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ABSTRACT

The purpose of this study is to develop an economical method
of analysis of piping(netwoggs_subject to a seismic disturbance. A
one-dimensional steady oscillatory method was employed and a powerful
tool (a computer»program for analyzing piping networks subject to
steady oscillatory excitations) is developed for piping designers
who wish to design pipelines for earthquake zones.

In additionh, a model is developed to simulate the geometrical
excitation effects of the following piping network junctions: 1) dead-
end, 2) 90° elbow, 3) tee, 4) orifice. This model was verified f@r
the dead-end, elbow, and tee connections by comparison with a method
of characteristics model. This method of characteristics model as
developed by Padron [6], was in turn verified by experimental datav

obtained by Wood and Chao {8], and energy analysis at resonance.
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CHAPTER 1
INTRODUCTION

Ear thquakes

An earthquake is a phenomenon of strong vibrations occurring
on the ground due to the release of a large amount of strain energy
through a sudden1slippage in the earth's crust or in the upper part
of the mantle-[{1]*. -The span of‘energy released from the surface of
the earth during a major earthquake is of the magnitude of the elec-
tricity consumed in the United States over a period of 4 hours to
40 years. Two types of seismic waves propagate from the earthquake,
namely: 1) longitudinal compression or P-wave; 2) transverse shear
or S-wave. Eq?thquakes have caused severe effects on human life as
well as on structures such as buildings, roads, bridges, railways,
dams, pipelines, etc. Over seven million people have lost their
lives in earthqﬁakes [2]. Millions of dollars are required every
year to repair the damage caused by earthquakes. The study éf the
causes and methods of preventing this damage involves a wide range
of knowledge such as geophysics, geology, seismology, vibration theory,
structural dynamics, material dynamics, construction techniques and
fluid mechanics. In the study of .earthquakes, each of these areas
has received considerable attention with the exception of fluid

mechanics.

*Numbers in brackets refer to the references.



Nakagawa [3] as reported by Qkamoto [1], estimated the transient
overpressures in pipelines subject to a seismic excitation. Young
and Hunter [4] used a more rigorous method of analysis and found
overpressures of about ten times higher than those estimated by
Naliagax&a. This result indicated the possibility of pipeline damage
" due to hydraulic transients induced by earthquakes and therefore
prompted further study of the pheromenon. Young [5] employed a one~
dimensional me,thod of characteristics and developéd a method including
a computer “programr to analyze the piping networks subject to steady
oscillatory excitations. Padron [6] modified this program to include
the geometrical consideration necessary for the study of hydraulic
transients induced in piping networks during earthquakes. He established
a geometrical system to define the direction of propagation of the
. seismic disturbance as relateci to the orientation of the axes of each
pipe segment in the system. He verified his results by comparing them

to an available experimental data and energy analysis.

Statement of the Problem

The method employed by Padron [ €] , consumes a tremendous

amount of computation time. The transient response must be calculated
before the steady state response can be calculated, and most of the °
calculations are for ;:he transient- state. - Often the maximum response

is the steady state response and hence a piping designer does not

need the transient response; nevertheless, he must pay for them. ;t would
therefore be useful to piping designers if a method were developed

to analyze the piping networks onl); at theif steady state response

induced during an earthquake. This work sets forth such a method.



Possible Methods of Approach
and Method Selected

Streeter and Wylie [7] described a number of methods of
analysis of unsteady flow depending upon the restrictive assumptions
and also presented an excellent comparison of these methods. These
methods *all are initiated with the continuity and momentum equations
of fluid mechanics and are categorized as arithmetic, graphical,
characteristics, algebraic, impedance, and4$pecial methods. Young
and Hunter [4] applied the impedance (steady oscillatory) method to some
sinple pipgl;ne; (not general piping networks) and found good agreement
between their results and the results obtained by the method of chara-
cteristics. Thelr agreement was better for resonant conditions which
exhibitethhe maximum responses. The impedance (steady oscillatory)
method was chosen in this study to develop a tool (a method of analyzing
piping networks subject to seismic excitationj for piping designers
because of téé fgllowihg considerations: 1) piping designérs are
usually interested in maximum parameter values, 2) a good approximation
of maxirmun response in piping network appears to be a possibility
utilizing the impedance method, and 3) since economy is an important
consideration. The impedance (steady oscillatory) method is described
in detail by Streeter and Wylie {7] and in Chapter II of this work.

Thé objective of this thesis is to develop a method of analysis
including an efficient computer program for calculation of the head
and flow amplitudes in a general piping network subjected to steady
oscillatory excitations as an approximation of seismic disturbances.

The boundary conditions are chosen to approximate those in a piping

system subject to a seismic excitation.



CHAPTER II
STEADY OSCILLATORY FLOW

In this chap_ter conservation of mass and conservation of
momentum are applied to a slightly deformable horizontal pipe to
analyze a class of steady oscillatory flow problems. The method of
derivation if similar to that used by Streeter and Wylie [7], and
it is shown here _so that the 'resulfing equations can be used in later

chapters.

Conservation of Mass

The continuity equation for the control volume of the pipe
shown in Flgure 2.1 is written as

Qo - [Qo + 2LQ0) sx] = 2(Apdx)

ax ot

or ‘

3Q0) sy + 2(ADED) _ (2-1)

X ot : ‘

Referring to Appendix A, equation 2-1 is condensed to the following

form which is applicable to a slightly deformable horizontal pipe.
gé Bh' (2-2)

_ Conservation of Momentum

"

The momentum equation for the slightly deformable horizontal
pipe shown in Figure 2.2 is written as

PA - [PA +’_8_3(}_13_A_)_ §x] - TomDSX = péx(A + A aA dx)dv
X

or



Figure 2.1.‘ Notation for Continuity Equation.

| I % . 8(PA) 5,
FLOW PA | | PA T x

cgsx(A + A Bx) -
X 2

Figure 2.2. Notation for Momentum Equation.



- 3P sy - roDsx = o + 3A sxydV -
e X - ToTDSX = pdx(A = -Z)HE (2-3)

Referring to Appendix B, equation 2-3 is condensed to the following

form.

g? ..+§EI%%_+RQI =C (2-4)
Equations 2-2 and 2-4 are used in Appendix C to obtain the steady
oscillatory head and flow for a §lightly-deformable horizontal pipe
subjected to steady oscillatory excitation. The following results
are obta;ged?for Figure 2.3 in Appendix C after Streeter and Wylie

[7] and used in later chapters.

Q) = ~Bsinh(y) + QgOosh(y) (2-5)
H(x) = HpCosh(yx) - QgZcSinh(yx) (2-6)
Qg = 535inh(yL) + QuCosh(YL) 2-7)
Hy = HgCosh(YL) + ZcQgSinh(yL) 2-8)
Qg = L}Zﬁ;smh(ym + QgCosh(yL) (2-9
Hg = HyCosh(1L) - QZcSinh(yL) o (2-10)
where
Ze = 2(B-io) (2-11)
Y=o+ ig (2-12)
o =y/B [@? + R?Jsin(arcrankel) | (2-13)

"y 82%‘[(§§)2 + RZI%COS(%ArctanB§§§ - (218



Figure 2.3.

Simple Pipeline Showing Receiving and
Sending Ends Relative to Flow Direction.



CHAPTER TII
FORMULATION

In tﬁisvchapter the derivation of the governing equations
for determining head and flow amplitudes for steady oscillatory flow
in a piping network is presented.

*

Governing Equations

Equations derived in Chapter II are used in this chapter to
éhalyze a network of piping subjected to steady oscillatory excita-

tions.

Flow Direction

The equations derived in the preceding chapter depend on a defined
flow direction in a particular pipe. Since this work is not intended
for steady flow, but for steady oscillatory flow, the equations will
be developed te be independent of the flow direction which will allow
the program to deal with a complex piping network without going
through .a particular system to arbitrarily define the flow direction.
However, when flow values are determined, a é§stem must be used to |

appropriately convey the meaning of the sign of the flow value.

Solving equation 2-8 for Qg, gives:

1 -Cosh (yL)
& = lzesmpGy! R Y [7esmonery) Bs



Head coefficients are defined as

. - 1
PP X .= .

X5 31 ZcijSmh(YijLijj (3-1)

Vit = es = "OOSh(YijLij) i

S IR b4 ZCijSﬁm(YijLiﬁ . (3-2)

1

»

where 'Z’ci"j “is the tharacteristic impedance of the pipe between nodes

iand j, Yij
equation 2-12 and L;; is the length of this pipe. Equation 2-8 can

is the complex constant for the same pipe given by

J
then be written as follows.

Qg = %j; Hg* Yij Hg - (3-3)
Rearranging equation 2-10 and solving for Qp, gives:

_ -1 _ 1-Cosh(yL)
%R [ZcSinh(YL)] fs [chmh(yL)] TR
Substituting the head coefficients given above, the following equation

is obtained.

™~ %3 s < Yy )

Assuming oscillatory flow through a segment of pipe shown in Figure
3.1 and applying equations 3-3 and 3-4, the following equation may be

written:
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R . S
X X FLOW X X
1 2 3 4

Figure 3.1. Simple Pipeline Showing Receiving and Sending Ends.

S . L0 R
X . X 3 X X
1 2 ' 3 4

Figure 3.2. Simple Pipeline of Figure 3.1 with Opposite
Flow Direction.
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Qs
:3
The following system of nomenclatuie will be used:
'Qs=d3-¥2@3=-Q‘3—>4@3=—Q32@3=Q34@3
R=Q->3@2=0Q38=-Q1 .

Employing these definitions in the above equations, the following

X3 Ho + Yp3 Hj
- (X23 H3y + Y23 Hp)

results: . _ ,
Q3T = - g3 Hy + Y3 Hy) "' - (3-3)
Qo3 @ = - (Xp3 Hy + Yp3 Hp) - (3-4D)
which give the steady oscillatory flow at nodes 2 and 3.
Changing the direction of flow in the same line segment as shown in
Figure 3.2 and applying the same equations 3-3 and 3-4, the following
mly be written: _
Qs = Xp3 H3 + Y3 Hp
Qg = - (Xz3 Hy + ¥p3 Hy)
Using the same system of nomenclature as:
QW=QW41@2=-Q 382=Q] &@=-Qq3@
QR = Qa2 @3 =0Q3p @3 = - Q34 @

and substituting into the above equations, the following is cbtained:

Qa3 @ = - (Xp3 Hy + Y3 Hy) (33
Q32 @3 = - (Xp3 Hy + ¥p3 Hy)' ) B ED
An analysis of the above equations will show that equations
3-3' and 3-4" are identical, and equations 3-4' and 3-3" are
identical. Therefore the following equation can be written for any

pipe segment (i,j) independent of the flow direction:



Qi3 = Q3 € = - (Xgy Hy + Vi3 By 5) a (3-5)

Equations for the Network

In this section, equéticns will be developed to apply to a

‘network of piping subjected to steady oscillatory flow excitation.

Figure 3.3 shows a cross comection with a flow source, Q; into the
center of the cyoss. Applying conservation of mass to node i of this

network " 7 -
Qip T Q2+ Q3+ Qi 7¢ =0
and substituting equatidn 3-5 for each Qij’ gives
- =Ky Hy Yy Hy ) - (R oHHY 3 oHy ) - (Xg 3H3HY g 385 ) - (K gHat¥3 414 = 0
and by rearranging, |
X3 1HHXg pHo X sH3HKy (HoH (Y4 1Y 24Y1 34Y44) Q1 = O

In geﬁéral form, a nodal equation may be written by deduction as

<BJ 5 )+< ¥y )Hi-Qi =0 (3-6)

J—l J=

j#FL
where n, 1% tne number of nodes in a piping network.

Real Equations

The paramters in equation 3-6 are complex. In this section,

separate equations will be developed for the real and imaginafy

camponents of equation 3-6. Expanding the first term of equation

3-6, the following is obtained:

XigHy = (G H (3] [(R) 7+ (D]
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o
FLOW
e )
. 3
g N ~ 9
FLOW
e
4

Figure 3.3. Cross Cormection with a Flow Source into the Center.



'where subscript R, is for the real part, subscript i, is for the
imaginary part and the constant i, isy/-1. The equation above is

rearranged as follows:

Xi3H5=[(XR) 13 (HR) 5- (XI)ij(HI)j]+i[(XR)ij(HI)j+(X1)ij(HR)j]

“Similarly, an expression for the second term of equation 3-6 is

Ylei=[(YR)ij(HR)i-(YI)ij(ﬁi)i]+i[(YR)ij(HI)i+(Y1)ij(HR)i]
and Qi can be efpressed as
Q= Qi tiQp;
Substituting equations 3-7, 3-8 and 3-9 into equation 3-6 and
eqﬁating the real part and the imaginary part to zero, the two

following equations result.

