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I. ABSTRACT.

This report describes the results of a multi-objective investigation. Several optimal

earthquake-resistant designs for a ten story, single bay, friction-braced steel frame excited by a

single scaled ground motion are calculated. As this was only the second major problem area to

be examined with the CAD environment DELIGHT.STRUCT, a further assessment of its per-

formance was also required.

A review of current earthquake-resistant design philosophy is presented. The frame's per-

formance is assessed on the basis of its response to three different loadings. These are gravity

loads only, gravity loads plus moderate earthquake and finally gravity loads combined with a

rare severe earthquake ground motion.

A preliminary analysis was first implemented to determine the performance constraints

likely to become active during the optimization process. The friction-bracing was then removed

and the resulting moment-resistant frame was resimulated for the same ground motion input.

Approximate bounds on the performance constraints to be expected during the optimization

stage were therefore obtained. The optimization problem is formulated for the aforementioned

frame. The method of feasible directions is then employed to solve the constrained optimiza-

tion problem for various objective functions. These include minimum volume, minimum dissi-

pated energy and minimum sum of story drifts squared. A sensitivity analysis for frame

response was implemented for perturbed ground motion and modelling parameters. An alterna-

tive ground motion scaling procedure is presented.

Recommendations are given to enhance both DELIGHT.STRUCT and the design process

utilized. This report concludes with a summary of the potential advantages of incorporating

friction-bracing into steel frames.
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1. INTRODUCTION.

This report continues the work initiated by Balling et aI.[2] and Bhatti[3] on the optimal

design of planar multistory steel frames subject to earthquake excitation. In Balling et al. [2],

results of an optimal design for a four storY,three bay moment-resistant frame are presented. It

is reported [8] that structural systems of this type have excellent energy dissipation capacity but

tend to be relatively flexible and may become uneconomical if a high lateral load resistance is

required. Concentrically braced frames conversely offer considerable stiffness and strength, but

their ability to dissipate energy is poor because the braces tend to buckle. One solution to this

shortcoming as suggested by Pall and Marsh[5], is to provide sliding friction devices in the

bracing system. During an earthquake large quantities of energy are dissipated by mechanical

friction rather than by inelastic yielding of the main structural elements. It is claimed that the

confinement of energy dissipation to the braces permits the remainder of the members to

respond elastically, or at least delays the onset of inelastic deformations. Consequently, the

structural performance in a severe earthquake is significantly enhanced.

This study was initiated with the following objectives:

1. To verify the aforementioned statements pertaining to the structural response of a ten

story, single bay friction-damped, braced frame.

2. To employ the computer-aided design environment DELIGHT.STRUCT as discussed in

Balling et al.[l] to calculate several optimal designs corresponding to different cost func

tions.

3. To gain experience with the setting of optimization algorithm parameters in the

DELIGHT.STRUCT system.

4. To assess the performance of DELIGHT.STRUCT as a computer-aided environment.
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5. To assess the usefulness of optimization in the seismic design of friction-damped braced

frames.

1.1 Report Contents.

A design philosophy review applicable to the design of multistory steel frames is

presented in the remaining section of this chapter.

In the following chapters the geometry, loading, and modelling assumptions for the design

problem studied, the Workman frame[4] are discussed in detail. A discussion of desirable ine

lastic frame hinging mechanisms is presented. The optimization process is then discussed. The

method of feasible directions is briefly reviewed. This is followed by a discussion of the con

straint functions applicable to each of the three loading categories considered. A summary of

the cost function options available in DELIGHT.STRUCT concludes Chapter Three. Chapter

Four presents the results of a preliminary frame analysis. Both the braced Workman frame and

an equivalent moment-resistant frame are simulated and constraints plotted. A hierarchy of

important constraints is presented together with a discussion of the influence of bracing on the

structural response. On the basis of these observations, an equivalent optimization problem is

formulated.

Results of the minimum volume, minimum dissipated energy and final designs are

presented in Chapter Five. A structural response sensitivity analysis is carried out in Chapter

Six for perturbed spectral intensity, percentage of Rayleigh damping, and response to other

records of equal spectral intensity. A report summary and conclusions is given in Chapter

Seven.

1.2 Design Philosophy Review.

Present day seismic design codes utilize a static lateral loading as an approximation to a

design earthquake excitation. It is distributed in a manner to foillow closely that of the funda

mental mode of vibration[7] and has a total magnitude equal to the structure's weight times a

seismic coefficient. In the Uniform Building Code, UBC, this coefficient is composed of factors
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dependent on region seismicity, the structure's importance, fundamental period of vibration,

material type and expected soil-structure interaction [11]. For a large class of structures and

sites this approximation gives dynamic forces and member forces of the correct order. Any

errors associated with its application have been regarded as small when compared to the spatial

and temporal nature of future ground motions.

The code requires that service loads be factored to ensure an adequate, if not conserva

tive, margin of protection against unsatisfactory performance in the event of a maximum credi

ble earthquake actually occurring. Although it is implied that the structure will respond elasti

cally to the design loadings, inelastic deformations are in fact relied on to absorb the additional

demands. Redistribution of the elastic bending moment diagram is therefore permitted to find

an upper-bound [ lowest ultimate load] collapse mechanism. The designer will typically return

to check serviceability requirements only after preliminary member sizes have been allocated on

the basis of strength.

This simplified loading has previously been employed as the starting point for seismic

design through practical necessity. More sophisticated approaches were not considered as com

putational aids were not readily available to support their development. As this restriction no

longer applies, it is possible to critically assess the present code procedure while simultaneously

being able to consider an alternative approach. The principal deficiencies in using a static lateral

loading for design are:

1. Simultaneous hinge formation is assumed. This generally will not occur in a dynamic

structural response and the selection of a collapse mechanism will depend on the order of

plastic hinge formation.

2. The interaction of column axial loads and moments is commonly ignored. While this may

be of small consequence for low-6se frames, neglecting this effect in the lower stories of

taller structures may lead to an unconservative design.

3. P-delta effects due to geometry changes are commonly ignored.
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4. This approach fails to define a level of protection against either structural failure, or

expected earthquake loading[7].

The alternative approach is more general. It recognizes that a balcnce between a

structure's strength, stiffness and ability to dissipate energy is required for an effective design.

In this respect, the structure's performance under working stress, damageability. and ultimate

strength limit states is considered. In summary:

1. The structure should respond to minor tremors with no damage.

2. The structure should respond elastically to moderate earthquakes that can be expected to

occur several times during its lifetime. After each event the maximum acceptable levels

of damage are limited nonstructural and minimal structural damage.

3. In the event of the maximum credible earthquake, extensive structural damage, possibly

beyond that of repair, is accepted. Collapse should nevertheless be prevented.

A rational design procedure would make provision for all limit states to be simultaneously

taken into account. In this respect, DELIGHT.STRUCT makes no a priori judgement as to the

limit state that is likely to control the design. All three load conditions are considered with

equal importance. Each of the load cases is first simulated to filnd the active constraints within

each group. The information gathered at this stage is only then utilized to calculate a refined

design.

DELIGHT.STRUCT therefore makes a selective application of the above-mentioned

design philosophy. It c11stomizes the design process to each type of structure considered.
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2. DESCRIPTION OF THE DESIGN PROBLEM.

A ten story, single bay friction-braced steel frame as discussed by Workman[4] is utilized

as the basis for the example frame in this study. The example frame, however, has all ten

floors braced and the concentric bracing system utilized by Workman[4] was replaced by a fric

tion slipping system as discussed by Pall and Marsh[Sl.

