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ABSTRACT

This thesis investigates the significance of in-plane floor flexi-
bility on the dynamics of buildings, and develops analytical models for
structures that have flexible floor diaphragms. Experience with past
earthquakes demonstrates that this feature is particularly important for
long, narrow buildings and buildings with stiff end walls. In the
method developed in this study, the equations of motion and appropriate
boundary conditions for various elements of the structure are written in

a single coordinate system and then are solved exactly.

One— and two—-story buildings with end walls are analyzed by treat-
ing their floors and walls as bending and shear beams, respectively.
The resulting equations of motion and the boundary conditions are solved
to obtain the dynamic properties of the structure. The expected low
torsional stiffness of the end walls or frames is confirmed by analysis
of a single—story example structure. Study of a similar two-story
building showed that the first two modes, dominated by the floor and the
roof vibrations, make the largest contributions to the total base shear

in the structure.

Floors of multistpry buildings with end walls (or frames) are
idealized as equivalent, distributed beams while the walls or frames are
treated as bending or shear beams. Analysis of a mnine—~story building
showed that the structure possesses several lower modes in which floors

vibrate essentially as pinned-pinned beams,
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Buildings with large numbers of uniform stories and frames (or
walls) are treated as vertically—oriented anisotropic plates. It is
concluded that the floors in such buildings can be assumed rigid for

seismic analysis, since the modes involving floor deformations are not

excited by uniform ground motion.

The approach can be gemeralized further to study more complex
structures. An example is the Imperial County Services Building, which
has two end walls in the uppér stories and several walls in the ground
story. The analytical model of this building predicts several important

features of the complex dynamic behavior of the structure.
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CHAPTER I

INTRODUCTION

1.1 SCOPE

It is important in seismically active areas to provide safe and
economical protection for 1life and limb by making adequate provisions
for earthquake resistance in buildings. For most ordinary buildings, it
is sufficient to provide earthquake resistance in the buildings by means
of a suitable building code. This usually involves static analysis of
the building for prescribed lateral forces, which take into account in
an approximate manner the effects of building characteristics, soil
characteristics, seismic risk in the area, importance of the building,
etc. However, there are buildings that have some special characteris—
tics which make it difficult to model their dynamic behavior
satisfactorily by a code—-type, static amalysis. Sﬁch buildings warrant
detailed dynamic analyses for satisfactory answers to questions con—
cerning their behavior during earthquakes., Included in this category
are high—-rise buildings, buildings with extreme plan dimensions (e.g.,
long and narrow buildings), buildings with eccentric centers of mass or
stiffness (this 1leads to coupled torsional and tramslatiomal motion),
buildings with vertical set-backs, soft first~story buildings or
buildings with other unusual characteristics (Arnold, 1980b; Armnold and

Elsesser, 1980).
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Several computer codes are commercially available for dynamic
analysis of ©buildings. These codes treat a building as a reduced
system, with finite number of degrees of freedom, while the actual
building is a continuum with an infinite number of degrees of freedom.
To keep the computer costs down, it is important to reduce the number of
degrees of freedom involved in the calculations to a relatively small
number, and to achieve this, assumptions have to be made about the
behavior of the building. One such assumption, that is included as a
requirement in almost all of the popular computer programs available for
the dynamic analysis of buildings, is that the floors are rigid in their
own planes. This implies rigid body motion in these planes, and thus
the degrees of freedom for lateral earthquake analysis reduce to three
per story: two translational and one rotational degree of freedom for
every floor. The most common alternative to the assumption of rigid
floors would be to use finite element methods to model the girders,
beams, etc., of the floor system. This approach Qllows for flexibility

of the floors, but involves many more degrees of freedom.

The rigid floor assumption is a valid assumption for many
buildings. However, there are situations where the floor diaphragms
cannot be considered as rigid. In fact, there are buildings which have
exhibited significant in-plane floor flexibility during earthquakes;

some of these buildings are described in Chapter II.
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The flexibility of floor diaphragms can alter the dynamic behavior
of a building, from that obtained assuming rigid diaphragms, in many
ways. For instance, in analysis of rigid diaphragms, the various
lateral 1load resisting elements, e.g., walls or frames, are assumed to
share the total lateral load in proportion to their stiffnesses. This
is due to the condition that at each floor level the lateral displace-—
ments in all the frames or walls have to be the same (for buildings with
no torsional coupling). However, a flexible floor diaphragm may
distribute the loads in a different manner., This may result in certain
frames receiving much higher lateral 1loads than expected from an
analysis using the rigid-floor assumption. As another example, the
deformation in the diaphragm may induce torsional moments in frames or
walls in addition to the expected shear. Thus, if the joints of the
structure are not adequately designed for these moments, or if the frame
(or wall) is not ductile enough, torsional damage may occur during

earthguakes.

This study treats buildings for which floor diaphragms should be
considered as flexible. The emphasis of the work is upon developing and
presenting continuum models for some important classes of buildings with
flexible floor diaphragms, From these results, it is possible to make
some general conclusions regarding the nature and importance of the
effects of in—plane floor flexibility on the earthquake response of the

structures.



1.2 PAST WORK AND CURRENT STATUS

Blume, Sharpe and Elsesser (1961) seem to have been the first to
report "long natural periods of roof or floor diaphragms” in some omne—,
two— and three-story buildings. Blume (1962) calculates the "diaphragm
period” by considering the roof diaphragm as beams with simply supported
or fixed-fixed boundary conditions. Nielsen (1964, 1966) reported onmne
"free—free beam mode” with a frequency of 4.9 Hz in his dynamic tests on
a 9—-story steel frame building at the Jet Propulsion Laboratory, in
Pasadena, Udwadia and Trifunac (1974) give mode shapes, some of them
involving significant floor—diaphragm deformations, obtained from

ambient vibration tests carried out on the same building.

To obtain the natural periods and mode shapes of multistory
buildings with flexible floors, Goldberg and Herness (1965), and
Goldberg (1966) have suggested use of the slope—deflection -equations,
while lumping the mass at the intersections of floors and frames (or
walls). In an another study, Maybee, Goldberg and Herness (1966)
developed a "separable model” for buildings with identical floors and
identical frames. They showed that for such buildings ome could obtain
the frequencies and the mode shapes for the entire building by solving
one typical floor problem and one frame problem. Recently, it was shown
by the writer (198) that for such “separable buildings” the modal
participation factors for uniform earthquake ground motion are zero for

modes involving floor diaphragm deformations.
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Two "typical” two—story buildings were studied using lumped-mass
model by Shepherd and Donald (1967), and they have concluded that
neglecting the floor flexibility ‘does mnot significantly change the
dynamic properties” of buildings. However, in a study on a single-story
building by lumped-mass approach, Blume and Jhaveri (1969) have shown
that the floor flexibility.could indeed be very significant, especially

for the type of buildings they have analyzed.

Other analytical studies on such buildings include one by Ostrom
(1974) where he has modelled the floors by beams and columns or walls by
springs., Irwin (1975) has presented a "stiffness matrix method” to
analyze such "multistory shear wall buildings." Karadogan (1980) has
suggested a "simplified force method” for the analysis of "slab type”
structures. A method for one type of structures has been presented by
Rutenberg (1980) which allows examination of the flexibility of floor
slabs wusing plape frame procedures. Unemory (1978), and Unemory,
Roesset and Becker (1980) have carried out a parametric study on
crosswall building systems including floor flexibility using finite ele-

ment models.

Karadogan, et al. (1980) and Nakashima, Huang and Lu (1981) have
reported the results of in—plane shear tests on reinforced concrete flat
plates; and Kolston and Buchanan (1980) have discussed the design

requirements for reinforced concrete diaphragms,



1.3 OUTLINE OF PRESENT WORK

This study develops some continuum techniques for the amnalyses of
buildings which have the possibility of significant in—plane floor
flexibility. For simple single— or two—story buildings, the floors and
the walls (or columns) have been treated as beams, and the resulting
beam equations and boundary conditions have been combined to obtain the
characteristic equation of the combined system. This equation can
easily be solved on a small computer or programmable calculator to
obtain the natural periods. Thus, the dynamic properties of the
building can be obtained in an "exact” manner. In addition, to simplify
the numerical work even further in some instances, perturbation
techniques have been used to obtain the first order correction terms, to
be added to the results of simple standard cases, for example, a pinned-

pinned beam.

Multistory buildings with lateral 1load resistance systems con—
sisting of only two end walls or frames are treated next. For such
buildings, the floors are approximated by a ‘continuous distribution of
thin floors along the height of the building. These thin, distributed
floors have no contact with the adjacent floors, and have been treated
as beams. The end walls (or frames) are treated as uniform beams (bend—
ing or shear). The resulting system has been solved exactly to obtain
the characteristic equation. From the roots of this equation, it is
possible to obtain the natural frequencies, mode shapes and the partici-

pation factors for the entire building.
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Multistory buildings that have wuniformly distributed frames or
walls are treated as vertically—oriented plates. It has been a common
practice in earthquake engineering to model some features of mumltistory
buildings by shear beams (e.g., Jennings, 1969; Hoernmer, 1971). This
plate concept, introduced in Chapter VI, is a gemneralization of that
concept, and should give results that are comparable in applicability to
those of the shear beam, This plate model allows one to obtain closed
form solutions for frequencies, mode shapes and participation factors.
These results, though approximate, are sufficiently accurate to allow

various qualitative conclusions about the behavior of such buildings.

The above concepts have been generalized further to study buildings
with some unusual features, such as a soft first story. By adding extra
elements, such as beams, a distributed column system, etc., it is possi-
ble to include the influence of end walls, or a different story height
in the first or_the top story in an otherwise uniform building. The
Imperial County Services Building, a six-story building with a soft
first story, that sustained severe damage during the October 15, 1979
earthquake is stundied using the concepts developed in this part of the

study.

1.4 ORGANIZATION

This thesis has been divided into eight (8) chapters. Chapter I is
an introduction, while Chapter II describes the evidence of significant

floor flexibility as seen in past earthquakes. Chapters III and IV
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present treatments on sihgle— and two—story buildings, respectively.
Chapter V treats multistory buildings with 1lateral 1load resistance
system (walls or frames) only at the two ends. Chapter VI describes the
"plate concept” developed for multistory buildings with uniformly
distributed frames. Multistory buildings that could be a combination of
the earlier. types, are addressed in Chapter VII, and Chapter VIII

presents a summary and coaclusiomns.

Chapter III also contains summaries of beam theories and relevant
boundary conditions, a discussion of the distributed floor concept, and
a note on matching the boundary conditions at junctions of
elements. The concepts are extensively used in subsequent chapters.
Thus, after reading this background material in Chapter III, it should

be possible to read the following chapters independently of each other.

Mathematical notations have been defined where they first appear,

and are also listed in the "Notation” section.
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CHAPTER II

EVIDENCE OF FLOOR FLEXIBILITY IN PAST EARTHQUAKES

2.1 INTRODUCTION

Past earthquakes have been a great source of information for
structural engineers about the dynamic behavior of structures. During
an earthquake, when a structure sustains damage of amy kind, it tells
something about the structure, An investigation of the extent and
pattern of the damage may uncover the weaknesses that led to the damage,
thereby enabling one to avoid the same mistakes in new bduildings. In
fact, the situation can be compared to an actual- full-scale destructive
test of a structure, under field conditions. Hence, it is important to
analyze past failures carefully, and to learn relevant lessons from

them.

In recent years, because of increased interest in the earthquake
safety of structures, there has been an increased number of installa-
tions of instruments in buildings in order to measure the motion of
various parts of the structure during an earthquake. This provides data
which can be used to interpret the cause of damage in the building,
should a ©building suffer damage. Also, even if the building is
undamaged after the earthquake, these records provide valuable insight
into structural modelling and data about the dynamic properties of

buildings, for example, the amount of equivalent damping.
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In this chapter, five buildings are described which have exhibited
significant floor—-diaphragm deformations during past earthquakes. The
first four sustained severe damage due to strong shaking, while the
fifth one was undamaged after the earthquake. The later two buildings
were instrumented, and the records obtained from them indicate the
significance of in-plane floor flexibility in the dynamics of actual
buildings. The five buildings represent a wide variety of building
types; this indicates that in-planme floor flexibility may be more

significant than it has been acknowledged to be in the past.

2.2 ARVIN HIGH SCHOOL_BUILDING

In 1952, Arvin High School consisted of a large group of buildings,
constructed during 1949-51. Because they were new, they met the
requirements of Califormia’s Field Act. During the magnitude 7.7 Kern
County (southérn California) earthquake of July 21, 1952, most of these
buildings performed extremely well. The only exception was the two—
story Administrative Building. This long, narrow building had a roof
197 ft long and 46 ft wide. In the transverse directiom, the 1lateral
load resistance was provided by the end walls while the more flexible
intermediate columns took only vertical loads. The building was a
"reinforced concrete building with brick veneer on walls except that the
second story wall at the west end was 8-1/2 inches thick reinforced
grouted brick masonry without openings” (Steinbrugge and Moran, 1954).

Figure (2.1) gives some details of the building.
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The second story wall at the west end was extensively damaged as a
result of the main shock. The effect of the earthquake upon this wall
has been described by Steinbrugge (1970):

The damage to this second-story wall consisted of x-cracks

from diagonal tenmsion forces, plus separation at the building

corners due to diaphragm deflections causing torsional

stresses in the damaged wall.

Figure (2.2) shows some of the details of damage to the building.
Besides the flexible diaphragm causing damage by forcing the wall to
twist, poor workmanship in the wall was noted. One- and two-story
models of this building, studied in subsequent chapters of this thesis,
reveal that in the fundamental mode of vibration the flexibility of the
diaphragm was much more significant than the flexibility of the end

walls.

2.3 VWEST ANCHORAGE HIGH SCHOOL

During the Alaskan earthquake (magnitude 8.4) of March 27, 1964,
the classroom wing of the West Anchorage High School suffered severe
damage. The building was built in 1952-53, with flat—slab construction
of reinforced, cast—in-place concrete. The building was designed for
zone 2 requirements of 1949 Uniform Building Code. The framing plans of
this two—story building are shown in Figure (2.3). Such buildings,
consisting of two wings joined at an angle (e.g., L- or V-shape plans)

are very susceptible to damage induced by floor flexibility, because the
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(a)

T Reproduced from
- | best available copy.

(e)

Figure 2,2, DETAILS OF DAMAGE TO ARVIN HIGH SCHOOL, ADMINISTRATIVE
BUILDING (from Steinbrugge and Moranm, 1954), (a) GENERAL
VIEW. ' (b) SECOND STORY BRICK WALL. (c¢) CLOSE-UP OF THE
BRICK WALL. (d) CRACK AT MITERED CORMER. (e) INTERIOR OF
THE WALL SHOWN IN LAST THREE FIGURES.
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fan—-1like deformations in the two wings of diaphragm lead to a stress-
singularity at the junction of the two wings. This building provides a

spectacular example of such damage.

Figure (2.4) shows the damage in the building. The damage below
the second floor was less than that above; this was attributed to "a
different arrangement of shear walls and the fact that the floor
diaphragm had a large stair opening at the intersection of the two
wings”, and "it is believed that this floor opening permitted a partial

hinge to form in the remaining portion of the floor” (Meehan, 1967).

The cause and sequence of the damage in the ©building has been

described by Meehan (1967) as follows:

One cannot be certain of the sequence or path of distress;
however, it 1is believed that the initial damage occurred in
the roof diaphragm at the vertex of the angle formed by the
two portions of the «classroom wing due to torsiomnal momesnt
developed in this diaphragm. It is also believed that, after
the roof diaphragm separated at this point, each portion of
the classroom wing essentially formed individual buildings,
thus necessitating a redistribution of 1load in the shear
walls, The shear walls were not capable of resisting this
redistribution of load and were apparently damaged next. The
exterior second-floor columns were then unable to resist the
total load alone, and damage developed in these.

The above clearly indicates the importance of in—plane flexibility

of floors in this type of building.
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(a) | (b)

(c) _ (d)

Figure 2.4, DETAILS OF DAMAGE TO WEST ANCHORAGE HIGH SCHOOL BUILDING
(from Meehan, 1967). (a) ROOF DIAPHRAGM DAMAGE.
(b) CLOSE-UP OF DAMAGE TO ROOF DIAPHRAGM. (c) WEST SIDE OF
NORTHWEST WING. (d) DAMAGE IN THE SHEAR WALL AT INTERSEC-
TION OF WINGS.
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2.4 FIFTH AVENUE CHRYSLER CENTER

The Fifth Avenue Chrysler Center in Anchorage (Alaska) was a one—
story rectangunlar building (about 157 ft 1long and 70 ft wide), that
suffered extensively in the Alaska earthquake of March 27, 1964
(Steinbrugge, et al., 1967; Berg, 1973). This building provides
another good example of significant in—plane floor flexibility in
buildings. The front end of the building, facing south, was a showroom.
The lateral load resistance in the longitudinal (north—south). direction
was provided by two 8 inch concrete block walls at the sides along the
length of the building, except in the showroom portion. In the
transverse direction (east-west), there were 8 inch concrete block
walls, one at the north end of the building, another wall at the center
of the building and two stub walls extending from the sides just to the
rear of the showroom, The roof of the building consisted of 20
prestressed precast reinforced concrete tees, 8 ft wide, that wére
placed side by side, spanning the whole width of the building. Sixteen
of these were supported by the side walls, while 4 tees in the showroom
portion were supported by 12" x 24" concrete block columns
(Figure 2.5a). The flanges of the adjacent tees were conngcted together
by welding the bar anchors which were embedded in the flanges.

Figure (2.6) gives the first floor and roof plamns of the building.

As a result of the earthquake, the showroom part of the building
was extensively damaged, and the roof tees in this portion fell to the

south of the building (Figure 2.5b). There was also significant damage



Reproduced from 7 »
best available copy. ( b)

Figure 2.5. FIFTH AVENUE CHRYSLER CENTER (from Steinbrugge, et al.,
1967). (a) PRE-EARTHQUAKE VIEW. (b) COLLAPSE AT THE SHOW-
ROOM END.
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in the roof between the showroom and the central wall. The top half of
the west stub wall collapsed (Figure 2.5b) while the east stub wall had
damage at the base (Figure 2.7a). There was also some damage at the

north ends of the side walls (Figure 2.7b).

The cause of damage in the building has been attributed to vibra—
tions in transverse direction. A possible explanation for the damage

has been provided by Berg (1973) as follows:

If we consider the roof as a beam 1lying on its side and
oscillating in the lateral directiom, it would act —— in its
gross behavior — as a beam on three resilient supports, and
its fundamental mode of oscillation would be approximately as
shown in Figure (2.8). The left support (the stub walls) is
less rigid than the other two supports (the full transverse
walls). At the left support, both shear and bending moment in
the beam would be high. Shear would tend to shear the connec-
tions between adjacent tee flanges, and bending moment would
tend to pull apart the same connections. At the right support
(rear walls) the shear would also be high, tending to shear
the connections between the flange of the end roof tee and the
rear wall, the tee flange connections did indeed fail at these
points. Once the connections between the fourth and fifth
roof tees failed, there would be only mnominal resistance to
the southward c¢ollapse of the <fromt part of the building.
Because the left support was more flexible than the other two
supports, the distortion in the left part of the beam would be
greater than in the right part. The corresponding behavior in
the building is greater lateral movement to the south of the
middle wall than north of the middle wall, and it was the part
south of the middle wall that collapsed.

A simple calculation will indicate that an assumption of a rigid
floor diaphragm (i.e., a rigid beam on three similar springs in
Figure 2.8) will lead to high shear and bending moments in the beam at
the central support rather than at the left support. Had this been

true, onme would have observed more damage in the connections of roof
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Figure 2.7. DAMAGE IN THE FIFTH AVENUE CHRYSLER CENTER (from
Steinbrugge, et al., 1967). (a) DAMAGE AT BASE OF THE EAST
FIN. (b) NORTH END OF THE WEST ELEVATION.
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Figure 2.8. FUNDAMENTAL MODE OF ROOF DIAPHRAGM, FIFTH AVENUE CHRYSLER
CENTER (from Berg, 1973).
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tees near the central wall, Hence, it is evident that roof-diaphragm

flexibility contributed to the damage in this building.

2.5 IMPERIAL COUNTY SERVICES BUILDING

During the Imperial County earthquake (magnitude 6.6) of
October 15, 1979, the 1Imperial County Services Building, a six—story
reinforced concrete structure, was the only modern building to have
sustained severe damage (Jain and Housner, 198a). The building was
extensively instrumented under the program of the Califormia State
Office of Strong Motion Studies to record the motion at various loca-
tions should a large earthquake occur in the area. In the Imperial
Valley earthquake, these instruments provided records which are very
valuable to structural engineering, as they give information concerning
the possible causes of the damage (e.g., Jennings, 198; Pauschke,

et al., 1981).

Figure (2.9) shows a schematic plan of the building. Note that in
the wupper stories of the building, the lateral load resistance was pro—
vided only by the end walls. Even though the aspect ratio of the
building is =not 1large (length = 136’'-10", width = 85'-4"), a study of

1., (1981) reveals

the records obtained from the roof, by Pauschke, et
that there was significant floor—-diaphragm deformation (Figure 2.10).
This in—plane floor flexibility is not considered to have been responsi-

ble for the initiation of the damage in the building. However, the fact
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that it was significant, even in a building with a 1low aspect ratio,

points out the importance of floor flexibility.

Figure (2.10) shows the displacements at the roof and the second
floor in the transverse direction, recorded by instruments at the two
ends and at mid-span. In this figure, the roof and floor dimensions
have been "disproportionately reduced in order to magnify the relative
displacements.” It is clear that the roof and the second floor indeed
had significant in—-plane déformations. Also, one notices that the two
floors show oppbsite curvatures. A model of this building studied in a

later chapter also reveals this feature,

2.6 MAMMOTH HIGH- SCHOOL GYMNASIUM

Strong motion accelerograms obtained from the single—story Mammoth
High School Gymnasium building, during the May, 1980, earthquakes
provide another good example of significant floor flexibility in 1low
aspect—ratio buildings. This building, 144 ft long and 110 ft wide, has
reinforced concrete exterior walls. The roof is supported by slightly
inclined Warren trusses, spanning the width of the building. These
trusses are braced vertically to prevent excessive lateral deflections,
Also, horizontal steel bracing has been provided in the plane of the

lower chord of the roof trusses.

Again under the State of Califormia’s program, the building was
instrumented with 10 accelerometers located at various locations in the

structure (Figure 2.11). During the earthquake swarm of May, 1980, they
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— Roof

A Ground Installation Notes;

W-E Section D

Accelerometers 1,2,3 and 4 are
installed on the ground floor
slab. '

Accelerometers 5,8 and 9 are
attached to the roof trusses at
Yﬁj the bottom chord level.

Accelerometers 6,7 and 10 are
attached to the roof trusses at

?@ @f the top chord level.
®

o Recorder trace order:
Accelexometer 1
| Fixed trace -
Root Plan Accelerometer 2
| . " 3
Fixed trace -
Accelerometer 4
n 1 5
Ref. .
F1xed trace -
L 100" o Accelerometer 6
“
x= n n 7
Fixed trace -
@ @ Accelerometer 8
@‘@ _9 n ] 9
- Fixed trace -
Accelerometer 10
A 2
144'
f— =

Ground Floor Plan

Figure 2.11. STRONG MOTION INSTRUMENTATION SCHEME, MAMMOTH HIGH SCHOOL
GYMNASIUM (from Turpen, 1980).



provided very useful sets of records. Three of these sets are shown in
Figures (2.12) through (2.14). Of particular interest to this study are

the records obtained from the roof of the building.

In each figure, a comparisom of traces (5), (6) and (8), which
recorded the motion of the roof in the transverse direction, indicates
that the motion of the center of the roof was much more vigorous than
that at the twq ends of the roof span. This clearly indicates that the
flexibility of the roof diapﬁragm cannot be neglected for this building

in the transverse direction.

In the longitudinal direction, the motion of roof was récorded by
instruments (7), (9) and (10). Despite the fact that the aspect ratio
for this direction is less than omne, one ﬁotices the same phenomenon,
i.e., the instrument at mid-span registered a much larger response than
registered by the instruments at the two ends. The high frequency
content in trace (9) is due to the lateral vibrations of the lower chord
segment of the roof truss, at whose mid-span this instrument was
located. However, omne can still see, in this trace, a significant
motion at a lower frequency of about 4.5 Hz. This is thought to be the
fundamental natural frequency of the roof and wall system along the

longitudinal direction.