:E:: (XR)ij(HR)j‘(XI)ij(HI)j + (YR 13 (R~ (YD 13 (Hp11- Qg = O

~

:E:: xR>ij<H1>j + (D3 HRy + (R 53D + (D13 BR1)-@Qpy = 0

#

Solution Matrix

In this sectidn, equations 3-10 and 3-11 are applied to a

piping network to find a general matrix representation. The desired

flow and head finctions can then be found by inverting the matrix.

14

(3-7)

(3-8)

(3-9

(3-10)

(3-11)

Appendix D shows the creation of this matrix and the following augmented

matrix results by deduction for a general piping network subject to

steady oscillatory excitation(s).



n
Aps 05 T B0i1,24-1 7 :E:: Yp)ij
j=1

N
Ai,2i-1 = -A2i-1,2i =;§::1(Y1>ij
J =

Bog 25 = Bpi.1 25-1 = BR)ij
Agi1,25 = 21 23-1 = (Kp)ij

15

(3-12)
(3-135

(3-14)
(3-15)

(3-16)

| »A:Z-i-'l,?; 1= @i Zn; 1[-<XR>ij (HR)3-(p) 1 (o3
| ]#b
Ay on+ 1= Qi -Z [EDijER; + GRI13ED] (3-17)
| Jto
The following conditions are required for the above augmented matrix.
i=1,2,.......... ,n
i# %- %
J=1,2,....0..... §s!
j#EL
ik

The following are definitions for limiting symbols used in the above

augmented matrix:
k, a node number that is not cormmected to node 1
b,.a node mumber at which the head is not given
. m, a node number at which the head is given

n, number of nodes in piping network



CHAPTER IV
COMPUTER CONFIGURATION AND PROGRAMMING

"This chapter presents the computer program and the method
~used to obtain the linearized fluid friction term for each pipe
for this work. A sample problem is presented at the end of the chapter

in order to describe the input and output format.

Computer Program

The equations derived in the preceding chapters are employed to
write an efficient computer program to calculate the steady oscilla-
tory head and flow distribution in piping networks subjected to steady
oscillatory excitation. The bésic procedure of progranming is described
in Figure 4.1 and the complete listing is presented in Appendix E.

The subroutine; "MIINV," was obtained from the master library, tested
on several seté of simultaneous equations and after verification was
employed in this program. As is shown in Figure 4.1, this program
applies a trial solution which assumes a value for average oscillatory
flow amplitues at the nodes and the assigned locations*. Using a

,;‘

method that will be described in the next section, the program finds

* See the sample problem at the end of this chapter for these locations.

16



READ & PRINT
DATA -
\
_ASSRE q (I,J)
g!
CALCULATE :
H(D)

FIOW DISTRIBUTION -

T g (I,D

CALCULATE:
. HEAD DISTRIBUTION
FLOW DISTRIBUTION

CALCULATE g (I,J) - - -

USE -
_ L PRINT

1
q =73 (29 +914) RESULTS

Figure 4.1. Tlow Chart. : : ( STOP )
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the average oscillatory flow through each line segment, compares
these values with the preceding one, and uses an average oscillatory
flow through eacﬁ line segment as

4= 2e, * Go10)
to calculate the linearized fluid friction term for the next iteration.
*With these values, compﬁtations are initiated for the determination of
head and flow amplitudes at the nodes and at the assigned locations.
If the differer;‘ce between the new and old average flows are within the
desired accuracy, the resqlts are prihted. Otherwise, : ﬁhe program
calculates the flow amplitudes and the new average flow for each line
se};mént for the next comparison. The liﬁxits of the accuracy assigned
to this program are a maximmm cimange in average flow in any pipe
segment of 0.001 ft3/s. and to an éverage change of 0.0005 ft3/s. for all
pipe segments in the network. |

Average Steady Oscillatory Flow
and Correction Factor

Average Steady Oscillatory Flow

In this section, a method is described to determine the
average steady oscillatory flow, 'Q'"', that appears in equation B-8,
the linearized fluid friction term. This method is employed in the ©
computer program to oﬂtain the results of this work; mva, an
alternate method is developed and is described in Appendix F. Streeter
and Wylie [7] neglected the effect of oscillatory flow in their

linearized fluid friction term. They probably assumed that the
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oscillatory flow is very small in comparison to thé'steady state
flow. Since this program may deal with the systems or parts of
systems with low steady state flow, the average flow through each pipe
segrr[ent‘is defined as

Q= Qsteady + El—osc. - (4-1)
where the steady state component mist be defined as an input
condition. Thg oscillatory component is assumed to be varying linearly
through the pipe and is defi_ned'a% |

q= % (Qax + Ymin) 2;;2]055 Sin(wt) d(wt)
where Quayx and Quip are the maximm and minimum flow amplitudes along
the length of the pipe segment, respectively. After simplifying the
average oscillatory flow is given by |

q= % (pax * Ymin’
and equation 4-1, becomes

Q= Qéteady + % (dmax * Gmin) - (4-2)
Since the flow does not vary linearly along the length of the pipe,
equation 4-2 is a rough estimate, unless each line is divided into
enough sections and the averaging process is applied for each section
separately. To find the number of sections into which each straight
pipe must be divided, the following tests were*performed on a straighté“
pipe, 5000 feet long, ‘30 inches in—diameter, having a friction factor
of 0.1, comnected to a constant pressure tank at one end and a
steady oscillatory flow excitation of 4.909 ft3/s. amplitude at the

other end. The speed of sound in the liquid is assumed to be 3000
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ft/s. For the non-dimensional excitation frequencies* of 1.0 to 3.0

with intervals of 0.1, the length of the pipe is divided into 1,2,

node piping network. Table-4.1 shows the resulting non-dimensional

. pressure’ for these tests. An inspection of Table 4.1, shows that, for
the frequency range of 1.3 to 2.7,,resu1t§-are independent of the
nunber of sections into which the pipe is divided. Beyond this range,
the_resu}pswar; functions of the mumber of segments into which the pipe
is divided as the frequency approaches the resonant frequency. At
resonance the results are highly dependent of the number of segments.
This is because at resonance the energy input into the system is
dissiéated by friction only. At resonance the‘result of a 19-section
line differs by a maximm of 1.2% from the result of a lO-sectidn line.
The result 5% 5—5;secticn line, however, differs by @ maximm of 5.8%
from the result of a 19-section line. Vor the purpose of this study
and since computation time must be considered, each straight'

pipe is divided into five or ten sections. This should be a good
approximation of the average of the steady oscillatory flow for the

first few frequency harmonics.

“*Non-dimensional frequency and non-dimensional pressure are defined
on page 24 of Chapter V.
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Correction Factor

Since the purpose of this work is to compare the accuracy
of the method- of characteristics with the steady oscillatory
. method, a more computationally economical method, the system that is
defined in the preceding sub-sectipn, is t;ésted against the method of
characteristics at the first resonant frequency. The maximum non-
dmens:.opalhe;d obtained by the method of characteristics was 9.64.
To obtain this value by the steady oscillatory method, a correction
factor of 0.605 must be applied to the average steady oscillatory flow.
Then the corrected form of equation 4-2 becomes

Q= 'Qsteady + 0.1926(Gpax + Gnin) - | (4-3)

This equation is used in the computer program.

Sample Problem

The length of the pipe of the system defined in the preceding
section is divided into eight sections to form a 9-node piping
network. This network is excited with a steady oscillatory flow of
4.909 ft3/s. amplitude and a frequency equal to the resonant frequency
of the pipe. Input and output formats are shown and described in

Appendix G.



CHAPTER V

RESULTS AND CONCLUSIONS

.The cémpﬁter progra& described in the preceding chapter
“will be used to analyze the same systems used by Padron [6] in
investigating piping networks subjected to a seismic excitation.
Results obtained by the method of characteristics for corresponding
boundary “coriditions will be coméaréd with the steady oscillatory

method presented here.

Cases of Study and Results

A piping network can be described as an orderly combination
of nodes such as-dead—ends, elbows, tees, crosses, valves, reducers,
orifiées, etc. intercomnected by line segments. The local effects
of these comections on steady flow through piping networks are
limited to frictional effects, while in steady oscillatory flow
through the piping networks, the geometric effects may be much more
important than the frictional effects and must be considered. Further
study is required to model these geometric effects as steady oscillato

flow sources, steady oscillatory head sources, etc.

In this work, a simple pipinhg network consisting of a constant
head tank and cormected by a pipe segment to a dead-end was selected
for initial study. The system was excited by a compression seismic
wave with a velocity amplitude of l‘ft/s. and various excitation

frequencies. Liquid in the network was chosen to be water at 80°F.

23
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The piping network was assumed to be at one elevation. The velocity
of wave propagation in the liquid was assumed to be 3000 ft/s. with
no steady flow through the piping network. For each case,v tests
were performed and the results compared with the results obtained by
- the method of characteristics. Since the results are conveniently
presented as non-dimensional parameters, a system of reducing the
parameters is defined. Non-dimensional frequency is the ratio of
excitation &eqﬁency to the rescl)nancey frequency in the- liquid of the
particular line segment imwvolved, where the resonance frequency of
the line segment is defined as the inverse of the time required for
the campletion of one cycle of wave propagation in the line. Non-
dimensional head is the ratio of the actual head increase to the head
rise which would occur if the iiquid velocity were instantaneously

changed by the amplitude of the excitation velocity.
Dead-End

A simple system consisting of a‘ pipe 5000 feet long and 30
inches in diameter comected to a constant head tank at one end and
a dead-end at the other end was selected for initial study. The
system was excited at the dead-end by a lcvn.gitfldinal compression seismic
wave with a velocity ar;xplitude of 1-ft/s. and an angle of propagation,
6', with respect to the longitudinal axis of the pipe. Figure 5.1
shows the sketch for this piping network. The pipe was assumed to be
buried in the ground and to have no slippage between the pipe wall

and the ground. The dead-end comnection was assumed to have the same
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. - CONSTANT
' HEAD
TANK

5000' - 30" 4

Figure 5.1 Schematic Diagram for a Dead-End Connection Showing the
Direction of Seismic Excitation



velocity component as the ground motion parallel to the longitudinal
axis of the pipe. Therefore, the motion of the liquid particles

in contact with the dead-end was the same as the motion of the dead-

end cormection. As an approximation the transient seismic ground motion
~was replaced with a steady oscillatory flow through the cross-

sectional area of the pipe at the dead-end with a velocity amplitude
equal to the camponent of the ground motion velocity parallel to the

longitudinal- axis of the pipe as shown below.

Q = Vg ACos(8)el¥t | (5-1)
In order to obtain a good approximation of the effects of the |
linearized friction term, the 5000-foot length was divided into ten
equal sections (as discussed in Chapter IV) and the system defined as
an 1ll-node piping network. The amplitude of the steady oscillatory
head at node 11 was zero due to the constant head tark, and at node 1,
the steady oscillatory flow amplitude calculated by equation 5-1, was
4.909Cos(8) ft/s. The resonance frequency of the system was %%§.=
.9425 rad/s. For these boundary conditions the following tests were
performed: a) for a constant angle of wave propagation, 6 = 0, and
pipe friction factors of, 0.02, 0.05, 0.10, 0.20, and non-dimensional
frequencies of 0.5 to'3.5 with intervals of O.l; b) for 6 = 0 to 90° |
in intervals of 15°, pipe friction factors of, 0.02, 0.05, 0.10, 0.20,
and non-dimensional fréqﬁencies of, 0.5 to 3.0 with intervals of

0.5. The results for tests (a) are presented in Figures 5.2 to 5.5

using open circles while the results obtained by the method of
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characteristics for the same tests are shown in the same figures
using solid circles. Comparing the results, good agreement for Fhe
resonance andmanti-resonancg frequencies are exhibited while the:e
is considerable differences at values between these two frequencies,
.and these differences are larger as the peaks get sharper, i.e. as
the pipe friction factor gets smalier. This is expected since the
method of charicteristics gives the maximun overpressure in either
steédyvdééiiiatory flow or for the transient case. The results for
tests (b) are presented in TFigures 5.6 to 5.9 employing open symbols,
while solid symbols show the results obtained by the method of
characteristics for the same boundary conditions. The resﬁlts
.obtained by both methods for the frequencies of 0.5 and 2.0 are very
similar and are  shown with open circles. Comparing the results of
tests (b), considerable differences can be observed between the results
of the two methods for friction faétors other than 0.1. That is
because the method of calculating the linearized friction term
contained a correction factor which was chosen to make the methods
agree at a friction factor of 0.1 (as discussed in Chapter IV). To
minimize these differences, the method described in Appendix F was
developed. Also slight differences can be observed between the
results of the two methods as the angle of wave propagation becomes

larger.

