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Chapter 1

INTRODUCTION

1.1 BACKGROUND

The design of light equipment and nonstructural com

ponents to withstand dynamic/seismic loading is an im

portant feature in the design of industrial facilities.

Control equipment, piping systems, pumps, compressors,

pressure vessels, generators, motors, tanks, furnaces, con

veyor systems, cranes, mixers, antennas, stacks, bins,

parapets and elevators are some examples of components

which are found in nuclear power plant facilities, multi

story buildings and industrial plants. These components

are often referred to as secondary systems (also sub

systems) so as to distinguish them from the primary

structural systems on which they are supported.

These secondary systems are not of secondary impor

tance, as their malfunctions during or after an earthquake

are likely to have very serious repercussions; their

survival is essential to provide and regulate much needed

emergency services such as telecommunication, power trans

mission and transportation. Thus, it is important that

these systems be designed properly to withstand some

reasonable earthquake induced effects, even in the areas

1
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where no earthquake activity has been reported in the

recent past.

An important ingredient for a proper design of a

secondary system is the definition of seismic design load

ing. Such a loading is commonly obtained in terms of floor

response spectra which represent response characteristics

of the motion of a floor of a building on which the

secondary system is supported. Floor response spectra pro

vide the same type of information about the motion of a

floor as ground response spectra provide about the ground

motion. The latter are commonly used as seismic inputs for

the design of important primary systems. For the design of

nuclear power plants in the United States the Nuclear

Regulatory Commission has prescribed design ground response

spectra in their Regulatory Guide No. 1.60 [51J.

A primary structure and its supported secondary sys

tems will experience the effects of the same ground motion

during an earthquake. Thus if a primary structure is

designed for a prescribed set of ground response spectra,

its supported secondary systems also should be designed

for a consistent seismic input. That is, the design floor

spectra should be consistent with the ground response

spectra which are used as design input for the supporting

primary structures.
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-
Procedures for establishing design ground response

spectra are rather well defined and accepted by profession

[7,20,3l,32J. To obtain floor response spectra for a set

of prescribed ground spectra, currently the time history

analysis is most commonly used. In this method, usually a

spectrum-consistent time history [17,48,50J -- a time

history with its spectra closely enveloping the prescribed

ground spectra -- is used as seismic input. Although this

approach is analytically accurate for a given time history,

it has been known to give unreliable and inconsistent

results for design purposes. Specifically, it has been

observed [5,6,39] that two independently synthesized

spectrum-consistent time histories may give significantly

different floor response spectra even though these time

histories may be consistent with a given ground response

spectrum in the same sense. To obtain a reliable design

floor response spectrum, an ensemble of time histories

should be used in the analysis. As a time history analysis

to obtain floor spectra is costly even for a single time

history, the analysis for a set of time histories becomes

very expensive.

Upon realizing that the time history approach is im-

practical, several researchers h~ve proposed simple approxi

mate procedures to construct floor response spectra. Biggs

[5J probably was the first person to develop a method for
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obtaining floor response spectra directly from prescribed

ground spectra. In this method magnification curves were

obtained on the basis of observed behavior of oscillators

subjected to a set of earthquake records. The use of these

magnification curves reportedly gave conservative results.

Kapur and Shao [23J also proposed a similar method. These

two approaches were based on semi-empirical arguments.

Several other investigators Penzien and Chopra [33J,

Newmark [32J, Chakravorty and Vanmarcke [9J, Schanlan and

Sachs [36,37J, Vanmarcke [53J, Peters, Schmitz and Wagner

[34], Atalik [2], Singh [39,43], Sackman and Kelly [35],

Villaverde and Newmark [54], and Der Kiureghian et al.

[14J, and Vanmarcke [53] have addressed this problem and

proposed different procedures, which are based on deter

ministic as well as random vibration principles.·

Almost all of these approaches are applied to lin~ar

proportionally (or classically) damped [8,11,21,29J systems.

They make different assumptions in their formulations.

Some are based on deterministic method whereas others are

based on random vibration principles. Most, usually, ignore

the interaction between primary and secondary system,

except those in References 14,24,35,43,54. In some isolated

cases, the interaction may be important and must be con

sidered. However, in a majority of cases omission of

interaction from floor spectra generation procedure is quite
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acceptable and provides a conservative estimate of floor

spectra. Also interaction free spectra are easy to

interpret and use in the design and qualification of

secondary systems. In this investigation, only interaction

free spectra development procedures are considered with

the main objective of developing rational and analytically

simple direct methods for generation of floor spectra.

1.2 SCOPE OF STUDY

The main aim of this study is to develop validated and

simple-to-use floor spectra generation procedures for

linear structural systems which are proportionally or non

proportionally damped. The main requirement of these pro

cedures is that they should make a direct use of design

input prescribed in the form of ground spectra, without

employing spectrum consistent time histories or spectral

density functions. For this, first an approach proposed by

Singh [39,43J earlier has been critically examined, improved

and validated by simulation studLes. The special case of

evaluation of floor spectra at resonance (i.e. at

oscillator frequency equal to the structural frequency) is

also considered. The effect of incorporation of peak

factors in the calculation of floor spectra is investigated.
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For seismic analysis, structural systems are often

assumed to possess classical damping matrices [8,39].

This assumption is purely for mathematical convenience,

and in some cases it may also be justified. Yet there may

be cases where it cannot be justified and nonproportional

or nonclassical nature of the damping matrix must be

clearly recognized. Here the methods for generation of

floor spectra for nonclassically damped primary system are

also developed and validated by a simulation study.

Most of the approaches described above are based on

the method of mode displacement of structural dynamics.

Often only a first few modes are used in the analysis as

the higher modes are considered unimportant. Some problems

may, however, arise with these approaches if the response

is affected by the high frequency modes. Herein, an

alternative approach, based on the method of mode accelera

tion has been proposed in which the effect of high fre

quency modes is correctly included without their explicit

evaluation. The seismic input in this approach is required

to be prescribed in terms of relative acceleration and

velocity spectra. This approach is very effective for the

calculation of floor spectra for stiff structural systems

which have significant contribution from the high frequency

modes, and also for floors close to the base which are
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usually affected by the higher modes. In other normal

cases too, this approach has been shown to provide better

results than the mode displacement approach for a given

number of modes. The mode acceleration approaches have

been developed for proportionally as well as non

proportionally damped structural systems.

To incorporate the uncertainties of the primary system

in the generation of floor response spectra an analytical

cum-simulation approach has been used. Effect of mass and

stiffness uncertainties on floor spectra is evaluated.

1.3 ORGANIZATION

In Chapter 2, a direct approach proposed for genera

tion of seismic floor response spectra by Singh [39,43J

is reevaluated and improved. Methods to incorporate the

peak factors in generation of spectra have been examined.

Generation of floor spectra for the important case of

resonance between structural modes and oscillator has been

developed. The verification of this approach is done by a

numerical simulation study.

A method to generate the floor spectra for non

proportionally damped primary systems, using the mode
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displacement method, is presented in Chapter 3. The

formulation for the resonance case has also been developed.

Verification of this direct approach is also done by a

numerical simulation study.

In Chapters 4 and 5, the approaches based on the

method of mode acceleration are developed for generation

of floor response spectra for classically and nonclassically

damped primary systems. Evaluation spectra at structural

frequencies, i.e. at resonance, has also been considered.

Verification of the approach is again done by a numerical

simulation study.

To avoid distractions in presentation of the formula

tions, various coefficients required in the proposed methods

and other analytical expressions are defined in the

Appendices I, II, III, and IV, associated with Chapters 2,

3, 4, and 5, respectively.

The general summary and conclusions of the investiga

tion are stated in Chapter 6.



Chapter 2

CLASSICALLY DAMPED SYSTEMS: 110DE DISPLACEMENT

HETHOD

2.1 INTRODUCTION

To obtain the floor response spectrum, time history

method of analysis is commonly used. However, it has been

observed that this approach is unreliable and computational

ly expensive. Therefore direct approaches of generating

floor spectra are becoming increasingly popular. In these

direct approaches, the seismic input is defined in terms of

f,round spectra. One sHch direct approach was proposed by

Singh [39,43]~ This approach is based on mode displacement

method of structural dynamics and primarily employs pseudo

acceleration spectra and relative velocity spectra as input.

Some simplified assumptions ,vere made in the development of

this approach. These assumptions are examined in this

chapter with regard to their effects on generation of floor

spectra. Various improvements are proposed, and finally

the proposed approach is verified by a numerical simulation

study. In the following section" a more general and

complete formulation of the method is presented.

9
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2.2 ANALYTICAL FORMULATION

The equation of motion of an n-degree-of-freedom
"

structure subjected to ground excitation, X (t), can be
g

written in the standard form as

[M] {x} + [c] {x} + [K] {x} (2.1)

where [M], [C], and [K] are the mass, damping and stiffness

matrices respectively; {x} = the relative displacement
..

vector; {r} = displacement influence vector; X (t) = groundg

acceleration; and dot over a term represents its derivative

with respect to time.

Eq. 2.1 can be solved using normal mode approach where

the response vector {x} is expressed as

{x} = [<jl] {z'} (2.2)

where [<jl] is the modal matrix, and {z'} is the vector of

principal coordinates. By substitution of Eq. 2.2 in Eq.

2.1 and utilization of orthogonal properties of normal modes,

the decoupled equations of the following form are obtained

to solve for the principal coordinates.

where

z. + 2 S.
J J

• 2
w. z. + w. z.

J J J J

..
X (t)

g
(2.3)

(2.4)



defined as = {¢.} T[M]{ r} 1m. ,
J J

mode displacement vector,

11

and Yj = participation factor

m. = {¢.}T[MJ{¢.}, {¢.} = jth
J J J J

Wj = jth frequency, Sj = modal damping ratio defined as

= {¢j}T[CJ{¢j}/2 wjmj . This assumes that LPj}T [CJ {¢k}=O

for j f k or the damping matrix is of classical or propor-

tional type [8J. The cases when [CJ is nonclassical are

discussed in Chapters 3 and 5.

To obtain floor response spectra for the mth floor, we

need to obtain the response of a series of oscillators

placed on the floor. The equation of motion of one such

oscillator with frequency, Wo and damping ratio So' can be

written as follows:

(2.5)

in which n is the relative displacement of the oscillator
..

and Xa is the absolute acceleration of the floor. Here the

effect of dynamic interaction between the oscillator and

the supporting structure is neglected.

"

The absolute acceleration, X , is required to obtain
a

the oscillator response. This can be obtained in terms of
..

relative acceleration of the floor, xa ' and ground
..

acceleration, Xg , as follows:

(2.6)
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Using Eq. 2.2 and 2.4, X can also be written as
a

follows:

(2.7)

where ¢j(m) is the mth element of modal vector {¢j}'

Using Eq. 2.3, it can also be expressed in the following

form:

n
I

j=l
y. ¢. [2 S.
J J J

.2]w. z. + w. z.
J J J J

(2.8)

in which ¢. (m) is simply replaced by ¢ .. Hereafter ¢J'
J J

will imply ¢.(m).
J

in terms of
.

For smallZj .

z. , the mode
J

Eq. 2.8 defines the floor acceleration

modal displacement, z., and modal velocity,
J

damping major contribution to Xa comes from

displacement value. Thus, the formulation which employs

Eq. 2.8, is called the mode displacement formulation. Most

floor spectra generation approaches developed so far adopt

this expression for floor acceleration, and therefore, can

be classified as mode displacement approaches.

For design purposes, we are interested in the solution
~

of the Eq. 2.5 for a class of earthquake motion that can be

expected at a site. That is, we should evaluate the
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response for an ensemble of earthquake motions. This sug-
..

gests that we model Xg(t) as a random process representing

the ensemble. For earthquake motions modeled by a random

process, the response of the oscillator will also be a

random process. To define floor response spectra we need

to obtain the maximum value of such random response. For

engineering purposes, the maximum response can be obtained

from the mean and autocorrelation characteristics of the

response. Here, our aim therefore is to obtain these two

characteristics of the response. More specifically we will

obtain absolute acceleration response of the oscillator,

as in practice acceleration floor spectra are more commonly

used. If other response characteristics, like relative or

pseudo velocity are desired, they can also be obtained

similarly.

From Eq. 2.5, the absolute acceleration,

oscillator can be defined as follows:

of the

(2.9)

To define acceleration spectra, we need to obtain the

mean and autocorrelation function of na which in turn is

defined in terms of the mean and autocorreiation function
..

of X (t).
a

..
These characteristics of X (t) are obtained in

a

the following section.
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2.3 AUTOCORRELATION ANDPOllliR SPECTRAL DENSITY FUNCTION

OF ABSOLUTE ACCELERATION OF A FLOOR

""

Here earthquake motion, X (t), is modeled as a zero
g ..

mean random process. Thus the mean value of X (t), from
a

Eq. 2,8, is zero. The autocorrelation function of X -(t)
a

is obtained as:

n n
E[Xa(t l ) X

a
(t 2)] = I L y. Yk ¢ . <f>k {4 13 k 13 . w. wkj=l k=l J J J J

E[Zj oZk]
2 2 + 2 2

0 + w. wk E[zjozk] 13k wk w.
J J

(2.10)

The auto and cross correlation of principal coordinates

and their derivatives required in Eqo 2.10 can be obtained

in terms of autocorrelation function of the ground motion

from Eq. 2.3. Here to simplify the analysis it is assumed

that ground motion is a stationary random process with

spectral density function ~ (w). Although earthquake
g

motions are not stationary, this assumption, as shown later

by simulation study, will still provide us an acceptable

and reliable method .for generation of floor spectra. With

this assumption, various expected value terms in Eq. 2.10

can now be obtained in terms of ground spectral density

function, ~g(w)o Furthermore, if we consider stationary

response, these terms can be shown to be as given in
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Appendix I-A, Eqs. 1.5 and i.6.

Substituting these expressions of various expected

value terms in Eq. 2.10, the autocorrelation function of
..

the absolute acceleration X can be shown to be as follows:m

(2.11)

where ¢ (w) is the spectral density function of floor
m

acceler.ation defined as:

n n 2 2 2
¢ (w) = L L Y' Yk ¢ . ¢k [w. wk + 4 13 . 13 k w. wk wm j=l k=l J J J J J

+ 2 iw w. wk(wk 13 . - w. 13 k )] H. H~ ¢ (w)
J J J J g

(2.12)

where H. is the complex frequency response function for
J

mode j, defined as

H. = l/(w? - w2 + 2 i w. 13. w) (2.13)
J J J J

and an asterisk denotes a complex conjugate. Here i is

equal to I=T .

For further analytical manipulations, the spectral

density function in Eq. 2.12 is spearated into terms with

j=k and j1k as follows:
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n 2 ¢~ 4 f3~ 2 w2) JH.1
2<Pm (w) = I y. (w. + 4 w. <P (w)

j=l J J J J J J g

n n
I Hjl2 I Hk 1

2+ 2 I I y. Yk ¢j ¢k N(w) iPg(w)
j=l k=j+l J

(2. 14)

in which

N(w) 2 2 2 2 2 2 w2)= (w. wk + 4 f3 • f3 k wj wk w)·{(w. - w)(wkJ J J

+ 4 f3. 2 + 4 w2
wk(wk f3 k )f3 k wj wk w } w. f3 • - w.

J J J J

2 2 2 2
• {f3 j wj (wk - w ) - f3 k wk (wj - w )} (2.15)

The mean square value of the absolute acceleration,

na , of an oscillator supported on floor can now be obtained

in terms of floor acceleration spectral density function as

follows:

(2.16)

2.4 FLOOR RESPONSE SPECTRill1

Eq. 2.16 can be used to obtain the standard deviation

of secondary system response which, when amplified by an

appropriate peak factor, will give the maximum floor

response value or response spectrum value as follows:
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f
OO 4 2 2

<t> (w)(w + 4 13 2 Wo w ) IH 1
2 dwmoo 0_ 00

(2 . 17)

where Ra(w o ' 13
0

) = floor acceleration response spectrum

value at frequency wand damping 13 , FF(w ) = a factor
000

usually called a peak factor which when multiplied by the

root mean square value of the floor spectral response gives

the response spectrum value.

Eq. 2.14,

Substituting for <t> (w ) from
m 0

2 2 It 2 2 Joo 4 2 2 w2)R (w ,13 ) = FF(w ) y. ~. (w. + 4 13 . w.a 0 0 0 J J -00 J J J

(w 4 + 4 13
2 2 w2) !H.1 2 IH 1

2
<t>g(w) dww

0 0 0 J 0

+ 2 Y ¥ YJ' Yk ~J' <Pk foo_oo N(w)
j=l k=j+l

• (w~ + 4 s~ w~ w
2

) IHj 1
2

IHkl2 IHol2 0g(w) dW]

(2. 18)

To obtain the integrals in Eq. 2.18 in terms of ground

spectra, which are commonly prescribed as seismic design

inputs, the single and double summation terms will be

resolved into partial fractions [39J. This will, however,

not be possible when w. = wand 13. = 13. Such a case is
. J 0 J 0

referred to as resonance case and is dealt with separately

in Section 2.4.2.
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2.4.1 Floor Spectrum: Nonresonance Case

Here the evaluation of single and double summation

terms in terms of ground spectra is described.

