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INTRODUCT ION

This report contains a summary of the research effort conducted
under & grant CEE-8119696 from the National Science Poundation. The
report consists of six chapters: the first threa addresss the prublam
of strong ground motion due to the dipping layers and the remaining
three deal with the topics indirectly related to the main theme of the
grant which were complsted, in part or sntirely, dus to support from the

grant.

Each chaptar of the report is s self contained paper. Presentaticn
style varias from chapter to chapter according to the requiremsnts of the
journals whers the papers have been submitted for publication. Names of
the journals where the papers were published are indicated at the first

page of each of the chapters.

Part of the research results in this paper were presented at two
conferences: 19th Annual Meeting of the Society of Engineering Science
{October, 1982 at University of Missouri - Rolla) and Annual Meating of

the Seismological Society of America (May, 1983 in Sal Lake City).




SCATTERING OF PLANE HARMONIC SH-WAVE
BY DIPPING LAYERS OF ARBITRARY SHAPE®

By M. Dravinski

Abstract

The antiplane stirain model for scattering of plane SH waves by
dipping layers of arbitrary shape is investigated by using the indirect
boundary integral method. The dipping layers are of finite length
perfectly bonded together. The material of the layers is assumed to be
homogensous, linearly elastic, and isotropic.

Presented numerical results incorporate variation in the number of
layers, the angle of incidance, the frequency of the incident wave, the

materi: 1l properties, and thes shape of the layers.

*
To appear in the Bulletin of Seismological Society of Amarica,Octcber,1983



Introduction

Soil amplification pxoblems axe usually solved by two methods:
1. numerical methods, and 2. analytical methods. Each of thase
has limitations. The analytical mathods are applied mainly to linsar,
isotropic and homogeneous materials and simple geometries. The n\;-nm
msthods, on the other hand, are often inapplicabls to probleas of :I.nt.-nlt
in geophysics and sarthquaks enginearing. MNamely, tha most comsonly used
numarical methods, finite differences and finite elaments require a
computational grid which fills the solution domain of the problem under
considaeration. This reduces the effsctivenass of thase methods foi
geotechnical problems which invclve large dimansions. |

For many problems it is possible to construct a surface integral
representaticn of the solution. Corresponding integral equations involve
only the boundary and initial valuss (and possibly the intarior socurces). The
boundary value problem is thus formulated in terms of boundary valuas and
the solution at interior points need not be considered.in ordex to solve
the integral equations (Cole et al,, 1978). Once the integral equations
are solved, the solution at any interior point can ba determined through the
original integral representation, Therefors, the main advantage c;! the
boundary integral methods (BIN's) lie in tha fact that only the boundary of
the body is being discretized thus reducing the number of unknown :vn'hbhs
significantly in comparison to the finite element and finite difference
procedures. In addition, the problem of filling the space with a three
dimensional grid is eliminated.

Indirect BIM used in this paper to study steady-state wave motion in
dipping lnycrs‘ originates in the works of Kupradze {1963), Copley (1967) and

Oshaki (1973). Application of the method to wave propagation problems



in geaophisics and earthquake engineering is due to Sanchez-Sesma and
Rosenbluath (1979}, Sanchez-Sesma and Esquivel (1979), Apsel (1979),
pravinski (1982) and wong (1982). ' -

Observation from some recent earthquakes (Sozen et al., 1968,
Jennings, 1971) indicated that the area of intense damage can be highly
locslized. Esteva (1977) established that the intensity of stromng
ground motion may change greatly within a short distance. Subsequent
investigations (e.g., Boore, 1973) reinforced a belief that the Lnhomo-
geniaty of the soil and surface (subsurface) irreqularities are probably
the main cause of localized amplification effects. Recent 1mnst1§tti.om
by the author {1982) demonstrated the possibility of very large amplification
effects dus to single dipping layer (valley) in a half-space vhan subjected
to different incident waves. Variation of the surface motion pruved to be
very sensitive upon a number of parameters, such as, frequency and angle
of incidence .of the incoming wave, material propsrtiea of the half-space
and inclusion, geometry of the inclusion, location of the obsarvation
station at the surface of the half-space, etc. However, the role of
additional layers upon the surface motion remained open. By including
several layers into consideration it is possible to examine how tﬁoy
influence the resulting surface motion and thus determine if it is
necessary to incorporate the pressnce of additional dipping Layeri in

more realistic models,



Statement of Problem
Geometry of the iroblem is depicted by Fig, 1. The finite number of
-
dipping layers of arbitrary shape are bondad togethar to form a layered

half~space. D=noting the spatial domain for the layers by D., Jj -.0,

50
1, 2, ..., R, it follows then that the half-space is given as the union of
all domains, i.e., Do' D]_, cees DIl are referred to as the ha;f-lpae. layer,
the first layer, ..., and tha R=-th layer, respsctively. Interfaces

betwean the layers are danoted by ci, iw)}, 2, eccet R. Perfect bonding
along the interfaces is undarstood. ‘The material of the layers is assumed to
be linearly elastic, homogeneous and isotropic.

The problem model is of the antiplane-strain type, i.e., the laysred
half-space extends to infinity perpendicularly to the plans of the drawing and
the motion af the elastic medium takes place along the z-axis only. 1In the
absence of hody forces, the steady-state wave motion is governed by

(V2 + ka) uj(x,y,m) =037 3§ =0,1,2,...,R} Vz = ;3.23_4 —aiz- (1)
x I
where k denotes the wave number, i represents the circular frequency, and
w is the only nonzerc component of displacemant vector acting along the
z=axis. Subscript j in (1) refers to layer D

3
The boundary condition along the surface of the half-space is spacified

’ j-ol 1' 2' aaap R.

by aw
-5;1- 0 at y=0 3 3=0,1,2,000,K. (2)

For the sake of subsequent simplification an antiplane—-strain elstodynamic

state vector 5}(5) is introduced (Wheeler and Sternberg, 1968)

"
Interfaces betwesn the layers are assumed to be sufficiently smooth
with no sharp corners being present,



:;'(5) = Iwlg)s O (D)) £ € Ce Dy, Ju0,1,. 0 R (3)
where one says that LA is an elastodynamic state vector for domain D, with

3
ths displacement field w, and the strass field au, associated with the

sheer modulus By the shear wave speed 5;’.’ along some surface C with
unit normal vector . The superscript T in equation {3) denotes tim
transpose.

perfect bonding between the layers requires continuity of u-ﬁm*;
and stress field along the interfaces cj. 3=1.2,....1i what in tarms of
slastodynamic state vector s can be written as

L g)’(ﬂ T E€Csa I7L2,.n,R, (1)
Incident plane SH-wave is assumed of the form

inc

w'C = expl-ik (x sin 8 -y cos 8 ) + fut]) i g ' {5)

where hw angle of incidence 80 has bean defined by Fig. 1. For briefness,

the factor exp(iwt) is omitted throughout the analysis.

solution of Problem

As the incident wave, arriving from the depth of the half-space laver Dye

strikes interface Cl, it is partially reflected “back™ into the half-spacs
layar and partially transmitted "forward™ into the layer D1 {see Fig. 1).

The wvave field inside the first layer partially reflects "back® into °1

and it is partially transmitted into domains Do and l)2 along interfacas

Cl and cz. This process continues as the wave fiell propagates throughout’
-
the layered madium. Theirefore, the total wave field in the half-space is

spacified byA
s
ve-w +w° 3 E_‘Do (6)

wj-v; H gtbj 3 3=1,2,...,R, 7



whern the superscripts s and ff denote the scattered and free-wave-field,
respactively. If the scattered wave field is expressed in terms of single

layer potentials (Ursell, 1%73) it follows then

v (x) = !qotgol G (L, Mg, 3 E €D (ea)
%
v (e) = {pj () 6y(eox ) A + { a4y {z,) Gy (E,z,) dr,s £ € Dy;
Cj Cj'._1
j-l,z,...,k-l ) ‘ab,
. |
Vg (8) = { Pir,) Gpixig,) dr, s r €Dy, ‘ (8c)
cR

where qj and pj, §=0,1,2,...,R are the unknown density functions. The

functions Gj' §=0,1,2,...,R are the Greaen's function for tha line load in

the half-space, and they satisfy the following equations
2

(7 + k3 6, (rr) = -8(lx = gD 1 3"0,L.2,e0R : toa)

3G

A .

2y 0, (9b)
y=0

where 8(+) represents the Dirac delta-function. Tha Grean's functions

are then given explicitly by (Miklowitz, 1978)

oytziz) = 5 P ooy « 1P ko 0} 4 3=0,1,2,..,m (1ca)

o, = (tx =%+ tv - y7) (10b)
k

o, = (x-xp%+ v+ v, - Qoe)

with H‘:z’,h) being the Hankel function of the second kind and of order

Zzero.



Surfaces C; and C;. j=1,2,...,R are defined inside and outside of the
corresponding interface Cj {Kupradze, 1963). Namely, each interface C 5
j=1,2,...,R can be viewed as the location of sources which "form"
reflected and transamicted wave fields as the incoming wave strikes the
interface. For the sake of simplification, it is proposed to place those

’

sourcas slightly insids (outside) of tha interface. Thus, for any interface
cj, i=1,2,..4,R; c; and L; denote the “inner"™ and "outer” sog:co surface,
respectivaely. The principal advantage of this procedure is 1‘:11. elimination of
sinqularities in the kernels of integrals in equations 8a-8c as X approaches
¥. Thus a need to analytically handle integrable singularities of’ the
Green's functions present in the single layer potentials is avdid-d. This
method is frequently xeferred to as Kupradze's method (Christiansen, 1976;
Fairweather and Johnston, 1982} .since it has been originally proposed by
Kupradze (1963). It has been successfully applied to problems of geophysics
by a number of researchers {(e.g., Sanchez-Sesma and Rosenblueth, 1979;
Sanchez-Sesma and Esquivel, 1979; Apsel, 1979; Wong, 1982; _nnd Dravinski,
1982). This approach appears very attractive but it is not without
difficulties of its own. Namaly, the location of the source surfaces must

be chosen carsfully to obtain accurate results. PFor this reagson an

extensive testing of Kupradze's method has been done for the type of

problems investigated in this paper (Wong, 1982; Dravinski, 1982).

Summary of these investigations is presented in the part of the paper dealing

with numerical accuracy of results.

If one assumes the scattered wave field in terms of discrete line

sources, i.e., the density functions of the following form

- 31 ) -
qj—].('r', .-j ‘(IE Enjl) H j'l'zlto-ln H 'i-lczuo-ccnj ’ s'jt Cj ‘11a’

tr) - hj 8 - - . +



then the scattered wave field becomes

w:(:_r) =22 6 (£rx, ) 3 “1"]."2""'"1 P gy, €€

n° 1 n 1
i i

)y +a G, (x,x ):
1 i maa T R

(12a)

1-1,2;--073-1

"i-l'z'...-'r‘i

lli']..2.....ni

r
zi
Emi € Ci (12b)

+
tCi

B R +
wi)=t, G (£,x,)sr, €C., (12¢)
R I.R R "R "R R )

where summation over repeated subscripts is invoked. The summation convention is
suppressed for repeated indices if one index is a superscript and,the other is
a subscript. Subscript indexes, such as kK, and m,, should be viewed as

i i
simple indexes £ and m, respectivaly.

G (r.r,) + bl.: Glr.x

For example, eguation (l2c) implies w; b R ) +

...t by G (E'Elfn

I-RR

Source intengities a

=%

2
), etc.

:-1..nd bi ’ j'1,2....,R, -1.1.2' ....Hj,
3 3 2
L j-1,2.....L 3 in equations (lla,b) are evaluated through the use of continuity

conditions specified by equation' (4). Choosing N 3 “"observation” poinl:s
{along each interface cj, j=1,2,...,R) to evaluate equation (4), ‘the

source intensities in least-square-sense are determined to be

T
o o 1 1 1 LR J 1 2'. 2 o R LA J R - * -1 * |
(a) nnlbl bL1a1~ auzbl obL2~ by bLR] (GG Gf, (13)

where matrices G and f are given in Appendix A. Superscripts T and * denote
transpose and transpose complex conjugate, respectively. Physically, G
contains the Green's functions evaluated at different source and observation

points while f incorporates information about the incident (free) - field



along the interface C Substitution of the source intensities determined

1.
by equation (13) into equations (l2a,b,c) and then into equations (6) and
(7) implies the total displacement field throughout the elastic medium,
Evaluation of the response in time domain can be accomplished then by means

of the Fouriexr synthesis.
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Evaluation of Results

Throughout the numerical evaluation of the results all variables are
presented in diwensionless form, For that purpose the wave velocity Bo
and shear modulus "o are chosen to be unity; distances are nomlized-vith
respect to the half-width of the first layer; and surface displacement amplitude
is presented normalized with respect to the amplitude of the surface
free~-field motion, Dimensionless frequency # is introduced as the ratio of
the total width of the first dipping layer and the wavelength of the inci-
dent wave field, Numarical raesults are presented for single, two, and
three layer models.
Since interfaces cj’ 3=1,2,3 are of arbitrary shape, they are assumed
to be specified in terms of the discrete set of points through which a normalized
B-spline approximation is determined, This procedure permits the construction
of efficient algorit.m applicable to a wide range of interface shapes, For
more information on this topic the reader is referred to the report by
the author (Dravinski, 1983) in which a complete computer code is presented
and explained in detail.

single-Layar-Model

Displacement fields throughout the elastic medium for a aipping layer

in a half-space follows from equations {(l2a,b,c), (6) and (7) to be

£f (] -
wo(:_:) =w (x)+ a"‘]. Go(g.gml) ? gml € <:1 H m1=1.2,....!11 {14a)
wigd =Bl G lrr, ) s r, €C s Lal2,..n 14b
1 £ !'1 1 59-!'1 H Ll 1 H 1 1Lpavasliy, ( )

where the coefficients a_ and b: are formally given by equation (13).
1

Numerical results pertinent to the single dipping layer are used for testing

purposes since the exact solutions for certain shapes of dipping layers are



available in the literature.

Figure 2 depicts the normalized surface displacement amplitude atop a
half-space with the semi-elliptical dipping laysr subjected to a plane harmonic
SH-wave. The results are in complete agreement with the exact solution-
results given by Wong and Trifunac (1974).

It is evident from Fig. 2 that the presence of a dipping layer

{inclusion) may caus: vary large strong ground motion amplification effects.

Two-Layar-Model

For this modal 'the surface displacement field is given explicitly by

£f o -

wlg) = vwix) + aml S lzer ) 3+ r €€ 1m=1,2,...,M (15a)
1 1

w,(x) = bi Glz,z, ) + n:‘ G (rx )i, € CI 1 r € C;I

1 1 2 "2 1 P2

l1-1,2’|n..L1 H .2‘1'2'-..,H2 (15b)

w(r)-bzc(rr)zr ech ;2 =,2 L {15¢)
Fi L 2'"2 2 2 F

2 2
with coefficients a's and b's specified by equation (13).

Surface motion for the two-layer-model is shown by Fig., 3. The frequency
of incident field and geomatry of the first layer are the same as in the
case of ﬂ_the single-layer-model discussed initially. Still, the overall surface not:l.c
amplification effect shown by Pig, 3 is smaller than that shown by Fig., 2.
This difference arises due to different contrast in material properties
between the half-space layer and the first dipping layer in the two models
considered., Reduction of maximum embedment depth further reduced the
surface amplification effects &s shown by Fig. 4. If the frequency of the
incoming wave is doubled the surface response atop two dipping lavers is
shown by Fig. 5. Comparison of Pigs, 4 and 5 indicates an increase of

ground motion amplification effect with the increase of frequency. However,
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similar effects may be achieved by introducing more contrasting materials
for layers, as shown by Fig, 6, Combination of higher frequency of incident
waves and high contrast in material properties may lead locally to a
drastic increase in surface strong ground motion amplification effects as
illustrated by Fig. 7. _ It is interesting to observe from the results of
Figs. 2-7 that as the sensitivity of surface motion to the presence of
subsurface inhomogeniaty increases, the dependence of surface motion upon
the angle of incidence becomes more pronounced, Overall maximum of surface
motion is observed for horizontally incident wavas.

Threa-Layer—Model

The surface displacement field for three dipping layers follows from

equations (12a,b,n), (6) and (7) to be

- ml "nl 1

r4 4 -
HO(E) =w (r) + ao ‘GO‘EfE ) ml-l,z,...,nl, b o EC {16a)
w(r)-blG(rr)+alc(rt):1-12 L
1 "1 1’ "l m, 1 m, 1 e

+
r. eC
-!,1 1

nz-l-':' s e '"2

%, ¢ < (165)

Gz(leEB) H '-2"112v-- "LZ

2

2 2
w,(r) = b, 62(5'512) + .“3

+
E EC
22 2
%‘1'2'.0-'H3
Sm, € s (16¢)
w.(xr) =b> G.(r,r. ) s L.=1,2 Lsr, €c’ (16qa)
3 - | 3 3 ~',.£ 3 regoveyp 3 ~p 3'
3 3 3
where coefficients a's and b's are defined by equation (13).
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For frequency 2 = 0.75 and higher contrast in material properties of
the dipping layers and the half-space layer, the surface displacement pattern
is presented by Fig, 8. A very large local amplitude can be observed. There
is a substantial difference in the peak amplitude of the surface motion for
various angles of incidence with the largest (the smallest} being observed
for horizontal (vertical) incidance. Reduction in the contrast of material
properties for half-space layer and dipping layers resulted in a surface
motion of considerably lower amplitude, less sensitive upon the angle of
incidence, as shown by Fig. 9. An increase in the frequency of the incident wave
produced opposite effects: maximum amplitude of surface mo.tion increased
in valua and sensitivity of strong ground motion upon the angle of incidance
appears more pronounced (s.ee Fig. 10).

!‘rom“'the presented results it follows that amplification of surface motion
due to subsurface inhomogeneities depends upon the number of physical
parameters of the problem model undexr consideration. This is to be expected
if cne views the motion of elastic medium as a result of interference of
incident and scattered waves. This interference may be constructive or
destructive, thus implying locally amplification or reduction of s_urfaoa
motion. Parameters which affect this interference will affect the resulting
motion as well, _

Results of surface motion for & more general type of layers is dapicted
L Fig. 11 and Fig. 12 for positive and negative angles of incidence,
respectively, Evidently, surface motion is significantly affected by the
presence of dipping layers, Surface motion amplification depends strongly
upon the location of the observation point on the surface of the half-space ahd the

angle of incidence of the incoming wave. A higher value for the ratio of the width
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versus the depth of the first dipping layer is chosen simply to illustrate
appreciable surface ground motion at a rather low frequency and thus reduce
the amount of required computations.