Elbow Connection

The elbow conmnection was modeled by a 90° elbow comecting two
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pipes which were terminated at the other ends by two constant head
tanks. The length and the diameter of one pipe was kept fixed at
5000 feet and 30 inches, respectively. The length and the diameter
of the'secondwpipe was varied as shown by the four different piping
» networks in Figures 5.10 to 5.13. The elbow comnection was assumed
to have the same effect as the dead~end comnection in each of the
pipes except that flow could occur between the two pipes. With this
assumpti@n,«eqﬁatien 5-1 was nbdifiea for én elbow connection as
follows: o

Q = Vg [A7Cos(8)+AySin(e) etV | (5-2)
Each pipe length was divided into 5 equal sections to define an
1l-node piping network. For a pipe friction factor of 0.1, four groups
of tests were performed for thé frequency ranges of 0.5 to 3.0, with
intervals of 0.5, and angles of wave propagation ranging from 0° to
1809, with intervals of 15° as follows: a) pipe (2) was chosen to be
the same lengﬁh and diameter as pipe (1); b) the length of pipe (2)
was maintained at 5000 feet and its diameter was chosen to be 15 inches;
c) pipe (2) was chosen to be 4000 feet long and 30 inches in diameter;
d) the diameter of pipe (2) was maintained at 30 inches and its length
changed to 2500 feet. Figuwres 5.14 to 5.17 show the results of tests®
(a) through tests (d); respectively using open symbols. Solid symbols
show the results obtained by the method ¢f characteristics. Open
triangles in Figures 5.14 and 5.15 show the results obtained by both
nﬁthods.for frequencies of 0.5 and 2.0. The two methods exhibit the

same characteristics as they did with the dead-end commection. That
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Figure 5.10. Schematic Diagram Showing the Piping Network used
for Tests (a) of the Elbow Connection.
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Figure 5.11. Schematic Diagram Showing the Piping Network used
’ for Tests (b) of the Elbow Comnection.
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Figuré 5.12. Schematic Diagram Showing the Piping Network Used for
Tests (c¢) of the Elbow Comnection.
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Figure 5.13. Schematic Diagram Showing the Piping Network Used for
Tests (d) of the Elbow Comnection.
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is, the results exhibit good agreement for resonance and anti-
resonance frequencies and differ at other frequencies for which the

steady response would be less than the transient response.

Tee Comnection

P

A tee comnection was modeled by téree pipes 5000 feet long
each comnected to constant head tanks at one end and to a tee
conneqtiqnfat‘ﬁhe other end. The diameter of the pipes were varied,
as shown in Figures 5.18 to 5.20, to define three piping networks for
the study of this commection. The procedure was employed that was used
for the modeling of the elbow. Equation 5-2 was modified as

| Q=Vg [(AB-AI)COS(6)+A25in(6>] elut | (5-3)
for this study. Each pipe length was divided into 5 equal sections
to define aﬁi6;ﬁode piping network. For a pipe friction factor of
0.1, three groups of tests were performed iﬁ the frequency ranges or
0.5 to 3.0, with intervals of 0.5, and angles of wave prépagation
fran O° to 90°, with intervals of 15°, as follcws:' a) the diameter
of all pipes were chosen to be 30 inches; b) the diameter of pipe
(2) was chosen to be 20 inches, while the diameters of the other
two pipeé were maintained at 30 inches; ¢) pipe (1) was chosen to be
inches. Figures 5.21 to 5.23 show the results of tests (a) through
tests (c), respectively, using open symbols. Solid symbols show

the results obtained by the method of characteristics. Open circles
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Figure 5.'18. Schematic Diagram Showing the Piping Network Used for
Tests (a) of the Tee Comnection.
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Figure 5.19. Schematic Diagram Showing the Piping Network Used for
Tests (b) of the Tee Connection.
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Figure 5.20. Schematic Diagram Showing the Piping Network Used for

Tests (c¢) of the Tee Comnection.
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show the results obtained by both methods for frequencies of 0.5
and 2.0. The two methods agree about as well as the results agreed

for the elbow comection.

Orifice Commection

A pipe 7500 feet long and 30 inches in diameter was cormected
to a constant Qead tank at each end with a one inch thick orifice
located 2500 feet from one tank; and excited at the location of
the orifice by a longitudinal compression seismic wave parallel to
the axis of the pipe with a velocity amplitude of 1 ft/sec. Figure 5.24
shows .the sketch for this piping network. A model similar to that for
the dead-end was used, except that the inside area of the>brifice
was subtracted from the total érea. The orifice comection was also
modeled to have compression effect on one side and an expansidn effect
on the other side. Incorporating these-considerations into those made
for the dead-end commection, equation 5-1 was modified for an orifice
connectioh as ‘

Q = Vg(a-A,)Cos(g)etot (5-4)
for the compression side of the orifice and the same equation with a
negative sign for the expansion side. FigurewS.ZS shows a sketch of R
the model for the briéice where the lengthr 1, is one inch. The
piping network shown in Figure 5.25 was analyzed for different
ranges of frequency and orifice diameter (d,). The results showed
zero head amplitude aqug the entire network for all cases, which

means that the orifice has no effect on the piping network during a
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Figure 5.24. Schematic Diagram for the Orifice Connection Showing the

Direction of the Seismic Excitation.
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' Cormmection Shown in Tigure 5.24.



49

seismic disturbance. This method did not include pressure drop across
the orifice; therefore the inflow at one side was cancelled by the
outflow at the other side of the orifice. Then a new model was
created which, would account _for the pressure drop across the orifice.
This modeling was to replace the orifice with a pipe segment of the
same diameter and a lengtﬁ selected to have the same frictional effect
as the orifice. Referring to Appendix H, the lengths of these pipe
segments, 1, for the 5", 10", 15", and 20" diameter grifices»are
ll.é',-éé:l;, 31.5:, and 35.9', respectively, for a pipe friction
factor of 0.1. With this assumption, the above piping network was
analyzed for the orifice diameters of 5", iO”, 15", and 20" with
excitation non-dimensional frequency ranges of 0.3 to 3.0, with
intervals of 0.1. Table 5.1 shows the results of these tests
including results of the method of characteristics for the same boundary
conditions. Comparing the results, the following can be observéd:
1) results of the steady oscillatory method are much less than the
results of the method of characteristics; 2) the maximum head responses
for the method of characteristics are at a non—dimehsional excitation
frequency of 1.0, while for the steady oscillatory method they are at
frequencies between 1.4 and 1.5; 3) for the method of characteristicsh
head increases as the orifice diametér increased, while for the steady
oscillatory method it is in reve£§; order. These differences may
result because nexinmmbvélues are obtained throughout as transients

rather than at longer times which would correspond to the steady

oscillatory flow model. ™~ -
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S.0.M. = STEADY OSCILIATORY METHOD -
M.0.C. = METHOD OF CHARACTERISTICS
dO
5" 10" 15" 20"
FRE-
QUENCY | S.0.M. | M.0.C. { S.O.M. | M.O.C. | S.0.M. I M.0.C. | S.0.M. | K.0.C.
0.3 0.18 0.02 0.01 0.00
0.4 0.19 1.20 0.02 0.70 0.01 0.70 0.00 0.70
8.5 0.20 1.30 0.02 0.85 0.01 0.00 0.85
0.6 0.21 0.02 1.05 0.01 1.10 0.01 1.05
0.7 0.22 1.75 0.03 1.10 0.01 1.15 0.01 1.15
0.8 0.23 2.55 0.03 1.60 0.02 1.70 0.01 1.65
0.9 0.25 3.35 0.04 2.60 0.02 2.65 0.01 2.65
1.0 0.28 3.85 0.05 4.30 0.02 4.60 0.01 4.65
1.1 0351 2.70 0.06 3.00 0.03 2.60 |- 0.01 | 2.860
1.2 0.50 2.40 0.08 1.80 0.04 1.80 0.02 1.80
1.3 0.67 1 0.14 1.50 0.07 1.40 0.03 1.50
1.4 1.00 2.00 0.36 1.40 0.16 1.40 0.07 1.45
1.5 0.96 0.87 0.73 0.54
1.6 0.49 0.22 0.13 0.06
1.7 - 0.37 0.14 0.08 0.04
1.8 0.31 0.10 0.06 n.03
1.9 0.28 0.09 0.05 0.02
2.0 0.26 1 0.08 : 0.04 0.02
2.1 0.26 0.08 0.04 0.02
2.2 | 0.27 ] 0.08 0.04 0.02
2.3 0.29 0.09 0.05 0.02
2.4 0.34 0.10 0.05 0.02
2.5 0.40 0.11 0.06 0.03
2.6 0.53 0.14 0.07 0.03
2.7 0.75 0.20 0.10 0.05
2.8 1.09 0.2 0.16 0.07
2.9 1.43 1.14 0.43 0.17
3.0 0.97 0.88 0.75 0.55

Table 5.1. Non-Dimensional Head Response as a Function of Non—Dimer1ion§“al
Frequency for the Tests of Orifice Conmnection by Steady
Oscillatory Method and- Method of Characteristics.



Conclusions

A one-dimensional steady oscillatory method of analysis of
hydraulic transients was employed to develop an economical, powerful
tool (a computer program for analyzing the piping netwérks subject

) to steady oscillatory excitations) for piping designers who wish to
design pipelines for earthquake zones. The use of this tool requires

. . * . . .
consideration of earthquake characteristics such as ground motion

velécif&, directio% of wave propagation; frequency ofnthe ground
motion, etc. as well as an understanding of the model which converts
the geometrical effects of junctions in thé piping networks into
excitation sources.

In this work, a model is developed to convert geometrical
effects into excitation flow sources for the following junctions of
piping networks: 1) dead-end, 2) 90° elbow, 3) tee, 4) orifice. This
model has been verified for dead-end, elbow, and tee commections at
resonant frequencies by comparison with the method of characteristics
model, developed by Padron [6], which was in twumn verified by experi-
mental data obtained by Wood and Chao [8], and an energy analysis
at resonance. Results of this model were considerably lower than the

X

results obtained by the method of characteristics model at off-resonant
frequencies. At these frequencies the maximum response occurs during
the transient state. Since the frequency of the ground motion is a

spectrum instead of a single frequency, the piping designer would

always consider the worst case which 1s resonance.
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The head response amplitudes calculated by this method are,
for certain conditions, higher than the difference between the liquid
steady head and the evaporation head. Colum separation can result,
therefore extra damping in the system and lower head response would
be expected. "Since larger head responses would be calculated than
~would be experienced, designers could use Fhis method and expect an
additional unknown factor of safety.

The megpod developed in this study is capable of handling
single,fzequency excitations only. Conventional methods of linear
superposition would apply when the system could be treated as
approximately linear. )

The effects of the steady oscillatory flow component on the
linearized fluid friction term were neglected by Streeter and Wylie
[7]. A model of this effect wéé included in calculations of this study
by two different methods presented in Chapter IV and Appendix F. The
results of the method described in Chapter IV depend on the pipe
friction factof and frequency harmonic number. This method is a good
approximation of steady oscillatory flow affects for the first.harmonic
frequency and a pipe friction factor of 0.1. The result of the method
described in Appendix F is approximately independent of the frequency
harmonics number and the pipe friction {actor.” The method described 5,
in Appendi% F has been verified by_the wethod of characteristics for
friction factors ranging from 0.02 to 0.20 and is expected to give
good approximations for any fruction factor.

An excitation velocity amplitude of 1 ft/s. was chosen for
all cases of this study:‘ Slight differences were noted between the

results of the steady oscillatory method and the method of character-
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istics as the angle of wave propagation was increased, which corres-
ponds to lower excitation velocities.  This result may indicate that-
there may be considerable difference between the results of the two

methods for higher excitation velocities.
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APPENDIX A
CONTINUITY EQUATION

In this Appendix, the continuity equation 2-1 is expanded
after Streeter and Wylie [7]. Small terms are neglected to form a

suitable equation for slightly deformable horizontal pipes.

3Qulgy + 20X o (2-1)

Expand::ng this equation and dividing by pAdx, gives

Q 1239, 104,1 Nx+lg%=0,
o

cA3x Adx ATt dx ot
The term 8x is a function of time only. Replacing the partial
derivative of &x with its total derivative, and rearranging, the

following results.

Loydo + 3p) 4 Y(2A L a(VA), , 1 dex _
sV tse tElsE T T Y a0 ¢

Expanding the term Qg% and using V = %?é., the following equation
results.
Tedx 9p + 30y 4 L(dx 9A 4 9Ay 4 0V 4 1 déx = g (A-1)

pdt 3x 3t A dt ox ot st & dt

Using the definition of the total derivative, that is 32 + 9X 3o _

ot dt ox
g%’ for the first term and '3‘/% + dafx g.f‘: = gfé_, for the second term of the

equation A-1, the foilowing equation results.

Ldo s Ldayavy 1 dix - o (8-2)
pdt Adt st 3dx dt 0
The bulk compressibility modulus K is defined as

w - dp/de
~ dp/edt’ -

Using this definition, the first term of equation A-2 becomes

35
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1dP
dc ~ Kdt - § (4-3)

detexrmined.