Single Summation Terms

The integrand of a typical single summation term in

Eq. 2.18 can be resolved into partial fractions as follows:

(W
4 + 4 52 2 2) 4 + 4 5~ 2 w2) JH.1

2
IH 1

2
W W (w. w.

0 0 0 J J J J 0

(Al
4 2 2

IH 1

2= w + A2 Wo W )
0 0

4 + A4
2 2 IH.j2 (2.19)+ (A

3
wj

w. w )
J J

in which the coefficients Al , A2 , A3 , and A4 are defined in

Appendix I-B, Eq. 1.8. By multiplying Eq. 2.19 by ~g(w)

and integrating over the frequency range, the following is

obtained
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or

(2.20)

I~ = Al Il(wo ) + A2

2+ A4 wj 1 2 (wj) (2.21)

as

WJ~ ¢ (w) !H·1 2 dwg J
(2.22)

(2.23)

The frequency integral Il(w j ) and 12 (w j ), respectively,

represent the mean square values of pseudo acceleration and

relative velocity responses of an oscillator of frequency,

W .. and damping ratio, 8: excited by the ground motion. The
o 0

root mean square values when multiplied by their respective
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peak factors will give the response spectrum values.

That is

2 2
Il(w j ) (2.24)R (w.) = S (w.)

P J P J

2 2 12 (w j ) (2.25)R (w.) = S (w.)
v J v J

in which R (w.) = pseudo acceleration response spectrum
P J

value, R (w.) relative velocity response spectrum value,
v J

Sp(w j ) = peak factor for pseudo acceleration response and

S (w.) = peak factor for relative velocity spectra, all ob
v J

tained for the oscillator frequency of wand damping
o

ratio So.

Eqs. 2 0 24 and 2.25 are used to define 11 (w
j

) and

I 2 (w
j

) in terms of response spectrum values. Thus I~ in

Eq. 2.21 can also be defined directly in terms of response

spectrum values.

Double Summation Terms

To evaluate the double summation terms in Eq. 2.18 in

terms of ground response spectra, the integrand of a

typical term in Eq. 2.18 is split into partial fractions as

follows:
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N(w) (w 4 + 4 82 2 -2
!H·1

2 IHk l2 IH [2w w )
0 0 0 J 0

(w 4 + 4 82 w2 w2) jH 1
2 [(A 4 B

2 w2)w. + w.
0 o 0 o r J r J

!H.!2 + (C 4 + D 2 w2) IHk l2J dw (2.26). wk wkJ r r

where the coefficients Ay ' By' etc. are defined in

Appendix I-B, Eq. 1.17.

The resonance case when the oscillator frequency and

damping are equal to one of the structural frequencies and

corresponding damping ratio will require a special treat-

ment of the terms in Eq. 2.26. It is discussed in Section

2.5. For the nonresonance cas,e the right hand s ide of

Eq. 2.26 is further split into partial fractions as follows:

42224= (B
l

w + B2, w w) IH I + (B 3 w.o 0 0 J

+ B 2 2) I H 1
2 + (C 4 + C w

2
w

2 ) I 'H 1
2

4 wj w j , 1 Wo 2 0 0

(2.27)

where the -coefficients Bl , B2 , Cl , etc. are defined in

Appendix I-B, Eq. 1.12.

Multiplying Eq. 2.27 by ¢ (w) and integrating over the
g

frequency domain, the following is obtained for the
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frequency integral of a typical double summation term in

Eg. 2.18.

lei = foo ep (w) N(w) (w~ + 4 s; w; w2
) IH

J
.1 2

IHkl2
-00 g

• I Ho 1
2 dw

= (Bl + Cl ) 11 (wo) + (B2 + C2) 2 1
2

(w o)w
0

+ B3 Il(w j ) + B4
2 I 2 (w

j
) + C3 11 (wk )w..

J

+ C4
2wk 1

2
(wk ) (2.28)

where, again, Il(w j ) and I 2 (w
j

) etc. are defined by the

integrals in Eqs. 2.22 and 2.23. Using Eqs. 2.21 and 2.28,

the floor response spectrum value in Eq. 2.18 can be

written as follows:

/

/



(2.29)
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[t yi ·i {AI 11 (wo ) + AZ w~ I Z(wo )

2+ A3 II(oo j ) + A4 oo j IZ(oo j )}

z z+ (BZ + C2) 00
0

12 (00
0

) + B3 II(oo j ) + B4 oo j I 2 (oo j )

+ C3 I 1 (wk ) + C4 w~ l Z(Wk )}]

As 11 (00.) and I 2 (oo
J
.) are rlefined in terms of response

J .

spe.c.t,rum values by Eqs. 2.24 and 2.25, Eq . .2.29 defines the

expression for the floo,r response spectrum in terms of

ground response spectrum values and associated peak factors.

It differs from the expression derived by Singh [39] inas-

much as i-t contains the effect of different peak factors in

gep.eration of floor spectra. If all the peak factor values

are a.ssumed equal then this expression reverts back to the

expression given by Singh [39J.

2.Lt..2 FLOOR SPECTRUM: RESONANCE CASE

The factors AI' A2 , Bl , CI' .etc. in Eq. 2.29 depend

upon the frequency ratios and modal damping values. These

are not defined for the special resonance case, i.e. when
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24

w. = wand s. = s .
J 0 J 0

of a floor response spectrum value for this special case

is presented. Specifically, the procedures for the

evaluation of the frequency integrals in the single and

double summation term of Eq. 2.18 in terms of ground

spectrum values are described.
/

Single Summation Terms

For the special case of resonance, the frequency

integral in a typical single summation term can be written

as follows:

(2.30)

Here to be more realistic, the frequency range for the

integral is limited to a cut-off frequency value of w .c In

earthquake induced ground motion, this cut-off frequency

will be about 25-30 cps. For example such a cut-off fre-

quency limit is also implied by ground response spectra,

prescribed by the N.R.C. for the design of nuclear power

plants [51]. For the N.R.C. spectra, the wc value could be

assumed to be about 33 cps, though actual limiting frequen

cy will be somewhat smaller. Limiting the frequency range

has special relevance in generation of floor spectra for

oscillator frequencies higher than the limiting frequency.
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Because of the peakedness of the function IH 1
4 in

o

Eq. 2.30, the integral can be fairly accurately approxi-

mated as follows [43,52J:

I <l> (w ) J:: (w4 + l~ S2 2 w2)2
I H 1

2 dw= ws g 0 0 0 0 0

c

- 2 <l>g(w o) w + J:: <l> (w) dw
0 g

c

(2.31)

The first integral in Eq. 2.31 C<;l.n be evaluated in

closed form in terms of A as defined by Eq. 1. 22 inm
Appendix I-C as

I:: (w 4 + 4 8
2 2 w2) IH 1

4
dw A (2.32)w = w

0 0 0 o . c m
c

where

A = Am(r, So' a a l , a 2 , a 3) (2.33)m 0'

with r = w / w a = 0 a l = 16 S4 a2 = 8 S2 a3 = l.o c 0 0 0

The second frequency integral in Eq. 2.31 which repre

sents the partial area under the PSDF is denoted by lb' i.e.

I b ; f:: <l>g(W) dw
c

(2.34)
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Using Eqs. 2.32 and 2.34, Eq. 2.31 can be rewritten

as follows:

I = ~ (w ) w (A - 2r) + Ibs g 0 c m (2.35)

To express I (w ) in terms of ground spectra it iss 0

now necessary to express ~ (w ) and I b in spectra terms.
g 0

For this, as observed by Singh [43], the following relation-

ship between the mean square values of pseudo acceleration

and relative velocity is used:

(2.36)

or,

Il(w ) {I - F(w )}o 0
(2.37)

where

F(w )o (2.38)

is the ratio of the mean square value of the relative

velocity to that of pseudo velocity. This ratio approaches

zero for frequencies greater than w. Eq. 2.37 with Eqs.c

2.24 and 2.25 can now be used to express I b in terms of

response spectrum values.

To obtain ~ (w ) in terms of response spectrum values,
g 0

the following approximation for Il(wo) is used:
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Il(wo) = 4 J:: rIJ (w) IH 1
2 dwW

0 g 0

C

rIJ (w ) 4 J:: 2
¢ (w ) + I b'" W IH I dw - 2 wg 0 0 0 0 g 0

c
(2.39)

The integral in Eq. 2.39 can be evaluated in closed

form as in Appendix I-C, Eq. 1.27. Thus

• B-2 w 1> (w ) + I
bm 0 g 0

= 1> (w ) w (Bm - 2r) + I bg 0 c

in which

(2.40)

(2.41)

with bo = 0, bl = l. Substituting for the value of

¢g(wo)wc from Eq. 2.40 and for I b from Eq. 2.37, into Eq.

2.31, the frequency integral in a single summation

resonance term is obtained as

I = Il(wo) [A' + {l - F(wo)} (1 - AI) ]
S m m

in which Al is defined asm

A - 2r
A' m=m Bm - 2r

(2.42)

(2.43 )
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If the frequency range is extended to 00 i.e. Wc
the expressions for A , B , and AI become similar to thosem m m

defined by Singh [43J. These expressions are given in

Appendix I-D, Eq. 1.31.

As Il(wo ) can be defined in terms of ground spectrum

value by Eq. 2.24, Eq. 2.42 defines the single summation

term in the resonance case in terms of ground response

spectrum value.

Double Summation Terms

When one of the structural frequencies and correspond-

ing modal damping values are equal to the oscillator fre

quency and damping, the evaluation of the integral of Eq.

2.26, after its multiplication by ¢ (w), requires a similarg

approach as used for a single summation term in the pre-

ceding section. For example, if w. = wand S. = So' the
J 0 J

integral of the first term in Eq. 2.26 can be written as

follows:

I d J:: ¢g(w) (w~ + 4 s~ w~ w
2

) (Ar w~
c

+ B 2 w2) IH 1
4 dwr Wo 0 (2.44)
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Again because of the peakedness of IH 1
4 the approxia

mation similar to the single summation term in Eq. 2.31

can also be made here. Proceeding similarly, the following

is obtained for 1d :

(2.45 )

where

C - 2r A
C' = m r
m B - 2rm

C = Am(r, So' a' , , a' )m 0' ai' a2 ,
3

a' = 0 a' = 4 82 B ; a' = (B + 4 6
2 A )a , 1 a r 2 r a r

a' = Ar3

(2.46 )

in which the functions Am and Bm are as defined by Eqs.

1.22 and 1.27 in Appendix I-C. ifhen W = 00 these functions
c

become similar to those defined by Singh [43J and are given

by Eq. 1.32 in Appendix I-D.

The integral associated with frequency wk!wo in Eq.

2.26 can be evaluated by resolving into partial fractions

as done for the non~esonance ca5e.

Combining all the terms pertaining to the evaluation

of floor response spectra value for the resonance case, i.e.

when w. = wand 6. = 6 , the following is' obtained
J a J a
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+

2 2]+ C2 Wo 12 (w o) + C3 Il(wk ) + C4 wk 12 (wk )}

(2.47)

where Cl , C2 , C3 and C4 are defined by Eq. 1.13 in Appendix

I-B.

2.5 EVALUATION OF PEAK FACTORS

Eqs. 2.29 and 2.47 define the floor response spectrum

values in terms of II(w j ) and I 2 (w j ), which in turn are

defined in terms of response spectrum values and peak

factors. If all the peak factors are assumed equal, then

floor spectrum can just be defined in terms of ground

spectra. This is what was done by Singh [39,43J. Here the

peak factors are included in generation of floor spectra

and the results are compared with the equal peak factor

approach to see the effect of their inclusion.

To obtain peak factors S Cw.) and S (w.) in Eqs. 2.24
p J v J

and 2.25, a simple approach proposed by Vanmarcke [52J is
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used. The expression relating the peak factor, 5, with

the probability of exceedance, p, level crossing rate, v a

and duration t d is as follows:

where the decay rate a is defined as

(2.48)

a = 2 v a

1 - exp (- ..r:ITTl 6 5 )e

1 - exp(- 82/2)
(2.49)

in which the level crossing rate is defined as

and the band width parameter, 6e' is defined as

6 = 61. 2
e

with

6 = /1 - A2/A A42 0

(2.50)

(2.51)

(2.52)

The spectral moments 1..
0

, A2' and A4 of the response

are defined as

k = 0,1,2, ... (2.53 )

in which ~R(w) is the spectral density function of the

response quantity, R.
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Herein the band width parameter, 0, is defined,

rather, differently than in Ref. [52J where it was defined

in terms of Ao ' AI' and A2 . The present definition of 0

is more suitable as it is possible to obtain the even

moments in terms of response spectrum values. The evalua-

tion of AI' on the other hand, requires knowledge of the

spectral density function of a response.

For a given duration and probability of exceedance

Eq. 2.48 is solved numerically to obtain the peak factor S.

It is seen that to obtain peak factors of a response

quantity, R, its spectral density function is re-

quired. This spectral density function can be obtained in

terms of the spectral density function of ground accelera

tion ~ (w). However, in practice ~ (w) will not be known.g . g

Here, to see how sensitive the floor spectra results are to

the peak factor value, different forms of ~ (w) have beeng

used to define the peak factors in Eqs. 2.29 and 2.47. The

different spectral density functions that have been con

sidered for calculation of peak factors are: 1) a broad

band 3-term Kanai-Tajimi [47], I-term Kanai-Tajimi, and a

white noise with cut-off frequency of 30 cps.

As in practice seismic input is usually defined in

terms of ground response spectra, an approach is also
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presented to calculate the peak factors in terms of ground

response spectrum values.

In the following sections, the expression to evaluate

spectral moments of pseudD acceleration, relative velocity

and floor spectrum responses are given.

2.5.1 Spectral Moments of Pseudo Acceleration and Relative

Velocity Responses

The spectral moment of 1st order of pseudo accelera-

tion and relative velocity response for a given ground

spectral density function are as follows:

Ap£(W j ) w~ JW c
<P (w) £ 2= W IH.I dw

J -w g J
c

A £(w.) J:: £+2
<P (w) !H. 1

2 dw= w
v J g J

c

(2.54)

(2.55)

where £ = 0, 2, and 4. For a given spectral density

function these moments can be obtained in closed form. It

may be noted that

A 2(w.) 4 A (w.)= w.
P J J vo J

Ap.4 (w j ) 4 A 2(w,.)= w.
J v J

(2.56a)

(2.56b)
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Thus, only four integrals are required to be

evaluated to obtain these spectral moments.

In absence of any knowledge about spectral density

function of ground motion, a method for approximate

evaluation of peak factors where the spectral moments are

calculated from ground spectra was also tried. As the

spectral moments represent the mean square value of a quan-

tity, and as the mean square value is proportional to the

response spectrum value of the quantity, the following

approximations were used in the evaluation of spectral

moments

A (w.)
po J

(2.57a)

, ( ) K w4. R2 (w.)
A p 2 wj = 2 J v J (2.57b)

where the constants of proportionality were assumed to be

the same.

To calculate the fourth spectral moment the following

relationship between pseudo acceleration, relative velocity

and relative acceleration mean square values can be used:
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4 rw 4 [H.1 2
A 4(w.)

'C
cjl (w) dw= w. w

P J J -w g J
c

4 J:: ¢ (w) [1 4 2 2 2= w. - {w. - w. w
J g J J

c

(l 2 S?) } 2 (2.58). - IH. I ]dw
J J

The first integral in Eq. 2.58 represents the area

under the spectral density function, and is directiy pro~

portional to the maximum ground acceieratiori.. Similarly,

the other integrals are proportional to the pseudo accelera-

tion and relatively velocity spectrum values; Assuming

that all the proportionality constants are equal to K, the

fourth order moments can be obtained as

A 4(w.) = w~ . K [A2
P J J g

2 .
R (w.)

P J

(2.59)

It may be noted that it is not necessary to know the

exact value of K as it will cancel out in the evaluation

of ~a and 8 in Eqs. 2.50 and 2.52.

Using Eqs. 2.56b', 2.57h, and 2.58, it is possible to

obtain the first two moments of the relative velocity

response. However, to obtain the fourth ~oment the follow-

ing approach was cons·idered:
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A 4(w.) J:: 6
¢ (w) 2= w IH.I dw

v J g J
c

JW C {w 2 4 2 - 2 2 (1 - 2 S~) w4J= [w. W w.
-w J J J

c

.
I H. 1

2 } ¢ (w) dw (2.60)
J g

Using Eqs. 2.54 and 2.55

A 4(w.) = I b2
4

vo (w j ) + 2 2 (1 - S~) A 2(w.)- w. A w.
v J J J J v J

(2.61)

where I b2 is defined as

(2.62)

which represents the second spectral moment of the ground

acceleration. It also represents the mean square value of

the rate of change of ground acceleration or ground jerk.

No ground spectrum contains this information in any form.

Thus following approximation was considered.

