Lamar University

 BEAUMONT, TEXAS
TECHNICAL REPORT

COLLEGE OF ENGINEERING

PRPRODUCED BY
NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERC SPRINGFIELD, VA. 22161

REPORT DOCUMENTATION	1. REPORT NO. NSF/CEE-81202	2	
4. The and zuthtion of Head and Flow Distributions in Liquid Filled Piping Networks Subject to Seismic Excitation للاsing a Steady Oscillatory Flow Model			August 1981
			.
7. Aurthor(s) E.M. Alipour, F.M. Young			2. Parrorming Orysunzation Rast. Ato.
9. Parforming Orsanisetion Name and Adoress Lamar University College of Engineering P.O. Box 10057 Beaumont, TX 77710			30. Proiect/Task/wort Unit ma.
			11. Contract(G) arant(G) No.
			(c) PFR7923300
22. Spensoring Organization Name and Address Directorate for Engineering (ENG) National Science Foundation 1800 G Street, N.W. Washington, DC 20550			23. Type of Report \& Pariod coverod
			14.
25. Eupplementary Notes			
16. Aberreet (Limit: 200 morta)			
The purpose of this study was to develop an economical method of analysis of piping networks subject to a seismic disturbance. A one-dimensional steady oscillatory			
method was employed and a powerful tool (a computer program for analyzing piping			
networks subject to steady oscillatory excitations) was developed for piping designers			
who wish to design pipelines for earthquake zones. In addition, a model was developed			
to simulate the geometrical excitation effects of the following piping network			
junctions: (1) dead-end, (2) 90 elbow, (3) tee, and (4) orifice. This model was			
verified for the dead-end, elbow, and tee connections by comparison with a method of			
characteristics model. This method of characteristics model was in turn verified by			
experimental data and energy analysis at resonance.			

17. Document Analysis s. Deseripters

Pipelines ... Computer programs

Pipe joints Earthquakes
Fluid mechanics

4. Mantifiers/Open-Ended Terms

F.M. Young, /PI
c. Cosati Frald/Group

APPROXIMATIONS OF HEAD AND FLOW DISTRIBUTIONS IN LIQUID FILLED PIPING NETWORKS SUBJECT TO SEISMIC EXCITATION
 USING A STEADY OSCILIATORY FLON MODEL

By: Ebrahim M. Alipour and Fred M. Young

Date: August 31, 1981

Sponsored By: The

National Science Foundation
Grant \# PFR-7923300

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

The purpose of this study is to develop an econonical method of analysis of piping networks subject to a seismic disturbance. A one-dimensional steady oscillatory method was employed and a powerful tool (a computer program for analyzing piping networks subject to steady oscillatory excitations) is developed for piping designers who wish to design pipelines for earthquake zones.

In addition, a model is developed to simulate the geometrical excitation effects of the following piping network junctions: 1) deadend, 2) 90° elbow, 3) tee, 4) orifice. This model was verified for the dead-end, elbow, and tee connections by comparison with a method of characteristics model. This method of characteristics model as developed by Padron [6], was in tum verified by experimental data obtained by Wood and Chao [8], and energy analysis at resonance.
Page
Orifice Comection 47
Conclusions 51
REFERENCES CITED 54
APPENDIXES
A. CONTINUITY EQUATION 55.
B. MOMENTUM EQUATION 61
C. STEADY OSCILLATORY FLOW EQUATION 64
D. MATRIX GENERATION 71
E. LISTING OF COMPUTER PROGRAM 76
F. AVERAGE STEADY OSCILLATORY FLOW AND CORRECTION FACTOR 90
G. SAMPLE PROBLEM DESCRIPTION 100
H. FRICTIONAL EFFECT OF ORIFICE 107
NOMENCLATURE 109

Ear thquakes

. An earthquake is a phenomenon of strong vibrations occurring on the ground due to the release of a large amount of strain energy through a sudden slippage in the earth's crust or in the upper part of the mantle [1]\%. -The span of energy released from the surface of the earth during a major earthquake is of the magnitude of the electricity consumed in the United States over a period of 4 hours to 40 years. Two types of seismic waves propagate from the earthquake, namely: 1) longitudinal compression or P-wave; 2) transverse shear or S-wave. Earthquakes have caused severe effects on human life as well as on structures such as buildings, roads, bridges, railways, dams, pipelines, etc. Over seven million people have lost their lives in earthquakes [2]. Millions of dollars are required every year to repair the damage caused by earthquakes. The study of the causes and methods of preventing this damage involves a wide range of knowledge such as geophysics, geology, seismology, vibration theory, structural dymamics, material dynamics, construction techniques and fluid mechanics. In the study of earthquakes, each of these areas has received considerable attention with the exception of fluid mechanics.

[^0]Nakagawa [3] as reported by Okanoto [1], estimated the transient overpressures in pipelines subject to a seismic excitation. Young and Hunter [4] used a more rigorous method of analysis and found overpressures of about ten times higher than those estimated by Nakagawa. This result indicated the possibility of pipeline damage due to hydraulic transients induced by earthquakes and therefore prompted further study of the pheriomenon. Young [5] employed a onedimensional method of characteristics and developed a method including a computer "program to analyze the piping networks subject to steady oscillatory excitations. Padron [6] modified this program to include the gemetrical consideration necessary for the study of hydraulic transients induced in piping networks during earthquakes. He established a geometrical system to define the direction of propagation of the seismic disturbance as related to the orientation of the axes of each pipe segnent in the system. He verified his results by comparing them to an available experimental data and energy analysis.

Statement of the Problem

The method employed by Padron [6], consumes a tremendous amount of computation time. The transient response must be calculated before the steady state response can be calculated, and most of the calculations are for the transient state. Of ten the maximm response is the steady state response and hence a piping designer does not need the transient response; nevertheless, he must pay for them. It would therefore be useful to piping designers if a method were developed to analyze the piping networks only at their steady state response induced during an earthquake. This work sets forth such a method.

Streeter and Wylie [7] described a number of methods of analysis of unsteady flow depending upon the restrictive assumptions and also presented an excellent comparison of these methods. These methods all are initiated with the continuity and momentum equations .of fluid mechanics and are categorized as arithmetic, graphical, characteristics, algebraic, impedance, and special methods. Young and Hunter [4] applied the inpedance (steady oscillatory) method to some sinple pipelines (not general piping networks) and found good agreement between their results and the results obtained by the method of characteristics. Their agreement was better for resonant conditions which exhibited the maximm responses. The inpedance (steady oscillatory) method was chosen in this study to develop a tool (a method of analyzing piping networks subject to seismic excitation) for piping designers because of the following considerations: 1) piping designers are usually interested in maximm parameter values, 2) a good approximation of maximm response in piping network appears to be a possibility utilizing the impedance method, and 3) since economy is an important consideration. The inpedance (steady oscillatory) method is described in detail by Streeter and Wylie [7] and in Chapter II of this work.

Objective

The objective of this thesis is to develop a method of analysis including an efficient computer progran for calculation of the head and flow amplitudes in a general piping network subjected to steady oscillatory excitations as an approximation of seismic disturbances. The boundary conditions are chosen to approximate those in a piping system subject to a seismic excitation.

STEADY OSCIILATORY FLOW

In this chapter conservation of mass and conservation of momentum are applied to a slightly deformable horizontal pipe to analyze a class of steady oscillatory flow problems. The method of derivation is similar to that used by Streeter and Wylie [7], and it is shown here so that the resulting equations can be used in later chapters.

Conservation of Mass

The continuity equation for the control volume of the pipe shown in Figure 2.1 is written as

$$
Q_{\rho}-\left[Q_{p}+\frac{\partial(Q \rho)}{\partial x} \delta x\right]=\frac{\partial(A \rho \delta x)}{\partial t}
$$

or

$$
\begin{equation*}
\frac{\partial(Q \rho)}{\partial x} \delta x+\frac{\partial(A \rho \delta x)}{\partial t}=0 \tag{2-1}
\end{equation*}
$$

Referring to Appendix A, equation 2-1 is condensed to the following form which is applicable to a slightly deformable horizontal pipe.

$$
\begin{equation*}
\frac{\partial q^{\prime}}{\partial x}+\frac{g A}{a^{2}} \frac{\partial h^{\prime}}{\partial t}=0 \tag{2-2}
\end{equation*}
$$

- Conservation of Momentum

The momentum equation for the slightly deformable horizontal pipe shown in Figure 2.2 is written as

$$
P A-\left[P A+\frac{\partial(P A)}{\partial x} \delta x\right]-\tau_{0} \pi D \delta x=\rho \delta x\left(A+\frac{\partial A}{\partial x} \frac{\delta x}{2}\right) \frac{d V}{d t}
$$

or

Figure 2.1. Notation for Continuity Equation.

Figure 2.2. Notation for Momentum Equation.

$$
\begin{equation*}
-\frac{\partial(P A)}{\partial x} \delta x-\tau_{0} \pi D \delta x=\rho \delta x\left(A+\frac{\partial A}{\partial x} \frac{\delta x}{2}\right) \frac{d V}{d t} \tag{2-3}
\end{equation*}
$$

Referring to Appendix B, equation 2-3 is condensed to the following form.

$$
\begin{equation*}
\frac{\partial h^{\prime}}{\partial x}+\frac{1}{g A} \frac{\partial q^{\prime}}{\partial t}+R q^{\prime}=0 \tag{2-4}
\end{equation*}
$$

Equations 2-2 and 2-4 are used in Appendix C to obtain the steady oscillatory head and flow for a slightly deformable horizontal pipe subjected to steady oscillatory excitation. The following results are obtained for Figure 2.3 in Appendix C after Streeter and Wylie [7] and used in later chapters.

$$
\begin{align*}
& Q(x)=-\frac{H_{R}}{Z c} \operatorname{Sinh}(\gamma x)+Q_{R} \operatorname{Cosh}(\gamma x) \tag{2-5}\\
& H(x)=H_{R} \operatorname{Cosh}(\gamma x)-Q_{R} Z \operatorname{cinh}(\gamma x) \tag{2-6}\\
& Q_{R}=\frac{H_{S}}{Z c} \operatorname{Sinh}(\gamma L)+Q_{S} \operatorname{Cosh}(\gamma L) \tag{2-7}\\
& H_{R}=H_{S} \operatorname{Cosh}(\gamma L)+Z Q_{S} \operatorname{Sinh}(\gamma L) \tag{2-8}\\
& Q_{S}=-\frac{H_{R}}{Z C} \operatorname{Sinh}(\gamma L)+Q_{R} \operatorname{Cosh}(\gamma L) \tag{2-9}\\
& H_{S}=H_{R} \operatorname{Cosh}(\gamma L)-Q_{R} Z \operatorname{Cinh}(\gamma L) \tag{2-10}
\end{align*}
$$

where

$$
\begin{align*}
& Z c=\frac{a^{2}}{g A \omega}(\beta-i \alpha) \tag{2-11}\\
& \gamma=\alpha+i \beta \tag{2-12}\\
& \alpha=\sqrt{\frac{g A \omega}{a^{2}}}\left[\left(\frac{\omega}{g A}\right)^{2}+R^{2}\right]^{\frac{1}{4}} \operatorname{Sin}\left(\frac{1}{2} \operatorname{Arctan} \frac{R g A}{\omega}\right) \tag{2-13}\\
& \beta=\sqrt{\frac{g A \omega}{a^{2}}}\left[\left(\frac{\omega}{g A}\right)^{2}+R^{2}\right]^{\frac{3}{4}} \operatorname{Cos}\left(\frac{1}{2} \operatorname{Arctan} \frac{R g A}{\omega}\right) \tag{2-14}
\end{align*}
$$

Figure 2.3. Simple Pipeline Showing Receiving and Sending Ends Relative to Flow Direction.

In this chapter the derivation of the governing equations - for determining head and flow amplitudes for steady oscillatory flow in a piping network is presented.

Governing Equations

Equations derived in Chapter II are used in this chapter to analyze a network of piping subjected to steady oscillatory excitations.

Flow Direction

The equations derived in the preceding chapter depend on a defined flow direction in a particular pipe. Since this work is not intended for steady flow, but for steady oscillatory flow, the equations will be developed to be independent of the flow direction which will allow the program to deal with a complex piping network without going through a particular system to arbitrarily define the flow direction. However, when flow values are determined, a system must be used to appropriately convey the meaning of the sign of the flow value. Solving equation 2-8 for Q_{S}, gives:

$$
\mathrm{Q}_{\mathrm{S}}=\left[\frac{1}{\mathrm{ZCSinh}(\gamma \mathrm{~L})}\right] \mathrm{H}_{\mathrm{R}}+\left[\frac{-\operatorname{Cosh}(\gamma \mathrm{L})}{\mathrm{ZCSinh}(y \mathrm{~L})}\right] \mathrm{H}_{\mathrm{S}}
$$

Head coefficients are defined as

$$
\begin{align*}
x_{i j}=X_{j i} & =\frac{1}{Z c_{i j} \operatorname{Sinh}\left(\gamma_{i j} L_{i j}\right)} \tag{3-1}\\
Y_{i j} & =Y_{j i} \tag{3-2}
\end{align*}=\frac{-\cosh \left(\gamma_{i j} L_{i j}\right)}{Z c_{i j} \operatorname{Sinh}\left(\gamma_{i j} L_{i j}\right)},
$$

where $Z \varepsilon_{i j}$ is the characteristic impedance of the pipe between nodes i and $j, \gamma_{i j}$ is the complex constant for the same pipe given by equation 2-12 and $L_{i j}$ is the length of this pipe. Equation 2-8 can then be written as follows.

$$
\begin{equation*}
Q_{S}=X_{i j} H_{R}+Y_{i j} H_{S} \tag{3-3}
\end{equation*}
$$

Rearranging equation 2-10 and solving for O_{R}, gives:

$$
\mathrm{Q}_{\mathrm{R}}=\left[\frac{-I}{\mathrm{ZCSinh}(\gamma \mathrm{~L})}\right] \mathrm{H}_{\mathrm{S}}-\left[\frac{-\operatorname{Cosh}(\gamma \mathrm{L})}{\mathrm{Z} \operatorname{cSinh}(\gamma \mathrm{~L})}\right] \mathrm{H}_{\mathrm{R}}
$$

Substituting the head coefficients given above, the following equation is obtained.

$$
\begin{equation*}
Q_{R}=-X_{i j} H_{S}-Y_{i j} H_{R} \tag{3-4}
\end{equation*}
$$

Assuming oscillatory flow through a segment of pipe shown in Figure 3.1 and applying equations $3-3$ and $3-4$, the following equation may be written:

Figure 3.1. Simple Pipeline Showing Receiving and Sending Ends.

Figure 3.2. Simple Pipeline of Figure 3.1 with Opposite Flow Direction.

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{S}}=\mathrm{X}_{23} \mathrm{H}_{2}+\mathrm{Y}_{23} \mathrm{H}_{3} \\
& \mathrm{Q}_{\mathrm{R}}=-\left(\mathrm{X}_{23} \mathrm{H}_{3}+\mathrm{Y}_{23} \mathrm{H}_{2}\right)
\end{aligned}
$$

The following system of nomenclature will be used:

$$
\begin{aligned}
& Q_{S}=Q_{3 \rightarrow 2} @ 3=-Q_{3} \rightarrow 4 @ 3=-Q_{32} Q_{3}=Q_{34} Q_{3} \\
& Q_{R}=Q_{2 \rightarrow 3} @ 2=Q_{23} Q_{2}=-Q_{21} Q_{2}
\end{aligned}
$$

Enploying these definitions in the above equations, the following results:

$$
\begin{align*}
& Q_{32} \Theta_{3}=-\left(\mathrm{X}_{23} \mathrm{H}_{2}+Y_{23} \mathrm{H}_{3}\right) \\
& Q_{23} \mathrm{Q}_{2}=-\left(\mathrm{X}_{23} \mathrm{H}_{3}+Y_{23} \mathrm{H}_{2}\right)
\end{align*}
$$

which give the steady oscillatory flow at nodes 2 and 3 .
Changing the direction of flow in the same line segment as shown in Figure 3.2 and applying the same equations $3-3$ and $3-4$, the following may be written:

$$
\begin{aligned}
& Q_{S}=X_{23} H_{3}+Y_{23} H_{2} \\
& Q_{R}=-\left(X_{23} H_{2}+Y_{23} H_{3}\right)
\end{aligned}
$$

Using the same system of nomenclature as:

$$
\begin{aligned}
& Q_{S}=Q_{2 \rightarrow 1} @ 2=-Q_{2 \rightarrow 3} @ 2=Q_{21} Q_{2}=-Q_{23} @_{2} \\
& Q_{R}=Q_{3 \rightarrow 2} @ 3=Q_{32} @_{3}=-Q_{34} @_{3}
\end{aligned}
$$

and substituting into the above equations, the following is obtained:

$$
\begin{align*}
& Q_{23} @_{2}=-\left(\mathrm{X}_{23} \mathrm{H}_{3}+\mathrm{Y}_{23} \mathrm{H}_{2}\right) \\
& \mathrm{Q}_{32} \mathrm{C}_{3}=-\left(\mathrm{X}_{23} \mathrm{H}_{2}+\mathrm{Y}_{23} \mathrm{H}_{3}\right)
\end{align*}
$$

An analysis of the above equations will show that equations $3-3^{\prime}$ and 3-4' are identical, and equations 3-4' and 3-3' are identical. Therefore the following equation can be written for any pipe segment (i, j) independent of the flow direction:

$$
\begin{equation*}
Q_{i j}=Q_{i j}\left(\Theta_{i}=-\left(X_{i j} H_{j}+Y_{i j} H_{i}\right)\right. \tag{3-5}
\end{equation*}
$$

Equations for the Network
In this section, equations will be developed to apply to a "network of piping subjected to steady oscillatory flow excitation. Figure 3.3 shows a cross connection with a flow source, Q_{i} into the center of the cross. Applying conservation of mass to node i of this network

$$
Q_{i 1}+Q_{i 2}+Q_{i 3}+Q_{i 4}+Q_{i}=0
$$

and substituting equation 3-5 for each $Q_{i j}$, gives

$$
-\left(\mathrm{X}_{i 1} \mathrm{H}_{1}+\mathrm{Y}_{i 1} \mathrm{H}_{i}\right)-\left(\mathrm{X}_{i 2} \mathrm{H}_{2}+\mathrm{Y}_{i 2} \mathrm{H}_{i}\right)-\left(\mathrm{X}_{i 3} \mathrm{H}_{3}+\mathrm{Y}_{i 3} \mathrm{H}_{i}\right)-\left(\mathrm{X}_{i 4} \mathrm{H}_{4}+\mathrm{Y}_{i 4} 4 \mathrm{H}_{i}\right)+\mathrm{Q}_{i}=0
$$

and by rearranging,

$$
\mathrm{X}_{\mathrm{i} 1} \mathrm{H}_{1}+\mathrm{X}_{\mathrm{i} 2} \mathrm{H}_{2}+\mathrm{X}_{i 3} \mathrm{H}_{3}+\mathrm{X}_{i 4} 444+\left(\mathrm{Y}_{\mathrm{i} 1}+\mathrm{Y}_{\mathrm{i} 2}+\mathrm{Y}_{\mathrm{i}} 3+\mathrm{Y}_{\mathrm{i} 4}\right)-\mathrm{Q}_{\mathrm{i}}=0 .
$$

In general form, a nodal equation may be written by deduction as

$$
\begin{equation*}
\left(\sum_{\substack{n=1}}^{n} X_{i j} H_{j}\right)+\left(\sum_{\substack{n=1}}^{n} Y_{i j}\right) H_{i}-Q_{i}=0 \tag{3-6}
\end{equation*}
$$

where n, is the number of nodes in a piping network.