The above observations, which are applicable to the three different
sets of records, . prove that the floor flexibility in this building is

not negligible in either direction despite the low aspect ratios.
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2.7 DISCUSSION

The five buildings discussed in this chapter provide ample evidence
to indicate that in—plane floor flexibility can be very important in the
earthquake response of some buildings. Three of the examples were
schoél buildings, which suggests that the architectural layout of school
buildings may make them more susceptible than other structures to

problems caused by flexible floor diaphragms.

Also, three of these buildings had lateral load resistance systems
consisting of only end walls. One of these three had a span to width
ratio of only 0.76, but still exhibited significant diaphragm flexibi-
lity. The reason for this is the relative flexibility of the diaphragm
with respect to the end walls. Even though floors with low aspect ratio
may mnot seem very flexible in their plane, their flexibility may still
be quite significant and may indeed dominate the dynamic response, when

compared to the flexibility of very rigid walls,

The classroom wing of the West Anchorage High School had a plan
consisting of two wings joined at an angle, thus forming a 'V’,
Buildings such as this, forming amn L, V, T, H; .etc., warrant special
considerations. The San Marcos Building, a four-story, reinforced
concrete L-shape building is another example in this category (Dewell
and Willis, 1925). This building was extensively damaged while the
corner section was "totally destroyed,” during the 1925 Santa Barbara

earthquake. Its damage has been attributed to the shape of the ground
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Plan, in addition to poor workmanship in the concrete. The Mene Grande
Building, a sixteem—story H-shaped reinforced concrete structure, was
heavily damaged during the Venezuela earthquake of 1967 (Hanson and

Degenkolb, 1969; Sozen, et

1., 19638). Besides other damage, this
building experienced some floor—cracks "especially where the wings
connected with the core” (Hanson and Degenkolb, 1969). Again this

observation indicates a stress concentration at the cormner.

-This brief summary of cases of earthquake damage in buildings that
can be attributed to the response of the floors as flexible diaphragms
shows the importance of this phenomenon in the earthquake response of
structures. The strong motion records obtained from the two buildings
mentioned in this chapter, and some others (Porcella, et al., 1979),
also 1lead to similar observations. Hence, the experience in past
earthquakes indicates clearly that floor flexibility can be a potential

problem unless considered in the design.
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CHAPTER TII

SINGLE-STORY BUILDINGS WITH FLEXIBLE FLOORS
3.1 INTRODUCTION

There has been considerable interest in the past in the dynamic
analyses of 1long, narrow omne-story buildings because this type of
building is commonly adopted for schools, hospitals and offices (Blume,
et al., 191, Blume and Jhaveri, 1969). Many such buildings have only
two end walls in the transverse direction to provide lateral support,
while any intermediate columns share only the vertical loads. This is
largely due to the needs of functional flexibility, which requires
movable partition walls., Hence, one has a roof mounted on two end walls
that acts like a beam in the transverse direction due to its large span
to width ratio, In such a situvation, it is important to consider the

flexibility of the =roof diaphragm in the dynamic analysis of the

building.

Moreover, there are other situations where even though the aspect
ratio (length to width ratio) of the building is not large, the floor
flexibility cannot be mneglected. Mammoth High School Gymnasium,
discussed in the previous chapter is one such example. In this type of
building the roof flexibility, though small in absolute terms, is

significant when compared to that of the stiff end walls,
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It is shown in this chapter that such buildings can easily be
treated amalytically. Furthermore, the technique is general enough to
allow the solutions of more complicated structures, e.g., buildings with
different end walls, The method described in the following sections
consists of treating the roof as a bending beam and the end walls as
shear beams. The dynamic.equations of motion for the roof and the walls
can be written, and these equations can be solved for appropriate
boundary conditions. This giyes a transcendental characteristic equa-
tion, the solution of which provides the natural frequencies of the
system. With these frequencies known, the mode shapes and the partici-
pation factors for earthquake excitation can be obtaine&, thus enabling

one to calculate the dynamic response of the building.

The method described herein can also be extended to take into
account the flexibility of the foundation. For example, one could model
'the effects of the supporting soil by Winkler'’s representation, thereby
replacing the foundation by appropriate springs. This only affects the
boundary condition to be satisfied at the bottom ends of the vertical

beams representing the walls,

In the following parts of this chapter, bending and shear Dbeam
theories are discussed first. Next, the concept of '"laminae’ or
"equivalent distributed beams” is presented. A note on how to match the
boundary conditions between members meeting at a point is also included.
A simple case of a one—story building with two, identical end walls is

then solved. A section has been included on the use of perturbation
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theory to obtain an approximate value of the fundamental mnatural
frequency of the structure, Also, solutions are given for some
interesting but more complex structures. The chapter ends with a
numerical example derived from the top story of the two—story

Administrative Building at Arvin High School,.

3.2 BEAM THEORIES

In this and subsequent chapters, extensive use will be made of the
equations and properties of both Euler—Bernaulli and shear beams. For
convenience, this section presents the well known theories for these two
types of beanms. Also, the «concept of "laminae” or "equivalent—
distributed beams’” as applied to the present problem is introduced.
This concept proves to be useful in modelling the floors of multistory

buildings.

3.2.1 Bending Beam (Fuler—Bernaulli)

For beams whose length to depth ratio is large, the bending defor—
mations are large compared to those caused by shear, and, therefore, it
is a common practice to neglect the shearing deformatiomns for static
analysis and for the analysis of the lower modes of vibration. Also,
for the lower modes of vibration, the effect -of rotatory imertia is
small for such beams, and can be neglected. The resulting mathematical

model for a beam is termed a bending beam or Euler—Bernaulli beam.
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Consider the free vibrations of a bending beam., Let vb(x,t) be the
lateral displacement at time t of a point at a distance x from the
origin (Figure 3.1a). From the free body diagram of an element of width

dx, one obtains

azvb

6t2

dQ@ = pA dx

dM = -Qdx

Hence, the equation governing the free vibrations of the beam may be

written as

a2 62vb 62vb
> EI(x) ) + pA(x) > = 0 (3.1a)
ax ox ot

For beams with uniform cross—section, this becomes

a4vb azvb
+ pA

3x2 at2

EI = 0 (3.1b)

For beams vibrating due to uniform earthquake excitation, ug(t) in the

plane of the beam (Figure 3.1b), the equation of motion is

a2 azvb(x,t) azvb(x,t) .
~ El(x) "“‘E"_ + pA(x) "““;”_ = -pA(x)u (t) (3.2a)
ax ax at g

If the cross—section is uniform, this reduces to
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Figure 3.1. VIBRATION OF A BENDING BEAM. (a) FREE VIBRATION.
(b) EARTHQUAKE MOTION.
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otv, (x,)  o%v, (x,0) ..

EX + = =pAu (t) (3.2b)
ax? at2 g

In addition to the governing differential equation, the specifica—
tion of boundary conditions is required to solve the vibration problems
of beams. Table (3.1) gives some of the common boundary conditioms for

a bending beam.

TABLE 3.1. VARIOUS BOUNDARY CONDITIONS FOR A BENDING BEAM

Type of Sketch of -
Boundary Boundary Boundary Conditions
e = _

Free End [EI(x)v b]end = 0 (moment=0)

2 l r

[(EI(x)v"b) ]end = 0 (shear=0)

Fixed End y [vb]end = 0 (displacement=0)

% Yy

, ! = =
[v b]end 0 (slope=0)

Pinned End [vb]end = 0 (displacement=0)

E:::::}<:£ [EI(x)v"b]end = 0 (moment=0)
Spring [EI(x)v"b]end = 0 (moment=0)
Supported
End [(EI(X)V"b)'] = Kl[vb] (for right end)

K
[(EI(x)v"b)'] = —Kl[vb] (for left end)
Pinned End [v,] = 0 (displacement=0)
. . b end
with Torsional
Spring [EI(x)v"b] = —Kz[v'b] (for right end)
Ky [EI(x)v' '] = K,[v'} 1 (for left end)
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3.2.2 Shear Beam

This beam theory is applicable for beams that exhibit bending
deformations that are small compared to shear deformatioms., In the
theory, the bending deformations are neglected reducing the governing
equation to ome of second order. Experience has shown that this beam
models some important features of the dynamic behavior of buildings of

moderate height (e.g., Jennings, 1969; Hoermer, 1971).

Consider the free vibrations of a shear beam as shown in
Figure (3.2a). Let A(x) be the cross—sectional area at z, p be the den-
sity of beam material, and k(x) [=k’A(x)G] be the shear rigidity of the
beam. Let vs(x,t) be the lateral displacement of a point at a distance
x from the origin, at time t. From the free body diagram of an element

dx, one obtains

azvs(x,t)

dQ = pAT"‘—E_——dx
at

Thus, the equation of motion for the free vibrations of a shear beam may

be written as:

, av_(x,t) av_(x,t)
r™ k(x) s /" pA(x) —:“:5"""’ = 0 (3.3a)

For a beam with uniform cross—section, the shear rigidity k(x) is not a

function of x, and the equation of motion becomes
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et
dx
Q(x,1) = k(x) a"g(x’”
X
(a)
‘Gg(t) g (1)
(b)

Figure 3,2. VIBRATION OF A SHEAR BEAM. (a) FREE VIBRATION.
(b) EARTHQUAKE MOTION.
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azvs(x,t) azvs(x,t)
k- pA— o =0 (3.30b)
ax at

For beams vibrating under ground excitation (Figure 3.2b), these -equa~

tions become

2

3 avs(x,t) ] vs(x,t) ..
3;’k(x)——*3;——— - pA(x) ‘—';:5‘—— = pA(x)ug(t) (3.4a)
and,
azvs azvs(x,t) -
k (x,t) = pA —=— = pAu (t) (3.4b)
ax2 at? g

for beams with variable and uniform cross—sections, respectively.
Some of the common boundary conditions for a shear beam are

tabulated in Table (3.2).

3.2.3 Equivalent Distributed Beam System (Laminae)

In the present work, floors in buildings have been treated as bend-
ing beams in order to include the effects of in—plane floor flexibility.
For buildings with a large number of stories and uniform floor
properties along the height of the building, it is sometimes convenient
to replace the floor—beams by an "equivalent distributed beam system.”
This beam system consists of a continuum of independ?ntly-acting beams
with infinitesimal thicknesses. The independent action of the
infinitesimally thin beams means that an individual beam does not have

any contact with adjacent beams., The stiffness and mass distributions
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TABLE 3.2. VARIOUS BOUNDARY CONDITIONS FOR A SHEAR BEAM

Type of Sketch of ey .
Boundary Boundary Boundary Conditions
s - —

Free End Z:::::] [k(x)v s]end = 0 (shear=0)

. 4 .
Fixzxed End {:::::::2 [vs]end = 0 (displacement=0)
End Supported [k(x)v's] = —Kl[vs] (for right end)
on a Spring ' K,

[k(x)v's] = Kl[vs] (for left end)

Note: For a shear beam, there is no counterpart to an end
supported on a torsional spring, since sections
perpendicular to the axis before deformation do not
rotate as the beam—axis deforms.

of the system are obtained from the stiffnesses and masses of the actual
floors by distributing the total stiffness and the total mass of all the
floors evenly along the height of the building. These equivalent beams
or laminae bhave been used in other problems in structural mechanics.
First developed to analyze the deformations of aircraft wheels, this

concept has been used extensively in civil engineering in the study of

coupled shear walls (e.g., Chitty, 1947; Beck, 1962),

The equivalent system can be defined with the help of Figure (3.3).
Let E be the modulus of elasticity of thelfloor material. Let I* be the
moment of inertia per unit height of the equivalent, distributed floor
system, and m* be the mass per unit length and per unit height of the
system. Let Ay be width (along the height of building) of a thin bean,

where Ay is very small. With this notation, the equation of motion for
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)Y
/—-————--x
/2
(a)
Ly
Ay
— X
,z/ (b)

Figure 3.3. (a) N-STORY STRUCTURE WITH IDENTICAL FLOOR SYSTEM.
(b) EQUIVALENT DISTRIBUTED BEAM SYSTEM OR LAMINAE,
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free vibrations of the system may be written as

2 2 2
* *
a_z(EIAy'——(""'L—szt>+mAyaux2t = 0 (3.5a)
ox ox dat
or,
2 2 2
*
_3_2<EI*aux2 t)-&-m 8ux2 t = 0 (3.5b)
ax X dt

Here u(x,y,t) is the displacement at point x, at time t in an
infinitesimal thin beam located at height y. The common boundary condi-

tions for this system are the same as those of bending beams

(Table 3.1).

3.3 NOTE ON MATCHING BOUNDARY CONDITIONS

In the rest of this report, extensive use will be made of matching
the boundary conditions at the junctions of two or more perpendicularly-
intersecting beams. Hence, this section reviews some of the concepts
involved. In general, the following situations will be encountered in
this study: two beams joined at a right angle at their ends; three beams
joined at their ends (arising from one beam joining the interior of
another beam at a right angle); and an equivalent distributed beam

system joining an ordinary bending or shear beam.
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3.3.1 Two Beams Joined Perpendicularly at Their Ends

Consider two beams that are joined together at their ends such that
they are perpendicular. Figure (3.4) shows the coordinate system
(x,y¥,2z), that is common for both beams, Let the two beams be joined at
the point x =L and y = h, and let u(x,t) and v(y,t) be the displace—
ments in the z—direction, in beams (1) and (2), respectively. The

following boundary conditions apply at the corner:

(i) The displacements in the two beams are the same at the junction,

i.e.,
u(L,t) = wv(h,t) (3.6)

(ii) The end shears in the two beams are equal in magnitude and

opposite in direction.

(a) Both beams are bending beams

2 ' 2
i) 3" u 3 v
E I —>:‘ + [—<EI >] = 0(3.7a)
[Gx < 171 axz <=L oy \ 272 3y2 y=h

where Elll and Ezlz are the flexural stiffnesses of Dbeams

(1) and (2), respectively.

(b) Beam (1) is bending beam and beam (2) is shear beam:

2
i) - u v
~——{EI, == - 1k, == = 0 (3.7b)
{8x< 171 6x2>]x=L [ 2 3y]y=h |
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BEAM (1) r-xﬂ_
y=h

ul(x,t)
BEAM (2)

y v(y,1)

Figure 3.4, TWO BEAMS JOINED AT THEIR ENDS.
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where E111 and k2 are the flexural stiffness -for beam (1)
and the shear stiffness for beam (2), respectively.

(¢) Both beams are shear beams:

[, %]x#; + [k, %]Fh =0 (3.7¢)

where k1 and kz are the shear stiffnesses for beams (1) and

(2), respectively.

The algebraic signs in these equations will be
different when beam (2) is joined at the left end of beam

(1), rather than the right end, as considered here.
The end moment in beam (1) is equal in magnitude and opposite in
direction to the torsional moment (torque) in beam (2). Assuming
that the other end of beam (2) allows no rigid-body rotation of

beam (2), this condition will be

2
d u _ du

[Elll 2] = G [ax]x=L (3.8)
ax"l1x=L

where C2 is the torsional stiffness of beam (2), given by the
torque at y = h required to produce a unit rotation at that
point. [gE]x=L is the end rotation (slope) in beam (1), which is

equal to the torsiomal rotation in beam (2).

For most applications, the walls can be treated as thin
rectangular sections to obtain their torsional stiffness. For

such sectioms, the torsiomal stiffness C2 is given by (e.g..
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Timoshenko and Goodier, 1969)

C2 = %ﬁ?G (3.9)
where
b = Length of wall.
¢ = Thickness of wall,
h = Height of wall.
G = Shear modulus.

(iv) The end moment in beam (2) is equal in magnitude and opposite inmn
direction to the torsional moment at the end of beam (1). This

case is similar to case (iii) above.

3.3.2 Three beams Joined at Their Ends

Consider three beams meeting at a point as shown in Figure (3.5).
The coordinate system (x,y,z) is common for all three beams, and each
beam of the system is vibrating in the z-direction. Let u(x,t), v(y,t)
and w(y,t) be the displacements in the z—direction, in beams (1), (2)
and (3), respectively. At the point x =L, y=0, the following

boundary conditions must be satisfied:
(i) The end displacements in the three beams are the same:
u(x =L, t) = v(iy=0,t) = w(y=20,t) (3.10)
(ii) The resultant of the end—-shears in the thrge beams is zero:

(a) The three beams are bending beams, and Elll, E212, E3I3 are



w(y,’r)/ BEAM (3)
BEAM (1)
-
/ ‘,’/\\“_‘X:L
Aulx, t) y=0

BEAM (2)
v(y,n/

Figure 3.5. THREE BEAMS JOINED AT THEIR ENDS.
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their flexural stiffnesses, respectively. The condition can

be written as:

2 2
3 i u i) vy
S > ] ¥ [ <E ! >ly-
[ax ( 171 ax2 x=L oy 272 ayZ -0

2
"{ai <E313 -a—-;lﬂ = 0  (3.11a)
v dy y=0
(b) Beam (1) is a bending beam with E111 as its flexural stiff-

ness. Beams (2) and (3) are shear beams, and their shear

stiffness are given by k2 and k3, respectively. The cond@—

tion is
3 82u av aw
ax \M1T1 2) ) _ [k 55 Jmo * [k5 55 Jymo =0 (3.119)

The resultant of end moment in beam (1), torsional moment in beam
(2) and torsionmal moment in beam (3) is zero at the junctiom

point.

Define positive torsional moment for beams (2) and (3) as
one that produces clockwise torsiomal rotation in the beam with
respect to the bottom end of the beam.  Let T2 (y = 0,t) and T3
(y = 0,¢t) be the twisting moments in beams (2) and (3),

respectively, at the junction. The boundary condition can Dbe

written as



where

(iv)

Ml(x=L,t) = End moment in beam (1)
2
du . _
x
T2(y=0,t) = 02[92(y=0,t) - 92(y= -hl,t)]
T3(y=0,t) = C3[93(y=h2,t) - 63(y=0,t)]
C2,C3 = Torsional stiffnesses of beams (2) and (3),
respectively.
hl,h2 = Height of beams (2) and (3) , respectively.
92,93 = Torsional rotation in beams (2)
and (3), respectively.
However, 62(y=0,t) and 63(y=0,t) are each equal to the end
o _3u ,__
rotation in beam (1) [~ ax (x L,t)].

It will be shown in a subsequent section that for the
purposes of the present work, one can neglect the torsional
stiffnesses of beams (2) and (3). This results in the much
simplified boundary condition that there is zero bending moment

in beam (1) at x =L, i.e.,

2
E I, &Z(x=L,t) = 0 (3.13)
171 2
ax
The torsional moment in beam (1) at x = L, and the bending

moments in beams (2) and (3) at y = 0 have a zero resultant.
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Neglecting the torsional stiffness of beam (1) and assuming

beams (2) and (3) as bending beams, this condition is

2 2
E. I, &% (y=0,t) - E,I, &¥ (y=0,t) = 0 (3.14)
272 2 373 2

y dy

3.3.3 An Equivalent Distributed Beam System Joined to a Perpendicular
Beam

Consider a distribution of laminae that is joined at onme end to a
perpendicular beam (Figure 3.6). The coordinate system is shown in the
figure. Let u(x,y,t) and v(y,t) be the displacements in the z—direction
in the distribuwted beam system and the perpendicular beam (beam 2),
respectively. 1In this situation, the shears in the distributed beams
are applying a distributed force on the perpendicular beam, and the

equation of motion for the beam (2) is modified accordingly.

Let E1 be the modulus of elasticity, I*1 be the moment of inertia
per unit height and m"1 be the mass per unit length per unit height of
the distributed beam system. The equation of motion for free vibratioms
of the distributed beams has been given in subsection (3.2.3). The

equation of motion for beam (2) is as follows:

(a) For the case when beam (2) is a bending beam with E212 its

flexural stiffness and m, its mass per unit height, the equa-—

tion of motion for free vibratiom is:
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igure 3.6. EQUIVALENT DISTRIBUTED BEAMS JOINED TO A PERPENDICULAR
BEAM.



- 55 -

2 2 2 2
) o vy, t)y _ 3 v(y,t) i) * 9 u(x t
2@212 2 >' ) 2 T {ax<E111 2 >l (3.15a)

dy dy at ax x=L

(b) When beam (2) is a shear beam with stiffness k2 and mass m, per

unit height, the equation of motion for beam (2) is

F) aviv,t)\_ Qizuail 9 * iﬂusgbla
o O N e - E I

m (3.15b)
ay p) 2 ax\ 171 ax2 L=L

at
The algebraic sign of the last term in the above two equa-
tions will be different if beam (2) is joined at the left end

of the distributed beam system.

The following boundary conditions must be satisfied for the system

at the junction of the laminae and beam (2):

(i)

(ii)

The end displacements in the distributed beams are the same as the

displacements in beam (2), i.e.,
u(x=L,y,t) = v(y,t) (3.16)

The bending moments in the distributed beams at their ends must be
in equilibrium with the torsional moment in the perpendicular

beam.

This condition can be derived by taking the angle of twist in

. beam (2) equal to the end rotation in a distributed beam, and

applying equilibrium. In mathematical form, the condition is
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3
2 be"G 2
* 3 u, _ - 2 3 [dmw . _ ]
ElIl Z(X"pr:t) 3 2 Lax (x L,Y,t) (3.17)
ax dy

where b, ¢, and 62 are the length, thickness and shear modulus,

respectively, for beam (2).

It will be acceptable for many applications to mneglect the
torsional rigidity of ©beam (2). This leads to a simpler condi-

tion, i.e.,

2
E 1, &8 (z=L,y,t) = 0 (3.18)
171, 2

3.4 ONE~-STORY BUILDING WITH TWO IDENTICAI END WALLS

In this section, the solution for free vibrations of a omne—story
building with two end walls is presented. The walls are assumed to be
identical. As mentioned earlier, this is a frequently used structural
system for schools, hospitals, offices, etc. Typically, in these situa—
tions the end walls are quite short and wide, and caﬁ be treated as
shear walls., The roof, usually being long and narrow, is modelled as a

bending beam,

Consider a one—story building with two idemtical end walls (shear
beams) of height h, and a long, narrow roof (bending beam) of length 2L
(Figure 3.7)., The building is being analyzed for motion in the z’-
direction. Let the following be the roof and wall properties, assumed

to be uniform:
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2L -

T

‘t' T Au(x',1) /
h Vz(yl,t) yl ‘/
/ vi(y,t)
l/ 1 | ({(/
) _ " )
Zl

Figure 3.7. MODEL OF A ONE-STORY BUILDING WITH TWO END WALLS.




E1 = Young'’'s modulus for the roof.

I, = Moment of inertia about the center—~line (parallel to the y’-
axis) of roof cross—section.

k, = Shear rigidity of wall cross—section (k2 = k'A6,) .

k' = Shape factor.

A, = Area of cross—~section of wall.

62 = Shear modulus of wall.

m, = Mass per unit length of roof.

m, = Mass per unit height of wall.

Let u(x’,t) be the displacement in the z'—~direction at time t of
point x' of the roof. Similarly, let vl(y',t) and vz(y',t) be the dis—
placements in ;he z';direction at time t of points y’ in the right and
left end walls, respectively. The equations of motion for free vibra—

tions for the system comsisting of roof and end walls can be written as:

4 Ao 2 ’ :
E I M = -m Q—.‘L(E—Ji). (3e198)
i1 .4 1 2
ax it
azvi(y',t) azvl(y',t)
k2 “‘——‘3——— = m, ——‘“—3——‘- (3.19)
ay’ at
azvz(y',t) azvz(y',t)
kz ‘—‘—'—E'—-' = m, “““7{"" (3.19¢)
ay’ at

It will be usefunl to carry out the further development in terms of

nondimensional coordinates. Letting




-— 59 -—
x' Nl
x =1 ’ y=3 (3.20)

and substituting these into the equations of motion gives

4

a4u$x,t2 - - mlL azugx,tl (3.21a)
ax? By Iy ol

82v (y,t) m h2 62v (y,t)
1 2 1

"“‘5"‘ = ""‘E“‘ : (3.21b)
ay 2 at

and
82v (y,t) m2h2 82v (y,t)
—2 7 _ 2
> = 2 (3.21¢)

3y 2 at

Separation of variables is used to solve the problem of free vibra—

tions of the system. Let

w(x,t) = U(x)el®t (3.22a)
v (5, t) = VY (pet (3.22b)
vy(z,t) = Vy(yet (3.22¢)

where w is the natural frequency of the motion. Substitution into equa-

tions (3.21a, b, ¢) gives

(3.23a)
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— +* BV, =0 (3.23b)

—— + B8V, = 0 (3.23¢)

where

o (3.24)

The solutions for the above equations can be written as

U(x) = A1 sin ax + A2 cos ax + A3 sinh ox + A4 cosh ax (3.25a)
Vl(y) = B1 sin By + By cos Py ' (3.25b)
Vz(y) = B'; sin By + B', cos By (3.25¢)

where the A’s and B's are constants to be determined by the governing

boundary conditioms.