Actual alluvial basins for which the proposed method of mlut..:l.on is
formally applicable still contain wmany particular dstails to be accounted

for, therefore corresponding results will b." reportad separately.
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On Numerical Evaluation of Results

Extensive testing of the indirect boundary integral method used in this
work has been done using the known exact solutions available in literature
{Dravinski, 1982). These results can be summarized as follows: &) The
method provides very good results for a wide range of frequencies. An
increass in the frequency of the ilncident nv- required an increase in the
numbexr of sources {which represent the scatterad wave fields) in order to
maintain tha same accuracy; b) It was determined that source surfaces
(C; and C;) should not be placed :ln'\the immediate vicinity of the corresponding
interface C 5 A good choice of source surfaces appears to be the one in
which they “follow" in shape interface Cj‘

Thus, "inner" and "out;er" source surfaces (Cj and C;, 3=1,2,...,R) are

obtained through the scali’ng of interface C, by numbers smaller and larger

3
than 1, respectively, In this paper, the scaling factors are chosen to

be 0.8 and 1.2. Throughout the numerical evaluation of results, the number
of "observation® points along each interface (‘:j is chosen to be u).-zo,
j=1,2,...,P. The number of source points along corresponding surfaces

¢ and c; is chosen to be M, = L, = 10, j=1,2,...,R. The choice of these
parameters is macde based upon the analysis of the single layer modsl for
which the exact solution is available (Wong and Trifunac, 1974). Therefore,
calculations correspopding to multiple dipping layers are checked in the
following manney: The.material properties of all dipping layeré are

assumed to be the same and the shape of the first dipping layer is chosen



to be a semi-elliptical one. In all cases the exact results of Wong and
Trifunac (1974}, shown by Fig. 2, are recovered.

For the case when no exact solution is available, one may check the
numerical convergence of the results by increasing the number of
*observation®™ points (Hj. J=1,2,...:,R in equations Al-M) along the
interfaces C 5 and the number of sources (M, and L, in equations lZa-12¢)

b 3
until the resulting displacement field does not changs with their increass

(wong, 1982).

Although the proposed technique is applicabla to a very general class

of problems involving dipping layers, models with many irreqgular layers will

require i substantial memory size of the digital computer. Since the discre-

tization procedure takes place along the interfaces only, this restriction
is far less severe than in the solution procedures which involve finite

element or finite difference approach.
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Summary and Conclusions

Scattering of plane harmonic SH-wave by dipping layers of arbitrary
shape is studied by using the indirect boundary integral method. The
displacement field is evaluated throughout the elastic medium so that the
continuity conditions along the interfaces between the layers are
satisfied in mean-square-sense, It is shown that the presence of dipping

layers may cause very large amplification of surface ground motion,

The presented results indicate that surface displacement amplification depends

upon the number of parameters, such as: the location of the chservation

point at the surface of the .half-lpace, the geometry and material properties of

the layers, angle of incidence, the "frequency of the incoming wave. Change i.n. any

of these parameters may change significantly the surface response pattern,
Although approximate in nature, the proposed method allows study of

the class of problems for which no analytical or numerical sgsolutions are

available in literature at present time,
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Appendix A
By choosing N j observation points along interface C 3 i=1,2,...R,
H.'i sources along C; and Lj sources along C;, matrix § in eguation (13) is

of the order 2(“1 + N+ ... + NR) x ‘“1 + L

1*-..%*Ln)lnditi.

2
specified by
o 1 1

Sum ~Syn "8 0 0 ¢ 0 0
-NI.H]. Hll'.-l NLH2 - -
1 b} 2 2
0 S ] -8 )
- Hle N2H2 "ZLZ N2H3 1] 2 g
G = 2 2 3 3
- 0 0 0 S S s
- - - Nsz -H3H3 H3L3 llal‘l‘... g
¢ I T T T
g RR1 RR
vhere matrices si of order 2N, *x M. are definsd by
N M 3 3
3
§: " = lsi(gn oIy 3 I £, € Cj ] nj-l,z,...,llj
33 ) S 3

r €0, ;: m,=1,2,...,M,.

“my b) 3 3

i
and matrices S of order 2N 6 x Lj are specified through

-Nij b |

i
§ H [! (5 ',E )l H : € c 3 n -1,2.....,
o T By 173 )

+*
E‘j E Cj ) "j-llzloovll‘j'

The elastodynamic Green's state aill'-to) is defined as an elastodynamic
state vector at r due to line source at I
Vector f in equation (13) is nf the order Z(Hl + eee + NR) x ) and it

is defined by

n°e

(13

Q

(A2)
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Figure Captions

Figure 1 Prohlem geometry
Figure 2 Surface displacement amplitude for single dipping layer.
(n = oosn B, = 0.167, B, = 0.5).
1 1
Figure 3 Surface displacement amplitude for two dipping layers.
(=05, u, = 0.6, £, = 0.8, y_ = 0,3, B, = 0,6},
1 1 2 2
Figure 4 Surface displacement amplituds for two dipping layers.
(n - 0.5' ul - 006' Bl - 0-8' uz - 0.3' 52 - 0.6).
Figuras 5 Surface displacement amplitude for two dipping layers.
=1, M, = 0.6, Bl. = 0,8, b, = 0.3, Bz = 0,6).
Figure 6 Surface displacement amplitude for two dipping layers.
(=05, uy, = 0,3, 8 = 0,6, p_ =0,1, B_ = 0,4)
1 1 2 2
Figure 7 Surface displacement amplitude for two dipping layers.
(=1, u = 0.1, B, = 0.4, u, = 0,02, g, = 0.2).
. 1 1l 2 2
Figure 8 Surface displacement amplitude for three dipping layers.
(@ = 0,75, u, = 0,3, B, = 0,6, y, = 0,1, B, = 0.4, u_, = 0.02
1 1 2 2 3
g, = 0.2)
3
Pigure 9 Surface displacement amplitude for three dipping layers.
f = 0.75, L 0.6, Bl = 0.8, u, = 0.3, 82 = 0.6, Uy ™ 0.1,
B, = 0.4)

Figure 10 Surface displacement amplitude for three dipping layers.
(@ =1.5, p, = 0.6, 8, = 0.8, p, =0.3, ., = 0.6, u_ = 0,1,
1 1 2 2 3
83 = 0.4)

Figure 11 Surface displuacement amplitude for three Aipping layers of
arbitrary shape. (I = 0,75, ul = 0.6, ’1 = 0,8, uz = 0,3,
62 = 0.6' “3 - 0-1' 83 = 0."

Figure 12 Surface displacemsnt amplitude for three dipping layers of
arbitrary shape. (2 = 0.75, u - 0.6, 81 = 0.8, u2 = 0,3,

52 = 0.6, w, = 0.1, 33 = 0.4).



23

X<

fy. |



'
2

24



2.5 1

2,0 |

25

LT~

T ]



26

' 8, = 0°
235 9 ..

- - o - 30-300_
—eme == B8, =60°

—temee= B, =90®




27

2.5'|

0.0

'i_.
o
[
Y]

-2




2.5

2.0

0.0

28

§ et o N
L ¥ L L2 LB L L
-2 -1 0 1




- L d
\\
F
- L
|I.I|l|‘-‘|l(l|l‘
- - - l‘l“'l“"‘ll‘ll" “““““
Al.ll_ ln‘l - - . — N iy oy
) handead ——y oy . S—
R - ﬁ o
y——— —-—
—— s oo 5
- - N‘.‘il """""
—— 'I"Il"'“lll.l,,' 'I'l-l‘ll"
»\\t\.\Mu..Il... llllllll
- -~
- ’-‘“l"'_lll‘l ,,,, ﬁ
l-lll’l’.’l.l l,nl.
- S W e,
. - o
- —
‘ 5
. - b 4
-4 - VAR T
I i o H
. VN ‘
//L . I
. /\~
P
. " V
2 , ~
f I v L ¥ v ]
- ¢ , ~ ~ e




9¢

30

99-o°

.

-2




3.5

.o

3l

$ 444




32

475 ] ——f ="




z3

3.51 o ' o, = ¢
- - - 90-300
- === B, =60°

as| - L N




22

3




35

Strong Ground Motion Amplification by Dipping Layers:
Piane Strain Model *

M. Dravinski

Abstract

Steady state way)e motiqn for diffraction of plane P, SV, and Rayleigh waves by
dipping layars of arbitran} shape is investigated by employing an indirect boundary
integral equation mothéd. The layers ars of tinite length perfsctly bonded together. The

material of the layers is assumed to be homogeneous, linearly elastic, and isotropic.

Presanted numaerical rasults demonstrate that the surface strong grqund mation
amplification o"ffocts depend upon a number of paramesters: (i) frequency of the indicent
wave, (il) contrast in material properties between the layers, (iii) angle of incidence (for P
and SV wavaes), and (iv) location of cbservation point. It is shown that the presence of
dipping layers may cause lacally large amplification or reduction of the surface ground

motion when compared with corresponding free-field motion.

»

Submitted for publication.
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Introduction

In a recant paper (Dravinski, 1983) the antiplane strain model for scattering of plane
harmonic SH waves by dipping layers of arbitrary shape was lﬁvestlgated by using an
indirect boundary integral equation method (BIEM). In the present paper, the method has

been sxtended to the plane strain model.

Strong ground maoation amplification of elastic wa.vu by dipping layers appesrs to be
of considerable importance since & number of alluvial basins Involve this type of
subsurface irrsgularities. For sxample, Yerkes et al. (1965) showed that the g-qloglcnl
structure of the Los Angeles basin incorporates several subsurface dipping layo:rs of finite
tangth. Complex geometry of the layers preciudes construction of closed formilnalvncal
solutions and one has ta rely upon ths convenient numerical approach for evaluation of
the results. The most comrﬁonly used numerical methods, finite elements and finite
ditferences, require a computitional grid to fil! the solution dlomaln of the problem under
consideration. Consequently, thess procedures do not appear to be very effective for

geotechnical problems which invoive large dimensions.

For many problems of intarest it is possible to construct a surface integral
representation of the solution. Corresponding integral equations invoive only the
boundary and initial vaiuos (and possibly interlor sourcss). Once the Intagral equations
are solved, the solution at any interior point can be determined through the ori_ﬁlnal
integral representation {Cruse and Rizzo, 1088; Cole et al, 1978). Since only the boundary
of the modsl is being discretized, the number of unknown variables is greatly reduced in
comparison to the finite element or finite ditference procedures. A detailed review of the
literature pertinant to the BIEM's is given by Brebbia [1981) and it will not be repeated

here.

Basic idvas of the indirect BIEM used in the prasent paper originates in the works of
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Kupradze (1963), Copley (1967) and Oshaki {1973). Extension of the method to wave
propagation problems in geophysics and earthquake engineering is due to Sanchez-
Sesma and Rosenblueth (1979), Sanchez-Sesma and Esquival (1979), Apsel (1979),

Dravinski (1982a,b.c) and Wong (1982).
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Statement of Problem

Geometry of the problem is dapicted by Fig. 1. The finite number (R) of dipping
layers of arbitrary shape are perfectly bonded together to torm a layesred haif-space.
Interfaces between the layers are assumed to be sufficiently smooth with no sharp
corners baing present. Spatial domain of the half-space is denoted by D_ and that of the
layers by Di,j-l,z,...,R. interfaces between the layers are denoted by Ci,l-l,z,_.,R. The layers

are assumed to be linearly elastic, homogeneous and Isotropic.

The problem modsl is assumed to be of the piane strain type, i.e.. the layered half-
space extends to infinity perpendicularly to the plane of the drawing and the m'ation of
the medium takes place in the xy-plane only. The plane motion of the elastic .:modll is
described by » displacement vector 9?-(uj,vi). {=0,1,2....R, where u and v represent
displacement components along the x and y-axis, respectively and syperscript T denotes

the transpose. The displacomint fiald is related to the displacement potentials through

¢ I T8 E17
uj --a-;;j'i'"s‘yj' H Vj .'{YJ'"TXI ¢ 3=0,1,...,R, (1’

where ¢ and ¥ denote dilatational and equivoluminal displacemant potential, respectively.
Throughout the papof, the subscript O rafers to half-space, while the subscripts 1.2 _R,
refer to the layers of ﬁorﬁaln D,.0,...0p respectively. The displacement patsntials satisty
the equations of motion (Miklowitz, 1978)

2
$ h_ ¢. 2 2
vz[ 3]+[33]=o S 4m0,1,2,....R v‘z%+a—2,

2 -
"j kj*j ax oy @)

where h and k represent the wave numbers associated with dilatational and equivoluminal
waves, respectively. Throughout the analysis factor exp{iut) is understood, where
w represents the circular frequency. Components of the stress tensor are ralated to the

displacement potentials through (Miklowitz, 1978)
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2 2
e x%a 299 ay »
ax*/ll k ’ 2 ayz + 2 axay (3 '
2 2
2 3 $ 3y
¢ Ju=-K¢+2 -2 3b)
xy/ axdy axz
2 2
e x4 228 _, 3¢
cyy/u k"¢ - 2 o2 2 3y’ (3¢c)

whera v denotes the shear modulus and the subscript j=0,1,2,. R is omitted for
simplification. Boundary conditions are specified by
Oy 0 (4a)
xy Y= OandECDj, j=0,1,2,...,R
oyys ~ O : {4b)
Usual radiation conditions should be satisfied for scattered waves at infinity (Miklowit2,

1978).

At this point it is convient to introduce an elastodynamic state vector s{r) according

to (Wheeler and Sternberg, 1988)

s';(f) z [uu:), viz), a_(z), °nt(5’]j' recen,, 3=0,1,2,... R, (5)
where ona says that 5 is an elastodynamic state vector for domain D'. with the
displacement field u and v, and the stress field o and'am. associated with the shesr
modulus My the dilatational wave speed Cyp and the shear wave speed ¢ o atong the
same surface C with the unit normal and tangent vectors n and t, respectively.

Superscript T in equation (5} denotes the transpose.

Perfaect bonding between the layers (requires continuity of displacemant and stress
field along the interfaces Ci,j-l.z,....H) in terms of elastodynamic state vectors can be
expressed as

s, . (xr) =8 (x), recC,, j=1l:2,....R. {6}

j-1'= b i
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The incldent P-wave is specified by

ine i ~
¢ - ho exp [1ho(x sinso -y cosBo)] .

(72)
whaere i= Y1, and 8, represents the angle of incidence. The incident SV-wave is defined
through

inc i ‘
¥ = - ko exp -iko(x sinao -y coseo)]
(7n)
and the incident Rayleigh wave is chosen of the form
N |
: 2 '
uinc = exp(-ik x) | exp(-b vy} -1 (2 - 'ci-)exp(—h ) : {7¢)
pi=1¥y d 2 o2 s’ :
inc ’ ) by :0 4 c:
v - :l.ncoexp (-i.zox) [— — exp(—bdy) + _2"7,- \‘ - ?— exp(-bsy) {7d)
o 80
. c: N . < °¢2: L ‘ ;
bd-:c’l-cz ;bs=K°1--c—2— | : (7e)

where ¢, and x, denote the Raleigh wave veﬂ%citv and the corresponding wave number,
respectively. ;'inicular forms of the incident fiald are chasen so that the free
components u'f and v of the displacement vector u™ along the surface of the half-space
turn out to be the real numbers. All the results of the displacement fiald are presented
normalized with raspect to the { Ju™ |2 + |v*| z;’.

Selution of Problem

The total dispiscament field in the half-space and the dipping layers is specified by

b =T +ud s xen, (8a)
Ej = l..l; H E € Dj} j-l,z,...,k, . (ab)

where the superscripts ff and s denote the free snd scattered wave field, respectively and

u' denotes the displacement vector {u,v). Assuming the scattered displacement potentials
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in terms of single layer potentials it follows then

s - . 9
o tx) cf_ q (£ )¢ (g5 )9, 3 ¥ €D, (82)
1

Ogtg) - cj" Py {z_ron lgsx o + 1 qj(5)¢jt1:::o)d:o PR 4 - Dj: (8b)
3 AL §=1,2, ..., R-1

0;(5) -'cj* Pplr )eplesz )dc 5 x €Dy ' (9c)
R

i - CL LRI AL (8d)
1

v;(r) -c!+ RN R cj‘_ QeI dar 5 £ €D, g (9¢)
3 n §=1,2,...,R=1

v;(;) - Prle Vplzir Yar & y e, (s1)

where Py GV and 6; j=0,1,2....R are the unknown density functions. The functions
Qj(_l;-go) and #l(r,su) j=0.1.2,....R are the Gresn’s functions corresponding to dilatationat and

equivoluminal line load in the half-space. The Grean's functions satisfy the following

equations
o trixy | nde, ceix
=X RN 7S B -18¢r-r s 3-0,1,2,...,R
wj(r.ro) kjtj(rzro) e pirfacce
(10a)
with appropriaste boundary conditions
%y j(gago) =0 (10b)
at y=0 ; re D:l $ 3=0,1.2,...,R ,
L jlgagoi =0 : (10¢c)

where }T £ (1, 1) and &(+) is the Dirac’'s delta function. For an explicit solution for the

Green's ftunctions the reader is reterred to the paper by Lamb {1906).
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tntroduction of auxiliary surfaces C; and C;, j=1.2,..R in the integral representation
for the scattered wave field (equations (9a-f)) is the fundamental characteristic of the
BIEM used in the present paper. Surfaces c; and c‘: ara defined inside and outside of the
corresponding interface Cj._ respectively (Kupradze, 1963). This eliminates the singularities
in the ke nels of the integrals in equations (9a-f) as r, approaches [. Therofore; the need
to analytically handle integrable singularities of the Green’s functions present In the single
layer potentisls is avoided (see Pao and Mow, 1973). This BIEM has been successfully
applied to the problems of gecphysics by a number of researchers, e.g. Sanchez~-Seama
and Rosenblueth, 1979; Sanchez-Sesma and Esquivel, 1979; Apsel, 1979; Wong, 1982; and
Dravinski, 1582a,b,c). Although introduction of the auxiliary surfaces simplifies numarical
procedure considerably, the method is not without difficulties of its own (Fairweather and
Johnston, 1982), since the auxiliary surfaces C:' and C:, j=1,2,.R must be chosen carefully
to obta‘In accurate results. More on this is presented in the part of the paper dealing with

numerical accuracy of the rasuits.

As the incident wave strikes the first interface C, the wave is partially reflectad
back into the half-space D, and it is partially transmitted into the first dipping layer D,
{see Fig. 1). Reflection and transmission of the scattared wave field in the first layer
takes place along the interfaces C' and cz. A similar procusi can be observed for
subsequent layers as well. Therefore, one can view each interface Ci, i=1.2..R as the
tocation of sources which “form” the scattared wave flald throughout the Iavcr“ medium.
it the scattered wave field is expressed in terms of discrete line sources the density

functions in equstions (Da-f) are of the following form

9y (e = a,’_flﬁ(ls-smjl) I R R R (11a)

AN 5'1;16(|;-r-j[) ; (11b)
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-+
pj(gl = bij“'?!tj[) : .!.-,'=1,.1'.....I.:j 3 E"j € Cfl {11c)

B.Ax) = B 8(|c-x, |, (114)
J lj - -ulj
whare summation over repeated indices Is understood. Subscripted indices, such as m,
or l.i should be viewed as simple indexes m and t, respectively. Thus, for example
. . 0 0 0
equation (I1s) implies q (r)=a, & | r-f, | J+3,4( l1-5, | )f...mn‘ &} !-IHII ). etc. Substituting

equations {11a—d) into equation (9a-f) leads 10 the scattered wave fieid

8 © -
¢, (r) = am1¢°¢r:5ml) i TED 5“1 € ¢ 1 w20l M {(12a)
8 -0
b () = amlwo‘.’;:sml)f (12b)
¢:(5) ='h: ¢, (xiz, )} + ’:in ¢ (rix B reD ; i=1,2,,,,,R-1
i i i+1 i+1 o 10,2, .0.,L
n=l,2,...,M
i (A AR RN ’.
+ {12¢)
¥, €C
5 G
: Ig, € Cy
#:(5) = 'S: &i(pgz ) + 'Ei v (x;x ) e ' (12d)
i i Pie1 b T TR0
s . R
¢plr) = thQRtgagzni P EEDy g b= L2k, {12e)
Vo (r) -S':antg:glnx. (120

where the summation over repeated indices is suppressad If one index is a superscript
and the other one is a subscript. For example, equation {12e) implies
On = DI4RGHIBTRII-HDL, alrr, ). ote.