1 . _
N Ty S A ) (A-0)

%2, 1s the lateral strain for the pipe and defined as

£, = %(Gz'ufh) ' (A-5)
where E is th® bulk modulus of elasticity; o2 is the lateral stress;
olnié Ehé‘&xial sEress; and u is the Poisson ratio of the pipe.

The third term of equation A-2 may be expressed as

1dsx 1 d o di
ox dt  &x dt ! dt (A-6)

where £; is the axial strain of the pipe and is defined as

6 = Lo, . a-7)
Substituting definitions A-5 and A-7 into expressions A-4 and A-6,
respectibely, then substituting the resulting equations and equa-
tion A-3 into equation A-2 and rearranging, the following equation
results:

1aP 1oy doo 4 (qopyqdor 48V - )
7 aEw+ E[(Z W It + (1-2))] t + o 0 (A-8)

Referring to Figure A.2, the axial and lateral stresses are written

kS

as
_F . B
g, T =— and
! nDe »
- F,
02 &
2e6x

respectively, where F, is 2D2P and ¥, is PDéx. Substituting for F,
and F» into the above equations and taking their time derivative,

the following relations result:




Figure A.l.

Cross Sectional View of a Simple
Pipe Showing the Lateral Expansion.

57
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Figure A.Z. Sectional View of a Simple Pipe.
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do, _ D dP
dt ‘e dt
do2 _ D dP
dt  Ze dt

Substituting these relations into equation A-8, rearranging
and collecting like terms, the following equation results:

W oo 1dp KD,5 7 _
&t EG-wl=o0 (A-9)

Letting (.Z - 1) be equal to Cp, which depends only on the type of

supporg_oﬁ_thé pipe, and by défining the acoustic velocity, a, as

{ = - ,

l+§201
Ee
and rearranging, equation A-9 can be written as

o, 1 _
K+"&§§% 0.

Using V = g.and writing the total derivative gg.in terms of its
partial derivatives, multiplying by A and rearranging,.the following
equation is obtained:

Q4 A 9Py A P BA
% T rar st T Var o T T O

The rate of change of pressure and area with respect to position is
very small in comparison with the time rate of change of pressure and
=z \

position rate of Chapge of flow. Neglecting these small terms, the

following equation can be writfen:

N+ A P g
ax pas at

The time rate of change of p is very small and can be treated as a

: ing this constant, and using ¥ = - the followi
constant. Employing this constant, and using : o e following
equation results:
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9Q 4+ gA 3H _ '
ik T (A-10)

Q and H in the above equation are the instantaneous value of the flow
and pressure-head. They can be expressed in terms of an average com-
ponent and a fluctuating tomponent by

Q=0+q andH=H+h'.
Substituting these definitions into equ;tion A-10, the following

equation results:
-

. R Ic Y-\ QU 4) S
X X a? 3t a? ot
The rate of éhange of the average values, ”%Q and %%}" are small in
- x .
comparison to the change in the fluctuating components. Neglecting

these small terms, the following equation results,

3q' 4 gAah' _ | 11
% Tarse O (a-11)

which is the continuity equation for a slightly deformable horizon-

tal pipe.



APPENDIX B
MOMENTUM EQUATION

In this Appendix, after the Streeter and Wylie [7], the
momentum equation 2-3 is applied to a slightly deformable horizontal

pipe, and after neglecting small -terms, an approximation is obtained.

- 3(PA) ¢ _ = o8x(A + 0A §xydV (2-3)
e Sx~TomDSX pé#( b -7)dt

Eipaﬁdiﬁg the pafiial derivative, §%E§l” and dividing the equation
X
by &x, the following equation is obtained:

AP 4+ P& 4 ¢ D + padV 4 08X 2AdV - g
% ox dt 2 9x dt

The position rate of change of area is small in comparison to the
other terms. Neglecting these small terms, the following equation

is obtained:

Aax TonD DAEE 0 (B-1)

The shear stress 1o at the wall of the pipe can be expressed as

To = 9§Yivwher¢ f is the friction factor of the pipe. Substituting
this expression into equation B-1 and dividing equation‘by pgh, the
following equation is obtained:

1 9P, £V2 . ldv _
Eaw b ga 0L :

Density changes very little compared with pressure and therefore is

treated as a constant. Taking density into the differential and

using H = Eg” the following equation is obtained:
9] -
oH , V2 | 1 av _
w Jptga -

61



62

The time rate of change of area is small in comparison to the change
in head or velocity, and can be treated as a constant. Using V = 9,
the following equation is obtained:

H_ f 1 49 _ (B-2)
%§+.. gDA2+§AT £ 0

1f the special case for laminar flow is desired, the friction factor
f can be expressed as

£ = §_li = 644V
T |
and by substituting this expressibn into the equation B-2, the
following momentum equation for laminar flow through a slightly

deformable horizontal pipe results:

aH |, 32 1 3Q _
AR tER O ' (B-3)

The instantaneous values of head H, and flow Q, can be expressed

in terms of an average component and a fluctuating component as
H=H+n' andQ———Q'fq'. |

Substituting these definitions into equations B-2 and B-3, the

equation for laminar flow is

ofl L ah' 4 320 @q") 1 aQ , aq'y -
IxX 9% gAD2 G +i)t) 0

AGe (3-8
and the -equation for turbulent flow is similarly
oH L oh' L fF@gh? . 1 3G, sq’y -
Tt o + gf\j(?}}; + a—g—\ = 0. (B-5)

The time rate of change of average flow is small in comparison to
the other terms and can be neglected. Assuming the values of the

position rate of change of average heads to be 9& = - f_QZ £
: & 9X gDA2 °r

turbulent flow and ‘5_2 = *é—;%% for laminar flow, equations B-4 and B-5
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can be written in the form of B-6 and B-7 respectively.

L

9% gA 3t (B-6)
oh' . fQ .« fq'? 1 5q" .
e tmrtagmar T “(B-7)
To have a linear differential equation, the term ZEI—')Z;— must be

linearized in equation B-7. By defining the friction term for tur-

bulent flow as

= .f_Q:_— - .
R eEr L \ . (B-8)
and the friction term for laminar flow as
R = 32\)
gAD? (B-9)

both equations B-6 and B-7 can then be written in a linear form

gh'! 41 39" Ry =
X gA 3t Rq 0

(B-10)
which is the momentum equation for flow through a slightly deformable

horizontal pipe.



APPENDIX C
STEADY OSCILLATORY FLOW EQUATIONS

In"this Appendix, the momentum and continuity equations de-
rived in Appendixes A and B for a slightly deformable horizontal
pipe are used to find solutions ‘for steady oscillatory flow after

Streeter and Wylie (71.

—-29' L gA-ah' _ . - '
% af ot 0 (2-2)

ah' ¢ 1 3q’ -
ax+gAat+Rq 0

(2-4)
Taking partial derivatives of equation 2-2 and 2-4 with respect to
the position x, and with respect to time t, the following equations

are obtained:

37" 4 gA 37h _
ax + a? 9xat 0

(1)
SetrEi-o (C-2)
e Lo

Substituting equations 2-2 and C-Z into equa;:ion C-3 and rearranging\,
the following equation is obtained:

32h' _ 1 3%h' | gAR 3h'
o’ aZ 3t2 + %ﬁ 3t - (C-5)

Substituting equation C-1 into equation C-4, multiplying by g%, and

reafranging, the following equation is obtained:

N Sl 69’
3x aZ 5t +g§§_8t (C-6)

64
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which is identical in form with equation C-5. A separation of
variables teclmique can be used to solve differential equation C-5
or C-6, which assumes

h' = X(X)T(t)
for equation C-5, where X is a function of position only and T is a
function of time only. Taking the first and second derivatives of
this assumed solution with respect to t and with respect to x, the

following equations are obtained:

oh' T o

.3t dt. . . : (C-8)
a%h' _ XclzT
3t2 at? (C-9)
sh' _ ~dX
IX Tgi (C-10)
2%h' _ —d%X
. ax o (C-11)

Substituting équations C-8, C-9 and C-11 into equation C-5 and

dividing the equation by TX, the following equation results:

% 322( = a}T ?1:1:E + Bt S—? =Y (C-12)
Equation C-12 is equated to a constant because each side of this
equation can vary independently of the other side. The constant Y,
is the propagation constant and is equal to (a + iB) which will be
defined later. To find this constant Y, the solution fér T can be ™
restricted to the stéady oscillatory case, by assuming a particular
solution for T as a harmonic oscillation. The scolution can then be
expressed as

T = C elwt (c-13)

where w is the angulaf frequency. Taking the first and second time
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derivatives of this expression, the following equations are obtained:

dT _ cypelot
a - e (C-14)

d*T _ _~2 int
e - We (C-15)

Substituting ‘equations C-14 and C-15 into equation C-12 and solving

- for y?, the following equation is obtained:

y2 = ggﬂ(-§£+ i R)

Referrlng to the Figure C.1, v? can be expressed as follows

&i‘—\/—TfRz el

- Taking the square root of this equation, the following equation is

obtained:

2 % e
= (a + iB) = ,/ié‘i[(g—A» +R2J el

Using the defiriition of exponential functions, elf— can be defined

as, Cos(?L) +—181n(2L) or by writing in terms of 6., Figure C.1,
01

elr = Cos(z-- Z—J + lSln( 2—9
or
s & 6
ez = Sini_+ iCosz-. (C-17)

Referring to the Figure C.1, 6, can be defined as follows:

= tan“lHAR

0z = W - (C'LB)

Substituting equation C-18 into.equation G-17 and then the result ob-
tained equation into equation C-16, separating the real and the imaginary

parts of the resulting equation, the value of ¢ and 8 can be defined as

j*
it

[k__)~+ R” ] : Sin (.?ét:atrfx Bgé) (C-19)

/jgw “1ReAY
> {FéZ? + R ] Cos(l tan ; , (C-20)

w
i
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Figure C.1. Axis of Comptex Variables.

Jom—  REAL
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where o and 8 are always real, positive numbers. To find the solutions
for the oscillatory head and flow, the left side of equation C-12
can be developed as

&x
dxz2

-X? =0
for which the solution for X, is '

X=Cre'™ + Ce* _ - (C-21)
where C; and C, are the constants of integration. Sﬁbstitutihg
equations C-21 and C-13 into equation C-7 and combining the constants,
the following equation is obtained:

h' = el0t(c,eY* + Cre7¥) | (C-22)
Taking the position derivative of the above equation and substituting
into equatiens-2-2 and 2-4, then integrating and solving for q', the
foll;wing equation is obtained: -

q' = gi%%eiwt(CerX ~ C2e V%) (C-23)
The fluctuating head, h', and the fluctuating flow, q', are functions
of t and x, and can be expressed as

h'(x,t) = HGx) ™"
and

q'(x,t) = Q(x) et |
following equations are obtained:

H(x)

Qx)

il

CieY® + Cee™YX (C-24)

gé‘(';-(CIEﬂ - Cae” V%) (C-25)
ia%y
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The ratio of the fluctuating head, h', over the fluctuating flow, q',

is defined to be hydraulic impedance, Z(x),

— h' — ya2 CleYX + CQE YX
Z(}r) = = ]
:1 gw C;e’“ - Cze Y (C—26)

2
where the term Y&
1gAw

, depends. upon the physical properties of the pipe

and is defined to be characteristic impedance, Zc.

. 2 .
Zc=l‘ii__=_§_.(5 ~ da)

ighn ghuw ' (C-27)
Using definitiop C-27 in equation C-25, the following equation results.
QG - LG - ey :  (c-28)

Equations C-24 and C-28 are applied to a segment of pipe shown in
Figure 2.3 in order to evaluate the integration constants. The
boundafy conditions at X = 0, are

HO)elwt = Hy and Q(0)e™t = g
where subscripts R stands for receiving end of the pipe and subscript
S refers to the sending end. Applying these boundary conditions to
equations C-24 and C-28, the constants can be determined as follows:
%(HR - 2cQg)
Lt + 2eQg)

Substituting the values of the above constants into the equations C-24

i

Ci.

It

C

and C-28 and rearranging, the following equations are obtained:

K

H(x) = HpCoshyx - QpZcSinhyx (C-29)
QG = - ;—%—Sinhyx + Qgloshyx (C-30)

Using the other boundary conditions at x = L, where
S 3

H(L)elwt = Hg and QL)yelwt = Q

then the following equétions are obtained for Figure 2.3.
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HpCoshyL - QpZcSinivL (C-31)

HS =
H

Qg = - —SSinhyL + QgloshyL (C-32)
Zc

If the solutions for HR and Qg are desired, then equations C-31 and
C-32 can be cambined and rearranged to give the following equations:
Hy = HsCoshyL + ZcQSSinhyL (C-33)

Q = ;_SC.SinhyL +Qgostyl - (C-54)



APPENDIX D
MATRIX GENERATION

" In this Appendix, equations 3-10 and 3-11, obtained in Chapter

.+ III, are applied .to each non-boundary node of a-piping network to derive

the head-flow solutions for this piping network in the form of simul-
taneous equations. This solution is then presented in a matrix
repres.entat-ionr for-general piping nefworks. The piping network
adopted for this derivation is shown in Figure D.1. Two flow
excitation sources are applied to. the node numbers 1 and 7, and two
head excitation sources are applied to the node numbers 3 and 5 of

this piping network.