Since the structure is symmetric about the y’—-axis, it possesses
symmetric and antisymmetric modes of vibrations, It is convenient to
solve for the two types of modes separately, by making use of symmetry

and by analyzing only the right half of the structure.
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(a) Symmetric Modes

For the symmetric modes (or translational modes), there will be

zero slope and

zero shear at mid—span of the roof. The following are

the boundary conditions for the right half of the structure:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Slope at mid-span of roof 1is zero:
du =
iz (z=0) = 0
Shear at mid—span of roof is zero:

3

40 c0) = 0
3 .

dx

Displacement at the bottom end of wall is zero:
Vl(y=0) = 0
Displacements at the corner match:
U(x=1) = Vl(y=1)

The shears at the junction balance

3 av
L= = g T (D)
dx y
k2L3
where, q =
1 E,I.h
171

The moments at the junction balance:

(3.26)
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4a8v - au __
2 (x=1) 9 3% (z=1)
dx
C2L
where, q, = T (3.27)
2 E. I
171

and, C2 is the torsiomal rigidity of the end walls.

The boundary conditioms (i) and (ii) require,

by ot k-0

Similarly from boundary condition (iii)

From (iv), (v) and (vi), ome obtains,

A2 cos a + A4 cosh a B, sin B (3.28a)

a3[A2 sin a + A4 sinh a] QIB B1 cos B (3.28b)

and

az[—Az cos a + A4 cosh a] = —qzu.[-A2 sin a + A

4 sinh a] (3.28¢c)

The determinant of these three equations can be solved to obtain

the following characteristic equation for the natural frequencies, and
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and the equations can then be solved for the mode shapes:
(¢ cosh a + q, sinh a)(a3 sin ¢ sin B - qlﬁ cos a cos B) +

+ (a cos a + 4, sin a)(a3 sinh @ sin B - 4,8 cosh a cos B) =0 (3.29)

U(x) = A[(a cosh a + q4y sinh a)cos ax + (a cos a + 4, sin a) cosh ax]
0<x<1 (3.30a)
and
cos ala cosh a+q, sinh a) + cosh a(a cos atq, sin a)
Vl(y) = A[ sin B —= ]sin By
0<ys1 (3.30b)

where A is an arbitrary constant.

The mode shapes for the left half of the structure can be obtained

by symmetry. Hence, for the whole building, the mode shapes are

U(zx) = A[(a cosh a + q, sinh a) cos ax + (a cos a + 4y sin a) cosh ax]
-14x<1 (3.31a)
. cos a{a cosh a + q, sinh a) + cosh a(a cos a + 4, sin a)
Vl(y) = A sin P

-

sin By 0<y<1 (3.311)

and
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cos al{a cosh a + q, sinh a) + cosh a(a cos a + 4y sin a)]

Vz(y) = A[

sin B

sin By 0<y<1 (3.31¢)

For a given structure, equations (3.24) provide @« and B as func~
tions of the frequency w. Thus, one can solve the characteristic equa-
tion (3.29) and obtain natural frequencies of the system. For known
frequencies, the corresponding mode shapes are given by equations

(3.31a, b and ¢).

(b) Antisymmetric Modes

For antisymmetric modes (or torsional modes), there will -be zero
isplacement and zero moment at the mid-span of the roof. Thus, the

boundary conditions are

(i) U(x=0) = 0
dzU
(ii) — (x=0) = 0
2 _
dx
(iii) Vi(y=0) = 0
(iv) U(x=1) = Vl(y=1)
3 av
(v) g"'ll(x=1) = gq -1 (y=1)
4 3 1 dy
x
k2L3
where, ¢ =
1 ElIlh
a%y du
(vi) “‘E (x=1) = -4, E— (x=1)
dz
C L
where, q2 = Efi—
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These boundary conditions can be applied to equations (3.25a) and

(3.25b) to obtain the following characteristic equation and mode shapes:
(¢ sin a - q, cos a.)(a3 cosh a sin B - q, B sinh @ cos B) -
- (@ sinh a + 4, cosh a.)(a3 cos @ sin B + ¢,B sin a cos B) =0 (3.32)

U(x) = A[(a sinh a + g, cosh a) sin ax + (@ sin a - 4, cos a) sinh ax]

0<x<1 . (3.33a)
r
| (e sinh @ + q, cosh a)sin a + (@ sina - q, cos a) sinh a
V. (y) = A 2 2 .
1ty = l sin B
‘ sin By 0<y<1 (3.33b)

where A is an arbitrary constant.

The mode shapes for the whole building can be obtained from the

antisymmetry condition, as:
O(z) = A[(a sinh o + g, cosh a) sin ax + (a sin ¢ — q, cos a) sinh ax}

-1<x<1 (3.34a)

(¢ sinh o + 4y cosh a) sin a + (a sin a — q, cos a) sinh a]

Vi(y) = A[

sin B

.

sin By 0<y<1 (3.34b)
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¢

(¢ sinh @ + g, cosh a) sin @ + (e sin @ - g, cos a) sinh a
Vo(y) = -A

sin $

sin By 0<y<1 (3.34¢)

Here again, equation (3.32) can bé solved to obtaim mnatural
frequencies, and equations (3.34) give corresponding mode shapes., It is
important to note here that the way this problem has been formulated,
the contributions of any longitudinal walls to the torsiomnal stiffness

of the system are neglected. Also, the polar moment of imertia of the

oof is wunderestimated. The two effects are small for long and narrow

T

ruildings, and they have opposite influences on the values of the tor—
Tional frequencies. Typically, the first effect is more important.
There are instances where these factors are important enough to be
incilunded in the analysis for torsional modes. To do so within the
present framework, one can simply increase the wall stiffness and the
floor mass used in the calculation to the values that are appropriate

for the actual building., The new stiffness and mass can then be used

for the analysis of the antisymmetric modes.

Limiting Case

In most applications, it is thought acceptable to neglecf the tor-
sipnal rigidity (CZ) of the end walls. The resulting, simpler solutions
(characteristic equations and mode shapes) can be obtained by taking the
limit, as 4, approaches zero, in the expressions derived above. Hence,

for symmetric modes, the characteristic equation and the mode shapes
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reduce to:

as(tan e + tanh a) - 2q4Bp cot B = 0 (3.35)

and
U(x) = A[cosh @ cos ax + cos a cosh ax] (3.36a)
Vl(y) = 2A cos a cosh a cosec B sin By (3.36b)

and
Vz(y) = 2A cos a cosh a cosec B sin By (3.36¢)

Similarly, for antisymmetric modes, the characteristic equation and

the mode shapes are:

a>(coth a - cot a) - 294 cot B = 0 (3.37)
U(x) = A(sinh @ sin ax + sin o sinh ax) (3.38a)
Vi(y) = 2A sin o sinh a cosec B sin By | (3.38b)
Vo,(y) = -2A sin « sinh a cosec B sin Py (3.38¢c)

Orthogonality of Modes

The following analysis demonstrates the orthogonality of the modes

of vibration. Let 0, and Ui(x), Vii(y). Véi(y) be the natural frequency

th

and mode shape for the i mode ., Similarly, O, Uk(x), Vlk(y) and

V2k(y) correspond to the kth mode. Substitution into equations (3.23a,
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4
a’U_ (x) _mL
ax4 gL
sz (y) h
EAL AN
dy2 k2
2
&V, () . m,h
dy? ky
d4Uk(x ) _ mlL
axt EL
V. (y) m.n
1x 'Y L 2
dy? ky
V.. (y) m.h
2k 'Y . =2
dy2 k2

From these equations, one obtains

d4UkU m L4
- —0U,jdx -
axt 1 gL
2 2
d V1k I m,h
; 19Y .
dy2 1i kz

2
miUi(x) = 0
2
0Vl = 0
2
@ Vo3 = 0
(l)]iUk (X ) = 0
2
o V(@ = 0
2 2 _
OpVox(y) = 0
1

2 2
(mi wk) J; Uidex =

1
2 2
(wi o) g Vy3V149y

0

(3.39a)

(3.39)

(3.39¢)

(3.40a)

(3.400)

(3.40¢)

(3.41a)

(3.41b)
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17.2 2 1 2
a’v,. d Vék

m

2i 2

‘g 2 VT T2 Va|W Ty )£ yiVpgdy = 0 (3.410)
dy dy

Next, integrate the first integrals in these equations by parts, and

apply the appropriate boundary conditions, to obtain

-3 3 1x=1 4 1

a’ U, a"u m L
i 1 2 2
(0F = o) J; U0 dx = 0 (3.42a)

U - U -
i E
des . dx 1lx=~1 111

v, . (y=1) dVlk(y=1) 1
-—-75;—*— Vi (7=1) - iy Vli(y=l)l +

2 1
mbh™ 5,

2
(0] - o) £ Vi Vidy = 0 (3.42b)

+
E1,

dvzi(y=1) dVZk(y=1)

[ W
+

2 1
mbh a2
(wi - o) £ VyiVordy = 0 (3.42¢)

EI,

+

However,
U(x=1) = Vi(y=1)

Ulz=-1) = Y,(y=1)

E. I, .3 k., dv
131 d ‘3] (x=1) = h2 dl (y=1)
L’ dx y

dav
= _Z -2
T (=71 = iy (y=1)
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Hence, equations (3.42a,b,c) can be combined to obtain

Thus, the modes are orthogonal, with

given by equation (3.44),

The equations of motion,

4

a4u$x,t2 + mlL azufx,tz
ax? BT g

2 2,2
3 vl(y,t) m,h" 3 vl(y,t)

including earthquake

the roof and the walls can be written as:

1 1
) j
(0 = u) [m L J U,U dx + myh I Vy Yy dy + mh ! A
1 1 1
m L J; U,Udx + myh { V, .V, dy + myh g Vy Yy dy = O

orthogonality

Participation Factors for Earthquake Ground Motion

mlL4 .o
u (t)
E, I, 8

m h2 LN

ay? ) at?

and,

2 2 .2
d Vz(y,t) _ mzh d V2(Y,t)

u (t)
g

Ll 58

m2h L

ay? k, at2

" ug(t)

=90

(3.43)
(3.44)
condition

ground motion, for

{3.45a)

(3.45b)

(3.45¢)
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where ug(t) is the earthquake ground acceleration in the z’-direction.

Expanding the response in terms of the normal modes of the system

et = ) T
vl(y,t) = 2;1 Vli(y)Ti(t)
and
Vo (7,t) = ) Y, (T (1)

i=1
Substituting these into equations (3.45a,b,c) yields

4 4

a*v, m L .. mL* ..
T, + 0T, = - u (t)
T dx4 i Ell1 T i7i ElI1 g
d2V11 m2h2 .o m2h2 .o
Y T e L VuTs = e m()
i dy 2 i 2
and,
2 2. 2
e A T
i dy 2 1 2 &
Substitution from equations (3.39a,b,c) gives
Vo070 + ot mr,0] = -u @
- L7 i itit®ty g

(3.46a)

(3.46b)

(3.46¢)

(3.47a)

(3.47b)

(3.47¢c)

(3.48a)
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;[vli(y)rim + 0V (DT (8] = -u () (3.48b)

and

o

g )
L [V ;DT 0) + 030y, T )] = —u o) (3.48¢)

Next, multiply equation (3.48a) by m1L Uk(x), equations (3.48b,¢) by

mzhvlk(y) and mzhvzk(y) respectively, integrate and add together to get

1 1 1
Y mlLJ'lUi(x)Uk(x)dx + myh t[Vli(y)Vlk(y)dy + myh ‘[VZi(y)VZk(y)dy
- J

) <.T.i (t) + mi Ti(t)>

1 1 1
= -|mL _flnk(x)dx + myh z[vm(y)dy + myh £v2k<y)dy w (t)  (3.49)

Finally, one applies the orthogonality condition to obtain

1 1 1 ]

m L _jl(uk<x)>2dx + myh l[(vlk(y))zdy + myh ‘[(Vzk(y))zdy C (T, + elT)
1 1 1 )

= -|mL lek(x)dx + myh I[vm(y)ay + myh I[VZk(y)dy n (t) - (3.50)

or
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.o 2 .o
Tk + kak = —Pkug(t) (3.51)
where Pk is the participation factor corresponding to the kth mode,
given by
1 1 1
m L[ U (x)dx + mzhgvlk(y)dy * mzhz[VZk(Y)dy
=1
Pe = 1 1 T (3.52)

2 2 2
mlLJ;(Uk(x)) ax + myn((v,, (y) %y + myn[(v, (v)) %y

Mode shapes from eqmations (3.31a,b,c) and (3.34a,b,c) can bde
substituted to obtain modal participation factors corresponding to a
particular mode. For antisymmetric modes, substitution from equations
(3.34a,b,c) into equation (3.52) gives zero modal participation factors.
Hence, as could be anticipated, the assumed uniform ground motion does

not excite antisymmetric modes in this symmetric structure.

3.5 PERTURBATION METHOD FOR FUNDAMENTAI, NATURAIL FREQUENCY

In the previous section, the characteristic equations obtained for
the natural frequencies of the building are transcendental in nature,
and have to be solved numerically. Although it is not difficult to
solve these equations on a programmable calcnlator, it is of interest to
have a simpler way of solving them, even if the solution is approximate.
In this sectiom, it 1is shown that one can use perturbation theory to
obtain the fundamental natural frequency of the system without having to

solve the equation numerically. In many applications, the fundamental
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frequency may be the only frequency of real comncern, as most omne—story

structures are rather stiff and have high frequencies of vibration,

For a long, narrow one—story building with only two end walls in
the transverse direction, the fundamental natural frequency of the
building is close to the fundamental natural frequency of the roof when
treated as a pinned-pinned beam. Thus, one can take the simple solution
for the simply-supported beam as the unperturbed solutior  for such
buildings, and seek the first order correction term in order to obtain
an approximate solution for the first natural frequency of the whole

system,

Let Wy be the fundamental mnatural frequency of the roof when

treated as a pinned-pinned beam (e.g., Meirovitch, 1975). Thus,

4 /
R LA
0 ElIl 0
4 4
_ mlL_ 11 Elll
11y 16m1L4
which gives,
i
e = 5 (3.53)

Let the correct solution for equation (3.29) be a. Then,
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- O(a2
a = o5 +ayt O(al) (3.54)

where ay is the first order correction term and is small compared to «a.
The analysis then proceeds on the basis that terms containing higher

powers of a; can be neglected. From equation (3.24)

2
g2 - Sl b
k2 4
mlL
or,
2 2
g = p(a0 + al) = p(%r + nal) (3.55)
where,
2’%
E,I.h
p =211 (3.56)
4
mIkZL
Since ay is small,
sin a = sin(% + al) = cos a4 =1
cos a = cos(% + al) = -sin @, & - ay
. _ . n
sinh ¢ = sinh (2 + al)
= sinh % cosh al + cosh % sinh al

— = 2.,3013 + 2.5092a1

and,

= pid
cosh a cosh (2 + al)

= 2.,5092 + 2.3013a1
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Substitution of these into equation (3.29) gives a linear equation in

(112
i 2
(15.28 + 17.84q,) sin (3 p) + 6.19pq,q, cos (=~ p)
2 4 19 4
2 ,
[(29.18 + 36.48q, - 19.45p"q,q,) sin (“4- )

2
+ (47.99 - 19.45q, + 56.04q, + 7.88q,q,)p cos (%r P)]

Here p,ql,q2 are fanctions of the structural properties and have been
defined earlier. Substitution of these into this equation gives the

correction to be applied to %5 i.e.,

The frequency of the first mode of vibration is found from ¢ via equa-

tion (3.24).

Neglecting the torsional rigidity of end walls (q2 -3 0), the equa-—

tion (3.57) can be simplified further to

2
15.28 sin (’{;- p)
@ = > 2 (3.58)
29.18 sin (1‘4— D) + (47.99 - 19.45q,)p cos (’I; p)

Similar expressions can be obtained for antisymmetric modes of
vibration. For this, the unperturbed solution (ao) can be obtained from
the natural frequency for the first antisymmetric mode of the roof when

reated as a pinned-pinned beam.
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3.6 OTHER CASES OF SINGLE-STORY BUILDINGS

A particularly simple stfucture was chosen in section (3.4) to
demonstrate the method. However, the technique is more general and can
be applied to other simgle—story buildings. This section explains how
some of the more general problems can be formulated and solved.

3.6.1, Symmetric Buildings with End Shear Walls and Distributed
Columns

In the previous section, any columns between the end walls were
assumed to take only vertical loads. However, one can easily include
the lateral stiffness of these colummns in ;he analysis, In this case,
the roof and the end walls can be treated as bending and shear beams,
respectively, as was dome in section (3.4)., The columns between the end
walls can be modelled by uniformly distributed, thin columns with only
bending flexibility, provided the spacing between adjacent columns along
the x'—axis is not large. This leads to boundary conditions at the top

end of the columns similar to those discussed in sectiom (3.3.3).

Consider ome such building (Figure 3.8). Let w(x’,y’.,t) be the
displacement at time t, in the z’-—direction, of a point (x',y’) in the
continuum modelling the colummns. Let E3 be the modulus of -elasticity,
1*3 be the moment of inertia per unit width and m*3 be the mass per unit
area (in elevation) of the column continuum. Properties for the walls

and the roof are the same as defined in section (3.4). The governing

equations for free vibrations in the nondimensional coordinates are:
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Figure 3.8. (a) ONE-STORY BUILDING WITH END SHEAR WALLS AND DISTRIBUTED
COLUMNS. (b) DISTRIBUTED IDEALIZATION.
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4 4

’ *
stae) | M otuen) _ Fafst olwaveili (3.598)
ax? B a2 E,I,h ay°
171
azvl(y,t) m2h2 azvl(y,t)
—_— . e ——ee—— = () (3.59b)
2 k 2 *
ay 2 ot
a%v, (y,t)  mnl a’v, (y,t)
2 y) 2 _
> - 2 = 0 (3.59¢)
ay 2 at
and
* 4
4 m,h 2
0 wx4 t + 3 *6 wx2 t = 0 (3.59d)
oy E;I, at

Considering only the right half of the structure, the following are

the boundary conditions:

(i) vi(y=0,t) = 0
(ii) w(x,y=0,t) = 0
. 3w _
(iii) ay (x,y=0,t) = 0
azw
(iV) _(x,Fl,t) = 0
3 2
y
(v) u(zx=1,t) = vl(y=1,t)
(vi) u''(zx=1,t) = 0
(vii) u' ' (x=1,t) = qlvl'(y=1,t)
(viii) u(x,t) = w(x,y=1,t)
(ix) u'(x=0,t) = 0 (for symmetric modes)
u(x=0,t) = 0 (for antisymmetric mode)

(x) u' '’ (x=0,t) = 0 (for symmetric modes)



u’’(x=0,t) = 0 (for antisymmetric modes)
Here condition (iv) is valid if the columns are free to rotate at their
top ends. However, when there are rigid beams connecting the columns
along the z'—axis, this cannot be applied; such a case is discussed in
the next sub—section. Condition (vi) corresponds to zero torsional

stiffness of the end walls.

The above differential equations and the boundary conditions can be
combined together and solved. The resulting characteristic equations

and mode shapes are given below:

(a) Symmetric Modes

The characteristic equation is given by

4

(i) For a” > O:

as(tan a + tanh a) - 2q1ﬁ cot § = 0 (3.602)
. s 4
(ii) For a < 0
3 (cosec 2E + cosech 2&) _
48 (tan & tanh & + cot & coth &) T 4yf cot = 0 (3.60b)
where
4 4
4 m, L 2 E3I*3L 73(1 + cos ¥ cosh v)

@ T g1 * - 3 (sin y cosh v — sinh y cos 7) (3.61a)
171 ElIlh

B2 = 2—o " (3.61b)




- 81 -~

*h4

m

y* = E3I,, w? _ (3.61c)
3473

s 4

et = —9;- (3.61d)

The mode shapes are

Ux) = AffRsex, coshoax] g o hy (3.62a)
U(x) = Alsin &x sinh &x + cot & coth & cos &x cosh &x]
for a<0 (3.62b)
Vl(y) = Vz(y) = 2A cosec B sin By for a4>0 (3.62¢)
Vl(y) = Vz(y) = A cosec P cos & cosh § (tam & tamh ¢
+ cot & coth E) sin By for at<o (3.624)
W(x,y) = C(x) [Hl200 2 Slb 1Y _ 0827~ ¢oshIv] (3.62¢)
" where
Clx) = u(x) {sinx* sioh y)(cos v+ cosh v) (3.63)

2(sin y cosh ¥ — cos y sinh ¥)

and A is an arbitrary constant,.

(b) Antisymmetric Modes

For the antisymmetric modes, the characteristic equation is given

by

4

(i) For o > O:
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as(coth ¢ - cot a) — quﬁ cot B = O
. 4 .
(ii) For a < O:
3 (cosec 28 — cosech 2¢&) _
4" Ttam £ coth £ + cot £ tank ¢) & P cot B =0

where a, B and & are given by equations (3.61a,b,c,d).

The mode shapes are given as follows:

U(x) = afsinex, sinhoax] ., 4
U(x) = Alsin Ex cosh £€x + cot & tanh & cos &x sinh £x)
for a*<o
Vl(y) = =V,(y) = 2A cosec B sin By for ¢4>0
Vl(y) = -Vé(y) = A cosec P cos & sinh & (tan & coth &
+ cot & tamh &) sin By for a4<6
o) = oo [T s o]
Lhere,
c(x) = Ulx) (sin y + sinh v)(cos y + cosh y)

2(sin y cosh ¥ — cos y sinh ¥)

and A is an arbitrary constant.

(3.64a)

(3.64b)

(3.65a)

(3.65b)

(3.65¢)

(3.654)

(3.65¢e)

(3.66)

The orthogonality condition and the modal participation factors can

?e obtained following a procedure similar to the one used in section
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(3.4). Again it will be found that all antisymmetric modes have zero
participation factors for uniform ground motion.

3.6.2 Symmetric Buildings with End Shear Walls and Distributed
Portal Frames

This situation is similar to the previous case, except that now
there are transverse beams (along the z’—direction) that connect the
columns at the roof level. Thus, the columns aligned with the z’-axis,
along with the correspondiﬁg beam on top, act as a portal frame and the
top end of the column is not free to rotate. Therefore, the boundary
condition (iv) of section (3.6.1) is no longer applicable. Instead,
another boundary condition can be found from the analysis of portal
frames that gives a relation between the moment and the angle of rota—
tion in the column at y = 1. For instance, if the beam is much more
rigid than the columns, no end rotation will be allowed at the top end.

In that case, condition (iv) in the previous section will be replaced by
aw =
ay (x:y_l,t) = 0

The rest of the boundary conditions of the previous case are the same,

and hence, the problem can be solved following a similar procedure.

However, in this type of building, another complication may arise
if there are longitudinal roof beams as well, and the junctions between
the longitudinal and transverse beams are designed to resist moment. In
that case, the Abeam grid at the roof level acts as a shear beam, and

hence, it becomes necessary to treat the roof as a bending—shear beam.
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On the other hand, such a beam grid tends to make the roof diaphragm
quite stiff, and it may be possible to treat the roof as a rigid

diaphragm. This makes the problem considerably simpler.

3.6.3 Buildings with Two Similar End Walls and One Wall in the Center

One-story bniidings with only end walls may have very large 1a£era1
displacements at the mid-span of the roof during an earthquake. Omne
effective and convenient way to control this is to add another wall in
the center. Consider one such structure (Figure 3.9). Let k3 (=k'A363)
and mg be the shear rigidity and the mass per unit height, of the wall
in the center. The properties for the roof and the end walls are the
same as in section (3.4). The dynamic equations of motion for the free

vibrations, in terms of dimensionless coordinates x and y, are:

a4u§x,t) + m1L ngfx,tz _
y EI 3 = 0 (3.67a)
9x 171 at
azvl(y,t) m2h2 azvl(y,t)
-————5—-— - E B s = 0 (3.67b)
oy 2 at
o%v,(7,t)  myn® a%v,(y,t)
2 2 - .
> - = 5 = 0 (3.67¢c)
ay 2 at
and
2 2.2
Awl(y.t) _ M3D 3wy, t) 0
5 ” ’ = (3.674)
dy 3 at
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T

vz(y',T,)//

Figure 3.9. MODEL OF A ONE~-STORY BUILDING WITH TWO END WALLS AND ONE
WALL IN CENTER.
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where w(y,t) is the displacement in the center wall.