The unknown source intensities a?n-_} 5'2: }bg‘. and '52_ =1.2.R m=12,M;L.=12_L
(I B i

are determined through the use of the continuity conditions specified by equation (6). By

choasing N.. collocation points (along each interface ci. j=1.2....R) to evsluate equation {6)

the source intensitias are determined in the least square sense, ie.
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T
o o—0o =—o.l1 l=1 =1 R-1 R-1 —Rk-1 —_R-1 R R-R R
la ...a A_...a_, b ...b b ...b ...a ...l a .- b....b_ b ...b ]
[[1 Hl 1 Hl 1 Ll 1 Ll 1 HR—l 1 HR—I 1 LR 1l LR
- ' ", (13)

where the matrices a and t are given in the Appendix and the superscript * denotes the

transpose complex conjugats.
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Evalyation of Results

Throughout the numaerical evaluation of the results all variables are presented in
dimensionless form. For that purpose the shear wave velocity ¢, and shear modulus p
are chosen to be unity; distances are normalized with respect to the half width of the
tirst layer and surface displacement amplitude at each paint is presented normalized with
respect to the corresponding amplitude of the surtaco: tree—field motion, Le.,

{ |u®| 2+ [v* |32 Dimensionless frequency § is intraduced as the ratic of the total width

of the first dipping laysr and the wavslength of the incident wava field.

ingle- -M i

Scattered wavae fiald for a single dipping layer emhedded in a half-spacae as

specified by equations (12a-f} follows to be

s o -
¢ (x) ma- ¢ (csx ) 5 peDd ;3 xr €C  5m=li... M (14a)
o w nl © m1 o ml b § 1 p §
8
¥ (r) =2’y {z:x ) (14b)
a m ‘o m,
’s(r) bl ¢ (x;r. ) ; repD, 3 r, € C+ s & =1 {14c)
S L R - 1 -1, 1 yoleeeerly
8 =1
¥ (D) = b, ¥ (niE, D, (140)

l s
where the coefficients agi, ig., hi', and 5}1 are formafly given by equation (13}

Substitution of equations (14a-d} into equation (1) and then intc aquations (8a,b) teads to
tha displacemaent field throughout the elastic medium for appropriate incident wave field
(P. SV, or Rayleigh wave). Figs. 2-4 depict the normalized surface displacement amplitude
atop the halt-space with a semi-elliptical dipping layer subjected to ditferent cases of P,
SV, and Rayleigh wavaes for dimensionless frequency =1, It is evident from the results of
Figs. 2-4 that the presence of the dipping layer may cause significant ground motion

amplification (reduction) at the surface of the half-space wher compared with the surface
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rasponse in the absence of the irregularity, L.e., free-field motion. Furthermore, for
incident P and SV wave surface motion appesrs to be very sensitive upon tha sngie of
incidence. Detailed discussion of the single layer response can be found elsewhere
(Oravinski, 1982). '

Two-Laver-Model

For two dipping layers embedded in an elastic half-space scattered wave fiskd

follows from squations {12a-f) to be

8 - O - - 1
S0 =a 8 (i ) 5 reDb s x €C 5m=L2.. M (15a)
1 1 1 1

[ —o
v _(r) = a "wizc ) , {15b)
o ll "ﬂl
Qs(r)-blo(rr)a-aldi( )sLeEDb ;¥ €C.;r ec!
1% 2 9 '50E, m 71 By Teh m, %27 % 1
1 1 2 2 1 (15¢)
n2-1,2,....ﬂz } llalrzgcnngtll
8 =] =1
¥, (r) = b ¥ (r;x, )} +a ¥ (c3r ) (15d)
1 e e m,'1=" m,
2 +
42000 =By $(miry ) 1T €D gy €00 Ll L, (%)
2 2 2
] -2 )
¥, () = btz"z ‘5’51.2) (156

where the source intensitiss a,‘,’, Y l','}, ¥ bl,'l. Bi v etc. are known through equation (13).
Agsin, summation over repeated indices is understood. Substitution of equations (15a-1)
into squation (1) provides the scattered displacement field while the use of oddotlons
(8a.,b) for a particular type of incident wave implies total displacement field throughout

the elastic medium.

For different angles of incidence (for P and SV waves) and for Rayleigh waves the
normalized surface displacement amplitude for the two layers mode! is shown by Figs.
S-7. A fairly high contrast in the material properties between the layars Is assumed with

dimensioniess frequency =1. It follows from ths results presented by Figs. 5-7 that
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layering in the mode’ creates substantial ground motion amplification effects. Clearly, the
response at the surface of the haif space appears ta depsnd upon ths type and angla of
incidence of the incident wave as wsll as tha location of the observation point at the
surface of the half-space. Comparison of Figs. 2-4 with Figs. 5-7 indicate that the
presence of the additionat dipping layer D, caused a considerable change in the surtace
displacement amplification pattern atop the layers and. less change atop the surface of
the half-space D. This suggests that dipping layering may be of great importance in the
evaluation of the possidle strong ground mation for different alluvial basins during an

actusi earthquake.

The Mo in the fraquency of the incident wave to i&=0.5 resuited in the surface
displacement tisid shown by Figs. 8-10. Evidently, surface displacement amplification i3

very sensitive upon the frequency of tha incident wave for all thrae types ‘of waves.

So far, the fotlﬁwing paramaters in the problem have been varied: the type of
l'ncldont wave, th- angle of incidence, the frequency of the incoming wave and the
number of layers. Results of Figs. 11-13 correspond to the surface response for less
contrast in ths material properties between the layers and at frequency O=1. Itis
apparent from the results of Figs. 5-7 and Figs. 11-:3 that the contrast in the material

proparties of the fayers is of major impaortance for the resulting surface graund motion.

Thaersfore, presented results indicate the lollowing: (i) the presence of dipping.
layers may cause very large amplification (reduction) of the surfsce ground motion; (ii)
ground motion amplification appears to b; very sensitive upon the number of psrameters
such as: the type of incident wave, the angle of incidence, the frequency of the Incoming
wave, the numbor of layers, the material properties of the layers and the location of the
observation point at the surface of the half-space. This can be explained in terms of

interaction of the incident and the scattered waves. The two may interact constructively
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or destructively at an observation station, thus. resulting in corresponding amplilication or
reduction of the surface ground motion. Parameters which affect the two wave fields
ray influence that interaction and thus affect the surface ground motion. Consequently,
it appears from the presented results that the strong ground amplification at a given site
would be very difficult to specify by a simple parameter. Instead, it should incorporate
soveral ot them in order to sccount for strong ground: motion amplification st the site

more pracisely.
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Extensive testing of the indirect BIEM used in this paper Is required in order to
obtain accurate results. While the testing of the method for the antiplane strain problams
is simple due to the abundance of problems for which the exact solution is available, for
the subsurface inclusions in a half-space and the plane strain model situation is quite
opposlta.i Even for very simpis geomatries of slastic i:hcluslon in the half-space the

author is not aware at the prasent time of any closed form analytical solution dealing

with steady state motion caused by diffraction of P, 5V,, or Rayleigh wave.

Previous testing of the method for fuli-space problem models, for which the exact
solution exists, indicated very similar behaviour of the BIEM solutions in the plane strain
model as in the case of the antiplane strain model (Dravinski 1982a,b). These conclusions
can be summarized as follows: a) The method provides very good rasults for a wide
range of frequoncies. increase in the fraquency of the incident wave field requires an
increase in the numbar of séurces and collocation points in order to maintain the same
accuracy; b) Source surfaces CTshould not be placed in the immediate vicinity of the
interface Ci. A good choice of the source surfaces appears to be the one in which they
“follow” in shape interface ci. Therefore, the surfaces c,.'and c“.’ in the present paper are

chosen by scaling tha interface Ci by factors 0.5 and 1.5 respectively.

Error analysis of the method (Dravinski, 1982: Wung, 1982) suggasted a procedure
for checking the numarical results. It was observed that convergence of the resuilts in
the test problems has been achieved when the increase in the number of collocation and
source points did not produce any changa in the resulting displacament field. This
procedure has been used in the present work to determine the number of sources at

which to evaluate the surface displacement field.
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Summary and Conclugions

Amplification of plane harmonic P, SV, and Rayleigh waves by dipping layers of
arbitrary shape embedded into an elastic half-space Is Investigated by using an indirect
boundary integral eguation appfoach‘ The problem has been investigated within the
framewaork of the linear theory of elasticity. The displacement fleld Iis evaluated for the

srbitrary number of layers throughout the elastic medium 50 that the continuity of the

stress and displacement field between the layers is satisfied in the mean-square-sense.

Numaerical results indicate the following: {i) dipping layers may cause locally very
large amplification (reduction) of the surface ground motion; (i) amplitication p?tt-rn of
the motion depends upon the number of parameters prasent in the problam su%:h as the
type of incident wave, the angle of incidence, frequency. the matarial proporties' of the
fayers, the number of layars, and the location of the observation point &t the surface of
the half-space. Change of any of the parameters may cause substantial change In the
strong ground motion atop the surface of the half-space.
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Appendix

In order to specity the matrices (__% and and { in equation (13) it is convenient to

define the foliowing quantities:

Dilatational and shear elastodynamic Green's state vector

ud(gpgo) us(l,gn_:o)

d s
gd(g:go) =) v torz,) i §=(r:ro) 2| vty

%nn (FPES) ' Fon (EiEg)

d s

Ine {E15,! ont(!'go .

where superscript d(s) denotes dilatational (shear} line load at [ = T, It should be

emphasized that due to coupling caused by the stress free boundary conditions (eqs.

(A1)

{10a.b)) dilatational 1iheload at r, results in dilatational as well as shear wave field (see

Lamb, 1906). Therefore, components of the displacement field u"(_r';_roi and vd([;g;) in

equation (A1) contain contribution from both types of waves. A similar situation occurs

for a shear line load at _rc; and corresponding displacement {(and stress) field.

Elastadynamic Green’s state matrix for domain D, k=1,2,_R of the ordar 4N, x ZMi is

Gefined by
X 4, _ . s .
[ 2ls (e _sxr ),s (r_sr ) 1 r €C ;n=12,...,N
-Niuj, [- -ni -mj, ni |||:i ] :1;i : i i
!"‘j € Cj H llj“'l.z....,ﬂj
Similarly
k -1. 4 s -
§“1Lj = [! (!ni:!,_j),g ('“1'5"3)] } Ini €C s ny=l,2,... K
. +
Elj [ Cj H] lj 1,2,...,pj
Then the rpatrlces G and f in equation {13) are defined by
o i . 1
8 - S - S )] 0 0 0 aea 0
N M N N ¥y
1 1l 2 2
G = 0 s S - § "'§ g g e 9
- - L Ny  THpL, THM,
2 2 3 3
Q Q g s s -s -ﬁ sew Q
. T o T o WL )
: * R
LA N ] Q I XN} §
i Q .- M Loy

(A3)

1o
(1~



)

where the matrix G Is of the order 4(N.+..+N,) x 2(M,+L,+_+Mg+L,) and the matrix f is

of the order 4(N +.+N,) x 1.
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. §

Fig. 6

Fig. 7

Model Geometry

Surface Displacement Amplitude Spectra for Single
Semielliptical Dipping Layer {with the Principal Axis
A, and Bl)

{2) Incident P~wave: 0 °-10°

{b) Incident P-wave: @ e-30°

{c) Incident P-wave: 9§ =60°

(i not stated differantly 2 =1, N,=16,

M‘-Lfa, k=l c =1, c4 =1, '

uy=0.1, ¢ 4=0.5, c =1, A, =2, B,=1.4)

Surface Cisplacement amplitude Spectra for Single
Semielliptical Dipping Layer

(a) Incident P-wave: @ = BO®

(b} Incident SV-wave: 8 = 10°

{c) Incident SV-wave: €& = 30°

Surface Displacement Amplitude Spactra tor Single
Samislliptical Dipping Layer

(8) Incident SV-wave: ¢ = 60°

{b) Incident SV-wave: & = 80°

(c} Incidant Rayleigh wave.

Surface Displacament Amplitude Spectra for Two
Semielliptical Dipping Layers (with the principal
axis A,, 3, A, and B,)

{s) Incident P~wave: 8 = 10°

(b) incident P-wavae: 6 _ = 30°

{c) Incident P-wave: © o™ 60°

(if not stated differently £ =1, N =N =16,
MI-LI.MI-LZ-B‘ “0-1' C”'L

c“-z, u,-o.l. c"-o.s. c‘“‘l.

U,=0.01, €,,=0.25, c,=0.5, A;=2,

B,=1.4, A,=1, B,=0.7).

Surface Displacement Amplitude Spactra for Two
Semielliptical Dipping Layers

(a) incident P-wave: 6 = 80°

(b} Incident SV-wave: B _ =~ 10°

(c) Incident SV-wave: 0 = 30°

Surface Displacement Amplitude Spectra for Two
Semielliptical Dipping Layers

(s} Incident SV-wave: 6 = 60°

(p) incident SV-wave: o = 80°



Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

{c) Incident Rayleigh wave

Surface Displacement Amplitude Spectra for Twa
Semielliptical Dipping Layers

(a) incident P-wave: ¢ = 10°

(b) Incident P-wave: 6 = 30°

(¢} Wncident P-wave: 6 = 60°

(2=0.5)

Surtace Displacement Amplitude Spectra for Two
Semielliptical Dipping Layers '

(a) Incident P-wave: € = 80°

(b) Incident SV-wave: 6 = 10°

(c) Incident SV-wave: & = 30°

(a~0.5)

Surtace Displacement Amplitude Spectra for Two
Semielliptical Dipping Layars

(a) Incident SV-wave: ¢ - 60°

(b) Incident SV-wave: 6 = B0°

{c) Incident Rayleigh wave

{0=0.5)

Surface Displascemant Amplitude Spectra for Two
Samislliptical Dipping Layers

(a) Incident P-wave: 8 = 10°

(b) Incident P-wave: & = 30°

(c) Incident P-wave: © = 60°

(8=1, u,=0.6, c,,=0.8, ¢, *15,

u,=0.3, ¢ ,=0.6, C4p=1.2)

Surface Displacament Amplitude Spectra for Two
Semielliptical Dipping Layers

(a) Incident P-wave: 6 = B80°

(b) Incident SV-wava: 6 = 10°

(c) Incident SV-wave: ¢ = 30°

{Q=1, u'-o.ﬁ, c,,-o.s, c‘"-‘l.G,

¥;=0.3, €,,=0.6, C4,=1.2)

Surface Displacement Amplitude Spectra for Two
Semislliptical Dipping Layers.

(s) Incident SV-wave: 6, = 60°

{b) Incident SV-wave: & _ = 80°

{c) Incident Rayleigh wave

=1, »=06, c,,=08, c =15,

1,=03, ¢,,=08, ¢ ,=1.2)

56



»X

e D

87



58

X/A




59

NV XA

1

]
2

<
S
=
= >
_12
|
|
\
{
1
I
IF o
!
/
/
!
\
f Fo 2
f -
\
\
\
}
/
,\ 20
A
\
\
\
A\
1
. ) A N ﬂ.—‘ L)
"y ™~ (] (=] «r







y /A

3-1
2~
1- U
-~ FAS
N\ AN
7’ - y 4

N\ .—"’ \ \__—n—m—-.
o V — : \ 7 . W} ) 'V VAI
-2 -1 0 1 2




41 62

24
1;
,______,_--—.r

o - . Tzfﬁ_,_x X/Ay
-2 -1 0 1 2
(a)
4.
34 1
2"_/\’\‘
1 - a
- PN
’_”'—‘ SN ____,,..-—--"‘v
= ¥ N-’-- s ] x/Al
-2 —1 Y] 1 2
3 =y

2- ‘
‘ T
1 3

_____,-—..4

\.l

-2 -1 0

&”//

"‘qr




24

63

o~ e e = e s o \F

U

X

'L

o
-
N




S — e~
qL_.._..-—-._./

-2 -1 0 b § 2

{b)

i /
N \
)___.---'-'-_'\\ // ~ \—__—-—_—-
1 LJ ¥ 1
-2 -1 0 1
{c)




65

1
-~
7\
\ ! \
\ /
N v
L_ —_-/I \/
0 - Y Y e ! x/Al
-2 -1 0 2
2 . (a)
-~
N\
P
1
Il
|- ——— 7\ L/ M. ¥
0 T T ] x/‘]_
-2 -1 0 h § 2
{b)
2
]
1 ______,__/\, 4]
\ /
\\ ,I
R [ v
—--ﬂ,
Y T Y e X/A]_
-2 -1 0 1 2
‘ {c)




= am e ——

-2

-2

-2

-1

-
L
-

o 1
(a)
™ ,"‘\\
I/ \\ F \
v/ p
\ T
7

-1 a 1
(n)
e —— _ , "\\ e e e e e =
- N, Vs
\_/

-
-’

66



e
67
3-
24
1- _____ —— "’—” \ o v c———
\h,/ \\‘-/,f v
0 v L - T 1 X/AI
-2 -1 0 b}
(a)
44
31
2
11 —
= e /" ~N o e e e v
\\_."' 41
0 ¥ T L) 1] x/ll
-2 -1 0 1
(b)
4-
3-
2-
14
o~ =
—— — — .o -y
0 L4 ¥ 1 x/
-2 -1 0 1 M
{c)




3-

24

.--—'_"', ~ g
s o \‘_,f -~__‘__~_‘-v
o L L ¥ 1 JVAL
-2 -1 0 1 2
(a)
4
3-
24

(b)

68



T”‘

20

4
34
2-
-
1",_____,-—"/ \\ /f%\\
. ~_~ N
\/“\N/’_'_"——‘v
0 ~ —
-2 L] L3  J J
4- {(a)
3-
2-
-
11 P T
\ ’_”_,_——-—V
\ 7/
0 /
-2 ] o S
1 0 i ) x/hl
‘- (b)
3-
2-
1-~__—’_,/’—\ —~—
N~ \\\\ ,”_,_.--—-V
rd
0 - - N £
_ _l L] L3 3
0 1 2 ¥y

69



70

STRONG GROUND MOTION IN THE LOS ANGELES BASIN:
Incident SH Waves®

by

M. Dravinski

Abstract

amplification of motion caused by diffraction and scattering of a
plane harmonic SH-wave by layered medium of the Los Angeles basin is
investigated by using an indirect boundary integral equation approach.

The basin is modeled as a set of irregular dipping layers embedd.c_l into
an elastic half-space. The material of the layers is assumed to be
homogenecus, isotropic and linearly elastic. Perfect bonding between the
layers is understood.

Displacement spectra are evaluated for different cross gsections of
the basin for a different aumber of layers and for various i{ncident waves.
Numerical results demonstrate that the presence of the dipping layers in
the basin may cause vary large amplification of the surface ground motion.
The motion appears to be very sensitive upon the number and material
properties of the layers, frequency and angle of incidence of the incoming

wave, and the location of the observation point at the surface of the

half-space.

