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Abstract

An eccentrically brace frame is a structural framing system in which the axial forces in the

bracing members are transferred either to other braces or to columns through shear and bend

ing in a short beam segments called active links. The active link acts as a fuse, dissipating large

amounts of input energy upon lateral overloading of the structure. Eccentrically braced frames

are well suited for use in seismic regions because they can possess both a high elastic stiffness

and good ductility.

Experimental research performed on models of eccentrically braced frames has clearly

shown that the behavior of the active link elements dominates the behavior of the structure.

While these experiments have demonstrated the good global behavior of the framing system

they have not provided an adequate evaluation of the inelastic behavior of the active links,

especially as regards the web buckling phenomenon. Furthermore, rigorous analytical tools for

the inelastic analysis of the active link elements,' and therefore eccentrically braced frames,

appear to be lacking. These two important topics relating to active links in eccentrically braced

frames are treated in this report.

In the first part of the report the results of an experimental study of the behavior of active

links are presented. The study includes fifteen tests on full sized active links, which were per

formed to determine the general response characteristics of this type of element, especially as

regards the buckling and post-buckling behavior. An effort is made to determine how much

energy dissipation capacity an active link has, how the energy dissipation capacity is affected by

the web buckling phenomenon, and how it can be extended through the introduction of

transverse web stiffeners.

The second part of the report concerns the elasto-plastic analysis of eccentrically braced

frames, with emphasis on accurately modeling the active link elements. Two analytical models

are developed for this purpose. The first model employs the three dimensional equilibrium

equations of a continuum, which are subsequently constrained through the introduction of a
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kinematic hypothesis. The choice of kinematic hypothesis employed here accounts for warping

of the cross section due to transverse shear. The elasto-plastic constitutive equations are

treated with a viscoplastic model in a penalty approach. An iterative finite element procedure is

used to solve the nonlinear problem.

The second model is developed entirely in terms of stress resultant quantities and their

conjugate strain measures. The elasto-plastic constitutive equations are again treated using the

penalty approach. The problem of describing a suitable plastic flow potential for the I-type cross

section, which is typically used for active links, is given special consideration. Again, an itera

tive finite element solution scheme is employed.

Five numerical examples related to eccentrically braced frames are presented. The first

two examples are designed to point out the features of each of the two mathematical models

and to compare their differences. The last three examples represent a study of the behavior of

three one bay, three story eccentrically braced frames employing different bracing arrange

ments. The three frames are subjected to cyclic loading and are evaluated with respect to

stiffness, ultimate capacity, and member ductility demands.

Finally, an appendix dealing with the effects of warping restraint in thin walled beams is

presented. The elastic case is solved in closed form. The elasto-plastic case is considered by

employing the numerical solution procedure developed earlier.
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Introduction
1

Buildings constructed in seismic regions must satisfy two basic design requirements.

First, the structure must have controlled drift under normal loading conditions in order to

prevent structural and/or non-structural damage. Second, the structure must be safe from col

lapse in a severe earthquake. A ductile structure with a large elastic stiffness meets these

requirements. Unfortunately, such systems are sometimes difficult to realize economically.

Moment resisting frames, for example, have excellent ductility capability but tend to be flexible

unless member sizes made relatively large and details are made sufficiently stiff. Concentrically

braced frames, on the other hand, have high elastic stiffnesses but possess limited ductility

capability. The eccentrically braced frame is a hybrid system having features common to both

the moment resisting frame and the concentrically braced frame. This system offers the advan

tage of economy and satisfies the two diverse requirements of stiffness and ductility for seismic

design [42,43].

An eccentrically braced frame, two examples of which are shown in Fig. 0.1, is any braced

framing system in which the axial forces in a brace are transferred either to another brace or to

a column through shear and bending in a short segment of beam called an active link. The

active link acts as a structural fuse, generally behaving elastically under normal loading condi

tions, but deforming inelastically upon overloading of the frame. A large amount of energy can

be dissipated through inelastic deformation in the active link regions. This energy dissipation

mechanism allows for the ductile behavior of eccentrically braced frames.

To put the concept of eccentric bracing into perspective, it is instructive to consider the

simple system shown in Fig. 0.2 in the context of the two design requirements given above.

The ratio of the height of the structure h, to the breadth L, will be called the aspect ratio hiL.

and the ratio of the length of the eccentric element e, to the breadth L, the eccentricity ratio

elL.
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The elastic lateral stiffness of the simple frame is shown in Fig. 0.3 (a) as a function of the

eccentricity ratio for various aspect ratios, keeping all other properties of the structure in the

same relative proportions. The stiffness values for each value of the aspect ratio have been

normalized by the value of stiffness at e/L = L It is evident that a large elastic stiffness can be

achieved by employing short active links (small e/L). In fact, at e/L = 0, the stiffness of the

concentrically braced frame is recovered. On the other hand, values of e/L > 0.5 show little

advantage over the unbraced (moment resisting) frame. The split-K framing system, shown in

Fig. 0.3 (b), illustrates even more dramatically that the eccentricity ratio must be kept small to

achieve high elastic lateral frame stiffness.

When one considers the probable mode of inelastic deformation of the structure, it

becomes clear that the smaller is the active link, the greater will be its ductility requirements

upon overloading. To see that this statement is true, consider again the simple frame whose

collapse mechanism is shown in Fig. 0.4. Geometrical considerations show that the member

deformation y, is related to the structure deformation (J, as

ye=(JL (0.0

Hence, if e/L is small, then y/(J will be large.

Experimental research on scale models of eccentrically braced frames has shown that the

system behaves well when subjected to severe pseudo-static cyclic loading [42,27] and to

dynamic loading [49]. These studies have also verified that the demands placed on the active

links can be extreme for severe lateral loading. Under these conditions, the active links often

experience inelastic web buckling. Previous work on the ·shear buckling of web plates has

focussed on applications to plate girders having thin webs [1,6]. Certain similarities do exist

between the buckling of plate girders and the buckling of active links. However, in the former,

buckling generally precedes inelasticity, whereas, in the latter, inelasticity almost invariably pre

cedes buckling. Hence, a direct application of plate girder analysis techniques cannot be made.
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Two important problems relating to active links in eccentrically braced frames are

addressed in this work. The first part of the dissertation is concerned with determining how

much energy dissipation capacity is available in an active link, and how that capacity is affected

by the inelastic web buckling phenomenon. The second part of dissertation deals with the

problem of determining what the magnitude of the inelastic deformations are for an active link

which is part of a complex structural system. An estimate of such member ductility demands

can be obtained from an inelastic analysis of the system. Motivated by this observation, the

second topic examined in this dissertation concerns the inelastic analysis of eccentrically braced

frames, with emphasis on an accurate characterization of the inelastic pre-buckling behavior of

the active link elements.

The nature of the phenomena involved and the goals of the study have dictated two dis

tinctly different approachs to the problems considered, the first being experimental and the

second being analytical. The following paragraphs describe the content of each of the chapters,

and the approaches followed in them.

The first three chapters are concerned with the problem of inelastic web buckling of active

links subjected to severe cyclic loading. Due to the inherent complexity of this phenomenon,

an experimental approach to the problem has been adopted here. The goal of this portion of

the study is to obtain data on the general response characteristics of active links with emphasis

on buckling and post-buckling behavior. In particular, the extension of energy dissipation capa

city through transverse stiffening of the web region is studied. Fifteen full sized active links

with various stiffening arrangements have been tested under pseudo-static loading conditions in

an effort to achieve these goals.

In Chapter 1 the groundwork of the experimental program is laid. The modeling assump

tions are discussed and the testing procedure is described. Chapter 2 gives a chronologically

oriented description of each of the fifteen tests. Shear-displacement hysteretic characteristics of

each link are presented along with specific observations made during the experiments. General

conclusions regarding the behavior of the test specimens are made in Chapter 3, wherein the
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quantification of certain important limit states is also made.

Chapters 4 through 7 are concerned with the problem of analyzing eccentrically braced

frames having active links which are stiffened against buckling. An accurate analysis of such

frames relies upon proper modeling of the active links. Hence, the developments are slanted

toward the analysis of the elastic and inelastic, pre-buckling behavior of active links. Inasmuch

as active links are likely to experience moderately large deformations, second order theories are

considered. Material behavior is assumed to be perfectly elasto-plastic.

Chapter 4 gives an introduction to the analysis of active links and a brief account of some

previous efforts in this direction. Comments are confined mostly to applications involving the

analysis of eccentrically braced frames. In Chapter 5, a model of active link behavior is

developed starting from a three dimensional continuum theory and subsequently constraining it

by introducing a kinematic hypothesis. The specific kinematic hypothesis employed, first con

sidered in [45] for problems of elastic stability, is able to account for the warping of the cross

section which necessarily accompanies transverse shearing. A viscoplastic penalty approach to

the problem of modeling elasto-plastic material behavior is employed. A Finite Element

discretization of the domain is used in conjunction with a Newton-Raphson iteration scheme to

solve the nonlinear problem. Since the model is able to discern phenomena which are local to

the cross section of the member it has been called a "local approach".

A simpler model, developed entirely in terms of stress resultants and their conjugate

strain measures, is presented in Chapter 6. Again, a viscoplastic penalty approach to the

elasto-plastic constitutive equations is used. The problem of describing the yield potential of an

I-beam, suitable for use in this approach, is given special consideration. The solution algorithm

is similar to the one used in Chapter 5.

Finally, five example applications are presented in Chapter 7. The first two examples are

designed to show the characteristics of the two analytical models developed in Chapters 5 and 6.

The second example has the specific purpose of assessing the suitability of the stress resultant

model for use in the analysis of eccentrically braced frames. This assessment is accomplished
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by comparing the results obtained with the stress resultant model with those obtained using the

local approach. The last three examples represent a study of three single bay, three story

eccentrically braced frames subjected to cyclically applied loading. Some comments are made

regarding the inelastic behavior of the frames studied.

Motivated by earlier work [43] which idealized the I-beam as a sandwich construction, an

appendix is presented which generally treats the problem of warping restraint in thin walled

members. It is felt that the thin walled approximation is more appropriate for the I-section

than is the sandwich idealization.

It is emphasised that the experimental and analytical portions of the present work treat

different aspects of the active link problem. The analytical procedures developed are not able

to characterize the inelastic web buckling phenomenon studied in the experiments. Hence, the

correlations made between the experiments and analytical results are circumspect.
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Chapter 1

Experimental Program

1.0. Introduction

The tasks in an experimental investigation are first to model as accurately as possible the

physical domain of the problem and then to excite the model in an appropriate way. It is sel

dom feasible to model a complete structure due to physical limitations of excitation apparati,

limits of resolution of response measurement devices, and difficulties associated with measuring

internal force quantities. Furthermore, it is not practical to test an entire structure to deter

mine the local behavior of certain of its elements. In these cases, testing of an isolated part of

the structure provides an attractive alternative. This approach has been adopted in the present

study.

Past research on eccentrically braced frames has been devoted to experimental investiga

tions of one-third scale, three story, one bay frames [27,43]. While these tests have demon

strated the good behavior of eccentrically braced frames under severe cyclic loading and have

yielded valuable data on the global response of such frames, they have not provided an ade

quate evaluation of the local behavior of the active link elements. The need for better informa

tion regarding the inelastic prebuckling and postbuckling behavior of active links motivated the

experimental investigation reported herein.

1.1. Modeling of Active Links

The isolation of an element of a structure requires that certain surfaces which are in the

interior of the global domain must serve as boundaries of the isolated domain. Constraints

imposed at these boundaries should model as closely as possible the expected state in the proto

type structure. For the purpose of the present investigation, the model was extracted from two

possible prototype configurations as shown in Fig. 1.1. The fully welded, heavy end plates
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imposed the following boundary constraints on the test specimens: (1) Warping of the cross

section was totally restrained at both ends of the link, and (2) the flanges were held fixed at

both ends of the link.

Since the link beam will generally be either adjacent to a region of beam with low shear

(and a correspondingly small amount of warping) or welded to a column flange, warping res

traint will generally exist in real applications. Such warping restraint is generally localized and

thus should not significantly affect overall link response. The effects of warping restraint are

treated analytically in Appendix I.

It is good design practice to stiffen a beam at the point of application of a concentrated

load (such as that occuring at a brace-beam intersection) to prevent local failures due to web

crippling. Hence, fixity of the flanges at the ends of the test specimens closely represents the

situation commonly found in practice.

Localizing the specimen for testing purposes precludes modeling the interaction between

the element and the global system. In reality, peculiarities in the element force-deformation

relationships cause the internal forces to redistribute throughout the structure. Such a redistri

bution of forces means that the input to each element is changed. This feedback mechanism

has not been considered here. It is felt that this global problem is better handled analytically.

In view of the preceding argument, the imposed loading was chosen to be radial and had

the following characteristics: (1) Constant resultant shear, (2) linearly varying bending

moment, reaching equal end moments and vanishing at midspan, and (3) zero net axial force.

The acceptability of these loading assumptions is clearly application dependent. Judgement

should be used in extrapolating the results to situations which significantly depart from the con

ditions of these tests.

The testing system, designed to impart the aforementioned conditions, is shown schemati

cally in Fig. 1.2(a). The load was transferred from the actuator to the specimen via a rigid L

shaped member which slid on three Teflon-coated supports. Frictional forces induced at the

supports were determined to be negligible in comparison with the resolution of the load
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measuring devices. The specimens were bolted securely to the testing apparatus through the

end plates. The side arm was provided to ensure system stability. Loads were monitored in the

side arm throughout the tests and were generally found to be negligible. A photograph of the

testing system is shown in Fig. 1.2(b).

1.2. Loading History

The ultimate goal of this research is to make inferences about the behavior of active links

in eccentrically braced frames under the influence of earthquake-type actions. The deformations

experienced by any given active link depend upon the link's constitution, the structure topol

ogy, and the excitation history. This investigation aims at gaining an understanding of the

action-deformation properties of active link type elements in a general sense. To this end,

structure topology and excitation history have been simplified. Once active link behavior has

been explicated, the more general problem of eccentrically braced frame response to earthquake

groundmotion can be approached analytically.

All specimens were subjected; to quasi-statically applied cycles of relative end displacement

in the plane of the specimen's we'b. This loading program consisted of one cycle at a displace

ment magnitude of one half inch and two cycles each at displacement magnitudes of one inch,

one and a half inches, two inches, etc. until failure of the specimen occurred. Each test was

preceded by linear range cycling to determine the elastic response of each link. Failure was

defined as substantial loss of load carrying capacity. Material and inertial effects arising from

the dynamic nature of earthquake loading were neglected in this test program.

For future reference each cycle consisted of two displacement excursions from a point of

zero load, one in a northerly direction (N) and one in a southerly direction (S). The north half

cycle always preceded the south half cycle.
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1.3. The Test Specimens

The test specimens were chosen to model, in full size, link beams likely to be encoun-

tered in real applications. Some of the important properties of each of the fifteen specimens are

summarized in Table 1.1, which lists the section used, the length of the specimen t, the dimen-

sionless ratios a/tw and a (described below), and the sizes of each of the panel zones.

Specimen Section Length a Longitudinala
tw

Panel Zone Dimensions
(in) No. (inches - E to W)

1 W18x40 28.0 53.6 1.27 1 28.0
2 W18x40 28.0 44.0 1.27 2 14.0, 14.0
3 W18x40 28.0 28.9 1.27 3 9.33, 9.33, 9.33
4 W18x40 28.0 21.4 1.27 4 7.0, 7.0, 7.0, 7.0
5 W18x40 28.0 33.8 1.27 3 8.5, 11.0, 8.5
6 W18x40 28.0 - 1.27 3 11.2, 8.4, 8.4
7 W18x35 28.0 28.0 0.85 3 9.33, 9.33, 9.33
8 W18x60 36.0 40.1 1.17 1 36.0
9 W18x40 36.0 37.4 0.98 3 12.0, 12.0, 12.0

10 W16x26 36.0 57.0 0.71 1 36.0
11 W18x35 36.0 52.3 0.66 1 36.0
12 W12x22 36.0 43.2 0.37 1 36.0
13 W16x26 36.0 44.7 0.71 3 12.0, 12.0, 12.0
14 W18x35 36.0 36.3 0.66 3 12.0, 12.0, 12.0
15 W12x22 36.0 - 0.37 3 6.0, 24.0, 6.0

Table 1.1 Test Specimen Properties

The quantity a/tw is the ratio of the smallest dimension of the largest panel zone(s), a, to

the thickness of the web, tw ' This ratio is useful in characterizing the buckling limit state of an

active link. In these tests, only Specimens 5, 6, and 15 had unequally spaced stiffeners. Values

of a/tw are not reported for either Specimen 6, in which the value of a is not known due to the

presence of a gusset plate, or for Specimen 15, in which the largest panel zone was not critical

from the standpoint of web buckling.

t excluding the end plates
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For the test configuration employed in the present investigation the equilibrium equation

2M = L V holds, where M is the absolute value of the moment at both ends of the specimen,

L is the length of the specimen, and V is the transverse shear force. Inspired by this equation,

we define the dimensionless ratio ex as

2M' <To h Ofex=--=----
L Vo 'To L Ow

0.0

where M' is the plastic moment of the flanges alone and Vo is the fully plastic shear of the sec-

tion, given respectively by

(1.2)

In these equations, h is the distance between the centroids of the two flanges, b is the flange

width, tf is the flange thickness, tw is the web thickness, <To is the yield stress in tension, 'To is

the yield stress in pure shear, L is the length of the link, and n f and 0 ware the gross areas

of the flanges and web, respectively. The index ex can be used as a rough guide in describing

the behavior of active links. Active links having values of ex > 1 are likely to yield predom-

inantly in shear. Such links will often be called shear links. Active links having values of

ex < 1 will generally be subject to moment-shear interaction. For lack of a better name, these

links will often be called bending links.

Section Properties.- The geometric properties of the five sections used are given in Table

1.2, in which d is the section depth, tw is the web thickness, b is the flange width, tf is the

flange thickness, I is the moment of inertia, 0 is the area, and K is the shear coefficient, an

expression for which can be found in [2].

Material Properties.- The ability of an active link to dissipate energy depends strongly on

the mechanical properties of the material. The material must be highly ductile in order to with-

stand the large inelastic deformations required of it. In general, the low strength carbon steels
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Section d I .... b If I n K

(in) (in) (in) (in) (in4) (in2)

W12x22 12.31 0.266 4.000 0.415 154 6.37 0.478

W16x26 15.70 0.263 5.484 0.356 312 7.85 0.496

W18x35 17.69 0.324 5.906 0.378 475 9.95 0.541

W18x40 17.88 0.314 5.985 0.521 605 11.52 0.457

W18x60 18.28 0.422 7.563 0.681 978 17.44 0.408

Table 1.2 Test Specimen Section Properties

are preferred in applications requiring such high ductility. All specimens in this investigation

were fabricated from ASTM A36 steel.

The initial properties of the material in the test specimens were determined by uniaxial

tension tests on coupons extracted from the flanges and webs of the beam stock for each sec-

tion size; one coupon being taken from each flange, and two from the web. The results of

these tests are summarized in Table 1.3, in which (To is the yield stress, (T u is the ultimate

stress, E sh is the strain at the onset of strain hardening, E u is the strain corresponding to (T u,

and E is Young's modulus. All of the material used in the experimental program exhibited the

typical behavior shown in Fig. 1.3, consisting of a stiff elastic range followed by a plastic plateu

and finally a region of strain hardening. Values given in the table represent averages of dupli-

cate coupon tests. Except for theWl2x22, the tests gave reasonably consistent results. The

cyclic material properties, which can be quite different from the virgin properties, will undoubt-

edly dominate the response of cyclically loaded links. The monotonic material properties do,

however, provide good reference values for comparisons between specimens.

