the first

associated wilh the primary subsystem and thc second with the sCl'Ondary subsystcm. This wn-

\'ention is maintained in this chapter, Thus. the mass ratios arc defined as

III"
E, =--

, III" I
1=1,·,· ,/I. ( 2u)

Also, the terms {" arc defined as

__k_,_

" for I = I .. , . ,II. (2b)

amI are interpreted as the displacement of the Ith mode of the se;:ondary subsystem produced

by a static unit displacement of the primary subs)'stem. Similar definitions apply for the ~·()n·

stants (', , k,,, and the polynomial f,,(wl. It follows that the complex frequency response

matrix H(w) is

K,(w) 0 fll(W)

H(w) - 0 K,,(w) I,,,(w)

fll(W) I,,(w) G1(w)

where

K,(W) - m,,(-w~ + 2,w"Lw + w2)

G,lw) - m",(-w~ + 2,w,,,e,,lw + W,;I)

f,,(w) - -1'1, - i('l, ::0::: -':,m,,(w2 + 2iw"Lw)

for i-I, ... ,n.

5.2.2 Duality Relationships

13a)

l3b)

f3c)

Ud)

The duality hetween the MDOF/SDOF and SOOF/MDOF systems is est ..blished by com·



· 152 .

p~ring their I:omplex fle4uen~", response matri~es H(wl in ElIsA.2l1a and 3a. The matrix In

Ell 3<1 h<ls an identi(;al ferm to that," h.j 4 2Ma with the polynomials

(j (wi replaced by g tw), (4al

J: twl replan:d ~~. (II (t.,I. {4bl

(,(w) replaced by I, (,,,). (.1c\

Fm the MDOF/SDOF system, the matrix H{w) Jnd Its inverse were used :0 derive results :n

the frequen<.:y response and modJI analysis. ~cspel:l;n~ly Consequently. the derivations for the

SOOF/MDOF system would be essentially the same <IS those in the prcviou~, ~'h<tptcr with the

repl~':cmcnts in Lqs.4~H:. Thus. <I repetition of the analysis IS unnecessary and only the final

results will be presented through the use of the dual relationships detined abme.

5.2.3 Example System

I'o i:lustrate the nt<lJOl charaLl(,:ristil:s of SDOFlMDOF systems ar"~ I:hc~'k the accuraq Df

the formulalloos deflved in this I:haptcr, the ex~mple systcfTI ~':Iown in FigS! is used. A 2­

DOF secondary system is supported by the SDOF primary Sl."system .:nd the hase 01' the -om­

bined system. The dynamic properties of the subsystems arc described in Tables I and 2 ~,nd

arc ,hascn so that the combined syst~m would exhibit important char<lctcns:ics found in gen-

cral MDOF/SDOF systems, <IS was dDne for the study of MDOF/SDOF systems. By varying

the stiffnesses Ii.' ilnd Ii:, it is possible to vary the frequenl'ies of the secondary subsystem One

frequency of the secondary subsystem was chosen to be fixed at w,: = !.O rad/sec, thus t~le

secondary subsystem was always tuned to the primary syslem, which had a frequency of ,tI,,: =

1.02 rad/sec The other frequency of thc secondary subsystem was variable. lor W I = 0.7

rad/scl:, the system IS singly tuned as shown in Fig.5.2a, and for OJ,! = 1.0 rad/sec, the system

hecomes multiply tuned as shown in Fig.5.2b. The mass ratio, E, is also choser. to be a variable

parameter, as in the MDOF/SDOF example system. Finally, the damping ratio of tlte equip­

ment is uneQuai iO the damping ratios of the orimary subsystem, thus the combined system is,

in general, non-proportionally damped.

The response quantity that will be investigated is the relative displacement bf:t\\een the
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mass of the primary subsystem anrl the adjacent mas... of the s::conllarr subs~ ... lem

5.3 Frequent)· Response Rr.'sults

As a first applir.·ation or the duality the expression for the L'(lmplex frqucnc.,. response

func,tion II, (wI of the response variable yltl=q',..,) is given l'Or lh..: MDOIIS[)(H- systcm.

Ii, (wI is given in hj4.36 anrJ is repeated here

,l,':(WlIlY(WI(i-q".IIII;Jrl(w) q .!m,l f ,.! _i-qll!"~lII. (wI:::: ------ L.----- - L.
i/(wl . I xI(wl(i (wI .l:ll w ) I (i Iw )

The du ... l form of 'he above i .... found through the relat;ons In Eqs.b.b and r4s4,I-r

where d(w) is t:le chararteristi\: p('I~n()mial

IS)

(6a)

d(wl = I" x (WII<:i I (w) - 1: .Ii'«W II (ohl
I "', g wI

These expressions are considerably simpler than the exaCI form of /I, (wI which requires the

inversion of an II+1x,,+1 matrix.

A plot of T" (w) for the example system in FigS! is shown in Figs.5.3a.b In Fig.S.Ja.

the secondary subsystem frequency Wol = 07 rad/sec IS detuned. and a peak is found only for

the tuned modes at w = Wid There is also a small peak corresponding 10 the detuned scmn-

dary mode near w -= 0.7 rad/scc. however if is mnsldenlbly smallcr th;m the first pe,lk and is

not visible on the plot. In Fig.5,3b. both secondary subsystem frequencies arc multiplv tuned

to the primary subsystem rrequenq. and a singlc pC<lk is round at w = w,! v. i11l'h is sli!!-htl~,

larger and broader than the corresponding pCuk of the singly tuned system. as expected

As in Section 4.3.3. the approximate and exact forms of the complex frequency ~csp()nsc

function H, (w) derived above were used to calculate the power spectral density function for the

response of the example system in Fig.5.1 to white-noise base excitatIOn. From this rC!.;uIt. the

spectral moments of the response were obtained by numerical integration and plotted as a runc-
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tion llf the Cl.jUlpmen! frclJucncy. w,:. in Figs.5 .4~-l' for Vi"UCS of W i defunell from the pn·

mary subsystem frequcm:y, the .csponse of the system is domlnatell bv the ~in~dy tuned n''llles

whi~'h arc relallvely mdependent or the detuned scl'onllary mode Thu~. 1111." -pedlal m(,nJl'nl

maintains a large .lOd ncarly l'onstanl value. Ilowcvcr. whcn the svsh:m i, multiply funed . .In

increase In thc spcctral moment ,Irises .11 lJJ , - 10 rad/scl' from the addltion.1I luned sCl'ondury

mode The valucs for A" for m = 0, I. and 2 are ncarly Idl'nlllJI. due to the fact that t::': trc­

l.juenl'ies of thc dominanl modes in the response arc all nearly cl.jual to 1.0 rad/scc Abo, the

dllfcrenl'c between .tpproximatc ,IOU exad rcsults arc '~Iight, illustrating the' JI:L'lHal'Y of the per,

turbaiioil methods

5.4 Modal Oecomposit'on results

5.4.1 Mode Shapes and Frequencies

In this scl'tion, cxpressions for the modc shilpcs and frequencics of the SDOFIM DOl'

system arc dellclope,! whirh arc SUitable for numeril:JI evaluation and subscquent us\: in the

modal dccomposition analysis to proVide a.:eurate measures of the response. .\pproximate

expressions for th·,: spectral momcnts of response to white noise i:lput arc J\:ri\cd from th~

algebraic form of the mode shapes to provide further insight to the dynamic behavior of the

system.