*submitted for publication.
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Introcudtion

The geoclogy of the Los Angeles basin is characterized by great
complexity. Still the structure of the basin has been investigated in
considerable detail. The study of Yerkes et al. {1965), for example, provided
an elaborate account into the thickness of the sediments throughout the
basin. The term 'Los Angeles basin' in this paper refers to the structure
of the alluvium for Los Angeles and its vicinity, as shown by Fig. l.

Experimental studies by Hanka (1975} and Wong et al. (1976), for
example, established very clearly that the presence of surface and/or
subsurface irregularities in the soil medium may have pronounced effect
upon the surface strong ground motion. This conclusion is confirmed
through further research by Boore (1972), Wong and Jenmnings (1975),
Griffiths and Bollinger (1975), Sanchez-Sesma and Rosenblueth (1979),
Sanchez-Sasma and Esquivel (1979), Wong (1982), and Dravinski (1982a).

Study of the seismicity of Southern California by Hileman et al.
{1973) indicates that within the area of the Los Angeles basin one should
expect about four earthquakes per year of magnitude greater than 3. Since,
"there is nc evidence to suggest that thus modearate to high seismicity is
decreasing” (Anderson et al., 19Bl) it is of considerable importance a) to
develop detailed instrumentation for the monitoring of the seismic activities
in the basin and b} to investigate thecretically possible strong ground
motion amplification patterns throughout the basin during an earthquake.

The main objective of the present paper is to introduce a rather simple
theoretical model for the study of strong ground motion in the Los Angeles
basin. This model should be viswcd as an introduction to more realistic

and thus far more complex models in the future.
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Method of Solution

There are basically two methods of analyzing soil amplification
problems: 1) Numerical methods and 2) analytical methods, which rely upon
the solution of the equations of elastodynamics by analytical means.
Complex geology of tha Los Angeles basin precludes construction of the
closed form analytical solution and one has to analyze the problem by
using numerical techniques. Most commonly used numerical methods, finite
differences and finite elements require a computational grid to fill the
solution domain of the problem model. As a result, these procaduras
appear to be inefficient for geotechnical problems which involve large
dimensions.

Often it 1s possible to construct a surface integral representation
for the solution of the problem, Corresponding integral equations involve
only the boundary and initial values. Solution of the integral equations
then leads to the solution at any interior point of the problem model
under consideration (Cruse and Rizzo, 1968; Cole et al., 1978). Since only
the boundary of the model is being discretized, the number of unknowns is
significantly reduced where compared to the finite element or finite
difference procedures. For a detalled review of these methods, known as
the boundary integral equations methods, (BIEM) the reader is referred
to a paper by Brebbia (1981).

Indirect BIEM used in the present paper originates in the works of
Kupradze (1963), Copley (1967) and Oshaki (1973). Extension of the mathod
to wave propagation problems in geophysics and earthquake engineering is
due to Sanchez-Sesma and Rosenblueth (1979), Sanchez-Sesma and Esquivel
(1979), Apsel (1979), Dravinski (1982a,b) and Wong (1982). Recently, the

author extended the indirect BIEM to the problems involving dipping layers



of arbitrary shape (Dravinski, 1983). Therefore, the present work is an
application of the mathod to the problem of strong ground motion of the

Los Angeles basin.

Solution of Problem

For the problem geometry present by Fig. 2 a brief review of the method
of solution is prasented next. Spatial domain of sach layer is denoted by
Dj' 3=0,1,2,...,R, where subscripts 0,1,2,,...,.R refer to thae half-space,
the first layer, ..., and the R-th layer, respectively. Interfaces
between the layers are denoted by Ci. ir}l,2,..., R.

Since the problem model is assumed to be of the antiplane strain-type

the equation of motion for steady state waves ig defined by

2 2

2 2 , 2 _ 3
(v" + kj’wj (x,y,w) =0 ; 3=0,1,2,...,R ; ¥V = _3_2 + 3 (1)
ax ¥y

where w represents the only non-zero component of the displacomni: field
acting along the z-axis, k is the wave number, and w denotes the circular
frequency. 5olution of the problem must satisfy stress free boundary
conditions along the surface of the half-space, continuity of stress and
displacement field along the interfaces Ci,ial,z,...,n, and appropriats
radiation condition at infinity.

The incident field is assumed of the form

winc - exp[—ikotxsinﬂo + yooseo) + mc]; i=/a (2)

where 00 represents the angle of incidence.

The total wave field in the elastic medium can be described as

(bravinski, 1983)

w o= tw::EED (3a)
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Uj bad W; 3 E € Dj 3 j=1.2|.--.Rl (3b)

vhere superscripts £ff and s denote the free and scattered wave field,

respectively. The unknown scattered waves are determined to be

s o -

v () = a Go(gsgnl); Lebd 5“1 €C, s m=l,2,...1 3 (4a)

w:h;) = b:: (;i(;.:n;l ) + ai Gi(r;: ) ¥ , {4b)
i i s ¥51 Pin

Ei € Di » i=1|2'-.-lR-1

’- -1'2’-..'L

i i
lti-luz,...,l'li |
xr, €C 1L EC, "
-l.i i N 1
-] R +
welx) = b"nGR(!'E"R) 3 reDs E"n e Cp. (4c)

where summation over repeated subscripts is assumed.. The summation
convention is suppressed for repeated indices if one index is a superscript
and the other one is a subscript. Subscripted indices, such as "i. and -.i.'
should be viewed as simple indexes L and m, respectively. 1In equations
(4a-c) G denotes the Green's function for a line load in a half-space and
“1' l(i, and I‘i' i=1,....R denote the orders of approximation of the solution.
Therefore, the scattered wave field is represented in terms of the finite
number of descrete line sources. The auxili.ry surfaces CI_' iml,2,...,R
and the location of sources is assumed, while the source intensities a’s

and b's are calculated in the mean-square-sense from the continuity
condition of displacement and stress fields along the interfaces between

the layers (Dravinski, 1983).
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Evaluation of Results

Surface displacement spectras have been evaluated numarically for two
sections of the Los Angeles basin. The sections ABCD and EFG are
depicted by Fig, 1. Geoclogy of these sections was investigated in
considerable detail by Yerkas et al. (1965). For the sake of simplifica-
tion it is assumed that each cross-section has been rectified into &
straight plane.

For numerical evaluation of the results all variables are presentad
in dimensionless form. For that purpose the wave velocity Bo and the
shear modulus uo are chosen to be equal unity. All distances are normalized
in such a way that one unit length corresponds to two kilometers of the
basin and surface displacement amplitude is normalized with resgpect to
the amplitude of the surface free-field motion. For convenience, a
dimengionless frequency fl is introduced as the ratic of the total length
of the first dipping layer and the wavelength of the incident field.

Each interface C,,i=1,2,...,R is defined by N

i i
through which a normalized cubic B-splin approximation is determined..

collocation points

This procedure permitted construction of an algorithm applicable to a wide
range of interface shapas including the ones associated with the sections
ABCD and EFG of the Los Angeles basin.

Results depicted by Figs. 3a,b correspond to the amplitude of the
surface displacement spectra for cross section ABCD,modeled as a set of
three dipping layers embedded into an elastic half-space. Sewveral
conclusions are apparent from analysis of the Pigs. 3a,b: a) The presence
of dipping layers may cause very large strong ground motion amplification
effects, b) Surface ground motion amplification may change greatly within

a very short distance, and ¢) Ground motion appears to be very sensitive
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upon the angle of incidence of the incoming wave,

Observations from some recent earthquakes (Jennings, 1971) indicate
that the areas of damage can be highly localized. ‘It has been noted that
the intensity of ground shaking can change significantly within n‘short
distance (Hudson, 1972). The results pfeunted by Figs. 3a,b clearly
confirm these field observations. ‘

An increase in the frequency of the incident field resulted :Ln surface
ground motion shown by Figs. 4a,b. Compa.rison of Figs., 3a,b withl P:lgs. 4a,b
incidate great sensitivity of the surface ground motion amplification
pattern upon the frequency of the incident wave field. If one views the
ground motion amplification as a result of interference between the incident
and the scattered wave field, it is obvious from the presented raa.lull:l
that the frequency o‘: the incident wave affects that interference greatly.
The interference may be constructive or destructive thus resulting in
amplification or reduction of the surface ground motion. This phenomencn
of local amplification (reduction} of the surface motion is very:clea.:ly
displayed in Figs. Ba;h and 4a,b. Tha changea in material properties of
the layars appears to be a very important paraﬁuter for resulting surface
strong ground motion of the basin. Results of Figs. 5a,b correlpénd to the
same incident wave and geomstry of the layers as in the case of results
depicted by Figs. 3a,b. The change in material properties of the layers
caused a very different surface ground motion amplification pattern. This
is an indication that inaccuracy in the material properties of the
subsurface irregularities will reflect very strongly upon the resulting
surface motion,

For a cross section EFG of the Los Angeles basin (sce Fig. 1)

the surface strong ground motion is depicted by Figs. 6a,b. As in the
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case of the section ABCDL the model incorporates three dipping layers
embadded into an elastic half-space. Earlier studies of strong ground
wotion amplification effects due to subsurface irregularities (Dravinski,
1982) demonstrated that the surface motion is sensitive upon the embed-
dment depth of tha irregularity. Consequently, except in one case.
(Fig.:7), in each cross section of the banin studied in the present
papetl the interface Cl {between the half-space and the first layer) is
ltaket‘l' as the deepest cone available from the field measurements of the
sediment depth {(Yerkes et al., 1963). Although the wavelength of the
incident field and the material properties of the layers is the same as
for the section nBéD (see Figs. 4a,b) different geometry of the
dipping layers caused a very different ground motion response. (Note,
the dimensionless frequency changed from that in Figs. 4a,b since the width
of the layers is different.) Thus, geometry of the dipping layers appears
to be very important in the resulting surface motion of the soil medium.
If more detailed modeling of the subsurface geology is required this
can be accomplished by incorporating more details into the modal. As an
illustration of that procedure applied to the section EFG of the Los
Angeles basin the surface displacement is evaluated for the substructure
shown by Fig. 7. A characteristic of this model is that the second
layex contains not one but two dipping layers defined by the interfaces
€ and Cqyae Interfaces c1 and Czuhich define the first dipping layer are of
the same character as in the previous models. The scattered wave field

in the layers is then specified by

8 (] -
vo(l_.') = a- Go(r_::;ml) }EED 5‘1 €C, s m=l,2,...0 {5a)
8
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8 1 b | + - ‘
wirl =b G (r;x, ) +a G {x:x_ )sreD g =C, X €C
1 ".1 1 L =, b B, 1 L ) | n, 2 {5b)

’.1-1,2,-..'L1 3 ‘2-1'2'---pu2
2 2 2
g Splrix, ) + 2 Golmr ) +a G (mr, ).

2 2 31 oy myp 2 My,

w;(l-_:) m b

r=p_ ;x sc;;r €C

P2t R, Fmyy - 3L
!n32 € C32 ¥ '3181' 2' - .,H31

-32“1,2,...,!432 - {5¢c)

v (r) b31 G..{ryr, ) 2 xreD,. :rx € c* £_.=1,2 L {54)
Ir) = rr I r - repeser :

31 131 i1 !.31 31 !.31 al 31 31
5 + :
woolr) = b " 6 (x;x, ) s ¥xep s r £€C i 2..%1,2,00apL. ., {5e)
32 !-32 32 !.32 32 !.32 32 32 32

where the summation convention over repeated indices is understood. Again
the auxiliary surfaces c;-. i=1,2,31, and 32 and the location of sources
are assumed and the unknown source intensities a's and b's are calculated
in the mean~square-sense through use of the continuity of the dijsplaceunt
and stress field along each of the interface between the layers.

Although very sinpia. the method of solution is not without difficulties.
Namely, the locatlion of sources along the auwxiliary surfaces must be chosen
vexry carefully to obtain accurate results. Por this reason, an a;t.mi.ve
testing of the indirect BIEM has heen done (Dravinski 1982a,b; Mq, 1982) .
It was found that the Aauxiliary surfaces CI' should not be placed in the
immediate vicinity of the corresponding interface ci' In the present
paper the auxiliary surfaces CI and c; are obtained by scaling the
corresponding interface C i by a factor of 2 and 1/2, respectively. The oxrder
of approximation of the solution (Ni,ni, Li' £=1,2,...,R in equations

{4a~c) and (5a-3)} is chosen in such a way that their increase in value
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produced practically no change in the resulting displacement Ffield.
Testing of the program codes is done in the following way: The material
properties and shape of the layers are assumed so that the problea reduces
to ground motion amplification due tc a semielliptical alluvial valley.
In all cases the exact results of Wong and Trifunac {1974) are recovered.
- Comparison of Pigs. 6a and 7 indicate similarities in the responss
for tl:x. same section modeled with a different number of layers and
subjected to the ix.tcidant wave of the same wavalength. A very aﬁmg
reduction of the mt.ie.:n atop the soft layers is observed in both cases.
From Fig. 7 one éan cbserve ahead of the illuminai‘:ed side of the layers a
very rapid change from essentially free-field motion to the motion modified
locally by the presence of the scattered wave field. However, this is the
case for a particular set of physical parameters chosen in the problem.
Presented results indicate that a change in the frequency of the incident
wave may result in a very different surface digplacement amplification

pattexn.



Summary and Oonclusionsg

surface displacemsnt spectral amplitude is calculated for two
characteristic cross sections of the Los Angeles basin using an indiresct
boundary integral eguation approach., Numerical results indicate that the
presence of dipping layera may cause locally very large ground motion
amplification effects at the surface of the half-space. The amplification
appeaxrs to be very sensitive upon frequency and angle of incidence of the
incoming wave. The surface ground motion is strongly dependent upon the
number, geometry and the material.properties of the layers. Thus, detailed
information about the subsurface geology of the basin is requ.i.:edéin order
to evaluate surface motion accurately.

Prasented results confirm field observation from some recent earth-
quakes that the area of intense ground shaking can be highly localized and

that it may change sj.gn:l.ficantly within & short distance.
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Pigure Captions

Fig. 1

Fig. 2

Fig. 3a,b

fig. 4a,b

Fig. 5a,b

Fig. 6a,b

Fig. 7

Alluvium thickness in the Los Angeles Basin (after Yerkes et al.,
1965)

Theoretical Model
Normalized surface displacement spectral amplitude: Section
A-B-C-D.. (For all the results v, o= ﬂn =1, @t =2,59,

N =40, N, = 33, N, = 31, M =L,

2 2 3 3
- 0.6, B1 = 0,8, uy = 0.2, 32 = 0.6, Uy = 0.1, 83 = 0.4)

Normalized surface displacement spectral amplitude: Section
A-B-C-D. {(Q = 5.18, Nl = 40, N2 = 33, Ba = 31, M, = L = 20;

1 1
H.2 - L2 H3 - L3 = 16, ul = 0.6, 81 = 0.8, u2 = 0.2, BZ = 0.6,
B

= 0.1, BJ = 0.4)

=20, M_ = L_= M_=L_ = 16;

3
Normalized surface displacement spectral amplitude: Saction

A-B-C-D. (R = 2,59, Nl = 40, N2 = 33, H3 = 31, Hl - Ll = 203
Hz = Lz = '43 - L3 - 16‘ ul = O.B. Bl bad 0.9] uz = 0.5’ 32 - O.B,
U, = 0.4, 53 = 0.7)

Normalized surface displacement spectral amplitude: Section
E-F-G.. (a = 4-38' N = 34' N bl 23' NJ = 21' M =, = 17'

) 2 1 1
“z ] L2 = ]2, My = L3 = 11, b= G.6, 81 = 0.8, u, = 0.2,
Bz = 0.6, Uy = 0.1, 83 = 0.4)
Normalized surface displacement spectral amplitude: Section
E~-F-G. (0 = 2.88, "1 = 23, Nz = 21, N31 =11, st = 13;
Hl - I.1 =12, H2 = L2 =11, H31 = L31 =8, n32 - L32 -7,
ul = 0.3, ﬂl = 0.6, u2 = 0.1, Bz = 0.4, u31 = 0.02,
831 = 0.2, u32 = 0.02, ﬂ32 = 0.2)
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EFFECT OF INCLUSION SHAPE UPON GROUND MOTION *

by Marijan Dravinski1

Introduction

Observation from soma recent earthquakes {(Sozen et al. (17), Jennings
(10)) indicated that the area of intense damage can be highly localized.
Esteva (9) established that intensity of strong ground motion may change
greatly within a short distance. Subsequent investigations (e.g., Boore (2))
reinforced a belief that the inhomogeniety of the soil ard surface (subsurface)
irregularities are probably the main cause of localized amplification
effects., Experimental results by Rogers et al. (l4) confirm these
results, Simultaneous recording of the Nevada Test Site nuclear events
were made at sites underlinad by alluvium in the Long Béach area and
at sites underlined by rock in the Palos Verdes and Pasadena areas. Those
data show peak-ground-velocity alluvium—to-rock ratios as high as 7 and
spectral ratios as high as 11 in the period band from 0.2 to 6 sec. Thase
results call for a systematic investigation ¢f the role the shapa of an
inhomogeniety has in the amplification effects of the surface strong
ground motion.

For many problems, it is possible to construct a surface integral
representation of the solution. Corresponding integral eguations involve
only the boundary and initial values {and possibly interior sources)

{Cruse and Rizzo (6)). The boundary value problem is thus formulated in

terms of boundary values and the solution at interior points need not be

1

Assistant Professor, Department of Mechanical Engineering, University
of Southern California, Los Angeles, Calif, 90089-1453

*Accepted for publication.
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considered in order to solve the integral equations {4). Once the integral
equations are solved, solution at any interior point can be determined
through the original representation. Therefore, the main advantage of the
boundary integral equation .rethods (BIEM) lies in fact that only boundary
of the body is being discretized, thus reducing ths number of unknown
variables significantly in comparison to the finite element and finite
difference procedures.

Indirect BIEM used in this paper has bean used by the author (8) in
the study of ampiification affects dus to an elastic finclusion ew
into an elastic half-space and subjected to different types of moves.

The method originates in works by Kupradze (11), Copley (5}, and Oshaki
(13). Application of the mathod to the wave propagation broblem in
geaphysics and earthquake engineering is dus to Sanchez-Sesma and
Rossnblueth (16), Sanches-Sesma and Esquivel (15), Apsel (1), and Wong (19).
For detalled literature review pertinent to this BIEM, the reader is
refered to a paper by the author (7) and for literature on genexal BIEM

to the paper by Brebbia (3).

Statement of Problem

The problem modsl consists of an elastic inclusion Dl conplataly smbedded
into an elastic half-space Do (—= < x <=, y > 0) subjected to different
incident plane harmonic waves. The material of the inclusion and the
half-space is assumed to bes homogenecus, isotropic, and linearly elutlc;

Antiplane Strain Model. The equation of motion for the steady-state

waves is specified by

2 2
v+ ka)wj (x,y,0) =0 5 3=0,1 ; ¥ = —"32 + Li' ' ()
ax ay

where subscripts 0 and 1 refer to the half-space and the inclusion,
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respactively, k represents the wavenumber, « denotes the circular frequency
2nd w represents the only nonzexv component of displacement field along

the z-axis. Throughout the analysis, the factor e+mt is understood

wnd veleocity of the sh;ar waves is denoted by B. Boundary conditions

are spacified by

-
Perfect bonding along tha interfacs C between the half-space and the

inclusion requires

o v (3a)

re c
Bwo awl
o %n " Y1 n (3b)

where r represents a position vector, u is the shea.lr mdulus and @ is a
unit normal at the interfacm C. The incident wave is specified by

‘ inc -ikltx ain&o-y cosﬂc)
w =g R (4)

where Bo is the angle of inclidence of the incoming wave.