Because of peakedness of function IHj ,2, the following

integral representing the second moment of pseudo acce1era-

tion can be approximated as follows:
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4 J:: w2
¢ (w) IH.,2 ¢ (w.) [ 4 fC 2 2w. =

wj -w
w IH.I dw

J g J g J J
c c

2 W?] fW C 2- --Y + w ¢ (w) dw (2.63)
-w g

c

where

(2.64)

which is defin.ed in Append'ix I-G, Eq. 1. 27. Using Eq.

2.56b

1b2 = A 2(w.) - ¢ (w.) w w~ [D ' - 2r/3]
p' J g] c J m (2.65)

Substituting for ~ (w) w from Eq. 2.40, the above equation
g c

can be written as

Using Eq. 2.36 in the above

(2.66)

(D~ - 2r/3)}
(B - 2r)m

(2.67)

Substituting this equation in Eq. 2.60, we can obtain

A 4 (W.).
v J

The approximation for the evaluation of the 4th re~a-

tive velocity spectral moment from generated spectra was
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rather found to be very sensitive to the small changes in

the spectrum values, especially at high frequency values.

As such this approach was not used to obtain the peak factor

for relative velocity spectral response. Rather, the

relative peak factors were assumed equal to the pseudo ac-

celeration peak factors. The floor response spectrum ob-

tained with these assumptions are discussed in Sec. 2.4.

2.. 5.2 Moments of Floor Spectral Response: Nonresonance

Case

To obtain the peak factor PF(wo)' the spectral moments

of the floor spectral response are required. The zero

order moment is given by Eq. 2.16. In general, the lth

order moment can be obtained from

(2.68)

in which ¢ (w) is defined by Eq. 2.14. It is simple to showm

that the lth moment for the nonresonance case, expressed in

terms of the corresponding moments of the response of an

oscillator on ground, is as follows:
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n
I

j=l

2+ A3 A n(w.) + A4 w. A n(W.)]
PiC J J ViC J

2+ (B2 + C2) WAn (w ) + B
3

A (w.)
o ViC 0 p£ J

(2.69)

where £ = 0, 2, and 4.

2.5.3 Moments of Floor Spectral Response: Resonance Case

Oth Moment of Floor Spectral Response:

The evaluation of these moments for the resonance case

requires an approach similar to the one used in the develop-

ment of Eq. 2.47. In fact, Eq. 2.47 without peak factOr,

PF(wo) defines the zero order moment which stated in a

slightly different fo.rm can be wTitten as follows:
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n 2 ~~~ , = I ( . [~po(wo) {A' + [1 - F (w )] (1 - A')}]
£0 j=l J J m o 0 m

n n
+ 2 I I y. Yk ¢j ¢k [ApO(WO) {F (w ) C'

j=l k=j+l J o 0 m

+ A [1 - F (w )]} + Cl ApO(W O) + C2
2

AVO(W O)Wr o 0 0

where F (w )
o 0

2
+ C3 Apo(Wk ) + C4 wk Avo(Wk )]

2
Wo AvO(WO)/ApO(WO)·

2nd Moment of Floor Spectral Response:

(2. 70)

To obtain the 2nd moment of floor spectra Eq. 2.18

2without peak factor, PF(wo ) is multiplied by w. The

integrals in the single and double summation terms for

w. = wand S. = S are evaluated as follows.
J 0 J 0

The frequency integral of a typical single summation

term in the resonance case can be written as follows:

I'(w )
s 0

(2.71)

which can be approximated as



I'(w )
s 0

'" <l> (w )g 0 J::
c
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w2 ( w4 + 4 S2 w2 w2) IH I2 dw
000 0

- 2/3 w~ <l>g(w o ) + J::
o

w2 <l> (w) dwg (2.72)

and can be rewritten as

(D - 2/3 r)
m

(B - 2 r) + H2m

(2.73)

where D is defined as
m

D = Am(r, So' bo ' b l , b2 , b3) (2.74)m

in which b 16 4 b l 8 2 b 2 = 1, b 3 O. The above= So' = So' =
0

integral is similar to the integral in Eq. 1.22, Appendix

I-C. Also the frequency integral W2 is defined as

w2 <l> (w) dw
g

(2.75)

Also B is defined in Eq. 2.41. Using Eq. 2.37 and 2.44,m

Eq. 2.73 can be written as

where

(2.76)

D~ = (Dm - 2/3 r)/(Bm - 2 r) (2.77)
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Similarly, the integral in a double summation term to

be evaluated for the resonance can be written as

Id(w o) I:: w2 ~ g(W) (w 4 + 4 6
2 2 w2)= w

0 0 0

c

(A w4 + B 2 w2) IH 1
4 dw (2.78). wr 0 r 0 0

which because of peakedness of IHo I 4
, can be approximated

as follows:

Id(w o) 2
~ (w) J:: Nl (w) [H 1

4 dw'" w
0 g 0

c

- 2/3 A 3
~ (w ) + Ar JWo 2

~ (w) dww wr 0 g 0 g-w
0

(2.79)

where

N1 (w) Ar
6 2 + (B + 4 6

2 A ) 4 4= w w w w
0 r 0 r 0

+ 4 62 B 2 6 (2.80)w wo r 0

in which the first integral is defined by Eq. 1.22 in Ap-

pendix I-C. Eq. 2.7 can be written as

E - 2/3 r A
m r + A W

Bm - 2 r r 2 (2.81)

where the factor Em is defined as
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(2.82)

in which b l = 4 82 B ; b l = Br + 4 82 A b2' = A .o 0 r 0 r r'

b) = OJ and Am is defined by Eq. 1.22. Eq. 2.81 can be

further simplified as

(2.83)

in which

(2.84)

and Bm is defined by Eq. 2.41. Using Eq. 2 .. 29, 2.73, and

2.83, the expression for second moment of fiabr can be

written as follows:

x'f2

where

(2.85)

00 2 X 2(00 )!x 2(00 )o v 0 p 0
(2.86)
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4th Moment of Floor Spectral Response

The 4th moment will be obtained by multiplying Eq.

42.18 without peak factor PF(wo) by w The resulting

single and double summation terms for the case when

w· = wand B. = B are obtained as follows.
J 0 J 0

The frequency integral of a typical single summation

term in the resonance case can be written as:

I '(w )
S 0

= JW c

-w
C (2.87)

which can be written as

I' (w ) 16 6
4 4 J:: ¢ (w) dw= wso· 0 0 g

c

4 JW c (bo
2 6 4 4+ w -w ¢g(w) w w + b l w w

0 0

c

+ b2
2 6 w8) IH 1

4 dw (2.88)Wo w + b3 0 0

in which the coefficients bo ' b l , b2 and b3 are defined as

follows:
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b' = 8 82 + 64 8
4 (1 - 2 62) .

0 0 0 o '

b l 1 32
4,

{l + 2 (1 2 82)2}.= - So - o '

b' = 64 6
4 (1 - 2 S2). b3 = - 16 S4 (2.89)2 0 o ' 0

The 2nd iri'tegral iii- Eq. 2.88 can be appioxhriafed using Eq.

1.22 in Appendix I-C. Eq. 2.88 can be rewritten as

where

I' (w.)
s 0

..
G' .m

(2.90)

(2.91)

in which A. is defined by Eq. 1.22 in Appendix I-C. Alsom

in Eq. 2.90 the integral I b is defined by Eq. 2.34 and Wi

is defined as follows:

2 . .
w o<P (w) dw

g
(2.92)

Using Eqs. 2.37 and 2.-44, the single summation term in

Eq. 2.,90 can be' wriffen as' follows:

I'(w ) =w4 {16 S4 I + I ( ) F(w ) G' + b W}so 0 0 bl wri 0 m 3 1

(2.93)

in \vhich the factor G! is defined· as
m
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(2.94)

Similarly, the integral in a double summation term

is

which can be written as

Ici(w o) 4 S2 4 B J:: \t> (w) dw= w
0 0 r g

c

+ 4 f:: \t> (w) Nl (w) IH 1

4 dww
0 g 0

c
where

Nl (w) 2 6 c I + 4 4 c I + 6 2 I + 8 I= W W W W W w c2 Wo c 30 0 0 1 0

(2.95)

(2.96)

(2.97)

in which c' = B + 4 62 A + 16oro r
cl

l = A - 8 S2 B {l + 2 (1 - 2r 0 r
. (1 - 2 62). c I = - 4 6

0

2 Ar .
0' 3

Since the function jH 1
4 is highly peaked. the 2ndo

integral in Eq. 2.96 can be approximated as
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I~(·o) - 4 B~ .: Dr . I b + .: ['g(Wo) J:: NI (·)
c

. IH 1
4 dw ~ 2 ~ (w ) w c' + c'o goo 3 3 f

w "o

-wo

Using Eqs~ 2.37 and 2.40, Eq. 2.98 can be written as

- 2 ~(w ) w c' ~ 2~ Wgoo 3 3 1

where

(2.99)

in which Am is defined by Eq. 1.22 in Appendix I-C. Using

Eq. 2.40, Eq. 2.160 can be written as

(2.101)

in whic"h the factor H~ are defined as

(2.102)

in whichBm is defined by Eq. 2.41. 'Using Eqs. 2.29, 2.93,

and 2.101, the expression for the 4th moment of floor

spectra can be wrftten as follows:
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n n 2 2 4 2
+ 2 I I r. ¢. [w {4 6 Br Wgljfk J J 0 0

+ Ap4 (Wo) F4 (wo) H~ + c) WI} + c l Ap4(wo)

2 2+ c 2 Wo Av4(wo ) + c 3 Ap4(wk ) + c 4 wk Av4(wk)]

(2.103)

where I

2
w A 4(W )o v 0

A 4(W )p 0
(2.104)

Opce the moments of floor spectra are available, the
I

peak factors are obtained by the numerical solution of Eq.

2.39 for a given probability of exceedance, p, and earth

quake duration of motion, t d .

,

2.6 SIt1ULATION STUDY FOR VERIFICATION OF DIRECT APPROACH

Several implicit assumptions have been made in the

development of the approach so that it can use ground
I

spectra directly as design input. To verify the suitability

of these assumptions and validity of the proposed approach,
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the simulation study, described in this section, was con-

ducted.

This study consisted of 1) synthetic generation of

ensembles of accelerograms; 2) development of mean and

mean-plus-one-standard-deviation ground response spectra;

and 3) generation of floor spectra for each time history

and ensemble averaging and statistical processing of

results.

A method for generation of systhetic time histories is

described in Ref. [17,47J. The frequency characterization

of the time histories was in terms of a broad-band Kanai-

Tajimi type of spectral density function of the following

form:

3 4 B~ 2 2
w. + 4 w. w

<!J (w) = I s. J J J
2 w2)2 s? 2 2g j=l J (w. + 4 w. w
J J J

- 30 cps. < w < 30 cps. (2.105)

The parameter-s of this spectral density function are

given in Table 2. L To introduce nons.tationary character in

the synthetically generated time histories, envelop func

tions shown in Fig. 2.1 have been used. Three different

envelop functions with total and strong motion phase
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durations of (12 sec., 2 sec.), (15 sec., 4 sec.), and

(30 sec., 15 sec.) were used to get three different sets

of time histo~y ensembles. There were 100 time histories

in 12 sec. duration set, 75 in the 15 sec. set and 33 in

the 30 sec. duration set. The selection of the number of

time histories generated in an ensemble set was primarily

governed by the computational cost. The response results

for each set were processed separately. Figs. 2.2 - 2.4

show the time histories from the three sets.

The synthetically generated acceleration time histories

were used for generation of base motion spectrum curves.

Pseudo acceleration, relative acceleration and relative

velocity spectra were generated for a total of 10 damping

ratios ranging from 0.5% to 50% of the critical. For each

damping value, the spectra curves of the time history

ensemble were statistically processed to obtain the mean

and mean-plus-one-standard-deviation spectrum curves.

These averaged base motion spectra are used as base input

in the direct approaches described in this chapter and

Chapter 3 employed pseudo acceleration and relative velocity

spectrum curves as inputs whereas the approaches of

Chapters 4 and 5 employed relative acceleration and rela

tive velocity spectra as inputs. Figs. 2.5 - 2.7 show

these averaged spectra for 12 sec. duration, Figs. 2.8 

2.10 for 15 sec. duration,. and Figs. 2.11 - 2.13 for the
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30 sec. duration sets. The curves for mean + one standard

deviation are shown in Figs. 2.14 - 2.22.

To obtain floor spectra for acceleration time

histories, modal time history analysis approach has been

used. It involves solution of Eq. 2.3 for each mode by

Duhamel integral approach [29J. This method provides an

exact solution for a given digitized acceleration time

histo~y. Absolute floor acceleration time history is ob

tained from Eqs. 2.8 in the mode displacement approach

(Chapter 2) and by Eq. 4.1 for mode acceleration approach

(Chapter 4). The floor acceleration time history is then

applied to the oscillator, Eq. 2.5, for generation of floor

spectrum. Solution of Eq. 2.5 is also obtained by the

Duhamel integral approach.

For each time history floor spectra are obtained for

different damping values at the points of interest of a

structure. The floor spectra obtained for a time history

ensemble are then statistically processed to obtain the mean

and mean + one standard deviation spectra. The mean time

history spectra are compared with the spectra obtained by

the direct approaches with mean ground spectra as seismic

input. Similarly, the mean + one standard deviation time

history spectra are also compared with the corresponding

spectra 'by direct approaches .for mean + one standard
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deviation ground spectra as input. A good comparison of

these two sets of spectra means that the direct approach

is acceptable in spite of the simplifying assumptions made

in its development.

2.7 N~lliRICAL RESULTS

In this section the numerical results for· two dif

ferent models obtained by the time history analysis and the

direct approach are presented and compared for the valida

tion of the direct approach. The dynamic characteristics

like natural frequencies, participation factors and modal

displacements of the floor points of the two structural

models are given in Tables 2.2 and 2.3. The first model

has also been used in earlier studies [39,42J. The second

model is a regular 10-story building with 10 degrees-of

freedom.

The structural damping for both structures was taken

as 5 percent of critical in each structural mode. The

oscillator damping for generation of floor spectra was

varied between 0.5 to 50 percent. Large damping values were

included to examine the applicability of the proposed

approach for such damping values. However, floor spectra

results, only for a selected damping values are shown.
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Figs. 2.23 - 2.34 show the floor spectra for two

floors of the first model (also referred to as the 11-FRQ)

for 1 percent and 5 percent damping ratios. obtained by the

direct approach and time history analysis. Figs. 2.23 

2.26 are for 12-sec. time histories, Figs. 2.27 - 2.30

for is-sec. time histories and Figs. 2.31 - 2.34 for 30

sec. time histories. In generation of these curves Eq.

2.29 which assumes equal peak factors was used.

The comparison of the two results for three sets of

time histories shows that the direct approach predicts

higher (conservative) response at dominant structural fre

quencies than the time history response. For floor 3 shift

, in curves is also noted between the oscillator periods of

.08 sec. to 0.16 sec. In general. however. the results

obtained by the direct approach and time history analysis

compare very well. The main reasons for getting higher

response in the direct approach are: 1) the assumption of

equality of peak factors, 2) the inability of step-by-step

time history analysis to reach the maximum (peak) response

because of the finite size of the time step. (This effect

could account for about 2 percent to 7 percent difference.

This was verified by the calculation of response of two

equal frequency oscillators in cascades subjected to a

harmonic in~ut. The closed form response obtain

the harmonic input. was cqmpared with the step-by-step
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time history response obtained with a time step size of

0.005 sec.)

To see if any improvements can be made by inclusion of

peak factors in generation of floor spectra, Eq. 2.2 was

used to obtain floor spectrum values. To obtain the

spectral moments for the calculation of the peak factors,

three different forms of spectral density functions were

used: 1) the spectral density function defined by Eq.

2.105, 2) the spectral density function with only the first

term of Eq. 2.105, and 3) a band-limited white noise with

cut-off frequency of 30 cps. The first choice of the

spectral density function is most consistent with the input

spectra used, as they were obtained from this spectral

density function. In the calculation of peak factors, the

effective earthquake durations for 12, 15 and 30 second

time histories was asswned to be 5 sec., 7 sec. and 19 sec.

as suggested by Hou [19J. The use of duration values some

what different from these, however, did not make any sig

nificant difference in the final results. The probability

of exceedance with the mean spectra was taken as 0.5 which

corresponds with the median of the maximum response. It

was also observed that the final results were not sensitive

to the choice of this probability either.
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The floor spectra with peak factors are shown in

Figs. 2.35 - 2.38 for the 12 sec. time history set, in

Figs. 2.39 2.42 for the 15 sec. time history set and in

Figs. 2.43 - 2.46 for the 30 sec. time history set. In

these figures, the peak factors were obtained for the

spectral density function of Eq. 2.10'5. It is seen that

compared to the results presented b~fore, these results

show a definite improvement inasrtmcli as th~ir comp'arison

with the time history results is' now better. Similar

results comparing the mean + one standard deviation spectra

are shown in Figs. 2.47 - 2.50.-

In Figs. 2.51 - 2.54 are shown the floor spectra with

peak factors obtained for the I-term PSDF and in Figs.