Since the structure is symmetric, the symmetric and antisymmetric
modes can be analyzed separately, and omnly the right half of structure
need be considered. Following are the boundary conditions applicable to

the right half of the structure:

(i) vi(y=0,t) = 0
(ii) w(y=0,t) = 0
(iii) u’(x=0,t) = 0 (for symmetric modes)
u(x=0,t) = 0 (for antisymmetric modes)
(iv) u' '’ (x=0,t) = % aaw'(y=1,t) (for symmetric modes)
u ' (x=0,t) = % quu’(x=0,t) (for antisymmetric modes)
k3L3
where, a3 = E1I1h
q4=E£31£'
111

and, 03 is the torsional rigidity of the center wall.

(v) u(x=0,t) = w(y=1,t)

(vi) u(zx=1,t) = v1(y=1.t)
(vii) w't(x=1,t) = q,v'(y=1,t)
(viii) w''(x=1,t) = -gyu’(x=l,t)

EQuationsr(3.655 and the boundary conditions, as above, can be
combined and solved to obtain the governing characteristic equations for
the symmetric and antisymmetric modes as was done in sectiom (3.4).

However, this involves a considerable amount of algebra.




The method developed in this chapter can be applied to even more
complex structures than those analyzed herein., The principal limitation
is that as the structures get more complex, the algebra gets consider—
ably more involved; and as a result the method loses the advantage of
being simple., Even under these circumstances, there may be instances
when the method is preferable to the finite element or lumped—-mass

methods.
3.7 NUMERICAL EXAMPLE

In order to illustrate the method described in this chapter, a
single—story building with two identical end walls has been analyzed
numerically to determime natural frequencies and mode shapes. The solu—
tion also allows comparison of natural periods obtained using several
assumptions, e.g., neglecting the torsional stiffness of the end wall;,

etc.

For convenience, the properties for the example structure have been
derived from the top story of the two—story Administrative Building at
Arvin High School, discussed in the previous chapter. The appropriate
data have been obtained from Steinbrugge and Moran (1954), Blume, et al.
(1961), and Blume and Jhaveri (1969). The following are the building

properties taken for the analysis:

Roof: span (2L) 197.0 ft

weight (mlg) 3770 1bs per ft

modulus of elasticity (El) 2.0 X 106 psi
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66.2 X 106 (in)4

moment of inertia (Il)

End Wall: height (h)

= 14'-11"
weight (ng) = 3300 1bs per ft
shear modulus (GZ) = 0,855 X 106 psi
area of cross section (A2) = 3160 sq in
shape factor (k') = 0.833
width of wall (b) = 352 in
thickness of wall (¢) = 9.0 in

The characteristic equations (3.29) and (3.32) for symmetric and
antisymmetric modes, respectively, were solved for ghese properties.
The roots give the natural frequencies for the example structure. In
addition, characteristic equations (3.35) and (3.37), which correspond
to zero torsiomal stiffness of the end walls, have been solved.
Finally, equation (3.57) was used to approximate the fundamental
frequency using the perturbation method. The natural periods obtained
as indicated above and from modelling the roof by a pinned-pinned beam
are given in Table (3.3). A comparison of these periods indicates that
neglecting the torsional stiffness of the end walls does not introduce
any significant error in the calculation of the 1lower frequencies.
Al;o, in this example the perturbation method gives a very good estimate
for the fundamental period, while avoiding the mneed to solve the

|transcendental characteristic equation.
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TABLE 3.1. NATURAL PERIODS FOR THE SINGLE-STORY BUILDING
Torsional |Torsional Roof Perturba-
Stiffness |Stiffness Modelled tion
of Wall of Wall as Pinned- Me thod
Included |Neglected |Pinned Beam etho
(Sec) (Sec) (Sec) (Sec)
First symmetric mode 0.283 0.283 0.279 0.284
First antisymmetric mode 0.0743 0.0744 0.0697 -
Second symmetric mode 0.0367 0.0367 0.0310 -
Second antisymmetric mode 0.0246 0.0246 0.0174 -
Third symmetric mode 0.0185 0.0185 0.0111 -
Third antisymmetric mode 0.0135 0.0135 0.0077 -
The mode shapes liave been obtained using equations (3.31) and

(3.34) and the first six are given in Table (3.4), while the first four

are plotted in Figure (3.10). It is obvious from these mode shapes that

the floor flexibility dominates the dynamic response of this example.
For instance, in the fundamental mode, the center of the roof moves 45
times as much as the ends of the roof,

The modal participation factors for the symmetric modes were
obtained from equation (3.52), and are given in Table (3.4). They are
normalized by the displacement of the top of the end walls., The low

numerical value for the participation factor for the first mode does not

imply a relatively small contribution from that mode, because the

participation factors depend on the way the mode shapes are normalized.
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Figure 3.10. MODE SHAPES FOR THE SINGLE-STORY BUILDING.
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TABLE 3.4. MODE SHAPES AND PARTICIPATION FACTORS FOR THE ONE-STORY

BUILDING
First First Second Second Third Third
Symmetric [Torsional |Symmetric Torsional Symmetric Torsional

Mode Mode Mode Mode Mode Mode
U(x=0) 45.36 0.00 -1.32 0.00 0.51 0.00
U(x=0.1) 44.81 1.51 -1.20 -0.30 0.42 0.44
U(x=0.2) 43.19 2.88 -0.85 -0.51 0.18 0.66
U(x=0.3) 40.53 3.99 -0.33 -0.58 -0.12 0.56
U(x=0.4) 36.89 4.76 0.25 -0.49 -0.37 0.20
U(x=0.5) 32.37 5.09 0.80 -0.25 -0.48 -0.26
U(x=0.6) 27.08 4.98 1.23 0.08 -0.40 -0.58
U(x=0.7) 21.15 4.43 1.47 0.42 -0.14 -0.58
U(x=0.8) 14.71 3.52 1.48 0.70 0.23 -0.24
U(x=0.9) - 7.94 2.33 1.30 0.89 0.63 0.34
U(x=1.0) 1.00 1.00 1.00 1.00 1.00 1.00
V,(y=1.0) 1.00 1.00 1.00 1.00 1.00 1.00
Viy=0.9) | 0.9 0.90 0.91 0.91 0.94 0.98
Vl(y=0.8) 0.80 0.80 0.81 0.83 0.86 0.93
viy=0.71)| 0.70 0.70 0.72 0.74 0.78 0.86
vi(y=0.6) | 0.60 0.60 0.62 0.64 0.68 0.78
Vl(y=0.5) 0.50 0.50 0.52 0.54 0.58 0.68
vi(y=0.4) | 0.40 0.40 0.42 0.44 0.47 0.56
Vl(y=0.3) 0.30 0.30 0.31 0.33 0.36 0.43
Vi(y=0.2) | 0.20 0.20 0.21 0.22 0.24 0.29
Vl(y=0.1) 0.10 0.10 0.11 0.11 0.12 0.15
Vi(y=0) 0.00 0.00 0.00 0.00 0.00 0.00
Partic-
ipation 0.0283 0.00 0.412 0.00 0.650 0.00
Factor

The antisymmetric modes, as expected, have zero modal participation fac-

tors for uniform ground motion.
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CHAPTER IV

IWO-STORY BUTLDINGS WITH FLEXTBLE FLOORS

4,1 INTRODUCTION

The dynamic behavior of two—story, long, mnarrow buildings, 1like
similar single—story buildings, is of significant interest to structural
engineers due to their frequent use as office, school or hospital
buildings. One such two—story school building was damaged during the
1952 Kern County earthquake, and has been discussed in Chapter II. The
discussion in Chapter III about the dynamic behavior of single—story
buildings 1is also wvalid for similar two—, three—, or more—story

buildings and is not repeated here.

It will be shown in this chapter that the techniques developed for
the single~story buildings can be applied to these buildings as well,
The problem that arises in treating the multistory structures with the
&revionsly discussed methods is that the algebra tends to get very
complicated with the increased number of stories., Hence, beyond a cer—
tain number of stories, this method loses the advantage of simplicity.
For such situations, less accurate but simple and economic, methods are

presented in the following chapters.

A two—story building, with identical end walls and no other lateral
load resistance element, is the structure treated in this chapter. A
characteristic equation for the natural frequencies, and expressions for

the mode shapes and the participation factors are given in general form.
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A numerical example, based on the Arvin High School Building, described

~in Chapter II, is used to illustrate the use of the method.

4.2 TWO-STORY BUILDINGS WITH TWO IDENTICAL END WALLS

Consider a two-story building that is long, mnarrow and has two
identical end walls (Figure 4.1). Intermediate columns, if any, are
assumed to take only vertical loads and provide no lateral resistance.
The roof and the floor, having large span to width ratios, are treated
as bending beams. The end walls are presumed to have small height to

width ratios and are modelled as shear beams.

Although it is possible to comsider different story heights and
different wall properties in the first and the second story, for
simplicity of analysis it has been assumed that the two story heights
are the same, ana that the walls are uniform throughout the building
height. Let 2L be length of the roof and the floor, and h be the story
height. Let the following be the roof, floor and wall properties,

assumed to be uniform.

EI’EZ = Young's modulus for the floor and the roof, respectively.

I,,I, = Moment of dinmertia of floor and roof cross sectioas,
respectively.

k3 = k'AéG3 = Shear rigidity of wall cross—section.

k’ = Shape factor

A, =

3 Area of cross—section of the wall.

@
I

Shear modulus of the wall.
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Figure 4.1. MODEL OF A TWO-STORY BUILDING WITH TWO END WALLS.
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m, ,m,,my = Mass per unit 1length of floor, =roof and wall,

respectively.

Since the structure is symmetric about the y’—axis, it is possible
to separate the vibrational modes into symmetric and antisymmetric
modes. It is comnvenient to consider only the right bhalf of the
structure, and to treat the symmetric and antisymmetric modes
separately. Let u(x’,t), v(z’,t), wl(y',t) and wz(y',t) be the dis—
placements in the z'-direction in the floor, roof, and the first and the
second story of the right end wall, respectively. The equations of

motion for free vibrations of the right half of the structure are:

§4u§x',t2 _ azugx',tl
E.I . = -m (4.1a)
171 ax'4 1 2
ot
a4v$x'.t2 _ 62v§x',t2
E,I - = -m (4.1b)
272 Jx'4 2 2
at
azwl(y',t) azwl(y',t)
k3 > = m, 2 (4.1¢)
dy’ at
and
azwz(y',t) azwz(y',t)
k3 '——_“E__- = m3 ——"-?;—‘— (4.14d)

It is useful to perform the further analysis in terms of dimensionless

coordinates, x and y, defined as
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) y =

ot
B (4.2)

Using these coordinates, the equations of motiom can be rewrittem as

4 m L4 2
4 ulx,t) _ 1" 9 u(x,t
4 = - I 2 (4.3a)
ax 171 at
4 m Lt 2
a_viz,t) _ .23 vz, t) (4.3b)
ax* Exly  a¢?
2w (y,t) mh> 32w (y,t)
1 . 3 1
2 = k 2 (4.30)
oy 3 at
and,
02w, (v, t) m,h2 32w, (y,t)
2 3 2
2 = k 2 (493d)
ay 3 at
The analysis uses the method of separation of variables to solve
the problem of free vibrations of the system. Let
a(z,t) = U(x) ¢*f (4.4a)
v(x,t) = V(x) e**f (4.4b)
it
wy(y,t) = W (y) ¢ (4.4c)
wz(y.t) = Wz(y) o 10t (4.44)

where w is the natural frequency of

tions (4.3a,b,c,d) gives

the motion, Substitution imto equa-



4
S -atn = o (4.52)
dx
4
Q—% - B4V = 0 (4.5b)
dx
d2w1 )
= +yVW, =0 (4.5¢)
2 1
dy
d2W2 )
—= +y%w, = 0 (4.5d)
2 2
dy
where,
4 4 2
s ML, s ML, N
e =TF 1.9 o B = EL © ° and y° = @ (4.6)
171 272 3

The solutions for the above equations are:

U(x) = A; sin ax + A) cos ax + A, sinh ax + A4 cosh ax (4.7a)
Vix) = B1 sin Bx + B, cos Bx + B, sinh fx + B4 cosh Bx (4.7b)
Wl(y) = C1 sin yy + C2 cos vy (4.7¢)
W2(y) = Dy sin yy + D, cos vy (4.74)

Here, the A's, B's, C's and D’'s are constants to be determined from the
boundary conditions of the problem. The appropriate boundary conditions
and solutions for the symmetric and the antisymmetric modes of the

structure are listed below.



(a) Symmetric Modes

For the symmetric (i.e., translational) modes, the boundary condi-

tions are:

() 2L (z=0) = o
43
(ii) = (x=0) = 0
dx
(i) L (x=0) = 0
3
(iv) ‘usl'(x=0) = 0
dx
(v) W (y=-1) = 0
(vi) W, (y=0) = U(z=1)
(vii) Wé(y=0) = U(z=1)
(viid) W,(y=1) = V(x=1)
3., . aw, (y=0). dw, (y=0)
(ix) d__lu_:s_—i)_+q__2.____q_1____=o
P 1 dy 1 dy
where,
k3L3
ql = ElIlh (408)
o 3y (x=1) aw,, (y=1)
dx3 ) dy

where,




_99_

k3L3
q, = (4.9)
2 E2I2h
2
(x1i) g_g (x=1) = 0
dx
2
i) @) = o
dx

The last two conditions correspond to zero torsional stiffness of the
end walls., One can write the boundary conditions for finite torsional
stiffness of the end walls, as shown in section (3.3.2), but the example
problem in the previous chapter suggests that this complexity is not

required.
The boundary conditions (i) and (ii) require:
A, = A, = 0 (4.10)
Similarly, from (iii) and (iv),
B, = B, = 0 (4.11)

From (xi) and (xii), respectively,

A, cos a A4 cosh a (4.12)

and,

B, cos B B4 cosh B (4.13)

Thus,
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U(x) = A2 (cos ax + fooij(:z cosh ax)
V(z) = B, (cos Bx + ﬁﬂi; 8 cosh Bx)
From (vi) and (vii), respectively
C2 = 2A2 cos a
and,
D2 = 2A2 cos a
From (v) and (viii), respectively
—Cl sin y + C2 cos vy = 0
and,
D1 sin v + D2 cos Yy = 232 cos B

Conditions (ix) and (x) give,

3. . cos a _. _
Aya [sin a + cosh o Sink al + 4,vD; - ¢;7Cy = 0
and,
3. . cos B . _ _ .
B, [sin B + cosh P sinh B] = 4,¥(Dy cos v ~ D, sin y)

These equations can be combined to obtain the

characteristic equation:

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

following
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3 3
- 2 - =%~ (tan @ + tanh a)tan v{(tan B + tanh B)sin v
2q,7 29,7

+ (tan @ + tanh a)sin y + tan y sin y — cos v = 0 (4.22)

2q

Here, a, B and y are known functions of w .(equations 4.6), and 44
and q, are known parameters for a given structure (equations 4.7, 4.8).
Thus, equation (4.22) can be solved to obtain the natural frequencies of

the symmetric modes of vibration of the structure. The mode shapes are

given by
) cos @
U(x) = Aj(cos ax + J—= cosh ax) 0<x<1 (4.23a)
V(z) = B,(cos Px + ﬁsf% cosh Bx) 0¢x<1 (4.23b)
Wl(y) = C1 sin yy + C2 cos Yy -1<y<0 (4.23¢)
Wz(y) = D1 sin yy + D2 cos vy 0<y«1 (4.234d)
where,
A2 =1 C1 sec a tan ¥y (4.24a)
[ _ e |
B, = % sec B sin y|2 - (tan ¢ + tanh a)tany|C (4.24b)
2 2q,7 1
C, = C, tany (4.24¢)
o
D, = - 247 (tan o + tanh a)tan v|C, (4.244)
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D2 = C1 tan y (4.24e)

The mode shapes for the left half of the structure can be obtained

from the conditions of symmetry.

COosS a

U(x) = A,(cos ax + cosh o cosh ax) -1<x<1 (4.25a)
V(z) = sz/cos Bx + —c%’i-% cosh 8x) -14x¢1 (4.25b)
Wi(y) = Ws(y) =C, sinyy + Cy cos vy -1£y£0 (4.25¢)
Wz(y) = W4(y) =D, sin yy + D, cos vy 0<y«1 | (4.254d)

where W3(y) and W4(y) correspond to the displacements in the 1left end

wall in the first and the second story, respectively.

Thus, for a given natural frequency (obtained from equation 4.22),
the symmetric mode shapes can be obtained from equations (4.24) and

(4.25).

(b) Antisymmetric Modes

For antisymmetric (i.e., torsional) modes of vibration, the

boundary comditions are:

(i) U(z=0) = 0
2
(i1) L8 (x=0) = o0
2
dx

(iii) V(z=0) = 0
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2
(iv) Q‘% (x=0) = 0
dx
(v) Wl(y=—1) = 0
(vi) Wl(y=0) = U(zx=1)
(vii) Wz(y=0) = U(x=1)
(viii) Wz(y=1) = V(z=1)
o) d3U(x=11 . sz(y=0) _ dWl(FO) - o
1x NE 9 day 94 4y
Gy  O¥Ge=l | dW, =1)
x d 3 ) dy
X
y——
(xi) U 1;1 = 0
dx
2.
i) SHEEL
. dx

where qq and q, are given by equations (4.8) and (4.9), respectively.
The last two conditions correspond to zero torsiomnal rigidity of the end

walls.

These boundary conditions can be applied to the solutions of the

differential equations (equations 4.7), to obtain the following
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characteristic equation and mode shapes:

3 3 :
A [é - =%— (-cot a + coth a)tan 7](—cot B + coth B) sin ¥

2q,Y 2947
a3
* Tq v (—-cot @ + coth a)sin v + tan y sin y — cos y =0 (4.26)
qu
_ . sin a . -
U(zx) = Al(s1n ax + o sinh ax) 1<£x<1 (4.27a)
N = . sin 8 . -
Vizx) = Bl(s1n Bx + Zimh B sinh Bx) 1<x<1 (4.27b)
Wl(y) = C1 sin yy + C2 cos Yy -1<y£0 (4.27¢)
W2(y) = D1 sin yy + D2 cos vy 0<y<1 (4.274)
W3(y) = mCl sin yy - 02 cos Yy -1<£y<0 (4.27¢)
W,(y) = -D; sin yy - D, cos vy 0<y<1 - (4.27€)
where,
A1 = ¥ C1 cosec a tan vy (4.28a)
a3 1
B, = % cosec B sin y|2 = 77— (=cot o + coth a)tan v|C (4.28b)
1 2q17 1
C2 = C1 tan vy (4.28¢)
- 1
D1 = {1 - quy (=cot a + coth @) tan chl (4.284d)
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D2 = C1 tan y (4.28e¢)

The roots of equation (4.26) produce the mnatural frequencies for
the antisymmetric modes of the structure. For a particular natural
frequency, equations (4.27) and (4.28) give the corresponding mode shape

of the structure.

Orthogonality of Modes

The following analysis demonstrates the expected orthogonality of
the modes of vibration. Let o, and Ui(x), Vi(x), Wli(y)’ WZi(y)’
W3i(y), W4i(y) be the frequency and the mode shape for the ith mode.
Similarly, Ops Uk(x), Vk(x), Wlk(y), WZk(y)’ W3k(y) and W4k(y)

correspond to the kth mode., Substitution into equations (4.5) gives,

4 4
d Ui(x) mlL

- .0.(x) = 0 (4.29a)
4 EI “ii
dx 171
d4Vi(x) m2L4
- o V.(x) = 0 (4.29b)
4 E.I ii
dx 272
W, () mgp
2 + k miwli(y) = 0 (4.29¢)
dy 3
dzwzi(y) m3h2 5
> * X miWZi(y) = 0 (4.294)
dy 3
dzwsi(y) m3h2 5
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Wy () mgn’
+ oW (y) = 0 (4.29f)
2 k i 4i
dy 3
Similar equations can be written for vibrations in the kth mode . The
.two sets of equations can be combined to obtain
1 -d4Ui d4Uk ] m1L4 s 3 1
| 2o - —F U fax - g (efed) j U0 dx = 0 (4.30a)
~-11dx dx 171
*atv, d4Vk ] m2L4 - 1
2V, - =V, lax - 35 (0h-ud) f V.V dx = 0 (4.300)
-1} dx dx 272
0 'dzwli dzwlk } m3h2
Lo, - Wy (w2-0?) f W, W dy = 0 (4.30¢)
=1} dy dy
a*w, d2w2k m,
{ LWy, - Wy, lay + ) 1[ 5 iVopdy = 0 (4.30d)
0] dy dy
: dzwsi dzwsk "‘3112 z o2 ’
f LW, - W,y T (wie)) f Wy Wady = 0 (4.30e)
~1] dy dy 3
and,
LW, , a’w, n, h2
g - Wag ~ 2 Weildy + (m —oy ) J. WyWypdy =0 (4.30f)

Integrate the first integrals of thgse equations by parts, and

apply the appropriate boundary conditiomns. This gives,




- 107 -

Jx=1
Fd3ui a3uk mlL4 , 3 }
U, - U. - (05-0) U.U,dx = 0
a3 E g3 d E, I Uik J ik
L dx=-1
_ - X=
d3Vi d3Vk m2L4 2 2 1
v, - V. - (w3-02) [ V.vax = 0
3 'k 3 i E,I i % ik
| dx dx 272 -1
dx=-1
[av, ; aw
1i 1k
dy (y=0)Wik(y=0) "‘;— (Y‘O)W (y=0)]
m3h2
+ (w —oy ) J. Wl Wlkdy = 0
- y=1
Doty il g + wi) [ W = 0
| &y 2k T 4y 2 =0 2259
"W
31 (y=0)W,. (y=0) - ——33 (7=0)W, , (y=0)
dy 3k
2 0
m,h
3 2 2 _
* Ty, leimey) ) WyiWgdy = 0
3 -1
y=1
Mo o T w2-u2) [ W o
dy 4k T dy 4i "’ % ‘[ 4:"4x% =
y=0
However, from the boundary conditions,
Wl(y=0) = U(x=1), Wé(y=0) = U(x=1)
Wz(y=0) = U(x=1), W4(y=0) = U(x=-1)

(4.31a)

(4.31b)

(4.31¢)

(4.314)

(4.31e)

(4.311)
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Wy(y=1) = V(z=1), W, (y=1) =.V(z=1)
3 x.L® aw k.13 aw
ayt . _ 3 —2 3 _1 _
3 (x=1) + EI1h @ (y=0) - ELL d (y=0) = 0
dx 11 141t ¢F
3 £.L> aw
a’v ,__ - ——1
;3 (=) = 753 D
dx 272 y
3 3
3 k,L° aw kL’ aw
a°u 3 4 3 3
== (x==1) - — (y=0) —= (y=0) = 0
dx3 Elllh_ dy E].I h dy
and,
3 kL2 aw
S amn - -gh g o
dx 2t W

Equations (4.31) can be combined such that the boundary terms
cancel, and the following is obtained,

1 1 ‘ 0
2 2
(wf-02) |m L J; U,U dx + m,L J; v,V dx + mgh J; W, W dy

1 0 1

+ myh g W, W, dy + mh J; W, W dy + mgh g W, W, dy| =0 (4.32)
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for i#k, mi#wk. From equation (4.32), it follows that

1 1 0

my L J; U;Updxs + m,L J; V;Vydx + mgh J; Wy iWipdy

1 0 1
+ mgh l Wy W, dy + mgh J; Wy Wy dy + mgh i W, Wady = 0 (4.33)

Hence, the modes of vibration are orthogonal amnd equation (4.33)

gives the orthogonality conditionmn,

Participation Factors for Earthguake Ground Motion

The equations of motion due to uniform, transverse earthquake exci-

tation can be written as:

4 m L 2 a1t
3 u(x,t) 1° 37u(x,t) _ 17 °°
ax 11 at 11 &
a1t 2 m, 14
3 vi(x,t) s 232 vix,t) _ _ _2° °°
4 E.I D) = E I ug(t) (4.34b)
ox 272 at 22
62w (y,t) m h2 azw (y,t) m h2 .o
1 3 1 5
ay 3 at 3
82w2(y,t) m3h2 azwz(y,t) m h2 .
> i 2 = ¢ (t) (4.344)
ay 3 at 3 B
a2w (y,t) m h2 62w (y,t) m h2..
3 3 3 3
> - Ty 2 = i ug(t) (4.34e)
oy 3 at 3

and
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62w (y,t) m hz 82w (y,t) m hz e
4 3 4 _ _3
2 - X 2 = 3 ng(t) (4.34f1)
ay 3 at 3

CIY

where ug(t) is the earthquake acceleration in the z’-direction, w3(y,t)
and w4(y,t) are the displacements in the first and the second story of

the left end wall, All other terms have been defined earlier.

