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DYNAMIC ANALYSIS OF MULTIPLY TUNED AND

ARBITRARILY SUPPORTED SECONDARY SYSTEMS

ABSTRACT

The subject of this study is the dynamic aenalysis of linear, multi-degree-of-fieedom
(MDOF) secondary subsysiems with muitiple support points attached to linear MDOF primary
subsystems. It is known that such sysiems possess a number of important and complicated
dynamic characteristics. These chaiactenstics incluae imteraction between the two subsysiems;
cross-correlations between motions ot the suppor: points and modal responses for stochastic
input, resonance or tuning phenomena when a set of ‘recuencies of one system is tuned with
one or more frequencies of the other system; and non-classical damping effects when the dump-
ing ratio of the two subsystems are different. In past research. one or more of these dynanmc
characteristics have not been given full or adequate atiention; the objective of this study is to

include all of these characteristics in 2 dynamic analysis of the complete system.

The basic approach of the analysis is 10 consider the combined primary and secondary
subsystems as a single dynamic assemblage. Such an approach implicitlv includes the effects of
intergction, multiple support motions, resonance, and non-classical damping, but was avoided in
the past due 1o the size and complexity cf the resulting eigenvalue problem and the fact that
such systems arc non-classically damped. These problems are resolved in this study in the fol-
lowing manner: (i1} A moda! decompasition method is developed for non-classically damped
systems with closed-form expressions for combining modal responses. Derivations are inctuded
for stationary stochastic input specified by the power speciral densily or response spect:a and
indications are given for considering non-stationary input. (2) Perturtation methods are sys-
teinatically applied to the analysis of the complex-valued eigenvaiue problem to reduce ihe

analysis into ¢ physically meaningful and mathematically manageable form. Expressions are



subsequenitly derived for the modal properties, which are in closed form for all but multipty

tuned modes

The analysis of ihe systems follows a logical developmenl, beginning with the simplest 2-
DOF system and progressing to the most general MDOF system. Fur completeness, frequency
response furction analysis 1s presented and compared with modal decomposition results. Also.
as one extension of the theory. the results are simplified to the important case of non-
inferazting subsystems where the cecondary subsystem masaes arc sufficently small 10 vom
parison with the primary subsystem masses. Finally, the main results of the analysis arc spplied
10 sevearal representative examiple systems and compared with results obtained from numerici!

anaiysis. Favorable agreement is found for all cases.
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CHAPTER |

INTRODUCTION

1.1 General Remarks

Complex structural systems composed of tight secondary components or subsystems
ettached to heavier nrimary subsystems are frequently encountered in civil engineering. Piping
systems, clectrical equipment, [shoratory instruments, antennas, computer hardware, and safety
devices are 4 few examples of the attachments which may be found in multi-story buildings and
industrial plants and facilities. {n many cases the secondary subsysiems perform vital tasks or
are valuable in themseives and the response of these systems to base excitations have long been
of engineering interest,

In the following, the properties of such systems are described. and a detailed literature
survey of the studies on these systerns is presented, concentrating on the methodology used
and the difficulties encountered in the analysis. Then a method 10 overcome these difficulties is

introduced and  pltan of analysis. which constitutes the main body of this study. is outlined.

1.2 Description of the Problem

1.2.1 Characteristics of & General Primacy-Secondary Sysiem

Primary-Secondary (PS} systems have a variety of different forms and characteristics, and
in this thesis, those systems that possess certain well-defined, standard properties are siudied.

These properties are as Tollows:
!, The primary and secondary subsystems are viscously and classically damped. linear-elastic
systems,

2. The mass of the secondary subsystem is considerably smaller than that of the primary

subsystem {mathematical criteria are given in Chapter 3).



3 The system does not include the interaction effects of a feundation, cascaded tertiary or
higher level subsystems, or otner separate secondary subsystems thal may be altuched to
the primary subsystem, [t iy assumed that any such effects. il significant, are accounted
for by properly modifying the input excitation (in the case of imeracung foundation) or
the propertics of the primary subsystem Gn the case of other secondary subsystems).

4 All attachment points of the PS system to the base are subjected o the same input excila-
lton.

PS sysiems that huve the above proyrerties are quite general and have a number of impor-
tant dynamic characteristics which have been topics of intense study in the past. The main
dy namic characteristics are:

I, Multi-degrec-of-freedom (MIYOF) subsystems: Both primary and secondary subsystems
are i general MDOF systems.  Either subsystem can be composed of more than one
independent subsystem

2. General atachment configuration: The secondary subsystem may be attached to the pri-
mary subsystem in an arbitrary number of locations and may also be attached to the buse
af the combined system. The secondary subsystem may be attached to more than one
primary subsystem.

3 CGieneral resonance (tuning) characteristics: Any number of the frequencies of one subsys-
tem may be arbitrarily close Lo or coincident with the frequencies of the other subsystem.
This condition is known ux luninig. When a group of closely spaced frequencies of any
subsystem is tuned with on¢ or more frequencies of the other subsystem, the frequencies

are sald 1o be in multiple tuning.

4. Dynamic interaction: For arbitrary PS systems, the primary and secondary subsystems
intoract with each other. parlicularly if the secondary subsystem modal masses arc non-

negligible and the frequencies of the two subsystenis are iuned,

5. Stochastic correlation: ror stochastic input, the effects of correlation cannot be neglected,



and for PS systems, this effect is an important. integral part of therr dynamic behavior
Fur tuned systems, the cross-correlations between maodal responses is significant and must
be uccdrately determined in any dynamic analysis.  Also, mouons al varnious support
pomts of the seccondary subsystem are. in general, vorrelated.

6. Non-classical damping: This effect occurs in systems which have different damping ratios

in the primary and secondary subsystems and is particularly significant at tuning.

1.2.2 Common Restrictions and Approximations

In prinaple. the theoretically exact response of u general secondary subsystemy which
includes the ubove effects cin be oblained using stand-rd methods of analysis an the combined
PS system. However. this procedure presents a nember of difficelties. The nurmiber of degrees
of freedom (IDOF) of the combined system & usually prohibitively large and the differences in
the megnitudes of the stiffness, damping, and mass terms hetween the primary and secondary
subsystems pose serious numerical problems 48] Also. the analysis and design of the sceon-
dary subsystem is usually performed well after the desizn and analysis of the primary subsystem
s complcted and several secondary subsystem muay be attached lo a single primary subsystem.

Consequently, alternative methods of anatysis for this problem are required.

In general, 1cacarchers have used several well-defined approximations and restrictions on
the physical and dynamic properties of PS systems 10 reduce the analysis to a simpler and mare
manageabic form. In these restrictions and approximation. onc oo more of the six dynamn
characteristi~~ ~f T _ s listed above are not given full or accurate consideration, or are
neglected altogether. For instanice, some studies neglect interaction, some consider secondary
systems with only a single DOF, ana others assume that none of the modes are tuned. Many

times, 4 combination of restrictions are used.

In order to present an organized review of the fiteruture, four categories are vonuidered
Stuches which iuake the non-imteraction approximation are reviewed first, follewed by those

works which inctude the interaction effect. Then, works which consider muliply supported sy‘s-



tems arc discussed. Finmally, in Section 1 4, several recent studies which provide the back-

ground to the theory and methods of analysis in this thesis are examined
1.3 Literature Survey

1.3.1 Non-Interaction Studies

A commoenh used method of anclysis which negiects interaction iy the floor response
spectrum miethad, o this micthod. the motions of the suppont points of the secondary subsys-
tem e calvutated by time mstory @nalyses of the primary subsystem. The response spectn of
the support iaotons gre known gs floor spectra which are used o input to the secondars sub-
system. Reulizing that this mcthod s fengthy and ineflicient. several authors have developed
more direct methods of finding fivor spectra using the modal propertics ol the primary subsys-
tem and the rround response spectrum. Biggs and Roesset 6] developed an empirical rute for
qnding the floor spectra using the modal properues of the primary subsystem. which was later
maodificd hy Kapur and Shao {23) using more mathematically based premises An alternate
approach bused on Fourier trunsfurms was developed by Scanlan and Sachs {381 Singh 140}
Chukravarts and Vannvarke [9), Singh 141), and Vanmarke 146} incorporated ideas from random

vibration theory.

All of these methods have been shown to give reasonable accuracy tor single-degree-of-
freedom (SDOFY secondary subsystems with relatively small masses and frequencies that are
not tuned to a frequency of the primary subsystem. However, when the 1wo subsystems are
wned to cach ather. the methods consistently fail. One problem is that the effect of iateraction
becomes important and as pointed out by Crandull and Mark (111, Singh [41], and Kapur and
Shao [25], significant error is inttoduced in the aralysis of such secondary subsystems if this
effect is neglected. The other problem is inherent in the analysis. Many formulations that were
derived in the above warks yield infinite results at tuning. Singh {42] and Peters, et a1 [35)
provide rough approaimations for perfectly tuned systems, but these results continue to ignore

interaction and are inaccurale for nearly uned sysiems, where the tuncd frequencies are not



exactly coinadent. Sinee tuning 1s considered important and, frequently . creteal i the analysis
of secondary systems (2], 11 18 clear that the above non-interaction studies are not sdeguate for

a propet analvsis of such systems.,

1.3.2 Studies Considering Interaction

A number of analytica! methods have been deveioped to account for the dynamic interac-
tion between the primary and scvonddry subsystem.  [n these methads, tne combined ¢quations
of motion must be analyzed without decoupling to sccount for tins effect. Crandall and Mark
[ used the oxacl equations for g combined 2-DOF system to compute the T00L-mean-syuare
TESPONSC 1o slatlonary excitation  In other studies. approximations are made to redyce and sim-
plify the anabysiy of tive combined system. Penzien and Chopra [34] reduce @ system composed
of an N-DOLD prmary subsvstem and a single DOF (SDOF}E secondary subsysiom to u series of
N 2-DOF subsysteras. however, the analysis v 1 terms of 2-DOFE response spectra, which are
not generhy availabie, and the responses are combinied with the square-root-of-sum-of-syuarey
(SRSS) rule which is inaccurate at tuning

Newmark {33] used @ notion of effective mass rulio w0 ohtain approximale mode shapes
and frequencies and combaned modal responses with the conservative absolute sum rule. This
nethod was improved by Nukhata ct. at. 131, These two modal approaches have sound
theoretical vases, however a vertwin level of accuracy 18 required both in the formulations for
the modal properties und the combination of modal response quantities to obtain good approxi-
mations for the system response {48} This accuracy was not altained until later works, as

detailed in Section | .4

1.3.3 Multiple Support FExcitations

As stated carlier, a common assumplion ir: the analysis of PS systems is that the secon-
dary subsystcm has only one DOF or is attached to the primary subsvstem at 4 single point.
This assmnption s satisfactory for simple sysiems or for obtaining floor spectra. However. for

more general secondary subsystems, the important cffect of multiple support excitations must



- b

he analy red

In the carliest research efforts the effect of mteracnon wis ot mcluded i the analy oo o
that ~smmiphtied decoupted cquanons of monon coutd be used A staghidorwany mothod tor
analvzing decoupled  muluply-supported secondany subsystiems s the e nectony approach
Fhe Rase ame stony s used e find the resalnng motions ol the support pomis and these
motons are subsequently mmput o the cquations ol motien tor the scoondaty subsystem [0
s method s baih omeflicient and cumbersome and eseurchers Pave mmvestigated alteroine

methods bused on response spectrie and rondon: vitrstion technigues

Anun. et ol 4] Shaw [39] and Vashi [47] formutisted thy rospanse amidoses of the
seeondary subsysiem o termis of the motiens of the mdividual support puaints vsing heon- e
procedures for combining  these motions  Vashr provides three mcthods for combinimyg
responses  one based on the absolute swm method tor support motions which are i phase.
nother based on the SRSS rule for mottons which are indepeadent and the thirg based on o
combmation of the two methods tor motions which are neither in phase nor independent. No
precise provedure s given o determine the classihication of the support motions: theretore the
analysis becomes subjective in nature

In the industry, it is considered stundard to decompose the respoase ol the secondary sygh-
system into “inertial” or “dynamac” effects and effects due to “relative seismic support displace-
ments” or “pseudo-stulic movon” [210 However, this artificial formulution complicates the
analysis, particularly 1in the concaderation of correlation between the numerons decomposed
FUSPONSe quantities,

Recently, Lee [26] intreduced 4 method based on fregquency response analysis 1o imclude
the corcelation between support motions and modal responses. However, the fregue
re~ponse formulations are not reddily useful 1n the aralvsis of secondary subsystems. Der
Kiureghign, et al. R 9] used a maodal approsch 1o develop a practical response specirum
method of wnilysis. The basis of their method s the theory of merturhations, which s

explained in werms of secondary subsystems i the next section.

Reproduced from
best available copy




1.4 The Perturbation Approach

1.4.1 Overview

The perturbation method and its associated theory of asymplotic expansions are long esta-
bitshed tools of mathemativs (2010 During the past quarter century. apphcations of these
methods have been made in fhud dyrniamics and related branches of hvdrsube engineermg 321
which have resufted in considerable developments in these fields. These mothods have also
been used in vartous branches of mechanical and structural engineenng, howesver systematic

applications of these methods to PS systems has not been carrted out unttl very recently.

1.4.2 Past Applications in PS Systems

Perturbation methods are usetul i solving differential cquations which contain small
parameters. Such equations occur in the analysis of PS systems. the < mall parametery are the
mass, suffness. and damping terms of the secondary subsystem. Sackman and Kelly [37] were
among the first to recognize this and they were able 1o cast a new form to the equations
describing the PS system using perturbation methods. With this new formulation. they were
aole to accurately analyze tuned 2-DXOF systems which, in previous works, weie treated 1n a
rough, approximate mannet, and obtain closed form expressions (or the frequencies. These
results were subscquently used in an analysis of more general PS systems with 4 single DOF

secondary subsystem using Laplace transforms.

Other research work in this area has used the modal appraach to the arn o sis of PS sys-
tems 136,48, 18, 19]  Basically, the modal approach is as follows: Perturbation technigues are
used to nbtain approximations for the mode shapes and frequencies of the combined system.
From these modal properties, the modal responses are found which are subsequently combined
using & modal combination rule. This approuach is stundard in the analysis of most lincar strug-
tural systems [10], however for PS sysiems special problems are encountered. For systems with
even slight differences of the damping ratios in the rimary and secondary subsystems. the

mode shapes are complex-valued. Atso, for tuned subsysiems, some of the frequencies of the



combtned syaterm are ey closely-spaced and the corresponding mode shapes atve furpe and
neath opposite i sign Conseguently, the madal responses must be combsned mea precise angd
theorc ically souitd manner 0 the Fedlosanmg . o sueves of seavoral teeerne studies based on pers
turbation pphcations o modal aelyses ot PS systems as piesented and the dithicutues encoun-

tered are discussed

Kuncka und Robison {36) obtamed cxjaessions for the modial propertios of fainly peneral
PS systems, howeser, the mmportant non-classecal dampmy characternistiic was given only an
dpprovmate Jormderadion  Also, the response amilisis was o terms of he Founer tfransform
of the groand moton, which s geneasliv nat avanlable. Villaverde and Nowmuara 48] coneen-
truted thun efforts on syaemsy with only one or we attachment pomts, which restricted ther
anabisis  Adsol the nomechssicdd damping eftect was not given prease Treatment n then work
Duer Rourephian et ab TERCE9] studied systems resizivted to single DX sccondan subssstems
and Jdasstead damping and obLaned redatively good resulis For the musdial propertics of these sys-
tems and derived the response to ground molions spectficd by therr tesponse spectras ey
Kuwreghtan, et al 117) extended this method 1o account for multiple support excttatians by
detimng crom-Noer spectra which dre m torms of the cross-cortelations between twe SDOY
osallitors dtached to the same primary subsystem. However, thas latier approach imots present
fermulation does not account lor interaction. Alse. none of the above mentioned studies von-

sadered the important case of multiple tunmg

From the ahove works. o i clear that the perturbation approach is o powerful tool in
analyzing PS systems. However, its use has been hinuted and s capabilities have only partally
been ulihieed  The important cffects of non-classical damping, multiple tuning, and teraction

are yel 10 be given aecurate consideration,

1.4.3 Plan of Analysis

In the present thesis, the methods of perturbation analysis are applicd to general PS sys-
temy in o fogical, systematic manner. The emphasis v on completeness and the limitations

imposed on the previous works discussed above are fifted. Thus, ali of the important



chagacteristics listed in Section 1.2.1 are sncluded v the analysis. The equations of motion are
set up  for anteracting,  multi-degree-of-freedom  subsystems aith general  altachment
configuration and rhe modal properties are obtwned from a complex cigenvalue formulation
which explicitly accounts for non-classical damping and general tuning characteristics of the
combined system. Finally, methods of random vibrations are used in combiming maodal
responses to include the effects of coneciation between modal responses and between the
maotions of the attachment points. This analysts pracedufe appears 1o be straightforward, how-
ever, several important rules must be closely and carelully followed in 1he plan of analvsis 1o
insure accuracy and completenasss in the resdlts

All of the analvsis revolves around the complete equations of maton of the combined I'S
svstem The separation of the coordinates into dynamic and static parts are nol negessiry sinee
all of the coordinates of the piimary and secondary subsvstems aie considered together as
dvaamec responses 1o the hase motion.  Also, the behavior at the support peert . reed not be
explicitly analyzed. this complex effect is included tmplicitly in the analysis since the PS system
18 considered as a single dynamic assembluge. Thus, by treating the PS system as @ whole, the
analysis becomes. in many ways, simpler and more direct. This approach was avoided until
recently partly because the applicability ol perturbation methods in such an analysis was nol
exploted. However, this application of perturbation methnds is by no means trivial, and the
studivs discessed above in Section 1.4.2 ¢id not fully and accurately apply these methods to the

analysis of general PS systems.

Tl thesis is oreanized to Todlow a logical plan of analysis beginning with the simplest PS
sysiem where both primary and secondary subsysiems have oaly a single DO, and progressing
te the mos: general case where both subsystems have multiple DO¥F. The reason for this is
clewr. the maost general systems are also the most complex and many of the important dynamic
characteristics of these systems which must be included in the unalysis is obscured by the com-
plexity of the problem. Thus, the simplest PS system 15 cxamined first, where most of the

results of the analysis is formulated in simple closed form expressions. The important dynamic
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charactenisies ure readily seen and are thoroughly studicd betery more genera systems are stu-
ded. In the analysis of more gencral svstems. these seme dynamic properines are recen: ood
from 1he 4 pron knowledze ganed from the analysis of the simpler systems In thes way, the
projertios bsted e Section 1.2 1 are wdentificd inoine most generad PS systens. studied ne detad’,

and the results of the analysts presented using theoretivally denved formulations

Fhe secondary subsystem s consturidy interpreted as o pesturbation ol e primisy subrys-
tem an order 1o nude full use of the pertuchation mcthods of analyss. T ackieve this fevel of
analvsis, precese and clear detinttions are used for the raanonships between the teoms used in
the pecturhation gpproach  Also, the eritenia for the applivauon of tite perturbanon methods are
explicitly murked out and stewtly adhered 1o This hedpsin maintaining comsisteney e ail o1 the

resulling expressions of the analyss

Finally. no approximatons are used except those that are allisacd in the nuithematicad
tramework ot the theory of perturbation methods, Thus, within this framesork, the anabysis is
cxact. Conscygnently, ali of the dynanue properties, suga as general tumng chiaractenstes, mui-
uple attachment conhiguration, non-classical damping interaction, and all correlations, whieh
were not dl adeguately accounted for i previous worke, are included in the anilysis g
maihematically precise maaner.  This final premise aveids some of the inaccuracres and
inherent deficiences found in carbier works and provides results that are comprehensive aad

theorctically sound within the - Hpe of the analysis.

1.5 Scope und l.imitations

In Section 1.2, the scope of the type of PS systems that are bemng considered was
described in detail. In this section. the scope of the type of input and ihe corresponding
response quantities is discussed.

In the analysis of PS systems presented in this study, two alternate formulations describ-
ing the gynamic properties of these systems are prescnted. One is in terms of the (requency

-
response function of the response of the secondury subsystem and the other is a modal descrip-



uon based on the mode shapes and freguencies of the combined sysiem. These tormulatons
have applications m ¢ varigly of methods of dynamic wnalysis Attention here 1s focused on the
response of PS svstems 1o stabonary stochastic mput and response to seismuc iput described by

the ground respense spegirum.

A methad for obtaining the power apectral density (PSDH s provided wand expressions tor
the first few moments of the PSI)Y are derived  Most practical response gaantities <an be found
from these moments, including the mean squinte of the response ard its ume derivative. and
for Gaussian exciiatton, the resporse mean frequency . distnihution of the pesk response over o
speciied duration and its mean 2ng vartanee, and the distiibution of the peaks of the response,
These results form the basis for the response spectruin “withod for seisnue analysis of PS sys-
tems

Once the charactenstics of the combined systems are determined. the respoinse of PS5 sys-
tems can be found for more gencra' inpuls such as non-stationary inputs and precedures for
these extensions are indicated i the wxi, however, a detailed analysis Tor such inputs is bevond

the mtended scope of this report

1.6 Approach of Analysis

From the discussion in Section }.4.2, 1 is ¢lear that a modal combination rule which
correctly weeounts for correlation between modes with closely spaced frequencies and s general
enough 1o analyze non-classically damped systems s necessary in the modal analysis of PS sys-
tems. Consequently, in the first step of this study, a modal combination rule for stationary
response salisfying these propertics is developed. The methed is a generalization of that lor
classically damped systems developed by Der Kiureghian 115, 161, which was found 1o be suit-
able for classically damped PS systems 119]. The remainder of the study follows the ideas out-

lined in Section 1.4.3. A synopsis of the approach of the analysis follows:

Chapter 2. Modal Decomposition Method for Stochastic Response of Non-Classically

Damped Systems



Based on the complex mode shapes and trequencies of non-clissically damped sys-
tems, genersl formulae for 1w respomae PSE and ity momunts are derived. The expres-
SO0N dre 1 terms of the cross-spectral moments between the modes of the system Com-
parnons are Made with results for classicadly dumped systenis and closed form soiutions
for the morients are obtained for white-noise inpul. These tesults are used to formulate
4oresponse spectrum method {or sesmic anabsiy of pencrad sistems with nonclassicad

damping

Chapier 3. Analysis of the Baxic 2-DOF PS Syvatem

The basic 2-DOF system o5 the simplest PS <y vem and consists of o 31301 secon-
dary subsysteny attached 10 a SDOF primary subsystam The frequencs response approach
tsoused 1o dernve avcarate cosed form expressions for the PSP oand s first three
moments. After a carefud derivation and investigation of the mode shigpes and trequen-
cies. both tuned and detuned systems are analyvzed using the modal decomposition
approach and o critenion for tuning is mathematically denved. A similur anabvsis fore very
light cauipmuent s carricd ;i and a mathematicar critcrion for decounling between the

primary and secondary subsystems is denved

{hapter 4. Anaiysis of SDOF Equipment Atiached 1o MDOF  Structures

MDOF/SDOF PS System)

The methods developed for the analysis of the 2-DOF system are generalized for
MDOF/SDOY systems. There are more complex problems 1o be handled such as multiple
support excitationy and multiple tuning. however the framework established through the

perturhation approach effectively solves these problems, s mentoned earlier
Chapter 5. Analysis of MDOF Secondary Subsystems Attached to SDOF Primary Sub-

systems (SDOF/MDOF PS System)

The results for MDOF/SDOF systems are found 1o be closely related to those for

SDOF/MDOF systems.  This relation is explored and utilized o derive expressions for



the respense of SDOF/V DOF systerms based on the resulty of Chapler 4.

Chapter 6. Analysis of MDOF Secondary Subsystems Atiached to MDOF Primary Sub-

systems (MDOF/MDGE PS System)

All of the resulis derived in the previous chapters form the theoretcal background
for anelvzing this most general and complex class of PS systems, By adhering 1o the rules
laid out in Scction .43, the analysis encompasses all ¢, the dynamic characteristics
described above. Multiple support configurations, general tuning, non-classical damping,
and interaction are implicitly mdiuded in the equations of motion und the corresponding
eigenvalue prablem, and all correlation effects are expheitly acenunted for in the combina-

tion of modal responses.

Numerical examples are presented for cach of the above types of PS sysiems to

itlustrate the aceuracy of the proposed methods,



CHAPTER 2

MODAL DECOMPOSITION METHUD FOR STOUCHASTIC

RESPONSE OF NON-CLASSICALLY DAMPED SYSTEMS

2.1 Introduction

In dynamic analvsis of inear systems, such as structures subjected 1o selsmuic Caatalions,
it is common to assume that the system s classically damped. Under this assumption, the
eyuations of metion can be transformed o a set of independent modal cguations usiag the
real-vaiucd eigenvectors and eigepvalaes of the undamped system [HHL However, in most real
systems the modal equations are coupled by the damping matrix [49]: these sysiems are defined
to be non-classically dumped. In practice, non-classically damped systems can be approximated
Wy o classicaily damped system, and the resuhts are usually of sufficient accuracy. One common
approximaiion is {0 negled' couphing damping terms in the maodal equations. There are impor-
tant sitwations, however, where the cffect of non-classical damping 15 essential and must be
included in the analysis [49). As indicated in the introduction, this effect is found in PS sys-

tems and numerical examples are presented in this chapter.

A classical method for anulyzing non-classicaily damped systems is 10 use modul decompao-
sition employing the complex-valued eigenvectors and eigenvaiues [21]. This method has been
used in certain applications of deterministic dynamic analysis such as in soil-dynamics where the
cffect of non-classical damping is significant. Investigators hava also studied response to ran-
dom input. Caughey [8] and Masii [30] considered ncn-stationary input gnd rasponses and
Debchandhury and Gasparini [14] used a slate space approuch o the probiem. Many of the
results of the analysis of PS sysiems in the succeeding chapters can be used in the above men-
tioned methods for finding the response to deterministic or non-stationary random nput, how-

ever the final results are relatively complex and are not obtainable in closed form.



Singh [43] applied the modal decomposition approach to the anal,sis o1 Jhe jesponse of
non-classically damped systems and was able 10 derive a response spectrum methad for such
systems. However, his formulations are ‘n terms of a se’ of four simultaneous equations which
are difficult to interpret physically and are unsuitable for analytical purposes where closed form
solutions are sought. In this chapter. a rcdal decomposition approsch is used 1o develop an
allernate response spectrum method that is more simple and direct thar, Singh’s method in that
the response quantities are given in closed form expeessions directly in terms of the modal pro-
perties of the system. This formaulation is particularly well-suited for the anuysis of general PS
systems which is carried out in the succeeding chapters. Another advantage ol this method is
that a full probabilistic description of the response 1s given rather than only the mean of the
peak response as given in Singh's work

The erphasis in this study is or a sccond-mement characterization of the stationary
response, v{r), of non-classically damped systems undzr random excitation which 15 given by
the oue-sided power spectral density function, G, (w). [t is well known [15,44] that most
response quantities of engincering interest can be expressed in terms of the first few spectral

moments

f\,,.=j.m“'(i‘,dw. m=012 - . (1)
)

For example, Ay and A are the mean squares of the response and ils time-rate respzsctively
[28]. I the excitation is Gaussian. as is assumed for most engineering applicalions, the power
spectral density provides a complete characterization of the response process. Many additiona!
response quanities in that case are given in rerms of the spectral moments A, . For example,
@=+/A1/Ay denotes the meun frequency of the response process (28} and &=/T—A{/(AAs).
known as the shape factor, is 4 measure of the narrow-bandedness of the response power spec-
tral density shape [44]. (5 ranges heiween 0 and | and decreases with increasing narrow-
bandedness.) The threz moments Ay, k), and A- also describe several properties of the
envelope process associated with the response [29). Using the envelope process, expressions

have been derived for the distribution of the peak response over a specified duration [45] and



its mean and variance [13,13) in terms of these three moments. These expressions are used in
denving the response spectrum method for non-classically damped sysiems. For futigue study
applications, the moments A, A, and A; may be used 1o find the distnibution of the peaks of

the 1esponse {71,

Expressions for the spectral moments of the response of a multi-degree-of-frecdom sys-
tem subjected 1o stationarv input have been derived [15] for the case of classical damping using
a modal decomposition approach. In this chapter, these results are generalized to systems with
non-classical damping. First, the basic equations of motion and their modar coordinates are lmd
out using standard methods of analysis, These equations are integrated and solved in terms of
Dubhamel integrals and therr derivatives. From this formulation, the auto-correlation function
of the response process is obtained which is used to derive the power speciral density function
and its moments in erms of the modal properties of the original system. Atlention ts focused
on the important case of white-nois< input, for which exact closed form expressions and simpie
first-order approximations are derived. These expressions are subsequently used to formulate o
response spectrum method using the theory of stationary random vibraions {22}, Throughout
the analysis, results for non-classical damping are compared with previous results for classical
damping

Example studies for simple systems have shown that the effect of non-classical damping
can be highly significant in two typcs of systems: soil-structure systems, where the difference of
damping ratios is very large: and nearty tuned 2quipment-structure systems, where the mass
ratio is small and the damp.ng ratios are uncqual. [t is found that in each case as the difference
of the damping ratios of the two subsystems increases or the mass ratio decreases, the classi-
cally damped approximation io the response becomes less accurale. Numerncal examples for
several typical systems are presented which indicate significant errors associated with neglecting

the effect of non-classical damping.