2.1 Geometry and Gravity Loading

FigureOa) shows the frame dimensions, starting beam and column moments of inertia

and friction brace cross-sectional areas. The frame geometry was fixed throughout the optimi

zation process and shearing deformation, out-of-plane deformation and end eccentricities were

not considered in order to simplify the analysis.

Each of the girders was loaded with a uniform loading of 0.3 kips/in, to account for the

weight of structural and non-structural components. It was assumed that live load would con

stitute 0.3333 of the total dead plus live loading.

2.2 Modelling

A good structural model should be capable of accurately reproducing the response of the

prototype structure, without needless complication. The accuracy of results will in general be no

better than that of the model's representation of the structure. One should consequently be

aware of its formulation so that possible shortcomings may be examined and assessed as to

their significance.
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2.2.1 Beams and Columns

The beams and columns were modelled using the lumped-plasticity, parallel-component

elements as shown in Figure 8 of Balling et al. [2]. The moment of inertia of each section was

considered to be the primary unknown and empirical relations as introduced by Walker[6] for

wide flange steel sections were employed to estimate member properties of secondary impor

tance. Each member is therefore represented by a single design variable.

The range of permissible section moments of inertia, coefficients for the empirical rela

tions and damping properties are summarized in Appendix 1. A strain hardening ratio of 0.05

was assumed for the hysteresis loops. The yield interaction relation adopted was as shown in

Figure 9 of Balling et aI.[2] and the parameters Yp and Ym were set at 1 and 0.15 respectively.

The reader should also see Balling et al. [2], Section 2.2.3 for additional discussion of the ele

ment modelling.

2.2.2 Friction Braces.

The concentric bracing system utilized by the Workman frame is capable of supplying

high stiffness and strength resistance against wind and moderate earthquake loadings. How

ever, during a severe earthquake in which brace buckling is Ilikely to occur, this system is

characterized by pinched hysteresis loops, stiffness degradation and a large reduction in the

capacity of the braces to dissipate energy[l2l.

A suggestion made by Pall and Marsh[5] was adopted for the investigation to mitigate this

shortcoming. It is assumed that sliding friction devices capable of providing limited compres

sion and tension resistance before sliding are installed in the bracing system. They are tuned so

that story drift under moderate earthquakes is controlled without slippage. The constant force

brace resistance is nevertheless set to ensure that brace slippage, with a redistribution of

moments and forces throughout the frame occurs before the braces can buckle. Furthermore,

experiments indicate that these devices nre capable of being repeatedly cycled through rectangu

lar hysteresis loops without strength deterioration[5l. During a severe earthquake, the bracing

system acts to brake the motion, dissipate large quantities of energy and delay the onset of ine

lastic deformations in the beam and column elements.
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For the purposes of this study, brace compression resistances were set to zero. The allow

able tensile friction force was taken to be the product of section area times the brace yield

stress. All constraint parameters relating to the brace buckling were removed and parameters

set so that optimum cross section areas would not be influenced by the brace's inability to dissi

pate energy or provide a specified level of ductility. A strain hardening ratio = 0.005 for the

braces was assumed.

2.2.3 Damping.

The Rayleigh damping model adopted by Balling has been used for this study. An expla

nation of its form and setup is located in Balling et aL[2], section 2.2.2. A damping ratio of 2%

critical is applicable to frames of this type for low amplitude motions. These might typically be

due to frequent wind loadings where it is assumed that all stresses remain within working stress

load limits. For larger amplitude motions in which yielding at the joints may occur, the damp

ing may increase to 5-7%[18]. Although a precise value is difficult to specify, it is ack

nowledged that extra dissipation can be expected in frames with bolted connections where joint

slippage is a distinct possibility. The influence of non-structural components should also be

recognized as their rubbing acts to increase the damping. Their presence is automatically

accounted for in the mass matrix. A realistic stiffness representation is however difficult to for

mulate as the difference in stiffness degradation rates of main-frame and non-structural com

ponents would require unnecessarily complicated modelling. For this reason, the latter effect is

ignored and the bare steel frame stiffness is used in this study. Furthermore, it is noted that

for multi-degree of freedom structures the effect of inelastic deformation is to reduce the sys

tems apparent vibrational frequency indicating in part a loss of stiffness[l81. An increase in the

participation factor of the fundamental mode may also be expected[91. The Rayleigh damping

model will therefore be an approximation to the structure's damping. If the adopted damping

value is nevertheless too large, the decreased response will lead to a non-conservative design.

5% damping in each of the lower two modes was consequently chosen as being most realistic in

modelling the frame's response while not leading to a non-conservative design.

The program Feap[J6] was used to find the frame's first two natural frequencies and asso

ciated mode shapes. These are shown in Figure(2).
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2.3 Earthquake loading

A scaled version of the N40W component of a record measured on October 15, 1979 d

the EI Centro Community Hospital on Keystone Road was chosen as the single record for

design optimization in this study. It corresponds to the E6 record as- discussed in Balling et

aI.[2], section 2.1.3, and has a peak ground acceleration of 0.437g. The spectral intensity over

the period range 0.1 - 1.0 seconds is 24.4in. It was selected only because it was found to cause

the most damaging structural response in a preliminary analysis of that study. The worthiness

of this decision is examined in Chapters Six and Seven.

2.4 Desirable Inelastic Frame Response.

The combined action of gravity loads plus static lateral earthquake loading on the Work

man frame may lead to two general mechanisms of collapse. They will either be column sway

or beam sway. Examples of each are shown in Figure(3).

The former mechanism requires a single story to supply a high level of curvature ductility.

If the columns are also required to carry a high axial load, the critical section's ability to supply

the required plastic rotations is diminished. This could result in a catastrophic soft story col

lapse. For example, the lower floors of a tall frame will be particularly susceptible to this mode

of failure should the column sway mechanism be permitted to form.

A hierarchy of probable beam and column strengths can however be imparted to the

structure to encourage the commencement of inelastic beam deformations before incipient

yielding occurs in the columns. A progressive beam side sway collapse has a lower demand of

ductility on the girders and will be less serious in terms of the structure's overaJi safety.

The static lateral load bending moment diagram will be significantly modified in practice

due to the effect of higher modes. Even though relative beam/column strengths may be

specified to discourage a column side-sway mechanism, this objective can only be achieved in a

probabilistic sense. In fact, the total preclusion of column hinging l would lead to an overly

conservative design. A designer should therefore compromise by detailing for limited inelastic

I Except at the frame base.



- 9 -

deformation In the columns while also proportioning members to encourage the beam sway

mechanism.

Dynamic response analyses will typically indicate a modified combination of the two

mechanisms in which the total number of hinges forming is less than that required for the

beam-sway mechanism.
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3. THE OPTIMIZATION PROCESS.

In this chapter the seismic design problem is examined in the format of a constrained

optimization problem.

3.1 The Method of Feasible Directions.

DELIGHT.STRUCT employs the method of feasible directions to solve a constrained

optimization problem. The general method is outlined in Rao[14] and Nye[201. A detailed dis

cussion of the method used by the program is in Austin[l7), The: key points in summary are:

1. The frame design process is transformed to that of finding a design vector representing

the unknown member section size properties.

2. A series of constraints corresponding to each of the limit states in the design philosophy is

formulated.

3. If the design vector X satisfies all the constraints, it is termed feasible. Otherwise, a con

straint violation occurs and the design vector is said to lie in the infeasible domain.

4. The feasible direction method is a two step process. A dirc~ction vector is first calculated.

The length of this vector is then adjusted to attain either one of the following two objec

tives. If the design vector is infeasible, the objective is to minimize the maximum con

straint violation. The cost function is unimportant in this case. If the design vector is

however feasible, the new position is chosen so as to minimize the cost function along the

direction vector while simultaneously remaining feasible.

