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Chapter 1

INTRODUCTION

1.1 BACKGRQUND

The design of light equipment and nonstructural com-
ponents to withstand dynamic/seismic loading is an im-
portant feature in the design of industrial facilities.
Control equipment, piping systems, pumps, COmMPressors,
pressure vessels, generators, motors, tanks; furnaces, con-
veyor systems, cranes, mixers, antennas, stacks, bins,
parapets and elevators are some examples of components
which are found in nuclear power plant facilities, multi-
story buildings and industrial plants. These components
are often referred to as secondary systems (also sub-
systems) so as to distinguish them from the primary

structural systems on which they are supported.

These secondary systems are not of secondary impor-
tance, as their malfunctions during or after an earthquake
are likely to have very serious repercussions; their |
survival is essential to provide and regulate much needed
emergency services such as telecommunication, power trans-
mission and transportation. Thus, it is important that
these systems be designed properly to withstand some

reasonable earthquake induced effects, even in the areas




where no earthquake activity has been reported in the

recent past.

An important ingredient for a proper design of a
secondary system is the definition of seismic design load-
ing. Such a loading is commonly obtained in terms of floor
response spectra which represent response characteristics
of the motion of a floor of a building on which the
secondary system is supported. Floor response spectra pro-
vide the same type of information about the motion of a
floor as ground response spectra provide about the ground
motion., The latter are commonly used as seismic inputs for
the design of important primary systems. For ﬁhe design of
nuciear power plants in the United States the Nuclear
Regulator? Commission has prescribed design ground response

spectra in their Regulatory Guide No. 1.60 [51].

A primary structure and its supported secondary sys-
tems will experience the effects of the same ground motion
during an earthquake. Thus if a primary structure is
designed for a prescribed set of ground response spectra,
its supported secondary systems also should be designed
for a consistent seismic input. That is, the design floor
spectra should be consistent with the ground response
spectra which are used as design input for the supporting

primary structures.



Procedures for establishing design ground response
spectra are rather well defined and accepted by profession
{7,20,31,32]. To obtain floor response spectra for a set
of prescribed ground spectra, currently the time history
analysis is most commonly used. In this method, usually a
spectrum—consistent time history [17,48,50] -- a time
history with its spectra closely enveloping the prescribed
ground spectra -- is used as seismic input. Although this
approach is analytically accurate for a given time history,
it has been known to give unreliable and inconsistent
results for design purposes. Specifically, it has been
observed {5,6,39] that two independently synthesized
spectrum-consistent time histories may give significantly
different floor response spectra even though these time
histories may be consistent with a given ground response
spectrum in the same sense. To obtain a reliable design
floor response spectrum, an ensemble of time histories
should be used in the analysis. As a time history analysis
to obtain floor spectra is costly even for a single time
history, the analysis for a set of time histories becomes

very expensive.

Upon realizing that the time history approach is im-
practical, several researchers have proposed simple approxi-
mate procedures to construct floor response spectra. Biggs

[5] probably was the first person to develop a method for



obtaining floor response spectra directly from prescribed
ground spectra. In this method magnification curves were
obtained on the basis of observed behavior of oscillators
subjected to a set of earthquake records. The-use of these
magnification curves reportedly gave conservative results.
Kapur and Shao [23] also proposed a similar method. These
two approaches were based on semi-empirical arguments.
Several other investigators Penzien and Chopra [33],
Newmark [32], Chakravorty and Vanmarcke [9], Schanlan and
Sachs [36,37], Vanmarcke [53], Peters, Schmitz and.Wagner
[34], Atalik [2], Singh ([39,43], Sackman and Kelly [35],
Villaverde and Newmark [54), and Der Kiureghian et al.
[14], and Vanmarcke [53] have addressed this problem and
proposed different procedures, which are based on deter-

ministic as well as random vibration principles.

Almost all of these approaches are applied ﬁo linear
proportionally (or classically) damped [8,11,21,29] systems.
They make different assumptions in their formulations.

Some are based on deterministic method whereas others are
based on random vibraticn principles. Most, usually, ignore
the interaction between primary and secondary system,

except thqse in References 14,24,35,43,54. In some isolated
cases, the interaction may be important and must be con-
sidered. However, in a majority of cases omission of

interaction from floor spectra generaticn procedure is quite



acceptable and provides a conservative estimate of floor
spectra. -Also interaction free spectra are easy to
interpret and use in the design and qualification of
secondary systems. In this investigation, only interaction
free spectra development procedures are considered with

the main objective of developing rational and analytically

simple direct methods for generation of floor spectra.

1.2 SCOPE QF STUDY

‘The main aim of this study is to develop validated and
simple-to-use floor spectra generation procedures for
linear structural systems which are proportionally or non-
proportionally damped. The main requirement of these pro-
cedures is that they should make a direct use of design
input prescribed in the form of ground spectra, without
employing spectrum consistent time histories or spectral
density functions. For this, first an approach proposed by
Singh [39,43] earlier has been critically examined, improved
and validated by simulation studies. The special case of
evaluation of floor spectra at resonance (i.e. at
oscillator frequency equal to the structural frequency) is
also considered. The effect of incorporation of peak

factors in the calculation of floor spectra is investigated.



For seismic analysis, structural systems are often
assumed to possess classical damping matrices [8,39].
This assumption is purely for mathematical convenience,
and in some cases it may also be justified. Yet there may
be cases where it cannot be justified and nonproportional
or nonclassical nature of the damping matrix must be
clearly recognized. Here the methods for generation of
floor spectra for nonclassically damped primary system are

also developed and validated by a simulation study.

Most of the approaches described above are based on
the method of mode displacement of structural dynamics.
Often only a first few modes are used in the analysis as
the higher modes are considered unimportant. Some problems
may, however, arise with these approaches if the response
is affected by the high frequency modes. Herein, an
alternative approach, based on the method of mode accelera-
tion has been proposed in which the effect of high fre-
quency modes 1s correctly included without their explicit
evaluation. The seismic input in this approach is required
to be prescribed in terms of relative acceleration and
velocity spectra. This approach is very effective for the
calculation of floor spectra for stiff structural systems
which have significant contribution from the high frequency

modes, and also for floors close to the base which are



usually affected by the higher modes. In other normal
cases too, this approach has been shown to provide better
results than the mode displacement approach for a given
number of modes. The mode acceleration approaches have
been developed for proporticnally as well as non-

proportionally damped structural systems.

To incorporate the uncertainties of the primary system
in the generation of floor response spectra an analytical-
cum-simulation approach has been used, Effect of mass and

stiffness uncertainties on floor spectra is evaluated.

1.3 ORGANIZATION

In Chapter 2, a direct approach proposed for genera-
tion of seismic floor response spectra by Singh [39,43]
is reevaluated and improved. Methods to incorporate the
peak factors in generation of spectra have been examined.
Generation of floor spectra for the important case of
resonance between structural modes and oscillator has been
developed. The verification of this approach is done by a

numerical simulation study.

A method to generate the floor spectra for non-

proportionally damped primary systems, using the mode




displacement method, is presented in Chapter 3. The
formulation for the resonance case has also been developed.
Verification of this direct approach is also done by a

numerical simulation study.

In Chapters 4 and 5, the approaches based on the
method of mode acceleration are developed for generation
of floor response spectra for classically and nonclassically
damped primary systems. Evaluation spectra at structural
frequencies, i.e. at resonance, has also been considered.
Verification of the approach is again done by a numerical

simulation study.

To avoid distractions in presentation of the formula-
tions, various coefficients required in the proposed methods
and bther analytical expressions are defined in the
Appendices I, II, III, and IV, associated with Chapters 2,

3, 4, and 5, respectively.

The general summary and conclusions of the investiga-

tion are stated in Chapter 6.



Chapter 2

CLASSICALLY DAMPED SYSTEMS: IMODE DISPLACEMENT
METHOD

2.1 INTRODUCTION

To obtain the floor response spectrum, time history
method of analysis is commonly used. However, it has been
observed that this approach is unreliable and computational-
ly expensive. Therefore direct approaches of generating
floor spectra are becoming increasingly popular. In these
direct approaches, the seismic input is defined in terms of
ground spectra. One such direct approach was proposed by
Singh [39,43]. This approach is based on mode displacement
method of structural dynamics and primarily employs pseudo
acceleration spectra and relative velocity spectra as input.
Some simplified assumptions were made in the development of
this approach. These assumptions are examined in this
chapter with regard to their effects on generation of floor
spectra. Various improvements are proposed, and finally
the proposed apprcach is verified by a numerical simulation
study. In the following section, a more general and

complete formulation of the method is presented.
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2.2 ANALYTICAL FORMULATION

The equation of motion of an n-degree-of-freedom
structure subjected to ground excitation, Xg(t), can be

written in the standard form as
[M] ix} + [C] (%} + [K] (x} = - [M] {r} ig<t) (2.1)

whére [M], [C], and [K] are the mass, damping and stiffness
matrices respectively; {x} = the relative displacement

vector: {r} = displacement influence vector; ig(t) = ground
acceleration; and dot over a term represents its derivative

with respect to time.

Eq. 2.1 can be solved using normal mode approach where

the response vector {x} is expressed as
{x} = [¢] (2"} (2.2)

where [¢] is the modal matrix, and {z'} is the vector of
principal coordinates. By substitution of Eq. 2.2 in Eq.

2.1 and utilization of orthogonal properties of normal modes,
the decoupled equations of the following form are obtained

to solve for the principal coordinates,

s o 2 . .
.+ 2 . . .+ . . = - .
zJ BJ w s zJ Wy zJ Xg(t) (2.3)

where

z! = . z. ; (2.4)
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and Yj = participation factor defined as = {¢j}T[M]{r}/mj,

m.
]

W e

]
_ T . T _
= {¢j} [C]{¢j}/2 wymy This assumes that {¢j} [c] {4 1=0

{¢j}T[M]{¢j}, {¢j} = jth mode displacement vector,

jth frequency, Bj = modal damping ratio defined as

for j # k or the damping matrix is of classical or propor-
tional type [8]. The cases when [C] is nonclassical are

discussed in Chapters 3 and 5.

To obtain floor response spectra for the mth floor, we
need to obtain the response of a series of oscillators
placed on the floor. The equation of motion of one such
oscillator with frequency, @y and damping ratio 30, can be

written as follows:

2

n+ 2 BO wy M + wg M= - Xa(t) (2.5)

in which n is the relative displacement of the oscillater
and Xa is the absolute acceleration of the floor. Here the
effect of dynamic interaction between the oscillator and

the supporting structure is neglected.

The absolute acceleration, Xa, is required to obtain
the oscillator response. This can be obtained in terms of
relative acceleration of the floor, X, and ground

acceleration, ig’ as follows:

Xa =T, Xg + X (2.6)
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Using Eq. 2.2 and 2.4, ia can also be written as
follows:
. L n .
X = X + . b . (t 2.7
L = T X j-—z-lYJ ¢J(m) zJ() (2.7)
where ¢j(m) is the mth element of modal vector {¢j}.

Using Eq. 2.3, it can also be expressed in the following

form:

y n ] ?
X = - Z v 6. [2 8, w. 2z, + wj zZ. ] (2.8)

in which ¢j(m) is simply replaced by ¢j. Hereafter ¢j

will imply o, (m).

Eq. 2.8 defines the floor acceleration in terms of
modal displacement, 23 and modal velocity, éj. For small
damping major contribution to ia comes from zj, the mode
displacement value. Thus, the formulation which employs
Eq. 2.8, 1s called the mode displacement formulation. Most
floor spectra generation approaches developed so far adopt
this expression for floor acceleration, and therefore, can

be classified as mode displacement approaches.

For design purposes, we are interested in the solut}on
of the Eq. 2.5 for a class of earthquake motion that can be

expected at a site. That is, we should evaluate the
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response for an ensemble of earthquake motions. This sug-
gests that we model ig(t) as a random process representing
the ensemble. For earthquake motions modeled by a random
process, the response of the oscillator will also be a
random process, To define floor response spectra we need
to obtain the maximum value of such random response. For
engineering purposes, the maximum response can be obtained
from the mean and autocorrelation characteristics of the
response, Here, our aim therefore is to obtain these two
characteristics of the response. More specifically we will
obtain absolute acceleration response of the oscillator,

as in practice acceleration floor spectra are more commonly
used, If other response characteristics, like relative or
pseudo velocity are desired, they can also be obtained

similarly.

From Eq. 2.5, the absolute acceleration, ;a’ of the

oscillator can be defined as follows:

e . av N 2
= + = - + .
Ny Xa(t) n (2 By wg N T g n) (2.9)
To define acceleration spectra, we need to obtain the
mean and autocorrelation function of N, which in turn is
defined in terms of the mean and autocorrelation function

of ia(t), These characteristics of Xa(t) are obtained in

the following section.
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2.3 AUTOCORRELATION AND POWER SPECTRAL DENSITY FUNCTION
OF ABSOLUTE ACCELERATION OF A FLOOR

Here earthquake mo;ion, ig(t), is modeled as a zero
mean random process. Thus the mean value of ia(t), from
Eq. 2.8, is zero. The autocorrelation function of ia(t)
is obtained as:

. . n n
E[Xa(tl) Xa(tz)] = jgl kzl Yj Y1 ¢j ¢k {4 Bk Bj wj Wi

.. 2 2 2
. E[Zj'zk] + mj wie E[Zj-zk] + 2 Bk Wi wj

. 2 .
. E[zj zk] + 2 Bj wy Wi E[zj zk]} (2.10)

The auto and cross correlation of principal coordinates
and their derivatives required in Eq. 2.10 can be obtained
in terms of autocorrelation function of the ground motion
from Eq. 2.3. Here to simplify the analysis it is assumed
that ground motion is a stationary random process with
spectral density function @g(w). Although earthquake
motions are not stationary, this assumption, as shown later
by simulation study, will still provide us an acceptable
and reliable method for generation of floor spectra. With
this assumption, various expected value terms in Eq. 2,10
can now be obtained in terms of ground spectral density
function, @g(w). Furthermore, if we consider stationary

response, these terms can be shown to be as given in
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Appendix I-A, Egqs. 1.5 and 1.6.

Substituting these expressions of various expected
value terms in Eq. 2.10, the autocorrelation function of

the absolute acceleration X, can be shown to be as follows:

. . @ iw(tl-tz)
E[Xa(tl) Xa(tZ)] = J-w e @m(m) de (2.11)

where @m(w) is the spectral density function of floor

acceleration defined as:

(o) oo 2 2
) = . . . + 4 8. 8 .
w0 = Ly vty e Do 5 B o

mkm

+ 2 iw 0 wk(mk Bj -y Bk)] Hj Hk @g(m)

(2.12)

where Hj is the complex frequency response function for

mode j, defined as

2 2 .
., = . - + . B. 2.
HJ l/(wJ W 2 i wJ SJ W) (2.13)

and an asterisk denotes a complex conjugate. Here i is

equal to /-1 .

For further analytical manipulations, the spectral
density function in Eq. 2.12 is spearated into terms with

j=k and j#k as follows:
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0 _
2 2 2 2 2
= +

@m(w) jzl Y3 ¢J (w 4 mJ w) [H.| @g(m)

n n 2 9
+2 3 v ¢, ¢ N(w) |H.|7 |H |7 o (w)
351 k=41 3 RT3k ik g
(2.14)

in which

2

NG = f Wl + b ey gy wg uy oD - WD GE - WD)

2 2
+ 4 Bj Bre Wy wp @ P+ 4w ws mk(wk Bj - s Bk)
2 2 2 2
. {Bj mj(wk - wt) - Bk mk(wj - w )} (2.15)

The mean square value of the absolute acceleration,
Ny of an oscillator supported on floor can now be obtained
in terms of floor acceleration spectral density function as

follows:

2 ” 4 2 2 2 2
ok - J_m®m(m) i+ 482 w2 u® |u 17 d (2.16)

2.4 TLOOR RESPONSE SPECTRUM

Eq. 2.16 can be used to obtain the standard deviation
of secondary system response which, when amplified by an
appropriate peak factor, will give the maximum floor

response value or response spectrum value as follows:
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2 2 " 4 2 2 2 2
Ra(mo,go) = PF(wO) J_m¢m(w)(mo + 4 BO wy ) ‘HO{ duw
(2.17)

where Ra(wo,BO) = floor acceleration response spectrum

value at frequency w, and damping By PF(mO) = a factor
usually called a peak factor which when multiplied by the
root mean square value of the floor spectral response gives

the response spectrum value. Substituting for @m(mo) from

Eq. 2.14,
2 _ 52 o2 2 (" 2 2 2
Ry (ugr8) = Ppluy) [jzl 3 ¢ J_m(w ta g vy )
4 2 2 2 2 2
(wo + 4 By Wg W ) [Hj! [HO( @g(w) dw
n ' ].’zl ®
+2 Ys Yy ¢5 9 J N(w)
jél k=f+1 3 kT3 TR
4 2 2 2 2 2 2
. (mo + 4 By wg ) ]Hjl ]Hkl ]Hol @g(m) dw
(2.18)

To obtain the integrals in Eq. 2.18 in terms of ground
spectra, which are commonly prescribed as seismic design
inputs, the single and double summation terms will be
resolved into partial fractions {39]. This will, however,
not be possible when w3 = ay and Bj = By- Such a case is

referred to as resonance case and is dealt with separately

in Section 2.4.2.
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2.4,1 Floor Spectrum: ‘Nonresonance Case

Here the evaluation of single and double summation

terms in terms of ground spectra is described.

Single Summation Terms

The integrand of a typical single summation term in

Eq. 2.18 can be resolved into partial fractions as follows:

(mg + 4 Bg mg wz) (wj" + 4 53.2 w? w2) JHJ |2 |Ho|2
4 2 2 2
= (Al o, t A2 Wy w |HOI
4 2 2 2
+ (A3 wj + A4 wj W |HJ} (2.19)

in which the coefficients Aps Az, A3, and A4 are defined in
Appendix I-B, Eq. I.8. By multiplying Eq. 2.19 by @g(w)
and integrating over the frequency range, the following is

obtained
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J—m ¢g(w) (mg + 4 82 mg w2) (m? + 4 B? w? wz)

I' =
- S 0 ]
lH.|2 |H |2 dw
j 0
= 2 ® 2
= Alf—m w ¢g(w) 'H |© dw + A, J_m mg w
. ®g(w) |H \2 do + A3 J—m w4 ¢g(w) H |2 dw
o2 2 2
+ A . . .
4 J_m wy W @g(m) ]HJ‘ dw (2.20)
or
T 2
Is = Al Il(wo) + A2 wg Iz(wo) + A3 Il(mj)
2 .
+ AA wj Iz(mJ) (2.21)

in which Il(mj) and Iz(wj) are frequency integrals defined

as

2

v 4
Il(wj) (-m wj Qg(m) lHj' dw (2.22)

2 2
f_m w @g(m) |Hj\ dw (2.23)

Iz(wj)

The frequency integral Il(wj) and Iz(mj), respectively,
represent the mean square values of pseudo acceleration and
relative velocity responses of an oscillator of frequency,
wé and damping ratio, Bg excited by the ground motion. The

root mean square values when multiplied by their respective
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peak factors will give the response spectrum values.

That is
2 YA
Rp(wj) = Sp(mj) Il(wj) (2.24)
2 &2
Rv(mj) = Sv(mj) Iz(mj) (2.25)

in which Rp(mj) = pseudo acceleration response spectrum
value, Rv(wj) = relative velocity response spectrum value,
Sp(mj) = peak factor for pseudo acceleration response and
Sv(mj) = peak factor for relative velocity spectra, all ob-
tained for the oscillator frequency of ma'and damping

rati .
s} BO

Eqs. 2.24 and 2.25 are used to define Il(mj) and
Iz(mj) in terms of response spectrum values. Thus I; in
Eq. 2.21 can also be defined directly in terms of'reéponse

spectrum values,

Double Summation Terms

To evaluate the double summation terms in Egq. 2.18 in
terms of ground response spectra, the integrand of a
typical term in Eq. 2,18 is split into partial fractions as

follows:
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R O N LA L N Wk

4 2 2 2 2 4 2 2
= (mo + 4 BO wy W ) ]HOI [ (Ar mj + Br mj w )
. |Hj|2 F(C, wp + D wp of) 1HP) de (226

where the coefficients Ar’ Br' etc. are defined in

Appendix I-B, Eq. I.17.

The resonance case when the oscillator frequency and
damping are equal to one of the structural frequencies and
corresponding damping ratio will require a special treat-
ment of the terms in Eq. 2.26. It is discussed in Section
2.5. For the nonresonance case the right hand side of

Eq. 2.26 is further split into partial fractions as follows:

N(w) (ol + 4'e§ SO NERLET AN Sk
- (3, Wl Bz.mg ) 12+ (B, u§
+ B, m§ 2 ]Hj[2 + (Cy wg + G, mg %) Pﬂoiz
+(Cq uy + € uwl w) [Hy | (2.27)

where the coefficients Bl’ BZ’ Cl’ etc., are defined in

Appendix I-B, Eq. I.12.

Multiplying Eq. 2.27 by @g(m) and integrating over the

frequency domain, the following is obtained for the
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frequency integral of a typical double summation term in

Eq. 2.18.

Ié = J_ng(w) N(w) (wg + 4 Bg w2 wz) |H.)2 |H 2

o) j ki

(Bl + Cl) Il(wo) + (B2 + C2) wg Iz(wo)

2

Iz(wj) + C3 Il(wk)

2
+ C, W Iz(wk) | (2.28)

where, again, Il(wj) and Iz(wj) etc. are defined by the
integrals in Eqs. 2.22 and 2.23. Using Eqs. 2.21 and 2.28,
the floor response spectrum value in Eq. 2.18 can be

written as follows:
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o 8 = P2y | T v2 62 (A To(u) + Ay ol I, (e )
0’0 F 7 (.20 73 73 7L "1 2 Yo "2V

2
+ A3 Il(mj) + A4 mj Iz(mj)}

n et
+ 2 Z z Vi Vi P

R R

2 2
+ (B2 + C2) W Iz(mo) + B3 Il(mj) + B4 wj Iz(wj)

2 \
+ G4 Il(gk) + Ca Wy Iz(qk)}. (2.29)

As Il(wj) and Iz(wj).are.defined in terms of response
spectrum values by Egs. 2.24 and 2.25, Eq. 2.29 defines the
expression for the floor response spectrum in terms of
ground response spectrum values and associated peak factors.
It differs from the expression derived by Singh [39] inas-
much as it contains the effect of different peak factors in
generation of floor spectra. If all the peak factor values
are assumed equal then this expression reverts back to the

expression given by Singh [39].