The results of this chapter form the foundation of the modal analysis of PS systerns in the

remainder of this study. The various formulations derived here which are in terms of the com-
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plex eigenvalue anaiysis of the system are particularly well-suiled to the unalysis of general

multiply-supported, muitiply-tuned secondaty systems.

2.2 Respanse to Base Input in Time Demain

First, the eguations of motion are laxt out and, for the sake of review, the solution s
derived for classically damped systems, Let M, €. und K be the mass, dampning. and stiffness
matrices of an #n-degree-of-frecdom. viscously damped lincor system. For g buse acceleration
¥, 113, the equation for the system relative displacement response x{71) 15

MX + Cx + Kx = —Mry (1) (93]
where 1 1s the influence vectar that couples the ground motion to the degrees of freedom ol the
structure.  The mode shipes, ¢, and natural freguenoes, o, 1=1.2, - - - #, assoviated with
the undemped system are found from the following a1 x . eigenvaluc problem

Ké. = o 'Mé kY
If the damping matrix € i orthogonal with respect to the undamped mode shapes ¢ . 1the Sys-
tem is said to be oassically dumped, and the equations of motion can be decoupled ino #
modal equativns.  This js accomplished by using the transfo,mation x=%u in Eq.2, where
b=ld¢. - ¢.]. and in turn premultiplying that equation by ¢ /. The /th decoupled modal
gquation 13 of the form

B+ wu+wu =~1735In (4)
in which I' =(¢/'Mr)/M is the modal participation factor and £,=¢./'Cé /2w M, is the
ectimated damping ratio for mode /. where M —=¢ "M@, is the modul mass. The homogencous

solution of Eq.4 is of the form exp(s, ) where

s, = =fw, & lw,, ., wp, =wJI-E (5)
and the solution for an input X, {7} is given by
I, . .
ulr) = —-—ffjc;.(r)expl—Lm,(:-r)]smm,,,(;—r)dr =1 h (i) (6}
Wir, %)
where A, (1) is the well-known Duliamel integral
, 1§ .
hii)= -————J.x“(r)uxpl—ﬁ,w,(r—r)lsmw,,‘(t—-r}d-r ()}

Wy,



In general, the response quantity of interest is a linear combination of the components of

the displacement veclor x,
v=q'x=Yq'éu =3Q'é I nin=Yéhru) (8}
! i |

where g is an n-vector of consiants and ¢ =q’¢ I is known as the eflective modal particips-

tron faclor.

For the general case of non-classical damping, the above moda! cyuations cannot be used
and the classical maty:matical approach (21] 1o solve Eq.2 is 1o reformulate it imo o first-order

2n-dimepsional equation

Ay + By = Fx.(p) (9)
where,

0 M -M 0 0 %
A=Mc.B= 0 K.F" er.undy=x (10)

The associated eigenvalue equation 1

Bé = —sAd (1

Due to the symmetry of the matrices A and B, the solutions 16.1,3) occur in conjugate pairs.

From the definition of ¥ it is clear that & is of the form

é - IS‘:I (12)
Also, for the sakc of comparison with the case of classical damping, the following notation,
which was also used by Singh [43), is introduced:
s =~ w, * rtwg, (i3}
where w,, wy,,, and £ are determined hy
w, =], €& =-Res)/|s|.and w, =w~fl & {14)
In summary. for non-classically damped systems, ihe eigenvalue problem is complex and
of aorder 25 and is given by Eq.11. Thz resulting mode shapes and frequencies {é,.v.) nccur in
conjugate pairs and can be cxpressed as in Egs. 12 und 13  For non-classical demping, ¢é. are

complex veclors. in the special case of classical damping, ¢ are real.



At this point. a physical interpretation of the meaning of complex mode shapes and {re-
quencies is in order. The terms w and € are the naturai frequencies and damping ratios of the
system with the same meaning as for classically damped systems. The complex values for the
coordinates of a mode shape lead te different phase angles of the free vibraton harmonic
motiuns of the vurious degrees of freedom of the system [21]. This concept is Hlustrated in
F1g.2.7 which shows a 2-DOT system with a mode shape given by &, = [ 1] und period 7,
at different time intervals Juring free vibration. Tt can be observed that the motion of each
degree of freedom 1s out-of -phase with the other

For a classically damped system, Eq.2 was reduced 1o » decoupled modal eyuations by
transforming to modal coordinates.  Likewtse, tor non-classically damped systems. Eq.9 can be
reduced 1o 2n decoupled modal equations which occur in conjugate pairs by using the modal
coordinsles ¢ obtained from the trunsformation y=&n where &'=l$[$; s &l The rth
modal equation is

42+ B: =®'Filn as)

or alternatively

- sz =¥ (1) (16)
where

A =3¢ Ad (17a)

B =¢/Bp, =4 (170

r, = &,'F/A, = -4 'Mr/4 117¢)

The solution of the first-order equation Eq.16, is the integral

: = r,f&h)expls,h—r)ldr (18
n
whick is analogous to Eq.6 for classically damped systems. Combining madal responsc quanti-
ties as belore, one obtains
7

v=q'x=Fa'éz = 3o 5 rexpls tr-n)lds (19)
=)

=1 )

where
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h =qig 120)
Sinve & and s occur in conjugale pairs. v1z) s always real
ln geaeral, & is complex. however, if the system is classically damped. £ {5 pure ima-

pinary. In fact, for such systems

5

4=l h - g K 8 ’M¢v1=13_T ]M (1)
where Af =¢ ‘Md 18 the vonventional modal mass. Using £q.13 for § and substituting the

above result in the expression for £ yiclds

o AeN@MO 122/
+2imp M 2wy

for systems with classical damping

Up 1o this point, the analysis has been a review, and all of the above equations can be
found in standard texibcoks such as Hurty and Rubinsiein {21). However, the subsequent
treatment of these equation is open to invention. Singh {43] used a straightlorward maihod of
analysis which led 1o a set of four simultancous equalions in the derivation of the power spec-
tral density function of response to stationary random input.  Here. these cequattons arc
expressed in terms of ¢he Duhamel integral, which is helpful in deriving simpler and more
direct expressions for the PSD and its moments,

Using the fact that b and s oceur in conjugatc pairs, and letting p=b ,, and s=5 ..
where the superposed bar denotes the complex conjugate. Eq.19 can be written in the expanded

form

vir) = zlb‘f}(}.h)exp[(~t§,m.+:w,.,l(l—'r)ldr
] Gt
+ l_rf.'\ﬂ(r)exp[(-—.f,w,—tm,,,)(rrﬂ]drl
i
- 22!-*imb,f§f,(f)cxpl-f,w(l*r)lsinw,, tr—7ydr
P (1]

i
+ Reb,fk;(T,‘expl-‘f‘m,(l*f”(‘ﬂSm;,,‘I—T)KIT, (23)
0

Far the special case of classical damping, it wis noted that & is pure imagnary, therefore anly
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the hrst integral term appeurs i Eq.23, which is in agreement with Fy 8 For the general case
of non-classical damping, a second integral expression with a cosing term appears in Eq.23
which is duc to the phase differences arising fron the complex mode shapes, The first integral
can be directly expressed in terms of the Duhamel integral. The appearance of the cosine term
in the second integral suggests that this expression can be obtained in terms of the derivative of

the Duhamel intcgral

hir) = f\ tr)espl—& w (71— 1)lcosm, (—1)dr £ a b (1) (24)
ti

Substituting into Eq.23 yields

viy) = ZZI—I'n(’ fws #()] + Reb lh (0+E.w h (1))

= Flanin+chin (25}
|
where,
a = -2Rethb3). ¢ = 2Reld). (26)
This formulation is considerably simpler than the earlier expression, [.q.23. It can readily he
evaluated in the time domain for deterministic inpul using seversl well-known numeneul
methods for evaluating / (1) and A.(r) [S]. 1t is also in a form suitable for random vibration

analysis. as shown in the next seclion.

Before continuing, several important features of Eq.25 should be pomnied out. For classi-
cal damping. we reeall that & = 1 /2w, s that ¢, =0 and a =p , and Eq.25 reduces to Eq.8,
as expected. Also, a relationship between ¢, can be found by observing that tor an impulsive
load X, (1)=b(1), wherc 8(1) s the Dirac delta function, all displaccments must be zero
immediately after start at time =0°_ it follows that v{0*)=0 and %, (0*)=0. Also, A (0" )=1,
as can be seen from Eq.24. Substituting into Eq.25

vw0) = T1a h(0) + A ()= T =0 (27)

This fact will b 1riportant in subsequent developments in this paper.
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2.3 Response te Base Input in Frequency Domain

In 1his section the autocorrelation function and PSIDY are derived. The simpliony of the
expression {or the response, Eq 25, allows for the derivation of tlesed form results with physi-
cal interpretations. This allows for o grester insight in the behavior of non-assically damped
systems and I8 particularly suited for the analvsis of PS systems i the next chapters. I the
ground motion X, () s g stationary random provess, the autocorrelation function of the station-
ary response (1) can be ohianed as follows:

R (z) = Elvitdvie+t))

= Y X aa bl inntirn)) + ac Elhih Gar))
Eood

+acE b Gen) + co ELa (0 h i+n)) 128)
It s well known 28] that o R (23==Ela (0 {i+2)] represents the cross-corrclation function

ot 7 (1) and A {1}, then

Eiph ()i tt+t)l = R (1) (294}
ElnOnr+r)] = —K (1) (29b)
Eth (0l ir)]l = —R” (1) (29¢)

where a prime denotes differentiation with respect o 7. Thus the sutocerrelation function
simphifics to

(]

R (1) = zz[a aR,it)+acR (7)) - acR () —¢c,R" ()] (30
1.0t

In order to find the power spectral density function of the response, the Fourner
transforms of the above expressions must be derived. The transtorm ¢, (@) of the cross-
correlation functic R, (7) is the cross spectial density of A (rj and 1 {r) and is given by

G, tw) = Gulw) H () H, (w) (1)
where H.{w) is the frequency response function for an oscillator of frequency o and dumping

£

Hiw} = ———r—— (32

o —w +21E @, w

and G, {w) is the power spectral density function of the input process X. (7). From the basic



properties of Fourier transferms, Gw@ (w) R’ (7)) and (—w'{ (w) R (7)) are Fourier
transform pairs  Thus, taking the Fourier transform of Fq 30, the power spectral density func

ticn for the response v{7) is obtained:

G tw) = TTUC, + 1wD, + o'k 16w (33)
[

where,

¢ =aa, D, =lac—ac)and F, =, 134)
This is a generalization of the power spectral density function of 4 system with classical damp-
ing.  As was demonstrated ecarlier, b, 1s a pure imaginary namber for classically dampod sys-
tems; therefore, ¢ =¢ =0, and D =£ =0 The remaining coefficient (', 15 evaluated ussing
E4.20 and Eq.26. 1t turns out for this case that Eq.33 reduces to the well known power spectral

density function for cassically damped systems (10, 15)

G ) =TT ¢ G, lw (35)

o
The difference belween the above and the more general expression in Eg.33 tor non-classically
damped systems is the inclusion of oxtra terms which arise due to the phase effects in the

modal responses.

1.4 Spectral Moments of Response

As stated in the [ntroduction, most statistical measures of the response that are of
engineering interest are obtained in terms of tne first few spectral moments A, i.e. lor
m=0_12, and 4. Substituting £q.33 into the integral in Eq.1, the folicwing expression is

obtained for the m-th moment

A, =3 YIC,Rex,. , ~ DImh,,., + E.Rer,,.: !} (36)
IERVEN|
where,
Mo = oG dw = [o Gutw) H,tw) H 0T dw (an
0 B

are cross spectral moments associated with #,(r) and A, (1),
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For the case of classical damping D, =F =0 and 1q.36 reduces to

A, = Zzw v Ker, (38)
[P
which 15 the «<ume formulation desived bv Der Kiureghian {15]. The phase shift in the eigen-
vectors caused by non-classical damping results in the appearance of higher order moment
terms in Eq.l6.

The next topic to consider is the important guestion of convergence of tne mntogral in
Eg.37 In previous vork, this tepic did not receive adeguaete mathematical clarification, and
divergent expressions were left unresolved teg., Vanmarke, Ref. 44, pp.4i7. LEg44}. 1f the
power spectral density function is band limited, ie. if there is a curtoff frequency ey, such that
G (w)=D ior all frequencies w grealer thad e, . then H s clewr that the integral for the cross
spectral moments in £q.37 converges for all positive vaiues of s, Thus the moments A
which is a sum of lerms involving A, . A, ., ,.and M., >, can be found for any order. How-
ever, many theoret zdl power spectral density functions ure not hand himited.  For large o, the
integrand terms H (w) and m have the following behavior:

Rew' H (w)H (w) — " * 139a)

Ime” Hlw H (@) — w” (391
Since the enure integrand must dbe of order smaller than o ' for large w 10 iNsure convirgence,
it foltlows that the integral fur A, , will converge only if Gulw) is of order smaller than oo '
for w—oc. For instance, for wnite-noise input. where G (w) =G, is a constant, A, ,, will con-
verge only for m<3. It appears that {or this iaput, the moments A, from Eq.36 would only
exist for m=0. Howcver, for classically damped systems. )., is 4 sum of terms only nvoiving
A, . s0 the moment exwists for m=0,1, and 2. From intuitive corsiderations, the same
moments which cexist for classically damped systems should alse exist for non-classically
damped systems. In other words, if me=m 15 the highest existing order for the cross spectral

moaments A,. . then m, should also be the highest order for the moment x,, for both classi-

cally damped and non-classically damped structures. This hypothesis will be proven, presently.

£q.36 can be rewritten in the following form:
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- 21)2 C.Rea, , - 00mr | +!kc;;k,m""-‘o,,tm}dw (40)

If &, uxists, then ImaA,,. .o also exists from the relations Eqs. 39a,b. Thus. only the last term

in Eq.40 must be tested for convergence.

The problem is that the summation and the infinite integral cannot be interchanged: the
form of the expression above converges, yet the alterrate formulation with the summation ou.-
side e intcgral diverges. This same problem anses in the previously referenced equation in
Vanmarke's study  The problem is solved by rewriting the integrand term G {w) as a sum of
two components, one which vanishes under the sumiggdion and the other, defined as a
modified power spectral density O (w). which converges when the summation ard integral 1s
interchanged.,

First, ', {w) is found by subtructing the dominant term fiom Golw). Since # (m}l.i,?ni
tends o @ ° for large w. the dominant term is simply o *Gulw). From partial fraction expan-
sions, it can be shown tha: the difference,

G, lw) —w *Gla) = w "Culw)  for large a1;
The above could be used for the maoditied power spectral density ', {w) except that the second

term diverges at w near 0. To correct for this. the following defnition is used:

G lw) ~w Gl w2w

]
G W) (€ w<w, “r

G o) = [
where w, 1s any fAxed, arbitrary positive frequency. The corresponding 1 wdified cross-spectral

moment is

Vo= o 6w dw (43)
(1)
which converges because of the relation in Eg.41.

What remains 1o be shown is that the above expression for A, ., can be substituted mto

Eq.36 without changing the value for A ,,. The last term in Eq.40 can be “cwritten

fReZZE,,w G lw) dw

EANLE
“ w o

-fReiZE,,w”'” G, (widw +fRe22t,,,w" UG, (W Gl dw

=1 thyy [l e
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=TYERN, .+ [Rew” Gol)Y T L, dw (44)
A T D
Siwe Y Y £, = F ¢ ¥ e =0 (see Eq.27), the Jast integral in the above 1s zero. and 18 has
i H Lo

been shown that the remaining expression is well-defined. Thus, the onginal hypothesis is pro-
ven, and by combining the above with Eq.40, the fingl expression for the moment A, s

oblained:

A, = iii(',RtA,. - D.ImA, ., .+ L Rer', -} (45}
| '
which exists for the sume values for m oas the corresponding expression for clussically damped
systems. Eg .38 Note the simifarity in form of the expressions in Egs.45 and 36, In the follow-
ing, the preceding equation will be used in general with the understandin:: ithat the primed
moments need be uscd oniy when the unprimed moments do not exist.

The above expressions for the spectral moments of response are general. Also. the form
of these expressions allow for further analysis and insight into the propertics and dvnamic
response of non-classically damped sysiems. The evaluation of A, has been separated 1o two
mdependent prablems: the calculation of the coefficients €, £, and £, and the determina-
tion of the generic cross spectral moments A, .. The first prablem s one of dynamics and is
concerned entirely with the properties of the structural system.  Using tools of dynamic
analysis, this problem can be routinely soived: for PS systems. procedures are doveloped for
finding analytical and closed form solutions in the remaining chapters of this study. The second
problem is one of random vibrations and s ¢oncerned witir the properties of the inpul excita-
tign and the frequencies and damping ratios of the system. For any stationary input process
with power spectral density function G.{w). the generic integrals in gy 37 and 43 can be calcu-
lated either by the method of residues, partial fractions, or by numerwal integration.  Below,
closed form solutions are found for these cross-moments for the important case of white noise
insut, These results form the basis for 4 response specirum method for sesmic response of

non-classically dumped systems whicn is presented at the end of this chapter.



The expression in Eyg.25 van also be used for the study of nonstationary input with results
that ure more general and complicated than those for stationary input. Clearly. the generic
cross-corrdation function R, (1.6} = Eli () h (3], und ity partial derivatives need to be
evaluated. The results of such ar approdach would be i essence equivalent to the method of
Debchandhury et . {14!, However. this formulation may vield simpler and morz tractable

results, This study will be reported in the future.

1.5 Response to White-Noise Taput

Altemiion is drawn 19 the evaluation of structural response 1o white-noise inpul, wherz
Gulw) =G5 a constant. THS special case 18 important from an analytical viewpeint and s stu-
died in most random vibrations (extbooks (28] The results of the analysis for white nuise
input are generally simpie 10 imterpret and are hetpful in the study of more general forms of
input. In addition, v this study, the sesults for the response to white noise input form the
basis for the response spectrum method 1o be presented in Section 2 7.

Using the method of partial fractions and method of residues, closed form solutions for
Egs.37 and 43 have been obtained for all cross-speciral moments required for determining the
first three spectral moments Ay, A\, and A of the rencase process. It is noted that momems

higher than A, for the response to white-noise input de not exist.

The cross spectral moments for response to white-noise input &, are

nG
Re)n)., - lw.f}w,{, _’l%""l)' (464)
ey’ 1 B
Rer |, = {llw 4w )t +20,w £ ] —tan '—-
8. £
e’ A B @ ] G
+ “w,+w,)§,+2w‘m,€,lﬁf fan £ () w,}logm/ X (46b)
Imx IO kil (46¢)
Vg o, T, K,, ¢
21‘!’60
Reh:., = {w £, 4w, ¢, o (46d)
N 2 w, Iﬁ'
Imh,, - I—-m,+w,+2m,§,(m,f,+w,§,]]-:—3—la:1 E—-
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w | G,
- 2ww (wk tw§ )I()g“l—,—- tdoe)
wl AI/
, L . . B w;‘ ]ﬁ/
Rers |, = {l3w’'é,+20 0,6 ~w €, —4w,&; (w.€,tw,é J]E—-tun ya
. . : W’ B
+ |3m,‘§,+?m,m,€ —w€ —dw £{w §,+m,f‘)]"5-—lan -E-
, i 1 1 A LW (-'), (f‘ll .
=l e, 44w € —w E ) Hog— ) 146f)
2 w, | K,
G
Imi; | = lm,‘~w,4~4wlw,(m,§‘—w,§,){wiff-#m,{,)}——“;rx (16g)
ReA's , = lw Eloi+du’w; @] + w.é l~w't2o v tu’]
s . T Ga
‘4w,w,((»,f,+w,§,)(w,‘f,‘+w,‘§;) *r (46h)
"
where,
K, = (w,3~<»,3>3 + 4w, w, lw €, tw,é Hw,§ +w,f) (47a)

B o=J1-£ £47h)

For the calculation of Red'. ., and Red', . the transition frequency e, used in Eq.42 was set to
1 und Q, respectively. Note that results tor these cross-moment terms would be different for
other selections of w;;, but the fina! result for A,, would remain unchanged. When the indices

and j are equal, the imaginary paris of the moments hecome 0 and the real j arts reduce to:

ﬂGh
Ay = —— (48a)
4€ w;
Ci )
AT B (48b)
4. w- 7, £,
A sl (48¢)
e 45.(&!, ¢
nG, 20-267) B,
. ®G 20280 B, (
M= g e 48d)
, T hew, -
Ay, = Ty (1-4¢) 148¢)

Good, simple approximations for the above expressions for the cross moments can be made if
the damping terms are reasonably small. The crror will be of the order €7 and £;, ¢ g if the

damping is aboul 20% the error is only 4%. The approximations are
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Rea,, = X w  tw f,l (49a)
.
27 G, ) : . .
Rea, | = - l l‘(w,+w,)‘f§.+§,) S fw ‘—w:)leg—w— (496}
K, |4 2r w,
Ima 2w Gy | ~w' 4w (49¢)
m - — | — .
[ K,, 2 C
nG,
RCA) .= K w‘f,‘f'w/f_lw,w, ‘49(”
G, 1 \ e W W, w,
Ima- = —K-,—-— I(-—w,‘-i-w; lm‘+w/) - —;——fw,§/+m,.f )log-‘;— {49¢)
, 211‘(;(] 1 + 3 . v A 1 4
Rea’; | = K a [*zu,§,+2w,u-fg,+3m7m,‘(§,+§,)+2w,'w,§,‘w/€,|
[ ) .
+ -‘—I—w,4+wf]l{)g—w— (490)
4m w,
[mA 220G |wi-w’ (492)
- K y g
InG [ 3 . , v s
Rea'y ,, = T*H I(izi (w!'+2ww;,—w’) + E’*'z;*(* w?+2m,‘w;+w4) (49h)
]

ReA:.,,. ReA . and ReA, , were previously given in the earlier report by Der Kiureghian
[15] for systems with classical Jamping. as they arc the only cross moments needed to evaluale
Ao, Ay, and A, for such systems. The results for Red, .. Rex, ., and Rcd,, were also previ-
ously known [15,44]. The remaining solutions shown above, which are needed for non-

classicuily damped systems, are new results.

For further insight into the nature of the above terms, the following coefficients are intro-

duced:

ReA,, , (50a)
Py = —m——— A

N Aul,uA:u,H

, Rer’,, ,
Py = = (50b)

'\/A 'n_uA ot

LT (50¢)
g T — C

1’ v "\m u)‘un,‘:

Note that py ,, p>,,, and p, , represent correlation coefficients between the zeroeth, first. and
second derivatives of /. (¢} and A, (1), respectively. The coeflicients, p,,,, p's,, and n, ,, are

plotted for various values of damping and frequency ratios in Fig.2.2. Results for other values
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of m are simiur #nd, therefore, ar - not shown  As expected, p |, and p’, , bchave hke corre-
tlation coefficients, diminishing rupidly as the two frequencies depart, particularly at small damp-
ing. Thus, cross modal terms ReAx,  and Re)d', ..., in Eq.45 are significant only for modes
with closely spaced freguencies. The plots indicete that m,  behaves quite differently from
p, ,. For moderately spaced frequencies, it can be seen that while p. , 15 negligible. the
corresponding values for v, , are significant. It appears that the cross modal terms Ima, .- |
in Eq.45 may he tmportant with moderately spaced frequencies. However, preliminary example

studies have shown that the cocflicients D in Eq.45 are generally very small

2.6 Fxamples

The simplast system having non-classical damping is the 2-degree-of-freedom system in
Fig.2.3. This system has been the subject of considerable study in the past  Crandall and Mark
{11] and Curtis and Boykin {12] used frequency response functicn approaches to find the
response of this system to white noise input. Their methods, as well as the modii decomposi-
lion method developed here are cxact, consequenily the corresponding results of the analysis of

the 2-DOF system agree.

The examples in this Section are chosen te illustraic the effect of non-classicai damping:.
It can be shown that the 2-DOF system is classically damped if wnd only if the ratio of spring

stiffnesses is equal 1o the ratio of damping coefficients:

ho_o (1)
l(j C>
If the two ratios are not equal, then in the mathematcally strict sense, the svstem is non-
classically damprd. As stated in the introduction, a common approximate approach in the
analysis of non-classically damped structures is to use the free vibration mode shapes and to
ignare the off-diagonul terms of the transformed damping matrix 0 eliminate modal coupling.
For certain values of ke parameters of the 2-degree-of-freedom system, this approximation

appears reasonable, Howcever, an analytical and aumerical study of the system revealed two dis-

tinct and well-defined seis of parameter valucs where this classically damped approximation
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becomes inaccurate and inappropriate

The first case 15 the well-known soil-structure system where the damping ratios of the soil
(substructure 1) and structure (substructure 2) are significantly differcnt. The second case 18
the equipment-structure system wherz the mass ratio €=m-/m, is small, the frequency ratio is

close to | (tuming), and the difference of the damping ratios satisfies the rollowing inequality:

(£,—£.) > € (821

To lustrate the differcnces between the approxiraate ciassically damped gpprosch and the
exacl non-classically damped approach, & patameter study was made of the 2-degree-of freedom
sotl-structure and equipment-structure systems using the 2 methods of analysis. In the soil
sdaucture  study, the following fixed parameters were chosen: average damping ratio
E,=(£ +£.)/2=020, mass ratio e=m/m =03, and frequency ratio e-/w =10, In tae
equipment-siructure study, the following parameters were chosen: average damping ratio
£,=0.04, mass tatic €=0001, and the frequency ratio w/ew,=1.0. In both systems, the
independent variable was the difference beiwecen the damping ratios £, —£€.. The relative dis-
placement between the 1wo masses was chosen as the response quantity of nterest. The first
three moments of response to white-upise input were computed using Eq.38 for the classically

damgped approximation and Eq.45 for the exact results.

From 1the frst three moments, the mean square, A,. the mean zero-crossing rate,
v N Tho/m. and the shape factor, Ssm. were found and compared. The two
approaches yiclded very similar values for v, however, a more significamt difference of values
were found for 8 and A ., and these variables are plotted foc the various 2 degree-of-freedom
sysiems in Figs.2.4 and 2.5 To gain further insight to the three sets of terms in the expression
for A, in Fq.45, the percentage of the contributions of the terms:

[Z] noon #

€Y CReho,. TIDImk,, and T TERer (53)
PR

‘BT IR YR

10 the 1o0tal sum, A, is plotted in Fig.2.6.

For both systems, the condition Eq.51 is satisfied when the differcnce of damping ratios is
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rero, therefore the systems are classiclly damped  Thus, the chissicaily damiped spproximation
yields exact fesulls, as cun be seen in Figa.2.4 and 2.5 and the 2, und £ terms are 7ero as
shown in Fag 2 6. As ke difference of damping ratios increases, the character of the system
changes from clissical damping to non-clussivad dumping. From Figs. 2.4 and 2.5 7 s apparent
that the cffect of non-classical damuing is not adequalely accounted Tor in the class Cul oampng
approximations. This effect 1s also visible in Fig 2.6, where the £ teims becomo promine
for systems with incredsing non-classical damping character This + pooounced in equipmene
structure systems with properties sabisfying the mequadity, Fg 82, This phenormeni is discussed
more fully 10 the next chapter,

It should be noted that for ail 2-degree-of-Treedom systems. the ) terms in g 45 are
essentially zero. This phenomenon s a charactecisue of the simpheity of the system isedt. A
more complex 3-degree-of-freedom system was studied and compared with the resulls of the
2-degrec-of-freedem system. Duc 1o the targer number of parameters, the relationships
between the parameters und the degree of non-classical dumping was fess clear. However, from
the numerical results 1t could be gencralized that the key parameters were the same as was
observed for the 2-degree-of-freedum sysiem, ie., the difference of damping ratios and the
mass rativ. However, unlike the 2-degree-ofl-freedom sysiem, the ) terms in Eg.45 were no

longer neghigible, particularly [or soil-structure-type systems

1.7 Development of the Response Spectrum Mcthed

In this final section. the above resuits are extended to input specified by ils response spec-
trum. Since the response spectrum is an incomplete aescription of the input, the method to be
developed is necessarily approximate. The proposed method will be maost accurate when the
input is wide band. has a long slafionary duration (several times longer than the fundumental
perioa). and the significant modes of vibration are within the dominant frequencies of vibra-

tion.