3.2 Constraint Functions.

Conventional, junctional and box constraints are utilized to define the boundary between

the feasible and infeasible domains. The former are scalar valued functions of the design
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vector having the form:

PSI(X) = [ g(X) ]- 1
g( allowable)

Functional constraints are represented as similar scalar functions maximized over time or

some other independent parameter. They have the form l :

PSl(X,t) = [ ~ ~(X,t) ) - 11 where [ Til/iII. ~ t ~ Til/ox,]
g a owable II/OX Ol'er lill/e

The functional and conventional constraints in DELIGHT.STRUCT are evaluated in the

fortran routines fconve.j and ffunct.J, respectively. Box constraints limit the range of permissi

ble section sizes2• Potential scaling problems are mitigated by mapping all N section size and

dummy story drift elements in the design vector on to the range:

[-1 ~ Xi ~ 1] where i=I,N

All members were constrained in the present design problem even though the columns

were not subject to design. The total number of conventional constraints was 191 and the

number of functional constraints totalled 111. A further subdivision of constraints is made for

the frame response under gravity loads only, combined gravity and moderate earthquake only,

and combined gravity and severe earthquake. The constraints applicable to each loading condi-

tion are now outlined.

3.2.1 Constraints under Gravity Loading.

The following conventional constraints apply to the beams, columns and braces under

gravity loading only:

[ column axialforce 1 < Colax x Column axialforce or Euler buckling load.

I The measured structural response ranged from Til/iII, = 0 sec. to Til/aX, = 11 sec. in this study.
2 See Appendix I for the range of section sizes,
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[ column end moment i < Colgra x Column yield moment.

[ girder end moment i < Girgra x Girder yield moment.

[ girder midspan deflection under live load i < Girdefx Girder span.

The interactive constants set were Colax = 0.5, Colgra = 0.6,Girgra = 0.6 and Girdef =

0.00417.

3.2.2 Constraints under Combined Gravity and Moderate Earthquake.

The guidelines of the accepted design philosophy specify that the frame should respond

elastically to moderate earthquakes. Non-structural damage should be limited and only minimal

superficial structural damage is permissible. As the former will be related to interstory drifts

and floor accelerations, the following two functional constraints are enforced:

[ absolute floor acceleration i max over lime < Accel x acceleration ofgraviU.

[ story drift i max over lime < Drift·

The interactive parameters Drift and Acce! were set to 0.005 and 0.5, respectively. The

constraint level for story drift is as recommended by the Uniform Building Code [11]. In addi

tion, the following constraints were included to ensure an elastic frame response:

[ column end moments i max over lime < Colyld X column yield moments.

[ girder end moments i max over lime < Giryld X girder yield moments.

[ brace force i max orer lime < Brayld X brace yield force.

In this problem, Colyld = Giryld = Brayld = 1. We note that constraints pertaining to

the brace buckling do not apply and have been removed.
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3.2.3 Constraints under Combined Gravity and Severe Earthquake.

The design philosophy adopted accepts major structural damage, possibly beyond repair,

resulting from a severe earthquake. Collapse is nevertheless prohibited. Large displacements

at the top of the frame are used as an approximate measure of the possibility of collapse. Con

sequently, Sway defined as the maximum relative horizontal displacement at the top of the

frame divided by the frame height is limited as follows:

[ frame sway} lliax O\'er lillie < Sway.

This parameter was set to 0.015. It is recognized in Balling et aI.[2] that structural damage

will be closely related to the extent of inelastic deformation. Furthermore, a single cycle at a

high ductility range may cause damage equivalent to many cycles at a lower ductility range.

The following constraint on inelastic energy dissipation under monotonic loading was adopted:

Ed < Ey·[ f.t - I j.fl - S j.[2 + S·[ f.t - 1 }}

where Ed = Inelastic dissipated energy.

Ey = Elastic strain energy at yield.

f.t = Allowable ductility factor.

S = Strain hardening ratio.

The conventional constraints represented in this equation are:

Column end inelastic energy dissipation < f( Colduc) x yield strain energy.

Girder end inelastic energy dissipation < f( Girduc) x yield strain energy.

Brace inelastic energy dissipation < f( Braduc) x yield strain energy.

The beam and column ductility factors were set to 6 and 3 respectively. The quantity of

energy that may be dissipated by the sliding friction braces however exceeds that specified by

this formulation. As previously noted, the braces are capable of undergoing repeated cycling



- 14 -

through hysteresis loops with little deterioration. It is contended by Pall and Marsh[5] that

large quantities of inelastic energy can be dissipated by the bracing. The remaining beams and

columns are left to undergo minimal inelastic deformations. It was decided that the capacity of

braces to dissipate energy should not be an active constraint thro\Jghout the design process3.

Consequently, the parameter Braduc was arbitrarily set to 75. This not only ensured the brace

energy constraints would not become active, but allowed the total energy dissipated by each

brace to be calculated via the constraints performance information contained within the file

state.

3.3 Cost Functions.

The present frame software allows any linear combination of the listed terms to be cost

functions:

1. Volume of structural elements.

2. Moderate earthquake: Sum of squares of maximum story drifts.

3. Severe earthquake: Input energy.

4. Severe earthquake: Inelastically dissipated energy.

5. Severe earthquake: Energy dissipated by the columns.

A positive coefficient is specified if one wishes to minimize a term. Conversely, a term is

maximized by specifying a negative coefficient. If more than one term is included in the cost

function, the coefficients should be weighted to reflect the relative importance of each term in

the structure's overall performance. The optimal choice of weighting coefficients for such a

multi-objective cost criterion is a major task in itself, reflecting trade-oft's among competing

structural performance attributes. Accordingly, only single term objective functions were con-

sidered in this study.

A discussion of the contribution made by each listed term in describing the structure's

lifetime performance is located in Balling et al. [2], Section 2.4.2.

3 This is equivalent to saying that the braces ability to dissipate energy during the design process was
effectively unconstrained.
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4. PRELIMINARY ANALYSIS.

A preliminary analysis was implemented to establish the influence of the friction bracing

on frame response. This was achieved by first calculating the constraints for the Workman

friction-braced frame. The friction braces were then removed and the constraints recalculated

for the moment-resistant frame. Thus, the difference in constraint percentages for each

response approximately represents the range in constraint violations expected throughout the

various designs obtained. Results, as shown for each case in Figures (5) to (I 2), will explained

in the sequel.

4.1 I nfluence of Friction Braces on Response.

The program Feap!J6} was employed to find the fundamental and second mode shapes

and periods for both frames. The natural periods are [ 0.78,0.26] and [2.31,0.81] seconds for

the friction-braced and moment-resistant frames, respectively. Modal shapes are shown in Fig-

ure(2).

The gravity load-case constraint percentages are the same for both frames, as shown in

Figures (5) to (8). In general, they are much less than 100% and are therefore unlikely to con-

trol the design by becoming active during the optimization iterations.

The moderate earthquake absolute floor accelerations are graphed in ! igure(IO). The

peak value in the lower floors of both frames approaches the peak ground acceleration 1. A

whipping effect due to the influence of higher modes in the more flexible moment-resistant

frame leads to upper floor absolute accelerations approximately twice the peak ground accelera-

tion.

The frame sway and story drifts [ see Figure(9) ] for the moment-resistant frame are

unacceptably high2. The addition of friction bracing increases the frame's elastic stiffness. In

1 26"fi, constraint is equivalent to a peak ground acceleration of O. \ 3g.

2 The allowable frame Sway was set to 0.015. The moment resistant frame constraint was 100% after 6.34
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general, the fourier amplitude of earthquake ground motion about the braced-frame fundamen-

tal period will be larger than for the moment-resistant frames fundamental period. Increased

base forces imparted to the braced structure would be expected to amplify story drifts. How-

ever, the enhanced structural stiffness more than offsets this change. Resultant inter-story

drifts are reduced accordingly. Figure(I2) shows that the moderate earthquake girder end

moments are reduced to an acceptable level when friction-bracing is added to the frame.