End Connection Details.- It was not the purpose of this investigation to explore the

effects of the end connection details. All of the connections were moment resisting, and were
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Specimen <To <T u Esh E u E

Section Location ksi ksi in/in in/in ksi

W12x22 web 55.5 68.3 0.021 0.16 29700
flange 42.4 63.4 0.025 0.24 29800

W16x26 web 48.3 67.2 0.026 0.24 30150
flange 49.7 68.9 0.018 0.21 30100

W18x35
web 46.7 68.9 0.020 0.20 28650

flange 41.4 63.7 0.022 0.21 28600

W18x40 web 39.5 60.1 0.018 0.22 28300
flange 35.0 58.5 0.014 0.24 28000

W18x60 web 44.4 68.4 0.019 0.21 28600
flange 38.9 66.6 0.013 0.24 29200

Table 1.3 Test Secimen Material Properties

designed to develop forces somewhat greater than the full plastic capacity of the member so as

to allow for strain hardening effects. It is emphasized that integrity of the connections is

extremely important for the active link regions of eccentrically braced frames. A brittle failure

of a connection could destroy the ductile behavior of an eccentrically braced frame.

Each of the test specimens employed one of the connection types shown in Fig. 1.4, and

described below:

Type 1: The Type 1 connection shown in Fig. 1.4(a) employs full penetration welds of the

flanges and web to the end plate. The flange welds were made using cope holes and

backup bars.

Type 2: The Type 2 connection shown in Fig. 1.4(b) employs fillet welds all around the

flanges and web.

Type 3: The Type 3 connection shown in Fig. 1.4(c) employs full penetration welds with

cope holes and backup bars for the flanges, as in the Type 1 connection. In the web

region, a thick gusset plate was first fillet welded to the end plate and subsequently fillet

welded to the web.
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Specimens 1 through 5 had Type 1 connections at both ends, Specimen 6 had a Type 2

connection at one end and a Type 3 at the other, and the remaining specimens had exclusively

Type 2 connections.

Transverse Stiffeners.- Transverse stiffeners were employed in these tests to prevent, or

at least delay, inelastic buckling of the webs of the active links. No effort was made in the

present investigation to determine the optimal size required of the stiffener to perform its func

tion. Transverse stiffeners for all specimens employing them were 0.375 in. thick, cut flush

with the flanges, and fillet welded to the web and to both flanges. Intermittent welding was not

employed. Stiffeners were always placed in pairs, one on each side of the web.

1.4. Instrumentation and Data Acquisition

The response of each specimen was monitored electronically using a Neff high speed data

acquisition system, in conjunction with a Nova computer. Data were read and stored on a hard

disc in digital form. After each test, the digitized data were transferred to a CDC6400 main

frame computer using magnetic tape storage. All subsequent data reduction was performed on

the CDC6400, using programs written for this special purpose.

Measurement of forces in the specimens was accomplished via load cells located in the

loading ram and in the side arm (Fig. 1.2). With these two forces known, the stress resultants

at any point in the specimen could be obtained from static equilibrium. Tolerances for the load

cells were taken to be ± 1.0 k for the 350 k capacity loading ram load cell and ±0.5 k for the

125 k capacity side arm load cell. Frictional resistance of the test frame sliding on its Teflon

coated support pedestals was determined to be less than the load cell resolution and was there

fore neglected.

Movement of the specimen's loaded end (UI , U2 , and U3 in Fig. 1.5(a» was monitored

with linear potentiometers for all specimens, each Ui being the average reading of two instru

ments. Movement of the supported end (U4 , Us , and U6) was monitored during the testing of

Specimen 1 using linear variable differential transformers (LVDT's) and was found to be small
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in comparison with the displacement of the loaded end. These measurements were discontin

ued in subsequent tests. Lateral displacement of the specimen at stiffener locations were meas

ured with linear potentiometers for those specimens that had stiffeners. Additionally, an array

(usually 3 by 3) of linear potentiometers was used to monitor out~of-plane displacements of the

web. Resolution of the linear potentiometers was ±O,OOI in. and that of the LVDT's was

±O.OOOI in.

Placement of strain gages and strain gage rosettes varied from specimen to specimen. Fig.

1.5(b) shows typical locations for these gages for a three panel specimen. Flange and stiffener

strains were measured with uniaxial SR-4 post yield strain gages (0.25 in. gage length), and web

strains were measured with SR-4 post yield strain gage rosettes (0.125 in. gage length). The

flange gages were placed at the center of the flange width opposite the flange-web junction. The

stiffener gages were placed in pairs, one third of the stiffener width away from the web plate, at

the center of the depth of the section. The web rosettes were usually placed in pairs on oppo

site side of the web at the center of each panel zone. Specimen 1 was an exception, having a

three by three array of rosettes. The adhesive used limited maximum strain measurements to

values between 5 and 10 percent strain. Strain gage readings were assumed accurate to within

50 microstrain due to neglect of temperature effects.
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Chapter 2

The Hysteretic Behavior of Active Links:

A Chronological History of the Tests

2.0. Introduction

In this chapter the hysteretic behavior of active links is studied by examining the response

of the fifteen test specimens described in the previous chapter. Each of the fifteen tests is

presented individually, following the order that the specimens were tested. Some conclusions

based on observations of the hysteretic behavior are made, but most generalizations will be

presented in Chapter 3.

To facilitate the presentation and discussion of specimen behavior, reference is repeatedly

made to the global force-displacement histories (i.e. applied shear force vs. relative end dis

placement) of each specimen. The following nomenclature and conventions are used in

describing the hysteretic behavior of the test specimens: Positive displacements are northerly,

negative displacements are southerly, and positive shear force causes positive displacement. An

absolute displacement is taken to mean displacement relative to the undeformed specimen. A

relative displacement is taken to mean displacement relative to the most recent unloaded (but

not generally unstressed) state as sensed by the load cell in the hydraulic loading ram. Relative

displacements are generally a more meaningful measure of the deformation of a specimen. The

loading was controlled by specifying absolute displacements. Each cycle consisted of an

imposed northerly displacement followed by a southerly one of the same absolute magnitude.

2.1. The Tests

Specimen 1.- Specimen 1 was a shear link (WI8x40, 28 inches long) constructed without

stiffening the web region. Consequently, it contained a single panel zone 28.0 x 16.9 inches in

size t. The shorter sides of the panel boundary were fixed to end plates while the longer sides

t Panel dimensions are taken to be clear distances without discounting for fillets at welds or web-flange junc tions.
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were partially restrained by the flanges. The action-deformation relationship recorded for Speci

men 1 is shown in Fig. 2.1 (a).

The initial loading to +0.5 inch displacement showed a high elastic stiffness followed by a

plastic plateau at 117.8 k. A slight amount of .strain hardening was noted near the maximum

displacement in this virgin excursion. Upon load reversal, an apparent "Bauschinger effect" was

exhibited. (As an example in Chapter 7 shows, this so-called "Bauschinger effect" is due, in

part, to the distribution of residual inelastic strains over the cross section of the link and not

exclusively to the mechanical properties of the material. The resemblance of this geometric

effect to the true Bauschinger effect associated with material constitutive behavior has

motivated the denomination.) The strains in the web were nearly pure shear during the first

cycle and had magnitudes of approximately one percent in both the northerly and southerly

excursions measured relative to the undeformed configuration (ie. the southerly excursion had

two percent relative strains). The southern leg of the first cycle showed strain hardening at an

absolute displacement of -0.1 inches.

Substantial web buckling occurred in cycle 2N (ie. the second cycle in the northerly direc

tion) at a displacement of 0.9 inches relative to the most recent unloaded state. The applied

shear force at buckling was 134.9 k, or 1.15 times the yield shear. Buckling in the opposite

direction took place at identical load and relative displacement magnitudes: First buckling

marked the highest attained load as well as the beginning of significant load carrying capacity

degradation. Amplitude of out-of-plane web displacement due to buckling increased with each

cycle with maximum values of around 3.0 inches in the latter portions of the test (roughly

equal to half the flange width). The hysteretic behavior recorded for Specimen 1 was typical of

an active link experiencing cyclic inelastic web buckling. Each cycle exhibited a distinct buck

ling load followed by a drop in load carrying capacity. The loss in load carrying capacity was

subsequently arrested due to the formation of a tension field. Tension field action allowed load

losses to be recovered, the buckling load often being surpassed. The cyclic web buckling

phenomenon will be discussed in greater detail in Chapter 3.
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Tearing of material at the center of the panel occurred upon the first excursion to +2.0

inches absolute displacement as a direct consequence of the distress caused by the cyclic chang

ing of the buckled mode shapes. This tearing severed the tension field which is the predom

inant load carrying mechanism in a severly buckled link. Cycle 7 was carried out even though

severe tearing was already present. A photograph of the failed specimen is shown in Fig.

2.l(b).

Specimen 2.- Specimen 2 was identical to Specimen 1 except for the addition of a

transverse stiffener in the center, which created two equal panel zones with dimensions 16.9 x

13.8 inches. The response of this specimen, shown in Fig. 2.2(a), was nearly identical to that

of Specimen 1 for the first cycle, confirming the belief that the addition of transverse stiffeners

has little effect on the inelastic prebuckling shear behavior of an active link. Generalized yield

ing occurred at a load of 120.2 k.

The effect of stiffening the web plate was to delay buckling until the second excursion to

-1.0 inches absolute displacement. Buckling first occurred in th.e east panel at a load of 160.5 k

and a displacement of 1.74 inches relative to the most recent unloaded state. Substantial out

of-plane web deflection was not noted until the fourth cycle of the test. The smaller panel size

helped control the amplitude of web buckling thereby lessening the severity of load carrying

capacity degradation of the member upon cycling. The stiffener showed visible distress in the

later cycles.

Although the west panel did eventually buckle, it wasn't until late in the loading program

that this buckling occurred. Consequently, deformation concentrated in the east panel during

most of the test. This behavior was noted to varying degrees in all of the multi-panel links but

Specimen 2 provided one of the clearest examples of it. Concentration of deformation puts a

higher demand on the material in the buckled panel and is thus considered undesirable.

Due to geometric and material imperfections, one panel in an otherwise symmetrical link

is likely to buckle first. We have seen that buckling causes a deterioration in load carrying
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capacity. It seem reasonable that the panel which buckled first would limit the load taken by

the link, thereby protecting the other paneI(s) from buckling. In some cases, however, tension

field action in the buckled panel, together with material softening associated with inelastic

cycling in the unbuckled panel(s), may lead to buckling elsewhere.

Failure of Specimen 2 occurred in cycle 8 after one excursion to +2.5 inches absolute dis

placement. The manifestation of failure was tearing at the web-flange junction, a mode of

failure characteristic of most of the multi-panel links. The failed specimen is shown in Fig.

2.2(b).

Specimen 3.- Specimen 3 was identical to Specimens 1 and 2 except that it had two

equally spaced transverse stiffeners. With two sets of stiffeners, the clear panel sizes were 9.1

x 16.9 inches. Although weld imperfections in the flanges caused premature failure, valuable

information was still obtained.

The response of Specimen 3 was similar to that of Specimens 1 and 2 in the pre-buckling

range of behavior. The hysteretic loops are shown in Fig. 2.3 (a). When the southwest flange

weld fractured in cycle 5, no web buckling had been noted. The weld was repaired and the test

was resumed. Buckling of the web occurred in the northern leg of cycle 6 at a load of 182.9 k

and a relative displacement of 2.96 inches. As can be seen in Fig. 2.3(b), buckling was well dis

tributed among the three panel zones. Shortly after first buckling a second flange weld failure

occurred. The test was terminated since evidence of load carrying capacity degradation had

already been shown.

Specimen 4.- A further variation on the original theme, Specimen 4 had four equal panel

zones of dimension 6.6 x 16.9 inches. As can be seen in Table 1.1, this specimen had the

smallest a / tw ratio of all of the fifteen specimens. The hysteretic behavior is shown in Fig.

2.4(a). One can note a remarkable improvement over the behavior exhibited by Specimen 1.

Deformations throughout most of the test were realized. through inelastic shearing of the web
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region. Web buckling was slight, not occurring until the southern part of cycle 9 at a load of

206.5 k and a relative displacement of 5.0 inches. Failure occurred in cycle 11 by tearing at the

web-flange junctions originating in the cope holes in each corner. The failed specimen is shown

in Fig. 2.4(b).

The first four specimens show clearly the superior energy dissipation capacity of stiffened

links. A stiffened link is able to accomplish energy dissipation through inelastic shearing strains

rather than through inelastic web buckling. When buckling is prevented, the inelastic shearing

deformations distribute evenly throughout a link causing less intense working of a greater

volume of material than the buckling links which tend to have concentrated deformations.

The next two specimens, 5 and 6, represent slight perturbations to the original group.

Specimen 5 was tested to examine the effe.ct of having unequal sized panel zones. Specimen 6

was tested to explore the effect of employing an alternative end connection detail. Being of the

same stock and length, comparisons with the first four specimens are immediate.

Specimen 5.- Up to this point all panel zones in a link were made to be of equal width.

Since, due to the presence of bending as well as shear, not all panels experience the same states

of stress, one would expect the exterior panels to be more highly stressed than the interior

ones. In fact, it was noted that buckling occurred most severely in an exterior panel in Speci

mens 3 and 4. Specimen 5 was designed to investigate the effect of employing unequal panel

zone sizes on the behavior of active links.

The two sets of stiffeners in Specimen 5 were placed so as to form a larger central panel

00.7 x 16.9 in.) and two equal end panels (8.4 x 16.9 in.). The response of this specimen was

as shown in Fig. 2.5(a). The initial behavior was, as expected, the same as Specimens 1-4 with

initial yielding at 120.8 k. However, buckling of the central panel occurred quite early (cycle

2S) at a load of 171.6 k and relative displacement of 2.93 inches. The behavior was clearly

inferior to that of the other three panel specimen (Specimen 3). One might conclude from this

test that behavior is not improved by employing an unequal spacing of stiffeners in active links
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which yield predominantly in shear. It will be seen that bending links are different in this

regard.

Specimen 6.- On a more practical note, Specimen 6 dealt with the problem of end con

nection detailing, being constructed with a Type 2 connection at the west end and a Type 3 con

nection at the east end. The two sets of stiffeners were placed so as to form two equal panels

(8.2 x 16.9 in.) at the west end with a larger zone for the panel with the thick gusset plate. The

response of Specimen 6 is shown in Fig. 2.6(a).

The behavior of this specimen was basically favorable. Buckling of Specimen 6 was most

severe in the panel containing the gusset plate with the buckles penetrating to the corners

around the gusset as shown in Fig. 2.6 (b). The center panel experienced significant buckling

also. This favorable distribution of buckling Oe. buckling in more than one panel) slowed

degradation of load carrying capacity in the post buckling range. Failure of Specimen 6 was by

tearing of the web around the gusset plate.

Although this single test does not provide conclusive evidence, it would appear that end

connection details have little effect on the integrity of active links, prOVided the connections are

fully welded, moment-resisting, and designed to develop the full capacity of the member.

Specimen 7.- Specimen 7 was constructed from a W18x35 section and consequently had

flanges that were considerably more slender than the previous specimens. The purpose of this

test was to explore the effect of slender flanges on the buckling behavior of active links which

deform predominantly in shear. The width-to-thickness ratio of the flanges was bl2t! = 7.8,

which is high for rolled wide flange sections.

Two sets of stiffeners were equally spaced in this specimen creating three panel zones of

dimension 9.1 x 16.9 inches. Flange buckling occurred first in cycle 3 at an absolute displace

ment magnitude of 1.0 inch. These buckles continued to form, increasing in size until cycle 6

when the central web panel buckled at a load and relative displacement of 205.0 k and 3.02
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inches respectively. Web buckling, not flange buckling, marked the beginning of specimen

deterioration. Buckling concentrated in the middle panel where failure finally occurred by peri

pheral tearing of the web region in cycle 9. The important conclusion from this test is that web

buckling is far more debilitating to an active link than is flange buckling. Thus, the former may

be a useful limit state whereas the latter might not be.

Specimen 8.- Specimen 8 was fabricated from a W18x60 section and was 36 inches long.

Having no stiffeners, it resembled Specimen 1 in that the longest panel dimension had flange

boundaries. The panel zone was 8 inches longer than that of Specimen 1 and had a consider

ably thicker web. The response of Specimen 8 is shown in Fig. 2.8(a).

Generalized yielding of the cross section occurred at a load of 189.0 k. Member behavior

was typical of a shear link, showing considerable strain hardening at increasing deformation.

Buckling occurred relatively late, happening in the first positive excursion to 1.0 inches absolute

displacement. The buckling load was 241.0 k with a corresponding relative displacement of

2.15 inches, well below the maximum load of 257 k achieved in the half cycle prior to buckling.

The buckled shape differed from that of Specimen 1 in that the buckle (and therefore ten

sion field) did not run from corner to corner, as can be seen in Fig 2.8(b). The manifestations

of this different buckling mode can be seen in the action-deformation relationship of the

member. The effects of different buckling modes on the behavior of the test specimens will be

discussed in more detail in Chapter 3, and consequently is not pursued here. Some torsional

response of the flanges, induced by web buckling, was evident in the later cycles of the test.

Specimen 9.- Specimen 9 was constructed from the same stock as the first six specimens

but it was 36 inches long. With two sets of stiffeners it had three equal panel zones of dimen

sion 11.8 x 16.9 inches. This specimen was designed to provide more information about links

in the transition region between bending and shear type behavior. The response history of

Specimen 9 is shown in Fig. 2.9(a).
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The yield load for this specimen was slightly higher than for the W18x40 specimens at

the shorter length. This apparent contradiction may have been caused by an inadvertent initial

inelastic pulse in the northerly direction prior to the test. The important point to note is that

even though the bending moment was 22% higher in Specimen 9 than in Specimens 1-6, the

yield load was roughly the same, indicating little interaction between bending and shear capacity

for these lengths.

Buckling of the center panel occurred in cycle 4S at a load and relative displacement of

172 k and 2.66 inches respectively. No flange distress was noted throughout the entire test.

Buckling concentrated entirely in the middle panel. The relative contributions to total displace

ment from the other two panels, as measured by the linear potentiometers stationed at the

stiffener locations, decreased as the test progressed.

Specimen 10.- In order to achieve relatively longer links (ie. ones in which bending has a

greater effect), sections of lesser depth were used. Specimen 10 was made from a W16x26 sec

tion and was 36 inches long. It had no stiffeners, making the panel zone 36.0 x 15.0 inches.

With the longer of the panel sides being bounded by flanges, this specimen was similar to

Specimens 1 and 8. Response of Specimen 10 is shown in Fig. 2.10(a).

Although this specimen had the most slender web, buckling did not occur until the south

erly branch of cycle 2, half a cycle after the point in the loading history where Specimen 1 had

buckled. This difference is due to the fact that, since Specimen 10 was more flexible, Specimen

1 experienced more severe inelastic deformations for the same displacement history. Post

buckling behavior of Specimen 10 was nonetheless considerably worse than that of Specimen 1.

The reason for poorer performance was clearly due to the inability of the flanges of Specimen

10 to resist the buckling deformations. Specimen 1 had flanges with greater torsional stiffness

and had buckling modes which required less resistance of the flanges. Flange rotations were

much greater in Specimen 10 (reaching approximately 30 degrees in the later stages of the test)

than in Specimen 8 which had a similar buckling mode, again because of the greater torsional
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resistance of the flanges in Specimen 8. The sense of flange rotation did not change with

cycling. Deterioration of specimen integrity was rapid, ending with material tearing in the mid

dle of the panel. Even though Specimen 10 was clearly a bending link and had relatively

slender flanges, no flange distress was noted. prior to web buckling. Significant interaction

between web and flange buckling fields was noted in the later portion of the test.

Specimen 11.- Another single panel specimen, Specimen 11, was constructed of W18x35

section (the same stock as Specimen 7). With a slightly less slender web and slightly more

slender flanges, this specimen had a smaller value of ex than did Specimen 10. The response of

this specimen was nonetheless similar to that of Specimen 10 and is shown in Fig. 2.11 (a).

The yield load of 147 k was identical to the yield load of Specimen 7, its 28 inch counter

part, again showing essentially no moment-shear interaction at these lengths. Buckling

behavior was very much like Specimen 10, showing a similar mode shape and the same rapid

deterioration. Again, flange distress was not noted before web buckling but interaction between

flan~e and web buckling fields was considerable. Also, flange rotations were large, as evidenced

in Fig. 2.11 (b). Failure occurred by tearing in the middle of the panel zone.