Due to the dl;ality between the SOOr/MOOr and MOOF/SOOF systems, a deTivation of

the modc shapes and frcquenl'les is unnecessary, and tinal expressions for these I\uanlities are

found dirl:ctly from the results of Scellon 44.1 through the use of the relationships in Section

5.2.

5.4.1.1 Detuned Modes

For notational convenience, as'>ume that the tirst secondary subsystem mode is dctuned

from lhe primary subsystem. Then, the first-order expressions for the frc4uen.:y and mode

shape of the combined system which are associated with mode I of the sel:ondary subsystem

are given by the dual forms of EqA.40b and 441. respectively:
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]
'I ,

(i,

f7al

(7hl

where all of the above pol)'nonllal are e'aluateLl at W = WI ,,, The low-orLler appro\lma\l(,n~ of

w = W ,t i +

.'=:.-1 10 (Ilhl

Similarl~, If the pflmar~ ~ub~y~teTll moue" L1clUneLl fron, all of the ~li:onllar~ ~Uh~~~1~111

modes, the first-ordcr C>-jllCSSlons assol'lalcd With the pfimar~ subsy'stem moUe afe lound Irom

Lqs4 43b and 4A4

."', [ I
I r=

-~
(lilt!

K,

lill ,(J1-~,: + de, I (lIblIII - , = W
f

whc:re the above Jlolynomials arc cvalu~lcd at ('J = w,":',. To low-order. the abo\c redu~es to

( lOa I

w,',: = w,. II + f~l'll

The mode shapes •. and .,: ., can be viewed as J MDOF generali/ation of

respel'll,ely, which arc for a SDOF secondary subsystem.

5.4.1.2 Slnwly tuned modes

( lOhl

Eq278 and 2.7(,.

Assume that the first sewndary subsystem moo.. is tun.:d to the primary subsystem. The

e~pressions for the frequencies w,'''' given in Eqs.4_46a,b life not changed by the duality rela-

tionships due to the symmetry of the singly tuned modes.

(11al

(( Ibl

The first-order solutions to the mod~ shapes are found from EqAA7 using the results of Sl:CIIOIl

4.4.1.3
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( 12)

where a "" is given br Eqs,446e,f and the above polynomials arc evaluated at the I rC4Ll\;ncy

''11
W Note that the reciprocal of (i"" is used herc sincc the rnles of the secondary and primary

degrees-or-freedom are reversed. From these solutions, IIle follov.ing lo'!> -or(l\.r aprrllXlma-

tions arc obtained

w ~ w

.' _I (i'"1 , ,
w,",,-W/,I

( lJa)

( J3bl

5.4.1.3 Multiply Tun~ Modes

Assume the tirst 1 secondary subsysh:m modes arc tuned to the primary subs} -tern. The

lirst-order approxlnlations for the mode sh'ipes for a mtillipl} tuned system arc written in the

same form as i.l 1:44.51a

The tuned wmponcnts .:'" and the Ircquency W,'II' art: found by' solving the 1+ 1)( 1+) eigcf1-

value problem in Eq.4.49. The detuned component .,\:') is found from the dual of Eq".51 b

",~:" = (_ l~}._:~ ... _~!-) I

XI.' 1("

which. to low-order, reduces to

<IS)

( 16)• (, I.'W:'/" "w:: I
••J.=" 1 .. 0_._-

W; ,ril-W;',I W;n-W"r

Note that the detuned components of the modes shapes are identical for mUlliply tuned. singly

tuned, and dctuned systems.

5.4.1.4 Very Closely Spaced Detunrd Modes

It was shown in section 4.4.2.5 that the expressions for the mode shapes for widely spaced

detuned modes can be used in obtaininl; results for the system lesponsl' even for very clos . ,

spaced detuned modes. This fact continue~ to hold for SDOF/MOOF systems. If accurate
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exrresslons for the mode shapes arc re~ulrcd, then the same set of equations that were used In

the multir tuning problem arc solved, ilS explained in SectIOn 4.4.1. S

5,4.1.5 EX8mpl~s

The comple); modal properties of the example s.\stem In Fig'! ,ere cOlllputcd uSing the

formulatillns developed In this section <lnd was mmpared with exal'l results Thl' frequt,;neies

an: sho.... n In Tahk ,~ "!"Id are !,Iolled in Flgs55a,n lor ':;trlou.., value, oj the eqUIpment fre­

quency w, • and the mode shapes for the multiply tuned case (I.c .. w" '= 1.00 r~,J/sed ,Ire

shown in lilblc 4 Thc non-dassical damping charal'tcr of the multip:y tuned,ystcm I .•

apparent in the mode shapes, which havc Imaginary col11p(Jnents (iood agreement between

approximate and exae'l values is found in alle'ases

The eifel'! of the eqUipment fTlass is illustrated In hg5 'ib. "'hen: the frequencies

UJrrespondlOg to f =01,005. and ,001 ale represented by pomts A • H, and (', respel'livcly,

alld arc shown t(\ be convergent to the subs\' ,em natural frellucneies

5.4.2 SlWCtrlll Moments

As stated i:1 the previous chapter the spectral moments can be cakulated by evaluating the

expressions for th.: mode shapes and frc'-!uencics and substituting the numcriral rCiults directly

i,oIo 'he modal decomposition meth'ld. For tile exampl,~ .systcr.1 In Fig.). I. th~ results of this

numcril'~1 computation ale compared with exact results obl.lined by integrating the l'Omplex fre­

quency response function in Figs.S,oa-c. Also, the mean l~~ro,crossing rate. I', and thc shape

factor, F>. were computed and plotted in Figs.5.7a,b. All plots sl.ow good wmrarison between

exacl and the proposed approximate results

It was noted in Section 442 lhat the mean lero-crossing rate of a 'uned PS system was

nearly equal to v - W"I/1T. where W"1 is one of thc tuned frequencies Since the secondary sub­

system is always tuned to the primary subsystem. " '.~()uld have a constant value of appro~i­

mately IO/1T ::::: 0.318 rad/sec. which is in ag;eement wilh Fig.S.7il. Also. it ~as observed in

Sect;on 5.3 thai the complex frequency response fllnction had only a single peak for uo;h singly
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.md multiply tuned configurations of lhe example system. thus thc .. hare lal'lor ..... 'uld remain

small and nearly ,:onstant for III values (,I the sel.'ondary frequlIll.'Y t., . as shown In hi:' :; "1 0

Although the numt:f1l'al aprro<\\.'h to findm!!. the spel'tral moments h useful In pr,ll'til'al

applll.'.IlIlHl.,. it IS In.,trudln: lo derlvc generai algebra\\.' solutions f()f the ,,!'eL, I n](lmen s of

usmg the du.t1ttv rebtlonshlp" ;tnu the re.,ult' :.1 "'~l'lIon 4 4 )

5.4.2.1 To'all~ Detunl'\l S~stt'ms "ith Well·Spaced Mode!'.

A., hefore. the modal dl."compmitioll me,hod Simplifies (() the SRSS ml."thoL f',r tot<!liy

detuncd systems .... Ith .... dl-sp"l·eJ mode... The clfccllve partlClpatloll Ltllllh are fllund lwm