2.55 - 2.58 for the white noise P'SDF. Again, as the I-term

PSDF represents the frequency content of the input better

tnan white noise, the results are better for the I-term

PSDP. The results obtained with white noise PSDF are in

fact erratic sometime. Thus, it appears to h~ e'ssential to

h~ve a correct representation of the frequency content of

the input in te'rms' of a PSDF to obtain peak factor for

Eq. 2.2-9 and the assurnptionof white noise as PSDF for

calculation of peak factor may n6t give consistent results.

A~ suggested in Sec. 2.5, the spectral moments were

also obtained from ground- spectra for the calculation of
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peak factors. The floor spectra calculated with such peak

factors are shown in Figs. 2.59 - 2.62. It is seen that

the approach is not entirely inappropriate. However,

because of the unevenness of ground spectra, Figs. 2.5 

2.22, used in the evaluation, the peak factors calculated

by this approach may not always lead to improved results

(see Figs. 2.59 - 2.62). Thus the use of this approach is

not recommended.

In practice, a PSDF representing the input spectra

will usually not be known. It can, however, be obtained by

iterative procedure (see Ref. 17) for a given spectrum. As

an input is usually defined by a set of spectrum curves for

the damping values of interest, such procedures will in

general not give one PSDF for all the curve. In fact

there may be as many PSDFs as there are spectrum curves.

However, use of anyone of these PSDFs for the calculation

of spectral moments and then the peak factors should pro

vide improved results of floor spectra.

A PSDF can also be directly used as input for genera

tion of floor spectra, but since there is no one PSDF

which is consistent with all input spectrum curves,

choosing the right PSDF out of several becomes a problem.

As such, the use of PSDF approach for generation of floor

spectra is not advocated here. In fact in absence of a
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proper PSDF, the use of Eq. 2.29 will provide quite

acceptable and conservative results.

Another set of results obtained by the direct approach

for the 10 story building are shown in Figs. 2.63 - 2.65

and compared with the corresponding time history results.

Again for this structure also, the two sets of results

are again seen to compare very well.

2.8 S~lliARY AND CONCLUSIONS

In this chapter, a direct approach initially developed

by Singh [39,43J is reformulated and critically examined.

Several improvements related to the development of floor

spectra for the resonance case and inclusion of peak fac

tors in floor spectra generation methodology have been

formulated. A procedure for the evaluation of the peak

factors for an oscillator on ground and another one on

floor is described for its use in floor spectra generation

procedure. A simulation study for" validation of the direct

approach proposed here is outlined.

Extensive numerical results, covering a wide range of

parameters such as different duration time histories, dif

ferent structur.al sys,tems. different floors of a building,
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range of damping values, etc. have been obtained. A

critical evaluation of the results indicates that the

proposed approach does provide an acceptable method for

direct generation of floor spectra. Inclusion of in peak

factors in generation of floor spectra is possible and can

improve results if peak factors are evaluated for a proper

PSDF. In absence of any knowledge about the PSDF, the

assumption of equal peak factors for an oscillator on

ground as well as on floor in the method of generation of

floor spectra will also provide conservative and acceptable

floor spectrum curves.



Chapter 3

NONCLASSICALLY DPJ1PED SYSTENS: MODE DISPLACEHENT

METHOD

3.1 INTRODUCTION

The direct approach developed in the preceding chapter

and most other approaches developed so far by various in

vestigators assume that primary systems are classically

damped and the normal modes can be used to decouple their

damping matrices. Thus strictly speaking these approaches

cann9t be used for structural systems with nonclassical

d~mping matrices. A damping matrix is called nonpropor

tional or nonclassical if it is not proportional to either

mass or stiffness matrix or both or is not of a special

form as described in Reference [29J. Here, in this inves

tigation the term nonproportional is used in a general

sense to include all the cases in which normal modes

cannot be used to decouple the damping matrix.

For the convenience of dynamic analysis, the structures

are gen~rally assumed to be proportionally damped with

modal damping ratio. It may be justified in some cases.

However, there can also be situations where the non

class·ical nature of damping matrix cannot be completely

ignored. Such is usually the case when a structure is

59
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made up of materials with different damping character

istics in different parts. A combined analytical model

of a soil and structure system, commonly used to incorpo

rate soil-structure interaction effects will usually be

nonclassically damped. In such cases, methods which do

consider the nonclassical nature of the system are re

quired for generation of floor spectra.

Since the damping matrix cannot be decoupled in such

cases, the time history analysis, employing step-by-step

integration techniques can be used to obtain floor spectra

if the time history of the input motion is known. How

ever, the time history approach becomes impractical and

expensive because to obtain reliable estimate of the

design response an ensemble of time histories must be con

sidered in the analysis.

To use normal modes, often the off-diagonal terms of

[¢]T [c] [¢], representing modal coupling through damping

matrix are completely disregarded and diagonal elements of

the transformed matrix are used to obtain the modal damping

ratios. This may sometimes introduce significant errors in

the generation of floor response spectra.

For the calculation of member response of nonpro

portionally damped primary system, with response spectra as
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seismic design input, an approach was developed by Singh

[46]. Herein. this approach has been extended for genera

tion of floor response spectra for nonproportionally

damped primary systems. This approach is cast in the form

of conventionally used modal analysis approach, such that

the direct use of ground response spectra as seismic input

is possible. Again, the mode displacement formulation is

developed first. The mode acceleration formulation for

nonproportionally damped primary systems is described in

Chapter 5.

3.2 ANALYTICAL FOR.1\1ULATlON

When the damping matrix [C] in Eq. 2.1 is nonclassical,

the 2n-dimensional state vector approach, as initially pro

posed by Foss [15], is used to obtain the response.

In this approach, Eq. 2.1 is cast into 2n-dimension

equations, with the help of an identity equ-ation [21J, as

follows:

(3.1)
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[AJ = [[OJ
[MJ

[MJ]
[CJ

[BJ [
- [MJ

[OJ
[OJ]
[KJ

[DJ [
[OJ
[OJ

[OJ]
[M]

(3.2)

Eq. 3.1 is called the reduced equation of motion of the

system. {y} is a 2n dimension state vector defined as

{y}
{

{x} }

{x}
(3.3)

The solution of Eq. 3.1 can be obtained in terms of

eigenvalues and eigenvectors of its associated eigenvalue

equation,

p [AJ [¢J + [BJ [¢J = [OJ (3.4)

where [¢J = 2nx2n matrix of eigenvectors {¢j}' and p =

eigenvalue. Eq. 3.4 gives 2n eigenvalues and corresponding

eigenvectors which occur in the pairs of complex and

conjugate.

Using the expansion theorem the response vector {y} is

written as follows

{y} = [¢J {z} (3.5)
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where {z} is a vector of complex valued principal co

ordinates, which are obtained from the solution of the

following equation

(3.6)

in which T over a vector or matrix represents its trans

pose. The matrices [A*] = [~]T [A] [¢] and

[B*] = [~]T [B] [~] are diagonal matrices with their

diagonal elements related as

"k
B.

J
"'k= - p. A.

J J
(3.7)

in which Pj is the jth eigenvalue of Eq. 3.4. A decoupled

jth equation of Eq. 3.6 is

...
z. - p. z. = - F. X (t)

J J J J g
(3.8)

in which F. is an element of complex vector {F} defined as
J

follows:

{F} = [A*J- l [~]T [D] {-~-}

An element of {F} can be shown to be

F. = {~.}T [M] {r}/A.~'
J J £ J

(3.9)

(3.10)

where {~j}£ is the lower part of the complex eigenvector

{~j }.
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The solution of Eq. 3.6 can be written as

J
t p.(t-1)

F. X (1) e J d1
Jog

(3. 11)

For generation of floor spectra the absolute accelera-
..

tion vector, {X }, is of main interest which can be writtena

in terms of relative and ground accelerations as follows:

{X }
a

..
{x} + {r} X (t)

g
(3.12)

..
where {x} = relative acceleration response vector of dimen-

sion n.

The above equation can also be written as

{X:} {~} + { : }

Using Eq. 3.3,

..
X (t)

g
(3.13)

which by virtue of Eq. 3.5, can also be written as

(3.14 )

{X } =
a

2n
I

j=l

...
{¢.} z. + {r} X (t)

J u J g
(3.15)

where {¢.} = upper part of {¢.}. By substitution of z.
J u J J

from Eq. 3.8 in Eq. 3.15,
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2n .. ..
{X } = I {¢.}. (- F. X (t) + p. z.) + {r} X (t)a j=l J u J g J J g

(3.16)

or

.. .. [- 2n
[r}1+

2n
{Xa } = X (t) I F. {¢.} + I p. z. {¢ . }g j=l J J u j=l J J J U

(3.17)

It can now be shown that the first term in Eq. 3.17 is

{ ro }zero. Using the expansion theorem, vector can be

written in terms of complex modes [¢] as follows:

{ ~ } = [¢] {p} (3.18)

where the constants {p} in this expansion are obtained by

employing orthogonality of {¢.} as follows. Premultiplying
J

Eq. 3.18 by [¢]T [A] we obtain

(3.19)

or

A jth term of Eq. 3.20 is given by

{ } T [M] {r}/A.~"p. = ¢. 0 : .

J J ~ J

(3.20)

(3.21)

which from Eq. 3.10 is equal to F
J

. On substitution of

Eqs. 3.18 and 3.20 into Eq. 3.17 it is seen that the terms

in the square bracket become zero and the absolute
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acceleration response vector, {X } is given as follows:a

2n
L

j=l
p. z.{¢.}

J J J U
(3.22)

and the absolute acceleration of, say, the mth floor can

be written as

X =am

2n
I

j=l
p. z. ¢.(m)

J J J
(3.23)

in which ¢. (m) is the mth element of {<p.} •
J J u

Eq. 3.23 forms the basis of the mode displacement

formulation for generation of seismic floor response

spectra for nonproportionally damped primary systems. This

will be used to define the spectral density function of the

floor acceleration which in turn is required to define a

floor response spectrum value.

As nonproportionally damped systems do not possess

normal modes, the modal frequencies and damping ratios de-

fined in a conventional sense do not exist. However, an

equivalent information is contained in the real and imagi

nary parts of eigenvalues, Pj' In order to use a set of

prescribed spectra in generation of floor spectra, it is

essential to identify these modal parameters for non-

proportional systems. For this, as in the case of
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.
proportionally damped systems, the real and imaginary parts

of p. are expressed as follows:
J

P.. J - ~. + i e. - - s. w. + i w./l -s?
J J J J J J

(3.24)

where - ~j arid ej are the real and imaginary parts of Pj

respectively and w, and B. are now the modal frequency and
J J

clamping ratio, which can be obtained in terms of ~. and e.
J J

as follows:

w. = I~ ? + e?
J J J

B. = ~ . / I~? + e2

J J J J

(3.25a)

(3.25b)

3.3 AUTOCORRELATION AND SPECTRAL DENSiTY FUNCTIONS OF
FLOOR ACCELERATION

As done in the previous chapter, the expression for the

spectral density function of floor acceleration defined by

Eq. 3.23 will now be established. This will then be used

as the input to an oscillator to obtain floor spectrum value.

Pairing complex conjugate terms, Eq. 3.23 can be

written as a surnmatiort over n terms as follows:

"

X(t)a (3.26)
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.. ..
where for brevity X (t) is replaced by Xa(t) and ~(m)am

by ~.. Hereafter this notation will be used in this
J

chapter.

.. ..
For a zero mean excitation, X (t), the mean of X (t)

g a

is zero whereas its autocorrelation characteristics can be

obtained as

.. 0' n n
E[Xa(t l ) Xa (t 2)] = I L p. ~ . Pk ~k

j=l k=l J J

n n "k ok "k ok

· E[Zj (t l ) . Zk (t2)] + I L p. ~. Pk ~k
j=l k=l J J

,', .1. n n .'. "k
E[zj' (t l ) z~(t2)] I L "· + p. ~. Pk ~k

j=l k=l J J

"k n n ,', i'(

· E[zj (t l ) zk(t 2)] + L I p. ~ . Pk ~k
j=l k=l J J

"·k

· E[zj (t l ) zk(t 2)] (3.27)

Using Eq. 3.11, various expected values required in Eq.

3.27 can be obtained in terms of autocorrelation function

or spectral density function of ground acceleration; these

are defined in Appendix II-A.

To further simplify the evaluation of Eq. 3.27 the

terms with j=k, called single summation terms and jik,

called double summation or cross-terms, will now be
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evaluated separately.

Terms with j=k of Eq. 3.27 denoted by R , can bes

written as

n 2 2
R = I p. !P. E[Zj (t l ) Zj (t2)]s j=l J J

n ";1(2 ;\-2 .'- -k -
+ I p. !p. E[zj' (t l ) Zj(t2)]

j=l J J

n -I. "k -'-

+ I p. p. !p • !p • E[zj (t l ) zj' (t 2)]
j=l J J J J

n .'. i': _,-

I . " E[zj' (t l ) Zj(t 2)] (3.28)+ p. p. !p. !p •
j=l J J J J

Substituting for the expected values from Appendix

II-A, Eq. 3.28 can be written as

R =s

(3.29)

q. = F. !p.
J J J

(3.30)
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With'p. expressed in terms of its real and imaginary parts
J

as in Eq. 3.24 and qj as

q. = a. + i b.
J J J

(3.31)

and with appropriate combination of the 1st with the 2nd

term, and the 3rd with the 4th term, and after some

algebraic simplification, Eq. 3.29 can be written as

follows:

R2 n

2 f:oo
iWT 2 2 2 b~)}I ~ (w) e [w {A! + w. (a. +s j=l g J J J J

2 (1 - 2S~) A~ + 2 B~ 'SjJl S~- w. w.
J J J J J J

+ 4 2 + b~)] !H·1 2 dw 0.32)w. (ajJ J J

in which

(3.33)

B!
J

22(a.
J

+ 2 w? a. b. (1 - 2 S~)
J J J J

(3.34)

where H. is the frequency response function of a single
J

degree-of-freedom oscillator, defined by Eq. 2.3. Eq.

3.32 can be rewritten as
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n

f:oo
iWT 2 IH.j2R = L 2 q> g(w) e (w c: + D:) dw (3.35)s j=l J J J

in which

c: A: + 2 2 2 (3.36)= w. (a. + b.)
J J J J J

D: 2 (1 2 s?) A~ + 2 B. 2
SjJl s?= - w. - w.

J J J J J J J

+ 4 2 + b?) (3.37)w. (a.
J J J

The double surmnation terms (cross terms) are also

evaluated similarly. Substituting for the ~xpected values

from Appendix II-A the double summation term of Eq. 3.27,

herein denoted as Rd , may be written as follows:

R~ = I ¥ Joo ~ (w)
jik _00 g

iWTe

...1... ...'.,.. ,...

Pj Pk qj qk

(3.38 )

Substituting q., qk' p. and Pk in terms of their real. . J J .

and imaginary parts, and with some algebraic manipulations,

Eq. 3.48 can be written in the following form
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n n

J: 00

iWT
H~Rd = I I ep (w) e [Xjk(w) + i Yjk(w)] H. dw

j:fk g J
(3.39)

in which

Xjk 4 2
[aj 13 . 13 k + b j bkJi S~ /1 13

2= W wjk ak J J k

+ a. bk SjJl - 13
2 + ak b j 13 kJl - 13;]J k

+ 4 2 2 (3.40)w. wk a. akJ J

Yjk = 4w w. wk [aj ak (wk 13 • - w. 13k )
J J J

- a. bk wjjl - 13
2 + ak b. wJl - s? (3.41)

J k J J

Eq. 3.39 can be further transformed into the real forms of

Hj and H~ as

in which

¢ (w)
g

iWTe [Xjk(w) + i Yjk(w)] IHj /2 IHk l2 dw

(3.42)

Xjk (w) = Xjk Ujk - Yjk Vjk

Yjk(w) = Xjk Vjk + Yjk Ujk

where Ujk and Vjk are defined as

(3.43 )

2= (w.
J

2 2w)(wk W
2 ) + 4 2 13 13w wj wk j k (3.44a)

(3.44b)
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Noting that Xjk :::: Xkj and Yjk
:::: - Ykj J the cross-

terms when combined together ~V'ill eliminate the imaginary

terms from the final expression. Using Eq. 3.35 and 3.42,

the complete expression for the autocorrelation function of

the stationary response of a floor acceleration is obtained

as follows:

•• .0

E[Xa(t l ) Xa (t2)] ::::
n

I
j::::l

¢ (w)
g

iWTe

(3.45)

for T :::: 0 this equation also defines the mean square ac-

celeration response of floor. From Eq. 3.45 it is seen

that the PSDF of a floor acceleration response can be

written as

¢ (w) :::: 2 Lt (w 2
C~ + D ~ ) !H.1 2

m J J J

n n

IHj 1
2

I Hk 1
2J+ I I X·k(w) ¢ (w) (3.46)

jjk J g
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3.4 FLOOR RESPONSE SPECTRUM

This PSDF characterizes the acceleration of a floor.