Specimen 12.- With a value of ex = 0.37, Specimen 12 was relatively the longest link

tested. The absence of stiffeners gave it a single panel zone with dimensions 36.0 x 11.5

inches. The response is shown in Fig. 2.12(a).

Buckling occurred later in this more compact specimen than in the previous two, happen

ing in cycle 4S at a load of 95.8 k and a relative displacement of 2.15 inches. Flange and web

buckling interacted to a large extent throughout the test but the buckling fields at opposite ends

of the link did not overlap as was the case in previous specimens. The interaction of the two

buckling fields at opposite ends of the link was manifested in the form of marked lateral tor

sional response of the member as seen in Fig. 2.12(b). Deterioration of member properties

was not as rapid for this specimen as it was for the previous two.
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It should be noted that, by virtue of its size and length, Specimen 12 (and also Specimen

15) was the most flexible among the test specimens. The same absolute displacement history

was imposed on all specimens, therefore, the more flexible ones suffered less severe distor

tions. This difference will be accounted for in Chapter 3 through normalization of the results.

Specimen 13.- The last three specimens were appropriately stiffened versions of the previ

ous three. Specimen 13, the counterpart of Specimen 10, had three panel zones measuring 11.5

x 15.0 inches. The behavior of this specimen was an improvement over Specimen 10 and is

shown in Fig. 2.13(a). Web buckling was noted in cycle 4N (as opposed to 2S for Specimen

10) and was accompanied by substantial flange buckling. The delay in web buckling allowed the

link to develop the expected flange stability problems. Fig. 2.13(b) shows, however, that web

buckling was still dominant. Since the flanges were stiffer in torsion, rotations were confined to

the end segments.

Specimen 14.- Specimen 14 was the counterpart of Specimen 11 and had three equal

panel zones. Flange distress was substantial prior to web buckling which occurred in cycle 4S.

Load carrying capacity did not begin to deteriorate until web buckling had set in. In the

advanced stages of the test the northwest flange developed a full wavelength buckle causing the

specimen to rotate torsionally at that end. Failure occurred by tearing in the center of both end

panels.

Specimen 15.- The counterpart of Specimen 12, Specimen 15 was stiffened 6 inches from

each end of the link. The enhanced response of this specimen is shown in Fig. 2.15 (a) . The

presence of the stiffeners effectively precluded the lateral response noted in Specimen 12.

Slight flange distress was noted in the first southern excursion to 1.5 inches. Upon cycling to

2.0 inches for the first time, slight web buckling could be seen in the small end panel zones.

Shortly thereafter abrupt failure occurred by tearing of the flanges in the heat affected zone of
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the 'welds.

2.2. Summary and Conclusions

Specimens 1 through 4 were designed to determine to what extent the performance of an

active link which yields primarily in shear can be improved by stiffening the web against buck

ling. Since the well stiffened link (Specimen 4) did not buckle until the ninth cycle, the hys

teresis loops remained full, the load carrying capacity continually increased due to material

strain hardening effects, and far greater member ductilities' were achieved before failure

occurred.

Specimen 5 had three panel zones, the center one being slightly larger than the outer two.

Exhibiting behavior typical of multipanel active links, buckling in Specimen 5 was concentrated

in a single panel zone (the center one in this case). The performance of this specimen was

found to be inferior to the specimen with three equal panel zones (Specimen 3). Based on this

test one can conclude that, for active links which yield predominantly in shear, equal sizing of

panel zones is optimal.

Specimen 6 had a special end connection consisting of full penetration flange welds and a

welded shear tab instead of having all around full penetration welds with cope holes and backup

bars for the flange welds (as did Specimens 1-5) or having all around fillet welds (as did Speci

mens 7-15) for the end connections. Behavior of Specimen 6 was, in general, satisfactory.

Buckling was confined mainly to the panel containing the gusset plate. However, substantial

buckling of the center panel also occurred, indicating that the size chosen for the panel contain

ing the gusset was appropriate. Specimen 6 was only slightly inferior to Specimen 3.

Specimens 7 through 9 were included to fill out the database and to provide comparisons

between the first six specimens and the last six. Specimen 7 was a shorter version of Speci

mens 11 and 14, exhibiting behavior superior to both. Specimen 9 was a longer version of

Specimens 1 through 6 and was inferior to all but Specimen 1. Specimen 8 was cut from a

heavier section and showed behavior similar to Specimen 1.
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The last six specimens (l0-15) were designed to accentuate bending energy dissipation.

These tests were paired with one stiffened and one unstiffened specimen in each pair. Speci

mens 12 and 15 had the greatest contribution of energy dissipation from bending and Speci

mens 11 and 14 had the least. It can be seen by comparing Specimen 1 (Fig. 2.0 to Specimen

11 (Fig. 2.11) that the longer unstiffened link exhibited a post-buckling behavior having a

more rapid deterioration of load carrying capacity than the shorter specimen. Significant flange

buckling, accompanying the web buckling, in the longer link was generally responsible for this

phenomenon. Flange buckling was often found to induce a significant lateral-torsional buckling

of the specimen as a whole, even though both ends were fixed against twisting. The stiffening

arrangement used in Specimen 15 (stiffeners placed approximately one flange width away from

the end plates) effectively inhibited lateral-torsional buckling.

The following general conclusions can be made based on observations of the hysteretic

behavior of the test specimens:

(1) Inelastic shearing is more efficient than inelastic web buckling for energy dissipation.

(2) Stiffening improves the energy dissipation capability of an active link by delaying the

onset of inelastic web buckling.

(3) Stiffening slows the degradation of load carrying capacity in an active link by controlling

the amplitude of out-of-plane displacement of the web.

(4) Web buckling has a more deleterious effect on the load carrying capacity of a link than

does flange buckling. Interaction of web and flange buckling fields causes a more severe

degradation of capacity than either of the modes acting alone. Such interaction is most

likely to occur in active links having a < 1 and has been shown to be important for values

as low as a = 0.37 in these tests.

(5) The formation of a tension field arrests the drop in load carrying capacity that occurs after

web buckling. Within a cycle, the tension field is often able to develop a carrying capacity

greater than the initial buckling load.
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In the following chapter the conclusions of this chapter will be extended by making

further comparisons between the test specimens.
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Chapter 3

General Behavior of Active Links:
An Experimental Assessment

3.0. Introduction

In Chapter 2, each of the fifteen tests was described and observations on the hysteretic

behavior of active links were noted. Some comparisons were drawn between specimens, and a

few general conclusions were made. The present chapter broadens the comparisons already

drawn in an effort to make more general statements regarding the behavior of active links. In

addition to the action-deformation relationships already presented other data will be introduced

to facilitate the discussion.

The response potential of a structural element consists of various modes of behavior

which can be identified with certain defined limit states. A schematic representation of this

concept is shown in Fig. 3.1 for the case of the active link. These elements can exhibit three

different modes of behavior: Elastic, Inelastic Pre-buckling, and Post-buckling. These three

modes of behavior are bounded by three limit states: Yield, Buckling, and Failure. This chapter

is devoted to explicating the general features of active link behavior, based on experimental

evidence. An effort is made to define and, where possible, quantify the limit states. Some

comments are made regarding which of the limit states might be appropriate to consider when

designing active links.

3.1. Elastic Behavior

Since analytical procedures can accurately characterize the elastic behavior of active links,

only a limited amount of data were taken during the tests to experimentally assess this range of

behavior. In this section we present some of this data as a means of verifying that the sting

apparatus applied the intended excitation. Also given in this section is an analytical expression
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for the elastic stiffness of the specimens used in these experiments which will be used in later

sections to normalize results.

Verification of Test System.-' It is shown in Appendix I that, even in the presence of

warping restraint, the constitutive equation for the bending moment is given by

M(x) = EI k (x) (3.0

where EI is the usual cross sectional bending stiffness and k is the curvature of the beam. We

can approximate the curvature as the difference between the longitudinal strains at the extreme

fibers divided by the distance between them. The strain at the extreme fibers, in the absence of

axial force, is then given as

(3.2)

where d is the section depth.

Specimens 10 through 15 were gaged at three locations on the flanges at each of the four

corners of each specimen (Fig. 1.5). The readings obtained from these gages are plotted along

with the extreme fiber strains computed from Eq. (3.2) in Fig. 3.2. The two strain distributions

presented for each specimen were measured during the initial elastic level cycling of the test.

The distributions for each specimen correspond to a northerly excursion arid a southerly excur-

sion. The actual data points, which are connected by solid lines, correspond to the gage loca-

tions shown in Fig. 1.5. Only the two five inch segments at the ends of each beam are shown

in the figure. The dotted lines correspond to strains computed from Eq. (3.2) based upon the

known bending moment. It can be seen that the experimentally measured distributions are

close to linear and show good symmetry, verifying the expected symmetry and intensity of the

imposed loading. The computed results are based on the section properties given in Table 1.2,

using a Young's modulus of 29500 ksi.
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Elastic Stiffness of Test Specimens.- Because of the high elastic stiffness of the active

links and the small but not negligible flexibility of the supports, experimental determination of

link stiffness was not accomplished with great accuracy. For this reason, computed, rather than

experimentally measured, values of the stiffness are employed in this study (generally for nor-

malization purposes). Under the conditions imposed by the test apparatus, the stiffness,

defined as end displacement divided by applied shear, can be expressed as

1
1 + 12£/

KGHL 2

0.3)

where EI is the bending stiffness, KG n is the effective shear stiffness, and L is the length of

the link. The measurements of the stiffness of Specimen 1, allowing for support flexibility, was

found to be within 15 percent of the stiffness computed using Eq. (3.3).

3.2 The Yielding Limit State

A considerable amount of research has been done in an effort to determine the plastic

capacity of beams under the action of shear and bending [5,9,10,14,15,21,22,29,30,31]. Usu-

ally, an attempt is made to find the collapse load of a cantilever beam subjected to a tip shear

using the bounding theorems of perfect plasticity. Extrapolation of the results to general load-

ing conditions is then suggested. Most of the resulting interaction relationships are given in

parametric form and are consequently inconvenient in applications. Neal [31] has suggested an

approximate interaction relationship between moment and shear which is adopted here because

it is explicit. This relationship is given as

[~12 + [~12 = 1
M -M' y'p

(3.4)

otherwise Y = y" for IMI ~ M', where Y', M', and M p are given by

(3.5)
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(3.6)

(3.7)

In these equations TO and lTo are the. yield stress in pure shear and pure tension respectively; d,

b, fl' and fw are the section dimensions; and Z is the plastic section modulus. The relationship

is symmetric about M=O.

The moment-shear interaction relationship given by Eq. (3.4) is shown in Fig. 3.3 for two

values of M*/ Mp which are representative of the sections used in the experiments. Also

displayed in the figure are the initial yield interaction points of the test specimens recorded dur

ing the virgin excursion, prior to the onset of strain hardening. The actual values of the applied

shear at initial yielding is given for each of the test specimens in Table 3.1, which also gives

some information pertinent to the buckling limit state. The size of the circle corresponding to

each specimen reflects the uncertainty in the material properties obtained from the tension

tests. The first nine specimens corroborate the suggested interaction relationship well, whereas

the last six seem to indicate less interaction than Eq. (3.4).

The problem of moment-shear interaction will be addressed again in Chapter 6, wherein

the effects of axial forces are taken into account.

3.3. Inelastic Pre-Buckling Behavior

During the inelastic pre-buckling stage of behavior an active link functions most

effectively as an energy dissipator. The response of active links in this range of behavior is

characterized by remarkable cyclic stability of the hysteretic loops (after a small amount of

softening following the virgin inelastic excursion). Strain hardening allows the links to sustain

increased loads at increased relative deformations. This type of behavior is desirable since it

tends to distribute energy dissipation (and damage) more evenly throughout a structure under

severe excitation.
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In this section, the behavior of the test specimens in' the inelastic pre-buckling range of

behavior is examined. Energy dissipation is used as a primary means of measuring the perfor-

mance of the test specimens. Some strain distributions recorded during the tests which point

out the differences between the inelastic behavior of short and long links are also presented.

Finally, an attempt is made to integrate these strains approximately to obtain displacements for

the purpose of qualitatively assessing the applicability of normality flow rules in stress resultant

space.

Energy Dissipation.- In order to make comparisons among all of the tests, it is necessary

to normalize the energy dissipation. Thus, the energy dissipated in each half cycle has been

divided by the energy that an elastic-perfectly plastic system having the same yield load as the

virgin specimen would dissipate if going through the same inelastic deformations. The normal-

ized energy, A, is plotted in Fig. 3.4 versus a normalized measure of maximum deformation

(ductility level), p.., for each half cycle. In the normalization process, the following definitions

have been utilized:

A = Actual energy dissipated by test specimen
Energy dissipated by elastic-plastic system

Vmax
JL= -

vy

(3.8)

0.9)

where Vmax is the maximum relative end displacement, measured from the most recent point of

zero load, and vy is the relative end displacement at initial yield. The information presented in

Fig. 3.4 provides a convenient way of viewing and comparing the performance of the fifteen

test specimens of the current investigation. No cause and effect relation between A and JL is

suggested.

The following observations on link behavior can be made based upon the data presented

in Fig. 3.4:
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(1) Active links which yield primarily in shear (shear links) are more effective energy dissipa

tors than are active links that yield predominantly in bending (bending links).

(2) Shear links are able to achieve greater ductilities than are bending links before failure by

tearing. However, it is important to keep in mind that shear links will generally have

higher ductility demands placed upon them by virtue of structural configuration [11].

This concept was illustrated in the Introduction to this dissertation for a simple case.

(3) Buckling of the web leads to a significant loss of both carrying capacity and energy dissipa

tion capability. This effect is accentuated when flange buckling is also unrestrained.

Flange buckling alone has a relatively minor influence on the behavior of the link.

(4) Bending links are less able to benefit from strain hardening than are shear links.

A general observation to be made from Fig. 3.4 is that the point at which A begins to

decrease corresponds to the point of first significant web buckling. (In this context, significant

buckling is defined as buckling which causes a noticeable change in the behavior of the test

specimen, as evidenced by visual observation of out-of-plane displacement of the web or by

gage readings). The subsequent rate of deterioration depends upon specific detailing (most not

ably panel size), however some deterioration was noted in all cases. This evidence strongly

suggests that web buckling is a useful limit state for active link design. An attempt will be

made to quantify this important limit state in Section 3.4.

Inelastic Strain Distributions.- Understanding of the global behavior of an element like

an active link is often enhanced by knowledge of local behavior. The global action-deformation

relationships presented in Chapter 2 capture only an integrated sense of what occurs. The

strains measured during the tests lend insight into the evolutionary processes that take place on

a local level. Some important experimentally obtained strain distributions for several of the

links are presented in this section.

Shear links dissipate energy through inelastic shear straining of the web region. There

fore, it is instructive to see how these shearing strains distribute themselves upon cycling.
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Figure 3.5 gives the maximum shearing strains for the northern and southern legs of the first

two cycles for Specimen 1. The first cycle shows that, contrary to what elementary beam theory

predicts, the maximum shearing strains occurred near the flanges at the center of the link. Each

subsequent plot shows strains relative to the previous one (ie. not the total absolute strains).

The first buckling cycle (2N) showed a significant redistribution of the shearing strains. One can

see that the tension field had begun to form, but was not yet complete in cycle 2N. Upon

reversal to cycle 2S buckling was more severe and the shearing strains had evolved more toward

a tension field type distribution. Beyond the second cycle strain gage readings were not reliable

because of gage failures due to extremely high skin strains in the bent web.

The important straining for longer links is longitudinal normal straining in the flanges due

to bending. Figure 3.6 shows the distribution of flange strains for Specimen 10 at the max-

imum displacement in both directions of the first three cycles of loading. These data are

presented in the same manner as that given in Fig. 3.2. In this figure one can see the distribu-

tion of curvature at the ends of the beam. Specimens 11 through 15 all showed straining pat-

terns similar to Specimen 10. For most of the specimens during most of the cycles, the plastic

action appeared to be confined to the five inch segments shown. The plastic region showed a

tendency to grow in some of the specimens due to strain hardening effects. Buckling markedly

changed the curvature distribution in all cases (see, for example cycles 3N and 3S of Specimen

10, Fig. 3.6). The buckling cycle for Specimen 10 was cycle 2S.

Strain-Displacement Relationships.- The connection between the local and global meas-

urements of response can be seen in the form of strain-displacement relationships. The results

in this section qualitatively corroborate the widely used normality flow rules used in stress

resultant plasticity theories.

The end displacement of the links tested in this investigation can be expressed as

L L x

v(L) = f /3 (x) dx + f f k(~) d~dx
o 0 0

(3.10)
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where {3 is the average shear strain over the cross section and k is the curvature.

The first term on the right hand side of Eq. (3.10) gives the portion of displacement due

to shearing strains, denoted here by Vsh' A numerical quadrature formula was devised with

sampling points corresponding to gage locations in the tests to approximately evaluate this

integral for Specimens 1 through 4. The results of this integration are shown in Fig. 3.7 (a). It

should be noted that nearly all of the displacement in the pre-buckling cycles for these first four

specimens was due to inelastic shear strains. This result corresponds well with the idea of nor

mality of flow, considering the location of these specimens on the moment-shear interaction

curve (Fig. 3.3).

In the longer links a large contribution to displacement is expected to come from the ine

lastic curvatures in the "plastic hinge" regions, making the second term on the right hand side

of Eq. 0.10) important. Because of the arrangement of flange strain gages it was possible only

to compute that portion of the deflection due to curvature over the five inch lengths at the

beam ends. Again, this was accomplished using a numerical quadrature formula with sampling

points at the gage locations. The resulting quantity is called Vph, and is plotted against the total

displacement in Fig. 3.7 (b). For the cycles represented in this figure the plasticity in the flanges

was confined almost entirely within the five inch lengths included in the integral. Therefore,

deflections due to inelastic bending are well represented. Again, the normality flow assumption

is qualitatively corroborated.

3.4. The Buckling Limit State

The problem of inelastic buckling under cyclically reversing loads is quite complex. One

might generally expect that buckling depends on the element topology, initial imperfections,

residual stresses, boundary conditions, and material constitution (through which there is a

dependence upon the history of the loading). At the present time, an accurate analytical

approach to the problem appears to be prohibitively complex for practical purposes if at all pos

sible. Therefore, an attempt is made to find empirical relationships among some of the



57

parameters considered to be important to the problem, based on the data obtained from these

tests. In this manner one does not expect to "solve" the inelastic buckling problem, but rather

one endeavors to derive useful relationships for use in the design of active links.

Among all of the variables thought to influence the problem, one might hypothesize that

certain ones are more important than others. Using typical elastic plate buckling solutions as a

guide, it appears that the topological measure of greatest importance is the ratio of the

minimum panel dimension to the thickness of the web plate, a/tw. Additionally, it is suggested

that some measure of the severity of the loading history be incorporated. Energy measures will

be used to characterize the history dependence so that the derived relationships can be applied

to situations different from those of the current investigation.

The three energy measures used here are denoted by Ee for elastic energy stored by a

beam at yield, and E' and E~ for the energy dissipation at a buckling state. Specifically, E* is

defined as the energy absorbed (energy dissipated plus energy stored) during the half cycle in

which buckling occurs and is measured from the most recent unloaded state to the point of

buckling. E~ is taken to be the total accumulated energy dissipation accrued throughout the

life of the beam from the virgin state up to the point of buckling. The energies at buckling of

the test specimens are presented in Table 3.1, along with the applied shear at buckling and the

cycle in which buckling occurred.

