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ABSTRACT

Theoretical investigations of the dynamic behavior of some impor—
tant fluid-structure systems are conducted to seek a better understand-
i[g of: 1) the hydrodynamic pressures generated in the fluid as a result
oj both the rigid body and the vibrational motions of the structure, and
2)| the effects of the fluid on the dynamic properties of the structure
as| well as on its response to earthquake ground motions,

Explicit formulas are presented for the hydrodynamic pressures
generated in fluid domains having boundaries which can be approximated
by simple geometries. Such domains may be reservoirs behind dams, or
around intake towers, water around bridge piers or liquids stored in
circular cylindrical tanks. The formulas are used to calculate the

hydrodynamic pressures analytically and the results are exhibited in a

form showing the pressure dependence on the various parameters of the

problem.

The fluid-structure interaction problems of long straight walls,
having uniform rectangular sections, and long straight gravity dams,
having uniform triangular sections, are investigated. The natural fre-
quencies of vibration and the associated mode shapes are found in the
former case, through a fully analytical approach for both the structure

and the fluid domains, and in the latter, by discretizing the dam into

finite elements and treating the reservoir as a continuum by boundary

solution techniques. A method is presented for computing the earthquake
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response of both structures, based on superposition of their free vibra-
tional modes.

The problems of limited length dam or wall-reservoir systems are
investigated. The natural frequencies of the structure and the
corresponding mode shapes are found by the Rayleigh—Ritz method. This
method is also used to obtain the frequency domain response of the
structure to all three components of the ground motiom. The validity of
the two dimensional approximation, often made in the analysis of gravity
dams, and the effect of the length to height ratio on the dynamic
properties and response of the structure are studied.

Time domain responses to arbitrary earthquake ground motions are
evaluated by superposing the frequency domain responses, to individual
Fourier components of the excitation, through the Fourier Integral. For
efficiency of computation, a fast Fourier analysis is used for both the
forward transform of the ground excitation and the inverse transform of

the Fourier Integral.
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CEAPTER I

INTRODUCTION

1.1, Dynamic Analyses of Fluid-Structure Systems

The possible failure of dams retaining large quantities of water
presents a hazard for life and property during earthquakes. In addi-
tion, the structural damage to the dams themselves may pose a consider—
able economic loss, The safety of other important structures, such as
intake towers and liquid storage tanks, is also of importance. This has
focused considerable attention on the dynamic analyses of these fluid-
structure systems,

During an earthquake, the shaking of the ground imparts movement to
structures which in turn stresses the structural elements. When the
structure is in contact with a volume of fluid, it experiences addi-
tional forces from the fluid. The horizontal motion of the ground does
not impart significant movement to the fluid so the structure must move
bodily toward and away from the fluid thus experiencing dynamic fluid
pressures. The structure may also experience additional pressures
resulting from modifications to its deformational motion. In general,
fluid interaction can have a significant effect on the dynamic
properties of a structure as well as on its response to earthquake
ground motion.

Until recently, most work on fluid-structure systems has been
concerned with two uncoupled problems: 1) the hydrodynamic pressures on

a structure, assuming it to be rigid, and 2) the response of the
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structure, assuming it to be flexible, to the combined action of its
internal inertia forces and the pressures as found from problem (1),

us, the earthquake response of those systems was usually obtained by
first assuming the structure to be rigid and finding the pressures
generated by its rigid motion, then assuming it to be flexible, applying
those pressures together with the inertia forces to it and calculating
its dynamic response. But the problem is more complex than this. For
example, consider a dam—reservoir system. During an earthquake, both
the rigid body and the vibrational motions of the dam generate
hydrodynamic pressures in the reservoir and the deformations of the dam
are in turn affected by those pressures which act on its upstream face.

us this is a closed cycle of action and reaction, and to adequately
represent this cycle, the formulation of the problem must include the
fluid-structure interaction.

To simplify the approach to the complete problem, the fluid-

structure system is subdivided into two subsystems, namely the structure
domain and the fluid domain. By doing this, it is possible to deal with
two separate problems: 1) the response of the structure to known
loadings, and 2) the pressures generated in the fluid domain due to
known motions of its boundaries. The final step is to couple the solu—
tions of those two problems along the interface boundary.

The problem of the structure response to known loadings is fully
understood and any difficulty arising from the geometry of the structure

could be overcome by using the finite element method.




Regarding the second problem, the fluid is usually found bounded by
irregular boundaries. If the fluid domain is finite, the finite element
method can be used., However, this is a relatively expemnsive approach.
If the fluid domain is infinite, a finite element treatment will not be
satisfactory unless some sort of non-reflecting boundary is
incorporated. On the other hand, an analytical solution for the fluid
domain is generally possible only if its boundaries can be approximated
as having simple geometries. The second approach is computationally
advantageous over the first. 1In addition, the explicit expressions
obtained for the hydrodynamic pressures can be easily studied to throw
light on the nature of these earthquake generated loads, which in turn

should help engineers achieve better design analyses of the structures.

1.2, Outline of the Present Study

The present study develops methods to analyze the dynamic behavior
of fluid—structure systems., The study is carried out in three phases:
1) an extensive analysis of the hydrodynamic pressures gemerated in some
simplified fluid domains, 2) a detailed theoretical treatment of long
gravity dam—reservoir systems, and 3) a detailed analysis of short dam
or wall-reservoir systems.

A necessary first phase is to understand the nature of earthquake
generated hydrodynamic pressures, A detailed collection of existing and
developed formulas for pressures generated in simplified fluid domains
is presented. Emphasis is placed on the case of reservoirs behind

gravity dams. The formulas obtained are used to calculate the
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ydrodynamic pressures for selected numerical values of the different
parameters involved in the problem. These parameters are: 1) the

pecified motion of the dam, 2) the frequency of vibration, 3) the dam

&

dimensions, and 4) the water compressibility. The results are exhibited
in a form that shows the pressure dependence on these various parame-—
ters.

The second phase of study is devoted to the analysis of a

(7]

implified problem; namely, that of a wall or dam—reservoir system. The

problem is reduced to one in two dimensions by assuming the structure to

o'

e long compared to its height, Under the assumption of incompressible
water, the natural frequencies of vibration and associated mode shapes
are found, and the effect of the reservoir on their values is

nvestigated. The structure is modeled by three different theories: 1)

[ Y

pure shear theory, 2) Bernoulli—Euler bending theory, and 3) Timoshenko
shear-bending theory. The structure is treated analytically in case of
a rectangular section wall, while discretized into finite elements in

case of a triangular section gravity dam. In both cases, the water in

ot

he reservoir is treated as a continuum and the expressions obtained in

phase one are used. In each case, a method is presented to compute the

(0]

arthquake response of the structure, based on superposition of its free
viibrational modes.

The third phase of this study focuses on the effect of the length

-+

o height ratio on the dynamic behavior of limited length wall-reservoir

(%

ystems. The wall is modeled first by a shear plate theory and then by

©

bending plate theory. Neglecting water compressibility, the natural
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frequencies and mode shapes are found using the Rayleigh—Ritz method.
The effect of the length to height ratio on the dynamic properties is
studied, The Rayleigh—Ritz method is used again to obtain frequency
domain responses to harmonic ground motions. The effects of the pres—
ence of the reservoir, the water compressibility and the fluid-structure
interaction on those responses are illustrated. The frequency domain
responses are used to evaluate time domain responses to arbitrary
earthquake ground motions through the use of the Fourier Integral. The
efficiency of computation is increased by using a fast Fourier analysis
for both the forward transform of the ground excitation and the inverse

transform of the Fourier Integral.

1.3. Organization

This thesis is divided into six chapters. Chapter I has the
introduction, Chapters II, III and IV correspond to the three phases of
the study, while Chapter V includes numerical examples of time domain
responses to some existing earthquake ground motions. The summary and
conclusions are given in Chapter VI. Each chapter is further divided
into several sections and subsections. Each chapter, and many of the
sections, has an individual introduction which gives a brief account of
the historical development of the particular subject under investiga-—
tion. Each chapter is written in a self-contained manner, and may be
read more or less independently of the others. The letter symbols are

defined where they are first introduced in the text and they are also
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summarized in alphabetical order in the ""NOTATION” section. Many
references have been included so that the reader may obtain a more

complete discussion of the various phases of the total subject.
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CHAPTER II

HYDRODYNAMIC PRESSURES ON VIBRATING STRUCTURES

A necessary first step in analyzing the seismic response of fluid-
structure systems is the knowledge of the hydrodynamic pressures
generated in the fluid domain due to motions of its boundaries.

In real life systems, the fluid domains usually have irregular
boundaries of complicated geometries., Although possible, a finite ele—
ment treatment of finite fluid domains is relatively expensive because
of the large number of elements required. The use of the finite element
method for domains of infinite extent requires special techniques. A
different approach is sought in which the fluid domain is assumed to
have regular boundaries of simplified geometries. In many cases, this
approximation is acceptable and may be shown not to introduce consider—
able errors, This assumption enables the treatment of the fluid domain
as a continuum and an analytical solution of the problem may be
obtained. This approach has the advantage of drastically reducing the
cost of computing. In addition, the explicit expressions derived for
the hydrodynamic pressure can be easily studied to throw light on the
behavior of these earthquake generated loads.

The purpose of this chapter is to establish the basic equations
which govern the dynamic pressure generated in the fluid and to develop
analytical solutions to these equations for some simplified fluid

domains.
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In the first section, the fundamental assumptions regarding the
fluid are stated, the equations governing the hydrodynamic pressure are

given, and general solutions to those equations are presented. In each

og the subsequent sections, the general solution for the pressure is

specialized for a particular fluid domain. Each section starts with a

brief introduction which gives a historical background about the
sTbject. This is followed by a discussion of the assumptions made about
the domain boundaries. Next, the formulas for the pressures generated
by specific motions of the boundaries are presented. Finally, each
section ends with detailed numerical examples illustrating the pressure
dependence on the various parameters., In addition, solutions for the

pressures generated in some other simplified fluid domains are listed in

the ""Appendix” section at the end of the chapter.

2,1, Governing Equations and General Solutions

This section contains the basic equations which govern the
hydrodynamic pressure, and their gemeral solutionms.

2.1.1, Fundamental Assumptions

In a consideration of the different factors affecting the motion of

the fluid, the following conventional assumptions are made:

i) The fluid is homogeneomns, inviscid and linearly compressible.
ii) The flow field is irrotational.
iii) No sources, sinks or cavities are anywhere in the flow field.

iv) The displacements and their spatial derivatives are small.




2.1.2. Governing Equations

According to the assumptions made about the fluid, the hydrodynamic

pressure p(x,y,z,t), in excess of the hydrostatic pressure, is governed

by:
Py - L 2%
PT oy 2
c it (2.1)
where
2 2 2
v - a2+az+az
9x oy 0z (2.2)

is the three dimensional Laplace operator in cartesian coordinates

c = \/k/gz is the velocity of sound in the fluid, k is the bulk
modulus of elasticity of the fluid, and pl its mass density. Equation

2.1 is the three dimensional wave equation governing the hydrodynamic
pressure in a linearly compressible fluid.
If the fluid is assumed to be incompressible, one should regard k,

and hence ¢, as infinite. This will change Eq. 2.1 into:

Vo =0 (2.3)
which is the three dimensional Laplace equation governing the
hydrodynamic pressure in an incompressible fluid.

2.1.3. General Solutions
The solution p(x,y,z,t) of the wave equation, Eq. 2.1, can be
obtained by the method of separation of variables. Thus a solution is

sought of the form:
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pi(x,y,z,t) = X(x) * Y(y) ° Z(2) ° T(¢) (2.4)
Two possible solutions of the wave equation can be stated as follows:

p(x,y,2,t) = [c1 exp (8x) + c, exp (-8x)1]
: [03 sin (By) + c, cos (By) 1

[c5 sin (nz) + cg cos (nz)]

[c7 exp (itt) + cg exp (—itt)]

(2.5)
in which
B2 + 1) > (v/e)? and 82 = (% + n?) - (v/c)?
or
p(x,y,2z,t) = [:1 exp (igx) + :2 exp (-igx)]
* [c3 sin (By) + cy cOS (By) 1]
[c5 sin (nz) + cg COS (nz)1
* [07 exp (itt) + cg exp (-itt)] (2.6)
in which
(82 + 1) < (v/e)? and 8 = (v/e)? - (32 + D).

In the above equations, the ci's and ci's are constant coeffi-

ciénts, 5,5,B,n and T are separation constants.
The general solution of the Laplace equation, Eq. 2.3, can be

obiained directly from the solutions of the wave equation, given above,
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by letting ¢ —> «. In this case, we have only the form given by

Eq. 2.5, with & replaced by pu, where p2 = Bz + nz, and the time
dependent function T(t) is unspecified. Thus:
r(x,y,z,t) = [01 exp (px) + c, exp (—px)]

[c3 sin (By) + c, cos (By)1

: [05 sin (nz) + cg COS (nz)] ° T(t) 2.7

2,2. Infinitely Long Gravity Dams or Walls

H.M. Westergaard [1] was the first to analyze the hydrodynamic
pressures generated in reservoirs behind concrete gravity dams. He
obtained a solution for the pressure resulting from a harmonic horizon—
tal ground motion. It is based on the following assumptions: 1) the
reservoir is of constant depth and of infinite extent in the upstream
direction, 2) the effect of waves at the free surface is negligible,

3) the water is linearly compressible, and 4) the dam is rigid,
infinitely long, and has a vertical upstream face. The validity of
those assumptions has been studied by many investigators and only a
brief discussion is given here.

For reservoirs of finite extent, H.A. Brahtz and C.H. Heilbron [2]
showed that the effect of length is negligible (the pressure increase is
less than 5% as compared to the infinite reservoir case) when the length
to depth ratio is greater than two, in the case of a reservoir of fixed
far end, and when this ratio is greater than three, in the case where
the far end is moving with the ground. These conclusions were supported

by the experimental results of L.M. Hoskins and L.S. Jacobsen [3]. The
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éffect of reservoir length was also investigated by J.I. Bustamante
ét al. [4], but for a wider range of frequencies of excitation. The

conclusion was that the length may be of some importance only in the

case of high dams. Thus, the assumption of an infinite reservoir is
reasonable, especially since actual reservoirs usually extend to large
distances.

The assumption of a constant depth reservoir also seems reasonable
since most reservoir bottoms are of small slopes, particularly over a
distance, just upstream the dam, extending at least few times the dam
height.

J.I. Bustamante et al. [4] give estimates for the error introduced

b& ignoring the surface waves, as a function of the reservoir depth and
tge frequency of excitation. Based on this work, one concludes that the
effect of those waves can be neglected with little loss of accuracy.

Although H.M. Westergaard [1] included the compressibility of water

n his study, S. Kotsubo [5] showed that this solution is valid only for

fubo

frequencies of excitation less than the fundamental natural frequency of
the reservoir. J.I.Bustamante et al. [4] and A.K. Chopra [6] studied

the effect of water compressibility, the former in case of harmonic

ground motion, the latter in case of earthquake ground motion. They
showed that the solution becomes independent of the excitation frequency
when compressibility is neglected, and the resulting errors in the time

hﬁstory of the total force acting om the dam may be significant except

ppssibly for reservoirs of depth 100 ft or less.



In practice, gravity dams have upstream faces which are almost
vertical over the full height or over the major part of it. Based on
the works of C.N. Zangar [7] and A.T. Chwang [8], the pressure distribu—
tion for a dam with a vertical upstream face is only slightly different
from that of a dam with very steeply sloping face (0 to 5° off verti-
cal). Thus, assuming the upstream face to be vertical is a very accept—
able assumption.

Earthquake loads cause even the most rigid structures to deform,
When the structure is a dam, additional hydrodynamic pressures are
generated as a result of this deformation. This was first accounted for
by H.A., Brahtz and C.H. Heilbron [2]. They assumed the deformation
shape of the upstream face of the dam to be a straight line and
calculated the excess in pressure due to this deformation. The ground
motion was harmonic with frequency less than the fundamental frequency
of the reservoir. Similar results were obtained by J.I. Bustamante et
al. [4], for a wider frequency range and for both a linear and a
parabolic deformation shape. A.K.Chopra [9] took the deformation shape
to be the fundamental mode shape as determined by the finite element
method and computed those additional pressures in the case of earthquake
ground motion,

The discussion of the assumption that the dam is infinitely long
will be deferred to the next sectiom, in which the pressure for the case

of limited length dams is investigated.
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Under the same assumptions made by H.M. Westergaard [1], except

that the effect of surface waves is included, A.E.Chopra [6] gave formu-

las for the pressure generated by vertical ground motion, both harmonic

and earthquake. He showed that, as in the case of horizontal excita—
tion, the wave motion at the free surface may be neglected without

introducing significant errors,

In the following, solutions for the pressures generated in

reservoirs behind infinitely long gravity dams are given for three types
éf motions at the reservoir boundaries: 1) vibrational motion of the
4am, 2) longitudinal ground motion (normal to the dam), and 3) vertical
éround motion, In each case, the boundary conditions are first stated,
;nd then the corresponding expression for the pressure is given and
griefly discussed.

£.2.1. Geometry of the Problem

An xyz cartesian coordinate system is chosen such that the xy—plane

is horizontal, coinciding with the bottom of the reservoir, and the

yiz—plane is vertical, coinciding with the undeflected upstream face of
éhe dam. The x—axis points into the reservoir, the y—axis runs along
tie heel of the dam, while the z—axis points upward, as shown in

ﬁig. 2.1,

The water in the reservoir occupies the domain D where

D = [(x,y,z)l 0{(x (o, @« y<{o, 01z Hl .

H2 is the constant depth of the reservoir.
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By assuming the dam to be infinitely long in the y—direction, the
prgblem becomes one in two dimemsions in which the pressure is
in?ependent of the y-coordinate, i.e. p = p(x,z,t).

2.#.2. Vibrational Motion
In this case, the dam is assumed to vibrate harmonically such that

the deformation of its upstream face, u(z,t), is given by:

u(z,t) = A° ?(1)° exp (iwt)

H (2.8)

where A is the maximum amplitude of vibrationm, T(i) is a given function

of z such that (1) = 1, H is the dam height, i = {y -1 and © is the
circular frequency of vibration (see Fig. 2.2).