. Plane Strain Model, The equation of motion for this model is

specified by (Miklowitz (12))

2 2

v ¢J + hj¢j [+] {5a)
2

V’vj + Ko, = 05 30,1, (5b)

where ¢ and ¥ denote the dilatational and equivoluminal wave potentials,
respectively, with corresponding wavenumbers h and k. The velocity of
dilatational waves is denoted by a. The boundary conditions at y=0 are

given through

OYY° = 0 (6a)

.Xnterface C is assumed to be sufficiently smooth with no sharp
corners being present,
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o =0. (6b)

u v : (7a)
v, v {7b)
%o * %nnl (7¢c)

®rto = “nt1’ {(14)
where u and v denote the displacement components along the x and y-axis,
respectively. The normal and tangential stress along the interface are
denoted by Son and ont' respectively., Incident wave is assuned to be a
plane harmonic P, SV, or Rayleigh wave (8).

Solution of Problam

Antiplane Strain Modesl, The total wave field in the half space and in

the inclusion is found to bk (see Ref., 8)

g M
wolz) = wig) + 1 aG(rE) s geD, " (8a)
m=1
L
v () = ;.Zl b,G, (£.x,) 15D, (8b)

where G, , are Green's function for a line load in a half-space, A and

[ 4
§, are assumed, and a_ and b, are calculated in mean-square-sense for all
m and L, respactively (Ref, 8). The superscript ff denotes the free field.

Plane Strain Model. For incident dilatational wave, the total wave

field in the half-space and inclusion is specified by
M

£f
WE =4 )+ n§1 a bolel) 1 g e (9a)

M
¥, (x) = .Zl bV, (5]5‘) 1 EED,. (9b)
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‘ L

¢ ) - ’.Z cgéy(xlE,) 1 5 € D) (9c)
=2
L

v ) = 1-2-1 v Glg) 1xer, (9a)

where ¢(:|rn.") and 0(;| rn' !.) are Green's functions for dilatational and
equivoluminal line loads embedded in a half-space. Locations 4 and t 7Y are
assumad and coefficient L bn' Cyr and d" are calculated in msan-aSquare-Senss.
Similar expressions can be derivad for incident 5V or Rayleigh waves.
Evaluation of Results

Amplitude of the surface strong ground motion is evaluated for
different incident waves and different inclusions with ldentical cross
sectional area. 1In orl.'der to reduce the number of parameters present in
&a problem, numerical results are presented for fixed embedment depth of
the inclusion at single frequency of the incident field.

Incident SH-wave. For four different angles of incidence, the surface

strong ground motion corresponding to various inclusions is depicted by
Figs. 1-3. Evidently, variation of inclusion produced very little change
in the surface response of the half-space for all angles of incidence.
The same results were obsarved by Umek (18) who investigated the influence
of rigid foundation shapa upon the surface ground motion, Results of
Figs. 1-3, on the other hand, demonstrate very clearly that presence of
the inclusion may cause significant change of the surface ground motion
when compared to motion of the half-space without an inclusion. Motion
appears to ba very sensitive upon the angle of incidence of the incoming
wvave. Although not presented here, it can be shown that the contrast in
material properties between the half-space and the inclusion and the

frequency of the incident wave are of major importance foxr subsequent
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surface ground motion. However, in all these cases change of inclusion
shape produced rather small effect upon the resulting strong ground motion.
This implies that measuremmsnt of the surface displacement field magnitude
away from the inclusion wnuld provide very little information about the
inclusion shape.

Incidant P-wave. For different angles of incidencs and various

inclusions, surface displacement amplitude for horizontal and vertical
Adisplacement components are shown by Figs., 4-9, Results are presented
normalized with respact to the amplitude of the surface displacement
field, i.e., (|uff|2‘+ Ivfflz);’. Comparison of Figs. 4-6 and 7-9 indicate
that in the plane strain model surface ground motion is more sansitive upon
the inclusion geometry when compared to the antiplane strain model. This
may be explained by the fact that for incident SH wave, motion of the
media is caused only by the- resultant shearing force, which is the zeroth
order moment of the shearing stresses. For plane strain model, the
resultant force and the resultant momaznt, i.e., tha zeroth and the first
order moments of the stresses determine the surface vesponse so one

should expect that the effect of the inclusion shape through the scattered
wave field would take a stronger influence upon the surface motion (18),
The same results can be cbsarved for incident SV and Rayleigh waves,

Summary and Conclusions _

Effect of inclusion shape upon surface ground motion is inveatigated
by using an indirect boundary integral equation approach. Results are
presented for incident plane harmonic SH and P waves for three elastic

inclusions and four angles of incidence. Presented results indicate that

surface ground motion is less sensitive upon the chanye of the inclusion
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shape for incident SH waves than for incoming P (SV or Rayleigh) waves,.
Still, the presence of an elastic inclusion caused locally significant
amplification of the surface ground motion for both antiplane and plane
strain models. Amplitude of the surface motion appears to be very

sensitive upon the number of parameters present in the problem, such as
angle of incidence, frequency, material properties of the inclusion and
the half-space, and location of the observation point at the ground

surface,
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Figure Captions

1. Surface Displacement Amplitude for Incident SH-wave: (For all cases:
¥ =8y=1, ¥,~0.17, 8,=0.5, w=0.79s" L, m=3) R;=2, R=1.4.

2. Surface Displacemant Amplitude for Incident SHewave: 31-1.4, Rz-z.
3. Surface Displacement Amplitude for Incident SH-wave: lll-Rz-l.G?.

4. Surface Displacemant Amplitude for Incident P-wave: Horizontal Compo-
nent. {For all the cases Oinc'ifhl'"@[‘ihl(mlneo“vcmﬂo)l; l-'l'lv uz‘o-l".
=1
31-1, 52-0.5, oy 2, a, 1, u=0.79s8 =, H=3) nl-z, n2-1.4.
S. Surface Displacemant Amplitude for Incidesnt P-wave: Horizontal Compo-
nent R1-1-4- 32-2-

6. Surfacclbisplaceunt Amplitude for Incident P-wave: Horizontal Compo-
nent Rl-Rz-l.G'T.

7. Surface Displacement Amplitude for Incident P-wave: Vertical Component
R1-2, R2-1.4.

8. BSurface Displacement Amplitude for Incident P-wave: Vertical Component

R1'1.4. Rz"Z .

9.. Surface Displacement Amplitude for Incident P-wave: Vertical Coaponent

nl-nz-l .67.
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Cround Motlon Amplification due to Elastic Inclusions:

in a mlf-Sace b

Marijan Draviamskl
Department of Hechanical Engineering
University of Southern California

Los Anzeles, California U.S.A.

Sunns cy

Scattering of plane harmounlc SH, P, SV and Rayleigh wvavas by
several inclusions of arbitrary shape, conpletely enbedded into an
elastlic half-space 18 considered. Perfect bond'.ny between the
half-space and the inclusions L5 assumed. The problem is {nvestigated
for llnemr, feotroplc, and homogeueous elastic materials. Displacement
field 18 evaluated throughout the elsstic mediuva 80 that the coatioulty
conditlons betveen the half-space and the inclusions are satisfied tn
mean square-sanse. Numerical results of the surface i splaceaent fleld
ate evaluated for single and two elliptic inclusions. The results show
the followinz: 1. Presencs of subsurface Lnhomogeniety may lead to
large amplifications of the surface zround mtlo:;; 2. Different
surface displacenent patterns emerge for differeat fnctdent waves; 3.
Presence of additionsl incluslon may change signtficantly the gurface

displacement ctespoase of a single inclusion; 4. The surface motions

®
Farthquake Zngineering and Structural Dynamics,Vol.11,313-335(1983).
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extrenes atrongly depend upon (i) angle of facidence; ({1) frequeacy of
factdent fleld; (iil)embedmant depth of the ftaclusions; (iv)
sepaxation distance between the inclusions; (v) material properties of
the half=-gpace and the (nclusions; and (vi) location of chservation

point on the surface of the half-space.
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INTRODUCTION

The amplification of strong ground motion due to embeddad elastic
iaclusions has not been fully tvesolved yet. However, it is believed
that the subsurface (and/or surface) frregularities are very faportant
factors in localized, amplification effectsl '2. Obsgervations froa soae
Tecent eatr thqunkes: fndicate that the areas of damage caan be hizhly
localized. Furthermore, the fatensity of zround motion can change
sutbstantially within a short dlsmnce‘. Therefore, in order to
understand in detail the basic phenomena that occur in soll motion

anplification due to local itregularities in tha sotl, it i{s necessary

to develop methods capable of predicting surface motion at certain sites

for a given input.

Diffraction of waves by elastic inclusion embedded into an elastic
half-space has been receiviny considerable attention lately. For
refereaces on this topic, reader is referred to the articles by

authf:ts’6

in which diffraction of elastic waves by an alluvial valley
was considered. A boundary integral method was emaployed to derive
displacement field throughout the elastic mediwn. The method originally
proposed by Copley7 has heen applied to problems of strong ground motioa
seismolozy by wongs, Sanchez~Sesma and Rosenbluethg, Sanchez-Sesaa and

Esquiv e110 » Ap se1!l and Drav i.ns\d.lz .

In present paper the boundary integral method is applied to

{investigate amplification of elastic waves due to elastic inclustons of
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arbitrary shape embadded fnto a2 half-space.
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Statement g_f_ Problem

Geometry of the problen is depicted by Fig. L. Elastic inclusions
Dl' 1)2, es ey DR of arbliizary shape* are perfectly bonded to an elastic
half-space no. Incident plane harmonic SH, P, SV, or Rayleizh uwave
strikas the inclustons causing deformation throughout the elastic
medivm. PFactor exp {(lwt) is understood. ™Material of the hilf—apace and
the inclusions is assumed to be homozeneous, linearly elastic, and
footropic. Throuzhout the analysls o, B and p denote velocity of
dilatarional swaves, velocity of equivoluminal waves, and the sheax

modulus, respectivaly.

Antfi-Plane Strain Model. Equation of motion for steady-state vave
13

motion L8 given by

2
2 2 2 _3 + 3
(v + kj] wj (XIYI‘N) =0 jsollrza---rnf v = -'—2 _—2 (1)

ax 3y
vhere the subscript O refers to the half-space, and the subsceipts 1, 2,
esey R refer to the elastic incluslons. Wave nuanber is denoted by k,
W represents the circular frequency, and w represente the only non-zero

component of displacement field acting aloaz the z—axis.

Boundary cond{tions along the surface of the half-space are given

by

*
Inclusions ace assured to be sufficliently smooth with no sharp corners

being present.
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a—;:==0,at:y=0 ()

For the sake of simplification, an anti—~plane strain slastodynamic

state gT(t) 18 introduced along some sutface C

§T(£) = (wlgp), 0."1(5”; xecC, (3).

vhere T, 1, ¢, and o denote the transpose, unit normal vecror on C,

position vecter, and component of 2 stress tensor, respectively.

Perfect bondinz along the Interfaces C_ ., 3=1,2,...,R betueen the

jl
half-space and the fiaclusioas tequires continulty of displacement and

stress field vhat in terms of elastodynamic state 5 can be written as

_s_o(z) = sj(r)a LEe Cj; j=1,2,...,R; R=1,2,... . (4)

Incident wave {g assumed to be
Wit . expl-i k_(x sind - y cos8 )1; i = /-1, (5)

with €, belag the angle of iancidence (zee Fig. 1).

Plane Strain Model. Steady—state motion for this model is governed by13
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2
4% Py %
v + 2 - Q . juol‘llzltuolRI R=1,2..,..' (6)
¥y Ky ¥y

vhere ¢ aad ¥ repregpent dilatational and equivoluminal waves,
respectively with corresponding wave autbers h and k. Boundacy

conditions are of the foru

L 0 - N (7a)

for y =0

o0 "0 ' (7b)

Analogously to the suti-plane strain wodel a plane strain elastndynamic

gtate gr(g) ts latroduced along some surface C

G (x) = [ulzx), vir), o X}, o (] 5 Tec, (8)

vhere u, v, %’ and Ot denote displacement component along the x and
y=sxis, and noraal and tangential coupcnent of a stress tensor,
telpccti.\'ve].y. Consequantly, perfect bonding alonz the interfaces

faplies

S0 = gylm) 2z ey i=li2,o Ry ReL2,0.0 . 1€))

Incident P—wave is specified by

¢1“° - Ki- exp [-1h°(x sin9° -y coseoll 10}

[+

and incident SV-wvave is chosen to be
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inc i .
¥ - - q exp[-—iko(x SLnGO -y cosao)]. (11)

Incident Rayleizh wave {5 of the famu

2
c
inc 1 [s)
u - exp(—inox) [exp(-bLy) - -2—(2 - 3_2] exp(—bry)] (12a)
' o
inc bI. 1 c: 1
v = ixo exp(.—:;l.vcox) [- -r*z— exp(-bLy) + T [2 - —-5)] . ‘ (12b)
8 T 8
o [} !
=§ 35 "2 "
hL = uo(l - ;—2] : b'r 5 Ko(l - -B—z] (12¢)

where c and KX denotel the Rayleizh wave ?:elocity and the wave nuaber,

respectively.

Solution of Problea

Anti~Plane Strain Model. Total wave field in the half—space and within

the elastic inclusions 1s specified by

inc 8
v, =V + w,1IE Do (13a)
5
wj = Wj H 5 € Dj H j=1,2'.‘.'R H R=l'2'-.- ’ (13b)
L TR
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wherte the supetscript s denotes the scattered wave field. The scattered

waves ate exptessed Lln terms of single layer pc.t:ent:t.als15

R
50 = : (14a)
"0(5) ) qoj(go) Gotg.go) dr s R=l:2,00.3 £ € D
=1
p)
";(5) = ]; gj(fo) Gj (5,50) dgo ? J=l,2,...,R; R=1,2,..0, K € D:i (14b)
%

where surfaces c; and C, J=1,2,-++,R are deftaed fnstde and cutside of
the cortesponding interface CJ, j-l,!,...,Rs, and Gj(,g,go); j0,1,...,R
ate the Green”s functions for a line load ian the half-space (which are

known expll.ci.telys). Densi ty functions goj and gj, j=1,2,...,% are yet

to be deterained.

It is obvious from Eqsa. l4a,b that the scattered wvave field
satisfles equations of motion (1) and stress free boundary conditions
{2). The unkaown density functioas 501 and Y J=1,2...,k are to be
deternined thtoughg:e of the continuity coaditions (4). Az iuncident
wave stxikes the ufacel between the half-space and the Inclusions, it
is pattially reflected back to the half-space and partially transaitted
into the Lnclusions. The iaterfaces Cj, J=1,2,¢4:,R can be vieved as
the location of sources which create reflected and transmitted wave
flields. For the sake of simplification, {t is proposed to place those
sources slightly inside (outside) of the interfaces. Thus, by c; and
C;, §=1,2,...,8 the inner and outer source surface with respect

fntecface cj is undetstood. For more detsils on that procedure, the
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tcader 1s reffered to a paper by the authozs. In the present paper it

“cr 1,2 R4
j j), j slynas,y s

obtalned by slaple scaling of the corresponding Interface C

is .esuaed that the inner (outer) source surface C

't f.e.,, by
nultiplying the coordinates of the iaterface points by a factor smaller
(greater) than unity. If one assumes the density functions In the fora

of discreta line sources, 1t follows chen

M
o3 = )? a: 5(1;_: - 5m'h; £, € c;.' p 3%1,2,...,R; R=1,2,... (15a)
mj=1 J J J '
L

gj = f hi 5(‘5 - El I) H El € C; H j=1'2'-.-'R; R=].'2’o.-, (lsb)
1 3 ' 3 3

where intensities of the sources ao and hi are still to be determined
b b
for all j, nj, and lj' Substitution of equatioas (15a,hb) into equations

{12a,b) provides the scattered wave field fa the following farm

M

R
8 O -
wi) = J fa G(r,r )ixr €C 3reD (169)
o j=1 mj-l lnj [-] mj m:i 3 [-]
Llj
] i +
w {!) - b G-(E]E , H { € H j’l.Z....,R, £ € C,r (16\!)
3 141 1,73 3y 1 i 3

where HJ aad l'j’ 3=1,2,:¢.,R represent the nuaber of sources along the

j-th 1aner and outer source surface, respectively., Choosing N

J
“observation” points alonz each of the laterface Cj, 5~1,2,¢.:,R the

unkaown source i{nteasities are detetmined throuzh the continuity

condition (4) in the leagr—aguar e—sense“’
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] =@A AL, (17a)

vhere * denotes the transpose complex coajuzate, matrices A and f are

defined in Appendix A, and intensity coefficlent vectors are defined by

a. = [ao ] Fm, - 1'2,...,". H j=l,2,...,R 3 R-lpz’..- (175)
3 my 3 3
. - |
by = [blj] Pl L2k, (17¢c)

Dace the source intensities are kmown, total wave field can be

determined through equations (16a,h) and (13a,b).

Plane Strain Model. Total displacement field I{n the half-space sad

within the ifaclusions is specified by

Y, =y +yt 1 £ebD {18a)
Ej = E; H E € Dj ] j=l,2,...,R: R-I,Z,..., (Iab)

vhere displacenent vecter u is defined in teras of displacement

coaponents by 97 » [u,v] and superscript s denotes the scattered wave

field. Unknown scattered waves atre assumed to be expressed in terms of



single layer potem:ialsls. Thexrefore,

R
‘:(E) - 21 !_g:j(so’ ¢, (EE)dr s £ €D 3 FleZ,e.. (199)
= .
3
.8 2 \
vo(x = jZJ. { 903 (£, ¥, (EeEy) A, (190}
C
3

8 ¢
- = mswp E] s Lypoae 9
¢ &qj(g) ¢(z,5 ) dr 3 F €Dy s I=1,2,..,R 3 R=1,2 (19¢)
%

Vo - £g§'(5°) b5 EE,) G5, 1 K € Dy 5 3L, 2een R 5 Rl 2,00., (190)
%

vhere rthe surfaces C?, §=1,2,...,R have been defined in the anti-plane
atrain model and deasity functions gzj, ;:j, g;, and g;', 3=1,2,4404,R mre
still to be determined. The Creen’s functious Oj(.t_.go) and Oj(;,go);
§=0,1,2,...,R cortespond to dilatational and equivoluminal line gpurce
in a half-space with stress free boundary, respectively. For explicit
solutioa for the Oreen”s functions the treader is referved to the paper
by h-b". Following the procedure already discussed for the a:ntl-phne

strain wodel, the deasity functions are assumad of the fora

M

G:j .m gl ’:j §tlr - £ s £, € c; : §=1,2,...,R (20a)
3 3 3
M

¥ -0 _

903 ", il ", st Emjl) (205)

b

124
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L
¢ f 3 + *
g, = by &(x-x, DDig, €€ 3=1,2,...,R (20c)
3 1n 1 1 5%
9:, f bj stlx - x, Do 204)
lj '.'l 3

Substitution of equations {20a~d) into equations {19a-d) leads to the

scatterad wave field

R ?
5 o -
& iry = a’ ¢ lx,xr ) sxr €C., ;reD (21a)
© o1 mjt-l m, o ' my nnj j '~ o
-t P
voto =} & e lrx ) (21b)
j=1 mj-l 3 3

s 3 +
¢, (x) = f bl ¢.lr,x. ) :x €C. 1 rebD J=1,2,.0,R (21c)
= oam 1ty T . 37 e

L

1'8(5) = f b v lr,x. ), (214)

where Hj and Lj, j=1,2,...,R correaspond to the number of sources placed

- +
along the source suxface cj and CJ, tegpectively. Choosfng '3

observation points along each of the interface C, the unknown ecurce

3
intensities are detarnined thtouzh the continmuity condition (9) im the

least-square-sensa
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T -1 T T T T T
12) 2; »-- 2g 2p By By --e By

-T * =] ¥
bl m (€9 " 6¢ (222)

vhere the coefficieat vectors are introduced through

tj = [a:j] ¥ mj - 1'2'--.'Kj ] j-l,2.-...R 3 R-l.z.... (zzb)
- .,
- D
2 ® [a. ] {22¢)
b)
= j - = -
bj = [bljl ’ 1j 1.2,-.-'13 F )=1,2,..-+R § R=1,2,..., (229)
- = -j
By = &) (22¢)

Mateix G and vector f are listed ia Appendix A.