2.4.2 TFLOOR SPECTRUM: RESONANCE CASE

The factors Al’ AZ, Bl’ Cl,.etc. in Eq. 2.29 depend
upon the frequency ratios and modal damping values. These

are not defined for the special resonance case, i.e. when
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Wy =, and Bj = B, Here a procedure for the evaluation
of a floor response spectfum value for this special case
is presented., Specifically, the procedures for the
evaluation of the frequency integrals in the single and

double summation term of Eq. 2.18 in terms of ground

spectrum values are described.

Single Summation Terms

For the special case of resonance, the frequency
integral in a typical single summation term can be written
as follows:

w
- c 4
IS = J_w @g(w) (wo + 4 By wg v ) le

o

Here to be more realistic, the frequency range for the
integral is limited to a cut-off frequency value of W, In
earthquake induced ground motion, this cut-off frequency
will be about 25-30 cps. For example such a cut-off fre-
quency limit is also implied by ground response spectra,
prescribed by the N.R.C. for the design of nuclear power
plants [51]. For the N.R.C. spectra, the © value could be
assumed to be about 33 cps, though actual limiting frequen-
cy will be somewhat smaller. Limiting the frequency range
has special relevance in generation of floor spectra for

oscillator frequencies higher than the limiting frequency.

T
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Because of the peakedness of the function 7H014 in
Eq. 2.30, the integral can be fairly accurately approxi-

mated as follows [43,52]:

[}
4 2 2 2.2 2
Ig = ¢g(mo) J-c (g + 4 85 vy w) ]Hol duw
uJC
LUC:
-2 @g(mo) @ + f‘ @g(m) du (2.31)

The first integral in Eq. 2.31 can be evaluated in
closed form in terms of Am as defined by Eq. I1.22 in

Appendix I-C as

Ye 4 2 2 2 4 _
J— (mo + 4 B wg ) \Hol dw = w6 Am (2.32)
Yo
where
Am = Am(r, Bor 84y 81 8, a3) (2.33)
with r = w fu_ ; a_ =0 ; a, = 16 Bt+ : a, = 8 82 a, = 1
o' ¢’ 7o A A o > 2 o ' 73

The second frequency integral in Eq. 2.31 which repre-

sents the partial area under the PSDF is denoted by Iy il.e.

- mc
Ib = f ®g(m) du (2.34)

-W
C
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Using Eqs. 2.32 and 2.34, Eq. 2.31 can Be rewritten

as follows:

(2.35)

IS = @g(wo) W, (Am -2y + 1

b

To express Is(wo) in terms of ground spectra it is
now necessary to express @g(wo) and I in spectra terms.
For this, as observed by Singh [43], the following relation-
ship between the mean square values of pseudo acceleration

and relative velocity is used:

I () = wi I(a) + I, (2.36)
or,

I, = I;(u) - wg I,(u,) = Ip(e ) {1 - F(u )} (2.37)
where

Flo) = wg I, (w ) /Ty (u) (2.38)

is the ratio of the mean square value of the relative
velocity to that of pseudo velocity. This ratio approaches
zero for frequencies greater than W, Eq., 2.37 with Egs.
2.24 and 2.25 can now be used to express Ib in terms of

response spectrum values.

To obtain @g(u ) in terms of response spectrum values,
0

the following approximation for Il(wo) is used:
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I.(w. ) = m4 Ve o {(w) \H [2 dw
1Y o J_ g 0
Yo
= ¢ (w_) w4 “e tH |2 do - 2 v ¢ (w ) + 1
g o o _, 0 o g o b

c
(2.39)

The integral in Eq. 2.39 can be evaluated in closed

form as in Appendix I-C, Eq. I.27. Thus

Il(mo) = Qg(wo) wo Bm -2 wg @g(wo) + Ib
= Qg(mo) W, (Bm - 2r) + Ib (2.40)
in which
B, = BL(r, 8y, b, b)) , (2.41)

with bO = 0, bl = 1. Substituting for the value of
¢g(w0)wc from Eq. 2.40 and for Ib from Eq. 2.37, into Eq.
2.31, the frequency integral in a single summation

resonance term is obtained as
I = Il(mo) [A& + {1 - F(mo)} (1 - Aﬁ)] (2.42)

]

in which A& is defined as

v I
Ay g (2.43)
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If the frequency range is extended to = i.e. w, = =,
the expressions for Amﬁ Bm' and A& become similar to those
defined by Singh [43]. These expressions are given in

Appendix I-D, Eq. I.31.

As Il(wo) can be defined in terms of ground spectrum
value by Eq. 2.24, Eq. 2.42 defines the single summation
term in the resonance case in terms of ground response

spectrum value.

Double Summation Terms

When one of the structural frequencies and correspond-
ing modal damping values are equal to the oscillator fre-
quency and damping, the evaluation of the integral of Eq.
2.26, after its multiplication by ®g(m), requires a similar
approach as used for a single summation term in the pre-
ceding section, For example, if mj = wg and Bj = Bo’ the
integral of the first term in Eq. 2.26 can be written as

follows:

_ [Yc 4 2 2 2 4
Id = J_m @g(w) (mo + 4 BO Wy W ) (Ar wg
(]

2 2 4
-+ Br Wy W ) |HO| dw _ »(2-44)
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(4 the approxi-

Again because of the peakedness of IHO
mation similar to the single summation term in Eq. 2.31

can also be made here. Proceeding similarly, the following

is obtained for Id:

Id = Il(mo) [F(mo) C& + Ar {1 - F(mo)}] (2.45)
where
C_ - 2r Ar
Ch = B - 2r
m

Cm = A (r, By aé, ai, as, aé) (2.46)

' = . ' = 2 . ' = 2 .
ag 0 ; ay 4 BO Br 2, (Br + 4 BO Ar) ;
a3 = A

in which the functions Am and Bm are as defined by Eqgs.
1.22 and 1.27 in Appendix I-C. When w, = @ these functions
become similar to those defined by Singh [43] and are given

by Eq. 1.32 in Appendix I-D.

The integral associated with frequency mk%mo in Eq.
2.26 can be evaluated by resolwving into partial fractions

as done for the nonresonance case.,

Combining all the terms pertaining to the evaluation
of floor response spectra value for the resonance case, i.e.

when wy = g and Bj = 8 the following is obtained
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2 2 o2 9
RS (w ,8,) = Ppluw) [521 Ty ] I
i3
+ r. ¥y ¢. ¢y (I, 4+ Cq I;(uw_)
j=1 k=j+1 J k "3 "k "7d 1 "1'%

2 2
+ Gy wg Tpugd + Cy Iy (o) + € v Ty(ep))

(2.47)

+

where Cl' C2' C3 and C4 are defined by Eq., I.13 in Appendix
I-B.

2.5 EVALUATIQN OF PEAK FACTORS

Eqs. 2.29 and 2.47 define the floor response spectrum
values in terms of Il(wj) and Iz(wj), which in turn are
defined in terms of response spectrum values and peak
factors. If all the peak factors are assumed equal, then
floor spectrum can just be defined in terms of ground
spectra, This is what was done by Singh [39,43]. Here the
peak factors are included in generation of floor spectra
and the results are compared with the equal peak factor

approach to see the effect of their inclusion.

To obtain peak factors Sp(mj) and Sv(wj) in Eqs. 2.24

and 2.25, a simple approach proposed by Vanmarcke [52] is
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used. The expression relaﬁing the peak factor, S, with

the probability of exceedance, p, level crossing rate,

and duration td is as follows:

p = exp(-a td) (2.

where the decay rate o is defined as

1 - exp(~- V7/2 8o )
a1 - exp(- §5%/2)

in which the level crossing rate is defined as

: |
vy = g2 exp(- §7/2) (2
O

and the band width parameter, Sar is defined as

§ = 67" (2.

with

_ Z
§ = Jl - lexo g (2.

The spectral moments ko' k2’ and xa of the response

are defined as

w k .
Me T j_z wo eplw) dw 5 k=0,1,2,... (2.

cC

in which 2p(w) is the spectral density function of the

response quantity, K.

(2.

48)

49)

.50)

51)

52)

53)
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Herein the band width parameter, &, is defined,
rather, differently than in Ref, [52] where it was defined
in terms of Ao’ ll’ and Ao - The present definition of &
is more suitable as it is possible to obtain the even
moments in terms of response spectrum values. The evalua-
tion of Al, on the other hand, requires knowledge of the
spectral density function of a response. |

For a given duration and probability of exceedance

ﬁq. 2.48 is solved numerically to obtain the peak factor S.

It is seen that to obtain peak factors of a response
quantity, R, its spectral density function is re-
quired. This spectral density function can be obtained in
terms of the spectral density function of ground accelera-
tion @g(w). However, in practice\@g(w) will not be known.
Here, to see how sensitive the floor spectra results are to
the peak factor value, different forms of @g(m) have been
used to define the peak factors in Egs. 2.29 and 2.47. The
different spectral density functions that have been con-
sidered for calculation of peak factors are: 1) a broad-
band 3-term Kanai-Tajimi [47], l-term Kanai-Tajimi, and a

white noise with cut-off frequency of 30 cps.

As in practice seismic input is usually defined in

terms of ground response spectra, an appreoach is also
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presented to calculate the peak factors in terms of ground

response spectrum values.

In the following sections, the expression to evaluate
spectral moments of pseudo acceleration, relative velocity

and floor spectrum responses are given.

2.5.1 Spectral Moments of Pseudo Accelerdation and Relative

Velocity Responses

The spectral moment of lst order of pseudo accelera-
tion and relative velocity response for a given ground

spectral density function are as follows:

_ 4 (Y 2 2
oy (y) = J_m 05 () ot [Hy]7 du 2.56)
C
_ [%e L+2 2 :
g (93) = J_m s ) TH 12 de (2.55)
C

where ¢ = 0, 2, and 4. For a given spectral density
function these moments can be obtained in closed form, It

may be noted that

w . = W Ww . 2
hp2 (65) ho (u5) (2.56a)

)\p.'l{a(mj) = u (2.56b)
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Thus, only four integréls are required to be

evaluated to obtain these spectral moments.

In absence of any knowledge about‘spectral density
function of ground motion, a method for approximate
evaluation of peak factors where the spectral moments are
calculated from ground spectra was also tried. As the
spectral moments represent the mean square value of a quan-
tity, and as the mean square value is proportional to the
response spectrum value of the quantity, the following

approximations were used in the evaluation of spectral

moments
_ 2
hoo(93) = Ky RE(wg) (2.57a)
_ 4 o2
hpa(83) = Ky w3 Ry(uy) {2.57b)

where the constants of proportionality were assumed to be

the same.

To calculate the fourth spectral moment the following
relationship between pseudo acceleration, relative velocity

and relative acceleration mean square values can be used:
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_ 4 (% 4 2
APA(mj) mj j_w w ®g(w) lH. |© du
C
4 (Yo 4 2 2
= mj J_w ¢g(w) (1L - {mj - 2 mj w
C
(1 -2 e?)} |Hj\2]dw (2.58)

The first integral in Eq. 2.58 represents the area
under the spectral density function, and is directly pro-
portional to the maximum ground accdeleration. Similarly,
the other integrals are proportional to the pseudo accelera-
tion and relatively velocity specttrum values: Assuming
that all the proportionality constants are equal to K, the

fourth order moments can be obtained as

- > 2, .
3 < ot Lk 1A% - R%(e.
Apalog) = wg [ag - Rpley)

2 2 2 1
+ 2 mj (L - 2 Bj) Rv(mj)] (2.59)

It may be noted that it is not necessary to know the
exact value of K as it will cancel out in the evaluation

of Va and § in Egs. 2.50 and 2.52,

Using Eqs. 2.56b, 2.57b, and 2.58, it is pdssible to
obtain the first two moments of the relative velocity
response. However, to obtain the fourth moment the follow-

ing approach was considered:
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_[%c 6 2
o) = [ e 1) a
¢
W
- { ¢ (w2 - [w? wh = 2 Wl (1 -2 3?) maj
c
ERCIRR (2.60)

Using Eqs. 2.54 and 2.55

- 4 2 2
}\VQ(wj) = Ib2 - mj J\VO(wj) + 2 wj (1 - Sj) J\Vz(wj)

(2.61)
where Ib2 is defined as

w
_ C 2
~-w
C

¢g(w) dw (2.62)

which represents the second spectral moment of the ground
acceleration. It also represents the mean square value of
the rate of change of ground acceleration or ground jerk.
No ground spectrum contains this information in any form,

Thus following approximation was considered.

Because of peakedness of function |Hj[2, the following
integral representing the second moment of pseudo accelera-

tion can be approximated as follows:
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A J“c 2 . 2 4 fwc 2 2
Rk - {H. = . .
wJ‘ y w ¢g(w) | _']‘l @g(wj) |in N w IHJ] dw
c c
2 m:} uJC 9 '
— +J w2 o (0) du (2.63)
- g
c
where
D' = '1—— ch w2 w2 IH 12 dw (2.64)
LI, j j '
C -mc

which is defined in Appendix I-C, Eq. I.27. Using Eq.
2.56b

2

Ib2 = xpz(mj) - @g(wj) w0, wj

[D& - 2x/3] (2.65)

Substituting for @g(m) W from Eq. 2.40, the above equation
can be written as
9 [D& - 2r3/3]
Ib2 = Apz(mj) - wh B = 7T (Il(mj) - Ib) (2.66)

] m

Using Eq. 2.36 in the above

(2.67)

(D! - 2r/3)
Ihz = *p2ley) 1 - <5 —7m)

Substituting this equation in Eq. 2,60, we can obtain

Ava(mj) .

The approximation for the evaluation of the 4th rela-

tive velocity spectral moment from generated spectra was
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rather found to be very sensitive to the small changes in
the spectrum values, especially at high frequency values.

As such this approach was not used to cbtain the peak factor
for relative velocity spectral response. Rather, the
relative peak factors were assumed equal to the pseudo ac-
celeration peak factors. The floor response spectrum ob-

tained with these assumptions are discussed in Sec. 2.4.

2.5.2 Moments of Floor Spectral Response: Nonresonance

Case

To obtain the peak factor PF(wO), the spectral moments
of the floor spectral response are required. The zero
order moment is given by Eq. 2.16. In general, the lth
order moment can be obtained from

T, b 2 2 2 2

Aeg, = J-m w (wo + 4 By W W ) [HO[ @m(w) dw (2.68)
in which @m(w) is defined by Eq. 2.14. It is simple to show
that the lth moment for the nonresonance case, expressed in
terms of the corresponding moments of the response of an

oscillator on ground, is as follows:
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n
kfl = E Yo 6% [Al Apl(mo) + A2 ws A (w)

2
+ A3 Apl(mj) + A4 mj Avﬁ(mj)]

4 vy Aw(wj) + C3 Aw(wk) + C4 Wy kvk(mk)‘]‘

(2.69)

where & = 0, 2, and 4.

2.5.3 Moments of Floor Spectral Response: Resonance Case

Oth Moment of Floor Spectral Response:

The evaluation of these moments for the resonance case
requires an approach similar to the one used in the develop-
ment of Eq. 2.47. 1In fact, Eq. 2.47 without peak factor,
PF(wO) defines the zero order moment which stated in a

slightly different form can be written as follows:
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Vo= ? 2 ¢2 [A_(w ) (A" + [1 -F (0 )] (1L - A")}]
fo L0073 %) Flpotto m oo m

JETEIRS

n n .
r2 D D sy sk D) Rl G
+ AL (1- Fo(wo)]} + ¢ Apo(wo) + Cy wg ACN
+ 0y A (o) + Gy W ()] (2.70)

_ 2
where Fo(wo) = g lvo(mo)/xpo(mo).

2nd Moment of Floor Spectral Response:

To obtain the 2nd moment of floor spectra Eq. 2.18
without peak factor, PF(mO) is multiplied by wz. The
integrals in the single and double summation terms for
wy = wg and Bj = 8, are evaluated as follows.

The frequency integral of a typical single summation

term in the resonance case can be written as follows:

' _ wC‘. 2 4
Is(mo) = J_w W fbg(w) (wo + 4 8
[

which can be approximated as
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L
' . c 2 4 2 2 2 2
Is(wo) = @g(mo) J-w w (wo + 4 BO Wy w ) |Ho‘ dw
¢
- 2/3 w3 o (w ) + on wz ¢ (w) dw (2.72)
0o ‘g o —w g
o
and can be rewritten as
' 9 (Dm - 2/3 1)
Is(wo) = Il(mo) = Il(wo) F(wo) wg o (Bm — + W2
(2.73)
where Dm is defined as
Dm = Am(r, B bo' bl’ b2, b3) (2.74)
in which b= 16 g% b, = 8 82, b, =1, b, = 0. The above
o o* 1 o' "2 '3 )

integral is similar to the integral in Eq. 1.22, Appendix

I-C, Also the frequency integral w2 is defined as

Yo 2
W2 = J w @g(w) du (2.75)
-w
o]

Also B is defined in Eq. 2.41. Using Eq. 2.37 and 2.44,

Eq. 2.73 can be written as
' _ 2 '
Is(wo) = Il(wo) ©g F(wo) Dm + W2 (2.76)
where

Dé = (Dm - 2/3 r)/(Bm - 271 (2.77)
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Similarly, the integrél in a double summation term to

be evaluated for the resonance can be written as

w
- c 2 4 2 2 2
Id(wo) = J_w w ¢g(w) (wo + 4 BO wo oW )]

C
A ot + B Wl w?) (H [ (2.78)

which because of peakedness of IHOIA, can be approximated

as follows:

W
Id(wo) x wg ¢g(m) J_z Nl(m) ]HO|4 dw
c

3 “o 2
- 2/3 Ar Wy @g(mo) + Ar J_w w @g(w) dw

o
(2.79)
where
2
Nl(w) = Ar wg w o + (Br + 4 Bg Ar) wg m4
2 2 6
+ 4 80 B ws w (2.80)

in which the first integral is defined by Eq. I.22 in Ap-
pendix I-C, Egq. 2.7 can be written as
E -2/3r Ar

_ 2 m
Tgleg) = og Iy(ey) Fluy) B - 21 + AW, (2.81)

where the factor Em is defined as
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— H t 1 L
Em = Am(r, Bo’ bo’ bl’ b2, b3) (2.82)
in which b' = &4 82 B : b, =B + 4 62 A : bl =4
o o ¥ 1 T o r' 2 r’

by = 0; and A_ is defined by Eq. 1.22. Egq. 2.81 can be

further simplified as

Ty(s,) = wg I,(u) Flu) E! + AW, (2.83)
in which
,E& = (Em - 2/3 r Ar)/(Bm - 2r) (2.84)

and B_ is defined by Eq. 2.41. Usihg Eq. 2.29, 2.73, and
2.83, the expression for second moment of flosr can be

written as follows:

= b 22 ) Wl B - D+ W]
£2 321 Y3 ') Yp2to o 2% m 2
n n 5 o

+ 2 §¢£ YJ Y1 ¢j ¢k [sz(wd) wO Fz(mo) Em

2
2 .
+ C3 XPZka) + C4 Wy sz(mk)] (2.85)

where

2

Fz(wo) = w lvz(mo)/hpz(mo) (2.86)
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4Lth Moment of Floor Spectral Response

The 4th moment will be obtained by multiplying Eq.
2.18 without peak factor PF(wO) by wa. The resulting
single and double summation terms for the case when
wg = ug and Bj = B, are obtained as follows,

The frequency integral of a typical single summation

term in the resonance case can be written as:

; Yo 4 4 2 2 2.2 4
I'(u) = J_w o e (@) Cag + 4 o8g wg WD) [H T
¢ (2.87)
which can be written as
\ _ 4 4 (“c
IS(mO)-_ 16 BO N J- @g(m) dw
Yo
+ wa “c o (w) kb wz m6 + b wA m4
o g o 1 7o
=W
¢
2 6 8 4
+ b2 W, W + b3 wo) |H0| dw (2.88)

in which the coefficients bo’ bl, b2 and b3 are defined as

follows:
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4 2

(1 -2 85);

S 2
bo = § BO + 64 Bo
Ly a ol 202,
bl =1 32 BO (1L +2 (1 2 80) }s
o= 4 1 - 2 . = = 4
b2 64 BO (1 2 BO)’ b3 16 BO (2.89)

The 2nd integral in Eq. 2.88 c¢an be approximated using Eq.

1.22 in Appendix I-C. Eq. 2.88 can be rewritten as

s . o1 S 4 T 4 Y 3
Is(wa) = 16 BO @, Ib + mo‘{¢g(md) W, Gm
-2 Qg(mo) W b3 +'b§ Wl (2.90)
where

in which A. is defined by Eq. 1.22 in Appendix I-C. Also

in Eq. 2.90 the integral I, is defined by Eq. 2.34 and W

b 1

is defined as follows:

w
Wi = J-Z m20®g(m) dw (2.92)

o

Using Eqs. 2.37 and 2.44, the single summation term in
Eq. 2.90 can be written as follows:
I'(w ) = m4 {16 64 I, + I.(w.) F(w ) G' + b,y W}
s o 0 o b 1o 0’ m 371

(2.93)

in which the factor Gé is defined- as
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Gl = (G - 2r by)/(B_ - 2r) (2.94)

Similarly, the integral in a double summation term

is
1) =»J_w ot g (0) (mé + 4 ag mi w2)
4 2 2 4
(Ar Wy + Br wy @ ) 'HOI dw (2.95)
which can be written as
' _ 2 4 Yo
Id(wo) = 4 B Yo Br J_ @g(m) dw
Yo
“e 4
+ u f 0 () Ny () [H " du (2.96)
where
Nl(w) = mg w6 Cé + mﬁ wA ci + mg wz Ci + mg Cé (2.97)
in which ¢' = B_ + &4 82 A_ + 16 82 B_ (1 - 2 £%);
0 r o ‘'r o : o
v o 2 _ 2.2, v _ 2
c; = Ar - 8 By Br {1 +2 (1 2 BO) }; Cy 16 By Br

2y, 1 o 2
(1 -28); c3=- 48, A,
Since the function JHO]4 is highly peaked, the 2Znd

integral in Eq. 2.96 can be approximated as
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T _ 2 4
Id<wo) =4 Bo Yo

- A “c
Br . Ib + w [dﬁg(mo) J- Nl(w)

3
=W
o
(2.98)
Using Eqs. 2.37 and 2.40, Eq. 2.98 can be written as
I'(m)=w4{482B I, + ¢ (w.) w. H
d' o 0 o r b g ' o0 ¢ m
- 2 CD_g.'(u)O) W .C3 ¥ 3 Wl (2.99)
where
Ho = Am (r, Byr C50 C1» Cgo c3) (2.100)

in which A_ is defined by Eg. 1.22 in Appendix I-C. Using

Eq. 2.40, Eq. 2.100 can be written as

' _ 4 2 ‘ ' '
Id(mo) = ug {4 Bo Br Ib + Il(mo) -F(u)o) Hm + Cq Wl}
(2.101)
in which the factor Hé are defined as
H& = (Hm - 2T c3)/(Bm -2 1) (2.102)

in which B is defined by Eq. 2.41. Using Egs. 2.29, 2.93,
and 2.101, the expression for the 4th moment of floor

spectra can be written as follows:



48

n
— 2 2 4 4
‘i T jzl r ¢j w [16 By Iy + )‘pa(‘”o)
+ Fy(w)) Gp + by W]
nn
2 2 . 4 2
+ 2 %#% r ¢j [mo {4 8, B wgl
+ >‘p4(wo) F4(wo) Hm + Cé Wl} + €1 Apa(wo)
boen 0l A, e ) Fea h,(0) Fe, 02, (0]
2 Yo “w4 Yo 3 "psitk 4 Yk tvs\Yr
| (2.103)
where;
2
2 w™ A (w )
; 4 "o
F, (s ) = ——7 (2.104)
j-4 0 Apl;(wo)

Once the moments of floor spectra are available, the
|
peak factors are obtained by the numerical solution of Eq.
2.39 for a given probability of exceedance, p, and earth-

quake duration of motion, £y

2.6 éIMULATION STUDY FOR VERIFICATION OF DIRECT APPROACH

éeveral implicit assumptions have been made in the
develqpment of the approach so that it can use ground
spectra directly as design input. To verify the suitability
of these assumptions and validity of the proposed approach,
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the simulation study, described in this section, was con-

ducted.