Ir ,w,
+ r I 1= l. ( 17alt1J = C/ ----,---- ./1

(IJ • --tu'

I' q ",", I
lI, • II ( 17b)t1J ·1 = ' .. ! I. .' .' +

I W,-W / ,

II follol!.s that the spel't-al monlents fur response to white-noise arc

_ rr(j.. {~ Clr"IW.'~1 ].'W::'" C (~qw;" J:w.:::.}A. - -'4- ,q --,---,-- + I --- + '''.1' ' _ + q,., --~- (18)
1 lL'",-W: ~" . :W:-WI~I Ci "

5.4.2.2 SinKly T med Systems

Assuming the tirst sCl:lllldar:.' mode is tuned \0 the primary n,ode, the dctuned moment

corresponding to I'q4, Sli is

( 19)

and the tuned momcnt corrcsponding to ('>4.57 is

(20)

5....2.3 Multiply Tuned Systems

Thc prol'cdun.: for findmg A" for mulliply tuned systcms remains the ...,me as in Sc, tion
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4.4.2 ..'. The detuneLlI.·omponenl A h I."<mlpuleLl using .'4 19 and A IS naluaku nurncril,tll:-

by uSing the modal deL'omposl!lIlO ml'thoJ

The rlllSS mpdal rllnlributlOn A, from l"losdy spa ...:d s<:Londary suh~I' tL'1ll modL" IS

given hy 144 59

5.4.:.5 S,stt"nI!'I with ('Josl'l) Spaced Ut'tu'lt'd St'condar~ '\1odl'!'I

J hc 1\\" methods for ron"lkrml( rlml.'l\ sparl.'d dl.'lunL'd mode' dC:Jl\cd ,n Section ~A 2 5

clln he applied to S()Ot-!,11()O! s:-s\ems In lhe tirsl method. the ,Ill,ell 'I';I,'CL! rHoL!", .lfl'

lery dosely spaced. the frc4u..:nq tor Ih" collectl\l.' 1l1111]c IS glvcn hy lhe a1erdl!C "': 01 the I

seClmdary frC4Ucrl.'Ics, the d.Jnlping ratio is gllcn oy the ;t\cragc t I Ill' thl.' I mndal lLllllPlrlg

rallns. and the ctlcltivc partlupalion factor o1J I IS gi\l:n hy

"C'" [f" ,w, ~ I~'I = ".q --,,---,- + '.
WI'! -w,

( 211

The alternative mcthod is to l'onsll.1cr the J moues scranllcly. Tllc modc shapes anL! fr-cljuen-

cies arc found from the formulae for v,ldely sp,Kcd dctuncd modes. t'ljs,lla.n: the effectivc par-

ticipation f,lCtors arc evaluated using Eq J7a; and the elfel't of c10sc spacing is drl'ounted for

by usmg the approximation 1-:4.4,66 for the aoss-:pectrJI moments,

5.5 Non-Interaction Results

5.5.1 Introduction

FollOWing the methods devclo[lcd in Chapter 4, thc S()()F/M DOl: s~stcm is re,lnJIYled

without dc(ounting for interaction, The frequc,'C)' rcsponse fum:lion and modal dc(Omposltl(ln

approa,h('s are used and dosed form results arc obtained whil'h nrc simpler than the

corresponding Cl(pressions ;n the preceding sections.
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5.5.2 Frequency Rl'l>ponst' ~'un("il)n Approach

Thc' fn:\.lLl.:nq r<:~porhC fundi"n Ipr 110.: .-e~ponse qU;Jnlit~ 1(') IS ~I\..:n hy the UWI' rorm

, 1./ In ,

L-' -
I ~

q, . ,m, r".

d . , 'I w) = (i (w I II g (w) (22hl

A~ hefore. :h,: dhove expressIOn for If, (u,) ,:an be cOnlP<lrct! with thaI in Fq.6a .•hkh induueu

Jntcr;Ktion. the rclall<Jnship bctwecn the two re~ults is given by

11m II (w) = II' "'fwJ (23)

Tt::s inuicates th.tt the results previously ohtain-.:u to this chapter can hc comCrleU to Ilon·

int::rdctiol' results hy tal<mg the limit /II -0

For the exampk system in Fig.5.1, " \'ol11p.uI.'\lll beiween thc transfer function T, (wI =

III (w) I 1m interaction and nOll-interaction analysis is shown in FigSR for various v'1lucs of

the ~c,ondary suhwstem mass. As in Chapter 4, the dilTcrences are most notable for larger

.alues of m. and for '" near the tuned mode: for othcr values of 10. thc Iransf!'; function is

insensltlvc '0 InlclJction A similar corrparisoJl is also made for the spcnr.t1 moments of rhe

sysl(;r.1 in Fig.5.9 wi.h varying values for thc mass and frequency 01 thc secoml... ry subsyst<.:rn.

As expected, the dilfcrem:cs het"'een A, .1I11J A,:'" an- grciltcst at tunJOg and diminish at detun-

mg.

5.5.3 Modal Dec:omposHion Me.hot!

5.5.3. J Introduction

Follcwing the analySIS JO Se,tion 45.3. dosed form expressions arc derived for the mode



· 161 -

sh:1pes, freljuem';es and the r•. ~·tors a ,Jnd (. from th.: modal dc::ompoSltll1n ~:ldh Jd A!I of

the results arc oOtained b) dua:lly

5.5.3.2 Closed t"oFn Expressions for tht' Moot' Shapes

The freljuencies and mode shapes asso(laled with ',he sewndary suhsvslem ,Ire 1(1\ -;n hI

Ihe dU'l1 forl11\ of 1'.4s475 'lnd 76

2(13, +IL 1 )W,; I

0-------,--- 0
t, '1 w;

w . = w (JI-f; + d I

[
(i Il w 'j

'" . = 0 0 - ---- --- 0
I, (w')

1=1, .. /1

f) I l' (24hl

where the !irst non-fern term IS 'II the IIh courdln,tte

Simllar!}, the corresponding exprcsslons asso(laled wllh the primdr} subsysiem arc given

by the dual rorms of E4S.4 7M and 4.79:

~. ,;~/IJ~I} II'
~,tw, .1)

-""w,:,--------
2(13,.,+/~11,)W,:I.

(25a)

t 25bJ

For dctuned modes, Ihese expre~SlOns re,Juc.; 10 the results In SCCtl"" ~ .4.1.1. For the singl}

lUlled modes. il Cdn be shoy,n that the abovc expressions arc equivalent to the expressions

Derived in Section 5.412 in the limit III, -(l

5.5.3.3 Spectral Momt'nts

The key factors a and c which arc used i'1 the modal dCWml'0slllOn method arc founl

simply by applying the dualrty relationships to E4s4.!lb-d:

(26b)

l, ::::: 2Reh,
q,' II r" + It".1 /w;~-----

21&1" (fJ?,+t;.1 ,)1&1,; I.
(26d
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C26d)

which can lx' subscQuentlv suhstit ~:;;d li,lo i-.Qs.4.1j2a,b 10 Ilbla:n Ihe spcctr,,' momcnts h,

Thc momcnls cakulJled b~' the above expressions arc comparctl with exact rc,>ult,> I'or various

values of the sccnndJry masses in Flg.510 The resulls are similar to thost: "oscrn:d in hg.59.
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Table 5.1. Physical Properties 6~ the
SDOFIMDOF Example System