The boundary conditions are as follows:

i) the pressure is bounded as x — «, and only waves travelling
away from the dam can exist, i.e.,
p(e,z,t) ( @ (2.9)
ii) the effect of waves at the free surface of the reservoir
(z = Hz) is neglected, i.e.,

p(x.Hp,t) = 0 (2.10)

iii) the vertical motion of the water at the bottom of the
reservoir (z = 0) vanishes, i.e.,
wl(x,O.t) = 0 (2.11)
iv) the horizontal motion of the water at the upstream face of
the dam (x = 0) is the same as the deformation of the face,

ioe- »
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uz(O,z,t) = u(z,t) (2.12)
Applying these boundary conditions to the gemneral solutions given
in Eqs. 2.5 and 2.6, one obtains the following expression for the

hydrodynamic pressure:

p(x,z,t) = _ZPQHRA w2 exp (iot)
my-1
4 =i 2: 0 . exp -i8 . =) cos 2
= m0 H n B
=1 8m0 2 2
= ImO X z
+ FX g exp<—8m0 H_g-> cos<nm g)
o (2.13)
where
_ Crl)x . - .
nm - 2 ’ m = 1)2:3000¢ (2.14)
gmo = H,Q, J(w/c)z - (nm/H,Q,)z H m = 1,2;...,m0—1
(2.15)
5 . = H, | /BE)% - (6/c)? ; m= +1
mo 2 Tlm 2] » molmo F X I Y
my = smallest m for which (nmlﬂz) > (w/c)
1 H z z
I = = ¥5)° cos( -—>dz m=1,2,3,...
) H, f (7) Tn H, (2.16)
Examination of Eq. 2.13 yields:
i) The hydrodynamic pressure becomes unbounded as the excitation

frequency approaches a value that makes Smo or 8m0 vanish,

These particular values define the natural frequencies of the

reservoir, and are given by:
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N, ¢ .
of = A0 o Qillre 453,
i H, 2 H, (2.17)

The fundamental natural frequency of a reservoir of

depth H

2 is then given by:

r
1 2 H (2.18)
ii) When the excitation frequency is less than the fundamental

frequency of the reservoir, m, takes the value 1, and the

first series in Eq. 2,13 vanishes. When ®w is larger than w;,
o will be larger than 1, and both series will be present.

iii) The first series represents a part of the pressure which, for
a fixed time, is oscillatory and non—decaying in the
x-direction. The second series represents a non—oscillatory
decaying part.

iv) The first part of the pressure is a wave travelling in the
positive x—direction, while the second is a standing wave.

v) The second part of the pressure is in—phase with the excita-
tion, while the first has, in gemeral, an in—-phase and an
out—-of—-phase component.

If the water is assumed to be incompressible, a solution for the
pressure can be obtained without requiring the motion of the dam to be
harmonic in time as given in Eq., 2.8, In this case, the boundary condi-
tions, Eqs. 2.9 - 2,12, together with the general solution, Eq. 2.7,

leads to:



= "m0 . X z
p(x,z,t) = 2p — exp<—n —">' cos< "—>}
‘m; T m Hy "n H, (2.19)

where
To = if T;(z,t) : cos<ﬁm EL> dz H m1,2,3,...
L (2.20)
In particular, for harmonic motion as given in Eq. 2.8, Eq. 2.19
becomes:
= 2] v E’LQ * e X\ z .
px,z,t) = =2 A HgA w :n;l n exp<—nm H£> <:os<11m H2>,exp (wt()2.21)
The above equation is clearly the limit, as ¢ = o, of Eq. 2.13.

Examination of Eq. 2.21 yields:

i) For a fixed amplitude of crest acceleration, the pressure is
independent of the frequency of excitation.

ii) There is no resonmance in the reservoir at any frequency.

iii) For a fixed time, the pressure is non—oscillatory and
decaying in the positive x—direction.

iv) The generated pressure is in—phase with the excitation.

2.2.3. Longitudinal Ground Motion
In this case, the dam is assumed to be rigid. A harmonic ground

motion ug(t), along the x—axis, is applied to the dam base, such that:

ug(t) = v, * exp (iot) (2.22)

where Eg is the amplitude of motion, as shown in Fig., 2.3.
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The boundary conditions will be the same as those of the previous
case, except that the one given by Eq. 2,12 is replaced by:

uz(O,Z.t) = ug(t) (2.23)

The solution will be a special case of Eq. 2.13, in which A is

replaced by ;g and ?(ﬁ)s 1. The pressure will be given by:

— 2 .
pgx(x,z,t) = =2 PQHz“g o exp (iot)
T9-1 m+1 \
J_s L. Ty X 1. Z_
{ i n;; . g exp 18m0 Hz cos nm Hl)
m m0
i _ m+l £ z
+ exp[—& =1\* cos ==
e M 80 < m0H2> (“m 112)}
0 (2.24)

where pgx is the hydrodynamic pressure generated by a ground motion in
the x—-direction.

For incompressible water, u(z,t) in Eq. 2.20 is replaced by ug(t).

which reduces Eq. 2.19 to:

|

hd m+1
** "1 3 X e
.z, = H exp(-n_ = |° cos
 JCIENY 2 p, Byu () mgl LL—n 5 p(-ny & nm(
m

)

.25)

For a harmonic motion, as given by Eq. 2.22, the above equation becomes:
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2 .
ng(x,z.t) =-2 p H u, © exp (iwmt)

[}
® m+1
. (-1) - . . X\ z
{[1 2 exP< M H£> °°s<“m H;L)}
=Ly (2.26)

which is the limit of Eq. 2.24 as ¢ = =,

The conclusions given in page 17, in case of compressible water,
and those given in page 19 for incompressible water, are also applicable
here.

2.2.4., Vertical Ground Motion

In this case, a harmonic vertical ground motion wg(t) is applied to

the base of the rigid dam, as well as to the reservoir bottom, such that

wg(t) = w8 exp (iwt) (2.27)

where ;g is the amplitude of motion, as shown in Fig. 2.4.

The problem in this case is further independent of the
x~coordinate, i.e., p = p(z,t). The boundary conditions are:
p(Hz,t) = 0 (2.28)

wQ’(O,t) = wg(t) (2.29)

Applying those two conditions to the general solutiomn, one obtains:

() - L
- 2 sin [ c H2’<1 H, )] .
pgz(z.t) =-p Hw o % exp (iwt)

28 g . (9
c Oy °°s<c Hy) (2.30)

where Py, is the hydrodynamic pressure generated by a ground motion in

the z—~direction,
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Examination of Eq. 2.30 yields:

i) The hydrodynamic pressure becomes unbounded as © approaches a

value that make cos (% H£>=0. These values are given by:

i=1,2,3,... , which are the same natural

ey = (2i-1)xn
c 2 2 ’

frequencies of the reservoir given by Eq. 2.17.

ii) Since the pressure is independent of the xz-coordinate, then
for a fixed time, it is nomoscillatory and non—decaying.

iii) Depending on the sign of the denominator, which depends on
the value of w, the pressure may be in-phase or in opposite—
phase with the excitation.

For incompressible water, the governing equation for the pressure

will be a special case of Eq. 2.3, and is given by:

o
S
I

(=]

Q
N

z (2.31)

which has a general solution of the form:

p(z,t) = (egz + ¢f) * T(t) (2.32)

where c5 and cg are constant coefficients to be determined. The above

equation, together with the boundary conditions, Egs. 2.28 and 2.29,

leads to:

. s
Py (z,t) = —p Hw (t) <1 H£> (2.33)

For a harmonic motion as given by Eq. 2.27, Eq. 2.33 becomes:
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- - 2. _ Z.\. .
pgz(z’t) - ggszg w <i Hl) exp (iwt) (2.34)

which again is obtainable from Eq. 2.30 by letting ¢ go to =.

Examination of Eq. 2.34 reveals that:

i) For a fixed amplitude of ground motion, the generated pres—
sure is frequency independent.
ii) No resonance of pressure occurs.
1ii) For a fixed time, the pressure is non—oscillatory and non—
decaying.
iv) The pressure is in—phase or in opposite—phase with the exci-—
tation,
v) The pressure distribution on the face of the dam is linear.
2.,2.5. Numerical Examples
The hydrodynamic pressure, as given by Eq. 2.13 (or Eq. 2.24),
depends on several parameters. Excluding the density pl and the bulk

modulus of elasticity k of the water, which are rather constant, these

parameters are:

i) The depth of the reservoir, Hl'

ii) The maximum amplitude of dam acceleration, Amz.

iii) The excitation frequency, w.

iv) The prescribed vibrational shape, ?(%).
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The hydrodynamic pressure, when normalized by the maximum

hydrostatic pressure P, =P,8 H_, where g is the acceleration of

2° L

gravity, turns out to be independent of H Equation 2.13 (or Eq. 2.24)

0
also shows it directly proportional to the amplitude of crest accelera—
tion.

The dependence on the fourth parameter is studied by determining
the distribution of the normalized hydrodynamic pressure, acting on the
upstream face of the dam, which results from different prescribed vibra—

tional shapes. Equation 2.24 is used for the case of rigid motionm,

while Eq. 2.13 is used with the following prescribed vibrational shapes:

D AE) = sinn; §) Poi=12 (2.35)
where n, - 2l
2) P(g) = A(F) A s §=1.2 3
where
b3 [y - ssmnlry 3] oy [oms(ry 3 comry 3]
in which v, are roots of: \ (2.36)

.) *cosh (y,) =-1 ,
cos (vJ) YJ)

and

sin (Yi) + sinh (jil

i~ cos (Yj) + cosh (Yj)
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It is observed that these shapes are nothing but the free lateral vibra-
tional shapes of a cantilever shear beam, and a cantilever bending beam,
respectively.

Taking the unit weight of water ng = 62.4 pcf, its bulk modulus

3 psi, and sz = g, the pressures gemerated in the reservoir,

k=3X10
when the dam is assumed to move rigidly or to deform according to the
prescribed shapes given by Eqs. 2.35 and 2.36, are calculated for two
values of the normalized forcing frequency of vibration ® = w/w;. The
results are normalized by the maximum hydrostatic pressure pS and
plotted in Figs., 2.5 and 2.6, when j in Eqs. 2.35 and 2.36 is 1 and 2,
respectively. For w=0.7 < 1.0, the pressure is in—phase with the
excitation, while for w=1.5)> 1.0, it has an in—phase (real, dashed
1ine) and an out—-of-phase (imaginary, solid line) component. In the
latter case, the absolute pressure is also plotted (dotted line).

The dependence on the excitation frequency is better shown by

calculating the total hydrodynamic force acting on the dam,

B
pd = f P(Oaz:t)dz >

for a wide range of frequency. Figure 2.7 shows the real and imaginary
components of the hydrodynamic force, normalized by the total

hydrostatic force Ps = 1/2 pgg le. as a function of ;, for the case of
a rigid motion. The absolute value of the normalized force is shown in
Fig. 2.8 for the rigid motion as well as for the first mode of both the

shear and bending deformations.
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The compressibility of water was takem into consideration in all
the previous calculations. Neglecting water compressibility, Eq. 2.25
is used to compute the pressures resulting from a rigid motion, and the
absolute normalized force is plotted in Fig. 2.9 as a horizontal dashed
line, indicating the pressure independence of the forcing frequency.
The force, for compressible water, is given by a solid line, and a
comparison reveals the error committed by neglecting water

compressibility.

2.3. Limited Length Gravity Dams or Walls

In analyzing the hydrodynamic pressure generated in reservoirs
behind gravity dams, most work to date has considered the dam to be
infinitely long, an assumption which simplifies the problem to one in
two dimensions. This would be expected to be satisfactory for dams of
length B, relatively large as compared to the height H. Judgment and
intuition would indicate that a two dimensiomnal solution would err
considerably for a system with relatively small B/H. This conclusion is
supported by the results of a vibration experiment done by
A. Selby and R.T. Severn [10] on a wall of B/H = 2, storing a body of
water. A quick review of the existing gravity dams in the United
States, as given by T.W. Mermel [11], reveals that a considerable number
have small B/H ratio. Thus, it is important to develop solutions for
the pressure in those cases so that the significance of the B/H ratio

could be evaluated.
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In the following, a reservoir of width B is considered and expres—
sions for the pressures generated by four different boundary motions are
developed. Those formulas are next used to evaluate the pressures for
selected numerical values of the different parameters involved.

2.3.1, Geometry of the Problem

In addition to the assumptions made in the previous section, the
reservoir is assumed to have uniform rectangular cross—section of width
B, i.e., the banks are vertical, parallel and extend to infinity normal
to the upstream face of the dam.

As before, an xyz cartesian coordinates system is chosen such that
the xy—-plane coincides with the horizontal reservoir bottom, the
yz—plane coincides with the vertical upstream dam face, and the xz—plane
coincides with the vertical left bank of the reservoir. The x—axis
points into the reservoir, the y—axis runs along the heel of the dam,
and the z—axis points upward, as shown in Fig. 2.10,.

The water in the reservoir occupies the domain D, where

D = [(x.y,z)l 0{(x<( >, 0y<B,0<z( Hg .

Unlike the case of infinitely long dams, the problem under
consideration is a three dimensional omne, in which p = p(x,y,z,t).
2.3,2. Vibrational Motion

In this case, the dam is assumed to vibrate harmonically such that

the deformation of its upstream face, u(y,z,t), is given by:

u(y,z,t) = A° ?(g,ﬁ)' exp (iot) (2.37)
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where here ?(g,%)is a given function of y and z whose maximum equals 1.

This is illustrated in Fig. 2.11.

The boundary conditions are as follows:

i)

ii)

iii)

iv)

v)

vi)

the pressure is bounded as x —)> «, and only waves travelling
away from the dam can exist, i.e.,
p(=,y,z,t) ( ® (2.38)

the effect of waves at the free surface of the reservoir
(z = Hl) is neglected, i.e.,

p(x,y,Hz,t) = 0 (2.39)
the vertical motion of the water at the bottom of the
reservoir (z = 0) vanishes, i.e.,

wz(x,y.o.t) = 0 (2.40)
the horizontal transverse motion of the water at the left
bank of the reservoir (y = 0) vanishes, i.e.,

vz(x,O,z,t) = 0 (2.41)
the horizontal transverse motion of the water at the right
bank of the reservoir (y = B) vanishes, i.e.,

vi(x,B,z.t) = 0 (2.42)
the horizontal longitudinal motion of the water at the
upstream face of the dam (x = 0) is the same as the motion of
the face, i.e.,

uz(O,y.z,t) = u(y:z:t) (2043)
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Applying these conditions to the gemneral solutions, Egs. 2,5 and

2.6, one obtains:

p(x,7,2,t) = -4 p H A w2 exp (iot)

n
*{-i X Z m_n exp(—i&mn %)' cos<Bn %) cos<11In HL>
=0 m=1 e smn

n (2.44)
where
Bn = nx H n=0,1,2,... \
_ 2m—1)n . -
W ST 2 3 om=1.2.3,...  (2.45)
e = { 2 (n = 0)
n 1 (n # 0) ]
- 2 2 2 . =
Smn = Hl\/("’/c) - (Bn/B) - ("mlﬁz) ;3 m= 1,2,....mn—1 }
¥(2.46)
8 = H’Q\/(ﬁn/B)2 + (nmll:'l)ql)2 - (m/c)2 ;o m=mo,m+l,... )

m = smallest m, for a given n, satisfying:

[ m2 + amp? ] > (or0)?

H

1 X z). AR £
I = 9=, cos<B ) cos< >dy dz
mn B H,?, z (B H) n B Ty H,Q, (2.47)
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From Eqs. 2.46, it is clear that the natural frequencies of the

reservoir are given by:

/( 2 < 2
i 2i-1 P .
B ) + 2 > » 1 0’13000 and J 1.2:... (2.48)

Wf = LS
ij Ho\/
The fundamental frequency of the reservoir, which corresponds to

=0 and j = 1, is then wi = nc/2Hl, same as that of the two dimen—

sional reservoir., Conclusions, similar to those given on page 17, are
applicable here.

For an incompressible fluid, one obtains:

p(x,y,z,t) = { 2: E: e u_ ‘ exp<—pmn éz>’ cos<i3n %)' cos<;1m éi>}

n=0 m=1 "n

(2.49)

where

H .o
J = u (y,z,t) ° cos<ﬁ z>' cos< lL)dy dz
o lf I n B 'm B (2.50)

2 2
H [ (By/B)” + (n /H) (2.51)

In particular, for harmonic motion, Eq. 2.49 becomes:

pix,y,z,t) = —4 nggA w2 exp (iwmt)

Z Z ‘ exp(-p ﬁg-> cos<B %)' <:os<'qm ﬁ(}
1=0 =1 8n “mn e 2 n 2402 .52)
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Again, the same conclusions given on page 19 are applicable here.

2.3.3. Longitudinal Ground Motion

Here, the dam is assumed to be rigid, and a harmonic ground motion,
as given by Eq. 2.22, is applied to its base (see Fig. 2.12),

The boundary conditions being the same as those of the previous
case, the solution is obtained from Eq. 2.44 by replacing A by ;g and
s Y Z,\_ : .
taking ?(B,H)= 1. In this case, Eq. 2.47 yields

m+1
— (n = 0)

F

= 0 (n # 0)

Hence, the expression for the pressure reduces to exactly the one
given by Eq. 2.24,

Similarly for an incompressible fluid, the pressure is given by
Eq. 2.25.
2.3.4., Transverse Ground Motion

In this case, a harmonic horizontal transverse ground motion is
applied to the dam and the reservoir boundaries. The dam is assumed
rigid and the banks are assumed to move together, with a motion given

by:
V(1) = Qg * exp (iot) (2.54)

where ;g is the amplitude of bank motion, as shown in Fig. 2.13.
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The problem is independent of the x-coordinate, i.e., p = p(y,z,t).

The boundary conditions are:

P(Y:Hth) = 0 (2.55)
v, (0,z,t) = vg(t) (2.57)
vz(B,z,t) = vg(t> (2.58)

where the last two conditions simply state that the transverse water
motion at the reservoir banks is identical to the motion prescribed to
the banks.

An expression for the hydrodynamic pressure can be obtained in the

form:
p (y,z,t) = -2 p & v w2 exp (iwt)
gy 228
-1
. “’oz (-1)™1
w1l on 8 o oS (B 8m0/2 Hz)

Hein [5g(Fa)/m] - eos(ng i)

o
. (™1
o T 8 cosh (B 6_ /2 Hy)
. B _ . z
sinh [ 8mo(z y)’“z] °°s<“m HJL)

(2.59)

where all variables are as defined before.
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By examining the above equation, it is concluded that:

i)

ii)

iii)

The hydrodynamic pressure remains bounded as the excitation
frequency approaches a natural frequency of the reservoir, as

defined in Eq. 2.48, with i = 0. This is true because the

expression has a limiting value as & or & - o, In
m0 m0
particular, the following limits exist:
. i [ 5 (By)
lim sin [ Sm <2 yv)/ HQ] _ (B
- — =\~ v/ B
8mO =0 8mO
and > (2.60)
. . B
lim sinh [ 8m0(2 y)/ H, ] ) (B _ y)/ .
8m0 =0 8m0 2 2

The pressure, however, becomes infinite as w approaches a
value which makes cos (B g;o /[ 2 Hl)’ in the denominator of

the first series, vanish. Those values are found to be:

)2

— 2 =
w=c \/ (2n, /B)" + (“m/Hz 3 k,m=1,2,3 (2.61)

which are the same omnes given by Eq. 2.48, with odd values of

i.

. R . T
The first series vanishes for v < 6. Thus no pressure

T

singularity occurs over the range 0 { w £ 0,
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iv) The pressure is either in—phase or in opposite—phase with the
excitation.
For an incompressible fluid, the solution is obtained as the limit
of Eg. 2.59 as ¢ —=> «, and is given by:

{ = (=1 )=+

=1 ni cosh (Bnm/ 2 HQ)

- 2 .
,Z,t) =2 H exp (iot)
pgy(y zZ,t) 91 Ve w P

vl )] oo )

and it is clear that resonance does not occur in this case.

(2.62)

The problem in case of transverse ground motion is equivalent to
that of an infinitely long rigid dam, with finite length reservoir,
subject to longitudinal ground motion. The solution was given by
P.W. Werner and K.J. Sundquist [12] for compressible fluids, and by
L.M. Hoskins and L.S. Jacobsen [3] for incompressible fluids.