This study consisted of 1) synthetic generation of
ensembles of accelerograms; 2) development of mean and
mean-plusfone-standard~deviation ground response spectra;
and 3) generation of floor spectra for each time history
and ensemble averaging and statistical processing of -

results,

A method for generation of systhetic time histories is
described in Ref. [17,47]. The frequency characterization
of the time histories was in terms of a broad-band Kanai-

Tajimi type of spectral density function of the following

form:
3 m% + 4 B? m? w2
0g(0) = 18—yl
¢ O R R
J J ]
- 30 cps. < w < 30 cps. (2.105)

The parameters of this spectral density function are
given in Table 2.1. To introduce nonstationary character in
the synthetically generated time histories, envelop func-
tions shown in Fig. 2.1 have been used. Three different

envelop functions with total and strong motion phase
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durations of (12 sec., 2 sec.), (15 sec., & sec.), and
(30 sec., 15 sec.) were used to get three different sets
of time history ensembles. There were 100 time hiétories
in 12 sec. duration set, 75 in the 15 sec. set and 33 in
the 30 sec. duration set. The selection of the number of
time histories generated in an ensemble set was primarily
governed by the computational cost. The response results
for each set were processed separately, Figs. 2.2 - 2.4

show the time histories from the three sets.

The synthetically generated acceleration time histories
were used for generation of base motion spectrum curves.
Pseudo acceleration, relative acceleration and relative
velocity spectra were generated for a total of 10 damping
ratios ranging from 0.5% to 50% of the critical. For each
damping value, the spectra curves of the time history
ensemble were statistically processed to obtain the mean
and mean-plus-one-standard-deviation spectrum curves.

These averaged base motion spectra are used as base input

in the direct approaches described in this chapter and
Chapter 3 employed pseudo acceleration and relative velocity
spectrum curves as inputs whereas the approaches of

Chapters 4 and 5 employed relative acceleration and rela-
tive velocity spectra as inputs. Figs. 2.5 - 2.7 show

these averaged spectra for 12 sec. duration, Figs. 2.8 -

2.10 for 15 sec. duration,. and Figs. 2,11 - 2.13 for the
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30 sec. duration sets. The curves for mean + one standard

deviation are shown in Figs. 2,14 -~ 2.22,

To obtain floor spectra for acceleration time
histories, modal time history analysis approach has been
used. It involves solution of Eq. 2.3 for each mode by
Duhamel integral approach [29]. This method provides an
exact solution for a given digitized acceleration time
history. Absolute floor acceleration time history is ob-
tained from Eqs. 2.8 in the mode displacement approcach
(Chapter 2) and by Eq. 4.1 for mode acceleration approach
(Chapter 4). The floor acceleration time history is then
applied to the osecillator, Eq. 2.5, for generation of floor
spectrum. Solution of Eq, 2.5 is also obtained by the

Duhamel integral approach,

For each time history floor spectra are obtained for
different damping wvalues at the points of interest of a
structure, The floor spectra obtained for a time history
ensemble are then statistically processed to obtain the mean
and mean + one standard deviation spectra. The mean time
history spectra are compared with the spectra obtained by
the direct approaches with mean ground spectra as seismic
input, Similarly, the mean + one standard deviation time
history spectré are also compared with the corresponding

spectra by direct approaches for mean + one standard




deviation ground spectra as input. A good comparison of
these two sets of spectra means that the direct approach
is acceptable in spite of the simplifying assumptions made

in its development.

2,7 NUMERICAL RESULTS

In this section the numerical results for two dif-
ferent models obtained by the time history analysis and the
direct approach are presented and compared for the valida-
tion of the direct approach. The dynamic characteristics
like natural frequencies, participation factors and modal
displacements of the floor points of the two structural
models are given in Tables 2.2 and 2.3. The first model
has also been used in earlier studies [39,42]. The second
model is a regular 10-story building with 10 degrees-of-

freedom.

The structural damping for both structures was taken
as 5 percent of critical in each structural mode. The
oscillator damping for generation of floor spectra was
varied between 0.5 to 50 percent. Large damping values were
included to examine the applicability of the proposed
approach for such damping values. However, floor spectra

results, only for a selected damping values are shown.
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Figs. 2.23 - 2,34 show the floor spectra for two
floors of the first model (also referred to as the 11-FRQ)
for 1 percent and 5 percent damping ratios, obtained by the
direct approach and time history analysis. Figs. 2.23 -
2.26 are for 1l2-sec. time histories, Figs. 2.27 ~ 2,30
for 15~sec. time histories and Figs. 2.31 - 2.34 for 30-
sec, time histories. In generation of these curves Eq.

2.29 which assumes equal peak factors was used.

The comparison of the two results for three sets of
time histories shows that the direct approach predicts
higher (comservative) response at dominant structural fre-
quencies than the time history response. For floor 3 shift
in curves is alsoc noted between the oscillator periocds of
.08 sec. to 0.16 sec, In general, however, the results
obtained by the direct approach and time history analysis
compare very well. The main reasons for getting higher
response in the direct approach are: 1) the assumption of
equality of peak factors, 2) the inability of step-by-step
time history analysis to reach the maximum (peak) response
because of the finite size of the time step. (This effect
could account for about 2 percent to 7 percent difference.
This was verified by the calculation of response of two
equal frequency oscillators in céscades subjected to a
harmonic input. The closed form response obtain

the harmonic input was compared with the step-by-step
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time history response obtained with a time step size of

0.005 sec.)

To see if any improvements can be made by inclusion of
peak factors in generation of floor spectra, Eq. 2.2 was
used to obtain floor spectrum values. To obtain the
spectral moments for the calculation of the peak factors,
three different forms of spectral density functions were
used: 1) the spectral density function defined by Eq.
2.105, 2) the spectral density function with only the first
term of Eq. 2.105, and 3) a band-limited white noise with
cut-off frequency of 30 cps. The first choice of the
spectral density function is most consistent with the input
spectra used, as they were obtained from this speétrai
density function. In the calculation of peak factors, the
effective earthquake durations for 12, 15 and 30 second
time histories was assumed to be 5 sec., 7 sec. and 19 sec.
as suggested by Hou [19]. The use of duration values some-
what different from these, however, did not make any sig-
nificant difference in the final results, The probability
of exceedance with the mean spectra was taken as 0.5 which
corresponds with the median of the maximum response. It
was also observed that the final results were not sensitive

to the choice of this probability either.
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The floor spectra with peak factors are shown in
Figs, 2.35 - 2.38 for the 12 sec. time history set, in
Figs. 2.39 - 2,42 for the 15 sec. time history set and in
Figs. 2.43 - 2.46 for the 30 sec. time history set., In
these figures, the peak factors were obtained for the
spectral density function of Eq. 2.105. It is seen that
compared to the results presented before, these results
show a definite impfovement inasmucH as their comparison
with the time history results is now better. Similar
results compdring the mean + one standard deviation spectra

are shown in Figs. 2,47 - 2.50,

In Figs. 2.51 - 2.54 are shown the floor spectra with
peak factors obtained for the l-term PSDF and in Figs,
2,55 - 2.58 for the white noise PSDF, Again, as the 1-term
PSDF represents the frequency content of the input better
than white noise, the results are better for the l-term
PSDF. The results obtained with white noise PSDF are in
faet erratic sometime. Thus, it appears to be essential to
have a correct representation of the frequency content of
the input in terms of a PSDF to obtain peak factor for
Eq. 2.29 and the assumption of white noise as PSDF for

calculation of peak factor may not give consistent results.

Ag suggested in Sec. 2.5, the spectral moments were

also obtained from ground. spectra for the calculation of
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peak factors. The floor sbectra calculated with such peak
factors are showm in Figs, 2,59 - 2.62, It is seen that
the approach is not entirely inappropriate. However,
because of the unevenness of ground spectra, Figs. 2.5 -
2.22, used in the evaluation, the peak factors calculated
by this approach may not always lead to improved results
(see Figs, 2.59 - 2.62). Thus the use of this approach is

not recommended.

In practice, a PSDF representing the input spectra
will usually not be known. It can, however,‘be obtained by
iterative procedure (see Ref. 17) for a given spectrum. As
an input is usually defined by a set of spectrum curves for
the damping values of interest, such procedures will in
general not give one PSDF for all the curve. 1In fact
there may be as many PSDFs as there are spectrum curves.
However, use of any one of these PSDFs for the calculation
of spectral moments and then the peak factors should pro-

vide improved results of floor spectra.

A PSDF can also be directly used as input for genera-
tion of floor spectra, but since there is no one PSDF
which is consistent with all input spectrum curves,
choosing the right PSDF out of several becomes a problem.
As such, the use of PSDF approach for generation of floor

spectra is not advocated here. In fact in absence of a
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proper PSDF, the use of Eq.'2.29 will provide quite

acceptable and conservative results.

Another set of results obtained by the direct approach
for the 10 story building are shown in Figs. 2.63 - 2,65
and compared with the corresponding time history results.
Again for this structure also, the two sets of results

are again seen to compare very well.

2.8 SUMMARY AND CONCLUSIONS

In this chapter, a direct approach initially developed
by Singh [39,43] is reformulated and critically examined.
Several improvements related to the development of floor
speetra for the resonance case and inclusion of peak fac-
tors In floor spectra generation methodology have been
formulated., A procedure for the evaluation of the peak
factors for an oscillator on ground and another one on
floor is described for its use in floor spectra generation
procedure. A simulation study for validation of the direct

approach proposed here is outlined.

Extensive numerical results, covering a wide range of
parameters such as different duration time histories, dif-

ferent structural systems, different floors of a building,

N



58

range of damping values, eté. have been obtained. A
critical evaluation of the results indicates that the
proposed approach does provide an acceptable method for
direct generation of floor spectra. Inclusicn of in peak
factors in generation of floor spectra is possible and can
improve results 1f peak factors are evaluated for a proper
PSDF. 1In absence of any knowledge about the PSDF, the
assumption of equal peak factors for an oscillator on
ground as well as on floor in the method of generation of
floor spectra will also provide conservative and acceptable

floor spectrum curves.



Chapter 3

NONCLASSICALLY DAMPED SYSTEMS: MODE DISPLACEMENT
METHOD

3.1 INTRODUCTION

- The direct approach developed in the preceding chapter
and most other approaches developed so far by various in-
vestigators assume that primary systems are classically
damped and the normal modes can be used to decouple their
damping matrices., Thus strictly speaking these approaches
cannot be used for structural systems with nonclassical
damping matrices. A damping matrix is called nonpropor-
tional or nonclassical if it is not proportional to either
mass or stiffness matrix or both or is not of a special
forﬁ as described in Reference [29]. Here, in this inves-
tigation the term nonproportional is used in a general
sense to include all the cases in which normal modes

cannot be used to decouple the damping matrix.

For the convenience of dynamic analysis, the structures
are generally assumed to be proportionally damped with
modal damping ratio. It may be justified in some cases.
However, there can also be situations where the non-
classical nature of damping matrix canhot be completely

ignored. Such is usually the case when a structure is

59
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made up of materials with different damping character-
istics in different parts. A combined analytical model
of a soil and structure system, commonly used to incorpo-
rate soil-structure interaction effects will usually be
nonclassically damped. In such cases, methods which do
consider the nonclassical nature of the system are re-

quired for generation of floor spectra.

Since the damping matrix cannot be decoupled in such
cases, the time history analysis, employing step-by-step
integration techniques can be used to obtain floor.spectra
if the time history of the input motion is known. How-
ever, the time history approach becomes impractical and
expensive because to obtain reliable estimate of the
design response an ensemble of time histories must be con-

sidered in the analysis.

To use normal modes, often the off-diagonal terms of
[¢]T [C] [¢], representing modal coupling through damping
matrix are completely disregarded and diagonal elements of
the transformed matrix are used to obtain the modal damping
ratios. This may sometimes introduce significant errors in

the generation of floor response spectra.

For the calculation of member response of nonpro-

portionally damped primary system, with response spectra as



seismic design input, an épproach was developed by Singh
[46], Herein, this approach has been extended for genera-
tion of floor response spectra for nonproportionally
damped primary systems. This approach is cast in the form
of conventionally used modal analysis approach, such that
the direct use of ground response spectra as seismic input
is possible. Again, the mode displacement formulation 1is
developed first. The mode acceleration formulation for
nonproportionally damped primary systems is described in

Chapter 5.

3.2 ANALYTICAL FORMULATION

When the damping matrix [C] in Eq. 2.1 is nonclassical,
the 2n-dimensional state vector approach, as initially pro-

posed by Foss [15], is used to obtain the response.

In this approach, Eq. 2.1 is cast into 2n-dimension
equations} with the help of an identity equation [21], as

follows:

[a1(7} + [B1(y} = - [D] {9} X, (£ (3.1)

r
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where
[[o]  [M]] [—[M] [O]l
[A] = ; [B] = ;
M7 [c]] (0] [K]
[[o]  [O]]
[D] = (3.2)
o] [M]1]

Eq. 3.1 is called the reduced equation of motion of the

system. {y} is a 2n dimension state vector defined as

{x}
{y} = { } (3.3)
{x}

The solution of Eq. 3.1 can be obtained in terms of
eigenvalues and eigenvectors of its associated eigenvalue

equation,
p [a] [¢] + [B] [s] = [O] (3.4)

where [¢] = 2nx2n matrix of eigenvectors {¢j}, and p =
eigenvalue. Eg. 3.4 gives 2n eigenvalues and corresponding
eigenvectors which occur in the pairs of complex and

conjugate.

Using the expansion theorem the response vector {y} is

written as follows

{yr = [¢] 1z} (3.5)
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where {z} is a vector of éomplex valued principal co-
ordinates, which are cobtained from the sclution of the

following equation

T

[A%] {2} + [B*] {z} = - [¢]1T [D] {-9-} ig(t> (3.6)

in which T over a wvector or matrix represents its trans-
pose. The matrices [A*] = [¢]T [A] [¢] and
[B*] = [¢]T [B] [¢} are diagonal matrices with their

diagonal elements related as

B, = - p, A, (3.7)

in which pj is the jth eigenvalue of Eq. 3.4. A decoupled

jth equation of Eq. 3.6 is

y. - p. z. = - F. X% 3.8
z PJ ZJ 3 g(t) ( )

in which Fj is an element of complex vector {F} defined as

follows:

(71 = a7t red” o] {2} (3.9)
An element of {F} can be shown to be

T
F. = . L 3.10
3 {¢J}£ [M] {r}/AJ ( )

where {¢j}£ is the lower part of the complex eigenvector

{¢j}-
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The solution of Eq; 3.6 can be written as

t . pj(t—T)
zj () = - Fj J Xg(r) e dr

0

(3.11)

For generation of floor spectra the absolute accelera-

tion vector, {Xa}, is of main interest which can be written

in terms of relative and ground accelerations as follows:

{Xa} {x} + {r} Xg(t)

(3.12)

where {x} = relative acceleration response vector of dimen-

sion n.

The above equation can also be written as

HENENLT

Using Eq. 3.3,

X r} .
a (y} + { X_(t)
X 0 &

which by virtue of Eq. 3.5, can also be written as

. 2n .
(Kb = T {og

Z . + X (t
oL ZJ {r} Xg( )

u

(3.13)

(3.14)

(3.15)

where {¢j}u = upper part of {¢j}. By substitution of éj

from Eq. 3.8 in Eq. 3.15,
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(X} = jzl (650 (- F ig(t) *pyozy) + () ig(‘t)
(3.16)
or
. . 2n
(X 1 = Xg(t) {- j[ Fy Qogd, + {r}} + jzl Py 24 0050
(3.17)
It can now be shown that the first term in Eq. 3.17 is

Y
zero. Using the expansion theorem, vector { 0 } can be

written in terms of complex modes [¢] as follows:

{ ) } = [4] (o) (3.18)

where the constants {p¢} in this expansion are obtained by
employing orthogonality of {¢j} as follows. Premultiplying

Eq. 3.18 by [¢]T [A] we obtain

o1 = (1T a1 Lo 7F 1677141 { 7} (3.19)
0
or '
C rasq-1 T..©° _
{p} = [A¥] [¢j] {[M] {r}}={F} (3.20)

A jth term of Eq. 3.20 is given by

T e
. = . - M . .21
o5 = logd, [M) (r)/A, (3.21)

which from Eq. 3.10 is equal to Fj‘ On substitution of

Egqs. 3.18 and 3.20 into Eq. 3.17 it is seen that the terms

in the square bracket become zero and the absolute
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acceleration response vector, {Xa} is given as follows:

2n

X 1 = 2
X} jzl P; ZJ{¢J}u (3.22)

and the absolute acceleration of, say, the mth floor can

be written as

X . = 21 Py 25 ¢5(m (3.23)

in which ¢j(m) is the mth element of {¢j}u.

Eq. 3.23 forms the basis of the mode displacement
formulation for generation of seismic floor response
spectra for nonproportionally damped primary systems.- This
will be used to define the spectral density function of the
floor acceleration which in turn is required tc define a

floor response spectrum value.

As nonproportionally damped systems do not possess
normal modes, the modal frequencies and damping ratios de-
fined in a conventional sense do not exist. However, an
equivalent information is contained in the real and imagi-
nary parts of eigenvalues, pj. In order to use a set of
prescribed spectra in generation of floor spectra, it is
essential to identify these modal parameters for non-

proportional systems. For this, as in the case of
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proportiorially damped systems, thée real and imaginary parts
of py are expressed as follows:

.= - E, + 18, = -8, w. +1 0, /T <52 )
PJ EJ i 3 BJ m:] 1mJ B_‘] (3.24)

where - Ej arid ej aré the real and imaginary parts of Pj
respectively and w3 dnd Bj are now the modal fréqhency and
damping ratio, which can be obtained in terms of o5 and &,

ds folldws:

, = VEZ + 972 3.2
wJ EJ 3 ( 5a)
8. = t.//ET ¥ 87 (3.25b)

J J J J

3.3 AUTOCORRELATION AND SPECTRAL DENSITY FUNCTIONS OF
FLOOR ACCELERATION

As done in the previous chapter, the expression for the
spectral density function of floor acceleration defined by
Eq. 3.23 will now be established. This will then be used

as the input to an oscillator to obtain floor épectrum'Value.

Pairing complex conjugate terms, Eq. 3.23 can be

written as a summation over n terms as follows:

el oz (B + ot e 2 ) )
L [pJ ¢ zJ( ) Py 9 zJ(t)] (3.26)

I3

X, (t) = ;
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where for brevity ﬁam(t) is replaced by ia(t) and ¢(m)
by ¢j. Hereafter this notation will be used in this

chapter.

For a zero mean excitation, Xg(t), the mean of Xa(t)
is zero whereas its autocorrelation characteristics can be

obtained as

. . n nt
E[Xa(tl) Xa(tz)] = 321 k£1 pj ¢’J pk ¢’k

noon e ok xR

+ Elzg(t) oz (£,)] + j; L P

JER L n
- E[z.(ty) 2z, (t,)] + §
17 "kr2 321 k=1
[ * ] Ig I§ % *
+ E[z.(ty) =z, (t£,)] + P: ¢: P o
jr L k2 j21 k=1 k "k

© B[z (t]) 2 (t))] (3.2

Using Eq. 3.11, various expected values required in Eq.
3.27 can be obtained in terms of autocorrelation function
or spectral density function of ground acceleration; these

are defined in Appendix II-A.

To further simplify the evaluation of Eq. 3.27 the
terms with j=k, called single summation terms and j#k,

called double summation or cross-terms, will now be
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evaluated separately.

Terms with j=k of Eq. 3.27 denoted by Rs' can be

written as

R = ? p.2 b 2 Elz.(t;) z.(t,)]
A z j ivTl jr2

C A ) * * :
;7 ¢y Elzg(ty) 250ty ]

b x *
. P. 6. ¢, Elz. (L . (t
Py oy ¢y Elz5(ty) z5(t))]

+ L Lopy ey g ey Elzg(ey) 25(ep)] (3.28)

Substituting for the expected values from Appendix

II-A, Eq. 3.28 can be written as

19 00 p 2 q 2 p *2 q 7:\,2

ji=1 /o= B (" +wD  (py* + 09

+- ¥ * ' 1
P3 P53 % 1 RTFIO) (py 1)

+ — 1 duw’ (3.29)
(—pj + i‘-“) (‘PJ “iw)

where
q; = F. 4. | (3.30)
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With'pj expressed in terms of its real and imaginary parts

as in Eq. 3.24 and qj as

qj = aj + i bj (3.31)

and with appropriate combination of the 1lst with the 2nd
term, and the 3rd with the 4th term, and after some

algebraic simplification, Eq. 3.29 can be written as

follows:
R2 = 5 2 [m 2 (w) e®T [w? (A! + w? (a® + b2y}
8 j=1 e B J J J J
2 2 “ 2
- w7 (1L - 28%) Al + 2 B! 8.1 - BT uw:
wy ( 550 Ay 5% "3 Y3
4 2 2 2
+ . . + bt H. .32
uJJ (aJ J)] ] JI dw (3 3 )
in which
2 2 2 2
Al = - . - bl - {1l - 2 8%
(aJ bJ) wy ( BJ)
2
+ 4 a. b, wt g,/ - 8% .
a__J bJ mJ BJ BJ (3.33)
2 2
' = 2(a%t - b T B. A/l -
BJ <aJ ), mJ SJ B]
2 2
+ 2 wt a. b. (1 - 2 g7 .34
wy a5 by ( BJ) (3.34)

where Hj is the frequency response function of a single-
degree-of-freedom oscillator, defined by Eq. 2.3. Eq.