In the severe earthquake, brace slippage is accompanied by a redistribution of forces

throughout the frame. Figures(4) and (II) show that inelastic girder deformation is confined

to the lowest seven floors of the friction-braced frame. A small amount of inelastic deforma-

tion also takes place on one side of the moment-resistant frame eighth floor. The columns

remain elastic in both frames.

Plots of frame earthquake input energy, dissipated energy and work done by loads are

shown in Figures (13) to (18) 3. Input energy is the inner product of the shear force at the

frame base moving through the ground displacement. As previously mentioned, the average

base shear of the Workman frame is greater than for the moment-resistant frame. Although a

50% reduction in total girder energy dissipation is achieved by the addition of bracing, this is at

the expense of the braced frame having to dissipate a total of fifteen times more energy than

the moment-resistant frame. Figure(I6) shows that most of the energy dissipated by the gird-

ers is in two pulses located in the 2.5 - 4.0 second range of the response. The frames apparent

frequency of vibration will be significantly reduced during these intervals. However, since the

intervals of inelastic deformation are small for the moment-resistant frame, this effect on the

overall frame response may be minor. The cumulative distribution of energy dLsipation for the

friction-braced frame is shown in Figure(13). It shows energy being dissipated in high fre-

quency ripples that occur at a near uniform rate over the entire frame response. This suggests

that although the fundamental period will be reduced due to inelastic deformations, the

friction-brace deformations themselves are controlled by the higher modes. The work done by

applied loads is shown in Figures(I4) and (17) for the Workman and moment-resistant frames

seconds into the response. The maximum braced-frame sway constraint is 69% after 6.2 seconds.

3 The differential energy formulation is outlined in Balling et aI.[2], Section 2.4.1.
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respectively. This quantity is calculated as the opposite of the sum of the remaining terms in

the energy balance equation presented in Balling et al.[2], Section 2.4.1.

4.2 Constraint Hierarchy.

A hierarchy of braced-frame constraint percentages was formed. The criterion used was

to subjectively decide whether or not a constraint would be likely to become active in the direc

tion vector calculation. In summary:

Inactive Constraints.

Column end bending moment : gravity loading.

Girder end moment gravity loading.

Girder midspan deflection gravity loading.

Absolute floor acceleration: moderate earthquake.

Total frame sway : severe earthquake.

Active Constraints.

Girder end moment : moderate earthquake.

Story drift : moderate earthquake.

Girder end energy dissipation: severe earthquake.

Frame Sway : severe earthquake.

Graphs of girder end moment, story drifts, absolute floor accelerations and girder end

energy dissipation are presented for the optimal designs in Figures(27)-(30). Variations in the

so-called inactive constraints are not presented herein.

4.3 Formulation of the Optimization Problem.

The frame elements are each modelled by a single unknown section property parameter.

The capabilities of DELlGHT.STRUCT allow a member to be subject to design or to be fixed at

its initial size. Elements may also be constrained in groups to take equal sizes. In practice a
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balance in objectives is required. Repetition of equally sized elements implies economic con

struction. The computational work needed at the optimization stage is approximately prop,"

tional to the number of design variables so grouping reduces the required calculation. On the

other hand, section sizes chosen within each group will be bounded by the most critical con

straint within the group. Hence, grouping should retain flexibility in the optimal design while

simultaneously keeping the problem practical in terms of element repetition and required calcu

lation.

The preliminary analysis indicates that the starting design is feasible. Inelastic girder

deformations were confined to stories one through seven and the columns remain elastic

throughout the response for both frames. On the basis of these observations, restrictions on

computer funding, and comments presented in Sections 1.2 and 2.4, it was decided to initially

fix the columns at their starting section inertias and design only the beams and braces. The

beams were subjectively divided into three groups and the braces into five as shown in

Figure (Ic).

The dimension of the design vector is 18. The first eight elements correspond to unk

nown section parameters. The remaining elements are dummy parameters utilized when story

drifts are included in the objective function.
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5. OPTIMAL DESIGNS.

Since the initial design was feasible, the remainder of this study examined the sensitivity

of designs to the choice of objective functions. The sensitivity of of response to modelling

parameters was also investigated. An additional objective was to find acceptable bounds on

some of the optimization algorithm parameters.

The cost of materials in construction is roughly proportional to member volume.

Although this is commonly of lesser importance than other factors when looking at the

structure's lifetime cost, minimum volume has traditionally been employed as the cost function

to minimize. It was therefore chosen as the starting objective function for this investigation.

Five iterations were completed with this cost function. It was then decided to minimize total

frame dissipated energy for two more iterations. Finally, after the designer intervened to

modify the brace areas, three more iterations were completed with minimum story drift as the

cost function.

The results of each main section are now discussed in detail.

5.1 Minimum Volume Design.

Utilizing minimum volume as a design objective reflects a typical design philosophy.

Although volume is correlated to material cost, a modest material saving 1T"lY be of lesser

importance than other possible objective functions when considering the structure's expected

lifetime performance and cost. Nevertheless, minimum volume was used as the starting point

for the study in-as-much as it may reflect the minimum initial cost of the structure.

The total starting volume of design elements (girders + braces) was 53420 in 3
• As the

braces constituted 15.7% of this quantity, the main influence of this function would be to

decrease girder volume. Five iterations of optimization were calculated. The major section

changes occurred during the first two iterations, as shown in Figures(l9) and (20). The

remaining three iterations were carried out to verify equilibrium. The results in summary are l :

1 See Figure! 1b) for an element key.
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2.7% section inertia decrease.

17.2% "

Lower girder

Middle girders

Upper girders

element 21

elements 22-25

elements 26-30 30.5% " "

11.2% volume decrease.Lower braces

Middle braces

Upper braces

elements 31-34

elements 35-38 12.9%"

elements 39-50 13.9%"

"

The final design element volume is 47170 in 3• This represents an overall brace/girder

volume decrease of 11.7%. The ratio of brace to total volume remained constant at 15.4%.

The reduction in middle and upper girder section inertias is significant in terms of reduced

material cost. However, the 12.6% brace volume decrease should be gauged against the change

in other objective functions.

The decrease in brace sizes is predominantly responsible for the sum of story drifts

squared increasing from 0.0001012 to 0.0001178. It will also be iinfluenced to a lesser degree by

the decreased rotational joint stiffness in the upper floors resulting from the reduced girder

inertias.

The total frame dissipated energy decreased from 20300 to 18190 kip-in [ see Figures(25)

and (26) ]. As more than 95% of this quantity is via mechanical brace friction, the reduction is

associated with the decrease in brace cross-sectional area. The distribution of energy dissipated

by the bracing is shown in Figure(26). The major change between the starting and minimum

volume designs is an approximate 10% reduction of energy dissipation in the lowest five floors.

The quantity of energy dissipated in the upper floors remained constant even though a reduc

tion in brace area occurred. A corresponding constraint functJ:ons increase for girder end

energy dissipation in the upper girders is shown in Figure (30). The energy dissipated by the

lower girders remained unchanged.

A total of 90 simulations was necessary to complete the 5 iterations. Each iteration

required an average of 558 time steps. It is noted that this average will represent the split

between the times a full 1100 time-step constraint calculation is needed and the times a when
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partial derivatives of the constraints with respect to the design vector are required. In the latter

case, the simulation would only be completed up to the time of maximum response, ie, approx

imately the 400th time step. An average of 0.96 stiffness reformulations per time step was

needed. Of the 418617 seconds (4.8 days) of real time taken by the VAX 11/780 to complete

the five iterations, only 76108 seconds was actually spent within the routines. As expected, the

largest time user was the ANSR[2l] structural analysis subroutine ana/ys.

