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ABSTRACT

A transducer capable of accurately measuring the internal

forces of the ,first-story columns of a 1/5 scale model of a

seven-story frame-wall reinforced concrete structure has been

designed, developed, and applied in this structure under static

and dynamic loading conditions. This internal force transducer

(1FT) was developed specifically for research on this struc­

ture which is part of the U.S.-Japan Cooperative Research

Program Utilizing Large-Scale Testing Facilities. However,

the feasibility considerations, the development of design cri­

teria, the design and fabrication considerations, and the

calibration and installation methods reported herein have more

general applicability.

From the results obtained in the calibration of the fabri­

cated IFTs, and during the tests conducted on the 1/5 scale

model, it has been concluded that for the primary purpose of

studying the dynamic response of the 1/5 scale model to earth­

quake ground motions, the performance of the 1FTs is acceptable.

For short term static loading of the 1/5 scale model, their per­

formance is also acceptable.However, as a consequence of con­

tamination of the exposed surface of the applied shear and axial

strain gages used in this internal force transducer, there are

some long time zero drifts which make analysis of results
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obtained under sustained loading conditions or from long

time effects (internal force redistribution) difficult.

Recommendations for improving the design, fabrication,

calibration and installation of similar internal force trans­

ducers are formulated.
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1 INTRODUCTION

Statenent Of Problem1.1

1.1.1 The U.S.-Japan Cooperative Research Program

and the 1/5 Scale Test Structure.

This report is based on research which is part

of the U.S. - Japan Cooperative Research Program Utiliz­

ing Large-Scale Testing Facilities. [1] The initial

phase of this program, in the field of earthquake engineer-

ing, is devoted to the investigation of the performance

of a seven-story frame-wall reinforced concrete (RiC)

structure. It includes pseudo-dynamic testing of this

structure at the Large-Size Structures Laboratory in

Tsukuba, Japan. It also includes scale model shaking table

experiments, to be performed at the Universities of: Calif­

ornia, Berkeley; Illinois, Urbana-Champaign; and Stanford,

California. Subassemblages of the structure are to be studied

experimentally under pseudo-static loading conditions at Berke­

ley, the Universities of Stanford, California, and of Austin,

Texas, and at the Laboratory of the P.C.A., Skokie, Illinois.

This report is concerned only with the experimental studies

to be conducted on a 1/5 scale model using the Earthquake

Simulator (shaking table) facilities at the University of

California, Berkeley.
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The 1/5 scale model of the seven-story frame-wall

structure, shown in Figs. 1-1, 1-2, and 1-3, will be

subjected to a base motion in the direction of the

longitudinal axis of the structure, as shown in Figs.

1-1 and 1-2.

The model was designed and constructed to

maintain geometric similitude with the full-scale

structure; hJwever, to fulfill mass similitude require­

ments, it is necessary to add auxiliary mass (ballast).

This ballast is secured to the floor slabs so that i·t

closely approximates the effect of gravity loads on the

floor beams and columns without significantly altering

the stiffness of the floor system.

To acquire sufficient information to study the re­

sponse of this model to applied base excitations it is

necessary to properly instrument the model.

1.1.2 Instrumentation of the Structure.

The response history of the total structure, as well

as its main components will be measured using accelero-

meters, linear potentionmeter displacement transducers,

and other deformation measuring devices. At least two

accelerometers and linear potentiometer displacement trans­

ducers will be located at each floor level. From this the over­

all response (lateral force-displacement relationships) of the

central longitudinal frame, containing the shear wall, and of

(2)



the external longitudinal frames can be obtained. Add­

itional instruments will be located at the roof level,

to measure the relative vertical displacements between

columns.

Direct current differential transformers (DCDTS)

will be used to measure local jistortions, such as the

fixed end and inelastic rotations of the end regions

of beams and columns, and the flexural and shear distortion

of the shear wall. At critical regions, local strains

will be measured by strain gages applied to steel reinforce­

ment. Concrete strain gages will be placed on the peripheral

walls at the ends of the structure.

In wall-frame structures of this type, it is of

considerable importance to evaluate the effectiveness of

the shear wall,with respect to the frame,in resisting

the lateral inertial forcesdue to the base motion.

This can be accomplished by determining the distribution

of base shear force between the columns and the shear wall.

However, in statically indeterminate Ric structure~imeasur­

ing force distributions of this type is extremely difficult.

It would be possible to apply strain gages (or other dis­

tortion measuring devices) on the structural elements

involved (in this case, the columns aHd the shear wall)

to determine the internal forces. However, this is

unreliable in the inelastic range, especially in the case



of concrete strain gages after some reversals of inelastic

straining. Failure of a device could render the structure

indeterminate. A more reliable method of measuring

these force distributions is through the use of~internal

force transducers," as described below.

I.J.3 Internal Force Transducers.

Internal force transducers (1FT) can be defined as

devices capable of directly measuring the internal forces

of a structural element. A simple 1FT is a device which

can be inserted in the structural member to measure internal

forces. The advantages of this type of 1FT are that the

device can be:

1) Constructed from materials which have reliable

force-deformation relations,

2) Reliably instrumented, and,

3) Properly calibrated so that it is possible to

directly measure the internal forces.

The disadvantage is the potential for interference of the

measuring device with the continuity of the structural

elements in which the internal forces are being measured,

.i.e., the disturbance of the structural response that

can be caused by the introduction of the 1FT. However,

with proper choice of location of the 1FT and of its design

criteria, this disadvantage can be overcome.

(II)



To eliminate or minimize discontinuity of the

structural elements, the 1FT design criteria should

include careful selection of its different significant

stiffnesses, and of the type of cODnection to the structural

elements. Furthermore, according to the expected response

of the element to which it will be connected, 1FT design

criteria should include careful consideration of the required

sensitivity and range (capacity).

The 1FT stiffness properties must be designed

to match those of the element into which it is placed to

minimize the disturbance of the response of that element.

The 1FT must be designed to withstand forces somewhat

larger than the expected internal forces in the structural

element without affecting its calibration. Thus the 1FT

must be designed so that the forces to which it is sub­

jected (load range) will strain the 1FT material within

its elastic range only. Since the 1FT instrumentation

will measure strain of the 1FT material, the sensitivity

of the 1FT output is directly affected by 1FT stiff­

ness. Therefore} this instrumentation should be chosen

and located on the 1FT so that its resolution corresponds

(through a stiffness relationship) to small values of in­

ternal force.

The 1FT material should bechosen so that the stress­

strain relationship is linear withiD the load range.

Linearity greatly simplifies the calibration procedures.

(52



The installation procedure should be simple and should

miniruize disturbance of the structure. Finally, if

several force quantities (bending moments shear, and

axial forces) are being measured, each should be in-

dependent of the others.

In spite of the difficulties involved in designing,

constructing and installing an 1FT, it is believed that

the advantages justify a detailed study to overcome

these difficulties. Therefore, it was decided to make

a detailed study of the possibility of using IFTs in the

1/5 scale model of the seven-story frame-wall RiC structure

to be studied at Berkeley. This detailed study, reported

herein, has the following main objectives.

1.2 Objectives

1. To study the feasibility of using internal

force transducers (1FT) to determine the force

distribution in the first story of the 1/5

scale model.

2. To develop design criteria for the 1FT.

3. To design and fabricate the 1FT.

4. To calibrate the 1FT.

5. To develop installation methods and install and

monitor the 1FT in the 1/5 scale model.

6. To evaluate the response of the installed IFTs

during tests conducted on the 1/5 scale model.

7. To formulate suggestions for further studies

(according to experience and information gained

in the above objectives) for improving design

(G)



criteria, fabrication, calibration and

installation methods of these TF~s.

1.3 Scope

To accomplish the above objectives, the first step was

to study the feasibility of using 1FTs. When the results of

this study were positive, general design criteria were

established and the 1FT location was selected. From this

location specific design criteria were generated and a proto­

type was designed and fabricated. Preliminary studies on

this prototype led to modifications and a final design.

The final design was fabricated in sufficient

quantities for application in the 1/5 scale model. Cal­

ibration methods were developed using the prototype

1FT and the production 1FTs fabricated for the model.

Each production 1FT has been calibrated and calibration

curves have been prepared to read internal forces (bend­

ing momen~s, shear and axial forces) independently.

After preliminary studies with one of the fabricated

IFTs, 10 IFTs were installed in the model and their

behavior was monitored over time and under the diff­

erent loading conditions that were applied to the model.

During the monitoring of their behavior, "zero drifts"

were observed in some IFTs. A detailed study of this

problem was conducted and is discussed herein.

Recommendations for further studies of the observed

problems are formulated based on the data and experience

gained from this study.

(7)





2 FEASIBILITY STUDIES AND SELECTION OF THE LOCATION OF THE
IFTs IN THE 1/5 S·CALE TEST STRUCTURE, AND THEIR DESIGN
AND FABRICj\1'ION

2.1 Feasibility Studie.sq(~lJ1t;L.~eJ,~Gj:;.lon.ofthe _Location of

the IFTs in.th~ .1/2_SQ~1E?_T.E?~.t__.$trll.gj;Jlr~

In the experimental study of the 1/5 scale model of

the seven-story frame-wall Ric structure subjected

to base motion, it would be ideal to be able to deter-

mine the distribution of the total story shear between the

shear wall and the columns at each story. Although this

might be possible, it would involve both technical and

economic difficulties.

Analytical studies show that for structures of this

type, most of the inelastic behavior in the shear wall and

the columns is concentrated in the first story. Studies

demonstrate that it is feasible to instrument this critical

story to determine the force distribution. Therefore, the

first story columns were chosen as the most desirable ele-

ment in which to place IFTs.

The precise location of the 1FT was selected to be

slightly above mid-story height of each first-story column.

(Figs. 1-2, and 1-3) This location is the result of several

considerations; most important among these were:

1) 'rhat the magnitude and distribution of the

total base shear is of considerable interest in

wall-frame structures of this type subj.ected· to

base motion,

Preceding page blank



2) That distribution of overturning moment at the

base is also of great importance, and,

3) That to avoid significant interference with the

flexural stiffness of the column, the ideal

location is in the region of the column which

typically has the lowest flexural demand.