The maximum response of an oscillator with this PSDF as

input defines the floor response spectrum value. For

example, the absolute acceleration response spectrum value

at a frequency Wo and damping So can be obtained from the

mean square value as follows:

R~(wOJSO) 2
[2

n

J:oo
2= PF(wo ) I (j>g(w)(w c: + D:)

j=l J J

4 + 4 2 2 w2 ) IH·1
2 IH

o
/2 dw·(wo So Wo J

+ 2
n n Joo 4I I (j>g(w) X·k(w) (w
j/k -00 J 0

+ 4 S2 2 w2) IHj 1
2

IHkl2 IHol2 dW] (3.47)W
0 0

-.-/

where PF(wo) is the peak factor by which the root mean

square value is amplified to obtain the response spectrum

value.

To define the response spectrum value in terms of

ground response spectra, each term of Eq. 3.47 is separated

into partial fractions, as was done in the previous chapter.

Here again the case with wj + Wo and w. =
J

Wo with S. = S
J 0
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The latter case with'w. = w
J 0

and s. = s will again be referred to as the resonance case .
.J 0

.3.·4.,1 ,'FT:.OOR SPECTRUM 'VAlUE FOR ~1HE NONRESONANGE i CASE

In 'Eq. 3.47 the ,separation of terms ~hito ,their partial

'fractionsisstra~ght forward. 'VJ':i!th th'isseparation ,the

response spectrum expression can ~be 'written as 'fb1'lows:

Z 2 [z n r A
R ,(w ,S ) = PF (w o) L " 1 II (w j ) + -4 IZ(w.)a 0 0 . 1. 4J= r r J

1 1

IZ(Wo )}
h :n

{~+ A3 II (w ) + A4 + z L L II (w j )
0 j=l k=j+l

B. Ak B
+ ---! + k

IZ(w.) + 4" Il(wk ) 2 I Z(wk)
r l

J r r ZZ

+ (C. + Ck ) II (w o) + (D. + Dk ) IZ(W o )}] (3.48)
J J

where AI' AZ' Aj • etc. are the coefficients of partial

fractions and are defined in Appendix II-B. Il(w j ) and

IZ(w j ) are the frequency integrals as defined in Chapter 2,

Eqs. 2.Z2 - 2.25. Again these can be obtained from the

ps~udo acceleration and relative velocity response spectrum

and their associated peak factor values.
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Here this expression'a11ows the incorporation of

various modal peak factors in generation of floor spectra.

However, if all the peak factors are assumed to be the

same, an expression independent of peak factors is ob

tained as follows:

n {A1 2 A2 2 22 I """'"Zj:" R (w.) + L w R (w.)
J'=l r P J r J v J

1 1

R2 (w ) w
2

R
2 (w )}

n n
+ A3 + A4 + 2 L Lp 0 o v 0 j=l k=j+1

{~ 2 B. 2 2 Ak 2
R (w.) + -t w. R (w.) + 4 R (wk )p J J v J r Pr 1 r 1 2

+
Bk 2 2 + (Cj + Ck ) R2 (w )L wk Rv(wk )
r 2

p 0

+ (D. + Dk ) 2 ~(wo) } (3.49)w
J 0

This expression has been used to obtain numerical results

for nonproportiona11y damped system,

3.4.2 FLOOR SPECTRUM VALUE FOR THE RESONANCE CASE

For this special case when w, = wand S. = S , the
J 0 J 0

coefficients of partial fractions, A1 , A2 , etc. are un-

defined. However, this case may be treated in the same way
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as in Seco 2.4.2 for a proportionally damped system.

Single Summation Terms

A term with w. = wand B. = B in the\single summa-
J 0 J 0

tion terms can be written as

I = f:: ~ (w) (w2
c~ + D~)s g J J

c

(w 4 + 4 6
2 2 w2) \H 1

4
dw. w

0 0 0 0

which can be approximated as

(3.50)

I '" ~ (w ) IWc
s g 0 -w

C

. IHol4 dw - 2 () D' + D' Iep g Wo Wo j j b (3.51)

The integral in the above equation can be evaluated using

the integral in Appendix I-B, Eq. 1.22. Thus Eq. 3.51 can

be written as

in which A is defined in Appendix II-C, Eq. 11.19. Using
m

Eqs. 2.37 and 2.40 in Eq. 3.52 and after some algebraic

manipulations, the following is obtained:
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Is = Il(w ) {A' + [1 - F(w )J • (D~ - A')}
o m 0 J.ID

(3.53)

A'm

A -2rD!
m J

B-2 rm

(3.54)

in which Bm is defined by Eq. 2.41 0

Double Summation Terms

The evaluation of a double summation term in resonance

proceeds the same way as in Sec. 2.4.2 for proportionally

damped case. In this evaluation an integral of the follow-

ing form is encountered:

I d J:: (w 4 + 4 62 2 w2)= w
0 0 0

c

4 + FZ
2

w2) IH 1

4
4g (w) dw (3.55)(F l Wo w .

0 0

where the coefficients F1 and F2 are defined in Appendix

II-B. Eq. 3.55 can be approximated as

I d
gJ. (w ) J:: {Fl

8 + (F2 + 4 6Z F
l

) 6 2
w w wg 0 0 0 0

c

+ 4 F2 6
2 4

w
4

} IH 1

4
dw - 2 ¢ (w ) F

lw w
0 0 0 g 0 0

+ F1 I b (3.56)



79

The frequency integral in above equation can be evaluated

by using Eq. 1.22 from Appendix I-C. Denoting this

integral by Dm, Eq. 3.56 can be written as

where D is defined in Appendix II-C, Eq. 11.21. Usingm

Eqs. 2.37 and 2.40 in Eq. 3.57 and after some simplifica-

tions the following is obtained:

in which D' is defined as follows:m

(3.58)

D' =
m

Dm - 2 r FI

B - 2 rm
(3.59)

With the integrals Is and I d defined by Eqs. 3.53 and 3.58,

the floor spectrum value for the resonance case can be ex-

pressed as follows:

n
I

j=l
I s + 2

(3.60)



80

3.5 NU~lliRICAL RESULTS

For the numerical consistency and veritication of the

formulation developed in the preceding section, the floor

spectra results were obtained for a proportionally damped

system by this approach and approach developed in the

previous chapter. The two results were exactly the same

which verified the analytical correctness of the formula

tions and computer code.

To show the magnitude of the error which can be intro

duced in the floor spectra results when a nonproportionally

damped system is assumed to be proportional by neglecting

the off-diagonal terms of [9J T [CJ [¢J, here numerical

results are obtained with and without off-diagonal terms.

Tables 3.2 and 3.3 show these results for a 5-story, 15

degrees-of-freedom torsional structure shown in Fig. 3.1.

The structure consisted of rigid floors connected by

columns. Each floor has 3 degrees of freedom -- 2-transla

tion and l-rotation. The eccentricity between mass and

stiffness centers was adjusted to give closely spaced fre

quencies. The damping properties of the system were

adjusted to give a nonproportionally damped system. The

undamped frequencies, participation factors and the modal

damping used in the normal mode approach are shown in

Table 3.1. The corresponding quantities used in the
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nonproportiona1 formulation or complex mode approach are

not shown here as they do not give any new insight into

the characteristics of the system. The input for the

results shown in Table 3.2 was defined in terms of PSDF

defined by Eq. 2.105. Whereas, to obtain the results shown

in Table 3.3, the input to the system was defined in the

form of pseudo acceleration and relative velocity spectra

shown in Figs. 2.10 and 2.11, obtained for an ensemble of

30 sec. duration time histories. The difference in the

calculated spectrum values of various floors with and

without off-diagonal terms, as indicated by the ratios in

columns is between 0 to 47 percent. The assumption of

proportionality is seen to predict higher response in this

case. There could be other situations where this dif

ference may be larger. Thus, if the system is non

proportionally damped the formulation proposed here should

be used for generation of floor spectra.

Since assumptions like stationarity of input and

response have been made in the development of this approach

it is essential to validate the approach by simulation

study. For this floor spectra were also generated for all

5 floors by time history analysis for the ensemble of 33

time histories of 30 sec. duration and by approach presented

in this chapter.
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In the time history approach, Eq. 3.8 was solved using

Eq. 3.11. "For a given ground acceleration time history,

with linear variation of ordinates between digitized

points, the solution of Eq. 3.8 was exact. That is,

assumptions, such as linear variation of acceleration

response which is commonly made in step-by-step integration

approach, were not made. Zj (t) obtained from Eq. 3.11 was
..

used to define the floor acceleration time history, Xa(t),

by Eq. 3.23 which in turn was used as an input to the

oscillator, Eq. 2.5, to obtain the maximum acceleration

response or the floor spectrum value.

The floor acceleration spectrum values obtained for the

time history ensemble were processed to obtain mean and mean

+ one standard deviation spectra for all floors. The mean

spectra are plotted in Figs. 3.2 - 3.8 and compared with

the spectra obtained by the direct approach proposed in this

chapter. To obtain the mean floor spectra by the direct

approach, the seismic input was defined in terms of the mean

of ground spectra generated for the ensemble.

The Figs. 309 - 3.11 show the comparison of the mean +

one standard deviation spectra obtained by time history

analysis with floor spectra obtained by the direct approach

with mean + one standard deviation spectra of the time

history ensemble as grounq input. In the generation of the
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results by the direct approach all the peak factors were

assumed to be equal.

The comparison of the spectrum curves obtained by the

two approaches seems to be excellent. The floor spectra

curves were obtained for a wide range of damping values,

but not all are shown. The comparison between the results

for damping not shown here, including very high damping

values (50 percent), was also excellent. This comparison

validates the proposed approach for direct generation of

floor response spectra from ground spectra for non

proportionally damped systems.

3.6 SUMMARY AND CONCLUSIONS

A mode displacement approach is developed for direct

generation of floor spectra for nonclassically damped

structural systems. Although the normal modes do not exist

for a nonclassical system, the developed approach can still

be used with ground response spectra as seismic input. A

good comparison of the results obtained by the proposed

approach and the time history analysis for an ensemble of

time histories validates the proposed approach.



Chapter 4

CLASSICALLY DAMPED SYSTEMS: MODE ACCELERATION METHOD

4.1 INTRODUCTION

A direct approach based on the mode displacement method

of structural dynamics was described in Chapter 2. This

approach is mathematically sound, and will provide accurate

results as long as all structural modes of the system are

considered. Because of the extra computational effort in-

volved in obtaining higher modes accurately, and also the

belief that such modes are not important, often only a

limited number of modes are used in the analysis. This can

induce some error in the calculation of member response as

well as in the generation of floor response spectra,
It

especially if the structure is stiff and also if the floor

response spectra for floors near the base are to be

generated. To alleviate this problem, here an alternative

method based on the mode acceleration method is being pro

posed for direct generation of floor spectra" In the

following sections a complete development of this approach

is presented for the nonresonance and resonance cases of

classically damped primary systems. The development of a

mode acceleration approach for nonclassically damped systems

is presented in Chapter 5. Numerical results validating

84
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the proposed approach are also presented.

4.2 ABSOLUTE ACCELERATION OF FLOOR

The mode acceleration formulation, to be developed

herein, employs Eq. 2.6 instead of Eq. 2.7 to obtain the

absolute acceleration of a floor. That is,

"

X (t) =a

n ..
r m Xg + I y.~. zJ' (t)

j=l J J

It is seen that this expression for absolute accele-
..

ration contains z.(t) which is the acceleration of mode j,
J

defined by Eq. 2.3. Hence this approach will be called as

the mode acceleration approach.

In the following section, the spectral density function

of floor acceleration, defined by Eq. 4.1 will be obtained.

This spectral density will then be used as input to an

oscillator to obtain the mean square value of its accelera-

tion response and the floor spectrum value, as done in the

previous chapters.
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4.3 AUTOCORRELATION AND SPECTRAL DENSITY FUNCTION OF

ACCELERATION

.. ..
For a zero mean excitation, Xg(t), the mean of Xa(t)

is zero whereas its autocorrelation function is given by

E[Xa(t 1) Xa(t Z)] ~ E[{rm Xg(t1) + jI
1

Yj t j ~j(tl)}

. {rm Xg(tZ) + kI
1

Yk t k ~k(tZ)}]

Eq. 4.2 can be rewritten as

..
r E[X (tl)·X (t2)]E[Xa (t l )·Xa (t 2)] = m g g

n .. ..
+ I y. ¢ . r E[Zj (t l )·Xg (t 2)]

j=l J J m

n " ..
+ I Yk ¢k r E[zk(t 2)·Xg (t l )]

k=l m

(4.3)

The expected value terms in Eq. 4.3 can be evaluated

in terms of ground acceleration PSDF and the modal fre-

quency response functions of the structure. These expected

value terms are given in Appendix III-A for the stationary

response. Substituting these in Eq. 4.3, and after some

algebraic manipulations, the following is obtained:
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..

f:oo
iWT [r~E[Xa(t l ) Xa (t2)] = q, eg

n 2+ L y. ¢ . r W {H. + H. "/'}
j=l J J m J J

n 2 2 4 'H.,2
n n 4+ L y. ¢ . W + L L y . Yk ¢ . ¢k W

j=l J J J j=l k=j+l J J

.'. _... [H. H~ + H:' Hk ] dw (4.4)
J J

The mean square value of floor acceleration can be ob-

tained by substituting T = 0 in Eq. 4.4. Also, the PSDF of

the stationary floor acceleration response can be shown to

be given by the following equation:

q, (w)
m

n
L

j=l
2 2y. ¢. {2 r (w. - w )

J J m J

+ 2 ¢ . } 2 IH.,2w y. w
J J J

n n 4 ~]+ L L y. Yk ¢j ¢k w H. H~ q, (w) (4.5)
j=l k=j+l J J g

4.4 FLOOR RESPONSE SPECTRUM

Using this expression of the PSDF, the mean square

value of the oscillator response can be defined to obtain
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the floor spectrum value. Substituting in Eq. 2.17 the

absolute acceleration response spectrum value at frequency

wand damping S is obtained as follows:o 0

n
L

j=l
y. ¢.

J J

{2 2 2 2 ¢ . } 2
IH.1

2. r (w. - w ) + w y. wm J J J J

n n 4 *]+ L L y. Yk ¢j ¢k w H. Hk iP (w)
j=l k=j+l J J g

(w 4 4 13 2 2 2)
2. + w w IHol dw

0 0 0
(4.6)

in which, again, PF(wo) is the peak factor by which the

root mean square response is multiplied to obtain the

maximum response (floor spectrum value).

The integrals in Eq. 4.6 will now be evaluated in

terms of ground response spectra. Here the seismic input

is assumed to be prescribed in terms of relative accelera-

tion and velocity response spectra and in the following

sections the single and double summation terms of Eq. 4.6

are evaluated in terms of these spectra. Again the non-

resonance and resonance cases will be considered separately.
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4.4.1 FLOOR SPECTRUM VALUE FOR THE NONRESONANCE CASE

The first frequency integral in Eq. 4.6 can be

written as

(4.7)

where I g is the variance of ground acceleration defined as

I
g fOO <jl (w) dw

-00 g

and 13 (wo ) is the frequency integral defined as

13 (w) == foo w4
<jl (w) IH 1

2
dw (4.9)g 0

- 00

When multiplied by appropriate peak factor, S, these

integrals define the maximum ground acceleration and the

relative response spectrum values. That is

(4.10)

(4.11)

peak factor for ground acceleration, and

where A == maximum ground acceleration, R (w ) == relative
g r 0

acceleration response spectrum value at frequency Wo and

damping B , S ==
o g

S = peak factor for relative acceleration response of an
r

oscillator with frequency wand damping S .o 0
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Single Summation Terms··

Consider the integrand of the first part of the single

summation terms in Eq. 4.6 and resolve it into partial

fractions as follows:

(w 4 + 4 62 w2 2 2 w2) IH 1

2 [H.1 2 2
<!> (w)w ). (w. - w

0 o 0 J 0 J g

[(w 2 2 IH 1
2 + (w 2 ClAl + w Bl )

0 0 0

2 Dl ) 2 2 (4.12)+ w IH.I ] w <!> (w)
J g

where Al , Bl , e1 , and Dlare given in Appendix III, Eq.