SUbsyste"m----r--P~ranleterRclatlOnsh~P;;-1
I-::-~'----+---.,..--"":-;;-"':...,------j

Primary "I - (1.02l' m I (radi"ns/sed: I
Secondary ".', ,,: (Vi.. ial1lel I

11I_' ~ Hili If; variable) I

Table 5.2. Modal Prnperties of the
Fi'f~ Base Subsystems

Subsystem
Modal Frequency I Damping
DOF (rad/s) Ratio

Primary I I 1.02 0.02
I

') 0.03SCL"ndary I IIJ"

3 1.0 O.~

Table 5.3 Frequencies for Example System (f; 11~0.0t)

~., I Exact Frequency Co:nputed Fr~quency Error
(rad/sed

Mode
Real Part ImaK. Part Rc..l ParI Imag. Part %

0.'0 I 0.698 0.020 0.700 0.021 0.3
2 0.991 0.011 i 0.9911 0012 01
3 1.030 0.018 1.029 0.017 0.1

1.00 I 0992 0.016 0.990 0.018 0.3
2 0.992 0.022 0.994 0.020 0.3
3 1.035 0.020 1.033 0.021 (,.1

,--.
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Table 5.4 Mode Shapes of Example System k 1=OOI, w,i=1 0)

----

""8
Ex&ct Mode Shape Computed Molle Shape

Mode DOF
Real~ Real Part Imag,l~ IY;1

Im,'~ P.JrI
,- 0000

~~~

1 1 v,~6 0,003 0,000 OJ
2 L(){,J 0000 1,000 n,oon o,n
3 0003 0,000 0,000 o~oo

~+1-----
~T>I2-1>----0 054 -12 I 0,050 -0014

2 -(ulJ4 0006 0005 . 0,001 .3.2 !
) 1,000 0.000 1.000 nooo I 00 i

3 I

I
-v.186 I -0.048 -0.172 _(\{14:; 06 I

L 2 O. JfP

I
0,031 0,017 U/'14 I 103

I3 1,000 0.000 IOuO (; [,00 !. 00. _____ . __--J-___
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multiple
tuning

<

(

o
1.02

o
1.00,1.00

> Primar)' Subsy!>tem
Frequencies fIIpi

(rad/sed

Secondary Subs) '.;!t"m
Frequencies 61 ..j

(rad/sed

Multiply Tuned System, ",1-1.1'\ rad/sec

single
tuning

(

< o
0.7

o
1.02

o
1.00

> Primary Subsystem
Frequencies "pi

{rad/sed

Secondary Subsystem
Frequencies ....j

(rad/sec)

Singly' Tuned System, Ifs1-0.7 rad/sec

Fia.S.2. Distribution pI Subsystem Free Vibration Frequencies
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CHAPTER 6

ANALYSIS or MULTI-DEGREE-OF-FREEOOM SECONDARY SYSTEMS

~TTACHED TO MULTI-DEGREE"()F-FREEDOM 'RIMARY SYSTEMS

6.1 Inlrdudion

In this chapter. genen,1 PS systems consisting of an MooF primary subs, stem supporting

an MOOF secondary subsystem in ;in arbitrary conli5:Jratif'n are studied. Figure 6.) provides a

siml'lle example of such a system. It will be snown that the expressions derived for

MOOF/;.1DOF svstems are combinations of the cl)rrespondinlJ expressions for MDOF/SDOF

and SDOF/MOOF systems analyzed in chapters 4 and S. respectivel)'.

The steps of the analysis will follow the same methodolugy used in chapter 4. Most of

the results are new; previous re~arch has not accounted for all of the dynamic properties for

this general system. as was discussed in detail in the Introch:"tion.

'.2 Deftnllions

'.2.1 'anilide"

The matrices describina the MOOF/MDOF system are a generalization of those

developed for the MDOF/SDOF system in Chapter 4. For t~ individual fixed base su~ys-

tems. the primary matrices 1',.,.. C"" and Mf'I' remain ltS ~fore and the secondary matrices

M ,,, C,,, and 1'" are of order MXM. where M is the "umber of degrees of freedom of the

secondary subsystem.

The displacements of the combined system are defined by the N+M vector

XU-(XI '" X, X\+I .•• x,+,,]' (I)

and the N+MxN+M ma5lll. damping. and stlfness matrices M
"
" C,", and K,", r;:speclively.

dre liven by Eq....7. As noted in Chapter 4, ttlese matrices are not pr~iflely equal to the true



system matrices, however the approximation is consistent with the ar.alysis that will be per-

formed.

From t1.ege matrices, the eqWltions of motion for the MOOF/MOOF system are given by

EQ.4.8

This equation can be transformed to modal coordinates by meanli of the N+Mx n ~m transfor-

mation matrix liven by EQ.4.lla

i.,. 0 I
• -l 0 CJ,

where ., is an MXm matrix l:onsisting of the m mode shapes of interest for the fixed base

s«ondary subsystem. The modal coordmate vector z is obtained through the relation .1-.0
and i. liven by

I-(Z" .... , zp" Z,I , ... t z\",J

The transformed mass. dampina. 'ilnd stiffness matrices are leneraliZlltions of Eqs.4.1 2a-d:

M - dill;:of "',.1 ... m,., m, I .,. mUll) (Sa)

(sym)

c-

&-

0 2mI'll W,., f '"
ell C""I 2m,l fll dt.! (Sb)

C'I", t"", 0 2m""w.\",( \.'"

nlpIW;' (sym)

0
,

m,.,cupli esc)
kll k'd

,
m,lw~1

kim km" 0 mll"w~"

where

C"IJ - .:C/h.'j klJ - .:&".•.}
The equations of motion in terms of the modal coordinates are given by Eq.4.13

(ScI)

M'i + Ci + KI - -Mrx~;,) (6)

where r is the vector of modal participation factors liven by Eq.4.14. The form of the matrices
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M. C, and I( are more complicated than that for ~ooF/SDOF systems, however. this does llOt

pose any problems in the succeedina analysis.

To facilitate the analysis of the system. tile terms k" and Cd are rewritten in a form simi-

lar to Eq.4.17

where '" is defined to be the ratio

J. .•T._- __'It., ,
m'l<a.l\~!

(8)

(9)

(lOa)

The interpretation of ,., is a generalizalion of lhat given in Section 4.2.1: It is the displacement

of the jth mode of the secondary subsystem caused by a static unit displacement of the Ith

mode of the priMary subsystem.

'.2.2 Notation

The classification of the modes of ~he MooF/MooF sistem IS a generalization of the

classification presented in Chapter 4. The definition of \Vning remains as ~fore: A primary

mode i and a "«ondary mode j are considered to be tuned if

(
w",-Wlj r< e" (4 + 2:J.....-)

w a "} I e f"~,,,

A primary mode which is RClt tuned to any of the secondary modes is defined to be detuned;

the same definition applies 10 secondary modes.

There are two sets of detuned modes. one for each sub.~ystem:

{
set of indecies i correspondinl to }

,,., - d-:tuned primary subsystem modes

{
set of indecies i corresponding to }

'MI - detun..A secondary subsystem modes (JOb)

Tuned modes fall into two classifications, as discussed in section 4.2.2: sinlly tuned modes and

I(lultiplv tuned modes. The sinaly tun\:d modes form a set of ordered paus

I" - { (i,j) : primary mode i is sinalY tuned to secondary mode j } (l1)

Multiply tuned modes form a collection of sets. Assu"ne there are a total of f( clusters of
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multiply tuned nlodes. Then for each II 'K
II~~I - { primary modes in Ihe k-Ih multiply tuned cluster} (12a)

1,:3' - {secondary modes in the Ie-Ih multiply luned clusler} 1I2b)

As an eX:lmple. if the firsl Ie primary modes are all luned to the first I secondary modes. t~.en

I~~l _ ( 1 •...• Ie} I,~~J - I I •... , I I (3)

It should be noted that each primary or 5e':ondary mode is included in one and only one

of the above sets.

To illustrate the m';or characteristics of MOOF/MDOf systems and check the accuracy of