Due to the above considerations, the 1FT has been

designed to independently measure the bending moment,

shear, and axial force in the columns, near the mid-

story height, (Figs. 1-2 and 1-3)

In determining the base shear distribution it

is assumed that this distribution is the same at potb.

the mid-story height of the first story, and at the found-

ation level. This implicitly assumes that the first story

mass of the columns and shear wall have very small contribu-

tions to this base shear.

The inertial forces developed during the base

excitation can be determined from the acceleration history

of each floor level, if a lumped mass assumption is made.

The external damping is typically quite small, with modal

damping ratios (~ ) less than 2 percent. The ratio between
n

the maximum modal damping force and the maximum modal inertial

force is at most twice the model damping ratio, or less than

4 percent. Neglecting damping forces, and setting the re-

storing forces equal to the inertial forces will result in

insignificant errors in the determination of the restoring

forces. Therefore, the total base shear, which is the sum

of the restoring forces, can be taken as the sum of the

(10 )



inertial forces.

~I + ~D + ~R - 0

~I
.

!R=

7

VB
.

2; FIn=
n=l

The column 1FT measures the shear carried by the

columns. The remaining shear force must be carried by

the shear wall (neglecting the contribution of the

peripheral walls). Therefore, the distribution of

base shear between the columns and the shear wall can

be determined.

The total overturning moment resulting from the base

excitation can be determined by a procedure which is

similar to that used for determining the total base shear.

This overturning moment is carried by the structure through

flexure of the shear wall and axial force in the columns

and the peripheral walls.

The axial force in the columns is measured by the

colman 1FT. If a reasonable method for estimating

the axial force in the peripheral ~nd walls (from the force

in the end coluflns or from concrete strain gages

placed on the walls) is used, the overturning moment

carried by the combination of the columns and the end

walls can be estimated. The remaining moment must be

carried by flexure of the shear wall. Therefore, the

distribution of overturning moment can be determined.

An important criterionin the use of 1FTs is the

minimization of disturbance to the structural response

by the indroduction of the 1FT. The location of the

(11 )



1FT in a regic)n of low flexural demand in the first story

columns is an attempt to minimize the effect of the 1FT

on the flexurnl stiffness of the columns. This flexural

stiffness is 11n important factor in the distribution of

base shear. The foundation (at the base of the column)

is considerably stiffer than the beam-slab system (at the

top of the column), leading to the conclusion that under

most earthquake loading conditions a point of inflection

is likely to be located slightly above the mid-height

of the column.

Since axial force in the columns is measured by the

1FT, the installation of the 1FT into the column can

be used to determine the distribution of gravity forces

in the structure. A necessary asaump~ion is that

the installation of the 1FT does not disturb the structure.

(~£.,cause a lengthening or shortening of the element in

which it is installed).

As previously discussed, it is necessary to add

auxiliary mass to the 1/5 scale model to maintain mass

similitude. It is also necessary to know the total

axial stress level in the first story due to both gravity

loads and the auxiliary mass. The distribution of load

due to the auxiliary mass can be determined from the 1FT,

so that the total axial force in the columns prior to

base excitation is known.

(12)



2.2 Design of the Column Internal Force Transducer

2.2.1 Column Characteristics

The design of an internal force transducer requires

consideration of the characteristics of the structural

member in which it is placed, as discussed previously

( Sec. 1. 1. 3) • In the case of the column 1FT, a careful

consideration of the characteristics of the first story

columns should be made.

The typical first story column is a square section

of reinforced concrete with eight longitudinal reinforc-

ing bars, hoop type lateral reinforcement with cross
1 5

ties. (Figs. 2-1 and 2-2) Each column is 3 16 in. (100 mm)

with of 15.5 in2 (10,000 2square an ar·ea rom ).

Dimensions and typical spacing of reinforcement are

tabulated with Fig. 2-1.

The ideal internal force transducer would be

designed to have the same local stiffness prop~rties as

the part of the structural member which it replaces.

However,this is impossible in practice, since reinforced

concrete will have load dependent stiffness characteristics,

while the structural metal used in the 1FT will not exhibit

these characteristics for the load range that it will be

designed for. In addition, it is difficult to simul-

taneously match flexural, shear and axial stiffness.

As a result, it is necessary to rate the relative impor-

tance of each stiffness type and to consider various

load levels or limit states in determining stiffness.

( 13)



Since thl~ 1FT is assumed to be located at or near

a point of inflection in the column, the flexual demand

should be low. Therefore, the flexural stiffness of the

1FT is not very significant, although it should approx­

imate the column stiffness to avoid the introduction

of a large discontinuity.

ln fr'ame analysis it is common to nefJ~lect the shear' oefor'­

mations of b(,:lmc~ or columns under' Lateral loads. If th!: length

()f tlw 1FT is nut 1<1r[':,-, in c(lmparL;on to the column, and the

;~IH'ar c:;tiffl1e:;s per length or the [F1:' is !lot very differ'ent froHi

t he-' shear 81' i. "fness per lenp;th of the column, the change in

shear sti ffne:;s of the wholE': column caused by the introduction

1:'\1' Uk IF'l' wi 11 be small and insignificant. The change in thc:

columll's total lateral stiffness will be even less significant

because the cI'lumns have been designed so that they will be

subjected to relatively low shear.

The axial stiffness of the colurn~ is a major factor

in determining the distribution of resistance to overturning

moment. If the effect of the introduction of the 1FT is

to be minimized, the axial stiffness of the 1FT must match

that of the column part it replaces.

In sum~ary, it is believed that in designing an 1FT

for columns in this type of structural system. the

axial stiffness is most important, flexural stiffness

less important, and shear stiffness least important.

In reinforced concrete structures, the intensity

of axial stress, which depends on the load level (or li~it

(14 )



state) under consideration, has a considerable effect

on member stiffness. Therefore, the comparison of

1FT-stiffness with the column stiffness must include

consideration of the various significant load levels

(limit states) which the columns are likely to ex­

perience.

Calculations of the column section stiffness have

been performed assuming an uncracked-elastic section

[3J. Further calculations and other arguments [3J

show that for flexure and shear the uncracked con­

dition is the most important limit state occurring

under the expected loading conditions at the 1FT locations.

Furthermore, the maximum expected_ level of axial stress

is considered to be well within the elastic range of

the concrete. The conclusion is that the uncracked

elastic limit state is the only one which need be con­

sidered in calculating the column stiffness at the 1FT

location. The resulting column stiffnesses (stiffness per

bnit 1~ngth1 are given in Table 2-1.

In designing the 1FT, the range of loads to which

it might be subjected is an important criteria. An

inelastic analysis was conducted for the full-scale

seven-story frame-wall RiC structure. [4] Maximum

column forces from the analysis were scaled appropriately

to obtain the maximum expected first-story column loads

in the 1/5 scale model. These are given in Figs. 2-3A

and 2-3B.



To have some margin of safety in the use of the

1FT, a factor of safety was considered for each of these

maximum expected column loads (~oment, shear, and

axial force) to determine the 1FT load range. The

maximum bending moment along the length of the first~story

columns will occur as an end moment due to the nature of

the structural $ystem and applied loads. If this max­

imum moment is taken as the design moment at the 1FT

location, no factor of safety is required since the

moment at the 1FT lOcation can reach this maximum only

in the highly improbable case of single curvature with

maximum expected moments applied to each end. Since the

maximum expected moment was 28.34 kip-inches, the design

moment was taken as 30 kip-inches.

The maximum expected shear force in the first story

columns is 1.62 kips. This maximum force will occur

throughout the length of the column. Since there is some

uncertainty in both the expected load and the shear

capacity of the column and the 1FT, a factor of safety

of 1.4 was chosen and the 1FT design shear force was

taken as 2.3 kips.

The maximum expected axial compressive force in

the first story columns is 11.32 kips. This maximum

expected force will also occur throughout the length of

the column. The columns may also be subjected to

possible axial force overloads during any transport of

the model, loading of the ballast, installation of the

1FT or any other preparatory work, or due to differential

(16 )



shrinkage between wall and column sections. Because of the

uncertainty in the magnitude of these axial forces a safety fac­

tor of 1.4 was applied to the maximum expected axial compressive

force to obtain a design load of 16 kips. It was not expected

that the 1FT would be subjected to axial tension during testing

of the 1/5 scale model. However, the 1FT should be expected to

respond equally well to a tensile load of 16 kips.

The 1FT load range is summarized in Table 2.2. These loads

are the range of loads for which the 1FT has to be calibrated

and under which the 1FT must exhibit strict linear behavior.

2.2. 2 !?§:v~1.~p"rr:ieQ.L'2! Physic!§:~_g_haracteristics -9:.£_th~_ IF'!'.

The 1FT consists of a short section of tube welded to two

plates, one on each end of the tube. These plates are bolted to

two additional plates which are welded to the column reinforcing

steel (Fig. 2-4), The tube was constructed from a standard 4 in.

O.D. extruded tube with a wall thickness of 5/8 in .. To insure

unifornity of the cross section and a smooth surface for the

application of strain gages, approximately 1/16 in. of material

was removed from the inside and outside surfaces.

In the preliminary design, the 1FT was to measure biaxial

moments and shears, so a tube was selected, because of its identi­

cal properties along any two perpendicular directions. Due to

fabrication difficulties and other problems, the biaxial scheme

was dropped and the 1FT was designed to measure bending moments

and shear force in one plane only.

The length of the tube was limited to minimize the 1FT's

effect on structural response. However, to decrease the effect

of the 1FT's boundary conditions on the force measurements



obtained from the 1FT instrumentation, it is desirable to have

a minimum length to width (lid) ratio of untiy. Therefore, the

tube length is 4 in ..