Real Equations

The paramters in equation 3-6 are complex. In this section, separate equations will be developed for the real and imaginary components of equation 3-6. Expanding the first term of equation 3-6, the following is obtained:

$$
X_{i j} H_{j}=\left[\left(X_{R}\right)_{i j}+i\left(X_{I}\right)_{i j}\right]\left[\left(H_{R}\right)_{j}+i\left(H_{I}\right)_{j}\right]
$$

Figure 3.3. Cross Comection with a Flow Source into the Center.
where subscript R, is for the real part, subscript I, is for the imaginary part and the constant i, is $\sqrt{-1}$. The equation above is rearranged as follows:

$$
\begin{equation*}
X_{i j} H_{j}=\left[\left(X_{R}\right)_{i j}\left(H_{R}\right)_{j}-\left(X_{I}\right)_{i j}\left(H_{I}\right)_{j}\right]+i\left[\left(X_{R}\right)_{i j}\left(H_{I}\right)_{j}+\left(X_{I}\right)_{i j}\left(I_{R}\right)_{j}\right] \tag{3-7}
\end{equation*}
$$

Similarly, an expression for the second term of equation 3-6 is

$$
\begin{equation*}
Y_{i j} H_{i}=\left[\left(Y_{R}\right)_{i j}\left(H_{R}\right)_{i}-\left(Y_{I}\right)_{i j}\left(H_{I}\right)_{i}\right]+i\left[\left(Y_{R}\right)_{i j}\left(H_{I}\right)_{i}+\left(Y_{I}\right)_{i j}\left(H_{R}\right)_{i}\right] \tag{3-8}
\end{equation*}
$$

and Q_{i} can be expressed as

$$
\begin{equation*}
Q_{i}=\left(Q_{R}\right)_{i} \overline{+} i\left(Q_{i}\right)_{i} \tag{3-9}
\end{equation*}
$$

Substituting equations $3-7,3-8$ and 3-9 into equation 3-6 and equating the real part and the imaginary part to zero, the two following equations result.
$\sum_{\substack{j=1 \\ j \neq i}}^{n}\left[\left(X_{R}\right)_{i j}\left(H_{R}\right)_{j}-\left(X_{I}\right)_{i j}\left(H_{I}\right)_{j}+\left(Y_{R}\right)_{i j}\left(H_{R}\right)_{i}-\left(Y_{I}\right)_{i j}\left(H_{I}\right)_{i}\right]-\left(Q_{R}\right)_{i}=0$
$\sum_{\substack{j=1 \\ j \neq i}}^{n}\left[\left(X_{R}\right)_{i j}\left(H_{I}\right)_{j}+\left(X_{I}\right)_{i j}\left(H_{R}\right)_{j}+\left(Y_{R}\right)_{i j}\left(H_{I}\right)_{i}+\left(Y_{I}\right)_{i j}\left(H_{R}\right)_{i}\right]-\left(Q_{I}\right)_{i}=0$

Solution Matrix

In this section, equations $3-10$ and $3-11$ are applied to a piping network to find a general matrix representation. The desired flow and head functions can then be found by inverting the matrix. Appendix D shows the creation of this matrix and the following augmented matrix results by deduction for a general piping network subject to steady oscillatory excitation(s).

$$
\begin{align*}
& A_{2 i, 2 i}=A_{2 i-1,2 i-1}=\sum_{j=1}^{n}\left(Y_{R}\right)_{i j} \tag{3-12}\\
& A_{2 i, 2 i-1}=-A_{2 i-1,2 i}=\sum_{j=1}^{n}\left(Y_{I}\right)_{i j} \tag{3-13}\\
& A_{2 i, 2 j}=A_{2 i-1,2 j-1}=\left(X_{R}\right)_{i j} \tag{3-14}\\
& A_{2 i-1,2 j}=-A_{2 i, 2 j-1}=\left(X_{I}\right)_{i j} \tag{3-15}\\
& A_{2 i-1,2 n+1}=\left(Q_{R}\right)_{i}-\sum_{\substack{j=1}}^{n}\left[\left(X_{R}\right)_{i j}\left(H_{R}\right)_{j}-\left(X_{I}\right)_{i j}\left(H_{I}\right)_{j}\right] \tag{3-16}\\
& A_{2 i, 2 n}+1=\left(Q_{I}\right)_{i}-\sum_{\substack{n=1}}^{j \neq b}
\end{align*}
$$

The following conditions are required for the above augmented matrix.

$$
\begin{aligned}
& i=1,2, \ldots \ldots \ldots, n \\
& i \neq m \\
& j=1,2, \ldots \ldots \ldots, n \\
& j \neq i \\
& j \neq k
\end{aligned}
$$

The following are definitions for limiting symbols used in the above augmented matrix:
k, a node number that is not comected to node i
b, a node number at which the head is not given
m , a node number at which the head is given
n, number of nodes in piping network

COMPUTER CONFIGURATION AND PROGRAMIING

This chapter presents the computer program and the method . used to obtain the linearized fluid friction term for each pipe for this work. A sample problem is presented at the end of the chapter in order to describe the input and output format.

Computer Program

The equations derived in the preceding chapters are employed to write an efficient computer program to calculate the steady oscillatory head and flow distribution in piping networks subjected to steady oscillatory excitation. The basic procedure of programming is described in Figure 4.1 and the complete listing is presented in Appendix E. The subroutine, 'MTINV," was obtained from the master library, tested on several sets of simultaneous equations and after verification was employed in this program. As is shown in Figure 4.1, this program applies a trial solution which assumes a value for average oscillatory flow amplitues at the nodes and the assigned locations*. Using a method that will be described in the next section, the program finds

[^1]
the average oscillatory flow through each line segment, compares these values with the preceding one, and uses an average oscillatory flow through each line segment as
$$
q=\frac{1}{3}\left(2 \bar{q}_{\text {new }}+\bar{q}_{\text {old }}\right)
$$
to calculate the linearized fluid friction term for the next iteration. "With these values, computations are initiated for the detemination of head and flow amplitudes at the nodes and at the assigned locations. If the difference between the new and old average flows are within the desired accuracy, the results are printed. Otherwise, the program calculates the flow amplitudes and the new average flow for each line segment for the next comparison. The limits of the accuracy assigned to this program are a maximm change in average flow in any pipe segment of $0.001 \mathrm{ft}^{3} / \mathrm{s}$. and to an average change of $0.0005 \mathrm{ft}^{3} / \mathrm{s}$. for all pipe segments in the network.
$$
\frac{\text { Average Steady Oscillatory Flow }}{\text { and Correction Factor }}
$$

Average Steady Oscillatory Flow

In this section, a method is described to determine the average steady oscillatory flow, 'Q', that appears in equation $\mathrm{B}-8$, the linearized fluid friction term. This method is employed in the computer program to obtain the results of this work; however, an alternate method is developed and is described in Appendix F. Streeter and Wylie [7] neglected the effect of oscillatory flow in their linearized fluid friction term. They probably assumed that the
oscillatory flow is very small in comparison to the steady state flow. Since this program may deal with the systems or parts of systems with low steady state flow, the average flow through each pipe segment is defined as

$$
\begin{equation*}
\bar{Q}=\bar{Q}_{\text {steady }}+\bar{q}_{\text {osc }} . \tag{4-1}
\end{equation*}
$$

where the steady state component mist be defined as an input condition. The oscillatory component is assumed to be varying linearly through the pipe and is defined as

$$
\bar{q}=\frac{1}{2}\left(q_{\max }+q_{\min }\right) \frac{2 \omega}{\pi} \int_{0}^{\frac{\pi}{2 \omega}} \operatorname{Sin}(\omega t) d(\omega t)
$$

where $\mathrm{Gmax}_{\text {a }}$ and $\mathrm{Gmin}_{\mathrm{m}}$ are the maximm and minimm flow amplitudes along the length of the pipe segment, respectively. After simplifying the average oscillatory flow is given by

$$
\bar{q}=\frac{1}{\pi}\left(q_{\max }+q_{\min }\right)
$$

and equation 4-1, becomes

$$
\begin{equation*}
\bar{Q}=\bar{Q}_{\text {steady }}+\frac{I}{\pi}\left(q_{\max }+q_{\min }\right) . \tag{4-2}
\end{equation*}
$$

Since the flow does not vary linearly along the length of the pipe, equation $4-2$ is a rough estimate, unless each line is divided into enough sections and the averaging process is applied for each section separately. To find the number of sections into which each straight pipe must be divided, the following tests were performed on a straight pipe, 5000 feet long, 30 inches in diancter, having a friction factor of 0.1 , connected to a constant pressure tank at one end and a steady oscillatory flow excitation of $4.909 \mathrm{ft}^{3} / \mathrm{s}$. amplitude at the other end. The speed of sound in the liquid is assumed to be 3000
ft / s. For the non-dimensional excitation frequencies* of 1.0 to 3.0 with intervals of 0.1 , the length of the pipe is divided into 1,2 , $3, \ldots \ldots, 10,19$ sections and the system is defined as $2,3,4, \ldots \ldots, 11,20-$ node piping network. Table-4.1 shows the resulting non-dimensional . pressure* for these tests. An inspection of Table 4.1, shows that, for the frequency range of 1.3 to 2.7 , results are independent of the number of sections into which the pipe is divided. Beyond this range, the results are functions of the number of segments into which the pipe is divided as the frequency approaches the resonant frequency. At resonance the results are highly dependent of the number of segments. This is because at resonance the energy input into the system is dissipated by friction only. At resonance the result of a 19-section line differs by a maximm of 1.2% from the result of a 10 -section line. The result of a 5 -section line, however, differs by a maximum of 5.8% from the result of a 19 -section line. For the purpose of this study and since computation time must be considered, each straight pipe is divided into five or ten sections. This should be a good approximation of the average of the steady oscillatory flow for the first few frequency harmonics.

[^2]

Correction Factor

Since the purpose of this work is to compare the accuracy of the method of characteristics with the steady oscillatory method, a more computationally economical method, the system that is defined in the preceding sub-section, is tested against the method of characteristics at the first resonant frequency. The maximum nondimensional head obtained by the method of characteristics was 9.64 . To obtain this value by the steady oscillatory method, a correction factor of 0.605 must be applied to the average steady oscillatory flow. Then the corrected form of equation 4-2 becomes

$$
\begin{equation*}
\bar{Q}=\bar{Q}_{\text {steady }}+0.1926\left(q_{\text {max }}+q_{\min }\right) \tag{4-3}
\end{equation*}
$$

This equation is used in the computer program.

Sample Problem

The length of the pipe of the system defined in the preceding section is divided into eight sections to form a 9-node piping network. This network is excited with a steady oscillatory flow of $4.909 \mathrm{ft}^{3} / \mathrm{s}$. amplitude and a frequency equal to the resonant frequency of the pipe. Input and output formats are shown and described in Appendix G.

CHAPTER V

RESULTS AND OONCLUSIONS

The computer program described in the preceding chapter " will be used to analyze the same systems used by Padron [6] in investigating piping networks subjected to a seismic excitation. Results obtained by the method of characteristics for corresponding boundary conditions will be compared with the steady oscillatory method presented here.

Cases of Study and Results

A piping network can be described as an orderly combination of nodes such as dead-ends, elbows, tees, crosses, valves, reducers, orifices, etc. interconnected by line segnents. The local effects of these connections on steady flow through piping networks are limited to frictional effects, while in steady oscillatory flow through the piping networks, the geonetric effects may be much more important than the frictional effects and must be considered. Further study is required to model these geometric effects as steady oscillatory flow sources, steady oscillatory head sources, etc.

In this work, a simple piping network consisting of a constant head tank and connected by a pipe segment to a dead-end was selected for initial study. The system was excited by a compression seismic wave with a velocity amplitude of $1 \mathrm{ft} / \mathrm{s}$, and various excitation frequencies. Liquid in the network was chosen to be water at $80^{\circ} \mathrm{F}$.

The piping network was assumed to be at one elevation. The velocity of wave propagation in the liquid was assumed to be $3000 \mathrm{ft} / \mathrm{s}$. with no steady flow through the piping network. For each case, tests were performed and the results compared with the results obtained by - the method of characteristics. Since the results are conveniently presented as non-dimensional parameters, a system of reducing the parameters is defined. Non-dimensional frequency is the ratio of excitation frequency to the resonance frequency in the liquid of the particular line segment involved, where the resonance frequency of the line segnent is defined as the inverse of the time required for the completion of one cycle of wave propagation in the line. Nondimensional head is the ratio of the actual head increase to the head rise which would occur if the liquid velocity were instantaneously changed by the amplitude of the excitation velocity.

Dead-End

A simple system consisting of a pipe 5000 feet long and 30 inches in diameter comected to a constant head tank at one end and a dead-end at the other end was selected for initial study. The system was excited at the dead-end by a longitudinal compression seismic wave with a velocity amplitude of $1 \mathrm{ft} / \mathrm{s}$. and an angle of propagation, θ, with respect to the longitudinal axis of the pipe. Figure 5.1 shows the sketch for this piping network. The pipe was assumed to be buried in the ground and to have no slippage between the pipe wall and the ground. The dead-end connection was assumed to have the same
(

Figure 5.1 Schematic Diagram for a Dead-End Connection Showing the Direction of Seismic Excitation
velocity component as the ground motion parallel to the longitudinal axis of the pipe. Therefore, the motion of the liquid particles in contact with the dead-end was the same as the motion of the deadend cormection. As an approximation the transient seismic ground motion "was replaced with a steady oscillatory flow through the crosssectional area of the pipe at the dead-end with a velocity amplitude equal to the component of the ground motion velocity parallel to the longitudinal axis of the pipe as shown below.

$$
\begin{equation*}
Q=V g A \operatorname{Cos}(\theta) e^{i \omega t} \tag{5-1}
\end{equation*}
$$

In order to obtain a good approximation of the effects of the Iinearized friction term, the 5000 -foot length was divided into ten equal sections (as discussed in Chapter IV) and the system defined as an ll-node piping network. The amplitude of the steady oscillatory head at node 11 was zero due to the constant head tank, and at node 1 , the steady oscillatory flow anplitude calculated by equation 5-1, was $4.909 \operatorname{Cos}(\theta) \mathrm{ft} / \mathrm{s}$. The resonance frequency of the system was $\frac{2 \pi a}{4 \mathrm{~L}}=$ $.9425 \mathrm{rad} / \mathrm{s}$. For these boundary conditions the following tests were performed: a) for a constant angle of wave propagation, $\theta=0$, and pipe friction factors of $0.02,0.05,0.10,0.20$, and non-dimensional frequencies of 0.5 to 3.5 with intervals of $0.1 ; b$) for $\theta=0$ to 90° in intervals of 15°, pipe friction factors of, $0.02,0.05,0.10,0.20$, and non-dimensional frequencies of, 0.5 to 3.0 with intervals of 0.5. The results for tests (a) are presented in Figures 5.2 to 5.5 using open circles while the results obtained by the method of

Figure 5.2. Non-Dimensional Head Response as a Function of Non-Dimensional Frequency for Tests (a) of the Dead-End Comection (Friction Factor $=0.02$) .

FRISQUFNCY

Figure 5.3. Non-Dimensional Head Resnonse as a Function of Non-Dimensional Frequency for Tests (a) of the Dead-End Comection (Friction Factor $=0.05)$.

Figure 5.4. Non-Dimensional Head Response as a Fumction of Non-Dimensional Frequency for Tests (a) of the Dead-End Connection (Friction Factor $=0.10$) .