Ihe formulations derived in this chapter, the example system shown in Fig.6.1 is used. The pri-

mary subsystem is identical to the one used in the example sys'~rn for MOOF:SfX'F systems

and the secondary subsystem is similar to that used in the example system for SOOF/MDOF

systems.

The dynamic properties of the subsystems .re described in Tables I and 2 and are chosen

50 thai the combined system would exhibit important charact~ristics found in general

MDOF/MDOi· systems. For instance. the frequency of the equipment is a variable parameter.

which allow~ for an investipdon of tuning. For fU, - .311 rad/sec. the system is sinaly tuned b

shown in Fig.b.2a. and for 01, - 10 rad/sec. the system becom~:; multiply tuned as shown in

Fi~.6.2b. The mass ratio, E, is also chosen III be a variable parameter, as before. Finally, the

dampinl ratio of the equipment is unequal to tbe dampil\& rlltios of the primarl subsystem,

thus the combined system is. in genend, non-proportionally damped.

The response quantity that will be investigat.:d is the relative displaccment betw~n the

upper mL'IS of primary subsystem 2 and the ad'acent mass of the secondary subsystem.
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'.J Freq_ncy RHfOUR 'lI.dlon Approach

'.J.I The C....'ln Frequency Rnpense Matrix

The complcK frequency response matrix fer the MDOF/MDOF system is a ge"eraliz..tlon

of Eq.4.28a and Eq.5.Ja

H(eu) -
G,,(W)

f"I(W) Kj(w)

(sym) I -I

/I4aJ

Il",(w) f"",(w) 0 x" (w)

The polynomials G, (w) an(1 J(, (w) are given by Eqs.4.28c and 5.3b, respectively, and

I,(eu) ::::: -Cm'l(w;: + 2;W"~'IW)

for ,-j, ... ,n and )-1. ... ,m.

(I4b)

Unlike the previous chapters, the above inverse has no closed form solution. To find the

cORl"lex fTl~quency response function II, (w) for a response quantity y (I )-q 'If II, the equation

Eq.4.J2 must be solved numerically, which requires the reduction of an n+m order system of

e~uations for each val~:, of the f'eQ'aency w. This is considerably more difficult thar the tvalua-

tion of a rational polynomial. which is the computation required for H, (w) in t;'e

MDOFlSDOF and SDOF/MDOF systems. The modal j~...'Omposition method to be presented

i:l the succeedang sections does not present such nunleneal difficulties and is the recommended

method I'or analyzink! MDOF/MOOF systems.

6....1 M_ Shllp" ••• Frequeucles

The low-order aoproximations for the mode shapes and frequencies will be derived for the

MDOF/MDOF system. The appro1ch is similar to that of Section 4.4.1. The resulting exrres·

sions are a combination of those derived for MDOF/SDOF and SDOF/MDOF systems in Sec-

tions 4.4.1 and 5.4.1, respectively. These ~xpressionscan be evaluated numerically and used in

the modal decomposition alialysis to provide accurate measures of the response.
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As before. approxirt1llte algebraic expressions for the spectral moments for re5pon~ to

white-noise input are obtained to investicate further the dynamic behavior of the system

Assume that pnma~ mode 1 is the detuned mode to be analyze<!. Follou:;~1 the pro-

'edure in 4.4.1.1. the first-order solut;')ns for the frequency and mode snape can be found

CIIIHIt
- wrl(.Jl-~;1 + I~,,,) (I Sa)

••11) _Ii .I. II,!'J .,. t IIJ"J _!JJ.. '" _ I'm )' OSb)
1-' giG, J-l KlGn I, R",

where the polynomials are evaluated at Col - wi"'. Note Ihat the above expression for the mode

shape is a combination of the results Eqs.4.41 and 5.9a. The low-order approximations are

w( - w/"O + it",) 06a)

."==[ I 0 ... 0 ',!~\ ... ';"'W~~ II 06b)
CII,] wl'! Col",,-wI' 1

Likewise, if secondary mode I is detuned. the first-order approximations for the mode shape

and frequency IIIre

CIt,~4~1 _ CII'I(~ + It.l) 07a)

.~~I -1- ~I '" - !nt 1 t. Irl/,2 ... t /,.1,,,, )' (17b)
.II On ,_II,G, ,_I 'mG,

where the polynomials are evalualed at (II - CII,~I~I,. In this case, the above expre~ion for the

mode shape is a combination of Eqs.4.44 and 5.7b. The low-ordcr approximation is

- I til ~I.h~1- (:'.11 2 '
wl',-Ql;,

411";+1 - 411',,0 + i(,,)

08a)

OSb)

Assume tha' rrimary subs)stcm mode 1 and secondary SUbsystem mode I are tuned 10

each other. Applyin. the a:lalysis of section 4.4.1.3, the resulting first-order approximations for

the frequencies are liven by .he same expressions as in Eqs.4.46a,b:

lfll {I· I( (.~ )2J'.}... , - "'".11 + I{/I.II ± '2 ')'\1+ /~J.II+~II (9)
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The mode s,",apes • ." lire

.,'\' -I a."" - ~ .. , - fu I _a ull f,., '" _a,WI f,,,, )1
G., G" R.' g",

¥-'here the polynomials above are e\'alual.::d at W-W,'"' and a ,1111 are given by F'~s,4.46t,.,f

II.. ) {Q .~ 1 ( ) 1)' }
11, - ~ -,..\1 + I~".ll ± '2 'YI'+ i~,I,II+PII

The low-order appro"'imations are

(20a)

(20b)

(

T <It"W ,..... 1111 'tl ... , \
9'. - Q , , •••

"',;:-"':'

, ),
... u "J)_""IICaJi~, , ,

W;u'- W/:l

OJ)

Note that .,' i!> it combination of Eq:>.4.48b and 5.l3b.

•••. U Multiply Tune4 MOlies

Assumt the first k primary subs)'stem modes are tuned to the first I secondary subsystem

modes, i.e,. J.~,~' ard J,:\' are given by Eqs.l1. The matrix f(w) - H I(eu) can Me partitioned

into submatrices

f l " 0 f,f r,r.
0 r,., rtfl f.il

flw) -
f" r", r,t 0

(22)

r.11 r,1d 0 r ~I

where the subscnpts P. s. t. d refer to the primary subsystem. secondary subsystem. tuned

modes. and detuned modes. respectively.

rl"(w) - diasl GI(w) ... Gl (",») (23a)

r l,,(IIl) - dilill Gl + I (eu) .•. G" (w) I <23b)

r" (w) - diall R,(.,) ... R,(faI) I .. Old

f.1(..) - diaa{ gli' (III).' .. gUi (faI) I (23d)

where lSilill ... I Genoles diagonal matrices. lind ~". f,.,. f,h. and r.Mare full matrices.

Followir.1 the analysis in sect'•.)n 4.4.1.4. the initial approximations for the mode shapes

are liven by

..,111' _1.... 1111 0.111' 0) 1 (24)., ""'1'4 ,..,

where the vectors .,'):' and .,~~" and the initial apprOldmations for the frequencies are obtained
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from the k+l><k+1 order eilenvalue problem

(
f I"<W,IOI) f"(W,fOI)')(.W,) (0)
f"t""illl) f,,(I&I,<o,) .:~' - ° (25)

This problem :"orresponds to Eq.4.49 and is relatively small compared to the order of the com·

bined system (n+mxlI+m). Referring back to the ori,inal matrix f(",), the error is

.... "" I 0 I.,,.. / HII 0
f( ) 0 f"~I\' O(e>

1&1 III I - 0 - 0
.", t fO, ]o fell. "" O(e )

As before, the above error is reduced by introducing detuned components to the mode shapes.

The resultin, approllimation ... which corresponds to EqsA.52a is

.... • ( .... I'll .... 1111 .... 1111 I'" )'