For thin walled tube sections, the shear stiffness is often

taken as the product of the shear modulus (G) and the cross sec-

tional area (A), with no modification factor for the area. The

axial stiffness is taken as the product of the elastic modulus

(E) and (A). Since E and G are of the same order of magnitude,

the two stiffnesses will have values of the same order of magni-

tude. Therefore, if the applied shear and axial forces are of

the same order of magnitude, the average shear strain and axial

strain will nave the same order of magnitude. However, in the

column 1FT the axial force will reach a larger magnitude than

the shear, force (Sec. 2.2.1, and Table 2-2). Axial strains will,

therefore, be much larger than average shear strains, and if there

is any cross channel interference (strain interaction), the

ability of the shear channel to accurately measure small values

of shear force can be impaired.

Tests of the prototype 1FT showed that cross channel inter-

ference adversely affected the accuracy of the shear channel

with shear strains corresponding to 0.35 kips of shear force

being measured under 10.a kips of applied axial force with no

applied shear force. Although the amount of strain interaction

was relatively small and the corresponding shear force is only

3.5% of the axial force, this 0.35 kips of shear force is a sig­

nificant percentage (15%) of the design load for shear (2.3 kips),

Increasing the sensitivity of the shear channel, without in-

creasing the sensitivity of the axial force channel would reduce
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the magnitude of shear force corresponding to the strain caused

by interaction. However, increasing the sensitivity was diffi­

cult since the shear strain was already being measured near the

neutral axial where it reaches its maxim~m value (per unit shear

force) .

The solution to this problem was to modify the cross

section, reducing the tube wall thickness at the neutral axis

to increase the maximum value of shear strain. This increased

the shear sensitivity without removing too much of the

total cross-sectional area. The modified cross section is

shown in Fig. 2-5.

The plates to which the tube is welded are 3/4 in. thick

by 5-1/2 in. square. They are designed to be relatively

rigid, compared with the tUbe, to uniformly distribute the

column loads from the bolted connection with the column

to the 1FT tube.

Originally, the tube wa~ con~ected to each plate

by 12 screws ~nd the use of an inset for positive shear

transfer (Fig. 2-6). However, this screwed connection

was discarded in favor of welding since welding provides

a better distribution of strain than screws, and because

the screwed connection was suspected to be the cause of

a hysteretic moment response in calibration (Sec. 3.1).

The welded connection is more durable and reliable than

the screwed connection over the lifetime of the 1FT,

especially if the 1FT is applied in other future test

structures.
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2.2.3 Material for the 1FT

The 1FT is made from high strength aluminum because

of its low elastic modulus and high yield strength. Because

of availability and its easily reproduced temper, which

gives a nominal yield strength of 40 ksi [5J, 6061 aluminum

with 0 T-6 temper was used.

In force transducers it is co~~on to use 2024

aluminum with a T-3511 temper, {nominal yield strength of

44 ksi (5]). This tempering procedure (T,...3511) includes

coldworking (straightening and stretching of the tube)

to achieve high strength. The use of welding in this

design requires annealing to remove residual stresses.

Because of annealing, retempering is needed to return

the required hig~ strength. However, to avoid introduc-

ing new residual stresses or damaging the fabricated 1FT,

coldworking the annealed material was not considered to

be desirable. Since the T-35ll temper could not be re­

applied in full, it was believed that another type or

aluminum should be selected 'so that the original temper­

ing process could be easily reapplied to the fabricated 1FT.

The alternative choice to the 2024 aluminum was the

6061 Aluminum with the T-6 temper. This tempering requires

only heat treatment'~ which was accomplished easily after

the welding and ann~aling. Samples of the material were obtained

for testing of strength and stif£nes~ (Fig~ ~·7). Results

of t~ese tests are shown in Table 2-3.

The results of the tests of the aluminum samples

give an average yield strength of 40.8 ksi, and an
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elastic modulus of 10.2 x 10 3 ksi. These results are as

expected, showing that the heat treatment was carried out

according to specifications.

It should be noted that the high strength obtained

(40.8 ksi), is not required to meet the 1FT stress demands,

but is desirable to insure linearity in the design load

range (the maximum compressive stress expected considering

the column load range is 12 ksi).

From the known material mechanical characteristics,

the stiffnesses of the 1FT were calculated. The cal­

culated values are in Table 2-4 L3]. Comparison of

Tables 2-1 and 2-4 shows that the stiffnesses

of the tube compare reasonably well with the uncracked colu~n

stiffnesses. However, the stiffness of the entire assembly is

somewhat larger (70.9 k vs. 59.1 ± 8.4 k for axial

stiffness) due to the added stiffness of the plates.

The stiffnesses of the assembly are given in Table 2-4.

As discussed previously, the tube is welded to the

end plate. Todetermine if the weld strength is sufficient

test soupons were provided by the fabricator (Fig. 2-8).

Tests on three coupons showed that they failed at

an average tensile stress of 15 ksi. This failure was

ductile and was centered at the center of the weld.

The nominal strength for this weld (welding rod material

is 4043 aluminum) after the T-6 tempering, is 40 ksi ... [5]

Therefore, the unexpected results of these tests show that

something was wrong with these welds. The tests of the

(21)



6061 aluminum gave the expected results,indicating that

the tempering process was applied correctly. It is believed

that the unexpected results of the weld coupon tests are

due to poor design of these coupon.welds, and that these

wel~s are not indicative of the welds on the 1FT.

Figure 2- 8 shows the weld test cou?ons. It is believed

that the weld material was not as stiff as the rest of

the material C1.e.,a slightly lower elastic modulus)

resulting in stress concentrations at the weld center.

The weld center was observed to be a weak spot due to a

lack of full weld penetration, and failure resulted.

In the 1FT, the maximum value of tensile stress

at the weld is expected to be less than 10 ksi, so

a strength as low as 15 ksi would still be sufficient.

2.2.4 Strain Gage Schemes for the 1FT

The strains developed on the 1FT body during loading

are measured using poly~nide backed foil strain gages [3,6J.

As previously discussed, three separate channels are used

to ~easure moment, shear, and axial force. Each channel

is comprised of an independent full wheatstone bridge of

either four or eight strain gages. It ~s expected that

the bridges, when wired correctly, will be temperature

compensating and independent of each other (assuming an

ideal strain distribution in the 1FT body).

Strain gage locations and schematic wiring diagrams

for each briqge a~e given in Fig. 2-9.
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The general principle of a full wheatstone bridge

is that strains (or change in resistance) of opposite

arms are added, while strains of adjacent arms, are

sUbtracted. When properly applied, this principle has

the advantage of providing a simple way for temperature

compensation, and also a way for i.ncreasing se::1sitivity.

For the moment bridge, gages on the same side of the

1FT body are on opposite arms (hence they are added)

while gages on opposite sides of the 1FT are on adjacent

arms (hence they are subtracted one from the other).

The result of this is that for bending, positive strains

are added and negative strains are subtracted (thus

adding their absolute value). The output of the bridge

is then four times the extreme fiber strain. For pure

axial force, or thermal strain, added and subtracted values

have the same magnitude and sign, so the bridge output

is zero.

The shear bridge is similar to the moment bridge.

In the shear bridge, gages with the same orientation are

added (by being on opposite arms), gages with different

orientations are subtracted one from the other (by being

all. adjacent arms). For applied shear, gages with opposite

orientation will experienc~ strains of opposite signs

and their absolute values will be added. In thi$ case

the bridge output will be four times the shear strain.

For axial load, or thermal strain, gages with opposite

orientation experience strains of the same sign and
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magnitude, and subtraction yields no net strain.

The axial bridge has longitudinal gages on opposite

arms with lateral gages on arms adjacent to the longitudinal

gages, As a result, under axial load the longitudinal

strains are added and the lateral strains (which are

of opposite sign due to poisson's effect) are subtracted.

This gives a bridge output of 2.6 times the actual

longitudinal strain, (for poisson's ratio of .3). For

thermal strain, lateral and longitudinal strains are of

equal sign and magnitude, so subtraction yields no

net strain. Bending strai~s are cancelled because

gages of symmetric location with respect to the axis of

bending are on the same arm of the bridge. This addition

of strains yields no net strain for pure bending.

2.3 Fabrication

2.3.1 Fabrication of the 1FT Body

The final design was fabricated ac~ording to the

drawings in Figs. 2-10, 2-11, 2-12, 2-13. The specifi­

cations are given in Reference 3.

Procedures and tolerances for fabrication are

detailed in the specifications. As the first step in

this fabrication, the tube was cut to proper length

and 1/16 in. of material was removed from the inside

and outside surfaces, as shown in Fig. 2-12. Then the
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plates were cut to size and the insets (Fig. 2-10 and

2-12) were machined in the plates. The plates and tube

were aligned and welded, and the entire assembly was heat

treated. Then the cross-section modification was made,

with flat surfaces being machined for location of the

shear strain gages. Finally the top and bottom

surfaces of the plates (the end surfaces) were machined

to insure that they were parallel, and to provide

good bearing surfaces. The basic tolerence was ±.OOS in ..

2.3.2 Strain Gaging Procedure

The procedure for application of the strain gages

is similar to that outlined in the directions which are

enclosed in packages of Micro-Measurements M-Bond 610. [6]

. Strain gages, adhesive, and coatings were obtained from

a commercial manufacturer. Details of these products

are in Reference 3.

The major variation from the procedure described in

Reference 6 is in surface preparation. For these trans­

ducers, sandblasting with a fine abrasive is used instead

of abrading with fine sandpaper and using a mild. etching

solution, as suggested. The neutralizer for the etching

solution also was not used. This modifed procedure is

common practice in the laboratories at Davis Hall, Univ­

ersity of California, Berkeley.

After wiring the circuits, a polyurethane coating

[3J, is applied for moisture protection. A thin



sheet metal cover was fabricated and wrapped around each

1FT tube to physically protect the strain gages.
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3 CALIBRATION OF THE 1FT

3.1 Calibration Methods

In the applicaticn of force transducers, it is

necessary to relate the strain output of the wheatstone

bridge to an applied load through some type of calibration

function (or calibration constant, for li~ear calibration

functions) . In this way, the applied load can be deter-

mined from the bridge output measured. This calibratisn

function can be determined analytically or experimentally.