During the iteration process the design vector moved against the sixth floor girder end

moment constraint under moderate earthquake loading. In fact, the second, third, fourth,

sixth, and seventh floors right and left-hand girder moment constraints are in excess of 90% for

this design. An examination of Figures(2S) and (27) to (30) shows that this set of constraints

is most critical in terms of limiting the design. Furthermore, the sixth floor girder is the lowest

in the upper group. If the girders had been subjectively grouped in a less restrictive manner,

even a smaller reduced volume would have been obtained.

5.2 Minimum Dissipated Energy Design.

The optimization parameter De/tax in DELIGHT.STRUCT is the design vector element

perturbation made when computing the jacobian matrix at the direction vector stage of applica

tion of the feasible directions algorithm. The default was set at 0.0002. If the expected change

in cost function or maximum constraint violation is small, the roundoff error Order( De/tax) in

the derivative calculation may be comparable to the slope of the derivatives themselves. In

such cases, constraint derivatives of incorrect sign can occur, leading to an increase in con

straint violation or cost function along the direction vector. The feasible directions method fails

unless the derivatives can be estimated more accurately. This requires De/tax to be reset at a

smaller value. As a guideline, it should be made as small as possible without entering the

realm of numerical roundoff.

Throughout the minimum volume design De/tax was set to 0.0001. It was decided to

decrease De/tax to 0.00001.
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In the event of a severe earthquake the structure will be required to supply sufficient

strength and ductility to withstand the excitation without frame instability and collapse. Given

that this constraint is met, the designer still has freedom to choose how the frame responds.

This choice in general will be influenced by the functional planning. requirements and the

acceptable levels of damage after the event. In this respect, the following energy designs are

conceivable.

1. The functional requirements may require that the beams and columns remain elastic.

Dissipated energy would be confined to the friction-bracing2. An appropriate cost func-

tion would be to find either the minimum structural volume or minimum energy dissi-

pated by the friction-bracing. The latter cost function can be interpreted as minimizing

the possibility of the friction-brace mechanism malfunctioning after incipient slippage3.

2. If inelastic deformation throughout the frame is permitted, the possibility of excessive

localized yeilding in the frame is reduced. The extent of inelastic deformations in the

beams and columns will be approximately proportional to the total structual damage.

This concept of structural damage does not apply to the bracing. Consequently, a feasible

energy design would be to allow limited beam and column inelastic deformation and

require the friction-bracing to dissipate the remainder of the energy. For the deterministic

earthquake input a minimium dissipated energy design with a constraint on maximum per-

missible volume appears reasonable.

3. Another permissible energy functional is to minimize the integral of kinetic energy for the

frame response. This cost function would reflect the structure's ability to dissipate inter-

nal energy at approximately the same rate as that of the work done on it by external loads.

Results from the preliminary analysis indicate in excess of 95% of the total frame energy

dissipated is via the friction-bracing. In addition, the maximum energy constraint function for

2 This occurs in Chapter Six for the response of the final design to ground motions E3 and E4. See Fig
ure(42).

3 An elastic frame response may not always be possible due to constraints on maximum allowable element
sizes.
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the girders was approximately 70%. It was decided to follow the guidelines of the second

energy design4. Since the total energy dissipated in the minimum volume design was less than

the Workman frame, the former was taken as the starting design. The allowable girder ductility

was set to 6. A maximum allowable volume increase of ten percent was implemented as a con-

straint.

Figures(2l) and (22) show design vector values for the two iterations completed. A mere

0.6% decrease in total frame dissipated energy was obtained. This was accompanied by redistri-

bution of girder inertias and brace cross-section areas at the first iteration. Negligible changes

were recorded at the second iteration. The results in summary are:

Lower girder element 21 unchanged

Middle girders elements 22-25 5.2% section inertia decrease.

Upper girders elements 26-30 1% " " "

Lower braces elements 31-34 1.3% volume decrease

Lower braces elements 35-38 3.1% " "

Middle braces elements 39-42 5.2% volume increase

Upper braces elements 43-50 1.0% " "

The overall design element volume changed from 47170 to 46170 in J
. This represents a

2.1 % total volume decrease. It is noted that the brace volume remained const" ,t at 15.5% of

the total design volume. An average of 31 simulations per iteration was required. Each simula-

tion needed an average of 742 time steps. The average number of stiffness fOfii1ulations per

time step was 0.93.

The most active constraints were the moderate earthquake girder end moments. The

changes in all critical constraint violations from the minimum volume design were negligible.

Consequently, the contours of Figures(25) to (0) for the minimum volume design apply to

4 The t1rst energy design could have easily been implemented by setting IJ. to I and requiring the design to
move towards the new feasible domain.
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this section as well.

It is noted that although a reduction in dissipated energy has been achieved, it is unlikely

that the value obtained represents a global minimum. If the member sizes were all significantly

increased, an almost elastic response, having close to zero dissipated frame energy is conceiv

able. However, an increase in the frames natural periods occurs with a decrease in member

sizes in addition to that caused by the inelastic deformation. If the fourier amplitude of ground

motion locally decreases with increasing period, the frame will be subject to reduced base forces

and thus a reduced response. Figure(46) indicates that for the E6 record this is the case for

natural periods greater than 1.5 seconds.

5.3 Minimum Story Drifts: Final Design.

The study was continued by changing the cost function to minimize the sum of the

squares of story drifts. This quantity is related to the expected non-structural damage resulting

from one or more moderate earthquakes likely to occur throughout the frame; lifetime.

An examination of the minmum volume, dissipated energy and starting Workman frame

designs showed the latter to have the lowest sum of story drifts squared [ see Figure (27) and

Table(I) J. It has the highest stiffness and consequently is closest to modelling the ideal

minimum story drifts: rigid body motions.

The Workman frame was nevertheless not chosen as the starting frame, because in prac

tice we are not trying to get three completely independent designs, rather a single design that

incorporates a balance of desirable features from various design objectives ( cost functions). A

modified form of the starting Workman frame was chosen accordingly as the besinning design.

The girder sizes from the minimum dissipated energy design together with the starting Work

man frame brace areas were combined to define a new frame. A 10% maximum allowable

volume increase over the minimum dissipated energy design was also imposed ; ie Volmax =

49100 in 3. The starting volume with the increased brace sizes was 48930 in 3. Thus, the objec

tive of this section was to obtain a final design rather than a minimum story drifts design per

5 This condition will only become possible when member sizes are unconstrained.
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se.

Figures(23) and (24) show that all girder inertias and brace areas remained essentially

unchanged for the two iterations completed. The braces constituted 17.1% of the total design

element volume. A small volume decrease from 48930 to 48890 in 3 occurred. This result is

opposite to what one initially expects. However, the frames response to the moderate earth

quake is elastic. Figure(46) shows that the response spectra for the E6 record about the 0.6 

0.75 second period range locally decreases. The sum of story drifts squared is therefore

reduced for the same reasons as outlined in Section 5.2.

The value of this quantity in the final design is 0.0001071. This compares to 0.0001012

for the starting Workman frame, 0.0001178 for the minimum volume design and 0.0001181 for

the minimum dissipated energy design6. The story drifts of the final design are between the

starting and minimum volume designs. In all cases, the constraint does not exceed 90% of the

0.005 allowable value. This is plotted in Figure(27). The peak absolute floor accelerations are

shown in Figure(28). This quantity is insensitive to the various designs considered and takes a

mean value close to the peak moderate earthquake ground acceleration. It is noted that a small

decrease in upper frame floor accelerations results from the decreased girder inertias.