"'1 - .'111 "'lip, .,,'\/ d .. 1

where

Note that f,., and f "I are diagonal mdtrices and arc easily inverted.

' ....1.4 Closely s ... net... Melles

(27a)

<27b)

In sections 4.4.2.5 and 5..e.2.5 it was noted that the derivation of the mC"de shapes for

closely spaced detuned modes :s unnecessary if the quantity of intereht is the response of the

secondary subsystem. The solutions for the mode shapes derived for widely spaced detuned

modes can be used in obtaining results for the syste~ response even if the detuned modes are

closely spaced. This method will be appliec' to MDOf/MDOF systems.

If precise solutions for the detl'ned modes is required, then considerable amount of com·

pula'ion is required. The analysis of the mode shapes for k very closely spaced detuned pri·

mary subsystem modes requires tile solution of lin k+mxk+m order eigenvalue problem.

Similarly, for I detuned very closely spaced secondary subsystem modes the problem is of <-rder

I+nxl+n. Since m and" are lalle integers, these ei.cnvlllue problems are relatively large.
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6....1.5 Examples

The comple" modal r,roperties of the ellample system in Fig.6.\ were computed using the

formulations developed in this section and were compared with exact result~ obtained by using

a complex eigenvalue solver fHlm the IMSl library. The frequencies are shown in Table 3 and

are plotted in figs.6.3a.b for various values of the equipment frequency W,II. and the mode

shapes for the multiply tUI'ed r:ase (j.e.• WI! - 1.00 rad/seC> are shown in Table 4. The non­

classical damping character of the multiply tuned system is apparent ir. the mode shapes, which

have imaginary components. Good agreement between aprroximate and exact vah;es is found

in all cases.

The effect of the equipment mass is illustrated in Fig.6.3b. where the frequencies

corresponding to f - .01 •.005. and .001 are represented by points A" R" and C. respectively.

Mode- 1 is not affected by the mass ratio because it is detuned. The frequencies corresponding

to the other modes converge \0 the subsystem natural frequencies as was observed in the study

of the 2-DOF system.

6....1 Spedral Moments

The spectral moments can be calculated using th.: preceding expressions for the modal

properties and employing the modal decomposition method developed earlier. For the example

system in Fig.6.l. snch calculations are compared with exact results obtained by integrating the

complex frequenc~ response function in Figs.6.4a-c. Also, the mean zero-crossing rate. v. and

the shape facto~. 8. were computed and plotted ir. Fip.£.Sa.b. All plots show good comparison

between exact and the proposed approximate results.

It was noted in Section 4.4.2 that the mean itero-crossit:g rate of a tuned PS system was

nearly equal to " - wJfr, where w" is one of the tuned frequencies. For w, I - .38 rad/sec. it

can be seen that" approaches this theoretical va'ue in Fig.6.Sa (compare with Fig.4.8a for the

MOOF/SOOF example study). For higher values of w". the tuned modes with frequencies at

W,2 - 1.0 rad/sec are dominant in the response motion. and" has a nearly c<:'nstant value of
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approximately 1.0/1,. == 0.318 rad/sec (compare with FiB.S.7a for the SDOF/MIXJF example

study).

The shape factor is relatively large around CII, I - .';8 rad/sec. This is due to the fact that

the power spectral densit)· function has two peaks. corresponding to the two sets of tuned

modes of the system. For other values of CII, I. there ili only one peak at w - 1.0 rad/sec and

the response prlXCSS becomes narrow-t.lnded with a small shape factor (sec Fig.6.Sb).

As in the previous chapters, general low-order algebraic expressinns will be derived for

the spectral moments for response to white·noise input. These results can be viewed as a com·

bination of the results in Chapters 4 and 5.

6.4.Z•• Well-Spaced netuDM MOlies

The treatment of well-spaced detuned modes is esorentially the same as in Sections 4.4.2.1

and 5.4.2.1. Let mode i and mode n+j correspond to detuned primary and secondary subsys·

tem modes, respectively. The effective participation factors are

USa)

U8b)

for the secondary mode. Note that the former expression is similar to Eq.S.17b and the latter is

similar to Eq.4.53b. which ili expected. The response contributed from the detuned modes is

foun! from Eq.2.38, ignorinS cross-modal terms due to well-spacing of modes:

' ....2.2 SI.&I, T."M'"
For each pair of sinaly tuned modes there is a tuned contribution to the spectral moment

of the form of Eq.4.S7. To clarify notation. assume primary mode i and secundary mode j are
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singly tuned and let

fill" +fIl 'I

2

~ _ f'''+{'J
'U,'/ 2

fil'I -fIl,,,
fJ" - --"'--~

Cd.I,11

Then, thC" moment term arising from these two modes is

G , 2~ 11I-3
AI, " 7r l:JI r,qll+./ I./'a,IJfIla.IJ

'/II - -8- f",f'j<P,;+4fJ.I/) + 'Y,jeJ.'J

The lotal contribution iror.l all pairs of sin!ly tuned mooes is simply the sum

Ailll! - ~ A,~:/~
1/")"'1

6,~.2.3 Multiply Tuned Modes

(30a)

(JOb)

(JOc)

(31)

(2)

The spectral moments for multiply tuned modes are derived numerically by the modal

decomposition method, as before. For each k-Ih c1usle. of multiply tuned mod~s a moment

term A/f,:, is found, and, as in Eq.32 above, these moments are summed to find the total

moment contribution

(3)

6....Z... Closeb Spacell MoMs

The correlation between closely spaced modes is accounted for in the same manner as

detailed in section 4.4.2.4. The resultinl expression for the lotal moment is

(34)

6....Z.5 Vel')' CIoIe.y s..- MOlIn

The Iwo methods developed in the previous chapters for analyzing systems with closely

spaced detuned moces can be applied direlt!y to MDOF/MDOF systems. If the modes are to

be considered separatedly, then the mode shajles and frequencies are found from the analysis of

widely spaced detuned modes in Section 6.4.1.1. The effective participation factors are
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subsequently evaluated usin. F.qs.28a or ~l!b, and the:: effect of close Spacinl is accounted for by

the approximation Eq.4.66 for the eros:> ~pectral moments. If the set of very closely spaced

modes are to be represented by one collective mode, the corresponding participation factor

would be the sum of the participation factors in Eqs.28a or 28b and the frequency and damrinl

ratio are liven by their respective averalCS.

6.5 N...·latend..a Resultl

6.5.1 latrDllm"a