For most applications, it is convenient if this is a linear

calibration function.

To determine a calibration function analytically, the

constitutive relationship of the transducer material and the

cross-sectional properties are needed. The procedure is to

determine the stress due to a unit load, at appropriate

gage locations, frow the section properties, and then apply

the constitutive relation to determine the strain. The

strains for the appropriate gages are then combined in the

same manner as the bri4ge combines them to obtain bridge

output. Reference 3 contains calculations for calibration functions

for the 1FT used in this study. The calibration function

is linear due to an assumed linear constitutive relationship.

Only the value of the linear constant is needed to define

the function. The constants for each of the channels are

in Table 3-1.
()C7·). "



The experimental determination of the calibration

constants is more important, because it yields more depend-

able values than analytical methods. However, in experimental

methods it is very important to be certain of the boundary

conditions (support conditions, points of load application,

and dimensions) so that the magnitude and distribution of

the internal forces applied to the transducer are accurately

known. If these forces are properly known, it is a simple

matter to determine the relationships between them and

the measured strains.

The procedure used for the determination of a calibration

constant for the moment channel is a good example of the

importance of boundary conditions. Figure 3-1 shows the

device used initially for moment channel calibration. The

1FT is installed at the center of a "beam". This beam is

composed of sections of 2 in. nominal diameter steel pipe

(1=.666 in4 ) with plates welded on each end. One set of

plates is used to bolt to the 1FT, the others extend down

to a reaction table, forming the supports. for the beam.

Simple support conditions are assumed. Point loads are

applied equidistant from the ends (Fig. 3-1) providing

constant bending at the 1FT location. The known load is

applied using a Baldwin-Southwark electr~~ydraulic 60 kip

test machine.
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Typical results of this moment calibration are shown

in Fig. 3-2. Note the hysteretic response, mentioned in

Sec. 2.2.2, which is caused by frictional forces developed

at the load points and supports, i.e. where the end plates

are supported on the reaction table of the testing machine

These frictional forces have moment arms about the centroid

of the beam. They restrain the beam ends, decreasing momeDt

at the 1FT during loading, and increasing the moment at

the 1FT during unloading.

An improved calibration beam is shown in Fig. 3-3.

The reactions are located at the centroid and are free to

rotate. Therefore, the simple support assumption is

justified. Loads are applied with rollers that can rotate

through small angles. The tube sections that compose the

beam are 4 in. square steel tube (1=10. 7 in4). This is

much stiffer than the pipe used initially,consequently

decreasing the deflections of the beam, improving the response.

Typical results of this calibration are shown in

Fig. 3-4. Since the calibration procedure involves

measuring the strain due to an applied force, the

calibrations are plotted with strain at the ordinate and

force as the abcissa. The units of the calibration constants



~in/in
are, therefore, unit of force. Moment calibration constants

are given in Table 3-1.

The calibration of the shear channel is accomplished

through a procedure similar to moment calibration. A single

load is applied to the beam device described above (Fig. 3~5).

The support conditions are different than those for constant

moment loading. In this case, one support is located at

the centroid at the end of the beam. The other support is

located closer to the 1FT, with the reaction being providej by

a roller applied to the 4 in. tube. The beam is assumed to

be simply supported. Both moment and shear channels are

monitored in this calibration. To complete the calibration

of the moment and shear channels, the beam is turned over so

that the 1FT is loaded from the opposite direction.

Typical results of this calibration are shown in

Fig. 3-6. Shear calibration constants are in Table 3-1.

The calibration of the axial force channel is a simple

procedure although careful consideration of the boundary

conditions is again required. Since the 1FT has a lid ratio

of unity, it is important to distribute the load to the 1FT

end plates in a uniform manner. The reaction table on the
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test machine has a rough surface from years of use. To

provide uniform bearing, several smooth plates are stacked

betwee~ the table and the 1FT/and between the 1FT and the

load head. Also, a universal joint, free to rotate in all

directions, is used in providing the load (Fig. 3-7).

For the axial calibration, as well as the other cali­

brations, it is necessary to load the 1FT above the specified

load range before calibration to insure a stable zero

reference. This "overloading" is effective in relieving

residual stresses in the strain gages due to their application.

For all the calibrations 4 to 6 cycles of loading were used,

until the strain reading corresponding to zero load remained

constant for 2 load cycles. Data for calibration was then

taken in one load cycle. Axial load calibration constants

are in Table 3-1.

To verify proper calibration of any data acquisition

system to which the 1FT is connected, it is necessary to

be able to apply a known "force" to the 1FT, even though

it may be installed in the test structure. This is accomplished

by inserting what is commonly called a "shunt" resistor into

the wheatstone bridge circuit. This resistor is connected

parallel to one arm of the bridge, inducing a change in

the resistance of that arm of· the bridge. This corresponds
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to an apparent change in strain, or an apparent applied

load, which can be read by the data acquisition system.

Calculated values of "applied load" for a given shunt

resistor can be compared with the values measured by the

data acquisition system. This insures proper calibration

of the data acquisition system.

This procedure is called electronic calibration. Val­

ues of the apparent load induced by the shunt resistors have

been measured with a Budd Box strain indicator. These

values have also been calculated in Reference 3. Calcu~

lated values are in Table 3-2 and measured values in

Table 3-3. These values can be used to check the calibration

of any data aquisition system used with the 1FT.

3.2 Evaluation of Calibration Results

3.2.1 Evaluation of the Calibration Constants

From Table 3-1, it is obvious that there is a significant

difference between calculated calibration constants and the

values obtained through experimental calibration. In general

these differences can be attributed to a difference between

the specified cross section and the actual cross 'section,

and the phenomena of "strain averaging", which is the result

of using large strain gage lengths in regions of varying

strain, so that the measured strain is smaller than the max­

imum strain in that region.

Table 3-4 has the results of a brief statistical study

of the calibration constants. From the small magnitude
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(1. 2%) of the coefficient of variation (COV) of the exper-

imentally determined moment calibration constants, it is

apparent that the moment of inertia (I) is reasonably

t f 11 1 ( .. Mc dcons ant or a twe ve IFTs, Slnce l:. ='1 E an E can

assumed to be constant). However, it appears that the

be

actual lis larger than calculated from the specified cross

section, (since the experimental calibration constants

are smaller than calculated). Part of the difference between

the calculated and the mean experimental values may be due

to an averaging of strain by the strain gages. Figure 2-9

shows that only an edge of each gage is at the location

of extreme fiber strain. The rest of the gage is under

smaller values of strain, since it is located closer to the

neutral axis as a result of the surface curvature.

The experimentally determined shear calibration con-

stants have a large COV (15.4%.). This is probably due to

differences in the tube wall thickness among IFTS at the

shear gage location, since shear strain is very sensitive

to thickness (T =~i). The original tube thickness was

reduced during fabrication of the 1FT to increase the

sensitivity of the shear channel. (Sec. 2.2.2) However,

in fabrication (Sec. 2.3.1). this modification of the wall

thickness was made after welding of the plates. This made

it difficult for the machinist to stay within the desired



tolerance; therefore each 1FT may have a slightly different

modified wall thickness.

From Figs. 2-5 and 2-13~ it can be seen that the

wall thickness at the location of the shear gages becomes

larger with distance from the neutral axis. Also,

the value of Q (from T = ~~) becomes smaller at larger

distances from the neutral axis. 'rherefore, in -the 1FT

shear strain decreases rapidly with distance from the neutral

axis. The calculated shear calibration constant is deter-

mined for a location at the neutral axis. However, the

shear gages have finite length and cover an area located

away from the neutral axis. Therefore, these gages will

be under an average strain which is less than the strain

value at the neutral axis. This, in addition to the

possipility of a thicker wall due to machining error, is

the reason for the 36.4% reduction from the calculated cal-

ibration constant.

The experimentally determined axial calibration con-

stants have a very small COV (1.8%). This is because the

cross-sectional area (A) is nearly constant for all twelve

p
IF'l'S (C=AE). Note that neither -the area (A), nor the moment

of inertia (I), is sensitive to errors in the wall thickness

at the neutral axis (since the elementary area at the

neutral axis has a small contribution to A and I).
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The mean axial calibration constant is 35.4% less

than the calculated constant. This is probably due to a

larger than specified cross-sectional area and differences

between assumed strain fields and actual strain fields.

The differences between the actual and specified cross

sections have already been discussed. In general the actual

cross section is somewhat larger.

A more significant reason for the difference between

experimental and calculated axial calibration constants is

the constraining effect of the end plates, which causes the

strain field to be different than assumed. When the 1FT is

compressed axially, the tube will expand radially if unrestrained.

But, the plates on the end restrain the tangential strain

(measured by lateral gages) throughout the length of the

1FT. They also cause a "bulging" of the 1FT tube, creating

tensile bending stresses on the exterior surface of the

tube, when the tube is compressed (Fig. 3-8). These bending

stresses decrease the compressive strain measured at the

surface of the 1FT. The restraint of the plates was not

considered in the calculated constant.

In general, the calibration results are linear and

repeatable. It has been 'found that they can be reproduced

with less than 0.5% error, with additional loading cycles.
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This repeatability is important in transducer use. Although

there are differences between calculated and experimental

calibration constants~ the reasons given for the differences

are plausible,and the obtained experimental calibration

constants should give sufficient sensitivity.

3.2.2 Evaluation of Cross-Channel Interference

Cross-channel interference is the measurement of strain

in channels which are not expected to measure strain under

the given loads. (These channels will be referred to as

"unloaded" channels. "Loaded" channels are channels which

should measure strain under the given loads.) An example

would be the axial and shear strain readings obtained during

the constant moment calibration under pure bending moment.

During all calibrations both loaded and unloaded channels

were monitored. Table 3-5 has approximate values of the

range of maximum loads obtained in the unloaded channels.