FRESUNCY

Figure 5.5. Non-Dimensional Head Response as a Function of Non-Dimensional Frequency for Tests (a) of the Dead-End Connection (Friction Factor $=0.20$) .
characteristics for the same tests are show in the same figures using solid circles. Conparing the results, good agreement for the resonance and anti-resonance frequencies are exhibited while there is considerable differences at values between these two frequencies, and these differences are larger as the peaks get sharper, i.e. as the pipe friction factor gets smaller. This is expected since the method of characteristics gives the maximm overpressure in either steady oscillatory flow or for the transient case. The results for tests (b) are presented in Figures 5.6 to 5.9 mploying open symbols, while solid symbols show the results obtained by the method of characteristics for the same boundary conditions. The results obtained by both methods for the frequencies of 0.5 and 2.0 are very similar and are shown with open circles. Comparing the results of tests (b), considerable differences can be observed between the results of the two methods for friction factors other than 0.1. That is because the method of calculating the linearized friction term contained a correction factor which was chosen to make the methods agree at a friction factor of 0.1 (as discussed in Chapter IV). To minimize these differences, the method described in Appendix F was developed. Also slight differences can be observed between the results of the two methods as the angle of wave propagation becomes larger.

Elbow. Connection

The elbow connection was modeled by a 90° elbow connecting two

FREQUIENCY

- 2.0
- 2.5
$\nabla 3.0$

Figure 5.6. Non-Dimensional Head Response as a Function of the Angle of Seismic Wave Propagation for Tests (b) of the Dead-End Connection (Friction Factor $=0.02$) .

FREQUFNCY

- 2.0
- 2.5
- 3.0

Figure 5.7. Non-Dimensional Head Response as a Function of the Angle of Seismic Wave Propagation for Tests (b) of the Dead-End Connection (Friction Factor $=0.05$) .

FRERUENCY

- 2.0
$\nabla 2.5$
- 3.0

Figure 5.8. Non-Dimensional Head Response as a Function of the Angle of Seismic Wave Propagation for Tests (b) of the Dead-End Connection (Friction Factor $=0.10$) .

FREQUENCY
© 2.0

- 2.5
$\nabla 3.0$

Figure 5.9. Non-Dimensional Head Response as a Function of the Angle of Seismic Wave Propagation for Tests (b) of the Dead-Fnd Connection (Friction Factor $=0.20$)
pipes which were terminated at the other ends by two constant head tanks. The length and the diameter of one pipe was kept fixed at 5000 feet and 30 inches, respectively. The length and the diameter of the second pipe was varied as shown by the four different piping networks in Figures 5.10 to 5.13. The elbow comection was assumed to have the same effect as the dead-end connection in each of the pipes except that flow could occur between the two pipes. With this assumption, - equation 5-1 was modified for an elbow connection as follows:

$$
\begin{equation*}
Q=V g\left[A_{1} \operatorname{Cos}(\theta)+A_{2} \operatorname{Sin}(\theta)\right] e^{i \omega t} \tag{5-2}
\end{equation*}
$$

Each pipe length was divided into 5 equal sections to define an 11-node piping network. For a pipe friction factor of 0.1 , four groups of tests were performed for the frequency ranges of 0.5 to 3.0 , with intervals of 0.5 , and angles of wave propagation ranging from 0° to 180°, with intervals of 15° as follows: a) pipe (2) was chosen to be the same length and diameter as pipe (1); b) the length of pipe (2) was maintained at 5000 feet and its diameter was chosen to be 15 inches; c) pipe (2) was chosen to be 4000 feet long and 30 inches in diameter; d) the diameter of pipe (2) was maintained at 30 inches and its length changed to 2500 feet. Figures 5.14 to 5.17 show the results of tests * (a) through tests (d), respectively using open symbols. Solid symbols show the results obtained by the method of characteristics. Open triangles in Figures 5.14 and 5.15 show the results obtained by both methods for frequencies of 0.5 and 2.0 . The two methods exhibit the same characteristics as they did with the dead-end comection. That

Pisure 5.10. Schematic Diagram Showing the Piping, Network used for Tests (a) of the Elbow Connection.

Figure 5.11. Schematic Diagram Showing the Piping Network used for Tests (b) of the Elbow Comection.

Figure 5.12. Schematic Diagram Showing the Piping Network Used for Tests (c) of the Elbow Connection.

Figure 5.13. Schematic Diagram Showing, the Piping Network Used for Tests (d) of the Elbow Connection.

Figure 5.14. Non-Dimensional Head Resnonse as a Function of the Angle of Seismic Wave Prodagation for the Elbow Connection Shown in Figrre 5.10.

FREQUENCY
$\nabla 2.0$
-2.5

- 2.5
$\square 3.0$

Figure 5.15. Non-Dimensional Head Response as a Function of the Angle of Seismic Wave Fropagation for the Elbow Connection Shown in Figure 5.11.

FREOIJENCY
$\nabla 2.0$
$\bigcirc 2.5$

- 3.0

Figre 5.16. Non-Dimensional Head Resoonse as a Fumction of the Angle of Seismic Nave Propagation for the Elbow Connection Shown in Figure 5.12.

Figure 5.17. Non-Dinensional Head Resbonse as a Function of the Angle of Seismic Wave Prodagation for the Elbow Connection Shown in Figure 5.13.
is, the results exhibit good agreement for resonance and antiresonance frequencies and differ at other frequencies for which the steady response would be less than the transient response.

Tee Connection

A tee connection was modeled by three pipes 5000 feet long each comnected to constant head tanks at one end and to a tee connection at the other end. The diameter of the pipes were varied, as shown in Figures 5.18 to 5.20 , to define three piping networks for the study of this connection. The procedure was employed that was used for the modeling of the elbow. Equation 5-2 was modified as

$$
\begin{equation*}
Q=\operatorname{Vg}\left[\left(A_{3}-A_{1}\right) \operatorname{Cos}(\theta)+A_{2} \operatorname{Sin}(\theta)\right] e^{i \omega t} \tag{5-3}
\end{equation*}
$$

for this study. Each pipe length was divided into 5 equal sections to define a 16 -node piping network. For a pipe friction factor of 0.1 , three groups of tests were performed in the frequency ranges of 0.5 to 3.0 , with intervals of 0.5 , and angles of wave propagation from 0° to 90°, with intervals of 15°, as follows: a) the diameter of all pipes were chosen to be 30 inches; b) the diameter of pipe (2) was chosen to be 20 inches, while the diameters of the other two pipes were maintained at 30 inches; c) pipe (1) was chosen to be 20 inches in diameter and the diameters of pipes (2) and (3) were 30 inches. Figures 5.21 to 5.23 show the results of tests (a) through tests (c), respectively, using open symbols. Solid symbols show the results obtained by the method of characteristics. Open circles

Figure 5.18. Schematic Diagram Showing the Piping Network Used for Tests (a) of the Tee Connection.

Figure 5.19. Schematic Diagram Showing the Piping Network Used for Tests (b) of the Tee Connection.

Figure 5.20. Schematic Diagram Showing the Piping Network Used for Tests (c) of the Tee Connection.

FREOUFNCY

- 2.0
- 2.5
- 3.0

Figure 5.21. Non-Dimensional Head Response as a Function of the Angle of Seismic Wave Propagation for the Tee Connection Shown in Figure 5.18.

Figure 5.22. Non-Dimensional Head Resmonse as a Function of the Angle of Seismic Wave Propagation for the Tee Comection Shown in Figure 5.19.

Figure 5.23. Non-Dimensional Head Response as a Function of the Angle of Seismic Wave Propagation for the Tee Connection Shown in Figure 5:20.
show the results obtained by both methods for frequencies of 0.5 and 2.0. The two methods agree about as well as the results agreed for the elbow comection.

Orifice Connection

A pipe 7500° feet long and 30 inches in diameter was comected to a constant bead tank at each end with a one inch thick orifice located 2500 feet from one tank, and excited at the location of the orifice by a longitudinal compression seismic wave parallel to the axis of the pipe with a velocity amplitude of $1 \mathrm{ft} / \mathrm{sec}$. Figure 5.24 shows the sketch for this piping network. A model similar to that for the dead-end was used, except that the inside area of the orifice was subtracted from the total area. The orifice comection was also modeled to have compression effect on one side and an expansion effect on the other side. Incorporating these considerations into those made for the dead-end connection, equation $5-1$ was modified for an orifice connection as

$$
\begin{equation*}
Q=V g\left(A-A_{o}\right) \cos (\theta) e^{i(\omega t} \tag{5-4}
\end{equation*}
$$

for the compression side of the orifice and the same equation with a negative sign for the expansion side. Figure 5.25 shows a sketch of the model for the orifice where the length l_{0} is one inch. The piping network shown in Figure 5.25 was analyzed for different ranges of frequency and orifice diameter $\left(\mathrm{d}_{\mathrm{O}}\right)$. The results showed zero head amplitude along the entire network for all cases, which means that the orifice has no effect on the piping network during a

Figure 5.24. Schematic Diagram for the Orifice Comection Showing the Direction of the Seismic Excitation.

Figure 5.25. Schematic Diagram Showing the Model for the Orifice Comection Shown in Figure 5.24.
seismic disturbance. This method did not include pressure drop across the orifice; therefore the inflow at one side was cancelled by the outflow at the other side of the orifice. Then a new model was created which would account for the pressure drop across the orifice. This modeling was to replace the orifice with a pipe segment of the same diameter and a length selected to have the same frictional effect as the orifice. Referring to Appendix H, the lengths of these pipe segments, 1_{0}, for the $5^{\prime \prime}, 10^{\prime \prime}, 15^{\prime \prime}$, and $20^{\prime \prime}$ diameter orifices are 11.2', 22.1', 31.5', and 35.9', respectively, for a pipe friction factor of 0.1 . With this assumption, the above piping network was analyzed for the orifice diameters of $5^{\prime \prime}, 10^{\prime \prime}, 15^{\prime \prime}$, and $20^{\prime \prime}$ with excitation non-dimensional frequency ranges of 0.3 to 3.0 , with intervals of 0.1 . Table 5.1 shows the results of these tests including results of the method of characteristics for the same boundary conditions. Comparing the results, the following can be observed: 1) results of the steady oscillatory method are much less than the results of the method of characteristics; 2) the maximun head responses for the method of characteristics are at a non-dimensional excitation frequency of 1.0 , while for the steady oscillatory method they are at frequencies between 1.4 and 1.5 ; 3) for the method of characteristics, head increases as the orifice diameter increased, while for the steady oscillatory method it is in reverse order. These differences may result because maximm values are obtained throughout as transients rather than at longer times which would correspond to the steady oscillatory flow model.

S.O.M. = STEADY OSCILIATORY METHOD

M.O.C. $=$ METHOD OF CHARACTERISTICS

	5"		10"		15"		$20^{\prime \prime}$	
	S.O.M.	M.O.C.	S.O.M.	M.O.C.	5.0.M.	M.O.C.	S.O.M.	11.0.C.
0.3	0.18		0.02^{-}		0.01		0.00	
0.4	0.19	1.20	0.02	0.70	0.01	0.70	0.00	0.70
0.5	0.20	1.30	0.02	0.85	0.01		0.00	0.85
0.6	0.21		0.02	1.05	0.01	1.10	0.01	1.05
0.7	0.22	1.75	0.03	1.10	0.01	1.15	0.01	1.15
0.8	0.23	2.55	0.03	1.60	0.02	1.70	0.01	1.65
0.9	0.25	3.35	0.04	2.60	0.02	2.65	0.01	2.65
1.0	0.28	3.85	0.05	4.30	0.02	4.60	0.01	4.65
1.1	0.-35-7	$2.70-$	0.06	3.00	0.03	2.60	0.01	2.60
1.2	0.50	2.40	0.08	1.80	0.04	1.80	0.02	1.80
1.3	0.67		0.14	1.50	0.07	1.40	0.03	1.50
1.4	1.00	2.00	0.36	1.40	0.16	1.40	0.07	1.45
1.5	0.96		0.87		0.73		0.54	
1.6	0.49		0.22		0.13		0.06	
1.7	0.37		0.14		0.08		0.04	
1.8	0.31		0.10		0.06		0.03	
1.9	0.28		0.09		0.05		0.02	
2.0	0.26		0.08		0.04		0.02	
2.1	0.26		0.08		0.04		0.02	
2.2	0.27		0.08		0.04		0.02	
2.3	0.29		0.09		0.05		0.02	
2.4	0.34		0.10		0.05		0.02	
2.5	0.40		0.11		0.06		0.03	
2.6	0.53		0.14		0.07		0.03	
2.7	0.75		0.20		0.10		0.05	
2.8	1.09		0.35		0.16		0.07	
2.9	1.43		1.14		0.43		0.17	
3.0	0.97		0.88		0.75		0.55	

Table 5.1. Non-Dimensional Head Response as a Function of Non-Dimenionsal Frequency for the Tests of Orifice Connection by Steady Oscillatory Method and Method of Characteristics.

Conclusions

A one-dimensional steady oscillatory method of analysis of hydraulic transients was employed to develop an economical, powerful tool (a computer program for analyzing the piping networks subject to steady oscillatory excitations) for piping designers who wish to design pipelines for earthquake zones. The use of this tool requires consideration of earthquake characteristics such as ground motion velocity, direction of wave propagation, frequency of the ground motion, etc. as well as an understanding of the model which converts the geometrical effects of junctions in the piping networks into excitation sources.

In this work, a model is developed to convert geometrical effects into excitation flow sources for the following junctions of piping networks: 1) dead-end, 2) 90° elbow, 3) tee, 4) orifice. This model has been verified for dead-end, elbow, and tee connections at resonant frequencies by comparison with the method of characteristics model, developed by Padron [6], which was in turn verified by experimental data obtained by Wood and Chao [8], and an energy analysis at resonance. Results of this model were considerably lower than the results obtained by the method of characteristics model at off-resonant frequencies. At these frequencies the maximum response occurs during the transient state. Since the frequency of the ground motion is a spectrum instead of a single frequency, the piping designer would always consider the worst case which is resonance.

The head response amplitudes calculated by this method are, for certain conditions, higher than the difference between the liquid steady head and the evaporation head. Colum separation can result, therefore extra damping in the system and lower head response would be expected. "Since larger head responses would be calculated than .. would be experienced, designers could use this method and expect an additional unknown factor of safety.

The method developed in this study is capable of handling single frequency excitations only. Conventional methods of linear superposition would apply when the system could be treated as approximately linear.

The effects of the steady oscillatory flow component on the linearized fluid friction term were neglected by Streeter and Wylie [7]. A model of this effect was included in calculations of this study by two different methods presented in Chapter IV and Appendix F. The results of the method described in Chapter IV depend on the pipe friction factor and frequency harmonic number. This method is a good approximation of steady oscillatory flow affects for the first harmonic frequency and a pipe friction factor of 0.1. The result of the method described in Appendix F is approximately independent of the frequency hamonies number and the pipe friction factor. ${ }^{-}$The method described in Appendix F has been verified by the method of characteristics for friction factors ranging from 0.02 to 0.20 and is expected to give good approximations for any fruction factor.

An excitation velocity amplitude of $1 \mathrm{ft} / \mathrm{s}$. was chosen for all cases of this study. Slight differences were noted between the results of the steady oscillatory method and the method of character-
istics as the angle of wave propagation was increased, which corresponds to lower excitation velocities. This result may indicate that there may be considerable difference between the results of the two methods for higher excitation velocities.

REFERENCES CIIED

1. Okamoto, Shunzō, Introduction to Earthquake Engineering, New York-Toronto, Jom Wiley \& Sons, 1973, pp. 7, 499-501.
2. Verney, Peter, The Earthquake Handbook, New York and Iondon, Paddington Press.LTD, 1979, pp. 7.
3. Nakagawa, Y., A Theoretical Study on the Water Pressure in Distributing Pipes during Earthquakes, Jour. of Japan Water Works Association, No. 416, 1969.
4. Young, F.M. and Hunter, S.E., 'Hydraulic Transients in Liquid Filled Pipelines During Earthquakes". Life-Eine Earthquake Engineering Buried Pipelines, Seismic Risk, and Instrumentation, Ihird National Congress on Pressure Vessels and Piping. San Francisco, CA. Jume 25-29, 1978, pp. 143-151.
5. Young, F.M., 'Hydraulic Transient Analysis Program', Report No. LME-1-71 for NASA-MSC, December, 1970.
6. Padron, J.M., Pressure Surges Induced by Ground Motion During Earthquakes as a Potertial Pincline Damage Mechanism, A Thesis, Lamar University, May 1981.
7. Streeter, V.L. and Wylie, B.E., 'Hydraulic Transients', NY, McGraw-Hill Co., 1967.
8. Wood, D.J. and Shen P'eng Chao, 'Effect of Pipeline Junctions on Water Harmer Surges'. 'Iransportation Engineering Journal, Procedings of the American Society of Civil Engineering, August, 1971, pp. 441-457.