In order to develop the response spectrum method, Eq.45 is rewritten in the form
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where p,. . ', .. 7%, ., are defined in Eys.50a-c, and

Ao A,
w, , = =l (55}
T N A

Now we introduce two scts of approximations. The first approximation is to derive expressions
for the coefficients p,, ,,. 7, .,. and w,, , 1n terms of the system paramcters and independent of
the input excitationt. Let w, =(w v )/2, &, ={€ +£,)/2. w,~w —w,, and £ =£ —£,  Employ-
ing the assumption that the put is a wide-band process, and following the procedure in Ref.

16, it can be shown using results in Fqs 46 for white-noise input, thai the following are good

approximations
Po . = R‘1;4£u + én/"‘u‘/""u] « Py = er[4§u - 2“‘.;”‘“3”” (5ﬁa)
e, = R4, - Ewfw,. p, =R, + o flwln) (56b)
i, = py " (56¢)

where R, = o) JEE /w] 4 4wE]), and

ol

{ww ) for m even

N = 2K, w—]j_ v Wy, = (57)
w, N

‘w'w[)m;_

Sme——

-2
w mw

The second apgroximation applied to Fq.54 is to estimate the modal spectral moments

l for m odd

Ay, in terms of the input response spectrum. Let 5.(w,£) be the mean response spectrum
representing the mean value of the maximum absolute response of an oscillator over the dura-
tion r of its the input excilation, where w and £ are the oscillator frequency and damping
values, respectively. Then, for w=w, and é=§,, the mean response specirum ordir.ate can be
given in terms of the spectral moment A, [16]

S5.=5,(w.£) = pIxo, (58
where p is a peak factor associated with mode : whick can be derived in terms of system

parameters as described below. Substiiuting the above into Eq 54 yields, for m=0,1,2,

~ [, 1
Am - 22[(.,1%, g Way iy T Dj,"l..‘,,, wi"*l‘f’ + Efian,?,.,w.'-M.‘_u] 2P Snsrr-r (59)
1

i~1r=1
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The above equation provides a modal supernosition rule for the spectral moments of
response directly in terms of the response spectrum ordinates. These moments can be used o
derive various important expressions of the response. In particular, the rgot-mean-square, and
the mean and siandard deviation of the peak response over duration r are given, respectively,

by /A /Ao, and g/, where p and g are peak factors given by [i5]

0.5772 1.2 54
- /21 + - and g = - ; {60)
P n.r 2Inw, 7 4nc 9 V2w, 7 134Uy, 1)’
. which
max(2.1, 26v7), 0<5<0.1
v, r=1(1638"" -038)pr, 0.1<5<0.69 (61}

v, 069<8<1
and v ~= \/m./’w and 6 = \/l_-:mﬂ Egs. 60 and 61 are also used in deriving the 1nodal
peak factors p, in which case v = w,/7m and § = Z\JE/_R (16]. Furthermore, having the three
spectral moments one may derive the probabilny distribution of the peak response as given by

Ref 45,

In practical applications, the mean of the peak response is of most interest. If the ratios
of peak factors p/p. arc approximai=zd by unity [16], a simplified expression for the mean peak

response R, is

E’ - ZZ[C'IP‘)-U - Dl;"']_;, L4, + Eqpl.j WJ,;/lgugn (62)

=1y =1

This expression is a generalization of the CQC method introduced in Refs. 16 and 50 for classi-

cally damped systams.

As an example application of the response spectrum method, a simple system composed
of a foundation, structure, and light equipment, described in Fig.2.7 and Table 1, is studied.
The modes of each fixed base subsystem have different damping ratios, as shown in Table 2,

and as a result, the combinred assemblage is characterized by non-classical damping,

Twenty simulated motions and their mean response spectrum were used for input in the

analysis. The mean and standard deviation of the peak response of the equipment displacement



relative to the foundation were obtained by using the modal combination rule of the proposed
response spectrum method and the results compared with solutions oblained by the modal
decomposition rule using a classical damping assumption ‘e off-diagonal terms in the modal
damping matrix were ignored) and exact soelutions vbtaned from the numencal integration of
the ground time histaries. The results of the companson, shown in Table 3. show thut the
response spectrum nethod is in close agreement with the simulation resulis and that the effect

of non-classical dumping can not be gnored in the analysis,

1.8 Summary and Coaclusioas

The response of multi-degrze-of-freedom non-clussically damped linear systems te station-
ary inpul excitation is examined and a modal decomposttion method 15 developed employisig
the complex eigenvalues and eigenveclors of the system. A general formuls for the spectral
moments is derived and compared with the results for the special case of clussical damping.
The evaluation of these expressions involves twa relatively independent problems. One 1s a
dynamics problem in finding a set of coeflicients in terms of th. free vibration modal properties
of the system under study. The other is a random vibrations problem in finding the cross-
spectrai moments in terms of the input process. Procedures for fnding the coefficients for PS
systems are derived in the next chapters. For other systems, standard eigenvalue methods can
be applied. The cross-spectral moments can be computed by the method of residues, partial

fractions, or by direct integration for general inpul processes.

Closed form solutions for the cross-moments have been derived for the important case of
white-noise input. These resulls were subsequently used (o develop a response spectrum
method of analysis for non-classically damped systems. This method is based on a setr of
approximations that were successfully used in previcus works for classically damped systems
(16, 50] and includes peak faclors in the formulation, whizh are kncwn to be of importance n
the study of PS systems [18].

Example studies for simple systems have shown thal non-classical damping occurs pri-

marily in two types of syste:ns: soil-structure-type systems, where the difference of damping



rafios 18 large, and equipment-structure-type systems, where the mass rabo 1s small and the
dumping ratios are unequal It is found that as the difference of the damping satios incresses or
the mass ratio deereases, the classically damped approximation o the response becomes bess
aceurate

In general, for structures with classical damping or slight non-classical damping charac-
tenistics, the free vibration mode shapes and the decoupled modal equations, Fg 4, provide a
suitahie approximation to the {rue struciural behavior. For such systems, the moments of the
power spectral density function of response, o 3%, have o relatively simple form. Howcever,
for structures which have predominantly non-classical damping charactenstics, such as the sot-
structure and cquipmenit-structure systems. the damping mateix produces significant coupling of
the free vibration mode shapes and the clussically damped approximation is no longer
Justitiable. This is shown numerically by the examples and mathematically by the more com-

plex expressions for the momenms of response, gy 45
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Tabie 2.1. Physical Properties of
Example System

e Frequency | Damping
Eitiytmw trad/s) Ratio
- Equipment 12 f)"()'—T—().fm
Struciure | 4.58 Popantsi
| 200 b oooseo J
I Foundation 11.70 { 0.3000

Table 2.2. Modal Properties of
Fixed Base Subsvstems

Mass | Interstory lnler-s_l;;y
o kg) Stiftness Damping
(kN/m) (kN/{m/s))

e 8

0.1 144 0074
1 2000 | 11000, 91 6
42000 1 11000, 91.6
6000 | 82100, | 42100 |

Table 3. Analysis Results: Equipment Response

Response, m i Exact | Approx. | Classical

R, 0.106 0.113 0.046
Tp 0.020 0.020 0.011
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Fig.2.6. Contribution of Terms to A, in Example Studies
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CHAPTER 3

ANALYSIS OF THE BASIC TWO-DEGREE-OF-FREEDOM

EQUIPMENT-STRUCTURE SYSTEM

3.1 Introduction

The study of PS systems is best iirtroduced with the simplest and most fundamental 2-
DOF assemblage shown in Fig.3.1. This system is commonly referred 10 as an equipment-
structure {ES) sysiem with the structure and equipment corresponding (o the primary amd
secondary subsystems, respectively. A thorough study of this system is important for sevgral
reasony; Lhe analysis of more general and complex MDOF sysiems s based on the results of the
study of the 2-DOF system, the 2-DOF system c¢ontains the ¢ssential properties that character-
ize more general PS systenis. and the simplicity of this svstem cnables one to identify these
properties easily. Also, simple closed form formulae are derived for tne 2-DOF system which
illustrate clearly and <oncisely the important relationships between the parameters of the sys-
tem. The concepts and techniques developed in detail in this chapter will prepare the reader for

the study of more complex MDOF PS systeins in the following chaplers.

As stated in the Introduct numerous studics have been made ©on equipment-siructure
systems. In this chapter. two different approaches will be developed. The first approach is
based on the frequency response function of the system. Using perturbation methods bused on
the light equipment assumption it is possible to reduce the expressions derived by Crandall and
Mark for the mean-squars response of general 2-DOF systems [11] 1o rather simple formulac.
Ciosed form cxpressions for other uscful response quantities can be derived as well. The
second approach utilizes the modal decomposition method developed in the preceding chapter,
The results are a generalizatinn of the previous study by Der Kiwreghian, et al. [18.19): the
primary difference is that the im~ortant effect of aon-classical damping, which occurs even ae

slght differences of damping ratios. is fully sceounted for. The two approaches developed in
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this study vield different formulations for the same response guaniities. however it is shown

that the two formulations are equivalent.

3.2 Definitions

1.2.1 Parameters

The analysis of the 2-DOF equipmert-structure system in Fig 3.1 will be in terms of the
parameters of the individual fixed base SDOF structure and equipmemnt oscillators. The phisicn
properties of the two sub-systems are: masses, #, damping ratios, € . and natural freguencies,
w | where /=1 refers to the structure and =2 refers to the equipment  The displacemenis x
are relative 1o the ground  Using these properties, the following non-dimensiodal paramciers

are defined:

E+&s
= ‘2 = average demping (Va)
£, = &£,—&, = difference of damping (1b}
m- .
&= =0 = mSs rulio )
m,
W) .
g = = detuning patameiet {1y
L,
where
w tw>
w, Ty average {requency {le)

3.2.2 Review of periurbation methods

A non-dimensionai parameler 3 is detined ty be smull f its absolute value is much
smaller than 1 1his is written symbolically as

(Bl << 1 ()

For example, the damping ratios in structurzt systems are generally small parametcers. Simi-

larly, a parameter 8, is defined 10 be of a smaller order of magnitude than another parameter 8.

if the ratio |8,|/18;| satisfies
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By multiplying both sides of the sbove inequality by |# ], the order relationship can be rewnit-
ten symbolically as

18] << 18] {4)

Finally, two parameters 8, and 8, are defined to be of the same order of magnitude if neither

(8. << |8:] nor (8] << |8} (5a)
are wrue. This is written symbolically as

ﬁ| - O(ﬂg) or ﬁ; - O(ﬂ” (Sb)
where ({g,) denotes a term of the otder of magnitude of the parameter @,. Note thal the
above retauonship does not imply equality. For example, if the damping ratios ¢,~5% and
£,=2%, they are not close 10 equalily, yet they are considered to te of the same order of mag-

nitude.

In engineering applications, the above relationships are pul in the context of relative
errors. In this study, the parameter ¢ denotes the order of magnitude of the relative error that

ie allowed in the approximations.

Using the above defintions, a mathematical description can be given to equipment-
structure systems. The system in Fig.3.1 is defined to be an equipment-structure system if the
parameters ¢, and ¢ are smatl. The system is tuned if B is also small, otherwise the system is

detuned. A more precise definition of detuning will be developed later in this chapter.

As mentioned in the introduction, the key to the analysis of the vquipment-structure sys-
temns is the use of perturbation mathods. Only the niost elementary techaiques of perturbation
theory are used in this study. For instance, using Taylor’s series the quantity £, (1+€,)”' can

be expanded

£.
1+£,

For small £,, the above can be approximated to the following degrees of accuracy:

- -, +E -0 ) (6a)

{0

~ - 2
TYE, = {,(1-£,+€;) second order (6b)

= £, (1 ~§,) first order ' (6)
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= ¢, lowest order {6d)
The accuracy of the above three approximations can be observed from the graph in Fig.3.2.
Clearly the second order approximation is the mos! accurate, however the algcbraic expression
is also the most complicated. Since this is & study for engincering applications, a high level of
accuracy is not required and simple, manageable results are sought, therefore lowest order
approximations are used Occasionally firs. and second order expressions are derived for
obtaining intermediate results.
Most expressions encountered in this study involve a combination of several small param-
eters, and it is important 10 note the order relationships between the various parameters. In
this chapter, it is assumed that ¢ and €, are of the same order of magnitude, i.c.

£, =Ole ) (7a)
and if the ystem is tuned, then

8=0() (Tb)
Thus, an expression such as

By me 4B, +E~ ) (8a)

ng—“ =~ +B(1—£,+£3) second order (Rb)
~e¢€ +8(1-&,) Hhrstorder {8c)
== ¢ +f lowest order (3d)

One final note: In a real problem, the arder relationships in FEgs.7a.b may nol always
appear to be valid. For instance, the detuning parameter § may happen to be exactly 0, in
which case the order relationships wouild seem 10 be

B<<e¢ and B<<E, 9

Consequently, the lowest order appraximation for the expression in Eq.82 would be

!! L3N : \'.. ‘
l+€" +€ € ) (10
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The difference between Eq.8d and the above expression lies in the generality of the approxima-
tion. Ea.8d is valid if either of the relationships Eq.9 or Egs.7a,b are satisfied, however the
above approximauon is valid only if Eq.9 ts sausfied. Thereiore, in order to obtain the most
general results, :t is assumed that Eq.7a applies to detuned systems and Eqs 7a.b applies o

tuned systems.

3.3 Frequency Response Function Approach for Tuned Systems

3.3.1 Introduction

The frequency respense function approach is well-suited for deriving the response of the
equipment for tuned systems. By using perturbation mzthods, s=cond-order results are
obtained. These results are the basis of the response of all tuned PS systems and are used in
the remainder of this study. Detuned systems are evaluated more easily usiv.g the modal

approach and are studied in the next section.

3.3.2 Frequencies of the System

Let M,C, and K be the mass, damping, and stiffness matrices of the system in Fig.3.1.

Using the parameters defined previously,

10 £rw+ef i —€f witew! —ewf
M=m 0 « C=2m —etw; £y Ml _ew} et a2
The equation of the response of the system to base input is
M + Cx + Kx = ~-Mrx, (1) {13)

where x=[x;x,}7 is the vector of displacements relative to the base ard r={11]7 is the
influence vector coupling the input io the DOF of the system. Taking the Fourier transform of
Eq.13 and rearranging terms

X{w) = —H(w)MrX, (w) 14)
where X(w) and X, («) are Fourier transforms of x{r) and x (¢}, respectively, and H{(w) is the

complex frequency response matrix

H(w) = [~o™ + iwC + K] ' (15)
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Substituting Eq.12 into the above,

Glw filw) ; | lw) — 7w
Hiw, - l_mm) xwtull - }T;?I-.:,(m (il(w)I e}
where
Goidw) = mf~w' + 28w+ ed ow)w + lwi +ews)] (17a)
giiw) = o f—w’ + 26 w0 + w5 {17b)
Lilw) = —m {268 wwow + ws) (17¢)
dHw) = giw)b lw) =/ (w) {17d)

Note that g tw) 15 the reciprocal of the complex frequency response tunction of the secondary
subsystem  The function (r.lw) closely resembles the reciprocal of the coinplex frequency
response function of the primary subsystem. The difference is in the terms with the paramcier
¢ which arise from the small additional stiffness and damping contributed from the secondary
subsystem. The function ¢ (w) represents the coupling between the two subsystems.  Also,

dlw) is the charactenstic polynomial of the system.

Using the frequency response function Hiw) defined above many properties of the sysiem
can be derived. The first set of properties that will be investigated are the frequencies of the
systemn, which are found by solving the guastic equation

diw) = 0 (18)
It is possible to find second-order approximations to this equation by a straightforward yet tedi-
ous application of Ferrari's formula for solving quartic equations {3}). However, a more clegant
approach based on perturbation methods can be used to solz Eq.18. The derivation is
presented in detail 1o illustrate how perturbation methods can be effectively applied to the
equipment-structure problem. (wher researchers have found other forms for the expressions
for the frequencics of the 2-DOF ES system [37, 36}, hov.ver the perturbation method, as i is
applied n thus chapter, yields expressions which are of the same level of accuracy, yet algebrai-
cally simples than the previous formulations. These simple forms of the frequencies will be

used to derive several new expressions of the response of the system.

It was stated that the parameters £, 8, and ¢ are small for tuned systems. It is instruc-
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tive to examine ihe properties of the system when the mass ratio € is of a smaller order of mag-
nitude than the other parameters, i.c.

e << max({,.B) (i9)
In this case, the first term in Eq.17¢ dominales the expression for.d{w) and the second term
can be neglected

dlw) = glw) G lw) 20)
It is well known [11] that this is equivalent to ignoring the interaction forces between the
equipment and structure and this point will be discussed tater in this chapter. The low-order
approximation for the frequencies of this system can be obtained by solving Eq.18. Using the
above apprcximation for d{w)}, Eq.18 is equivalent to

Gilw)=0 or glw) =0 Qn
The roots of G,(w) are approximately equal to the frequencies of the primary substructure and
the frequency with positive real part can be writien to first order as

), = a(1+1£)) (22a)
The superposed asterisk i1s used hereafter to indicate that these properties are associated with
the combined system. Similarly, the roots of z,(w} are the frequencies of the secondary sub-
structure and the frequency with pcsitive real part can be written to first order as

w; = wy(144£)) (226)
The frequerncies in the left half plane, which are located symmetrically with respect 1o the ima-
ginary axis, are not explicitly written for clarity of notation. This convention will be used

throughout the study.

On physical grounds, the above result is not surprising: For very small values of the mass
ratio, the secondary system would be very light relative to the primary system and the dynamic
behavior of the Iwo subsystems would be essentially independent f each other. Therefore, the
frequencies of the combined ES system wouid be very close to the {requencies of each subsys-

tem, which is the result obtained above.

If ¢ is of the same order of magnitude as £, or B, the above analysis would no longer be
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valid. Both terms of the characteristic polynomial 4(w) must be included in Eq.17d. As a
result, the solutions for the frequencies of the system would be slightly shiited or perturbed
from the above values. To preserve the inherent symmetry of the problem, this perturbation
will be measured irom the average of the Irequencies in Eqgs 22a.h. if ¢ is defined to be the
perturbatinn variable, the frequency w can be written in the following form

@ = w, {1+1&, +p) (23)

By rearranging terms. the vucichle g can be expressed in terms of ar

PR 24)

]

Reformulaing Fgs.174-¢ in terms of u and retaining only the lowest order terms, the new

expressions are

G;(w) = mfﬂh(ﬁ'f‘ Il_f‘; _‘2‘1.) (258)
plw) = ~wlm B+ 1€6,+2u) {25b)
Silew) = ~wlm; (25¢)

Substitution of the above into Eq.17d yields

dle) = wlmim {0 -8~ €, ~2u) B+if, —2u) — €}
- wlimm 4’ — (34:£ )7~ €] (26)

and iis roots are readily found. The usefulness of the perturbation analysis becomes clear. The
original quartic polynomial d{w) has been reduced to a simple quadratic polynomial in terms of
g« Denoting the solutions for & by u,’, the lowest vrder result is

w = t%-\/v&-(ié‘,-}-ﬁ)l (27}

It follows from Eq.23 that 1he frequencies w, are

w =w,ll+if, %m] (28)

The accuracy of the above sotution is shown numerically in Tabie 1.
In Figs 3 3a-c. the exact values of w, which are found from solving Eq.18 are plotted
along with the above approximation for various values of the parameters. Figure 3.3a
represents a general illustration of the behavior of the frequencies. The natural frequencies and

damping ratios of the two subsysiems are chosen 10 be unequal, and the location of these
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frequencies on the complex planc are indicated by the sond squares. Then, for several values

of the mass ratio €, the corresponding pairs of freguencies of the complete svstem are plotied

and I=beled by the letwerr A- 0. Figures 3.3b und 3 3¢ are similar. except in the former the

frequencies w, and w- are chosen to be equal, and in the latter the damping ratios £, anu £ are

equul.

It is instructive to explore the meaning of ¥q 2% 4nd the corresponding charac.oristics that

can be observed in Figs 3 3a-¢. The following are some of the more revealing facts

1

The frequencics of the combined system are located symmetrically with respecet to the
average frequency w, (1+4£ ) on the complex plane. Tnis is apparent in 2l of the Fagures

3 du-c.

For very small values of € the value ol u is approximately

. 1 d
u = t51/115‘,+ﬁ)' = 1—;—05.,“1; (29a)
which, when substiiuted in Eq.23, yiclds the same result obtained ecarlier in Egs.22a.b.

However, if € is not negligible, it was explained carlier in hueristiv terms that the frequen-
cies become displaced or perturned from the frequencies in Egs.22a.b. This perturbation
15 accounted for mathematically by the presence of the paramieter € in the radical in Lg 28
This phenomena cei be observed in Figs.3.3a-¢. where for €=.0005, the frequencies of
the combined system nearly coircide with the subsysiem frequencies. whercas they
become displaced for larger values of the mass ratio,

If the frequencics w, and w: are equal, then 8=0 which is usually referred to as the “per-
fect tuning” condition 137]. In this case, the frequencies of the combined system can be
in one of two configurations.

a. M ¢, <e, then the frequencies would be

w = w(,[lil-\/f—f‘,‘,-i'ifu] (29b)

2

which, on the complex plane, would lie to the right and left of the average at a dis-

tance of \[c—-—_«f—, The damping ratios would both be equal tno £, and the natural fre-
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quencies would be unegual

b. If € >¢, then the ‘reguencies would be

w.twu“*’l({ t—; ‘-(‘{"Ti?)] (29)
which, en the complex plane, would e above and below the average at a distance
\fj{ In thiy case, the frequencies would both be equal to w,, and the damping
ritios would be unequal

These charactenistics are visible in Fig 3 3b: for points 4 and B g 29b apphes. and for

points C and O Fq.29¢ applies.
4. I the damping ratios €, and €. are equal, then the frequeneies would he

Ve + A+ € ] 1294)

r ==

w =w [l

. . A
which, on the complex plane would always he paralie] 1o the real axis at a distance v-+ 03

from the average frequency, as shown in Fig.3 e,

3.3.3 Spectral Density of Equipment Response

Next consider the PSDY of the response to stalionary input. The primary response variab!.:
of interest s the displacement v (1) of the equipment relative to the structure and is given by
vl = xdq) - xi) = q' x(7) (30)
where gq={~1 1]7. The Fourier transform } (w) of the response v{r) is found by tsking the
transform of both sides of the sbove equation and using Eq .14
{w) = g’ Ae) = —q' HlwIMr X, {(w) i31)
By definition, the frequency response function M, {w) for the response v (1) to the input X, (r}
satistics the relation:

YMw) = [ {wlX (@) 31

It follows from the previous two eql. tions that # (w) is given by,

Hlw) = —q' Hiw)Mr (33

It is well known [10, 28] that the P3D function G, (w) of the response can be found in 1erms

of the frequency response function by the refation
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Golwi =T 1), o) (34a)

where T, (w) is the transter tunclion
T (lw) = ‘h‘(m'lz (34b)
and G, (w! 1s the PSD of the input X.{r) By cxpanding T, (w) through the use of Eys.16 and

33 and keeping second order terms, the following is obtained

| o
w +4¢iwiw .
T lw) = ———————mir {35!}
T Tl d—ey
A plot for T {w) is shown in Fig 3.4 for w;=1.0, w.=1.04, e=.00". and 1we sets of values
for the damping ratios. 1t is apparent that 7, (w) is highly pecked fer values of @ that lie in a
small neighborhood of @, and that the peak is higher for smalier damping vaiues. The expla-
nation of this phenomena can be seen by examining the denominaior of the transfer function
The polynomiual J{w) can be fuctored
dlw) = o O+€, 4u)wlle (1+:1E +x)—w)
low, (=14€ —F J—wllw, (—1+1&, &) —wlm m; (36)

When w lies ncar the average frequency w . then the order of d (w) is

dlw) = O w1 m, (3N
From Eq.36. ii is clear tha' the sumc order relationship holds for J{—w) Returning t; the
expression for the tiansfer function, it follows that

T tw) =07 forw=uw, (38)

This characteristic of T, {w) will be useful in making approximations

3.3.4 Spectral Moments of Response

The spectial moments A,. of the response of the secondary system can be obtuined by

integrating the PSD function ¢, (w)

. " s s

w) +4f wiw

A, = "G wde = | ——— " G (@) d {39)
W _!I'm 1, (wlde f dla)d{~w) a wlwldw

o

For general forms of the input PSD G, {w), the zbove integral can be evaluated numerically.
However, for the important casc of white-noise inpul closed form second-order approximations

can be derived. For m =0 and 2 the following integration formula is used (11}
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_plwldw @ ,?i(:,”lbi‘?_'ﬁ;_‘lih_‘{f;ff 1a:) {404)
h g lwly (-w) p aflai +ajay—a,a-a)
where the polynomials plw) and ¢ (w) are given by
pliv) = b’ + brw + b, {40b)
glw)= qw +aw +a.wt+a, 400

and the rvots of glw) are required to be in the upper hall plane. Siace G, (e =G, 18 o con-
stantt for white-noise input and the roots of d{ew) all hie m the upper half” plane. the formula
above can be used directly to solve £q.39 for A, und A, The cuiculations are feirly extensive

yet straightforward with the following results:

('I'r " 1
A= 1\-};[2¢l,+3ﬁ§,l+wfs>£u+e(4¢,,+E‘,>+lbf;¢1 Hia)
@,
i, R
M= T e e et e £ (415)
wHD "

where the denominator D is

D= ]6[{@;(45;4&") +ee,-,‘l {41¢)
Note that second order approximations are derived for the numerators in the above expres-

sions. These arc necessary Lo derive further results in this section.

For the first moment A, the integrand in Eq 39 is an odd-powered polynomial, therefore
Egs.46a-¢ cunnot be used. The obvious alternative is the method of residues: using the fre-
yuencies denved in the preceding section with some mathemaiical manipulation, the second-
order approximation for A, can be found {23}

G,
Al = 1}—;;— 2§u+2ﬁg.f+%e(36u+§d’+8§IEII(SéI+JEE)I (4id)

w,

It is noted that the lowest order expressions for the three moments are very similar:

2 ;(‘-- ‘.r“ 1
Ay = —i—%‘&— for m = 0,1,2 (41e)

Graphs comparing the expressions for A, in Eqs 41a-d with exact results obtamned by numerical

integration are presented in Figs.3.5a-c.

As stated in the Introduction, the firs three spectral moments can Le used to derive

several important response guantities, The first of these quantities to be examined are the
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mesn squares of the displacement response o and the velocily response o - which are given 1,

Ay und A, respectively

ol wf‘.ﬁom ‘ ) (424)
Bur ¢, €048 +87) + €£ 7]
, € (.

(

(42b)

8w, [€ €146 +87) +¢€])

Nute the presence of the purameter e The response of the eguipment to ground motion is not
independent of the mass ratio as is commoenly assumed in the current design practice. In fact.
as the value for € increases. the mean square of the response decreases, as shown in Fig 3. 5d.
This behavior 15 4 conscquence of the interaction between the equipment and the structure. as

was described by Newmark {33) and others [31,37].

For perfecily tuned systems. Eq.42a reduces o

gl Tl (43)
‘ 8w £, (4E €. +€)
This can be compared with the expression derived by Der Kiureghian. et. ol [1Y]
wls.,
L DU a (44)
8a, €, (4 +e)

which was based on the assumption that the system was classically damped  The two expres-
§i0ns are in agreement only when £.=¢. which, as noted in the previous chapter corresponds
1o the classical damping condition.  As the difference between the damping ratios increuses., the
system hecomes non-classically dumped, and EqQ.44 tends to underestimate the true value for
o, paricularly for small values of €. The plots of o in Fig.3.5¢ using the above Tormulac
demonstrate this phenomena. This was also shown mm Chapter 2 using modal decomposition
methods (see Fig.2.5).  Note that for small differences of damping ratios, the formula based
on classical damping will yicld reasonable results.