Simultaneous Equations

Equations 3-10 and 3-11 are applied to the non-boundary node
nunbers 1, 2, 4, 6 and 7 of the piping network shown in FigureD.1
and after rearranging, the following ten simultaneous equations are
obtained:

[(YR) 12t (YR) 137 (YR) 14) (HR) 1 - [ (YD) 12+ (YD 137 (Y 14 B 1

(XR) 12.(HR) 2- (K1) 12 (HD) 2+ (XR) 14 (HR) 4 (RD) 14CHD) 4 =

[ 13 (R 3- (XD 13 (B 3~QR) 1] oD

[ (YD) 12+ 13+(YD) 14] (HR) 1+ (YR) 127 (YR) 13+ (YR) 14] (HD) 1+

(Xp) 12 HR) o+ R) 12 (B o+ XD 14 HR) 4+ (R 14 Hp) 4 =
- XD 13 Hp) g+ X 13(HR) 3H(@) ] (D-2)

/1



Figure D.1.

Schematic Diagram of a Piping Network used to obrain a
General lMatrix Solution to Piping Networks.



73

(¥g) 12 (HR) 1- (K1) 12 (H1) 1+ (YR) 12+ (¥R) 247+ (¥R) 25] (HR) 2-
LY 12+ (YD) 24+ (YD 251 H) 2+ (RR) 24 (BR) 4- (XD 24 (Hp) 4, =
-1 (XR) 25 (HR)‘S— (XI) 25 (HI)S] (D-3)

- Xp12WRI1HER) 12(H1>1+[<Y1>12+<¥1>24+<Y1)251 (Hgyot
[(Yg) 12+ (YR) 24 (¥R) 25] (Hp) ot (R 24 (BRI 4+ (XR) 24 (Hy) 4, =
-1 (XR) 25 <HI> 5+(XI) 25 (HR) 5] (D-4)

R 4R 1 (D) 14, (B 1+ (RR) 94, () 5= (R g () 5 +

LR 147 R) 20t (YR) 46+ VR) 47) (ip) 4~ LD 17 (Y gy F

(YD 46+ (V) 471 ) HXR) 46 p) 6= XD 46 (Bp) g XR) 47 (Bp) 7 -
Xp47HP7 =0 _ (D-5)

(X1) 14 (HR) 1+ (Xg) 14 (H) 1+(Xp) 04 () o+ (XR) 94, (Hp) p +

LD 14+ (YD) 94 (VD 46 HY D 47 (i) 4+ [ ()14 (V) 5+ (V) g +
(YR)47) (B (&) 4,6 (R) 6+ () 46 () 6+ (Xp) 47 (HR)7 + |
&Py ED7 =0 (D-6)

&R) 46 HRY 4~ &) 46 (B 4L YR) 36+ (YR) 46 (YR) 7] (Hpd g =
[(YD) 36+ (YD) 46t (Y1) 671 (HD) g+ (R 67 (HR) 7- (R g7 (Hp) 7 =
- (3g) 36 (HR) 3~ (X)) 36 (Hy 5] (-7

XD 46 HR) 4+ RR) 46 B2 4+ Y1) 56+ (1) 46+ (Yp) 67} (g +
[(YR) 36+ (YR 46t (YR) 671 (HD gH(XD 67 (HR) 7+ (3R g7 (HD) 7 =
- [ (3R) 36 (Hp) 4+ (X1) 36 (HR) 3] (D-8)

- Iy )~ )y Mt Gdgy (dg - (g7 (g +
[ R4t (RIs7H(R)67) ()7 -L (D)7t (Y ) 57+ (¥ gy ()7 =
L) 57 (s = () (Hp s - ()] - (D-9)
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) 47 (Bip) 4 Rp) 47 (B ) 7 () gH ) 7 (i) g
(YD 7057+ ) 67] (BRI 7+ (YR) 47+ (YR) 57+ (YR 671 (B 7 =
- () 57(Hp) 5+&p) 57 (Hr) 5~ Q) 7] (D-10)

Matrix Formation

The ten simultaneous equations, D-1 to D-10, indicated in
the preceding section, are writter'l in mat:fix form as shown in Figure
D.2. By inspécting this matrix, a general method can be deduced for
the construction of a particular matrix for any pipir;g network. These

equations are shown in Chapter III.

Ve
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APPENDIX E

LISTING OF COMPUTER PROGRAM

-



LO®FRUN #0673

20¢C
30C
40C
50C
60C
70C
80

S0

100 -

110
120
30
140
150
160
170
180
190
200
210¢
220C
230C
240C
250
260
270
280
290
300
310

320

330
340
350
360
370
380
390
400
410
420
439
440
450
460
470
489
450
500
510
520
530

77

/10804/Del"ps"

THIS PROGRAM CALCULATES THE HEAD AND FLOw

AMPLITUDES AND THEIR PHASE AMGLES WITH THE FIRST
ENTERED EXCITING SOURCE AT ANY DESIRED LOCATION

IN A

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

REAL+AA(4Q0041)/1640%0e/+UUX(501)/501%047/+CC4(20+20)

REAL

LARGE STEADY OSCILLATORY NETWORK GF PIPING.

PPX(501)/501%0e/+2TX{501)/501%0+/4P(20)/20%C s/
ZUX(50L)/501%0e/4XI(204201/400%0e/50GUS(20+20)
TET(201/720%0e/9Y1(20+20)/400%0e/ 4P (20)/720%0,/
WFI(20+20)/7400%0/+UR(20)720%0e/4+G1(20)720%04/
WFR(20420)/400%0e/ yHH(40) /4URDe/ sPR(20)/20%Qe/
XR120+20)/7400%06/4YR(20420)/400%0674CCL(E20+20Q)
AF (204201 /7400%04/+GAL20420)/400%04/+CC2(20+20)
WF (204207 /7400%04/4RP(204+20)/400%04/+CC3(20+20)
ZET(20+20)/76400%*0e/+CAAL204+20)/7400%0e/45CR{40)

L{20+20)/7400%0e/ 2R (20U+20)/400%Q,/

TDIMENSION NP(20520)/400%07 4WBAR(20420)/400%C e/
LOGICAL HEAV(20)/20%6F o/ +CONNI20420)/400%eF o/

20
30

40

50
60

READS AND PRINTS THE INPUT DATAs AND MAKE3 SOME

PRE~CALCULATIONS. (UPTO LINE NOe 1000)

READ{54470) AMUsRHO,,GG
WRITE (6476071 AMU+RHU GG
ANU=32+174*AMU/RHO
EPS=1.E-15 '

pY=3,

1415927

READ (543480 NeNCH KM
WRITE (6 7TOINsNCH KM
IFINCHsLTel! GO TO 3¢
O 20 I=1+NCH

READ (54,4801 J
WRITE(646T70)J
HEAD(U)=eTs

READ (54480 NFXeNSP

WRITE(6+78U)INFXWNSP
NREF==1
[FINFXeLEeO? GC TO 70

DO 60 I=1enFX

READ(S 4490l JyP () - A
HEAD{Jl=eTe

IF(Ie.
NREF=

KD=5

GTel) GO TO 40 _
J

PRUJI=p ()

G0 T 50
READ(54500) TET {J)
PRUJI=p L JI*CQASITET (4}
PICU)I=p LI RSINITET(U))
WRITE(647901 4P (U} 4 TET L)
CONT [ NUE



540
550
560
570
580
590
600
610
620
630 - 80
640 30
650
660
670 100
680
690 110
700
710
720
730
740
750-
760
770
780
790
800
810
820
830
840
850
860
870
880
890

900 120 RUIGUI=RPUIsJIRAF (4 J) *QU/ (PYXD)

910 130
920

930

940

950

960

970 140
980

990

1000
1010
1020
1030
1040 150
1050 160
1060C

O NFX=HNFX*NCH

IFINSPeE«Q) GC TO 110
CO 100 I=1sNSP
IFINREFeGT«0} GO TO 80
READ (545101 J,su

NREF=UJ

RAU=0e

KD=Q

GO TO 90

READ (545201 JoWyRAD
UR(J)=u*»C0s (RAL)
UI(J)=drgINIRAD)
WRITE(64B00) JeleRAD
CONTINUE

WRITE{6s66U)

MYT=Q

DO 140 MLKS] KM

READ(54530) I vJapl (Is J).DDUD,A.AF(IqJ),Np(x.J),qu
TWRITE(6sBL0I I sdel (IsJ) «DDODsASAF (1ed) sNP (I +d) +COM

UBAR(I,J)=DOM
CONNtIsJI=eTe
CONNTtJ 1 =CONNI(I U
Lde D)= (I 4d)

NP I I aNP (T J)

WHBAR (U 1) =UBART ,J)
U=DbDDLDL/ 12
ueus(IqJ)=UbAR(IQJ)’20-
UGUS Uy 1) sUWGUS(T,J)
UW=RGYS (] 4 J)

RP{I4J)=16e/ (PYRGQRDRRG)

RP(Jy[1=RP (T 4J)
AF (Js I =AF (I4J)
RE=4¢*QW/ (PYRD*ANY)

[IF{REeGT«2200s) GO TO 120

RUI4J)=8e%RP (] 4J)*aNU
GO 70 130

GAL]+J)=pYRGGHURC/ 4,
GAA(T U1 =GALT s J) /7 (A%A)
GA(J I =GA(T4U)

GAA T+ 1) =GAA T v )

R{JeI1=R(]4J)
MYT=MYTeNP (T J)
CONT INUE
ARITE(G6060)

READ (S 45401 LLLL +OMGHDOMG
WRITE(00320)LLLL'OM69UOMQ

[FIRDeLTe2?) GU TO 150
WRITE(G64680)NREF

GO TU 160

WRITE L6690 NREF
LIV=REAL (KLM)

78



79

1070C THIS DO=-LOCP "460", MAKES COMPLETE CALCULATION
1080C = AND PRINTS THE RESULTS FGR EACH FREQUENCY .
1090C »

1100 DO 460 MOG=1lsLLLL

1110 HUM=(0 s

1120 I1CC=0

1130 ICONT=0

1140 IF{MYTeGTeu) GC TO 170

115¢ WRITE(6+700) OMG

ll6u GO TO 180

1170 170 WRITE(6+710) OMG

1180 WRITE(6e720)

1190C }

"1200C : THIS DG=-LOQOP "190"s CALCULATES THE REAL AND TRE
1210C IMAGINARY PARTS OF X AND Y FOR THE LINE SEGMENTS IA
- 1220C THE NETWORK.

1230C

1240 180 DO 1390 I=2s+N

1250 DO 190 Jd=lsl=l .

12607 " T TIF(eNOTeCONNIIZJ)) GO TO 190

1270 AL=sL (s J)

1280 AR=R (I 4J}

1290 AGA=GA (] ,J)

1300 AGE=GAA (] +J)

1310 CALL X (AL vARVAGAsAGB+UMGC s C29C39C40C59C6’ZCRQZCI)
1320 - CCL(]l,J)=C

1330 CC2{lyJ)=C2

1340 CC3([yJ)=C3

1350 CCqilladl=Ca

1360 CCr{us1)=Cl

1370 CC2(usI?=C2

1380 CC3(Jsl)=C3

1390 CCallsl)=Cs

1400 DENOM= (ZCRR®2+Z2CI A% ) ® (C1AX2+C2%%2 ]

1410 XROI$J) =2 ({2CR*(1~2CI*C2) /DENOM

1420 XICI o J)=s(ZCR*¥C2+2CI*CY) / (=DENUM)

1430 YRUL o3 =(ZCI*C6~2CR*C5) /JUENOM

1440 YI(T I = (2CI*C5+2CR*Co) /DENOM

1450 XRCOJs I =xXRUL 4 J)

1460 X1 0Jel)l=xl4d)

1470 YROJy[IzYR(] 4 J)

1480 YTy Dd=Y[ (] 4J) _ N
1490 190 CONTIquE '
1500C N

1514C THIS DO UCP "240M AND DO-LUG0OP "250" U3E THE
1520C RESULTING EWUATIONS FKOM CHAUTER IT] AND BUILL THE
1530C AUGMENTED MATRIX.

1540C

1550 M=Q

1560 DO 240 I=14N

1570 ) IF(HEAB(I) ) GO TO 240 .