3.32 can be rewritten as
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2

n =) ' .
R = 2 J s Lut c! + D' |H.|2 .
s jzl _tgle) e (w® ) IE 1T de (3.35)
in which
. , 2,2 2
C! = A! + uf (a% + b° ,
j 7Ry T ey (ap H DY) (3.36)
\ 2 2. . 2
D! = - o2 (1 - 2 8%) A!' + 2 B, w? g.J1 - g°
j wy 37 Ay 5955 ?3
4, 2 2
+ wy (af + bl ,
vy (aJ bj) (3.37)

The double summation terms (cross terms) are also
evaluated similarly. Substituting for the expected values
from Appendix II-A the double summation term of Eq. 3.27,

herein denoted as Rd,‘may be written as follows:

nn e - P: P 9 Q
_ y lwt i "k 3 Gk

* by w iy 3 &
Lo PPy % PP Yy %

(-pytie) (-py-ie)  (-pytis) (-pi-io)

Y ¥
P: P, 95 9
J Tk 7]k du (3.38)
('Pj"‘iw) (‘Pk"iw) .

Substituting qj, S pj and Py in terms of their real

and imaginary parts, and with some algebraic manipulations,

Eq. 3.48 can be written in the following form
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in which
[ 2 7 2
N L R " L

Bj‘l/l - Bkz + ay bj Bk‘” - B?

23. a
k23 %k

+ 4 ul (3.40)

1
ij = 4(1) (.L)j wk [aj ak (wk Bj - (Uj Bk)

JT—T"EE +a b kJr—?—jz (3.41)

Eq. 3.39 can be further transformed into the real forms of

Hj and Hk as

oo . ) 2 2
R, = [_w 0y (w) €M X () + 1Y (0] 817 |7 de
(3.42)
in which
Xjk(w) = XJk Ujk - ij ij
(3.43)
ij(w) = Xi Vi * Yj'k Usye
where Ujk and ij are defined as
- 2 2 2 2 2
Ujk = (wJ W )(wk w™) + 4 Luj O1e Bj Bre (3.44a)

Vi = 20luy 8 GF = w®) = up 8y Gof - w5 (3.44b)

J ]



73

Noting that Xjk = ij and ij = - ij, the cross-
terms when combined together will eliminate the imaginary
terms from the final expression. Using Eq. 3.35 and 3.42,
the complete expression for the autocorrelation function of

the stationary response of a floor acceleration is obtained

as follows:

B ep) Xy (o] =

e
N
e
1 ]

8
L=
a9
—
£
(N
]
H
£
A
—
=
(@]

dw (3.45)

for t = 0 this equation also defines the mean square ac-
celeration response of floor. From Eq. 3.45 it is seen
that the PSDF of a floor acceleration response can be
written as

12

2
¢! + D! |H.
1(w 3 J)lJ

I o~

@m(m) = 2 ];l

nn 2 2
+ §¢E Ryp () [Hy [ H 5] o) () (3.46)
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3.4 FLOOR RESPONSE SPECTRUM

This PSDF characterizes the acceleration of a floor.
The maximum response of an oscillator with this PSDF as
input defines the floor response spectrum value. For
example, the absolute acceleration response spectrum value
at a frequency Wy and damping 8, can be obtained from the

mean square value as follows:

2 2 2r® 2 ., .
Ra(mo,BO) = PF(mo) [2 Jél J-m @g(w) (w Cj + DJ)

2

: 12

2 2 :
wo ) IHJ } duw

H

4 2
: (wo + 4 By W o

r237 [ X 4
) | og) X

H_ |2 de O (3.47)

2 2 2 2 2
+hosl w05 1|0 1Y JHy

0
-

where PF(mO) is the peak factor by which the root mean
square value is amplified to obtain the response spectrum

value.

To define the response spectrum value in terms of
ground response spectra, each term of Eq. 3.47 is separated
into partial fractions, as was done in the previous chapter.

Here again the case with 0 # W, and s = g with Bj = 8,
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-will. be treated'separatély. The latter case With'mj = u,

and Bj = B, will again be referred to as the resonance case.

3.4.1 FLEOR SPECTRUM VALUE 'FOR THE NONRESONANGE ‘CASE

In ‘Eq. 3.47 the separation of terms into their partial
fractions is straight forward, 'With this separation 'the

response spectrum -expression can ‘be written as follows:

2 2 n .AJ ‘AZ :
Ra.(mo,ﬁo) = PF(‘“o-) 2 _]‘X'l ;:_5 Il(w Yy o+ ;%- Iz(mj)
( )L h (w.)
+ A, I.(w ) + A, T, (v )} + 2 I 0
3 1Yo 4 T2 "0 5= 1 k—3+1 ';%
B, A B
. Tk , K
+ ;% Iz(mj) + = I () + i I, ()
1 2
+ (Cj + Ck) Ilsmo) + (Dj + Dk) Iz(mo)}} (3.48)

where Al, A2' Aj’ etc. are the coefficients of partial
fractions and are defined in Appendix II-B. Il(mj) and
Iz(mj) are the frequency integrals as defined in Chapter 2,
Egs. 2.22 - 2.25. Again these can be obtained from the

pseudo acceleration and relative velocity response spectrum

and their associated peak factor values.
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Here this expression allows the incorporation of
various modal peak factors in generation of floor spectra.
However, if all the peak factors are assumed to be the
same, an expression independent of peak factors is ob-

tained as follows:

o

2 oA o 2 2 2
R , =2 R (w.) + R (u,
(wo BO) jzl {;g p(wJ) ;% @] v(mJ)
n n
+A3R2(w)+A4m2R2(w) + 2 ) Yo
P e ° v j=1 k=j+1
A, B, A
2 2 2 k .2
. {ﬁ. Rp(mj) + ;% 5 Rv(mj) + = Rp(mk)
1 1 2
. R2(u ) + (C. + C) R2(uw)
2 “k SviPk i k’ “p Yo
2
+ (D. + D) w® R%(w) (3.49)
3 k o V' o )

This expression has been used to obtain numerical results

for nonproportionally damped system.

3.4.2 FLOOR SPECTRUM VALUE FOR THE RESONANCE CASE

For this special case when Wy = W and Bj = Bo’ the

coefficients of partial fractioms, A, A,, ete. are un-

2)
defined. However, this case may be treated in the same way
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as in Sec. 2,4.2 for a proportionally damped system.

Single Summation Terms

A term with vy = e and Bj = B in the.single summa-

ticon terms can be written as

Yo 2

I = ¢ c! + D!

. [ NONEREN D
[

4

2 2
. (mé+ + 4 Bi wy W ) ‘Hol dow (3.50)
which can be approximated as
W
" C 2 ' ' 4 2 2 2
Is ~ ¢g(w0) J-w (w Cj + DJ) (wo + 4 By 8y W )

c

4

H do - 2 ¢_(w ) w_ DI +D: 1 (3.51)
o} g o

o ] j b

The integral in the above equation can be evaluated using
the integral in Appendix I-B, Eq. I.22. Thus Eq. 3.51 can

be written as

= - ' ]
I @g(wo) ®. {Am 2rDj} + Dj I

s (3.52)

b

in which Am is defined in Appendix II-C, Eq. II.19. Using
Eqs. 2.37 and 2.40 in Eq. 3.52 and after some algebraic

manipulations, the following is obtained:
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IS = Il(wo) {A$ + [1 - F(wo)] . (Dj -\A&)} (3.53)
where
A - 2rD!
Al = m 2 (3.54)
Bm -2r

in which Bm is defined by Eq. 2.41.

Double Summation Terms

The evaluation of a double summation term in resonance
proceeds the same way as in Sec. 2.4.2 for proportionally
damped case. In this evaluation an integral of the follow-

ing form is encountered:

w

_ ¢ 4 2 2 2

Id = j_w (wo + 4 BO w, oW )
C

& + F

‘4
1 “o

2 2 )
- (F g By W )] JHO . @g(w) duw (3.55)

where the coefficients Fl and F2 are defined in Appendix

IT-B. Eq. 3.55 can be approximated as

: w
= c 8 2 6 2
Id = ¢g(wo) J_ {Fl 0y + (F2 + 4 BO Fl) 0, @
wC
2 4 4 4
+ 4 F2 BO Wy w } IHOI dow - 2 ¢g(mo) g Fl
+ F, I (3.56)
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The frequency integral in above equation can be evaluated
by using Eq. 1,22 from Appendix I-C, Denoting this

integral by D, Eq. 3.56 can be written as
Ig = ¢gludu, (D = 2xF )+ Fp I (3.57)

where D is defined in Appendix II-C, Eg. II.21. Using
Eqs. 2.37 and 2.40 in Eq. 3.57 and after some simplifica-

tions the following is obtained:

Id = Il(mo) {D& + [1 - F(wo)] . (Fl ~ D&)} (3.58)

in which D& is defined as follows:

D - 2rF

vy I 1
N (3.59)

With the integrals IS and Id defined by Egs. 3.53 and 3.58,
the floor spectrum value for the resonance case can be ex-

pressed as follows:

2( y=2 1 2I§§I+Ak1()
R (w _,8 = 1 + { w
ao’’o j=1 ® 321 k=3+1 d rg 1Yk
B
s RACPIUCH AERIEE S 1) (o) (3.60)
2
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3.5 NUMERICAL RESULTS

For the numerical consistency and veritication of the
formulation developed in the preceding section, the floor
spectra results were obtained for a proportionally damped
system by this approach and approach developed in the
previous chapter. The two results were exactly the same
which verified the analytical correctness of the formula-

tions and computer code,

To show the magnitude of the error which can be intro-
duced in the floor spectra results when a nonproportiocnally
damped system is assumed to be proportional by neglecting
the off-diagonal terms of [¢]T [C] [+], here numerical
results are obtained with and without off-diagonal terms.
Tables 3.2 and 3.3 show these results for a 5-story, 15
degrees-of-freedom torsional structure shown in Fig. 3.1.
The structure consisted of rigid floors connected by
columns. Each floor has 3 degrees of freedom -- 2-transla-
tion and l-rotation. The eccentricity between mass and
stiffness centers was adjusted to give closely spaced fre-
quencies. The damping properties cf the system were
adjusted to give a nonproportionally damped system. The
undamped frequencies, participation factors and the modal
damping used in the normal mode apprcach are shown in

Table 3.1. The corresponding quantities used in the
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nonproportional formulation or complex mode approach are
not shown here as they do not give any new insight into
the characteristics of the system. The input for the
results shown in Table 3.2 was defined in terms of PSDF
defined by Eq. 2.105. Whereas, to obtain the results shown
in Table 3.3, the input to the system was defined in the
form of pseudo acceleration and relative velocity spectra
shown in Figs. 2.10 and 2.11, obtained for an ensemble of
30 sec. duration time histories. The difference in the
calculated spectrum values of various floors with and
without off-diagonal terms, as indicated by the ratios in
columns is between 0 to 47 percent. The assumption of
proportionality is seen to predict higher response in this
case. There could be other situations where this dif-
férence may be larger. Thus, if the system is non-
proportionally damped the formulation proposed here should

be used for generation of floor spectra.

Since assumptions like stationarity of input and
response have been made in the development of this approach
it is essential to wvalidate the approach by simulation
study. TFor this floor spectra were also generated for all
5 floors by time history analysis for the ensemble of 33
time histories of 30 sec. duration and by approach presented

in this chapter.
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In the time history approach, Eq. 3.8 was solved using
Eq. 3.11. "For a given ground acceleration time history,
with linear variation of ordinates between digitized
points, the solution of Eq. 3.8 was exact. That is,
assumptions, such as linear variation of acceleration
response which is commonly made in step-by-step integration
approach, were not made. zj(t) obtained from Eq. 3.1l was
used to define the floor acceleration time history, ia(t),
by Eq. 3.23 which in turn was used as an input to the
oscillatoer, Eq. 2.5, to obtain the maximum acceleration

response or the floor spectrum value,

The floor acceleration spectrum values obtained for the
time history ensemble were processed to obtain mean and mean
+ one standard deviation spectra for all floors. The mean
spectra are plotted in Figs. 3.2 - 3.8 and compared with
the spectra obtained by the direct approach proposed in this
chapter. To obtain the mean floor spectra by the direct
approach, the seismic input was defined in terms of the mean

of ground spectra generated for the ensemble,

The Figs. 3.9 - 3.11 show the comparison of the mean +
one standard deviation spectra obtained by time history
analysis with floor spectra obtained by the direct approach
with mean + one standard deviation spectra of the time

history ensemble as ground input. In the generation of the
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results by the direct approach all the peak factors were

assumed to be equal.

The comparison of the spectrum curves obtained by the
two approaches seems to be excellent. The floor spectra
curves were obtained for a wide range of damping values,
but not all are shown. The comparison between the results
for damping not shown here, including very high damping
values (50 percent), was also excellent. This comparison
validates the proposed approach for direct generation of
floor response spectra from ground spectra for non-

proportionally damped systems,

3.6 SUMMARY AND CONCLUSIONS

A mode displacement approach 1is developed for direct
generation of floor spectra for nonclassically damped
structural systems, Although the normal modes do not exist
for a nonclassical system, the developed approach can still
be used with ground response spectra as seismic input. A
good comparison of the results obtained by the proposed
approach and the time history analysis for an ensemble of

time histories validates the proposed approach.




Chapter 4

CLASSICALLY DAMPED SYSTEMS: MODE ACCELERATION METHOD

4.1 INTRODUCTION

A direct approach based on the mode displacement method
of structural dynamics was described in Chapter 2. This
approach is mathematically sound, and will provide accurate
results as long as all structural modes of the system are
considered. Because of the extra computational effort in-
volved in obtaining higher modes accurately, and also the
belief that such modes are not important, often only a
limited number of modes are used in the analysis. This can
induce some error in the calculation of member response as
well as in the generation of floor response spectra,
especiallyifk the structure is stiff and also if the floor
response spectra for floors near the base are to be
generated. To alleviate this problem, here an alternative
method based on the mode acceleration method is being pro-
posed for direct generation of floor spectra. In the
following sections a complete development of this approach
is presented for the nonresonance and resonance cases of
classically damped primary systems. The development of a
mode acceleration approach for nonclassically damped systems

is presented in Chapter 5. Numerical results validating

84
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the proposed approach are also presented.

4.2 ABSOLUTE ACCELERATION OF FLOOR

The mode acceleration formulation, to be developed
herein, employs Eq. 2.6 instead of Eq. 2.7 to obtain the

absolute acceleration of a floor. That is,

.. - n .
X = X 4+ . 0. 2. 4.1
a(t) Yo g z Y5 ¢J zJ(t) (4.1)
It is seen that this expression for absolute accele-
ration contains ;j(t) which is the acceleration of mode j,
defined by Eq. 2.3. Hence this approach will be called as

the mode acceleration approach.

In the following section, the spectral density function
of floor acceleration, defined by Eq. 4.1 will be obtained.
This spectral density will then be used as input to an
oscillator to obtain the mean square value of its accelera-
tion response and the floor spectrum value, as done in the

previous chapters.
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4.3 AUTOCORRELATION AND SPECTRAL DENSITY FUNCTION OF
ACCELERATION

For a zero mean excitation, Xg(t), the mean of ia(t)

is zero whereas its autocorrelation function is given by

. . . n .
E[Xa(tl) Xa(tz)] = E({rm Xg(tl) + jzl Y ¢j zj(tl)}

. n .
{rm Xg(tz) + kzl e Y% zk(tz)}] | (4.2)
Eq. 4.2 can be rewritten as
E[Xa(tl) 'Xa(tz)] = rm E[Xg(tl)'xg(tz)]

n - .
+ Z Yi b: T E[Zj(tl)'Xg(tQ)]
n . .
+ kZ Vi b T B2y (Ep) X, (8]

0T vy ety g ¢ Elzg(e)ez ()] (4.3)

The expected value terms in Eq. 4.3 can be evaluated
in terms of ground acceleration PSDF and the modal fre-
quency response functions of the structure. These expected
value terms are given in Appendix III-A for the statiomary
response. Substituting these in Eq. 4.3, and after some

algebraic manipulations, the following is obtained:
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E[ia(tl) ka(tz)] = J_w ° eluT {ré

B 2
+ . . LK

'21 Yy 65 T e (Hy 4 HO

3

n n n

2 2

R I M- N Loovs vp oy 9y o

j=1 3 j=1 k=j+1

(H; B + Hy H] do (4.4)

The mean square value of floor acceleration can be ob-
tained by substituting t = 0 in Eq. 4.4. Also, the PSDF of
the stationary floor acceleration response can be shown to

be given by the following equation:

_ 2, ® 2 2
@m(w) = {rm + le Yj dpj {2 I‘m(wj - w7)

2 2 2
+ .
w YJ ¢J} w IHJ|
P 3 5
+ Y. Y. 6. ¢, w H, H o (w) (4.5)
j91 k=j+1 4 K3k Ikl e

4.4 FLOOR RESPONSE SPECTRUM

Using this expression of the PSDF, the mean square

value of the oscillator response can be defined to obtain
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the floor spectrum value. Substituting in Eq. 2.17 the
absolute acceleration response spectrum value at frequency

w, and damping By is obtained as follows:

2 ) =
Ra(wo,Bo) = PF(wo) J

P oy
+ Y. vy &. ¢; w H. H v (w)
j=1 k=j+1 3 k'3 'k j ki g

@h+ s 62 W2 Wt ul du (4.6)

ol

in which, again, PF(wo) is the peak factor by which the
root mean square response is multiplied to obtain the

maximum response (floor spectrum value),

The integrals in Eq. 4.6 will now be evaluated in
terms of ground response spectra. Here the seismic input
is assumed to be prescribed in terms of relative accelera-
tion and velocity response spectra and in the following
sections the single and double summation terms of Eq. 4.6
are evaluated in terms of these spectra. Again the non-

resonance and resonance cases will be considered separately.
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4.4.1 TFLOOR SPECTRUM VALUE FOR THE NONRESONANCE CASE

The first frequency integral in Eq. 4.6 can be

written as

2

® 4 2 2 2
f—m @g(w) (wo + 4 By Yo @ ) ’HO‘ dw
S I - T.(o ) + 2 0l I.(w) (4.7)
g 3Y0 o "2V o ’

where Ig is the variance of ground acceleration defined as

I, - f_w 0 (0) do (4:8)

and I3(wo) is the frequency integral defined as

-13(w) = J_m m& @g(m) [Hoiz duw (4.9)

When multiplied by appropriate peak factor, S, these
integrals define the maximum ground acceleration and the

relative response spectrum values. That is

2 2

S“ I = A (4.10)
£ B g
2 _ 2
Sr I3(wo) = Rr(wo) (4.11)
where Ag = maximum ground acceleration, Rr(mo) = relative

acceleration response spectrum value at frequency W g and
damping By Sg = peak factor for ground acceleration, and
Sr = peak factor for relative acceleration response of an

oscillator with frequency wg and damping By
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Single Summation Terms

Consider the integrand of the first part of the single
summation terms in Eq. 4.6 and resolve it into partial

fractions as follows:

4 2 2 2 2 2 2 2 2
(mo + 4 By wg @ )'(wj - w7) ‘Hol [Hj[ w @g(w)
2 2 2 2
= [Z Ay +u” B [H[Z+ (2 €
2 2 2
+ Dl) ]Hjl 1 w @g(w) (4.12)

where Al’ Bl' Cl’ and Dl are given in Appendix III, Eg.
IIT.4. By integrating over the frequency domain and de-

|

noting it by, Is’ the first part of the single summation

term can be written as,

I' = Al J_m mz wz ®g(w) |H [2 dw
” 2
+ By J wooe (w) |H |7 de
+ C1 J-m m2 w @g(w) |H ‘2 duw

=
+ Dy [_m ot o ) 1H 12 do (4.13)
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By virtue of Egs. 2.25 and 4.11, the above equation
can be written as
I' = A, w2 I,(w) + B, I,(u) + C, w® I,(u,)
s 1 o "2 0o 1 “3% 0 1 "o 7273
+ Dy 13(wj) (4.14)

Following the same procedure, the integrand of the
second part of the single summation term can also be

resolved into partial fractions as follows:

w4 @g(m) (wg + 4 Bi wg wz) |H H.

%

l 2

2

= o2 05 () [(a, w2+ By W) {H |

2 2 2
+ (C2 wy + Dy w ) ]Hj] ] (4.15)
Integrating Eq. 4,15 over its frequency domain and
using Eqs. 2.25 and 4.11, the frequency integral of the
second part of the single summation term, herein denoted

as I;, can be written as
I" = A mz I,(w ) + B, I,(w ) + C m2 I, (w.)
5 2 o 2% 0o 2 739 2 o 2]
+ D, 13(mj) (4.16)

in which the factors A2, B2' CZ’ and D2 are defined in

Appendix III-B, Eq. III.7.
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Double Summation Terms

Consider the complete double summation term, with

pairing of the two Hermitian terms in the summation as

follows:
nn S
4, 4 2 2 2
I = . . +
dd §#£ Y5 Yk ¢35 9k J_w wileg + 4 B0 wg wT)
IH |2 H H* o (w) dw
o} ik g
;o L
= Yi Yy, 65 0 J ¢_(w) w
j=1 k=3j+1 4 k'] k) 78
4 2 2 2 2 w ok
(wo + 4 BO wo W ) IHOI (Hj Hk + Hj Hk) duw

(4.17)

It can be further simplified, eliminating the complex term,

as
2 77 T e () N W)
I = Y: Yq. ¢- @ J w9 (w) N'(w
dd = 7y ke ORI TR 8
W+ a2 W2 Wy u? e 1?1 )% de (4.18)
o} o j k o] '
in which
N'"(w) = wz {w? wi - wz(w§ + mi - 4 BJ Bk mJ wk)
4
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Denote integral of Eq. 4.18 by Ié. Resolving a part of the

integrand into partial fractions, this integral can be

written as

I = Jim X ¢g(m) N(w) |Hj|2 |Hk|2 (mﬁ
+ 4 sg mg wz) IHO[2 dw
- ffm @g(w)-wz(wg + 42 w2 Wt a2
(A, w2 + B_ w?) |Hj|2 +(C, ul
+D_ o) B %) du (4.20)

where Ar, B etc. are defined in Appendix III, Eq. III.15.

r,

When mj = v, and Bj = BO,

of Eq. 4.20 requires special consideration. This resonance

evaluation of the first term

case is described in Section 4.4.2. However, when mj £ ©
each term in the integrand of Eq. 4.20 can be further

broken into partial fractions to give the following

. * 2 2 2 2
Id = f-m d>g(cu) w [(AJ wq + Bj w) IHOi
2 2 2 2 2 2
+ (cj wy + Dj w ) |Hj| + (A oo + B w") |H, |
(G wl + Dy wh) [H 7] du (4.21)
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J L
in Appendix III.

where Aj' Biv ooy A, Bg, etc. are defined by Eq. III.10

Using Eqs. 2.25 and 4.11, Eg. 4.21 can be written as
v _ 2
Id = wg (Aj + Ak) Iz(wo? + (Bj + Bk) 13(w0)
2
+ ) {cj Iz(mj) +Cp I (u)) + Dj I3(wj)

(4.22)

+ Dk IB(mk)

By substituting Egqs. 4.7, 4.14, 4,16, and 4,21 in Eq.
4.6 the response spectrum value at oscillator frequency,
w, and damping B_ can be obtained from the following equa-

tion:

- pl 2 2
(mO.BO) = PF(mO) [rm ﬁIg - IB(wo) + 2 W Iz(mo)}

FEPRRE IS m s 30
? ? ]

+ 2 Y: Yy $s ¢, L (4.23)
391 k=j+1 3 kI R d

Ié, I; and Id in Egs. 4.14, 4.16, and 4.21 can be defined
in terms of the frequency integral 12 and I3 which in turn
are defined in terms of relative acceleration and relative
velocity spectrum values and their peak factors by Egs.