The MDOF/MDOF system is reanalyled without accountinl for interaction in both the

frequency response and the modal decomposition approaches. Unlike the outcome of Section

6.3, a simple closed form expression is available for the frequency response function HI (w) for

the non-interaction case. Also, as in the previous chapters, closed form expressions are

obtained for ali mode shapes and the factors 0, and C, which are used in the modal decomposi-

tion method.

The procedure developed in Section 3.5 is used to obtain the complex frequency response

function H, (w). The equations of motion are decoupled into two sets of equation~ The first

set corresponds to the displacement response of the primary subsystem DOF to the base input

and is &iven by

z("'" + 2w ~ -''''''j + ..,2:(,."" - -rx"
1" """'" "I" ...,. ,.. , II

i-I, . ··.n OS)

and the remaining equations are for the rcsultin. response of the secondary subsystem to the

support motions.

(36)

The Fourier transforms Z~'·"'I(W) and Z,~'""')(fII) of the subsystem responSes ll'~"''''«() and

%I.\'··II'«() are

i-I, ... ,n (37a)
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(J7bl

From these expressions, the Fourier transform y'"'''' 'ew) of the response variable y (() is

obtained

y'u""'(w) _ ~q 1 ""''''(w) + i- q Z''''''''().It- II'/ .. Ij.')/ W
,-.., I I~ I

y'II<",i(W) _ xe(w){ft q,,+,f,,(w)mp,f, ._ f q,ffl,.,f, - f q,,+,m.,f"',} (8)
. ,-1,-1 K,(w)G,(w) _I G,(o.) ,_I K/(w)

It follow!) that the frequency response fUi'lction is

Hif'''''d(W) =-: tt QI/+J"(w)m,,,f, _ t q,ml"f, - t q,,+,mvf"+1 (9)
'_!/' I K/(w)G,(,,;) ,_I G,(w) ,_I K,(w)

A comparison bel\\'een the transfer function T" (w) - III, (wW for interaction and non-

interaction analysis is shown in Fig,b.b for various vaiues of the secondary system mass. The

differences are most notable for values of w near the luned mode; the differences increases for

larger secondary masse" due to the inc'eas~d elf('~! of :!"Iteraction. For olher values of w, the

transfer function is insensitive to inter;.ction, A similar comparison is made for non-interaction

and interaction moments in Fig.b.7 for the same system with v:lrying values for the mass and

frequency of the secondary system. The result is similar to the findings in Chapter 3: the

difference between All and ",\ "u'" are greatest at tuning and diminish al detuning.

6.5.3 Modal DKomposition Method

6.5.3.1 Introdudion

The approach taLen here is essentially the same as in Section 4.5.3. Expressions for the

mode shapes and frequencies are rederived for the non-interacting, combifled system and the

results substituted into the modal decomposition method of Chapter 2. Closed form expres-

sions for 'lI1 mode shapes and fiequencies, including multiply luned modes, and the factors a,

and ", are obtained. The final results for the response of the system are easily obtainable from

the eJlpressions for a, and c, and the original parameters of the two subsystems.
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'.5.3,1 Closed Form Ex"'"...... for the M_ Shapes

The original eigenvalue problem

(4())

(42)

is reinvestipted. First. the modes associated with the primary subsystem are analYl.ed. It is

intuitively clear that the frequencies associated with these n modes are given by the ariginal

primary subsystem frequen,ies

w,' - w,,,(.Jl-tl~' + ,t p,) ,-1. ... , n (41)

The ,orresponding mode shapes are derived by substituting w,' into Eq.40 and solving the

eigenvalue problem. The solutions are

. I !,,(w,) !",,(w,) IT.- 0 .. ·010· .. 0---· .. --'-'-..,....--::-
, gl (w,) gIl (w,)

::-: lo ... 0 I 0 '" 0 _ ("w!, .... _. ',mW~", II
2l,p, ,+i€,I., I)W~., I 2«(j"" +i€.I.,m )w;.""

where the first non-zero term is at the ith coordinate and the parameters wo .,,. .8", and f"d ar')

generalizations of the average frequency. uetuning. and damping difference parameters of the

MDOF/SDOF system

2
w,,,+w'j

OIU,I./ - (43)

The derivation of the modal properties associated with the equipment is similar to the

above analysis. The frequency is given by the equipment subsysterr. frequency

CII':+I - CIIv(.JI-f~ + if.)
which. when substituted into Eq.40. yields the following solution for the mode shape

(44)

tuned mode. it can be shown that the above expressions are equivalent to the exprt"ssions

derived in Section 6....1.3 for the non-interaction case, where m\j are small.
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As in Se~tion 4.5. the above expression appears to be inueterminate siuce it involves the

small parameters 1".13,,, and ~.I'I' However. the limit tn" - 0 is taken after the coefficients D,

and C, are derived and the problem with the fj'l and ~ d." terms are resolved when the modal

resp<>nses dre combined.

6.!.3.3 Sped"1 Moments

As stated earlier. closed form expres!'iolls ~11I be obtained for the factors a, and (.

definerl in Eq.2.26. which are the key factors of the modal decomposition method. Due to the

simplicity of the expressions for the mode shapes and frequencies. th~ derivation is straightfor-

ward.

By following the matrix mulliplication in Eqs.2.17a-c and 2.}0 and t.,;king Ihe hmil m" -

O. Ihe following expression for the factors b, are obI-lined which are indel'endenl of the mass

ratio E"

b fr, ( I.'" q"'/"I w;, J ..- -- q - ,or i-I, .... n
, 2w/" ' ,_I 2(j3" +i~,11 )wi'l

b _ iq,,+ I [ I." I'".,w~ I
,,+/ -"2- r,,+_ + -( 2 for j-I. .... m

w" .' ,_I 2 13"+if,,.,}wu .• /

The fa~tOf Q and c, are found from Eq.2.26

(46a)

(46b)

(47al

(47b)

(47c)

(47d)

from these expreuions. the sp«tral moments are easily found from EQs.2.J4 and 2.36. which

lIrc repeated here:

(48a)

(48b)
• n

~III .. I.l:(CI}~"'.') - D'l~"'+I"J + E,}l.mi-1.:i'
,-I)-I

The frequcncics and dampinl ratios needed to calculale the cross-speclral moments are given
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by the oriainal subsystem parmnelCrs II indic:ated in Eqs.41 and 44. The moments calculated

by lhe above expressions are (I)mparot with exact results for various values of the ICCOndary

masses in Fil.6.S. The results llre similar 10 those observed in Fil.6.7.
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T.... '.1. PIa,11eaI P...,mleI ,., tile
Moofi'/MOO, [sua'" S71teID

Subsystem Parameter Relationships
Prinwy k I - (1.02)1", I hlldianslsecF

1e2 - (,6051)2"'1 (rlldians/sec:) 2

:=:-1 "'1 - "'\
Secondary I k). k. (variable)

I "'3 - ''''1 (. varablc)'---.

T_ae '.2. M PfOIIHtlet of tile
'Izell B S.",lteml

Sublystem Modal Frequency Dampina
DOF (fIId!l) Ratio

Primary 1 1 1.02 0.02
Primary 2 2 0.374 0.023

3 0.91 0.06
Secondary .. -.1 0.03

S 1.0 0.01

-.1 Mode