First, expand the response in terms of the normal modes of the

system, Let

u(z,t) = Z U, (x)T, () (4.35a)
i=1
v(x,t) = ];1 V. ()T, (£) (4.35b)
wi (y,t) = W, (DT, (2) (4.35¢)
i= :
wz(y,t) = W2i(y)Ti(t) (4.35d)
- 1=
ws(y.t) = Wsi(y)Ti(t) (4.35¢e)
1=
w,(y,t) = 121 W, (3T, (£) (4.35£)

Next, substitute these and equations (4.29) into equations (4.34) to

obtain
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e LY

g [U,(x)T (t) + o] 27, JET(] = —u (t) (4.362)
L IV, ()T, (8) + 0V, (T, ()] = -u (6) (4.36b)
Zi [Wn(y):r.i(t) + 0, W { T (O] = —.u.g(t) (4.36¢)
g [Wzi‘Y).T.i‘t) + oo W (DT (] = -‘u.g(t) (4.36d)
[i [, (DT, (8) + u2W,, (T, ()] = —°u'g(t) (4.36¢)
Zi [W4i(Y)'.T.i(t) + miW4i(Y)Ti(t)] = —.u.g(t) (4.36¢)

These equations can be combined to yield

1 1 0

; m L _fl U;0ydx + m,L Jl V;Vgdx + m3h _!1 Wi dy

1 0 1

* msh z[ Wy i¥pydy + mgh I Wyi¥spdy + mgh z[ WyiVardy
L] il ) 2
<Ti(t) * miTi(t)> ]

1 1 0 1
= ~|mL '[1 U dx + mlL _jl Vydx + myh jl W, dy + mgh l[ W,y dy
L !

0 1
mh __[1 W, dy + mh £ Wypdyfu (©) (4.37)

Finally, apply orthogonality condition (equation 4.33) to obtain
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2
Tk(t) + kak(t) = —Pkug(t) (4.38)

where P,, the participation factor for the kth mode, is given by

1 1 0 1 0 1
mlLJ;dex+m2LJ;dex+m3hJ;Wlkdy+m3thdey+m3hJ;W3kdy+m3h£W4kdyi
1 1 0
mlLJ;(Uk)2dx+m2LJ;(Vi)zdx+m3hJ;(Wlk)2dy

]

(4.39)

1 0 1
smyhf (W, ) 2ay+myn [ (W, ) Zay+m nf (W, ) 2ay
3h) (Woy 3t) (Fax 3h) (W

For a particular mode, substitution of the expressions for the mode
Lhape into equation (4,39) gives the corresponding modal participation
factor., When antisymmetric mode shapes (equations 4,27) are nused in
this expression, they yield zero modal participation factors. Hence, as
anticipated in this symmetric structure, a uniform ground motion does

Lot excite torsional modes.
4,3 NUMERICAL EXAMPLE

As an illustration of the method described in this chapter, the
Administrative Building of the Arvim High School has been modelled and
analyzed in this section., The results of this approximate analysis
include the natural frequencies, the mode shapes and the modal partici-

pation factors for uniform ground motion.
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The properties for the structure have been obtained from
Steinbrugge and Moran (1954), Blume, et al. (1961), and Blume and

Jhaveri (1969). The shear wall near the center in the first story has

been neglected because of its small size and the complexities it causes
and the

in the analysis. The properties of the end walls in the first

second story have been assumed to be the same, and the right and the
left end walls are taken to be identical. The story height for the
first and second story has been taken to be the same.
The building properties used for this example problem are as
follows:
Floor: span (2L) = 197.0 ft
weight (mlg) = 7330.0 1b per ft
moduluns of elasticity (El) = 2.0 X 106 psi
moment of imertia (Il) = 41.0 X 106 (in)4
Roof: weight (ng) = 3770.0 1b per ft
modulus of elasticity (Ez) = 2.0 X 106 psi
moment of imertia (12) = 66.2 X 106 (in)4
Walls: story height (h) = 14,0 ft

area

weight (m3g)
shape factor (k')
shear modulus (G3)

of cross—section (A3)

= 3710.0 1b per £t
= 0.833

6 .
= 0.855 X 10" psi

= 3560.0 sq in
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The characteristic equations (4.22) and (4.26) for the symmetric
and the antisymmetric modes, respectively, were solved to obtain the
natural frequencies of the structure. For these frequencies, the mode
shapes were obtained using equatioms (4.23, 4.24) and (4.27, 4.28), and
equation (4.39) gave the corresponding modal participation factors for
uniform earthquake ground.motion. These results are tabulated in Table

(4.1), and the first four mode shapes are plotted in Figure (4.2).

A comparison of the natural frequencies indicates that the first
natural frequency is close to the fundamental frequency of the second
floor vibrating as a pinned—-pinned beam. Similarly, the second natural
frequency is approximately equal to the fundamental frequency of the
roof when treated as a pinned-pinned beam. This second mode period
(0.29 sec) is in good agreement with the 0.25 sec "horizontal roof-
diaphragm period” reported by Blume, et al. (1961) during their forced-
vibration tests on the same building. The third symmetric mode period
for the structure is 0.061 sec and probably corresponds to tﬁe mode
reported by Blume, et al. (1961) as "fundamental translation mode” with

a measured period of 0.10 sec.

Table (4.2) gives the base shear in the structure in various modes
of vibration under earthquake motion characterized by a constant
Ecceleration spectrum value of 0.20g. As expected, the antisymmetric
modes do not get excited by this type of ground motion and thus
contribute mnothing towards the base shear. It is obvious from Table

(4.2) that the first two modes, dominated by floor or roof vibratiosas,
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Figure 4.2. MODE SHAPES FOR THE TWO-STORY BUILDING.
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TABLE 4.1. PERIODS, MODE SHAPES AND PARTICIPATION FACTORS FOR THE
TWO-STORY BUILDING

First Second First Second Third Third
Transl. Transl. Tors. Tors. Transl. Tors,
Mode Mode Mode Mode Mode Mode
Period 0.498 0.286 0.128 0.078 0.061 0.040
sec sec sec sec - sec sec
U(x=0.0) 76.17 -0.46 0.00 0.00 -1.68 0.00
0(x=0.2) 72.49 -0.41 4,75 -0.25 -1.05 -0.54
U(x=0.4) 61.81 -0.27 7.77 -0.33 0.39 -0.47
U(x=0.6) 45.18 -0.06 7.98 -0.20 1.58 0.15
U(x=0.8) 24,22 0.21 5.34 0.12 1.71 0.72
U(x=1.0) 0.98 0.50 0.92 0.52 0.83 0.82
V(x=0.0) 1.58 24,93 0.00 0.00 -0.48 0.00
V(zx=0.2) 1.55 23.76 0.35 1.63 -0.36 -0.42
V(x=0.4) 1.47 20,37 0.65 2.73 -0.05 -0.54
V(x=0.6) 1.34 15.08 0.86 2.95 0.35 -0.26
V(x=0.8) 1.18 8.40 0.96 2.26 0.71 0.33
V{zx=1.0) 1.00 1.00 1.00 1.00 1.00 - 1.00
W, (y=-1.0) 0.00 0.00 0.00 0.00 0.00 0.00
W (y=-0.8) 0.20 0.10 | 0.19 | o.10 0.17 0.17
Wl(y=—0.6) 0.39 0.20 0.37 0.21 0.34 0.34
W (y=-0.4) 0.59 0.30 | 0.56 | 0.31 0.51 | 0.50
Wi(y=—0.2) 0.79 0.40 0.74 0.41 0.67 0.66
Wl(y=0) 0.98 0.50 0.92 0.52 0.83 0.82
W,(y=0.2) 0.99 0.60 0.94 0.62 0.87 0.87
W2 (y=0.4) 0.99 0.70 | 0.9 0.71 0.91 0.92
Wz(y=0.6) 0.99 0.80 0.97 0.81 0.94 0.95
W2 (y=0.8) 1.00 0.90 | 0.99 | o0.91 0.97 | o.98
W;(y=1.0) 1.00 1.00 1.00 1.00 1.00 1.00
Partici-
pation 0.0178 0.0518 0.00 0.00 0.474 0.00
Factor

Take the 1largest contributions to the total base shear for the
structure. The third symmetric mode, with less pronounced floor and

roof motions, gives a base shear only about 1/3 that of the second mode.

The numerical results suggest another interesting feature that may
gccur in multistory buildings that are relatively uniform and have

flexible floors. In the exzample, the first two natural frequencies are
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TABLE 4.2. MAXIMUM BASE SHEARS FROM SYMMETRIC MODES IN THE TWO-STORY
BUILDING (SA = 0.20g)

Base Shear
Symmetric | Period | Base Shear* (percentage
Mode (sec) (1b) of total
weiggﬁ)
1 0.50 13.6 x 10% 6%
2 0.29 24.3 X 10% 11%
3 0.061 | 7.0 x 104 3%
4 0.042 | 6.4 x 10? 3%

4

*The total weight of the structure is 230 X 10" 1b,

close to the natural frequencies of the floor and the roof when treated
as independent, pinned—pinned beams. Therefore, for multistory
buildings that have nearly identical floors and stiff end walls, some of
the lower frequencies may correspond to floor motions. It can be
expected that such frequencies may be very mnearly equal, 1leading to

additional complications in the analysis and response of the buildings.
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CHAPTER YV

MULTISTORY BUILDINGS WITH END WALLS

5.1 INTRODUCTION

This chapter deals with multistory buildings whose 1lateral load
resistance system consists only of two walls or frames at the two ends
of the building. The one— and two—story counterparts of such buildings

ave been studied in Chapters III and IV, respectively. It was noted in
apter IV that the approach developed in Chapter III could be applied
o buildings with more stories but that the algebra was increasingly

omplex as more stories are considered. Although the approach allows

ne to analyze the system "exactly,” it loses its simplicity for multi-
tory buildings. In this chapter, a simpler approach has been developed
hat allows the analysis of such multistory buildings. However, the

pproach requires some additional assumptions about the building.

In this new approach, the end walls or frames are represented by an
ppropriate beam (bending beam or shear beam). The floors, treated as
eparate beams in the previous chapter, are now modelled as an
quivalent distributed beam system, discussed in section (3.2.3). The
istributed system is attached uniformly along the height‘of the verti-
cal end beams. Thus, the floors are no longer assumed to be attached to
the end walls (or frames) at discrete points, and a single differential
eguation applies to the whole wall. Similarly, only one differential

equation is needed to represent the floors. However, for opractical
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purposes, one has to assume the distribution of mass and stiffness in
the floors and in the end walls to be uniform (or some simple variation)

along the height of the building.
5.2 BUILDINGS WITH END WALLS MODELLED AS BENDING BEAMS

As the height to width ratio of an end wall increases, the wall
tends to behave more like a bending beam and less like a shear beam. In
this sectiom, it has been assumed that the building has two identical
end walls, that have a height to width ratio large enough that the bend-
ing flexibility is much larger than the shear flexibility. Comsider one
v‘such building as shown in Figure (5.1). The building height is h and
the length of the floors is 2L, The following list gives the properties
of the end walls and the distributed floor system. They are assumed to
be uniform along the height of the building. In addition, the floor- .

system properties are uniform along the length of the building.

El’E2 = Young's modulus of elasticity for the floor system and the
wall, respectively.

I*1 = Moment of inertia of floor—-system cross—section per Tunit
height.

I2 = Moment of inertia of the end wall cross—section.

m‘1 = Mass per unit area (in x'-y’' plane) of the distributed floor
systen,

m, = Mass per unit height of the end wall.
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Let u(x',y’,t) be the displacement in the z’—direction, at point
(x',y’') of the floor system at an instant t. Similarly, vl(y’,t) and
vz(y',t) are the displacements in the z'—~direction, in the right and the

left end walls.

The equations of motion for free vibrations of the system can be

written as,

4 2
’ ’ 14 !
E11‘1 3 u(x lf L t) - _m*l u(x - t (5.1a)
ax'’ ot
4 2
9 v, (y',t) 3"v, (y',¢t) 3 1 ot
B, s m, T+ [E1I*1 S ] (5.1b)
ay’ at ax’ x'=L
and,
4 2
3 v, (y',t) a v, (y',t) 3 1 ot
) 2 4 = 2 D) - [EII*I gulx 3 £ ] (5.1¢)
ay’ ot ax’ x'=-L
Let x and y be the nondimemsiomal coordinates defined by:
= 2L = XL
Equations (5.1) can be written in the new coordinate system as
4 me L4 2
n{x,v,t 17 87ulx,v,t)
4 = TE1s 2 (5.32)
ox 171 at
4 4 .2 4
d vl(y,t) mzh a vl(y,t) Ell*lh isu[x=l £)
"“‘z“— = TE1 2 + 3 3 (5.3b)
oy 272 it E IZL ax

2
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4 4 2 4
d vz(y,t) _ mzh 3 vg(yst) _ ElI*lh a3u g=1 ¢

ay? B Iy ae? E, 1,1’ axs

(5.3¢)

Separation of variables is used to analyze the free vibration

problem of the system. Let,

iwt

u(x,y,t) = TUlx,y)e (5.4a)
vi(y,8) = vl(y)ei"’t (5.4b)
vz(y,t) = Vz(y)ewt (5.4¢)

where w is the natural frequency of the motion. Substitution into egqua-—

tions (5.3) produces

atus v m"1"4 2
4 - E I* « U(x:y) = 0 (5.53)
ax 171
v (»  mnt g 1ent 3 -
1 2B o 11*42° 53g
— - e - — & =Ly (5.5b)
dy 213 E.LL° ax
)
vy ma? E.I*. 1% 3
> 2B, 1I*0 3%y
—i— =P vy = - S ey (5.5¢)
dy 212 E,I,L% ox

Because of the symmetry in the structure about the y’—axis, it is
gonvenient to treat the symmetric and the antisymmetric modes of vibra-—

tion of the structure separately.

-
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Symmetric Modes

The following are the boundary conditions
symmetric modes of vibration:
() =0,» = o
3
(10 Ll =0,p = o
ax
P
(iii) (x=1,y) = 0
2
ax
(iv) V1(y=0) = 0
dV1
- (y=0) = 0
(v) dy (y=
a’v,
(vi) ‘—;‘ (yv=1) = 0
d
Y
a’v,
(vii) —= (y=1) = 0
3
dy
(viii) U(zx=1l,y) = Vl(y)

Here,

(iii) assumes that the end walls have

zero

The solution of equation (5.5a) can be written as:

torsional

applicable

to

the

stiffness,
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U(x,y) = Aj(y) sin ax + A, (y) cos ox + Al(y) simh ax
+ A4(y) cosh ax (5.6)
where,
4
m*_ L
a4 = F i*' mz (5.7)
171

and A, (7)., Az(y), A3(y) and A4(y) are some functions of y.
From boundary conditions (i) and (ii),
Al(y) = 0 , A3(y) = 0 (5.8)

Boundary condition (iii) gives:

_ cos a
A4(y) = Zosh o Az(y) (5.9)

Thus,
Ux,y) = Az(y)[cos ax + ﬁff%it cosh ax} (5.10)

From boundary condition (viii)

Vl(y)

Zcos @ (5.11)

Az(y)

Next, substitute (5.10) and (5.11) into equation (5.5b) to obtain

4

d4V1(y)
——-8(» = o0 (5.12)

dy4

Lhere,
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4 4

m.h E.I*.h 3
34 = -2 mz g S S (tan o + tanh a) (5.13)
E.I 3 2
272 EZIZL

The solution for equatiom (5.12) is
Vl(y)- = B, sin By + B, cos Py + B, sinh By + B, cosh By (5.14)

where the B’s are constants to be determined from the boundary condi~

tions of the system. From (iv) and (v),

B, = -B, , B, = -B; (5.15)
Therefore,
Vl(y) = Bl(sin By — sinh By) + Bz(cos By - cosh 8y) (5.16)
From (vi) and (vii),
(-sin B — sinh B)B1 + (-cos B - cosh B)B2 = 0 (5.17)
and,
(=cos B - cosh B)B1 + (sin § — sinh B)B2 = 0 (5.18)

From these equations, the condition for a nontrivial solution 1is

obtained as
cos Bcosh  +1 = 0 (5.19)

and, for each B satisfying equation (5.19)
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- . 8inB + sinh B
B2 cos B + cosh § Bl (5.20)

Hence, equation (5.19) is the characteristic equation for the problem,*
where B is related to the natural frequency o through equations (5.7)
and (5.13). These equations can be solved to obtain the natural

frequencies of the symmetric modes of the structure.

The translational mode shapes for the building are given by,

- _ nlsin By ~ sinh By cos By — cosh By
AR e prpe ey Sy SN B (5.21a)

and

O(z,y) B [M + m_siug]

2 Lcos a cosh a
.[sin By — sinh By _ cos By — cosh ﬁx] -igxsl (5.21b)
sin B + sinh B cos B + cosh B 0<y<1 ¢

Here B is an arbitrary comstant.

Antisymmetric Modes

The following boundary ‘conditions apply to the antisymmetric modes

of vibrations:

(i) U(x=0,y) = 0
2

(ii) i“‘g‘(x=0,y) = 0
ox

* This is the same characteristic equation with different definition
of B that governs the vibrations of a cantilever bending beam.
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u(x=1,y) = 0
ax

(iii)

(iv) Vl(y=0) = 0

dav

(v) ;E}-(y=o> = 0

d2V1
(vi) —= (y=1)

dy2

I
[=]

d3v1
(vii) —3— (y=1)
dy

|
[=]

(viii) U(x=1,y) = Vl(y)

Equations (5.5) can be solved for these boundary conditions in a
manner similar to that for the symmetric modes. The characteristic

equation for these modes is again

cos Bcosh B+1 = 0 (5.22a)
with § now defined by

. mpt o oEment s

g7 = EL O tT 3 5 (-cot @ + coth a) (5.22b)
272 E I L
272

4

m*_ L .
4 _ 1~ 2

@ = Fqx @ (5.22¢)
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Equations (5.22) can be solved to obtain the natural frequencies for the

antisymmetric (torsiomal) modes. The mode shapes are given by

o _ npfsin By - sinh By _ cos By — cosh By
Vl(y) h VZ(Y) - B[ sin B + sinh B cos B + cosh B ] 0<y<l  (5.23a)
and,
_ Bfsin ox sinh ax].
Ux,y) = 2[sin e © “sinh a]
.[sin By — sinh By cos By — cosh ﬂx] 1441 (5.23b)
sin B + sinh B cos p + cosh B 0<y<1 °

where B is an arbitrary constant.

Orthogonality of Modes

Beginning with the differential equations of the two walls and the
distributed beam system modelling the floors, integration by parts and
use of the boundary conditions produnce the expected orthogonaiity condi— -
tion, For Wy # wj, where i and 5] deﬁote two modes of vibrationm, the
condition is

11 1
me. L ‘g —jl U, (2,70, (x,y)dzdy + m, g v, (1Y, (Ddy

1
+ m, g Vy (D (dy = 0 (5.24)
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Participation Factors for Earthguake Ground Motion

The equations of motion dme to uniform ground motion may be written

as:

4 4

a4u X t m*lL azu X t m*lL b
4 T E I+ 2 = s, (0 (5.25a)
ax 171 ot 11 8
4 4 .2 4 4
9 Vl(y,t) m,h” 9 vl(y,t) E I*,h 83u 2=1.v. ¢ m,h” ..
4 T EI 2 - elaslnt) L 2y (1) (5.250)
oy 272 at E,I,L ax 272 8
and,
4 4 .2 L4 4
] v2(y,t) mzh 0 Yg(y,t) ElI*lh 83u g1 ¢ m2h .o
4 TEI 2 T - el=bwt) L L 2 (6)(5.250)
3y 272 at E,I,L 3x 272 &

Here ug(t) is the earthquake acceleration in the z'’—direction.

The normal modes of vibration are used to expand the <response of

the structure. Let

-]

a(x,y,t) = ): U (x,y)T, (t) (5.262)
1=1

vi(y.t) = 1;1 V(I (8) (5.26b)

v,(y.t) = 121 v, (9T, (¢) (5.26¢)

NMext, substitute equations (5.26) into equatioms (5.25) to obtain
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o e e

L [o, T 0 + ot et io] = - (5.272)
i
fi: [V T 0 +ulv 1] = e ) (5.27)
2 e
L [T s oy, o] = - (5.27¢)
i

These equations can be combined to yield,

11

€«

L m*,L JJ. U,Uydxdy + m, g 1iV1x%Y * ™y i 2iV2xd7)
i=1

11 1

£ ] iy 2 — -
(T, + miTi)] = -|ms L XJ; U dzdy + m, g Y, 8y

1
+ m, £ v, dy]ug(t) (5.28)
i
Applying the orthogonality condition (equation 5.24), equation (5.28)

becomes
T, + o, T = —Pk ng(t) (5.29)

where Pk’ the participation factor for the kth mode, is given by

11 1 1
m*lL g J; U dxdy + m, é 1k dy + m, £ Vdey

P, = 1 1 1 (5.30)

2 2 )
(U,)%dxdy + m, { (v, )%y + m, { (V) “dy
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Thus, the mode shapes obtained earlier can be substituted into
equation (5.30) to obtain the corresponding modal participation factors.
As expected, the participation factors are zero for the antisymmetric

modes of vibration.

5.3 BUILDINGS WITH END WALLS (OR FRAMES) MODELLED AS SHEAR BEAMS

Walls with low height to width ratios and moment—resisting frames
of low to moderate height, can be modelled as shear beams. Hence,
buildings whose lateral load resistance system consists of only two such
end walls or end frames can be treated in a manner similar to the pre-
vious section. The only difference is that the walls (or frames) now
have to be modelled as shear beams rather than as bending beams. As
shown in Figure (5§.1), let the building height be h and the plan length

be 2L,

The two end walls are assumed to be identical and uniform
throughout the height of the building. The floors are taken as uniform
along the length and are identical along the height of the building.
Let the following be the mass and the stiffness properties of the

structure:

E1 = Young's modulus of elasticity for the floor system.
I"1 = Moment of inertia of the floor system cross—section per unit

height.
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e
W

frame or wall.

k' = Shape factor

k'A262 = Shear rigidity of the shear beam that models the end

A2 = Area of cross—section of the end wall.
62 = Shear modulus of elasticity for the end wall,
m*l = Mass per unit area (in x'-y’ plane) of the distributed floor

system,

m, = Mass per unit height of the end beam.

Let u(x’,y’,t) be the displacement in the z’~direction,

at point

(x',y') of the floor system at an instant t. Similarly, vl(y',t) and

vz(y',t) are the displacements in the z’—direction, in the right

left end beams. Let x and y be the nondimemsional coordinates

as:

e equations of motion for free vibrations of the structure

ritten in terms of these nondimensional coordinates as

4
*
a4u x,9,t) _ n JL azu X, V.t
t ]
ax4 E 1 1 at2
2 2 .2 2
) Vl(y.t) m,h” 3 vl(y,t) E I*,h" .3
2 T x 2 ", 3 3 =Lyt
ay 2 at k,L 3z

2

%nd,

and the

defined

(5.31)

can be

(5.32a)

(5.32b)
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a2y (yv,t) m, b2 azv (y.t) E,/I* n? .3 .