2.3.5. Yertical Ground Motion

Although this case has a three dimensional geometry, the pressure
turns out to be independent of the x and y coordinates. The problem
reduces exactly to the one given in section 2.2.4., The solution for the
hydrodynamic pressure will be given by Eq. 2.30 for compressible water,
and by Eq. 2.33 (or Eq. 2.34) for incompressible water.

2.3.6. Numerical Examples

In addition to the parameters given in page 24, Eq. 2.44 shows that

the hydrodynamic pressure is further dependent on the length of the dam

B. The normalized pressure will in turn be dependent on the ratio B/H.
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The hydrodynamic pressure acting on the upstream dam face

calculated, using Eq. 2.44, for prescribed vibrational shapes:

U(g, ) = Y.(3) zj(ﬁ) ;o i,§=1,2

N

where

1) for shear deformations:

sin(Bi %) ;s PB.=in

*
o]
[
—
5]
[

sin(‘qj ﬁ) ;oM. = >

*
N
e
—
N
m—
"

2) for bending deformations:

*Y,(3) = B,(F)/ B,ty)

1

where

Bi(%)=[cos(ai %)— cosh(ai %E]— ci[sin(ai %)— sinh(ai %ﬂ

in which e, are roots of:cos (ai)cosh (ai) =1

cos (ai) ~ cosh (ai)

and °; T sin (ai) - sinh (ai)

?i is such that Bi(?i) is maximum.
Zy _ z
*zj(H) = Aj(H)/ A;(1)

where Aj( )is as given in Eqs. 2.36.

=B 0]

is

(2.63)

(2.64)

(2.65)
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These shapes are the first four mode shapes, two symmetric and two
antisymmetric, of a shear and a bending plate, respectively.
For a full reservoir and a dam of B/H = 2, the pressure was

calculated at 121 equidistant points covering the left half of the dam

face, for Amz = g and w = 0.7. The vibrational shapes and the resulting
pressures are shown in Figs. 2.14 and 2.15. For each case, the pressure

values plotted were scaled by their maximum value (shown by a solid

arrow). These maximas, and their locations (% » %), are given in

Table 2.1.
P ’e“;;bed 1st 2nd 3rd 4th
ape
Maximum
Shear Pressure 0.381 0.259 0.446 0.280
De formations
Location 1(0.5,0.6) [(0.,2,0.6) 1(0.5,0.3) 1(0.2,0.3)
Maximum N
Bending Pressure 0.197 0.137 0.273 0.170
Deformations
Location {(0.5,0.6) }(0.25,0.6) }(0.5,0.4) ](0.25,0.4)

TABLE 2.1. Maximum Normalized Pressure and its Location

The pressure distribution was also calculated for dams of B/H
ranging between 1.0 and 10.0, for the same vibrational shapes given
before. The absolute maximum pressure acting on the dam as well as the
maximum pressure at the left bank are given in Tables 2.2 and 2.3 for
the shear and the bending vibrational shapes, respectively. It is

noticed that the absolute maximum pressure increases in value as B/H
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increases. Also, a comparison between the maximum value and the value
at the bank shows a large variation in the pressure along any horizontal
plane, as opposed to a constant value for the case of an infinitely long

dam. This is also clear from Figs. 2.14 and 2.15.

B/H

Pre— 1.0 2.0 3.0 5.0 10.0

scribed

shape

1st 0.174 | 0.197 0.212 | 0.229 [ 0.246
Absolute 2nd 0.093 1 0.137 | 0.165 ! 0.197 | 0.231
;fﬁgjzf; 3rd 0.243 0.273 0.295 0.327 0.359
4th 0.106 0.170 0.213 0.266 0.329
Maximum 1st 0.101 0.088 0.073 0.048 | 0.020
Pressure 2nd 0.052 0.059 0.067 0.067 0.040
at Left 3rd 0.163 0.137 0.112 | 0.073 0.030
Bank 4th 0.063 0.092 0.108 0.104 0.061

TABLE 2.2. Maximum Normalized Pressure {(Shear Deformations)

B/H

Pre— 1.0 2.0 3.0 5.0 10.0

scribed

shape

Absolute 1st 0.174 0.197 0.212 0.229 0.246
Maxd mum 2nd 0.093 0.137 0.165 0.197 0.231
Pressure 3rd 0.243 0.273 0.295 0.327 0.359
4th 0.106 0.170 0.213 0.266 0.329
Maximum 1st 0.101 0.088 0.073 0.048 0.020
Pressure 2nd 0.052 0.059 0.067 0.067 0.040
at Left 3rd 0.163 0.137 0.112 0.073 0.030
Bank 4th 0.063 0.092 0.108 0.104 0.061

TABLE 2.3. Maximum Normalized Pressure (Bending Deformations)
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The effect of B/H is better illustrated in Figs. 2.16 and 2.17, in
which the distribution of pressure at the mid-span of the dam, is plot—
ted for various B/H ratios. This is done for the first and third vibra—
tional shapes, in shear (Fig. 2.16), and in bending (Fig. 2.17).

The absolute value of the total hydrodynamic force, normalized by
the hydrostatic, acting on the left half of a dam of B/H = 2.0 forced to
deform according to the first and second of the prescribed shapes

mentioned before, is plotted in Figs. 2.18a and 2.18b, respectively, as

a function of the normalized frequency ;. The response shown is for a
shear deformation. The bending case will be similar, but with smaller
values,

Although the problem of a limited length gravity dam is three
dimensional, the hydrodynamic pressure generated by longitudinal and by
vertical ground motions turns out to be independent of the position
along the dam length. For transverse ground motions, a case suppressed
in infinitely long dams problem, the generated pressure is maximum at
the banks and decreases to zero at the middle of the dam. Figure 2.19
shows the distribution of pressure along the vertical line y = 0, for
the three components of ground motion for both incompressible and

compressible water assumptions. The motion is assumed to be harmonic of

frequency (normalized) w=0.7. In addition, the absolute total force

responses are plotted in Fig. 2.20,
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2.4, Appendix
In this section, analytical solutions for the hydrodynamic pres—
sures generated in some other simplified fluid domains ‘are presented.

These are:

i) Liquids stored in circular cylindrical tanks.

ii) Water around circular cylindrical intake towers or bridge

piers.

iii) Reservoirs behind arch dams whose upstream faces are segments

of circular cylinders.

In all cases, the assumptions made in section 2.1.1. about the
fluid are also made here, so that the pressure is governed by the wave
equation, Eq. 2.1, However, it is convenient to use a cylindrical
coordinate frame, in which the Laplace operator is given by:

? oo 2,18 182 9%
ar> r dr 1 80° 8z’ (2.66)

Only solutions for the case of compressible fluids are presented.
For incompressible fluids, the solutions can be obtained as limiting
cases of the first set, by letting the sound velocity ¢ — =,

In cylindrical coordinates, two possible solutions for the wave

equation are:



- 56 -

p(r,9,z,t) = [c1 IB(Sr) + ¢, KB(SI)]
: [c3 sin (pO) + cy cos (BG)]
[c5 sin (nz) + cg cos (nz)]

* [c7 exp (itt) + cg exp (-itt)] (2.67)
in which n2 > (t/c)z, 82 = n2 - (t/c)z, and IB and Kﬁ are the modified

Bessel’s functions of order B of the first and second kinds,

respectively, or
p(r,8,z,t) = [c1 Jﬁ(sr) + ¢, YB(Sr)]

* 'c3 sin (pO) + ¢y cos (ﬁe)]
'c5 sin (nz) + cg cOs (nz)]

Ly

"c,7 exp (itt) + Cg €Xp ('itt)] (2.68)

in which n2 < (t/c)z, 82 = ('t:/c)2 - n2, and JB and YB are the Bessel's

functions of order P of the first and second kinds, respectively.

Equation 2.68 can be put in a second form as:
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I ) B ¢
p(r,0,z,t) = [ oy By (81) + 5, B (8n) ]

: [ ¢y sin (p8) + c4 cos (gO) ]
‘ [ ¢5 sin (nz) + cg cos (nz) ]

[ Cq exp (itt) + cg exp (~itt) ] (2.69)

(1 4 g

where HB B are the Hankel’s functions (Bessel’s functions of

the third kind) of order B [13]. In the above equations, the ci's and

ci's are constant coefficients, 6, 8, B, 1, and v are separation

constants,

In the following subsections, these general solutions will be spe—
cialized for particular fluid domains. In all cases, the effect of
surface waves are neglected,

2.4.1. Circular Cylindrical Tanks

The tank geometry and the coordinate system are illustrated in
Fig. 2.21.
2.4.1.1, Vibrational Motion

Let the wall of the flexible tank vibrate according to:

. E . > N =
u(®,z,t) = A cos (n®) ?(H) exp (iot) ;i n=20,1,2,... (2.70)
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The solution is then given by:

p(r,8,z,t) = 2 pQBQA m2 cos (n8) ° exp (iwt)
my-1 I, _ . ]
s ) ol )
b & I (8 7 2 L
m0 n| "m0 Hl
© IO
m r\. z
+ b m—— ——
m=-‘zm 5 . 1' (8 LI“(S’“O H2> cos<"m H2>
0 "m0 ~ n\°m0 H, (2.71)
where Mgs Mo 8m0 and Imo are given by Eqs. 2.14 through 2.16.
2.4.1.2, Horizontal Ground Motion
Here, the wall of the rigid tank moves according to:
u(8,z,t) = ug(t) cos (9) = ug cos (9) exp (iot) (2.72)

The solution is given by Eq. 2.71, with n =1, ?(é)s 1 and A = ;g'

Other versions of the above solutions, as well as solutions for the
case of incompressible fluid are given in [12,14~-16].
2.4.,2, Circular Cylindrical Intake Towers or Bridge Piers

The geometry and the coordinate system are as those illustrated in
Fig. 2.21 except that the fluid is now at the outside of the cylinder.
2.4.2.1, Vibrational Motion

The deformational motion is given by Eq. 2.70, and the solution for

the pressure is given by:



- 60 —~

p(r,9,z,t) = 2 PQHQA w2 cos (n®) ° exp (iwt)
-1
. m"z Tno - (2)<§ L). cos<nm L)
ry (2)(x R\], n m0 H H
w1 5, [ B <8m0 H2>] * t
+ = Igp K g =) 2.
) 8.0 | Xu(5.0 7)) “<"‘°H£ O\ Hy
20 %m0 L “n\°mo0 H, (2.73)

2.4.,2.2. Horizontal Ground Motion

For a rigid structure, the motion is given by Eq. 2.72 and the

solution is given by Eq. 2.73 with n =1, T(ﬁ)a 1and A=1u

Other versions of the above solutions, as well as solutions for the
cases of incompressible fluid are given in [12,15,17-19].
2.4.3. Simple Arch Dams
The geometry and the coordinate system are illustrated in
Fig. 2.22.
2.4,3.1. YVibrational Motion
Let the radial motion of the upstream face of the dam be:

u(0,z,t) = A ° T(gi', %)’ exp (iwt) (2.74)
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The solution is obtained in the form:

p(r,0,z,t) = 4 pQHRA wz exp (iwt)

(2)/x+ =
mn—1 I HB <8m0 H >

.{i;_n_,_g_n 2

=0 w1 e & o [ H(2)<§ J&)],

cos<Bn e%) . cos<’qm 112_2>

Bn m0 HQ

=0 m=m_°n 8mO R \ 0 L
n KB smO " '
n L (2.75)

where m, €, Bn and n, are as defined in Egs. 2.45, smO and 8m0 are

+ i f _Ton Bn( m0 H2,> cos(ﬂn §—>cOS(nm %)}

given by Eqs. 2.15, and Imn is given by Eq. 2.47 with y and B replaced
by 6 and 90, respectively.

2.4.3.2. Longitudinal and Transverse Ground Motions

In these cases, exact solutions exist only when 90 = %, and are

given in [20,21].
Finally, for the case of vertical ground motion, the solution turns
out to be the same for all three fluid domains. It is independent of

the r and © coordinates and is given by Eq. 2.30.



- 63 -

CHAPTER III

FLUID-STRUCTURE INTERACTION FOR LONG WALLS OR DAMS

3.1, Introduction

During an earthquake, a dam will move bodily into and away from the
water in the reservoir and in addition the dam will vibrate. Both
motions will generate hydrodynamic pressures in the water. Those pres—
sures will act on the upstream face of the dam and in turn affect its
deformation. Thus, an interaction between the dam and the reservoir
exists. This should be included in the formulation of the problem of
the dynamic response of the dam to earthquake ground motions.

In the analysis of damreservoir systems, investigators initially
neglected the structural deformations of the dam and assumed it to be
rigid [1,4-8]. This completely suppresses any interaction effects. The
hydrodynamic pressure on the rigid dam was obtained and converted into
an added mass of fluid which is then assumed to move with the dam [1,8].
The added mass concept was shown to be valid only when water com—
pressibility is neglected [5,61.

The first attempt to account for the dam flexibility was made by
H.A, Brahtz and C,H. Heilbrom [2]. Using a linear deflected shape and
an iterative procedure, they calculated the response of the coupled
system. J,I. Bustamante et al. [4] prescribed a parabolic deformation
shape and their solution showed clearly the effects of flexibility on
the generated pressures. A.K. Chopra [9,22,23] used a parabolic shape

fitted to the first mode of vibration of the dam with empty reservoir.
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This approach was generalized by P. Chakrabarti and A.K., Chopra [24-26]
to include additional mode shapes. W.D.L. Finn and E. Varoglu [27,28]
provided an analytical solution to the problem when the dam has
rectangular cross—section. For dams having general cross—sections,
¥.D.L. Finn and E. Varoglu [i9] used a finite element formulation for
the dam only and presented a solution based on their previous analytical
approach.

In the analyses mentioned above [9,22-29], the water com—
pressibility was included, leading to frequency dependent hydrodynamic
pressure and dam response. The response to earthquake ground motion is
obtained by using Fourier analysis techniques requiring the determina—
tion of the system transfer function. The latter is obtained by
calculating the response of the dam to harmomic ground motion over a
range of excitation frequencies. This requires some computatiomnal
effort. Analyses [9,22-26,29] used two dimensional finite elements for
the triangular cross—section dam, while [27,28] used a bending theory
for the rectangular cross—section plate.

For reservoirs of relatively small depth, the water compressibility
may be neglected, leading to frequency independent hydrodynamic pres—
sure. In the following sections, the problem of long dams of walls
retaining incompressible water are analysed. Two cases are comnsidered:
1) rectangular section, and 2) triangular or trapezoidal section. The
natural frequencies of vibration of the whole system, and the associated
mode shapes are found by treating the dam analytically in the first

case, and by finite elements in the second. In both cases, the water is



treated analytically by boundary solution techniques. The dam is
modeled either by a shear or by a bending theory. When using finite
element, a shear—bending theory is also used. In each of the two cases
considered, a method is presented to compute the earthquake response of
the dam, based on superposition of its free vibrational modes.

In all previous investigations [14-21], only the case of forced
vibration was studied. Moreover, the analysis was dome in the frequency
domain, thus being relatively expensive with regard to computer time,
The main advantage of the present method of analysis over previous
approaches is that it is carried out in the time domain., This allows
the study of the free vibration case, the direct outcomes of which are
the natural frequencies and mode shapes. In addition, the modal
analysis procedure can be used for the calculation of the structural
response to earthquake ground motion, Also, for rectangular section
walls, the analytical analysis is extended to the shear theory model,
applicable to walls with relatively large thicknesses, The extemsion to
a shear-bending model, although a bit complicated, is obtainable in a
straightforward manner. Finally, the use of one dimensional beam ele—
ments, when the dam is modeled by finite elements, reduces considerably
the number of degrees of freedom as compared to the two dimensional ele—
ments used in the previous investigations, thus resulting in substantial

savings in computing effort.
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3.2. Rectangular Cross—Section: Analvtical Solution

Let the dam under consideration be assumed to have a rectangular
cross—section as shown in Fig, 3.1. Since the dam is infinitely long,
its deformation u(z,t) will be a function of the z—coordinate only and
time. The assumptions made in Chapter II, regarding the reservoir
boundaries and the water are also made here, so that the formulas
obtained there for the hyrodynamic pressure will be used here directly.
3.2.1, Free Vibration

Consider first the case in which the dam is assumed to vibrate
freely with no ground motion applied to its base, see Fig. 3.1, The
analysis leads to the determination of the natural frequencies of the
dam—reservoir system, as well as the corresponding mode shapes of vibra—
tion. In the following sections, the structural deformations of the dam
are modeled by two different theories,namely: 1) pure shear theory, and
2) pure bending theory.
3.2.1,1, Shear Theory

According to the assumptions underlfing this theory, the dam
deflection is purely due to shearing deformations, and any bending
effects are completely neglected in the analysis.

Although vibrating freely with no ground motion applied to its
base, the dam will be acted upon by the hydrodynamic pressure generated
by its deflection. The equation of motion governing the dam vibration

is given by:
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2 2
oa 2 ugzz,tz - 6d m_z{_tl = -p(z,t) 5 0Lz K H
9t 3z (3.1a)
= 0 ; HQ, L£z<£H
(3.11)

where p is the mass density of the dam material, G its shear modulus, d
is the dam constant thickness, and p(z,t) is the hydrodynamic pressure
acting on the upstream face of the dam. p(z,t) is obtained from

Eq. 2.19 by setting x = 0, and is given by:

= 1 e z z
r(z,t) = 2p - [ zﬂ u(z,t) ° cos (n ——) : dz] cos <n -—>
jz{m; T m Hy m B ) (3.2

For free vibration, the dam displacement is expressed as:

u(z,t) = A° ?(z

ﬁ) * exp (iwt)

(3.3)

where ?(ﬁ) is some nondimensional function of z/H such that (1) =1,

A is the amplitude of motion of the dam crest, and w is the frequency of
vibration.
Substituting Eqs. 3.2 and 3.3 into Eq. 3.1 and rearranging, omne

obtains:
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Pr(e) + a®p(e) = - 2L -

1
|
=]
[
[ N—
8
[+]
[o]
7]
~~
=
=]
o |
~

[Iwac“<%aaﬂ} ; 0<E(H

(3.4a)
= 0 ;3 HLEL1
(3.40)
where the (') denotes differentiation w.r.t. the argument, and
E=2z/H, €= Z/Hl , H= HQ/H s P = p/pl. d = d/H
2 —
a2=<£> L .2
2 G/k (3.5)
= _ r ry _ xc -
o m/(ml)f , (wl)f 28 and ¢ k/pk

The solution of Eq. 3.4a is given by:
i A
?I(E) = ¢, cos (ag) + ¢, sin (af) + 2 Z: (c,a_ + c,b_) T—a— cos (n E)
1 2 = 1'm 2°m l—km m

(3.6a)

where ¢, and c, are constants;

1

a = I cos (af) cos (nmg) dg;
(3.7a)

b = 1 sin (ag) cos (nmg) dE;
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and

2
a

p AL /B - &®1 (/D) (3.7b)

A =
m

Notice that the solution given in Eq. 3.5a is not valid when km =1 or

when (nm/ﬁ) = a. For those two limiting cases, we have the following

forms:
A, = 1:
i
?I(é) = cl[ cos (al) - (ai/bi) sin (a&)] + c, cos (nig)
© Xm -
+ 2 X: ¢, [ay = (a;/b )b 1 77— cos (n_&)
m=1 m
m i (3.6b)
ni/§=a
4(c.a.+tc,b.)
?I(E) = ¢; cos (af) + ¢, sin (af) - 1 - 2 4 (ag) sin (al)
1+4p d a

© A _
+ 2 Z (clam+c2bm) 1—_1;; cos (nmé)
m=1 m
m#Ei (3.6¢c)

Eq. 3.4b has solution:

?II(E) = ;1 cos (af) + ;2 sin (a&) (3.8)
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Thus, for the general case of a reservoir partly filled with water to a

height HR { H, the displacement of the dam is given by:

ole) ; o<eE(H

Pe) =
gtT

(¢) ; HSEC1 (3.9)

This solution has, in general, 4 unknown constants C1s Sy ;1, and 22.