APPENDIX A

CONIINUITY EQUATION

In this Appendix, the continuity equation 2-1 is expanded - after Streeter and Wylie [7]. Small terms are neglected to form a suitable equation for slightly deformable horizontal pipes.

$$
\begin{equation*}
\frac{\partial\left(Q_{0}\right)_{\delta} x}{\partial x}+\frac{\partial\left(\rho A_{\delta} x\right)}{\partial t}=0 \tag{2-1}
\end{equation*}
$$

Expanding this equation and dividing by $\rho A \delta x$, gives

$$
\frac{Q}{\rho A} \frac{\partial P}{\partial x}+\frac{1}{A} \frac{\partial Q}{\partial x}+\frac{1}{A} \frac{\partial A}{\partial t}+\frac{1}{\delta x} \frac{\partial \delta x}{\partial t}+\frac{1}{\rho} \frac{\partial \rho}{\partial t}=0 .
$$

The term δx is a function of time only. Replacing the partial derivative of δx with its total derivative, and rearranging, the following results.

$$
\frac{1}{\bar{\rho}}\left(V \frac{\partial \rho}{\partial x}+\frac{\partial \rho}{\partial t}\right)+\frac{1}{A}\left[\frac{\partial A}{\partial t}+\frac{\partial(V A)}{\partial x}\right]+\frac{1}{\delta x} \frac{d \delta x}{d t}=0
$$

Expanding the term $\frac{\partial V A}{\partial x}$ and using $V=\frac{d x}{d t}$, the following equation results.

$$
\begin{equation*}
\frac{I}{\rho}\left(\frac{d x}{d t} \frac{\partial \rho}{\partial x}+\frac{\partial \rho}{\partial t}\right)+\frac{1}{A}\left(\frac{d x}{d t} \frac{\partial A}{\partial x}+\frac{\partial A}{\partial t}\right)+\frac{\partial V}{\partial t}+\frac{1}{\delta x} \frac{d \delta x}{d t}=0 \tag{A-1}
\end{equation*}
$$

Using the definition of the total derivative, that is $\frac{\partial \rho}{\partial t}+\frac{d x}{d t} \frac{\partial \rho}{\partial x}=$ $\frac{d p}{d t}$ for the first term and $\frac{\partial A}{\partial t}+\frac{d x}{d t} \frac{\partial A}{\partial x}=\frac{d A}{d t}$, for the second term of the equation $A-1$, the following equation results.

$$
\begin{equation*}
\frac{1}{\rho} \frac{d \rho}{d t}+\frac{1}{A} \frac{d A}{d t}+\frac{\partial V}{\partial t}+\frac{1}{\delta x} \frac{d \delta x}{d t}=0 \tag{A-2}
\end{equation*}
$$

The bulk compressibility modulus K is defined as

$$
\mathrm{K}=\frac{\mathrm{dP} / \mathrm{dt}}{\mathrm{~d} \mathrm{\rho} / \mathrm{d} \mathrm{~d} t}
$$

Using this definition, the first term of equation A-2 becomes

$$
\begin{equation*}
\frac{1}{\rho} \frac{d \rho}{d t}=\frac{1}{\mathrm{~K}} \frac{\mathrm{dP}}{\mathrm{dt}} \tag{A-3}
\end{equation*}
$$

Referring to Figure A.1, the second term of equation A-2 is determined.

$$
\begin{equation*}
\frac{1}{A} \frac{d A}{d t}=\frac{1}{\pi D^{2} / 4} \frac{d\left(\pi D \frac{D}{2} \xi_{2}\right)}{d t}=2\left(\frac{d \xi_{2}}{d t}\right) \tag{A-4}
\end{equation*}
$$

ξ_{2}, is the lateral strain for the pipe and defined as

$$
\begin{equation*}
\xi_{2}=\frac{1}{E}\left(\sigma_{2}-\mu \sigma_{1}\right) \tag{A-5}
\end{equation*}
$$

where E is the bulk modulus of elasticity; σ_{2} is the lateral stress; σ_{1} is the axial stress; and μ is the Poisson ratio of the pipe. The third term of equation A-2 may be expressed as

$$
\begin{equation*}
\frac{1}{\delta x} \frac{d \delta x}{d t}=\frac{1}{\delta x} \frac{d}{d t} \xi_{1} \delta x=\frac{d \xi_{1}}{d t} \tag{A-6}
\end{equation*}
$$

where ξ_{1} is the axial strain of the pipe and is defined as

$$
\begin{equation*}
\xi_{1}=\frac{1}{\mathrm{E}}\left(\sigma_{1}-\mu \sigma_{2}\right) \tag{A-7}
\end{equation*}
$$

Substituting definitions A-5 and A-7 into expressions A-4 and A-6, respectively, then substituting the resulting equations and equation A-3 into equation A-2 and rearranging, the following equation results:

$$
\begin{equation*}
\frac{1}{\bar{K}} \frac{d P}{d t}+\frac{1}{E}\left[(2-\mu) \frac{d_{\sigma_{2}}}{d t}+(1-2 \mu)\right] \frac{d_{\sigma_{1}}}{d t}+\frac{\partial V}{\partial x}=0 \tag{A-8}
\end{equation*}
$$

Referring to Figure A.2, the axial and lateral stresses are written as

$$
\begin{aligned}
& \sigma_{1}=\frac{F_{1}}{\pi D e} \text { and } \\
& \sigma_{2}=\frac{F_{2}}{2 e \delta x}
\end{aligned}
$$

respectively, where F_{1} is $\frac{\pi}{4} D^{2} P$ and F_{2} is $P D \$ x$. Substituting, for F_{1} and F_{2} into the above equations and taking their time derivative, the following relations result:

Figure A.1. Cross Sectional View of a Simple Pipe Showing the Lateral Expansion.

Figure A.2. Sectional View of a Simple Pipe.

$$
\begin{aligned}
& \frac{d \sigma_{1}}{d t}=\frac{D}{4 e} \frac{d P}{d t} \\
& \frac{d \sigma_{2}}{d t}=\frac{D}{2 e} \frac{d P}{d t}
\end{aligned}
$$

Substituting these relations into equation $A-8$, rearranging and collecting like terms, the following equation results:

$$
\begin{equation*}
\frac{\partial V}{\partial x}+\frac{1}{K} \frac{d P}{d t}\left[1+\frac{K D}{e E}\left(\frac{5}{4}-\mu\right)\right]=0 \tag{A-9}
\end{equation*}
$$

Letting $\left(\frac{5}{4}-\mu\right)$ be equal to C_{1}, which depends only on the type of support of the pipe, and by defining the acoustic velocity, a, as

and rearranging, equation A-9 can be written as

$$
\frac{\partial V}{\partial \mathrm{x}}+\frac{1}{\rho \mathrm{a}^{2}} \frac{\mathrm{dp}}{\mathrm{dt}}=0 .
$$

Using $V=\frac{\bar{Q}}{A}$ and writing the total derivative $\frac{d P}{d t}$ in terms of its partial derivatives, multiplying by A and rearranging, .the following equation is obtained:

$$
\frac{\partial Q}{\partial \mathrm{x}}+\frac{A}{\rho a^{2}} \frac{\partial \mathrm{P}}{\partial t}+V\left(\frac{A}{\rho a^{2}} \frac{\partial P}{\partial \mathrm{x}}-\frac{\partial A}{\partial \mathrm{x}}\right)=0
$$

The rate of change of pressure and area with respect to position is very small in comparison with the tine rate of change of pressure and position rate of change of flow. Neglecting these small terms, the following equation can be written:

$$
\frac{\partial Q}{\partial x}+\frac{A}{\rho a^{2}} \frac{\partial P}{\partial t}=0
$$

The time rate of change of ρ is very small and can be treated as a constant. Ehploying this constant, and using $A=\frac{P}{D g}$ the following equation results:

$$
\begin{equation*}
\frac{\partial Q}{\partial x}+\frac{g A}{a^{2}} \frac{\partial H}{\partial t}=0 \tag{A-10}
\end{equation*}
$$

Q and H in the above equation are the instantaneous value of the flow and pressure-head. They can be expressed in terms of an average component and a fluctuating component by

$$
\mathrm{Q}=\overline{\mathrm{Q}}+\mathrm{q}^{\prime} \text { and } \mathrm{H}=\overline{\mathrm{H}}+\mathrm{h}^{\prime} .
$$

Substituting these definitions into equation $A-10$, the following equation results:

$$
-\frac{\partial \overline{ }}{\partial x}+\frac{\partial G^{\prime}}{\partial x}+\frac{g A}{a^{2}} \frac{\partial H}{\partial t}+\frac{g A}{a^{2}} \frac{\partial h^{\prime}}{\partial t}=0
$$

The rate of change of the average values, " $\frac{\partial \bar{Q}}{\partial x}$ and $\frac{\partial \bar{H}}{\partial t}$ ', are small in comparison to the change in the fluctuating components. Neglecting these small terms, the following equation results,

$$
\begin{equation*}
\frac{\partial q^{\prime}}{\partial x}+\frac{g A}{a^{2}} \frac{\partial h^{\prime}}{\partial t}=0 \tag{A-11}
\end{equation*}
$$

which is the continuity equation for a slightly deformable horizontal pipe.

APPENDIX B

MOMENIUM EQUATION

In this Appendix, after the Streeter and Wylie [7], the momentum equation $2-3$ is applied to a slightly deformable horizontal pipe, and after neglecting smallterms, an approximation is obtained.

$$
\begin{equation*}
-\frac{\partial(P A)}{\partial X} \delta x-\tau_{0} \pi D \delta x=\rho \delta x\left(A+\frac{\partial A}{\partial x} \frac{\delta x}{2}\right) \frac{d V}{d t} \tag{2-3}
\end{equation*}
$$

Expanding the partial derivative, $\frac{\partial(P A)}{\partial x}$, and dividing the equation by δx, the following equation is obtained:

$$
A \frac{\partial P}{\partial x}+P \frac{\partial A}{\partial x}+\tau_{0} \pi D+\rho A \frac{d V}{d t}+\frac{\delta x}{2} \frac{\partial A}{\partial x} \frac{d V}{d t}=0
$$

The position rate of change of area is small in comparison to the other terms. Neglecting these small terms, the following equation is obtained:

$$
\begin{equation*}
A \frac{\partial P}{\partial x}+\tau_{0} \pi D+\rho A \frac{d V}{d t}=0 \tag{B-1}
\end{equation*}
$$

The shear stress τ_{0} at the wall of the pipe can be expressed as $\tau_{0}=\frac{\rho f V^{2}}{8}$ where f is the friction factor of the pipe. Substituting this expression into equation $B-1$ and dividing equation by $\rho g A$, the following equation is obtained:

$$
\frac{1}{g A} \frac{\partial P}{\partial x}+\frac{\mathrm{fV}^{2}}{2 g D}+\frac{1}{g} \frac{d V}{d t}=0
$$

Density changes very little compared with pressure and therefore is treated as a constant. Taking density into the differential and using $H=\frac{P}{F}$, the following equation is obtained:

$$
\frac{\partial H}{\partial \mathrm{x}}+\frac{\mathrm{fV}}{2 g \mathrm{~V}}+\frac{1}{\mathrm{~g}} \frac{\mathrm{dV}}{\mathrm{dt}}=0
$$

The time rate of change of area is small in comparison to the change in head or velocity, and can be treated as a constant. Using $V=\frac{Q}{A}$, the following equation is obtained:

$$
\begin{equation*}
\frac{\partial H}{\partial X}+\frac{f Q^{2}}{2 g D A^{2}}+\frac{1}{g A} \frac{d Q}{d t}=0 \tag{B-2}
\end{equation*}
$$

If the special case for laminar flow is desired, the friction factor f can be expressed as

$$
f=\frac{64}{\operatorname{Re}}=\frac{64 A \nu}{Q D}
$$

and by substituting this expression into the equation $\mathrm{B}-2$, the following monentum equation for laminar flow through a slightly deformable horizontal pipe results:

$$
\begin{equation*}
\frac{\partial H}{\partial x}+\frac{32 v Q}{g A D^{2}}+\frac{1}{g A} \frac{\partial Q}{\partial t}=0 \tag{B-3}
\end{equation*}
$$

The instantaneous values of head H , and flow Q , can be expressed in terms of an average component and a fluctuating component as

$$
H=\bar{H}+h^{\prime} \text { and } Q=\bar{Q}+q^{\prime} .
$$

Substituting these definitions into equations B-2 and B-3, the equation for laminar flow is

$$
\begin{equation*}
\frac{\partial \bar{H}}{\partial x}+\frac{\partial h^{\prime}}{\partial x}+\frac{32 \nu\left(\bar{Q}+q^{\prime}\right)}{g A D^{2}}+\frac{1}{g A}\left(\frac{\partial \bar{Q}}{\partial t}+\frac{\partial q^{\prime}}{\partial t}\right)=0 \tag{B-4}
\end{equation*}
$$

and the equation for turbulent flow is similarly

$$
\begin{equation*}
\frac{\partial \bar{H}}{\partial x}+\frac{\partial h^{\prime}}{\partial x}+\frac{f\left(\bar{Q}+q^{\prime}\right)^{2}}{2 \overline{g D A^{2}}}+\frac{1}{g A}\left(\frac{\partial \bar{Q}}{\partial t}+\frac{\partial q^{\prime}}{\partial t}\right)=0 . \tag{B-5}
\end{equation*}
$$

The time rate of change of average flow is small in comparison to the other terms and can be neglected. Assuming the values of the position rate of change of average heads to be $\frac{\partial \overline{\mathrm{H}}}{\partial \mathrm{x}}=-\frac{\mathrm{fQ}^{2}}{2 \mathrm{gDA}^{2}}$ for turbulent flow and $\frac{\partial \bar{H}}{\partial \mathrm{X}}=-\frac{32 \nu \bar{Q}}{g_{A D}}$ for laminar flow, equations $B-4$ and $B-5$
can be written in the form of B-6 and B-7 respectively.

$$
\begin{align*}
& \frac{\partial h^{\prime}}{\partial x}+\frac{32 v}{g A D^{2}} q^{\prime}+\frac{1}{g A} \frac{\partial q^{\prime}}{\partial t}=0 \tag{B-6}\\
& \frac{\partial h^{\prime}}{\partial x}+\frac{f \bar{Q}}{g D A^{2}} q^{\prime}+\frac{f q^{\prime 2}}{2 g D A^{2}}+\frac{1}{g A} \frac{\partial q^{\prime}}{\partial t}=0 \tag{B-7}
\end{align*}
$$

To have a linear differential equation, the term $\frac{\mathrm{fq}^{2}}{2 d \mathrm{DA}}$, must be linearized in equation $B-7$. By defining the friction term for turbulent flow as

$$
\begin{equation*}
R=\frac{f(}{g D A^{2}} \tag{B-8}
\end{equation*}
$$

and the friction term for laminar flow as

$$
\begin{equation*}
R=\frac{32 v}{g A D^{2}} \tag{B-9}
\end{equation*}
$$

both equations B-6 and B-7 can then be written in a linear form

$$
\begin{equation*}
\frac{\partial h^{\prime}}{\partial x}+\frac{1}{g A} \frac{\partial q^{\prime}}{\partial t}+R q^{\prime}=0 \tag{B-10}
\end{equation*}
$$

which is the momentum equation for flow through a slightly deformable horizontal pipe.

APPENDIX C

STEADY OSCILLATORY FLOW EQUATIONS

In "this Appendix, the momentum and continuity equations derived in Appendixes A and B for a slightly deformable horizontal pipe are used to find solutions for steady oscillatory flow after Streeter and Wylie [7].

$$
\begin{align*}
& -\frac{\partial G^{\prime}}{\partial x}+\frac{g A}{a^{2}} \frac{\partial h^{\prime}}{\partial t}=0 \tag{2-2}\\
& \frac{\partial h^{\prime}}{\partial x}+\frac{I}{g A} \frac{\partial q^{\prime}}{\partial t}+R q^{\prime}=0 \tag{2-4}
\end{align*}
$$

Taking partial derivatives of equation 2-2 and 2-4 with respect to the position x, and with respect to time t, the following equations are obtained:

$$
\begin{align*}
& \frac{\partial^{2} q^{\prime}}{\partial x^{2}}+\frac{g A}{a^{2}} \frac{\partial^{2} h^{\prime}}{\partial x \partial t}=0 \tag{C-1}\\
& \frac{\partial^{2} q^{\prime}}{\partial t \partial x}+\frac{g A}{a^{2}} \frac{\partial^{2} h^{\prime}}{\partial t^{2}}=0 \tag{C-2}\\
& \frac{\partial^{2} h^{\prime}}{\partial x^{2}}+\frac{1}{g A} \frac{\partial^{2} q^{\prime}}{\partial x \partial t}+R^{\frac{\partial q^{\prime}}{\partial x}}=0 \tag{C-3}\\
& \frac{\partial^{2} h^{\prime}}{\partial t \partial x}+\frac{1}{g A} \frac{\partial^{2} q^{\prime}}{\partial t^{2}}+R \frac{\partial q^{\prime}}{\partial t}=0 \tag{C-4}
\end{align*}
$$

Substituting equations 2-2 and C-2 into equation $C-3$ and rearranging; the following equation is obtained:

$$
\begin{equation*}
\frac{\partial^{2} h^{\prime}}{\partial x^{2}}=\frac{1}{a^{2}} \frac{\partial^{2} h^{\prime}}{\partial t^{2}}+\frac{g A R}{a^{2}} \frac{\partial h^{\prime}}{\partial t} \tag{C-5}
\end{equation*}
$$

Substituting equation $C-1$ into equation $C-4$, multiplying by $\frac{g A}{a^{2}}$, and rearranging, the following equation is obtained:

$$
\begin{equation*}
\frac{\partial^{2} q^{\prime}}{\partial x^{2}}=\frac{1}{a^{2}} \frac{\partial^{2} q^{\prime}}{\partial t^{2}}+\frac{g A R}{a^{2}} \frac{\partial q^{\prime}}{\partial t} \tag{c-6}
\end{equation*}
$$

which is identical in form with equation C-5. A separation of variables tecmique can be used to solve differential equation $\mathrm{C}-5$ or C-6, which assumes

$$
h^{\prime}=X(x) T(t)
$$

for equation $\mathrm{C}-5$, where X is a function of position only and T is a function of time only. Taking the first and second derivatives of this assumed solution with respect to t and with respect to x, the following equations are obtained:

$$
\begin{align*}
& \frac{\partial h^{\prime}}{\partial t}=x \frac{d T}{d t} \tag{C-8}\\
& \frac{\partial^{2} h^{\prime}}{\partial t^{2}}=x^{\mathrm{d}^{2} T} \tag{C-9}\\
& \frac{\partial t^{2}}{\partial x}=T \frac{d x}{d x} \tag{C-10}\\
& \frac{\partial^{2} h^{\prime}}{\partial x^{2}}=T \frac{d^{2} x}{d x^{2}} \tag{C-11}
\end{align*}
$$