The mean values (Table 3-5) are the averages of maximum

loads obtained from unloaded channels from the 12 IFTs.

The values in Table 3-5 show that there may be some

interference between channels~ expecially when one type

of force has a relatively large value. However~ most of
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this interference is believed to be due to errors in the

methods of load application during calibration, which will

not occur in the test structure.

In the constant moment calibration, the axial and shear

channels always read negative values. The axial force

is probably due to local compression from the nearby

application of point loads. Shear force is probably a

result of error in the location of the point loads.

In the axial load calibration, the moment and shear

forces are probably due to an eccentric loading. Inter­

ference of this -type can occur when the IFTS are installed

in the structure, if there is an eccentricity between the

column segments, to which the 1FT is attached. It is

believed that eccentricities of this type will be minimal

in the structure. Other sources of interference, such as

gage misallignment,uneven distribution of stress from the

plates through the weld to the tube, or from strain discontin­

uities,can also occur after the installation. However,

interference from these sources is not expected to be

significant.
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4 INSTALLATION OF THE 1FT IN THE 1/5
SCALE STRUCTURE AND OBSERVED RESPONSES

The calibrated IFTS were installed in the test structure

and used to measure column forces under several static

loading conditions. "Zero drifts" were observed and an

extensive investigation of the zero drifts was undertaken.

The results of this investigation and the observed response

of the 1FT to several loading conditions of the model, as

well as details of the installation, are presented in this

chapter.

4.1 Installation Procedure

The ideal installation would be to install the 1FT before

casting the concrete during construction of the model. How-

ever: the 1FTs were not finished prior to construction, and the

1FT location was filled by a 4-1/2 in. O.D. steel tube. Four

bolts prestressed the two installation plates to the tube to

insure a continuous moment and shear connection (Pig. 4-1).

The procedure for replacing this tube with the 1FT is detailed

in this section.

First, ten IFTs (one for each column excluding the shear

wall edge members), are connected to a low speed scanner, data

acquisition system. Proper calibration constants are input

into the system, so that the strain output of each wheatstone

bridge of the 1FT can be converted into force values. There-

fore, the output of the system will be force quantities.
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Initial strain readings are measured and stored by the

data aquisition system. These correspond to zero fcrce in

all channels. Future strain readings ;..;il1 be compared with

these initial values, and the change in strain will be

converted to force values by the system.

Next, each 1FT is installed individually. First,

the prestress in the steel tube is released and the upper

installation plate is raised using the four installation

bolts (threaded rods shown in Fig. 4-1). The steel

tube is removed, the upper plate is lowered back to its

original position, and the installation plate surfaces are

cleaned for 1FT installation. Dial gages are used to

measure how far the top of the column is raised, and to

insure that the upper installation plate can be returned

to its original position. Table 4-1 gives the maximum

displacement of the top of the column during this procedure.

It should be noted that column A3 was inadvertently left in

the displaced position after removing the steel tube.

Next, the 1FT is positioned. The bolts to connect

it to the steel plates are placed loosely and shims are

installed in the spaces left for hydrostone (see Fig.

2-4). Initially, four shims are placed in the space

between the lower set of plates, one shim from each side.
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Then, four shims are pushed into the spaces between the

upper set of plates. These shims are pushed i~ from each

side until approximately 1 kip of axial force is ~easured.

The shims are then adjusted so minimum values of shear

force and moment are measured.

Next, the spaces are filled with hydrostone , •.;hich

should insure an even distributio~ of further forces.

After the hydrosto~e has dried, the four outer bolts ~hich

were used to raise the upper plates, and which had supported

the column load, are removed. The bolts connecting the 1FT

end plates to the installation pla~e3 are tightened and

the 1FT supports all of the column load. The installation

of all ten IFTs takes several days.

4.2 Results of 1FT Installations

4.2.1 Determination of Column Gravity Load

It was expected that the installation of the IFTs i~ .

the columns of the 1/5 scale model would allow the deter~in­

ation of the gravity load carried by the columns. However,

the installation took several days, and during this time

a severe "zero drift" of the axial force chan::1els occur:re<)..

This "zero drift" ca!1 be described as a change over

time of the measured output strain of -the 1FT, without any

(41)



change in the load being applied. Since the data acquisition

system reads strain relative to an initial valti~ bf strain

(corresponding ~o zero load) this measured change in

strain is read as an apparent load. The measured values

of axial force In the columns at the end of the installation

of all the IFTs are given in Fig. 4-2. It is obvious

that these unrealistic values are primarily the result of

drift.

To get a reasonable determination of the actual gravity

forces in the columns, it was necessary to find the difference

between each 1FT's output pr~or to installation and i~nmed­

iately after. These values are given in Fig. 4-3, and

can be compared with values obtained from analysis (2}

in Fig. 4-4.

From Fig. 4-3, it can be seen that the sum of the

column loads obtained from the 1FT installations is larger

than the weight of the structure [2J. ~uilibrium requires

that the total load in the four peripheral walls and the

shear wall be tensile. The actual distribution of this

tension is unknown.

There are two causes for this unexpected distribution

of gravity force. The major cause is the different rates

of concrete shrinkage between the walls and the columns.

The columns are 100 mm (3 15/16 in) square. The main shear
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wall panel is 40 ~Th"11 (1 37/64 in) ·thick x 900 mm (35 14/32 in)

wide, and the peripheral walls are 30 ;:1i.U (l 3/16 in) thick

x 800 nnn (31 1/2 in) wide. These dimensions ind.icatet:~at

the concrete in the walls vlOula. tend to sh:'::"ink fa.ste:::- ir,it-­

ially than in the columns. In the case of the Derioheral

walls (due to the proximity of the peripheral walls to the

nearby columns) the columns offer considerable restraint and

consequently differential shrinkage could relieve all the com­

pressive force from gravity and induce large tensile force in

the walls, while inducing additional compressive force in the

nearby columns. The effects of differential shrinkage

are magnified because the 1FT location does not

shrink, since there is no concrete there. Shrinkage in the

main shear wall panel is unlikely to induce significant com­

pression in any of the columns because of the small restraint

offered by the columns as a consequence of the relatively

large distance to the nearest columns. However, the panel

itself is likely to be under tension with the shear wall

edge members under increased compression.

Analytical studies of this differential shrinkage [8]

show that it is capable of inducing up to 10.6 kips of

compression in columns AI, A4, Cl, and C4, and 12.8 kips

of compression in columns BI and B4. In this case each

peripheral wall would be under 17.0 kips of tension. A

comparison of Figs. 4-3 and 4-4 shows that columns AI,
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A4, CIt and C4 are oc the average under 3.2 kips more com-

pression than expected, while columns Bl and B4 are on the

average under 3.3 kips ~ore compression than expected.

These forces are well below those which differential shrink-

age is capable of indQcihg~

The other cause of this unexpected distribution of

gravity force is the disturban,:e to the structure bl Lhe

1FT installation procedure. This procedure did not insure

that the final relative distance between the installation

plates was the same as the initial distance. During removal

of the steel tube, the displacement of the top of the

column was controlled to within + SxlO- 5 in. This insured

that the distance between the plates, after removal of the

tube was within + 5xlO- Sin. of the initial distance. During

the rest of the installation procedure, this distance was

not as well controlled. The effect of altering the distance

between the installation plates is that the structure

above the 1FT location is subjected to support settlements

or uplifts.

Calculations have been performed to determine a

lower bound for axial compression in the columns prior

to 1FT installation, [3]. Results of these calculations

are in Fig. 4-5. Comparison of Figs. 4-3 and 4-5
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shows that the 1FT installation caused some disturbance

to the structure. In column A3, the disturbance was signif­

icant (since the top of the column was inadvertently left

.0032 in. too high after removal of the steel tube), with

about 46% of the axial compression in ·this column potentially

due to the 1FT installation. For the other columns, the

effect of the 1FT installation was less significant, with

a maximum of 14%, (in columns C2 and C4) and an average

of 10% of the axial force in these columns potentially

due to the 1FT installation.

It should be noted that for all the columns, except

one (C 1), the net effect of the 1FT installation was

equivalent to a support uplift. The combination of this

uplift, and differential concrete shrinkage is the source

of the relatively high compressive forces in the columns.

4.2.2 1FT Instability (Zero Drift)

The problem of 1FT instability or zero drift has been

mentioned briefly in Sec. 4.2.1. This problem was first

noticed in the axial force channels, but subsequently drift

was also observed in the shear force channels. No drift

was observed in the moment cha~nels. Initially, in the

axial force channels, drift was in the positive direction

(tension) for nine of the ten installed IFTs. 1FT #11,

in column C2, had negative drift. (several mon·ths later,

negative drift was observed in two other axial force channels).
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.The drift in the shear channels varied with both positive

and negative drifting observed.

The total drift of the axial channels over three

months is given in Table 4-2. Figure 4-6 shows a plot of

the variation with time of the forc~ output of eight of th~

ten axial channels under a "constant Tl 102d. 'This load

corresponds to the column loads determined from the installa­

tion procedure. However, as previously discussed, a sub­

stantial part of these loads was due to differential shrinkage

between the walls and the columns. It is expected that this

part of the column loads would be reduced with time as column

shrinkage increased relative to wall shrinkage. This

reduction of compression would contribute to the positive

force values (tension) indicated by the IFTs. But, the large

magnitude of the total forces indicated by the IFTs (Fig. 4-6)

leads to the conclusion that there are other more significant

contributing factors. Therefore, a deta.iled investigation

of the cause of this zero drift was carried out.

4.3 Investigation of 1FT Instability (Zero Drift)

4.3.1 _Investigativ~ Procedures and Methods

The investigation of the 1FT zero drift problem was

accomplished in several ways.

1) IFTs in the test model were closely monitored.

2) Experiments were performed on uninstalled IFTs (12 IFTs

were fabricated and 10 were needed in.the test model).

3) Experiments were performed on strain gages applied to
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bars fabricated from the 1FT end plate material.