111.4. By integrating over the frequency domain and de-

noting it by, II, the first part of the single summation
s

term can be written as,

w2 wo
2

<!> (w) [H [2 dwg 0

(4.13)
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By virtue of Eqs. 2.25" and 4.11, the above equation

can be written as

I~.= A1 w~ 12 (w o) + Bl 13 (w o) + Cl w~ 12 (w j )

+ Dl 13 (w
j

) (4.14)

Following the same procedure, the integrand of the

second part of the single summation term can also be

resolved into partial fractions as follows:

4
11> (w) (w4 + 4 62 w2 w2) IH 1

2 IH.1 2w
g 0 o 0 0 J

2 [(A2
2 2 IH 1

2
= w cjJ (w) w + B2 w )

g 0 0

+ (C 2
2 + D2 w2) IHj l2

J (4.15)Wo

Integrating Eq. 4.15 over its frequency domain and

using Eqs. 2.25 and 4.11, the frequency integral of the

second part of the single summation term, herein denoted

as II. can be written as
s '

(4.16)

in which the factors A2 , B2 , C2 , and D2 are defined in

Appendix III-B, Eq. 111.7.
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Double Summation Terms

Consider the complete double summation term, with

pairing of the two Hermitian terms in the summation as

follows:

n n

f:oo
4( 4 62 2 w2)I dd = L L y. Yk ¢j ¢k w w + 4 w

j1k J 0 0 0

IH 1

2 ;'\. H. Hk 1> (w) dw
0 J g

n n
¢k foo 4L L y. Yk ¢ . 1> (w) w

j=l k=j+l J J -co
g

( 4 62 2 w2) IH 1

2 -'- -'-1\ 1\

Hk)Wo + 4 w (H. Hk + H. dw
0 0 0 J J

(4.17)

It can be further simplified, eliminating the complex term,

as

n n foo 2I dd = 2 I L y. Yk ¢j ¢k w 1> (w) N'(w)
j=l k=j+l J -co g

(w 4 + 4 62 2 w2) IH·1
2 IHk l2

IH 1
2

dw (4.18). w
0 0 0 J 0

in which

N' (w) 222= w {w. w -
J k

+ w4 } (4.19)
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Denote integral of Eq. 4.18 by I d. Resolving a part of the

integrand into partial fractions, this integral can be

written as

I' J~oo
2

<P (w) N(w) IH.1
2 IHkl2 (w 4= wd g J 0

+ 4 62 2 w2) IH 1
2 dww

0 0 0

J:oo
2 4 + 4 62 2 w2) IH 1

2= <P (w)·w (w wg 0 0 0 0

{(Ar
2 + B 2) IH.1

2 + (C 2. w w
0 r w J r 0

+ D w2) 2 (4.20)IHk I } dwr

where Ar , Br , etc. are defined in Appendix III, Eq. 111.15.

When w. = wand 6. = 6 , evaluation of the first term
J 0 J 0

of Eq. 4.20 requires special consideration. This resonance

case is described in Section 4.4.2. However, when wj ~ wo '

each term in the integrand of Eq. 4.20 can be further

broken into partial fractions to give the following

I' = Joo <p (w)
d -00 g

2 [ (A 2 + B w2) I H 1
2

w j Wo j 0

(4.21)

+ (C j w; + Dj w2) IH j [2 + (Ak w; + Bk w2) IHo l 2

+ (Ck w; + Dk w2) IHkl2J dw
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where Aj , Bj , ... , ~, Bk , etc. are defined by Eq. 111.10

in Appendix III.

Using Eqs. 2.25 and 4.11, Eq. 4.21 can be written as

2Ici = Wo (Aj + Ak ) I 2 (wo) + (Bj + Bk) I 3 (wo )

+ w; {Cj 12 (wj) + Ck 12 ( wk )} + Dj 13 ( wj )

(4.22)

By substituting Eqs. 4.7, 4.14, 4.16, and 4.21 in Eq.

4.6 the response spectrum value at oscillator frequency ,
wand damping S can be obtained from the following equa-o 0 ..

tion:

2 2 [r~ {I I 3 (wo) + 2 2 I 2 (w
o

)}R (w ,S ) = PF(wo ) - wa 0 0 g 0

n
+ L y. ¢ • {2 r I' + y. ¢ • I"}

j=l J J m s J J s

n n
+ 2 L L YJ' Yk ¢J' ¢k IciJ

j=l k=j+l
(4.23)

I~, I~ and I d in Eqs. 4.14, 4.16, and 4.21 can be defined

in terms of the frequency integral 12 and 13 which in turn

are defined in terms of relative acceleration and relative

velocity spectrum values and their peak factors by Eqs.

2.25 and 4.11.
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Eq. 4.23 allows for the incorporation of peak factors

in the generation of floor spectra. However, if all the

peak factors are assumed to be equal, an expression

independent of peak factors is obtained as follows:

2
R (w ,6 ) =a 0 0

r 2 [A2
m g

n 2 R2 (w )+ L y. <p. [{2 r Al + y. <p. A2 } w
j=l J J m J J 0 v 0

+ {2 r m Bl + y. <p. B2 } R2 (w )
J J r 0

+ {2 Cl + C2 } 2 2r m y. <p • w R Cw.)
J J o v J

+ {2 Dl + D2 } 2r y . <p • R (w.)}]m J J r J

n n 2 R2 (w )+ 2 I L y. Yk ¢ . ¢k [wo (A. + Ak)
j=l k=j+l J J J v 0

(Bj + Bk ) 2 2 2 + Ck
2+ R (w ) + w {C. R Cw.) Rv(wk)}roo J v J

(4.24)

Eq. 4.24 has been used to obtain floor spectra which are

compared with the corresponding results obtained by the

direct approach described in Chapter 2 and the time history

analysis.
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4.4.2 FLOOR SPECTRUM VALUE FOR THE RESONAHCE CASE

The factors AI' BI , etc. in Eq. 4.17 depend upon the

frequency ratios r l = wj/wo ' r 2 = wk/wo and damping co

efficients S., Sk' and S. These factors are not defined
J 0

for the resonance case. To define floor spectrum value at

resonance a special treatment of the single and double

summation terms, as in the previous chapters, is required.

A more general formulation is developed here with the

limits of frequency integration restricted to a cut-off

frequency, w. The expressions for the case when W = 00c c

are also obtained.

Single Summation Terms

Consider the first single summation term in Eq. 4.6

qJ (w)
g

2 ( 2W W
o

(4.25)

since the function IH 1
4 is highly peaked, Eq. 4.25 can beo

approximated as [52J
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I sl <P (w ) J:: 2 {w 6 2 4 (1 - 4 8
2)'" w - w wg 0 0 0 0

c

- 4 8
2 2 w4 } IH ,4 dw - 2

<j> (w )w 3" Wo0 0 0 g 0

+ 1/w2 J:: 2
<j> (w) dw (4.26)w

0 g
0

The integral in Eq. 4.26 is of the same form as

integral in Appendix I-C, Eq. 1.22. Hence it can be

evaluated in closed form. Also because of the peakedness

of lHol2 the frequency integral 12 (wo) in Eq. 2.20 can

also be approximated as

'" <P (w ) fW c
g 0 -w

C

(4.27)

In the above equation the second and the third term

are relatively very small and because of their opposite

sign they cancel each other. This was verified for a 3-

term modified form of Kanai-Tajimi PSDF defined by Eqo

2.105. By substituting for the 1st integral in Eq. 4.27

from Appendix I-C, in terms of Vm, the following is ob

tained



<P (CiJ ) W
g a c

98

(4.28)

where V is defined in Appendix III-C, Eq. 111.16. Substi
m

tuting Eq. 4.28 into Eq. 4.26 and after some algebraic

manipulations the following is obtained

(4.29)

where P is defined in Appendix III-C. Eq. 4.29 can be
m

rewritten as

where

(4.30)

p'
m

(4.31)

Proceeding similarly, the second single summation term

at resonance can be written as

1s2 = J:: <pg(w) w
4 (w~ + 4 s; w; w

2
) IHo l 4

dw (4.32)
c

which for a sharply peaked IH ,4, can be approximated asa

follows:
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I s2 <P (w ) I:: 4 (w 4 + 4 6
2 2 w2) IH 1

4
dw'" w w

g 0 0 0 0 0

c

2
<P (w ) + l/w 4 I:: 4

<P (w) dw (4.33)- "3 w w
0 g 0 0 g

0

In the above equation, the second integral is small

and can be neglected. The 1st integral can be evaluated in

closed form, Appendix I-C, Eq. 1.22. Using Eq. 4.28 in Eq.

4.33 the second part of the single summation term at

resonance can be written as follows:

(4.34)

where G is defined in Appendix III-C, Eq. 111.18. Them

above equation can be rewritten as

in which

(4.35)

G'
m

(4.36)

Double Summation Terms

If w. = wand 6. = 6 , the first part of Eq. 4.20,
J 0 J 0

and if wk = Wo and 6k = 6
0

, the second part of Eq. 4.20

require special considerations in their evaluation.

Consider the case when w
j

= Wo and s. =
J

In this case
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the first part of Eg. 4:20 can be written as

w2 + B 2) IH 1

4
o r w 0

• ¢ (w) dw
g (4.37)

Again, because the function IHol4 is highly peaked the

terms with Ar can be approximated as follows:

Ar f:: 2 (w 6 + 4 6
2 4 2 IHol4 dww w w ) <P (w)

0 0 0 g
c

¢ (w ) A f:: (w 2 6 + 4 6
2 4 w4) IH 1

4 dw'" w wg 0 r 0 0 0 0

c

(4.38)

Similarly the terms with B can be approximated as follows:
r

w4 (w 4 + 4 S
2 w2 w2) ¢ (w) IH I4 dw

000 go.

(4.39)

Using Eg. 4.38 and 4.39, Eq. 4.37 can now be written as
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I d c1J (w ) J:: {4 62 Br
2 6 + (B + 4 '6 2 Ar ) 4 4w w w wg 0 0 0 r 0 0

c

+ A 6 w2 } IH 1

4 dw - 2 c1J (w ) (A 13 + Br /5)w wr 0 0 0 g 0 r

(4.40)

The integral in Eq. 4.40 can be evaluated in closed

form using the integral in Appendix I-C, Eq. 1.22. Substi

tuting Eq. 4.28. Eq. 4.40 can be written as

(4.41)

in which the factor H is defined in Appendix III-C, Eq.m

111.19. Eq. 4.41 can be rewritten as

in which

(4.42)

H'
m (4.43)

The second part of Eq. 4.20 can be evaluated as in non-

resonance case, Eq. 4.21. Thus using Eqs. 4.30, 4.35 and

4.42, the response spectrum value for the resonance case

can be written as follows:
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n
+ I y. <p. {2 r m F' + y. <p. GI} 1

2
(w )

j=l J J m· J J m 0

n n
+ 2 I I Y

J
' Yk <P

J
' ¢k {H~ I 2 (wo )

j=l k=j+l

2 2+ Ak Wo I 2 (wo ) + Bk I 3 (wo) + Ck Wo I 2 (w
o

)

(4.44)

In this equation Ag , 12 , and 13 can be substituted in

terms of ground response spectrum values and their

associated peak factors to define floor spectrum values.

However, if all the peak factors are assumed to be equal

then the following expression independent of peak factors

is obtained:

n
+ I y. ¢. {2 r m F' + y. <p. GI

} R2 Cw )
j=l J J m J J m v 0

(4.45)
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-
4.5 MODE ACCELERATION VS. MODE DISPLACEMENT APPROACH

The mode displacement approach presented in Chapter 2

and the mode acceleration approach presented here are

mathematically consistent and equivalent. They just

represent a response quantity in two different ways. As

seismic input, the mode displacement approach requires the

pseudo-acceleration and relative velocity spectra whereas

the mode acceleration approach requires relative accelera-

tion and relative velocity spectra. Numerically, they

should provide same result if a complete set of modes are

used to obtain the response and also if the two forms of

input used in the two approaches are completely consistent.

To verify this numerical consistency the mean square value

of the floor spectral response of a structural system was

obtained by the two approaches, using Eqs. 2.29 and 4.23

without the peak factor PF(wo)' The values 11 (wj ) and

I 2 (w j ) used in Eq. 2.29 and I 2 (w
j

) and I 3 (w j ) used in Eq.

4.23 were obtained for the same spectral density function,

Eq. 2.105. vfuen all the modes were used, the two approaches

provided exactly the same values of response. This veri

fied the numerical consistency of the proposed approach as

well as the computer code used for the evaluation of

numerical results.
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If all the modes are required to be used in the mode

acceleration approach to obtain accurate response, then no

specific advantage is gained. However, because of the

special characteristics of the relative acceleration and

velocity spectra which are the inputs to this approach it

is possible to obtain a very accurate value of response

even with only a first few modes. Thus the high frequency

modes need not be obtained at all if this approach is used

for generation of floor spectra. This, however, is not

possible if the mode displacement approach is used. Omitting

high frequency modes in the mode displacement approach can

lead to larger errors in the calculated response especially

if the structural system is stiff and floor response to be

evaluated is affected by the high frequency modes. This

happens when floor response spectra are to be generated

for the floors which are near the ground. This is because

of the so-called "missing mass" effect.

Figs. 2.12 and 2.13 show the average relative accelera

tion and relative velocity spectra for the ensemble of 30

sec duration earthquakes considered in this study. It is

seen that for high frequencies, espec~ally the ones higher

than (the highest frequency in the motion) the relative

spectra become very small. On the other hand the average

pseudo-acceleration spectra shown in Fig. 2.11, which are



105

used in mode displacement approach, become constant equal to

the maximum ground acceleration. Therefore, if the higher

modes are omitted in the mode displacement analysis, a

larger error will be caused than a similar omission in the

mode acceleration approach.

In the mode acceleration method, the major part of the

missing mass effect is included through the first terms in

Eq. 4.23 and 4.45 which are associated with the rigid body

effects of the ground motion.

Thus, the mode acceleration approach is computationally

more efficient than the mode displacement approach, as a

smaller number of modes are adequate in the calculation of

accurate response. This advantage is clearly seen from

the results .presented in Table 4.2.

4.6 NUMERICAL RESULTS

In this section the numerical results obtained for a

10 story, 30 degrees-of-freedom structure (D.OoF.), as well

as for the ll-frequency structural model considered in

Chapter 2 are presented. The 30 degrees-of-freedom

structure consists of 10 rigid floors connected by columns.

The stiffness and mass parameters of this system can be
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easily adjusted to create a stiff or soft system.

First to verify the mathematical correctness of the

formulation developed in this chapter and also the claim

that it is mathematically equivalent to the mode displace

ment approach presented in Chapter 2, the mean square

values of floor spectral responses for 30-D.O.F. system

were obtained by the mode displacement and the mode ac

celeration approaches with all 30 modes considered in the

analyses. The input in both the analyses was in terms of

the PSDF defined by Eq. 2.105. Both analyses provided

exactly the same results. Thus verifying the mathematical

equivalence of the two formulations as well as the logic

of the computer codes.

To verify the claim made earlier in Sec. 4.5 that the

mode acceleration approach is more effective than mode

displacement approach inasmuch as the former provides a more

accurate response than the latter for a given number of

modes, here some mean square value results for the floor

spectral responses of the 30 D.O.F. structure are presented.

The stiffness properties of the structure were adjusted

such that the frequencies are rather on higher side.

The first 10 frequencies, partication factors and modal

damping values are given in Table 4.1. To calculate the
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mean square value the input was defined in terms of the

PSDF in Eq. 2.105 with a cut-off frequency of 20 cps.

The results are shown in Table 4.2 for floors 1, 2,

5, 8 and 10. Floor 1 is the lowest floor and 10 the highest.

The mean square floor response spectrum values obtained with

all 30 modes in the analysis are given in Columns (2), (5),

(8), (11) and (14) for various floors. In other colunms,

the response values obtained by the mode acceleration and

mode displacement approaches, with only 4 modes used in the

analysis, are shown in terms of their ratios to the values

obtained with 30 modes (exact mean square value). Thus a

ratio close to 1 means a more accurate result.

It is seen that the results obtained by the mode dis

placement approach are rather inaccurate, especially for the

lower floors. This is because the floor spectra for the

lower floors are affected by higher modes. For higher

floors the effect of high frequency modes becomes small and

thus neglecting them in the analysis should not give much

error in the calculated response. This fact seems to be

borne out from the results in Table 4.2 for the higher

floors.

It is also seen that the results obtained by the mode

acceleration approach are superior across the board. Even
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for the lower floors, one need not worry about the higher

modes in the calculation of response by this approach.

The modes for which relative spectrum values are insig

nificant can be neglected. This will, in general, happen

for modes with frequencies higher than the highest fre

quency in the input.

To verify the applicability of Eq. 4.24 and 4.45 for

generation of floor spectra, in view of several simplify

ing assumptions made in their development, the floor

spectra obtained from these equations are compared with the

spectra obtained in the simulation study for the ensemble

of time histories. For a proper comparison, the time

histqry results were also obtained by mode acceleration

formulation. That is, to obtain the floor acceleration

time histories, Eq. 4.1 was employed instead of Eq. 2.7.

Figs. 4.2 - 4.5 show the mean floor spectra obtained

for the ll-frequency model by time history analysis and the

approach proposed in this chapter. The comparison of the

two results is rather very good. This comparison vali

dates Eqs. 4.24 and 4.45 for generation of floor spectra

in spite of simplifying assumptions made in their develop

ment.
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The results are also obtained for the 30-D.O.F. struc

ture which further validate Eqs. 4.24 and 4.45 as well as

substantiate the claim of effectiveness of the approach

with limited modes. Figs. 4.6 - 4.12 are for 15 sec. time

history spectra as input and Figs. 4.13 - 4.16 for 30 sec.

time history spectra as input. These are obtained by the

mode acceleration approach with only 10 modes out of 30

modes used in the analysis. These results compare very

well with the time history results. In fact the results

obtained with only the fi~st 4 modes. shown in Figs. 4.17 

4.26. also compare very well with the time history results.