For systems that are nol perfectly tuned, the square of the detuning parameter @ appears
in the denominalor in Eq.42a. Thus. as the system becomes increasingly detuned. the mean
square of the response will decrease, as is expected. This behavior was exhibited in Figs.3 Su-c:

note that o 1s symmetric with respect 1o 8.



Other useful quantities that can be derived from the spectral moments are the mean zero
Crassing rale v = JA/A/m and the shape factor 8 = /1-a /(A -} Using \he seeond order

expressions for A, 1 Egs.4la-d. the following are denved

w gE, <
A § T (434}
¥ ” ll 2£u ] v

el s
b 14[] 4s;:

Fhe accuracies of the above formulae are shown in Iigs. 3.6a-c. The facior v is physically nter-

+ _l_.€+‘_c|§.,‘ (45b)

preted as the average frequency of zero crossings ol the response process [44] und the above
expression s in agreement with this interpretation The shape factor & is a measure of the
band-width of the response process [44]. For a SDOF oscillator with frequency w and damping

rano €,

& =2 = (46)
k1o
For small values of £, 6 15 small reflecting the fact that the response process is very narrowly

handed. For the 2-DOF ES system. 8 is a more complex function of the parameters 3. € . and
e. The general behavior of 8 iy as follows:
I For perfectly tuned systems and very small mass ralios‘. 8 = \,‘EE; which s an erder of

magnitude smaller than the shape facior for a SDOF oscillator in Eq 46
2. As € increases, 8 increases (see Fig.3.6b). This reflects the fact that the {requencices of

the sysiem are moving aparl which increases the band-width of 1the response.
3. As g increases, 8 incrcases for the sume reason as above (sec Fig.3.6¢).

All of the results derived in this section are based on white-notse input. For a general
input specified by sn arbitrary PSD G, (w). two alternative methods can be used to find the
response. The mos! straightforward method is numerical integration: the spectral moments can
be computed using Eq.39 for any input PSDD. However, if G, lw) is a4 smoothly varying and
wide-banded function such as the PSD for the Kanai-Tajimi filered white-noise input {24, the

highlty peaked property of the transfer function 7, {w) pernuts the approximate use of the same
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expressions for A, as those for whiie-noise input.  The only difference is that the term G, in

Lge.4la-c 1s replaced by the vatue of the PSDF at the peak of T (w), iec G (w,).
3.4 Modal Decompaosition Approach

3.4.1 Intraduction

An alternative method of deriving the spectre! moments of response of general 2-DOF
systems s through the modal decomposition approach for non-classically damped systems, as
developed in Chapter 2 The analysts will begin with tuned systems and the results compared
with those ol the previous secuion Tt will he showin that the two seis ol results are equivalent,
the primary Jdifference being the order of the approximation: Only lowesl order expressions can
be readily calculated in the modal approach. The analysis of the equipment-striicture system is

extended 1o detuned systems with results similar to those of previous investigators [i8, 19, 35].

To conclude the modal analysis, generat expressions which apply for bath tuned and

detuned systems are formulated using matching technigues from perturbation theory,
3.4.2 Tuned Systems

3.4.2.1 Mode shapes

The basic relationship between the mode shapes ¢, and frequencies w, of a general struc-

tural system is given by the etgenvalue prcblem
[~w. "M+ iw C+Klé, =0 (47
For the 2-DOF system, the [requencies w, have been derived earlier by solving the characteris-
tic equation. Consequently, the mode shapes can be computed readily by substituting the
expressions in Eq.12 for the mass. damping, and stiffness matrices and the expressions in Eq.28

for the frequencies. Using the notation ¢, =[a, 11/ | the cquations for the eigenvectors are

[

Solving for a, and taking lowest order terms yields

- [8] r=1.2 (48)

Gilw) flw)
fﬂw,) g,(m,)
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¢ ) w-11+:6:)-
PR Shb G 2u-tltid-w ] {49)
folw ) w,

Note that the numerator w simply the difference between the frequenay of the fines buase
sccondury subsystent and the (requency of the combined system. Substituting Eg.28 for e the

eigemvilue, eigenvector solutton pairs for Eq 47 ase

wg:w,n+fg‘,+;~\/e+ng,+m»‘1. @ = B 16, —fe s Uk 4B (50a)
wr = |1 +1£, *%\fé*(ff_/*f,@)"}, o= —f3— :£,+\//e_-+(.‘_£,413)'\ {(50b

The component a - is compared with exact values, computed 5 numerically solsing the cigen-
vilue problem, in Table 2 The cxact and approximate values of o are also plonted in
tigs. 3. Ta-c using the same vautues for the paramoeters used in Figs.3 3a-c. The key iclationshaps
between the mode shapes ¢ and the system pacameters are,

1. For very small values of the mass ratio e, a is very nearly zero, and the mode shupe ¢+
is dominated by equipment motion. Similarly, mode 1 is assoctated with the structure
subsystem and o 15 approximately ~2(8+:£ ). This is indicated in Figs.3 7a.b, where a
are shown to convecge to the limiting values 0 and - 2(8+:& ;) for small values of €. This
corresponds 1o 1the convergence of the frequencies of the combined sy siem o those of the

subsvstems for increasingly smaller values of the mass ratio, €.

2. if the system is perfectly tuned and £; < €, then ), and a- would be given by

a; = —1f ,~~Je—E; {51a)
ar = =18 4JenE) (51

which have the samc absolute value. Thus, the characteristics of the two subsvstems
would be distributed equally to both mindes; it is no longer pessible to associate & mode
with either subsystem. This demonstraies some of the symmetry of the sysiem. This is
shown graphically in Fig.3.7b for points 4 and B. where the coordinates o e to cuch
side of the imaginary axis at a tistance of approximately \/e—:?,

3. The mode shapes will be reaf-valued only when the damping ratios of the equipment and

structure are equal. This follows since the damping matrix would b proponional 10 the
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stifness matnix 0 lowest order teems, and the system. by defimtion, atlains classical
damping. This can be observed in Fig.3 7o, where the imaginary components of o are
refatively small.

4 Finuliy . the product of a, and « . is

(L7

e (32)

which is constint with respect to 8. €, and €. This relation will be uscd in the next see-

lion.

3.4.2.2 Spectin! Momvents

The modal decompositicn method can be applied directly to the results in Fgs 504.b 10

obtamn the spectril moments ¢l responsce.

First, new notation will be introduced. Following the convention in Chapters 2. the fre-
guencies « ¢an be rewritten

w a1 +iEG (53a)

where @ and € are the undamped frequencies and the damping rativs, respectively, which are

associated with w *and are given by

. . Imw,
w = |w' = Rew and § = ——- {(53n)

@,

In general, the sysitem parameters @ and €, are not related 1o the original parameters w, and

€. however, the averages arc the same. This fact is verified by referring to the expressions in

£q.50a,b
o+ s Relef\ 4w:)
@t ~ elw) tw; ~ w, ‘54"’)
2 2
E,+E, 1 N | imd N
£46 A flme,  Ime. 1 Imle to €, (54b)
2 20 ay @ 2 w,

It is uselul to define the differences

C a—, .
8= 678d g £, =E -, 155)

w,

From Eqgs.50a,b and Eg.53b. it cun be shown by direct substitution that
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IB7+&: = Je+ 1€, +p0 ] 156)

This refation will be uselul in comjpriting ihe spectrel moments
The first step in the modal decomposition method s the evaluation of the thice wets of
constants ¢ . /) _and £ detined in Bygs.2.26 and 2 34 In order to obtain these quantibies,

SOME pronunary expressions must be computed as outlined in Chapter 2

The quantities 4 und A delined by Bys. 2. 170 and 2.20 can be obluined m terms of o and

4 = a jA& = i 'Mdl >m. — 2ila ‘+(]m;(un (57}
Y : ta +¢)

p |2 M PP S A (S7h)
L 2 telw, Ha +a €lw,

The formula for & can be expressed in terms of a. and o by using .52

i(=1)
h = ——— (58)
o la.—w')

Nete that b = b, The constants ¢ und ¢ delined by Eg.2 .26 can be evaluated in lerms of b
using the relation s =/

C =4 (Enh)mbA) D =<0 F = 4(Reb} Reb) (60)

¢ = 2R¢h (59h)
The lowest order terms for ¢, D)L and £ are caleulated osing Fg.2.34

C.o= 4w, Umb) D =0 F, = 4(Rech) (60}
It was noted in Chapter 2 that the coefficient 1), was always nearly equal 1o zero in the numeri-

cal studies of the twuned 2-DOF cquipment-striciure system. The expressions above confirm

that result

The next step in the modal decomposition method is the evaluation of the cross spectral
moments A, , for white-noise inmput. By using the parameters & and €, the computation 1s
straightforward using Egs.2.49a-h. The imaginary parts of A, , are nearly zoro due to the fact

that the frequencies & are closcly s, ed for tuned systems. Thercfore. only the real parts of

the cross moments are needed. The serocth cross moments are

wis,
Reh, = — r=1,2 (Gial
4o &
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G AE B +E D) nG.. &
Reh,» =~ [ — - — | o e - R

e ! . L (61b)
(@~ + 36w+ w6+ w o w w, B +4&;
As an inttial low-order approximation. higher cross moments van be obtained by ustng tho loi-
lowing
Reh | = w Rer, 62
which will yi2ld low order expressions for A

The tinal step in the modal decomposition method s the evaludbion of A by sabstituting

the preceding results into Fg.2 36 The lowest order expression for A, s

AL o= :E[muw‘lmhlmh ReA, | + dReb Reb w Rea, }

= dw {p | [Reh, 4+ Red, o — 2Reh, )] (63)

The term |4, is found by substituting Ygs.50a.b into Eq.58 and utilizing Eq.56

h |
)

ol = e | - e (64)
(1),
After substituting Egs.6la.b and 64 inta Eq.63. the expression for the moment &, reduces to
= e {65a)
Buw, " £4 A8 +4E])
This ¢in be compared with the formula for A, in the preceding section which, to lowest order

is

G.
A, o b : (65b)
Bu, " (£,64B +46,) +e£5]

The latter expression is entirely in terms of the original parameters w, . £ . and ¢ while
the former is in terms of the derived parameters @, and £ The mass ratio €, which is present
in Ea.65b is implicitly included in Eq.65a in the derived parameters. 1t can be shown that the
two expressions are equivalent by rewriting the derived parameters in terms of the onginal

paramelers.
Higher order refincments can be made 1o the expression in Eq.65a for m >0 by using the

results of Section 3.3.4. From the definitions of the factors ¢ and 8. it is possible to derive the

following relationships betwcen the first three momenis:
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A= mev1-8'A., A-=m 1k, ibh)

Substituting the expressions for ¢ and & from Eys.45a.b into the above. higher ordei relations

are vbtained which are equivalent to the expressions in Fgs 41
3.4.3 Detuned Systems

3.4.3.1 Introduction

Thus far. the analssis of the 2-DOT cqupment-structure system has been restricted o
tuned systems. For detuned systems, (o parameter 8 s large and can not be treated as @ pet-
turbation svanable, consequently o new set of expresstons must be developed. The analysis s

strajghtlorward through the apphication of the maodal decompaosition methad

3.4.3.2 Freguencies and Mode Shapes
The sigenvalue problem for the 2-DOF system can be rewnitten as

Fwie =0 167at

wheie

Gilw ) flw)
{67h)

l"fm )=l’(w-) g(m'J

Ta bepin 1he analysis, the Tollowing approximations for the frequencies and mode shapes are

used.

= (ToE 4 ) (6ta)
& = |‘1)] PRI m (68h)

The (0 superseript is used to indicate tha! the above arc initial approximations. Low-order
refinements of these rough estimates are possible using perturbation technigues.  Details are
presented for mode 1 which is associated with the structure mode.

The above approximations have crroes, which wre found by direci substitution into the
left-hand-side of Eq.67a

Gl(wfm) J:(wfm) 5l
wy, I I i} o losg )
l'(uu )¢l lf'x‘w\””' K|(w|"”)llnl = lfl‘wl‘m)l (69)



Using Egs.174-¢ 1o cvaluate the shove polynomials, the order ol magnitude of the above etrors

can be found

Flw,"eé " = lg::; M (70)

To reduce the above ersors. a refined mode shape and frequency, which wili be denoted ¢'"
and w ' ', will be denved,
The 1irst step an reducing the errors is finding a suitable vaiuc for the equipment com-

ponent ol ¢! . By examuning Eq.69. it 1s clear that if the following value is given te the

refined mode shape

Ve i .
b= f ) (T4
g;(w"'")

the crror in the second coordinate in Eg.69 would be zero and the new error terms would be

G,

T(w;“”)ﬁ]l' = (7|b)

The error in the first coordinate can be reduced by finding \he relined frequency w|'' that

satisfies

./‘f\“w;m)
= T oy

gilw)

(72}

0\“”;4 )

(T8N
1

Let dwi=w!''~w Then ¢;, {w) can be reduced to a linear function in Aw, by using the

denivative approximation

Gilw )= (") = «-‘I—(,u(m{"'mw,
duw

= Zmil-m;m+l£|mr]dwg
= -Zm»m.Aw\ {73)

The solution to Awm, is found hy combiniag Egs.72 and 73

W VAR

— G W 7
2}11|(u\ g,(w,“”) (uw. ) 4)

It is clear that Aw, = Ole)w, from the definitions of f,, x;, and ;. By compuring cach ele-
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mert of the marrix Clw!"'} with the correspanding element in Fiw,™"), it can be shown that

Ciw'' ‘@' = 8::: | (75)

Thus, the refined maode shape and frequency have errors an order of mugmitude smaller than
those of the initial sotutions. Further refinements are possible, however the small second order
mprovements in accwacy generally does not warrant the increased anahybical and computation
effort, particularhy e cngineering apphcations. Usiag the * notuliu'n for the ting fow-ordes

approxamations. the above expressions reduce 1o

¢'::: ] un:.:\‘:w:f}*'lfw) ‘76,
w-

[{TRR U]

Although the expression for o) ' s not used in the final resuh, s derivauon is necessary 1o

[

prove that the sofutions ¢ and w!'' reduce the error in the eigenvalue prublem. This proof

justifies that the sofutions in Eq.76 are valid low-order approximations.

In u very similar procedure, refined solutions can be oblained for the moed: shape and the
frequency of mode 2. which is associated with the equipment mode The high-order expres-
SIOMN are:

Jitws™)

. - 7w
P R il = gy —Jrler ) (77

~ {
2 e G lawi™)
1€ ;

which reduce to the following, lina) low-otder approximations

Ew®
- 3
W -wi

¢ = . @y = as{144£65) (78)

Nate the similarity between the above results for mode 2 and .hos~ for mode 1

The mode shapes and fiequencies for detuned systems have an entirely different character
than 1hose ol tuned systems. The mode shapes are real, indicating that detuned systems are
classically damped.  Also, the frequencies of the combined system are close ta the fixed hase
frequencies of cach subsystem indicatine (hut interaction nbie o neglizivic 1oic In detuned sys-

ems.
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3.4.1.3 Spectral Moments of Response

As in Section 3.4.2.2, the modal decomposition approach can be applied directly to the
above mode shapes and frequencies to oblain the spectral moments of response. Since detuned
systems ate classically damped, the method for classically damped systems, as developed by Der

Kiureghian [16], can be used  Tne effective participation factor & is given by

(g’ @) g 'Mp)

M

{79)
where M = ¢ ‘Mg is the modal mass. By substituting the preceding expressions for ¢ into

Eq.79 and taking toawest-order terms. the result is

W"\

S {8

W =W

The exprassions for the moments A, . are easily Tound in ‘erms of o

76w
A, =~ __Li_. (21

4F
As for the cross-spectral moments A, . it has been gstablished that the cross spectral moments
A, . == D for well-spaced modes 115]. 1t will be shown in Section 3.4.4.3 that detuned modes

are well-spaced:; therefore this approximation for A, . is applicable here.

The spectral moments gre calculated using the formula Fq.2.38

) (u" ?TTGL.‘ w! 3 w i 1
Ao =S TU U, ,=[ — ;l n [ Tk (82)
o o wi—wsi ! N

The mest notable characleristic of the above expression is that A, decreases as the system

becomes increasingly detuned. This is illustrated 1n Fig.J.8.
3.4.4 Comparison between Tuned and Detuned Systems

3.4.4.1 Introduction

The 2-DOF system has been considered is being either tuned or detuned with different
sets of expressions derived for each case. However, for practical applicalions a4 general expres-
sion applicable ior all cveiems would he more Usefull fartivalaly T dhose systems which e

between the {uned and deluned categories. This is accomplished by matching, which is a
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standard procedure (rom perturbation methods 132)0 Also. guidelines are establistizd to deter-

mine i o system s characlerized by tumng or detumng.

3.4.4.2 A General Expression for i

The rdea behind matching is 1o combine two expressions nto vne general exoression that
would apply tor ol values of o perturbaiion parameter 10 this isel the exprossion that wilh be

ervaluated s the spectral moment & and the perturbation parameter s the detumng . 3

For sysiems with Large values of g, the detuned momens in Eg .82 would be used. and for
systems with smatl s alues of 8. the tuned moment in Eg.65b would be used. Howover, for sys-
tems with values of 8 which are Lirge enough 1o be considered detuned yet small enaugh to be
constdered tuned. Both cxpressions Tor A, wauld be applicable. The detuned version can he

rewritten in terms of 3

w'nlG w € 4w E.
. w Ete TE (83)
g w, w' "w' €&

where the d superseript denotes detuning. The tuned version cun he rewnitten 1o account for

the relatively large value for @8

(s (£ +£)
AL (K4)
16 w, "EE.

where the ¢ supersenpt denotes tuming. Since the two expressions above are derived usiog
different assua ations on the parameter 3. they are slightly diffzrent. However, it s clear that
small modifications can be made 10 A, so that the expressions would agree. or match. I these

modifications are apphed 10 the original expression for A in Eq.65b. the result would be

ﬂ(}.,\ \3 ‘.; M “+ ‘1 g
A TN T 1 £ (85)
T R e

Note that when £ is small. @ = w. and the above expression reduces 10 the original expression
tn Eq.65b. For larger values of B, 1... above will ciosely approximate the detuned moment A

This can be clearly seen in Fig.3.9.
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3.4.4.3 Detuning Criteria

For systems with large values for the parameter 8, the detuned moment A in tg.83
would be in close agrzement with the general expression ior x,, in Eq 85, However, systcms
with sufficiently small values for 8 would be characterized by tuning and A and A, would no

longer be in agreement

¥ the relative error tolerance is ¢, then a system will be defined 1o be detuned if the

difference between A and A, 1s less than ¢, ie

i A=A
relative _ < o (86)
error A

Substituting £qs.83 and 85 into the above yields

relative _ E14L £ +e)
€Iror 616."3:

This error is plotted in Fig.3.10; dearly in the vicinity of perfect tuning (8=0) the error

< ¢ (87}

becomes very large. Ruwriting the above in lerms of 8 yields

, Mere
B é:f“’ g«a_ e

which will he used hereafter to define de.uning.

€&

€ lg; (88}

It was noted earlier that detuned systems have widely-spaced modes. This hypathesis will
be proven, presently. In the context of the prescnt study, iwo modes are defined 1o be widely
spaced if the correlation coefficients for white acise input p,., <<l for m=0,1.2 and i#.
This reldtion will be shown to be true for the 2-DOF detuned sysiem for m=0; similar proofs

hold for m=1 and 2.

Using £q.2.564, the expression for p, ;> can be written in terms of the parameters of the

TS system:

VEEAE, + BE )
Po 12 -y (89)
%, + 4

The relation in Eq.88 can be siinplified to

B> N (90)
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which, when substituted for the first summand in the numerator of Ey.89, yizids

VEE Ve + €8

s < S 91

Dividing thraugh by 8, dropping the first summand in the denominator, and substituling Eq 90

to the remaining summand in the denominator, the above simplifies o

VEEAVE v E)
P < ___‘;'E_____._ﬁ___’; (91)
i€,
Finallv, using the fact that the geometric mean is less than or equal 1o the arithmetic mean. the
above reduces to the following inequainy
Py < e+ Ve E, << | (93)

which proves that detuned modes are wideiy spaced.

1.5 Non-Interaction Results

All of the resulis derived thus far in this chapter correctly account for the effect of
inleraction between the structure and the equipment. A question with practical implications is:
What is the difference between these results and the results which would be obtained il interuc-

tion was neglected?

In the derivation of non-interactior results the response is firel found for the structure
alone without accounting for the equipment. Then the structural maotion is used as the base
input to the equipment. In mathematical terms, the equations for the system response which

were coupled in Eq.13 for the interaction study are decoupled in the non-intcraction analysis.

The structural response x; "' relative o the ground is given by

')'1],.\'.:'“”” + F]k]‘um‘, + klx'.’m-ul - __"“7-\‘1 (” \'1’4‘”

where the superscript (non) indicates that the variables are the 1esuits of the non-interaction

Coromny

analysis. The motion at the base -:f the equipment is x| + &, thecefore the equipment

ARrral

response y relative to the atlachment point is

codpeny ¢l

"oy " (_?)"lunul + klyl.:w;l = — X tok + XL) (941)

The Fourier transtorm X"’ (w) and ¥'""'(w) of the displacements x;*"" (t) and """ (1) ure
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3.4.4.3 Detuning Criteria

For systems with laree valucs for e parameter 8, the deruned moment AL in Hg.83
would be in Jdose agreement with the general expression for A, in 1085 However, sysiems
with sufficiently small values for 8 would be characierized by tuning and A/ and » . would no

longer be in agreement,

If the relalive errar tolerance is e, then a system will be defined to be detuned if the
difference beiween A2 and A, is less than ¢, i.e
o
relative _ A Ay . (
error A, <t Rs)
Substituting Egs. 83 and 85 inta the above yields
relative _ E’i(iéli-‘"")

error f[f'ﬂj
This error is plotted in Fig.3.10; clearly in the vicinity of perfect wning (8=0} the error

<y (87)

becomes very large. Kewriting the above in terms of 3 yields

.\ L.+, | € s
. o My ¢ e (88)
SRR T I +5&F

which will be used hereafter to define detuning.

ft was noled earlier that dewuncd systems have widely-spaced medes. This hypothesis will
be proven, presently. In the context of the presem study, two modes are defined to be widely
spaced if the correlation coefficients for white noise input p,, ,<<1 for m=0,1.2 and ;.
This relation will be shown 1o be true for the 2-DOr detuned system for m=() similar proofs

hold for m=1 and 2.

Using Eq.2.56a, the expression for py ;; tan be written an terms of the parameters of the
PS system:
NEEWE, + B

4, + B
The relation in Eq.88 can be simplified to

PuL = (89)

2,
g > 7 (90)
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which when substiturrd lor the frest summand in the numerator of Fg.85, yields

o _\H/_E_E"_;«z\-‘."'j A
A+ B

Divid, ' through by g, dropping the first summand in the denominator, and subsututng Eg.90

4l

to the remainiag summand in the denominator, the ubove simplifies to

VEE IR +
s < ;:_l‘_,;ii 192}
- 2,

Ve

Finally, using the fact 1that the geometric mean is less than or equal to the arithmetic mean, the
above reducey 1o the following inequality

o< e 4 ek, << 193)

which proves that detuned modes are widely spaced.

3.5 Non-Interaction Results

Al of the results derived thus fur in this chapier correctly account for the effect of
interaction beiween the structure and the equipment. A gquestion with practical implications is;
What is the difference between these results and the results which would be obtained if interac-
ton was neglected?

In the derivation of non-interaction results the response is first found for the structure
atone without sccounting fur the equipment. Then the structural motion is used us the base
mput (0 the equipmeat. In mathematical terms, the equations for the system response which

were coupled in Eq.13 for the interaction study are deccupled in the non-interaction anelysis

The structural response x. "' relative to the ground is given by

rtitnin)

moX, + oo™ e k] = — i X 1) (94a)
wherg the superscript ¢(non) indicates that ihe variables are the results of the non-interaction
analysis. The moiion at the base of the equipment is x{""" + x.. therefore the equipment

response ' ™" relative to the attachment point is

sl avarc L oraen v

may

The Fourter transform X{""" (@) and ¥Y'" () of the displacements x| "' (¢} and y'""'(1) ure

o L

+ ('3}" + k;}’l""'” - _’”:\(xl + ,\‘) (940)
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X (@) = — A wdm, X, (w) (95a)
Vi) = —hdw)n-w X" e) + X ()]
= —fdw)mslw’ h (e m, + 11X, (w) t93h)

where Aitw) and #:(w) are the complex frequency response functions of The structure and

equipment subsystems, respectively, given by

hlw) = (—wm + e, + k) {96)

Using this definition, the exprzssion for Y'“'tw) can be reduced

) SR Y

1

~hdwhhlawlm lom + 6 )X, ()

]

—hlwlhAw)m:-lwe, + 41X, ()

~hdw) bstwdm my|2iw 10+ @il X, w) (%7)

I

It follows from Fq 32 and Eq.34b that the transfer function 7" '(w) for the relative displace-
ment response 15

(wi+4Efwiw hmim;

T ey e — e
e w d""'/”f&))d‘ tior r‘__h))

(H8a)
where

47" w) = b el b (w) {98b)
Note the similarity between Eq.98z and the corresponding expression which includes interac-
tion, Eq.35. The difference is in the denominator: in the non-interaction analysis dlw) is
replaced by d{w)'’. Cemparing Eq.17d with Eq.98b. it can be seen that

dlw) = dlw)'' + eladditional terms) (99)
where the additional terms sccount for the interaction between the eguipmen! and the struc-
ture. As the mass ratio Locomes very small, the additional interartion term in the ubove equa-

tion becomes negligible and diw) approuches d(w)' ™' ie.

lim dt = d(w) (1G04)

[ i)

It follows that 4 simil+r relation holds for the transfer function

lim 7, (w) = T'% () 1100b)
(k

Using the above fact, the rederivation of the spectral moments and other related guanti-
ties for the non-interaction siudy becomes lrivial. Most of the results found earlier can be

adjusted to yield resulis that do nat account for interaction by setling € to zero, ie., modeling
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the cquipment as a subsystem with negligible niass. This maukes sense inturivedy - such equip-

ment s not expected to affect the motion of the structure,

As an example. the formula for the moments given in E¢. 85 would simphiy 1o

i w} (w, "&,4wy ™€)
n lw/ "Eitay "0 1101)

16w w “wr " € EAEIHA)

L

A\-.»x -
y

Note that the noen-interaction expression tends 10 overestimate the true value for A, paruiou
larly for taned systems due to the absence of the ¢ term in the denominator of Eg 01 tsee
Fig. 311}

tooy instractive 1o investigate how nadt ¢ must be in order 1o insure that the non-
inleraction expressions will yicld reasonable approxtmations.  The simplest measure of the

difference between the non-interaction and exact approaches is the ratio

rn= —=—"~ (IOZF

which, for white-noise input. can be calculated from Egs.85 and 101

(AE 4 B°)E £ vef ]

rye= 3 S {103)
{4E +B7)E 8,
If the error tolerance is e, then the non-interaction resulls can be used if
R B P (104)
o1 cquivalently,
€ < (4§,§+ﬁ’)£'—€,ie (105)

&

For detuned systems where 8 is large. the above condition will usually be satistied and >}’
will be a good anproximation for A, as way stated earlier. However, for toned systems. B i
small. and Eq.105 will be satishied only if € 15 sufficiently small. A conservative upper bound
for € 1s made by setting 8=0. in which case Eg. 108 simplifies to

€ < 48 & (106)
The relationship between the error in nen-interaction analysis and the size of the mess ratio e is

illustrated Fig. 3.12.
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3.6 Summary

3.6.1 Piscu~sion

A thorough study of the 2-DOF ES syster: was made. The mode shapes and frequencies
were derived for tuned and detuned systems and physical interpretations of these guantities
were given 10 elucidate the dynanic characterisues of 1hese systems. Two different methods of
analysis were used (o find the response of the EO system 1o stationary inpul. In the first
approach, the frequency response function method was uscd for tuned systems, and second
order expressions were derived for the spectial moments A, for m=0.12. These expressicns
were subsequently used to find the shape factors » and 8. In the secornd approach, the modal
decomposition method was used in analyzing both tuned and detuned systems. The results tor
tuned systems were compared with those from the frequency response funclion arslysis and the
two expressions were found to be equivalent. Then the resulis for detuned systems were com-
bined with those for tuned systems 1o form o general expression applicable for all sysiems and
to develop a enitenia for detuming.  Finally, the comimonly used decoupled eguntions of motion
for the ES systems were anayzed. It was shown that the results of this analysis can be obliined
directly from ihe results wnich included interaction by setting the mass ratio € o zero.  Also.

a critenon for the usc of the decoupled approximation was established.