4) Direct telephone consultatibn was made with engineers

who had extensive experience in the application

lof commercially manufactured strain gages.

4.3.1.1 Monitoring of Installed IFTs

The IFTs which were installed in the test model were

closely monitored during the three months following install­

ation. Output was recorded so that it was possible to follow

the drift of the IFTs over time. Figure 4-6 is a plot of

the output (in force units) of 8 of the 10 axial channels

over a 6 week period. Table 4-2 summarizes three months'

of data for the axial force channels. Figure 4-7 is a

detailed plot of axial force data from 1FT #IOin column Cl.

From this plot, it can be seen that the force output has an

overall drift, and also varies during each day.

The variation during the day is the result of a thermal

cycle experienced by the structure each day. The 1FT is

aluminum and has a higher coefficient of thermal expansion

than the rest of the structure (reinforced concrete). It

is, therefore, expected that the columns should have an

increase in compressive force (Fig. 4~7) as the structure

warms up each day. Because of this variation, the data

plotted in Fig. 4-6 is all from the same time of day,

8:00 a.m.
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It was not possible to find any explanation of this

type for the overall drift. The pattern of drift was more

random in nature, and the magnitude of the force output was

too large to have any structural justification. It is

believed that environmental factors were affecting the

IFTs, not through thermo-mechanical behavior of the structural

material, but by some type of interaction with the strain

gages themselves, the strain gage adhesive, or the strain

gage coating. Further investigations were conducted in

this direction.

The IFTs have been monitored again, most recently at

the time of this wri-ting (nearly five months after instal­

lation), and the drift has continued to this date. The rate

has slowed significantly, with typical values of less than

0.5 kip drift per week in the most active axial force channels.

The shear force channels also continue to drift as before,

while the moment channels remain stable.

4.3.1.2 Drift Experiments Performed on IFTs

It was initially believed that the drift observed might

be due to a failure of the strain gage adhesive under long

term loading. To test this, 1FT #9 (which had been installed

in column C4 and exhibited severe drift in its axial force

channel) was removed from the 1/5 scale model and its

axial force channel was recalibrated. The calibration results
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were within 0.5% of the original calibration. 1FT #9 was

also placed in a creep test machine designed for concrete

cylinders. It was loaded with 30 kips for 3 weeks under

constant temperature conditions (73.3°F). No significant

change in the output of the axial force channel was observed.

It was then concluded that the drift was not a direct

result of mechanical loading of the 1FT.

It had been previously observed that the IFTs had not

exhibited drift during the time they had been in the labora­

tories in Davis Hall, where strain gage application, calibration,

coating of the gages, etc., had been done. l"lhenthey were

moved to the location of the 1/5 scale model in the Earthquake

Simulator Building at the Richmond Field Station, the drift

problems began. Since Davis Hall has a reasonably constant

environment (temperature and humidity) while the Earthquake

Simulator Building does not, it was concluded that the drift

problem was related to environmental factors.

The constant temperature rooms located in Davis Hall

were used to simulate a severe temperature cycle that might

occur in the Earthquake Simulator Building during a 24 hour

perior. This cycle included:

1) 11 hours in a 40°F room, simulating typical night

temperatures,

2) 2 hours in a 20°F room (with the 1FT insulated so
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that the temperature of the 1FT was slightly

below 40 oF) simulating extreme night temperatures,

3) 3 hours in a 40°F room, and 4 hours in a 73.3°P room,

simulating the warming up during the morning,

4) 1 hours in a 100°F room (again with the 1FT

insulated) for the warmest part of the day, and

5) finally 3 hours in a 73.3°F room.

1FT #5 was put through this temperature cycle on two

[lin/ .occasions. The net drift for these two cycles was +43 In.

and +50 Win/i~ in the axial force channel, (the other channels

were not monitored). This corresponds to forces of 1.06 kip

and 1.23 kip respectively. 1FT #9 was put through this cycle

and drifted 23 ~in/i~ in the axial force channel (correspond-

ing to a force of .56 kip). From these tests it was concluded

that the cycling of temperature in the Earthquake Simulator

Building was a contributing factor in the drift problem.

Consultation was made with other engineers experienced

in the application of commerciallv manufactured strain

gages. They believed that contaminants in the adhesive

or underneath the coating could be activated by temperature

cycles. It was suggested that one of the axial force

bridges be unwired, so that the gages could be monitored

independently to better identify the cause of drift.
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The axial force channel of 1FT #5 was unwired and

each gage was monitored individually. It was observed

that output of axially oriented strain gages was drifting

in a positive direction at a faster rate than that of the

laterally oriented gages, giving a net positive drift for

the bridge. (Note, if they drifted at the same rate the

bridge would subtract one from the other, leaving no net

drift.) No particular gage could be identified as the source

of the problem, rather most of the gages exhibited some

positive drift in their output, with the rate of drift

varying with time.

It was concluded that the cause of drift was not unique

to any gage, but cownon to all gages in the drifting channels.

Contaminants in the adhesive, or in the coating were believed

to be the sourse of drift, and their rate of activity was

being affected by temperature cycling.

4.3.1.3 Drift Experiments Performed on Strain Gages

Applied to 6061 Aluminum Test Specimens

To identify the actual cause of the drift problem in

the IFTs, additional strain gages were applied to two samples

of the 6061 aluminum used in fabricating the 1FT end plates.

Three types of strain gages were used:

1) Gages of the type (from the same manufacturing

lot) used in the axial force channel of the 1FT's.
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2) Gages of the type (from the same manufacturing

lot) used in the moment channel on the 1FT's.

3) New gages, which were similar to the moment

channel gages in size and shape, but made with

a different backing material [3J.

These gages were applied to the specimens, following

procedures used in fabricating the 1FTs, but using extreme

care in avoiding contamination of the adhesive. The gages

were oriented and wired to form axial force bridges, with

two axial gages and two lateral (poisson) gages. One

bridge was made from 1FT axial force channel type gages,

one was made from 1FT moment channel type gages, and two

bridges were made from the new gages.

After application of the gages, the exposed surfaces

of the gages were carefully cleaned of all contaminants.

Then the specimens were subjected to low level (lOksi:!::.25f )
Y

tensile loading. After this the specimens were put through

two thermal cycles, as described in the previous section.

One bridge of each gage type was monitored as a .whole,

and one bridge of the new gages was unwired, so

that its gages could be monitored independently. After

each test, the exposed gage surfaces were cleaned to remove

(52)



any contaminants which might have collected there during

the test.

As a result of these temperature cycles, no significant

drift occurred in the output of any of the full bridges.

The maximum change in the output of a full bridge was

7 ~in/in, observed in the bridge composed of the new

gages. The bridge co~posed of the 1FT moment channel gages

was absolutely stable, with no drift occurring. The maximum

drift in the output of the individually monitored gages

was observed to be 11 ~in/in. This was fairly consistent

among these gages, with the average drift being 10 ~in/in

per gage per temperature cycle.

The cleaning of the exposed gage surfaces was observed

to have a more considerable effect on the gage output than

the temperature cycles. The maximum net drift in the output

f b · d d th 1"' 1..,\1 in/ . T' 1 1o a rl ge ue to e c eanlng was./ In. yplca va ues

ranged from 4 to 15 pin/in, but there was no observed

drift in the bridge composed of 1FT moment channel type

gages. The maximum net drift in an indiVidually monitored

gage was 15 llin/ in.

From these tests, it was concluded that the treatment

of the exposed gage surface was critical, and that the

drifts observed as a result of the telaperature cycle of

these gages were from activity on this gage surface, not

from any activity in the strain gage adhesive. The 1FT
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moment channel gages are encapsulated gages [3J,

meaning that a thin film of electrically insulating

material has been placed over the electrically conductive

foil of the strain gage. The other gages are not encapsulated

so the exposed surface of the gage is actually the surface

of the electrically conductive foi~. Therefore, it is

obvious why the treatment of this surface is so important

and why the 1FT moment channel gages behaved so 'veIl during

these experiments.

In light of this, new experiments were performed to

determine how the preparation of the exposed surface of the

un-encapsulated gages affects the output of the gage during

temperature cycles. In the first of these tests three of

the new gages were given different surface treatments.

One was contaminated with dirt and oil typically found

on human hands and coated with the polyurethane coating

used on the IFTs. Another was carefully cleaned and

coated with the same coating. The third gage was carefully

cleaned and coated with an electrically insulating acrylic

coating, followed by a coat of polysulfide modifed epoxy.

This coating combination is considered to be suitable for

general field applications.
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The results of the application of an extended temper-

ature cycle (lasting two days) to these gages indicated

the following:

1) A drift of 48 ~in/in was observed in the output

of the contaminated gage,

2) The output of the un-contaminated polyurethane

coated gage drifted 4 ~in/in, and

3) The output of the more heavily coated gage drifted

8 pi n / . b t th' t . t . th . 1In, u ere lS uncer aln y 1n 1S va ue

due to a suspected wiring problem.

The three gages were then subjected to a second temperature

cycle (of the type described in the previous section)

but the results were less conclusive. The heavily coated

gage had no drift observed in its output, but small drifts

were observed in the output of the polyurethane coated

gages. The gage with contamination under the coating

drifted 6~in/in, and the gage without any contamination

under the coating drifted 8 pin/in.

The bridge composed of 1FT axial force gages was

then unwired so that its gages could be read independently.

One pair of gages was contaminated and coated with poly-

urethane. The other pair was carefully cleaned and coated

with the heavier coating described above. These gages
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were sUbjected to two 24 hour temperature cycles (of the

type d~scribed in section 4.3.1.2).

The results of these tests showed that the more heavily

coated un-contaminated gages had no drift in their output.

The contaminated polyurethane coated gages showed significant

drift in their output, with a maximum value of 20 llln/ in per

cycle observed on one gage. An average value of 13 pin/in

of drift per cycle was observed in these gages.

It was concluded from these experiments that the

treatment of the exposed surface of the un-encapsulated strain

gages is very important in the performance of the strain

gage, expecially if the temperature varies at the gage

location. It was also concluded, that, for the gages

applied to the 6061 aluminum specimens, the strain gage

adhesive was not a factor in any observed drift.