Substituting equations $\mathrm{C}-8, \mathrm{C}-9$ and $\mathrm{C}-11$ into equation $\mathrm{C}-5$ and dividing the equation by $I X$, the following equation results:

$$
\begin{equation*}
\frac{1}{\bar{X}} \frac{d^{2} X}{d x^{2}}=\frac{1}{a^{2} T} \frac{d^{2} T}{d t^{2}}+\frac{g A R}{a^{2} T} \frac{d T}{d t}=\gamma^{2} \tag{C-12}
\end{equation*}
$$

Equation $\mathrm{C}-12$ is equated to a constant because each side of this equation can vary independently of the other side. The constant γ, is the propagation constant and is equal to ($\alpha+i \beta$) which will be defined later. To find this constant γ, the solution for T can be s restricted to the steady oscillatory case, by assuming a particular solution for T as a harmonic oscillation. The solution can then be expressed as

$$
\begin{equation*}
T=C e^{i \omega t} \tag{C-13}
\end{equation*}
$$

where ω is the angular frequency. Taking the first and second time
derivatives of this expression, the following equations are obtained:

$$
\begin{align*}
& \frac{d T}{d t}=C i \omega e^{i \omega t} \tag{C-14}\\
& \frac{d^{2} T}{d t^{2}}=-C \omega^{2} e^{i \omega t} \tag{C-15}
\end{align*}
$$

Substituting equations $C-14$ and $C-15$ into equation $C-12$ and solving for γ^{2}, the following equation is obtained:

$$
\gamma^{2}=\frac{A g \omega}{a^{2}}\left(-\frac{\omega}{g A}+i R\right)
$$

Referring to the Figure C.1, γ^{2}. can be expressed as follows:

$$
\gamma=\frac{g A}{a^{2}} \sqrt{\left(\frac{\omega}{g A}\right)^{2}+R^{2}} e^{i \theta_{1}}
$$

Taking the square root of this equation, the following equation is. obtained:

$$
\gamma=(\alpha+i \beta)=\sqrt{\frac{g A \omega}{a^{2}}}\left[\left(\frac{\omega}{g A}\right)^{2}+R^{2}\right]^{\frac{1}{4}} e^{i^{\frac{\theta_{2}}{2}}}
$$

Using the definition of exponential functions, $e^{\frac{i}{2}}$ can be defined as, $\operatorname{Cos}\left(\frac{\theta_{1}}{2}\right)+i \operatorname{Sin}\left(\frac{\theta_{1}}{2}\right)$, or by writing in terms of θ_{2}, Figure C.1,

$$
\mathrm{e}^{i \frac{\theta_{1}}{2}}=\operatorname{Cos}\left(\frac{\pi}{2}-\frac{\theta_{2}}{2}\right)+i \operatorname{Sin}\left(\frac{\pi}{2}-\frac{\theta_{2}}{2}\right)
$$

or

$$
\begin{equation*}
e^{i \frac{\theta_{1}}{2}}=\operatorname{Sin} \frac{\theta_{2}}{2}+i \operatorname{Cos} \frac{\theta_{2}}{2} . \tag{C-17}
\end{equation*}
$$

Referring to the Figure C.1, θ_{2} can be defined as follows:

$$
\begin{equation*}
0_{2}=\tan ^{-1}\left(\frac{R}{-\omega / A g}\right)=\tan ^{-1} g A R \tag{C-18}
\end{equation*}
$$

Substituting equation C-18 into equation G-17 and then the result obtained equation into equation $\mathrm{C}-16$, separating the real and the imaginary parts of the resulting equation, the value of α and β can be defined as

$$
\begin{align*}
& \alpha=\sqrt{\frac{\omega g A}{a^{2}}}\left[\left(\frac{\omega}{g A}\right)^{2}+R^{2}\right]^{\frac{2}{4}} \operatorname{Sin}\left(\frac{1}{2} \tan ^{-1} \frac{R g A}{\omega}\right) \tag{C-19}\\
& \beta=\sqrt{\frac{\omega g A}{a^{2}}}\left[\frac{\left(\frac{\omega}{g A}\right)^{2}}{}+R^{2}\right]^{\frac{1}{4}} \cos \left(\frac{7 \tan ^{-1}}{} \frac{R g A}{\omega}\right) \tag{C-20}
\end{align*}
$$

Figure C.1. Axis of Corrpiex Variables.
where α and β are always real, positive numbers. To find the solutions for the oscillatory head and flow, the left side of equation C-12 can be developed as

$$
\frac{\mathrm{d}^{2} \mathrm{X}}{\mathrm{dx}}-\mathrm{X} \mathrm{y}^{2}=0
$$

for which the solution for X, is

$$
\begin{equation*}
X=C_{1}+e^{\gamma x}+C_{2} e^{-\gamma x} \tag{C-21}
\end{equation*}
$$

where C_{1} and C_{2} are the constants of integration. Substituting equations $\mathrm{C}-21$ and $\mathrm{C}-13$ into equation $\mathrm{C}-7$ and combining the constants, the following equation is obtained:

$$
\begin{equation*}
h^{\prime}=e^{j \omega t}\left(C_{1} e^{\gamma x}+C_{2} e^{-\gamma x}\right) \tag{C-22}
\end{equation*}
$$

Taking the position derivative of the above equation and substituting into equations $2-2$ and $2-4$, then integrating and solving for q^{\prime}, the following equation is obtained:

$$
\begin{equation*}
q^{\prime}=\frac{g A \omega}{i a^{2} \gamma} e^{i \omega t}\left(C_{i} e^{\gamma x}-C_{2} e^{-\gamma x}\right) \tag{C-23}
\end{equation*}
$$

The fluctuating head, h^{\prime}, and the fluctuating flow, q ', are functions of t and x, and can be expressed as

$$
h^{\prime}(x, t)=H(x) e^{i \omega t}
$$

and

$$
q^{\prime}(x, t)=Q(x) e^{i \omega t}
$$

Substituting these expressions into equations $\mathrm{C}-22$ and $\mathrm{C}-23$, the following equations are obtained:

$$
\begin{align*}
& H(x)=C_{2} e^{\gamma x}+C_{2} e^{-\gamma x} \tag{C-24}\\
& Q(x)=\frac{g A \omega}{i a^{2} \gamma}\left(C_{1} e^{\gamma x}-C_{2} e^{-\gamma x}\right) \tag{C-25}
\end{align*}
$$

The ratio of the fluctuating head, h^{\prime}, over the fluctuating flow, q^{\prime}, is defined to be hydraulic inpedance, $Z(x)$,

$$
\begin{equation*}
Z(x)=\frac{h^{\prime}}{q^{\prime}}=-\frac{\gamma a^{2}}{1 g A_{\omega}} \frac{C_{1} e^{\gamma x}+C_{2} e^{-\gamma x}}{C_{1} e^{\gamma x}-C_{2} e^{-\gamma x}} \tag{C-26}
\end{equation*}
$$

where the term $\frac{\gamma a^{2}}{i g A \omega}$, depends. upon the physical properties of the pipe and is defined to be characteristic impedance, Zc.

$$
\begin{equation*}
Z c=\frac{\gamma a^{2}}{i g A \omega}=\frac{a^{2}}{g A \omega}(\beta-i \alpha) \tag{C-27}
\end{equation*}
$$

Using definition $\mathrm{C}-27$ in equation $\mathrm{C}-25$, the following equation results.

$$
\begin{equation*}
Q(x)^{-}=-\frac{1}{Z C}\left(C_{1} e^{\gamma x}-C_{2} e^{-\gamma x}\right) \tag{C-28}
\end{equation*}
$$

Equations C-24 and C-28 are applied to a segnent of pipe shown in Figure 2.3 in order to evaluate the integration constants. The boundary conditions at $\mathrm{X}=0$, are

$$
H(0) e^{i \omega t}=H_{R} \text { and } Q(0) e^{i \omega t}=Q_{R}
$$

where subscripts R stands for receiving end of the pipe and subscript S refers to the sending end. Applying these boundary conditions to equations $\mathrm{C}-24$ and $\mathrm{C}-28$, the constants can be determined as follows:

$$
\begin{aligned}
& \mathrm{C}_{1}=\frac{1}{2}\left(\mathrm{H}_{\mathrm{R}}-2 c Q_{R}\right) \\
& \mathrm{C}_{2}=\frac{1}{2}\left(\mathrm{H}_{\mathrm{R}}+2 c Q_{R}\right)
\end{aligned}
$$

Substituting the values of the above constants into the equations C-24 and $\mathrm{C}-28$ and rearranging, the following equations are obtained:

$$
\begin{align*}
& H(x)=H_{R} \operatorname{Cosh} \gamma x-Q_{R} Z C \operatorname{Sinh} \gamma x \tag{C-29}\\
& Q(x)=-\frac{H_{R^{2}}}{Z c} \operatorname{Sinh} \gamma x+Q_{R} \operatorname{Cosh} \gamma x \tag{C-30}
\end{align*}
$$

Using the other boundary conditions at $\mathrm{x}=\mathrm{L}$, where

$$
H(L) e^{i \omega t}=H_{S} \text { and } Q(L) e^{i \omega t}=Q_{S},
$$

then the following equations are obtained for Figure 2.3.

$$
\begin{align*}
& \mathrm{H}_{\mathrm{S}}=\mathrm{H}_{\mathrm{R}} \operatorname{Cosh} \gamma \mathrm{~L}-\mathrm{Q}_{\mathrm{R}} \mathrm{Zc} \operatorname{Sinh} \gamma \mathrm{~L} \tag{C-31}\\
& \mathrm{Q}_{\mathrm{S}}=-\frac{\mathrm{H}_{\mathrm{R}} \operatorname{Sinh} \gamma \mathrm{~L}}{\mathrm{Zc}}+\mathrm{Q}_{\mathrm{R}} \operatorname{Cosh} \gamma \mathrm{~L} \tag{C-32}
\end{align*}
$$

If the solutions for H_{R} and Q_{R} are desired, then equations $C-31$ and C-32 can be combined and rearranged to give the following equations:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{R}}=\mathrm{H}_{\mathrm{S}} \operatorname{Cosh} \gamma \mathrm{~L}+\mathrm{ZcQ}_{S} \operatorname{Sinh} \gamma \mathrm{~L} \tag{C-33}
\end{equation*}
$$

$Q_{R}=\frac{F_{S}}{Z c} \operatorname{Sinh} \gamma L+Q_{S} \operatorname{Cosh} \gamma L$

APPENDIX D

MATRIX GENERATION

In this Appendix, equations 3-10 and 3-11, obtained in Chapter - III, are applied to each non-boundary node of a•piping network to derive the head-flow solutions for this piping network in the form of simultaneous equations. This solution is then presented in a matrix representation for-general piping networks. The piping network adopted for this derivation is shown in Figure D.1. Two flow excitation sources are applied to the node numbers 1 and 7 , and two head excitation sources are applied to the node numbers 3 and 5 of this piping network.

Simultaneous Equations

Equations 3-10 and 3-11 are applied to the non-boundary node numbers 1, 2, 4, 6 and 7 of the piping network shown in Figure D. 1 and after rearranging, the following ten simultaneous equations are obtained:

$$
\begin{align*}
& {\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{13}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{14}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{1}-\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{13}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{14}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{1^{+}}} \\
& \left(\mathrm{X}_{\mathrm{R}}\right)_{12}\left(\mathrm{H}_{\mathrm{R}}\right)_{2}-\left(\mathrm{X}_{\mathrm{I}}\right)_{12}\left(\mathrm{HI}_{\mathrm{I}}\right)_{2}+\left(\mathrm{X}_{\mathrm{R}}\right) 14\left(\mathrm{H}_{\mathrm{R}}\right) 4_{4}-(\overline{\mathrm{XI}}) 14\left(\mathrm{HI}_{\mathrm{I}}\right)_{4}= \\
& -\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{13}\left(\mathrm{H}_{\mathrm{R}}\right)_{3}-\left(\mathrm{X}_{\mathrm{I}}\right)_{13}\left(\mathrm{H}_{\mathrm{I}}\right)_{3}-\left(\mathrm{Q}_{\mathrm{R}}\right)_{\mathrm{I}}\right] \tag{D-1}\\
& {\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{13}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{14}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{1}+\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{13}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{14}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{1}+} \\
& \left(\mathrm{X}_{\mathrm{I}}\right)_{12}\left(\mathrm{H}_{\mathrm{R}}\right)_{2}+\left(\mathrm{X}_{\mathrm{R}}\right)_{12}\left(\mathrm{H}_{\mathrm{I}}\right)_{2}+\left(\mathrm{X}_{\mathrm{I}}\right)_{14}\left(\mathrm{H}_{\mathrm{R}}\right)_{4}+\left(\mathrm{X}_{\mathrm{R}}\right)_{14}\left(\mathrm{H}_{\mathrm{I}}\right)_{4}= \\
& -\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{13}\left(\mathrm{H}_{\mathrm{I}}\right)_{3}+\left(\mathrm{X}_{\mathrm{I}}\right)_{13}\left(\mathrm{H}_{\mathrm{R}}\right)_{3}+\left(\mathrm{Q}_{\mathrm{I}}\right)_{1}\right] \tag{D-2}
\end{align*}
$$

Figure D.I. Schematic Diagram of a Piping Iletwork used to obtain a General Matrix Solution to Pining Networks.

$$
\left(\mathrm{X}_{\mathrm{I}}\right)_{14}\left(\mathrm{H}_{\mathrm{R}}\right)_{1}+\left(\mathrm{X}_{\mathrm{R}}\right)_{14}\left(\mathrm{H}_{\mathrm{I}}\right)_{1}+\left(\mathrm{X}_{\mathrm{I}}\right)_{24}\left(\mathrm{H}_{\mathrm{R}}\right)_{2}+\left(\mathrm{X}_{\mathrm{R}}\right)_{24}\left(\mathrm{H}_{\mathrm{I}}\right)_{2}+
$$

$$
\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{14}^{-}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{24}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{46}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{47}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{4}+\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{14}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{24}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{46}+\right.
$$

$$
\left.\left(\mathrm{Y}_{\mathrm{R}}\right)_{47}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{4}+\left(\mathrm{X}_{\mathrm{I}}\right)_{46}\left(\mathrm{H}_{\mathrm{R}}\right)_{6}+\left(\mathrm{X}_{\mathrm{R}}\right)_{46}\left(\mathrm{H}_{\mathrm{I}}\right)_{6}+\left(\mathrm{X}_{\mathrm{I}}\right)_{47}\left(\mathrm{H}_{\mathrm{R}}\right)_{7}+
$$

$$
\begin{equation*}
\left(\mathrm{X}_{\mathrm{I}}\right)_{47}\left(\mathrm{H}_{\mathrm{I}}\right)_{7}=0 \tag{D-6}
\end{equation*}
$$

$$
\left(\mathrm{X}_{\mathrm{R}}\right)_{46}\left(\mathrm{H}_{\mathrm{R}}\right)_{4}-\left(\mathrm{X}_{\mathrm{I}}\right)_{46}\left(\mathrm{H}_{\mathrm{I}}\right)_{4}+\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{36}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{46}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{6}-
$$

$$
\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{36}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{46}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{6}+\left(\mathrm{X}_{\mathrm{R}}\right)_{67}\left(\mathrm{H}_{\mathrm{R}}\right)_{7}-\left(\mathrm{X}_{\mathrm{I}}\right)_{67}\left(\mathrm{H}_{\mathrm{I}}\right)_{7}=
$$

$$
\begin{equation*}
-\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{36}\left(\mathrm{H}_{\mathrm{R}}\right)_{3}-\left(\mathrm{X}_{\mathrm{I}}\right)_{36}\left(\mathrm{H}_{\mathrm{I}} \cdot 3\right]\right. \tag{D-7}
\end{equation*}
$$

$$
\left.\left(\mathrm{X}_{\mathrm{I}}\right)_{46}\left(\mathrm{H}_{\mathrm{R}}\right)_{4}+\left(\mathrm{X}_{\mathrm{R}}\right)_{46}\left(\mathrm{H}_{\mathrm{I}}\right)_{4}+\left[\mathrm{Y}_{\mathrm{I}}\right)_{36}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{46}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{6}+
$$

$$
\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{36}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{46}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{6}+\left(\mathrm{X}_{\mathrm{I}}\right)_{67}\left(\mathrm{H}_{\mathrm{R}}\right)_{7}+\left(\mathrm{X}_{\mathrm{R}}\right)_{67}\left(\mathrm{H}_{\mathrm{I}}\right)_{7}=
$$

$$
\begin{equation*}
-\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{36}\left(\mathrm{H}_{\mathrm{I}}\right)_{3}+\left(\mathrm{X}_{\mathrm{I}}\right)_{36}\left(\mathrm{H}_{\mathrm{R}}\right)_{3}\right] \tag{D-8}
\end{equation*}
$$

$$
\left(\mathrm{X}_{\mathrm{R}}\right)_{47}\left(\mathrm{H}_{\mathrm{R}}\right)_{4}-\left(\mathrm{X}_{\mathrm{I}}\right)_{47}\left(\mathrm{H}_{\mathrm{I}}\right)_{4}+\left(\mathrm{X}_{\mathrm{R}}\right)_{67}\left(\mathrm{H}_{\mathrm{R}}\right)_{6}-\left(\mathrm{X}_{\mathrm{I}}\right)_{67}\left(\mathrm{H}_{\mathrm{I}}\right)_{6}+
$$