Correspondingly, there are 4 conditions to satisfy:

i) the dam displacement vanishes at z = 0, i.e.,

u(z:t)|z=0 = 0 s '%

I = o (3.10a)

ii) the shear force vanishes at z = H, i.e,,

Gd a_ulalzl_l:llz= =0

H i

[‘PH“)]' =0 (3.10b)

iii) the displacement at z = Hgis the same when determined from

either Eq. 3.6 or Eq. 3.8, —

tm = ¢I® (3.10¢)
iv) the shear force at z = Hlis the same when calculated from both
sides, =
I,=.1 _ 11,35,
@] = [®] (3.10d)

Let us consider a particular case in which the reservoir is
completely full of water to a height HE = H. In this case, the vibra-

tion of the dam is governed by Eq. 3.4a2 whose solution is given by
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Eq. 3.6. However, in these two equations H and E are replaced by 1 and
¢, respectively. Clearly, the solution given by Eq. 3.8, as well as the
3rd and 4th conditions are suppressed, and we are left with two
constants 4 and Cy together with the 1st and 2nd boundary conditionms,
Eqs. 3.10a and 3.10b. By applying those two conditioms, one ends up

with two linear homogeneous algebraic equations for 2 and Cys of the

form:
Ajpeg * Ay, =0 (3.11)
A21 cl + A22 c2 = 0
where
d A
— L] m \
Ag = 1 +2 3 1A
1 m
© A
n
= 2 b
b2 m; mo 1 (3.12)
P
® A
. . - — m"'l - . - _A
A21 = -g ° sin (a) -2 Z (-1) a “n T 1o
=1 m
= * ¢cos (a) -2 i (—1)“"'-:l b . —Aln—
A22 = ¢ m m 1-A J
=1 m

The coefficients Aij are functions of the frequency of vibrations o.
For nontrivial solution of the system of Eq. 3.11, the determinant of
coefficients should vanish. This condition provides the frequency

equation which is solved numerically for the natural frequencies of the
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dam—reservoir, Once these are found, the associated mode shapes will be
given by:
®e) = ¢y | cos (al) + (°2/°1) sin (a&)
® Ay
+2 m; [a, + (cp/cy)b ] T o (nmg)J 515
where the ratio (czlcl) is determined from either of Eqs. 3.11.

Orthogonality

Consider two mode shapes ?i(é) and ?j(é), corresponding to two
distinct natural frequencies W, and mj, respectively. It could be shown

that the following orthogonality relation holds:

_ w i 13
l‘r.(g) *P.(e)ag + = [ "‘° 50 = 0 s i#j
1 J p d <1 (3.14)
= a; 5i=]
where
- I ®.(&) cos (q E)dg
m0 * n (3.15)
and
I ;—ﬁ i [11 12
a, = [? (é)] —
! p d m=1 My (3.16)

3.2.1.2. Bending Theory
Here, the dam deflection is govermed by the Bernoulli—Euler

flexural deformations theory, in which shear distortions are neglected.



_74_

The transverse vibration of the dam is governed by the following

differential equation:

2 3 4
pda_giz;Ll+_Ed_2§.AiA)_=_p(z,t) i 0Kz H
ot 12(1-V) 9z (3.17a)
= 0 3 HCzKH

(3.17v)
where p, d and p(z,t) are as defined in the previous section, E is the
Young’s modulus of elasticity of the dam material and V is its Poisson’s
ratio,

Using Eqs. 3.2 and 3.3 together with Eq. 3.17 and arranging:

R

[ cos (q E)
‘P””(é) - 0’4 (P(g) = 0.4 { —_—m

o |
ol

[I‘P(z) cos (nmE)dE” ; 0SECH
(3.18a)

(3.18b)

where § .E ,ﬁ, ; and d are as defined before and

4 _ n2 . _p .2 = _ E
c = 3(= = 0] i E-=
( ) F/x (1-v2)
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Define:

cos (of) cos (nmg) - h

®
l

o
L]

sin (6&) ° cos (nmg) : dg

. I cosh (o&) ° cos (nmE) * dE ?

C =
(3.19)
d = sinh (o€) cos (nmé) de
4
A = -
m T oS =4 4=
p d[(nm/H) c ](nm/H) J
Now, depending on the value of o ( and hence ¢), the solution of
Eq. 3.18a is given by one of the following forms:
a) lm¢1 and (nm/ﬁ)#c for all m:
?I(é) = ¢, cos (ot) + c, sin (ct) + ¢y cosh (o) + c, sinh (ot)
© xm _
+ 2 Z (clam + °2bm + cge + c4dm) 1-n  ¢os (nmg)
=1 m

(3.20a)
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b) A.=1:
i

a,
TI(E) = cl{cos (ct) - El * sinh (cg)]

1

n.lcr

L ¢ sinh (6&)]

+ ¢cylsin (o) - .

[ c,
+ cjlcosh (of) - El * sinh (Gé)]

L i
+ ¢, cos (nig)

© a. b

L _ =1

+2 z: [cl(am T d, d ) *+ °2(b d dm)

m=1 i

o i

(3.20b)
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c) n./ﬁ = o

?I(é) ¢, cos (c8) + c, sin (ct) + cg cosh (ot) + c, sinh (ot)
® }‘,m _
2 Z:(clam + c2bm + °3%m * c4dm) ) I:K— " cos ("mé)
m=1 m
mEi

(clai + c2bi + cgc. + c4di)

- 4c ° — € ° sin (o¥)
1+8 do
(3.20¢)
where cl, Cps Cg3 and 4 are constants.
Eq. 3.18b has the following solution:
?II(ﬁ) = ¢, cos (o€) + ¢, sin (c€) + ¢, cosh (ot) + ¢, sinh (ot)
1 2 3 4 (3.21)

where c1 €y Cg and c4 are also constant coefficients.
2 Ed

Thus, in general, the displacement of the dam will be given by
Eq. 3.9 which contains, in this case, 8 unknown constants. However

eight conditions must now be satisfied:

® the displacement and slope vanish at z = o,

H

® the bending moment and shear force vanish at z

® the displacement, slope, moment and shear at z HR matches

when either calculate from below or above the water surface.

Again, if the case of a full reservoir is considered, only the solution
given by Eq. 3.20 will be present, The eight constants are reduced to

only four and the boundary conditions left may be stated as follows:



_78_

i) 90 = o0 )
ii)  P'(0) = o0
L (3.22)
iii) P = 0
iv) Prrr(1) = 0 )

These conditions lead to a system of four linear homogeneous algebraic
equations for Ci1s Cps Cg and 4’ which can be putyin a matrix form as
shown in Fig. 3.2. For nontrivial solution, the determinant of the
coefficients matrix is set equal to zero, which gives the frequency
equation for the dam—reservoir system. The natural frequencies and the
corresponding mode shapes are determined as outlined in the previous
section, These mode shapes satisfy the general orthogonality relation
given by Eq. 3.14.
3.2.1.3. Numerical Examples

In the following examples, the free lateral vibrations of
dam-reservoir systems are analyzed using the method of analysis
discussed earlier, The effects of the water in the reservoir on the
natural frequencies and mode shapes of the dam are explored.
Example 1. Shear Theory

The method of analysis discussed in section 3.2.1.; is applied to
determine the natural frequencies of vibration and the associated mode
shapes of a dam—reservoir system, for two cases: 1) empty reservoir, and

2) totally full reservoir. The dam is assumed to be made of concrete

e 6 _ . . E__ _ 6
whose properties are: E= 5 x 10 p.s.i., V=0.17, G=2(1+“) 2.14 x 10
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W

p.s.i. and y = pg 155 p.c.f. The properties of the water are: k = 3 x

#

105_ p.s.i. and 72 pgg = 62.4 p.c.f.

The dam has a rectangular section, with thickness to height ratio,

d, of 0.4. Since the frequencies obtained are normalized by the funda-
mental frequency of the full reservoir, their values are independent of
the actual height of the dam.

The computed natural frequencies, for both the empty and the full
reservoir cases, are presented in table 3.1. It is clear that the
frequencies are reduced in value due to the presence of the water. The
corresponding mode shapes, which are clearly affected by the water, are

displayed in Fig. 3.3.

Frequency 1st 2nd 3rd

Empty Reservoir | 1.69 | 5.13 8.69

Full Reservoir 1.45 4.46 8.09

TABLE 3.1. Normalized Natural Frequencies

Example 2. Bending Theory
The dam considered in this example has the same proportions and
properties of concrete as that of the previous example, but the analysis

of section 3.2.1.2 is used instead.
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The normalized natural frequencies of the dam, with empty or full
reservoir, are presented in table 3.2, while the corresponding mode

shapes are shown in Fig. 3.4.

Frequency 1st 2nd 3rd

Empty Reservoir | 0.68 | 4.26 11.92

Full Reservoir 0.61 3.73 11.00

TABLE 3.2. Normalized Natural Frequencies

3.2.2. Forced Vibration: Harmonic Ground Motion

Let us now consider the case in which the dam is forced into motion
by a ground displacement applied to its base. The dam will move, as a
rigid body, with the same specified ground motion, and in addition will
vibrate, as shown in Fig. 3.5. For a harmonic ground motion, the
analysis leads to the dam response in the frequency domain. This
clearly shows the damreservoir interaction effects on the hydrodynamic
pressures generated, and on the dam response. Again, two different
theories modeling the structural deformations of the dam are considered.
3.2.2.1. Shear Theory

In addition to the inertia forces resulting from its motion, the

dam will be acted upon by the hydrodynamic pressures gemerated by both
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its rigid plus its deformational motions. The differential equation

governing the dam vibration is writtem as:

pd Qzugz,tz - G Qzugz,tl
2 2

—pd 1 () -p (z,t) - plz,t) ; 0 € z L H
at 3z & & :

(3.23a)

—pd u_(t) s Hy Sz S H
8 (3.23b)

* e

where p, G and d are as defined before, ug(t) is the applied ground

acceleration, and pg(z,t) is the hydrodynamic pressure acting on the
upstream face of the dam, and resulting from the rigid motion. This is
obtained from Eq. 2.25 by putting x = 0, and is given by:

© m+1
- e (1) — . z
pg(z,t) = ZpQHng(t) Z; 5 cos (n_ Hg
= n

(3.24)
p(z,t) is the pressure resulting from the dam deflection and is given by
Eq. 3.2,

Let the ground acceleration be harmonic in time, thus having the
form:

ug(t) = ag exp (iwt) (3.25)

where ag is the amplitude of the acceleration and w is the frequency of

oscillation.

Since the system is linear and time invariant and the excitation is
steady—state simple harmonic motion, the response is also steady—-state
simple harmonic motion of the same frequency. Thus, the dam deflection

response may be expressed as:
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w(z,t) = A UE * exp (iut) (3.26)

where A is the amplitude of crest motion, and U(ﬁ) is the nondimensional

deflection shape of the dam.

Substituting from Egqs. 3.2, 3.24, 3.25 and 3.26 into eq. 3.23, and

rearranging, yields:

pot © cos (n &) _ _
u"(e) + o2 u(g) = - & az{[ —n [I U(§) * cos (n_E) d&”

2 - o w1 _ _
el EE b} 1:1%——— cos n.2)| ;0<¢e<H
A m

pdml ng (3.27a)

2 —
= & ; HGeg1
A (3.27b)

where &, E, ﬁ. ;, E, and a are as defined previously, and A is the
amplitude of crest acceleration normalized by the amplitude of ground

acceleration, i.e.:

T 2
A = (Ao )/ag (3.28)

Eq. 3.27a has one of the following solutions:
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a) A #1 and (nmlﬁ) # a for all m:

UI(E) = ¢, cos (al) + c, sin (al) + 1/A
@© xm _
+ 2 (cia_+c,b ) 7= cos (n &)
n;I Ve "2"m" 12 m (3.29a)
b) ki = 1:
1 3 = T
U (g = cy [ cos (ag) - ;: ° sin (af) ] + ¢, cos (nié) + 1/A
= a4 . xm . =
+ 2 E: cq (am -5, bm) 1o cos (nmé)
n=1 i m
i (3.29b)
c) n, / H=a:
UI(E) = ¢, cos (al) + ¢, sin (al)

4(c,a. + c,b.)
- 1i ___? = (ag) sin (at)
1+ 4p da

+

|

© A _
2 2: (clam *+ chm) 1:%_ cos(nmg)
m=1 m
mEi (3.29¢)

where €y, C, are constants, a s bm and km are as defined by Eq. 3.7.

Eq. 3.27b has the solution:

UII(§) = ;1 cos (a&) + ;2 sin (al) +

1=

(3.30)
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Now, the deflection of the dam is given by:

I . B
U(E) U7 (8) 3 0<CECH (3.31)

= g E(E<1

e

Unlike the case of free vibration, the parameter a is known, since
the excitation frequency w is prescribed. Thus, the four conditions

given in Eq. 3.10 will completely determine the four unknown constants
cl, €y ;1 and :2.
For a completely full reservoir, the solution given by Eq. 3.29

will be valid over 0 { & { 1, and we are left with only two constants,

21 and cys to be determined by applying the two conditions, Eqs. 3.10a

and 3.10b. Thus, we end up with two linear inhomogeneous algebraic
equations of the form:

Ajp e+ Ajp oy = LA

(3.32)

Apre1t e, =0
where A11, A12’ A21 and A22 are given by Eqs, 3.12, Once 2 and ¢, are
determined, by solving the system of Egs. 3.32, the displacement
response of the dam is obtained by substituting these values in the

proper equation of Eqs. 3.29.
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3.2.2.2. Bending Theory
When the dam deformations are modeled by the bending theory, the

differential equation for the forced vibration of the dam is written as:

od Qzugz,tz " Egi Q4ugz.t2

= —pd u (t) - p (z,t) - p(z,t) ; 0 { z<H
at 12 54 (3.342)
= —pd ;j(t) ; HQ £z<H
& (3.33D)

For harmonic ground motion, the above equations become:

i © cos (n E) _ -
U - ot = _L'_Hc4{ Y ——n—’“—-[ :[ U(E) cos (n_2)dE ”

p d =1 m
4 e m+1 _ _
- = :—EZ cos ()| ;0<ECH
A pdml (3.34a)
4 —
= - 3
A (3.341p)
where U(¢&) is as defined in Eq. 3.26.
The solutions for these equations is given by:
R § S | - . -
e = theey = ¢y + 1/ ;0<ECH
(3.35)

e = ¢y + 1 sHee ¢

Where ?I(é) and TII(é) are the solutions of the free vibration problem

obtained previously, and are given by Eqs. 3.20 and 3.21, respectively.
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Finally for the case of a full reservoir, the remaining four
constants C1s Cys Cg and c, are determined using the approach outlined
in the previous section, leading to the complete solution of the dam
displacement response.
3.2.2.3. Numerical Examples

In this section, the dynamic response of damreservoir systems to
harmonic ground excitations is analysed using the approach developed in
the previous two sections. The effects of the presence of water on the
frequency domain response of the dam, on the hydrodynamic pressure
distribution, and on the total force acting on the dam are explored.

Consider a concrete dam having dimensions and materials properties
the same as those given in section 3.2.1.3. The dynamic response of the
dam, to harmonic ground motion, is evaluated for two cases: 1) empty
reservoir, and 2) totally full reservoir. The crest acceleration,
normalized by the ground acceleration, is computed for excitation
frequencies in the range 0 to 6 times the fundamental full-reservoir
frequency. The amplitude of this normalized acceleration is given by:
A - UI:1)| T ST S

g (3.36)

where A is given by Eq. 3.28, and UI(l) is found from either Egqs. 3.31
or Eqs. 3.35.

The calculated response for both the shear and bending theories is
presented in Fig., 3.6. The effect of the reservoir is shown to shift

the peaks of the response curve to the left as expected.
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When normalized with the maximum hydrostatic pressure, the
hydrodynamic pressure acting on the upstream face of the dam and

resulting from the combined rigid and vibrational motions, will be of

the form:
- a © 1l AT
p(z,t) = 2 £ 2: (-1) - B 1 cos n Z VW exp (iot)
g =1 2 nm n HQ
™ (3.37)
where
L= I UI(E) cos (nmé)dé
(3.38)

Eq. 3.37 is used to calculate the pressure distribution along the dam

height, for ground motion of amplitude ag = 1g, and normalized excita—-

tion frequencies @ = 0.7 and 1.5. The results are displayed in

Fig. 3.7 for both the shear and bending theories. For comparison, the
pressure due to a rigid motion alone is also presented. It is clear
that the pressure distribution changes completely when the dam flexibil-
ity is included in the analysis.

Finally, by integrating the pressure over the dam height, one
obtains the total hydrodynamic force which acts on a unit length of the
dam, This force, when normalized by the total hydrostatic force, is
given by:
mt+1 AT

(-1)
- > n exp (iwt)

M (3.39)

P(t) = 4 - Z
g =1

How
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The amplitude of this normalized total force is plotted in Fig. 3.8.
This can be compared with the force on a rigid dam given by the dotted
line.

3.2.3., Response to Earthgquake Ground Motion

The earthquake response of a dam is obtained by solving its
equation of motion, Eq. 3.23 for a dam modeled by the shear theory or
Eq. 3.33 when the bending theory is used. In the analysis given below,
only dams modeled by the shear theory and retaining completely full
reservoirs are discussed. The analysis, when the bending theory is
used, is quite similar in nature. Also, the generalization for the case
of partly filled reservoir is straightforward.

Two different analysis procedures are available; these are commonly
known as the time domain analysis and the frequency domain anaiysis.
3.2.3.1, Time Domain Analysis

The mode superposition method [30,31] is used. This method, appli-
cable only if the response is within the linear range, is generally
efficient to use with earthquake type excitations because the response
is essentially given by the first few modes of vibration, the contribu-
tions of the higher modes to the total response being small.

The first step in the mode superposition analysis procedure is to

obtain the natural frequencies (wi) of the damreservoir system and the
associated mode shapes (?i). This is done as discussed in section

3.2.1.1.
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Next, the dam deformation is expressed as a linear combination of
the first N modes, as follows:
N z
u(z,t) = 2: ?.(ﬁ) : ui(t)
=1 1 (3.40)
where ui(t) are the generalized modal coordinates.