4.3.2 Results and Conclusions of the Investigation

of 1FT Instability (Drift)

It was observed that the drift of the output of the

shear and axial force channels has no relationship to load

of any type, either short term or long term. The drift

is unpredictable as far as specific magnitude over a given

time is concerned. But, in general, the rate of drift has

decreased over time. For short periods of time, the sign
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or direction of drift can be predicted, although over long

periods of time, a few weeks, this may change. There was

no drift observed in the Inoment channels of the 1FT.'

A daily cycle of load in the axial force channels

of the 1FT was observed to correspond to the variation of

temperature in the Earthquake simulator Building. A la~ge

difference in the coefficient of thermal expansion between the

1FT material and the model's structural material was the

cause of this.

It is believed that contaminants acting o~ the top

face of the strain gages in the shear and axial force

channels (which are un-encapsulated or open faced gages)

are the primary cause of the drift. These contaminants

are underneath the polyurethane coating, and appear to be

activated by the daily variation of temperature in the

Earthquake Simulator Building.

The polyurethane coating may also be a contri-

buting cause to the drift. The Earthquake Simulator

Building was considered to be standard laboratory condi­

tions for strain gages, but the variations of temperature

and humidity justify the use of a thicker, more moisture­

proof coating.
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was subjected to static lateral loads at the seven-floor.
heights (one floor at a time), and the lateral displacements

of the floors were measured, giving flexibility coefficients.

The 1FTs were used to obtain the loads in the first-

story columns. Figure 4-8 gives the force values obtained

during loading of the seventh floor, normalized for 1 kip

of applied lateral load. The actual load applied was 5

kips, so the forces measured were five times the value

given in Fig. 4-8.

The maximum actual measured values were:

0.580 kip-in bending moment

0.200 kip shear force, and

1.550 kip axial force.

Comparison of these values with the 1FT load ranges (Table

2-2) shows that the column loads were relatively small and,

therefore, more prone to error.

However, the 1FT response does not appear to exhibit

signifrartt errors. The distribution of force is reasonably

symmetric and the values make sense physically. Drift of

the 1FT channels was not a problem, due. to the short length

of time of the test.

The column shear forces measured were used to obtain

the distribution of shear between the shear wall and the
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columns as described in section 2.1 of this report. This

was done for the application of loads to each of the seven

floors. The results of these tests, and interpretation of

these results are given in detail by Aktan, Bertero and

Chowdhur y . [2']

4.5 Response of the 1FT to Long Term Sustained Loading

of the 1/5 Scale Structure.

The need to add ballast to the 1/5 scale model was

discussed in Sec. 1.1.1. The ballast was loaded onto the

structure over a period of five days. It was desirable to

determine the distribution of the additional gravity forces

from the ballast, but due to the length of time required to

load the ballast, it was expected that drift of the 1FT

axial force channels would make this determination difficult,

or unreliable.

Figure 4- 9 gives the distribution of the ballast

load as determined directly from 1FT axial force channel

output, and from the output of concrete strain gages applied

to the peripheral walls. From study of the recent history of the

1FT output, it was determined that the readings of certain axial

force channels had been drifting significantly. The output

of these four axial force channels (IFT~4 in column A2,

1FT #12 in column A4, 1FT #6 in column Bl, and 1FT #2 in

column C3) was modified to give the estimated distribution

of ballast load given in Fig. 4-10.
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To perform this modification it was first necessary

to determine the direction of drift, and the relative

rate of drift. The axial force channels in colu@ns A2, A4

were observed to be drifting at a relatively rapid rate.

The axial force channels in columns A2, DI were observed

to be drifting In a negative direction while the axial

force channels in columns A4, C3 were drifting in a positive

direction. All other drifts were considered insignificant.

To modify the drifting channels, measurements of the

column loads (from the IFTs) when the structure was partially

loaded, were scaled appropriately to give column loads when

the structure was fully loaded (eg. the loads when only

two of seven floors were fully loaded were scaled by 7/2).

It was thought that scaling loads measured earlier in

time would contain less drift error. It was also necessary

to use data acquired at the same time of day as that in

Fig. 4- 9 (late afternoon) due to the daily variation of

column load discussed in Sec. 4.3.1.1.

From the actual distribution of ballast on the structure,

the expected distribution of ballast gravity force was calculated

and is given in Fig. 4-11 [8J. Comparison of Figs. 4-10

and 4-11 shows good agreement between the calculared results

and the experimental results for the central columns of

frames A and C, and the shear wall. However, the experimental
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results show the peripheral walls are carrying more load,

and the end frame columns are carrying less load than expected.

The reason for the difference between the experimental

and calculated results is the tributary areas used by Chowdhury

.[81, to calculate the distribution of ballast gravity force.

These tributary areas (Fig. 4-12) were used to analytically

distribute ballast loads from the slab to the beams, without

enough consideration of relative stiffnesses of these beams.

The transverse spandrel beams on the ends of the structure

are directly supported by the peripheral walls. The ballast

load transferred to these beams is carried directly by

these walls as axial forces. Ballast load which is trans­

ferred to the other beams is carried by flexure to the nearest

column. It is obvious that the spandrel beams will be much

stiffer than the other beams. Therefore, they will attract

more ballast load than predicated from the tributary

areas in Fig. 4-12. As a result the peripheral walls

carry more ballast load, and the nearby columns carry less

ballast load, than was calculated.

The total static axial forces were summed from experi-

mental results (Fig. 4-13) and from calculated results (Fig.

4-14). The experimental results are incomplete due to the
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unknown distribution of the shrinkage induced forces (Sec.

4.2.1)

The results given In this section show that it is possible,

in certain cases, to use the 1FT to measure the application

of the load over time. However, it is necessary to consider

the drift which can occur over the loadi~g time and account

for it appropriately, if possible.

For the case of ballast loading, accounting for drift

was fairly simple. Since the structure was under service

level conditions, an assumption of linear elastic behavior

was justifiable. Also, the load was applied in constant

increments (i.e., each floor had the same "load) , so it was

possible to diminish the effect of drift with time by

scaling the column loads obtained (earlier in time), when

the structure was partially loaded. For other cases of long

term sustained load, or in attempting to study redistribution

of gravity loads within the structure, accounting for 1FT

drift may be much more difficult, or perhaps impossible.
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5. CONCLUSIONS AND RECO~~ENDATIONS

From the design studies conducted for an internal force

transducer (1FT) for the 1/5 scale test structur~ it was

concluded that:

1) The choice of location of the 1FT within the test

structure is crucial, since proper location will

minimize disturbance to structural response. Also,

this location determines the specific requirements

for 1FT stiffness, sensitivity, load range, and

connection type.

2) For measuring the internal forces of the first­

story columns, the best location for the 1FT was

slightly above the mid-story height of the columns.

For this region of typically low bending moment,

the uncracked elastic condition was the only limit

state required for consideration in determining

1FT stiffness criteria, although the possibility

for minor flexural cracking does exist.

3) For structures of this type, and for this 1FT

location, the axial stiffness of the 1FT is most

important, with flexural stiffness being less

important and shear stiffness being least important.

4) All of thestiffnesses of the entire 1FT ~ssernbly are

larger than the uncrackedelastic column·stiffness due

to the large.stiffness of the connecting plates.
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From study of the response of the prototype 1FT and

fabrication of the 1FTs, it was concluded that:

1) The original shear sensitivity was too small,

allowing for severe cross-channel interference

from axial loads. Major modifications to the

cross-section of the 1FT were required to alleviate

this.

2) In the instrumentation of IFTs the proper application

of strain gages is crucial.

From the calibration and installation of the IFTs, it

was concluded that:

1) The experimental calibration set-up should be

simple with known boundary conditions to precisely

determine the internal forces.

2) Installation procedures are important, since

disturbance to the structure will have an effect

on subsequent structural response.

3) The zero drift observed in the 1FT output was due to

the activity of contaminants on the top surface

of the strain gages. The rate of activity was

stimulated by temperature cycling.

4) The overall performance of the 1FT was considered

acceptable for short term static or dynamic loading.

To improve design and fabrication of future 1FTs

it is recommended that:

1) The stiffness of the entire 1FT assembly, including
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the 1FT attachments, should match the stiffness of

the structural element in which it is located.

2) Aspects of the 1FT material in addition to the

obvious strength and linear elastic -requirements

should be considered. The strength of the material

selected should be unaffected by fabrication, or

easily regained by heat treatment. The co­

efficient of thermal expansion of the 1FT material

should match that of the structural material to

avoid undesirable thermal stresses.

3) The 1FTs should be installed into the structure at

the appropriate time during construction, or pro­

cedures for installation into completed structures

should be improved to avoid unnecessary disturbance

to the structure.

4) Studies of the effect of the 1FT on the response of

the 1/5 scale structure to dynamic loads should be

conducted. The effect of the 1FT on the distribution

of forces within the structure should be studied analy­

tically. Pseudo-static testing of structural sub­

assemblages with and without the 1FT should be conduc­

ted to study the effect of the 1FT on column stiffness.

5) Further design studies be made to determine what par­

ameters control the level of cross-channel interfer­

ence in 1FTs.
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TABLE 2-1 COLUMN SECTION STIFFNESSES
---~ -_._----. -'---'---'~'-'--'

Flexural Shear Axial
-----

(79.0±ll.3)xlO3kip-in2 (20. 5±3.7 )xlo3kip (59.l+5.4)xl03kip
--_....