2.25 and 4.11.
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Eq. 4.23 allows for the incorporation of peak factors
in the generation of floor spectra. However, if all the
peak factors are assumed to be equal, an expression

independent of peak factors is obtained as follows:

2 2 1,2 L2 2 .2
Ra(wo,BO) = r_ [Ag - Ro(u)) + 2 o Rv(uo)]
FF e T2t A4 vs es A 02 R2(w)
58 37 m oL Ty %y 20 Yo MY

2
+ {2 x; By + 5 95 Byl Ri(u))

]

2
+ {2 rm Cl + Yj ¢j Cz} w Rv(mj)

o

2 (w,)}]

+ {2 T D r (45

n n

+ 2 Z z Vi Vi b .

2 2
A P I I

2 2 2 2
+ (Bj + Bk) Rr(mo) + W {Cj Rv(mj) + Ck Rv(wk)}
+ D, RE(w.) + D, RZ(uw )] (4.24)
j ] k "rk )

Eq. 4.24 has been used to obtain floor spectra which are
compared with the corresponding results obtained by the
direct approach described in Chapter 2 and the time history

analysis.
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4.4,2 FLOOR SPECTRUM VALUE FOR THE RESONANCE CASE

The factors Al, Bl’ etc. in Eq. 4.17 depend upon the
frequency ratios r) = wj/wo, r, = mk/mo and damping co-
efficients Bj, Bres and Bo' These factors are not defined
for the resonance case, To define floor spectrum value at
resonance a special treatment of the single and double
summation terms, as in the previous chapters, is required.
A more general formulation is developed here with the
limits of frequency integration restricted to a cut-off
frequency, W The expressions for the case when w, = @

are also obtained.

Single Summation Terms

Consider the first single summation term in Eq. 4.6

when mj = Wy and Bj = B,

2 4

W
Isl = f_z @g(w) wz(wg - wz)(mé + 4 Bg wg W do
C

LN

(4.25)

since the function ]HO]4 is highly peaked, Eq. 4.25 can be

approximated as [52]
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g Yo
C
2 4 4
-4 8 w, }oIH]T dw - T 94 @g(mo)
w
+ 162 j ° 2 4 () du (4.26)
o J_, g
o]

The integral in Eq. 4.26 is of the same form as
integral in Appendix I-C, Eq. I.22. Hence it can be
evaluated in closed form. Also because of the peakedness
of |H0l2 the frequency integral Iz(wo) in Eq. 2.20 can

also be approximated as

w
Iz(mo) = ¢g(mo) an w2 |Ho(m)]2 dw
(&
2 ¢ (wo) + 1/ 4 on 2 o (w) @ (4.27)
-7 —ga;—— w g N W g w W .
[8)

In the above equation the second and the third term
are relatively very small and because of their opposite
sign they cancel each other. This was verified for a 3-
term modified form of Kanai-Tajimi PSDF defined by Eq.
2.105, By substituting for the lst integral in Eq. 4.27
from Appendix I-C, in terms of Voo the following is ob-

tained
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q»g(fno) W, = “9"“‘\7—‘“ (4.28)

where Vm is defined in Appendix III-C, Eq. III.16., Substi-
tuting Eq. 4,28 into Eq. 4.26 and after some algebraic
manipulations the following is obtained
2
w. I {(w. )
_ 0 20 2
I, =—x— [Fm -3 r] (4.29)
m

where F_ is defined in Appendix III-C. Eq. 4,29 can be

rewritten as
ISl = & Iz(wo) (4.30)

where

v - 2
Foo= wg [Fm - 2/3 r]/Vm (4.31)

Proceeding similarly, the second single summation term

at tresonance can be written as

4

w 4 4 2 2 2
IsZ - J_z ®g(m> Y (mo + 4 Fo Yo ¥ ) ;Ho[ do  (4.32)

¢
’4

which for a sharply peaked }HO , can be approximated as

follows:
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w
5 c 4 4 2 2 2 4
ISZ = @g(wo) J- W (mo + 4 BO w, W ) 'HOI du
UJC
2 4 Y0 &
-3 mo @g(mo) + l/mo J-w w @g(m) dw (4.33)
e}

In the above equation, the second integral is small
and can be neglected. The lst integral can be evaluated in
closed form, Appendix I-C, Eq. I1.22. Using Eq. 4.28 in Eq.
4.33 the second part of the single summation term at

resonance can be written as follows:

1, - wg I,(e) [G_ - 2/5 x1/V_ (4.34)

where G, is defined in Appendix III-C, Eq. II1,18. The

above equation can be rewritten as

I, = G Iz(wo) | (4.35)
in which
_ 2
Gr'n = wg [Gm - 2/5 r]/vm (4.36)

Double Summation Terms

If w3 = vy and Bj = Bgs the first part of Eq. 4.20,
and if Wy = W and By = By the second part of Egq. 4.20

require special considerations in their evaluation.

Consider the case when wj = o, and Bj Bo' In this case



100

the first part of Eq. 4.20 can be written as

2

2 2 2
) (Ar Wy

w
Id = J c wz ( 4 + 4 87 w
-

2 4
wg o Yg @ + B w ) |HO|

c

@g(w) duw (4.37)

Again, because the function'|HO|4 is highly peaked the

terms with A, can be approximated as follows:

b 2 4

Ya 2 .6 2
Ar f_ w (mo + 4 Bo wy © ) ¢g(w) \HO| duw
“e
- rw
_ c 2 6 2 4 4 4
o Qg(mo) Ar f_w (w W + 4 BO wy W ) |HO| dw
(o]
- 2/3 @, @g(mo) Ar @, (4.38)

Similarly the terms with B. can be approximated as follows:

2 2

Br J-m w4 (mg + 4 Bg W, W ) @g(w) |HO|4-dw
© 4 4 2 2 6 4
mC
- 2/5 @g(mo) Br W, (4.39)

Using Eq. 4.38 and 4.39, Eq. 4.37 can now be written as
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2 2 6

Yo 2 4 4
Id = ¢g(wo) I_m {4 BO B. Wl w + (Br + 4 Bo Ar) W w
c
2

+ AL wg ™} |HO]4 de - 2 g @g(mo) (Ar/3 + Br/5)

(4.40)

The integral in Eq. 4.40 can be evaluated in closed
form using the integral in Appendix I-C, Eq. I1.22. Substi-
tuting Eq. 4.28, Eq. 4.40 can be written as

wg Iz(wo)
Iy=—<—— + (H_ - 2r (A_/3 + B./5)} (4.41)

d v
m

in which the factor H1is defined in Appendix III-C, Eq.

IIT1.19. Eq. 4.41 can be rewritten as

Ig = Ip(u)) HY (4.42)
in which
L2
H' = \—,i (Hy - 2r (A/3 + B./5)) (4.43)

The second part of Eq. 4.20 can be evaluated as in non-
resonance case, Eq. 4.21. Thus using Eqs. 4.30, 4,35 and
4.42, the response spectrum value for the resonance case

can be written as follows:
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2 2 2
Ra(wO,BO) = PF(wO) [Ig - I3(m0) + 2 wy Iz(mo)

vl
' ]
+ z vy 9 12 1 Fl o+ v, o5 Gp) I,(s,)

521 3073 h
lil n

+ 2 Yooyl vy s by (HY T, (w))
j=1 k=j+1 3 K 3 Tk m "2%0

2 2
+ Ak wg Iz(wo) + Bk I3(mo) + Ck wg Iz(wo)

+ Dy I5(u)) (4.44)

'In this equation Ag’ IZ' and 13 can be substituted in
terms of ground response spectrum values and their
associated peak factors to define floor spectrum values.
However, if all the peak factors are assumed to be equal
then the following expression independent of peak factors

is obtained:

— 2 2 52
B.) = A - Rr(wo) + 2 Wy RV

(w,)

n
+ 1wy ey 2T FLF vy ey G RSCu))

j=1 J J ]
o o 2y 2
+ 2 . . H' + A R
JE-]_ szZ+l YJ Yk ¢’J ¢k {( o k wO) V(UJO)
2 2 2 2
+ Bk Rr(mo) + W Ck Rv(mk) + Dk Rr(mk)} (4.45)
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4.5 MODE ACCELERATION VS. MODE DISPLACEMENT APPROACH

The mode displacement approach presented in Chapter 2
and the mode acceleration approach presented here are
mathematically consistent and equivalent. They just
represent a response quantity in two different ways. As
seismic input, the mode displacement approach requires the
pseudo-acceleration and relative velocity spectra whereas
the mode acceleration approach requires relative accelera-
tion and relative velocity spectra, Numerically, they
should provide same result if a complete set of modes are
used to obtain the response and also if the two forms of
inpuﬁ used in the two approaches are completely consistent.
To verify this numerical consistency the mean square value
of the floor spectral response of a structural system was
obtained by the two approaches, using Egs. 2.29 and 4.23
without the peak factor PF(mO). The values Il(wj) and

Iz(mj) used in Eq. 2.29 and Iz(mj) and 13(wj) used in Eq.

4,23 were obtained for the same spectral density function,
Eq. 2.105. Vhen all the modes were used, the two approaches
provided exactly the same values of response. This veri-
fied the numerical consistency of the proposed approach as
well as the computer code used for the evaluation of

numerical results,
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If all the modes are_required to be used in the mode
acceleration approach to obtain accurate response, then no
specific advantage is gained. However, because of the
special characteristics of the relative acceleration and
velocity spectra which are the inputs to this approach it
is possible to obtain a very accurate value of response
even with only a first few modes. Thus the high frequency
modes need not be obtained at all if this approach is used
for generation of floor spectra. This, however, is not
possible 1if the mode displacement approach is used. Omitting
high frequency modes in the mode displacement approach can
lead to larger errors in the calculated response especially
if the structural system is stiff and floor response to be
evaluated is affected by the high frequency modes. This
happens when floor response spectra are to be generated
for the floors which are near the ground. This 1s because

of the so-called '"missing mass' effect.

Figs. 2.12 and 2.13 show the average relative accelera-
tion and relative velocity spectra for the ensemble of 30-
sec duration earthquakes considered in this study. It is
seen that for high frequencies, especially the ones higher
than (the highest frequency in the motion) the relative
spectra become very small, On the other hand the average

pseudo-acceleration spectra shown in Fig. 2.11, which are



105

used in mode displacement approach, become constant equal to
the maximum ground acceleration. Therefore, if the higher
modes are omitted in the mode displacement analysis, a
larger error will be caused than a similar omission in the

mode acceleration approach.

In the mode acceleration method, the major part of the
missing mass effect is included through the first terms in
Eq. 4.23 and 4.45 which are associated with the rigid body

effects of the ground motion.

Thus, the mode acceleration approach is computationally
more efficient than the mode displacement approach, as a
smaller number of modes are adequate in the calculation of
accurate response. This advantage is clearly seen from

the results presented in Table 4.2.

4.6 NUMERICAL RESULTS

In this section the numerical results obtained for a
10 story, 30 degrees-of-freedom structure (D.0.F.), as well
as for the 1ll-frequency structural model considered in
Chapter 2 are presented. The 30 degrees-of-freedom
structure consists of 10 rigid floors connected by colums,

The stiffness and mass parameters of this system can be
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easily adjusted to create a stiff or soft system.

First to verify the mathematical correctness of the
formulation developed in this chapter and also the claim
that it is mathematically equivalent to the mode displace-
ment approach presented in Chapter 2, the mean square
values of floor spectral responses fer 30-D.0.F. system
were obtained by the mode displacement and the mode ac-
celeration approaches with all 30 modes considered in the
analyses. The input in both the analyses was in terms of
the PSDF defined by Eq, 2,105. Both analyses provided
exactly the same results. Thus verifying the mathematical
equivalence of the two formulations as well as the logic

of the computer codes.

To verify the claim made earlier in Sec. 4.5 that the
mode acceleration approach is more effective than mode
displacement approach inasmuch as the former provides a more
accurate response than the latter for a given number of
modes, here some mean square value results for the floor
spectral responses of the 30 D.O.F. structure are presented.
The stiffness properties of the structure were adjusted
such that the frequencies are rather on higher side.

The first 10 frequencies, partication factors and modal

damping values are given in Table 4.1. To calculate the
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mean square value the input was defined in terms of the

PSDF in Eq. 2.105 with a cut-off frequency of 20 cps.

The results are shown in Table 4,2 for floors 1, 2,
5, 8 and 10, Floor 1 is the lowest floor and 10 the highest.
The mean square floor response spectrum values obtained with
all 30 modes in the énalysis are given in Columns (2), (5),
(8), (11) and (14) for various floors. In other columns,
the response values obtained by the mode acceleration and
mode displacement approaches, with only 4 modes used in the
analysis, are shown in terms of their ratios to the values
obtained with 30 modes (exact mean square value). Thus a

ratio close to 1 means a more accurate result.

| It is seen that the results obtained by the mode dis-
placement approach are rather inaccurate, especially for the
lower floors. This is because the floor spectra for the
lower floors are affected by higher modes. For higher
floors the effect of high frequency modes becomes small and
thus neglecting them in the analysis should not give much
error in the calculated response. This fact seems to be
borne out from the results in Table 4.2 for the higher

floors.

It is also seen that the results obtained by the mode

acceleration approach are superior across the board. Even
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for the lower floors, one need not worry about the higher
modes in the calculation of response by this approach.
The modes for which relative spectrum values are insig-
nificant can be neglected. This will, in general, happen
for modes with frequencies higher than the highest fre-

quency in the input.

To verify the applicability of Eq. 4.24 and 4.45 for
generation of floor spectra, in view of several simplify-
ing assumptions made in their development, the floor
spectra obtained from these equations are compared with the
spectra obtained in the simulation study for the ensemble
of time histories. For a proper comparisgn, the time
history results were also obtained by mode acceleration
formulation. That is, to obtain the floor acceleration

time histories, Eq. 4.1 was employed instead of Eq. 2.7.

Figs. 4.2 - 4.5 show the mean floor spectra obtained
for the ll-frequency model by time history analyéis and the
approach proposed in this chapter. The comparison of the
two results is rather very good. This comparison vali-
dates Egs. 4.24 and 4,45 for generation of floor spectra
in spite of simplifying assumptions made in their develop-

ment.
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The results are also obtained for the 30-D.0.F. struc-
ture which further validate Eqs. 4.24 and 4.45 as well as
substantiate the claim of effectiveness of the approach
with limited modes. Figs. 4.6 - 4.12 are for 15 sec. time
history spectra as input and Figs, 4.13 - 4.16 for 30 sec.
time history spectra as input. These are obtained by the
mode acceleration approach with only 10 modes out of 30
modes used in the analysis. These results compare very
well with the time history results. In fact the results
obtained with only the first 4 modes, shown in Figs. 4,17 -
4,26, also compare very well with the time history results.
This clearly indicates that mode acceleration approach can
be used to generate accurate floor spectra directly from
ground spectra only with a limited number of modes. On the
other hand, the mode displacement approach cannot be used
witH limited modes to obtain accurate results, as is shown
by the results in Figs. 4.27 - 4,31 obtained with 4 modes
for 15 sec. time histories, The mode displacement results
even with 10 modes, Figs. 4.32 - 4.36, do not compare well
with time history results. For floors far from the base
where higher mode effects are not important, the mode dis-
placement approach with a first few modes, however, can
also provide reasonable results. Nonetheless, the
superiority of the mode acceleration approach is consistent-

ly better.
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These results were obtained without inclusion of the
peak factors in Eq. 4.23. These indicate that tﬁere is
probably no need to include peak factor and the assumption
of equal peak factor will provide accurate enough response,
Fig. 4.27 shows that the method can also be applied
equally well for generation of spectra for high damping

values,

4,7 SUMMARY AND CONCLUSIONS

An alternative approach based on the mode acceleration
method of structural dynamics is developed for direct
generation of floor spectra for classically damped systems.
The seismic input in this approach are required in terms
of relative acceleration and velocity spectré. The‘ap—
proach is especially very effective for the generation of
floor spectra for the structural systems which have pre-
dominant high frequency modes, and also for floors close to
the base. Only a first few modes need to be utilized in
the analysis. The approach can also be used with computa-
tional advantage to obtain accurate results even for the
cases which are not affected by high frequency modes. A
good comparison of the results obtained by proposed

approach and the simulation study validates the approach.



Chapter 5

NONCLASSICALLY DAMPED SYSTEMS: MODE ACCELERATION
METHOD

5.1 INTRODUCTION

In Chapters 2 and 3, direct methods based on the, so
called, mode displacement formulation were described for
proportionally damped structural systems. Whereas in
Chapter 4, .a method based on mode acceleration formulation
was proposed to alleviate certain problems associated with
high frequency modes in proportionally damped structural
systems. To alleviate similar problems with high fre-
quency modes in nonproportionally damped systems an alter-
native method based on mode acceleration formulation is

proposed in this chapter.

As in Chapter 4, the input, in this approach is re-
quired to be prescribed in terms of relative acceleration
and relative velocity spectra. Maximum ground accelera-
tion value is also required. The results showing comparison
of mode acceleration approach with mode displacement
approach for nonproportional system as well as the results

of the numerical simulation study are presented.

/ 111
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5.2 FLOOR ACCELERATION RESPONSE

In this formulation, the vector of absolute accelera-
tion of {ia} is expressed in a different manner. Using the
lower halflof response vector {y}, the relative displacement
vector {x} can be written as follows:

n
{x} = ) {¢.}, z. (5.1)

j=1 J° & 7]
in which {¢j}£ is the lower half of modal matrix [¢].
Using Eq. 5.1 in Eq. 3.12, the absolute acceleration vector
can be written as

2n

(X} = 1 (o)

2. + X (5.2
i& it zJ {r} Xg(t) (5.2)

and the absolute acceleration of, say, the mth floor is
given by

. 2n . . -
= . . + X .
X y ¢J(m) zJ ro 2 N (5.3)

am - +2q
in which ¢j(m) is_the mth element of the lower complex mode
{¢j}, and T is the mth element of displacement influence

vector {r}.

Eq. 5.3 forms the basis of the mode acceleration method

of generation of floor spectra for nonclassically damped
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structural systems. In order to define the floor spectra,
the spectral density function of floor acceleration will
be obtained using this equation. This spectral density
function will be used as an input to an oscillator on the

floor to calculate the floor response spectrum value,

5.3 AUTOCORRELATION AND SPECTRAL DENSITY FUNCTIONS OF

FLOOR ACCELERATION

Eq. 5.3 can be rewritten as a summation over n terms
by pairing complex conjugate terms as follows:

: ? *
d. z.(t) + b .
1 4 3 3=1 ]

I~

X (0) = é?(t) + ig(t) (5.4)

3
where for brevity iam(t) has been replaced by ia(t) and
¢j(m) by ¢j’ and r will be taken equal to 1 for generation
of floor spectra in the direction of excitation. Note that
Qj here denotes an element of the lower part of the eigen-

vector whereas in Chapter 3, it denoted the upper part.

Hereafter this notation will be used in this chapter.

For zero mean random process, Xg(t), the mean of
absolute acceleration of floor, Xa(t), will be zero and its

autocorrelation function can be obtained as
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BIX, (£)) X, (c)1 = E(R (e) X (x))]
n . . no .
+ kzl N E[Xg(tl) 2, (t,)] + k£1 4 E[xg(tl)

o n . .
Zk(tz)] + Z ¢ E[Xg(tz) Zj (tl)]

j=1 7
n % “ .
+ jzl 45 E[X (ty) 25 (tp)]
7 ? [z, (ty) 2, (t,)]
+ {¢. ¢, E[2z. (L z, (t
351 k=1 i "k jrl k*"2

<L

+ ¢j ¢k E[ZJ (tl) Zk(tz)]+¢)j ¢k E[Zj (tl)

«

2 (8,01 + ¢§ b1 E[éj(tl) 2, (t))] (5.5)

in which zj(t) is defined by Eq. 3,1l. Various expected
values required in Eq. 5.5 can be obtained in terms of auto-
correlation function or spectral density function of ground
acceleration using Eq. 3.11. These are defined in Appendix
IV-A. The expected value of 1lst term is defined in

Appendix III-A,

Single Summation Terms

In Eq. 5.5, the singlé summation terms and terms with
j=k and the cross-terms with j#k will be evaluated

separately to simplify the algebraic manipulations.
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The single summation terms denoted by, Ré, can be

written as

¥

Ll E[X (t) zy(t)] + o5 EIX, (t)) z5(t)]

7]
1]
e~

N
T ooy BIX (Ey) 24(e )] + oy E[X (t)) 2z, (e D
(5.6)

Substituting for the expected values from Appendix IV-A,

Eq. 5.6 can be rewritten as

. v
n o . . q q
2 iwt
R' = - f 0% o _(w)e {(—~l+—7 S
B S SR PyTRON (piHin)
q * .
. q.
1 %1w) + —b du (5.7)
Pi” (py-1w)

where, qj is defined in Eq. 3.30 and 3.31. With appropriate

combination of the l1lst with 3rd term and the 2nd with 4th

term, Eq. 5.7 can be written as
. T2 i 2 2
R, = - 4 f_m . ¢g(w)el“T (0° £y +ty) |H |7 du (5.8)

in which coefficients tl and t3 are defined as follows
t, = - w, ., B, + b. J1 - 8% 5.9
1 uy (aJ 3 3 ,l BJZ ) (5.9a)

< 8. “ ot 5.9b
1 5 By BJ 5 ( )
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£y = w, (ale - B'Z. - b." Bj) . {5.9¢)

Now consider the terms with j=k in the double summa-
tion terms in Eq. 5.5. Denoting them as Rg, they can be

written as follows:

3]

n
RS = E {45

. - *2 ok A
ALY E[zj(tl) zj(tz)J + 43 .E[zj(tl) zj(tz)]

+ooy oy (Elzy (e 25 ] + Elz5(£p) 24t 1))

(5.10)

Substituting for the expected values from Appendix IV-A,
and combining the lst term with 2nd term and the 3rd with
4th, and after some algebraic manipulations, Eq. 5.10 can

be written as

n =) .
121 — 4 le 2 2 1 2
RS = 4 le J_w W @g(m) e (aJ wo o+ AJ) |HJ[ duw
(5.11)
where
) 2 2. 2
AT = w2 b2 4 a2 - b2y 82 - 2 a. b, e.AL - £23 (5.12
g = ey by + (ay ERE a5 Py By Byr (5.12)

Double Summation Terms

The double summation terms with j#k in Egq. 5.5, herein

denoted as Rd’ are also evaluated similarly. Substituting
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for the expected values from Appendix IV-A, these terms

can be written as:

n n 1

® 4 - iwrt
R, = ] ¥ f w o_(w)e — —
d 521 k=341 /= g i-pj+1m7(-pk-1w)

+ B3 L x + - 1 %
(-py*iu) (-Pp-iv)  (-p;+iw) (-py-iw)
1
T do (5.13)
(-pj+iu) (-pp-iw)

Substituting pj and Py in terms of their real and
imaginary parts and after some algebraic manipulations, Eq.