The brace energy dissipated by the final design is distributed in a manner similar to the

starting Workman frame.

The active constraints for this design are the dummy story drift parameters.

6 See Table( 1) for a complete summary.
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6. SENSITIVITY ANALYSIS.

The purpose of this section is to address the issue of frame damage sensitivity to model

ling parameters in the optimization-based design process.

In general the usefulness of structural response calculations will be no better than the

accuracy with which the model describes the real structure's behavior. Cost function quantities

such as story drifts, input energy etc, are intended to measure the degree of damage imparted

to the structure. These values will be related to structural response. If the model response is

however sensitive to both the choice of modelling parameters and those describing the earth

quake record input, the subsequent design refinements may not be reliable.

The most sensitive parameter influencing the structural response is the percentage of criti

cal damping assumed. As discussed in Section 2.2.3, structural damping is dependent on the

amplitude of vibration and can range from 2 - 7%. The Rayleigh damping matrix in

DELIGHT.STRUCT is based on the starting frame member sizes and held constant throughout

the optimization process. It is acknowledged that this approach will only be an approximation

and therefore should be considered in a sensitivity analysis.

The earthquake record employed for the design process was subjectively selected from a

group of EI Centro records scaled to have equal spectral intensity. The purpose of scaling the

records is to approximately equalize the group in terms of ability to impart damage to the struc

ture. The response sensitivity to record input was divided into two sections. S1Jectrai intensity

of the E6 record was first perturbed to observe the constraint sensitivities. The remaining

records from the group were then simulated to look at the variation of constraints and the

effectiveness of the scaling procedure adopted by Balling et al. [2].

The details of each analysis are now discussed. This is followed by a general discussion of

results and implications to be drawn from the analysis.
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6.1 Perturbed Damping

The final design was simulated with 4, 5 and 6% Rayleigh damping. Graphs of constraint

functions are shown in Figures(31) to (34).

6.2 Perturbed Spectral Intensity.

The ground motion used for the designs was a scaled version of the 1979 El Centro earth

quake. It corresponds to the E6 record employed in Balling et al. [2]. The peak ground

acceleration and spectral intensity of the scaled record was 0.437g and 24.5in respectively.

A perturbation analysis was carried out by modifying the scaling factors to give records of

spectral intensities 0.9 x 24.5in and 1.1 x 24.5in. Frame simulations were then completed to

evaluate the constraints. They are plotted in Figures(35) to (40).

6.3 Response to Other Scaled Records.

The response of the final frame design was simulated using four other El Centro records

scaled to equal spectral intensity. By examining the order of constraint variation it was hoped

to assess the present scaling procedure for its ability to produce records leading to structural

responses causing equal damage.

The records selected correspond to E2 through to E5 of Balling et al. [2]. In his study, the

worst 10 seconds of each record was first isolated. The records were then scaled so that each

would have equal severe and moderate spectral intensities over the period range 0.1 to 1

seconds while simultaneously ensuring a peak ground acceleration of O.5g in the group. A

summary of the scaling factors, peak ground accelerations etc; is given in Balling et al. [2], Fig

ure(3).

The response constraints are shown in Figures(41) to (45). Several numerical problems

were encountered at this stage with DEUGHT.STRUCT. They are outlined here:

Although the scaled El record was simulated the results are not included in this section.

The reason is that the maximum lower frame moderate earthquake absolute floor

accelerations obtained were of the order OAg and occurred during the first 0.5 seconds of
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the response. Accelerations of this order exceed the peak ground acceleration and are

obviously in error. It is the authors' opinion that the error is associated with the Nev·,

mark integration method. The version adopted assumed constant acceleration across a

time step. The method requires that the initial input be smooth,- or an over-shoot prob

lem will occur. An examination of the first 2S entries of this record show:; wild accelera

tion fluctuations. The results were thus disregarded.

The same numerical problem also extends to the E2 record. We note that the 1-2, 3-4,

story constraints are 25 and 27% respectively. The remaining constraints are significantly

lower. The peak response for these two floors occurs after 0.6 seconds. The remaining

peak floor accelerations occur after two seconds in the response. Once again, these two

results cannot be considered to be reliable.

6.4 Discussion

The following points are noted from the analysis:

1. A summary of story drifts and dissipated frame energies for the optimal designs and the

perturbed parameter frame simulations is given in Table(l).

2. The record chosen for the optimization process has the maximum final design response

constraints.

3. The constraint deviations due to the 4 and 6% simulations are approximately equal to

those of the 0.9 and 1.1 factored spectral intensity structural responses. Furthermore,

the relative constraint sensitivities within each group are similar to the constraint group

changes noted through the design process. For example, the floor acceleration constraints

were insensitive to the various designs considered. A small variation in constraints with

perturbed damping was similarily observed.

4. The girders and columns remain elastic for the E3 and E4 records. The bracing energy

dissipation demand is approximately half that required for the E2 and E6 responses, as

shown in Figure(45). Table(l) also indicates that the dissipated energy and sum of story

drifts squared is significantly less for these two responses. It is therefore concluded that
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the records utilized do not impart equal damage to the frame.

It is the authors' opinion that this discrepancy is due to the scaling procedure employed to

equalize the record spectral intensities. Figure(46) shows that although the records have

equivalent intensities over the period range 0.1 - 1.0 seconds, a wide range of values

occurs above the 1 second period range. It is noted that the structure's first two natural

periods fall within the scaled range. However, the effect of inelastic action will be to

decrease the apparent frequency of frame vibration. It is therefore intuitively reasonable

to expect the structure's response to be dependent on the total period range of spectral

velocities. An alternative scaling scheme is outlined in Appendix 2.

5. In retrospect, the selection of the worst segment of ground motion acceleration to

economize on computer time is not a reliable procedure, unless smoothing of initial con

ditions is also utilized. In view of the difficulty encountered in scaling, it appears that at

least when making design sensitivity studies and comparing design oc.,jectives, use of a

family of simulated ground motions would provide a more reliable loading. In this

respect, see [I 5].
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7. SUMMARY AND CONCLUSIONS.

A report summarl and conclusions are now presented, along with a subjective assessment

of DELIGHT.STRUCT based on experience gained from the design problem studied. The reli

ability of the results is discussed and suggestions for further work are outlined. Finally, a sum

mary of findings relating to the design of friction braced frames is given.

7.1 Assessment of DELIGHT.STRUCT.

DELIGHT.STRUCT is presently located on a VAX 111780 virtual memory machine. The

following points summarize the authors' opinions of the performance of this environment.

1. Although the present documentation does describe DELIGHT,STRUCr, its complexity is

a little overbearing for the uninitiated user who just wants to use the program once to

solve a problem. The writing of a cookbook type guide that exemplifies the program's key

features and works through an example problem in a step..by-step manner could help to

mitigate this problem. In this respect, see [I7).

2. As demonstrated by the minimum volume design, the program can run for extended

periods ( 4.8 days ) before completing a task. A program of this size and complexity

ideally requires a machine to itself rather than a time sharing environmenl, It is recalled

that the ml\iority of this period was taken up with the swapping of data in the machine.

Furthermore, the number of design variables was 8, distributed among 50 elements. A

problem of this size represents the lower end of any realistic design problem. Yet, the

capabilities of the VAX 111780 were considerably taxed. It is nevertheless acknowledged

that enhanced computing facilities will become available in the near future. Conse

quently, it should only be a matter of time before the solution of large scale problems will

be possible in a more reasonable time interval.
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3. The Method of Feasible Directions does not guarantee a global minimum within the feasi,

ble domain. In fact, convergence to a local minima will generally occur. When story

drifts are being minimized, the numerical method may appear incapabic of increasing

brace areas to achieve this objective. In a similar manner, when dissipated energy is being

minimized, an increase in member sizes could lead to an elastic response. This would

give zero dissipated energy. The designer should be prepared to employ engineering

judgement to override the algorithm and reposition the design vector so that the required

convergence can occur.