The wost difficult partt {n the plane strain model is eraluation of
the Grean”s functions for an equivoluminsl and dilatatiocaal line load
embedded 1ia a half-space. Accotrding to the papers by Lnbu and
hpuoodm. use of contour integration alloved representation of the
Green"s functioas in a form which is convenlent for aumerical
evaluationt?. TKnowledss of the Green”s functions facorporated in
equations (21a-4) allows thea study of the effects of incident plane P,

SV, and Rayleigh wvaves upon the suzface responsea of the half—space which
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contains enbedded elaatic inclusions of arbitrary shape.

Evaluation of Results

Single Inclusion

In case of single tfnclusion, the amplitude of the surface
displacement fleld 18 evaluated for different {ncident waves and

elliptical elastic inclusion, i.e.,

Cit X =R cosB ;y=R, sind +H ;0B & 2w (23)

vhere Rl and Rz atre the principal axes and H 1s enbedment depth of the
inclusion. 1In order to reduce the numbher of parameters the principal
axis are assuned to be fixed (RI:RZ - 2:1; Ry = 4). For
plane~strain=modal the results are presented noraalized with respect to

the sutface awplitude of the free-fleld, L.e., (l ufflz + lvffl 2)1,2.

For conwentence, the dimensionless frequeacy {s funtroduced,
Q= ZRII li“c, as the ratio of the total width of the inclusion and the

wavelenzth of the incideat wave.

Incideat Plane SH-Wave. According to equations (152,b) and (ila,h)

total displacement field in the half-space and Laclusion is specified by
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M
w () =w (g + 21 a’ Glrr )sEeD ;r ¢ CI (23a)
m=l M1 ™ °c ™
Ll 1 +
Ul(.!:) =1 Z]_ bll S (5,51 )ize D, FI EC , (23b)
1 1

whete the source ianteasities 3:1 and b:l ate evaluated through equation
(17a). By increasiaz the number of ohservation points N, along
faterface ('.'1 aad auvmber of sources Hl and Ll along c; aad c:,
tegspectively, one can deterwine for which M, L, and N the conve?sence of
the results is achi.eveds. This means that fucther lacrease In -the

nuaber of observation and source poiants will not chaangze the value of the

results appreciably.

Sur face displacemeat amplitude depict=d by Fig. 2a,b corresponds to
frequency 1 = 1 and two embedment depths. It is obvious from Fig. 2a,b
that the presence of elastic iaclusinn results in surface displacenaat
pattern which 1s different from the free~fleld response aloax the
sutface of the half-space. Furthermore, it appears that esbedment depth
of the inclusion strongly effects surface ground motion. 7Tt is
intetesting to observe that surface displacement peaks may occur at
different locations for different embedment depths. The same phenomenon
is observed vhea the frequency of the incident field changes (as will be

shown later).
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Incident Place P-Wave. For single fnclusion ia the half-space total

displacement potentiala are specified by

M
1
o0 =4+ [ & gt dipen s ec] ()

ma e R e ey B

1
-D
v, (x) -m1§1 aml #ots.sml) (24b)
L
O(r)-zlhlda(r)xrcnzz ec ' (24c)
1 1,71 1, s -1} S V| .
L
21 8L (z,r ) (244d)
* (E) - b _r_rs H
1 1= L, 1=y

where the source intensities are calculated by equation (22a) and

incident dilatational wave field is specified by equation (10).

Normmlized amplitude of horizontal and vertical componeat of the
sutface displacement field for incideat P-wave is shown by Fig. 3. For
comparfison putposes, the angle of incidence, fteqﬁlncy of :I.ncon_-im vave
and eabedaent depths are chosmm to be identical to thoae of the
anti-plane strain model (Fig. 2). Results of Pig. 3 indicate that
sutface displacement field exhibits more complex patteta than in the
cotresponding anti-plane strain model. Presence of elastic inclusion is
“detected™ better than in corvcesponding anti{-plane stcain model. This

difference may be explained s follows: For anti-plane straia model,
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the motion of the media 1s caused only by the resultant shearing force

ot the zeroth order moment of the shearinz stresses. Ia the case of the
plane strain model, the rasultant force and the moment, i.e., the zeroth
and first order moments of the stresses, determine the surface response.
Consequently, one would expect the presence of an inclusion to ba mora

pronounced fan the sutface responss for fncideat P(SV) waves than in the
corresponding case of incoming SH-wave. This 18 an analoz result to the

one obtained by Umek'? fa analysis of cigid foundation response embedded

in a half-apace.

Change of angle of incidence to 80° resulted in the suxface
displacement fields shoun by Fig. 4. It i8 evident from Figs. 3 and &
that surface ground motion depends very much upon the angle of

facideace.

Incident Plane SV-Wave. Displacement potentials in this case can be

obtained from the ones specified by equations (243-d) Lf the q;ptoptlate
change of incldeat field is done. Surface displacement amplitude field
depicted by Figs. 5 and 6 rorrespond to the same material wop&doo,
frequency, angle of incldence and embedment depth as ian the case of
P~wava results showny by Figs. 3 and 4, respectively. It can be seen
from Fig. 6 that preseace of elastic inclusion may result locally in ’
very large amplification of surface motion. It is of interest to

observe from Figs. 2-6 that the presence of the elastic inclusion does

not aecessatlly tesult in the so-called “shielding” effect for the part
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the sutface of the half-gpace which is in "shade” of the faclusion

relative to the incident wave.

Incideat Rayleigh Wave. Displacement field {n this case is givea by the

followiog equations

ine Hzl o . $ o ¥
u () =u (g) + {a U'{r,x_) +a_ U (r.F )} {(253)
(I lﬂl"l m o m m o m,
M.
inc ! (o ¢ o Y
v {x) = v (z} + X {am Vo lEeE ) + a“l v (z.x, )} » £ €D (25b)
ln1=1 i 1 1
Eml € cl
by
l ¢ =1 ¥ + {25¢)
u (r) = [{b u (g,x, ) + bl uwir,r )}sgen.:g ecC
1 1,51 R 1,1 R
Ll
1l $ =1 ]
v, {x) = Z {b vilr.,E, ) + b vi{frx )}. (254)
1l 11_1 11 11 11 11 1l 1l
vhere ui‘nc and vinc are specified by equations (12a—c) and the scutce

inteasities are deterained formally by equatioan (22a). For the GCreea”s

fuactions u(y,r,) and v(x ,;o) in equations (25a-d) the superscripts

¢ and ¥ denote dilatational and equivoluwinal line source, respuctively.

Normalized surface displacesent amplitude for Incident Rayleigh
waves 13 shown by Flz. 7. Compatrison of Figs. 3-7 {ndicates that the

Rayleigh wave surface response is conpateble in amplitude with those of
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iacident P or SV waves for small embedment depth of the inclusion. In
the case of larzer embedment depth, surface respoase L3 essentially the
free—field cne since the incident Rayleigh wave decays exponentially
vith increasing depth. PFroam the results of Fig. 7 it follows that by
measuring surface response due to Rayleigh waves, it would be possible
to "detect”™ the presence of the elastic inclusion, provided the

embedaent depth of the inclusion is not very large.

Therefore, the effect ¢f a single fnclusion upoa the surface
digsplacement field can be sunmarized as follows: 1. Displacement field
is strongly influenced by the preseace of an inclusion provided the
enbedment depth 18 not too large; 2. P or SV wave response appears to
“datect” better the presence of an inclusion compared to the

corresponding SH-wave response.

This concludes the evaluation of results for the

slngle—tlaclusion-oodel. The two-inclusion-model ig considered next.
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Two Inclusions

For two Laclusion-model surface displacement amplitude 1is evaluated
numerically for two elliptical fnclusfons with the first one specified

by equation (23) and tha second one defianed through

C, s x=R cos6 - D ; y=R sin8=H ; 0<86<2n, (26)

2 1 2

where D denotes separation distance betwsen the inclusions. !'o; the
sake of reducing the number of parameters in the problea, the inclusinas
ate agssuned to be identical in shape with the same embedment de;pth. In
order to examine in more detall the ianfluence of additional 1nc'1usi.on
upon the surface motion numerical results for twe {inclusions are

evaluated for incideat SH-wave only.

Total displacement field in the half—space and within the two

inclusions is specified by

4, 4
. inc o o : (27a)
wit)=w- @+ ) a%6(xr )+ } a_G (g.x )
°= ml-l n]_ e ™ nzﬂl ne 12
¥ €C. 3¢ E€C.3XE€D
--I_!1 1 m, 2 o
L{l 1 + (27b)
w {x) = by 6 ({£,zx, ) i+ E EC rebD
1 11=1 ll 1 11 l1 1 ; h
L
{2 2 6 x5, ) ¢ srebp (27¢)
w,(g) = b E.X i E, E i re
2 1,1 1, 27, L, 2 2

vhere the source intensities are deterained formally by equation (17a).
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As eatlier, the dimenstonless requency (2 = 28,/a 1°°) 1s
introduced as the ratio of the total width of the inclusion aad the
vaveleagth of the incident field. The principal axfs (R; and Rz) are
assuaed to be fixed. The eabedaeat depth (H), separation distance (D),
ftequency (1), and angle of fncidence (eo) are all belng varied.
Reference frequancy for the surfsce response is chosen to be uw.!.cc that

of the single inclusiocn wodel, 1.e., Q@ = 2.

For comparison purpose, the case of a slugle ifaclusion is
considered first. Surface displacement amplitude depicted by 1’?1.5. 8
corresponds to a single elliptical fnclusion width shallow (deep)
enbedmeat depth, By increasing the number of "observatioun” and "soutce”
pofats until the surface displaceaent amplitude remained unchanged, It
is determined that the convergence of the results is achieved at
Ny = 45, and M, = L, = 23 (See Eqs. 16 and 17). In case of two elastice

inclusions, number of "obmervation” and “source™ points 1s chosen to ba:

HI-HZ-LSIMHIOLL-HZ-LZ-23.

Surface displacement field shown by Fig. 92 corresponds to the case
of ghallow embedment depth. Surface motion atop both Inclua‘[on.l ara
simflax to that of a single-inclusion-tesponse of Fig. Ba. This implies
that the mutual interaction beiween the inclusions is rsther small.
Increase in eabadwent depth resulted in surface wotion shown by Fig. 9.
Evideatly, the response atop flluminated inclusion and inclusioa ia
shade ate very differeat froa each other. Strong shielding effect can

be observed atop inclusion in shade. (Teras "flluminated” and “in



shade™ pertaln to laclusions I)1 and Dz’ respectively. See Fig. 1 for
details). Increase in separation distance (D) between the inclusfoans
produced surface motion shown by Figs. 10a and b. The results of

Figs. 10a and b are sinflar to those of Figs. 9a and b: -u-i
enbedment depth leads to very little interaction between the inclusions
while the larger esbedment dapth results .i.n greater chanze of the
surface motion atop inclusion in shade than atop the {lluninated
inclusion. A3 expected, increase in separation distance between

inclusions teduced thefr mutusl interaction considerably.

For surface displacemsnt results presented so far, it can be
observed that the response atop {lluminated inclusion fs closer to that
atop a single-inclusioca-response than the respoase atop f{aclusioa in
shade. This occurs most likely due to scattered wave field from
11llumina ted inclusion which interacts with iaclusion in shade tozethar
with fncident wvave field. The wavefield ahead of 1lluminated lncluaion
is basically the free-field wotinn which explains the slallavity of the
response atop illuminated inclusion and responsa atop the

sing le~inclusion-wodel.

Case of more contraatiog materials for the half-space and the
faclusions is presented by Fig. l1l. It is interesting to observe that
peak amplitude which occurs in Pig. 9b atop the leading edge of
fnclusion (n shade is obsarved in Ft;. 11l atop the leading edge of
11luainated inclusica. Thus, chanze of msterlal properties of the

half-space and the inclusions may result f{u dramatic change of the
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surface displacesent pattern. Comparison of Figs. 9b and 11 iandicate
overall wore tapid oscillation with x of the suzface response for more
contrasting materials of the half-space and the iaclusions. Therefore,
one has to check the number of “observation” and “source™ points needed
for convergence. Tesring of the boundary integral method ussd in
present work -hov.s that foctease of the frequency requires increase of
“observation” and “source” points in otder to maintain the accuracy of
the results. Therefore, iu order to describe rapid oscillatiocas of the

response with distance accurately, it may be necessary to iacreass the

nunber of “observation” snd “soutce” pofats accordiogly. '

Results presented 30 far clearly indicate that svdels involving
several scatterers may predict quite differeat nn;fsce displacement
pattoerns when compared to the single-scatcterer-models. Specfal
atteation should be given to interpretation of the digplacement field
measured during actual satthquake. Presented tesults indicate the
iapor tance of location of messuring station relative bo latomogeailaties
below the earth surface. Different fastruaents geomnetrically close to
each othet may record substantially different magnitude of the suzface

3,4

gtound motion. During several tecent earthquakes™’ , it was observed

that the earthquake damagae caan be hizhly localized. As early as 1957
this phenomenon 13 attributed by ‘Klnli.zo to be caused in pact by
{nhomogenieties of tha 20il wedis and in part by surface andforx

subsur face topography at the site.

After this brief iavestization of the role of the embedment depth
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and separation distance upon the surface response, the attention ia
focuped on the sensitivity of the surface motion upon the ftequ_lncy and
anzle of incidence of the incoc-ing wave., For thig purpose, the
eabedment depth (H) aand the separation distance (D) are assumed > be
fixed. The angle of incidence (Bo) is belng changed from vercical
lacidence (0°) to grazing incidence (90°) fn incremeats of 30°. Eight
characteristic stations are chosen at the surface of the half-spaca for
calculation of the diasplacemeant amplfitude. The statious are specified
by the coordianates: y = 0, xll!l =--5, -4, -3, -2,-1,0, 1, and 2 and

they ate labeled one through eight, respectively.

Absolute value of surface displacement at station one for four
anzles of iacldence is depicted by Fiz. 12a. (For the sake of clarity,
the angle of incidence 9° is w:lttent:n the uppet right cornet of each
figure). Station one is chosen to beVthe left of the leadinz edge of
the illunfnated inclusion on che surface of the half-space. Calculation
of the station-one-response should demonstrate how far the scattered
wvave field will reach (with appreciable magnitude) ahead of tha
illuminated {nclusion. It can be seen from Fig. 12z that at stacion one
for all four angles of incidence and wide range of frequancies .thc
tesponse is essentinlly the free-field one. For szazles of facidence
apptoaching the zrazing incidence, the presence of elastic inclusicns is

detected at higher frequencies only.

Statica two i3 located atop the leading edgze of the f{l1luslnated

inclusion. Cotresponding surface displaceneat anplitude {a shown by
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Fiz. 12b. For vertical incidence the presence of the scattered waves in
the surface resgponse aaplitude at station o {s felt strongly. For
other angles of incidence the deviation from the frtea~field-results is
fairly small with exception of the grazing incidence at higzher
frequencies, where substantial departure from the free—field pattezn can
be observed. For obsexvation stations closer to inclusions, one expects
fntuitively st-onger influsnce of the scattered wvava field upon the
station response wvhen compared to the stations avay from the inclusions.
This expactation is verifiad through results of Fig. 13a which.
cortrespond to the station three placed atop the center of the
11lunioated fuclusion. It is evidear that rhe response at the .lutlon
three s stroagly dependent upon the presence of elastic fuclusions for
wide range of frequencies and all four angles of incideace, In

par ticular, for vertical and nesr vertical fancidence (80 - 0°.30°)
' change in frequency of the incoming wave may produce very differaat

sur face displacement anplitude, Similarly, for the same frequency and
various angles of incidence the surface motion may be significantly

changed (s.3., 2 = 2; 6 - 0° aand 90%).

Statlon four is located atop the trailing edge of the illuminated
inclusioa. Corresponding sutface displacemeat psttern Ls pressnted by
Fig. 13b. Surface response Appsars to be very seasitiva upon the
presence of the inclusions and change of angle aad frequency of the
incoming wave. It is interasting to observe large reduction of sucface
motioa at station four for grazing inclidence aad woderate fxrequencies.

Compazison of Figs. 12b and 13b 1indicates ¢ifferent amplification
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patterns at the stations atop the leading and trailing edge of the
1lluminated inclusion for nonvertical anzle of incideance. This
diffecence in response at stations two and four is particularly pteseat
for graziaz incidence. Statlon atop the trailiag edge expetieﬁc.‘
strong shielding effect compared to the station atop the lenditg odge
where this effect Ls not detected (1.8 ¢ @ ¢ 2.8)., This is not a
surprising result since station four is in the wake of the illumicated
inclusion. Consequently, one expscts the same phsaoasnon to be cbsexved
at stations five through eight. Indeed, the displacement f!.eld: tesults
at stations five throuzh eizht shown {n Figs. 14a,b - 15a,b, |
respectively, demonstrate occurreace of possible strong shieldu
effects for differeat angles of facidence and at different frequancies.
Still, at the sana stations large amplification of surface ground motion
may be possible. The xresults of Pigs. 1l4a,b — 15a,b clearly {ndicate
that it would be very difficult to chatacterize the surface strong
ground wotion at a station by a single pacammter of the problem modsl
eaployed. Rather, a coabination of parameters ate neadead to describe
sucface ground motion more precisaly. For example, at station nino aad
for grazing incldence, very strong reduction of surface motion can be
observed near frequency 2 = 3. For the sane station and vertical
facidence surface displacement anplitude is essentially the free—field
one. On the other hand, for the saze atation and grazing facidence
chaage of frequency of ths i{ncoming vave may tesult in dramatic change
in amplification of the surface ground motion. This can be explained fa
terns of interaction of incideat and scattered waves. The two may

ianteract constructively {destructively) at the observatioan station thus
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resultiany in corttesponding amplification (reduction) of the surfzce
ground motion. Parameters which effect the two wvave fields may
influeace their interaction and thus effect the surface strong growmd
motion. OF course, the present model is Iidealization of the realistic
earth media. Stcill, it provides soma insight inw coaplex phenomsnon of
stxoag ground motion amplification due to subsurface inhoaogenlaties

vhich may be of use ian studies of more realistic models.