5.13 can be written as

nn s - S
— lUJ‘I.' ] . [ N
Rg = E#E f_m 0, ()T [Xoy (@) + & Yy ()] Hy H do
' (5.14)
in which
X!, = 4 a. a (mz + w. w 8. B) + 4 B, B w: W
ik i %k 3 Yk "3 Pk 3 Pk %5 “k

7 7
~4/1-8j-\/1-8k—l+mj o (a5 by 8 ,/1-ak2
+ ay bj Bie J1 - B? ) (5.15)

- (a5 by ol - gi - 8, b, ijl - g? ) (5.16)
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Eq. 5.14 can also be rewritten in terms of absolute
values of Hj and Hk as
2 2
[ IHk[ dw

Ry = f-m 4 (8) VT [Xjk(w) + i ij(m)] [Hj

(5.17)

in which Xjk(m) and ij(w) are the same as in Eq. 3.42.
Since Xjk = ij and ij = -ij, ij will be eliminated from
the final expression when the cross terms with j#k are
combined together. Using Egqs. 5.5, 5.8,-5.11, and 5.17,
complete autocorrelation function of the stationary response
of the floor acceleration is given by the following

expression:

o : n

. . 5

E[X () X (E))] = J_m ¢g(w) ettt {1 - jzl 4w
n

(mz t. + tg) |H.[2 + 7 4 s* (2% W2
1 3 3 .29 j
J—.
+ A) [H.]2 + 2 ? ? X, (w) [H.\2 |H |2 de (5.18)
For t = 0, this equation also defines the mean square

acceleration response of floor.:' From Eq. 5.18 the PSDF of

the floor acceleration response can be written as
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_ n o, , :
o (w) = Qg(w) - 4 jzl w ¢g(m) (™ £ + t3) H, |
+ 4 ? o () (a2 o2 4 Al |H, |2
j=1 g 3 i j
P S 9 )
jzl k=§+1 Qg(w) Ry (w) |Hjl | Hy | (5.19)

5.4 TFLOOR RESPONSE SPECTRUM

Using the PSDF defined by Eq. 5.19, and employing Eq.

2.15, the floor response spectrum can be obtained as fol-

lows:
R2(u 8) = P2y || 41 -4 T w2 e 4ty |H.I2
ao'o F*'o e 521 1 73 ]

n n n

ro 7 W@ ean HPe2 70

2 2 4 2 2 2

. Xjk [HJ| [Hkl } @g(m) (mo + 4 BO wo oW )
H 1% d | (5.20)

in which PF(wO) is the peak factor by which the root mean

square value is amplified to obtain floor response.

Eq. 5.20 defines the floor spectrum value at a fre-

quency, w and damping, By To define the response
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spectrum value in terms of ground response spectra, each
term under single or double summation is resolved into

partial fractions as was done in previous chapters. Once
again, the cases with wj%mo and wj = uy with Bj = B, will

be treated separately and referred to as nonresonance and

resonance cases respectively.

5.4,1 Tloor Spectrum for the Nonresonance Case

The first term in Eq. 5.20 is the same as the term
defined by Eq. 4.9 and can be obtained in terms of maximum
ground acceleration’, relative acceleration and relative

velocity spectrum values at oscillator frequenciés.‘

Single Summation Terms

The integrand of the first part of the single summation

term in Eq. 5.20 can be resolved into partial fractions as

follows:
w2 0 () (W by + ey (442 W2 D ]Hj|2 ENE
= 2 0g(s) g ((A) 2va, uh |Hj|2
by ol 4 a, Wh) | |7 (5.21)

in which the factors Al’ A2, etc, are defined in Appendix

IV-B, Eq. IV.1l. Integrating over the frequency domain and
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by virtue of Eqs. 2.25 and 4.11, the above equation can be

written as

v 2 2
IS = wg {Al Wy Iz(mj) + A2 13(wj) + A3 w Iz(wo)

+ A, I3(mo)} (5.22)

where Ié denotes the first part of the single summation

term.

Similarly, the integrand of the second part the single
summation term can also be split into partial fractions as

follows:

4 2 2 ' 4 2 2 2 2 2
w @g(m) (aj w- + Aj) (mo + 4 By, wy W ) lHj) IHO]
2 2 2 2 2
= wg oW @g(m) {(Bl w g + B2 w ) lHjl
2 2 2
+ (B3 vy + 34 w) ‘HO‘ } (5.23)

Integrating Eq. 5.23 over its frequency domain and

denoting it by Ig, the following is obtained

2

2
o {Bl W

IH =
S w O

2
Iz(wj) + BZ 13(wj) + B3 W Iz(wo)
+ B4 13(m0)} . (5.24)

in which Iz(wj) and I3(mj) are the frequency integrals de-
fined by Eqs. 2.25 and 4.11 respectively and the coef-
ficients Bl’ BZ' .., etc. are defined in Appendix IV-B,

Eq. 1IV,14,
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Double Summation Terms

After some algebraic manipulations, the complete
double summation term in Eq. 5.20, here denoted by Idd’

can be written as follows:

n n x 4 4
Idd =2 3 Y j w & (w) N(w) (wo
=1 k=j+1 ‘ -= g
2 2 2 2 2 2
+ 4 By wg © ) ]Hjl ]Hk‘ ]HO] dw (5.25)
where
N(w) =D wG + (C, D, + D, + E )wA
1 1 71 2 2
2
in which the coefficients Cl' 02, Dl' D2' ..., etc. are

defined in Appendix IV-B, Eq. IV.22Z,

Resolving a part of the integrand of Eq. 5.25 into
partial fractions and denoting it by I}, the following is

obtained

\ T4 4 2 2 2 2
I = {,w w @g(m) (wo + 4 By wg ) IHO[
4 2 2 2
4 2 2 2
+ (F3 wg + F4 wy W |Hk[ Jdw (5.27)
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where Fl’ FZ' ..., etc. are the coefficients of partial

fractions as defined in Appendix IV-B, Eq. IV.19.

For nonresonance case when mj%mo and mk¢m0, the
integrand of Eq. 5.27 can be further split into partial

fractions as

© 2 4 2 2 2
I} = . + B. .
' f_m oo (o) [y w4 By w2 WD) JHy)
) 4 2 2 2 4
+ (Cj W + Dj Wy © ) !Hol + (Ak N
2 2 2 4 2 2 2
+ Bk wg W ) |Hk] + (Ck wy + Dk Wy ) \HO{ 1dw
(5.28)
in which factors A,, B., A, , B, ..., etc. are defined by
b J k k

Eq. IV.16 in Appendix IV-B, Using Egs. 2.25 and 4.11, Eq.

5.28 can be written as

I, = o 1A, ol I,(u;) + By I3(uy) + C w1, (u)
Dy Ig(ug) + Ay w2 LCu) + B T,(a)
+ 0wl Iy(u) + Dy Iy(u) (5.29)
By substituting Eqs. 4.9, 5.22, 5,24 and 5.29 in Eq.
5.20, the response spectrum value at oscillator frequency

wy and damping 8, can be obtained from the following

equation
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2 52 ' 2
Ra(wO,BO) = PF(wo) [Ig - I3(w0) + 2 wy Iz(wo)
o 2
- 4 w, j£1 {A] ug Iz(wj) + A, I3(wj)

A w2 T () + A, Ta(wd) + 42 T (B, &2
3 Yo 2% 4 3% “o je1 L “o

| 2
. Iz(mj) + BZ 13(mj) + B3 g Iz(mo)

2 ? g 2
+ B, I,(u )} + 2 w {A, wl I,(w.)
4 3 "o o 321 k=3+1 i "o T2Y7j

2
+ Bj 13(wj) + Ak w g Iz(wk) + Bk IB(mk)

SRR wg I,(ag) + (Dy + D) TgCs )}l (5.30)

where Ig is the variance of maximum ground acceleration as

defined by Eq. 4.8.

The integrals Iz(mj) and 13(wj) can be substituted in
terms of response spectrum value and peak factors as done
in previous chapters. This allows the incorporation of
peak factors in the generation of floor spectra. However,
if it is assumed that all peak factors are the same, Eq.
5,30 can be written in terms of ground résponse spectrum

as:
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2 - a2 _ 32 2 .2
Ra(mo,Bo) = Ag Rr(wo) + 2 oy Rv(mo)
n
2 .2 2
-4 W jzl tAy oy Rv(wj) + A, Rr(wj)
+ A wz Rz(m Y 4+ A Rz(m Y} + 4 mz ?
3 %0 v'o 4 "r o ° 321
2 .2 2 2 .2
{Bl “o Rv(wj) + BZ Rr(wj) + B3 “o Rv(wo)
n n
+ B, RE(u )+ 2 w2 T T iAL ul RE(u)
0 O 3=1 k=j+1 J o v ]

2 RZ

2 2
+ B. Rr(wj) + Ak @ V(wk) + Bk Rr(wk)

J
F(C, +C) v RE(w ) + (D, + D) R2(w )}  (5.31)
j k o V' o 3 k o )
Eq. 5.31 defines the floor response spectrum indepen-
dent of peak factors. This expression has been used to

obtain numerical results for the same nonproportionally

damped structural systems.

5.4.2 TFloor Spectrum Value for the Resonance Case

In the special resonance case when wy = e and

Bj = Bo the coefficients of partial fractions Al, Bl’ A2,
etc. are undefined. 1In such a situation, the single and
double summation terms in Eq. 5.20 can be treated in the

same way as was done in the previous chapters.
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Single Summation Terms

A term with oF = u, and Bj = B of the first single
summation term, in Eq. 5.20 denoted as Isl’ can be written

as

(" 2.2
ISl = J_m ¢g(w) w” (w t1 + t3)

2 2
(wg + 4 Bs Y wz) ‘HOI4 dw (5.32)

which because of peakedness of |HO|4 can be apprecximated as

[52]

w
. c 2 2 4
I 1 ° @g(mo) J_ w- (w ty + t3) (mo +

S
. w

C
2 2 2 4 2
+ 4 By w0, W ) |HO| dw - 7 b5 @g(wo)/wo
et [P0 2 () a (5.33)
3 o s W gm w .
6]

The second integral in Eq. 5.33 is very small so ityis
neglected. The first integral is of the same form as
integral in Eq. I.22 in Appendix I-C. Thus, Eq. 5.33 may

be written as

Isl = @g(wo) ©, {Am - 2 t3/3 w mc} (5.34)

o)
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in which A, 1s defined in Appendix IV-C, Eq. IV.23, Using
Eq. 4.28 and 2.24 and after some algebraic manipulations

the following is obtained

w2 Ri(mo) 2 t3
L e et o e (5.35a)
m o ¢
or
I, = A' RE(w) (5.35b)
sl m V' o . '
in which Aﬁ is defined as
‘ w? 2 t,
A =T VT T e (5.36)
m o ¢
A typical term with o = wg and 3j = B, of the second

single summation in Eq. 5.20 at resonance, denoted as IsZ’

can be written as

W
_ [ad 4 2 2 1
I, = J_m o ) (@l WPk an
C
4 2 2 2 2
. (mo + 4 By g © ) [Ho[ dw (5.37)

which can be written as
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B 2 2 2 (%
I52 = 4 aj BO g f—m @g(m) duw
C
+ w2 [P0 s ) Ny ) 1H Y du (5.38)
o J_ g 1 o :
Yo
where

N () = b mg W+ by mg na b, wg 52 ¥ b, mg (5.39)

in which the constants bo’ bl' b2, and b3 are defined in

4

Eq. IV.24 in Appendix IV-C, Since function HO is highly

peaked, the second integral can be approximated as

2 2 2 qug 2
182 = 4 aj B, @, f- @g(w) du + g {@g(mo)
r-UC
[T N ) JHIY du - 2 by e u)
_ 1+ o} © 3 "g'¥%7 Yo
Yo
uJO
+ b, J_w 05(w) do (5.40)

O

In Eq. 5.40 1lst and 3rd integrals cancel each other. The
2nd integral is of the same form as in Eq. I.22 in

Appendix I-C. Eq. 5.40 can then be written as

_ 2
152 = ug @g(wo) @ g {Bm - 2 b3 T} (5.41)

in which Bm is defined in Appendix IV-C, Eq. IV.25. Using
Eqs. 4.28 and 2.24 to substitute for @g(mo)-mc in Eq. 5.41,
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the following is obtained

o v, 2
IS = Bm Rv(wo) (5.42)

in which B is defined as

w
1 _ O
Bm = g {Bm -2 b3 r} (543)

Double Summation Terms

A typical double summation term in Eq. 5.20 is first
split into two terms as shown in Eq. 5.27. With wy = g,
and Bj = By the first set of terms, denoted by I}, can

be written as

W
' c 4 4 2 2
Id = I- W @g(w) (Fl wg + F2 wo o )
Ye
Wh+ 482 w2 W®) JH [ du (5.44)

which can be rewritten as

' 2 “e “e 4
Id = 4 BO F2 J @g(m) dv + f @g(m) Nz(m) [HO[ dw
“Ye e
(5.45)
where
Nz(m) = CO mg m6 + Cl mg w4 + C2 mg mz + C3 mg (5.46)
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in which the coefficients C, . Cy. Cy, and Cy are defined

in Appendix III-C, Egq. IV,28.

Since the function lHol4 is highly peaked, Eq. 5.45

can be approximated as

¥ 2 mc wC
Id ~ 4 Bo F2 J_@ ¢g(m) dw + @g(wo) f_m Nz(w)
(&4 [

4 “o
. |HO! de ~ 2 @g(mo)-CB Wy, + C3 J—w ¢g(m) dw

o
(5.47)

In Eq. 5.47, the lst and 3rd integrals are small and they
cancel each other. The 2Znd integral is of the same form
as the integral in Appendix I-C, Eq. I1.22. Thus, Eq.

5.47 can be written as
Ié = ¢g(mo) o {Cm -2r C3} (5.48)

in which Cm is defined in Appendix IV-C, Eq. IV.27. Using

Eq. 4.29, Eq. 5.48 can be written as

T t 2
Id = Cm Rv(wo) (5.49)

where C& is defined as follows:

2
w
vy _ O _
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Thus using Eqs. 4.9, 5.35, 5.42, and 5.49 in Eq.
5.20, the floor response spectrum value at resonance can

be obtained as follows:

2 _ 52 2
Ra(wo,ﬁo) = PF(mo) [Ig - 13(w0) + 2 W Iz(mo)

-4y T + 4w I
° 521 sl j=1 s2
2 % ? 2
+ 2 {I) + A ol IT,(w,) + B I,(w.)
2
+ Ck wy Iz(wo) + Dk 13(w0)}} (5.51)

In Eq. 5.51 the frequency integrals Ig, Iz(mj) and
13(mj) can be substituted in terms of ground response
spectrum values and their associated peak factors. An
expression independent of peak factors, however, can be
obtained by assuming all the peak factors to be equal.
This expression can be written as follows:

2
123

2 _ 2 2 .2
Ra(mo,ﬁo) = A" - Rr(mo) + 2 W Rv(wo)

+ 2 mz ? {Ié + Ak mz Rz(mk) + Bk Rz(mk)

I3

3

¥ mg R%(wo) + D, Ri(mo)}] (5.52)
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5.5 NUMERICAL RESULTS

As discussed in Sec. 4.6, the mode acceleration ap-
proach developed here, both for classically and non-
classically damped systems, are mathematically consistent
and equivalent, In addition, they, in general, have some
specific advantages over the mode displacement approach
especially for the systems and responses which have
dominant effect from the high frequency modes, The results
substantiating these claims for the approach developed in
this chapter for nonclassically damped systems are pre-

sented in this section.

First to cross check the analytical correctness of the
formulations, as well as the computer code written to ob-
tain the numerical results, mean square floor spectra were
obtained for a propbrtionally damped system by the four
approaches presented in Chapters 2 to 5. The seismic input
was defined by the PSDF of Eq. 2.105. When the complete
set of modes were used in the analyses, exactly the same
results were obtained by all the four approaches., This
cross-checked the formulations in Chapters 2 to 5 with each

other.

To show the effectiveness of the mode acceleration ap-

proach in giving accurate results even with a first few
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modes, the mean square'values of the floor spectral response
were obtained for a 15 D.0.F¥. structural system shown in
Fig. 3.1. The mass and stiffness properties were adjusted
such that the natural frequencies were on the high side.

The damping values in X- and Y-directions were adjusted to
create a nonproportionally damped system. The dynamic
properties of the undamped structure e.g. natural fre-
quencies, participation factors and modal damping values

as defined by Eq. 3.25 are given in Table 5.1. The seismic
input was defined by the PSDF of Eq. 2.105 with a cut-off

frequeney of 30 cps.

Table 5.2 shows the numerical results for floors 1,
3 and 5, Floor 1 is lowest and 5’the roof top floor. The
mean square floor response spectrum values obtained by con-
sidering all 15 modes in the analyses are given in columns
(2), (5) and (8) for wvarious floors, In other columns the
respbnse values obtained by mode displacement and mode
acceleration approaches with only 3 modes used in the
analysis are shown in terms of their ratios to the values
obtained with exact mean square value (with all 15 modes).
Hence, the closeness of the ratio to 1 means a more

accurate result.

It is seen that the results obtained by mode displace-

ment approach are grossly underestimated for the lower
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floors and rather overestimated for the higher floors. As
the lower floors are affected by the high frequency modes,
the omigsion of these modes in mode displacement approach
introduces unacceptable errors in the calculated response.
It is also seen from Table 5.2 that the results obtained by
mode acceleration approach, on the other hand, are con-

sistently accurate for all the floors,

Table 5.3 shows‘similar results, but for the floor
spectrum values (rather than the mean square values as in
Table 5.2) for the input defined by the average spectra of
30-sec. time history set. Again, the same conclusions, as

in the preceding paragraph, are drawn from these results.

In the development of the approach presented in this
chapter, assumptions like stationarity of input and
response have been made. Therefore numerical verification
of the approach by simulation study is essential. For
this, the floor .spectra results obtained by the time history
analysis for the 30-sec. time history set are compared with
the results obtained by the direct approach presented here.
For a proper comparison, the time history results were also
obtained by the mode acceleration approach. Hence,.Eq.

3.8 was solved using Eq. 3.1l1 to obtain zj(t) which in turn
was used to obtain the floor acceleration time history,

ia(t), from Eq. 5.3. This time history was used as an



135

input to the oscillator, Eq. 2.5, to obtain the floor
spectrum value. The floor spectrum values obtained for
the time history ensemble were statistically processed to
obtain mean and mean + one standard deviation spectra for

the 5 floors of the 15-D.0.F. structure used in Chapter 3.

Mean floor spectrum curves are compared in Figs.
5.1 - 5.8 and mean + one standard deviation curves in
Figs. 5.9 - 5,12. 1t is seen that the results obtained by
the direct approach compare very well with the time history
results, thus validating Eqs. 5.31 and 5.52 in spite of

the simplifying‘assumptions made in their development.

5.6 SUMMARY AND CONCLUSIONS

In this chapter, a direct mode acceleration approach
is developed for generation of floor spectra for non-
classically damped structural systems. The approach has
similar attributes and advantages as the mode acceleration
approach for classically damped system (Chapter 4). That
is, with only a first few modes used in the analysis, this
approach can be very effectively used to obtain accurate
floor spectra for nonclassically damped stiff structural
system and for floor close to base, where the higher modes

have significant effect. For other cases also, i.e. where
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high frequency modes are not necessarily dominant, this
approach can be used with computational advantage.
Numerical results substantiating these claims have been

presented in this chapter.



Chapter 6
SUMMARY AND CONCLUSIONS

Several direct approaches for generation of floor
spectra for classically and nonclassically damped struc-
tural systems are described in this thesis. Specifically,
the mode displacement approaches which require pseudo-
acceleration and relative velocity spectra as their
seismic inputs are described in Chapters 2 and 3 for
classically and nonclassically damped systems, respective-
ly. The mode acceleration approaches, requiring relative
acceleration and relative velocity spectra, are developed
in Chapters 4 and 5 for the two types of structural
systems. Since, several simplifying assumptions are made
in the development of these direct approaches, a detailed
numerical simulation study has been conducted to validate
the proposed methodologies. In this simulation study,
extensive numerical results covering a wide range of
parameters, such as different structural systems, different
floors of a structure; time histories of different dura-
tions, range of oscillator damping values, etc., have been
obtained. Specific conclusions pertaining to an approach
are given at the end of each chapter. Here, however,

overall conclusions drawn from this study are given.

137
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In general, the floor spectra results obtained by
various direct approaches and time history ensemble.
analyses which are presented throughout this thesis, com-
pare very well with each other. This corroboration
validates the proposed approaches for their use in
practice., In some cases, improvements in the results can
be made by inclusion of unequal peak factors of the
oscillators on ground and floor in the formulation if the
frequency characteristic of the design input motion in
terms of power spectral density function is known. How-
ever, if the right spectral density function is not known,
the approximation of the frequency content distribution by
the simple-to-use white noise spectral density function
may not necessarily give correct results. Thus, such
approximations should be avoided. In general, however, it
has been observed from the results obtained in the study
that the peak factor correction are not essential. That
is, the formulation independent of peak factors will also

provide very reasonable results of floor response spectra.

The mode acceleration approaches have been proposed as
better alternatives to the mode displacement approaches, as
the former consistently provide more accurate results than
the latter with just a few modes used in the analysis.