The total accumulated energy dissipation at buckling, E~, has been normalized by the

elastic energy Ee and the natural logarithm of the resulting quantity has been plotted against the

ratio a/tw in Fig. 3.8 (a) . The remarkable correlation of the data leads one to hypothesize a

log-linear relationship between the quantities. The straight line that best approximates these

data in a least squared error sense is given by

a [EiI- = 90 - 91n -
tw Ee

(3.11)

This simple relationship provides a means of determining stiffener spacing based upon
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Specimen Yield Buckling Buckling
Ee E' E~Shear Shear Cycle

(k) (k) (in-k) (in-k) (in-k)

1 121 135 2N 4.1 95 230
2 120 161 2S 4.1 260 580
3 122 184 6N 4.1 540 3300
4 126 207 9S 4.5 880 8600
5 121 172 4S 4.1 430 1860
6 128 191 5N 4.6 400 2170
7 147 206 6S 6.3 630 3850
8 189 240 5N 10.3 500 2530
9 124 172 5N 6.2 370 1900

10 118 123 2S 8.5 120 335
11 147 157 2S 9.3 150 420
12 81 96 4S 6.1 160 790
13 118 135 4S 8.5 280 1200
14 143 184 5S 9.3 390 2380
15 80 102 6S 6.1 260 1760

Table 3.1 Yield and Buckling States

knowledge of the web thickness and the expected energy dissipation requirement. Alterna-

tively, one could determine the required web thickness based upon desired panel zone size and

energy requirements. Note, however, that it is undesirable to alter the web thickness of a sec-

tion through addition of welded doubler plates. Experiments have shown that composite action

is rarely realized in such situations [41,43].

Since the loading program for all of the specimens in the sample was similar, Eq. (3.11)

may not be adequate to cover a sufficient variety of loading histories. It is, in fact, best suited

to a situation wherein a considerable amount of inelastic activity occurs prior to buckling. Most

notably, Eq. (3.11) might be expected to be in error for a monotonic loading from the virgin

state to buckling. For this reason a second relationship is proposed. While the data of these

tests are not ideally suited to this purpose, they will be used here recognizing that the resulting

formula will be conservative.
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Because the test specimens showed excellent cyclic stability of their hystersis loops, it is

not unreasonable to consider the energy measure E* to be an approximate monotonic buckling

energy. The natural logarithm of E' / Ee is plotted against a/tw in Fig. 3.8(b). Inasmuch as

prior loading history probably reduces the resistance to buckling, the values presented here tend

to underestimate the monotonic buckling energies. A relationship similar to Eq. (3.11) is

found again by log-linear regression and is given by

-E.... = 94 - 14 In 1£1tw Ee
(3.12)

The suggested design procedure consists of insuring that the ratio a/tw is less than the

smaller of the two values as determined by Eqs. (3.11) and (3.12), based upon the best esti-

mate of the energy dissipation requirements. Simple manipulation of these two equations

shows that when

(3.13)

then the cumulative energy criterion controls and Eq. (3.1 1) is appropriate. Otherwise, the

maximum monotonic energy criterion governs and Eq. 0.12) should be used. An accurate

estimate of the energy dissipation required of an active link is best obtained from an inelastic

dynamic analysis. Values of a/tw ~ 20 indicate excessive, perhaps insatiable, energy dissipa-

tion requirements.

Under certain conditions the two energy measures can be related to member ductility

demands. If it is assumed that the material is elastic-perfectly plastic and that inelastic defor-

mations are predominantly due to shear, the problem becomes essentially one dimensional, and

the following relationships apply

E~-=2 ~( .. _1)
E Li\l"./

e i

(3.14)
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(3.15)

where JL is defined as in Eq. 0.9) and the sum in Eq. 0.14) is taken over the i excursions hav-

ing JL i >1. Note that relationships involving ductility levels employed here refer exclusively to

member ductilities, which may be an order of magnitude greater than any measure of structure

ductility for eccentrically braced frames. Some approximate methods for estimating the rela-

tionship between member and structure ductility are given in Ull.

3.5. Post Buckling Behavior

After the web of an active link buckles, the link continues to dissipate energy. However,

the predominant load carrying mechanism changes and therefore so does the means of dissipat-

ing energy. The data presented in Fig. 3.4 clearly indicate that the post-buckling energy dissipa-

lion mechanism is less efficient than the pre-buckling one. In this section the post-buckling

phenomenon will be treated qualitatively. To aid the discussion, reference will be made to Fig.

3.9, which shows a typical force-deformation relationship of a previously buckled active link.

Figure 3.10 shows a schematic representations of the buckling fields characteristic of post-

buckled links for shearing in two opposite directions.

Suppose that a buckle has fully developed as a result of loading in one direction, as shown

in Fig. 3.l0(a). In this configuration a tension field exists with the principal tension oriented

along the buckle. A compression field oriented approximately orthogonal to the tension field

also exists but the forces in it are much smaller due to the geometry of the deformed web.

When the sense of the load is reversed the orientation of the tension and compression fields

reverse. As the state progresses toward point A on Fig. 3.9, the principal tension acts to

straighten the residual out-of-plane displacement left from buckling in the opposite direction

while the compressive stresses act to form a new buckle. At point A buckling occurs and a loss

of load carrying capacity results. The instability is usually not catastrophic, however, because

buckling is arrested by the formation of a tension field in the opposite direction. Point B in
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Fig. 3.9 marks the instant at which the tension field action hecomes the predominant load carry-

ing mechanism of the link. As the state approaches that shown in Fig. 3.10 (b), the capacity

increases, often surpassing the buckling load (VA)'

The buckled mode shape has effects on both the load carrying capacity in the post buck-

ling range and on the eventual mode of failure. The shape that a buckled web takes appears to

depend largely on the aspect ratio of the panel and the boundary conditions. The basic shape,

shown in Fig. 3.10(a), consists of a diagonal bulge spanning the minimum dimension and

extending some distance along the maximum dimension of the panel zone, reminiscent of the

elastic buckling case. The longer the span of the buckle is, the greater is the out-of-plane dis-

placement of the web. Upon removal of the load the buckle remains. For values of alb < 1.6

the buckle angle () is approximately given by

btan9 = -.
a

(3.16)

In other words, it is controlled by the panel dimension, and the buckle tends to run from

corner to corner in the panel. However, for alb> 1.6 there appears to be a minimum value

of () = 32°- 33 0. The angle () is influenced by the extent of flange buckling. A reversal of

load causes a buckle to form which is roughly a reflection of the original one about the panel

centerline as shown in Fig. 3.10(b). The relationship between the buckling modes and active

link behavior will be discussed in the sequel. The peculiarities noted in the action-deformation

relationships of the post-buckled links can be accounted for by looking more closely at the ine-

lastic buckling modes of the webs of active links. The spatial distribution of the web buckle in

the x ,y plane, which has already been discussed, coupled with various possibilities of out-of-

plane displacement of the web, lead to different post-buckling behavior.

Consider the typical buckled panel zone shown in Fig. 3.11 (a), onto which the local

buckle coordinates t and n have been superposed. In the t direction, which corresponds to the

tension field direction, the out-of-plane displacement w goes from zero at the buckle ends to

some maximum value in the center in single curvature bending (Fig. 3.11 (b». The n direction
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admits two possible deformation patterns, as shown in Fig. 3.1l(c). The first, symmetric about

n = 0, has two regions of positive curvature and a single region of negative curvature (or vice

versa depending on sign convention), and admits a single maximum displacement. The second,

anti-symmetric about n = 0, has two positive and two negative regions of curvature and admits

both a maximum and a minimum displacement. In general, curvature in the central two

regions has much greater magnitude than those in the outer two.

Each of the links in the test program experienced one of the buckling modes depicted in

Fig. 3.12. The discussion of these buckling modes is facilitated by introducing the following

definitions: A Strong Nodal Point is a neighborhood containing maximum curvatures in both the

t and n directions which experiences a complete curvature reversal in both directions upon

cycling. Similarly, a Weak Nodal Point is a neighborhood containing maximum curvatures in

both the t and n directions which experiences a complete reversal in curvature in only one

direction. A Null Nodal Point is similarly defined except that no curvature reversal takes place.

We will find that the presence of strong nodal points have a marked effect on post-buckling link

response.

The first symmetric case is shown in Fig. 3.12(a). Here the (tJ,nl) buckle displaces in a

positive direction, whereas the (t2,n2) buckle displaces negatively, giving rise to a single strong

nodal point at the intersection of the t1-t2 axes. Four weak and four null nodal points exist as

shown in the figure. This mode of buckling will be termed Mode 1 buckling and was noted

only in Specimen 1. The other symmetric mode, termed Mode 2 buckling, is shown in Fig.

3.12(b). This mode admits only displacement in one direction for both the (tJ,nl) and the

(t2,n2) buckles, forming four strong, four weak, and one null nodal point(s). Since

Ik~ax I < Ik~ax I, as defined in Fig. 3.1l(c), the strong nodal points of Mode 2 buckling have

less severe curvature reversals than the single strong nodal point of Mode 1 buckling. This

difference affects the failure mode markedly and will be discussed later. Specimens 5, and 9

provided examples of Mode 2 buckling. Finally, the only anti-symmetric mode, Mode 3 is

shown in Fig. 3.12(c). This mode contains the two strong and two null nodal points shown.
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Specimens 2, 8, 10, 11, and 13 exhibited this mode of buckling.

After buckling and prior to tension field formation a link has a state of lowered resistance

to shear. This state appears to correspond closely with the moment of occurrence of curvature

reversal in the strong nodal points (and probably also in the weak nodal points, albeit to a lesser

extent). Each nodal point traverses its zero curvature point (ie. "snaps through") at a different

time in the loading process. The tension field is not able to form until all nodal points have

reversed their curvature. Specimen 1 showed an immediate formation of a tension field upon

reaching the post-buckling minimum load because only one strong nodal point had to reverse

curvature. Specimens 5 and 9, with four strong .nodal points each, required a considerable

deformation to form tension fields, indicating that each of the four points reversed at different

times but that the effects of reversal overlapped to a large extent. Specimens 2, 8, 10, 11, and

13 showed lightly coupled or uncoupled curvature reversals which lead to two apparent

minimum strength points after buckling.

Slowing of the degradation of member properties in the post-buckling regime is effectively

achieved by controlling the amplitude of buckling. This control can be realized through

transverse stiffening of the web region. The correlation between loss of load carrying capacity

and out-of-plane displacement is shown in Fig. 3.13 for Specimens 10 and 11. As has already

been noted, stiffening also delays the first occurrence of web buckling.

Interaction Between Web and Flange Buckling.- Severe flange buckling only occurred in

two of the specimens: 12 and 14. However, cyclic web buckling was always accompanied by

flange distress of some kind. Mode 1 and Mode 2 buckling generally caused a pinching

together but no rotation of the flanges. Mode 2 buckling occurred in links with smaller a/tw

ratios where the flanges had high torsional restraint. Mode 3 buckling occurred in links with

long unsupported lengths of flange and caused the flanges to rotate rather than pull together.

In the two specimens in which flange buckling was important (ie. Specimens 12 and 14), web

buckling was also present. In these cases, there was considerable interaction between the two
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buckling fields causing lateral-torsional buckling of the link as a whole. This lateral-torsional

buckling can be effectively controlled by either stiffening the flanges as was done in Specimen

15, or by providing some external torsional restraint, such as a concrete slab.

The Role of Stiffeners in Post-Buckling Behavior.- The first function the transverse

stiffening elements perform is to prevent or delay the initial occurrence of web and/or flange

buckling. Little data are available regarding what the stiffener stiffness should be to success

fully achieve this goal for the case of inelastic web buckling. The role of the web stiffeners in

the post-buckling range changes from that of enforcing a nodal line at the panel boundary to

that of completing the trussing action induced by the tension field. If the active links are

expected to perform into the post-buckling range, then the tension field action will be the more

critical state for the stiffeners.

No rational design procedures exist for either of these limit states, and stiffener sizing for

the test program was necessarily ad hoc. All of the stiffeners in the tests were of identical size

and weld detail: 3/8 inch thick, fillet welded all around. Consideration of the measured strains

in the stiffeners gives some indication as to their adequacy for the truss type action.

Immediately upon buckling in Specimen 2 the stiffeners registered bending skin strains in

excess of yield with relatively little net axial strain. No visible distress occurred until the fifth

cycle when maximum skin strains reached 6000 microstrain and net axial strains reached about

2000 microstrain. The stiffeners of Specimens 3 and 4 remained elastic throughout the tests

measuring maximum axial strains of approximately 500 microstrain, well below yield. In Speci

men 5 the stiffeners achieved a net axial strains of 1000 microstrain, still below yield. The

stiffeners of Specimen 6 bent later in the test but strained very little axially. Specimen 7

registered net axial strains of 2500 microstrain, as did Specimen 9. Yielding of the stiffeners

seemed to have minimal deleterious effect on specimen behavior in these tests.
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3.6. Active Link Failure

The failure of an active link is defined as complete inability to sustain load, and is gen

erally caused by low cycle fatigue in highly localized regions which experience extreme strain

reversals due to the cyclic changing of the buckled mode shape. In all cases failure

corresponded to material tearing somewhere in the link. Two distinct failure modes were noted

in the tests: (1) Tearing of the web at a strong nodal point because of material fatigue from

severe cyclic curvature reversals, and (2) Tearing of the web around the perimeter of the most

severely buckled panel zone. Both modes of failure were catastrophic. Specific modes of

failure are highly dependent upon how the link is detailed. For example, all of the single panel

specimens (Specimens 1, 8, 10, 11, and 12) failed by material tearing in the middle of the

panel zone, whereas Specimens 2, 4, 5, 6, 7, 9, 13, and 14, which were all multi-paneled speci

mens, failed by material tearing around the perimeter of the buckled panel zone (s). All cases

of Mode 1 and Mode 3 buckling lead to the first type of failure. The second type of failure was

characteristic of Mode 2 buckling. Specimens 3 and 15 both failed prematurely due to fractur

ing of the flange welds. One should note that none of the welds was tested ultrasonically.

The total energy dissipated by each specimen at failure is shown in Fig. 3.14. Also shown

is the total energy dissipated at buckling, Ei. Both energy measures are normalized by the

elastic energy Ee . Clearly, a considerable amount of energy is dissipated in the post-buckling

range prior to failure. One can note, however, that as the panel aspect ratio altw decreases the

ratio of pre-buckling life to post-buckling life decreases. Since the point of failure is less

predictable than the point of buckling, and since the consequences of failure are greater it is

suggested that failure is a less appropriate limit state for design purposes than is buckling. It is

recommended that the post-buckling energy dissipation capacity be viewed as a factor of safety

against sudden catastrophic failure.
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Chapter 4

Introduction to the Analysis of Active Links

The inelastic response of an eccentrically· braced frame is dominated by the behavior of

the active link regions. Hence, accurate modeling of these elements is crucial. Many formula-

tions employed in the analysis of structural systems neglect the effects of shear, either by

neglecting elastic shearing deformations or by neglecting the effect of shear on the behavior in

the inelastic range. Such models are of dubious value for the analysis of eccentrically braced

frames. The following chapters consider the problem of analytically modeling the elastic and

inelastic pre-buckling behavior of active links. The developed models are also applicable to the

other structural components in an eccentrically braced frame, for which the effects of shear

might be reasonably neglected.

Efforts have been made to analyze the global dynamic response of eccentrically braced

frames, recognizing that the active link elements must be specially treated [43,49]. In these

attempts, the active link has been modeled using a greatly simplified analog related to the real

body. Such models offer the advantage of computational simplicity, since they represent "one

dimensional" approaches to an inherently multidimensional problem. On the other hand, they

can be expected to apply only in very restricted cases (generally only for shear beams, which

come close to exhibiting one dimensional response).

Roeder [43] modeled the active link as a "sandwich beam" t. Unfortunately, the sandwich

assumption is deficient in cases where interaction between axial force, shear force, and bending

moment is important. This deficiency can be recognized by noting that shear and normal

stresses never occur simultaneously at any point in a cross section of a sandwich beam. There-

fore, the resultant shear force can never interact with the axial force and/or bending moment.

t A sandwich beam has a core (web) and cladding (flanges). The core is assumed to develop only shear
stresses and the cladding only normal stresses.
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Moment-shear-axial force interaction is often important in the behavior of active links in

eccentrically braced frames.

Another important difference between the sandwich beam and the I-beam is the boundary

condition on the transverse shear stress component on the inside edge of the flanges. In both

cases, this shear stress component can exist only in the region where the flange connects to the

web. For the sandwich the web is connected over the full length of the flange, for the I-beam

the region of connection is only over the small thickness of the web. Roeder [43] attempted to

address the question of the effect of warping restraint at the ends of an active link, following

the derivation of Plantema [37] for the sandwich beam idealization. As a result, some inaccu

rate conclusions were obtained regarding the extent to which transverse shear force can be

developed by the flanges. This consideration is re-examined in Appendix I utilizing the more

physically reasonable thin walled beam approximation.

Yang [49] modeled the active link as an inclined truss element in an effort to represent

the behavior with a one dimensional element. The shortcomings of this approach, which

appear to be inspired by a pure shear assumption in the web region, are evident.

While the behavior of the simple physical models can be made to resemble experimentally

observed behavior of active link by adjusting phenomenological parameters, it is felt that this

type of modeling is ultimately restrictive and might lead to erroneous results when used for

situations other than those for which the model was specifically tuned. The main drawbacks of

the aforementioned models is that they oversimplify the problem with the result that some of

the important physics of the problem is lost. As Einstien said, "Things should be as simple as

possible, not simpler."

In the remaining chapters a different course is followed in the analysis of the inelastic

behavior of short beams. The model presented in Chapter 5 employs the three dimensional,

nonlinear equilibrium equations of continuum mechanics as its basis. These equations are sup

plemented with a three dimensional elasto-plastic constitutive model. The point of departure

from the general three dimensional theory comes from the consideration of a specific kinematic
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hypothesis which constrains the deformation map. The kinematic hypothesis employed here

accounts for warping of the cross section due to transverse shear, and thereby allows a charac

terization of the inelastic behavior of short beams not achieved previously.

A simplified model is presented in Chapter 6 based upon stress resultants as the primitive

action quantities. This development does not rely upon the introduction of physical entities

called "plastic hinges" (see, for example, [3]), but upon a plasticity theory for stress resultants

which has a theoretical appeal in its own right [13]. The fundamental problem in the stress

resultant approach occurs due to the inclusion of transverse shear in the expression for the

yield potential. One popular approach to problems of this nature is to employ a yield potential

of "general" form, such as a conic with adjustable parameters. Such an approach for the prob

lem of biaxial bending and torsion has been followed in [3]. This method avoids many of the

problems associated with the stress resultant approach, but in many cases it is difficult to find a

simple yield potential which can characterize the "true" yield potential over all combination of

moment, shear, and axial force. Moment-shear-axial interaction for an I-beam is a case where

these difficulties arise.

The purpose for presenting two approaches is one of hierarchical corroboration of results.

Using the stress component model as a basis for comparison one can readily assess the perfor

mance of the stress resultant model. Inasmuch as both models are based on the same

kinematic assumption, a "fair" evaluation of the results is possible. In this way one is better

able to determine which effects are due to the geometry of the body and which are due to the

mechanical behavior of the material.

In both models presented the constitutive behavior adopted is one of perfect elasto

plasticity using an elasto-viscoplastic model in a penalty procedure. The perfectly plastic model

does capture one of the most important aspects of the inelastic behavior of eccentrically braced

frames: namely, the redistribution of forces within the structure due to inelastic action. The

inclusion of strain hardening effects in both of the formulations presented could be achieved by

introducing "tunable" hardening parameters. Because of the uncertainties associated with tuning
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these parameters, the problem of incorporating hardening effects is not pursued here and atten

tion is focussed on providing a well-founded basis for the analysis of active links in eccentrically

braced frames. It is hoped that these models can provide a useful tool in both conceiving and

assessing simpler models which might be used in the analysis of large structural systems.