The emphasis of this chapter was 10 understand the underlying mathematical relationships
that cxis s 10 the 2-DOF system in preparation of the study of more general and complex PS

systems.

3.6.2 Results
For future reference, the important results derived in this chupter are listed below;

Detuning Criteria

B> 1

F

4+ .E__‘E,’g {88)

Non-interaction Criteria
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Table 3.1 Frequencies for Example System
w,=1.0, B=(.04. £,=0.03, £,=0.04

Exact Frequency Computed Frequency firror
N Mode Real Part | Imag. Part {[ Real Parl T Imag. Pqu "
0.01 ] 0949 0.022 0.951 0021 a3
2 1.050 0037 10s0 | 0038 P 01 |
0.005 ] 0.963 0.01¢% 0964 | 0018 0.2
2 1036 0.040 0.036 0.04) el
70.001 1 0.976 0012 G 976 0012 00
| 2 1.023 0.047 1.023 0.047 00

Table 3.2 Mode Shape Component «; of Exampie System
w,=1.0, g=0.04, §,=0.03, £,=0.04

. Mode Exact «, i Ccm_;:l.:lid o Error |
Real Part | Imag. Part | Reai Part | Imag. Part Yo
0.01 T 0.061 0.024 0.058 0.022 89
2 -0.14] -0.055 -0.148 -0.063 7.
0.005 1 0.033 0.018 0032 0017 || 38
2 0.113 -0.061 -0.118 -0.068 6.7
0.001 1 0.006 -0.005 0.006 0005 || 00
2 | 0086 -0.074 -0.088 -0.080 56 |
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CHAPTER 4

ANALYSIES OF SINGLE-DEGREE-OF -FREEDOM FEQUIPMENT

ATTACHEDL TO MULTI-DEGREY-OF-FREEDOM STRUCTURES

4.1 introduction

In this chapter, MDOEF/SDOE PS s stems will be analysed, where the structure studicd in
the previous chapter s generalized 10 one with muliipie degrees of freedem and an arbitrary
conhguration. The equipment remains o have o single degree of freedom however, 1t can be
atiached to the structure at more than one node: 1t may alsc be atiached 10 the base.

The methods of analvsis of the MEOE/SDOF PS system will follow the same approach
developed in the previous chupter. Tt will be shown that the basic cnaracteristics and propertics
of equipment-structure systems, such as tuning,  interaction, non-classical darmping. and
closely-spaced, correlated modes that were found carlier are also present in the MDOE/SDOFEF
system. browever, the results in Chapter 3 will be generalized to account for the more complex
imer-relationships that are possible between the multiple structure modes and the equipment
mode.

It has been recognized that the analysis of certain MDOF/SDOF PS systems can be
reduced to the analysis of the 2-DOF cquipment-structure system {37361, However, w1
shown that this reduction can not be utilized in many MDOEF/SDOLE svstems, theretore maore
general methods of snalysis will be developed.

The analysis will begin with a discuscior. of 1yning and multiple tuning. Then, the fre-
quency response function will be derived for (he response of the secondary subsystem.  Next,
expressions for the mode shapes and frequencies will be derived which are suitable for use in
many dynamic analysis technigues such as those described in the Introduction. VFor further

insight 10 the bebavior of the MDOF/SDOFE system, these expressions are used directly in the
-



modal decompositia. method developed earlier for finding algebraic formulations for the spec-
tral moments of response o white-noise input. In the final part of 1his chapter, non-imiersction
is considered, The results derived earler in tiie chapier reduce to simple, viosed form expres-

stons {or all arbitrary configurations of the two subsystems,

4.2 Deflnitions

4.2.1 Parameters

In this section a « ¢t of matrices will be developed to describe the MDOF/SIDOF system
which will be used in the remainder of this study.

First. the paramelers of the primary subsystem will be defined. Let N be the number of
degrees-of-ficedom of this subsystem and x,, . . ., x, be the ditplacement coordinates relative

10 the base. Then define the primary subsystem matrices

K, = stiflness matriz {Nx N) a)
C,, = damping matrix (NxN) (1b)
M, = mass matrix (A xN) (lc)

which are associated with the displacements x .

It i% assumed that the primary subsystem in itself s classically damped. Therefore by

standard eigenvaiue analysis the following properties can be derived:

w, = natural frequencies (2a)
€, = damping ratios (2b)
¢, = mode shapes (2¢}

In gencral, it is not required to obtain all N mode shapes and frequencies: it is assumed that
the above paramelers are obtained for + = 1, .. ., n < N. From the orthogonal properties of
the mode shapes. the mass, stifiness. and damping matrices can be diagonalized using ihe

{Nxn) transformition matrix

®, = {¢,.. - ¢,_,,] ()

with the following result

oM, &, =diglm,, - m.,) 4a)



-1 -

@/C. 0, =divgldm w b Imw £ 4
/K. & = disgln w. - mow,l (el
For the ngle 1JOF secondary subsystem, let oo, & L und w., be the mass. damiping

ratio, and natural frequency of this subsystem | respectively . Then the 1= 1 mass. damping, and

s iffness mutrices are simph

M =[m ), C.o=Rmyw &0, and K. =1m o, 15
The parameters of the two subsystems will now be used to deseribe the properiies of the
combined N+1 DOEF PS system. The fisst NV DOF witl correspond to the primary subsystem
and the V41 DOE will correspond 1o the secondary subsysem. Thus, the displacements are
defined by the M+ vedtor
x=[xr - - \\.l\,;]‘r {6
where vy s the displacement of the secondary subsystem reletivye 10 the base of the combined
system The A4 1> N+ mass, damping, and stif¥ness matrices are

‘I’/ . l(f'/‘ K/‘\

c. .| %7K, K.

i

M, M (

Mo=im, ™

' {7
where C,=C/ .M =M/ . und K =K arc 1> N mairices representing the physical coupling
between the pnimary and secondary subsystem«. The N3l sector r, s defined 1o be the
mfluence veator coupling the base mput to the displacements <. From these matrices, the
equations of motion for the comibined system is given hy

M X, +C,%+K xi=-M_ri() it}
where ¥ 07) 18 1he base input acceleration.

To be precise, the primary subsystem matrices M. €. and K, should be repluced by
more complicated matrices (0 account for the small added mass, dumping, and stiffness terms
atising from the influence of the secondary subsystem. However these terms are of second-
order magnitude in relation t the onginal primary subsystem matrix elements. Thercfore. the
use of the origingl primary matrices in the gbove equations iy consistent with the lowest and

first-order perfurbation anelysis that will be performed.
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The damping and suffness mairices C,, anc K, have a simple physical interpretation: For
secondary subsystems with g single attachment point at, say. the /-th DOF of the primary sub-

system, these matrices are given by

C, - [ﬁ 0 -2mw kO n} (104)
K, - IO R R N 0] {10b)
where the non-zero lerms are at the /-th coordiate. For multiply alteched sccondary subsys-
tems, stiffness and damping terms would be found in the coordinates corresponding to cach
altachment point. On the other hand, the mass matrix M, Is assumed to be zero since PS sys-

tems are usually modeled with lumped masses.

In general, C . und K. are full matrices and are difficult to utilize for analysis. For this
rcason dynamic analysis of the combined PS sysiem has been avoided in the past. However.
fram the above discussion it is clear that these matfices can be reduced using the transforma-

lion matrix

$, 0
?-10 @

where @ =]1] is the 1x] identity matrix. Using this transformation a niew coordinale vector z,

tlia)

given by the n+1 modal coordinates

z=lz.. ... .5, 2] (11b)

is obtained through the relation ®z=x,. The mass, daraping, and stiffness matrices in terms of

these modal coordinates are, to lowest order,

M=0¢'M = diag[m,,, Cmy, m\,] {12a4)
2"7‘.|W!,jf,.( ¢ Cyy
e _ .. L .
C=d'C ¢ 0 200 0,0 o (12b)
Cy) Oy 2maw €
m,,|w,’:| 1) i\u
K=0¢'K, ¢=- 0 : . (12¢)
My Wy K,
ki k. ”’xsw{‘f




where

Co=dC A =¢'k, ' (12
Note the simphaity of the torm of the abosve matrices as comparcid with the origingl system
matrices, Fys 7 The orgimal equat ons of motion that were given 0 Lo 8 for the nodal coordi-
Aates % has the tollowing form for the modal coordmates 7

MZ+Cr+ K= -Mryv (1) (13
where the vector of modal paricipation tactors 7 are given in terms of M and ) by the stan-

dard tormutation 110)

r=M @M r, {14}
s worthwinde to examine the terms in Egs. 12 mose closely. For secondarny subsystems

with anly o sinede attachment poing at the f-th DOE L these cquations redues 1o
Ao=-ww {¢.! (1)

co= 2dmaw &1 {15h)

wheee 1@, ] denaies the f-th coordinate of the veclor b, For more genetal support

configurations, simtlar eapressions ¢in be obtained. Let ¢ - be the ratio

== N i)
Then 4 und ¢ can be written as
A o= ~n w0 0= =2mow F L (7
where the first eyuatton is exacl. by the definitton of { ;. and the second is an approximatinn
The approximation s justified tor obtaimng low-order resutts for two reasons: (1) it iy exact in
the wnportant case of single attachment point, as shown 1in Eg 15b, (2} this relatively small
term has been neglected attogether in previous research work without much fosy of accuracy.
Before going further. a physical inlerpretation of the term ¢ will be investigated. For
systems with a wingle attachment point, { | = I, | is the displacement that the mass of the
secondary subsystem experiences when the primary subsystem s statically displaced into its
maode shape ¢, For muitiply supported secandary subsystems, the meaning for £, remains

the same. This is clear from the static equilibrium equation Kz=0, which can be rewritten in
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terims of the equipment DOF

Zi\,;: S —w oI {1%8)
Given o unit displacement of the /-th pumary mode, e, o=1 ¢nd 2 =0 tor 1# the

corresponding displucement tor the equipment is

= e =, (19

As an example. consider the 3-DOF system in Fig.d. 1. By following the matrix analyvsis oul-

hned in this secton, 1 can hbe shown that

] 11 1 . 1 .
¢."\ = [5] ¢,,_‘ = l__ g] K\,, = [—qum\‘ _-5(“:"”% (20u}
from which 1t follows, by definition | that
L, =-75 and {, = —28 (20b)

The deflections of the primary subsystem inte its mode Lhapes are shown, and it is observed

that the corresponding static displacement of the equipment are given exactly by [ |
Before continuing, it is useful 10 imtroduce notalion for mass ratios. Let € be the ralio

m

€ = — 21)

m,

Alsc, let y . be the effective mass ratio

. M
yi={ — Qn

"7],
which is a generilization of the effective mass ratio defined by Der Kiureghian, et al. [18] for

the case of a single atlachment point, 1.¢.. where {., = [é.],.

4.2.2 Classifications for MDOF/SDOF Systems

The 2-DOF PS system has only two simple classifications: tuned and detuned. However,
the MDOF/SDOF PS system has a Targer number of possible relationships between the modes
of the structurc and the made of the equipment, thercfore mere classifications are necessary for

an vrganized, wcil-defined analysis of this system.

First, a definition of tuning for MDOF/SDOF systems will be presented. For the 2-DOF



system the siructure mode was foand to be tuned 10 the equipment mode if

A [i:_f“"_“ 3 £ ~L,| (23
B l @ < . l4 + 5\15,4’ )

where w, 15 the uverage of w, | and w,:. This definition can be extended to MDOF/SDO} sys-

tems. mode ¢ of the structure is s2id 1o be tuned to the equipment maode if

N

N 2
|m,,-—w.|l < _f;’

2

€08,

4+ (24)

W, ¢

where «,, (s the average of w,, and w, and y , is the effective myss ratio defined earlier.

The above definition is used to define several types of wuning classifications. Let /, and 7,

denote the sels of structiire modes tuned and detuned from the equipment, respectively, 1.e.

! = [ «w, s waed oo, l {254}
)
I, - { {:w, is detuned from w.. l (25h}

For the 2-DOF system, n=1 and only two classification are possible:

L =11}, 1 =]} fo: tuned systems (26a)

L=1{] 1 =11] fordetuned systems (26b)
For MDOF structures where n>1, several relationships must be considered. If all primary
medes are detuned from the equipment, the system is totally detuned. Otherwise the system is
singly or multiply tuned, according to the number of printary modes tuned 1¢ the secondary

subsystem. Using the abave notation,

L=} £, =11 - .n) fordetuned systems (271)
{, =111 forsingly tuned systems (27b)
L =4k k+1, - k+I=11 for multply tuned sysiems 27¢)

In the Jast case, ! primary modes, beginning with the &-th modc, are tuned to the equipment.

4.2.3 Example System

To illustrate the major characteristics of MDOF/SDOF systems and check the accuracy of
the formulsiions derived in this chapter, the example system shown in Fig.4.2 is used. The pri-

mary subsystem is composed of two parts, ¢ SDOF oscillator and s 2-DOF subsystem, both
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attached to a common base  The SDOF secondury subsystem is attached 1o both parts ol the
primary subsystem as well as the basc.

The dynanmuc properties of the subsystems are deseribed in Tahles T and 2 and are vhosen
s that the combined system would ¢xhibit important chaructenstics found  in general
MDOE/SDOE swstems. For instance. the frequency of the equirment s a variable parameter.
which allows for an investigation of tuning. For w = 38 rad/sec, the system s singly tuned as
shown in Fig 4 30 and for = 10 rad/see, the svstem becomes multiply tuned as shown m
Fip 4 3b The mass ratio, €, is also chosen to be a variable parameter in order te study the
influence of interactuon. Finally, the damping ratto of the equipment 1s unequad w0 the damping
ratios of the primary subsistem, thus the combined system is. in genesal. mon-proportiorally
damped

The response quantity that will be investigated is the relative displacement between the

mass of the secondary subsystem and the upper mass of the primary subsystem 2.
4.3 Frequency Response Function Approach

4.3.1 Introduction

The complex frequency response matrix will be derivea for general MDOEF/SDOF PS sys-
tems. The transter function 1s obtained which is used 1o find the pewer spectral density {unc-
tion and its moments Tor the response of the system to random excitation. The exact form of
the transfer funchion 1s complicated: however, perturbation methods are used to reduce the

cxpressions to a relatively simple closed form raticnal polyaomial,

4.3.2 The Complex Frequency Response Matrix

The ¢complex frequency response matrix for the system described by Eo 315 1s found by
substituting the expressions kgs.d2u-¢ lor the matrices M, C, and K inte the definition Fq.3.15.

The result is
(I]((u} o 0 _’All{(l)’

Hiw) = | 4 G ) (@) (28a)
.f'rl‘W) o folw) gilw)
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(28b)
{28¢)
(28d)

where
glw! = m (=o' + Liw € w > w))
Glo)=m (—w + Jiw, {0 +w)
FThwh= =0 mQiw & w b w)
for »=1. - .n. As in the analysis of the 2-DOF system. G {e) and g {w} are the reciprocals

cf the compiex frequaney response functions for the -th mode of the primacy subsystem and

the secondary subsystem. aspectively, The function f {w) represents the coupling between

these two modes

can be found for the inverse

1 I
G N ; (.‘,l
EMEN]
GG 1 15
- & -
('.' ;2 ('; l
It G
Hlw) = TIRY - |
V‘I\l.fni j _‘LIHI
GG G .G, ngg i
. Gnl : 1EN 'I
) ) . I
} G G G

where diw) 1s the characteristic palynomial of the system

dlw) = {16 [m - Z.T]
The frequencies of the system are the roots of the 2(n+1} order equation

d{w) =0

Due 0 the simple form of the matrix in Eq 24, a ciosed form expression

{sym}

| (28e)

(281)

29}

Unlike the study of 2-13OF systems, gencral ciosed form solutions for the above equatiot: de

not exisl.

Most response variabies can be expressed as linear combinations of the original DOF x(r).

Following the notation of chapter 3, a respon e variable y (1) can be writien

rinr=qlx(r)

130)

For example. if the response of interest is the displacement of the equipment relative 1o the

attachment point, tho vector g is given by
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Q=10 --0-10 - - 01}

where the position of the —1 corresponds 10 the attackment DOF. Transtonmog 1o the modal
coordinaies z2(r), the expressions for 3 (¢} becomes

Vo= qlx = g/dz = q' (31}

B 1 Q. @z qz ’
where =%/ q,

The formula for the frequency response function f{ twi for the response v (1h is (se2

kq.3.33)

H w) = -q¢' Hlw)Mr (32)
By substituting Fq.28¢ into thic above, the exact solution for #, (w) can be obtamed: however,
this expression s rather cumbersame for frequency response anajysis. By using perturbation
methods, it will be shown that the dominant terms of the frequency response matrix arc along

the diagonal and the last row.

The order relationships between the elements of the complex frequency response matrix
H{w) are examined for various values of the frequency w. For values of w in a neighborhood
of cach of the detuned primary frequencies w,, for s € 7, the order of magnitude of the poly-

nomials /' {w), g (w), and 7, (w) are estimated by sctling o=w,,:

Bifw,) = 0Ge)  f {w,) = Ole) 33a)
) Ole) for i=; .
G lw,) = O for =) (*3b)
where ¢ represents the order of the problem. Substituting the above into Eq.28e,
Ole) (sym) |
| Olel) Ot l
Hiw) = —— (33¢)
w O(e-) .
O Ot - 0
0e’) Q) - Oty ou

where only the j-th terms of the diagonal and of the last row are of order Of(e).

For values of w th-t are not in the neighborhood of any of the primary or secondary fre-

quencies,

gilw) = De)  flw) = 0e7) Clw)=0(]) ()
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and Hiew) is of the same form as Fq.33¢ except that all of the terms of the diagenal and the ast

row are of order O(e7).

Next, consider w near the sceondary subsystem [requency @,y for detuned systems. In

this case, g lw) = Ole’), f (w) und G (o} are us in Eq.34a, ind the order relationships for

H{w) are
Ofe’) (sym)
Ole?y  Oteh) “ (34h)
Hiw) = B
Ofle')
Ole’y  O(e?) - ofle’)

o’y 0 - oleY O
Finally, con_ider tuned systems, where for the sake of notatienal convenience it is assumed that
the first { primary subsystem moades (not necessarily having the lowest / frequencies) are the
tuncd modes, ie. [, =1{1,.. ., fYand J, = {141, L. n ). For values of m in & neighbor

hood of the equipment frequency w.,

£|({u\|) - O((’.‘) _/’,‘(wﬁ) - 0((‘?) (354)
. Ole) for 1<ig!
Ghw,) = Oofl, fori<i<n (350)
and
Ofe) {sym?} |
| Otey  Ofe’) !
Hlw) = .. .. - {35¢)
“ = e , ‘ ,
ate)  QOfer) Of¢)
| Otey Ote) - OGO

where, in the last row, the first [ terms are of order Qf(e¢) and the /+1-st through the »-th

terms are of arder 9 (¢7).

In the celculation of H, (w), the mairix Hlw) is post muitiplicd by Mr. In this process,
the last column of the matrix is multiplied by a term of order Q(¢-) smaller than the multiplier
for the first / columns. It follows from the arder relations above that the reduced expression

for H, (w) is obtained from the diagonal and last row of H(w)

q( )t gl‘w)f[]]G“(w) 4 qp-H’",u";.f;l(W) - q"‘l’"\]rn*l _ tqe”',..fr (36)
hie diw) 21(w)G, () £ (w) =G ()

1=
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where ¢ is the «-ih component of the influence vector r and 4 is the (-1h component of g.
By giving similar considerations 1o the characteristic polynomua! d{w!. it cun b shown
that only the terms corresponding to the tuned frequencie, are needed for the summation in

the expression in Eg.28f. Thus, for the muliiply tuned case,

g )
dlwl = NG lw|g(w) - f—‘c‘i~ (37)
' v G (w)

The above constitutes a considerable simplification for the expression for the [requency
response function £/ (w) and by observing the order relationships and keeping all dominant
terms. first-order accuracy (s maintained. The transfer Tunction 7 (w) and spectral density
function G, (m) are oblained using Fgs.3.34a.h  From the order relationships  abave, it can
be sinown thal for tuned systems the transier function has a peak of order e N al w=w., as
for the 2-1YOF system. There are also smaller peaks of order €J{e ) a1 the detuned frequen-
cies w,, for ref,.

A plot of T, (w) tor the example system in Fig.4.2 is shown in Figs 442 b In e 4 34,
the equipment frequency, w,; = .38 rad/sec. is tuned to the first pnimary frequency, w == .374
rad/sec, thus a sharp peak 8 found for w = w,,. There is also a small peak corresponding to
the detuned primary maodes near w = 1.00 rud/sec, however it is considerably smaller than the
first peak and is not visible on the plot. In Fig.d4.4b, the equipmenm frequency. w,; = 1.00
rad/sec, is multiply tuned to two primary frequencies, w,> = .98 rad/sec and w,: = 1.02
rad/sec, and a peak is found for w = w,,. For this case, a smaller peak is also found for the

detuned primary mode at w = w,..

4.3.3 Speciral Moments of Response

The spectral moments A, of the response variable » (1) are given by the integral Eq.2.1

Ao = fw' G dw (38)
1]
For general forms of the input power spectral density this integral can be obtained by numerical

integration. This method of finding the moments was used to find the response of the example



systein in Fig 4.2 o white-noise base excitation. The results obtained from the approximate
and exact forms uf the complex frequency response funciion H, (w) derived above are plotted
as a iunction of the equipment frequency, o.,. and compared in Figs 4 5a-c. The peaks
correspond to the responses for singly tuned systems (w.| = w, ;) and multiply tuned systems
(w,; = w,: w,). The difference between approximate and «~xact results ac¢ shight, iNustrating
the accuracy of the perturbation methods.

Also, un integration formula which is a generalization of Fq.3.404-c can be usad to find
A, for m=0 and 2 for a white noise input. However, this formula docs not yicld simple closed

form solutions us in the previous c¢hapter and the mizthad is difficult to implement into a com-

puter.

4.4 Mudal Decomposition Approach

4.4 ! Mode Shapes and Fregnencies

First, mode shapes and frequencies will be derived for cach set of modes classified earlier
in this chapter.  An analysis of the system requires the solutions to an n+1xu+1 order com-
plex eigenvalue problem, however, this problem is reduced significantly using perturbation prin-
ciples. Tor most modes, simple closed form solutions exist for the eigenvalues and eigenvec-
tors, only the multiply tuned case requires the solution of an eigenvaiue problem. I the latter
cdse, it 7 is the number of modes wned to the equipmient, the size ¢f the problem is /+1x/+1
which, in general, is far smaller than the original a+1xns+] predlery. Thus, given any
MDOF/SDOF PS systern, the expressinns for the mode shapes and [royuencies can be
evaluated numerically, and the results used directly in the modal decompositicn method

developed in Chapter 2, or in any other suitable dynamic analysis micthod.

In this chapter. the algebraic form of the mode shapes and frequencies are used in the
modal decomposition method to form general approximate cxpressions for the spoetrsl
moments for response to white noise snput. Closed form solutions ure obiained for all but the

multiply {uned case. The icsults are less accurate than the numencal application of the
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method, and is not recommended for computer appticalions.  However, the closed form expres-
sions are useful in gaining further insight into the behavior of PS systems. For computer appli-

cattons, the direct madal decomposition approuch mentioned above is more appropriate.

4.4.1.1 Primary Detuned Modes

The modes shapes and frequencies detuned from the secondury subsysten are found by

solving the cigenvitlue problem

Fw)ig =0 (394}
where
Glw) - 0 ! oitar)
MNe ) = 0 - G tw) £ () (39b)
Fidw) o f, o) g tw)

This problem s simitar to the cigenvalue problem (n Section 3.4.3.2 and the method of analysis
developed in ¢etail in that section is used here.

For notational convenience, assume that primary mode 1 is detuned, e lef,. Also,
ussume that mode | is widely spaced from the other primary subsystem modes. (This anaiysis
will be repeated without this assumption in a later section ) The initial approximation {or the

mode shape and frecuency are similar 10 those given in Egs.1.48

¢|m|-‘10 Q}I (40u)
W = ‘”M(m + i€ (405)

By applying the same error analysis developed in Fgs.3.69-71a and using the more genceral form
for the matrix ['(w}, a higher order approximation for ¢, can be found. The jesuliing mode

shape corresponding to Eq.3.714 is

NID I AT T |

¢l|!= :
] £2G- U, &

{41)

where the polynomials £, g, and G, are evaluated al w=w;". MNote that if the /-th primary

mode is closely spaced to mode 1, G (o) would be relatively small and the corresponding

coordinate in @' would be relativeiy large, invalidating the perturbation analysis used to denive
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¢ . Therefore, the widely spaced assumption for the detuned mode is necessary in this

analysis.

As for the 2-DOF systen,, the low-order approximations for the mode shape and fre-
quency are found from )" and ¢ '

N !
di=|10 0 tEe

w W)

w = w,, (1 +1&,)) {42b)

(424)

Note the simiarity between the ubove results and the results for the 2-DOF system in Eg.3.76.
The only significant difference is 1n the appearance of the coefficient { . This coefficient
reflects the more gencral form of the physical coupling between the primary and secondary sub-

systems in MDOF/SDOF systems.

4.4.1.2 Secondary Detuned Mode

If the secondary subsystem mode is detuned from the primary subsysiem modes, te. il
f.=[ ], then tie mode shape and frequency for mode #+1 which is associsted with the sccon-
dary subsystem can be derived in 4 manner parallel to the preceding analysis. The initial
approximations for @, and w | are

& =[00 - 1)/ (43a)

! = w (T-E] + £, (43b)

The higher order expression for ¢, ., corresponding 10 £q.41 is

!

N _jG'I' _% 1 (a4)
where the polynomials are evaluated at w-w,‘,‘{',: The final, low-ordes results are
. “"2I @\21 ]I
.=~ |lnen—— - Laea—— 1 {454)
W, —w!) wl,—w|
w, = w1+ €) | (45b)

where €, are thc mass ratios defined in Eq.21. Note the similaritics between the above results
and the results for the 2-DOF system in Eq.3.78. Again, the only difference is in the appear-

ance of the coupling cocfhicicnt {, .
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4.4.1.3 Singly Tuned Modes

The eigenvalue analysis of singly tuned sysiemrs is similar to that of tuned 2-DOLE systems
presented in section 3.4.2.1. For notational convenience, assume that primary subsystem minie

1 is tuned 10 the sccondary subsystem.ie £, ={ 1) /7, =1{2 - .n).

The in*tial approximations for the tuned modes are oblyined by neglecting the effect of
the detuned miodes and considenmg only the first and #+1 coordinates ol the eigenvalue prob-
lem in Eqs.39a.b. The resulting nroblem is essenually the same as that solved tor the 2-DOF
system in Eq.3.48 The parumeters B, £,. €,. and w, which were defined in Egs.3.1a.b.d.e for
the 2-DOF system are redefined here by‘?elring E=£,, £-=£,, wi=w,,, and w,=w, . Using
this notatien, the initial upproximsations for the mode shapes und frequencies wre neurly identi-
cal 1o the cxpressions in £q.3.50:.b. The only difference is thatl the mass retio € is replaced by

the more general effective mass raiio ¥ |

W = m,,! i+ g, + %—[yﬁhfﬁﬁi’] (46a)

w-‘iln - wul 1+ ’fu — l?[)(| +{l§,;+ﬁ):l (4$b)

¢|‘m - {ullln 0 - D1 ]’ (46¢)

" =~ [a™0 - 01} {46d)

a" = (L -8 — €, - |)‘|\+('f‘1+‘”:] (46¢)
il

a‘:"' - EL —B - ff.l + l‘y'1+(!'§“/+ﬁ):l (46“
11

Higher order approximations tor the mode shapes are obtained using the error anul;sis
developed in Eqs.3.69-71a. The first and »+1 coordinates remain unchanged and the coordi-

nztes corresponding to the detuned modes are similar to those in Eq.44

: . !
¢! = aun_-/_fl A (47)
. B (1-'\ r‘.l :

From the above solutions, the final low. order approximations are

w =w" (484)

2 ER
= m W T

? w? ’
$ - I o ézu(zl“;f"l e L | I {48b)

AT ) T A N vt it o ke b L
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where 1=1.2 denotes the two modes wising from the single tuning.