Especially, for generation of floor spectra of stiff
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structural systems and fof floors close to base where the
higher frequency modes contribute significantly to the
response, the use of the mode acceleration approach is
strongly recommended. The only drawback associated with
the use of the mode acceleration approach is that it re-
quires relative acceleration spectra as input., Such
spectra are not commonly used in practice currently. The
pseudo~acceleration spectra are more widely used in
practice and well accepted methods [9,34,35,36,39,43] to
develop these for design purposes are also available to
the profession. However, similar methods can also be
developed to establish relative acceleration spectra for
design. More research, involving several recorded earth-
quake accelerograms is required for this purpose. In this
work, these relative spectra were developed for the
synthetically generated ensembles of time histories for

their use in this study.
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Table 2.1 Parameters of Spectral Density Function,
¢g(m), Eq. 2.105

3 S, W, B.
2 J ] ]
~ft“-sec/rad rad/sec.
1 0.0015 13.5 ,3925
2 0.000495 23.5 0.3600
3 0.000375 39.0 0.3350




147

Table 2.2 Dynamic Properties of 11-FRQ Structure

Mode Frequency Modal Participation
No. Cps Damping Factor
1 3.6659 0.0500 -10.2168
2 4,5203 0.0500 10,7984
3 5.6356 0.0500 -59.6307
4 6.2336 0.0500 -7.4238
5 7.2047 0.0500 4.3600
6 11.8574 0.0500  16.7521
7 12.0161 0.0500 48.9363
8 13.1243 0.0500 6.4819
9 13.5679 0.0500 ~19.0773
10 14.7744 0.0500 -29,3388
11 16.4835 0.0500 ~7.9668

Displacement Mode Shapes for Floor No. 3-X

-.267 E-3 .335 E-4 -.366 E-2 .374 E-3 .396 E-3 JA431 E-2
.103 E-1 .181 E-2 -.774 E-2 -.628 E-2 -.811 E-3

Displacement Mode Shapes for Floor No. 6-X

-.213 E-2 .260 E~3 -.223 E-1  -.305 E-2 .124 E-? -.305 E-2
-,212 E-2 -.130 E-2 .990 E-2 .364 E-3 .600 E-2
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Table 2.3 Dynamic Properties of 10-Story Structure

Mode Frequency Modal Participation
No. Cps Damping Factor
1 1.0638 0.050 318.9844
2 3.1676 0.050 -104,7328
3 5.2007 0.050 60.9079
4 7.1176 0.050 41.4039
5 8.8755 0.050 29.9754
6’ 10.4352 0.050 22,1802
7 11.7617 0.050 16.29789
8 12.8255 0.050 11,5118
9 13.6028 0.050 7.3736
10 14.0763 0.050 ~ 3.6030

Displacement Mode Shapes for Floor No. 4-X

224 E-2 -,388 E-2 .593 E=3  -=.345 E-2 -,311 E-2 .117 E-2
.397 E-2 .172 E-2 -.270 E-2 ~.370 E-2

Displacement Mode Shapes for Floor Ne. 6-X
.311 g-2 -.172 E-2  -.388 E-2 142 E-17 .388 E-2  -.172 E-2
-.311 E-2 .311 E-2 .172 E-2 -.388 E-2

Displacement Mode Shapes for Floor No, 10-X

.397 E-2 .388 E-2 .370 E-2 -.345 E-2 .311 E-2 -.270 E-2
.224 E-2 -.172 E-2 .117 E-2 -.593 E-3
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Table 3.1 Dynamic Properties of a 15-D.0.F. Structure Used in
Simulation Study

Mode Frequency Modal Participation
No. Cps Damping Factor
1 3.0043 0.0289 -1.4180
2 3.0044 0.0289 1.4180
3 5.9020 0.0214 -0,0103
4 7.5637 0.0918 -0.5506
5 7.5640 0.0918 -0.5507
6 11.7745 0.1427 -0.3211
7 11.7755 0.1427 | -0.3211
8 13.06853 0.0711 -0.0029
9 15.6633 0.1599 0.2273
10 15.6640 0.1599 -0.2273
11 19,9848 0.1717 -0.1769
12 19.9854 0.1717 0.1769
13 21.0994 0.0798 0.0012
14 30.9933 0.0776 0.0009
15 44,5844 0.0731 ~0.0007




Table 3.2 Response Spectrum Value Obtained for Various Floors of 15-degree-of-freedom Non-
proportionally Damped Structure by Normal Mode and Complex Mode Approaches Using
PSDF {(Eq. 2.105) as Input (Oscillator Damping = 1%, e/r = 0.01)

Floor 1 Floor 3 Floor 5 .

Oscillator Spectrum Spectrum Spectrum

Period Valuel Value Valuel
sec. ft/sec? Ratio? ft/sec? Ratio2 ft/sec? Ratio
.02 .67 1.09 1.31 1.23 2.10 1.25
.04 .69 1.09 1.31 1.23 2.12 1.25
.08 1.41 1.08 1.64 1.18 2.28 1.26
.10 2.35 1.03 2.12 1.15 2.60 1.25
.15 3.93 1.11 3.17 1.21 5.32 1.24
.20 2.86 1.01 2.08 1.18 5.45 1.12
.34 9.03 1.38 26,31 1.45 42.77 1.46
.40 5.34 1.01 : 9.93 1.04 14.06 1.065
1.00 1.85 1.00 1.99 1.00 2,10 1.00

lValue obtained using complex mode approach

2Ratio of values obtained by normal mode approach to complex mode approach

061



Table 3.3 Response Spectrum Values Obtained for Various Floors of a l5-degrees-of-freedom Non-
proportionally Damped Structure by Normal Mode and Complex Mode Approaches Using
Ground Spectra as Seismic Input (Oscillator Damping = 1%, e/r = 0.01)

Floor 1 Floor 3 Floor 5
Oscillator Spectrum Spectrum Spectrum
Period Valuel 2 Valuel 2 Value
sec. g-units Ratio g-units Ratio g-units Ratio
.020 .13 1.07 .24 1.19 .38 1.20
. 040 .16 1.08 .24 1.19 .39 1.20
.080 .30 1.17 .32 1.13 42 1.23
.085* .30 1.18 .34 1.14 b 1.23
L132% 31 1.24 42 1.41 .96 1.43
.200 Yy 1.01 .38 1.15 .93 1.09
.340 1.36 1.37 3.85 1.45 6.23 1.47
.400 77 1.02 1.41 1.05 2.00 1.06
1.000 .20 1.00 .22 1.00 .23 1.00

*
Structural period

1Value obtained by complex mode approach

2Ratio of values obtained by normal mode to complex mode approach

16t
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Table 4.1 Dynamic Properties of 30-D.0.F. Structure (First 10 Modes)

Mode Frequency Modal Participation
No. Cps Damping Factor
1 12.3495 0.0500 1.9621
2 12.3612 0.0500 1.9632
3 23,0685 0.,0500 -0.0815
4 30.8771 0.0500 ~-0.7656
5 30.9180 0.,0500 -0.7695
6 44 .6019 0.0500 0.1479
7 48.1747 0.0500 - 0.4763
8 48,3239 0.0500 -0.4554
9 65.5549 $0.0500 -0.3544
10 65,7332 0.0500 0.3548




Table 4.2 Response Spectrum Value Cbtained Eor Varlous Floors of a 30-D.0.F. Structure by Mede Displacement and Mode Acceleration Approaches
wvith Only ‘First & Modes (Oscillaror Damping 21)

Floor 1 Floor 2 Floor 5 Floor 8 Floor 10
Ratio Rat 1o Ratio __ Rario Ratio

Oscillator Spectrum HMode Mode Specttum Mode Mode Spectrum  Mode Mode  Spectrum Mode Mode Spectrum  Mode Mode
Period Value* Diepl. Acel. Value* Displ. Accl, Value* Displ. Accl. Value* Displ. Accl. Value* Dh;r)l1 Accl.
dec. ft/aec? Appr.l Appr.? ftr/secZ Appr.l Appr.? fr/sec? Appr.l appr.? ft/sec? Appr.* Appr. ft/sec? appr.l Appr,
(1) () (3) (4) (5) (6} (7) (8} (9) (10} {11) (12} yn (14) (15} (16)
0.02 .56 .23 .99 .59 .46 .99 .75 .93 .99 .98 1.05 1.00 1.12 1.02 1.00
0.04 .59 .25 .99 .63 .48 .99 .83 .94 .99 1.13 1.04 1.00 1.33 1.01 .99
0.08 1.50 .68 .98 2.35 .9 .99 5.80 .99 .99 9.54 1.00 1.00 11.72 1.00 .99
0.10 1.69 .32 .98 2. .50 .98 3.05 94 .99 4.1L 1.05 1.00 4.71 1.03 1.00
0.15 2.30 .21 .98 2.42 W42 .98 2.80 .91 .99 3.14 1.11 1.00 3.33 1.06 1.00
0.20 2.35 .20 .99 2.42 .39 .99 2.61 .90 .99 ©1.78 1.13 1.00 2.87 1.07 1.00
0.40 2,37 .18 .99 2.38 .37 .99 2.4) .90 .99 2.47 1.15 1.00 2.49 1.08 1.00
1.00 1.26 .18 .99 1.26 .37 .99 1.27 .90 .99 1.27 1.15 1.00 1.27 1.08 1.00

*Value obtalned with ‘all modes
IRntiu of values ocbtailned by mode displsacement approach with 4 modes and with J0 modes

2I?.ul:lo of values obtained by mode acceleration approach with 4 modes and with 30 modes

€GT
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Table 5.1 Dynamic Properties of 15-D.0.F. Stiff Structural System

Mode Frequency' Modal Participation
No. Cps Damping Factor
1 18.0113 0.0288 1.4174
2 18.0265 0.0289 1.4180
3 35.4632 0.0216 -0.0517
4 45,3425 0.0915 —0.54é1
5 45.3840 0.0918 -0.5507
6 70.5108 0.1412 0.3214
7 70.6530 0.1427 -0.3211
8 78.6324 0,0726 -0,0132
9 93.8843 0.1593 0.2277
10 93.9839 0.1599 -0.2273
11 119.8302 0.1713 0.1770
12 119.9124 0.1717 0.1769
13 126.8534 0,0805 0.0059
14 186.2789 0.0781 0.0045

15 267.9215 0.0735 -0.0037




Table 5.2 Response Spectrum Values for Various Floors of a 15-D.0.F. Nonproportionally Damped

Structure by Mode
Modes (Oscillator

0.05)

Displacement and Mode Acceleration Approaches with Only First 3
Damping 1%, e/r

Floor 1 Floor 3 Floor 5
Ratio Ratio Ratio

Oscillator Spectrum Mode Mode Spectrum Mode Mode Spectrum Mode Mode
Period Value* Displ, Accl. Value* Displ, Accl. Value* Displ. Accl.
sec. ft/sec Appr. Appr. ft/sec2 Appr.1 Appr.2 ft/sec Appr.1 Appr.2

(L) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0.02 .58 .33 .99 .72 .88 .99 .93 1.14 1.00
0.04 .81 42 .91 1.09 1.05 1.03 2,12 .90 .95
0.06 2.41 .65 .97 5.50 .95 .99 8.38 1.04 1.00
0.10 2.10 .30 .98 2.54 B4 .98 2.90 1.23 1.01
0.15 3.18 .26 .99 3.44 .82 .99 3.65 1.29 1.00
0.20 3.29 .25 .99 3.44 .81 .99 3.55 1.32 1.00
0.40 3.35 .24 .99 3.39 .81 .99 3.42 1.34 1.00
1.00 1.78 .24 .91 1.79 .81 .99 1.79 1.34 1.00

%
Value obtained with all 15 modes.

lRatio of values obtained by node

2
Ratio of values obtained by mode

displacement :approach with 3 modes and with 15 modes.

acceleration appreach with 3 modes and with 15 modes.

Gel



Table 5.3

Response Spectrum Values for Various Floors of a 15-D.0.F. Nonproportionally Damped

Structure by Mode Displacement and Mode Acceleration Approaches with Only First 3

Modes (Oscillator Damping 1%, e/r = 0.05).

l

Floor 1 Floor 3 Floor 5
Ratio Ratio Ratio
Oscillator Spectrum Mode Mode Spectrum Mode Mode Spectrum Mode Mode
Period valuel Displ. Acel, valuel Displ, Accl. Displ. Accl,
sec. g—units Appr.2 Appr.3 g-units Appr.2 Appr.3 Appr.2 Appr.3
(1) (2) (3 (4) (5) (6) (7N (8) (9) (10)
0.014* 12 .32 .99 .15 .87 .98 .19 1.17 1.00
0.020 .12 .33 .99 .15 .89 .99 .20 1.17 .99
0.028% .13 .34 .98 .16 .89 .99 .22 1.13 .99
0.04 17 .48 .92 .23 1.06 1.03 .45 .91 .96
0.055% .58 .69 .98 1.63 .95 .99 2.62 1.04 1.00
0.100 .40 .29 .98 47 .84 .98 .54 1.24 1.01
0.150 .57 .26 .99 .62 .82 .99 .66 1.30 1.00
0.200 .54 .25 .99 .57 .81 .99 .58 1.32 1.00
0.400 .48 .24 .99 .48 .81 .99 .49 1.34 1.00
1.00 .17 .24 .99 .17 .81 .99 L17 1.34 1.00
*

Structural period

lValue obtained with all 15 modes
2 . .

Ratio of values obtained by mode

Ratic of values obtained by mode

displacement approach with 3 modes and with 15 modes

acceleration approach with 3 modes and with 15 modes

96T
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MEAN - { STD OF ACCL SPECT FOR .5 1 2 5 10 15 20 30 S0 AND S0 PERC DAMP
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MERN « 1| €TD OF ACCL SPECT FOR .5 1 2 5 10 I5 20 30 40 AND 5D PERC DAMP
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MEAN - 1 STD OF REL RCCL SPEC FOR . 54.2.5. 10,15 203040 AND 50 PER DRAMP
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MEAN . 1 STD OF VEL SPECT FOR .5,1.2,5.10, 1S, 20, 30. 40 RND 50 PERC DAMP
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5% Damping: Mean Spectra, 30-sec TH, Floor No.
3-X, 11-FRQ Model



209

FLOGR NUMBERe 3.X

MEAN FLOOR SPEC FOR 1 PERCENT DRMPING (‘30 SEC TH MD ., MDDE DISP WPF 1 KT )

10.0

_
T
mt

o
-~J
Vi

0.3 / A

ACCELERATICON IN G
o
=
—

0.07

0.05
0.04

0.03

0.02

0. 01

|
0. 01 0.02  0.04 0.08 0.1 0.2 0.3 0.50.7 1.0 2.0
PERIOD IN SEC.

Fig. 2.51 Comparison of Floor Spectra Obtained by Mode
Dispalcement Approach with Peak Factors
(1-T, K-T PSDF) and Time History Analysis for
17 Damping: Mean Spectra, 30-sec TH, Floor No.
3-X, 11-FRQ Model



210

FLEBOR NUMBER= B.X

MERN FLODR SPEC FOR I PERCENT DRAMPING ( 30 SEC TH MD - MODE DISP WPF 1 K.T )

10.0

7.0

5.0
L.

3.0 i

s

ACCELERATION IN G

¢ e o¢ c : ;
w =
/

2

0.07

0.05
a.o4

D.03

0. 02

0.01

0.01 0.02  0.0% 6.06 0.1 002 0.5 0.50.7 1.0 2.0
PERIGD IN SEC.
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Fig, 2.63 Comparison of Floor Spectra Obtained by Mode
Displacement Approach and Time History Analysis
for 0.5% Damping: Mean Spectra, 30-sec TH,
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Appendix I
CLASSICAL DAMPING: MODE DISPLACEMENT METHOD

I-A EXPECTED VALUES

The expecte& values required in Eq. 2.10 are obtained

as follows.

The solution of Eq. 2.3 is given by

T

Zj(t) = - J Xg(T) hj(t—T) dr (I.1D)

0
where hj(t) is the impulse response function of Eq. 2.3.
Using Eq. I.1, the expected value

Y Jtz

Elzy(ep) mlel= | L]

E[X, (r) X (5p)]

. hj(tl-Tl) hk(tz-rz) drl dTZ (I1.2)
in which the autocorrelation, E[ig(rl) ig(Tz)], is defined
as

im(tl-tz)

ELE (1) X ()] = f b (o) e du (1.3

-0

Using Eq. 1.3 in I.2, and changing the order of integration,

the following is obtained

285
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or t]_ i(tjtl
8Lz, (t)) 2, ()] = j_w 0 (o) da .J e by (ty-1p)dr
0
t2 iwt2
jo e hk(tz—rz)dr (I.4)

For stationary response, when t; - =, t, > = and

ty -ty = 1, Eq. I.4 can be written as

Fr
ri

B[z (t)) 2, (6] = J_m WOR Y elvT 4, (1.5)

where Hj is the complex frequency response function defined

by Eq. 2.13, Also it can be shown that

BLE, (1) 2, (t)] = i f_w oo (w) Hy B e

I

- E[zj(tl) 2, (ty)] (1.6a)

BLZ,(tq) 2,(6))] = f_m : 0 (0) T, He el ar (1.6b)

I-B AMPLIFICATION FACTORS

The factors Al’ Az, A3, AA in Eq. 2.19 are obtained

as the solution of the following simultaneous equations:

[(P] {Aj} = {Wl} (L.7)
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where

T _

the elements of matrix [P] are defined as

(r] = | (I.9)

in which
_ 2 2 _ 4 - . _ A
u= - 2 ry (1L - 2 Bj) s V=g, X = 2 (1 2 BO) ;
y =1 ry = wj/wo (1.10)
Also
- _ 2 2 .2
Wl(l) =0 ; wl(z) = 16 B, Bj Ty
_ 2 2 2 2y . _ A
Wl(B) = 4 ry (Bo ry + Bj) ; Wl(B) = 1y (I.11D)
The factors Bl’ BZ’ .., 34 and Cl,...,C4 which

appear in cross-terms under double summation terms in Eq.

2.27 are obtained from the following simultaneous equations:

[P] (B;} = {My}  and [P'] (Cy3 = Wy (1.12)

3
where

T

- T
{Bj} = (Bl, B

B,) and (Ciit = (Cp, €y, Cq, Cp)

(1.13)

20 Bj,
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and the elements of [P] are defined in Eq. I.9. Also,

_ . _ 2 _ 2
Wy(1) = 0 5 Wy(2) = 4 B_ g2 ; Wy(3) = 4 A_ &5+ B_

w2(4) A (I.14)

r

The elements of the matrix [P'] are defined as

(p'] = (I1.15)
u' v' X y
i v 0 v |
) . . 2 2 v A _
in which u' = - 2 r (1 - Bk) , Vi =1, , Ty = mk/wo )

and x,y are the same as in Eq. I.9. Also,

H

W3(l) 0 5 W3(2) = 4 D. 8

o

W3(4) C (I.16)

r

whereas the coefficients A, Br’ Cr’ Dr in Eqs. I.14 and

1.16 are obtained as the solution of the following

simultaneous equations:

[P"] {A} = (W (I.17)

4}

T _
where (A} = (Ar, Br’ Cr, Dr) (I1.18)

and the elements of [P"] matrix are defined as
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[p"] = (I.19)

in which
" 2 2 11 _ 'LI'
u'' = - 2 r5 (L - 2 Bk) , V=1,
TR 2 _ 2 wo_ 4
X' = 2 r] (1 2 Bj) .y ry (1.20)
and the veector {w4}is defined as
W, (1) = & B. &, T, ts s W, (2) = v2 2 [1 - 4 (g2
4 ik L 200 % 172 ]
2 2 2 _ 4 2 2
2 _4 2 4 4
-] 1, (1L - 4 Bj) ; wa(é) =1y 7, (1.2

I.C FREQUENCY INTEGRALS

The closed form integration for the form are required

in the evaluation of integrals in the resonance case.

Ul
Icl = J-C (ao mg m6 + a1 wg wz + a, gg mz
“e
8 4
,+ a3 mo) ‘HOI dw
= w, Am(r, Bo’ a., a1, a5, 33) = w, Am (1.22)

wher a nd a, are constants, r = and for
) ere ao, al, 2 a 3 s wo/wc

brevity Ay is used for Am(r, Bor 8gr 874 &9, 33)
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throughout this work.

In Eq. 1.22, Am is defined as

Ml 1 -2ig 1 - r2 1 +2ie6 r - r2
A = on o - ¢n o
2 . 7 . 7
™ tl +2i8 v -1 1 -2i8 r-r
Q O
2, +my {(l+r2) _2ev1 - 52}
+ X > yn
2r41-gg (1+r2) + 2041 - Bg

2, m2/2(1+r2)

2+43§rf}

2 2
2N2 {(l-r7) + 2 BO r
%

rf(1 - 8h) ((l-r

2N, + M2/2 {1+r2 - 2rdl - Boz}
_ en (1.23)
b (1-a2 W1 -6 142 4+ 204l - 6l
where
N, = - 1 . [a (1-4 BZ) + a, + a
1 8rz BZ 2 o 0 1 2
O
+ a (1-+432>]} -
4 0 !
N. = - 1 r4 [( + Y(1 - 4 2) + a, + a,}; :
2 3 B? 7 Lid, as bo 1 2 ’
o)
m, = 1 r4 [(a + a)(1 + 4 32) + a, + a } :
1 3 B? rZ 2 o 3 o 1 21 @

0]

4
m, = EZ [2¢1 -~ 2 Bg) a, + a; - a3] ;

M, = ml/2i Bo r ; and M2 = mz/hi Bo r (1.24)
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The first term in Eq.'I.23 depends on the ratio r,

and can be evaluated as follows

1 - 21 BO r - T

2

My
1' = Ln
'z 1 + 2i Bo Y - 1

1 + 2i BO r - rz]f

- in
1 -21i 8 1 - £2
0
my ~
= = Qr (I.25)
p 0
where
Q. = 2(n-8) r <1
= m r =20
= 28 r > 1 (1.26)
' . -1 2 Bo r
in which 5 = tan th;Tf .

The closed form integration for the following forms

are alsc required.