2 D 2 1- 1" 3°w
> = > + 3 3 (x=-1,y,t) (5.32¢)

ay 2 at kzL ax

As in the previous case, let

u(x,y,t) = U(x,y)emt (5.33a)
v (y,t) = Vy(pe't (5.33b)
v (yit) = Vy(y)e (5.33¢)

where w is the natural frequency of the motion. Equations (5.33) can be

substituted into equations (5,32) to obtain

%oz, v) ln"11‘4 2
4 -Es° U(x,y) = 0 (5.34a)
0x 171
2 2 2
d°v_(y) h E,I*_ 1k 3
L m?k V(1) = - = & xm,y) (5.34b)
d 2 k,L° - ox
2 2 2
d°V, (y) h ) E,I*.h 3
22 + mi m2Vé(y) = ‘l“%r— g—g (x=-1,y) (5.34¢)
dy 2 k2L dax

These equations can be solved separately for the symmetric (transla—
tional) and the antisymmetric (torsionmal) modes of vibration by comsid-

ering only the right half of the structure.
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S etric Modes

The boundary comnditions applicable to the symmetric modes of vibra-

tion are as follows:

(1 Lz=0,m = o
3

(ii) Q‘_g(x=0,y) = 0
ax
2

(iii) 3—3 (x=1,y) = 0
9%

(iv) v (y=0) = 0
v,

(v) ?Gf (yv=1) = 0

(vi) U(zx=1,y) = V(y)

As in the previous section, (iii) assumes zero torsional stiffness of

the end walls. Equations (5.34) can be solved for these boundary condi-
tions, in a manner similar to the previous section. This enables ome to

obtain the following characteristic equation:

2

m,h E,I*. k"~ 3
2 mz +-'l“—i——'g- (tan @ + tanh a) = Bz (5.35a)
k2 X L3 2

2

khere




4
&
4o Tk o
E Is,
g = f2Eln i=1,2,3,...

From these equations, the natural frequency w; for the ith

obtained. The corresponding mode shape is given by,

-1<x£1
— BJcos ox _ cosh ax] . ==
Uz, y) Z[cos @ | cosh 0]31n By 0<yLl
and,
Vl(y) = V2(y) = B sin By 0<y£1

where B is an arbitrary comstant.

Antisymmetric Modes

The boundary conditions for these modes are:

(i) U(x=0,y) = O
2
(i) Y (z=0,;) = o
ax2
2
(iii) 2.1 (z=1,y) = O
8x2
(iv) Vi (v=0) = 0
dV1
(v) —= (y=1) = 0

dy

(5.35b)

(5.35¢)

can be

(5.36a)

(5.36b)
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(vi) U(zx=1,y) = V(y)

These boundary conditions and the equations (5.34) can be combined to

obtain the following characteristic equation for antisymmetric modes of

vibration:
2 2
h E.I*. b~ 3
m]2{ mz + "-1"-1?- Qé- (=cot a + coth ¢) = 132 (5.37a)
2 kzL
where
4
m*_L
ot = (5.37b)
171
p = L2&ln i=1,2,3,... (5.37¢)
The corresponding mode shapes are:
. =1£{x41
_ Bfsin ex sinh ax] . =
U(x,y) = 2[sin e * einb a]51n By 0¢y<1 (5.38a)
nd,
Vl(y) = B sin By 0{y<1 (5.38b)
Vz(y) = =B sin By 0y« - - (5.38¢)

here B is an arbitrary constant,
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Orthogonality Condition

As in the previous case, the following orthogonality coadition can

be obtained:

11 1
m L { { U, (x,7) U, (x,y)dxdy + m, g v, () Vy, () dy

1
+ m, g Vo, (DV, (Mdy = 0 for itk (5.39)

Participation Factors for Ground Motion

Similarly, it can be shown that the modal participatiomn factor for

the kth mode for earthgquake ground motion is given by,

11 1 1
m, L g J; U dzdy + m g Vi dy + m g V,
11 1 1

m L g J; (Uk)zdxdy + m, g (Vlk)zdy + m g (V2k)2dy

(5.40)

5.4 NUMERICAL EXAMPLE

In this section, a multistory building with two end walls (modelled
as bending beams) has been analyzed. Using the method described earlier
in this chapter, the natural periods, the mode shapes and the modal

participation factors have been obtained.
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The example structure has been derived from Building 180 at the Jet
Propulsion Laboratory in Pasadena, This long and narrow building (220’
X 40' in plan) has 12 uniformly distributed moment—-resisting frames to
resist the lateral loads in the transverse direction. However, in the
example structure, the frames are assumed to be capable of providing
only the vertical support, while two 12; thick reinforced concrete walls
have been added at the two ends of the building to provide all the

lateral load resistance in the transverse direction.

The actual building is ten stories high with basement walls. The
story heights are 14 ft except in the top story and in the basement and
first stéries where they are 16 ft. The lumped weight of the roof is
1517 kips while that of the typical floor is 1270 kips (Wood, 1972). 1In
the example structure, the building is assumed to be rigidly held at
ground 1level, thus neglecting the basement story. The nonuniformities
in the story height and in the lumped masses have been neglected, and an
average story height and average lumped weights have been taken. The
floors are § in thick and made of light—weight concrete. Since the end
walls are 40 ft wide and 130 ft high, it is reasonable to neglect their
shear flexibility and treat them as bending beams, Similarly, the
floors, which are 220 ft long and 40 ft wide, behave like bending beams
and were treated as such. The following building properties were used

for the analysis of the example structure:
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Uniformly distributed floor system:

weight (m*lg) = 409 lbs/ft2
moment of inertia (I*l) = 154 (ft)4/ft height
modulus of elasticity (El) = 2.0 X 106 psi
length of the floors (2L) = 220 ft
Walls:
weight (ng) = 6000 1bs/ft
moment of. imertia (Iz) = 5330 (ft)4
modulus of elasticity (E2) = 2.9 X 106 psi
 building height (h) = 130 ft

As noted, an examination of egumation (5.19) reveals that it is the
same as the characteristic equation for the free vibration of a canti-
lever bending beam. The roots of this equation (i.e., values of B) are
1.875, 4.694, 7.855, 10.996, 14,137, 17.279, etc. (e.g., Timoshenko, gt
al,, 1974). Here, P equal to 1.875 corresponds to the end wall
deforming as the first mode of a cantilever beam, Similarly, the higher
values of B correspond to the end wall deforming in higher cantilever

modes.

For various values of B, equations (5.7 and 5.13) were solved to
obtain the " natural frequency (w) for the symmetric modes of vibration.
Also, equatioms (5.22b,c) were solved to obtain the frequencies for the

antisymmetric modes.



- 140 -

For the appropriate mnatural frequencies, equations (5.21) and
(5.23) gave the symmetric and the antisymmetric mode shapes. A few of
the more important mode shapes are plotted in Figure (5.2). Equation
(5.30) was used to calculate the modal participation factors for the
various modes of vibration. The maximum base shear in various modes due
to an earthquake motion assumed to have a constant acceleration spectrum
value of 0.20g, was then calculated using these participation factors.
Table (5.1) gives natural periods and maximum base shear for some of the
lower modes.

TABLE 5.1. PERIODS AND MAXIMUM BASE SHEARS FOR SYMMETRIC MODES OF THE
EXAMPLE STRUCIURE

Period Maximum Base
(sec) B Shear (Kips)
0.929 1.875 1590
0.533 4.694 369
0.523 7.855 126
0.522 10.996 ’ 14
0.522 14,137 0.03
0.243 1.875 38.5
0.078 4.694 112
0.060 ' 7.855 20
0.058 10.996 1.7
0.049 1.875 0.03
0.043 4,694 18.0

As expected, the antisymmetric modes have zero modal participation
factors and do‘ not coﬁtribute to the base shear. The natural periods
for the lowest few antisymmetric modes of vibration were obtained as
0.524 sec (B = 1.875), 0.144 sec (B = 4.694), 0.132 sec (B = 7.855),

0.131 sec (B = 10.996), ... , 0.097 sec (B = 1.875), 0.059 sec (B

il

4.694), and 0.035 sec (B = 7.855).
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Figure 5.2. MODE SHAPES FOR THE 9-STORY BUILDING.
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If one treats the floors as rigid and the end walls as bending
beams, the fundamental period is obtained as 0.806 sec, while that for
the model with floor flexibility is 0.929 sec. Thus, the floor flexi~
bility makes the structure more flexible and increases its fundamental
natural period. The fundamental period of the floors when treated as
pinned-pinned beams is 0.522 sec. It is interesting to note that the
use of Dunkerley’s equation (Dunkerly, 1895; Thomson, 1965) gives a
period of the combined system as 0.960 sec (T2 o~ 0.8062 + 0.5222) which

is a reasonably good estimate of the actual period.

One notices from Table (5.1) that there are several modes with
periods mnearly equal to 0.522 sec, but with various values of f. Also,
as noted above, the fundamental period of the floors when treated as
pinned—-pinned beams is 0.522 sec. Since the method of this chapter
treats the floors as an infinite number of independently acting beams of
infinitesimal thickness, it is reasomable to see many modes with periods
close to 0.522 sec, for different values of B. Fortunately, one has to
consider only the first few of these 0.522 sec modes since, as the value

of B increases, the modes contribute less and less to the base shear,

The mode with period 0.243 sec is ome in which the end walls deform
in the first cantilever mode (since B = 1.875), while the floors deform
in the second symmetric mode of a pinned—pinned beam. Some of the other

periods can be interpreted in a similar manner.



- 143 -

CHAPTER VI

MULTISTORY BUILDINGS WITH UNIFORMLY DISTRIBUTED FRAMES OR WALLS

6.1 INTRODUCTION

Some of the earliest forced vibration tests on multistory buildings
that indicated floor deformation modes were performed om Building 180 at
the Jet Propulsion Laboratory in Pasadena (Nielsen, 1964,1966). The
lateral 1load resistance in transverse direction in this long and narrow
building (220’ X 40’ in plan) is provided by 12 moment—-resisting frames
that are uniformly placed along the length of the building. Thus, even
though the gpan to width ratio of the floors is not large, the overall
floor length to width ratio is quite large and, it is of interest to see
how such floors affect the dynamic behavior of the structure, This
chapter presents treatment on such buildings, i.e., multistory buildings
with a large number of transverse frames or walls that are placed at

equal intervals along the length of the building.

The floors, due to their large aspect ratio, can be treated as
bending beams. The moment resistingrframes are modelled as shear beams,
due to the similarities in the mode shapes and in the spacing of
frequencies, Thus, for transverse vibrations the building can be
idealized as a grid consisting of vertical shear beams and horizontal
bending beams., Similarly, a building that has a uniform distribution of
walls with a large height to width ratio can be modelled as a grid

consisting of ©bending beams in both directions. The vibration problem
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of such grids can be solved by the finite element model or by the finite
difference method, using slope deflection equations (e.g., Wah, 1963;

Goldberg and Herness, 1965; Goldberg, 1966).

Moreover, grids that have a 1large number of uniform, identical
beams in both the vertical and the horizontal directions can also be
modelled as vertically—oriented anisotropic plates by averaging the mass
and the stiffness properties of the beams over the entire length and
height of the grid (e.g., Timoshenko and Woinowsky—Krieger, 1959). It
is proposed in this chapter to analyze buildings whose floors and frames
are sufficiently uniform and numerous as vertically—oriented plates.
For buildings with moment—-resisting frames, the plate is such that a
thin vertical strip cut from the plate has only shear flexibility, and
thus behaves 1like a shear beam, while a thin horizomntal strip cut from
the plate behaves like a bending beam. Such plates will be referred to
as "bending-shear” plates. Similarly, buildings with walls that behave
like bending beams are treated as anisotropic plates, with only thg
bending deformations important along the two coordinate directions; such

plates are referred to as "bending—-bending” plates.

In the following parts of this chapter, equations of motion for
these plates are discussed. Then, expressions for the natural
frequencies, the mode shapes and the modal participation factors are

obtained for buildings with moment—resisting frames. Buildings with
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slender walls, idealized as bending-bending plates, have similar solu-
tions. Some conclusions based on these results are presented at the end

of the chapter,

6.2 PLATE EQUATIONS

This section describes the equations of motion for the 'bending-

bending” and the "bending-shear” plates.

6.2.1 Bending—Bending Plate

The equation, for static loads, describing a plate that models a
grid consisting of bending beams c¢an be found in Timoshenko and

Woinowsky—-Krieger (1959):

E, I c, ¢
111 a4wix,v) . {._1. . _2]3.4_'9'15;1). + Bl atwix,y) = £(x,y) (6.1)
2y ax? 21 23] ax%ay? 3 ayt

where,

Flexural rigidity of horizontal beams.

oy
1l

Flexural rigidity of vertical beams,

()
-

[ )
il

C1 = Torsional rigidity of horizontal beams.
C2 = Torsional rigidity of vertical beams.
a, = Distance between two consecutive horizontal beams.

32 = Distance between two consecutive vertical beams.
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f(xz,y) = Load at (x,y) acting perpendicular to the plane of the

grid.

w(x,y) = Displacement at (x,y) in z—direction.

The coordinate system (x,y,z) is shown in Figure (6.1). As discussed
earlier, the torsional stiffness of the floors and the walls can be
neglected in the present application. Thus, replacing f(x,y) by the
inertial force term and neglecting the torsional stiffness terms, the
equation of motion for free vibrations of a "bemnding—bending” plate may

be written as

4 4 2
S dw(x,y,t) |7 dw(x,y,t) 9 w(x, v, t)
Dlawx4t+D26wx4t =_‘m_awxzt (6.2)
ax Ay at
where
Bi = Flexural stiffness of a horizontal strip of the plate, of unit
E, I '
width [ = 1 1] .
1
Eé = Flexural stiffness of a vertical strip of the plate, of unit
[ E,I
width l = i 2 .
2

m = Mass per unit area (in x-y plane) of the plate.

1ation (6.2) can easily be solved using the method of separation of-

ariables.
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7_
1

L

Figure 6.1. CONTINUOUS MODEL FOR BUILDINGS WITH UNIFORMLY DISTRIBUTED
FRAMES OR WALLS,
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6.2.2 Bending—Shear Plate

The equation of motion for free vibrations of a plate, modelling a
grid that consists of bending beams in the x-direction and shear beams
in the y—-direction, can be derived from energy principles or obtained imn

analogy to equation (6.2) as

4 2 2
S o w(x,y,t) ¢ wlx,v,t) o w(x,y,t)
Dlawx4t_K28wx2t ____mawat (6.3)
_ ax dy at

where Eé is the shear stiffness of a vertical strip of the plate of unit
width. All other terms have been defined earlier, Equation (6.3) can

also be solved by the method of separation of variables,

6.3 MULTISTORY BUILDINGS WITH UNIFORMLY DISTRIBUTED FRAMES

Consider a multistory building with uniform and identical moment—
resisting frames and uniform and identical floors. The spacing of the
frames is uniform and all the story heights are the same. Such a
structure can be modelled as a vertically—oriented "bending—shear”
plate. Let 1 be the length and h be the height of the building. The

coordinate system (x,y,z) is shown in Figure (6.1).

The equation of motion for free vibratioms of the structure is

given by equation (6.3). The assumed form of the solutionm is

w(x,y,t) = W(x,y)eimt = X(x)Y(y)eiwt (6.4)
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where w is the natural frequency of the system. Substitution of equa-

tion (6.4) into equation (6.3) yields

4
4 X(x) _ a4X(x)

dx4

I
(=]

(6.5a)

2
eI, g2y(y

dy2

]
o

(6.5b)

where a and B are constants to be determined from the boundary condi-

tions of the problem, they satisfy the condition
_ 2
D.a + K,B° = mow (6.6)
Solutions of equations (6.5) can be written as

X(x)

A1 sin ax + A2 cos ax + A3 sinh ax + A4 cosh ax (6.7a)

Y(y)

B1 sin By + B, cos By (6.7b)

where the A’s and B's are constants to be determined from the boundary

conditions,

The boundary conditions for the plate in this case are fixed at
(y=0) and free at the other three sides. In mathematical form, these

can be expressed as

(i)  Y(y=0) = 0

.. dY(v=h _
(ii) dy = 0
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(iii) é—-ﬁ%ﬂl = 0

(iv) = 0

L}
(=]

(v)

(vi)

and,
ﬁBl cos ﬁhl = 0

Thus, for a nontrivial solution

_ 2i-U)x -
ﬂj - 2h J 1’233'0..

From boundary conditions (iii) and (iv), one obtains
Ay = 4 g A = 4
and, boundary conditioas (v) and (vi) yield

Al(-sin al + sinh al) + A2(—cos el + cosh al)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)
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Al(—cos ¢l + cosh al) + Az(sin al + sinh al) = 0 (6.13)
This gives the condition for nontrivial solution as
cos al cosh a1 -1 = 0 (6.14)

and

A - sin al — sinh al A

2 " cos al - cosh al "1 (6.15)

The first few roots of equation (6.14) are given as (e.g., Timoshenko,

et al., 1974)

a41 a51 a61 a71

0 0 4,730 7.853 10.996 14.137 17.279

a11 azl a31

or,

a. = 0 i=1,2 (6.16a)

]

; [+ - %]11‘- i=3,4,5,... (6.16b)

The natural frequencies of the system can now be obtained using

equations (6.6), (6.10) and (6.16) as

| p—
K i=1,2 _
Qi-lx | 2 ‘
i 2h m - §=1,2,3,... . (6.17a)
Y2
(i _ _3_>4ﬂ4-5 (2j-1)2nzk' 1=3.4.5....
o 2 1 )
W, = 7 + 5 =1,2.8, .00 (6.17b)
J ml 4mh 2L 33 5.
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For i = 1 and 2, o vanishes and equation (6.5a) and the appropriate

boundary conditions give
X(x) = A1 + A2x (6.18)

where A1 and A2 are arbitrary constants. This represents a rigid body
translation and a rigid body rotation of floors. Thus, the mode shapes

for i=1,2 are

W (63 = Asia 13@5}15 v i=1,2,3,... (6.19a)

j=1,2,3,... (6.19b)

1

e ) sin 3502

where A is an arbitrary constant. The modes represented by equation
(6.,19a) are translational modes that involve no floor deformations, with
frequencies given by equation (6.17a). Similarly, equation (6.19b)
gives the torsional mode shapes of the structure, again with no floor
deformations. These mode shapes and the corresponding frequencies are
the same as obtained from an analysis based on the assumption that the

floors are rigid in their own planme,

The mode shapes that correspond to the higher values of a are

sin a.x + sinh a.x cos a.x + cosh a.x
W, (x,y) = A . . & o
ij =’

sin a.1 - sinh «a.1 cos a.1 + cosh .1
i i i i

(2i-1)x i=3,4,5,...

T j=1,2.3,... (6.20)

where A is an arbitrary constant. The modes represented by eguation
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(6.20) involve floor deformations. These mode shapes are simply the
superposition of mode shapes of the floors when treated as free—free
beams and those of the frames. Also, the corresponding frequencies,
given by equation (6.17b), are the square root of the sum of the squares
of the floor frequencies when treated as free—free beams and the frame
frequencies. Thus; the dynamic analysis of such buildings can be
carried out by separately analyzing a typical frame and a typical floor
with free—free end conditions. This result sﬁfports similar observa—
tions made earlier by Maybee, et al., (1966), who treated the building as

a discrete system, lumping the mass at the intersections of the floors

and the frames.

Orthogonality of Modes

It can be shown that the modes of vibration of the structure are

orthogonal and, that the orthogonality condition is given by

h1
([I[Wij(x,y)wrs(x,y)dxdy = 0 (6.21a)
or
h1
2gz[xi(x)xr(xnzj(y)srs(y)dmiy = 0 (6.21b)

where i#r, andfor j#s.
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Modal Participation Factors for Earthquake Ground Motion

The equation of motion for the bending—shear plate under uniform

earthquake excitation can be written as

4 2 2
- (2,v7,t) = (2,y,t) A wi(x,v,8) _ °°
Dl d w x4 t) _ KZ 8 w xZ £ _ -m &E x2 £l m (t) (6.22)
ax dy at &

e o

where ug(t) is the ground acceleration in the z—direction.

To solve, expand w(x,y,t) in terms of the normal modes of the

system., Let

8
8

ﬁ(xgy,t) = k& Xi(x)Yj(Y)Tij(t) (6.23)

and substitute this into equation (6.22) to obtain

4 2

: d X. da’yY.
- 1 =
D) L FRRTEFY B ) L% 2 Tij
i j dx i3] dy
T a’r, . ..
+m .Y, — = -mu (t) (6.24)
i ] 3 dt2 g
This gives
* ® 2 _ —9.
; j (X YT+ o) LYT, 0 = —u (t) (6.25)

Nexzt, muitiply equation (6.25) :by XrYs’ integrate and apply the

orthogonality relationship (equation 6.21) to obtain
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. 2 LN ]
T +o T = -P_u (t) (6.26)
rs rs rs rs g

where Prs’ the participation factor for the rsth mode, is given by

X_Y dxdy

P =

s (6.27)

X X Y Y dzdy
r’'r’s’s

Oty 1 [Oy, B
Oty

h
For i=1, Xi(x) = A (rigid body translation) and the orthogonality
condition yields

1
{ X (x)dx = 0 for r#l (6.28)

Therefore, the numerator in equation (6.27) vanishes for all =r#1, and
the participation factors are zero for all the modes that involve floor
deformations., This is a very useful result and shows that uniform
ground motion excites only those translational modes that do not involve
floor deformations. However, as noted earlier, such modes are the same
as obtained by an analysis based on the rigid floor-diaphragm assump~
tion. Therefore, in the dynamic analysis of such buildings for uniform
earthquake ground motion, omne need not take into account the in—plane

flexibility of the floors.

However, this conclusion is valid only for the uniform ground

motion and cannot be applied to other types of loading, e.g., spatially
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varying ground shaking. Also modes involving floor diaphragm deforma-

tions can be excited by forced vibration tests, as was done on Building

6.4 BUILDINGS WITH UNIFORMLY DISTRIBUTED WALLS

Multistory buildings that have a uniform distribution of identical
walls with 1large height to width ratio, and satisfy other uniformity
conditions discussed earlier in the chapter, can be modelled as
"bending—bending” plates. The equation of motion for free vibrations of
such structures is given by equation (6.2). This equation can be solved
by the method of separation of variables in a manner similar to that
followed in the preceding section. All the discussion in the previous
section about the nature of the frequencies, the mode shapes and the
modal participation factors is also valid for these buildings and is not

repeated here.
6.5 DISCUSSION AND CONCLUSIONS

It has been shown that long and narrow buildings with a uniform
distribution of identical frames (or walls) can be analyzed as
vertically-oriented plates. This model is a two-dimensional amnalog of
shear beam models for multistory buildings that have been extensively
used in the past (e.g., Jennings, 1969; Hoerner, 1971). Based on this
plate idealization, it has been shown that such buildings possess all
the modes of vibration that one obtains by anmalysis based on the assump-

tion of rigid floor diaphragms, plus additional modes that involve floor
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deformations similar to those of free—free beams., The mode shapes and
the natural frequencies of the structure can be obtained by analyzing a
typical floor and a typical frame., However, in doing so, care must be

taken to include the floor masses in the frame analysis and vice—versa.

Also, it is seen that none of the modes that involve floor deforma—
tions are excited by uniform ground motion., Thus, there is no need to
treat the floors of such buildings as flexible, when analyzing them for
uniform seismic forces. Thi$ result has also been shown using discrete,
lumped—mass models for such buildings (Jain, 1983). In addition, in a
parametric study on a building with five cross walls, Unemori, et al.
(1980) have found using finite element approach that the modes with

floor deformations have very small modal participation factors.

It was assumed in this chapter that the number of frames (or walls)
and the number of stories in the building are large. When this condi-
tion is not met, the proposed model may not be a good idealization of
the struecture. From a practical viewpoint, it seems that the building
should have five or more floors and frames for the method to give reli-

able results.
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CHAPTER VII

MULTISTORY BUILDINGS WITH MORE GENERAL FEATURES
7.1 INTRODUCTION

Using the tools developed in the previous chapters, it is possible
to analyze multistory buildings with some nonuniformities as well. For
instance, a multistory building that has a uniform distribution of
frames along with two rather stiff end walls can be modelled as a plate
with two end beams, The differential equations of motiom for the plate
and the end beams can be written and the system can be solved for the
appropriate boundary conditioms., Similarly, the problem of an otherwise
uniform building with a more flexible, "soft " first story can be
analyzed using these modelling techniques. For this situation, the
columns or the walls in the first story can be modelled as a uniform
distribution of infinitesimally thin vertical bending or shear Dbeams,
with the plate modelling the rest of the building joined to the top of
these beams. Again the equations of motion and the boundary coanditioms
can be solved to obtain a characteristic equation for the frequencies

and expressions for the mode shapes.

In this chapter, an analysis is given for a multistory building
that has two end walls in the upper stories to provide lateral
resistance to the structure while in the first story the lateral support
is provided by several uniformly distributed walls. Finally, the

Imperial County Services Building which can be modelled approximately by
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this type of approach for transverse =response is analyzed as an

illustrative example,

7.2 MULTISTORY BUILDINGS WITH TWO END WALLS IN THE UPPER STORIES

AND_SEVERAL WALLS IN THE GROUND STORY

Consider a long and narrow multistory building whose lateral 1loads
in the transverse direction are resisted by two end walls in the upper
stories and by several uniformly placed walls in the first story. Thus,
the wupper floors transfer all the lateral loads to the end walls, which
in turn transfer this load to the ground story walls through the second
floor slab. It is of interest to see how this rather complex structural
system can be anglyzed by the methods developed in the previous

chapters, while treating the floors as flexible.