In Chapter 7 the two analytical models are applied to the case of interest here: the

eccentrically braced frame. The first two examples have been included to illustrate some aspect

of the formulations, and to compare the two approaches. The last three examples are static

analyses of three frames having one bay and three stories.
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Chapter 5

A Local Approach to the Analysis of Active Links

5.0. Introduction

In this chapter the problem of analyzing the inelastic bending of a beam is approached by

considering it in a three dimensional setting. We begin by considering the general non-linear

local equilibrium equations of a continuum. To these equations a set of constitutive relations,

here taken to be those of elasto-viscoplasticity, are added. The point of departure from the

three dimensional formulation of the problem comes in the consideration of kinematics.

The deformation map is restricted by postulating a kinematic hypothesis which depends

passively on the cross sectional coordinates and actively on the longitudinal coordinate. This

hypothesis suggests the denomination of "beam theory". Previous efforts in this direction have

used the assumption that sections which are plane before deformation remain plane after defor

mation [35,36]. For the problem at hand, ie. the active link, this kinematic hypothesis is inade

quate due to the importance of shear stresses and shear strains. The plane sections hypothesis

leads, in the context of the linear theory, to a constant distribution of shear strains over the

cross section of the beam. Because of this restriction, there is no possibility for yielding to pro

pagate from the interior of the section due to shear. Furthermore, vanishing of shear stresses

at the boundaries can never be realized under this restriction.

Numerical treatment of the problem is accomplished through an iterative procedure of

first linearizing the equilibrium equations about an intermediate configuration and then solving

the resulting linear problem for the incremental motions. The updated configuration deter

mines the state of strain in the body, for which the corresponding state of stress can be found

by solving the nonlinear constitutive equations.
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Several features of the solution process are of special interest. First, since the constitutive

equations depend upon time they must be integrated. Due to the nonlinearity of these relation

ships direct quadrature is not generally possible and hence a numerical procedure first proposed

by Hughes and Taylor [16] is employed. Second, spatial aspects of the problem are treated

numerically by a finite element discretization technique. Because the distribution of stress over

a cross section is generally nonlinear due to the propagation of inelasticity the element stiffness

matrix and out-of-balance force vector are necessarily evaluated by numerical quadrature. The

global algorithm employed for the solution of the problem is the one proposed in [46].

The advantage of adopting the point of view taken here is that the constitutive behavior

can be described at the local level. From the standpoint of constitution, then, the model is res

tricted only by our ignorance of material behavior. There is no need to assume that the force

deformation behavior of a structural element is fundamental. Even within the scope of the res

tricted kinematics we can accurately solve inelastic bending problems for difficult cross sectional

geometries like the I-beam.

Notation.- The present development is concerned with an initially straight beam having

length L and cross section n which has a piecewise smooth boundary () n. Coordinates in the

reference configuration B =(O,L)xn c JR.3, occupied by the beam at time t = 0, are desig

nated by {XI}. The spatial coordinate system {XI} is taken, for our purposes to be collinear with

{XI}. The deformation map is denoted, following standard notation, by <I> and the deformation

gradient by F = :i. The points XEB and X EcI>(B) will be identified by their position vectors

X and x respectively.

A further assumption is made that the line of centroids of the cross sections is initially

oriented along the XI axis. For simplicity, we will consider only cases in which the applied

transverse loads pass through the shear center of the section, which for doubly symmetric sec

tions coincides with the centroid of the section. Thus, the problem of torsion of the beam will

not be treated here. A further simplification is that transverse loads are applied only in the X2
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direction. It should become clear from the presentation how to extend the formulation to the

case of biaxial bending.

5.1. Equations of Equilibrium

The static balance of linear momentum is expressed by the equation [26,28]

DIV P + Po B = 0 ; XEB (5.1)

where P is the first Piola-Kirchhoff stress tensor, Po is the density in the reference

configuration, and B is the body force. Balance of moment of momentum further implies the

We will denote by aBu that portion of the boundary where the deformation map is

prescribed and by oBI that portion of the boundary where the tractions t are prescribed. As

The local form of the equilibrium equations (5.1) can be expressed as a weak statement of

equilibrium in the following way [28]

G(x,'7J) = f P.GRAD'7J dV - f PoB.'7J dV - f t,'7J dS = 0
B B a~

(5.2)

for any kinematically admissible variation '7J which satisfies the displacement boundary condi-

tions. The choice of the constitutive equations are addressed in the next section.

5.2. Constitutive Equations

The constitutive equations will be expressed in terms of the second Piola-Kirchhoff stress

tensor S = FP and its conjugate strain measure, the Lagrangian strain E = 1/2(F TF - 1). Based

on an essentially thermodynamic argument (see, for example, [8] 1) the rate of Lagrangian

t Actually the Lagrangian strains and not their rate are decomposed in [8]. The subject of decomposition of
strain rates (or deformation gradient) is not appropriately discussed here.
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strain can be decomposed into an elastic and a plastic part:

(5.3)

We will assume that the elastic part of the strain rate is related to the stress rate according to

the following relationship

S= D(E) Ee

where D is a fourth order isotropic tensor.

(5.4)

It will prove convenient from a numerical point of view to consider the inelastic processes

to be characterized by a visco-plastic material model. Thus we consider that the inelastic strains

EP evolve according to the rate equation

EP = 1.. <F(S» aj = 1../3(S)
7" as 7"

(5.5)

where j (S) is the plastic flow potential and 7" is the "relaxation time" of the viscoplastic process.

The function F(S) is a scalar valued potential function having the property that F(S) = 0 can

be identified with a yield locus in stress space. Noting that <x> - x H(x), H(x) being the

Heaviside step function, one can see that states of stress in which F(S) < 0 are associated with

vanishing plastic strain rates and hence can be called elastic. Clearly, the larger is the value of

F(S) > 0, the greater is the rate of plastic flow.

By identifying the characteristic relaxation time 7" of the material to be suitably fast, rate

independent plasticity can be easily modeled. This procedure is generally known as a penalty

function method for modeling viscoplasticity and has been used extensively in the computa-

tional literature [25,50,5Il. Ortiz [33] has shown that, in the limit as 7" ---. 0, the viscoplastic

model approaches that of rate independent plasticity.

Various forms of the plastic potential have been discussed in the literature both for the

modeling of viscoplastic material behavior [34] and for use of the model in the penalty
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approach to elasto-plasticity [25,52]. Attention is confined here to a von Mises type of potential

given by

and (5.6)

where J2 = 1/28':8' is the second invariant of the deviator stress 8' = 8 - ~ tr(8), and k is the

yield stress of the material in pure shear.

While the developments here are restricted to the case of perfect plasticity, the formula-

tion is flexible enough to eventually incorporate strain hardening effects. Material hardening

effects can be realized by introducing additional internal variables, with their associated equa-

tions of evolution, into the constitutive model. Many hardening rules have been proposed to

characterize metals. Of these, two have found a special place of importance in applications: Iso-

tropic hardening and kinematic hardening. Examples of these two types of hardening are given

below.

The case of isotropic hardening can be achieved by replacing k in Eq. (5.6) with the har-

dening parameter K(EP) which can be assumed, for example, to evolve according to the rate

equation

(5.7)

where c/ is a constant of the material which characterizes the rate of isotropic hardening.

Kinematic hardening can be simply introduced by replacing 8 in the expressions for the poten-

tials with 8 - a where a can be supposed to evolve according to the rate equations respectively

of Prager and Ziegler given by

or eX = iJ, (8-a) (5.8)

where Cx and iJ, are constants of the material characterizing the rate of kinematic hardening.

Note that iJ, > O.
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A more complete account of hardening rules applicable to cyclic plasticity can be found in

[4J. While these hardening rules appear simple from a theoretical point of view, they are

difficult to implement computationally. Consideration of the effects of material hardening will

be left as a topic for future research.

The constitutive model employed in this study can be summarized by its rate equation

which takes the final form

(5.9)

5.3. The Kinematic Hypothesis

For the purposes of this study, restrictions of the deformation map given by

x = X + u(X) (5.10)

are considered, where the displacements u(X) are linear. Sima [45] has shown that it is

sufficient to consider linear displacement measures in the equilibrium equations in a second

order treatment of a problem. In this section we are concerned with describing the displace-

ment vector u(X). We will often not distinguish between Xi and Xi in the following develop-

ments since usage will generally make the distinction clear. Where it is convenient, we will

regress to the more classical notation {x], X2, X3} = {x, y, z}.

The simplest kinematic hypothesis which is capable of characterizing the deformation of a

beam corresponds to the assumption that "sections normal to the line of centroids before defor-

mation remain plane after deformation." This hypothesis is reflected in the expressions for the

displacement as

(5.10
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where Ii and v measure the average axial and transverse displacement of the cross section and

";j; measures its rotation, as shown in Fig. 5.1. While this kinematic hypothesis does account for

shearing deformation it leads, in the context of the linear theory, to a constant distribution of

shear strains, 'Y12= v'-";j;, over the cross section and' thus generally violates the shear stress

boundary conditions. The hypothesis expressed by Eq. (5.11) is good for longer beams, but

breaks down in cases where the influence of shear and the concomitant warping of the cross

section are not negligible.

Simo [45] has shown that, by employing the exact solution to Saint Venant's problem t,

one can derive a more elaborate kinematic hypothesis which accounts for such effects as

transverse warping of the cross section due to shear. Simo used this hypothesis to assess the

effect of warping on the buckling of elastic beams. Here we are concerned with the effect of

warping on the yielding mechanisms in the elasto-plastic bending of a beam. The hypothesis,

which yields the exact solution to Saint Venant's problem in the elastic range will be taken as a

basic postulate of the deformation pattern in the inelastic range. The practice of motivating the

inelastic displacement field with the elastic one is commonly used in solving inelastic beams

problems (see, for example, [40)). In the past, little effort has been made to account for the

effects of shear in the elasto-plastic beam problem.

As shown in [45], the solution to Saint Venant's problem can be recast in terms of purely

kinematic variables and results in the following expressions

(5.12)

t Saint Venant's problem is the problem of the bending of a beam subjected only to end loads. Exact solu
tions can be found in the standard literature [23,471.
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where the ¢; are given by the following expressions

(5.13)

In these expressions, n is the cross sectional area, Ia = f (Xa ) 2 d n are the principal moments
n

of inertia, II is Poisson's ratio, and K is a coefficient defined in terms of ¢1 as [45]

1
K=-------

1 + _1 f f)¢ I d n
n n f)X 2

(5.14)

The function W(X2,X3) in the expression for 4>1 is related to Love's flexure function [23]

and satisfies the following Poisson equation and boundary conditions

(5.15)

where n = {nh n2, n3} is the direction of the normal to the boundary of the cross section. The

elastic shear stresses for this problem can also be stated in terms of W as [47]

(5.16)



90

The determination of the function 'I' for the case of thin walled members are treated in the fol-

lowing section.

At this point in the development, we will focus our attention on thin walled members.

The thin wall assumption allows the approximate solution of Eq. (5.15) for the function

'I'(X2,X3) from which the warping coordinate function <PI (X2,X3) can be evaluated. An expan-

sion method is employed in arriving at a solution that satisfies Eq. (5.15) up to the order of the

thickness of the cross section. It is then shown that the resulting expression is equivalent to

the one proposed by Cowper [2].

For the treatment of thin walled cross sections it will be convenient to introduce a curvi-

linear coordinate system {x, s, n} in addition to the Cartesian system {Xl' X2, X3} == {x, y, z}.

The s coordinate is taken coincident with the middle line of the cross section and the n coordi-

nate orthogonal to s and x = Xl. These definitions are shown on a typical cross section in Fig.

5.2.

In terms of the curvilinear coordinates Eq. (5.15) can be restated as

A'I'(s,n) = -2 [Yo(s) - n sinO(s)]

~'I' I = 'Yo(s) + n vyo(s)- n2
; sinO(s)

n ±.

where the function 'Yo(s) is given by

'Yo(s) = ; [(zJ - yJ ) sinO + 2yozocosO]

(5.17)

(5.18)

and we have used the functions Yo(s) and zo(s) to parametrically describe the curve defined by

the middle line of the cross section. The angle 0 (s) measures the inclination of the tangent to
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the middle line from the X2 axis.

The Laplacian operator ~ can be expressed in terms of the curvilinear coordinates sand n

as

(5.19)

where a comma followed by a subscript denotes partial differentiation, and J = 1- n(}' is the

square root of the determinant of the metric of the curvilinear system.

In the spirit of the thin wall assumption we assume that T xn =0 throughout the cross sec-

tion. Noting that

Eqs. (5.16) can be expressed as

f)'JI + 2 P • ()- = 'Yo npyo - n -sman 2

(5.20)

(5.21)

Differentiating (5.21) once again with respect to n and substituting the result into (5.17)1> not-

ing (5.19), yields

where the error term R (s) is given by the expression

5

R (s) = -2(1+p) [(J"f Yo(~) d~ + 2(}'yo J- (2+p )sin9
50

(5.22)

(5.23)

It can be seen that for locally flat cross sections IR (s) I< 2+p. R (s) vanishes altogether for a

thin rectangular section since sin() = O. Introducing the function

r o(s) =-; [(z6 - Y6 )cos9 - 2Yozosin9] (5.24)
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Eq. (5.22) can finally be expressed as

(5.25)

Integrating (5.25) and enforcing the condition 7 xs = 0 at the ends of the cross section we

finally obtain that

d'l' S

d = fo(s) - 2(l+v) f Yo(~)d~
s So

(5.26)

up to order n. Equation (5.26) can be integrated once again and the result can be used in Eq.

(5.13)1 to evaluate f/JI' Note that the constant of integration obtained by integrating (5.26)

disappears in the orthogonalization process implicit in (5.13)1.

To see the equivalence with the expression given by Cowper [2] we note that the shear

stress from elementary considerations is given by

If t = canst., Eq. (5.27) further simplifies and its substitution into (5.26) leads to

d'l' = fo(s) + 2(l+v)J 7(S)
ds V

(5.27)

(5.28)

I-Beam Warping Function.- The computation of the warping function has been carried

out for the case of interest here: The I-section. For notational simplicity, let the ratio of gross

flange area to web area y, and the ratio of flange width to section depth 8 be denoted by

_ 2btf
y =-

ht
and (5.29)
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respectively, where b is the flange width, If is the flange thickness, h is the distance between

the centroids of the flanges, and I is the web thickness. A rather lengthy computation gives,

from Eq. (5.26), the expression for the warping function cPl

KGO I(2+v)[20y3_3h 2yCO(y,8,v)] in 0 w

cPl = 120EI y[30(4+3v)z2-120{1+v)blzl+h2C 1(y,8,v)] in Of
(5.30)

where 0 wand Of refer to the web and flange domains respectively. In this expression y = X2

is the major principal axis of the cross section (and the axis along which the resultant shear

acts) and z = X3 is the minor principal axis. The cross sectional properties 0 and 1 are given

by

o = hl(l+y) and (5.30

An expression for the shear coefficient K is given in [2] and is roughly equal to -11. G is the
+y

shear modulus, E is Young's modulus, and v is Poisson's ratio.

The constants Co(y,8,v) and C1(y,8,v) appearing in Eq. (5.30) are section/material pro-

perties given by

C ( 8 ) = 4+20y{1-282) +v[2+5y(2-982)]
o y, ,v 2(1+3y)(2+v)

C ( 8 ) = 8{1+15y82) +v(4+135y82)
I y, ,v 2{1+3y) (5.32)

Two limiting cases of practical interest can be obtained from the expression for the 1-

beam: (1) The spar-and-web section in which the flanges have area but negligible width, and

(2) The thin rectangular section in which the flange area is zero.

The Spar-and-Web Section.- Letting 8-0 with y ~ 0 the warping function for the spar-

and-web section is recovered. In this case, the two constants reduce to
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Co = 2+10y+vO+5y)
0+3')')(2+v)

C1 = ..::;2..::.:(2:...;+-,-v~)
1+3')'

(5.33)

The shear coefficient notwithstanding (which can again be found in [2]), no other differences in

the warping function appear.

\
Thin Rectangular Section.- Letting both 8 -+ 0 and ')' -+ 0 the warping function for the

thin rectangular section is recovered. In this case, .nf -+ 0 so that only the part of Eq. (5.30)

involving .n It' is applicable. Here Co = 1.

5.4. Solution Procedure

The motion of the system, described by the two equations (5.2) and (5.9), involves both

material and geometric nonlinearities. Hence, the procedure of linearization about an inter-

mediate configuration must be employed in the solution scheme. Specific details regarding the

linearization process are treated extensively in the literature [17,28]. Here we will simply state

the final results and refer the interested reader to the cited works for details.

Linearization of the weak form.- The linearization of the weak form of the equilibrium

equations about an intermediate configuration, denoted by <i>, leads to the expression [28]

(5.34)

where the over bar denotes the evaluation of that quantity at the configuration <i>, and Llu is the

incremental motion. The first term in Eq. (5.34) gives rise to the tangent stiffness of the sys-

tern and the last term to the so called out-of-balance force at the configuration <I> which has the

expression

G(1J,iJ = fFSGRAD1J dV - ft.1J dS
B aBt

(5.35)
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Clearly, G(1J,x) vanishes if iii is an equilibrium configuration.

Equation (5.34) has a form that is suitable for treatment by the Finite Element Method.

We note that the deformation gradient F is completely defined by the kinematic assumption

(5.12). To carry out the solution a knowledge of the current state of stress S and the material

tangent :: ~ is required. These items can be obtained from the constitutive equations (5.9).

Inasmuch as these equations are given in rate form, they must first be integrated. This con-

sideration is discussed in the following section.

Numerical Integration of the Constitutive Equations.- Due to the nonlinear nature of

the constitutive rate equations their integration can generally not be accomplished through

direct quadratures. The literature abounds with methods for the numerical integration of first

order ordinary differential equations. Generally, in engineering applications one step methods

are preferred because of their simplicity and computational efficiency. The implicit one step

method proposed by Hughes and Taylor [16] is employed here.

Formally integrating Eq. (5.9) we obtain the expression

1

E1 - Eo = n-1 [SI -So] + l f f3(Si;)d~
T 1

0

(5.36)

The subscripts to and t indicate that the quantity is evaluated at times t = to and t = to + Ilt

respectively. The last term in (5.36) is then integrated numerically using the formula

(5.37)

where we have employed the notation

(5.38)
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The final integrated form of the constitutive equation can be written in the form

(5.39)

where the constitutive residual V t has been introduced. V t = 0 indicates exact satisfaction of

the integrated form of the constitutive equations. The norm of the constitutive residual will be

used as a measure of satisfaction of the constitutive equation.

Differentiating Eq. (5.39) with respect to E, one can obtain an expression for the material

tangent given by

(5.40)

As usual, the prime denotes differentiation with respect to the argument. The fourth order

material tangent tensor has been given the name nt, where the subscript t serves as a rem-

inder that this tensor is history dependent (through the evolution of the stress state).

Choice of the Penalty.- In solving problems of elasto-plasticity using a viscoplastic

material model, one hopes to approach the condition T - O. From a numerical standpoint,

approaching this limit too closely presents the possibility of numerical ill-conditioning. For

practical purposes the limit on T is not of primary importance, but rather one is concerned with

forcing the converged stress state to be in a certain proximity of the yield surface. We consider

this problem briefly in this section.

Consider a loading process in which inelastic action takes place. If the constitutive rate

equation (5.9) is integrated using a value of ex = 1 (backward Euler), the resulting expression

has the form

at J 2 ) /-DaE + (S-So) + - (--1 DS = 0
kT k 2

(5.41)
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where I1E = E - Eo and S' again stands for the deviator stress. The subscript t has been

dropped but it should be understood. Introducing the definitions

S= So + D(E-Eo)

Eq. (5.4l) takes the form

1 J2 ) 0, AS + - (- -IDS - S = 0
1/ k2

(5.42)

(5.43)

The defined stress S can be interpreted as the stress state corresponding to an elastic response

to the strain increment. In essence, it measures how far outside the yield surface the initial

estimate of the stress point lies. It is worth noting that the norm of the elasticity matrix, 110II,

is roughly equal to Young's modulus for an isotropic material.