4.4.1.4 Multiply Tuned Modes

The cigenvalue analysis of @ multiply wned MDOE/SDOF sestem s o generalization of
the analysts of singly tuned systems.  Although simpie closed form expressions can not be

obtaing ! fur this system, 1t 1s possible to reduce the analysiv (o a small cigenvalue problem,

Let £ modes of the prmary subsystem be tuned to the secondary subsystem: for now-
tional convenience assume Lthat the first / primary subsystem moues {not necessarily hasving the
lowest { frequencies? are the tuned modes. ie § =| 1, . ./ )and 2, = 7+}. ... . n) o
tial approximations are obtained for the mode shupes by neglecting the effect of the detuned
modcs. as m the previows sechion. When the detuned coordinates /-+1,....n are eliminated from
the original #+1x#s+1 order eigenvalue problem given in Fq.39a, the result is a relatively small

/+1x!41 problem

W
l'.(w“")l i ]=0 (49)

where I, {w) is ihg submatrix of I'w) corresponding 10 the coordinates | 1.2 ... f.n+1| The

nh

I-vector 4. corresponds to the first / cnordinates of the /-th mode shape ¢ '™ and is used in

the initial approximation
¢H)).

¢"”' =| @ (50)
1

A higher order apprcximation is found through an error anaiysis, as before. The result is

MY
I

¢/lh - ¢'):.; (5la)
1
where ' is the n—/ vector
. R
Lierv S
) = |- —== - (Sipr
’ [ G,

and the polynomials are evaluated at the frequencies " found from £q.49. Finaily, the above

can be reduced to the following tow-order expressions
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¢'”]
¢ ':: é‘f‘ (524)
I
W = (52b)
where
5 a
: Wi Wy .
b, = (e 6l (5de)
Wy W, Ty

Note the similarity belween the above expressions and Egs.48a.b.

4.4.1.5 Qlasely Spaced Primary Detuned Modes

As noted i Section «.4.1.1. the analysis of doseiy spaved detunced modes may require
special attention. The theorctical method for derniving these mode shepes which i consistent
with the results of the previous sections would tequire the solution of 4 smail cigenvalue prob-
tem and is outlined below . Howcever, it is shown in Scction 44 2 5 that this derivation s
unnecessary if the gquantity of interest is the response of the secondary subsystem. [If the
axpressions for the detuned mode shapes and frequencies in kgs.424.b are used directly, the
resufts for the system response are shown Lo be the sume as those obtained fro1n the theoretical
mode shapes. Therefore, the mode shapes and frequencies derived in Section 4.4.1.1 can be
used for afl detuned modes, regardless of the spacing of the frequencies. If the mode shapes of
closely spuced detuned modes are themselves ¢ interest. the derivation fur the theoretical low-

order expressions given below can be used.

The analysis of systems with closely spaced detuned modes is similar te the analysis in Lhe
preceding section. Assume the first [ primary modes are closely spaced and detuned from the
secondary subsystem. The initial approximations for these { modes are obtained by neglecting
the effect of those primary modes that are not among the closely spaced modes. Thus. the ori-
ginal n+1xn+1 order eigenvdlue problem reduces to the same (+1xi+] problem in Eq49,
There are /41 solutions to this equiiion, however only the { solutions associated with the pri-
mary subsystem are used. The subsequent analysis is essentially the same as in the previous

section and the final low-order expression for the mode shapes and frequencies are given by



Egs.52a-¢.

4.4.1.6 Exampie Study

The complex modal properties of the caample system in Fig 4.2 were computed using the
formulations developed in this section and were compared wilth exact results obtaimned by using
@ complex cigenvalue salver from the IMSL library 1] The freguencies are shown i Table 3
and are plotted in Figs 4 ba-c for various values of the equipment frequency o . and the mode
shapes for the multiply tuned vase (ie., w,; = 1.00 rud/sec) are shown in Table 4 The non-
classical damping character of the multiply tuned system is apparent in the mode shapes, whah
have imaginary components. Good agreement between approximate and exact vilues 1s found
in all cases.

The effect of the equipment mass is illustrated in Fig 4 6b, where the frequendics
corresponding to € = 01, 005, and 001 are represented by points 4. B, and ', respectively
(which csn be compared with Fig 3 3a-c from the 2-DOF system studys. Mode 1 is not affected
by the muss ratio because it 5 detuned. The frequencies corresponding 1o the other modes
converge to the subsystem natura) frequencies as was observed in the study of the 2-DOE sys-

tem.

4.4.2 Spectrai Moments

As stated earlier, the most direct method for finding the moments is through numericat
computation. The mode shapes and frequencies of any MDOF/SDOF «ystem can be calcalated
using the formulae developed abeve and the results substituted into the modal decomposition
method develuped in Chapter 2. [t is straighiforward to implement this procedure into a com-
puter; the complex eigenvalue solution, which is of small order und is only required for mulii-

ply tuned systems, can be solved by routines found in standard libraries such as the IMSL [1]

For the exampie system in Fig.4 2, the results of this numerical computation are com-

pared with exact results obtained by imiegrating the complex frequency response function in
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Figs 4. 7u-c. Also, the mean Zero-crossing rule, v, and the shape fuctor, 8. we computed and
plotted in Figs 4 84.b Al plols show geod companison between exacl wnd the proposad approx-
imate results.

At tuning, the response of the equipment 1s domimated by oscillstony motion at the cqup-
ment frequency, thus the mcean zera-crossing rate is close o v = w ;7 1191 The line
representing this equation s plotted in Figd 80 and 1t can be seon that the actual vatuos tor v
approacn this lime at tuning. For other values of w ;. the conrihunon from the detuned modes
of the pritary system 1o the response motion becomes more significart, asd the contribution
from those modes with frequencies which are less than o ; tend ta lower the values for the

medn lcm-cr.')ssing rale.

The shape factor, &, which is ¢ measure of the band-width of the response process,
becomes small at tuming due 1o the predominance of the response of the tuned modes in the
response motion. This is reflecied by the marked decreased valuey of & in Fig 4. ¥b at the two
tuning frequencies, @, ~ 38 and 1.00 rad/sec. For o, = 38 rad/sec. it was noted 1hat the
complex frequency response furction #f, (w, has only a single peak, thus (he power spectral
density function is narrow-banded and & has a very small value. For w, = 1.00 rad/sec. the
complex frequency response function had two signifcant peaks, one at the tuned frequencics
and :aother at the detuned frequencies. thus the power spectral densily function is not as
narrowly-banded and & 1s not as small as in the previous casc.

Although the numerical approach to finding the spectral moments is useful in proctical
applications, it is instructive to utilize the algebraic forms for the mode shapes ard frequencies
derived in the previous section in order 1o obluin expressions for the response Closed form
solutions will be derived for response to white noise inpul for all but the multipiy tuned svs-
tems. Although these expressions are not as accurate 4s the numerical method eutlind above,
they previde important infermation about 1'S systems which would be hidden in & numerica! o;

parametric analysis.
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4.4.2.1 Totally Detuned Svstems with Well-Spaced Modes

Totally detuned systeras with wel-spaced moaes are the stmplest and most basic to
analyze. Sace totally detuned systems are classically damped :nd the correlations between
well-spaced modes are negligible, the modal decomposiien method simplifies 1o the sguare-
root-of-sum-of-sauares {SRSS) method [16]. The expressions fo1 the mode shupes and fre-
quencies which were denived in Section 4 412 can be substituted directly into the tormula for
the effective parucipatien fectors given in Lg 3,79, The factors associated with *he primary sub-

system modes are

ol
PR AL . (53a)

G Tl

and that associated with the secondary subsystem mode is

' oo
dl,4;=({, xZ"‘ IR (33h)

[s7 0 W

The moments A are given by the expressions in Eg 2 48a-¢. Substituting nto the formula

Eq 2 38 the final expressions for the spectral moments are

>
w1

11(1 TN Cw, l‘ ’w\ w
z I‘I | 1§\ vy 4,,, +q“‘lx i€ +’_”‘: wi - (54)

W |"(u |w,, f\!

Note that for n = | this reduces to a result similar to the expression for the 2-DOI system in

Eqg.3.82.

4.4.2.2 Singly Tuned Svstems

In this section. singly tuned systeme with well spaced primary subsystem modes are con-
sideted. The well-spaced assumption allows a separate analysis of the detuned modes and the
tuned modes in the modal decomposition method. Thus, the spectral moment can be
expressed as a sum of two additive components,

A=A + A, ‘55)
where A, and A .. constitute the contrnibutions of the detuned and tuned modes 1o the specteal
moments, respectively. The detuned moment A, anses from the n—1 detuned primary mode

shapes and is similir 1o the expression in £q.54
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A TN .., ;, , 2 o
AJ” - LA VIR 2(‘[5__{_15_‘_ -+ ql (_y.!____ (56)
e,

where the summation above is tuken over the detuned modes /,. Note that the second sum-
mation m ku. 54 arises from the contribution of the sccondary subsystem .node in the totally

detuned system, thercfore 111s not included here.

The tuned moment A, is obtained from the two singly tuned mode shapes of the sisiem
and its derivation follows the analysis ot tuned 2-DOF systems in Section 3.4.2.2 Tuking
lowest order ternis for the morments, the result s identical o the low-order expression
Eq.3.654.b

' angib e
= T doandnéoe; (57)

B E/wlé\lutg.j*ﬁ)) + vk

The detuned moment A ;. is small i comparison with the tuned moment A, . However,

this term is not ignored since 1t is importart for the calculation of the factors ¥ and &,

4.4.2.3 Multiply Tuned Systems

The unalysis of multiply tuned systems follows the same line of reasoring as used or
singly tuned systems. The expression lor the detuned moment A, s identical to Eg.56. how-
ever, there 14 no simple closed furm algebraic solution for the tuned moment A, . This quan-
lity must be computed numerically by solving for the tuned mode shapes using the reduced
eigenvalue problem in Secticn 4.4.1.4 and substituting the results directly into the modal

decomposition method.

4.4.2.4 Systems with Closely Spaced Primary Modes

In the above, it was assumed that the detuned primary modes are widely spaced from each
other, therefore the relatively small carrelations between these modes were ignored. However,
il these modes are closely spaced. ihe correlations become significant and another term A,
must be included in the expressions for the moments A, |

Am - A.f/v' + Am' + A‘u' (58)

This term wowd have the general form
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A= L TCA, DA, +En,.,] (59)

where

pairs ot closely spaced modes (. f) |
! = O (a0)

excludirg pars of wned modes
and the sum includes correlations between detuned primary modes and sing!y or multiply tuned
modes.

Closed form expressions for A, ¢an be obtained only for closely spaced detuned modes
Such modes are classically dumped. therefore, £2, = £, = 0 and ¢, = ¢ g, and the cross 1erm
hetween modes ¢+ and j reduces to

Ch. = ddp, A A, i1}
where ¢ are the effective participation faciors given in £q.53a and p, . are the correlation
coefficients defined in Chapter 2 (e.g . see Eqs.2.56 for wide-band inputs). ror detuned modes

closely spaced lo a tuned mode. such simple torms for C,. D). and £, do not exist, and the

corresponding cross terms in E¢.59 must be evaluated numericatly

4.4.2.5 Systems with Closely Spaced Primary Modes

Assumne that the first / primary subsystem modes are detuned from the secondaty subsys-
tem and are very closely spaced and the damping ratic. -f lﬁcsc modes are ap;'roximately equal.
From physical considerations, it is expected that modes with nearlv identical frequencies and
damping ratios respond to a commoda inpul as 4 collective unit.  This can be shown rigorously
using an argumer:t based on frequency response methods. Thus, these modes can be replaced
by u single equivalent mode containing their essential properties. The Itequency w, and daump-

ing ratio £, of the equivalent mode are given by the averages
| / ] !
w; = TZ“HJ" E, - _lzlgl" (62)
The effective participation factor ¥, is given by th: sum of the modal participation faclors ¢,

given in Eq.53a

. ‘ w1,
b = T, = B [Tt f—q,] (63)
=

o Wy |~ wy,
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It follows that the detuned moment A, is simply

Ay = 0, ’A.. ;s + vontribution from other detuned modes “63)

where A ., is the spectral moment corresponding to the freguency w: and dumping ratio &
The same solutions for the response is obtained if the mode shapes «nd frequencies for

widely spaced detuned modes ure used. Using the participation factors ¢ obtained in Section

4.4.2.1, \he express'on for the moment A, s

Lo
Ao =Y YA, , + other contributions 65)
=iy=1

Since the modes are closely spaced and the damping ratios are assumed (o be approximately

equal,

Ay = A, forall +.j </ (66}

Then the ubove expression for A, simplifies (o

{
A, ;1 + other contributions

{
AJH# = {2 "’,‘bi
o= {

= ¢ {"A,. ;; + other contributions (67}

which is the same result as Eqg.64. The latter approach is more suitable for computer impie-
mentation since the same solutions for the mode siwpes, frequencies, and participation factors

are used for closely spaced and widely spaced detuned modes.

4.5 Non-Interactivn Results

4.5.1 Introdv-tion

The effect of intrraction between the primary and secondary subsvstems has been
included in both the frequency response function analysis in Section 4.3 and the modal decom-
position method in Sec:ion 4.4. However, for many PS systems, the mass of the secondary
subsystem is considerable smaller thon the masses of the primary subsystem and the resulis
from Section 3.5 for 2-DOF systems suggest that the interaction effect would be neyligible for
such systems. Although the results of the preceding sections would remain vatid for this case,

it is worthwhile to reanalyze the system without accounting for interaction for scveral reasons:
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1. The results are simpler than the results which include interaction.

2. Closed furm expressions will be derived tor results that were not obtainable in that form
11 the previous sections.

3. Comparisons can be made between interaction and non-nteraciion results,

The fmquency response analysis is presented first. Then, after deriving closed form solu-

tions for the modc shapes, the modal decomposition method is presented.

4.5.2 Frequency Response Function Approach

The procedure in Section 1.5 is used to obtain the complex frequency response funcuon
H (w). The equations ol motion arc decoupled into two scts of cquations. The first sct

corresponds Lo the response of the primary subsystem 1o the base input and is given by

(R T Coteern 1 S WP . .
54 Q€0 v = = X =) (68)

and the sccond set 1s an equat.an  or the response of the secondary subsvstem to the motions at

the suppor: points,

ENRE N TN NN Zlm:‘!:, + 26w 21— 0K, (69)
1
where the secondary DOF :z,; is identical to the nodal ceordinate x, ... The Fourier transforms

Z,"'(w) and 2" (w) of the subsyslem responses =, (1) and 27" (1) arc

Z' 4’“”‘ ) _ IYIL. ((ﬂ" Iﬂl,, r, l . (70 3

" @ G lw) = o “
X Aa) | o flw)m,

Unan) -t LT T0b)

z:hl (m) gl(w) lw‘l G,((U) mslrrHI ( b

From these expressions, the Fourier tranuform Y'""“'{w} of the responst variable ,(:) = q'z2
p . P ; q

is obtained

Y(mml(m) - qu zi’truf;:y)(w) + q,,+|Z“|"""] (m)

(=]

©o g, lwhmgr, Lq T, G T,
= X (w) Lo - - an
et E{ g(w}C, (w) g{ G w) & w) ) !
It follows thal the frequency response funcuon is
H“m"'(b)) =~ gl:l:llGr - q"+lfrl(¢”)mpf,f _ i qrm,nrr. _ ﬂ*!m\I’lHl (72a)
' d'" N w) [T £1(e)G (o) = G (w) & (w)
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d "ﬁ'\./'.l(m’”‘lu"4 o1 [ PR N A
= 2t e e T T vl {72h)
?{ ) G (w) & GAw) 2 (w)
where
4w = g tew) 11 G Hw) (720)
.

Note the similarity between Eq. 724 with Eq.36, in the latter case v, order terms are included in
the polynomial d'w) to sccount fuo interaction. This important fact is expressed mathemati-

calty as

lim H (w) = 1" {w) (73}
”\| =}
which indicates thet all of the closed forns results previously obtained in this chapter can be

apphied to the non-interaclion study by taking the limit m, —0_ as was done for the 2-DOF sys-

em.

For the example system in Fig.4.2, a comparison beiwcen the transfer function 7, (w) =
[#, (w){” for interaction and non-interaction analysis is shewn in Fig.4.9 for various values of
the secondary subsystern mass. The differences zre most notable for values of « near the
tuned moade particulury for larger values of the secondary mass whers interaction is more
prominent. For other values of w. the transfer function is insensitive o interactton. This can
bz shown analyticully simply by examining the order relationships in the expressions for the

functions H, {(w) and H"""(w).

The spectral moments of the response of the system is found by integrating the transfer
function T\""'(w) directly with the input power spectral density function as tn Section 4 3.3.
In Fig.4.10, plots of the non-interaction and interaction momenis ar¢ given for the system in
Fig.4.2 with varying values for the mass and frequency of the secondary subsystem. The result

Coer

is similar to the findings in Chapter 3: the difference between A, and A, dre greatest at tun-

ing and diminish at detuning.

4.5.3 Modal Decomposition Methou
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4.5.3.1 Introduction

The approach taken here is essentially the sume as 1n Scetion 4 4 the expressioa for e
meadde shapes and frequencies are denived for the combined svstem snd the results substituted
It the modal decomposition method of Chapter 2. However, by neglectmg inierachion. it is
possible 1o ubtain closed form expressions for all mode shapes and frequencies. including mut
ply tuned modes due to the simplicity ol decoupled PS systems Furthermore, closed form
expressions are derived for the faciors g und ¢ . defined in Ea.2.26, which are key factors for
the modal decompaosition method. The final results for the spectral moments are eastly obtain-

able from the expressions for @ and ¢ and the oagina! parameters of the two subsysiems

4.5.3.2 Closed Form Expressions for the Mode Shapes
The original eigenvalue problem

Tlw)g =0 (74)
from Egs.39a.b s reinvestigated.  First, the modes associated with the rrimary subsystem are
anatyzed. 1t is ntutively ¢lear that the frequencies associated with these # modes are given by
the original primary subsystem frequencies

w, = w,{ l-—f,‘?, +16,) =1 n (75)
The corresponding mede shapes are derived by substituting w. into Eq.74 and salving the

eigenvalue problem. The solution is

¢’ ,O-‘-OIO- g Laed ]
’ ! g.(m,‘)
{ o) '
~lo . 010 ——l - {76)
2B, +1E, o,

where the unit term is at the ith coordinate and the parameters w, . 8 |, and &, | ar¢ general-
izations of the average frecquency, detuning, and damping difference parameters uscd i the

analysis of the 2-DOF system

W, +w, W, —wr,
-l B T and g, =~ amn

2 W,

The derivation of the modal properties associated with the cquipment is similar 10 the
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above analysis. The frequency is given by the equipment subsystem frequency

weo =, (JI=E + €. (78)

which, when substituted into Eq.74, yields the following expression for the mode shapes

. _f;|(‘l',.~1) o _.f,((‘{'),::l) {
! (I‘;(bi,_‘.l) (I‘ ((ﬂ,:.l}
. \ i
~ €8] . €,,0, 1w ] (79)
208+, ey 2B+, 0w,

These expressions reduce to the resulis in Sections 4 4.1.1 and 4.4.1.2 tor the detuned cases,

It appears that the expression for the mode shape @, ., is indelecminate since it svelves
an arbitrarily small parameter € |, and the terms 8., and €, |, in the denominator may also be
small or zero. However, the limit m . — 0 is not taken until after the coeflicients ¢ and ¢ of
the modal decomposition rule are derived. Also, the problem arising from the condition 8 =

£, = (1s resolved after the modal quunuties are combined, as will be shown subseqguently

4.5.3.3 Spectral Moments

As stated earlier, closed form expressions will be obtained for the fuciors ¢ and o,
defined in Eq.2.26, which are the key {actors of the modal decompaosition method. [Jue 1o the
simplicity of the expressions for the mode shapes and frequencies, the derivation is stiaightfor-

ward.

By fo'lowing the matrix multiplications in Eqs.2.17a.c and 2.20 and taking the limit m, | —

0, the following expressions for the factors b, are obtained, which are indepzndent of the mass

ratio €
i, Qe i§ el l
b, = , — - fori=1,.... " (80a)
T, [" 208, +i€, Jwl, |
qul{l i ’;c.\w\J) ]
b =+ {80b)
: 2" 3! ‘ E 2(ﬁ!1+ifri l‘)m“il:

The fartor 4, and . are found from 1.4.2.26

_ 4ns ICllr!ﬂflw;Y‘
UBA+E] Dwy

a, = 2w, Imb = +rq, (8la)

?
2
‘LM]C/]’:B;IW\I
a4, = 2w,lmb, =~ Z

Y + Pua 14 q ‘Hlb)
2B+ Dwl e
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¥From these cxpressions, the spectral moments are easily obuained from kgs 2 34 und 2.36,
which are repeated here:

C,=aga, D ~ac —-ac¢ E =cc¢ (82a)

X, = It((‘.r«,, L= DA A EN, L) 182

AR

The frequencies and damping ravios needed to calcutate the cross-spectral momenis are given
by the original subsysiem parameters as indicated in Egs.75 and 78 Equations 8la-d and the
abave combination rule are in a form suitable for computer implementation. The moments cal-
culated by the above expressions dre compared with exactl results for various values ot the
seconuary masses in Fig.4.11  The resulls are similar to those observed in Fig.4.10.

For the case where £, ,, and 8., are small or zera it suffices to give £, | an arbitrary resi-
dual number (for computer apphications, this number would depend on the precision of the
hardware). After combining modal responses, the end result would he consisteni wilh previous
results and would be independent of the parameter £, ,,; this will be shown presentiy with an

example ior the important cese of perfect tuning.

4.5.3.4 Multiply Tuned Example
Consider a primary subsystem with all modes perfectly tuned to the secondary system and
sharing the same damping ratio, ie. £, ,, = 8,, = 0 for all /. As mentioned earlier, 4 residual

value A <<} is given 10 €, | to keep all terms well-defined. Then, the factors @ and ¢ become

a =0 i=1,... ,n (83a)
rﬁcll
-——t =] ... 3b
c 70, A =1, . n (83b)
Z’ng-l
C,.. = "m (83¢c)

where w, is the common frequency of the sysiem modes. Substituting into kEgs.824.b, the
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exoression for A, is obtained

>
[}

WUETEN  42XE A, A E A )
[ I

[

7GAEr ) ) nG AT
R v s H

i SR ) O — ~ (84)
16‘“-} "a gf'i ‘Ewl+£‘l £, 16w, Mf,-r.5~|5.£u"-f-r)

i

The tinal result does not include the eesidual term 3 and s very similar 10 .oe result for the 2-
DOF sysiem in Eq.3 63b. The main difference is that the fucto zuj . which represents the

general physicad coupling between the primary and secondary subsystems s ncluded in the

above expression for A, .

4.6 Floor Spectra

The fioor spectrum for a pridary subsysiem and a given ground inpuat, is the response
spectium associated with the motion of the system at g selected attachment peint. More proe-
cisely. it is defined as the meun of the peak displacements of a set of oscillators with variable
vilues for Jamping ratios and frequencies subjected to the motion of the primury subsysiem at
the sclected attachment point.

Clearly, floor spectra are special cases of the results developed in this chapter. Since the
—econdury subsystem is attached 10 the primary subsystem at a single attachment point, the vec-
tor q; 1s of the form

Q=10 - -0-10---01t}) (85)

where the —1 is locared at the coordinate associated with the attachment point.

The remainder of the analysis is based on the results derived in this chapter. Frequency
responsc analysis or the modal decomposition method can be employed, and for the latter
approach, input specified by its response spectrum can be used. Finslly, interaction ¢an be

included or ignored, according 10 the particular application of the problem.



Table 4.1. Physical Properties of the
MDOF/SDOF Example System

Primary A| = (1.02)° ", (radians/sce):
ko= ¢.6057) m, (radians/sec)
M- = m,

Subsyslem_T— Parameter Reldtmmhjps __,1

.

Secondary | k = w m.  lw. variable)
m.=em. (€ varnable)

Table 4.2. Modal Properties of the
Fixed Base Subsystems

e Modal }| Frequency | Dampin
Subsysiem ] DOF || (red/s) 1’ Ratio
Primary | 1 1.02 fr 0.02 |
Primary 2 2 0374 0023 |
K 0.98 I 0.06
Secondary 4 W, i 001 l

Table 4.3 Frequencies for Example System {&,,=0.01)

Iowr ] Mod Exact Frequency Computed Frequency | Error !
| rad/see) | 00C M eal Pant Imag_ Parl || Real Par, | \mag, Parl i
038 1 0371 0.007 0377 ﬁiﬁ 6.007 0.0
2 0.382 0.005 0.382 0.005 0.0
3 0.978 0.058 0.980 0.05% 02 |
] 4 1019 0020 § 100 | 0020 | 01
100 ! 0.376 0.008 0.374 0.008 0.5 |
2 0.991 0.013 0.99] 04013 0.0
3 0.978 0.057 0.977 0.057 01
4 1.029 0.018 1.028 0.018 0.1
.40 i 0378 0.008 0374 | 0.008 0.2
2 0.978 0.058 0.920 0.058 0.2
3 1.020 0.020 1.020 0.020 0.0
4 1.402 0.014 1.400 0014 0.2
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Table 4.4 Mode Shapes of Example System (e, =001, v, =1 o)

Mode | DOF L__[:',\acl Mode Shape | Computed Mode Shape I }i{mrjr
Real Part | Imuag. Parl 3 Heal Purt_;i_lmug. Part | ﬁvﬁi
1 f 1.000 0000 | LO0O | o ou 1
2 0.000 0.000 0.000 oush oo i
3 0.000 0.000 0.000 | 0000 ] 0o |
4 0.388 0.002 0.387 J 0,000 | 3
2 1 -0.002 0.000 -6.002 I
2 0.110 -0.300 0.110 -0.300) ;3 00
3 0.022 0.019 0.022 06019 00 },
4 1.000 0.900 1.000 0.000 0o
3 1 -0.062 0,000 0002 o000 || 00
Y -0.002 -0.009 .0.00172 -0.009 0.0
3 0.053 0011 0.054 0.1 0.1
4 1.00D 0.000 1.000 0006 | 00
4 i -0.002 0.000 -0.002 0.000 0.0
2 -0.005 -0.004 -0.005 0.004 00 |
3 0.175 -0.043 0174 -0.043 04 |
4 1.000 0.000 1.000 0.000 XTI
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multiple
tuning

& P P W 2 W
= ~7 ~S NS

0.378 0.98 L02

P

v

1.00

Multiply Tuned System, @, ,=[.0 rud/sec

single
tuning

v

< N7 7\ —>
0.378 098 1.02
P Fan -
) \J ~
0.8

Singly Tuned System, w ;=0 38 rad/sec

Primary Subsystewi
Frequencies o
(rad/sec}

pi

Secondary Subsystem
Frequencies @
(rad/.ec)

sl

Prima=y Subsystem
Frequencies wp
(rad/sec)

Secondary Subsystem
Frequencies w,;
(rad/sec}

Fig.4.3. Distribution of Subsystem Free Vibration Frequencies
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CHAPTER 5

ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SECONDARY SYSTEMS

ATTACHED TO SINGLE-DEGREE-OF-FREEDOM PRIMARY SYSTEMS

5.1 Introduction

In this chapter systems consisting of « SDOF primary subsystem supporting o« MDOF
secondury subsystem as shown in Fig.5.1 will be studied. Although this system appears 0 be
entirely different from the MGOF/SDOF system studied in the previous chapter, the two sys-
tems are, in fact, sirongly refated. In mathoinatics, this relationship is called duality: every for-
mula or theorem derived for one system has a nearly identical dua! counterpast for the other
system. Once this dual relationship between the two systems has been established. all of the
results obtained for the MIYOF/SDOF system in the previous chapter can be directly reformu-

lated for the SDOF/MDOF system without further analytical derivation.

§.2 Definitions

§.2.1 Parameters

The first step in defining a duality relationship is to establish a one-to-one correspondence
between the parameters of the two systems. In this case, the parameters defined for the » pri-
mary modes and the single secondary mode of the MD2QF/SDOF system are associated with the
parameters defined for the » sccondary modes and the single primary mode of the
SDOF/MDOF system, respectively. For instance, the natural frequencies for the subsystems of
the MDOF/SDOF system, which were

Wy Wyry 00y, , G (1)

are associated with the frequencies

W, , W, " LW, Ww (lb)

for the SDOF/MDOF sysiem. To maintain the above correspondence, the numbering of the
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modal degrees-af-freedora for the SDOF/MDOF system is as folluws; the first n degrees of
freedom correspond 1o the modes of the secondary subsystem and the #+1-th degree of free-

dom corresponds with the primary subsystem.