A structure of this type can be modelled as shown in Figure
(7.1). It is assumed that the floors, with their large aspect ratio,
behave like bending beams. Hence, the floors above the sécond floor can
be modelled as a uwniformly distributed bending beam system, while the
second floor is treated as a separate bending beam, due to its important
role in transferring the loads from the end walls to the walls below.
The upper story walls are assumed to have small height to width ratios
and to behave as shear beams, The walls in the first story also have
small height to width ratios and have been treated as a veftica11y~

oriented uniform distribution of shear beams.
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DISTRIBUTED
BENDING BEAMS
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\ SHEAR BEAM —.
\ N\
~ BENDING BEAM
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;ﬂ;& 74¢@m
DISTRIBUTED

SHEAR BEAMS

igure 7.1. MODEL OF A MULTISTORY BUILDING WITH TWO END WALLS IN THE
UPPER STORIES AND SEVERAL WALLS IN THE GROUND STORY. .
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Let the following be the mass and the stiffness properties of the

various elements in the structure, assumed to be uniform:

E1 Young's modulus for the distributed floor system.

E3 Young's modulus for the second floor.

I*1 = Moment of inertia of the floor system cross—section per unit
height.

13 = Moment of inertia of the second floor,

k‘2 = Shear stiffness of the first—-story wall system per unit
length,

k4 = Shear stiffness of the end walls,

m*1 = Mass per unit area (in xz~-y plane) of the distributed floor
systen.

m*z = Mass per unit area (in x-y plane) of the ground wall system.

Mass per unit length of the second floor.

wE
]

4 Mass per unit height of the end wall.

Let 2L be the length of the building, h, be the height of the

1
building from the second floor level and h2 be the story height of the
first story. The coordinate system (x,y,z) is shown in Figure (7.1).
Let u(x,y,t), v{(x,t), wl(y,t), wz(x,y,t) and w3(y,t) be Fhe @i?PlﬁFe'
ments in the z—direction in the distributed floor system, the second
floor, the right end wall, the ground story wall system and the left end

wall, respectively. The equations of motion for free vibrations can be

written for each element in the structure as:
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4 2
ElI*l du x4 t + mtl " u x2 t = 0
ax at
22w, (x,7, t) 2w, (x,7,t)
2 2
k%) 2 m*y 2 =0
oy at
a4v{x £) azv{x &) . awz(x,y=0,t)
B3I, 2t o3 2 = FYy 3
ox at y
2 2
. 9 wl(y,t) . 3 wl(y,t) C g asu{x=L £)
4 ay2 4 at2 171 axs
and
2 2
. d ws(y,t) . a-ws(y,t) - g e a3u(x=__L £)
4 ayz 4 atz 171 ax3
(hese equations can be solved using the method of separation
ibles. Let
u(xly’t) = U(x,y)elmt
vix,t) = V(x)elwt
- int
wl(y.t) = Wl(y)e
iot
wz(x,y,t) = Wz(x.y)e @
and
iwt

w3(y,t) = Ws(y)e

of

(7.1a)

(7.1b)

(7.1¢)

(7.1d)

(7.1e)

vari-

(7.2a)

(7.2b)

(7.2¢)

(7.24)

(7.2e)
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where w is the natural frequency of the motion, Substitution into equa-

tions (7.1) gives

4 m*
3 U x4 R 02U(x,y) = O (7.3a)
ax 11
2
] Wz(x,y) m*2 2
—_——  — W, (x,y) = O (7.3b)
2 k* 2
oy 2
* =
__(_l4 ~EI Viz) = - EI 5 (7.3¢)
dx 373 373 y
2
d°W. (y) m E I* 3
1 17 1 0" U(x=L
—L— s Ay = - L UL (7.30)
dy 4 4 ox
and,
2
d“w,(y) m E I*. _3
3 1= 1 U(x=L,v)
— 5t k—4 mzws(y) = X ¢ Ulx 3 (7.3¢)
dy 4 4 ax

Since the structure is symmetric, only the right half of it needs
to be considered. The following are the boundary conditions that apply

for the translational modes of the structure.

(i) Wx=0,y) _ ,

ox’ B

3
. s —__i_—_LIL
(ii) 2 0(x=0 = 0
3
ox

62U§x=L,z! = 0

(iii)
6x2
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(iv) v dx:o = 0
(v) &y i:o = 0
dx
(vi) a X;L = 0
dx
(vii) EY;%%;Eli = 0
(viii) Wz(x,y=—h2) = 0
(ix) Uzx=L,y) = W,(y)
(x)  V(z=L) = W (y=0)
(xi) W, (x,7=0) = V(x)
(zii)  EI, ds—“—"fu + X, ——————dwl‘(inO) = 0

dx

The solution of equation (7.3a) that satisfies the boundary condi-

tions (i, ii, iii and ix) is:

W, (y)
1 cos ax . cosh ax
U(=,y) = 2 [cos aL cosh aL] (7.4)
where, - -
m*
4 _ 102
@ = F . (7.5)
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Equation (7.3b) when solved for the boundary conditioms (viii and

xi) yields
Wz(x,y) = V(z)(cot Bh, sin By + cos By) (7.6)
where,
p* = %wz (1.7)

Substitution of equation (7.6) into equation (7.3¢) gives

0° -
E313 E,X

ay [“‘3 2 X5
3°3

B cot thlv = 0 (7.8)
The solution for this equation satisfying boundary conditions (iv, v and
vi) is

- cos yx ., cosh yx '
Vix) C[cos vL * cosh yL] (7.9)

for positive values of y4 where,

ms o, KY
Y = EL. % TEI B cot th (7.10)

373 373

For negative values of 74, equation (7.9) is replaced by
V(x) = Clsin &x sinh Ex + cot EL coth &L cos &x cosh &x] (7.11)

where,
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4 ?
& = - 4 (7.12)
and C is an arbitrary comstant,
Substitution of equation (7.4) into equation (7.3d) yields
a, [m, , EI% 3
+ |7 0® + == T~ (tan oL + tanh aL)[W, = 0 (7.13)
2 k k 2 1
dy 4 4
This equation can be solved for boundary comndition (vii) as
Wl(y) = D(sin Ay + cot Ahl cos Ay) (7.14)
s 2 2 . .
for positive values of A", where A~ is given by
m E I*. 3
a2 = 22219 (hon oL+ tanh al) (7.15)
k4 k4 2

For negative values of xz, the following equation replaces equation

(7.14)
Wl(y) = D(sinh py — coth ph; cosh uy) (7.16)
where D is an arbitrary constant and p is given by
o= - (7.17)
Boundary conditions (x) and (xii) can now be used to obtain the

condition for a nontrivial solution, i.e., a characteristic equation for

the natural frequencies given by
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(i) For y* > 0, A2 > 0:

3

E313 L (tan vL + tanh yL) + k

2 A tan Ab

It
(=]

(7.18a)

4 1

(ii) For v} < 0, 22 > 0:

3 (cosec 2¢L+cosech 2¢L) - _
4E3138" Tiam ¢L tamh tl+cot L coth gL)  t4* tan Ahy =0 (7.18b)
(iii) For y7 > 0, a2 ¢ o
e
E313 2 (tan yL + tanh yL) - k4u tan phl = 0 (7.18¢)

(iv) For 74 <0, Xz < 0:

(cosec 2fL+cosech 2EL)
(tan EL tanh EL+cot EL coth &EL)

2
4E, 1% + k,u tash phy = 0 (7.184)

An approach like Holzer’s method (Thomson, 1965) is used to obtain
the natural frequencies of the translational modes of the system. That
is, one chooses an initial value of w and substitutes it into equatioms
(7.5), (7.7), (7.10) and (7.15) to obtain a,B,74 and Az. Next, onmne
substitutes these into one of the equations (7.18), depending upon the
signs of 74 and xz, to see if the equation is satisfied. If that is the
case, that value of w is the natural frequency of the structure. How-
ever, if it'does not satisfy the equation, another value of w is chosen
and the process is repeated. This search for the roots can, of course,

by systematized.



- 168 -

The mode shapes of the structure are given by:

Wl(y)

cos ax cosh ax

Ux,y) = =3 [cos oL ¥ cosh aL] (7.19)
Wz(x,y) = V(x)(cot th sin By + cos By) (7.20)

_ cos yx , cosh yx 4
v(x) = c[ iy YL] for y40 (7.21a)
V(zx) = C(sin &x sinh &x + cot EL coth ¢L cos &x cosh &x)

) .
for ¥ <0 (7.21Db)

W, (y) = Wy(y) =2C(tan Ahy sin Ay + cos Ay)  for yH0, 420 (7.22a)
W, = W.(y) = C sigz &L siggz EL_+ cos2 gL cosh2 EL{.
1 - "3 E sin &L sinh EL

° . 4 2

(tan xhl sin Ay + cos Ay) for y <0, A°>0 (7.22b)

Wl(y) = Ws(y) -2C(tanh ph, sinh py - cosh uy) for y4>0. 22<0 (7.22¢)

2 A 2 2
si L sinh L + cos I, cos L{.
¥,y =¥y = C[ sim ¢L sinh L ]
® - 4 2
(tanh wh, sinh py - cosh py) for y <0, A°<0 (7.22d)

Similar expressions can also be obtained for the antisymmetric
modes of vibration, It can be shown that all the modes satisfy the

following orthogonality condition:
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h

1L 0
s [ [ ubdzay + ms, { j’ W, W, dxdy + m j’ V.V dx +
‘L -h, L 3
by by
+ m, z[ W W dy +om, g Wy Wady = 0 for ifk (7.23)

Also, the following expression can be obtained for the modal

participation factors for uniform grouand motion:

h,

L 0
m* -“L U dxdy + m*, { W, dxdy

t—.‘—ﬁl“

h h

L 1 1
+ m, jL V dx + m, \( Wlkdy +m, l’; Wskdy
h (7.24)
1 L 0 L L
2 2
*
"1 f Uidxdy + m 2 { J. Wdexdy + mg f dex
-L -h, -L -L
By By

2
+ m, l[ Wikdy + m, £ Wskdy

7.3 NUMERICAL EXAMPLE

The Imperial County Services Building, also discussed in Chapter
II, was a Six-—story reinforced concrete structure, During the Imperial
Valley earthquake of October-15, 1979, it was _severely damaged and was

eventually taken down. Some of the structural features and the lateral
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load transfer scheme of this building closely resemble those of the
structure analyzed in the previous section. Hence, to illustrate the
method developed in that section, this building has been modelled and

solved for its dynamic properties.

Figure (2.9) shows the structural plan of the building. In the
upper stories the lateral 1loads inm the transverse direction were
resisted by two end walls. However, the west wall was different from
the east end wall since it had "smoke tower” openings in all the
stories. At the second—floor level, the lateral shear was transferred
to the four shear walls in the ground story through the second—floor
slab, while the overturning moment was transferred to the fogr columns
located just inside the end walls. The ground shear walls were mot
symmetrically placed. In order to use the model developed in the pre~-
vious section, the 'smoke tower” openings in the west end wall were
~neglected. Alsé, the asymmetry in the gréund story walls was neglected;
they were idealized as a uniformly distributed, equivalent shear beam

system.

The aspect ratio of the floors was about 1.8 and, therefore, shear
deformations in the floors cannot be neglected in comparison to bending
deformations. To approximate the effects of the shear deformations and
the rotatory imertia, the moment of inertia of the floors was multiplied
by a factor of 0.47. This factor introduces -enough bending in the
floors to give the same fundamental period that wounld occur in the floor

if the effects of shear deformation and the rotatory inertia were
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included (Timoshenko, et al., 1974). The adjusted stiffness of the roof
and the upper floors, and the 1lumped mass at these levels, were
uniformly distributed between the roof and the second floor level to
represent the floors as equivalent, distributed bending beams. The

following properties of the various elements were used in the analysis:

Equivalent
distributed
floor system:
weight (m*lg) = 1020 lbs/ft2
moment of inertia (I*l) = 1890 (ft)4/ft height
modulus of elasticity (El) = 3,60 X 106 psi
length of the floors (2L) = 136'-3"
Equivalent
distributed
shear wall
system:
weight (m*)g) = 137 Ib/ft’
shear stiffness (k*z) = 1.69 X 108 1b/ft
height (h2) = 16'-8"
Second floor:
weight (msg) = 14100 1bs/ft
moment of inertia (13) = 33000 (ft)4
modulus of elasticity (E3) = 3.60 X 106 psi

Upper story
end walls:

weight (m4g) = 8600 1b/ft
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1.00 X 1010 ib

shear stiffness (k4)

height (hl) 67'=2"

The appropriate equations given in the previous section were solved
to find the translatiomal frequencies of the building. The corres—
ponding mode shapes were obtained from equations (7.19) through (7.22);

the first four are plotted in Figure (7.2).

The natural periods for the four lowest modes were found to be
0.23 sec, 0.11 sec, 0.10 sec and 0.099 sec. The first mode period is
higher than tﬁ;t obtained by treating the floors as rigid, while model-
ling the walls as shear beams, which is 0.17 sec. Thus, the floor-
flexibility does have a significant effect on the dynamic properties of
the building. However, the 0.23 sec period is not in close agreement
with the 0.38 sec period found from the strong-motion records obtained
from the building during a small earthquake on March 28, 1978 (Jain and
Housner, 1983b) or the 0.45 sec period observed during the ambient
vibration tests performed on the building (Pardoen, et al., 1981).
Foundation flexibility is thought to have contributed significantly to
this discrepancy (Jain, et al., 1983). This effect can be included by
representing the foundation by translational and rotational springs.
Also, in the model the end walls transfer the overturning moment to the
ground story walls, which are assumed to have negligible bending flexi-
bility, while in the actual structure the overturning moment is
transferred to the columns below. This makes the actual system more

flexible than the model by allowing rotation of end walls as rigid
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bodies. The proposed model needs to be improved for application to this
structure in order to incorporate this flexibility. In addition, the
end walls could be treated as Timoshenko beams to include the bending
flexibility, neglected in the analysis. Hence, in order to model this
building more accurately, the above factors should be included in the
model. However, this was comsidered to bé beyond the scope of this

thesis.

The fundamental mode shape, plotted in Figure (7.2), shows an
interesting feature. It can be seen in the figure that the second floor
bends in the opposite direction from the other floors. This is due to
the role the second floor plays in transferring the loads. The lateral
forces of all the upper floors are transferred to the second floor at
its two ends through the upper story end walls., The floor, in turnm,
transfers them to the uniformly—distributed shear walls in the ground
story. Thus, the second floor acts like a free—free beam on an elastic
foundation, with two concentrated end 1§ads. For such a system, the
beam curvature will be as observed for the second floor. A beam loaded
this way can actually experience uplift near the center (e.g., Hetenyi,
1946). This explains why in the fundamental mode, a portiom of the
second floor near the center is displaced in the opposite direction froﬁ
the rest of the structure. This behavior is rafher unusual. For most
buildings, the fundamental mode has the property that the whole

structure is displaced in the same direction.
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The opposite cnr%atures of the second floor and the wupper floors
are also confirmed from the strong-motion records obtained from the
building. The relative displacement plots of the second floor and the

roof, given by Pauschke,

t al. (1981) and reproduced in Figure (2.10)
of this thesis, clearly indicate this trend, although it is not clear in
this figure as to whether or mnot the second floor actpally has a
negative displacement near the center, Gonzalez, et 2al. (1980) have
subjected a finite element model of the building to the code—prescribed
static lateral forces in the transverse direction., Their plots of the

deformed shapes of the fourth floor and the second floor also show

opposite curvature,

The second, third and fourth mode periods are nearly equal to the
fundamental mode period (0.098 sec) of the upper floors when these are
treated as pinned-pinned beans, This is similar to what has been

observed in the example structure of Chapter V.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

This study investigates the significance of in—plane floor flexibi-—
lity on the dynamic behavior of buildings and develops new analytical
methods to analyze buildings with flexible floor diaphragms. A study of
the literature on past earthquakes revealed that there have been several
buildings that were damaged during strong ground shaking due to
significant in—plane floor deformations. Also, stromg-motion records
obtained from some undamaged buildings have shown that floors can indeed
be quite flexible in their plane. Some of the evidence that indicates
the important role floors play in the dynamics of buildings is presented
in Chapter II. It is observed there that lomg, narrow buildings are
particularly susceptible to this phenomenon, although it can happen also
in buildings with small aspect ratios, if stiff end walls are present.
Buildings that coansist of two or mofe wings joined at an angle (e.g., L-
or V-shape plans) also warrant special attention to floor flexibility
and the resulting stress concentration at the corners where the two
wings meet. Three of the example structures discussed were school
buildings, which suggests that the axchitectural 1layout of school
buildings may make them more susceptible than other structures to

problems caused by flexible floor diaphragms.

As preliminary information for later work, the mechanics of bending

and shear beams are reviewed in Chapter IIXI., 1In addition, the concept
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of equivalent, distributed beam systems, such as are used in the
analysis of coupled shear walls, is presénted. Also, a note is included
on matching the boundary conditions at junctions of various elements.
The first building studied is a one—story building whose lateral load
resistance in the transverse direction is provided by two end walls,
The structure is analyzed by tréating the roof as a bending beam and the
walls as shear beams. The equations of motion for these -elements and
the boundary conditions are combined to obtain the cﬁaracteristic
frequency equation, roots of which give the natural frequencies of the
system. Also, expressions are obtained in general form for the mode
shapes and the participation factors. Once the natural frequencies and
the mode shapes are known for the structure, the complete dynamic
response can be calculated. However, the characteristic equation is
transcendental in mnature, and must be solve§ numerically. For con-
venience, a perturbation technique is applied to obtain the fundamental
natural frequency in an approximate but much simpler manner. Solutions

are also discussed for some more complex single—~story buildings.

As an illustration of the technique described in Chapter IIX, the
top story of the Administrative Building in Arvin High School is
modelled and its dynamic properties obtained. In this -example, the
perturbation method gives a very good estimate of the fundamental
natural frequency. The low torsiomal stiffness expected for walls and
frames was confirmed in this example and in all subsequent chapters the

torsional stiffness of the walls or the frames is meglected.
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The method developed in Chapter III 1is applied to two—story
buildings with identical end walls in the subsequent chapter. Results
include the characteristic frequency equation and expressions for the
mode shapes and the participation factors. As an example application,
the two—story Administrative Building at the Arvin High School has been
modelled with this method and its dynamic properties are obtained for
the first few modes, It is noted that the first two translational
frequencies of the structure are close to the fundamental frequencies of
the second floor and the roof, when treated as pinned-pinned beams. It
is seem in this example that these first two modes, dominated by floor
or roof vibrations, make the largest contributions to the total 'base
shear for earthquake response of the structure., The third symmetrical
mode, with less pronounced floor and roof motions, gives a base shear

only about 1/3 that of the second mode.

The study of the two—-story buildings also showed another
interesting phenomenon. It was seen that some of the lower frequencies
. of multistory buildings that have nearly identical floors and stiff end
walls may be very nearly equal. Besides finding the properties of such
closely spaced modes, this technique can also be used to c¢oalesce such

modes into a single mode such that all the floors vibrate in phase.

Multistory buildings with two end walls or frames are treated in
Chapter V by modelling the floors as an equivalent, distributed system
of bending beams and the end walls or frames as bending or shear beanms,

As an illustration of the analysis, a long, narrow 9-story building with
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two slender end walls has been analyzed. As anticipated. the fundamen—
tal frequency of the strmncture was lower than that based on the assump—
tion of stiff floors. It was noted that the fundamental period could be
approximated closely by the use of Dunkerley's equation. The second
mode frequency was found to be close to the fundamental frequency of a
floor when treated as a pinned—pinned beam. Also, there were several
other modes with nearly the same frequency, in which the f£floors essen—
tially vibrate 1like the first mode of pinned-pinmed beams, This is
partly a consequence of the use of the equivalent, distributed system,
which allows an infinite number of such modes, and the fact that at
least n such modes are significant for the dynamics of an on-story

building with flexible floors.

Chapter VI treats multistory buildings with wniformly spaced
moment—resisting frames or walls. If the numbers of frames and stories
are sufficiently large, such structures can be idealized as vertically-
oriented anisotropic plates. A study of this type of model leads to the
conclusion that the dynamic properties of such buildings can be obtained
by separately analyzing one typical frame and one typical floor. The
frequencies of the whole structure are simply the square root of the sum
of the squares of the floor frequencies, when treated as free—free
beams, and of the frame frequencies. Also, the mode shapes can be
obtained by superposition of the floor modes and the frame modes. It is
shown that such buildings possess all the modes of vibration that one

obtains by an analysis based on the assumption of rigid floor diaphragm,
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plus extra modes that involve floor deformations similar to those of
free—free beams. However, the modes that involve floor deformations
have zero ;odal participation factors for uniform ground motion., Hence,
it is concluded that the floors in such buildings can be treated as
rigid in their own plane in earthquake analysis without introducing an

additional approximation.

It is shown in Chapter VII that the concepts presented in the
earlier chapters can be apflied to study even more complex structures.
As a specific case, the characteristic frequency equation amnd expres—
sions for the mode shapes and the participation factors are obtained for
a long, narrow building that has two end walls in the upper stories and
several uniformly placed walls in the ground story. Thus, the lateral
loads are resisted by the end walls in the upper stories, but are
transferred to the ground story walls through the second-floor slab.
The Impetiai County Services Building, which has a similar structural
systém, is then analyzed using this model to obtain the first few
frequencies and mode shapes., The fundamental mode shape displays some
interesting features. First, the second floor deforms with opposite
curvature from that of the upper floors. Also, a portion of the second
floor near mid-span is displaced in the opposite direction from thé rest
of the structure. This is uvnusual, but is consistent with the mechanism

of shear transfer from the upper walls.to the ground shear walls.
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All of the work has been carried out on symmetrical structures,
although structures with asymmetry can also be analyzed using these
methods. Even though the antisymmetric <(torsional) modes of the
symmetrical structures are not excited by uniform ground motiom, results
for these modes are presented, However, caution is mneeded in using
these results, since the contribution of longitudinal frames or walls to
the torsiomal stiffness of the structure is neglected in the way the
problem has been formulated, Also, the polar moment of inertia of the
floors is underestimated in this approach because the floors have been
modelled as beams. The two effects are small in long, narrow buildings
andlhave opposite, compensating effects on the dynamic properties of the
structure. However, there may be situatiords where they cannot be
neglectéd. To include these effects one can increase the end wall
stiffness and the floor mass so as to obtain the same torsiomal stiff-
ness and rotational inertia of the floor, that would actually occur in

the building.

From this thesis, it is seen that the problem of significant in—
plane floor deformations, important in the earthquake response of cer—
tain types of buildings, is amenable to analysis in many cases. It is
hoped that the results of this study lead to better understanding of
this phenomenon, and that the analytical methods preseanted will prove

useful in the dynamic analyses of buildings.
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As further areas of research, the present work c¢an easily be
extended to include both bending and shear deformations of the floors
(or walls). The approach may also have application to buildings that
consist of more than omne wing joining at an angle (e.g., L-, V=, T-
shape plans). Such structures need to be studied to learn the effects
of floor—diaphragm deformations., Also, the method has potential for use

in the study of buildings with vertical offsets.
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NOTATTION

Mathematical symbols have been defined where they first appear.
They are summarized here in alphabetical order. Some symbols are given
more than one meaning, when there is no question of confusion,
A = area of cross—section; comnstant of integratiomn;

arbitrary constant

A* = area of cross—-section per unit width

ay = spacing of floors

a, = spacing of frames

B = constant of integration

b = width of a wall

C = torsional stiffness; constant of integration;
arbitrary coanstant

c = thickness of a wall

D = constant of integration

D = flexural rigidity of plate strip of unit width

E = Young'’s modulus

£ = intensity of a continuously distributed static load

G = shear modulus

g = acceleration of gravity

h = height of building; story height

hl = height of roof from second floor

h2 = first~story height

1 = moment of inertia



I

kl
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moment of inertia per unit width or height
spring comstant

shear stiffness of plate strip of unit width
shear stiffness

shape factor

half length of building

length of building

bending moment.

mass per unit length

mass per unit area

modal participation factor
coefficient (dimensionless)

shear force

coefficient (dimensionless)
acceleration spectrum value
twisting moment; period

function of time

function of x; function of x and y
displacement

ground acceleration

function of x; functiom of y
displacement

function of y; function of x and y
displacement

function of x
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Y = function of y

x',y',z' = cartesian coordinates

X,¥,2 = dimensionless cartesian coordinates; cartesian coordinates
a = coefficient (function of frequency)
g = coefficient (function of frequency)
v = coefficient (function of frequency)
] = angle of twist

A = coefficient (functiom of frequency)
1 = coefficient (function of frequency)
& = coefficient (function of frequency)
p = density

© = frequency

Subscripts

b = bending

i,j,k, r integers

s = shear; integer






CALIFORNIA INSTITUTE OF TECHNOLOGY

Reports Published

by

Earthquake Engineering Research Laboratory¥*
Dynamics Laboratory
Disaster Research Center

Note: Numbers in parenthesis are Accession Numbers assigned by the
National Technical Information Service; these reports may be ordered
from the National Technical Information Service, 5285 Port Royal Road,
Springfield, Virginia, 22161. Accession numbers should be quoted on
orders for reports (PB —~-- -=-=), Reports without this information
either have not been submitted to NTIS or the information was not avail-
able at the time of printing. An N/A in parenthesis indicates that the
report is no longer available at Caltech.