This clearly indicates that mode acceleration approach can

be used to generate accurate floor spectra directly from

ground spectra only with a limited number of modes. On the

other hand, the mode displacement approach cannot be used

with limited modes to obtain accurate results, as is shown

by the results in Figs. 4.27 - 4.31 obtained with 4 modes

for 15 sec. time histories. The mode displacement results

even with 10 modes, Figs. 4.32 - 4.36. do not compare well

with time history results. For floors far from the base

where higher mode effects are not important, the mode dis

placement approach with a first few modes, however, can

also provide reasonable results. Nonetheless, the

superiority of the mode acceleration approach is consistent

ly better.
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These results were obtained without inclusion of the

peak factors in Eq. 4.23. These indicate that there is

probably no need to include peak factor and the assumption

of equal peak factor will provide accurate enough response.

Fig. 4.27 shows that the method can also be applied

equally well for generation of spectra for high damping

values.

4.7 SUMMARY AND CONCLUSIONS

An alternative approach based on the mode acceleration

method of structural dynamics is developed for direct

generation of floor spectra for classically damped systems.

The seismic input in this approach are required in terms

of relative acceleration and velocity spectra. The ap

proach is especially very effective for the generation of

floor spectra for the structural systems which have pre

dominant high frequency modes, and also for floors close to

the base. Only a first few modes need to be utilized in

the analysis. The approach can also be used with computa

tional advantage to obtain accurate results even for the

cases which are not affected by high frequency modes. A

good comparison of the results obtained by proposed

approach and the simulation study validates the approach.



Chapter 5

NONCLASSICALLY DN1PED SYSTEl1S: HODE ACCELERATION

METHOD

5.1 INTRODUCTION

In Chapters 2 and 3, direct methods based on the. so

called, mode displacement formulation were described for

proportionally damped structural systems. Whereas in

Chapter 4,a method based on mode acceleration formulation

was proposed to alleviate certain problems associated with

high frequency modes in proportionally damped structural

systems. To alleviate similar problems with high fre

quency modes in nonproportionally damped systems an alter

native method based on mode acceleration formulation is

proposed in this chapter.

As in Chapter 4, the input, in this approach is re

quired to be prescribed in terms of relative acceleration

and relative velocity spectra. Maximum ground accelera

tion value is also required. The results showing comparison

of mode acceleration approach with mode displacement

approach for nonproportional system as well as the results

of the numerical simulation study are presented.

/ 111
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5.2 FLOOR ACCELERATION RESPONSE

In this formulation, the vector of absolute accelera-

tion of {Xa } is expressed in a different manner; Using the

lower half of response vector {y}, the relative displacement

vector {x} can be written as follows:

{x} =
2n
I { <P

J
. }.e, z.

j=l J
(5.1)

in which {¢j}.e, is the lower half of modal matrix [¢].

Using Eq. 5.1 in Eq. 3.12, the absolute acceleration vector

can be written as

..
{X }

a
(5.2)

and the absolute acceleration of, say, the mth floor is

given by

(5.3)

in which ¢. (m) is the mth element of the lower complex mode
J

{¢.}, and r is the mth element of displacement influence
J m

vector {r}.

, Eq. 5.3 forms the basis of the mode acceleration method

of generation of floor spectra for nonclassically damped
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structural systems. In order to define the floor spectra.

the. spectral density function of floor acceleration will

be obtained using this equation. This spectral density

function will be used as an input to an oscillator on the

floor to calculate the floor response spectrum value.

5.3 AUTOCORRELATION AND SPECTRAL DENSITY FUNCTIONS OF

FLOOR ACCELERATION

Eq. 5.3 can be rewritten as a summation over n terms

by pairing complex conjugate terms as follows:

..
X (t) =a

n.. ni', "-1, ..
L <p.zJ.(t)+ L ¢. z.(t)+X(t)

j=l J j=l J J g
(5.4)

.. ..
where for brevity X (t) has been replaced by X (t) andam a

¢ . (m) by ¢ j , and r will be taken equal to I for generation
J

of floor spectra in the direction of excitation. Note that

¢. here denotes an element of the lower part of the eigen
J

vector whereas in Chapter 3. it denoted the upper part.

Hereafter this notation will be used in this chapter .

..
For zero mean random process, X (t). the mean of

g

absolute acceleration of floor. X (t), will be zero and itsa

autocorrelation function can be obtained as
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.... ..
E[Xa(t l ) Xa (t2)] = E[Xg(t l ) Xg (t2)]

.• "i~ n ..
zk(t2)] + I ¢ . E[Xg (t2) Zj(t l )]

j=l J

n ~k .. ..
+ I ¢ . E[Xg (t 2) Zj(t l )]

j=l J

n n
+ I I {¢ . ¢k E[zj (t l ) zk(t2)]

j=l k=l J

+ ¢~' ¢~ E[~~' (t l ) ~k (t 2)] + ¢j ¢~ E[~j (t l )

~~(t2)] + ¢; ¢k E[~j(tl) ~k(t2)] (5.5)

in which z. (t) is defined by Eq. 3.11. Various expected
J

values required in Eq. 5.5 can be obtained in terms of auto-

correlation function or spectral density function of ground

acceleration using Eq. 3.11. These are defined in Appendix

IV-A. The expected value of 1st term is defined in

Appendix III-A.

Single Summation Terms

In Eq. 5.5, the single summation terms and terms with

j=k and the cross-terms with jik will be evaluated

separately to simplify the algebraic manipulations.
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The single summation terms denoted by, R', can bes

written as

n II.. ?'c" ....1...

R~ = jll {¢j E[Xg(t l ) Zj (t 2)] + ¢j E[Xg(t l ) zj(t 2)]

+ ¢j E[Xg (t2) ~j(tl)] + ¢; E[Xg (t2) ~j(tl)]}

(5.6)

Substituting for the expected values from Appendix IV-A,

Eq. 5.6 can be rewritten as

"k
q.

J...,...
(p':+iw)

J

n
L

j=l
R' - s

q. q~]
J J+ (p .) +~ dw
-~w ". j. (Pj-iw)

(5.7)

where, q. is defined in Eq. 3.30 and 3.31. With appropriate
J

combination of the 1st with 3rd term and the 2nd with 4th

term, Eq. 5.7 can be written as

R' =s

in which coefficients t l and t 3 are defined as follows

t l = - w. (a. s· + b. -/1 - s? )
J J J J J

t 3
2 (1 2 s~) t 1 2 2

SjJl s? t 2= - w. - - w.
J J J J

(5.9a)

(5.9b)



t 2 = w. (a. )1
J J

6~
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b. S.)
J J

(5.9c)

Now consider the terms with j=k in the double summa-

tion terms in Eq. 5.5.

written as follows:

Denoting them as R", they can bes

n
{¢~

,\-2 .. -'- " •..1..

R" = L E[zj (t l ) Zj(t 2)] + ¢ . E[zj' (t l ) zj'(t 2)]s j=l J J

~'"
..

~;~(t2)]
"-1\

+ ¢ . ¢ . (E[Zj (t l ) + E[Zj (t l ) Zj(t2)])}
J J

(5.10)

Substituting fo~ the expected values from Appendix IV~A,

and combining the 1st term with 2nd term and the Jrd with

4th, and after some algebraic manipulations, Eq. 5.10 can

be written as

n

f:oo
4 iWT 2 2 IH.,2R" = 4 L W q> (w) e (a. W + A!) dws j=l g J J J

(5.11)

where

A! 2 {b~ + 2 b~) S~ 2 b. S. Jl s? } (5.12)= w. (a. - a. -
J J J J J J J J J J

Double Summation Terms

The double summation terms with j~k in Eq. 5.5, herein

denoted as Rd , are also evaluated similarly. Substituting
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for the expected values from Appendix IV-A, these terms

can be written as:

n n
I I

j=l k=j+l

+

(5.13)

Substituting Pj and Pk in terms of their real and

imaginary parts and after some algebraic manipulations, Eq.

5.13 can be written as

ih which

-',
Yjk(w)] Hj H~ dw

(5.14)

(5.15)

2
= 4 a j ak (w + wj wk Sj Sk) + 4 Sj Sk wj wk

• Jl - s; Jl - S~ - 4 Wj wk (a j bk Sj jl - P~

+ ak bj Sk /1 - s; )
Yjk = 4w {aj ak (wk Sk - wj Pj)

- (a j bk wkJl - S~ - ak bj wjJl - s; ) (5.16)
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Eq. 5.14 can also be rewritten in terms of absolute
.'.

values of Hj and Hk as

iWTe [Xjk(W) + i Yjk(w)] IHj 1

2
IHkl2 dw

(5.17)

in which Xjk(w) and Yjk(w) are the same as in Eq. 3.42.

Since Xjk = Xkj and Yjk = -Ykj , Yjk wi~l be eliminated from

the final expression when the cross terms with j~k are

combined together. Using Eqs. 5.5, 5.8, 5.11, and 5.17,

complete autocorrelation function of the stationary response

of the floor acceleration is given by the following

expression:

II ••

E[Xa(t l ) Xa (t2)]
n
L 4 w

2

j=l

4224 W (a. w
J

For T = 0, this equation also defines the mean square

acceleration response of , floor .. From Eq. 5.18 the PSDF of

the floor acceleration response can be written as
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n
+ 4 f

j=l

+ 2
n n 2 2
L L ¢ ( w) X. k (w) IH. I IHk I

j=l k=j+l g J J
(5.19)

5.4 FLOOR RESPONSE SPECTRUM

Using the PSDF defined by Eq. 5.19, and employing Eq.

2.15, the floor response spectrum can be obtained as fol-

lows:

R; (wo ' So)
2 [c {l - n 2 2 IH. [2= PF(wo) 4 L w (w t l + t 3)

j=l J

n 422
!H·1

2 n n
+ 4 L w (a. w + A~ ) + 2 L L

j=l J J J j=l k=j+l

2 IHkI2} 0g(w) (w 4 + 4 S2 2 2)X· k IH·I w w
J J 0 0 0

. IHol2 dw (5.20)

in which PF(wo) is the peak f~ctor by which the root mean

square value is amplified to obtain floor response.

Eq. 5.20 defines the floor spectrum value at a fre-

quency, wand damping, S. To define the responseo 0
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spectrum value in terms of ground response spectra, each

term under single or double summation is resolved into

partial fractions as was done in previous chapters. Once

again, the cases with w.1w and w. = w with S. = Swill
J 0 J 0 J 0

be treated separately and referred to as nonresonance and

resonance cases respectively.

5.4.1 Floor Spectrum for the Nonresonance Case

The first term in Eq. 5.20 is the same as the term

defined by Eq. 4.9 and can be obtained in terms of maximum

ground acceleration', relative acceleration and relative

velocity spectrum values at oscillator frequencies.

Single Summation Terms

The integrand of the first part of the single summation

term in Eq. 5.20 can be resolved into partial fractions as

follows:

2 ¢ (w) 2 + t 3) (w 4 + 4 S2 2 w2) I H. 1
2 IH 1

2w (w t l wg 0 0 0 J 0

2 2 w2) /H·1 2= w ¢g(w) w {(Al Wo + A20 J

+ (A3
2 2 IH 1

2
} (5.21)w + A4 w )

0 0

in which the factors AI' A2 , etc. are defined in Appendix

IV-B, Eq. IV.ll. Integrating over the frequency domain and
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by virtue of Eqs. 2.25 arid l~.ll, the above equation can be

written as

(5.22)

where I' denotes the first part of the single summations

term.

Similarly, the integrand of the second part the single

summation term can also be split into partial fractions as

follows:

w
2

w
2) !H.\2

o J

w
2) \H.\2

J

(5.23)

Integrating Eq. 5.23 over its frequency domain and

denoting it by I~, the following is obtained

(5.24)

in which I 2 (w j ) and I 3 (w j ) are the frequency integrals de

fined by Eqs. 2.25 and 4.11 respect~vely and the coef-

ficients Bl , B2 , ... , etc. are defined in Appendix IV-B,

Eq. IV.14.
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Double Summation Terms

After some algebraic manipulations, the complete

double summation term in Eq. 5.20, here denoted by I dd ,

can be written as follows:

n n f' 4 (w 4I dd = 2 I I w ¢ (w) N(w)
j=l k=j+l -00 g 0

+ 4 s2 2 2) IH.,2 IHk l2 IHol2 dw (5.25)w w
0 0 J

where

N(w) Dl
6 + D2 + E2)w 4= w + (C l Dl

+ (Cl D2 + C2 Dl + E3)w 2 + C2 D2 (5.26)

in which the coefficients Cl , C2 , Dl , D2 , ' • I , etc. are

defined in Appendix IV-B, Eq. IV.22.

Resolving a part of the integrand of Eq. 5.25 into

partial fractions and denoting it by I d, the following is

obtained

I' J: oo

4
¢ (w) (w 4 + 4 S2 w2 w2) IH 1

2= wd g 0 o 0 0

{(Fl
4 2 2) IH.j2. wo + F2 w w

0 J

+ (F3 w4 + 2 w2) 2 (5.27)F4 w IHk I }dw
0 0
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where FI' F2' ... , etc. are the coefficients of parti,al

fractions as defined in Appendix IV-B, Eq. IV.19.

For nonresonance case when w.fw and wkfw , the
J 0 0

integrand of Eq. 5.27 can be further split into partial

fractions as

I ' = f:
oo

2 [(A. 4 2 w2) !H·t
2w <pg(w) w + B. wd J 0 J 0 J

+ (C. 4 + D. 2 w2) IH 1
2 + (Ak

4
Wo Wo w

J J 0 0

2 2 2 4 2 2) IH 1

2Jdw+ Bk Wo W ) IHkl + (Ck W + Dk Wo W
0 0

(5.28')

in which factors Aj , Bj , Ak , Bk , ... , etc. are defined by

Eq.IV.16 in Appendix IV-B. Using Eqs. 2.25 and 4.11, Eq.

5.28 can be written as

I = 2 {A. 2 12 (w
j

) I 3 (w.) + C. 2w w + B. w I 2 (w)d 0 J 0 J J J o 0

+ D. I 3 (wo) + Ak
2 I 2 (wk) + Bk I 3 (wk )w

J 0

+ Ck
2 + Dk I 3 (wo) (5.29)w I 2 (w)o 0

By substituting Eqs. 4.9. 5.22, 5.24 and 5.29 in Eq.

5.20, the response spectrum value at oscillator frequency

Wo and damping So can be obtained from the following

equation
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- L~

2 n n 2+ B4 1
3

(w
o

)} + 2 W I I {A. W 12 (wj )
0 j=l k=j+l J 0

+ B. 13 (w
j

) + Ak
2 12 (w k) + Bk 13 (wk )W

J 0

+ (C
j

+ Ck ) 2 12 (w o ) + (Dj + Dk ) 13 (wo)}] (5.30)W
0

where I is the variance of maximum ground acceleration as
g

defined by Eq. 4.8.

The integrals 12 (wj ) and 13 (w j ) can be substituted in

terms of response spectrum value and peak factors as done

in previous chapters. This allows the incorporation of

peak factors in the generation of floor spectra. However,

if it is assumed that all peak factors are the same, Eq,

5,30 can be written in terms of ground response spectrum

as:
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n 2 2 2- 4 W L {Al W R (w.) + A2 R (w.)
0 j=l 0 v J r J

w2 R2 (w ) R;(wo)} 2 n
+ A3 + A4 + 4 w Io v 0 0 j=l

{Bl
2 2 B2

2 + B3
2 R2 (w ). w R (w.) + R (w.) Wo0 v J r J v 0

R2 (w )} 2 n n 2 2+ B4 + 2 w L L {A. w R (w.)r 0 0 j=l k=j+l J 0 v J

B. 2 + Ak
2 2 2+ R Cw.) w Rv(wk) + Bk Rr(wk )

J r J 0

+ (C. + Ck ) 2 R2 (w ) + (D j + Dk ) R2 (w )} (5.31)w
J 0 v 0 r 0

Eq. 5.31 defines the floor response spectrum indepen-

dent of peak factors. This expression has been used to

obtain numerical results for the same nonproportiqnally

damped structural systems.