1580 M=M* - -

1590 SUMR=U0.



1600
1610 ~
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730 200
1740
1750
1760 210
1770
1780 220
1790 - -
1800 230
1810
1820
1830
1840
1850 240
1860
1870
1880
1890
1300 250
1910
1g20C
'1930C
194QC
1950C
1960
1870
1980
1690 -
2000
2010
2020 260
2030C
2040C
2050C
2060C
2070
2080
2090
2100
2110
2120

80

SUMI=0.
MM=0

CHH (M) 2SR ()

HH{M=1)==URI(])

DO 230 J=1sN

IF{leEWed) MMzMM+2

IF(]leEWeJ) GO TO 230

IF(HEAD(J}) GO TO 200

MM=MM+ 2

AA M MM) =XR (T 4J)

AA LMl s MMl 1 2XR (] sd)

AA M MMl ) =X (] 4J)

AA (Ml ¢y MMl =X [ (] 44}
IF{aNOTeCONNCLsJ)) GO TO 210
SUMR=SUMR*YR (I 4J)

SUMI=SUMI+YI(14J)
[IF(HEAD (J) e ANDeCONN(IsJ)) GO TO 220
GO TO 230

HH (M) 2HH (M) ¢ (XROL o J)XPT (J) ¢ XTI (Lo J) *PR(J))

HH (M 1) ZHH (M 1)+ (XR (T2 J) ¥PR(J) =XI (T s ) 4P (J))

CONTINUE

AAM=] 4M=1)=3UMR
AA (M=l ¢M)zeSUM]
AA {MyMal) =5UMI
CONTINUE

NN=2® (N=NFX)
NNN=NN*]

BO 250 I=1sNN
AALT o NNN) ==HH (])
CONTINUE

CALL MTIMVIAASNNGNNNI409SCR)

AFTER MATRIX ARE SOLVEDs THE DO=-LOGCP "26Q"
PLACES THE RESULTS INTC THEIR LOCATICNSe

MzQ

DO 260 I=1sN
IFHEAD(I}} GO TO 260
M=M+,

PRI =AA(M<]1 41NN

PIUI) =AA (MyNNN)

CONTINUE - b

LO-LOOP "300" CALCULATES THE HEAD AND FLOW
AMPLITUDES AND THEIR PHASE ANGLES FOR EACH NOLE.

DO 300 I=1l+N"

IF(ICCsLEeQ) WG TO 280
PLI)=SURTIPR([)%%x2+p] () *%2)
IFLABSI{PRIIN )Y eLELEPS) GO TO 270
TETCII=ATAN(PI (L) /7pRULI)

IF(PRITI) oL TeOeeANDePI () elTede) TET(I)=TET(])=PY



8L

2130 - IF(PRUI) el ToeOeeANDePI (I} oGTo0e!) TETIII=TET (L) *pPY
2140 GO TO 280 :

2150 270 IF(PI{I) eGTe0e) TET(I)=zPY/2,

2160 IFPIAI) el ToeUe) TET(I)=z=0e5%pY

2170 280 DO 300 J=1N

2180 IF(enOTeCONNIIsJ)} ) GO TO 300

2190 ARZPRIOJIRXR ] ¢ J)*PR(I]I%YR (] 4J)

2200 AISPICI)®YR(I «JI*PRULIXY]I (1 4U)

2210 WER(T yJI =PI JIRXI I JI+P1 1) XY ([4vJ)=AR

2220 WFT (L) ==XRUTeJ)*PI (U)X (] 4J) RPR(J) =AT

2230 UF (I3 JISSURTHIUFR (T3 J) ®%2+QF (] 4J)%%2)

2240 IF(ICCeLESD) GLC TO 300

2250 . IFCABSIUNFRUTWJ) ) o LECEPS) GG TO 290

2260 ZET(IoJ)-ATANthI(I1J)/UFR(I J1)

2270 DOM=ZET(I+4)

2280 IFINFRII vJ) oL TaOe s ANDeGFI ([ 9 ) oL Te0s)DCM=ECM-PY
2290 IFIUFRII4J) oLTe0eoAND UFI(I.J).GT Qe )DCM=DOM+PY
2300 ZET{1+J) =DM :

2310 - —-GO TO 300 ’

2320 290 IF(UFI(IsJ) eQGTe0e!) ZET(I4J)=PY/2.

2330 IF(OFI (I sJ) oL TeO0! ZET(]sJ)=wQe5%pPY

2340 300 CONTINUE

2350 IF(ICCLESY) GG TO 330

2360C

2370C LDO=LLOCF "320" PRINTS THE TABULATED REabLTa FOR
2380C THE NETWORK AT ONE FREUWUENCY.

2390C

2400 O 320 I=1lsnN

2410 NJ=0

2420 DO 320 J=1lsN

2430 IF (e dOToCONNLI ) GO TO 320

2440 [FINJeGT40) GO TO 310

2450 WRITECO o730 LaP L) s TETII) sJsQF (L aJ) s 2ZET (1)
2460 NJ=NJ*1

2470 - G0 TO 329

2480 310 WRITE(6s740)JsGF (] oJ) WZET(]4J)

2490 320 CONTINUE

2500 WRITE (6+550)

2510 330 NCH=0

2520C

2530C DO~ U0OP "440"

2540C CALCULATES THE FLOW AMPLITYUES AT THE CESIRED S,
2550C LOCATIAONS "IN THE NETWURK INORDER TO FIND {EW
2560C ABSOLUTE FLOWSs IF ICC=0 § OR

2570C CALCULATES THE FLOW AND HEAD AMPLITUDESs THEIR
2580C PHASE ANGLESe AND PRINTS THE RESULTS ON THE LINE
2590C SEGMENTSy [F ICC > 0

2600C

2610 SCOR=Q.

2620 DO 440 J=21¢

2630 DO 440 I=zlsd=l

2640 [F(eNUTeCONNTLWJ)) GO TO 440

2650

IFCAF (I sd) oLEeQe s ANDSICCaLECU) GO TU 440
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2660 - IF(NP(I+J)elEeQ) GU TO 390
2670 AD=REAL (NPT 4 J) +1)

2680 DL=L (I4J)7a0

2690 AL=0.

2700 MR=NP (4} *+2

2710 DO 350 NWP=1+MR

2720 AR=R (I 4+J}

2730 AGA=GA (] 4 J)

2740 AGB=GAA (T +J)

2750 0=0QMG .

2760  CALL X(ALYARSAGASAGBs0+C1leC2+C35Ca DML yOM2 sDM350Uita)
2770 Cl1=CCL (144}

~2780 Cle=CC2(I,J)

2790 C13=CC3(],J)

2800 Cle=CCa (I +J!

2810 Pl=pPRUJ]

2820 p2=pl(J)

2830 P3z=pR(LI

2840 . --P4=p (]9

2850 IF{ICCLESQ) GO TO 340
2860 CALL YYYY(PLlsP24P34P4+C1+C2eC3+C49C1LoCLl29C134C1L4%0
2870¢ DM3,DMG4yP54+2545)

2880C

2830 PPX (NNPI=PS

2900 ZTX(NNR)=25

2910 IF(PSeLEeHEM) GO TO 340
2920 HUM=p5

2930 IHU=]

2940 JHU=y

2950 ARU= AL

2960 340 CALL YYYY(Pl4P24P3,P6tsC4+C3+C2+CLsCLlL1aCLl2sCLl3¢CLlbs
2970¢ DM3 4DM4 W5 3264 [CC)

2980C

2990 GAX (NP ) =Us

3000 ZUX{NNP) =26

3010 AL=AL*OL

3020 350 CONTINUE

3030 IF(ICCaLE«Q) OC TO 390

3040 il1=1

3050 Jdi=J

3060 CNAASHP (T 4d) *] -
3070 IFINAASGTW1L) CO TU 36U - A\
3089 WRITE(64610)

3090 WRITE(S53503) (PPX(NNP) +NANP=1 v MR)

3100 WRITE 693700 (ZTXINNAT e NNP=] s MR)

3110 CALL PIPE(NAAsIILlsddle0e)

3120 WRITC (645807 {UUXINNP) s NNP= ] 4yMR)

3130 WRITE(64570) (ZUX(NNP) vHNNP=] 4 MR

31«40 GO TO <40

3150 360 WRITE(54610)

3160 - WRITE(64560) (PPXINNP! sNNP=1+11)

3170 WRITEL69570) (ZTX(NNPI Gy NNP=1s11)

3180 WRITE(695607 |
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3190 WRITE (695807 (WUXINNP) yNNP=1411)
3200 WRITE(645707 (ZUXINNP) ¢NNP=1411)
3210 MMA=22

3220 370 MAA=MMA=-10

3230 IFINAASLEMMA) GO TO 380

3240 WRITE(649600)

3250 WRITE(619620) (PPX(K) 4K=MAAWMMA) ¢ {ZTX (K) yK=MAA yMMA)
3260 WRITE(64630)

327Q WRITE(64620) (WUX(K) yKIMAAVMMAT 3 (ZUX (K) JK=MAA 4 MMA)
3280- © MMazMMA+] ] -

3290 GO TO 370

3300 380 WRITE(64600)

3310 WRITE(65640) (PPX (NNPJ) s NNP=MAA ¢ i1R)
3320 " WRITE (0496500 (ZTX (NNP )L s NNP=MAA sMR)
3330 NOPT=NAA=MAA*+L

3340 CALL PIPE(NOPTIIlsJdJlvla)

3350 WRITE(6+640) (WUX (NNP) s NNP=MAA +MR)
3360 WRITE(6+650) (ZLX (ANP) s NNPSMAA s MR)
2370 GO TO 449

3380 390 IF{WF(JsI)eGTeWF (I 4J)) GG TO 391
3390 WMAX=UF (] +J)

3400 WMIN=UF(Js1)

3410 GO TO 392

3420 391 WMAX=UF(J,1)

3430 UMIN=UWF (] 4J) .

3440 392 IFINP(IsJ)lelLEsQ) GO TO 410

3450 DO 400 NDO=lsMR

3460 IFCUUX INDO) e« GT e UMAX) UMAX=UGX (NDQ)
3470 IFHQWX INDO) e LTeWUMINIUMINZUULX (NDQ)

3480 400 CONTINUE
3490 410 UUsUBAR(I 3 J) +e 1926 (AMAXHAMIN)

3500 D224/ (PYRGGHXRP (] 4J) ) %%,25
3510 RE=4«®UUW/ (RPYRDEANY)

3520 IF(RE«GT 422002 GU TU 420
3530 RG=8*RP ([ 4J) *ANU

3540 G0 1O 430

3550 420 RGz=RP I JIRAF (] J)*QU/ (PY*D)
3560 430 UWGSzABSIUGUS (] +J)=00)

3570 [FUGSeGTee00l) NCH=NCH*]

358Q SCOR=SCOR*UGS

35990 TEGUSHT v J) = EGUS (T e d) +2.%00G) /3,
3600 WOUS s 1) sUGyUS T 4J) ‘ -
3610 RIT4UI=(RULsJI*2a*RUD 73,

3620 R(Jy1)=R(I9J) e -
3630 440 CONTINUE

3640C o -
3650C THIS PART UF THE PROGRAM CHECKS FOR THE
3660C ACCURACIES.

3670C

3680 ICONT=ICONT*]

369Q IF(ICCobTOOlAUC TQ 45Q

3700 SCOR=SCOR/DIV

3710 IF(NCH-LT-lnANDoSQUR.LT.}OOUS) ICC=1



3720
3730 450
3740
3750 460
3760C
3770 470
3780 480
3790 490
3800 500
3810- 510
3820 520
3830 530
3840 540
3850 550
3860 560
3870 570
3880 580
3490 590
3900 600
3910 610
3320 620
3930 630
3940 640
3950 650
3960 660
3970 670
3980¢b
3999C
400Q 680
401U -
4020C
4030 690
40400
4050C
4060 700
40700
40BQY
409Q¢
41000
4110
4120t
4130C
4140 710
41500
41600
41700
41800
4190%
4200C
4210 720
42200
42300
42400

FORMAT (1HL///21X s "FREWUENCY="4F6e3,"
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TGO TO 180

WRITE(64750) ICONT sHUM s AHU 3 THU § THU 3 JHG
OMG=0OMG+DOMG
CONTIHUE

FORMAT{SX4F1l0e7sFbe2sFbe3)

FORMATI(5Xs31[2)

FORMAT(5X3s12¢F10e3)

FORMAT (5XsF6s2)

FORMAT(5Xs[2+F10e6)
FORMAT(5X 3 123F1l0ebsFbe2)

FORMAT (5Xs2]2+FBel3F6623F5.0+F0e4s[34FL1046)
FORMAT(5Xs[342F10e 0) -

FORMAT (2 (" lwmmrmcecee e mc e e e Wy gMtnysy
FORMAT ("HD AMP 112(F8 341X))

FORMAT ("PH ANG"45X412 F5e244X))

FORMAT ("FwW AMP "le(F803le))

FORMAT (3X+"NODE("s]I24") "ell("O===z==zz"))
FORMAT (/7)) '

FORMAT (//77)

FORMAT(9X s L1 (FB8e3s1X}/11Xsl1(F54294X))
FORMAT(13Xel}l ("O==s==z==z=="))
FORMAT{9Xs12{(F8se3¢1X})

FORMAT (L1Xs12(F5¢264X))

FORMAT (2 (2UX ¢ " %" 430X " %" /))

FORMAT (20X e "*" 45X+ "CUNSTANT HEAD NODE NQe ="413+58%
g RN

FORMAT (///710Xs"ALL THE PHASE ANGLES ARE COMPARED"/
LOXe"TO THE HEAD AT NOCE NQ« "912)

FORMAT(//7/1C0X+"ALL THE PHASE ANGLES ARE COMPARED"/
10X+ "TO THE FLOW AT NUODE NOe "s12)

RAD/3EC" /67

mzw) /"t JODE ! HEAD ' PHASE ! FLOw TG !
)" FLOW ! PHASE !"/"! NO ! AMPLITUDE"
"L ANGLE P NODE NC ! AMPLITUDE ! ANGLE "/

" ! FEET ! RAD ! !oCuBI®
»"COFT/S 1 RAD 1M/ emeeeeees lemmoe= c————— e

~-‘|| ________ ")’IQ!")