1. Alford, J.L., G.W. Housner and R.R. Martel, "Spectrum Analysis of
Strong~Motion Earthquakes,” 1951. (Revised August 1964). (N/A)

2. Housner, G.W., "Intensity of Ground Motion During Strong Earth-
quakes,” 1952. (N/A)

3. Hudson, D.E., J.L. Alford and G.W. Housner, "Response of a Struc-
ture to an Explosive Genmerated Ground Shock," 1952. (N/A)

4., Housner, G.W., "Analysis of the Taft Accelerogram of the Earth-
quake of 21 July 1952." (N/A)

5. Housner, G.W., "A Dislocation Theory of Earthquakes,” 1953. (N/A)

6. Caughey, T.K., and D.E. Hudson, "An Electric Analog Type Response
Spectrum,™ 1954.(N/A)

~ 7. Hudson, D.E., and G.W. Housner, "Vibration Tests of a Steel-Frame
Building," 1954. (N/A)

8. Housmer, G.W., "Earthquake Pressures on Fluid Containers,”" 1954.

(N/A) ‘

9. Hudson, D.E., "The Wilmot Survey Type Strong-Motion Earthquake
" Recorder," 1958. (N/A)

10. Hudson, D.E., and W.D, Iwan, "The Wilmot Survey Type Strong-Motion
Earthquake Recorder, Part II,"™ 1960. (N/A)

* To order directly by phone the number is 703-487-4650,



110

12,

13.

14,

15.

16.

17.

18.

19,

20.

21.

22.

23.

24. b

25.

26.

27.

Caughey, T.K., D.E. Hudson, and R.V. Powell, "The CIT Mark II
Electric Analog Type Response Spectrum Analyzer for Earthquake
Excitation Studies," 1960. (N/A)

Keightley, W.0, G.W. Housnmer and D.E. Hudson, "Vibration Tests of
the Encino Dam Intake Tower," 1961. (N/A)

Merchant, Howard Carl, "Mode Superposition Methods Applied to
Linear Mechanical Systems Under Earthquake Type Excitatiom," 1961.

(N/A)

Iwan, Wilfred D., "The Dynamic Response of Bilinear Hysteretic
Systems,™ 1961. (N/A)

Hudson, D.E., "A New Vibration Exciter for Dynamic Test of Full-
Scale Structures," 1961. (N/A)

Hudson, D.E., "Synchronized Vibration Generators for Dynamic Tests
of Full-Scale Structures,” 1962. (N/A)

Jennings, Paul C., "Velocity Spectra of the Mexican Earthquakes of
11 May and 19 May 1962," 1962. (N/A)

Jennings, Paul C., "Response of Simple Yielding Structures to
Earthquake Excitation,” 1963. (N/A)

Keightley, Willard O., "Vibration Tests of Structures," 1963.
(N/4)

Caughey, T.K. and M.E.J., 0“Kelly, "General Theory of Vibration of
Damped Linear Dynamic Systems," 1963. (N/A)

0"Kelly, M.E.J., "Vibration of Viscously Damped Linear Dynamic
Systems," 1964. (N/A)

Nielsen, N, Norby, "Dynamic Response of Multistory Buildings,"
1964. (N/A)

Tso, Wai Keung, "Dynamics of Thin-Walled Beams of Opem Sectiom,"
1964, (N/A)

Keightley, Willard 0., "A Dynamic Investigation of Bouquet Canyon

Dam," 1964. (N/A)

Malhotra, R.K., "Free and Forced Oscillations of a Class of Self-
Excited Oscillators," 1964,

Hanson, Robert D., "Post~Elastic Response of Mild Steel Struc-
tures,” 1965.

Masri, Sami F., "Analytical and Experimental Studies of Impact

Dampers," 1965.

=

REPORTS - 2



28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

41.

42.

43,

44,

Hanson, Robert D., "Static and Dynamic Tests of a Full-Scale
Steel-Frame Structure,"”" 1965.

Cronin, Donald L., "Response of Linear, Viscous Damped Systems toc
Excitations Having Time-Varying Frequency," 1965.

Hu, Paul Yu—-fei, "Analytical and Experimental Studies of Random
Vibratiom," 1965.

Crede, Charles E., "Research on Failure of Equipment when Subject
to Vibratiom," 1965.

Lutes, Loren D., "Numerical Response Characteristics of a Uniform
Beam Carrying One Discrete Load," 1965. (N/A)

Rocke, Richard D., "Transmission Matrices and Lumped Parameter
Models for Continuous Systems,"” 1966. (N/A)

Brady, Arthur Gerald, "Studies of Response to Earthquake Ground
Motiom," 1966. (N/A)

Atkinson, John D., "Spectral Demsity of First Order Piecewise
Linear Systems Excited by White Noise," 1967. (N/A)

Dickerson, John R., "Stability of Parametrically Excited Differen-
tial Equatioms," 1967. (N/A)

Giberson, Melbourne F., "The Response of Nonlinear Multi-Story
Structures Subjected to Earthquake Excitatiom,™ 1967. (N/A)

Hallanger, Lawrence W., "The Dynamic Stability of an Umbalanced
Mass Exciter,” 1967.

Husid, Raul, "Gravity Effects on the Earthquake Respomse of
Yielding Structures,™ 1967. (N/A)

Ruroiwa, Julio H., "Vibrationm Test of a Multistory Building,"
1967. (N/4)

Lutes, Loren Daniel, "Stationary Random Respomse of Bilinear
Hysteretic Systems," 1967.

Nigam, Navin C., "Inelastic Interactions in the Dynamic Response
of Structures," 1967.

Nigam, Navin C. and Paul C. Jennings, "Digital Calculation of
Response Spectra from Strong-Motion Earthquake Records," 1968,

Spencer, Richard A., "The Nonlinear Response of Some Multistory

Reinforced and Prestressed Concrete Structures Subgected to Earth-
quake Excxtatlon," 1968, (N/A)

REPORTS - 3



45,

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Jennings, P.C., G.W. Housner and N.C. Tsai, "Simulated Earthquake
Motions," 1968.

"Strong~Motion Instrumental Data on the Borrego Mountain Earth-
quake of 9 April 1968," (USGS and EERL Joint Report), 1968.

Peters, Rex B., "Strong Motion Accelerograph Evaluation,"” 1969.

Heitner, Kenneth L., "A Mathematical Model for Calculation of the
Run-Up of Tsunamis," 1969.

Trifunac, Mihailo D., "Investigation of Strong Earthquake Ground
Motiom," 1969. (N/A)

Tsai, Nien Chien, "Influence of Local Geology on Earthquake Ground
Motion," 1969. (N/A)

Trifunac, Mihailo D., "Wind and Microtremor Induced Vibrations of
a Twenty-Two Steel Frame Building," EERL 70-01, 1970.

Yang, I-Min, "“Stationary Random Response of Multidegree-of-Freedom
Systems,”™ DYNL-100, June 1970. (N/A)

Patula, Edward John, "Equivalent Differential Equations for Non-
linear Dynamical Systems," DYNL-101, June 1970.

Prelewicz, Daniel Adam, "Range of Validity of the Method of
Averaging," DYNL-102, 1970.

Trifunae, M.D., "On the Statistics and Possible Triggering Mecha-
nism of Earthquakes in Southern Califormia," EERL 70-03, July
1970.

Heitner, Kenneth Leon, "Additional Investigations on a Mathemati-
cal Model for Calculation of the Run-Up of Tsunamis," July 1970.

Trifunac, Mihailo D., "Ambient Vibration Tests of a Thirty—-Nine
Story Steel Frame Building,' EERL 70-02, July 1970.

Trifunac, Mihailo and D.E. Hudson, "Laboratory Evaluations and
Instrument Corrections of Strong~Motion Accelerographs," EERL
70-04, August 1970. (N/A)

Trifunac, Mihailo D., "Response Envelope Spectrum and Interpreta-
tion of Strong Earthquake Ground Motiom," EERL 70-06, August 1970.

Keightley, W.0., "A Strong-Motion Accelerograph Array with Tele-
phone Line Interconnections," EERL 70-05, September 1970.

Trifunac, Mihailo D., "Low Frequency Digitization Errors and a New

Method for Zero Baseline Correction of Strong-Motiom Accelero=
grams," EERL 70-07, September 1970.

REPORTS - 4



62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Vijayaraghavan, A., "Free and Forced Oscillatioms in a Class of
Piecewise-Linear Dynamic Systems," DYNL-103, January 1971.

Jennings, Paul C., R.B. Matthiesen and J. Brent Hoerner, "Forced
Vibrations of a 22-Story Steel Frame Building," EERL 71-01,
February 1971. (N/A) (PB 205 161)

Jennings, Paul C., "Engineering Features of the San Fernando
Earthquake of February 9, 1971," EERL 71-02, Jume 1971. (PB 202
550)

Bielak, Jacobo, "Earthquake Response of Building-Foundation Sys~—
tems," EERL 71-04, June 1971. (N/A) (PB 205 305)

Adu, Randolph Ademola, "Response and Failure of Structures under
Stationary Random Excitatiom," EERL 71-03, June 1971. (N/A) (PB
205 304)

Skattum, Knut Sverre, "Dynamic Analysis of Coupled Shear Walls and
Sandwich Beams," EERL 71-06, June 1971. (N/A) (PB 205 267)

Hoerner, John Brent, "Modal Coupling and Earthquake Response of
Tall Buildings," EERL 71-07, June 1971. (N/A) (PB 207 635)

Stahl, Karl John, "Dynamic Response of Circular Plates Subjected
to Moving Massive Loads,” DYNL-104, Junme 1971. (N/A)

Trifunac, M.D., F.E. Udwadia and A.G. Brady, "High Frequency
Errors and Instrument Corrections of Strong-Motion Accelerograms,”
EERL 71-05, 1971, (PB 205 369)

Furuike, D.M., "Dynamic Response of Hysteretic Systems with Appli-
cation to a System Containing Limited Slip," DYNL~105, September
1971. (N/A)

Hudson, D.E. (Editor), "“Strong-Motion Instrumental Data on the San
Fernando Earthquake of February 9, 1971," (Seismological Field .
Survey, NOAA, C.I.T. Joint Report), September 1971. (PB 204 198)

Jennings, Paul C. and Jacobo Bielak, "Dynamics of Building=-Soil
Interaction," EERL 72-01, April 1972. (PB 209 666)

Kim, Byung-Koo, "Piecewise Linear Dynamic Systems with Time
Delays," DYNL-106, April 1972.

Viano, David Charles, "Wave Propagation in a Symmetrically Layered
Elastic Plate," DYNL-107, May 1972,

Whitney, Albert W., “On Insurance Settlements Incident to the 1906
San Francisco Fire," DRC 72-01, August 1972. (PB 213 256)

. REPORTS - 5



17.

78.

79'

80.

8l.

82.

83.

85.

86 .

87.

88.

89.

90.

91.

Udwadia, F.E., "Investigation of Earthquake and Microtremor Ground
Motiomns," EERL 72-02, September 1972. (PB 212 853)

Wood, John H., "Analysis of the Earthquake Response of a Nine-
Story Steel Frame Building During the San Fernando Earthquake,"
EERL 72-04, October 1972. (PB 215 823)

Jennings, Paul C., "Rapid Calculation of Selected Fourier Spectrum
Ordinates,"” EERL 72-05, November 1972.

"Research Papers Submitted to Fifth World Conference on Earthquake
Engineering, Rome, Italy, 25-29 June 1973," EERL 73-02, March
1973, (PB 220 431)

Udwadia, F.E. and M.D. Trifunac, "The Fourier Transform, Response
Spectra and Their Relationship Through the Statistics of Oscilla-
tor Response,” EERL 73-01, April 1973. (PB 220 458)

Housner, George W., "Earthquake-Resistant Design of High-Rise
Buildings,” DRC 73-01, July 1973. (N/A)

"Earthquakes and Insurance," Earthquake Research Affiliates
Conference, 2-3 April, 1973, DRC 73-02, July 1973. (PB 223 033)

Wood, John H., "Earthquake-Induced Soil Pressures on Structures,”
EERL 73-05, August 1973. (N/A)

Crouse, Charles B., "Engineering Studies of the San Fernando
Earthquake," EERL 73-04, March 1973. (N/A)

Irvine, H. Max, "The Veracruz Earthquake of 28 August 1973," EERL
73-06, October 1973.

Iemura, H. and P.C. Jennings, "Hysteretic Response of a Nine-Story
Reinforced Concrete Building During the San Fermando Earthquake,"
EERL 73-07, October 1973.

Trifunac, M.D. and V. Lee, "Routine Computer Processing of Strong-
Motion Accelerograms," EERL 73-03, October 1973. (N/A) (PB 226
047/As)

Moeller, Thomas Lee, "The Dynamics of a Spinning Elastic Disk with
Massive Load,"” DYNL 73-0l, October 1973.

Blevins, Robert D., "Flow Induced Vibration of Bluff Structures,"”
DYNL 74~01, February 1974.

Irvine, H., Max, "Studies in the Statics and Dynamics of Slmple
Cable Systems," DYNL-108, January 1974.

REPORTS - 6



92.

93.

9.

95.

96 .

97.

98.

99.

100.

101,

102.

103.

104.

105.

Jephcott, D.K. and D.E. Hudson, "The Performance of Public School
Plants During the San Fermando Earthquake," EERL 74-Cl, September
1974, (PB 240 000/AS)

Wong, Hung Leung, "Dynamic Soil-Structure Interaction," EERL
75-01, May 1975. (N/A) (PB 247 233/AS)

Foutch, D.A., G.W. Housner, P.C. Jennings, '"Dynamic Responses of
Six Multistory Buildings During the San Fernando Earthquake," EERL
75-02, October 1975. (PB 248 144/AS)

Miller, Richard Keith, "The Steady-State Response of Multidegree-
of-Freedom Systems with a Spatially Localized Nonlinearity," EERL
75-03, October 1975. (PB 252 459/AS)

Abdel-Ghaffar, Ahmed Mansour, "Dynamic Analyses of Suspension
Bridge Structures," EERL 76-01, May 1976. (PB 258 744/AS)

Foutch, Douglas A., "A Study of the Vibrational Characteristics of
Two Multistory Buildings," EERL 76~03, September 1976. (PB 260
874/A8)

"Strong Motion Earthquake Accelerograms Index Volume," Earthquake
Engineering Research Laboratory, EERL 76-02, August 1976. (PB 260
929/As8)

Spanos, P-T.D., "Linearization Techniques for Non-Linear Dynamical
Systems," EERL 76-04, September 1976. (PB 266 083/AS)

Edwards, Dean Barton, "Time Domain Analysis of Switching Regula-
tors," DYNL 77~01, March 1977.

Abdel-Ghaffar, Ahmed Mansour, "Studies on the Effect of Differen-
tial Motions of Two Foundations upon the Response of the Super-
structure of a Bridge," EERL 77-02, January 1977. (PB 271 095/AS)

Gates, Nathan C., "The Earthquake Response of Deteriorating Sys-
tems," EERL 77-03, March 1977. (PB 271 090/AS)

Daly, W., We. Judd and R, Meade, "Evaluation of Seismicity at U.S.
Reservoirs," USCOLD, Committee on Earthquakes, May 1977. (PB 270
036/48)

Abdel-Ghaffar, A.M. and G.W. Housner, "An Analysis of the Dymamic
Characteristics of a Suspension Bridge by Ambient Vibration Mea-
surements," EERL 77-01, January 1977. (PB 275 063/AS)

Housner, G.W. and P.C. Jennings, "Earthquake Design Criteria for
Structures," EERL 77-06, November 1977. (PB 276 502/AS)

REPORTS - 7 .



106,

107.

108.

109.

110,

111.

112,

113.

114,

115,

116.

117.

118,

119.

120,

Morrison, P., R. Maley, G. Brady, R. Porcella, "Earthquake
Recordings on or Near Dams," USCOLD, Committee on Earthquakes,
November 1977. (PB 285 867/AS)

Abdel-Ghaffar, A.M., "Engineering Data and Analyses of the
Whittier, California Earthquake of January 1, 1976," EERL 77-05,
November 1977. (PB 283 750/AS)

Beck, James L., "Determining Models of Structures from Earthquake
Records," EERL 7801, June 1978, (PB 288 806/AS)

Psycharis, Ioannis, "The Salonica (Thessaloniki) Earthquake of
June 20, 1978," EERL 78-03, October 1978. (PB 290 120/AS)

Abdel-Ghaffar, A.M. and R.F. Scott, "An Investigation of the
Dynamic Characteristics of an Earth Dam," EERL 78-02, August 1978.
(PB 288 878/AS)

Mason, Alfred B., Jr., "Some Observations on the Random Response
of Linear and Nonlinear Dynamical Systems," EERL 79-01, January
1979. (PB 290 808/AS)

Helmberger, D.V. and P.C., Jennings (Organizers), "Strong Ground
Motion: N.S.F. Seminar-Workshop," SL-EERL 79-02, February 1978,

lee, David M., Paul C. Jennings and George W. Housner, "A Selec~
tion of Important Stronmg Motion Earthquake Records," EERL 80-01,
January 1980, (PB 80 169196)

McVerry, Graeme H.,, "Frequency Domain Identification of Structural
Models from Earthquake Records," EERL 79-02, October 1979.

Abdel~-Ghaffar, A.M., R.F. Scott and M.J. Craig, "Full-Scale
Experimental Investigation of a Modern Earth Dam," EERL 80-02,
February 1980.

Rutenberg, Avigdor, Paul C. Jennings and George W. Housner, "The
Response of Veterans Hospital Building 4l in the San Fernando
Earthquake,'" EERL 80-03, May 1980.

Haroun, Medhat Ahmed, "Dynamic Analyses of Liquid Storage Tanks,"
EERL 80-04, February 1980.

Liu, Wing Kam, "Development of Finite Element Procedures for
Fluid-Structure Interaction," EERL 80-06, August 1980.

Yoder, Paul Jerome, "A Strain-Space Plasticity Theory and Numeri-
cal Implementation," EERL 80-07, August 1980.

Krousgrill, Charles Morton, Jr., "A Linearization Technique for

the Dynamic Respone of Nonlinear Continua,” EERL 80-08, September
1980. '

REPORTS - 8



121.

122,

123,

124,

125.

126.

127.

128,

129,

130.

131,

Cohen, Martin, "Silent Boundary Methods for Transient Wave
Analysis," EERL 80-09, September 1980.

Hall, Shawn A., "Vortex-Induced Vibrations of Structures," EERL
81-01, January 1981, PB-

Psycharis, Ioannis N., "Dynamic Behavior of Rocking Structures
Allowed to Uplift," EERL 81-02, August 1981, PB-

Shih, Choon-Foo, "Failure of Liquid Storage Tanks Due to Earth-
quake Excitation," EERL 81-04, May 1981, PB-

Lin, Albert Niu, "Experimental Observations of the Effect of Foun-
dation Embedment on Structural Response,' EERL 82-01, May 1982,
PB-

Botelho, Dirceau L.R., "An Empirical Model for Vortex—-Induced
Vibrations," EERL 82-02, August 1982, PB-

Ortiz, L. Alexander, "Dynamic Centrifuge Testing of Cantilever
Retaining Walls," SML 82-02, August 1982, PB-

Iwan, W.D., Editor, "Proceedings of the U.S. National Workshop on
Strong-Motion Earthquake Instrumentation, April 12-14, 1981, Santa
Barbara, California," California Institute of Technology,
Pasadena, California, 1981,

Rashed, Ahmed, "Dynamic Analysis of Fluid-Structure Systems," EERL
82-03, July 1982, PB-

National Academy Press, "Earthquake Engineering Research-1982."

National Academy Press, "Earthquake Engineering Research-1982,
Overview and Recommendations."

REPORTS - 9



d
[]
(2}
[ad

KN EQAHH MO NOZEHNRGLGUHNQOYEMOD O WD

Strong-Motion Earthquake Accelerograms
Digitized and Plotted Data

Uncorrected Accelerograms

Volume I

Report No.

EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL

REPORTS - 10

70-20
70-21
71-20
71-21
71-22
71-23
72-20
72-21
72-22
72-23
72-24
72-25
72-26
72-27
73-20
73-21
73-22
73-23
73-24
73-25
73-26
73-27
73-28
73-29
73-30

NTIS
Accession No.

PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB

287
196
204
208
209
210
211
211
213
213
213
215
220
223
222
227
232
239
241
241
242
243
243
243
242

847
823
364
529
749
619
357
781
422
423
424
639
554
023
417
481 /A8
315/A8
585/AsS
551/AS
943/AS
262/AS
483/A8
497 /AS
594/AS
847/AS



)
[+
H
t

HEOSMHOOw

O 0 [}
<q.—awv02vv
o =2 A

=
e

Strong-Motion Earthquake Accelerograms

Digitized and Plotted Data

Corrected Accelerograms and Integrated
Ground Velocity and Displacement Curves

EERL

EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL

Yolume IT

Report No.

71-50
72-50
72-51
72-52
73-50
73-51
73-52
74-50
74-51
74-52
74-53
74-54
74-35
74-56
74~57
75-50
75-51
75-52
75-33

REPORTS - 11

PB
PB
PB
PB
B
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB

NTIS

208
220
220
220
223
224
229
231
232
233
237
236
239
239
241
242
242
242
243

Accession No.

283
161
162
836
024
977/ 9AS
239/AS
225/AS8
316/As
257/AS
174/AS
399/A8
586/AS
587/AS
552/AS
433/AS
949/AS
948/AS
719



Analyses of Strong-Motion Earthquake Accelerograms
Response Spectra

Yolume III
NTIS

Part Report No. Accession No.

A EERL 72-80 PB 212 602

B EFRL 73-80 PB 221 256

C EERL 73-81 PB 223 025
D EERL 73-82 PB 227 469/AS
E EERL 73-83 PB 227 470/AS
F EERL 73~84 PB 227 471/AsS
G EERL 73-85 PB 231 223/AS
H EERL 74~80 PB 231 319/AS
I EERL 74~81 PB 232 326/AS
J,K,L EERL 74~82 PB 236 110/AsS
M,N EERL 74~-83 PB 236 400/AS
0,P EERL 74-84 PB 238 102/AsS
Q,R EERL 74~-85 PB 240 688/AS
S EERL 74~86 PB 241 553/AS
T EERL 75~80 PB 243 698/AS
U EERL 75-81 PB 242 950/AS
v EERL 75-82 PB 242 951/AS
W,Y EERL 75-83 PB 243 492/As

REPORTS - 12



Analyses of Strong-Motion Earthquake Accelerograms

g
)
a}
t

HEOQM™MEOD O D

J,K,L,M
N,0,P
Q:R,S

T,U
V,W,Y

Index Volume

Fourier Amplitude Spectra

Yolume IV

Report No.

EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL
EERL

EERL

REPORTS - 13

72-100
73-100
73-101
73-102
73-103
73-104
73-105
74-100
74-101
74-102
74~103
74~104
75-100
75-101

76-02

NTIS
Accession No.

PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB
PB

PB

212
220
222
222
229
229
231
232
232
236
238
241
243
243

260

603

837

514

969/AS
240/AS
241/AS
224/ AS
327/AS8
328/A8
111/AsS
447/ AS
554/AS
493/AS
494/ AS

929/A8