Substituting into the equation of motion and using the orthogona-—

lity condition eventually yields:

. e f‘ LN 3
2 ~-i. .
u.(t) + . u.(t) = - a (t) H J = 102,-.-'N
J B | 3; ) (3.41)
where
, & (-1)=1 £
f, = ?(ﬁ) s dE o+ = Z _—
J J p d m=1 nz
m (3.42)

and aj is as given by Eq. 3.16.
Therefore, Eq. 3.23 reduces to N independent differential
equations, Eq. 3.41. Introducing damping into these equations, they may

be rewritten as:

~ 2
. +2(.0, u, + o, u, = ~b, ;3 JFl.2,...,
uJ(t) QJmJ uJ(t) wJ uj(t) bJug(t) j N (3.43)
where Tﬁ are the modal dampings and bj = fj/aj are the modal participa—

tion factors.
The generalized coordinates uj(t) can be found by employing either
the convolution integral or a step—by—step integration scheme. A brief

description of each method is given below.
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1) Convolution Integral:

In this method, one first finds the response to an impulse

ug(t) = 8(t), where 8(t) is the Dirac delta function. This

response is readily obtained [32], Eq. 3.43 being the equation of

motion of a single degree of freedom system, and has the form:

b.
e — . _ o o [172
Uj(t) = 1—7,2 exp ( "Qjmjt) s1n(wj 1 ”(,j t)

‘3 bl (3.44)

The response to arbitrary ground motion ug(t) can now be

obtained through the convolution integral:

u,(t) = iU.(t—‘c) “ % (¢) * dr
J J g (3.45)

2) Step by Step Integration:

The integration scheme used in [33] is discussed hereafter.

For ug(t) given by a segmentally linear function, for

t(i) £t t(i+1). Eq. 3.43 becomes:
.o . .oy Au .
u, + ZE.m.u. + m%u. = =-b. u(l) + “—3'(t—t(1))
h] 333 i i g At

(3.46)
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where Aun = u;i+1)— u(i), and At = t(i+1) - t(i) = constant.
. . _ L (i+1) .

The solution of Eq. 3.46 at time t = t can be expressed in
terms of that at t = t(i) by:

(i+1) (i) **(1)
u, u. L

J = (AR, o, a1 ] L+ (BT, o At,b)]
2 (i+1) ge 3 MEY Je 3 (i)

j j g (3.47)

Therefore, if the generalized coordinate uj(t) and its time derivative

uj(t) are known at t(l), then the complete time history can be computed

by a step by step application of Eq. 3.47. The advantage of this method

lies in the fact that for a constant time interval At, the matrices [Al]

and [B] depend omnly on Ij wjand bj' and are constant during the calcula—

tion of the respomnse.

Using either method, the procedure of finding uj(t) is repeated for

all j between 1 and N. The dam deformation u(z,t) is then calculated
from Eq. 3.40. Once this is done, the stresses in the dam, the base
force and moment resultants, and the hydrodynamic pressures can be
evaluated.
3.2.3.2. Frequency Domain Analysis

An alternative approach to obtain the response of the dam to earth—
quake ground motion, is to work in the frequency domain., The response
is found by superposition of the responses to individual Fourier

components of the excitation, through the Fourier integral.



_99_.

The first step in the analysis procedure is to obtain the dam

response to steady—state simple harmonic motion of the form

ug(t) = exp (iwt). This is done as discussed in sectiom 3.2.2.1, and

the response is given by:
u(z,t) = A ° Uz,0) ° exp (iot) (3.48)

where U(z,w) is given by Egqs. 3.29.

Next, the Fourier transform Ug(w) of the ground excitation ug(t)

is obtained through:

}; () = ;r(t) * exp (—iot) ° dt
& —L 8 (3.49)

The dam response u (z,t), to the excitation ug(t), is then given

by:
@« .
w(z,t) = 51; { vz,0 - 'Ug(m) " exp (iot) * do
o (3.50)
3.3. TIrianpgular Cross—Section: Finite Element Solution
In this case, the dam under consideration is assumed to have a
triangular cross—section, as shown in Fig. 3.9. However, the analysis
can be applied to dams of arbitrary cross—sectional shape provided the
upstream face is vertical.
The finite element method is now recognized as an effective
discretization procedure which is applicable to a variety of engineering
problems. It provides a convenient and reliable idealization of the

system and is particularly effective in digital-computer analyses. In
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the following analysis, the dam is ;odeled by finite elements, while the
reservoir is still treated as a continuum, since the dam has a vertical
upstream face. Thus, the analytical solution for the hydrodynamic pres—
sure, given in Chapter II, are also used here.
3.3.1. Free Vibration

In this section, the partial differential equation governing the
free vibration of a dam, retaining a partly filled reservoir, is
discretized and converted into a matrix equation of motion. This leads
to a generalized matrix eigenvalue problem, which is solved for the
natural frequencies of vibration and the associated mode shapes. In
addition to considering the dam behaving according to both the pure
shear and the pure bending theories, a combined shear—bending theory is
also presented.
3.3.1.1. Shear Theory

WVhen the pure shear theory described previously is used, the vibra-
tion of a dam, whose thickness varies along its height, is govermed by

the following differential equation:

2
» d(z) U‘—(-Z;-t—l— Zleam BEtl] o 0

ot (3.51)
where
® cos!nm 'LO
H - z
plz,t) =2 p {K u (z,t) cos< ——)dz]}; 0 z<H
2{2;1 ™ m Hﬁ %
(3.52)
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The associated boundary conditions have been discussed previously,

and are stated as:

[u(z,t)]__, = © (3.53a)
9 u(z,t) =
[6am 232t ] = o (3.53b)

Equations 3.51 and 3.53 constitute the "Strong” formulation of the

problem under comnsideration.
Define H;(O,H) as the space of piecewise continuous functions,

which are defined over the domain 0 { z { H, are square integrable over

the same domain, have square integrable first derivatives, and vanish at

z = 0. Thus a function v(z) belonging to Hé(O,H) satisfies:

z [v(z)]2 dz { = ; K [v (z)]2 dz ( = v(0) =0
z (3.54)

Now, the "Weak—Galerkin’ formulation is obtained from the "Strong”
formulation by multiplying Eq. 3.51 by v(z) € H%, integrating over the

dam height, performing an integration by parts on the second term and
using the second boundary condition and the properties of v(z). The

"Weak'” formulation may be stated as:

I p d(z) v(z) ;kz.t) dz + E G d(z) vz(z) uz(z,t)dz

- - = 1 Z 2 Z
= 2 pg m; 1;(3 v(z) cos<nm H2>dz><z u (z,t) <:os<'qln H2>d2> (3.55)
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Discretizing the dam into an appropriate number of finite elements,
interconnected only at their ends (nodes) as shown in Fig. 3.10a,
Eq. 3.55 is written as:
h

Ng B e gt~ M\E e = -
Z f p d(z) ve(z) u°(z,t)dz + [ 6 d(z) v (z) u(z,t) dz
= e=1 z z

® 1_ NwW

h
+20p ({ v (2) cos( —z—>d; .
% mgl T e; ‘m Hy

Nw he toe —_ 2 z -—
Z J u (z,t) cos('qm }g>dz = 0

e=1 (3.56)
where ¢ is the element number, NH is the total number of elements of

which NW elements are below the water surface, he is the element length,

and z is the local z—coordinate, as shown in Fig. 3.10b.

vé(z) and v®(z,t) are v(z) and u(z,t) expressed in the local z-
coordinate.
Define the vector of nodal displacements {r(t)}e, and a constant

vector {q}e as:

e e

u, (t) v

tr(t)) =41t ;o g =1

e €(t) e ¥©
% 2 (3.57)

then ue(;,t) and v°(z) can be expressed as:
-3 - =y T . €Ty o T =

w(z,t) = {N(2)} {1:(t)}e ;. v (z) = {q}e {N(z)} (3.58)



-104~

ZZ —r

e=2 hz
21

=1

e , hl
©

(a) Finite Element Idealization of the Dam

ug(t)
> z
e
d(z) h
Z:Z-Ze_l
!
L Z
us () e-1

(b) Dam Element

Fig. 3.10 Finite Element Definition Diagram
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where {N(z)} is the vector of shape or interpolation functions, the ele—

ments of which are given by:

Nl(z) = 1"2/11e ; Nz(z) = z/he (3.59)
Substituting from Eqs. 3.58 into Eq. 3.56, the matrix equations of
motion are eventually obtained. However, for simplicity, each term is

considered separately.

The Dam Mass Matrix

Considering the first term in Eq. 3.56, substituting from Eqs. 3.58
and rearranging, one obtains:

h

N[H fp 4@ v (@ u°(z,dz = N[H @’ 1, (o)
e=1 s1° e ° (3.60)

where [Md]e is the element mass matrix defined as:

h
M1 = fp d(2) (N} (N(D} Tz
(3.61)
which after performing the necessary integrations yields:
_ 1/3 1/6
Mgl = pa,n, [ 476 /5] (3.62)

where de is the average thickness of element e.

The R.H.S. of Eq. 3.60 is assembled by a process based on the nodal
compatibility. By matching the displacements at the nodes, the masses
are added at these locations. Thus, the overall mass matrix of the dam

will be:

e=1 (3.63)
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By defining overall nodal displacement and constant vectors as:

NH NH
R()} = ) {c(t)}_  and (@ = ) f{a},
e=1 =1
(3.64)
Equation 3.60 is expressed as:
NH h - e— e — _ T .o
2: [ p d(z) v (z) uw(z,t)dz = {Q} [Md] {R(t)}
e=1
(3.65)

The Dam Stiffness Matrix

Going through the same steps, the second term in Eq. 3.56 eventu-—

ally yields:

h
L = ey €T AT T

[ IG d(z) v°(2) vl(z,t)daz = {(Q} K;1 {R(t)}
=1 z z (3.66)

where [Kd] is the overall stiffness matrix, obtained by superposing the

element stiffness matrices [Kd]e defined as:

h
[K,1, = [Gd(;){Nz(;)}{Nz(;)}T dz 6
Equation 3.67 yields:
G de 1 -1
Hale = T, [‘1 1} (3.68)

The Added Mass Matrix
Substituting from Eqs. 3.58 into the third term of Eq. 3.56,

yields:
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fi 1 ?? g e, z\ .~ ?? he ‘e ,—
AM = 2 p = v (z) cos<n —;>dz g u (z,t) cos<n
J&m=1 T \e=1 m H e=1 n
© NW NW .
=25 % LV T ™ )} eI Feen
L n — e € - e e
=1 'm \e=1 e=1

h,
{f(m)}e = g (N(2)} cos<‘nm L)d;

HQ
Defining the vector F(m) as:
NW
™y = ) ety
e=1
Equation 3.69 can be written as:
_ T .
AM = {qQ} [MQ] {R}

where [MQ] is the overall added mass matrix, defined as:

<

- 1 (m) (m),T
M1 = z%zn {F*™y {(F'™}

=1 'm

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

Substituting from Egs. 3.59 into Eq. 3.70, the elements of the

vector {f(m)}e are obtained as:

(m) f 1. Ze-1 1 Ze-1 1 Ze
= e +-— — —

f1 h ¥ s1n<; h 5 cos|Y he 5 cosir, 3
m m

(m) _ _1 Zeel), 1 [ Ze), L Ze
f2 = he ) cos(nm h + » sin Tm & + > cos|v %
m m

where Ty = Ny he/HQ’

(3.74a)

(3.74b)
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The Matrix Equations of Motion

Substituting from Eqs. 3.65, 3.66 and 3.72 into Eq. 3.56, leads to:

(M1 + M1 (R(t)} + [K,]1 {R(£)} = {0} (3.75)

which is the matrix equation governing the free vibration of the dam
reservoir system.

The dam mass and stiffness matrices are symmetric, banded and
positive definite matrices, while the added mass matrix is symmetric,
not banded and has zero elements corresponding to the nodes located
above the water surface. After deleting the column and row correspond—
ing to the fixed node at the dam base, the general forms of these
matrices are shown schematically in Fig. 3.11; only the hatched blocks

are non—zero elements.

The Eigenvalue Problem

The matrix equation for the free lateral undamped vibration of the
dam is given by:
M1 {R} + [K] {R} = {0} (3.76)

where

M1 = IM;] +[MJ] ; and [K] = [Kj]

By writing the solutiom of Eq. 3.76 in the familiar form:
{R(t)} = {dlexp(imt) ; i =‘V -1 (3.77)
and substituting Eq. 3.77 into Eq. 3.76 [leaving out the common factor

exp(iwt)], the following equation is obtained:
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[-® 1 + (K1 ]t} = (0} (3.78)
where {d} is the vector of the displacement amplitudes of vibration
(which does not change with time), and v is the natural circular
frequency.
A non—trivial solution of Eq. 3.78 is possible only if the
determinant of the coefficients vanishes, i.e.,

Il K] -2 (M 1] = 0 (3.79)

Expanding the determinant will give an algebraic equation of Nch

degree in the frequency parameter mz for a system having NH elements.

Because of the positive definitivemess of [M] and [K], the

eigenvalues m2 are real and positive quantities; Eq. 3.78

(02 0)2
1°%2°° "N

provides nonzero solution vectors {d}i (eigenvectors) for each

. 2
eigenvalue mi.

3.3.1.2. Bending Theory

The differential equation governing the free vibration of a

variable thickness dam, modeled by the pure bending theory, is as

follows:
a2 wiz,t) . 22 [= a3 a2 u(zt)
p d(z) > + 2 E 12 5 = =p(z,t)
at az" L oz (3.80)

where p(z,t) is given by Eq. 3.52.
The boundary conditions, associated with this equation, have been

discussed before, and may be stated as follows:
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la(z, )] _, = 0 - (3.81a)
[o (z,0)] __, = 0 (3.81b)
|25
E™7) uzz(z’t) =0
I_ z=H (3.810)
2 (7 )
L VA z=H (3 081d)
Define Hgo(o’ﬂ) as the space of continuous functions defined over

the domain 0 { z { H and having piecewise continuous first derivatives.
Each function in Hgo, as well as its first and second derivatives, are

square integrable over the domain. In addition, each function and its

first derivative vanish at z = 0, Thus, a function v(z) belonging to

Hgo satisfies:

I [v(z)]2 dz ( = ; X [vz(z)]2 dz < @ ; z [vzz(z)]2 dz < 0 .

(3.82)

vi0) = 0 ; vz(O) = 0

Multiplying Eq. 3.80 by v(z) € H%O(O,H), integrating over the

domain, performing an integration by parts twice on the second term, and
using the boundary conditions Egs. 3.81c and 3.81d as well as the

properties of v(z), one obtains the "Weak” form:
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.e _ 43
z p d(z) v(z) u(z,t) dz + I E —]éfl vzz(z) uzz(z,t) dz

- 1 .t z
= =2 — v(z) cos< )dz Kﬁ u(z,t) cos< ——>dz
Prky z "m By 'n B (3.83)

When the dam is discretized into NH finite elements, NW of which

are below the water surface, Eq. 3.83 can be written as:

2: p a(2) v*(D) v°(z,t)dz + }: g, ——1—1- ° (Ml (dz

e=1

N

o f (Bl e w9

NW h

Z f.u.e(;,t) cos(n H2>dz = 0
e=1 (3.84)

where ;, he’ v (z) and v®(z,t) are as defined previously. The displace—

ment u® (z,t) and the variational function v°(z) can be expressed as:

_ 2
w(z,t) = 2: (N (z) u, (t) + N (z) u (t)> )
i=1\
? (3.85)
- 2 - A —
vo(z) = (N.(z) v¢ + N, (2) ve.> J
SR j j zj
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where uz(t) are the nodal displacements, u:i(t) are the slopes at the

—_ A -
nodes, v? and V:j are constants. Ni(Z) and Ni(z) are the shape func-

tions, chosen cubic Hermitian polynomials to assure slope continuity at

the nodes.

Define the vector of gemeralized nodal displacement as:

_ e e e
{r(t)}e = {ul(t) he uzl(t) u2(t)
and a constant vector as:
_ e e e
{q}e = {vl he A% v, h

and the vector of shape functioms as:

e T
he uz2(t)}

-3
-
(f -3 ZE + 2 z; )
h h
e e
(Nl(z)w _ - -3
ﬁ (z) he hz h3
_ 4 1'% e e
(N(z)} = _ ¢ =X >
Né(z) -2 -3
Z_ z_.
3 >~ 2 3
?I (z) b he
\ 2 z/
-2 -3
A
L ¥ 8
e € -

Thus, Eqs. 3.85 can be now expressed by the same form given in

Eqs. 3.58.

(3.86a)

(3.860)

(3.86¢)
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The overall mass and stiffness matrices of the dam are obtained by

substituting from Eq. 3.58 into the first and second terms of Eq. 3.84,

respectively. They are expressed as the assemblage of the individual

element mass and stiffness matrices, which are given by:

(13 11 9  -13]
35 210 170 420
h 11 1 13 -1
_ - 210 105 420 140
[Md]e = f p d(z) {N(z)} {N(z)}" dz = p dehe 9 13 13 -11
70 420 35 210
-13 -1 =11 1
420 140 210 105
and
12 6 -12 6
h K
3,~- Ed 6 4 -6 2
- (7 d(=z) - =,T.o _ e [ ]
[Kd]e-— g E 1 {sz(z)}{sz(z)} dz = 5 h3|_12 6 12 -6|
el_ 6 2 -6 4}

The overall added mass matrix is as defined in Eq. 3.73

(m)}

vector {f o+ defined by Eq. 3.70, has elements:

(3.87)

(3.88)

in which the
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h
fl(m) le(;) cos(r\]n HL

"~
=
\_/

N
N |

n m
-5 sin e - 12 cos . Ze
3 "m h) .4 Tm h,
Tm m (3.89a)
h
(m) _ A z\.;~
f2 f Nl(z) cos(nm H2>d
= h - 4 sin fe-1 (L. & cos fe-1
e 3 m h 2 4 Y he
¥m Tm m
-z sin Ze - = cos Ze
3 Tm n )" 4 b h,
m Tn (3.89b)

(3.89¢)
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f4(m) = fﬁz(;) cos<11In ﬁi‘)d;

= b | - 2 sinfy _z_e_—_l)+ 5 . <Y Ze1
e 73 m he 74 m h
m m
) )
3 m h 2 4 m h
Tn e/ \fp Tp © (3.894d)

where Ty = nm/HQ.

Having obtained the overall mass, stiffness and added mass
matrices, Eq. 3.83 is reduced to a matrix equation of motion of the form
given by Eq. 3.75. The matrices involved have the same properties as
discussed in the previous section; however, their size is 2 NH rather
than NH, since we have two generalized nodal displacements associated
with each node. The generalized eigenvalue problem, as given by
Eq. 3.78, is obtained and solved for the natural frequencies and mode
shapes.
3.3.1.3. Shear—Bending Theory

In this section, an analysis, more accurate than those described in
the previous two sections, is discussed. In addition to the pure
bending deformations, the deflection due to shear as well as the effect
of rotary inertia are taken into account. This problem was first
investigated by S. Timoshenko [34] who obtained a single differential
equation for the vibration of beams, involving only the total (bending +

shear) deflection. However, the boundary conditions associated with
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this equation were not easy to define. Later, R. A. Anderson [35] and
J. Miklowitz [36] used another formulation of the Timoshenko theory, in
which they dealt with two coupled differential equations in the two
separate bending and shear deflections. The studies mentioned involve
only prismatic beams of uniform cross—section. In the following,
"Strong"” formulation of the transverse free vibration problem of a
variable section plate (dam) is presented and the finite element matrix
equation of motion developed in a manner analogous to the one used in
the previous two sectionms.