K

FORMAT(141///21X9"FREUULNCY‘"oFO-Bv" RAD/3EC" 430X,

"NUTEI"/07("2") 49X s51"=") /" NQDE ! HEAD "
+"1  PHASE ! FLOW TG ! FLOW ! PHASE !"sl2x
s "UDEFINITIONS OF FLOw DIRECTIONS"/"! MQ Poooame
s"PLITUDE I ANGLE ! NULE 50 ! AMPLITUDE ! ANGL™
WME I 12X "MAY BE DIFFERENT 8Y OWE PI IAN")

FORMAT ("! ! FEET ! RAD ! ",
"l CUBIC ET/s ! RAD !"quXe"THt TABLE AT THE™

v"OLEFT AU THE"/2 (" e e mmee et s T e "

’ ---">o"!"»lzx."ulsTh15UTxau; PRINTED UELcw.
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4250 730 FURMAT(2("! ! ' R A
42600 "l "yl4" DM eFl0e39" T "uF 038" ! "el24v3Xy
42700 n! "’Elo“”" ! "7FOQ3$" !n/z(n!N’;x’n!n’lzx’n!n‘gx
42806 )’"Z",

4290C ’

4300 740 FORMAT (™! ! ! ! "ol
43100 3Xe"! "3ElJeas” ! "4F643," S R ! "
43200 )" Py X))

4330C

4340 750 FORMAT(//9Xs"Nue OF TRIAL = "4I3/9Xe"FLOW CIRECTICT
43506 "N emm—— >U/GX s "MAXIMUM HEAD AMPLITUCE RECCRCED
43600 v "= "9F9e3s™ FEET"/9X+"LOCATION OF MAX. HEAL: ",
43700 F7¢0¢" FEET FROM NODE("+124" ) ON LINE("412s"=",
438Q¢C 124" ¥/ 7710

4390C

4400 760 FORMAT(S58Xs" ({ INPUT DATA ))"/20Xs92("%") /20X s"#",
4410¢ l7X;:A550 VISCe = "oFlOeTe50X s "X /20X "% 31 TX s "SPE"
44200 v"Ce MASS = MsF6e2554X3" ¥ /20X " %" 326X2"G = "sF 643
44300 - - 54X, "R} - )

4440C

4450 770 FORMAT (20X +"*¥" +15Xs"NOe OF WODES = "y12+58Xe"%*"/20%
44600 +"* NOe OF CUNSTANT HEAD NCDES = ", 12958X "%/ 20X
44700 "ETGTX9"NOe OF LINE SEGMENTS = "412+58Xe"nn)

4480C

4490 780 FORMATI{20X+"*" 45X 4"NUe OF HEAD 0sCe NUCES = "412,
4500¢ SBX "X /20X " ®" s 5X 4 "NUe OF FLOW O5Ce NCDES = "412,
"510b SBX’"*") . .

4520C ‘

4530 790 FOBMAT(ZOXs"*"sQXQ"HEAU 0SCe NUODE NGe = "4]246X0
4540bh "HEAD AMP,. = "sFlUe3 96Xy "PHe AHGLE = "sF6e296X " %")
4550C

4560 B00 FORMAT(ZOXs"#" 39X s "FLUW USCe HIDE §0e = "eI2s0X
4570¢ "FLOW AMPe = "3F13.835X9"PHe ANGLE = "sFHe294Xe"%")
4580C '

4550 B10 FORMATI(20X "% L INE("4124"="y]2,")2 L3 sF6e094Xy
46000 DR O e 29X AT G F 50X e = 4 F bl saXa"NPI" g 1394X,
46100 "UBAR="4F1lOebs" *")

4620C .

4630 820 FORMAT(20Xs"*" 35X s "RUNNIMG FOR "s134" DIFFEREANT ",
46400 "FREWUENCIES, 15Te W= "4F11le794Xs"CW= "9Flie7s
46500 C3X AN/ 2(20X ¢ RN G QOX e RN/ ) G 20K e g2 (RN}

4660C -

4670 STOP

4o80 END



4690C
4700C
4710
4720
4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
43830
4840
4850
4860

4870 -

4880
4890
49Q0
4910
4920
4930
4940
4950
4360
4970
49380
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5189

- THIS SUBROUTINE INVEKRTS AND SOLVES THE MATRIXe

10

20

30

40

50

60
70
8Q

90
100

110

120

SUBROUTINE MTINVIAWNRARGINCARGIDIMyLABEL)
DIMENSION ACIDIMeNCARG) sLABEL {HRARG)
NREZNRARG

NC=NCARG

OO 10 Jl=1lsnR

LABEL ¢J1)=J1

DO 80 JLl=19NR

TEMP=0.0 .

DO 20 J2=J1NR
IFCABSIALJ29J1) ) oL TeTEMP) GO TU 20
TEMP=ABS (A(J24J1)7

[BIG=J2

CONTINUE

IF(IBIGeEWJLIIGO TO 40

DO 39 J2=1sNC

TEMP=A(J1l+d2)

TATIL e J2r=A(IBIG,U2)

ACIBIGyJ2ISTEMP

[=LABEL (U1)

LABEL (4L SLABEL(IBIG)
LABEL(IBIGI=]
TEMP=A(JLlsdl)
AtJlsdll=le0

DO 50 J2=1sNC
AlJLsJ2)=AlUL4J2)/TEMP
DO 70 J2=1sNR
[F{J2eEWWJL) GO TC 70
TEMP=A{(J24Jd1)
AlJ24J1)=20.0

DO 60 J43=1sNC .
A(JZsJB)=A(J2-J3)-TEMP*A(J1»J3X
CONTINUE

CONTINUE

N1=NR-1

LO 120 Jl=1lsnl

DO g0 J2=J1lsnR
IFILABEL (J2) eNEeJ1) GOC TU 90
IFUJ2eEWaJLl) GC TO 120

-G0 TO 100

CONTINUE . -

LO 110 J3=1NK

TEMP=A(J3,J1)
AlU3,d17=A0034J2) — 77
AtJ34J2)=2TEMP
LABEL (U2 =LABEL (UL
CONTINUE

RETURN

END

86
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5190C TTHIS SUBROUTINE CALCULATES THE CHARACTERISTIC

5200C IMPEDANCEs TRICONOMETRIC AND HYPERBOLIC FUNCTIONS
5210C

5220 SUBRQUTINE XCALsARsAsBsOMGyC19C24C35C4+4C59C642ZR 21}
5230 Blze5*ATAN(AR®A/OMG)

5240 HB2=SURT (B*IMGI * ( (OMGQ/A) ¥ %2+ AR¥AR) %, 25
5250 B3=SInN(Bl)

5260 B4=COS(B1)

5270 ALP=H2%83

5280- - HET=B2%B4 -

5290 ZR=BET/ (B#0OMG)

%300 ZI==~ALP/ (B2OMG)

5310 YY=EXP (ALP*AL)

5320 SINH=Z e5* (YYala/YY)

5330 COSH=e5* (YY+]4/YY)

5340 SI=SIN(BET*AL)

5350 CO=C3S(BET*®#AL)

5360 C1=SInNH®CO

5370 C2=CUSH*S]

5380 C3=5INH*SI

5390 C4=COSH*CU

5400 C5=COSH*SINH

5410 C6=CO*S1 -
5420 RETURN '

5430 - END
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544Q0C “THIS SUBROUTINE DRAWS THE PRUPER SIZE LINE SEGMENTS
5450C FOR SOME OF THE PRINT OUTS I DO=LO0P "440".
5460 SUBROUTINE PIPE(NsI+JsD)
5470C ‘

5480 CHARACTER®2 MI(56) |
5490 D0 5 Kz2449

5500 5 M(K)s"=z="n

5510 M(i)="Q="

5520 M(s)="=Q"

8530 . . M(s2)=m " .

5540 M(53)="QD"

5550 M{5&4)=nE ("

5560 M(ggl=r) v

5570 M{10)=M(])

5580 M(19)=M(1)

55990 M(28)=mM(])

5600 MI37h=M(1)

5610 Mig4e)=M(])

5620 7 7 M4 =M(5)

5630 M{23)=mM(5)

5640 M(32)=M1(5)

5650 M{41)=MI(5)

5660 MI5Q)=M(5)

5670 M{51)=ze 0

5680 -  ENCODE(L+20)J

5690 M55} =

5700 NXz(N%g*1) /2

5710 NC=N/2

5720 XNIREAL (nC)

5730 - XM=REAL IN)

57490 XM=XM/2,

5750 X=XMa Xy

5760 IF(X_-LT..UM(SJ,):"O "
5770 [IF(DeGTe0e! GU TO 10
5780 WRITE(6430) 14 IMIK) 3yKZ] sNX) 3 {MIKK) 9KK=5]1456)
5790 RETURN

5800 10 WRITE!(5440) IMIK) gK=]1 4NX) s (MIKK) yKK=5]456)
5810 20 FORMAT(]2)

5820 30 FORMAT(3X+"NODE("s124") ",50A2)
5830 40 FORMATI(13X+156A2)
5840 "RETURN

5850 END , -
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5860C
5870C
5880C
5890C
5900
59100
5920C
5930
5940
5950-
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6210
6220
6230
6240

89

TTHIS SUBROUTINE CALCULATES THE HEAD CR FLOw
AMPLITUDE WITH ITS PHASE ANGLE AT THE CESIRED
LOCATIUN IN THE NETWURK.

SUBROUTINE YYTY (PLlaP2sP343P4+C1lsC2sC3¢C4+C5+CH3CT+C8
903104’X9Y§I)

V=3el4l15927
EPS=1eE~15
A=CS®C5+Co%Ce -
B={C1®C5+C2*C6) /A
C=(C2*C5-C1*C6) /A
D=Cy*x8-C7%C
E=CBRC+C7%Y
F=C4=D
0=C3~E
G=P1%B-p2*C
P=pleaC«p2*y
THEP3XF PG
U=PoRF+p3#Q]
R=H*+G
S=U*P
[F{leGTe2) GO TO 10
DM=D3*D3+D4%D4
2= (R#*D3+5%D4 ) /DM
S={R*V4=5%D3) /UM
R=T
10 X=SURT(R*R*5*5)
Y=Qe -
[F{IeLEeQ) RETURN
IF{ASSIR) «LE-EPS) GO TO 20
Y=ATAN(S/R)
IFIRoLTeO0esANDeSelLLTa0e) Y=Yy
[IF(ReLTeOeeANDeSeGTelUe) YzY+V
RETURN
20 IF(5eGTeQe) Y=V/20
IF(SelLTee) Y=wuV/2,
RETURN
END



APPENDIX F

METHOD OF CALCULATING THE LINEARIZED FRICTION
TERM FOR STEADY OSCILLATORY FLOW
A method to calculate the linearized friction term for
steady oscillatory flow is presentgd in Chapter IV and was used to
obtain the results of this study. This Appendix presents another
method of approach which was derived-during the last days of this
Stuay_"”h_ - - ) . _

Average Steady Oscillatory Flow

Steady oscillatory flow through a pipe is a function of
position and time. Assuming sinusoidal variation of the flow with
respect to time, the following equation may be written:

Q(x,t) = Q(x) Sin(wt) (F-1)
The time average of the flow may be found if equation F-1 is inte-