Our desire is to have the converged stress state close to the yield surface. This condition

is achieved if the stresses satisfy the condition

(5.44)

where E is the measure of "closeness" to the yield surface. Equation (5.44) can then be written

as

S + ~ DOS' - S = 0
1/

(5.45)

Taking the inner product of (5.45) with S' and noting that tr(S/S) = tr(S'S') = 2k 2 we obtain

!l _ tr(S'S) - 2k2

E - tr(S'DOS/)
(5.46)
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Noting that

we finally arrive at the condition that if

2l.. ~ tr(S'S) - 1
E 2k2

(5.47)

(5.48)

then the converged stress point should lie within E of the yield surface. This estimate provides

a useful and simple means of automatically controlling the size of the penalty for the elasto-

plastic problem. One can clearly see the dependence of the penalty on the influencing factors

of the elastic modulus IIDII, the yield stress k, the time step Ilt, and the size of the load incre-

ment as measured by tr(S/S). While the preceding development gives a sharp estimate for the

value of the penalty, it should be noted that such a procedure can only be employed if the yield

surface can be expressed as an inner product of the stress measures. We will find that this is

rarely the case for stress resultant formulations.

Finite Element Discretization.- The terms in the kinematic hypothesis (5.12) involving

v~/ and vu' give rise to the so called "anticlastic bending" of the beam, and are not expected to

be influential in the present application. In order to keep the finite element interpolation struc-

ture simple, these terms will be neglected in what follows. It is emphasised that this truncation

does not reflect a limitation on the developments, merely a judicious simplification.

We will further assume that the beam is thin walled or, in other words, locally two dimen-

sional. For the I-beam, this is a reasonable assumption. In terms of the curvilinear coordinates

Ix, s, n} previously introduced, the kinematic hypothesis (5.12) takes the form

Us (x,s) = v(x) cos6(s) (5.49)
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Following standard procedure we interpolate the generalized displacements ii(x) =

- - T[ii,v,l/J,/3] as

N

ii(x) = L hex (x) Uex
ex=l

(5.50)

where U = [U, V, '1', B V are the nodal values of the displacements, hex(x) are the interpola-

tion functions, and N is the number of nodes in each element. Inasmuch as the admissible

variations lie in the space HI (O,L), CO continuity of the interpolation is sufficient [48,50].

From (5.49) and (5.50) the gradient of the displacements can be computed as

N

GRADu(X) = LBex(X) U ex
ex=l

in which the matrix Bex(X) is given by

(5.51)

h'ex

o
o

Bex(X) =
o
o
o 9'sin9 hex

-X2 h'ex -K¢l h'ex

-cos9 hex -K¢'l hex

o 0

o 0

(5.52)

Note that the rows of Bex correspond to the components of GRAD u in the following manner:

BO, 2, 3,4) - GRADuOl, 12,21,22). The deformation gradient can be computed using

(5.51) as

F(X) = 1 + GRADu(X)

Equation (5.51) has an identical form for the increments au and aU.

(5.53)

Employing the interpolation in the weak form we are lead to the standard discrete prob-

lem for the incremental nodal displacements aU

(5.54)
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where the tangent stiffness matrix is given by a sum over all of the elements e as

K/ = Lf BT[S~ I + FT n/F] B dV
e B

and the right hand side or out-of-balance force has the expression

f{ = F/ - Lf B T [FS] dV
e B

(5.55)

(5.56)

in which F{ is the vector of currently applied nodal forces. Again, the barred quantities are

evaluated at the current state. Note that in (5.55) and (5.56) the terms in brackets must be

appropriately transformed from tensor form to matrix form.

It is usual in Finite Element treatments of beam problems to integrate the X2-X3 depen-

dence of the volume integrals in the expressions for the stiffness matrix and load vector analyti-

cally and the Xl dependence numerically. However, since the stress S and the compliance n t

generally vary nonlinearly over the cross section due to inelasticity, the X2-X3 dependence in

Eqs. (5.47) and (5.48) must be evaluated numerically. Numerical integration over the cross

sectional area has been employed previously [36].

In the present study, for applications to thin rectangular cross sections, Gauss-Lobotto

quadrature is employed. For applications to I-beams, the cross sectional domain is subdivided

into three regions: Two flanges and a web. Within each region, regular Gaussian quadrature is

employed and the total integral is taken to be the sum of the integrals over the three subre-

gions. Numerical experiments suggest that, for the I-section, three Gauss points in the web

region and two Gauss points in each of the flange regions t is minimal. Better accuracy can be

achieved by increasing the order of quadrature, but in most cases the global response is ade-

quately captured with the minimal rule.

t A "flange region" is defined as half of a flange, ie. that portion of the flange between the web-flange junc
tion and the extreme outer fiber. Symmetry of the cross sectional is then used in the computation.
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To prevent shear locking effects [50], reduced integration is employed in the Xl direction

(eg. two point Gaussian quadrature for a quadratic element).

Numerical Algorithm.- The solution of the problem is carried out using the algorithm

proposed in [46] which is summarized in Table 5.1. This algorithm consists of two Newton-

Raphson iteration schemes, one embedded inside the other. For each time step the global

equations (5.54) are solved for the incremental motion. From the updated motion, the strains

are computed. The strains are then used in the local nonlinear constitutive equations (5.36) to

obtain the stresses by an iterative solution procedure.

Initiate solution at time t = to

While Ilflll > tol

Form KI , f l

Solve K I dU = f l

Update U +- U + dU

Compute strains from displacements

For each element, while IIWIll > tol

I
Form fi l , '1'1

Update S +- S - fi I'l'l

Table 5.1 Elasto-Viscoplastic Algorithm (after [46))
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Fig. 5.1 Geometrical Representation of the Generalized Kinematic Variables

for the "Plane Sections Remain Plane" Hypothesis
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Fig. 5.2 Definition of Curvilinear Coordinates for a Typical Thin Walled Section
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Chapter 6

A Stress Resultant Model for Active Links

6.0. Introduction

In the preceding chapter an analytical model was developed using the general three

dimensional equilibrium and constitutive equations of an elasto-plastic continuum. Through

the introduction of the kinematic hypothesis (5.12), the solution of the problem was essentially

reduced to one dimension. Due to the consideration of nonlinear constitutive relations at the

local level, it was found possible to discern local phenomena such as the propagation of an

elastic-plastic interface through the cross section of a member. The cost of obtaining this local

information is the loss of the ability to directly integrate the X2-X3 dependence of the weak

form of equilibrium in evaluating the stiffness and load matrices. Numerical quadratures can be

effectively employed in these computations but the expense of evaluating these matrices is con

siderably greater than the usual effort of a one dimensional theory.

Because of the additional expense involved in computing with the local model, one is lead

to search for a reasonably accurate simplified model for use in the analysis of large structural

systems. The suitability of the simplified model is clearly manifested in how well it is able to

capture the important features of the response of a given structure. One valuable test, and one

which we shall employ here, is to compare the simplified model with a more detailed approach,

such as the model presented in Chapter 5.

In this chapter a simplified model based upon stress resultants is presented. Sima [45]

has developed a system of second order equilibrium equations based upon the kinematic

hypothesis (5.12) which accounts for the effects of warping of the cross section due to

transverse shear. We shall employ these equations in the ensuing developments. It should be

noted, however, that the formulation presented here can be easily extended to other beam

theories [46].
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The fundamental difference between the local approach of Chapter 5 and the stress resul

tants approach lies in the way the constitutive behavior is viewed. In the former, constitutive

laws were expressed at a local level in terms of stresses and strains. These local laws do not

involve the geometry of the body. The latter case is considerably different. Here, the stress

resultants and their conjugate strain measures are taken to be the primitive action/deformation

quantities and it is assumed that only these measures are involved in the characterization of the

constitutive behavior. Clearly, the constitutive equations in terms of stress resultants should

reflect the geometry of the body, especially the cross sectional geometry. This dependence

upon the geometry of the body is generally assumed a priori, and is the main source of concern

here because of the importance of shear.

The developments of this chapter have compelling analogs with the preceding one, and in

fact, with a few reinterpretations of notation, the solution procedures are the same. The simi

larities will be pointed out where appropriate.

6.1. Equilibrium Equations

Utilizing the kinematic hypothesis (5.12) and employing the method of successive approx

imations, Simo [45] developed a second order approximation to the nonlinear equilibrium equa

tions (5.0 in terms of stress resultants, which accounts for transverse shear and its concomi

tant warping of the cross section. These equations can be stated as

[N-t/lV]'=O

[V + {t/I+(I-K)t3}N]' = 0

M' + (I+u') V - K~N = 0

(6.1)
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In these equations N and V are defined as the resultants of normal and shearing stresses over

the deformed cross section of the beam, respectively, and M is the resultant of the first

moments of the normal stresses about the centroid of the cross section. The deformation

measures are the same as those employed in Chapter 5, except that f3 = v' - tfi is taken to be

dependent. Assuming f3 independent leads to the definition of an additional stress resultant as

shown in Appendix I.

For a hyperelastic material, Simo [45] further showed that the strain measures

>. =[A n, Av, At/! F conjugate to the stress resultants R =[N, V, M F can be expressed as

A v = v' - O+u')tfi (6.2)

For the elasto-plastic problem, we make the assumption that the>. are still conjugate to the R.

This assumption is analogous, but not equivalent, to the assumption in the local approach that

the kinematic hypothesis, which was also based upon elasticity, holds in the inelastic range.

We denote by aR those directions at x = 0 and x = L subject to applied tractions, and by

ax those directions having prescribed displacements. Furthermore, we will denote the displace-

ments by u(x) =[u, v, tfiF. The weak form of the equilibrium equations (6.0 can then be

expressed as [46]

L L

G (u,.,,) =f R.D>.:" dx - f q'Y/2 dx - [.".i ]a Ro 0

(6.3)

for any." EHI (O,L) satisfying the displacement boundary conditions. A transversally applied

load q has been included in the formulation. The expression for the variation in strains present

in the first term of equation (6.3) is given by the usual definition
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(6.4)

Defining the operator w-m(w) = [u',v',l/J',l/JF and noting (6.2), the expression (6.4)

takes the explicit form

(6.5)

where the matrix

(6.6)

is analogous to the deformation gradient F in the previous chapter.

6.2. Constitutive Equations

We assume that the strain rate t can be decomposed into elastic and plastic parts as

(6.7)

wherein the elastic part is assumed to be related to the rate of stress resultants as

(6.8)

D = diag [En KG n EI] being the elastic compliance matrix. In a manner analogous to the

local approach, we assume that the inelastic processes can be characterized by a viscoplastic

model, which can be used in a penalty procedure to capture elasto-plasticity. To wit, we assume

that the plastic strains evolve according to the rate equation

t A discussion of the proper rate for nonlinear beam theories has been given in [46].
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(6.9)

where here no distinction is made between the potential in the penalty term and the one in the

term giving the direction of plastic flow. The resulting constitutive model is then given by

(6.10)

The constitutive equation of the viscoplastic model assumes the existence of the plastic

flow potential j (N, V,M), which is necessarily expressed in terms of the stress resultants. The

suitability of the model for characterizing the inelastic response of a beam relies heavily on the

choice of this potential. The choice of the potential is discussed in the next section.

6.2.1. The Plastic Flow Potential

It is well established that a theory of plasticity (or viscoplasticity) can be formulated in

term of generalized stresses Q and appropriately conjugate strain measures q [l3]. Viewed

naively then, a theory employing stress resultants is on an equal footing with one in which

stress components are used for the generalized stresses. In either case, the constitutive rate

equation for the evolution of the plastic part of the strain relies upon the existence of a flow

potential j(Q) having the following properties:

(1) The equation j(Q) = 0 describes a convex hypersurface in Q-space, called the yield sur-

face.

(2) States in which j(Q) < 0 are elastic and hence are associated with vanishing plastic strain

rates.

(3) States in which j(Q) > 0 are not realizable in rate independent plasticity. In viscoplasti-

city, such states are realizable and are associated with nonvanishing plastic strain rates.

As far as the plastic flow potential is concerned, the main difference between rate

independent plasticity and viscoplasticity is that in the former j must make sense only for
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states satisfying f(Q) ~ 0; wh~reas in the latter, f must be defined for all states. Further, the

topology of f outside the yield surface must adequately characterize the inelastic processes for a

viscoplastic material. When using a viscoplastic model to numerically represent rate indepen

dent plasticity, one need not take such great care in choosing the form of f away from the yield

surface, since a converged stress state should lie on or inside the surface. Even in this case,

however, f must still satisfy certain criteria outside of the yield surface. These requirements

are described in the sequel.

For stress resultants, ie. when Q = R, it is not clear that the potential f (R) exists. Even

in the case of stress components, the existence of f is a matter for experimental verification.

The case of stress resultants does have the advantage that, since the resultants are integrals of

the stress components, there should be a correspondence between a local l(u) and f(R),

presenting the possibility of analytically determining f (R) based upon a knowledge of 1(u).

The analytical approach to determining f(R) is not without its difficulties, especially when

the problem considered involves multiaxial states of stress. Drucker [5] has pointed out that

determining f(R) from a knowledge of l(u) is problem dependent, depending upon both the

boundary conditions of the beam and on the form of the applied loads. It is generally agreed,

however, that a yield surface f(R) = 0 derived from a local two or three dimensional analysis

of a specific structure, such as a cantilever beam with end loads, can be fruitfully employed for

engineering purposes as a criterion for general conditions.

Some comments on the prospect of using the local two or three dimensional approach and

integrating to get a yield criterion in terms of stress resultants are worthwhile mentioning:

(1) Exact solutions to elasto-plastic beam bending problems are not currently available, even

for the "simple" problem of the bending of a cantilever. Hence, one must resort to the

bounding theorems of plasticity to obtain an approximate solution.

(2) Tight upper and lower bounds are difficult to achieve even in the simplest cases. Lower

bound solutions are generally easier to obtain than upper bound solutions (and have the

advantage of being "safe"). A good lower bound to the problem of a cantilever of
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rectangular section under end shear was obtained by Drucker [5] assuming that the

transverse normal stresses vanish everywhere. This solution was extended by Neal [29J to

the case including axial thrust. Lower bound solutions for the I-beam were presented by

Neal for both the case N = 0 [30J and the case N:;e: °[31 J. Neal [30] has also improved

the upper bound solution of Leth [22J for the case N = 0, and has pointed out that an

upper bound for N ~ 0 is difficult to obtain because the problem is three dimensional.

The upper bound solutions for the I-beam are reasonable only for high shear (ie. short

cantilevers) .

(3) Most derived expressions for a yield surface j(R) = 0 (either approximate or rigorous

bounds) are expressible only in parametric form. Such implicit formulas usually cannot

be extended for use as potentials, and hence cannot be employed in the viscoplastic for

mulation presented here. It is clearly desirable to have an explicit formula for j(R).

(4) Solutions based upon local yield criteria generally require a specific form for the applied

stresses, leading to some ambiguity with respect to the uniqueness of the result.

Inasmuch as 81. Venant's principle does not hold, these differences are irreconcilable.

(5) For certain cross sectional geometries, most notably the I-section, j = 0 is not every

where convex. 'Figure 6.1 shows upper and lower bounds on the Y-m interaction curve

for an I-beam (after Neal [30]), between which no convex curve can possibly pass. Since

plasticity theories generally depend upon convexity of the yield surface, some objection to

the stress resultant approach might be raised. It should be noted, however, that the

regions of non-convexity generally are confined to combinations of (n, Y, m) not possibly

achieved by beams in practical problems Ge. beams so short that a stress resultant

approach would hardly seem applicable).

In many cases it is possible to obtain an approximation to the yield surface using a physi

cally motivated model which does not meet all of the requirements of the bounding theorems

of plasticity. Often, it can be shown that these approximations correspond well with, for exam

ple, a lower bound solution over all or at least part of the yield surface. This approach will be
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adopted here to treat the elasto-plastic I-beam problem. The question then arises: Is the yield

surface j (R) = 0 a level set of a suitable potential j (R)? If not, how can the problem be

resolved?

In order to answer the first question it is necessary to define what is meant by a "suitable

potential". For a potential to be suitable for use in a viscoplastic penalty approach to rate

independent plasticity we propose the following requirements:

(I) The equation j(R) = 0 must describe a closed, convex locus in R-space.

(2) The inside of the yield surface must be characterized by the condition j(R) < O.

(3) Outside the yield surface, the potential must be everywhere positive, ie. j(R) > O.

Furthermore, it seems reasonable that j (R) should be coercive, that is

j(R) --+00 as IIRII- 00 (6.11)

where IIRII can be taken to mean the Euclidean norm of the stress resultants R.

Remark.- The expression for the hypersurface j(R) = 0 is not necessarily a level set of a

suitable potential j (R). In essence, this means that it is not sufficient to merely remove the

equal sign and the zero from the expression of the yield locus to arrive at a suitable expression

for the potential. This point will be illustrated with the example of a beam with rectangular

cross section.

Example.- Noting the similarity between the relationship between m and v found from a

local criterion t with n = 0 and m (l+n2) and v2(l +n2
) found from a similar approach with

n ~ 0, Neal extended Drucker's approximate expression for the moment-shear interaction of a

rectangular beam without axial force, given by

Iml + v4
- 1 = 0

t By local criterion we mean a criterion which is obtained by considering only a single cross section rather
than an entire beam. See, for example, the approach in Hodge [13,14).

(6.12)



111

to

v4
Im I + n2 + -- - 1 = 0

1- n2

which gives rise to the naive potential

- 0
j(n,v,m) = Iml + n2 + --2 - 1

1-n

(6.13)

(6.14)

In these expressions, normalized values of the stress resultants have been used. The normal-

ized quantities are defined as n=N/No, v= VIVo and m=M/Mo, where the quantities having

a subscript zero denote fully plastic values of a stress resultant in the absence of the other two,

and depend upon the cross section considered. The specific expressions for No, Va, and Mo in

this example are not of interest, and hence will not be given.

To see that J fails the condition of positivity, consider a state of stress given by m = 0,

v = 1, and n2 = 1+ E, which clearly lies outside the yield surface for values of E > O. Substitu-

tion of these values into Eq. (6.14) leads to

- ~ 1
j(",I+E,I,O) = E - -

E
(6.15)

which is less than zero for values of 0 ~ E ~ 1, and hence fails the requirement of positivity

outside the yield surface.

The potential J is obviously not the only one giving rise to the surface (6.13). One might

hope that, through some manipulation, a suitable potential might be obtained. A manipulation

of Eq. (6.13) leads to a potential satisfying the positivity condition which is given by

(6.16)

which has the property j = 0 is equivalent to (6.13). Considering stress states in which

m = v = 0, n ~ 0, it can be seen that this potential is not coercive, ie.
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= 2n2 1
lim f (n ,0,0) = lim --4 = lim - = 0

1/_00 /1_00 1+n /1-00 n2

where the second equality comes from successive application of L'Hospital's rule [44].

(6.17)

It is conjectured that the hypersurface (6.13) cannot be extended to a suitable potential.

An alternative approximation to the yield surface having projections on (n, v ,0), (n,0, m), and

(O,v,m) identical to (6.13) was given in [46] which satisfies the proposed requirements. The

corresponding potential is given by

(6.18)

The two surfaces f = 0 and J = 0 are plotted along with Neal's [29] rigorous lower bound in

Fig. 6.2.

In the next section we discuss an approach for determining a yield potential for the 1-

beam which is suitable for computational purposes. It is again found that the obtained yield

surface cannot be extended to a potential which is suitable for use in the viscoplastic algorithm.

An approximate potential is developed for this purpose.

I-Beam Yield Potential.- In developing an n-v-m interaction surface for an I-beam we

employ an idealization of the stress state which was first proposed by Horne [15J. In contrast

with usual approaches to I-beam interaction (even the simple case of n-m interaction), we

view the cross section as being thin walled. An immediate consequence of the thin wall

assumption is that the flanges carry no transverse shear. The validity of this assumption can be

seen by again considering the upper and lower bound solutions of Neal [30J shown in Fig. 6.1.

Increases in resultant shear carrying capacity above that achievable by the web alone can be

seen to be negligible except for extremely short beams. The thin wall assumption is also in

accord with the developments of Chapter 5.