On Numerical Evaluation of Results

Extensgive testing of the bouadary integral :uthod used ia the
preseat paper has besn done by the author using the known exact
solutions avallable in literature. For example, cases of facident plane
SH-waves upon semi-circular and seai—elliptical alluvial valleys were
fnvestigated for 1 wide range of patameters ptesent ln the problss.
These results can be suamarized as follows: a) Bomdstj integral method
provides very good tesults for a wide range of frequencies; D) PFor a
fixed nuaber of sources tha results are oore accuxate at lower
frequencies; c) It vas detetained that a good chwice of source surfaces
(c; and c; in this paper) is the one where they “follow™ fn shape

interface Cj.
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Conclusions

Strong round wotion results pertinent to sinzle fnclusion model
indicate that ampli€ication of sutface motion may be strongly fnfluenced
by subsurface inhomogeniety, provided the eabadment depth f{s small. The
results indicate that surface response is different for diffecent types

of incident wmvaes,

Results for the two-lnclusion-model ludicate that the suxface
tesponse say be very diffetent froa the resulcs in the
sing le-inclusicn-model. It 1g shown that the surface responss depsads
upon several parsmeters of the problem, such as, angle of lacidence,
frequency of incoming wave, embedaent depth, sepacation distance of the
inclusions, material properties of the half-space and the {inclusions,
and the location of the obsscvation station at the surface of the
half-gpace. Change in any of the parameters will result in modification
of the sutface wotion amplitude vhich may be very significant. In
particular, the surface motion appears to be very seasitive upon the

sngle of incidence and frequeacy of {aconinz wave.

Althouzh approximate, pressmted results indicate that the precise
characterization of the surface motion amplification effects at a given
site may require several pataseters which would account for geomastry of
the model, nature of incident field and as terlal propetrties of the

problea under consideration.
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Appeadix A

Matzix A {n equation (17a) of order

2N, + Ny +ooot nk)x(u1 + My Fet Mp L+ L, et LR) is defined by

_T s cee 82 -0 RN
acz "“1'_'1 o L T I M
2 o ]
5“ S .I. b g s LN N ] O
2“1 NM, “z"n ML ML, "7 SN Lo
. ) " v (Al)
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where matrix §-:jm of order 2N x M is defined by
= fs. (k. or ) 5 0,%1,2,.0,B5.0=1,2,.0.,M5 . €C.3r €C,
10y my :i. : M ! ! g

i‘O,l,Z,...,Rr 8‘1'2..-., j=l,2,...,R; 1-1,2,...,“..(“)

The subscript/suparscript i refers to domains Dy, 1 =

0,1,2,000,k

(see Fig. 1), Enj refers to cbservation points Cj. and E, corxresponds

to soutce polnts along c’]:.

Vector £ {in equation {17a) of order 2(1!1 + Nz +...+NR) x 1 1s

defined by
' inc 1
2] g (5)
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where s is an elastodynaaic state introduced by equation (3).

Mateix G in equation (22a) of the order

A(Nl + “2 +e0ot Nn)x?.(nl + “2 +eaat "R + 1.1 + Lz oot L.) is defined by

> e - O »ee 0 iy
9°“,;"1 g°“1"2 o Fon Q1“1"1_ Byl “HLn
= | o Q Ceee @ 0 -0 ees O
-iﬂlzul 0!!2142 ~°N2HR , -NZLI -'2"2112 % e -NZLR (M)
Q 9 o o .es :
| SON M, SONM, g“a“n Ny TNRE —an"l;
vhere
Qinjul [Qmjul Qiu M ] (45)
9‘ = 0 (r r ) H i‘O,l,?,...,R 1 n -1'2'... N (Aﬁ) |
. mj"l 9 ~nj'~n1 b ] g
1'1,2,...,R Mlll'z"..'ul
9" = [SI tx ,rx )] } 1=1,2,...,R r ¢ | (A7)
mjﬁ -nj "nl -nj j
;_1 €c

supersccipts ¢ and ¥ refer to Eield quantities assoctated with Creen”s
functloas for dilatational and equivoluainal line source, respectively.
Thus !1(En.,5'1) denotes & plane strain elastodynamic state due to

Green’s fu’\ction "1<5°3’E'1)' etc. Vector f in equation (224) of the

ordex 4(111 + N, +enot “R) x 1 18 specified by
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Figute Captions

Fig. 1 Problea Model

Fig. 2 Sutface Displacement Azplitude for Incident SH-Wave.
a) ulal = 0,75
b) FIIR1 =3
-+, —+
(If not stated otherwige C—: x = ¢ RI coss ; y= £ llz sing #H;
£ =05 £ =15 0Ke@r; M =L =11 N =23 sourceson

observa tioa points equally spaced; Rl = 43 RZ = 2; uy = 31 =13

w, =B, = 0.8, 8 = 30°, g =1)

o
Fig. 3 Noxzmalized Sutface Displacement Amplitudes for Incident
P-Wave! 90 = 30°

a) lillll = 0.75

b) alal =3
(Hl - Ll. - 12; “1 =24; - =23 o, = 1.6)
Pig. 4 Normalized Surface Displacement Anplitude for Incident

P-Wave: B = 8o
b) n/nl =3

Flg. S Normalized Surface Displacemesat Amplitudes for Incident
0
SV-Wave: 6, = 30
a) H/R, = 0.75

b) H/R, = 3
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Fiz. 6 Normalized Surface Digplacement Amplictude for Incident
SV-Wave: Go = go°
a) Rlal = 0.75

b) nlnl -3

Fig. 7 Normalized Sutface Displacemsnt Amplitudes for Incideat
Rayleigh Wave.
a) HIRI = 0.75

b) EIRI =3

Fig. 8 Surface Displacement raplitude for Incldent SH-Waves: Test
Cage.
a) HIRI = 0.75
b). H/R, = 3

(If not stated differently c';' X - t;-+

Rl cosd ; ¥y = ;-"Rz sinp + H;
¢, == gt R, cosd -D; y = e R, sin® +H; £ = 0.5; et =12
008 2x; M =L =23 N = 45; sources and observation points
equally spaced; K, = &4; RZI-Z; By 'Bl =13 Uy "By = 0.8;

0
oo-ao,n-z)

Fig. 9 Surface Displacemant Anplitude for Incldent SH-Uave
and Two Xaclusions,
a) HIR1 = 0.75%; DIB.1 =3

b) H/R, =3} D/, = 3

Fig. 10 Surface Displacement Amplitude for Iuncldent SH-Wave
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Fig. 11

Fig. 12

Fig. 13

Fig. 14

and Two Iaclusions.
a) HIRI = 0,75; nlu1 =5

b) H,Rl. = 3; D/RI -5
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Surface Displacemsat Amplitude for Iacideant SH-Wave

snd Two Inclusions.
a) llllt1 = 3: D/Rl = 3

(v, = B, =0.5)

2
Frequency Surface Response Axplitude
SH-Wave and Two Inclusions.

a) Station One: xlll -5 9y=0

b} Station Two: lel = =h; y= 0

Frequency Surface Response Aaplitude
SH-Wava and Two Inclusions.
a) Station Threa: xlkl =-3; y= 9

b) Station Pour : xlll ==2; y=0

Frequancy Surface Response Aapli tude
SH-Wave and Two Iaclusions.
a) Statlon Five: zllll =-l; y=90

b) Station Six : xlnl = 0; ye0

Frequeacy Surface Response Ampli tude

SH-Wave and Two Inclusions.

for Incident

for Incident

for Inctdent

for Incident
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a) Station Seven: ::l!l1 = l: y=0

b) Station Eight: ::IR1 =2;y=0
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amplification of P, SV, and Rayleigh Waves
by Two Alluvial Valleys »

by Marijan Dravinski
Departmant of Mechanical Engineering
University of Southern California, Loas Angsles

ABSTRACT

Plane strain model for amplification of haxmonic .wavon by two alluvial
valleys of axbi.t;:aty shape embedded in a half-space ig investigated by .
using a boundary integral method. Perfect bonding botw;en the valleys and
the half-space is assumed, Displacement field is evaluated throughout the
elastic medium for linearly elastic, homogensous and isotropic meterials
so that the continuity conditions between the valleys and the mfﬂme
are satisfied in ua.n-sqﬁare-sense.

Numerical results are ptesentec} for two semi-elliptical wvalleys for
incident plane P, S5V, and Raylaigh waves for different angles of incidence
{fox P and SV-waves}, frequency of incoming waves, and material properties
of the valleys. The results indicate the Hllowing: 1. Different
incident waves caused different surface displacemsnt amplification; .

2, Presence of .additional valleys may change the surface motion field
significantly; 3. ‘Strong ground motion amplituds appears to ba very
sensitive upon the frequency of incoming wave and contrast i.n material

propertias of the valleys and the half-space.

*Soil Dynamics and Earthquake Engineering,1983,vol.2,%0.2,66-77.



INTRODUCTION

Observations from some recent earthquakes indicate that the
areas of intense damage can be highly localized{e.g. Sozen, et.
al.,1968;Jennings,19T1). Esteva{l977) estadlished thaf the in-
tensity'of strong ground motion may change significantly within
a short distance. Investigations by Boore{1973) and Griffiths
and Bollinger(1979) confirmed a belief that the inhomogeneity ‘
of the soil and surface (subsurface) irregularities are the
main cause of localized amplification effects.

Recently,the author ‘Dravineki,1982a,b) investigated ampli-
fication effects due tu alluvial valley embedded in a half-space
and subjected to incident SH,P,S5V, and Rayleigh vaves.It was
shown that the pr:esence of a subsurface inhomogeneity in the half-
space may cause locally very large strong ground motion amplifi-
cation effects. Variation of the surface ground motion proved to
be very sensitive upon a number of parameters present in the prob-
len (suchlas frequency,angle of incidence,...,etc). Hovever, the
question regarding the influence of additional inclusion upon the
strong ground mtvi.on remained open. By including two alluvial
valleys into considerations it is possible to exsmine crj.ticnly
wheter or not the mutusl interaction between the two i3 of any
importance ror magnitude of the surface motion and thus determine
if 1%t is necessary to incorporate the presence of several scat-

terars in analysis of strong ground motion in more realistic mod-
els.'
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The results presented in this paper are extension of the work

on the corresponding antiplane strain model of the problem

(Dravinski,19824) .These results can be summarized as follows:Sur-

face motion amplification strongly depends upon (i) angle of in-

‘cidence; (11) freguency of the incident field; and (1ii} location

of the obgervation point on the surface of the half-space. Vari-
ation in any of the three parameters can produce significant

change in the surface motion amplification. It was observed that

"{lluminated" valley detects very little the presence of addition-

al valley vhile the response atop the valley "in shade” may be
quite different from the single valley-response.lncrease in sep-
aration distance between the valleys resulted in reduction of
interaction between the two.

Comparison of the surface response for the antiplane strain
and plsene strain model in less general problem models (e.g.,
Dravinski,1982 c¢) indicate that the conclusions derived for in-
clident SH-vaves do not necesserily apply for incoming P,ﬁ,w
Rayleigh waves. Extension of the analysis to the plane strain
mbdel allowas deeper insight into the basic phen@mena. of the
strong ground motion for the casge of multiple inclusions in a
soil medium. One expects that the knoweledge acquired through
study of the plane strain model wvould help in extending the
analysis to more realistic models,e.g.,three dinensional ones.

Boundary integral method,alsc known as s source or Oshaki
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method,used in this paper, was originally proposed ‘by" Copley .
(1967) and Oshaki(1973). Copley introduced the basic idea of the
method to a problem in o.cous(:;lc:, vhile Oshaki applfied similar
approach to & problem in elastostatics. Aplication of the method
to the vave propagation problems in geophysics and earthquake
engineering is due to Sanchez-Sesma and Rosenblueth(1979),Sanchez-
Sesma and Esquivel(1979),Wong(1979),Apsel(1979),and Dravinski
(1980). At present time the author is not aware of any plane strain
model-solutions involving two,or more,zlluvial valleys embedded
in a half-space which i3 considered in this paper.

Detailed r';-view of literature pertinent to scattering of e-
lastic waves by surface irregularities and the boundary method in

particular was given recently by Dravinski(1982a) and Herrera(1982)

and will not be repeated here.

STATEMENT OF PROBLEM

The geometry of the problem is depicted by Fig. 1. Elastic
‘alluvial valleys of arbitrary shape D, and D,,extend uniformiy
in direction perpendicular to the pla:ne of the drawing. They are

perfectly btonded to an elastic half-space of domain b o+ Material
of the inclusions and the half-space is assumed to be linearly
elastic,homogeneous and isotropic.

Flane motion of the elastic media §s deseribed by a dis-



placement. vector uJ=(uJ ,\r‘1 },3=20,1,2,with

9 L ? .
u-_;‘.i.i»._...‘.pi H VJ-—t’ll--ﬁi $3=0,1,2, ...{1)
_ax 3y .ay ax

vhere ¢ and § denote dilatational and equivoluminal displacement
potential, respectively. The subscript. 0 reafers to the half-space,

vhile the subscripts 1 and 2 refer to the elastic inclusions D,

and D, ,respectively {see Fig.l). The displacement potentials

satisfy the equations of motion (MiKlowitz,1978)

2
¢ w2 ¢ 4
vE 13 0 5 gm0ae veel2)
k
v 1Y

where h and k represent the wave numbers assoclated with dila-
tational and equivoluminal waves, respectively. Throughout the .
derivations factor exp{iwt) is understood. Components of the

stress tensor are related to the displacement potentials through

(Mixlowitz ,1978}

/ 2y 2 % 2 . e (30)
o. w Kk - + ers
eV 2y oaxdy

2% %y

g = k¢ +2 -2 . . ee (3D)
qju A axdy ax?

32 %

UW/II - -ka’ -2 - 2 LR X (k)

ax? xdy

vhere i denotes the shear modulus. Boundary conditions are

specified by
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o - = ' .--(h)
¥ J y=0 and re D, ; J=0,1,2.
Opy 3 = O = (S

Usual radiation conditions are t0 be satiasfi~d for acattered wvaves
at infinity (Miklowitz,1978). Perfect bonding along the interfaces
¢, wad C, (see Fig.1) is assumed,i.c., ‘
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“0 = “1 u--(s.)

Yo Y, : ' .+.(510)
r ccl

%0 0™ %n1 =~ _ .--(5c)

%t 0 = %nt 1 ' ... (54)

uy = uy | veo{5e) .

Vo = v2 --.(5:)
r €,

cnn 0 = onn 2 . 'o.‘%)

Ont 0™ %nt 2 v«-(5n}

vhere E denotes unit normal vector along the interface and E
represeats position vector. Normal and tangential components ot
the strasa tensor are denoted by ‘.,nn and aht srespectively.
Interfaces Cl and 02 IJ'? chosen to be sufficiently smooth with

no sharp coruers.

Incident P-wave is specified Yy



1 i ewihl(x Binﬂo- y coaeo) .'"(.6‘)
B H ‘

vhere,if not stated differently,the superscript i denotes the
incident wave field, i= V-1,and © represents the angle of inci-
o

dence. Incldent SV-wave is defined through

‘=1 -1k, {x sinfy- y coséy)
! 0 ...(6v)
K |

Vo=

and incident Rayleigh wave is chosen in the form

2
“dKpx by 1 ef by
ui L ox[e L T o— (2" —2— )e L ] ‘t-(&)
2 g2 .
(o]
2
~ik by 1 ¢ -
vi = 1l<oe Ox[- E;—- e T4 (2~ g }e b'ryl ...{64)
Ko - oy By
2 1/2 R
b, = no(l_ - _GE_.) P by = KO(J. - ..Eg_) eeo(Ge) -
0

vhere ¢ 0 and "0 denote the Rayleigh wave velocity and the cor-
re-pond.-ing vave number, respectively. Particular forms of the
incident field are chosen so that the free-field componsnts of
the displacement vector T ana V2 slong the surface of the
helf-apace turn out to be real mmbérs. All the results of the

displa.ca;nent rield are presented normalized with respect ta the
amplitude ((uff )2+(1fr )2 )1/2 .
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BOLUTION OF PROBLEM

The total wave field in the half-space and the slastic inclu-

slons ls specified by

U, = ul + ug eeo(Ta)
N | oS!
u = u;_ «es(Te)
v, = v; =0 » -..{1d)
u, = u; | .es(Te)
vo = vl == P2 . oo {78)

vhere the superscript s denotes the scattered wavesu. The unknown
scatered vave field is assumed to be exprenéd in terms of single

“layer potentials (Ursell,l973).Therefore,

c

0;(5) - .[ 581(50)00(5.'50)650 + cfztxz(!o”’o(f'.‘.'o)dfo «»+(Ba)
11 21

¥olz) = f&&(go)wo(g.go)dgo + fgga(go)wo(g.roldro N Y]
®11 | Ca1 -

() - -!.8:(!0"1(5'50)‘150 -+-{Be)
1o
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v;(g) = f s{({o)d’l(g.go)dgo ...{84)
Clo |

8 = ¢ o--(BB)

o = [ e estrrger,
“2

¥o(z) = E,. 32(50)412(5.50)6{0 +++(82)
20

Fig.l defi the half=-
Surtaces c.'l.i ,C21 ’c.l.o .and c2o (see Fig.l) are defined in the

space inside and outside of the interfaces C and %(Dravinski,

1982¢c) and the density functions gog .%2 ,gog’: '80‘2" .Bt .dpl .d; »and

€ gare yet to be determined. The Green's functions ?’ and % ,

3=0,1,2 are solutions of the equations

,r.) 126, (r,ry)
Al [P -8{{z-ryl)si=0,1,2 -+ +(9a)
#,(x.70) K, (zao)

with appropriste boundary conditions

un 3(5!50) Ll o .--‘gb)

J B -3

vhere 6(.) denctes tha Dirac delta-function. Following the pa-

0” J(E’EO) =0
per by Lamb(1904) explicit forms for the Green's functions in
~ Eqns.(9ac) were derived by the author (Dravinski,1980). The

Green's functions are expressed in terms of improper integrals.



According to Lapwood{1i948) application of contour integration
allowed representation of the improper integrals in a form con-
venient for numerical evaluation (Dravinski,1580).

If the density functions are assumed to be of the fom

g (rg) = a8l - rul) szgeCy 5w,z 0y e +(108)
5:2(50) = ba8(r - xp]) ixpeCoymt=d,2,. L M,y ‘ .--(10b)
s'gl(go) = cgbllry - x|} | «..(10c)
522(50) = a6(ry - ) ..(104)
edlrg) = e8(lx, - A : 3;5010;131,2,...,L1 .--(10e)
s':(go) = £,8(|ry - r,l) - ...(20¢)
‘(ro) =g 8ry - 1.1 5 r. 01600038 '=1,2, ... Ly ..-(10g)
gh(xo) = by 8(lxg - 1,4 | ++-{10m)

the scattered wave field becomes

Oo(r) =a ¢°(r.r ) + o 8g(r.r,) ':-iéi;:“".'lén =1,2,...,M, (1la)
' Y21
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Volr) = o ¥lr.r) + 4 wgleer ) vee {110)
$5(r) = egd ((ryry) $4=1,2,...,L,; IE Gy, .«{112)
¥ilz) = £, ¥y(r.ry) . o{124)
02(5) - s,'.‘¢2(5.5,'.) i 2'=1,2,...,Lp; T,1€C0p ...(11e)
¥alr) = By, ¥lrazys) - a)

vhere, if not stated differently, summation over repeated indices
is understood.