Maost af the definitions of the previous chapter are applied in this chapter with obvious
modifications.  For instance. [ is the set of all secondary subsystem modes tuned to the pn-

mary subsystem mode.

There were several expressions used in the previous chapter with two indices. the first
associated with the primary subsystem and the second with the secondary subsystem. This con-
vention is maintained in this chapter. Thus. the mass ratins are defined as

e:,=L =1 (2u)

",

Also, the tcrms ¢, arc defined as

Kk,

{, = fori=1,....n (2b)

m.w,
and are interpreted as the displacement of the ith mode of the secondary subsystem produced
by a static unit displacement of the primary subsystcem. Similar dcfinitions apply for the con-

stants ¢;.. A,,. and the polynomial f, (w). It follows that the complex frequency response

matrix Hlw) is

glw) - 0 filw)
Hlw) = | 4 frlw) f1lw) (3a)
Iilw) - (@) Gilw)
where
g(w) =m(~o’ + 2w .t o+ o) (3b)
Gi\w) = m, (~w + 2w, €, 0+ a)) (3¢)
fite) = =&y, — o), ==L, m (w] + 2iw €, (3d)
for i=1, - 1.

§.2.2 Duality Relationships

The duality hetween the MDOF/SDOF and SDOF/MDOF sysiems is established by com-
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paring their complex Requeny: response matrices Hiw) in Egs.4.2% and Ja. The matrix in

Eqg 3a has an identical form to that i 1y 4 28a with the polynonuals

O lw) replaced by ¢ tw), {4a)
& lw) replaced Yy G {w). (4b)
f (w) replaced by f, lw). tdeh

Far the MDOF/SDOF system. the mutrix Hiw) énd ity inverse were used "o derive resulls in
the frequency response and modal analysis, cespectively. Consequently, the derivations Tor the
SDOEF/MDOF system would be essentially the same us those i the previous chapler with the
replecements in Egs.du-c. Thus, a repeution of the analysis is unnecessary and only the final

results will be presented through the use of the dual relutienships defined above.

5.2.3 Example System

To flustrate the magor charactenstics of SDOF/MDOF systems ar< check the accuracy of
the formulavons derived in this chapter, the exsmple system chiown in Fig 5.1 is used. A 2-
DOF sceondary system is supporied by the SDOF primary suhsystem wnd the base of the com
bined system. The dynamic properties of the subsysiems are described in Tables 1 and 2 wnd
arc chosen o that the combined systzm would exhibit important charactenstics found in gen-
eral MDOF/SDOF systems, as was done for the study of MDOF/SDOF systems. By varving
the stiffnesses k. and k., it is possible to vory the frequencies of the secondary subsystem. One
frequency of the secondary subsystem was chosen io be fixed at w,» = 1.0 rad/sec, thus the
secondary subsystem was alwuys tuned to the primary syslem. which had a frequency of @, =
1.02 rad/sec  The other frequency of tne secondary subsysiem was vatiable. For w., = 0.7
rad/sec, the system is singly tuned as shown in Fig.5.2a, and for w,, = 1.0 rad/sec, the svstem
becomes multiply tuned as shown in Fig.5.2b. The mass ratio, €, s also chosen to be a variable
parameter, as in the MDOF/SDOF exaraple system. Finally, the damping ratio of the equip-
ment is uneqgual o the damping ratios of the orimary subsystem, thus the combined system is,

in general, non-proporttonally damped.

The response quantily that will be investigated is the relative displacement between the
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mass of the primary subsystem anr the adjacent mass of the secondary subsystem.

5.3 Frequency Response Rosults
As a hrst application of the duality the expresston for the complex frequency response
function # (w) of the response variavle v(()=q'zi0) is given. For the MDOE/SDOE system.,

H (@) is given in Fq.4.36 and is repeated here

") filad ”!(" (why g, m, rtflw) g ML Logm, )
ST T T @) G ) 1 (w) G o)
The dual form ol the above is found through the relations in Egs. lab and Fos da-¢
G Iy
A g om i (w) TOURY Y ogmr
Holw) = ——— S LR - (6a)
v T |2 Gilwig o) Gy (@) i () 4
where dlw) is the characteristic pelynomial
" /f‘,(ml
(w) = (|G (w) - - (6h)
dlw) ng‘ wH G (w z e Gl

/o,”
These expressions are considetably simpler than the exact form of # (w) which requires the

inversion of an a4+ 1xn+] matrix.

A plot of T (w) for the example system in Fig.5.] is shown in Figs.5.3u.b. In Fig.5.3a.
the secondary subsystem frequency w ;= 0.7 rad/sec 15 detuned, and a peak is found only for
the tuned modes at w = w,, There is also a small peak corresponding 1o the detuned secon-
darv mode near w = 0.7 rad/sec, however it is considerably smaller than the first peak and iy
not visible on the plot. In Fig.5.3b. both secondary subsystem frequencies are multiply tuned

to the primary subsystem frequency, and a single peak is found al w = w,, winch is slightly
larger and broader than the corresponding peuk of the singly tuned system, as expected.

Asin Section 4.3.3. the approximate and exact forms of the complex {requency sesponse
funciion /1, (w) derived above were used o calculate the power speciral density function for the
response of the example system in Fig.5.1 to white-noise base cxcitation. From this resull. the

spectral moments of the response were obtained by numerical integration and plotied as a fune-
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tion of the equipmens frequency, w,,, in Figs.5.4u-¢. For values of w | detuned trom the pn-
mary subsystem frequency, the sesponse of the system is domunated by the singly tuned modes
which are relatively independent of the detuncd secopdary mode  Thus, the spectral moment
maintains a large and neariy constant value. Howcover. when the system is multply wuned. an
Increase 10 the spectral moment arises ol w . = §.0 rad/sec from the additional tuned sccondary
mode. The values for A, for =0, 1, and 2 are nearly idenbical. due to the fact that the fre-
guencies of the dominant modes in the response are all nearly equal w 1.0 rad/sec. Abso. the
difference between approximate and exact results are slight, lustrating the accuracy of the per-

turbaiion methods

5.4 Modal Decomposit’on results

5.4.1 Made Shapes and Frequencies

In this section, expressions for the mode shapes and {requencies of the SDOF/MDOY
system are developed which are suitable for numerical evaluation and subsequent use in the
modal decomposition analysis (o provide accurate measures of the responsce.  Approximate
expressions for the spectral moments of response 1o white noise input are derived from the
algebruie form of the mode shapes to provide furiher insight to the dynamic behavior of the
system.

Due 1o the dvalily between the SDOF/MDOTF and MDOF/SDOF sysiems, a derivation of
the mnde shupes and frequencies 1S unnecessary, and final expressions for these quantities are
found dircctly from the results of Section 4.4.1 through the use of the relationships in Section

52

5.4.1.1 Detuned Modes

For notational convenience, assume that the first sccondary subsysiem mode is detuned
from the primary subsystem. Then. the first-order expressions for the {reguency and mode
shape of the combined system which are associated with mode | of the secondary subsystem

are given by the dual forms of Eq.4.40b and 4.41. respectively:
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W = (ST + 163 t7a)

1ot fi.7. !
R B A (7h)
Gy G ,
where all of the above polynomial sre ¢ aluated at w = "' The low-order apprommations of
the gbove are
w = (i + &) (Rat
/
. [SSLINTIN
o =10 - 0 (&b}
W Tw

Similarly, if the primary subsystem mode s detuned fron all of the sceondary subsystem
maodes, the first-order eapressions associated with the primary subsystem mode are found from

Fygs4 43b and 4 .44

!
‘ 1 !
o'\ == - =1 (9)
K £
e NTE] 4 ) i9b)
whure the above polynomials are evaludted 4t o = ", Ta low-order. the above reduces 1o
. s /
. Wy w,,
¢ =i 0 L | (10a)
W —my W Wy
m,‘,.=m,. (1 +:£,) {10k

The mode shapes @ " and @, ., can be viewsd as a MDOF genetalization of  Fq.2 78 and 2.76.

respectively, which are for a SDOF secondary subsystem.

5.4.1.2 Singly tuned modes

Assume that the first secondary subsystem moac is tunzd to the primary subsystem. The
expressions for the frequencies "' given in Eqgs.4.46a.b arc not changed by the duality rela-
tionships due 1o the symmetry of the singly tuned maodes.

o = w,f[ 1+, - _%_[7||+(i§,f+6)2) ' (1)

un
wy =W,

1+ i€, + %lnﬁ(f@ﬁb)?] } (1ip)

The first-order solutions to the modz shapes arc found from Eq.4.47 using the results of scetion

4413
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¢¢ll= (l,"“ | 7_’7_1;’ o __{LJ_I (12)

£ K,
where o' is given by Egs.4.4ée.f and the above polynomials are evatusted at the crequuency
""" Note that the reciprocal of o' is used here since the roles of the secondary and primury

degrees-of-frecdom are reversed, From these solutions, tue foltowing low-ordug approxima-

tions dre obtained

w =" (13a)
- » !
. $iowy 1w,
¢~ ! ——,*—\T- co ——‘L—-:—; 1 (13b!
w;,‘-wf-'l W, W,

5.4.1.3 Multiply Tuned Modes

Assume the tirst { secondary subsysiem modes are tuned 10 the primary subsy~icm. The
first-ofder approximutions for the mode shupes Tor o multiply tuned system are written in the
same form as in Eg.4.51a

nh
'

lqs
¢ = lo.}“' (14)
1

The tuned components @, and the Irequency w." are found by solving the /+1x!+]1 eiger-

tih

value problem in £q.4.49. The detuned componemt ¢, is found from the dual of Eq.4.51b

. . !
AN AT (5s)
X &,

¢ =

which. to low-order, reduces to

¢’;=l§ RN L _if_‘"fa.l (16)

w, .'41_(”,"-| W,y

Nole that the detuned components of the modes shapes are identical for multiply tuned, singly

tuned, and detuned systems.

5.4.1.4 Very Closely Spaced Detuned Modes

It was shown in section 4.4.2.5 that the expressions (or the modc shapes for widely spaced
detuned modes can be used in obtaining results for the system 1esponse even for very clos -

spaced detuned modes. This fact continues to hold for SDOF/MDQF systems,  If accurate
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expressions for the mode shapes are required, then the sume set of equations that were used 1n

the multir  tuning problem are solved. as ¢xplained in Section 4.4.]1 .5

5.4.1.5 Examples

The complex modal properties of the ¢example ssstemoin Fig ) were computed using the
formulations developed in this section and was compared with exact resulls. The Trequencies
are shown in Table § oand are piotted in Figs 554, b for vanous valucs of the equipment fre-
quency o and the mode shapes for the muluply tuned case Ge w,, = 100 rad/sect dre
shown in Table 4  The non-classical damping character of the mullipiy tuned system
apparent in the mode shapes. which have imaginary components Good agreement between
approximate and exact values is found in all cases.

The cflevt of the cquipment mass is illustrated in Fig.5.5b, where the frequencies
corresponding to e = 01, 005, and 001 are represented by ponts 4 . B, and O . respectively,

and are shown to be convergent to the subsys em natural {requencies

5.4.2 Spectral Moments

As slated in the previous chapler the spectral moments can be calculated by evaluating the
expressions for the moede shapes and frequencies and substituting the numerical results directly
o the modal decomposition method. For tie example systera m Fig. .1, the results of this
numeric#l computation are compared with exact results obtained by integrating the complex fre-
quency response function in Figs.S.ba-¢. Also, the mean zero-crossing rate, ¢, and the shape
factor, 8, were computed and ploticd in Figs. 5. 7a,b.  All plots show good comparison between

cxacl and the proposed approximate results

It was noted in Section 4 4.2 vhal the mean zero-crossing rate of a tuned PS system was
nearly equal to v = w,, /7, where o, is one of the tuned frequencies. Since the secondary sub-
system is always tuned to the primary subsystem, » would have a constant value of approxi-
mately 1.0/ = D318 rad’/sec, which is in agreement with Fig.5.7a. Also, it was cbserved in

Section 5.3 that the complex frequency response function had only a single peak for boih singly
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and muluply tuned configurations of the example system, thus the shape factor woeuld remain
small and nearly constant for 1 values ol the sccondury Trequency o o, as shown in Fig 5 7hb
Although the numencal approach to flinding the spectral moments 1+ useful inpractieal
appheavons, 1Uas nstructive o decive generai algebraie solutions for the soece | momen s of
response of arbitrary SDOE/MDOE PS syvstems to white-noise anput. This is sccomphished

using the duality relattionships and the resulis (2 section 4 42

5.4.2.1 Totally Detuned Systems with Well-Spaced Modes

As before. the modal decomposition meithod simplifies 0 the SRSS micthoa for toteliy

detuned systems with well-spaced mades. The effecive partiapation factors are found from

Fys453ab
r ,‘w,‘i
=g |- + 1 e (174
[£7 I (T
g ] é)
[z + .. {17h)
l:.} —m
It follows that the spect-ul moments for response ta white-noise are
¢ , s T 3 e Do
LS B roogwlgy w, L gow g W,
A= =2 Y g = 4 '\——+f1?.|2*7-—,+q,.‘ -l 118)
4 ] el Tw! £, LW W, £

5.4.2.2 Singly T 1ned Systems

Assuming the first secondary mode is tuned 10 the primary mode. the detuned moment

corresponding to Eq.4.56 15

ais., Jr ! w!
X L (19)

‘,/“‘ W, ~w. L\

A =

and the iuned moment corresponding 1o B¢ 4.57 0y

1

A”” - ﬂ'(l’,k. l"|f,,.|c”£ (”,___ (20)
B £.E.B+4E,) . yid!

5.4.2.3 Muitiply Tuned Systems

The procedure for finding A, Tor multiply tuned systems remains the same as in Se.tion
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4423 The detuned component A s compuled usimg Fg 19 and A 18 evaluated numerically

by using the modal decomposiion method

5.4.2.4 Syvtems with Clesely Spaced Secondary Modes

The cioss medal contribution A, from closely spaced sceondars subsyotem modoes 1s
accounted for an the sume manner as outhned mosection 44240 The capression for A I

given by Eg 459

S.4.2.5 Systems with Closely Spaced Detuned Secondary Modes

The two methods for constdering closely spaced detuned modes derived in Sectron 4426
can he apphed to SDOR/MDOE systems In the tirst method. the closely spiced modes are
vonsidered as u single collective mode  Assanung the first /7 secondary subsystent modes are
very closely spaced, 1he frequencey for this collective mode 1s grven by the average w, of the |/
secondary frequeracs, the damping ratio is given by the average £, of the / modal damping

ratios, and the effective parttcapation fuctor ¢, s given by

’, H.U;‘ B R
Lo, (20
W~

v = }I:‘I
The alternative method s to consider the { moduvs separately. The mode shapes and frequen-
cies are found from the formutac for videly spaced detuned modes, Egs.8u.b: the effective par-
ucipation factors are evaluated using  Eq 17a;  and the effect of close spacing is accounted for

by using the approximation £Eg.4.66 for the cross-rpectral monments.

£.5 Non-Interaction Resuits

5.5.1 Introduction

Following the methods developed in Chapter 4. the SDOF/MDOF svstem i reanalyzed
withou! accounting for interaction. The frequency response funcoon and medal decomposttion
approaches are used and closed form results are oblained which are simpler than the

corresponding expressions in the preceding sections
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£.5.2 Frequency Kesponse Function Approach

The frequency response function for the cesponse quantity v () s given by the dua’ form

of bags d. 72

m_r oo
H: q_,,‘ - Ef,, %,;, (224
K (ry
e Y omoryy 'quJ ML,
& G: | X (:'5
where
d 7 "Mw) = G lw) 1T g () (220}

As before. the above expression tor #H e} can be compared with that in Eg.éa which included

interaction; the relationship between the two results is given by

.l:‘m_y!lf (w) = H' """ Hw) 23)

Tk indicates that the results previously obtatngd in this chapter can be converted o non-
interacttor resutts by taking the himit o, —0

For the example system in Fig 5.1, a companson beiween the transfer function 7, (w) =

{17 {wtl for interaction and non-interaction analysis is shown in Fig. 5 R for various values of

the secondary subsvstem mass. As in Chapler 4, the diffurences are most notable for targer

values of m. and for @ near the tuned made: for other values of w, the transfe; Punction is

insensibive foanteraction. A similar corrparison is also made for the spectral moments of the

sysicm in Fig 5.9 wiih varying values for the mass and frequency o1 the secondary subsystem,

As expected, the differences between A, and A0 "' are greatest at tuning and diminish at detun-

ing.
5.5.3 Modal Decomposition Method

5.5.3.1 Introduction

Foliowing the analysis in Section 4.5.3, closed form expressions arce derived for the mode
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shapes, frequencies and the lactors 2 and ¢ fram the modal devompuositon maethod. Al of

the results ure oblained by duahity

5.5.3.2 Closed Forn Expressions for the Mode Shapes

The frequencies and mode shapes associated with the secondary subsystem are gnen by

the duat forms of Egs 4.75 and 76

@ =aw (V]-f\j-!-;_f_) r=1,.... n 124al
. Golw ) !
¢ =0 0 —-—0-- 0]
’] (w)
2( y + i ) ; !
= ln B SRR ml (24b)
€ 6 w!

where the first non-zero term is at the /th coordinate

Similarly | the corresponding expressions associated with ¢he primary subsysicm are given

by the dual forms of Egs.4.78 and 4.79;

w, =, (-8 + g, (25a}
: !
/1:((0/. ) _Il,(w \J
¢ = - e ———— —
g Aw, ) ¢ lw, )
. . !
B +iE, w0, 28, +i& ) )w

For detuned modes, these expressions reduce to the results in Secticre 24,11, For the singh
luned modes, it can be shown that the above expressions are eguivalent to the expressions

derived in Section 3.4.1.2 in the himit m, —0.

5.5.3.3 Spectral Moments

The key lactors o and ¢ which are used 0 the modal decompositton method are founc

simply by applying the duahity relationships to Egs 4.81u4-d:

4.0, B @)
2B +E] Dw] ),
i ’ .‘"!‘ lw\‘.:
a,,, = 2u,Imb, =~ M + 0,04, (26)
TUBiAES e,
qv‘[‘r-wlfd.]r“’s
2w, (B]3-+£.:;,I:)w:f 1.

a == 2e1 Imb = + rg, (26a)

v, = 2Reb, =

(26c)
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',
¢,y == 2Reb,,, =~ Y —— (26d)
W

which ciafn be subseyuently substitered Gido bgs.4.82e.b to nbtain the spectral momients A,
The moments calculated by the above expressions are compared with exact results for various

values of the secondary masses in Fig. 5 10, The results are simitar to those observed in g5 9.
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Table 5.1. Physical Properties ¢i the
SDOF/MDOF Example System

Subsystem | Purameter Relatuonships _J
Primary k, = (1.02)°m, (radians/sec)”
Secondary k-, k. (viiable)

m.=em, le variable)

Table 5.2. Modal Properties

of the

Fivad Base Subsystems

Modal || Frequency | Damping
Subsystem | ‘hop | (rad/s) Ratio
Primary | 1 1.02 0.02
Secondary 2} w . 0.03
3 1.0 0.01

Table 5.3 Frequencles for Example System (¢,,<0.01)

|

Gyl Mod Exact Frequency Computed Frequency Errar
(rad/sec) 2% 1 Real Pant Imag. Part || Rea! Part | Imug. Part %
0.70 1 0.698 0.020 0700 1 0021 0.3
2 0.99] 0.011 0.990 0012 0l

3 1.030 0.018 1.029 0.017 0.1
1.00 1 0992 0016 0.99( 0018 03
2 0.992 0.022 0.994 0020 0.3
1 3 1.035 0.020 1.033 0.021 G.1
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Table 5.4 Mode Shapes of Example System (¢.,=001, w,=10)

Exact Mode Shape Coemputed Mode Shape || Error
Mode | DOF Real Part_| Imoy Part || Real Part | Imag Part || %
I 1 G.006 0.000 0.003 0000 || 0.3
2 1.000 0.000 1.000 0.000 0.0
3 0.003 0.006 0000 | 0500 03
2 ] 0.050 -0.012 0.054 0.014 (:.S—i
? 41.034 0.006 0.005 0.001 3.2
k| 1.000 0.000 1.000 0.000 J 0.0
3 1 - 185 -0.048 0.172 - pas 0.6
2 0,107 0.03] 0.017 104 10.3
3 1.000 J 0.000 1.000 Goue 0.0
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multiple
tuning
& o) o~ Primary Subsystems
~ 4 Ll .
Frequencies a;
1.02 {rad/sec)
P Y . U 2 Secondary Subsystem
« 7 e .,
Frequencies w;
1.00, 1.00 (rad/sec)
Multiply Tuned System, » ,=1.0 rad/sec
single
tuning
& Py —> Primary Subsystem
~ I Frequencies w,,
1.02 {rad/sec)
P Fa P ~ Secondary Subsystem
N ™ 4 7 rd A
Frequencies w;
0.7 1.00 (rad/sec)

Singly Tuned System, &,;=0.7 rad/sec

Fig.5.2. Distribution of Subsystem Free Vibration Frequencies
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CHAPTER 6

ANALYSIS OF MULTI-DEGREE.OF-FREEDOM SECONDARY SYSTEMS

ATTACHED TO MULTI-DEGREE-OF-FREEDOM PRIMARY SYSTEMS

6.1 Introduction

In this ckapter, genera! PS systems consisting of an MDOF primary subsystem supporling
an MDOF secondary subsystem in an arbitrary configuration are studied. Figure 6.1 provides a
simple cxample of such a systern. It will be snown that the expressions derived for
MDOF/MDOF systems are combinations of the corresponding expressions for MDOF/SDOF

and SDOF/MDOF systems analvzed in chapiers 4 and 3, respeclively.
The steps of the analysis will follow the same methodolugy used in chapter 4. Most of

the resulls are new; previous rescarch has not accounted for all of the dynamic properties for

this general system, as was discussed in detail in the Introdu-tion.

§.2 Definitions

6.2.1 Parameters

The matrices describing the MDOF/MDOF system are a gencralization of those
developed for the MDOF/SDOF system in Chapter 4. For the individual fixed base subsys-
tems, the primary matrices K., C,, and M, remain as hcfore and the secondary matrices
M.. C,.. and K, are of order MxAf, where M is the number of degrees of freedom of the

secondary subsystem.

The displacements of the combined system are defined by the N+ M vector

xo=lxy o X xay v X\«,.tr], ()

and the N+MxN+M mass, damping. and st fness matrices M, ., C,,,, and K., raspeciively,

are given by Eq.4.7. As noted in Chapter 4, these matrices are not precisely equal to the true



system matrices, however the approximation is consistent wilh the anralysis that will be per-

formed.

From thLese matrices, the equations of motion for the MDOF/MDOF system are given by

Eq4.8

Mu\i-“ +C\niﬂ*xn\’ﬂ- _M;u'w.‘:g(r) ‘2)
This equation can be transformed to modal coordinates by means of the N+Mxn +m transfor-
malion matrix given by Fq4.11a

., 0

where @, is an M>xm matrix consisting of the m mode shapes of interest for the fixed basc
secondary subsysiem. The modal coordinate vector z is oblained through the relation ®z=x,
and i. given by

=l ..... 2o T e 2] (4)
The transformed mass, damping. and stiffness matrices are generalizations of Eqs.4.12a-d:

M- diag!m,,. o g e m,,,,] (Sa)
2my w5 (sym)
L0 Imuwpta
C= o cee Cu) 2mgw, €, (5b)
ot 0 2mpeae
m,,.u,f. (sym)
K= kon "'l"'(':"‘l"' " w)) (5e)
ko ke 0 myel
where
&= P]v'cm‘v ky = PZKPS‘SI (54

The equations of motion in terms of the modal coordinates are given by Eq.4.13

Mi + Ci + Kz = —-Mr¥. 1) 6)
where r is the vector of moda! participation factors given by Eq.4.14. The form of the matrices
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M. C, and K are more complicated than that for "MDOF/SDOF systems, however, this does not
posc any problems in the succeeding analysis.
To facilitate the analysis of the system, the terms &,, and ¢,, ate rewritten in a form simi-

Jar 10 Eq.4.17

k, = —nwlf, ¢, == —2m,w, .4, (7
where {,, is defined 10 be the ratio

(= ——— (8)
The interpretation of {,, is a generalization of that given in Section 4.2.1: It is the displacement

of the jth mode of the secondary subsystem caused by a static unit displacement of the /th

mode of the primary subsystem.

6.2.2 Notation

The classification of the modes of the MDOF/MDOF system 1s a generahization of the
classification presented in Chapter 4. The definition of wning remains as before: A primary

mode / and a <econdary mode Jj are considered (o be tuned if

mll.d

e
A primary mode which is nat tuned (o any of the sacondary modes is defined to be detuned,

2 2
[ wl'u—w 73 l < fﬂ..‘_‘
|

4+ I 4]

the same definition applics to secondary modes.

There are two sets of detuned modes, one for each subsystem:

/ [ set of indecies i corresponding to l
(i

detuned primary subsystem modes (10a)
set of indecies / corresponding to
Li =1 detun.d secondary subsystem modes (10b)

Tuned modes fall into two classifications, as discussed in Section 4.2.2: singly tuned modes and

multiply tuned modes. The singly tuned modes form a set of ordered pars

= { (4,4) : primary ode ¢ is singly tuned 10 secondary mode j 1)

Multiply funed modes form a collection of sets. Assurne there are a total of K clusters of
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multiply tuned niodes. Then for each A €K

1)y - l primary modes in the & —th multiply wuned cluslcr] (12a)

{3 - ‘ secondary modes in the kK —th muliply tuned cluslcr} {12b)

As an example. if the first & primary modes are all tuned to the first { secondary modes, then

LY ={1, ...k} 1V =jr,. .., 71 (13)
It should be noted that each primary or secondary mode is inciuded in one and only one

of the above sets,

6.1.3 Example System

To illustrate the major characteristics of MDOF/MDOF systems and check the accuracy of
the formulations derived in this chapter, the example system shown in Fig.6.1 is used. The pri-
mary subsystem is identical to the one used in the example sys.~m for MDOF./SIXF systems
and the secondary subsystem is similar o that used in the example system for SDOF/MDOF

systems.

The dynamic properties of the subsysiems are described in Tables | and 2 and are chosen
5o that the combined system would exhibit importan. characteristics found in general
MDOF/MDOi- systems. For instance, the frequency of the equipment is a variable parameter,
which allows for an investiga:ion of tuning. For w, = .38 rad/sec, the system is singly tuned as
shown in Fig.6.2a, and for w, = 1.0 rad/sec, the system becomes multiply tuned as shown in
Fig.6.2b. The mass ratio, €, is also chosen 1, be a variable parameter, as before. Finally, the
damping ratio of the equipment is uncqual 1o the damping ratios of the primar; subsystem,

thus the combined system is, in general, non-proportionally damped.

The response quantity that will be investigatad is the relative displaccinent between the

upper mass of primary subsystem 2 and the ad‘acent mass of the secondary subsystem.
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6.3 Frequency Response Function Appresch

$.3.1 The Complex Frequency Response Matrix

The complex frequency response matrix for the MDOF/MDOF system is a gereralization

of Eq.4.28a and Fq.5.34

Glw) (sym) ; -l
0 cee G, w)
H(w) = . S lw) T Folw) £l (14a)
S lw) SRIRER S (9% 0 g, )

The polynomials G, {w) and g (1) are given by Eqs.4.28¢ and 5.3b, respectively, and

Fitw) = ={,m (w +2iv, €, 6o (141

for i=i, - .nand j=1, .- . m.

Unlike the previous chapters, the above inverse has no closed form solution. To find the
comlex frequency response function #, (w) for a response quantity y(s)=q'z{r), the equation
Eq.4.32 must be solved numericatly, which requires the reduction of an n+m order system of
equations for each vah:c of the fr2qnency w. This is considerably more difficult thar the vvalua-
tion of a rational polynomial, which is the compulation required for H, (w) in tae
MDOF/SDOF and SDOF/MDOF systems. The modal docomposition method to be presented
11 the succeeding sections does not present such numericat difficulties and is the recommended

method Yor analyzing MDOF/MDOF systems.