Exact Frequency " Computed Frequency Error

(l'8d/sec) Real Part Imaa.Part Re.J Part lmaa. Part llfl
0.31 I 0.310 0.009 0.372 0.009 0.2

2 0.382 0.011 0.383 0.010 0.1
J 0.977 0.OS7 0.977 0.OS7 0.1.. 0.991 G.013 0.991 0.013 0.0
S 1.028 0.018 1.028 0.018 0.0

1.00 I 0.37. 0.008 0.374 0.008 0.0
2 0.976 O.OSS 0.976 O.OSS 0.0
3 0989 0.017 0.988 0.017 0.1.. o.m 0.02S 0.998 0.025 0.0
S 1.03S 0.020 1.033 0.021 0.1



- 199 -

Table 6." M_ Shapes of Example System ('11-0.01, "',I-LO)

Mode I DOF Exact Mode Shape Computed Mode Shape Error
Real Pan ImaR. Part Real Part lrJ!l!~' Part %

I I 1.000 0.000 1.000 0.000 0.0
2 0.000 0.000 0.000 0.000

I
0.0

3 0.000 0.000 0.000 0.000 0.0
4 0,387 -0.004 0.387 0.000 0.4
5 0.387 0.002 0.381 0.000 0.4

2 I -0.004 0.000 0.000 0.000 0.4
2 0.130 -0.157 0.123 -0.163 2.1
3 -0.009 -0.004 -0.008 ·0.005 0.2
4 1.000 0.000 1.000 0.000 0.0
5 0.646 0.093 0.665 0.075 2.8

3 I -0.002 -0.001 -0.003 0.001 0.3
2 0.004 -0.009 0.004 -0.009 0.0
3 0.060 -0.035 0.063 ·0.G35 0.3
4 -0.215 0.620 -0.229 .0.600 3.4
5 1.000 0.000 1.000 0.000 0.0

4 I -0.004 0,001 -0.001 -0.001 0.5
2 -0.014 -0.013 -0.013 -0.014 0.2
3 -0.023 -0,041

I
-0.022 ·0.')42 0.2

4 1.000 0.000 1.000 0.000 0.0
5 0.5f.-2 -0.489 0.581 -0.440 1.3

5 I 0.000 0.001 -0.004 -0.001 0.4
2 -0.003 O.OO~ -0.003 0.002 0.0 I

3 -0.211 ~iJj2O< -0.066 0.7.. -0.804 -0555 ·0.177 -0.596 3.2
5 1.000 0.000 1.000 0.000 0.0
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m..ltiple
tuninl

( 0 0 0 ~ Primary Subsystem
Freq...ncles fit,.

0.J78 0.98 1.02 (ratlfsed

< o >
1.00, 1.00

Secondary Subsystem
Frequencies -'J

(rad/sed

\lultlpl, Tuned System, _,1-1.0 rad/sec

slnlle multiple
tunlnl tunlnl

< 0 00 )0 Primary Subsystem
Frequencies ",1

0.378 0.98 1.01 (rid/sec)

< o
0.38

o
1.00

) Secoodllry Subsystem
Frequencies _\j

(raclfsec)

Multi,ly and Sinll, Tuned System, _,1-0.38 rad/sec

FI•.6.1. Distribution of SIIMy.tem Free Viltratlon Frequencies
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CHAI'TER 7

SUMMARY AND CONCLUSIONS

1.1 S•••al')' or Ibesls

The general problem of finding the dynamic characteristics of arbitrary PS systems was

investigated. Previous investiaators have approximated or have neglected altogether one or

more of the properties of such systems which include: interaction effects. correlation betllleen

s.absystem modal responses and between support motions. non-classical damping. multiple­

support excitations. and single or multiple tuninl. In this study. all of these elTects are

accounted for correctly by analyZing the combined equations of motion. This large system of

equations is eft'ectillely reduced to a tractable and manageable form throush a systematic appli­

cation of the perturbation theory. Two approaches are provirJed: one ~.Ised on modal analysis

and the other based on frequency response methods. In the modal approach, simple formula­

tions lire provided for the complex-valued mode shapes ar.d frequencies which in all but the

multiply tuned case are in closed form. These modal properties arc applicable to a variety of

response analysis methods; references to some of these methods have been made. For the pur·

pose of this study, a aeneral modal combination rule for ~ystems with complex-valued and

closely spaced mode shapes and frequencies was developed for stl/tionary stochastic input

specified by ils power Jpectral density function as well as by its response spectrum. These

methods are particularly well-suited for the analysis of PS systems.

In the frequency response approach, ~imple dosed form solutions for the frequen~y

response function was obtained for all but the MOOF/MOOF systems. which can be used In

cases wht.re the input motion is stationary and is described by a power spectral density function.

For further insiaht into the behavior of PS systems, allebraic expressions for the response

were obtained for the special and important case of white noise input. Several properties of the

system were revealed. such as the relation between the mass "tios and interaction, the reldtion
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between the proximity of the sabsystem frequencies and the corresponding tuning or resonance

elrects. and the relation between the mass ratios, the difference of subsystem damping values

and the corresponding non-classical dampina etl'ects. Many other propenies are explicitly

included in the expressions for the response and were cited in the text.

The PS system was also analyzed without accounting for interaction elrects. In the fre­

Quency response approach, the equations of motion were de<:oupled to two sets of equations

corresponding to the coordinates of the two subsystrms. as h~ been commonly dOlle in the

past. However, in the modal approach, the combined set of equations are r.etained and closed

form expressions for the mode shapes and frequencies are nbtained for all cases. These expres­

sions were used In the modal decomposition method and simple dosed form formulae were

derived for a set of generalized rarticipation factors which can be readily used to find the

response of the system.

7.2 Conrl.sloas and Reco 108s

The m'.lin contribution af this work is the development of an accurate and computationally

feasible modal analysis technique for PS system. The expressions that were obtained for the

complex made shapes and frequ~ncies and t"e mod,,1 com!Jination method are easily imple­

mented into a diaital computer. Such an implementation was used to derive the figures and

tables in this study.

Different formulations can be used for various types of base inpt,;t~ a partial list follows:

I. For str,lionary stochastic input and fer input specified by its response spectrum. the modal

decomposition method developed in Chapter 2 is used.

2. For non-stationary. non-white input. a number of existing methods includina those in

Refs.14.30.8 can be used.

3. For deterministic input. the decoupled modal ditl'erential equations in Eq.2.2S can be

iRtcarated.

In many PS systems. the masses of the secondary subsystem are very small in comparison
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to those of the primary subsystem. If the masses .ue small enough to satisfy the non­

interaction ~'riteria, the correspondins non-interaction formulations can be used, which are in

c10std form and easily calculated. These same formulations can also be used for tho~c systems

that do not satisfy the criteria, to provide Ii simple eSlimale of the response behavior. The

resulls are conservative. which is often ac(;eptable in preliminary desiso stages.
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