It is necessary in this idealization to reinterpret what is meant by having the neutral axis

in the flange. Instead of having the neutral axis location described by some distance of
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penetration through the thickness of the flange, it will be vfewed as a distance measured along

its width. The interaction relationship obtained in this way is given explicitly in terms of the

stress resultants n, v, and m and a single topological parameter which characterizes the cross

section. The procedure followed in developing the interaction surface can be summarized as:

0) Assume a simplified state of stress throughout a cross section in which the flanges have

normal stresses equal to ±<To, and the web has normal stress equal to ±<T and a shear

stress equal to 'T, where <To is the yield stress in pure tension and <T and 'T are as yet

undetermined. Note that we are not forcing the assumed stress state to satisfy the two

dimensional equations of equilibrium. For this reason the result is not a true lower bound

solution.

(2) Assume a location of the neutral axis, either in the web or a flange, described by the

parameter g.

(3) Impose the von Mises yield condition <T 2+ 3'T
2 = <T6 throughout the web region. Note that,

by assumption, this condition is trivially satisfied in the flanges.

(4) Compute the values of the stress resultants by direct integration of the stress components

over the cross section.

The resulting yield surface will be characterized (in a quadrant of n-v-m space) by three

different functions each having its own unique domain of definition.

For convenience, the dimensionless ratio 1 relating the gross flange area to the gross web

area is defined as

_ 2blI
1 =-

hI
(6.19)

where b is the flange width, II is the flange thickness, h is the distance between the centroids

of the flanges, and I is the web thickness. In terms of this ratio, the fully plastic values of the

stress resultants are given by

No = 0+1) ht <To
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va = ht'To (6.20)

where 'To is the yield stress of the material in pure shear. As usual, we will employ the normal-

ized stress resultants n = NINo, v = VI VA, and m = MIMoo For purposes of notational con-

venience we make the following definitions:

m· - O+2'Y)lml-2'Y

f3 = 1+1'. (6021)

Neutral Axis in Web.- Assuming that the normal stress changes sign at a distance ghl2

from the centroid of the section we obtain the following expressions for the normalized stress

resultants:

(T
f3n = ~-;

(To

'Tv=_o
'To '

(6.22)

Applying the von Mises yield criterion to (T and 'T we arrive at the result

Equation (6.23) is applicable for the values 0 ~ f31 n I~ 1, 0 ~ v ~ 1, and 0 ~ m. ~ 1.

(6.23)

Neutral Axial in Flange.- Assuming that the normal stress changes sign in the flange at a

distance ~b12 from the flange-web junction, we obtain the following expression for the normal-

ized stress resultants

(Tf3n = 'Yg+-;
(To

'Tv=_o
'Ta '

(6.24)

Again applying the von Mises criterion, we obtain
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(6.25)

from which we note that, for constant values of shear, the relationship between moment and

axial force is linear. Equation (6.25) is valid for the values 1 ~ 131 nI~ 13, 0 ~ v ~ 1, and

Web Fully Plastic, Flanges Not Fully Developed.- The case in which the shear stress in

the web region is equal to TO and the flanges have normal stress less than or equal to <To leads

to the interaction relationship

(6.26)

which holds for values of nand m satisfying the inequality

m· + 2131 n I ~ 0 (6.27)

One quadrant of the complete interaction surface is shown in Fig. 6.3. Regions I, II, and

III correspond to Eqs. (6.23), (6.25), and (6.26) respectively. Line A in the figure is given by

the equality in Eq. (6.27). Line B is given by

m. = 0 (6.28)

A check of the normal derivatives across lines A and B shows that the yield surface is continu-

ous and smooth (except for a corner at m = 0).

Some comments regarding the obtained yield surface are in order:

(1) The projection v = Oof the surface onto the n-m plane gives an n-m interaction curve

which is exact within the thin wall approximation.

(2) The projection n = 0 onto the v-m plane corresponds to the approximate v-m interac-

tion curve proposed by Neal [30]. This approximation was shown by Neal to correspond

well with a rigorous lower bound solution. Recall that this curve, in a slightly different
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form, was used in Chapter 3 to make a comparison between analytical and experimental

results.

(3) The yield surface is everywhere convex.

(4) The yield surface is not suitable for extension to a potential. The problem arises in region

1. It can be seen from Eq. (6.23) that, due to the presence of the term~, stress

states having v ~ 1 lead to imaginary values of the yield potential. Manipulation of the

expression (6.23) was not found to completely resolve this situation.

Because the yield surface cannot be extended to a suitable potential, it cannot be used in

the computational scheme proposed here. Therefore, we propose that the following potential

be employed

j(R) -

m.2+{32n2+ v2+{3m*ln 1-1
1-m2+{32n2+ v2+{3m·lnl-l
4
v2-1

in I

in II

in III

(6.29)

The surface j = 0 is compared with the "true" yield surface, given by Eqs. (6.23), (6.25), and

(6.26) in Fig. 6.4 for a value of 'Y = 0.5.. Good correspondence between the two surfaces can

be noted.

The approximate potential j has corners at m = 0 and and n = O. The treatment of

corners numerically can be satisfactorily achieved by the following procedure:

(1) Extend the two functions to have domains of definition beyond the corner.

(2) For each stress state in question, check whether none, one, or both of the potentials are

positive.

(3) If both are positive, assume a plastic strain rate equation as a linear combination of the

two potentials:

(6.30)
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Otherwise proceed as usual.

6.3. Solution Procedure

The solution procedure for the stress resultant formulation is completely analogous to the

local approach. Again, the problem involves both geometric and constitutive nonlinearities,

suggesting the procedure of linearization about an intermediate configuration. As the develop-

ment closely follows [46] the results are given with only a few intermediate details.

Linearization of the Weak Form.- Employing standard procedures, the weak form of the

equilibrium equations can be linearized about an intermediate configuration ii, with incremental

motion au. The linear part of G (u,',,) can then be expressed as

where, for the formulation considered here, the matrix A G has the form

o 0 O-v
o (l-K)N 0 KN

AG = 0 0 0 0

-v KN 0 KN

(6.31)

(6.32)

and gives rise to the geometric part of the stiffness matrix. The so-called residual G (ii,',,) is

given by Eqs. (6.3) and (6.5) as

L L

G(ii,',,) = fm T("1)8 T(u)Rdx - f q."12 dx - [71.RlaR
o 0

(6.33)

Numerical Integration of the Constitutive Equations.- Proceeding in a manner com-

pletely analogous to that presented in the previous chapter for the local approach, the rate con-

stitutive equations (6.10) are integrated numerically. Again introducing the constitutive
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residual '1'1' whose norm is a measure of satisfaction of the integrated constitutive equation, we

arrive at the result that

where we have again set

(6.34)

R", = (l-a)Ro+ aRt (6.35)

Th~ subscripts 0 and t indicate that the quantity is evaluated at time t = to and t = to +dt

respectively. Differentiating Eq. (6.34) with respect to A, one can obtain an expression for the

material tangent given by

(6.36)

Finite Element Discretization.- Following the standard Finite Element discretization pro-

cedure, the displacements u (x) = [u, v, l/J ]T are interpolated as t

N
u(x) = L ha(x)Va

a=1

(6.37)

where N is the number of nodes per element, ha(x) are the CO interpolation functions, and

Va = [ V, V, qr V are the nodal displacement values.

From the interpolation (6.37) the operator m(u) can be evaluated as

N
m(u) = L Ba(x)Va

a=l

where Ba(x) is given by

t Recall that, in this formulation, the displacement variable {3 is dependent.

(6.38)
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h' 0 001

0 h' 001

BOI(x) = 0 0 h' (6.39)
01

0 0 hOi

Substituting Eq. (6.38) into the weak form (6.31), one is lead to the standard discrete problem

for the incremental motion aU

where the tangent stiffness matrix is given by a sum over all of the elements as

L

Kr=r.fBT[AG +Sr(}ISr]Bdx
e 0 t

and the right-hand-side by

L

f l = Fr - r.f BTSrR1 dx
e 0

(6.40)

(6.41)

(6.42)

the term F1 again denoting the current applied nodal forces. In these expressions AG , S, (}

and R all depend upon the current state. Hence an iterative solution procedure is warranted.

With some minor reinterpretation of notation, the algorithm for solving the stress resul-

tant problem is identical to that of the local approach. Therefore, Table 5.1 is again appropri-

ate.
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Fig. 6.3 Moment-Shear-Axial Interaction for I-Section, Schematic
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Fig. 6.4 Moment-Shear-Axial Interaction for I-Section, 'Y = 0.5
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Chapter 7

Applications of Analysis to Eccentrically Braced Frames

7.0. Introduction

The preceding two chapters were devoted to developing two analytical approaches to the

problem of inelastic bending, shearing, and stretching of short beams. The local approach

presented in Chapter 5 involved the introduction of a kinematic hypothesis which constrained

the otherwise three dimensional formulation. The stress resultant approach presented in

Chapter 6 was a one dimensional formulation. The development of the local approach involved

fewer assumptions than the stress resultant approach and hence can be expected to yield more

accurate results. The local approach is employed in this chapter not only as a primary computa

tional tool but also as a means of assessing the acceptability of the stress resultant model.

The purpose of this chapter is to apply the developed computational tools to the case of

interest here: Active links in eccentrically braced frames. To this end, five numerical examples

are presented. The first example is an isolated active link, subjected to loading conditions simi

lar to those used in the experimental program described in Chapter 1. Both analytical models

are employed and commented upon in this example. Next a detailed study is made of a one

story, one bay eccentrically braced frame in order to compare the performance of the two

models when employed in a more complicated structural assemblage. The last three examples

are devoted to a study of three frames, having one bay and three stories, which employ

different bracing arrangements. These analyses are carried out using only the stress resultant

model.

The numerical computations performed for the examples presented in this chapter were

carried out using the general purpose Finite Element program FEAP which is described in

Chapter 24 of [50). The computations were performed in double precision arithmetic on a

VAX 111780 computer.
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7.1. A Link from the Experimental Program

The first example models analytically the typical pre-buckling behavior of Specimens 1

through 5 of the experimental program described previously. The purpose of presenting this

example is to show the features of the local model which allow it to capture certain aspects of

active link behavior. An extensive comparison between analysis and experiments is not

attempted here.

The beam under consideration had length L == 28 inches and was fixed at one end and

restrained against rotation at the other. The cross sectional dimensions of the beam are given

in Table 7.1, in which h is the distance between the centroids of the flanges, b is the flange

width, I is the web thickness, and If is the flange thickness. These dimensions closely approxi-

mate those of the W18x40 section used in the experiments. The idealized material properties

are also given in the table. Here E is Young's modulus, G is the shear modulus, 0'0 is the

yield stress in pure tension, and 'T is the penalty parameter.

Section Material
Dimensions Properties

h (in) 18.00 E (ksi) 30000
b (in) 6.00 G (ksi) 15000
I (in) 0.33 0'0 (ksi) 36
If (in) 0.50 'T (sec) 1

Table 7.1 Section and Material Properties for Isolated Link

The beam was discretized into four quadratic elements having equal length. Three Gauss

points in the web and two in each half flange (symmetry of the cross section is noted) were

employed to carry out the numerical integration over the cross section. The time integration of

the constitutive equations was carried out using a value of a = 1. The integrated constitutive

equations were satisfied to within 11.11 < 10-12 at each load increment.
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The response of the beam to a cyclically applied shear force is shown in Fig. 7.1. The

beam sustained an ultimate load of 124 k, compared to an average of 121 k for the first five

specimens of the test program. Upon load reversal, the beam had a more rounded force-

displacement curve due to the residual stresses resulting from the inelastic deformation.

Figure 7.2 shows the extent of plastification, determined by yielding at the integration

points (the dots in the figure), at various levels of loading. The numbers 1, 2, 3, and 4

correspond to states at the numbered points on the force-deflection curve, Fig. 7.1. The inelas-

tic zone at load point 1 consisted of a band across the center of the web and occurred due to

the presence of large shear stresses at the middle fibers of the beam. This type of yield pattern,

an experimentally observed phenomenon, cannot be realized with the "plane sections remain

plane" kinematic hypothesis. Subsequent yielding (load points 2 and 3) developed more rapidly

at the ends of the beam than in the middle due to the influence of the bending moment. The

yield pattern at load point 4 showed that the center of the beam experienced a slight unloading

at full plastic flow, caused by a redistribution of the shearing stresses over the cross section.

The flanges, which remained elastic throughout the loading process, are not shown in the

figure.

The local model is also able to give information on the distribution of the stress com-

ponents over the cross section of the member. The shear and normal stress distributions at the

end of the beam are shown for three load points in Fig. 7.3. The letters A, B, and C

correspond to load points on the force-displacement diagram, Fig. 7.1. At point A the beam

was completely elastic and the stress distribution was exactly the same as that of elementary

beam theoryt. In this formulation, however, in contrast to the elementary theory, the shear

stress component 8 12 is not computed as the equilibrating reaction to the normal stress 8 11 , but

is given directly from the strain E 12 through a constitutive equation. At point B considerable

plastic flow had taken place. At that point, the shear stress components were nearly constant

t In this example, no boundary condition was specified on the variable {3. This condition corresponds to
neglecting warping restraint. Warping restraint does affect the distribution of the stress components.
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and the normal stress components were relatively small in the web region. This result lends

credence to the assumption of the stress distribution employed in Chapter 6 to determine the

expression for the yield potential in stress resultant space. Point C represents an elastic unload

ing from point B. Note that the shear stress. at the extreme outer fibers of the cross section

always vanished in this example. This will not be true in general for this model. Warping res

traint and propagation of plasticity in the flange regions may lead to stress distributions which

violate the shear stress boundary condition.

The stress resultant model exhibited the simple bilinear elastic-perfectly plastic response

and thus is not shown in the figure. The elastic stiffnesses of the two models were identical

and the collapse loads were nearly the same. Since the stress point was on the flat portion of

the interaction diagram, the collapse load for the stress resultant model was simply Pu -Vo,

where Vo is given by Eq. (6.20). Using the properties given in Table 7.1, we have that

Pu - Vo=124.7 k, compared with Pu -124.0 k obtained from the local approach.

7.2. A Simple Eccentrically Braced Frame

The second example concerns a simple one story, one bay eccentrically braced frame with

a single diagonal brace and a single active link. The purpose of this example is to critically

compare the two developed mathematical models in a more complex structural system. Except

for the section used for the brace, the proportions of this frame are identical to those in a typi

cal story of the multistory frames considered in the last three examples. Hence, the present

example can be viewed as a direct assessment of the accuracy of the stress resultant approach in

the subsequent examples.

The bay width, story height, and eccentricity were taken to be L == 216 inches,

h -108 inches and e - 36 inches, respectively (See Fig. 7.4 for a sketch of the structure). The

section dimensions of each of the members are given in Table 7.2 below. Material properties

for all of the members were the same: E = 29000 ksi, G = 14500 ksi, and 0"0= 36 ksi.
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Beam Brace Columns

h (in) 13.28 7.69 13.22
b (in) 8.06 7.69 8.03
t (in) 0.37 0.32 0.34
tf (in) 0.66 0.32 0.59

Table 7.2 Section Dimensions for the Simple Frame

The columns, the brace, and the segment of the beam to the left of the brace were discre-

tized using three quadratic elements each. The active link was discretized using two quadratic

elements. Integration over the cross section, for the local model, was carried out with three

Gauss points in the web and two in each of the half flanges. The constitutive equations of both

models were integrated using a value of 0: = 1 and the integrated equations were satisfied to

within 11'1'11 < 10-10•

The penalty was taken to be T = 1 for the local model and T = 10-5 for the stress resultant

model. Recall from Chapter 5 that the choice of the penalty depends upon the desired proxim-

ity of the converged stress points to the yield surface. The required magnitude of the penalty

depends upon different quantities for the two models (eg. E and k for the local model, EI and

Mo, etc. for the stress resultant model). The value T = 10-5 used for the stress resultant model

kept the stress points within 10-5 of the yield surface. The value of T = 1 used for the local

model kept the stress points within 10-4 of the yield surface. Both tolerances were measured

by the respective yield potentials of the models.

The response of the frame to the applied lateral load t is shown in Fig. 7.4. The numbered

load points correspond to the stress resultant model while lettered load points correspond to the

local model. Correspondence between the solutions found using the two models was quite

good for this example. The local model exhibited initial yielding at a lower load than the stress

t Displacement control was used in solving this example.
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resultant model but achieved a slightly higher collapse load.. The stress resultant model showed

a slight degradation in load carrying capacity after load point 6, whereas the local model showed

no such loss of capacity. This difference in behavior is due to the way in which the inelasticity

is manifested in each case, and is discussed below.

The sequence of plastification is shown for the stress resultant model in Fig. 7.5, in which

the numbers correspond to load points on the force-deflection curve (Fig. 7.4). At load point 1

no plastic regions had formed. Load points 2, 3, and 4 show that, in order for plastification of

the active link to occur, the top end of the brace needed to yield first but subsequently

unloaded. At load point 5 the right column reached capacity at its base. The structure had

formed a collapse mechanism by load point 6, consisting of plastic zones at the bottom of both

columns and the brace and a plastic zone in the active link. The loss of capacity occurred due

to the so-called P-IJ. effect on an otherwise perfectly plastic structure.

Even though the active link yielded in shear at the integration point at the right end (ie.

the stress point was on the flat portion of the interaction surface), the link never yielded at the

other three integration points. This phenomenon can be explained by noting that due to the

nonlinearity of the equilibrium equations (6.1), the shear force is not necessarily constant for

the case of end loading as it is in the linear theory. In most cases, however, the formation of a

shear mechanism in the active link will involve plastification at all of the integration points.

The propagation of inelasticity is more complex for the local model. The extent of

plastification for this model is shown for four load points in Fig. 7.6, where again the

corresponding load points are labeled on the force-deflection curve (Fig. 7.4). At load point A

a plastic zone had begun to form in the web region of the active link, accompanied by a small

amount of plastification due to bending and axial thrust at the top of the brace and the right

column. At load point B the web of the active link was fully yielded in shear with some plastic

action in the lower flange at the right end. The plastification at the top of the brace and right

column had progressed into the web and a small plastic zone had formed at the base of the

right column. Load point C showed that plastic zones had formed in the left column and the
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bottom of the brace in addition to the zones previously formed. However, at this point, which

corresponds to load point 6 of the stress resultant model, the plastic zones were not completely

developed, and hence no loss of capacity occurred. By load point D a collapse mechenism ha(i

nearly been achieved. The similarities between the two models as regards the propagatiof ~f

plasticity through the structure should be noted.

It is particularly important to verify that the two models redistribute the internal forces in

the same manner upon yielding. The elastic distributions of moments were identical for the

two models. The distribution of bending moments at load point D for both cases are shown in

Fig. 7.7. The results are seen to be in good correspondence, verifying the proper behavior of

the stress resultant model.

Based upon the results of this example it appears that the stress resultant model is capable

of accurately capturing the response of a structure employing active links. In the following

examples a verification with the local model are not made.

7.3. A Study of Three Eccentrically Braced Frames

The remaining three examples presented in this chapter are concerned with three story,

one bay eccentrically braced frames employing different bracing arrangements. The first system

analyzed (Frame I) employed the so-called split-K bracing arrangement with the two braces in

each bay emanating from each of the lower corners and forming an active link in the middle of

the beam above. A variant of this system has been explored experimentally by Manheim [27].

The other two systems employed a single diagonal brace. In Frame II the brace emanated from

the lower left corner and formed an active link at the upper right corner between the brace and

the column. The topology of Frame III was similar to that of Frame II except that the diagonal

braces were also offset from the column at the lower left corners. The system characterized by

Frame III has been explored experimentally by Roeder and Popov [42]. The three frames

presented in this study were designed by Kasai [20] employing his newly developed plastic

design method.
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Each of the frames had a bay width of 216 inches and three equal stories, each having a

height of 108 inches. All of the link beams had 36 inch lengths. The members sizes employed

were the same for each of the frames in the study. The member properties are summarized in

Table 7.3.