$$
\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{47}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{57}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{7}-\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{47}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{57}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{7}=
$$

$$
\begin{equation*}
-\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{57}\left\langle\mathrm{H}_{\mathrm{R}}\right)_{5}-\left(\mathrm{X}_{\mathrm{I}}\right)_{57}\left(\mathrm{H}_{\mathrm{I}}\right)_{5}-\left(\mathrm{Q}_{\mathrm{R}}\right)_{7}\right] \tag{D-9}
\end{equation*}
$$

$$
\begin{align*}
& \left(\mathrm{X}_{\mathrm{R}}\right)_{12}\left(\mathrm{H}_{\mathrm{R}}\right)_{1}-\left(\mathrm{X}_{\mathrm{I}}\right)_{12}\left(\mathrm{H}_{\mathrm{I}}\right)_{1}+\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{24}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{25}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{2-} \\
& {\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{24}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{25}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{2}+\left(\mathrm{X}_{\mathrm{R}}\right)_{24}\left(\mathrm{H}_{\mathrm{R}}\right)_{4}-\left(\mathrm{X}_{\mathrm{I}}\right)_{24}\left(\mathrm{H}_{\mathrm{I}}\right)_{4}=} \\
& -\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{25}\left(\mathrm{H}_{\mathrm{R}}\right)_{5}-\left(\mathrm{X}_{\mathrm{I}}\right)_{25}\left(\mathrm{H}_{\mathrm{I}}\right)_{5}\right] \tag{D-3}\\
& \left(\mathrm{X}_{\mathrm{I}}\right)_{12}\left(\mathrm{H}_{\mathrm{R}}\right)_{1}+\left(\mathrm{X}_{\mathrm{R}}\right)_{12}\left(\mathrm{H}_{\mathrm{I}}\right)_{1}+\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{24}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{25}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{2}^{+} \\
& {\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{12}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{24}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{25}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{2}+\left(\mathrm{X}_{\mathrm{I}}\right)_{24}\left(\mathrm{H}_{\mathrm{R}}\right)_{4}+\left(\mathrm{X}_{\mathrm{R}}\right)_{24}\left(\mathrm{H}_{\mathrm{I}}\right)_{4}=} \\
& -\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{25}\left(\mathrm{H}_{\mathrm{I}}\right)_{5}+\left(\mathrm{X}_{\mathrm{I}}\right)_{25}\left(\mathrm{H}_{\mathrm{R}}\right)_{5}\right] \tag{D-4}\\
& \left(\mathrm{X}_{\mathrm{R}}\right)_{14}\left(\mathrm{H}_{\mathrm{R}}\right)_{1}^{-\left(\mathrm{X}_{\mathrm{I}}\right)_{14}\left(\mathrm{H}_{\mathrm{I}}\right)_{1}+\left(\mathrm{X}_{\mathrm{R}}\right)_{24}\left(\mathrm{H}_{\mathrm{R}}\right)_{2}-\left(\mathrm{X}_{\mathrm{I}}\right)_{24}\left(\mathrm{H}_{\mathrm{I}}\right)_{2}+} \\
& {\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{14}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{24}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{46}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{47}\right]\left(\mathrm{H}_{\mathrm{R}}\right)_{4}-\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{14}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{24}+\right.}
\end{align*}
$$

$$
\begin{align*}
& \left(\mathrm{X}_{\mathrm{I}}\right)_{47}\left(\mathrm{H}_{\mathrm{I}}\right)_{7}=0 \tag{D-5}
\end{align*}
$$

$$
\begin{align*}
& \left(\mathrm{X}_{\mathrm{I}}\right)_{47}\left(\mathrm{H}_{\mathrm{R}}\right)_{4}+\left(\mathrm{X}_{\mathrm{R}}\right)_{47}\left(\mathrm{H}_{\mathrm{I}}\right)_{4}+\left(\mathrm{X}_{\mathrm{I}}\right)_{67}\left(\mathrm{H}_{\mathrm{R}}\right)_{6}+\left(\mathrm{X}_{\mathrm{R}}\right)_{67}\left(\mathrm{H}_{\mathrm{I}}\right)_{6}+ \\
& {\left[\left(\mathrm{Y}_{\mathrm{I}}\right)_{47}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{57}+\left(\mathrm{Y}_{\mathrm{I}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{R}}\right)+\left[\left(\mathrm{Y}_{\mathrm{R}}\right)_{47}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{57}+\left(\mathrm{Y}_{\mathrm{R}}\right)_{67}\right]\left(\mathrm{H}_{\mathrm{I}}\right)_{7}=} \\
& -\left[\left(\mathrm{X}_{\mathrm{R}}\right)_{57}\left(\mathrm{H}_{\mathrm{I}}\right)_{5}+\left(\mathrm{X}_{\mathrm{I}}\right)_{57}\left(\mathrm{H}_{\mathrm{R}}\right)_{5}-\left(\mathrm{Q}_{\mathrm{I}}\right)_{7}\right] \tag{D-10}
\end{align*}
$$

Matrix Formation

The ten simultaneous equations, $D-1$ to $D-10$, indicated in the preceding section, are written in matrix form as shown in Figure D.2. By inspecting this matrix, a general method can be deduced for the construction of a particular matrix for any piping network. These equations are shown in Chapter III.

APPFNDIX E

LISTING OF COMPUTER PROGRAM

10*RUN *06; /10804/0.1"05"
20 C
30 C
40 C
50 C
60 C
70 C
80
90
100
110
120
130
140
150
160
170
180
190
200
$210 C$
2206
230 C
240 C
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
this program calculates the head and flon AMPLITUDES ANU THEIR PHASE ANGLES WITH THE FIRST entered exgiting soukce at any vesired location In a large steady oscillatory network cF piping.

REAL PPX(501)/501*0.1,2TX(501)/501*0.1,P(20)/20*0.1
REAL ZUX(501)/501*0.1,XI (20,20)/400*0.1.UGUS(20.20)

- REAE TET (20)/20*0.1.YI $(20,20) / 400 * 0.1 . P 1(20) / 20 * 0.1$

REAL UFI $(20,20) / 400 * 0.1$, UR $(20) / 20 * 0.1, G I(20) / 20 * 0.1$
REAL UFR $(20,20) / 400 * 0.1$,HH(40)/40*0.1.PR(20)/20*0.1
REAL XR(20,20)/400*0.1,YR(20,20)/400*0.1,CC1 $(20,20)$
REAL AF $(20,20) / 400 * 0.1, G A(20,20) / 400 * 0.1, C C 2(20,20)$
KEAL UF $(20,20) / 400 * 0.1, \operatorname{KP}(20,20) / 400 * 0.1, C(3(20,20)$
REAL ZET $(20,20) / 400 * 0.1$. ©AA $(20,20) / 400 * 0 . /, 5 C R(40)$
REAL + AA $(40,41) / 1640 * 0.1$, ,U6X(501)/501*0.1.CC4(20,20)
REAL L $(20,20) / 400 * 0 . /$ R $(20,20) / 400 * 0.1$
DIMENSION NP $(20,20) / 400 * 0 \%$, U甘AR $(20,20) / 400 * 0.1$
LOGICAL $\operatorname{HEAD}(20) / 20 *$.F./.CONN $(20,20) / 400 *$.F./
reads and prints the input data, and makej some pre-calculations. (upto line no. 1000)

READ(5,470)AMU,RHO,GG
WRITE(6,760) AMU,RHO,GO
ANU $=32.174 * A M U / R H O$
$E P S=1 \cdot E-15$
$P Y=3.1415927$
READ (5,480)N,NCH,KLM
WRITE(6,770)N,NCH,KLM
IF (NCH.LT.L) GO TO 30
UO 20 I=1,NCH
READ $(5,480) \mathrm{J}$
WRITE(6,670)J
$20 \operatorname{HEAD}(J)=. \mathrm{T}^{\circ}$
30 READ 15,480)NFX,NSP
WRITE(6,78U) NFX,NSP
NREF $=-1$
IF(NFX.LE.O) GO TO 70
DO 60 I $=1$ DiNFX
READ (5,490) J.P(J)
HEAD $(J)=. T$:
IF(I.GT.I) GO TO $40 \ldots$
NREF=」
$K D=5$
PR(J) $=2(J)$
GO TO 50
40 READ (5,500)TET(J)
$P R(J)=P(J) * \operatorname{CoS}(T E T(J))$
PI(J) $=$ P(J)*SIN(TET(J))
50 WRITE(6,790)J,P(J),TET(J)
60 CUNT INUE

```
540 70-NFX=OWFX+NCH
        IF(NSP.LE.O) GO TO 110
        DO 100 I=1.NSP
        IF(NREF.GT.O) GO TO 80
        READ(5,510)J,W
        NREF=J
        RAD=0.
        KD=0
        GO TO 90
    80 REAO(5,520)J,G,RAU
    90 UR(J)=U*COS(RAL)
        UI(J)=U*SIN(RAD)
        WRITE(0.800) J.W.RAD
    100 CONTINUE
        WRITE(0.600)
110 MYT=0
    NO 140 MLK=1,KLM
    READ(5,530)I,J,L(I,J),DDUD,A,AF(I,J),NP(I,J).VOM
    WRITE(b,B10)I,J,L(I,J),DODD,A,AF(I,J),NP(I,J),COM
    UBAR(I,J)=DOM
    CONN (I,J)=.T.
    CONN(J,I)=CONN(I,J)
    L(J,I)=L(I,J)
    NP(J,I)=NP(I,N)
    UGAR(J,I)=GBAR(I,J)
    U=OUOU/12.
    UGUS(I,J)=\operatorname{UBAR}(I,J)+20.
    UGUS(J,I)=UGUS(I,J)
    GU=UGUS(I, J)
    RP(I,J)=16./(PY*GG*O**4)
    RP(J,I)=RP(I,J)
    AF(J,I)=AF(I,N)
    RE=4.*UG/(PY*U*ANU)
    IF(RE.GT.2200.) GO TO 120
    R(I,J)=8.*RP(I,J)*ANU
    GO TO 130
    120 R(I,J)=RP(I.J)*AF(I,J)*UW/(PY*0)
    130 GA(I,J)=PY*GG*U*C/4.
        GAA(I,J)=GA(I,J)/(A*A)
        GA(J,I)=GA(I,J)
        GAA(J,I)=GAA(I,J)
        R(J,I)=R(I,J)
        MYT=MYT*NP(I,J)
    140 CONTINUE
        NRITE(0.600)
        READ(5,540)LLLL,OMG,DOMG
        WRITE(0.320)LLLLL,OMG,NOMG
        IF(KU.LT.2) GO TO 150
        WRITE(0,680)NREF
        GO TU 160
    1040 150 WRITE(6.690)NNEF
    1050 160 UIV=REAL(KLM)
    1000C
```

1070 C	THIS DO-LOCP "460", MAKES COMPLETE CALCULATION
1080 C	AND PRINTS THE RESULTS FOR EACH FKEQUENCY.
10906	
1100	UO 460 MOG=1, LLLL
1110	$H U M=0$.
1120	$I C C=0$
1130	ICONT $=0$
1140	IF(MYT.GT•U) GO TO 170
1150	WRITE(6,70J) OMG
1160	GU TO 180
1170170	WRITE(6.710) OMG
1180	WRITE(0.720)
11900	
12000	THIS DO-LOOP "190", CACCULATES THE REAL ANE THE
12100	IMAGINARY PARTS OF X. AND Y FOR THE LINE SEGMENTS IA
1220 C	THE NETWORK.
1230 C	
1240180	DO $1+90 \mathrm{I}=2$, iv
1250	DO 170 J=1, I-1
1260	IF(.NOT.CONN(I,J) GO TO 190
1270	$A L=L(I ; J)$
1280	$A R=R(I ; J)$
1290	$A G A=G A(I, J)$
1300	$A G E=G A A(I, J)$
1310	CALL X(AL,AR,AGA,AGB, UMG, CI, C2, C3, C4, C5,C6,ZCR, ZCI)
1320	CC1(1,J)=C1 $\quad: \quad$ (1)
1330	CC2 $(I, J)=C 2$
1340	CC3 $(1, J)=C 3$
1350	CC4 (1, 1$)=(4$
1300	CCl ${ }^{\text {(J-I }}$) $=$ Cl
1370	CC2 (J,I) $=$ C2
1380	CC3(J,I) = C3
1390	CC4 (J, I) $=$ C4
1400	UENOM $=\left(Z C R^{* *} 2 * 2 C I * * 2\right) *(C 1 * * 2 * C 2 * * 2) ~$
1410	XR(I, J) $=(2 C R * C 1-2 C I * C 2) /$ UENOM
1420	XI (I, J) $=(Z C R *(2+2 C 1 * C 1) /(-$ UENUM $)$
1430	$Y R(1, J)=(Z C I * C 6-Z C R * C 5) / L E N O M$
1440	$Y I(I, J)=(Z C I * C 5 * Z C R * C O) / D E N O M$
1450	XR(J,I) $=\times R(I, J)$
1460	$X I(J, I)=X I(I, J)$
1470	YR(J,I) $=Y R(I, J)$
1480	YI (J,I) $=$ Y I (I, J)
1490190	CONTİVU
15000	
15106	THIS DÜLUCP "24U" AND VU-LOOP "250" USE THE
15200	RESULTING EGUATIONS FKOM Chapter III ANO dUILL THE
15300	AUGMENTED MATRIX.
15400	
1550	$M=0$
1560	DO $240 \quad I=1, N$
1570	IF(HEAD(I)) GO TO 240
1580	$M=M+2$ -
1590	$S \cup M R=0$.

```
1600 SUMI =0.
1010 - MM=0
1020 . HH(M)=-UI(!)
1030 HH(M-1)=-UR(I)
1640 DO 230 J=1,N
1650 IF(I.E(..J) MMM=MM+2
1660 IF(I.EW.J) GO TO 230
1670 IF(HEAD(J)) GO TO 200
1680 MM=MM+2
1690 AA (M,MM) =XR(I,J)
1700. AA(M-1,MM-1)=XR(I,J)
1710 AA(M,MM-1)=XI(1,J)
1720 AA(M-1,MM)=-XI(I,J)
* }1730200\mathrm{ IF(.NUT.CONN(I.J)) GO TO 210
1740 SUMR=SUMR*YR(I,J)
1750 SUMI=SUMI +YI(I,J)
1760 210 [F(HEAD(J).AND.CONN(I,J)) GO TO 220
1770 GO TO 230
1780 220 HH(M)=HH(M)*(XR(I,J)*PI (J)*XI(I,J)*PR(J))
1790--HK(M-I)=HH(M-I)+(XR(I,J)*PR(J)-XI(I,J)*PI(J))
1800 230 CONTINUE
1810 AA (M,M) = SUMR
1820 AA (M-1,M-1) =SUMR
1830 AA(M-1,M)=-SUMI
1840 AA(M,M-1)=SUMI
1850 240 CONTINUE
1800 NN=2*(.Y-NFX)
1870 NNN=NN*1
1880 DO 250 I=1,NN
1890 AA(I,NINN)=-HH(I)
1900 250 CONTINUE
1910 CALL MTINV(AA,NN,NNN,40.SCR)
1920C
1930C AFTER MATRIX ARE SOLVED, THE DO-LOCP "260"
1940C Places the results into their locaticns.
1950C
1960 M=0
1970 DO 260 I=1,N
1980 IF(HEAD(I)) GO TO 260
1990- M=M+2
2000 PR(I)=AA(M-1,NNN)
2010 . PI(I)=AA(M,NNN)
2020 260 CONTINuE
2030C
2040C DO-LOOP "300" CALCULATES THE HEAC AND FLOW
2050C AMPLITUDES AND THEIR PHASE AIGLES FOR EACH NODE.
2060C
2070 DO 300 I=L,N
2080 IF(ICC.LE.0) GO TO 280
2090 P(I)=SORT(PR(I)**2*PI(I)**2)
2100 IF(ABS(PR(I)).LE.EPS) 60 TO 270
2110- TET(I)=ATAN(PI(I)/PR(I))
2120 IF(PR(I).LT.O..ANU.PITI).LT.U.) TET(I)=TET(I)-PY
```