—~
l

w
2 2 2
= J ¢ (ao wo W + ay wg) <HO] dw

=W

c2
a al) = uw_+ B (1.27)

where a, and a, are constants and for brevity B is used

for Bm(r, R a_, al). In Eq. I.26, Bm is defined as

o' 70
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my ZNl + ml 1+r2 - 2rJ1 - BZ

B, = g———P_+ ————Z24n
o BO ror 2ryl - 80

1+r2 + 2rJE - Bg
(I1.28)

in which the coefficients my and Nl are defined as follows

a + a a
my = —9—2—-l r2 ; N1 = - «% r2 (1.29)

The coefficient Pr depends on the value of r and can

be obtained as

Pr = 2(n-8) ‘ r < 1

=7 r =1
where 6 = tan 1 E_EQEz
| 1-r=t

I-D COEFFICIENTS AT RESONANCE

For(gc = », the factors Am’ Bm, and Am in Eq. 2.43
are defined as
2 4
1 + 12 Bo + 16 BO
m 3
8 Bo

' (I.31)

o}
i

(L - 4 e /)

Al = (A - &8 /3m)/B
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Also the factor Cm and C& in Eq. 2.46 are defined as

2 3
(1+4 BO)(Ar+Br) +450A
™ 3
8 By

T

)
0

(1.32)

Cﬂ.l = (C_ - 4 BO Ar/n)/Bm

)



Appendix II

NONCLASSICAL DAMPING: MODE DISPLACEMENT
METHOD

I1-A EXPECTED VALUES

In Eq. 3.28, the expected values are evaluated as

follows:

t t
_ 1 2 e s
Elz, (£)) 2, (t5)] = Jo Jo Py Ry B (1) X ()]
p.(ty-1,) p(t,-1,)
e d 11 TR 2T 4 g, (11.1)
1 2
which can be written as
o p.t p,.t
. = j 1 k-2
E[zj(tl) zk(tz)] J-m Fj Fk @g(w) e e do

Jtl (—pj+im)T1 Jtz (—pk-im)Tz
e dr e dr
0 1o 2

Considering stationary response, with tl > @, Ly >
and (tl-tz) +~ 1, the above equation can be written as

ilwt
F. Fk @g(w) e

Blay (6) 7 (c] = | o

(-p;F10) Py -T0) du (11.2a)
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For j = k
2 iwT
o FT 5 (w) e
‘ = J g
E[zj(t) zj(t2)1 f_w (p? - wz) dw (I1.2b)

Similarly other expected values required in Eq. 3.31

can be obtained as follows:

. e @g(m) Glut
Blay () o ()] = Fy By (-m (-Pj+iu)(-§i'im) -
(II.3a)
For j = k
Bz, (t,) z,(t,)] = F. F. Jm tg ) eliT du
TR 33 e (opytin) (-py-1a)
(I1.3b)
Also
. . 3 ) Jiut
[25(t)) 2y (6] = Fy ¥y | (-p[+10) (=P 10) -
(11.4a)
For j = k
B . . o (w) ein
B[z (ty) z.(t,)] = F' F, j i du
i SO ) N . (-pj+im)(-pj—iw)
(I1.4b)
and finally
. . w oa (™ o (w) etvT
Blzj(ep) o(ep)] = 75 7 [ 5 v

o (—p§+iw)(—p;—iw)
(I1.5a)
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For j = k

*7 Jw O (m) el('H

E[zj(tl) zj(t2>] = FJ

IT.D AMPLIFICATION FACTORS

dw (II.5b)

The coefficients Al’ Bl’ C1 and D1 in Eq. 3.48 are ob-

tained as the solution of the following simultaneous

equation

[P] {A} = (W} (11.6)
where
a1t = Ay, A, AL, A) (1T.7)
1 72 73 74 '
and [P] is a 4x4 matrix whose elements are
( 0 1 0 1
1 u 1 X
[P] = (I1.8)
u v X y
Y 0 v
. . _ 2 _ ~ 2 i
in which v = - 2(1 - 2 BO), v=1 x= -2 Iy (1 - 2 Bj),
and y = r?. Also,
Wo(l) = 0, W,(2) = 4 g2 ¢! , W.(3) = C! + 4 g2 D!
1 1 o 73 1 j o "3’
Wy (4) = Dy (I1.9)
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The factors Aj, Bj’ c e Ak’ Bk’

3.48 are obtained as the solution of the following

., etc, in Eq.

simultaneous equations:

[P] (A} = Wy} and [P'] (A = (W) (II.10)
where
{A.}T = (A., B., C., D.) and {A }T = (A_. B.. C._. D.)
j jr j: jr j k kn k: k. k
(TI.11)

and the elements of [P] are the same as in Eq. I1.8 and the

matrix [P'] is defined as

0 1 0 1
1 u 1 x'
[p'] = ' (11.12)
u v x' y'
v 0 ¥y’ ]
. . _— 2 2 b
in which x' = -~ 2 L (1 - 2 Bk) and y' = Ty, U and v are
the same as defined in Eq. I1I.8. Also
Wo(1) = 0 , Wo(2) = &4 Fo 82, Wo(3) = 4 F, 82 + F
2 T2 2 "o " "2 1 "o 2
WZ(Q) = F1
Wall) = 0, Wal2) = 4 F, 62 , Wa(3) = 4 F, 82 + F
3 * 73 4 "o ' 73 3 Yo 4
Wal4) = Fy (I1.13)

Whereas the coefficients Fl, FZ' F3, and F4 in Eq.
I1,13 are obtained as the solution of the following

simultaneous equations
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[P"] {(F} = {Wa} (I1.14)
where

T

{F} = (Fls F2’ F3n Fa)

and the elements of 4x4 matrix [P'"] are defined as

[p"] = ‘ B (I1.15)
ull vl’ X_" yVI \
v|1 O yll

in which
W= - 255 (=280, v=xg,
_ 2 _ 2 _ 4
x = - 2 r] (1 2 Bj) , and vy rq (IT.16)

Also
Wa(l) = D1 , W4(2) = C1 Dl + D2 + EZ ,

WACB) = C1 D2 + C2 D1 + E3 , and wﬁ(a) = C2 D2 (11.17)

In Eq. II.17, the coefficients Cl’ C2, Dl' D2, E2' E3 are

defined as follows:
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_ 2 2 ' i _ 2 2
Cl = = (Yl + Yo T 4 Y1 Y2 Bj Bk) ; C2 = Y1 Yo
- 2 2
D1 = 4 Y1 Y9 [ak aj By Bj + bk bj J& - BR‘J& - Bj

+ay bj P Jl - a? + aj bk Bj 1 - Pl 1

_ 2 2
D2 = 4 Y] Yo 3 aj

; By = 8:E - (vy 357 Y By)

Eq = 8By vy vp (vq 8y = v 830
- aj bk Yq N1 - B + ay bj Yo 1 - Bj ] (I1.18)

ITI-C COEFFICIENTS IN RESONANCE CASE

In Eq. 3.52, A, 1s defined using Eq. T.22 in Appendix

I-C as follows:

A = Am(r, g b, b b b (IT.19)

m o’ “o' "1®' “2° 3)

in which

_ ) _ 2 A 2 - vy 2 2 4y
b =0,;b 4 BO Cj/mo ;b (Cj/mo + 4 BO Dj(wo) ;

1 2

b3 = Dj (I1.20)

The coefficient D in Eq. 3.57 is also defined using

Eq. 1.22 in Appendix I-C as £01lows :

Dm = Am(r, Bo’ Cqr €10 Co, c3) (1I1.21)
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where

-7 (I1.22)




Appendix TIT

CLASSTCAL DAMPING: MODE ACCELERATTION METHOD

ITI-A EXPECTED VALUES

For stationary response, the expected values required
in Eq. 4.13 can be obtained by following the procedure

described in Appendix I-A. Thus, it can be shown that

I

E[ig(tl) ék(tz)] J—m ¢g(m) w? H; elUT 44 (III.1)

f

. - & 2 iw
B[z, (t]) X (t;)] [_m 0, () W Hy e T da C(IT1.2)

J

{

E[éj(tl) ék(tz)] Jim 0, (1) o4 H, noeteT 4 (111.3)

k

Other expected values required in Eq. 4.13 are given

in Appendix'I-A.

ITI-B AMPLIFICATION FACTORS

The coefficients A C, and D, in Eq. 4.12 are

10 B & 1
obtained from the solution of the following simultaneous

equations:
(P] iay) = (W) _ (I1I.4)
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where

T

{Aj} = {Al, B Dl} (I11.5)

lr Cl!

and [P] is a 4x4 matrix whose elements are the same as

defined in Eq. I1.9. Also

_ 2
0,011(2)——430

., 2 2
Wy (1) , W (3) =4l -1,

Wy (4) r% (1II.6)

The factors A2, BZ’ CZ’ D2 in Eq. 4.15 are obtained

as the solution of the following simultaneous equations:

[P] A} = (W,} (I11.7)
where

T
(AL {A C

I

2! B2, 2) Dz} (111.8)

and

| ]

Wy(1) = 0, Wy(2) = 4 82, W,(3) = 1, Wy(4) = 0

o
(III.9)

Matrix [P] is the same as defined in Eq. I1.9.

The coefficients A....D. and 4, ...D
i j k k

cross-terms under double summation in Eq. 4.21 are obtained

which appear in

from the solution of the following simultaneous equations:

[P] {Aoj} = {WS} and [p'] {Aok} = {W@} (IT1.10)
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where

=
—

1l
7~
=
v}
]
jwr
N

and (IIT.11)

T

{Aok} = (A Bk’ C

kK R

and the elements of [P] are the same as given in Eq. 1.9
and the elements of matrix [P'] are the same as defined in

Eq. I.15. Also,

_ 2 B 2
Wy(1) = 0, Wy(2) = 4 82 B, Wy(3) = 4 A_ g2 +3,
Wy(h) = A
Wo(1) = 0 . W, (2) =4 82D, W (3) =482 C_ +0D
4 > TG o r ' 4 0 :
W, (&) = C_ (I11.12)

whereas the coefficients Ar, Br’ Cr, Dr in Eqs. 4.20 and
IITI.10 are obtained as the solution of the following

simultaneous equations:

[P"] (A} = (W) ~ (ITT1.13)

where

T _
{A}" = (A, B_, C_, D) \ (III.14)

and the elements of 4x4 matrix [P'"] are the same as

defined in Eq. I.19. Also,

_ ~ - 22
We(3) = 2 r2 | W .(4) = 0 (III.15)
5 1 T2+ Vs ‘ :
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ITI-C COEFFICIENTS TN RESONANCE CASE

In Eq. 4.28, Vm is defined as
V = w_ + B (r, 8 a al) (ITII.16)

in which a_ =1, a
o] 1

I
o
©
=
Q
o

S|

{

'—l-

' n
[N
(0]
'—h
-
3
®
(oW
o

>
=

0
~
[
~d
| i
3

Appendix I-C.

The coefficient, Fm in Eq. 4.29, is defined as

(IIT.17)

F o= Am(r, Byr by bl, b,, b3)
in whichb_= - 4 82 ; by = - (1 -4 8%) ;b,=1;b, =0 ;
o o ' 71 o’ * 72 * 73 ’
and A is defined by Eq. I.22 in Appendix I-C,
In Eq. 4.34, the coefficient Gm is defined as
G, = A (r, B, bé, bi, b, bé) (III.13)

m

» v 2 [ | |-
wherein bO =4 By bl =1, b2 = (0 , b3 0.

The factor Ho which appears in Eq. 4.41 is obtained

by the following equation

Hm = Am(r, Bb, Cor €91 C9, c3) (II1.19)
in which ¢ = 4 62 B : c, =B + & 82 A c, = A
0 o r ' "1 T o 'r ' "2 r '’

Cq = 0 and the factor, Al in Eqs. III.18 and III,19 is

defined by Eq. I1.22 in Appendix I-C.

-



Appendix IV

NONCLASSICAL DAMPING: MODE ACCELERATION
METHOD

IV-A EXPECTED VALUES

Following the description in Appendix II-A, the

expected values required in Eq. 5.5 can be obtained as

follows:
. t P, (Ey-1,)
_ 2 k 2 2
B[R (c)) 2.(e)] = - JO P e
. E[Xg(tl) Xg(rz)] drz (IV. 1)
Substituting ty - 1) = u and drz = -du, Eq. IV.1 can be
written as
. t PLu
_ 2 k
E[xg(tl) Zk(tz)] = - Fk JO e
. E[Xg(tl) Xg(tz-u)] du (IV.2)

Using Eq. I.3, and after some algebraic manipulations
Eq. IV.2 can be written as
. © imtl
E[Xg(tl) zk(t)] = - Fk J_w $g(w) e

epktz _ e-imtz
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Now
E[X_(ty) 2z, (£,)] = 2°/st2 (E[X_(ty) z, ()1}
g 1) Zlty 2 g(t1) 2y
w0 iwtl
= - Fk J_w @g(m) e
p..C -iwt
pﬁ e k™2 + w e 2
pk+iw duw (IV.4)
For stationary response, ty > =, Ly > =, (tl—tz) > T,
hence

T

- .. @© 1w
BLR, (c) 2 (c)] = - Ty j ) X b, () T§;¥TET de (IV.5)

Similarly the other expected values in

to be as follows:

Eq. 5.5 can be shown

£" ok * {m 2 ein
E[X () z,(t,)] = - F ¢ (w)- —— dw (IV.6)
g (F1) 2 () kj_, g (pyiu)
. - o 2 ein
E[Xg(tz) ZJ(tl)] = - F__] J-m @g(w) a Zp—JTm dw (IV.?)
" ok iy t 2 ein d v
E[Xg(tz) Zj(Fl)] = - Fj J_m Qg(w) W E;?j;;; w (IV.8)
Using the following:
.. . a2 32
E[Zj(tl) Zk(tz)] = g;z _EZ E[zj(tl) Zk(tz)] (IV.9)

'—A
Q>
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Other expected values required in Eq. 5.5 can be ob-

tained from Appendix II-A.

IV-B AMPLIFICATION FACTORS

The coefficients Al, A2’ A3, A4 in Eq. 5.21 are ob-

tained from the solution of the following simultaneous

equations
[P] {Rj} = {Wl} (IV.10)
where
T _
{Rj} = (Al, Az, A3, Aq) (IV.11)

and the elements of matrix [P] are the same as defined in

Eq. I1.8. Also

2
0

_ 2
tys w1(3) =t + 4 By, Tqs

Wy (1) = 05 W (2) = 4 g

Wl(h) tq (IV.12)

The coefficients Bl' B2, B3, B4 which appear in Eq.

5.23 are obtained as the solution of the following equa-

tions

[P] (R} = (W] | (1V.13)
in which

{Rj}T = (B), B,, By, B, (IV.14)
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and
_ 2 .2 _ .2 A
w2(1) = 4 BO aj, wz(Z) aj + 4 BO Aj,
W2(3) = Aj; w2(4) = 0 (IV.15)

Matrix [P] is the same as defined in Eq. IV.10.

The coefficients Aj’ Bj’ Ay» By, etc. which appear

in the cross-terms in Eg. 5. are obtained as the solu-

tion of the following simultaneous equations:

[P] {Aj} = (W} and [P'] (A3 = (W, (IV.16)
where
T
{A.}* = (A,, B.,, C., D.
3 ( i’ Ty o] J)
and (IV.17)
T _
{Ak} = (4, B, Cp, Dk)

The elements of matrix [P] are the same as defined in Eq.

IV.10 and the matrix [P'] is the same as defined in Egq.

II.12. Also
Wo(l) = &4 Fo g% W.(2) = 6 g2 F, + F., |, W.(3) = F
3 2 %0 "3 o 1 2 73 1
Wy (4) = 0
W, (1) = 4 F, 8% . W,(2) =4 85 F, +F, , W,(3) =F
4 4 "o " T4 o 3 4 1 U4 3
W, (4) = 0 (IV.18)
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whereas the coefficients Fi. Fy, F3 and F4 in Eq. IV.18

are obtained as the solution of the fellowing simultaneous

equations
(p"] {Fk} = {WS} (IV.19)
where
T _
(R = (Fy, Foy Fa, Fp) (IV.20)

The elements of matrix [P"] are the same as defined in

Eq. IT.15, and

Ws(l) = Dl; WS(Z) = C1 Dl + D2 + Ez;

Ws(3) = C; D, + C, Dy + Ey; W(4) = C, D, (IV.21)

In Eq. IV.21, the coefficients Cl, CZ' Dl' DZ, E2 and

E3 are defined as follows:
_ 2 2 _ _ .2 .2
Cl = = (Yl + Yz -4 Yl ) Bj Bk) > CZ - N Yz ;

D1 = 4 aj a D2 = 4 Yq Yo [aj a, Sj By

2 2
+ by by Jﬁ - gj,Jﬁ - 8y -oay by By J1- Bi

a bj Bklfl - e?]; E, = 8'E1(Y1 By~ g By)

E3 =3 Y1 Y2 El(Yl Bk T Yo Bj) ; El = - aj ak (YZ Bk

-y Bj) + aj bk D q/l— BkZ - ay bj 1AL - Bj (Iv722)
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IV-C COEFFICIENTS IN RESONANCE CASE

In the first single summation term denoted by Ié, as

given by Eq. 5.25, A is defined as:

Am = Am(yc, Bo’ ag, 8y, s, a3) (IV.23)
where
_ 2 2 _
a, = 4 BO ug By, a, tl + 4 80 t3/w ,
A, = t./wl  a. =0 (1V.24)
2 3" 70 * 73 '

In the second single summation term, I; given by

Eq. 5.31, the factor B 1s defined as

B = B (v, By, by, by, by, by) (1V.25)
in which

b_ = a§ {1+ 16 821 - 2 1)) + 4 a4 52

by = A; - 8 a? si 1 +2 (-2 52)2} ;

b, = 16 a’ 21 -288) by = -4 a§ 2 (1V.26)

In Eq. 5.36, the factor Cm is defined as

Cm = Cm(YC: BO‘ COI cln cz» C3) (IV27)
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in which
_ 4 a2 2 2., .
c, = 4ogo Fp T F, {1+ 16 6 (L -28)};
- 2 2.2
¢y <7 Fl -8 BO F2 1+ 2 (1 - 2 Bo) }
e =162 P (1-28%) 5 cp= - bl E (1V.28)
2 o 2 o’ ' 73 o 2 ’




NOMENCLATURE

[A] = real symmetric matrix of order 2n, defined by Eq. 3.2

{Aoj},{Aok} = vectors defined in Eq. III.1O

Aj’Bj’cj’Dj = coefficients of partial fractions defined by
Eqs., II1.10, III.11 and IV.16

A
g

Aj = constant defined by Egs. 3.33 and 5.12

A?,B? = diagonal elements of matrices: [¢jT[A][¢] and

maximum ground acceleration

[¢]T[B][¢] respectively

Ak’Bk‘Ck’Dk = coefficients of partial fractions

Ar’Br’Cr’Dr coefficients of partial fractions

Ay ,A,,A A, = coefficients of partial fractions

177273774

Am,Cm,Dm,Em,Gm,Hm = frequency integrals defined by Eq. I.22

Aé = a factor function of frequency integrals

aj,bj = real and imaginary parts of the jth element of

complex eigenvector {¢j}

ao,al,az,a3 = constants

aé,ai,aé,aé = constants

[B] = real symmetric matrix of order 2n, defined by Eq. 3.2

B B,,B

108283, 8,
Bm = frequency integral defined by Eq. I.27

= coefficients of partial fractions

bo’bl’bZ’bB = constants

1 ' ] t —
bo,b ,b2,b3 = constants
[C] = damping matrices

C C C4 = coefficients of partial fractioms

l’CZ’ 3

312



313

[ad =
6'C17S2:¢3 constants

co,ci,cé,cé = constants

[D] = real symmetric matrix of order 2n defined by Eq. 3.2
Dl’DZ = constants of partial fractions

E[+] = expected value

El'EZ’E3 = constants of partial fractions defined in Eqgs.

I1.18 and IVv.22

e/r eccentricity ratio

Il

{F} complex symmetric matrix defined by Eq. 3.9

{Fi .} = vector of unknowns defined by Eq. IV.20
F. = jth element of {F} defined by Eq. 3.10

J
F(mo) = ratio of frequency integrals defined by Eq. 2.38

Hj = complex frequency response function defined by Eq. 2.13
hj = impulse response function
11,12,13 = frequency integrals defined by Eqs. 2.22, 2.23

and 4.9, respectively
Ib,Ib2 = frequency integrals defined by Egs. 2.34
Id’Idd = frequency integrals in double summation terms
Ié,Id(mo) = frequency integrals in double summation terms
Ig = frequency integral defined by Eq. 4.8
Ié’Ié(mo) = frequency integrals in single summation terms
I;,Ig = frequency integrals in single summation terms
Is(wo) = frequency integral in single summation terms
Isl,IS2 = frequency integrals in single summation terms

i = /o1

[K] = stiffness matrix
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K,Kl,K2 = constants of proportionality

[M] = mass matrix

N,Nl,N2 = functions to define the integrands

n = number of degrees of freedom

[(P],[P'],[P"] = matrices of order 4x4 used in Appendix I,
II, I1I1 and 1V

PF(wO) = peak factor in floor spectra

probability of nonexceedance

jth complex eigenvalue

j
% jth complex conjugate eigenvalue

p
D
Pj
R

(wO,BO) = floor response spectrum value at frequence o

a o

and damping By
{Rj} = vector of unknowns as defined in Eq., I.1l4
Ra-Raa

Rp = pseudo acceleration spectra

= frequency integrals in the double summation terms

R, = relative velocity spectra
v " - . . - .
R.,RL,RULR 1.R.p frequency integrals in single summation
terms

R, = relative velocity spectra

{r} = displacement influence vector

L mth element of displacement vector {r}
Sg = peak factor for ground acceleration

Sp = peak factor for pseudo acceleration

Sr = peak factor for relative acceleration
SV = peak factor for relative wvelocity

t1.tp,tg = coefficients defined by Eq. 5.9
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U., ,V., = coefficients defined
jk’ ik
Vm = frequency integral defined by Eqs. III.16
Xjk'ij = coefficients defined by Egs. 3.43
Xjk’ij = factors defined by Eqgs. 3.40, 3.41 and 5.15, 5.16
ig(t) = ground acceleration time history
X ,i = absolute acceleration of floor
a’“’am

X, = relative acceleration of floor

{x} relative displacement vector

{y} 2n-dimensional state vector defined by Eq. 3.3

I

{z} vector of complex value principal coordinates

{z'} = vector of principal coordinates
z. = jth element of {z}

J
« = decay rate defined by Eq. 2.49

Bj = jth modal damping ratio

By = oscillator damping ratio

Yj = jth participation factor

6,84 = band with parameters, defined By Egqs. 2.51 and 2.52
Ej = real part of complex eigenvalue pj

n,n,n = relative displacement, velocity and acceleration of

the oscillator, respectively

o
il

absolute acceleration of the oscillator

@
Il

imaginary part of pj
A = eigenvalue
A = spectral moements defined by Eq. 2.53

‘g, = moments of floor response defined by Eq. 2.68
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APQ = moments pseudo acceleration response defined by
Eq. 2.54

A, = moments of relative velocity response defined by
Eq. 2.55

{p} a vector defined by Eq. 3.18

g = standard deviation of n

N4 a

@g(w) = spectral density of ground motion defined by Eq.
2,105

® = spectral density function of floor motion

[¢] = modal matrix

{¢j} = jth eigenvector of [¢]

{¢j}R = lower half part of complex eigenvector
{¢j}u = upper half part of complex eigenvector
¢j = mth element of eigenvector {¢j}

w = natural circular frequency

e
Il

jth natural frequency

=4
Il

oscillator frequency

<
Il

level crossing rate defined by Eq. 2.50
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