According to the Timoshenko theory, the slope of the deflection
curves depends not only on the rotation of cross—sectioms, but also on
the shearing deformations. If ¢ denotes the slope of the deflection
curve when shear is neglected, and B denotes the angle of shear at the

neutral axis in the same cross—section, then the total slope is:

du _
oz d+p

(3.90)
Thus, of the three variables, u, ¢ and B, only two can vary
independently, while the third is determined from Eq. 3.90. Choosing u,
the total deflection, and d, the slope due to bending only, as our two
variables, the two coupled differential equations governing the

transverse vibration of a variable thickness dam can be written in the

following form:
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2
p d(z) 9 ulz.t) jL’E?d(z)<gEL£‘£l - d(z,t?>] = - plz,t)

a2 9z 9z (3.91)
d3§zz azdgz,tz I I g3§zz 9d(z,t)
P12 8¢2 9z 12 9z
t
- 6 a)| Qgﬁﬁjil - dzt) ] =0
(3.92)

where p(z,t) is given by Eq. 3.52.
Now, the boundary conditions associated with Egqs. 3.91 and 3.92 can

be expressed in terms of the variables u(z,t) and d(z,t) as follows:

i) the total deflection at the dam base vanishes, i.e.,

[u(z.t)]z=0 = 0 (3.93a)

ii) the slope, due to bending only, vanishes at the dam base,

i.e.,

[d(z, )] _, = © (3.93b)

iii) the bending moment at the dam crest vanishes, i.e.,

[ E d3§z2 ad(z,t) ] = 0
12
z=H

9z (3.93¢)
iv) the shear force at the dam crest vanishes, i.e.,
9 u(z,t) _ _
[e d(z)< 2 dz,t))] _p=0 (3.93)

Equations 3.91, 3.92 and 3.93 constitute the "Strong” formulation.

The "Weak” formulation is obtained by multiplying Eqs. 91 and 92 by
variation functions v(z) and Q(z) € H%(O,H), respectively, adding,

integrating over the dam height and performing the necessary
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integrations by parts.

The final form will be:

i p dlz) v(z) ulz, t)dz + z G d(z) v () u (z,t)dz

- E G d(z) Vz(z) d(z,t)dz
= 1(1

+2p = 3 v(z) cos<

22;1 nm<l ﬂm

3 z .e

p i}%—L Q(z) d(z,t)dz
— 53522
E 12 Qz(z) dz(z.t)dz
G d(z) Q(=z) uz(z,t)dz

G d(z) Q(z) d(z,t)dz =

]
']
-
]

L) u)@g wlz,t) cos(nm HL@)“)

0

(3.94)
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By discretizing the dam, Eq. 3.94 takes the form:

N B e _ _ wmt -
). [p d(z) v*(z) u(z,t)dz + ) [G d(z) vi(z) u’(z,t)dz
e=1 e=1 z Z
ng B o
- Z ((G d(z) v:(z) d°(z,t)dz
e=1

h

© NW — -
2 pg[ T‘l- [ [ve(z) cos<’qm H—Z)dz

m=1 'm\e=1

+

. : ;?(; t) cos< lL)d;
e=1 " Hﬁ
h

NH 3,— e _ -
+ o ﬂ—l(zﬂ 2°(2) 4°(z.t)dz

e=1

h

NH Be  3,— - -
+ E ‘Ulzil 2%(7) ¢%(7,t)dz

e=1 Z z

NE B _ B L
- G d(z) 2%(z) u®(z,t)dz

e—1 z

NE B B N L
) fe d(z) @°(2) d°(z,t)dz = 0

e=1 (3.95)

Now, define ue(;,t) , ve(;) R de(;,t) and Qe(;) as follows:
2®(z,t) = (N(z)T {r(D)} ; (@ = (g] NG}
(3.96)
e(z,t) = (8(zF (r(6)} ; 2®(z) = {q}f (s(2)}



where

{r(t)},

{N(z)} =1

where u:(t) and dz(t) are the nodal displacements and slopes,

respectively, v: and Q: are constants, and Ni(Z) are the same shape

f ;

LX)

{S(z)}

functions given by Eq. 3.59.

{q}e
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[
( vy }
e
heﬂl L
= W .
V2
e
2% )
0
(1
b Nl(z)
e
i o
l- —
i Né(z)
\ e

(3.97)

The matrix equations of motion can be obtained by substituting from

Eqs. 3.96 into Eq. 3.95.

stiffness and added mass matrices will be developed separately.

The Dam Mass Matrix

However, for the sake of clarity, the mass,

The overall mass matrix of the dam is obtained, from the sum of the

first and fifth terms of Eq. 3.95, as the assemblage of the element mass

matrices, which are given by:
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h
- _ 3, _ _ _
i1 = f [p 4@ @D T+ p 2 D1 s’ ]dz
e 12
' (3.98)
which yields:
4 1 )
3 0 6 0
d \2 d \2
o (2 o (3
e €
[M.] = pd h (3.99)
d'e e e |1 1
6 0 3 0
d \2 d \2
1 (e 1 (e
0 73 <h> 0 36 (h)
e e

The Dam Stiffness Matrix
The element stiffness matrices, which upon assemblage produce the
overall stiffness matrix, are gemerated from the remaining terms of
Eq. 3.95, excluding the fourth term. It is given by:
h

K], = I [ ¢a ({NZG)}{NZG)}T

- N, (2)} (s(1T - (s(2)} {NZ(Z)}T + {S(2)} {s(Z)}T>

3 -—
- 3@ < _ _ T> _
+ E {S (z)} {S_(z)} dz
12 z z ] (3.100)

A term by term integration of the above equation yields:
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[y
(S
A
o |

1 = = (3.101)

where

(3.102)
The Added Mass Matrix
The fourth term of Eq. 3.95 will furnish the overall added mass

matrix in the same form given by Eq. 3.73, in which the first and third

elements of [f(m)}e are given by Eqs. 3.74a and 3.74b, respectively,

while the second and fourth terms are zero.

The matrix equation of motion can now be written and solved exactly
as discussed in the preceding two sections.
3.3.1.4. Numerical Examples

The method developed in the previous three sectioms is used to
compute the natural frequencies of vibration and the corresponding mode
shapes of a concrete dam having a triangular cross—section. Three
different computer programs, one for each of the three theories used to
model the dam, have been writtenm im accordance with the method mentioned
above. Each program develops the appropriate element mass and stiffness
matrices, constructs the added mass matrix, and extracts the eigenvalues

(natural frequencies) and the eigenvectors (mode shapes), for two
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different cases: (1) dam with empty reservoir, and (2) dam with a
completely full reservoir.

The dam examined has a vertical upstream face, and a 0.8:1 sloping
downstream face. The properties of concrete and water are as given in
section 3.2.1.3, The first three frequencies, normalized w.r.t. the
fundamental frequency of the reservoir, are listed in Table 3.3, for
empty and for full reservoir, for the three different theories
considered. The corresponding mode shapes are displayed in

Figs. 3.12-3.14.

Shear Theory Bending Theory Shear—Bending
Fregq. Empty Full Empty Full Empty Full
1st 2.59 2.04 1.99 1.57 1.60 1.26
2nd 5.95 5.18 4.86 4.23 3.72 3.21
3rd 9.41 8.56 8.23 7.45 6.28 5.73

TABLE 3.3. Normalized Natural Frequencies

3.3.2. Response to Earthquake Ground Motion

In this section, a method for analyzing the earthquake response of
dams of arbitrary cross—sections is presented. The method is based on
superposition of the free lateral vibrational modes obtained by a finite
element approach. A procedure for computing the natural modes of vibra—

tion was given in preceding sections.
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The analysis is done in two steps: 1) the effective load resulting
from the prescribed ground motion is evaluated and entered, as a force
vector, in the R.H.S. of the matrix equation of motion, and 2) a modal
analysis is used to reduce this matrix equation into a set of equations,
each of which can be independently solved.

3.3.2.1. The Effective Force Vector

When a ground acceleration ug(t), in the direction normal to the

dam axis, is applied to the base of the dam, its resulting total dis—
placement will be the sum of two components: (1) the relative (or defor—
mational) displacement u(z,t), and (2) the rigid body displacement which

equals the ground displacement ug(t),
The external forces acting on the dam due to ground motion ug(t)

include:

i) the distributed inertia force of the dam, which is given by

p d(z) ug(t) (3.103)

ii) the hydrodynamic pressure on the upstream face of the dam,

due to its rigid motion. This is denoted by pg(z,t) and

given by Eq. 3.24.
iii) the hydrodynamic pressure on the upstream face of the dam,
due to its relative displacement. This is denoted by p(z,t)

and given by Eq. 3.2.
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Now, the differential equation governing the dam motion in the case
under consideration can be obtained by inserting the first and second
components of the external force, with minus sign, into the R.H.S. of
the equation governing the free vibration of the dam, namely Egs. 3.51,
3.80 and 3.91 for the cases of shear, bending and shear-bending
theories, respectively. It is noted that the third component is readily
incorporated in the free vibration equation,

The effective force vector to be entered in the R.H.S. of the
matrix equation of motiomn, Eq. 3.76, is obtained from the first and

second force components as follows:

a) Inertia Force
Multiplying the term in Eq. 3.103 by the variational function

v(z) and integrating between 0 and H, one obtains:

? v(z) pd(z) u (t) dz

0 g

Discretizing and carrying on the process, the above equation

yields:
T (1),\°
<{Q} {L }>ug(t) (3.104)
where {Q} is given by Eq. 3.64, and
NH
wy =y Wy
=1 (3.105)

in which
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h
e

{z(l)}e = é pd(z) (N(Z)}dz
(3.106)

b) Hydrodynamic Force

Multiplying Eq. 3.24 by v(z) and integrating, one gets:

L3N ] w ml

% 2%’H2u (t) 2: S—l%;“—‘v(z) cos<j JL> dz
J m=1 n n

m

which, upon discretization and carrying on the process, eventually

leads to:
T (2) o
QQ} {L }> ug(t) (3.107)
where
g m+l
w®y = 2pm ) E— g™,
L 2m=1 nz
m
with {F(m)} as defined in Eq. 3.71.
Now, the effective force vector can be defined as:
(Pgel = - (L} u (¢) (3.108)
where {L} = {L(l)} + {L(Z)}.

Finally, the matrix equation which governs the earthquake response
of the undamped dam—reservoir system is obtained by inserting the
effective force vector, Eq. 3.108, into the R.H.S. of Eq. 3.76, result-

ing in:

[MI{R} + [KI{R} = = {L} u (t) (3.109)
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3.3.2.2., Modal Analysis

Eq. 3.109 can be solved directly by the step—by-step numerical
integration method [37]. However, as discussed previously, it is more
efficient to use modal superposition to evaluate the earthquake response
of linear structures. Let

{R(t)} = [P {Y(t)} (3.110)
where [®] is a rectangular matrix of order NXJ which contains the modal
displacement vectors associated with the lowest J natural frequencies, N
is the number of degrees of freedom, and {Y(t)} is the modal amplitude
vector.

Substituting from Eq. 3.110 into Eq. 3.109 and premultiplying by
T .
[®1" , one obtains:

[M*] {Y} + [K*] {Y} = - {L#*} ug(t) (3.111)

where [M*] and [K*] are the generalized mass and stiffness matrices,

respectively, of order J X J; and {L*} ug(t) is the generalized force

vector of order J X 1.
Because of the orthogonality conditions of the natural modes,

namely, -

T _ T _ . .
{d}] m]{aj-{ai[m M”-—O (i # j) (3.112)

the generalized mass and stiffness matrices are diagonal. Furthermore,
the diagonal terms of the generalized stiffness matrix can be written

as:
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K. = o> M* . = o {d}) [M] {4}, 5= 1,2,....7
JJ J 33 J J J

(3.113)
Therefore, Eq. 3.111 reduces to J independent differential equations for

the unknowns Yj(t)

LR 2 L*I . e
Y, +u ¥ = ot ou (6) S i=1,2,...,7
b3 jj & (3.114)

Introducing damping into Eq. 3.114, one can rewrite such equation as

follows:

L ] * 2
Y. +2C0.Y. +0, Y. =-b, s i =1,2,...,
i 7;J'”J jFeg = ohy et J I (3.115)

where bj = L"‘J./M"‘J.j are the modal participation factors. Eq. 3.115 is

identical to Eq. 3.43, and its solution can be found by using either the
convolution integral or the step—by—step integration, both discussed in

section 3.2.3.1.
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CHAPTER IV

FLUID-STRUCTURE INTERACTION FOR SHORT DAMS OR WALLS

4.1, Introduction

In analytically analyzing the dynamic response of concrete gravity
dams, most work to date has considered the dam to be infinitely long, an
assumption which simplifies the problem to omne in two dimensions. This
would be expected to be satisfactory for dams of length B, relatively
large as compared to their height H. Judgment and intuition would
indicate that a two dimensional solution would err considerably for a
system with relatively small B/H., This conclusion is supported by the
results of a vibration experiment done by A, Selby and R.T. Severm [10]
on a wall of B/H= 2,0, storing a body of water. A quick review of the
gravity dams existing in the United States, as given by T.W. Mermel
[11], reveals that a considerable number have small B/H ratios. Thus,
it is important to develop a procedure for the dynamic analysis of short
length dams or walls so that the significance of the B/H ratio can be
evaluated.

A free vibration analysis of the damreservoir system is carried
out neglecting water compressibility, with the dam modeled by both the
shear theory and the bending theory. The natural frequencies and the
associated mode shapes are found using the Rayleigh—-Ritz method. The
effects of the presence of the water and of the B/H ratio, on these

dynamic properties are studied.
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A forced vibration analysis is carried out, in which the Assumed-
Modes method is used to obtain the dam response to all three components
of the ground motion. Taking water compressibility into consideration,
and assuming harmonic ground motions, frequency domain responses of the
dam are obtained. The effects of the reservoir presence, the water com—
pressibility, the dam—reservoir interaction, and the B/H ratio on these

responses are illustrated.

4.2, Free Vibration

Consider a dam of rectangular cross—section and of finite length,
as shown in Fig. 4.1, In this case, the dam deformation u(y,z,t) will
be a function of the y and z coordinates, and time. With assumptions
about the water and the reservoir boundaries made as in Chapter II, one
may use here the formulas derived previously for the hydrodynamic pres—
sure.

Assuming the dam to vibrate freely with no ground motion applied to
its base, its natural frequencies and mode shapes are determined under
an incompressible water assumption. The structural deformations of the
dam are modeled by two different theories: 1) a pure shear theory, and
2) a pure bending theory.

4.2.1., Shear Theory

Neglecting any bending effects and considering only shear deforma—

tions, the differential equation governing the lateral (out—of—plane)

vibration of the dam is written as follows:
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2
QJ.Z:__J_l
pa RAXeE t) _ 6a ¥ uly,z.t)
at

-ply,z,t) 3 0 <z« HSL
(4.1)

0 H HQS z {H J

where p, G and d are as defined previously, u(y,z,t,) is the horizontal
out—of-plane displacement of the dam, and Vz is the Laplace operator in

two dimensions, defined as:

2 2
P o= 2, A
ay2 322 (4.2)
p(y,z,t) is obtained from Eq. 2.49 by setting x = O, and is given by:
4p © J
- —mn Y Z
ply,z,t) = cos <B > cos <ﬁ >
B {ngo ngl ®2 Mmn n B m Hy (4.3)

Equation 4.1 is solved approximately by using the Rayleigh—Ritz
method [38] in which the dam deformation is expressed as a linear combi-
nation of N admissible functions, as follows:

N
u(y,z,t) = [ 2: ej v&(\ﬁ,ﬁ)l exp (iot)
=1 (4.4)
where the ‘B are known functions of the spatial coordinates satisfying
only the geometric boundary conditions, and ej are unknown coefficients
to be determined.

Substituting Eqs. 4.3 and 4.4 into Eq. 4.1, constructing and

minimizing the Rayleigh’s quotient, one eventually obtains an eigenvalue

problem of the form:

[ —o? [ o1+ [le] + K] [{E} =0 (4.5)
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where w is the frequency of vibration, {E} is the vector of unknown
coefficients ej, and [K], [Md] and [MQ] are the stiffness, mass and

added mass matrices, the elements of which are given by:

k..=—GdzI vivzvj dydz

t (4.6)
(m,).. =pd I z V. ¥. dydz
474 v (4.7)
p. = sl § F mlm
mg).. = 4 _—
1 B =0 m=1 ‘nPmn (4.8)

where

i _ L Y Z
Imn = I I Vi cos <Bn B) cos <nm Hg) dydz (4.9)

Solution of Eq. 4.5 yields the natural frequencies 0, and the

eigenvectors {E(i)}. The associated mode shapes are given by:
9 (I L) = N e(i) ) (x g)

VB o 3 §VBE (4.10)

4.2.2. Bending Theory
In this case, the governing equation is stated as:
pd 2 “(Vé"'t) * Ed32 v u(y.zt) = -p(y.z,t) 0 <z H
dt 12(1-V%)
(4.11)

where p,E,) and d are as defined previously, and
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V4=—ai+2 242+ a:
ay4 dy“dz a9z (4.12)

and p(y,z,t) as given by Eq. 4.3.

Using the Rayleigh—Ritz method, an eigenvalue problem similar to
the one given in Eq. 4.5 is obtained. The elements of the mass and
added mass matrices are defined as in Eqs. 4.7 and 4.8, while the ele—
ments of the stiffness matrix are given by:

3

= Bl z i Fi V4 F} dydz

ij 12(1_v2) (4.13)

4.2.3., Numerical Examples

The method of analysis described in the previous two sections is
applied to a dam whose thickness to height ratio and material properties
are as given in section 3.2.1.3. The four prescribed shapes given by
Eq. 2.63, and illustrated in Figs. 2.14 and 2.15 for the shear and bend-
ing deformations, respectively, are used as admissible functions.

The natural frequencies of a dam having a B/H ratio of 2.0 are
calculated for both an empty and a full reservoir. The results, normal-
ized by the fundamental frequency of the full reservoir, are presented

in Tables 4.1 and 4.2, for the shear and bending theories, respectively.

Frequency 1st 2nd 3rd 4th

Empty Reservoir 12.39 13.79 1 5.35 6.11

Full Reservoir 2.07 3.39 4.75 5.56

TABLE 4.1, Normalized Natural Frequencies (Shear)
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Frequency 1st 2nd 3rd 4th

Empty Reservoir 11.22 13.03 4.72 16.15

Full Reservoir 1.11 2.83 4.18 5.58

TABLE 4.2. Normalized Natural Frequencies (Bending)

The effect of the length to height ratio is studied by computing
the normalized natural frequencies of dams having a B/H ratio ranging
between 1.0 and 10.0, For an empty reservoir, these values are given in
Table 4.3. It is observed that the frequencies increase as B/H
decreases. This is better illustrated in Fig. 4.2, where the 1lst and
2nd dam frequencies are plotted versus B/H, for both the shear and bend-
ing theories. For a shear model, the fundamental frequency of a dam
having a B/H of 2.0 is 41% larger than that of an infinitely long dam.
When B/H = 5.0, the increase is only 7.7%. For a bending model, a2 B/H =
2.0'dam has a fundamental frequency which is 82% larger than that of an

infinitely long dam. The increase is 1.5% when B/H = 5.0.