T

grated over a range of 0 to ﬁ-and divided by %~as shown below.
T

QUx) = —% 2Q(X) Sin(wt) d(wt) = %Q(x) (F-2)
The average flow over the length of the pipe may be found if the flow
distributions aléng the length of the pipe are integrated over the N
length. Since the fléw distributiens are different for different
frequencies, and it is not convenient to have a separate averaging
routine for each frequency, a method is developed to give an
approximation of the average flow for any frequency. Tests %resented

in Table 4.1, showed that the linearized friction term is important

90
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only for excitation near the resonant frequency. Assuming the flow
distributions for the frequencies close to the resonances are the same
as they are for resonance, then a method to calculate the average

flow cén be éevéloped for twhe resonant frequencies (which are the

" critical frequencies), and subsequently used for any frequency. Since
the flow distributions for resonance of different harmonics are
different, the sample problem defined in Chapter IV was tested at
excitation "frequenties of (2n—i) Wy » forn="1, 2, 3, 4, where

wR—Zﬂa, is the natural frequency of the system. Figure F.l shows the
flow distributions along the non-dimensional length of the pipe for
different values of n. The excitation source is placed at x = 0,

and the tank is commected at x = l.v This family of curvés has the
same value of ﬁ;axf_x)zn at any location of _(—2_;{1—-—]3' 1f these curves
passed through the origin of the figure, they would all repeat with
periods of f?ﬁ%IT” and would have the same average value as a fimction
of their maximum values. It is assumed that these smooth parts of the
curves are straight lines comnecting the location SZZI%U of the curves
to the origin. The areas between these straight lines and the
corresponding curves were neglected and will be considered later in

this section. Flow distributions between x = 0 and x = 1

(Zn-1)" may
be defined as -

Q) = (Quax), (aYHDY. ... ... +3Y10) (F-3)
where Y = @‘ﬁ%ﬁ Substituting equation F-3 into equation F-2 and

integrating over the range of 0 to the following equation

1
-n-1)7

results:
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g = Z'(Qmax)n (§.+ %.+ ....... 4—%j? (Zn-l)' (F-4) .
Choosing the first harmonic curve and applying ten boundary
con@itipns ath = 0.1, 0.2,: ....... ,1.0 to the equation F-3, ten
simultaneous equations result which are presented in a matrix form
.shown in Figuwre F.2. The solution to this“natri% is as follows:

a=0.759% , b=19.806 , ’ c=-182.31 , d=892.26

e=-2661.08 , £=5064.33 , . g=-6195.23 , h=4720.14
1=-2039.36 ,  3=381.69 ' " |
Substituting these values into equation F-4, the following equation
results:

q = 2 (0.63750max) | o | (F-5)
This equation gives a good approximation of the average steady
oscillatory flow through the pipe. However, consideration of the
neglected area between each curve and the corresponding line further
improves the a§erage.‘ In this case, the average of the steady
oscillatory flow through a pipe is written as

Q =2 (0.6375qmax + Q). | (F-6)
In order to find the value éf Qc the shaded area shown in Figure
F.3, which is a portion of the first harmonic curve shﬁwn in Figure
F.1, must be calculated and divided by 5(2n-1). Using the same methoé
employed earlier in this Appendikfithe value of Qc is evaluated by
the following equation: |

Q = ?2“{1%‘1')' (0.1049 Qmin - 0.00493 Qmax) (F-7)
The term, (ZnEl)’ can be expanded as

1 _YR_ 2ma/4L _ 1a

(2n-1) w w 2wl
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NON-DIMENSIONAL LENGTH

Figure F.3. Portion of the First Harmonic Curve Shown in Figure F.1.
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Substituting this value into equation F-7, the following equation
results:

Qc = —2;‘—3 (0.1049 Quin - 0.00493 Qax) (F-8)
Substituting equation F+8 into equation F-6 and rearranging, the
following equation results:

= 0.4058Qmax + = (O 1049Qm1n ~ 0.00493Qmax) (F-9)

L .
' Correction Factor

Equation F-8 was used in the main program and applied fbr
the system defined in the Sample Problem for pipe friction factors
from 0.02 to 0.20 and an excitation frequency equal to the natural
frequency of the pipe. In these tests the system was defined as a
2-node piping network. Results of these tests including the results
obtained by the method of characteristics for the same system are
shown in the Table F.1. To obtain the same results by this method
as it was obtained by the method of characterlstlcs equation F-9
must be modified as

Q = (CF) [0.4058Quax + = (0.1049Qmin - 0.00493Qmax)]  (F-10)
where CF is the correction factor and its value varies with
friction factor as shbwn in the fourth colum of Table F.1. .Iﬁter-
polating between friction factors of 0.02 and 0.05, shows that the two
methods coincide for the friction factor of 0.02072. To generalize

the correction factor, one may define the following equation:

2 4 ped
: +
. (o 00072 )(A + Bf + cf% + nE) 10



METHOD OF CHARACTERISTICS
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M.0.C. =
S.0.M. = STEADY OSCILLATORY METHOD
FRICTION NON-DIMENSIONAL HEAD - .
FACTOR : OO?E;O‘\
M.O.C. S.0.M. ,
0.02 19.24 19.27 1.0026
0.08 o 13.22 12.20 0.8508
0.075 11.00 9.98 0.8204
0.076 10.94 9.91 0.8197
0.08 10.68 9.66 0.8171
0.10 9.64 8.65 0.8036
0.15 8.01 7.09 0.7812
0.16 7.78 .37 0.7772
0.20 7.05 6.17 0.7595
Table F.1. Non-Dimensional Head Response'and Correction Factor
needed to make Methods Agree as the Functions of Friction
Factor for the System Defined in this Section.
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Applyirig four data points from Table F.l, for friction factors

of 0.05, 0.10, 0.15, O.ZO, four simultaneous equations are obtained
with four unknowns A, B, C and D. Solving these sets of equations for
A“, B,l C, D,m aﬁd substituting into the equation F-11, the following
equation results:

' 2 3
. -2.518f+13. ~-20.
) ( 0.02072 >(o 2778-2.518£+13.895f%-26.092£>) -12)

This equation and the equation F-10 were used in the main program and
applied for the same system for the friction factors from 0.02 to 0.20.
A maximum difference of 0.26% was noted between the results of this
method and the results of the method of characteristics. For use of
this method, Figure F.4 shows the required modification to the main

program.
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171 REAL AC(20+20) : -
721 AC(I+Jd)=A -
722 AC(Js1)=A
3470C
3490 410 U=AF(I+J)
3491 POWER=e2778m=2,518%U+13,895%#UxU=26.092%UrU%U
3492 CFAC=(.02072/U) #%*POWER
3493 "QQQ= AC(IsJ)*(.1049*QMIN—.00493*QMAX)/(L(I-J)*OMG)
3494 QQ=QBAR (I +J) +CFACH* (o, 4058%QMAX+QGQ)

Figure F.4. Modification of Main Program for the use of Method
- Presented in this Appendix. :



APPENDIX G
SAMPLE PROBLEM DESCRIPTION

ThismAppendix presénts the input and output format of the

sample problem defined in Chapter IV.

Input Format

- Referring to the data iisted on page 101, the two-digit
numbers on the left are the line numbers and each line contains the
following information:

Line No. 10: Absolute viscosity of the liquid in iB=Sec

ft
mass density of the liquid in }E%, and the gravitational acceleration
ft
ft

Sec2

in

Line No. 11: MNumber of nodes, number of constant head nodes
(tanks), and number of pipe segments in the piping network.

Line No. 12: Constant head node number. Note: If there
are more than one tank in the system, each tank's node number must be
entered in éeparate line following this line.

Line No. 13: Number of head excitation and number of flow |
excitation sources. Note: The program is abie to analyze a piping :
network with several excitation sGurces, but they must all have the
same excitation frequency. In this case; line mubers 370 to 670
of the main program must be followed.

Line No. 14: Flow excitation node number and its flow
amplitude in ££5.

Sec
100



10
11
12
13
14
15
16
17
18
19
20
21

22

23

T~NONPHPWNE-- OO0 O

(7]

1

000018 62¢4 3202

1 8 ' :
l

4.9087385

2 625« 30« 3000,
3 625 30e¢ 3000.
4 625 30¢ 3000,
5 625« 30+ 3000,
6 625 30e 3000.
7 625 33e¢ 3000,
8 625+ 30« 3000
S 625¢ 3Ue 3000,

e3424778 Qo

ol
ol
ol
ol
ol
ol
ol
ol

Wwwwwwww

Oe
Q.
Oe

Qe
Qo
Oe

101
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line Nos. 15 to 22: Each line contains the information

about a pipe segment. This information is: terminating node
numbers, length in feet, diameter in inches, speed of sound through

the liﬁuid in ft/Sec, fricﬁion factor, number of extra locations for

* calculation of head and flow amplitudes, and steady state flow in

ft3/Sec.
Line No. 23: Number of frequencies, first frequency, and

frequeney intervals.

Output Format

Page mumbers 103 to 106 in this Appendix, show the computer
output for this sample problem as follows:

Page No. 103: Echo format of input data.

Page No. 104: Head and flow amplitudes and their phase angles

at each node of the piping network.

Page Nos. 105 and 106: Head and flow amplitudes and their

phase angles along the length of each pipe segment in the piping

network. The maximum head and its location in the piping network.
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ALL THE PHASE ANGLES ARE COMPARED

TO THE FLOW AT NODE NUs
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APPENDIX H
FRICTIONAL EFFECT OF ORIFICE

In this Appendix, the frictional effect of the orifice
comnection is calculated, and the length of a pipe segment with the
same diameter and frictional effect as the orifice is determined in
order to mode] the orifice commection for the tests referred to in
Chaptex-V.- - | |

The head loss across the orifice may be calculated by the
following equation:

n-L O | (H-1)
€ K2 :

C=l .fio. .3, d'=l-d° . do .3 .
where ,1D<03anC (r)lfﬁ_ 0.3; K is the
orifice coefficient which varies from 0.52 to 0.98 depending on the
type of orifice, and K = 0.61 for a sharp edged orifice. V. is the
fluid velocity at the orifice, and g is gravitational acceleration.

The head loss across the length of a pipe segment is defined
as ,

2
= £y VO H-2

“hL ® g (H-2)

where f is the friction factor of the pipe, L is the length of the

pipe, D is the diameter of the pipe, which in this case is equal to

do. V is the bulk fluid velocity inside the pipe and in this case is
equal to V., and g is gravitational acceleration. Combining equations
H-1 and H-2, the length of a pipe segment with the same diameter

and frictional effect &s the orifice, is calculated by the following
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equation:

L =Cdy (H-3)
fKZ

with £ = 0.1, D = 30 inches and K = 0.61, the length of the pipe segment

. with the same diameter and frictional effect as the orifice, for

orifice diameters of 5, 10, 15 and 20 inches, and calculated by

equation H-3, are 11.2, 22.1, 31.5 and 35.9 feet, respectively.
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NOMENCLATURE

Parameter Definition UnitM,L,T)
A - Cons‘tant‘; pipe area L?

A, . Orifice area L?

Ai, 3 Two dimensional. array -

a . Acoustic velocity L/T
B,b,C .. - Constant ’ o . ~.

CF Correction factor -

€ Constant; subscript for correction -

D Pipe diameter; constant Ly~

d Constant -

d, Orifice diameter | L

E - o Modulus of elastisity M/LT?

e - Pipe wall thickness; constant L

F ' Force ML/T?

f Pipe friction factor; constant -

g Gravitational acceleration; constant; L/T?;

subscript for ground

H Instantaneous total head; head amplitude L .
H Average head L |
h Constant “ -

h' Instantaneous OScillafory head L

i Subscript for node number; constant; -

VT



Parameter

e S T

g

W oo .al a8 oo B

:><:<:m?§1

zc

Z(x)
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Subscript for node number; constant -

Bulk compressibility modulus M/LT?
Constant ) -
Length L
Length - L
Constant , -

Number of nodes . -
Pressure ' , k M/LT?

Instantaneous total flow; flow amplitude L3/T

Average flow L3/T
Flow amplitude . L¥YT
Average of oscillatory flow v L3/T
Instantaneous oscillatory flow L3/T
Linearized resistant per unit length; T/L;=5=5-

subscript for real; subscript for
receiving end; subscript for resonant

Reynold number : -

Subscript for sending end -

Velocity - L/T
Constant ~ -
Position; non-dimensional position L;- '
Constant o " -

Characteristics impedance: -
Ratio of h' to q' -
Real part of vy _ -

Imaginary part of y _ -



Parameter

£z

o1

Definition
Propagation constant
Angle
Poisson's ratio

Kinematic viscosity

- Pipe axial strain

Pipe lateral strain
Mass density

Pipe axial stress
Pipe lateral stress
Wall shear stress

Angular frequency

Subscript for orifice

111

UnitaﬁJaT)

M/LT?
M/LT?
M/LT?
1/T