4. It is the authors' opinion that only in rare cases should minimum story-drifts be used as a

single objective function. The resulting rigid body design will clearly be uneconomical.

However, it could be used in conjunction with other cost functions. For example, if it is

minimized together with volume, the former quantity can reflect the cost due to expected

structural damage and the latter the increased cost due to additional COf.'struction material

required. Cost function coefficients need to be chosen to reflect the relative importance

of each term. The selection of these weighting factors is presently subjective and

represents a completely new research problem in itself.

5. The present ANSR model assumes Rayleigh damping. Section 2.2.3 discusses the criteria

for its choice. It is noted, however, that the damping matrix remains constant throughout

the optimization procedure. Yet, the sensitivity analysis indicates that damping is an

important modelling parameter and the expected response will be sensitive to minor per

turbations in the Rayleigh damping assigned. Consequently, the user mm:t have a good

design to start with and regard the optimization as possible refinement. An optimal design

having mlijor differences in section size throughout the frame from the starting design

should not be accepted if the present program structure has been employed.

7.2 Reliablllty of Results.

The optimization calculations in this report are based on the performance of the Workman

Frame excited by a single scaled ground motion at a specified site. In summary :
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1. The basis of earthquake record selection for this study was that it caused the most damag

ing response from a group simulated in a preliminary frame study by Balling et al. [2]. N.)

attempt was made in this investigation to find a more damaging record a priori.

2. The minimum dissipated energy and story drifts designs represent 10cal.ninima for each

objective function within the feasible domain. The E6 plot in Figure(46) suggests that the

fourier amplitude of ground motion locally decreases with increasing period over the 0.6 

0.75 and 1.5 - 3 second ranges. The former range is important for the story drifts design

and the latter for the energy design. Acceptance of a design influenced by the frequency

content of a single record may be unwise since not all the remaining records follow this

trend. It should be verified that its frequency content distribution is representative of an

ensemble of ground motions to be expected at a given site.

3. The results of the sensitivity analysis indicate that the same record causes the maximum

overall final frame design response from the group. However, it has been shown that the

scaling procedure adopted is defective in its attempt to impart ap~ '}ximately uniform

damage to the structure. The revised scaling procedure in Appendix 2 appears to give

more uniform results in so far as the coefficient of variation of frame dissipated energies

is reduced from 0.246 to 0.017. The scaling of earthquake records to a peak ground

acceleration would seem inappropriate for the design of structures having a long funda

mental period[l91.

4. The two mlijor areas of uncertainty in the optimization procedure are the loading input

and the structural modelling. Parameter perturbations in both areas resulted in constraint

variations larger than those due to the change in designs produced by the optimization.

The final design is thus sensitive to the setting of these parameters.

5. Since the starting design was based on code recommendations, the final design's conserva

tism might be gauged by comparing the ground motion input to the earthquake records

that influence the code recommGndations. If the input is similar, one could be led to

accept the final design in the knowledge that the code requirements have been met. How

ever, the purpose of the code is to ensure most structures perform in a manner that pro

vides the general public with the minimum acceptable requirements of protection against
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unsatisfactory performance. The credibility of this implicit level of protection is largely

based on historical precedence. If a designer wishes to provide an enhanced level of pro

tection, it is difficult to quantify improvements when there is no clear definition of what

constitutes a minimum value nor how it may have changed with time.

A probabilistic approach to design would appear to be a more rational manner in which to

explicitly describe the level of protection supplied. It should quantitatively take into

account uncertainty in the choice of modelling parameters and incorporate estimates of

scatter for the inherent randomness of ground motions expected at a site. Error bounds

on the subsequent frame response should also be defined. In addition, a design should be

qualified with a complete description of loading inputs, modelling constraints and perfor

mance criteria. Since the present environment falls short of meeting these requirements,

the question of results reliability remains unresolved. The final design mayor may not be

unduly conservative. This is not seen as a major shortcoming of the investigation, rather

identification of a problem in the hope that work will eventually be done to reduce this

deficiency.

7.3 SUIK0stlons for Continued Work.

Although further problem areas could be investigated with the present structure of

DELIGHT.STRUCT, eg : eccentric braced frames, the quality of results will contain the same

input and modelling uncertainties as presently contained in this report. It is not the authors'

intention to discourage investigation into new problem areas, rather to make the designer aware

of the problems and limitations inherent in the present environment.

In summary, some of the required modifications to be considered in future software

development are:

1. Since the distribution of frequency content in a ground motion influences the frame

response, the use of a single scaled record for both moderate and severe earthquake load

ings may not lead to a conservative result. In this respect, it may be worthwhile using

different records for each load case. Their choice would be influenced by the natural
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periods of the structure in both the elastic and inelastic ranges. As an example, the frame

response due to a moderate ground motion for a structure with a long fundamental perioo

would probably be more critical for a large magnitude event at a large epicentral distance

than for a small earthquake occurring nearby. The spatial and te_mporal nature of these

events could be incorporated into a probabilistic approach to design.

2. The ground motion input must be more comprehensively defined in the future. Work

needs to be done to find descriptive parameters capable of distinguishing differences

between records that significantly influence structural response. This is the most impor

tant area to be examined as the quantification of gains in optimization are conditional on a

prescribed ground motion input. The present use of scaled earthquake records could be

replaced by ARMA models[lS] for generation of ground motion records.

3. Under the present program structure the grouping of elem.ents is set at the !input! stage

and held constant throughout the design procedure. As the calculation proceeds, the

designer has no means of regrouping the elements without returning to the finput stage.

By including a regrouping capability, the designer could initiate a calculation with only a

few unknowns and successively reorganize and subdivide groups as constraints moved

against constraint boundaries. Graphical display of constraint violations at the end of each

iteration would aid the designer in formulating a grouping strategy.

Another useful option capability would be to allow elements to be restrained not so they

take equal values, but rather that their ratio of sizes remains constant. This would have

been useful for the Workman frame design. The initial column sizes could have been

included as a single parameter and an overall size reduction calculated. V', th the present

program structure the columns have to be considered as a minimum of five groups.

4. The damping matrix should be updated at the end of an iteration if a major section size

change has occurred. Further work on the choice of damping parameters should also be

implemented.

1 Frame input.



5. Only single term cost functions were utilized in this study. However, as previously men

tioned, story drifts could be combined with volume in a cost function. The relative

weighting of coefficients in the objective function is presently subjective. Guidelines as to

an appropriate setting should be established.

6. The designer's ability to interprete algorithm performance could be increased by incor-

porating into DELIGHT.STRUCT both the gradient clock and performance comb, as dis

cussed by Nye[201. The former aid is used to look at the angles between the search direc-

tion and the remaining active constraints. The performance comb gives a graphical display

of good and bad constraint performance2.

7.4 Friction-Braced Frames.

Notwithstanding the various limitations associated with this study, the following conclu-

sions pertaining to the design of friction-braced frames are given:

1. The starting Workman frame was designed by code recommendations. A 30% reduction

in section moment of inertia for the upper five frame girders was permitted with

minimum volume as the objective. If at a later date the ground motion input employed is

found to lead to a conservative level of protection against expected lifetime structural

damage, this saving can be regarded as significant.