B/H 1.0 | 2.0 | 3.0 [5.0 J10.0 | =
1 Shear 1st 3.79 |2.39 |2.04 |1.82 11.73 | 1.69
Theory 2nd 16.11 [3.79 l2.82 1217 182 | -
Bending | 1st | 4.36 | 1.22 | 0.79 | 0.68 | 0.67 | 0.67
Theory 2nd | 6.96 |3.03 |1.42 |0.77 |o0.68 | -

TABLE 4.3. Normalized Natural Frequencies (Empty Reservoir)
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4.3, Forced Vibration: Harmonic Ground Motion

In this section, the problem of a dam forced into motion by a
ground displacement applied to its base, is studied., All three compo—
nents of ground motion are comsidered. These are: 1) longitudinal com—
ponent (in the upstreamdownstream direction), 2) transverse component
(in the cross—stream direction), and 3) vertical component. Only the
case of dams modeled by the shear theory is presented. The analysis,
for the case of bending theory, is exactly the same except that the
stiffness term of the equation of motion should be changed as discussed
in the free vibration problem. This leads to a different definition of
the elements of the stiffness matrix arising in the resulting matrix
equation of motion. The water compressibility is taken into comnsidera—
tion. The applied ground motion is assumed to be harmonic, thus the
analysis leads to the dam response in the frequency domain,

Approximate solutions to the governing differential equations are
obtained through the use of the Assumed-Modes method [39]. This method
is the extension, to the forced vibration case, of the Rayleigh—Ritz

method discussed in conjunction with the free vibration problem.

4.3.1., Longitudinal Ground Motion

Let the dam be subjected to a ground acceleration ug(t) in the

upstream—downstream direction. The differential equation governing its
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deformation is given by:

2
pd &L ZZ £ _ dezu(y,z,t) =
at
= "pd 'u. (t) -p (Z,t) - p(y,z,t) H 0 S Z S H
g 8x 2 (4.14)
= —pd ug(t) s B z K H

where p(y,z,t) and pgx(z,t) are the hydrodynamic pressures resulting
from the vibrational and rigid motions of the dam, respectively. For
harmonic excitation as given by Eq. 3.25, these are frequency dependent
and are obtained from Eqs. 2.44 and 2.24 by setting x = 0.

Expressing the dam deformation in the form given by Eq. 4.4,

substituting into Eq. 4.14, multiplying by v& (j =1,2,...N), and

integrating over the dam face, one ends up with the following matrix

equation of motion:

[o® [ 1 + ey 1] + R1]eED = (T3 - (FF) (4.15)

where the elements of the mass and stiffness matrices, [Md] and [K], are
as defined in the previous section, and {E} is the vector of the
generalized coordinate displacements ej. [MQ] is the frequency
dependent.added mass matrix, whose elements are given by:

mn-l Ii 1d o Ii 1

4p © ©
A mn_ mn mn _mn
(m)i; = 78 i) ) -t Z L e
n=0 =1 e B n=0 m=m n mn
n mn n (4.16)

in which I;n is as given by Eq. 4.9. {FI} is the inertia load vector,



- 143 -

whose elements are given by:

f; = pd a z z ¥, dydz
J & J (4.17)

{F*} is the frequency dependent added load vector, the elements of which

are defined as:

myl (o)™t g (-1)™1 1
X ) m0 0
£, =2p H a -1 E: — + -
] s m1 n Y m=m “mamO
m m0 0 (4.18)

in which

Ij = zﬁ z V. cos <n lL) dydz
m0 i mly (4.19)

4.3.2. Transverse Ground Motion

Consider the case in which the dam-reservoir system is subjected to

a cross—stream ground acceleration vg(t). For harmonic motion, this is

expressed as:

.o

vg(t) = a, . exp (iot) (4.20)

The dam motion will be governed by Eq. 4.14, with the inertia term
on the R.H.S. dropped, and pgx(z,t) replaced by pgy(y,z.t), which is the
hydrodynamic pressures acting on the dam, assumed as rigid, due to the

motion of the reservoir banks. This is obtained from Eq. 2.59, by
. = 2
replacing (—vgw ) by ag.

When applied to the governing differential equation, the Assumed-

Modes method will yield the following matrix equation:
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0 I
[~o® [tng1 + 1] + 1] E) = - (%) (4.21)
The L.H.S. is exactly the same as in Eq. 4.15, while{F”} is the added

load vector, whose elements are:

"t (-n™TH = ™
fJ’i = 2%115&:1g —_— 4 e
w1 on 8 wm, m om0 (4.22)
—_ 1 = B Z
7 = zﬁ I V. . sin [8 (3 -y)/H] . cos <n —>dydz
n0 — j* m0"2 L
°OS(B5m0/2HQ) mHQ
(4.23)

J 1 . B _ Z.
JmO = cosh(BBmO/ZHz) ZQ Z ‘B . sinh [Smo(2 y)/HQ] . COS <nm H2>dez

4.3.3, Vertical Ground Motion

Let a harmonic vertical ground acceleration of the form:

wg(t) =a, . exp(iot) (4.24)

be applied to the damreservoir system, The equation of motion is

obtained from Eq. 4.4 by dropping the inertia term, and replacing
pgx(z,t) by pgz(z,t). The latter is given by Eq. 2.30, with (—;ng)
replaced by ag' The resulting matrix equation is then:

[Fo® [ + 1] + k1]eEY = -1F%) (4.25)

in which the added force vector{Fz}has elements:

p H a
£% = L& PP L sin [BE - 2 Jayas

J Oy cos(gﬂz) J ¢ % H
]

c 2 (4.26)
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A solution of Eq. 4.15 (or 4.21 or 4.25) for all values of excita—
tion frequency ® would give the frequency domain response for the ej's
which, upon substitution into Eq. 4.4, would yield the dam displacement
response. 4.3.4. Numerical Examples

The method of analysis developed above is applied to a limited
length dam modeled by the shear theory. The dam has a thickness to
height ration of 0.4, and its material properties are as chosen in
section 3.2.1.3, The four admissible functions used in the free vibra—
tion analysis, section 4.2.3., are also used here.

To study the effects of presence of the water, water com—
pressibility, and dam—reservoir interaction on the response of the dam,
five different cases are considered:

Case (1): empty reservoir.

Case (2): full reservoir, compressibility neglected, interaction mneglected.
Case (3): full reservoir, compressibility neglected, interaction included.
Case (4): full reservoir, compressibility included, interaction neglected.
Case (5): full reservoir, compressibility included, interaction included.

For longitudinal ground motion, the dam response in each case is
obtained by solving Eq. 4.15, after a proper specialization: In case
(1), the added mass matrix [MQ] and the added load vector {FX} are
dropped; In cases (2) and (3), the water compressibility is neglected
in calculating the elements of [MQ] and {F*}, with [My] dropped in case
(2) and kept in case (3); Cases (4) and (5) are analogous to cases (2)

and (3), but with compressibility considered. Clearly, case (1) does
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not exist for both the transverse and vertical motion cases in which the
hydrodynamic pressure is the only loading on the dam.

A structural damping has been incorporated into the problem by
adding the term (iw[C]) to the L.H.S. of the matrix equations of motion.
The damping matrix [C] is chosen as:

[C] = alM ] + BIK] (4.26)

where o and B are determined such that the fraction of critical damping
T in the first two symmetric or antisymmetric modes be the same. A
value of § = 3% is taken, based on the results of the vibration test
performed by D. Rea, C.Y. Liaw and A.K. Chopra [40].

For a dam of B/H = 2,0, the frequency domain responses of the
generalized coordinate ej's are obtained for all five cases. The crest
acceleration, at mid-span for longitudinal and vertical excitations and
at quarter—span for transverse excitatiomn, is then computed and plotted
in Figs. 4.3, 4.4 and 4.5 for the x,y and z components of ground motion,
respectively. Part (a) of each figure is for incompressible water,
while part (b) is for compressible water. The ordinate of each plot is
for the absolute value of the crest acceleration, normalized by the
amplitude of ground acceleration, while the abcissa is for the excita—
tion frequency, normalized by the fundamental frequency of the
reservoir,

By examining Fig. 4.3, it is concluded that:

i) VWhen the water compressibility is neglected, the effect of

water is, with interaction neglected, to increase the response
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without any shift in the resonant frequencies, With interac—
tion included, the resonmant frequencies are reduced, with

smaller increase in the response.

ii) VWhen water compressibility is included, and interaction
neglected, the response is affected locally at excitation fre—
quencies close to the natural frequencies of the reservoir,
becoming unbounded at exactly these frequencies. When
interaction is included, the respon&e changes completely, the
effect of radiation damping being incorporated.

The level of contribution to the response, of each component
of ground motion, is best illustrated by plotting the crest
acceleration response, to all three components, on the same plot as
shown in Fig. 4.6. It is concluded that the vertical component
contribution is about 18% of the longitudinal component contribu—
tion. The transverse component produces, at the quarter-span, an

acceleration which is roughly 1% of what the longitudinal component

produces at mid—span (response values at w=2.2).

The effect of B/H is studied by computing the crest accelera—
tion responses of dams having different B/H ratios. The responses
to longitudinal.ground motion, of dams with B/H= 1.0, 2.0, 3.0 and
5.0, are plotted in Fig. 4.7. For B/H = 2.0 and 5.0, response to
transverse and vertical excitation are given in Figs., 4.8 and 4.9,
respectively. It is clear how the change in B/H affects the

frequency domain response, both in value and shape, which in turn
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would result in a change in the response to earthquake ground

motion., This will be discussed in the next chapter.
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CHAPTER V

EARTHQUAKE RESPONSE OF SHORT DAMS OR WALLS

5.1 Introduction

In the previous chapter, the effects of the length to height ratio
(B/H) on the dynamic properties, and on the frequency domain response of
short dams or walls, have been studied. It has been shown that a change
in B/H results in a change in the values of the resonant frequencies of
the dam—reservoir system, which in turn results in changes in the
transfer functions of the system response to all three components of
ground motion. In addition, the response to the transverse component, a
feature pertinent only to dams of finite length, has been established.

In this chapter, the previously obtained transfer functions are
used to compute time domain responses to arbitrary ground motions. The
structural response is obtained using the frequency domain analysis out-
lined in section 3.2.3.2., The efficiency of computation is increased by
using a Fast Fourier Transform algorithm [41], especially suited for
structural dynamics, for both the forward transform of the ground exci-
tation and the inverse transform of the Fourier Integral.

Using all three components of the ground motion recorded at the
abutment of Pacoima Dam during the San Fernando earthquake of
February 9, 1971, crest acceleration and displacement responses of dams
with different B/H ratios are evaluated in order to: 1) establish the

effect of B/H on the earthquake response of short dams, and 2) to
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investigate the significance of the transverse and vertical components,
as compared to the longitudinal, on the dam response.

In addition, the time histories of the hydrodynamic pressure at
points lying on the upstream face of the dam, along the vertical line at
mid—-span, are evaluated and the possibility of cavitation is

investigated.

5.2. Inclusion of Flexibility of Reservoir Boundaries

In the response analysis of short dams, carried out in Chater IV,
the problem was reduced to solving the three matrix equations given by
Eqs. 4.15, 4.21, and 4.24 for ground excitation in the longitudinal,
transverse and vertical directions, respectively. In those equations,
the frequency dependent added mass matrix [MQ] arises from the hydro—
dynamic pressure generated by the vibrational motion of the dam, while
the frequency dependent added load vectors {F*}, {FY} and {F%} result
from the pressures caused by the x, y and z components of the ground
motion. Those pressures, and consequently the elements of [MQ], {F*},

{F¥} and {F?}, were shown to be unbounded at excitation frequencies

equal to the resonant frequencies of the reservoir, wi. In the

neighborhood of m:, [MQ] and {F*} are controlled by the term

lllq m2 - (w;)z, while {F’} and {F®} by 1/[0)2 - (m:)zl. Thus, the dam

response to longitudinal ground motion is bounded at excitation fre—

quencies equal to w; because the ratios of the terms of {F'} to the
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terms of [M£] approach finite values. On the contrary, dam responses to
transverse and vertical ground motions are unbounded at those fre—
quencies. However, the Fourier Analysis procedure for computing

responses to arbitrary ground motions is, in principle, applicable
because the transfer function approaches infinity, as 0 — wi, at a slow

enough rate so that the areas under the undounded peaks are finite.
This requires a special technique of numerical integration having a
variable frequency step, thus eliminating the use of the efficient Fast
Fourier Transform algorithm.

Unbounded responses are due to unbounded hydrodynamic pressures
resulting from the unrealistic assumption of rigid reservoir boundaries.
In actuality, these boundaries are flexible, thus allowing some energy
loss by radiation through the boundaries, which results in bounded
responses at the reservoir frequencies.

In this section, the formulas derived in Chapter II for the hydro-
dynamic pressures, under the assumption of rigid reservoir boundaries,
are modified according to a flexible boundary model similar to the one
used by J.F. Hall and A.K. Chopra [42]. This model provides some fluid—
boundary interaction, which allows the absorption of a part of the
incident energy associated with a pressure wave striking the reservoir
boundary. At the fluid-boundary interface, the boundary condition stat—
ing proportionality between the pressure normal to the boundary and the
normal component of acceleration is still valid. However, these

accelerations cannot be specified as in the rigid boundaries case
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because they depend on the fluid—boundary interaction. The actual

acceleration is then composed of a free—field part and a part caused by

interaction.

5.2.1., Vibrational Motion
Let the geometry of the damreservoir system be as described in
section 3.2.1. Using the flexible boundaries model mentioned above, the

boundary conditiomns given by Eqs. 2.40, 2.41 and 2.42 are replaced

respectively by:

pQ W/Q/ (x:Y’oyt) = —i(l)q_ P(xoy:ost) (5.1)

p,QJ Vz(x'o:z:t) = "'i(l)q p(x’O;Z:t) (5-2)
vk(x,B/Z,z,t) = 0 (symmetric dam motion) (5.3a)
p(x,B/2,z,t) = 0 (antisymmetric dam motion) (5.3b)

where q is a damping coefficient defined as:

1-a
¢ = ==
¢ lta (5.4)

in which a_ is the reflection coefficient of the hydrodynamic pressure

wave at the fluid-boundary interface, and ¢ in the sound velocity in the

fluid. The conditions given by Egs. 2.38, 2.39 and 2.43 remain

unchanged.
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With the new set of boundary conditions, Eq. 2.44 changes to:

rix,y,z,t) = -—-4p H Amz exp (iwt)

where

Py (5.6)
Bn are the complex valued roots of:
exp (iBn) = (Bn -Vv) / (Bn + V) (symmetric) (5.7a)
exp (iBn) = (V - Bn) / (V + Bn) (antisymmetric) (5.7b)
V = wqB (5.8)
and
Zm<éL) = cos(n éL>+ AW sin(ﬁm éL> ;m=1,2,...
[ m 5 Mm 2 (5.9)
n, are the complex roots of:
exp (2inm) = (W~ nm) / (W + nm) (5.10)
W o= wqH, (5.11)
The coefficiedts 8, I , A and B_ are defined as:
mn mn n m
_ 2 2 _ 2
5 . HQ‘\/(Bn/B) + (nm/HQ) (w/c) (5.12)
1 2 I Y Z\. Y\. Zz
I = i tf(,—)Y Z()dydz
mn B HK z B°H n(B) m HQ (5.13)



(5.14)

n T Hz_fl [Zm(HLQ)]zdz (5.15)

5.2.2. Longitudinal Ground Motion
In this case, the dam is assumed to be rigid, and the prescribed

motion is given by Eq. 2.22, The solution is a special case of Eq. 5.5
in which A is replaced by ;g and ?(%,ﬁ)s 1. Unlike the case of rigid

reservoir boundaries, the pressure is now dependent on the y—coordinate
as well,
5.2.3., Transverse Ground Motion

Under the flexible boundaries assumption, the boundary condition
given by Eq. 2.55 remains unchanged, while those given by Eqs. 2.56,

2.57 and 2.58 are replaced by:

pQ/WQ' (YaO,t) = —iwq p(y:o,t) (5-16)
%vgwamt) = %vgu)— ing p(0,z,t) (5.17)
p(B/2,z,t) = 0 (5.18)

where v (t) is now a free—field ground motion acting on the left bank of
the reservoir, and assumed of the form given by Eq. 2.54.
The hydrodynamic pressure generated in this case is given by the

expression:



- 162 -

ng(y,z,t) = -2 pﬂl&\—rzg wz exp (iot)

=1 Bm[cosh(BSmO/ZHQI) + iW sinh(BS /2H)) ]

(£ ool 5l |

where

I = leix zm(Hj)dz

_ 2 _ 2
80 = Hz\/ ("m/HjL) (0/c) (5.21)
and Zm<é? T ¥ and Bm are as defined by Egs. 5.9, 5.10, 5.11 and

5.15, respectively.

5.2.4. Vertical Ground Motion

(5.19)

(5.20)

When the flexibility of the reservoir boundaries is included in the

analysis, the pressure becomes dependent on the y~coordinate. The

boundary conditions are now stated as:

P(YnHQ/nt) = 0 (5.22)
pzwz(y,o,t) = pgwg(t) - iwq p(y,0,t) (5.23)
P/Q/ VQ (O,Z,t) = -i(ﬂq P(O,z:t) (5.24)

\) (B/2,z,t) = 0 (5.25)

where wg(t) is a free—field vertical ground motion at the reservoir
bottom, given by Eq. 2.27.
Application of these conditions to the gemeral solution for the

pressure yields:
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- - 2 .
pgz(y.z,t) = pzﬂiwgm exp (iot)

2
n=1 An[ ncos (nn) + iW sin (nn) ]

o 2T T (F) sin a1 - )]
| |

(5.26)
where
1 X
I = = Y dz
n B I n(B) (5.27)
n, = Hz\/ (w/¢)” — (B_/B) (5.28)

and Yn(%)’ Bn, W and An are as defined by Eqs. 5.6, 5.7a, 5.11 and 5.14,

respectively.
5.2.5. Numerical Examples

The expressions derived above for the hydrodynamic pressure are
used to compute the elements of the added mass matrix and added load
vectors arising in the matrix equations of motion governing the forced
vibrations of a finite length dam. The dam has a B/H ratio of 2.0, and
a thickness and material properties as chosen before. Frequency domain
responses to all three components of ground motion are evaluated and
plotted (dashed line) in Fig. 5.1. On the same plots, the responses
obtained previously under a rigid boundaries assumption are displayed by
solid lines.

For longitudinal ground motion (Fig. 5.1la), it is observed that the
radiation damping associated with the fluid-boundary interaction reduces

the response amplitudes, the reductions being primarily in the
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vicinities of the resomant frequencies of the reservoir, For transverse

and vertical ground motions (Fig. S.1, b and c¢), the dam responses at
excitation frequencies equal to m;, which are unbounded when the

boundaries are assumed rigid, are reduced to bounded values. This is a
consequence of the pressures being bounded functions of excitation

frequency when fluid-boundary interaction is included.

5.3. Earthquake Responses of Dams

In this section, the crest acceleration and displacement responses
of dams to existing earthquake ground motions are evaluated. All dams
considered thereafter have rectangular cross—sections, are 300 ft high
and 120 ft thick. They are all made of concrete whose properties are as
given previously in section 3.2.1.3. The only variable is the B/H
ratio.

The ground accelerations applied to the damreservoir system in the
longitudinal, transverse and vertical directions are the N-S, E-W and
vertical components of the motion recorded at the abutment of Pacoima
Dam, during the San Fernando earthquake of February 9, 1971, Cnly the
first 12 seconds of the record are used. These are plotted in Fig. 5.2,
while their Fourier transforms, obtained through the use of a Fast
Fourier Transform algorithm [41], are plotted in Fig. 5.3.