6.4 Modal Decompasition Approrch

6.4.1 Mode Shapes and Frequencies

The low-order approximations for the mode shapes and frequencies will be derived for the
MDOF/MDOF system. The approch is similar to that of Section 4.4.1. The resulting expres-
sions are a combination of those derived for MDOF/SDOF and SDOF/MDOF systems in Sec-
tions 4.4.]1 and 5.4.1, respectively. Thesc =xpressions can be evaluated numerically and used in

the modal decomposition analysis to provide accurate measures of the response,
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As before, approximaie algebraic expressions for the spectral moments for response to

white-noise input are obtained to investigate further the dynamic behavior of the system

6.4.1.1 Detined Modes

Assume that pnmasy mode 1 is the detuned mode to be analyzed. Folloving the pro-

cedure in 4.4.1.1, the first-order solutians for the frequency and mode snape can be found

wi™ = w, JT=EL + i€, (152)

o [,/ & 1,0,  fu Sim |’
(AL A TN w3, A
‘| I r-zl g.)G? =1 gIG" £ & I

where the polyriomials are cvaluated at w = w|"”. Note that the above expression for the mode

(15b)

shape is 8 combination of the results Eqs.4.41 and 59a. The low-order approximatiuns are

(li['-lll‘”(l + if,,\) (168}

? b4 !
‘l.-"..l i 0 . 0 (;]W\, . (Inrw\m l

2 N J
W TW,) W, gy

f16b)

Likewise, if secondary mode ! is deluned, the first-order approximations for the mode shape

and frequency are

"’l‘r'rl-mxl(\}i—f\l""{nlj (]73)

S Jat =SS 2 fofm |
Walii oAyl e S e
‘ l l GI Gn ,-zl K}G; E 8",6,

where the polynomials are evaluated at @ = ). In this czse, the above expression for the

(17b)

mode shape is a combination of Eqs.4.44 and 5.7b. The low-order spproximation is

. w? ; '
‘h*l-lcll(ll bl : s e (m‘m""‘;“l’—r 1 U o 0] (laﬂ)
Wi W, W, =l |
w0 =, (1 +¢,) (18b)
6.4.1.2 Singly Tuned Meden

Assume tha' prirary subsysiem mode 1 and secondary subsystem mode 1 are tuned to
each other. Applying the analysis of section 4.4.1.3, the resulting first-order approximations for

the frequencies are given by che same expressions as in Egs.4.46a.b:

P me, |1+, ‘;'I'Vu*("fu.u*'ﬂu?)]'l (19
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The mode shapes &' are

) ‘ !
j ¥ j!rl f[‘ flnr
1 . we LV S e a2 (20a)
‘ la' G G, ' " e e
vhere the polynomiuls above are evaluated at w=w " and a " are given by Fqgs.4.46¢ f
(i l I . 1w
o= “Buti€,n 5!711‘*{'5(:“*0@”) ] (20b}

The low-order approximations are

" - 4 ) 1]
. €2 ke wy, Liowis oy & o 5
$ =o' o la I T 2n
Wy W,y W, W, Wy, "W,

Note that ¢, is 4 combination of Eqs.4.48b and 5.13b.

§.4.1.3 Multiply Tuned Modes

Assumg the first & primary subsystem modes are tuned to the first { secondary subsystem
modes, i.e., /Y ard 1)) are given by Egs.13. The matnx I'w) = H '(w) can be partitioned

nto submatrices

r, o r;rj

0 r}hi rt.ll rdld
r(W)- r” l-\,'/ r“ 0 ‘22)

rd! rth’ 0 r\c)
where (ke subscripts p, s, ¢, d refer to the primary subsystem. secondary subsystem, tuded

modes, and detuned modes, respectively,

T, (w) = disgl Gi{w) - Gla) ) (23a)
I (w) =diagl G, . (w) - G, la)]} (23t
T (w) = diag{ g(«) - glw) ]~ (23¢}
T, (w) = diagl gy (w) -+ - g, (W)} (23d)

where diag { - - - | aenotes diagonal matrices, and =, T;. T and T, are full matrices.
Followir.g the analysis in section 4.4.1 4, the initial approximations for the mode shapes

are given by

‘;m’ - [’1‘1:1“ 0 ’1?4” ol’ (24)

where the veclors é,' and ¢, and the initial approximations for the frequencics are obtained
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from the k+/xk+! order cigenvaiue problem

[y I,(w®) ,,:3) _ [ol (25)
r” (w‘ﬂll) ru(w‘tﬂl) n?) 0
This problem corresponds tc Eq.4.49 and is relatively small compared 1o the order of the com-

bined system (rn+mxn+m). Referring back 10 the original matrix I'(w), the error is

i
i

0 rl 14) O? )
r(u' . flofh - 0(‘ (26)
o) [rae] |oted

As before, the above error is reduced by introducing detuned components 10 the mode shapes.
The resulting approximation ¢," which corresponds to Eqs.4.52a is

o - o e s el | @7a)
where

S =TT # =TTl @7)
Note that T, and T, are diagonal matrices and arc easily inverted.

.4.1.4 Closely Spaced Detuned Meodes

In sections 4425 and 5.4.2.5 it was noted that the derivation of the mcde shapes for
closely spaced detuned modes ‘s unnecessary if the quantity of intesest is the response of the
secondary subsystem. The solutions for the mode shapes derived for widely spaced detuned
modes can be used in obtzining results for the sysiem response even if the detuned modes are

closely spaced. This method will be applied to MDOF/MDOF systems.

If precise solutions for the detvned modes is required, then considerable amount of com-
putation is required. Thc analysis of the mode shapes for & very closely spaced detuned pri-
mary subsystem modes requires tne solution of an k+mXk+m order eigenvalue problem.
Similarly, for { detuned very closely spaced secondary subsystem modes the problem is of order

{+naxi+n, Since m and n are large integers, these eigenvolue problems are relatively large.
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6.4.1.5 Examples

The complex modal properties of the example system in Fig.6.1 were computed using the
formulations developed in this section and were compared with exact results obtained by using
a complex eigenvalue solver fiom the IMSL library. The frequencies are shown in Table 3 and
are plotted in Figs.6.3a,db for various values of the equipment frequency w,, and the mode
shapes for the multiply tuned rase (i.e., w,, = 1.00 rad/sec) are shown in Table 4. The non-
classical damping character of the multiply tuned system is apparent in the mode shapes, which
have ima-ginary components. Good agreement between apprroximate and exact values is found

in all cases.

The eflect of the cquipment mass is illustrated in Fig.6.3b, where the frequencies
corresponding to € = .01, 005, and 001 are represented by points A4,, B, and C,, respectively.
Mode 1 is not affected by the mass ratio because it is detuned. The frequencies corresponding
to the other modes converge 10 the subsysiem natural frequencies as was observed in the study

of the 2-DOF system,

6.4.2 Spectral Moments

The spectral moments can be calculated using the preceding expressions for the modal
properties and employing the modal decomposition method dcveloped earlier. For the example
system in Fig.6.1, such calculations are compared with exact results oblained by integrating the
complex frequency response function in Figs.6.4a-c. Also, the mean zero-crossing rate, v, and
the shape factor, §, were computed and plotted ir. Figs.€.5a,b. Al plots show good comparison

between exacl and the proposed approximate results.

It was noted in Section 4.4.2 that the mean zero-crossitig rate of a tuned PS system was
nearly equal lo » = w,,/r, where w,, is one of the tuned frequencies. For @, = .38 rad/sec, it
can be seen that » approaches this theoretical va've in Fig.6.5a (compare with Fig.4.8a for the
MDOF/SDOF example study). For higher values of w |, the tuned modes with frequencies at

w,» = 1.0 rad/sec are dominant in the response motion, and » has a nearly constant value of
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approximately 1.0/ = 0.318 rad/sec {compare with Fig.5.7a for the SDOF/MDUF example

study).

The shape fuctor is relatively large around w,; ~ .3§ rad/sec. This is due to the fact that
the power spectral density function has two pesks, corresponding to the two sets of tuned
modes of the system. For other values of w,;, there is only one peak at w = 1.0 rad/sec and

the response process becomes narrow-tanded with a small shape factor (se¢ Fig.6.5b).

As in the previous chapters, general low-order algebeaic expressirns will be derived for
the spectral moments for response o white-noise input. These resultls can be viewed as u com-

bination of the results in Chapters 4 and 3.

6.4.2.1 Well-Spaced Detuned Modes

The treatment of well-spaced detuned modes is essentially the same as in Sections 4.4.2.}
and 5.4.2.1. Let mode / and mode n+j correspond o detuned primary and secondary subsys-

tem modes, respectively. The cffective participation factors are

"t 2
v - r,[z""—*;”%i +q (282)

-] @W,,TW,

for the primary mode and

L reil,
ey = Qo | L2250 + rm,l (28b)

1=t W "Wy
for the secondary mode. Note that the former expression is similar to Eq.5.17b and the latter is
similar 10 Eq.4.53b, which is expected. The response contributed from the detuned modes is

foun.’ from Eq.2.38, ignoring cross-modal terms due to well-spacing of modes:

2 -
nGy m g, @it wind n rwi{ w3
Aem = 2#[}: el [ SRR LN P TP et )
wly, =] Wy T, P el y 1= Wp, W f.sj
§.4.2.2 Singly Tuned Moedes

For each pair of singly tuned modes there is a tuned contribution to the spectral moment

of the form of Eq.4.57. To clarify notation, assume primary mode / and secondary mode ; are
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singly tuned and let

W, 2 (308)
€u fntes (30b)
' 2
s T2 (30¢)
w.:.lt
Then, the moment term arising from these two modes is
? m -3
A,‘,:,“"l - "Gu' 7, qu;-_fcrje;.uwu'.u - (31;
. 8 epff\g (ﬁu +‘£d,1;) + 7:;&0,:[
The total contribution Jrora all pairs of singly tuned modes is simply the sum
Ao = 3 AL &y}

l:J’tI”

6.4.2.3 Multiply Tuned Modes

The spectral moments for multiply tuned modes are derived numerically by the modal
decomposition method, as before. For each k-th cluster of multiply tuned modes a moment
term A4 is found, and, as in Eq.)2 above, these inoments are summed to find the total

moment contribution
A i£)
Allm - zkf.’m (33)
A=1

6.4.2.4 Clasely Spaced Modes

The correlation between closely spaced miodes is accounted for in the same manner as

detailed in section 4.4.2.4. The resulting expression for the total moment is
Am - A-:Im + Al]m + AIIm + A(‘-‘i (34)

6.4.2.% Very Closely Spaced Modes

The two methods developed in the previous chapters for analyzing systems with closely
spaced detuned modes can be applied directly to MDOF/MDOF sysiems. If the modes are to
be considered separatedly, then the mode shapes and frequencies are found from the analysis of

widely spaced detuned modes in Section 6.4.1.1. The effeclive participation factots are
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subsequently evaluated using Fgs.28a or 28b, and the effect of close spacing is accounted for by
the approximation Eq.4.66 for the cross spectral moments. If the set of very closely spaced
modes are lo be represented by one collective mode, the corresponding participation factor
would be the sum of the participation factors in Eqs.2B2 or 28b and the frequency and damping

ratio are given by their respective averages.
6.5 Non-Iateraction Resuits

6.5.1 Introduction

The MDOF/MDOF system is reanalysed without accounting for interaction in boih the
frequency response and the modal decomposition approaches. Unlike the outcome of Section
6.1, a simple closed form expression is available for the frequency response function H, (w) for
the non-interaction case. Also, as in the previous chapters, ctosed form expressions are
obtained for ali mode shapes and the factors a, and ¢, which are used in the modal decomposi-

tion method.

€.5.2 Frequency Response Function Approach

The procedure developed in Section 3.5 is used 10 obtain the complex frequency response
function ¥, (w). The equations of motion are decoupled into two sets of equations‘ The first
set corresponds to the displacement response of the primary subsystem DOF to the base input
and is given by

M 4 2wpbp " b wpiz™ - =X, =l n (35)
and the remaining equations are for the resulting response of the secondary subsystem to the
suppart motions,

I 4 2 6, 20 ¢ wlz i) - z"‘i[mf/z,,, + 28,05 08,104, % (36)
The Fourier transforms Z,™“'(w) and Z!""'(w) of the subsystem responses z,*"’(r) and

zy" (1) are

X lw)m,r,

Tnou) - -
Zp ) G.(@)

i=l, - .n (37a)
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X (w) )/ (wm,r,
Corernt) - & i’ m - (37b)
Z" {w) o () b ) m.r.,.,

ey
From these expressions, the Fourier transform ¥Y'"''{w) of the response variable »(¢) is

obtained

# [
ylm:n)(w) - qu Zl.l‘m-n I(w) + zq" . Z‘i,n.m)‘w)
i a1

faant - - T qll+1flj(w)m;brj -~ = 4, M7, _ N LY 8
¥ w) Xg(w) EE g;((ﬁ)G,((ﬂ) ;l Gl(o') =1 SJ((S)) (3 )

it foltows that the frequency respanse fusction is

o 0r1+/.ff (W)m " f, - ql m 1 ra i th— m rrH
limnl( P £ ! —_ i - Akl 4 (39
H W) = Gl LG & giw ’

A comparison between the transfer function 7,, (w} = [#H, {w}|" for interaction and non-

ICI PR il

interaction analysis is shown in Fig.6.6 for various vaiues of the secondary system mass. The
differences are most notable for values of w near the tuned mode; the differences increases for
larger secondary masses due to the increasad effect of interaction. For other values of w, the
transfer function is insensilive {0 interuction. A similar comparison is made for non-interaction
and inicraction moments in Fig.6.7 for the same system with varying values for the mass and
frequency of the secondary system. The resull is similar to the findings in Chapter 3: the

difference between A, and A"’ are greatest at tuning and diminish at detuning.
6.5.3 Modal Decompasition Method

6.5.3.1 Introduction

The approach taken here is essentially the same as in Section 4.5.3. Fxpressions for the
mode shapes and frequencies are rederived for the non-interacting, combired system and the
results substituted into the modal decompusition method of Chapter 2. Closed form expres-
sions for all mode shapes and fiequencies. including muliply tuned modes, and the factors g,
and ¢, are obtained. The final results for the response of the system are easily obtainable from

the expressions for g, and ¢, and the original parameters of the two subsystems.
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€.5.3.2 Closed Form Expressions for the Mode Shapes

The original eigenvalue problem
Fwlé =0 (40)
is reinvestigated. Firsl, the modes associated with the primary subsystem are analyzed. It is
intuitively clear that the frequencies associated with these n modes are given by the original
primary subsystem frequencies
w, - w,,,(\/l—f,f, +£,) =1, L, n (41)
The corresponding mode shapes are derived by substituting « into Eq.40 and solving the

eigenvalue problem. The solutions are

. f/l(w:.) jmv(wJ !
, - g---010-0————— ... =
‘ l I 4l (w,.) & (W,‘)
inlm\:l C)m‘"szm !
{0010 02 , (42)
[ 2w:1+i§«i.f|)wﬂ_:l Z(B:m+'Ed.un)w¢;.uu

where the first non-zero term is at the ith coordinate and the parameters w, . 8, and £, ar2

generalizations of the average frequency, detuning, and damping difference parameters of the

MDOF/SDOF system
W, Yo, W, ~w,
W, - '—'"—2_"_1' ﬂy - :)u‘u ! EJ_«l - Eru—fal X))

The derivation of the modal properties associated with the equipment is similar 10 the

above analysis. The frequency is given by the equipment subsysiem frequency

Gy, ™ m\,(\/l——f;} + i€,) 44)
which, when substituted into Eq.40, yields the following solution for the mode shape
. . 7
. fl/(wle§1) fu](wu#‘[)
wiy =y —-——_— = -010 --- 0
‘ ! G'(ull+[) Gu(un-n)
R €] d

= - - 0---010---0]) (45
l 28y +ikar Jwl ), 2B+ ika 0wl )

These expressions reduce to the results in Section 6.4.1.1 for the detuned cases. For the singly
tuned mode, it can be shown that the above expressions are equivalent to the expressions

derived in Section 6.4.1.3 for the non-interaction case, where m,, are small.



As in Section 4.5, the above expression appears to be indeterminate siuce it involves the
small parameters «,,, 8, and £, .. However, the limit m,, — © is laken after the coefficients a,
and ¢, are derived and the problem with the 8, and £, , terms are resolved when the modal

responses are combined.

6.5.1.3 Spectral Moments

As stated earlier, closed form expressionis wii be obtained for the factors ¢, and o,
defined in Eq.2.26, which are the key factors of the modal decomposition method. Due to Lhe
simplicity of the expressions for the mode shapes and frequencies, th? derivation is straightfor-

ward.

By following the matrix multiplication in Egs.2.17a-¢ and 2.23 and wking the hmit m,, —

0. the following expression for the factors b, are abtoined which are independent of the mass

ratio €,
" s gy,
b ooy — Y ] fori=1, ... .n (46a)
2‘"!” 1‘21 2(-pu+"§d,‘[)wr;.u I
iqr(‘ s ",C (u.2
byo, == pr,e + ¥ -—— Y _t forjml....,m 46b
! zww l * = Z(ﬂfl+ifd4|,))w3,l’ j ( )
The factor g, und ¢, are found from Eq.2.26
- ‘hH;(.y’Aqu\.‘i
a = 2w, Imb =~y ————=—— + rgq, {47a)
’ ,}-:i 2BIAHEL Vi,
L }{ir’lﬁp;‘"\?y
a,,, = 2w, dmb,,, =Y —5———5~+7r,.,q.- 470}
43 ¥ 4+ E Z(ﬁ,‘,-hf“,_,,)w,;.,, 'r;ql i’
- qnﬂcuﬂfd‘u“‘a
¢, = 2Reh, = — 47c)
I'z'I 2“',»:(35*'{3 .,)0»}3 y
X " LY pw»l
€y, = 2Reb,,, = F G Byt iy (47d)

=1 2“\_1 (p|a+€4zl.1/)"’j o
From these expressions, the spectral moments are easily found from Egs.2.34 and 2.36, which

are repeated here:

C,=aa, D,=ac —ac E, =c¢¢c (48a)
"o

AM = zz(C’JLmU - D,_,A,,,{.IJI + E'JA’"’L:") (48‘))
r=lj=1

The frequencies and damping ratios needed to calculale the cross-spectral moments are given
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by the original subsystem parameters a3 indicated in Eqs.41 and 44. The moments calculated
By the above expressions are compared with exact results for various valucs of the secondary

masses in Fig.6.8. The resulis are simiiar to those observed in Fig.6.7.



Table 6.1. Physical Properties of the

MDOUI/MDOF Example System
Subsystem Parameter Relationships
Primury k= (1.02)'m, (iadians/sec)’

k; = (,6057)2m, (radians/sec)?
My,
Secondary | kj, kg4 {variable)
; my=em, (s varable)

Table 6.2. Modal Properties of the
Fized Base Subsystems

Modal § Frequency | Damping
Subsystem | ‘nop | (mass) | Ratio
Primary | 1 1.02 0.02
Primary 2 2 0.374 0.023
3 0.98 0.06
Secondary 4 -, 0.03
5 1.0 0.01

Table 6.3 Frequencies for Example System (¢, ~0.01)

-, Mode Exact Frequency || Computed Frequency || Error
(rad/sec) Real Part l_mq‘ Part | Real Part | | . Pant %
038 1 0.375 0.009 0.372 ﬂ.h 5‘2
2 0.382 a0I11 0.383 0.010 0.1
k| 0.977 0.057 9977 0.057 0.1
4 0.991 G013 0.991 0013 0.0
5 1.028 0.018 1.028 0.0i8 0.0
1.00 1 0.374 0.008 0.374 0.008 00
2 0.976 0.055 0.976 0.055 09
3 o989 0.017 0.988 0.017 0.1
4 0.98 0.025 0.998 0.025 00
5 1.035 0.020 1.033 0.021 0.1
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Table 6.4 Mode Shapes of Example System (¢,,~0.01, w,=1.0)

Exact Mode Shape Computed Mode Shape || Error

Mode l DOF Real Pant | Imag. Part | Real Part | Imag Part %
1 1 1.000 0.000 1.000 0.000 0.0
2 0.000 0.000 0.000 0.000 0.0

3 0.000 0.000 0.000 0.000 0.0

4 0.387 -0.004 0.187 0.000 0.4

5 0.387 0.002 0.387 0.000 0.4

2 1 -0.004 0.000 0.000 0.000 04

2 0.130 -0.187 0.123 -0.163 2.1

3 -0.009 -0.004 -0.008 -0.005 0.2

4 1.000 0.000 1.000 0.000 0.0

S 0.646 0.093 0.665 0.075 2.8

3 1 -0.002 -0.001 -0.003 0.001 0.3
2 0.004 -0.009 0.004 -0.009 0.0

3 0.060 -0.035 0.063 -0.035 0.3

4 -0.215 0.620 -0.229 -0.600 34

5 1.000 0.000 1.000 0.000 0.0

4 1 -0.004 0.001 -0.001 -0.001 0.5
2 -D.014 -0.013 -0.013 -0.014 0.2

3 -0.023 -0.041 -0.022 +0.742 9.2

4 1.000 0.00G 1.000 0.000 0.0

h] 0.562 -0.439 0.581 -0.440 1.3

S 1 0.000 0.001 -0.004 -0.001 04
z -0.003 0.007 -0.003 0.902 0.0

3 -0.211 -0.0¢5 -0.204 -0.066 0.7

4 -0.804 0.555 -0.777 -0.596 3.2

5 1.000 0.000 1.000 0.000 0.0
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multiple
tuning
o Tl ol » Primary Subsystem
-~ =N Frequencies @
0.378 0.98 1.0 (rud/sec)
< S > Secondary Subsystem
Frequencies »
1.00, 1.00 (rad/sec)
Multiply Tuned System, w»,;=1.0 rad/sec
single multiple
tuning tuning
Fay Faay Primnary Subsystem
~ o~ Frequencies o,
0.378 0.98 1.02 (rad/sec)
< o Pt —> Secondury Subsystem
~ ~ Frequencies
1.00 (rad/sec)

Muttiply and Singly Tuned System, @,;=0.38 rad/sec

Fig.6.2. Distribution of Subsystem Free Vibration Frequencies



- 202

10°0="'19 *33s/pes g p=!'m

wsig paun ) {jiu|g :sapuanbar g xaydwo)) ‘uer9 iy

N
&1 1t e e
[y Y L L4 LAShath sty Attty St S S A .
0
Q sapouanbayy we
paun} LjBujs
sapdunbaiy

paun) sjdynw e
© ”e

Jmuyxoadds

O




-203 -

100°0 "S00°0 “10°0=""2 *3as/pe1 (' | =}
wsig paun] AP sopusabiiy xapdeus) ‘o¢9 By

sapuabay jeamjeu
aswxosdds ©V
wexa O

wﬁﬁmm : >av e

wy



<264 -

$'1

10°0="12 Uy Juamopy [v1)334S "Tp-9BLL

“m Louanbay)

Jewjxoidde — —— ——
pex

I O U W U TN W T S T S U Y S A NS SN N N WY D W U S

Oy



- 205 -

1

[00="2 ‘1 Juawopy [RIPMS ‘@ 931§

*m {>uanbayy
ol S0 ]
r A v v v T T T 1
]
\ u
h ]
[ ]
/ ;
| ]
_ l p
ewjxosddy ------ ]
K )
]




. 206 -

L00=t2 T Judwopy [¥2323dg Iy 9By

“e Louanbasy
51 01 §'0 0
r ¥ Y et T T T S Ty T T ¥ i | rTTTTTTY ™ ‘

suyxoiddy - -——- ]
X )
1

y ] ]
————— ) 1
4/1./ m

N Ly

T
b

4 o0t
)
b
-

e ——— 000t




- 207 -

10°0='1> ‘4 a1ey Jupssos))-e127 umay v 9814

1Te0 Louanbayj
&1 0l §0 0
— ] T v v T A e v ¥

4

r

1

Newjxoidde ——--- )

exe .

-+

-

e e e+ N

e

€0

re



- 208 -

§'1

100='1» ‘g 201084 adwys "q5- 9314

e A2uanbauj

pswiixoadde
Puxa

e e e —— e e

——— -

-

| ST &.—LJ-.LJ_L.LJ-L.J_L-A—‘—A—A.A—I—J—J—A—.I—AJ -

Te

-
o



- 209 -

) |

UOPEIAIUL IOy () .\ uopIung sajsunsy 9 9By

® Luinbasj

0l 50 .

L | ﬂ T T
<
1
100°0=2 :
§00°0=2> ]
i
100°0=> * ]
.ﬂ.\ e -
(wowyL deWi[xosdde 1
1000 ‘S0G'0 ‘10°0=2 ‘“f yexa —— 1

000087



- 210 -

() ) 1 W0} PABIID[E)
UM Jnoyiia |, X UL [R1124G ¢ 9By

e Louanbayy

.:2%4 Jsmjxoudds . ___ [00Q=2 —
1000 “S00°0 ' 10°0=2 *OY Pexd

U U W T S N 'Y

ko ik a1 4

— A}

es!

0y



- 290

HOLJRUIQWIO]) [RPOJY Wied) PIBENIN))
BONRINU] INOYILR |, VY IBIWOR RaadS greBLd

“@ LHuanbay

10'0=3

$00'0=2
(wouy ( NBUIXOIddY —=~=
100°0 ‘'SO0'D “10°0=> “OY }I8XI 100°Q=2

ol Oy

0051



-212-
CHAFTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary of Thesls

The general problem of finding the dynamic characteristics of arbitrary PS systems was
investigated. Previous invesligators have approximated or have neglected altogether one or
more of the properties of such systems which include: interaction effects, correlation between
subsystem modal responses and between support motions, non-classical damping, multiple-
support excitations, and single or multiple tuning. In this study, all of these effecis are
accounted for correctly by analyzing the combined equations of moiion. This large system of
equations is effectively reducad to a tractable and manageable {orm through a systematic appli-
cation of the perturbation theory. Two approaches are provided: one based on modal analysis
and the other based on frequency response methods. In the modal approach, simiple formula-
tions are provided for the complex-valued mode shapes and frequencies which in all but the
multiply tuned case are in closed form. These modal properties are applicable to a variety of
response analysis methods; references to some of these methods have been made. For the pur-
pose of this study, a general modal combinatian rule for systems with complex-valued and
closely spaced mode shapes and frequencies was developed for stationary stochastic input
specified By its power spectral densily function as well as by its response spectrum. These

methods are particularly well-suited for the analysis of PS systems.

In the frequency response approach, simple closed form solutions for the frequency
response function was obtained for all but the MDOF/MDOF systems, which can be used in

cases where the input motion is stationary and is described by a power spectral density function.

For further insight into the behavior of PS systems, algebraic expressions for the response
were obtained for the special and imporiant case of white noise input. Several properties of the

system were revealed, such as the relation between the mass ratios and interaction, the reldtion
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between the proximicy of the subsystem frequencies and the corresponding tuning or resonance
effects, and the relation between the mass ratios, the difference of subsystem damping values
and the corresponding non-classical damping cffects. Many other properties are explicitly

included in the expressions for the response and were cited in the text.

The PS system was also analyzed without accounting for interaction effects. In the fre-
quency response approach, the equations of motion were decoupled to two sets of equations
corresponding to the coordinates of the two subsystems, as has been commonly done in the
past. However, in the modal approach, the combined set of equations are {et;ined and closed
form expressions for the mode shapes and frequencies are nbilained for all cases. These expres-
sions were used in the modal decomposition method and simple ciosed form formulae were

derived for a set of generalized participation factors which can be readily used 10 find the

response of the system.

7.2 Conclusions and Recommendstions

The main contribution of this work is the develepment of an accurate and computationally
feasible modal analysis technique for PS system. The expressions that were oblained for the
complex mode shapes and frequencies and the modal combination method are easily imple-
mented intoc a digital computer. Such an implementation was used to derive the figures and

tables in this study.
Different formulations can be used for various types of base input: a partial list follows:

1. For st~donary stochastic input and for input specified by its response spectrum, the modal

decomposition method developed in Chapter 2 is used.

2. For non-stationary, non-while input, a number of existing methods including those in

Refs.14, 30,8 can be used.

3.  For deterministic input, the decoupled modal differential eguations in Eq.2.25 can be

integrated.

In many PS systems, the masses of the secondary subsystcm are very small in comparison
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to those of the primary subsystem. If the masses are small enough to satisfly the non-
interaction criteria, the corresponding non-inleraction formulutions can be used, which are in
closed form and easily calculated. These same formulations can also be used for thuse systems
that do not satisfy the criteria, (o provide a simple estimate of the response behavior. The

results are conservalive, which is often acceptable in preliminary design stages.
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