Beams Braces Columns

EO (k) 452400 271440 408900
GO (k) 226200 135720 204450
EI (k-in2) 15370000 2636100 14065000
I( 0.33 0.50 0.32

No (k) 561 336 508
Vo (k) 107 100 93

Mo (k-in) 3070 1000 2822
'Y 2.0 1.0 2.1

Table 7.3 Member Properties for the Three Story Frames

The columns, the brace, the beam segment to the left of the brace, and the links in each

story were discretized using two quadratic elements each. The constitutive equations were

integrated in all cases with a value of a = 1, and employed a penalty of T = 10-2• This value of

the penalty kept the stress points within 0.01 of the yield surface, as measured by the yield

potential. The integrated constitutive equations were satisfied to within 11'1'11 < 10-10 at each

load increment.

In all cases, the lateral load was a single concentrated force applied at the top of the struc-

ture. Except for the absence of dead loading, this type of loading might be representative of

the conditions found in the lower three stories of a braced bay of a multistory building under

earthquake type excitation [42]. Hence, these examples provide a reasonable representation of

the behavior of real eccentrically braced frames.

Frame 1.- The response of the first structure to an applied lateral load at the top is shown
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in Fig. 7.8, in which the applied force is plotted versus the displacement of the structure at the

point of loading. First yielding of the structure occurred sometime between load points A and

B, after which the structure experienced a great reduction in lateral stiffness. At a displacement

of 4.0 inches, the sense of the loading was reversed. Increased rounding of the force-deflection

curve, due to residual internal forces, can be seen. Loading was continued to a displacement of

4.0 inches in the opposite direction. A slight drop in load carrying capacity was noted at load

points D and H, due to P-f:,. effects.

The propagation of inelasticity is shown schematically in Fig. 7.9. At load point B, the

active links in the top two beams had yielded in shear. The bottom active link yielded prior to

load point C. Just prior to load point D, the structure formed a collapse mechanism. The

sequence of plastification in the opposite direction was exactly the same, except that the sense

of deformation in each of the members was reversed. Thus, load point F corresponds with load

point B, load point G with C, and load point H with D.

The bending moment fields at the elastic load level A and at the fully plastic load level D

are shown in Fig. 7.10. In the elastic regime (prior to load point A), the columns had very

small bending moments while the active links sustained large moments and moment gradients.

By load point D the columns had attained much larger bending moments, due to redistribution

of forces in the structure. Further, the columns in essentially all three of the stories were in

single curvature bending. The explanation of this type of behavior is quite simple. After all

three of the active links had yielded, the additional resistance of the structure to the applied

loading came from a cantilever type bending of the three story column. Thus the incremental

bending moment field was linear over the three stories, vanishing at the top of the structure

and reaching a maximum at the base. The lateral tip loading is the worst possible case in this

regard. It is also interesting to note that the bending moment was of constant sign in the beam

segment between the active link and the column. This observation may be important for cases

considering uniformly applied dead loading on these beams. Apart from the change in the

sense of bending, the distribution of moments at load point H were quite similar to that shown



131

for D, differences being on the average less than one percent of the fully plastic moment and at

most less than two percent.

Frame 11.- The response of the second frame to the applied loading is shown in Fig. 7.1 I.

The global force-deflection characteristics were similar to the previous case. Frame II was sub

stantially more flexible than Frame I.

The states of plastification for load points A through H are shown in Fig. 7.12. Load

point A the structure was elastic. At point B, the bottom two active links and the right column

base had yielded. The top active link had yielded by load point C. A collapse mechanism

formed just prior to D. Upon reversal, the sequence was similar except that early yielding in

the middle active link occurred at load point E.

The bending moment fields at load points A and D are shown in Fig. 7.13. The major

difference between the elastic distribution for this frame and that of the previous one was the

presence of substantial bending moments in the right columns of Frame II. The fully plastic

distribution (load point D) was remarkably similar to the elastic distribution. Note that the

columns on the right remained in double curvature bending at all stages of loading. This type

of behavior can be largely attributed to the early plastification of the structure at the right

column base. The presence of this plastic zone prevented the three story cantilever type bend

ing moment field from developing after the active links had all yielded. Again, the difference

between the bending moment field at load points D and H were small, the maximum being

seven percent of the fully plastic moment and the average being two percent of the fuUy plastic

moment.

Frame 111.- The response of the last frame to a monotonic loading is shown in Fig. 7.14.

The stiffness of this structure was only slightly less than its counterpart having a concentric

joint at the lower left corner of each bay (Frame II). Again, a dramatic loss of stiffness took

place shortly after initial yielding of the structure.
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The propagation of inelasticity throughout the structure is shown in Fig 7.15, and can be

seen to be quite different from the previous frame. The structure was elastic at load point A.

At load point 1, the top two (right) active links had yielded in shear. This pattern should be

contrasted to the previous frame in which the bottom two active links and the right column

base plastified first. At load point 2, these differences had been recovered (compare load point

C in Fig. 7.12). Inelastic zones formed both at the left column base and in the bottom (left)

link by load point 3. Load points 4 and 5 show that some unloading occurred in the top (right)

active link prior to formation of a collapse mechanism.

The bending moment fields at load points A and B are shown in Fig. 7.16. In contrast

with the previous frame, the left columns sustain considerable bending moment even at elastic

load levels. Additionally, the presence of links at the bottom left of each bay forced the bend-

ing moment to change sign in the beam at midspan as well as within each link. The fully plas-

tic bending moment field (point D) was again remarkably like the elastic field.

Comparisons Among the Three Frames.- The properties of the three frames presented in

the preceding examples were quite similar. It is, therefore, possible to make some meaningful

comparisons between them. These comparisons cover three basic aspects of structural behavior

that are of particular importance in seismic applications: Stiffness, ultimate capacity, and inelas-

tic member deformation requirements.

To facilitate the comparisons some definitions are made. Inasmuch as all of the frames

were excited by a single load at the top of the structure, it is reasonable to define a measure of

structural stiffness as

(7.1)

where HA is the applied lateral load and 4A the corresponding lateral displacement measured at

the point of loading. The subscript A indicates that the two values are taken at some elastic
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state, which, for definiteness can been taken to be load point A. Note that this definition

makes sense only for the present case and would probably not be a reliable measure of struc-

tural stiffness for generalized loading conditions.

To make comparisons between the frames, ductility measures are employed. Here struc-

tural ductility is defined as

(7.2)

where K is as given above, Hu is the ultimate frame load, and 4 is the displacement at the top

of the structure. Since the deformation in the active link regions was realized predominantly

through shear deformation, member ductility is reasonably defined as

KGO
ILm == -v:- Av

u
(7.3)

where KGO is the elastic cross sectional shear stiffness, Vu is the ultimate shear capacity, possi-

bly reflecting interaction effects, and Av is the strain measure conjugate to the shear stress

resultant defined by Eq. (6.2).

The stiffness and ultimate frame capacity obtained from the analyses are recorded in Table

7.4. The stiffnesses of Frames II and III were nearly equal, indicating that offsetting the brace

from the beam column joint in the lower left corner of each bay had little effect on the elastic

stiffness. This result is somewhat surprising when one considers that the bending moment field

was dramatically changed by this adjustment. The split-K bracing arrangement was approxi-

mately 45% stiffer than the two frames having single diagonal braces. The ultimate capacity of

the first two structures was nearly the same, but the collapse load of the third structure was

seven percent less than the first two.

As was pointed out in Chapter 3, the proper detailing of an active link depends upon the

inelastic deformations it will be required to sustain. Energy dissipation measures were

employed in deriving appropriate design recommendations in that chapter. When load carrying
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Frame I Frame II Frame III

K (k/in) 250 172 165

Hu (k) 228 230 215

Table 7.4 Stiffnesses and Ultimate Capacities of the Three Story Frames

capacity does not degrade, member ductility measures can also be employed. The active link

ductilities obtained from the present analyses, corresponding to a selected structure ductility of

ILs - 3.0, are presented in Table 7.5 t. Note that the first story is at the bottom and that the

third story is at the top. The split-K framing system (Frame I) gave rise to the smallest

member ductility demands at the reported level of structure deformation. The modified single

diagonal bracing arrangement (Frame III) gave rise to the largest demands. In Frames I and III

the active link ductilities increased with story height, whereas Frame II had its maximum value

at the middle story. Based upon the results of the experimental program, it appears that the

ductility magnitudes computed here could be sustained by a properly detailed active link.

Frame I Frame II Frame III

Story 1 11.5 25.5 18.5
Story 2 28.5 39.6 31.5
Story 3 37.5 36.6 51.8

Table 7.5 Link Ductilities Corresponding to IL s = 3

One might conclude from the preceding study that any of the three bracing arrangements

would be acceptable for use in seismic design. The member ductility demands in each of the

three frames were comparable, Frames I and II showing a slight superiority over Frame III in

t The value IL s = 3 is chosen only as a reference value. It does not represent the maximum ductility capa
bility of the frame.
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this regard. The split-K framing system had a higher stiffness than the other two but had a less

favorable redistribution of bending moments upon plastification. None of the frames in this

study experienced buckling. However, the way in which moments redistribute may be an

important consideration when dead loading is included or in general for tall, slender structures.

In such cases the final plastic moment distribution may be of great importance to the stability of

the structure. It is emphasized that this was not the case here. Hence, the split-K system

(Frame I) appears to have an advantage for the situation studied. For narrow bays, one might

expect the single diagonal bracing arrangement to be stiffer, and perhaps more desirable.
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Appendix I

The Effect of Warping Restraint on the Transverse Bending
of Thin Walled Beams

1.0. Introduction

For extremely short beams is it well known that plane sections do not remain plane when

bent by transversely applied forces. In general, at a boundary which is fixed against displace-

ment and rotation it is impossible to realize freedom to warp simultaneously. Thus, in these

situations one has a condition of warping restraint. In this appendix the effect of warping res-

traint is considered within the context of the linear theory. While the analysis is carried out for

thin walled beams, it should be clear how to extend it to sections of any shape. We assume

that the axial axis of the beam is aligned with the Xl coordinate axis, and that the loads are con-

tained in the Xl-X2 plane.

1.1. Kinematic Hypothesis

In addition to the Cartesian coorqinate system {Xl,X2,X3} we introduce the curvilinear sys-

tern {x ,S ,n}, where the s coordinate coincides with the middle line of the cross section and the

n coordinate is orthogonal to it, and X =x], as shown in Fig. 5.2. In a manner similar to

Chapter 5, we shall assume that the deformation of the beam is described by the following dis-

placement field:

us(X,s) = vex) cost}(s) (1.1)

where (j (s) measures the angle between the tangent to the cross section and the X2 axis as

shown in Fig. 5.2. Note that
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dx2
- = cos6(s)

ds

dx3- = sin6(s)
ds

(1.2)

Owing to the thin wall nature of the cross section we can reasonably assume that the shear

stress component (TIll vanishes identically throughout the cross section. Hence we have the

condition

Clearly, from these equations the component (T12 can be expressed as

The non vanishing strain components are readily calculated from (1.1) as

'Yls = [v' (x) -l/J(x)] cos6(s) - cP'(s) f3(x)

where a prime denotes differentiation with respect to the argument.

1.2. Equilibrium Equations

(I.3)

(1.4)

(1.5)

Inasmuch as the strains are derived directly from an assumed displacement field they must

be compatible. Therefore, the principle of virtual work can be employed to deduce the equa-

tions of equilibrium, as well as the appropriate conjugate stress and strain resultants. Assuming

that (T ss = (T S/l = (T 11/1 =0, the equation of virtual work can be written as

L L

f f «(TIIEll + (TlsYIs) dO dx = f (qv + pu) dx
o n 0

(1.6)
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where q (x) and p (x) are the applied transverse and axial ldads, and an overbar has been used

to denote a "virtual" quantity. Substitution of Eqs. 0.5) into (1.6) and defining the following

stress resultants

N = J<Til dO
n

v = J<T\2dO
n

M = - JX2(S)<T1l dO
n

w = - JcP(S)<T1l dO
n

(1.7)

we arrive at the statement of virtual work in terms of the defined stress resultants

L

J (NU'+M~'+ w/i'+ V(v'-~)-H/i-qv-pU)dx= 0
o

(1.8)

from which one can readily deduce which strain measures are conjugate to which stress meas-

ures. Integration by parts leads us to the Euler equations and boundary conditions

N'(x) + p(x) = 0

V'(x) + q(x) = 0

M'(x) + V(x) = 0

W'(x) + H(x) = 0

N(L)li(L) - N(O)li(O) =0

V(L)v(L) - V(O)v(O) =0

W(L)/i(L) - W(O)/i(O) =0.

(1.9)

Note that the boundary conditions do not involve the stress resultant H.

1.3. Constitutive Equations

Integration of the elastic constitutive equations EEIl = <Til and GYls = <TIs over the cross

section of the beam leads to the following constitutive equations in terms of stress resultants

and strain resultants

N = EOu' M = EN' W = Ef/3'
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(1.10)

where the cross sectional properties I, r, 0, 0 0, 0 hand O 2 are defined as

1.4. Equations of Motion

o I = f ¢>'cosO dO
n

o = f dO
n

(I.1D

Since the axial equation is uncoupled from the transverse equations it can be integrated

independently. Hence no further reference will be made to the axial force N. Substituting

Eqs. (1.10) into Eqs. 0.9) we arrive at a system of three second order ordinary differential

equations:

(1.12)

Note that Eqs. (1.12) imply that the cross section of the beam does not vary along the XI direc-

tion. Extension of these developments to the case of non-cylindrical beams is not difficult.

Equations (1.12) can be reduced to the following more convenient form:

E/ljJ'" = q(x)

(I. 13)

v'=1/J+ 0 1 {3_-EL.p"
0 0 GOo
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The parameter A has been introduced for notational simplicity, and has the expression

(1.14)

Also for notational simplicity, we define the cross sectional parameters Otij to be the following

(1.15)

where the range of the subscripts i and j is 1,2.

1.5. Homogeneous Solution

For the case in which q(x) = 0, Eqs. 0.13) can be evaluated successively by direct qua-

drature to yield the following results:

(1.16)

where the six unknown constants aJ, ... ,06 can be determined from the boundary conditions in

particular cases. We now present two examples to illustrate the consequences of introducing

the warping variable.

Example 1.- The first case under consideration is that of a cantilever beam subjected to a

tip load with the warping unrestrained at the fixed end. While this boundary condition may be

difficult to realize in a physical situation, the example provides a valuable reference point for

the assessment of the effect of warping restraint. The appropriate boundary conditions for this

case are
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V(O) = t/J(O) = f3'(O) = 0

t/J'(L) = f3'(L) = 0 (1.17)

where Q is the applied shear at the tip of the beam. Substitution of these boundary conditions

into Eqs. (1.16) lead, after some computation to the results

(1.18)

Some important results can be seen from this example:

(j) The warping variable f3 is constant over the length of the beam and proportional to the

shear force. Furthermore, the quantity Vi - t/J is proportional to f3. This result is in accord

with the exact solution to Saint Venant's problem [23,451.

(ij) The rotation of the cross section t/J, due to bending, is wholly unaffected by the warping

and reproduces exactly the same values as the elementary solution.

(iii) The term in the expression for the transverse displacement v that is due to bending is

unaffected by the introduction of the warping degree of freedom. However, the term aris-

ing due to transverse shear is modified from the elementary case by a factor of (X02' This

correction may be identified with the so called shear coefficient in Timoshenko's beam

theory, and appears naturally as a consequence of the introduction of the warping variable.

Example 2.- The second case considered is that of a cantilever beam with end load and

with warping restrained at the fixed end. The appropriate boundary conditions for this ca~e are
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v(O) = .p(0) = /3(0) = 0

.p'(L) = /3'(L) = 0

GOo [v' (x) -.p (x)] - G 0 1/3 (X) = Q

0.19)

The solution for these boundary conditions can, again, be found from Eqs. (1.15) and has the

expressions

/3(x) = G~o [1 - S(X)] aOl

where the two functions S(x) and y (x) t have the expressions

(1.20)

(1.21)

The influence of the warping restraint is manifested in the functions I>(x) and y(x),

which depend upon the cross sectional properties through the parameter A. The two functions

are plotted in Fig. 1.1 for several values of AL.

To get a feeling for the appropriate magnitude of the parameter AL it is instructive to

consider the thin rectangular cross section of depth h and unit thickness. Up to a multiplicative

constant, the warping coordinate function cfJ(s) is given by (see Eq. 5.30)

t The function y (x) should not be confused with the shear strain.
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(1.22)

Using this expression in Eqs. OJ!) the cross sectional properties are given by

0= h; 0 0 = h;

(1.23)

The "shear coefficient" a02 and the parameter 'A are then given by Eqs. 0.14) and (1.15),

respectively, as

6
a02 = "5 ; 'A = .J140G 1..

E h
(1.24)

where G and E are the elastic moduli. For an homogeneous, isotropic material having, say

E = 2G, the parameter 'AL is

(1.25)

Beams having lengths greater than their depth have values of 'AL > 10, for which the effects of

warping restraint damp out quite rapidly. For long beams, the effect is negligible.

Although the cross sectional constants are not the same, the form of the solution is pre-

cisely the same as that presented by Plantema [37] for the sandwich beam following a com-

pletely different approach. The sandwich beam equations can be formulated in precisely the

same manner as presented here. The warping coordinate function 1>(s) for this case is a con-

tinuous piecewise linear function having a discontinuities of slope at the face-core junctions.
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1.6. Inelastic Bending

It is of some interest to consider the effects of warping and warping restraint on the pro-

pagation of inelasticity over the cross section of a beam. The problem is nonlinear, and hence

we will employ the Finite Element solution procedure presented in Chapter 5. The effects of

warping and warping restraint will be illustrated through a numerical example.

Consider the two cantilever beams of rectangular cross section shown in Fig. 1.2. The first

has length L = 10, the second has length L = 15, and both have depth h = 10. In both cases

the transverse load Q is applied at a distance x = 10 from the fixed support.

Warping is not restrained at the fixed end of the first (shorter) beam, that is, tHO) is not

specified as a boundary condition t. This case corresponds with Example 1 given previously.

In the second (longer) beam, warping is restrained both at the fixed end and at the point

of loading. At the fixed end, restraint is realized by specifying /3 (0) = 0, whereas at the point of

loading the warping is restrained by the region of beam having vanishing resultant shear.

The load-displacement relationships for the two cases are shown in Fig. 1.3. The global

elastic stiffnesses (measured as K = Ii!Q, where a is the displacement under the load) are

nearly identical for the two cases. The beam having restrained warping has an earlier initial

yielding than the one in which warping is not restrained. However, the beam without warping

restraint collapses at a smaller load than the one with restraint. In fact, the resisted load of the

restrained beam at an imposed displacement of a = 1.1 x 10-3 is 11 percent greater than the

unrestrained beam.

The importance of including the warping degree-of-freedom for problems involving

inelasticity can be seen by considering the evolution of the warping variable /3(x) as the inelas-

ticity progresses. Again, we consider the two examples at hand.

t Vanishing of the bimoment W is the actual boundary condition. This is a natural boundary condition and
is not enforced in the Finite Element solution procedure which employs the weak form of the differential
equation.
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Figure 1.4 shows the distribution of {3 along the length of the beam for the unrestrained

case. The load points designated by A, B, C, and D are defined on the load-displacement

curve, Fig. 1.3. At load point A the beam is elastic and {3 is constant, in accordance with the

results of Example 1. As inelasticity progresses, {3 deviates dramatically from the constant dis

tribution near the fixed end. The disturbances increase as inelasticity progresses but damp out

rapidly along the length of the beam.

Figure 1.5 shows the distribution of (3(x) at various stages of loading for the restrained

beam. At the elastic load level A the distribution is no longer constant due to the warping res

traint. It can be seen that the restraint imposed by the beam segment with vanishing shear is

considerable, but not complete. Apparently, the length of the "tail" required to impose the res

traint condition is small. The manifestations of progressive inelasticity are roughly the same as

in the previous case except that the value of {3 at x = 0 is constrained to be zero. This example

is closely related to the active links studied in the experimental program.
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