Transfer functions of relative crest acceleration, for dams of
varying B/H, are plotted in Fig. 5.4. These are computed at mid-span
for the x and z components of ground motion, and at quarter—span for the

y—component. Earthquake responses of absolute crest acceleration are
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obtained by evaluating the Fourier Integrals using the FFT algorithm

mentioned above. These are plotted in Figs., 5.5, 5.6 and 5.7. It is

observed that:

1)

2)

While the change in B/H affects the transfer functions in the
sense of shifting the resonant frequencies, with small varia—
tions in the maximum values (less than 10%), it affects the
peak absolute acceleration response to longitudinal motion by
as much as 20% for B/H = 2.0, and 42% for B/H = 1.0 as compared
to B/H = 5.0. For transverse and vertical motions, the peak
response decreases respectively by 51% and 43%, when B/H
changes from 5.0 to 2.0.

For B/H = 2.0, the transverse component produces, a quarter—
span peak acceleration which is 3.6% of what the longitudinal
component produces at mid—span. The vertical component
contribution is 23% of the longitudinal. For B/H = 5.0, the

values are 6% and 32%, respectively.

Transfer functions and earthquake responses of relative crest dis—

placement are given in Figs. 5.8 through 5.11. The effect of B/H on the

peak displacement response is displayed in Table 5.1, which contains the

peak values for all B/H ratios considered and all three components of

ground motion. The difference (in percentage) from the peak response

when B/H = 5.0 is given in parentheses. The effect of B/H on displace-

ment response is shown to be greater than on acceleration.
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B/H Longitudinal Transverse Vertical
Ground Motion | Ground Motion | Ground Motion
1.0 0.32(82) - -
2.0 0.94(47) 0.04(71) 0.38(61)
3.0 1.53(14) = =
5.0 1.78(0) 0.14(0) 0.97(0)
TABLE 5.1. Peak Crest Displacement (cm)

As mentioned at the beginning of section 2.2, the validity of
neglecting the effect of gravity waves at the reservoir surface has been
examined and established by J.I. Bustamante et al. [4], in case of
longitudinal ground motion, and by A.K. Chopra [6], in case of vertical
ground motion.

When an infinitely long reservoir of finite width is acted upon by
a transverse ground motion, the water behaves exactly as in the case of
a fluid contained in a rigid rectangular tank. Thus, gravity sloshing
modes at the free surface are excited and additional hydrodynamic pres—
sure generated., The effect of these gravity waves has been neglected in
obtaining the expression for the pressure generated by transverse ground
motion (see section 2.3.4), and this is validated hereafter.

The problem of sloshing of liquids contained in rectangular tanks
has been investigated by M.A., Haroun [43]. The natural frequencies of

sloshing are given by:

_ 2
Wl = L_hLBllag tanh [SZL};JEB_Q,]= (z"fn)

n (5.29)

where HQ is the height of liquid and B is the tank length in the direc-—

tion of motion. For H2 = 300 ft and B = 600 ft, the above equation

yields £, = 0.063 Hz and f1 = 0.285 Hz, which are well below the

1 0
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fundamental frequency of the 300 ft high, 120 ft thick and 600 ft long
dam, The higher sloshing modes, which correspond to frequencies lying
within the range of the dam frequencies, will have very small participa—
tion factors and hence are of negligible effect.

The maximum height of sloshing can be obtained from [43] as:

> S
|1] I = 4B an
max x2g 251 (2n-1)2 (5.30)

where San is the spectral acceleration corresponding to o .

Considering only the first ten sloshing modes, with San as obtained

from the response spectrum of the E-W component of Pacoima Dam record

[44]1, Eq. 5.30 yields: '“max' = 1,69 ft, which is about 0.55% of the

reservoir depth., Thus, the sloshing effects are shown to be negligible
without introducing considerable errors in the analysis of dam
responses, to transverse ground motion.

5.4, Hydrodynamic Pressure Respomnse

When the total absolute pressure (hydrodynamic plus hydrostatic and
atmospheric) at any point in the reservoir becomes negative, cavitation
takes place because water cannot sustain tension. To examine this pos-—
sibility, the hydrodynamic pressure response to the longitudinal compo—
nent of ground motion, applied to a dam of B/H = 5.0, is evaluated. The
pressure is calculated at ten equidistant points lying on the upstream
dam face, along the vertical line at mid—-span. At any of these points,

the time history of the hydrodynamic pressure is computed and normalized
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by the sum of the atmospheric and hydrodynamic pressure at that point.
The results are shown in Fig. §5.12.

Clearly, for the example under consideration, cavitation occurs at
all the points except at the one just below the water surface. This is
because the absolute value of the normalized pressure exceeds 1.0 at

those points.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Analytical expressions are developed for the hydrodynamic pressures
generated, in reservoirs behind short dams or walls, by the vibrational
motion of the structure and by all three components of ground motion.
The water compressibility is taken into consideration and solutions of
the three dimensional wave equation are obtained under both rigid and
flexible boundaries assumptions.

Inclusion of water compressibility leads to a frequency dependent
pressure., In the rigid case, the pressure becomes unbounded at excita—
tion frequency equal to the natural frequencies of the reservoir. In
the flexible case, some fluid-boundary interaction takes place leading
to a damping boundary condition at the reservoir floor and sides. This
allows some energy dissipation, making the pressure finite at all
frequencies. It is observed that the reduction in the pressure response
due to radiation damping is primarily in the vicinities of the resonant
frequencies of the reservoir.

Contrary to the two—dimensional case of infinitely long dams, the
pressure is found to vary along the dam length, and to depend on the
length to height ratio of the dam, with values at mid-span approaching
those of the 2-D case, as B/H becomes large. In addition, pressures are
also generated by the transverse component of ground motion, a feature
pertinent to the 3-D case only. When the reservoir boundaries are

assumed rigid, the pressure arising from longitudinal and vertical
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motions is independent of the y—coordinate, and identical to those
obtained under the 2-D assumption.

Dynamic analyses of long dams retaining incompressible water are
carried out in the time domain., Dams with rectangular cross—sections
are treated analytically, while dams with variable thicknesses are
discretized into finite elements. In both cases, the water is treated
as a continuum by boundary solution techniques. The dam is modeled
either by a shear or a bending theory. The natural frequencies of the
system, and the associated mode shapes are determined from a free vibra—
tion analysis. The effect of the presence of water is equivalent to an
added mass, thus reducing the resonant frequencies. The mode shapes are
also altered, especially the higher ones. A method is also presented to
compute the earthquake response of the dam, based on superposition of
its free vibrational modes.

An analysis procedure, based on the Rayleigh—Ritz method, is
developed for the dynamic response of short damreservoir systems. The
dam is modeled by both shear and bending theories. The water is treated
as a continuum, and the model can account for water compressibility and
can approximately account for fluid-boundary interaction., The dam foun—
dation is assumed rigid.

Neglecting water compressibility, the natural frequencies and mode
shapes are obtained through a free vibration analysis. The effects of

the dam being of finite length are as follows:



1)

2)
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Antisymmetric modes of vibration are developed, in addition to
the symmetric pattern,

Compared to the case of infinitely long dams, the natural
frequencies of the structure increase as its length to height
ratio decreases. For the shear model, the increase in the fun—
damental frequency is less than 8% for B/H > 5.0, The increasé
is as high as 42% when B/H = 2,0, The trend is the same for

the bending model,

Including water compressibility and fluid~boundary interaction, a

forced vibration analysis is carried out in the frequency domain, and

the dam response to all three components of a harmonic ground motion is

obtained.

Examining the crest acceleration transfer functions, it is deduced

that:

iy

2)

3)

When water compressibility is neglected, the hydrodynamic
effects are equivalent to an added mass and added load which
reduce the resonant frequencies of the system and increase the
resonant amplitudes.

When water compressibility is considered, the added mass and
added load vary with excitation frequency the same way the
hydrodynamic pressures do.

Under the assumption of rigid boundaries, the response to
longitudinal ground motion can be very large at excitation

frequencies equal to the resonant frequencies of the reservoir.



4)

5)
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The responses to transverse and vertical motions are unbounded
at those frequencies. These very large or unbounded responses
are reduced significantly when the boundaries are assumed
flexible.

The transverse component contributes a very small amount to the
crest acceleration response, as compared to the longitudinal
component contribution. The vertical component contributes a
fair amount.

A decrease in B/H increases the resonant frequencies of the

system and alters the resonant amplitudes.

Acceleration, displacement and hydrodynamic pressure responses to

earthquake ground motions are obtained through the use of the Fourier

Integral and a special Fast Fourier Transform algorithm. Based on the

results of the example of Chapter V, in which the N-S, E~-W and vertical

components of the Pacoima dam accelerogram records are used as the

longitudinal, transverse and vertical components of the ground motion

applied to the dam, and with compressibility of water and flexibility of

the reservoir boundaries considered, it is observed that:

1)

For longitudinal ground motion, a decrease in B/H from 5.0 to
2.0, and from 5.0 to 1.0, reduces the peak crest acceleration
by 20% and 42%, respectively, and reduces the peak crest dis—
prlacement by 47% and 82%, respectively. This indicates that

the two—dimensional analysis, currently used by designers,
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could greatly overestimate the response, if used for dams with
relatively small lengths.

2) Depending on B/H, the peak crest acceleration due to vertical
ground motion is about 20 — 35% of that due to longitudinal
motion, The vertical motion produces a peak crest displacement
in the range of 40 — 55% of what the longitudinal motion
produces. This indicates that both components are of compar—
able level of importance.

3) The transverse component of ground mofion produces, at quarter—
span, peak crest acceleration and displacement which are less
than 8% of what the longitudinal motion produces at mid-span.
This indicates that the effect of the antisymmetrical modes is
insignificant.

4) For a strong ground shaking such as the Pacoima Dam record
(1.17g peak acceleration), cavitation of water occurs on the
upstream face of the dam, at mid—-span.

Local variations in the spectral content of a given earthquake may
cause significant variations in the peak response due to earthquake
excitation when the parameters of the dam are varied. Likewise,
different earthquakes may result in different response behaviors of a
given dam. Although the previous observations are based on results for
a particular dam and a single earthquake, it is believed that the trends

in the response would generally be the same for other earthquakes.
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To summarize the most important conclusions:

1)

2)

3)

4)

The two dimensional solution, currently used for the analysis
of gravity dams, would err considerably if applied to a dam
whose length is less than four to five times its height. In
such cases, a three dimensional model must be used, and this
could result in substantial savings in the dam cost.

The antisymmetrical modes have little effect on the dam
response, and the contribution of the transverse component of
ground motion can be neglected without introducing a consider—
able error,

The level of importance of the vertical component of ground
motion is comparable to that of the longitudinal component, and
should be included in the analysis of dam responses to
earthquake ground motion.

The possibility of water cavitation taking place at the
upstream face, when the dam is subject to severe ground shak-

ing, has been established.

As areas of further study, the gemeralization of the method of

analysis to dams of variable thickness, modeled by a combined shear—

bending theory, is straightforward. The model could also be improved to

account for interaction between the dam and foundation. Further work is

needed to investigate the stress response as well as the damage on the

upstream face of the dam due to cavitation.
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It is hoped that this study contributes to a better understanding
of the dynamic behavior of gravity dams, and will help engineers to

achieve a safer and more economical design of such important structures.
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NOTATION

The letter symbols are defined where they are first introduced in

the text, and they are summarized herein in alphabetical order.

A Maximum amplitude of dam motion, Eq. 2.8.
K Normalized crest acceleration, Eq. 3.28.
Aﬁ(ﬁ) Functions defined by Eq. 2.36.

Aij Coefficients defined by Eq. 3.12.

An Coefficients defined by Eq. 5.14.

AM Added mass term, Eq. 3.69.

a.g Amplitude of ground acceleration.

a; Coefficients defined by Eq. 3.16.

a Coefficients defined by Eq. 3.7a,

B Length of dam.

Bj(%) Functions defined by Eq. 2.65.

Bm Coefficients defined by Eq. 5.15.

bj Modal participation factors, Eq. 3.43.

bm Coefficients defined by Eq. 3.7a.

[c] Damping matrix.

c Velocity of sound in the fluid, Eq. 2.1.
ci’:i Constant coefficients, Eqs., 2.5 and 2.6, respectively.
cj Coefficients defined by Eq. 2.65.

c Coefficients defined by Eq. 3.19.
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D Domain occupied by the water in the reservoir.

d Thickness of dam.

d Normalized dam thickness, d/H.

de Average thickness of element e.

dj Coefficients defined by Eq. 2.36.

dm Coefficients defined by Eq. 3.19.

E Modulus of elasticity of dam material.

{E} Vector of generalized coordinate displacements,
Eq. 4.5. '

E E/(1-9%)

e Element number in the finite element mesh.

e, Coefficients or generalized coordinate displace—

J ments, Eq. 4.4.

{FI} Inertia load vector, Eq. 4.15.

{F(m)],[f(m)}e Vectors defined by Eqs. 3.71 and 3.70, respec—
tively.

{F%}, (F7}, {F%} Added load vectors for ground motions in x, y
and z directions, Egs. 4.15, 4,21 and 4.25,
respectively.

fj Coefficient defined by Eq.3.42.

I I

fj Elements of {F~}, Eq. 4.17.

£%, £, £2 Elements of {FX}, (F’} and {F®}, Eqs. 4.18, 4.22

J J J and 4.25, respectively.

G Shear modulus of dam material.

g Acceleration of gravity.

H Height of dam,
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Normalized water depth, HQ/H.

Depth of water in the reservoir.

Spaces of variational functioms.

Hankel’'s functions of order B, Eq. 2.69.

Length of element e.

Integrals defined by Eqs. 3.38 (or 5.70) and
5.27, respectively.

Integrals defined by Eqs., 2.16, 2.47, 3.15 and
4.9, respectively.

Modified Bessel’s function of order B of the
first kind, Eq. 2.67.

\/—1, Eq. 2.5

Integrals defined by Egs. 2.20, 2.50 and 4.23,
respectively.

Bessel'’s function of order B of the first kind,
Eq. 2.68.

Modified Bessel's function of order B of the
second kind, Eq. 2.67.

Dam stiffness matrix, Eqs. 3.76 and 3.66,
respectively.

Generalized stiffness matrix, Eq. 3.11.

Element stiffness matrix, Eq. 3.67.

Bulk modulus of elasticity of the fluid.
Vectors defined by Eqs. 3.108, 3.105 and 3.107.

Vector defined by Eq. 3.106.
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Total mass, dam mass and added mass matrices,
Eqs. 3.76, 3.63 and 3.73, respectively.
Generalized mass matrix, Eq. 3.111.
Element mass matrix, Eq. 3.61,

Constants defined by Eq. 2.15 and 2.46,
respectively.

Number of degrees of freedom.
Total number of finite elements

Number of elements below water surface.

Vector of interpolation functions, Eq. 3.58.

Total hydrodynamic and hydrostatic forces,
respectively.

Normalized hydrodynamic force, Pd/Ps’ Eq. 3.39.
Effective force vector, Eq. 3.108,

Hydrodynamic and hydrostatic pressures,
respectively.

Normalized hydrodynamic pressure, p/ps. Eq. 3.37.
Hydrodynamic pressures due to x, y and z com—
ponents of ground motion, Egs. 2.25, 2.59 and 2.30,
respectively.

Constant vector, Eq. 3.64.

Damping coefficient, Eq. 5.4.

Constant vector, Eq. 3.57.

Radius of tank, intake tower or arch dam.

Overall nodal displacement vector, Eq. 3.64.

Radial coordinate of the cylindrical coordinate
system.
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{r(t)}e Vector of nodal displacements, Eq. 3.57.

{s(z)} Vector of interpolation functioms,Eq. 3.97.

T(t) Separation of variable function, Eq. 2.4.

t Time, Eq. 2.1.

ue) ,ute , vt Dam deformations, Eqs. 3.26, 3.29 and 3.30,
respectively.

Uj(t) Functions given by Eq. 3.44.

u Dam displacement.

ui(t) Generalized nodal coordinates, Eq. 3.40.

4,V ,wW Components of ground motion in the x, y and z

g &8 8 directions, Eqs. 2.22, 2.54 and 2.27,

respectively.

T ,; ,; Amplitudes of the components of ground motion,

g 8 & Eqs. 2.22, 2.54 and 2.27, respectively.

W),V Wy Water particle displacements in the x, y and z
directions, respectively.

ue,ve u and v when expressed in local coordinates.

u:,v: Elements of vectors {r(t)}e and {q}e,
respectively.

\'4 Constant defined by Eq. 5.8.

v(z) Variational function.

w Constant defined by Eq. 5.11.

X(x),Y(y),Z(z) Separation of variables functioms, Eq. 2.4.

Yi(§> Deformation shapes, Egqs. 2.64 and 2.65.

s . .
Yn(B) Functions defined by Eq. 5.6.
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Bessel;s function of order B of the second kind, Eq.

Elements of vector {Y(t)}, Eq. 3.115.

Vector of modal amplitudes, Eq. 3.110,

Deformation shapes, Eqs. 2.64 and 2.65.

Functions defined by Eq. 5.9.
Cartesian coordinates, Eq. 2.5.

Local z—coordinate,

Coefficient defined by Eq. 3.5.
Coefficients defined by Eq. 2.65.
Reflection coefficient, Eq. 5.4.

Separation constant, Eq. 2.5, also shear angle,
Eq. 3.90.

Coefficients defined by Eq. 2.45.
Coefficients defined by Eq. 2.36.

Coefficients defined by Eq. 3.74.

Separation constants, Egs. 2.5 and 2.6,
respectively.

Coefficients defined by Eq. 2.15.

Coefficients defined by Eq. 2.46.
Coefficients defined by Eq. 2.45.
Modal damping.

Separation constant, Eq. 2.5.

Coefficients defined by Eq. 2.14.

2.68.
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e Circumferential coordinate of the cylindrical
coordinate system,

90 Central angle of arch dam.

K Constant defined by Eq. 3.102.

km Coefficient defined by Eq. 3.7b or Eq. 3.19.

I Separation constant, Eq. 2.7.

Bon Coefficients defined by Eq. 2.51.

v Poisson’s ratio of dam material.

§,E Normalized z—coordinates, Eq. 3.5.

p,pg Mass density of the dam material and the fluid.
; Normalized mass density, p/pg.

o Coefficient defined by Eq. 3.19.

T Separation constant, Eq. 2.4.

[®] Matrix of modal displacement vectors, Eq. 3.110.
d Slope of deflection, Eq. 3.90.

¢° ¢ expressed in local coordinates.

d: Constants defined in Eq. 3.97.

{d} Vector of displacement amplitudes, Eq. 3.77.
V(%,ﬁ) Vibrational shapes, Eq. 2.63.

Vj Admissible functions, Eq. 4.4.

?(ﬁ),?(%,ﬁ) Deformation shapes of the dam, Egs. 2.8 and

2.37, respectively.

?(&),?I(E),?II(E) Dam deformations, Eqs. 3.3, 3.6 (or 3.20) and
3.8 (or 3.21), respectively.
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Q(z) Variational function.

2° Q expressed in local coordinates.

Qz Constants defined in Eq. 3.97.

© Circular frequency of vibration.

® Normalized frequency w/m;.

w, Natural frequencies of the dam.
wz,wij Natural frequencies of the reservoir,

Egqs. 2.17 and 2.48, respectively.

(w;)f Fundamental frequency of the full reservoir.
Vz Laplace operator, Eq. 2.1.

V4 Operator defined by Eq. 4.12.

°) Differentiation w.r.t. time.

(") Differentiation w.r.t. argument.
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