	2130	IF(PR(I).LT•O••ANU.PI(I).GT•O.) TET(I) $=$ TET(I)+PY
	2140	GO TO 280
-	2150270	IF(PI(I).GT.0.) TET(I) $=P Y / 2$.
	2100	IF(PI(I).LT•U.) TET(I) $=-0.5 * 3 Y$
	2170280	DO $300 \mathrm{~J}=1 . \mathrm{N}$
	2180	IF (.NOT CONN(I.J)) GO TO 300
	2190	$A R=P R(J) * X R(I * J)+P R(I) * Y K(I, J)$
	2200	$A I=P I(I) * Y R(I, J)+P R(I) * Y I(I, J)$
	2210	UFR(I:J) $=$ PI $(J) * X I(I, J)+P I(I) * Y I(I, J)-A R$
	2220	UFI. $I, J)=-X R(I, J) * P I(J)-X I(I, J) * P R(J)-A I$
	2230	UF(I, J) $=$ SURT (UFR (I, J)**2+UFI (I, J)**2)
	2240	IF (ICC.LE.J) GO TO 300
	2250	IF (ABS(UFR(I.J)) LE.EPS) GO TO 290
	2260	ZET $(1, J)=A T A N(G F I(I, J) / G F R(I, J))$
	2270	DOM= ZET (I, J)
	2280	IF(UFR (I, J).LT•O..AND.UFI (I.J).LT.O.) DCM=DCM-PY
	2290	$I F(U F R(I, J) \cdot L T \cdot O \cdot \bullet A N D . Q F I(I, J) \cdot G T \cdot O) D C M=.U O M+P Y$
	2300	ZET (I, J) = UOM
	2310 ...	- 0 TO 300
	2320290	IF(UFI(I, J).UT•O.) ZET(I, J) =PY/2.
	2330	
	2340300	CONTINUE
	2350	IF(ICC.LE.U) GC TO 330
	23600	
	23700	DO-LOOP "320" PRINTS THE TABULATED RESULTS FOR
	2380 C	THE NETWORK AT ONE FKEQUENCY.
	2390 C	
\cdots	2400	$00320 \quad I=1, N$
	2410	$N J=0$
	2420	DO $320 \mathrm{~J}=1, \mathrm{~N}$
	2430	
	2440	IF (NJ.GT.O) GU TO 320
	2450	WRITE (0, 730) i, P(I),TET(I), J,UF(I, J), ZET (I, J)
	2460	$N J=N J+1$
	2470	GU TO 320
	2480310	WRITE (6,74J) J, UF (I, J), ZET (I, J)
	2490320	CONTIIUUE
	2500	WRITE (0.550)
	2510330	$N C H=0$
	2520 C	
	25300	UO-LOOP "4ム0"
	25400	CALCULATES ThE FLOW AMPLITHUES AT Tite desineds
	25500	LOCATIUNS IN THE NETWURK INORUER TO FIND VEW
	2560 C	ABSOLUTE FLUWS, IF ICC=U , OR
	2570 C	CALCULATES THE F[OW AND HEAD AMPLITUDES, THEIA
	25800	PHASE ANGLES, ANO PRINTS THE RESULTS ON THE LINE
	2590 C	SEGMENTS, IF.ICC > 0 .
	2600 C	
	2610	SCOR $=0$.
	2020	UO $4 \div 0 \mathrm{~J}=2 \mathrm{~N}$
	2630	UO 440 I $=1, \mathrm{~J}-1$
	2640	
-	2650	IF (AF (I.J).LE.U..AND.ICC.LE.U) GO TO 4.0

```
2060 - IF(NP(I,J).LE.O) GU TO 390
2670 AD=REAL(NP(d,J)+1)
2680. DL=L(I,J)/AD
2690 AL=0.
2700 MR=NP(I,J)+2
2710 UO 350 NNP=1,MR
2720 AR=R(I,J)
2730 AGA=GA(I,J)
2740 AGO=GAA(I,J)
2750 O=OMG
2760 CALL X(AL,AR,AGA,AGB,O,C1,C2,C3,C4,DM1,DM2,DN3,DIA4)
2770 CLI=CC1(I,J)
.2780 C12=CC2(I.J)
2790 C13=CC3(I,J)
2800 C14=CC4(I,J)
2810 P1=PR(J)
2820 P2=PI(J)
2830 P3=P*R(I)
2840.....--P4=PI(I)
2850 IF(ICC.LE.O) GO TO 340
2860 CALL YYYY(P1,P2,P3,P4,C1,C2,C3,C4,C11,C12,C13,C14,
28706 DM3,DM4,P5,25,5)
2880C
2890 PPX(NNP) =P5
2900 ZTX(NNP)}=2
2910 IF(P5.LE.HGM) GO TO 340
2920 HUM=P5
2930 IHU=I
2940 JHW=J
2950 AHU=AL
2960 340 CALL YYYY(P1,P2,P3,P4,C4,C3,C2,C1,C11,C12,C13:C14,
29706 DM3,DM4,W5,Z6.ICC.
2980C
2990 UUX(iNNP)=U5
3000. }\quadZUX(NNP)=Z
3010 AL=AL+OL
3020 350 CONTINUE
3030 IF(ICC.LE.J) SO TO 390
3040 III=I
3050 JJ.I=J
3000 ..NAA=NP(I,J)+1
3070 IF(NAA.GT.11) GO TO 36U -
3080 WRITE(G,6TO)
3090 WRITE(O.500) (PPX(NNP),NNP=1.MR)
3100 WRITE(6,570) (ZTX(NNP),NNP=1,MR)
3110 CALL PIPE(NAA.III,JJ1,0.).
3120 WRITE(O,5&U).(GUX(NNP), NNPP=1,MK)
3130 WKITE(6,570) (ZUX(NNP),NNP=1,MR)
3140 GO TO 440
3150 360 WRITE(ゥ,610)
3100 . WHITE(0.560) (PPX(NNP),NNP=1,I1)
3170 WRITE(0.570)(ZTX(NNPF,NNP=1,11)
3180 WHITE(6.590) I
```

3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550 3560430
3570
3580
3590
3600
3010 R(I.J)= (R(i, J) 20
3620 R(J,
$3620 \quad R(J, I)=R(I, J)$
3630440 CONTINUE
3640 C
3650 C
3660 C
3670 C
3600 . $\quad 1$ CONT $=1 \operatorname{CONT}+1$
3090 IF(ICC.GT.U) UO TO 450
$3700 \quad$ SCOR=SCOR/OIV
3710 IFINGH.LT•L.ANL.SCUR.LT..0005) ICC=1

3720	GO TU 180
3730450	WRITE(6,750)ICONT, HUM, AHW, IHU,IHG, JHG
3740	OMG $=$ OMG + DOMG
3750460	CONTIIVE
3760 C	
3770470	FORMAT (5x,F10.7,FG.2,F6.3)
3780480	FORMAT $5 \times$, 312)
3790490	FORMAT ($5 \mathrm{x}, 12.510 .3)$
3800500	FORMAT $(5 x, F 6.2)$
3810-510	FORMAT (5 ($\mathrm{x}, 12, \mathrm{~F} 10.0$)
3820520	FORMAT $(5 x, 12, F 10.6, F 0.2)$
3830530	FORMAT (5x, 212,F8. $2, F 6.2, F 5.0, F 0.4,13, F 10.0)$
3840540	FORMAT (5 x, 13,2F10.0)
3850550	
3860560	FORMAT("HD AMP ",12(F8.3,1x))
3870570	FORMAT("PH ANG", 5 (, 12(F5.2,4x))
3880 580	FORMAT("FW AMP ",12(F8.3,1x))
3890590	FORMAT(3X, "NOUE(", I2,") ",11("O========"))
3900"000	FORMAT(I)
3910610	FCRMAT (////)
3920620	FORMAT (9x,11(Fy.3,1X)/11x.11(F5.2,4x)
3930630	FORMAT (13x,11("O========")
3940640	FORMAT (9x, 12(F8.3.1x)
3950650	FORMAT (11x, 12(F5.2,4x)
3900660	
3970670	
39806	, "*")
39900	
4000680	FORMAT (///10X."ALL THE Phase aivgles are compared"/
40106	10x,"tu the head at node no. ", 12)
4020 C	
4030090	FORMAT(///10x."ALl the phase aivoles are compared"/
40400	10X,"TO THE FLOW AT NOUE NO. ", 12)
4050 C (40×1	
4060700	FORMAT (1H1///21X, "FREUUENCY=",F6.3," RAD/SEC"/671
40706	$"=") / "$ NOUE ! HEAD ! PHASE ! FLON TO !"
40800	," FLOW ! PHASE !"/"! NO ! AMPLITUDE"
40906	," ! angle ! nove no ! amplitude ! aingle !"/
41000	"! ! FEET ! RAD ! ! CUBI"
41100	
41200	, "--------"),"!")
41300	,
4140710	FORMAT (1H1///21X, "FREUUENCY=", Fo.3," RAD/SEC",30X,
41500	"NUTE:"/o7("="),9x,5("-")/"! NODE ! HEAD
41000	,": PHASE ! FLOW TO ! FLON ! PHASE ! ${ }^{\text {a }}$ (12x
41700	, "UEFINITIONS UF FLOW DIFECTIONS"/"! NO ! AM"
41800	,"PLITJUE! angle ! Nude iu! amplitude! anglo
41900	,"E !", 12x,"MAY BE DIFFERENT OY ONE PI IN")
4200 C	
4210720	FORMAT " ! FEET ! RAD ! ",
42200	" ! Cubic ET/S ! kigu ! ", 12X, "the table at then
$4230{ }^{\circ}$	
42400	, "---"), "! ", 12X,"Distributiows primted Belcw.")

```
4250730 FOKMAT(2("! ! "),"!"/
42600 "! ",I4." ! ",F10.3," ! ",F0.3," ! ",12,3X,
42700 "! ",E10.4," ! ",Fo.3," !"/2("!",7X,"!",12X,"!",9x
42800 ),"!"1
42906
4300 740 FORMAT("! ! ! ! I2,
43106 3X,"! ",E1U.4," ! ",F0.3," !"/2("!!
43206 ," ! ",7X),"!")
4330C
4340750 FORMAT(//9X,"NU. OF TRIAL = ",I3/9X,"FLON OIRECTIC"
43500 ,"N ------>"/gX,"MAXIMUM HEAD AMPLITUCE RECORCED "
4360% ""= "F9.3," FEET"/9X,"LOCATION OF MAX. HEAL: ",
43700 F7.O." FEET FROM NOUE(",I2," 1 ON LINE(",I2,"-".
43800 12," /"///1
4390C
4400 760 FORMAT(58x,"(( INPUT DATA ))"/20x,92("*")/20x,"*",
44100 17X."ABS.VISC. = ",F10.7.50X,"*"/20X,"*",17X:"SPE"
44200 ""C.MASS = ",F6.2.54X,"*"/20X,"*",26X,"G = ",Fo.3.
44300.....- -54x,"*")
4440C
4450 770 FORMAT (20x,"*",15x,"NO. UF NOUES = ",I2,58x,"*"/20x
4460% ,"* NU. OF CUNSTANT HEAD NODES = ",I2,58X,"*"/20x,
44700 "*",7X,"NO. OF LINE SEGMENTS = ",I2.58x,"*")
44800
4490 780 FORMAT (20x,"*",5x,"NC. OF HEAD OSC. NULES = ",12,
45006 5४X,"*"/20X,"*",5X,"NO. OF FLOW OSC. NCOES = ",I2,
45106 58x,"*")
4520C
4530 790 FORMAT (2UX,"*",9X,"HEAO OSC. INUUE NO. = ",I2,\sigmaX,
4540% "HEAD AMP. = ",FIU.3.6X,"PH. A,HGLE = ",F6.2,6X,"*")
4550C
4560 800 FORMAT (20X,"*",9X,"FLON USC. NJOE NO. = ",I2,ox,
45706 "FLOW AMP. = ",F13.8,5X,"PH. ANGLE = ",Fo.2,4X,"*")
4580C
4590 810 FORMAT(20X,"* LINE(",I2,"-",I2,"): L=",Fo.0.4X,
40000 "D=",FO.2,4X,"A=",F5.0,4X,"F=",F6&4:4X,"NP=",I3,4X,
46100 "UGAR=",F10.0́""*")
4620C
4630 &20 FORMAT (20X,"*",5X,"RUNNIMG FOR ",I3," DIFFERENT ",
40406 "FREUUENCIES, LST. W= ",F1L.7,4X,"CN= ",F11.7.
46500 3x,"*"/2(20X."*",90X."*"/),20X.92("*"))
4660C
4070 STOP
4080 END
```



```
5190 C This sudroutine calculates the characteristic
5200 C
5210 C
5220 SUGROUTINE X(AL,AK,A,B,OMG,C1,C2,C3,C4,C5,C6,ZR,ZI)
\(5230 \quad \forall 1=.5 * A T A N(A R * A / O M G)\)
\(5240 \quad \mathrm{E}=\mathrm{SURT}(\mathrm{B} *\) JMG)*((OMG/A)**2+AR*AR)**. 25
\(5250 \quad\) B3=S」iv( El )
\(5260 \quad \mathrm{~B}_{4}=\operatorname{COS}\left(\mathrm{B}_{1}\right)\)
\(5270 \quad A L P=\forall 2 * B 3\)
5280- \(\mathrm{EET}=\mathrm{B} 2 * \mathrm{~B}_{4}\)
\(5290 \quad\) ZR=BET/( 8 *OMG)
\(5300 \quad Z I=-A L P /(B * O M G)\)
\(5310 \quad Y Y=E X P(A L P * A L)\)
5320 SINH=.5*(YY-1./YY)
\(5330 \quad \mathrm{COSH}=.5^{*}(Y Y+1 . / Y Y)\)
5340 SI=SIN(BET*AL)
5350 CO=CBS(BET*AL)
\(5360 \quad C_{1=S I N H * C O}\)
\(5370 \quad\) C2 \(2=\cosh *\) SI
\(5380 \quad \mathrm{C}=\mathrm{SINH}\) *SI
\(5390 \quad \mathrm{C}_{4}=\mathrm{COSH}^{*} \mathrm{CU}\)
\(5400 \quad \mathrm{C}_{5}=\mathrm{COSH}^{2} \mathrm{SI}\) INH
\(5410 \quad\) C6 CO 5 SI
5420 RETURN
5430 END
```

```
5440 C -THIS SUUROUTINE DRAWS THE PRUPER SIZE LINE SEGMENTS
5450 C FOR SOME OF THE PRINT OUTS IN DO-LOOP "440".
5460
5470 C
5480
5490
5500
5510
5520
5530 .
5540
5550
5560
5570
5500
5590
5600
5610
5620
5630
5640
5650
5660
5670
5680
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
580010 WRITE
581020 FORMAT (12)
582030 FORMAT ( \(3 x\), "NODE (", 12,") ",50A2)
583040 FORMAT \((13 X, 50 A 2)\)
5840 RETURI
\(5850^{\circ}\) ENU
```

```
58000
58700
58800
5890C
5 9 0 0
59100
5920C
5930
5940
5950.
5 9 6 0
5970
5980
5990
6 0 0 0
6 0 1 0
6 0 2 0
6 0 3 0
6040
6 0 5 0
6 0 6 0
6 0 7 . 0
6 0 8 0
6 0 9 0
6100
6110
6120
6130
6 1 4 0
6150
6160
6 1 7 0
6180
6 1 9 0
6 2 0 0
6 2 1 0
6 2 2 0
6 2 3 0
6240
```

```
    - this subroutine calculates the head cr flon
```

 - this subroutine calculates the head cr flon
 amplitude wIth ITS phase angle at the cesirec
 amplitude wIth ITS phase angle at the cesirec
 lucatiun in the netwutik.
 lucatiun in the netwutik.
 SUBROUTINE YYYY(P1,P2,P3,P4,C1,C2,C3,C4,C5,C5,C7,C8
 SUBROUTINE YYYY(P1,P2,P3,P4,C1,C2,C3,C4,C5,C5,C7,C8
 ,D3,04,X,Y,I)
 ,D3,04,X,Y,I)
 V=3.1415927
 V=3.1415927
 EPS=1.E-15
 EPS=1.E-15
 A=C5*C5*C5*C6
 A=C5*C5*C5*C6
 \Delta=(C1*C5+C2*C6)/A
 \Delta=(C1*C5+C2*C6)/A
 C=(C2*(5-C1*C6)/A
 C=(C2*(5-C1*C6)/A
 D=C8*B-C7*C
 D=C8*B-C7*C
 E=C8*C+C7*B
 E=C8*C+C7*B
 F=C4-ט
 F=C4-ט
 O=C3-E
 O=C3-E
 G=P1*B-P2*C
 G=P1*B-P2*C
 P=P1*C+P2*B
 P=P1*C+P2*B
 H=P3*F-P4*O
 H=P3*F-P4*O
 U=P4*F*P3*O
 U=P4*F*P3*O
 R=H+G
 R=H+G
 S=U+P
 S=U+P
 IF(I.GT.2) GO TO 10
 IF(I.GT.2) GO TO 10
 DM=D3*D3+D4*D4
 DM=D3*D3+D4*D4
 T=-(R*D3*S*D4)/DM
 T=-(R*D3*S*D4)/DM
 S=(R*D4-S*U3)/LM
 S=(R*D4-S*U3)/LM
 R=T
 R=T
 10 X=SURT(R*R*S*S)
10 X=SURT(R*R*S*S)
Y=0.
Y=0.
IF(I.LE.O) KETURN
IF(I.LE.O) KETURN
IF(AOS(R).LE.EPS) GO TO 20
IF(AOS(R).LE.EPS) GO TO 20
Y=ATAN(S/R)
Y=ATAN(S/R)
IF(R.LT.O..ANU.S.LT:O.) Y=Y-V
IF(R.LT.O..ANU.S.LT:O.) Y=Y-V
IF(R.LT.O..ANU.S.GT.U.) Y=Y+V
IF(R.LT.O..ANU.S.GT.U.) Y=Y+V
RETURIN
RETURIN
20 IF(S.GT.0.) Y=V/2.
20 IF(S.GT.0.) Y=V/2.
IF(S.LT.0.) Y=-V/2.
IF(S.LT.0.) Y=-V/2.
RETURN
RETURN
END

```
    END
```


METHOD OF CALCULATING THE LINEARIZED FRICTION TERM FOR STEADY OSCILLATORY FLOW

A method to calculate the linearized friction term for steady oscillatory flow is presented in Chapter IV and was used to obtain the results of this study. This Appendix presents another method of approach which was derived during the last days of this study.