It is interesting to point out physical interpretation of
Eqn;.(ﬂl-f? and {(10a~h}. As the incident wmve strikes an 1ncln-
sion it reflects partially back and transmitts partially into
the inclusion. Therefore, the interface detween the half-space
and the inclusion can be vieved as & system of..um'cn vhich pro=-
duce the scattered wave fields. This would imply that the inte-
grations indicated in Eqns.(8a-f) should be carried out along
the appropriate interface. However, singwlarity of the Greea's
functions as the "observation" point (r) spproaches the "source”
point (30) suggests placing the sources slightly sway from the

original interface (Dravinski,1982a). For the sake of further



simplification, infinite number of sources along the “source”
au.rrucev is replaced by a finite number which leads to Egns.
(10a-h). Intensities of sources in Eqns.(10a-h) are determined
through the continuity conditions (Eqps.(5a-h)) which are to be

satisfied in the mean-square-sense {Hoble and Daniel ,1969),i.e.,

(apcaergnl=(nlas --(22)
vhere the matrices in Eqn.(12) are given in Appendix, superseript
T denotes the transpose of a matrix,and 5. is the transpose com-
plex conlugate of :A_ Coefficient vectors a through 5 contain the
unknown intensities of sources introduced by 'Eqns.(lm-h). Once
the source intensities are known, the .acattered vave field can
be evaluated at any polnt of elustic media through use of Eqnl,l
(11a-d) for incident P,8V, or Rayleigh wave. This topic is con-

sldered next.
EVALUATIOR OF RESULTS

The amplitude of the surface displacement field is evaluated

for incident P,EV, and Rayleigh waves and semi-elliptical alluwial
valleys,i.e., '

€t x=R; cos® ; Yy =R, sind : eso{13a)

0<O<w

C,: x =R, cosd -D ; y= R, sind «..(13b)
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vhere O denotes the angle measured positive in CW direction (Fig.l),
R} and Ry are the principal axes of an ellipse,and D represents

the separation distance between the valleys. In order to reduce

the number of parameters and thus simplify the mmerical evalu-
ation of the results both alluvial valleys are chosen to be
identical in shape and material. Both principal axis R, and R,

sr§ assuned to be fixed. The separstion distance D is chosen to¢

be equal to 3R,.

Semi-elliptical interface of the valley is chosen for testing
purposes. Namely, for scattering of plane SH-vave by a semi-
elliptical valley there exists an exact solution of Wong and
Trifunac(197h),vhich permitted detelled testing of the boundary
integral method-results for a wide range of parameters present
in the problem(Dravinski,1982a). These results can be summarized
a5 follows: 1.The ﬁoundnry integral neﬁ!pd provides very good
sccuracy of the results for a vide range of frequ.enc:les; 2. For
fixed mmber of sources the results are more accurate at lowver
frequancies; 3.As the nmber of sources increases, the relative
error between the exact and the boundary integral method-solution
decreases; 4, Goocd choice of the source surfaces (c.n +WCigrers)
is the one in which they "follow" in shape corresponding inter-
face (C3,...}.

For convenience, the dimensioneless frequency (R = 231/11)
is introduced as a ratio of the total width of an alluvial val-

ley and wavelength of the incident wave.
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For comparison purposes, single=valley~-response is depicted first
(Figs. 2~-4). Por more contrasting material of the valley ralative to the
half-space, the rasults are shown by Pigs. 5-7. For incoming P and SV-waves, .
the angle of incidence is assumed to be 10°, 3°, 60%, and 80°. As Y

incidated sarlier, surface displacement results at sach point are presented » ""‘J/

normalized with respect to the amplitude of the "free-fiela” ([u‘tlz * Ivtflzli’ f_u
at the sama point, Thus, all results appear in dimensionless form.

Single~valley=xusults can be summarized briefly as follows: presance
of the valley may result in ths surface stroag ground motion which is very
differant from ths motion that would take place in ths half-space if the
valley is being absent, i.e., free-field motion; different incident waves
caused different amplification patterns at the surface of the half-space;
surface motion is strongly dependent upon the angle of incidence; material
properties of the valley and the half-space are of great importance for
resulting strong ground motion; and surface motion amplification is wery
sensitive upon ths frequency of incoming waves (Oravinski, 1982c).

Since the presence of a subsurface inhomogeniety may influence the
strong ground motion in such a complex manner, the following question
arises: how dces the prasence of additional wvallay effect the surface
ground motion atop each of the valleys? This topic is considered next.

Surface displacement amplitude for two alluvial valleys and incident
P, SV, and Rayleigh wave of frequency fl = 1 is shown by Figs. B-10. It is
evident from the results of Figs. 8-10 that the type of wave and angle of
incidence influence the surface response significantly. Difference in
response atop the two valleys indicates the importance of the interaction
between the vallays. Comparison with the single-valley-results (Figs. 2-4)

shows that presance of additional valleys may change substantially the
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single-valley-response, This should be particularly emphasized for surface
response atop the valley in shade, (Terms "illuminated” and “in shade”
refer to the valliays D, and D , respectivaly.) This is not surprising
since to the left of the illuminated valley input motion is caused
basically by tha free—field only. aAhead of the valley in shade, on the
othar hand, input field consists of both free—-fisld 2ad scattered waves
from the illuminated inclusion. The scattersd wave field from illuminated
valley is thus causing the response atop the va].lcy'i.n shade to be
different from the corcesponding single-valley-response. nasulﬁ of
Figs. 8-10 damonstrate that contribution of the scattered waves as an
input motion upon the valley in shade may not be nsglected., It is inter—
esting to observe from Figs. 8-10 that distribution of local extremss is
different for different incoming waves: maximum (minimum) motion for one
incident wave may be located at a point on the surface of the hl-lf—lplcﬁ
which is quite different when compared with location of the maximm
(minimum) motion for anﬁthot inco‘-;an wave. In addition, presance of
illuminated valley may or may not produce the so callad shielding sffect
atop the valley in shade.

For more contrasting materials of tha valleys.and the half-space
the strong ground aotion results are shown by Pigs. 11-13, It is
obvious from Figs. 8-13.that thange in material properties of the valleys
causes changs in the surface responss. For set of parametars chosen in
this work, more contrasting materials produced surface displacemant field
which changes more rapidly with distance than in the case of less
contrasting materials. Comparison with Pigs. 5-7 leads to the same oconclu-
sions as in the case of less éontrutinq materials: Presence of additional
valley may change s\ablunthuy the single-valley-surface response. This

change may be especially large atop the walley in shade.
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Results of Figs. 8-13 provide an interesting demonstration of how the
angle of incidence influences the strong ground motion. For near vertical
incidence and incident P-wave (Figs. 8a and lla) surface motion is predom—
inantly in vertical direction. Thus, surface displacement field is similaxr
in natuyre to the incident P-wave which “pulses™ soil particles perpendi-
cularly to its wave front, i.e., vertically. For nsar horizontal incidence
of the F-wave (Figs. Sa and 1l2a) predominant surface motion is taking place .
in horizontal direction which is again perpendicular to the wave front of
the incident wave. For incident SV-wave. and near vertical u;cidancc, the
horizontal component of the surface motion is prevailing overall (Figs. 9
and 12b), i.e., it behaves similarly as incident wave which moves the so0il
particles parellel to its w'ava!mn:. For near horizontal SV-wave incidence
(Figs, 10b and 13b) the strong ground motion pattern is very similar to that
of the surface Rayleigh wave (Figs. 10c and 13c¢). "l‘he same conclusions are
even more evident from the results of a single-inclusion~modal (Figs. 2-7).
These results indicata'very cleaxly the importance of the angle of incidence
upon the surface amplification pattern in the problem under cpmidorauon.

Change of fraquency of incident waves to 2 = 0.6 resulted in surface
motion shown by Figs. 14-16. Material properties ars the sams as for the
results deplicted by Figs. 8-10. Obviously, change in frequency produced
marked alteration in displacement field, Thess results can be summarised
as follows: 1) Differant incident waves produced different surface
displacement patterns; 2) Surface displacement field atop the two valleys
are differant froma each other; 3) Shielding effect atop the valley in
shade may or may not occur; and 4) For near vertical (horizontal) incidence
of P and SV-wvaves, the predominant surface motion is ;:f the nature of the

incoming wave.
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It can be seen from Figs. 10c, 13c, and 1l6c that the Rayleigh wave
response is comparable to thos@ of incident P and SV-waves, This is not
surprising since ths easbadment depth of the valleys is small compared to
the wavelength of the incident wave. Since the Rayleigh waves decay
exponantially with increase of depth, only part of the elastic media in
immediate vicinity of the surface of the half-space contributes substan-
tially to the surface motion. This explains the rather strong contribhution
of the scatterad Rayleigh waves upon the surface motion.

Study by Pakeris and Lifson (1957) indicates that the amplituds of
the Rayleigh surface wave is insignificant compared to P and SV-waves for
distances tha: are as much as five times the focal dapth of an earthjuaks.
At greater epicentral distances the Rayleigh waves become very prominent

(Bolt, 1970). Therefore, the results presented in this paper should be

interpreted accordingly.

NUMERICAL EVALUATION OF RESULTS

Extensive testing of boundary integral method (Dravinski, 1982a)
suggested a procedure for checking of numerical results. It was observed
by comparing the exact and the boundary integral solution that the conver-
gence of the latter can be tested by increasing the number of *observation” -
points and the ~source® points in Eqn. (12) until the results for scattered
wave field do not change with their increase. This method has b’.‘“ used in
present work to dstermine the nusber of sources at which to evaluate the
surface displacement field, For simplicity, the same number of sources is
chosen inside and outside of the interfaces cl and qz, i.e., Hl-uz-x.l.»;,z.g_
Number of "observation™ points is taken to be the same along t-.hn cl and

cz. il.e., Nl-ﬂz-u. Ratio of the number of "observation" and “source"

points for each of the interface is chosen to be N:M=2:1. “Source" and
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"observation® points are chosen to be equally spaced along the corrssponding
surfaces. ‘I.‘he source surfaces Cl i and (:2 ; are defined through Egqns. {13a-=b)
by replacing Rl and Rz with n1 § and RZ i’ respectively. si-illazly, th
source surfaces Clo and czo are specified by Eqns. (13a-b) provided '1
and Rz are replaced by Rlo and Rh' respectively, Numerical results are
evalusted for Ry ,, = 0.75 R , and B , = 1.25 R ,. Suzface aisplacement
amplitude i3 calculated for differsnt number of “sources™ and “obssrvation”
points.and then compared. 7The number of “sources" and the “observation™
points is increased, until the difference between the subsequent results is
sufficiently small. Ea:liler studies of the boundary integral method
results (e.g., Dravinski, 1982a) indicate that as the frequancy cof the
incident wave increases, the number of “sources™ and “observation" points
should be increased in oxrder to achieve the san;o accuracy of the results as
in the case of lower frequencies. This is the main reason for hlauwly
low frequency of Itha input wave for calculations presented in this paper
{Q = 0.6 and §l = 1). This choice of frequency reduced the cost of
calculations substantially. ’

Through numerical evaluation of the results, it‘. was learned that
even for such a simple geomatry as chosen in this work the @me of
computer memory required for computations is considerable. For more
complicated geometry of the interfaces and higher frequancy of incident
field even more of the memory core is required. Howaver, with present day
davelopments of digital computers, this may not represent any problem in 4
application of the method to 'ore realistic models,

Although approximate, the boundary integral methods pmﬁdo a way to
study a wide class of problems for which no exact solution exists at the
present time. Intensive research regarding the existance and uniquensss of

the boundary integral sclutions {e.g., Herrera, 1982) promises to provide a
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through uhdarstanding of this powerful method and thus anhance jits appli-=
cation to problems of strong ground motion seismology and sarthquake

engineering.

SUMMARY AND CONCLUSIONS

Strong ground motion amplification is investigated for a half-space
with two alluvial valleys of arbitrary shape subjected to plane harwonic
P, SV, or Rayleigh waves. Tha amplitude of surface motion is evaluated
using a boundary integral method. It is determined that mutual interaction
batween the valleys may have a strong influence upon the surface response,
particularly atop the alluvial valley in shade. It is observed that
surface motion i..: very sensitive upon the type of incident wave, angle of
incidence, material properties of the half-space and the valleys, and fre=
quency of the incoming wave, Fhielding effect atop the valley in shade
may Or may not occui-. Motion peokl are observed at different locations for
different incidant waves.

Although very simple, the model studisd in this paper provides results
which indicate that in close proximity of several alluvial valleys their
mutual interaction may be of great importance in dotcmi.ni.ﬁg the surface
response dua to an sarthquake. Oonsaquently, asdditional valleys may be
required in modeling strong ground motion for soms alluvial basins more

accurately.
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_ Matrix A in Eqa. (12) is a W{X +N2)x2(Ml'!H2+Ll+L2) matrix defined

by
e )
A= s
A Ay
where
go fo Yo Yo
SN B, SEM M,
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For each submatrix Vin Eqns.(A2-5) the following convention is
understood: Superscripts ¢°,¢1. ssss8tc denote the wave potential
with vhich the elements of the particular submatrix are associated
with; Su'b:cr:lpts N and llI. determmine the size of the matrix and
location of the surface vhere the elements of the mtrix are
evalusted: ll,la,lll.ll,‘,.li .L2 are associated with recl.ca,cn.czi.
clo,cao,relp-ctivaly. For example, |

¢o

U = [u (ri'r )] H riwa i1 r €C H i=) 2,-...' H
M ~J =7 ) e ML



191

Similarly,

202 = {0 2( )] C,. 3 121,2,...,8

0 r,r ,rE.C,r£ $ 121, ve--slp 3

..ntlal.2 ~1 2°* J 72 =1, 2’"”1'2 :

ete. Vector £ in Eqn.{12) is of the size h(N1+N2)xl defined by
e
£ - [-urt vy _zrr ~§:u -urr 4!;’ ~nnu ~f:n 1, ...(A6)
1 1 1 2 2

vhere

urr Sl (] Y = )] 5 reC e 2ee ey oen(RT)

Ennn = [o (r 13 L “tul [ont(r )] ---(AB)
Gy = T s g;: = (Ve )] 5 £yeCy3dm1,2,e ey oo o (A9)

‘ﬁzn = fags(e,))s I o = [gq(z,)] .+ (A20)

and the superscript IT denotes the free field.



FIGCUKRZ CAPTIONS

Pig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

rig. 6

Fig. 7

Fig. 8

Problem Geometry

Surface Displacement Amplitude: Single Alluvial vValley
{If not atated differently: Q= 1, R1 = 4, Rz =],
HN=24, M=L = 12, uo-so-l, ul-Bl-o.B,un-Z.
oy~ 1.6)

a) - Incident P-Mave: 6_= 10°
B) = Indident P-wave] 6_ = 30°
€) - Incident P-wave: e = 60°

Surface Displacement Amplitude: Single Alluvial valley
a) -~ Incident P-Wave: Oo = 80°
b} =~ Incidant SV-Wave: Go = 10°

c) - Incident 5V-Wave: 0_ = 30°

Surface Displacement Amplitude: Single Alluvial vallay
a) - Incident SV-Wave: Oo = 60°

b) - Incident SV-Wave: 90 - 80°

¢) - Incident Rayleigh Wave

Surface Displacement Amplitude: Single Alluvial valley
(“1 = Bl = 0,6, a, = 1,2)

a) = Incidant P-Wava: Oo = 10°
b} -~ Incident P~Wave:s 00 - 30°
c) - Incident P=Wava: Oo - 60°
Surface Displacement Amplitude: Single Alluvial Valley
(y, =8 = 0,6, a, = 1,2)

1 ) § 1 °
a) - Incident P-Vave: ao = 80
b) - Incident SV-Have: 8 = 10°
c) - Incident SV-Wave: 6 = 30°
Surface Dimplacement Amplitude: Single Alluvial Valley
‘u - B - °-6. o =1,2)

1 1 1 °
a) -~ Incident SV-wWave: Bo = &0
b) - Incident SV-Wave: O = 80°
c) ~ Incident Rayleigh Wavas

Surfaca Displacament PAmplitude: 7Two Alluvial Valleys
{(If not stated differently: Q =1, R

1“4,%‘1,“'24,
H-L'lzvuo-ao-l:“1"‘1"1‘2"32"0-8'00'20
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Pig. 9

Fig. 10

Fig. 11

Fig. 12

Figs 13

Fig. 14

al-az- 1.6, D = 12)

a) = Incidant P-Wave: Oo - 10°
b) Incident P-Wave: 'o - 30°
c) - Incident P-Waver 0 = 60°

" Surface Displacement Asplitude: Two Alluvial Valleys

a) = Incidant P-Wave: Oo = 80°
b) - Incident SV-Wave: 8 = 10°
¢) - Incident SV-Wave: o, = 30°

Surface Displacement Asplitude: Two Alluvial Valleys

a) - Incident SV-wWave: 8 = 60°

b) - Incident SV-Wave: 6_ = B0°

¢) = Incident Rayleigh Wave

Surface Displacement Amplitude: Two Alluvial Valleys
("1 - Bl =u, =B, ~ 0.6, o, =0, = 1.2)

a) - Incident P-Wave: 6_ = 10°

b) - Incident P-Waves 6_ = 30°

¢) = Incident p-Wave: eo - 60°

Surface Displacement Amplitude: Two Alluvial Valleys
(ul - Bl -y, = Bz = 0.6, o = 62 = 1.2)

" a) - Incident P-vave: 0 = 80°

b) - Incident SV-Wave: 0 = 10°

c) - Incident SV-Wave: 0 = 30°

surface Displacement Amplitude: Two Alluvial valleys
b, =8 =n, =8, =06, 06, =0, =1.2)

a) = Incident SvV-Wave: Oo = 60°

b) - Incident SV-Wave: 0 = 80®

c)_ = Incident Rayleigh Wave

surface Displacement Amplitude: Two Alluvial Valleys
(=06, u =8, =y, = 3_2 = 0.8, a) =a, = 1.6)

a) - Incident P-Wave: 6 = 10°

b) - Incident P-Wave: 6 = %°

c) - Incident P-Wave: @ = 60°
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Fig., 15

Fig, 16
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Surface Displacement Amplitude; Two Alluvial Valleys
(1=0.6, U= 51 -y, = 82 = 0.8, @, =0, = 1.6)

a) - Incident P-Wave:; 6 = 80°

b) = Incident SV-Wave: 0° = 10°

c) - Incident SV-Wave: 0 = 30°

Surface Displacement Amplitude: Two Alluvial Valleys

{Q = 0.6, ul - 81 " "2 - 52 = 0,8, °'1 '“2 = 1.6)

a) = Incident SV-Wave: 0° - 60°
b) - Incident SV-Wave: 0 = 80°
c) = Incident Rayleigh wave
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