,!!BLE 2-2 1FT LOAD RANGES
..-

Moment Shear Force Axial Force

± 30k-in ± 2.3kip ± 16.0 kip

TABLE 2-3 1FT rvr.ATERIAL lYlECHANICAL CHAMCTERISTICS

Specimen Yield Ultimate Elastic Modulus

Specimen A 39.20ksi 44.32ksi 10 ..? xlO3ksi

Specimen B 42.32ksi 44.08ksi 10.1 xlO3ksi

Average 40.76ksi 44.20ksi 10.:' xlO 3ksi



TABLE 2-4 1FT SECTION STIFFNESSES
- --------,.....;.....•_-

Section Flexural Shear Axial

Original
99.lxlO\-in2 25.3xlO3kip 67.3xlO3kiptube

Tube with 1/16'
78.3xlO\-in2 20.2xlO3kip 53.8xlO3kipoff surfaces

Modified
75.lxlO3k-in2 l5x7xlO3kip 41. 9xlO3kipX-Section

1FT End
216xlO3k-in2 50.8xlO3kip l62xlO3kipPlates

Installation
6l9xlO3k-in2 l49xlO 3kip 4642\103kipPlates ,

Equivalent for
114xlO3k-in2 25.9xlO 3kip 70.9xlO 3kipEntire Assembly II
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TABLE 3...1 CALIBRATION CONSTANTS FOR IFTS

Moment Shear Axial

Calculated 103 )Jin/in 740 pinHn 63.6 )Jin/in
kin·"dn kip kip

experm/enfai * 88.0 pin/in 458.3 Win/in 39 3 win/in
IF; ~:1 kip-in kip • kip

#2 39.2 " 492 .3 It 42.6 II

113 86.6 " 472 .9 " 40.7 "

114 86.6 " 463.4 " 40.1 "

tl5 85.5 " 473.7 It 40.6 "
i,

116 86.4 " 468.9 " 41.3 "

f!7 86.5 " 470.5 II 40.8 "

fl8 86.3 II 465.8 " 41.6 "

t!9 86.4 II 470.7 " 41.4 "

fIlo 8"7.1 " 475.1
..

41.9 "

till 88.4 " 474.8 " "41.9

I 1112 86.3 " 459.8 " 40.8 "
* Experimental calibration constants for Moment and Shear are an
average of calibra.tion results from loa.ding in both senses.
Experimental calibration constants for axial force are an average
of calibration results for compressive loading.

TABLE 3-2 CALCULATED STRAIN FROM SHUNT RESISTORS

Moment Shear Axial

1
270 H?, 18 k~l 475 lQ? 47.5 kf2 1000 ~1 150 l~

1221 ]Jin/in 3266 pin/in 126 pin/in 1263 pin/in 120 )I in/in 794 II in/in
I



TABLE 3-3 MEASURED ELECTRONIC CALIBRATION

""""'--.J
-l=
'--"

I Noment Calibration Shear Calibration Axial Calibration I
Hech. Shunt -I; Equivalent Mech.

Shunt * Equivalent Mech.
Shunt * Equivalent

I
Cal. Cal. Cal.

Canst.
Strain Force *>':

Cons t.
Strain Force ** Const. Strain Force **

1FT lJin/in
(lJin/inl (kip-in.)

]Jin/in (>Jin/in) (kip)
lJin/ i.E.

(lJin/in) (kip) I
.. 1------ ---- ~""--'- -----f--

II kip~in 270k\1 18k\1 270k.\2 18k.n ki.p-in 470kli 47kl;l 470k(J 47k,2 kip-ill IOOOkQ ' 150kQ 1000kQ 150k\1
'---~~-

1 B8.0 . +222 +3272 I 2.52 37.18 458.3 .+ 125 +1261 .273 2.751 39.3 + 118 -+790 3.00 20. I
I

i 2 89.2 +221 I +3274 i 2.48

I

36.70 492.3 +126 +1259 .256 2.557 42.6 +121 +793 2.84 18.6 II
3 86.6 472.9 40.7

4 86.6 +220 +3272 2.54 37.78 463.4 +128 +J261 .276 2.721 40.1 +120 +796 2.99 19.85

5 85.5 +219', +3273 2.56 38.28 473.7 +125 +1259 .264 2.658 40.6 + 119 +794 2.93 19.6
...

j +32126 86.4 +219 2.53 37.87 468.9 +126 +1259 .266 2.685 4 J. 3 + 119 +792 2.88 19.2

7 86.5 +220 I +3273 2.54 37.84 470.5 + 124 +1262 .264 2.682 40.8 +119 +796 2.92 19.5

8 86.3 +221 +3272 2.56 37.91 465.8 +125 +1262 .268 2.709 4 J.6 +120 +794 2.B8 19.1

9 86.4 +221 +3273 2.56 37.88 470.7 +125 +1261 .266 2.679 41.4 +120 +796 2.90 19.2

10 87. I. +221 +3274 2.54 37.59 475.1 + 125 +1262 .263 2.656 41.9 +121 +796 2.89 19:0

1i 88.4 +219 +3271 2.48 37.00 474.8 +128 + I 263 .270 2.660 4 I. 9 +120 +795 2.B6 19.0

12 86.3 +220 +3271 2.55 37.90 459.8 +127 + 1262 .276 2.745 40.8 +120 +792 2.94 19.4
. _-- --------. ._--,_.~ ---_.. ---'''-'''-.--_.---~.

* Apparent strain reaq by strain indicator after application of shunt resistor

** Equivalent force value related to the shunt strain: F h t = Eshunt
s un --c-



TABLE 3-4 STATISTICAL ANALYSIS OF CALIBRATIONS
_.

% DifferenceMean Value
Calculated for 12 IFT Standard Coeffic ient from Calc.

Channel Constant Constants Deviation of Variation Constant

IJ in/ in II in/ in
1

jJin/in 1.2% 15.6%Moment 103--;------;·-· 86 . 9·--,---;--- 1--;-.. ··· -;-.-.
klp-1D klp-1D klp-ln

IJin/in IJ 1n/ in Ilin/in
15.4% 36.4%Shear 740-----;--·-- 470.5---k:ip- 8.9'--kTp-l(lp

Axial
iiin/in 4 l-

II in/ in lIin/in
1 .8% 35.1f%63 . 6--- -kIp·- 1------------ .9---·kI p-

kip

TABLE 3-5 flfAXIr.1UM VALUES OF CROSS CHANNEL INTERFERENCE

Calibration Channel, Range, Channel, Range,
Type Mean Hean

--

Constant Axial Force, -0.5 to -2.0k Shear Force, -0.2 to -0.5k
Moment Mean = -1.Ok Mean '" -0.3k

Combined Axial Force, 0.0 to -0.5k --
Moment-Shear Mean = -0.35k

Axial Load Moment, -2.7 to +2.3 kip-in Shear Force, -0. I to +0.2k
Mean = JO.7 kip-in Mean '" iO.07k
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TAB.LE 4-1 NAXIlVmf'! UPWARD DISPLACEMENT OF THE TOP OF THE COLUMNS DURQTQ...,lli!

INSTALLATION OF THE IFTS*
··C·· "._... ..

Column AI A2 A3 A4 BI B4 CI C2 C3 C4

IFT No. 1t8 tl4 Ifl tl12 tl6 1t7 If I 1 tllO /12 119

Disp. ( in . ) 0.0020 0.0050 0.0032 0.0020 0.0041 0.0019 0.0060 0.0100 0.0095 0.0031

* All were lowered back to their original position 1 5x 10-~in. except A3

TABL3 4-2 SUr~~RY OF 1FT AXIAL FORCE CHANlffiL DRIFT

Column- Drift Over Time Intervals (kip) 3 l10nth pin/in
[fiT II 4/8-4/13 4/13-4/23 4/23-4/29 4/29-6/7 6/10-6/30 Total(kip) Equivalent

AI - If 8 2.8 2. I 2.3 9.6 4.4 21.2 882

A2 -- 1f4 3.6 0.3 -0.7 3.8 -9.8 -2.8 -112

A3 - If 1 -1.2 -2.7 0.6 10.9 5.5 13.1 5 1.5

A4 - 1112 0.9 1.1 0.8 11.7 10.6 25.1 1024

BI - /16 -0.2 -0.5 1.0 2.9 -3.5 -0.3 -12
I

B4 -1f7 2.5 -0.5 0.9 4.7 1.1 8.7 355

C1 - If 10 -0.4 0.2 0.9 3.7 1.6 6.0 251

C2 - III 1 -2.11 -1.3 -0.5 -6.9 -1.3 -12.4 -520

C3 - tl2 5.4 3.3 1.5 10.5 6.2 26.9 1146

C4 - tI 9 0.7 4.9 -0.5 397

119 was changed to If 3 5/3

C4 - /13 1.0 -0.8 0.2 8
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FIG. 1-1 PLAN OF 1/5 SCALE MODEL. (After Harris EtA!; [7])
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FIG.2-4 INTERNAL FORCE TRANSDUCER INSTALLATION.
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FIG.2-5 MODIFIED CROSS-SECTION OF THE LF.T.
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FIG. 2-6 VERTICAL SECTION OF THE ORIGINAL DESIGN
SHOWING THE SCREWED CONNECTION BETWEEN
THE LF.T. AND END PLATES..
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FIG.2-7 SAMPLE OF LF.T. PLATE MATERIAL USED TO
TEST THE MECHANICAL CHARACTERISTICS OF
THE 6061 ALUMINUM AFTER HEAT TREATMENT.
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FIG. 2-8 SPECIMENS USED TO DETERMINE THE WELD STRENGTH.
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FIG. 3-1 ORIGINAL DEVICE USED FOR CALIBRATION
OF THE LF.T. MOMENT CHANNEL.

FIG.3-3 IMPROVED DEVICE USED FOR CALIBRATION
OF THE LF.T. MOMENT CHANNEL.
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FIG. 3.5 DEVICE USED FOR COMBINED MOMENT-SHEAR
CALIBRATION OF THE LF.T.
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FIG.3-6 TYPICAL CALIBRATION PLOT FOR COMBINED
MOMENT-SHEAR LOADING OF AN LF.T.

FIG.3-8 THE EFFECT OF END PLATE RESTRAINT ON THE
LF.T. STRAIN FIELD UNDER AXIAL LOADING.
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FIG.4-12 TRIBUTARY AREAS USED BY CHOWDHURY.
[Ref. 7]
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