Average Steady Oscillatory Flow

Steady oscillatory flow through a pipe is a function of position and time. Assuming sinusoidal variation of the flow with respect to time, the following equation may be written:

$$
\begin{equation*}
Q(x, t)=Q(x) \operatorname{Sin}(\omega t) \tag{F-1}
\end{equation*}
$$

The time average of the flow may be found if equation $\mathrm{F}-1$ is integrated over a range of 0 to $\frac{\pi}{2}$ and divided by $\frac{\pi}{2}$ as shown below.

$$
\begin{equation*}
\bar{Q}(x)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} Q(x) \sin (\omega t) d(\omega t)=\frac{2}{\pi} Q(x) \tag{F-2}
\end{equation*}
$$

The average flow over the length of the pipe may be found if the flow distributions along the length of the pipe are integrated over the length. Since the flow distributions are different for different frequencies, and it is not convenient to have a separate averaging routine for each frequency, a method is developed to give an approximation of the average flow for any frequency. Tests presented in Table 4.l, showed that the linearized friction term is important
only for excitation near the resonant frequency. Assuming the flow distributions for the frequencies close to the resonances are the same as they are for resonance, then a method to calculate the average flow can be developed for the resonant frequencies (which are the critical frequencies), and subsequently used for any frequency. Since the flow distributions for resonance of different harmonics are different, the sample problem defined in Chapter IV was tested at excitation Erequencies of $(2 n-1) w_{R}$, for $n=1,2,3,4$, where $\omega_{R}=\frac{2 \pi a}{4 L}$, is the natural frequency of the system. Figure F.I shows the flow distributions along the non-dimensional length of the pipe for different values of n. The excitation source is placed at $x=0$, and the tank is comected at $\mathrm{x}=1$. This family of curves has the same value of $\frac{Q(x)}{(Q \max) n}$ at any location of $\frac{x}{(2 n-1)}$. If these curves passed through the origin of the figure, they would all repeat with periods of $\frac{4}{(2 n-1)}$, and would have the same average value as a function of their maximum values. It is assumed that these smooth parts of the curves are straight lines connecting the location $\frac{1}{5(2 n-1)}$ of the curves to the origin. The areas between these straight lines and the corresponding curves were neglected and will be considered later in this section. Flow distributions between $x=0$ and $x=\frac{1}{(2 n-1)}$, may be defined as

$$
\begin{equation*}
Q(x)=(Q \max)_{n}\left(a Y+b Y^{2}+\ldots \ldots .+j Y^{10}\right) \tag{F-3}
\end{equation*}
$$

where $Y=\frac{x}{(2 n-1)}$. Substituting equation $F-3$ into equation $F-2$ and integrating over the range of 0 to $\frac{1}{-(2 n-1)}$, the following equation results:

$$
\begin{array}{cccc}
-1 & N & M & H \\
H & \| & -\| & \| \\
H & E & H & \digamma
\end{array}
$$

Figure F.l. Flow Amplitude Distributions along, the Non-Dimensional Length of Pipe of
 Harmonics

$$
\underline{---\infty}
$$

$\operatorname{arn} 3 \mathrm{ta}$

$$
\begin{equation*}
\bar{Q}=\frac{2}{\pi}\left(Q_{\max }\right)_{n}\left(\frac{a}{2}+\frac{b}{3}+\ldots \ldots+\frac{j}{11}\right)(2 n-1) \tag{F-4}
\end{equation*}
$$

Choosing the first harmonic curve and applying ten boundary conditions at $Y=0.1,0.2, \ldots \ldots . .1 .0$ to the equation $F-3$, ten simultaneous equations result which are presented in a matrix form shown in Figure F.2. The solution to this matrix is as follows:

$$
\begin{array}{llll}
a=0.7594, & b=19.806, & c=-182.31, & d=892.26 \\
e=-2661.08, & £=5064.33, & g=-6195.23, & h=4720.14 \\
i=-2039.36, & j=381.69 & &
\end{array}
$$

Substituting these values into equation F-4, the following equation results:

$$
\begin{equation*}
\bar{Q}=\frac{2}{\pi}(0.6375 \operatorname{Qnax}) \tag{F-5}
\end{equation*}
$$

This equation gives a good approximation of the average steady oscillatory flow through the pipe. However, consideration of the neglected area between each curve and the corresponding line further improves the average. In this case, the average of the steady oscillatory flow through a pipe is written as

$$
\begin{equation*}
\bar{Q}=\frac{2}{\pi}(0.6375 \operatorname{Qmax}+Q c) \tag{F-6}
\end{equation*}
$$

In order to find the value of Qc the shaded area shown in Figure F.3, which is a portion of the first hamonic curve shown in Figure F.1, must be calculated and divided by $5(2 n-1)$. Using the same method employed earlier in this Appendix, the value of $Q \subset$ is evaluated by the following equation:

$$
\begin{equation*}
Q c=\frac{1}{(2 \mathrm{n}-1)}(0.1049 \mathrm{Qmin}-0.00493 \mathrm{Qmax}) \tag{F-7}
\end{equation*}
$$

The term, $\frac{1}{(2 n-1)}$, can be expanded as

$$
\frac{1}{(2 n-1)}=\frac{\omega_{R}}{\omega}=\frac{2 \pi a / 4 L}{\omega}=\frac{\pi a}{2 \omega L} .
$$

Figure F.3. Portion of the First Harmonic Curve Shown in Figure F.I.

Substituting this value into equation $F-7$, the following equation results:

$$
\begin{equation*}
Q c=\frac{\pi a}{2 I \omega}(0.1049 \mathrm{Qmin}-0.00493 \mathrm{Qmax}) \tag{F-8}
\end{equation*}
$$

Substituting equation F-8 into equation $F-6$ and rearranging, the following equation results:

$$
\begin{equation*}
\bar{Q}=0.4058 \mathrm{Qmax}+\frac{a}{\mathrm{~L}_{\omega}}(0.1049 \mathrm{~min}-0.00493 \mathrm{Qmax}) \tag{F-9}
\end{equation*}
$$

Correction Factor

Equation $\mathrm{F}-8$ was used in the main program and applied for the system defined in the Sample Problem for pipe friction factors from 0.02 to 0.20 and an excitation frequency equal to the natural frequency of the pipe. In these tests the system was defined as a 2-node piping network. Results of these tests including the results obtained by the method of characteristics for the same system are shown in the Table F.1. To obtain the same results by this method as it was obtained by the method of characteristics, equation F-9 must be modified as

$$
\begin{equation*}
\bar{Q}=(C F)\left[0.4058 \mathrm{Qmax}+\frac{a}{L \omega}(0.1049 \mathrm{Qmin}-0.00493 \mathrm{Qmax})\right] \tag{F-10}
\end{equation*}
$$

where $C F$ is the correction factor and its value varies with friction factor as shown in the fourth colum of Table F.1. Interpolating between friction factors of 0.02 and 0.05 , shows that the two methods coincide for the friction factor of 0.02072 . To generalize the correction factor, one may define the following equation:

$$
\begin{equation*}
C F=\left(\frac{0.02072}{f}\right)^{\left(A+B E+C f^{2}+D f^{3}\right)} \tag{F-11}
\end{equation*}
$$

M.O.C. = METHOD OF CHARACTERTSTICS
S.O.M. = STEADY OSCILLATORY METHOD

FRICIION FACTOR	NON-DIMENSIONAL HEAD		CORRECTION FACTOR
	M.O.C.	S.O.M.	
0.02	19.24	19.27	1.0026
0.05 .	- 13.22	12.20	0.8508
0.075	11.00	9.98	0.8204
0.076	10.94	9.91	0.8197
0.08	10.68	9.66	0.8171
0.10	9.64	8.65	0.8036
0.15	8.01	7.09	0.7812
0.16	7.78	6.37	0.7772
0.20	7.05	6.17	0.7595

Table F.1. Non-Dimensional Head Response and Correction Factor needed to make Methods Arree as the Functions of Friction Factor for the System Defined in this Section.

Applying four data points from Table F.1, for friction factors of $0.05,0.10,0.15,0.20$, four simultaneous equations are obtained with four unknown A, B, C and D. Solving these sets of equations for A, B, C, D, and substituting into the equation $F-11$, the following equation results:

$$
\begin{equation*}
C F=\left(\frac{0.02072}{f}\right)^{\left(0.2778-2.518 f+13.895 f^{2}-26.092 f^{3}\right)} \tag{F-12}
\end{equation*}
$$

This equation and the equation $\mathrm{F}-10$ were used in the main program and applied for the same system for the friction factors from 0.02 to 0.20 . A maximm difference of 0.26% was noted between the results of this method and the results of the method of characteristics. For use of this method, Figure F. 4 shows the required modification to the main program.

```
171 REAL AC(20.20)
721 AC(I,J)=A
722 AC(J.I)=A
3470C
3490 41.0 U=AF(I.J)
3491 POWER=.2778-2.518*U+13.895*U*U-26.092*U*U*U
3492 CFAC=(.02072/U)**POWER
3493*QQQ=AC(I,J)*(.1049*OMIN-.00493*QMAX)/(L(I.J)*DMG)
3494 QQ=OBAR(I,J)+CFAC*(.4058*QMAX+QQQ)
```

Figure F.4. Modification of Main Program for the use of Method Presented in this Appendix.

APPENDIX G

SAMPLE PROBLEM DESCRIPTION

This Appendix presents the input and output format of the sample problem defined in Chapter IV.

Input Format
-Referring to the data listed on page 101, the two-digit numbers on the left are the line numbers and each line contains the following information:

Line No. 10: Absolute viscosity of the liquid in $\frac{\mathrm{Ib}-\mathrm{Sec}}{\mathrm{ft}^{2}}$, mass density of the liquid in $\frac{\mathrm{lbm}_{\mathrm{m}}}{\mathrm{ft}^{3}}$, and the gravitational acceleration in $\frac{\mathrm{ft}}{\mathrm{Sec}^{2}}$.

Line No. 11: Number of nodes, number of constant head nodes (tanks), and number of pipe segnents in the piping network.

Line No. 12: Constant head node number. Note: If there are more than one tank in the system, each tank's node number must be entered in separate line following this line.

Line No. 13: Number of head excitation and number of flow excitation sources. Note: The program is able to analyze a piping network with several excitation sources, but they must all have the same excitation frequency. In this case, line numbers 370 to 670 of the main program must be followed.

Line No. 14: Flow excitation node number and its flow amplitude in $\frac{\mathrm{ft}^{3}}{\mathrm{Sec}}$.

Line Nos. 15 to 22: Each line contains the information about a pipe segment. This information is: terminating node numbers, length in feet, diameter in inches, speed of sound through the liquid in ft/Sec, friction factor, number of extra locations for calculation of head and flow amplitudes, and steady state flow in $\mathrm{ft}^{3} / \mathrm{Sec}$.

Line No. 23: Nuber of frequencies, first frequency, and frequency intervals.

Output Format

Page numbers 103 to 106 in this Appendix, show the computer output for this sample problem as follows:

Page No. 103: Echo format of input data.
Page No. 104: Head and flow amplitudes and their phase angles at each node of the piping network.

Page Nos. 105 and 106: Head and flow amplitudes and their phase angles along the length of each pipe segnent in the piping network. The maximum head and its location in the piping network.
all the phase avgles are cumpared
TO THE FLOW AT NODE NU. :

FREUUENCY $=0.942$ RAD/SEC

HO	AMP	898.724	897.887	894.910	889.799	882.567
PH	ANG	3.00	3.06	3.05	3.05	3.04
	NODE	1) $u==$	= $0=$	=-0 $=$	$==0=$	$==0$
FW	AMP	4.909	5.260	6.472	8.161	10.079
PH	ANG	-3.14	2.69	$2 \cdot 35$	$2 \cdot 13$	1.99

HD AMP	-832.404	614.679	795.007	773.436	750.016
PH ANG	3.02	3.02	3.02	3.01	3.01

FW AMP $18.327 \quad 20.377 \quad 22.392 \quad 24.365 \quad 26.287$
PH ANG $1.74 \quad 1.71 \quad 1.69 \quad 1.67 \quad 1.65$

| HU AMP | 502.105 | 464.082 | 420.142 | 386.577 | 346.083 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PH ANG | 2.98 | 2.48 | 2.97 | 2.97 | 2.97 |

PH ANG 2.98 2.98 2.97 2.97 2.77

$\begin{array}{lccccc}\text { FW AMP } & 39.182 & 40.415 & 41.552 & 42.590 & 43.525 \\ \text { PH ANG } & 1.58 & 1.57 & 1.57 & 1.56 & 1.56\end{array}$

HD AMP	176.502	132.750	88.678	44.392	0.000
PH ANG	2.96	2.96	2.96	2.96	1.39

FW	AMP	46.204	40.599	46.882	47.052	47.109
PH	ANG	1.55	1.55	.1.55	1.55	1.55

NO. OF TRIAL $=11$
FLOW UIRECTION --m-m-
MAXIMUM HEAU AMPLITUUE RECORUEU $=898.724$ FEET LOCATION OF MAX. HEAU: O. FEET FROM NOUE(1) ON LINE (1-2)

APPENDIX H

FRICTIONAL EFFECT OF ORIFICE

In this Appendix, the frictional effect of the orifice connection is calculated, and the length of a pipe segment with the same diameter and frictional effect as the orifice is determined in order to model the orifice comection for the tests referred to in Chapter-V.-

The head loss across the orifice may be calculated by the following equation:

$$
\begin{equation*}
h_{L}=\frac{V_{a}^{2}}{2 g} \frac{C}{K^{2}} \tag{H-1}
\end{equation*}
$$

where $C=1$, if $\frac{d_{0}}{D}\left\langle 0.3\right.$, and $C=1-\left(\frac{d_{0}}{D}\right)$ if $\left.\frac{d_{0}}{D}\right\rangle 0.3 ; K$ is the orifice coefficient which varies from 0.52 to 0.98 depending on the type of orifice, and $K=0.61$ for a sharp edged orifice. V_{0} is the fluid velocity at the orifice, and g is gravitational acceleration.

The head loss across the length of a pipe segment is defined as

$$
\begin{equation*}
h_{L}=f\left(\frac{L}{D}\right) \frac{V^{2}}{2 g} \tag{H-2}
\end{equation*}
$$

where f is the friction factor of the pipe, I is the length of the pipe, D is the diameter of the pipe, which in this case is equal to $d_{0} . \quad V$ is the bulk fluid velocity inside the pipe and in this case is equal to V_{0}, and g is gravitational acceleration. Combining equations H-1 and H-2, the length of a pipe segment with the same diameter and frictional effect as the orifice, is calculated by the following
equation:

$$
\begin{equation*}
\mathrm{L}=\frac{\mathrm{Cd}}{\mathrm{fK}^{2}} \tag{H-3}
\end{equation*}
$$

with $f=0.1 ; D=30$ inches and $K=0.61$, the length of the pipe segment with the same diameter and frictional effect as the orifice, for orifice diameters of $5,10,15$ and 20 inches, and calculated by equation $\mathrm{H}-3$, are $11.2,22.1,31.5$ and 35.9 feet, respectively.

NOMENCLATURE

Parameter	Definition	Unit (M,L, T)
A	Constant; pipe area	L^{2}
A	Orifice area	L^{2}
$A_{i, j}$	Two dimensional, array	-
a	Acoustic velocity	L/T
B, b, C	Constant	-
CF	Correction factor	-
c	Constant; subscript for correction	-
D	Pipe diameter; constant	L;
d	Constant	-
$\mathrm{d}^{\text {。 }}$	Orifice diameter	L
E	Modulus of elastisity	$\mathrm{M} / \mathrm{LT}^{2}$
e	Pipe wall thickness; constant	L;-
F	Force	$\mathrm{ML} / \mathrm{T}^{2}$
f	Pipe friction factor; constant	-
g	Gravitational acceleration; constant; subscript for ground	L/ T^{2};-
H	Instantaneous total head; head amplitude	L
$\overline{\mathrm{H}}$	Average head	L
h	Constant	-
h^{\prime}	Instantaneous oscillatory head	L
i	Subscript for node number; constant; $\sqrt{-1}$	-

Parameter	Definition	Unit(M,L,I)
j	Subscript for node number; constant	-
K	Bulk compressibility modulus	$\mathrm{M} / \mathrm{LT}^{2}$
k	Constant	-
I	Length	L
1	Length	L
m	Constant	-
n	Number of nodes	-
P	Pressure	M/LT ${ }^{2}$
Q	Instantaneous total flow; flow amplitude	L^{3} / T
\bar{Q}	Average flow	L^{3} / T
q	Flow amplitude	L^{3} / T
\bar{q}	Average of oscillatory flow	L^{3} / T
q^{\prime}	Instantaneous oscillatory flow	L^{3} / T
R	Linearized resistant per unit length; subscript for real; subscript for receiving end; subscript for resonant	T/L;-;-;
Re	Reynold number	-
S	Subscript for sending end	-
V	Velocity	L/T
X	Constant	-
x	Position; non-dimensional position	L; -
Y	Constant	-
Zc	Characteristics impedance	-
Z (x)	Ratio of h^{\prime} to q^{\prime}	-
α	Real part of γ -	-
β	Imaginary part of γ	-

Parameter	Definition	Unit (M, L, T)
γ	Propagation constant	-
θ	Angle	-
μ	Poisson's ratio	-
v	Kinematic viscosity	L^{2} / T
ξ_{1}	Pipe axial strain	-
ξ_{2}	Pipe lateral strain	-
ρ	Mass density	M / L^{3}
σ_{1}	Pipe axial stress	$\mathrm{M} / \mathrm{LT}^{2}$
σ_{2}	Pipe lateral stress	$\mathrm{M} / \mathrm{LT}^{2}$
$\tau_{\text {。 }}$	Wall shear stress	$\mathrm{M} / \mathrm{LT}^{2}$
ω	Angular frequency	I/T
-	Subscript for orifice	-

[^0]: Nhmbers in brackets refer to tho reforoncos.

[^1]: * See the sample problem at the end of this chapter for these locations.

[^2]: *Non-dimensional frequency and non-dimensional pressure are defined on page 24 of Chapter V.