2. Friction bracing acts to decrease the damage imparted to the structure in the event of

occurrence of a severe earthquake. Story drifts, moderate earthquake gir(er stresses and

frame sway were all controlled to within acceptable limits by this system. The results

show that girder energy dissipated after the addition of bracing is approximately half that

dissipated by the moment-resistant frame. However, this is at the expense of the braced

frame having to dissipate approximately 15 times more energy than the moment-resistant

frame.

2 In [201, good and bad constraint performance values are supplied by the designer when solving the mul
tiobjective constrained optimization problem. A modified version of that presently used by Nye[20l could be
built into DELIGHT.STRUCT.
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3. Figure(26) shows the required demand on dissipated brace e~nergy for each floor to ensure

adequate frame response performance. If the bracing syshlm malfunctions the response

will approach that of the moment-resistant frame simulated at the preliminary design

stage. Thus, if systems of this type are to be installed in frames, Jhey must have reliable

performance and be capable of dissipating the required quantity of energy.
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APPENDIX 1.

The following listing is a copy of the file assumptions used by DELIGHT.STRUCT for the

Workman frame. Loads have the units of kips and lengths are in inches.

Ratio of live uniform load to total uniform load = 0.33333
Global damping ratio = 0.05
Ratio of number of stories to fundamental period =12.77
Ratio of fundamental period to second period = 2.95
Young's modulus for steel = 29000.
Yield stress for steel = 36.
Strain hardening ratio for steel = 0.05

For columns:

50. < inertia < 4500.
moment yield coordinate fraction = 1.
axial yield coordinate fraction = 0.15
radius of gyration = 0.39 * depth ** 1.04
for inertia < = 429.
depth = 1.47 * inertia ** 0.368
otherwise
depth = 10.5 * inertia ** 0.0436

For girders:

80. < inertia < 2500.
steel poisson ratio = 0.3
radius of gyration = 0.52 * depth ** 0.92
depth = 2.66 * inertia ** 0.287

For braces:

0.5 < area < 10.
inertia = 0.169 * area ** 3.
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APPENDIX 2.

As outlined in Section 6.3, the purpose of scaling different records at the same site to

have approximately the same spectral intensity is to ensure that the damage imparted to a struc-

ture by each ground motion will be approximately of the same order. This provides a basis for

examining uncertainty in the frame response due to inherent randomness of the ground

motions.

Section 6.4 reviews the shortcomings of directly equating ground motion records on the

basis of spectral intensity integrated over the range of elastic frame periods. An alternative

approach to that adopted by Balling et al. [2] would be to first premultiply the pseudo-spectral

velocities by a weighting function before equilibrating the spectral intensities. The weighting

function could therefore take into account, in an empirical manner, the influence of inelastic

action on the total structur~1 response I. The following weighting function was used as a starting

point:

W( T,~) ,a J

The rescaled spectral intensity is defined to be:

J
T-lIIax

Sl'-rl'scall'd= . W( T,~) ,a ).Sv(T)dT
T-IJI/II

where T = period ( sec J.

~) = fundamental period of the elastic structure ( sec J.

a = constant chosen to define the weighting function shape.

1 Kennedy [19J uses a similar weighting function approach on spectral acceleration to equalize the damage
potential of different records.
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SI (T J = spectral velocity ( in/sec J.

The weighting function co-efficient, a, defines the shape of the curve. The shape that

minimizes frame response scatter will certainly be related to the extent <.>f inelastic deformation

in the response. A good starting-value would seem difficult to choose. Nevertheless, a was

set to 0.1 and this integral was evaluated for the E3, E4, E5 and E6 records2. The lower and

upper integration limits were set at 0.1 and 3.16 seconds respectively. The former three records

were rescaled to have the same intensity as the E6 record. Simulation results of the rescaled

records are presented in the last part of Table (l).

The coefficient of variation of the frame energy dissipated by these records is reduced

from 0.246 to 0.017. A similar reduction in story drifts scatter is not obtained because story

drifts are related to the stiffness and mass inertia forces of the elastic frame. A designer might

therefore put a weighting function on spectral acceleration if the objective was to equate story

drifts.

It is clear from both the work of Kennedy[19J and the preliminary results presented here

that frame response scatter due to the randomness of ground motions can be reduced by a judi

cious scaling of earthquake records. The designer should identify the important frame

response quantities and find scaling factors on this basis. Future work needs to be implemented

to find good scaling functions for different quantities of frame response.

2 Records EI and E2 were not rescaled because of the reasons discussed in section 6.3.
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TABLE( 1 ) : A Summary of Results.

Design Case Story Drifts Dissipated Energy

( x 10-5 ) ( kip - in x 104 )

Starting Workman Frame 10.12 2.030

Moment Resistant Frame 36.80 0.131

Minimum Volume Design 11.75 1.819

Minimum Dissipated Energy 11.81 1.809

Final Design 10.71 1.975

4% damping 13.18 2.167

5% damping 10.71 1.975

6% damping 9.19 1.823

0.9 . Spectral Intensity 8.71 1.792

1.0 . Spectral Intensity 10.71 1.975

1.1 . Spectral Intensity 12.97 2.158

E2-Elcentro S90W May 1940 4.34 2.06

E3-Elcentro SOOW Dec 1934 1.1 1.098

E4-Elcentro S90W Dec 1934 7.5 1.181

E5-Elcentro N50E Oct 1979 10.71 1.727

E6-Elcentro N40W Oct 1979 10.71 1.975

Rescaled E3 4.13 2.043

Rescaled E4 2.46 1.999

Rescaled E5 14.84 2.011
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FIG(12) Story No. vs Girder End Moment.
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FIG(13) DissipaEed Energy ( kip-in) vs Time ( sec) for Workman Frame
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flG( 14) Work Done By Loads (kip-in) vs Time (sec) for Workman Frome
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FIG(15) Input Energy (kip-in) vs Time (sec) for ~orkman Frame
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FIG(20) Minimum Volume Design.
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FIG(22) Minimum Dissipa~ed Energy Design.
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FIG(26) Story No vs Dissipated Brace Energy ( kip-in)
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FIG(28) Story No. vs Floor Acceleration [ Accel = e.5 J.
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FIG(34) Finol Design Perturbed Damping. [ Accel = 0.5 J.
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FIG(35) Finol Design Perturbed Spectral Intensity [ Giryld = t ]
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FIG(36) Final Design Perturbed Spectral Intensity [ Girduc = 6 ]
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FIG(37) Final Design Per~urbed Spectral In~ensi~y [ Drif~ = 0.005 J
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FIG(38) Final Design Per~urbed Spec~ral In~ensi~y [ Accel = 0.5 J.
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FIG(40) Final Design Perturbed Spectral Intensity
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FIG(41) Finol Design Different Eq. Records [ Giryld = 1 ]
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FIG(42) Final Design Different Eq. Records [ Girduc = 6 J
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FIG(43) Final Design Different Eq. Records [ Drift = e.ees J.

10 r- :\ ~~
•
I

I \ I
9 ~

I
I,

, "" I..
I....,~

8 ~ I

\\ I
I

7 ... )\ 1

~", \ I
s

~
I

t 6 ,
I

J,
I0 I

r ,
\

J
5 \ Iy \,

\ I
N

~
,

J 00

4
, -.l

0 ", .., \ I
1

S ... "~) I
1; I

2 ~
I

~/ I
,,' I...,y I

I
1

0 I I I I I~_..... I

0 20 40 60 80 100

S~ory Drlfl Conslralnl Porcenloge ( X ).

Scal.d Record EGo ---------- Sccl.d Record E2.
---- Scal.d Records E3 - E5.



FIG(44) : Final Design: Different Eq. Records [ Accel = 0.5 J.
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FIG(45) Finol Design Differen~ Eq. Records.
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FIG(46) Pseudo-Spec~rol Velocity (in/sec) vs Period (sec).
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