5.4.2 Floor Spectrum Value for the Resonance Case

In the special resonance case when w. = wand
J 0

8
j

= 8
0

the coefficients of partial fractions Al , Bl , A2 ,

etc. are undefined. In such a situation, the single and

double summation terms in Eq. 5.20 can be treated in the

same way as was done in the previous chapters.
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Single Summation Terms

A term with w. = wand 6. = 6 • of the first single
J 0 J 0

summation term, in Eq. 5.20 denoted as I sl ' can be written

as

foo ~ (w)
-00 g

(5.32)

which because of peakedness of IH 1
4 can be approximated aso

[52J

" ~ (w )g 0

(5.33)

The second integral in Eq. 5.33 is very small so it is

neglected. The first integral is of the same form as

integral in Eq. 1.22 in Appendix I-C. Thus. Eq. 5.33 may

be written as

(5.34)
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in which Am is defined in Appendix IV-C, Eq. IV.23. Using

Eq. 4.28 and 2.24 and after some algebraic manipulations

the following is obtained

2 R2 (w )
{Am - 2 t 3 }w

1s1
0 v 0=

V 2 w wm o c

or

1s1
= AI R2 (w )m v 0

in which AI is defined asm

w2

{Am -
2

t 3 }A' 0= V 2m w wm o c

(5.35a)

(5.35b)

(5.36)

A typical term with w. = wand 8. = 8 of the second
J 0 J 0

single summation in Eq. 5.20 at resonance, denoted as I s2 '

can be written as

I s2 f:: 4
~ (w) 2 2 + A!)= w (a. wg J J

c

(w4 + 4 8
2 2 w2) IH 1

2 dw
0 0

wo 0
(5.37)

which can be written as
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1s2 4 2 62 2 f:: qJ (w) dw= a. w
J 0 0 g

c

+ 2 f:: qJ (w) N1 (w) IH ,4 dw (5.38)w
0 g 0

c

where

N () b 2 6 + b w4 w4 + b 6 w2 + b 81 w = 0 Wo w 1 0 2 Wo 3 Wo (5.39)

in which the constants bo ' b1 , b2 , and b3 are defined in

Eq. 1V.24 in Appendix IV-C. Since function Ho
4 .

~s highly

peaked, the second integral can be approximated as

¢' (w) dw + w
2 {4l (w )gog 0

o I::
c

N ( ) 'H 1
4 dw - 2 b3 qJ (w )1 Wag 0 Wo

ill (w) dw
g

(5.40)

In Eq. 5.40 1st and 3rd integrals cancel each other. The

2nd integral is of the same form as in Eq. 1.22 in

Appendix I-C. Eqo 5.40 can then be written as

(5.41)

in which B is defined in Appendix IV-C, Eq. 1V.25. Usingm

Eqs. 4.28 and 2.24 to substitute for qJ (w )ow in Eq. 5.41,
g 0 c
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the following is obtained

I" B' . R2 (w ) (5.42)s m v 0

in which B is defined as

4w
B' = 0 {B - 2 b3 r} (5.43)m V m

m

Double Summation Terms

A typical double summation term in Eq. 5.20 is first

split into two terms as shown in Eq. 5.27. With w.
J

and S. = S • the first set of terms. denoted by I d'.J 0

be written as

= w
o

can

I I I:: 4 ¢ (w) (F1
4 + F2

2 w2)= w Wo wd g 0

c

(w 4 + 4 (32 2 w2) IH 1
4 dw (5.44)w

0 0 0 0

which can be rewritten as

II = 4 82 F2 IWc ¢ (w) dw + I:: ¢g(W) N2 (w) IHol4 dwd 0 -w g
C c

(5.45)

where

N2 (w) C 2 6 + Cl
4 4 + C2

6 2 8 (5.46)w w w w w w + C3 Wo0 0 0 0
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in which the coefficients Co' Cl , C2 , and C3 are defined

in Appendix III-C, Eq. IV.28.

Since the function

can be approximated as

IH 1
4 is highly peaked, Eq. 5.45o

lci ~ 4 s; F2 f::
c

~ (w) dw + ~ (w )g g 0

• IHo l 4
dw - 2 ~g(wo)'C3 Wo + C3 J::

o

~ (w) dwg

(5.47)

In Eq. 5.47, the 1st and 3rd integrals are small and they

cancel each other. The 2nd integral is of the same form

as the integral in Appendix I-C, Eq. 1.22. Thus, Eq.

5.47 can be written as

I d' = ~ (w ) w {C - 2 r C3 } (5.48)g 0 c m

in which C is defined in Appendix IV-C, Eq. IV.27. Usingm

Eq. 4.29, Eq. 5.48 can be written as

II = C' R2 (w )
d rn v 0

where C' is defined as follows:
rn

(5.49)

(5.50)
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Thus using Eqs. 4.9; 5.35, 5.42, and 5.49 in Eq.

5.20, the floor response spectrum value at resonance can

be obtained as follows:

- 4
n 2

Wo I I sl + 4 W
j=l 0

n
I I s2j=l

(5.51)

+ 2
2 n n 2

Wo I I {lci + Ak Wo 12 (wk) + Bk 13 (wk )
j=l k=j+l

+ Ck w~ 12 (wo ) + Dk 13 (W
O

)}]

In Eq. 5.51 the frequency integrals I g , 12 (wj ) and

13 (w.) can be substituted in terms of ground responseJ .

spectrum v~lues and their associated peak factors. An

expression independent of peak factors, however, can be

obtained by assuming all the peak factors to be equal.

This expression can be written as follows:

n
- 4 W I lsI + 4

o j=l

(5.52)

2 n n 222
+ 2 W I I {Id + Ak Wo Rv(wk) + Bk Rr(wk)

o j=l k=j+l

+ Ck 2 R2 (w ) + Dk R2 (w )}J
Wo v 0 r 0
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5.5 NUMERICAL RESULTS

As discussed in Sec. 4.6, the mode acceleration ap

proach developed here, both for classically and non

classically damped systems, are mathematically consistent

and equivalent. In addition, they, in general, have some

specific advantages over the mode displacement approach

especially for the systems and responses which have

dominant effect from the high frequency modes. The results

substantiating these claims for the approach developed in

this chapter for nonclassically damped systems are pre

sented in this section.

First to cross check the analytical correctness of the

formulations, as well as the computer code written to ob

tain the numerical results, mean square floor spectra were

obtained for a proportionally damped system by the four

approaches presented in Chapters 2 to 5. The seismic input

was defined by the PSDF of Eq. 2.105. When .the complete

set of modes were used in the analyses, exactly the same

results were obtained by all the four approaches. This

cross-checked the formulations in Chapters 2 to 5 with each

other.

To show the effectiveness of the mode acceleration ap

proach in giving accurate ~esults even with a first few
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modes, the mean square values of the floor spectral response

were obtained for a 15 D.O.F. structural system shown in

Fig. 3.1. The mass and stiffness properties were adjusted

such that the natural frequencies were on the high side.

The damping values in X- and Y-directions were adjusted to

create a nonproportionally damped system. The dynamic

properties of the undamped structure e.go natural fre

quencies, participation factors and modal damping values

as defined by Eq. 3.25 are given in Table 5.1. The seismic

input was defined by the PSDF of Eq. 2.105 with a cut-off

frequency of 30 cps.

Table 5.2 shows the numerical results for floors 1,

3 and 5. Floor 1 is lowest and 5 the roof top floor. The

mean square floor response spectrum values obtained by con

sidering all 15 modes in the analyses are given in columns

(2), (5) and (8) for various floors. In other columns the

response values obtained by mode displacement and mode

acceleration approaches with only 3 modes used in the

analysis are shown in terms of their ratios to the values

obtained with exact mean square value (with all 15 modes).

Hence, the closeness of the ratio to 1 means a more

accurate result.

It is seen that the results obtained by mode displace

ment approach are grossly underestimated for the lower
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floors and rather overestimated for the higher floors. As

the lower floors are affected by the high frequency modes,

the omission of these modes in mode displacement approach

introduces unacceptable errors in the calculated response.

It is also seen from Table 5.2 that the results obtained by

mode acceleration approach, on the other hand, are con-

sistently accurate for all the floors.

Table 5.3 shows similar results, but for the floor

spectrum values (rather than the mean square values as in

Table 5.2) for the input defined by the average spectra of

30-sec. time history set. Again, the same conclusions, as

in the preceding paragraph, are drawn from these results.

In the development of the approach presented in this

chapter, assumptions like stationarity of input and

response have been made. Therefore numerical verification

of the approach by simulation study is essential. For

this, the floor ,spectra results obtained by the time history

analysis for the 3D-sec. time history set are compared with

the results obtained by the direct approach presented here.

For a proper comparison, the time history results were also

obtained by the mode acceleration approach. Hence, Eq.

3.8 was solved using Eq. 3.11 to obtain z. (t) which in turn
J

was used to obtain the floor acceleration time history,
..
Xa(t) , from Eq. 5.3. Th~s time history was used as an
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input to the oscillator, Eq. 2.5, to obtain the floor

spectrum value. The floor spectrum values obtained for

the time history ensemble were statistically processed to

obtain mean and mean + one standard deviation spectra for

the 5 floors of the l5-D. O. F. structure used in Chapt-er 3.

Mean floor spectrum curves are compared in Figs.

5.1 - 5.8 and mean + one standard deviation curves in

Figs. 5.9 - 5.12. It is seen that the results obtained by

the direct approach compare very well with the time histOry

results, thus validating Eqs. 5.31 and 5.52 in spite of

the simplifying assumptions made in their development.

5.6 SUMMARY AND CONCLUSIONS

In this chapter, a direct mode acceleration approach

is developed for generation of floor spectra for non

classically damped structural systems. The approach has

similar attributes and advantages as the mode acceleration

approach for classically damped system (Chapter 4). That

is, with only a first few modes used in the analysis, this

approach can be very effectively used to obtain accurate

floor spectra for nonclassically damped stiff structural

system and for floor close to base, where the higher modes

have significant effect. For other cases also, i.e. where
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high frequency modes are not necessarily dominant, this

approach can be used with computational advantage.

Numerical results substantiating these claims have been

presented in this chapter.



Chapter 6

SUMMARY AND CONCLUSIONS

Several direct approaches for generation of floor

spectra for classically and nonclassically damped struc

tural systems are described in this thesis. Specifically,

the mode displacement approaches which require pseudo

acceleration and relative velocity spectra as their

seismic inputs are described in Chapters 2 and 3 for

classically and nonclassically damped systems, respective

ly. The mode acceleration approaches, requiring relative

acceleration and relative velocity spectra, are developed

in Chapters 4 and 5 for the two types of structural

systems. Since, several simplifying assumptions are made

in the development of these direct approaches, a detailed

numerical simulation study has been conducted to validate

the proposed methodologies. In this simulation study,

extensive numerical results covering a wide range of

parameters, such as different structural systems, different

floors of a structure, time histories of different dura

tions, range of oscillator damping values, etc., have been

obtained. Specific conclusions pertaining to an approach

are given at the end of each chapter. Here, however,

overall conclusions drawn from this study are given.

137



138

In general, the floor spectra results obtained by

various direct approaches and time history ensemble

analyses which are presented throughout this thesis, com

pare very well with each other. This corroboration

validates the proposed approaches for their use in

practice. In some cases, improvements in the results can

be made by inclusion of unequal peak factors of the

oscillators on ground and floor in the formulation if the

frequency characteristic of the design input motion in

terms of power spectral density function is known. How

ever, if the right spectral density function is not known,

the approximation of the frequency content distribution by

the simple-to-use white noise spectral density function

may not necessarily give correct results. Thus, such

approximations should be avoided. In general, however, it

has been observed from the results obtained in the study

that the peak factor correction are not essential. That

is, the formulation independent of peak factors will also

provide very reasonable results of floor response spectra.

The mode acceleration approaches have been proposed as

better alternatives to the mode displacement approaches, as

the former consistently provide more accurate results than

the latter with just a few modes used in the analysis.

Especially, for generation of floor spectra of stiff
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structural systems and for floors close to base where the

higher frequency modes contribute significantly to the

response, the use of the mode acceleration approach is

strongly recommended. The only drawback associated with

the use of the mode acceleration approach is that it re

quires relative acceleration spectra as input. Such

spectra are not commonly used in practice currently. The

pseudo-acceleration spectra are more widely used in

practice and well accepted methods [9,34,35,36,39,43J to

develop these for design purposes are also available to

the profession. However, similar methods can also be

developed to establish relative acceleration spectra for

design. More research, involving several recorded earth

quake accelerograms is required for this purpose. In this

work, these relative spectra were developed for the

synthetically generated ensembles of time histories for

their use in this study.
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Table 2.1 Parameters of Spectral Density Function,
~ (w), Eq. 2.105

g

j S. w. S.
2 J J J

ft -sec/rad rad/sec.

1 0.0015 13.5 0.3925

2 0.000495 23.5 0.3600

3 0.000375 39.0 0.3350
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Table 2.2 Dynamic Properties of Il-FRQ Structure

Mode Frequency Modal Participation
No. Cps Damping Factor

1 3.6659 0.0500 -10.2168

2 4.5203 0.0500 0.7984

3 5.6356 0.0500 -59.6307

4 6.2336 0.0500 -7.4238

5 7.2047 0.0500 4.3600

6 11.8574 0.0500 16.7521

7 12.0161 0.0500 48.9363

8 13.1243 0.0500 6.4819

9 13.5679 0.0500 -19.0773

10 14.7744 0.0500 -29.3388

11 16.4835 0.0500 -7.9668

Displacement Mode Shapes for Floor No. 3-X

-.267 E-3 .555 E-4 -.366 E-2 .374 E-3 .396 E-3 .431 E-2

.103 E-1 .181 E-2 -.774 E-2 -.628 E-2 -.811 E-3

Displacement Mode Shapes for Floor No. 6-X

- .213 E-2 .-260 E-3 -.223 E-1 -.305 E-2 .124 E-2 -.305 E-2

-.212 E-2 -.130 E-2 .990 E-2 .364 E-3 :600 E-2
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Table 2.3 Dynamic Properties of 10-Story Structure

Mode Frequency Modal Participation
No. Cps Damping Factor

1 1. 0638 0.050 318.9844

2 3.1676 0.050 -104.7328

3 5.2007 0.050 60.9079

4 7.1176 0.050 41. 4039

5 8.8755 0.050 29.9754

6' 10.4352 0.050 22.1802

7 11. 7617 0.050 16.2979

8 12.8255 0.050 11.5118

9 13 .6028 0.050 7.3736

10 14.0763 0.050 3.6030

Displacement Mode Shapes for Floor No. 4-X

.224 E-2 -.388 E-2 .593 E-3 -.345 E-2 -.311 E-2 .117 E-2

.397 E-2 .172 E-2 -.270 E-2 -.370 E-2

Displacement Mode Shapes for Floor No. 6-X

.311 E-2 -.172 E-2 -.388 E-2 .142 E-17 .388 E-2 -.172 E-2

-.311 E-2 .311 E-2 .172 E-2 -.388 E-2

Displacement Mode Shapes for Floor No. 10-X

.397 E-2 .388 E-2 .370 E-2 -.345 E-2 .311 E-2 -.270 E-2

.224 E-2 -.172 E-2 .117 E-2 -.593 E-3
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Table 3.1 Dynamic Properties of a 15-D.O.F. Structure Used in
Simulation Study

Mode Frequency Modal Participation
No. Cps Damping Factor

1 3.0043 0.0289 -1. 4180

2 3.0044 0.0289 1. 4180

3 5.9020 0.0214 -0.0103

4 7.5637 0.0918 -0.5506

5 7.5640 0.0918 -0.5507

6 11.7745 0.1427 -0.3211

7 11.7755 0.1427 -0.3211

8 13 .0685 0.0711 -0.0029

9 15.6633 0.1599 0.2273

10 15.6640 0.1599 -0.2273

11 19.9848 0.1717 -0.1769

12 19.9854 0.1717 0.1769

13 21. 0994 0.0798 0.0012

14 30.9933 0.0776 0.0009

15 44.5844 0.0731 -0.0007



Table 3.2 Response Spectrum Value Obtained for Various Floors of l5-degree-of-freedom Non
proportionally Damped Structure by Normal Mode and Complex Mode Approaches Using
PSDF (Eq. 2.105) as Input (Oscillator Damping = 1%, e/r = 0.01)

Oscillator
Period
sec.

.02

.04

.08

.10

.15

.20

.34

.40

1.00

Floor 1

Spectrum
Valuel

ft/sec 2

.67

.69

1.41

2.35

3.93

2.86

9.03

5.34

1.85

R . 2atlo

1.09

1.09

1.08

1.03

1.11

1.01

1.38

1.01

1.00

Floor 3

Spectrum
Value l

ft/sec 2

1. 31

1.31

1.64

2.12

3.17

2.08

26.31

9.93

1. 99

. 2Ratlo

1. 23

1. 23

1.18

1.15

1.21

1.18

1.45

1.04

1.00

Floor 5

Spectrum
Value l

ft/sec 2

2.10

2.12

2.28

2.60

5.32

5.45

42.77

14 .06

2.10

R . 2atlo

1. 25

1. 25

1. 26

1. 25

1. 24

1.11

1.46

1.05

1.00

I-'
U1
o

lvalue obtained using complex mode approach

2Ratio of values obtained by normal mode approach to complex mode approach



Table 3.3 Response Spectrum Values Obtained for Various Floors of a l5-degrees-of-freedom Non
proportionally Damped Structure by Normal Mode and Complex Mode Approaches Using
Ground Spectra as Seismic Input (Oscillator Damping = 1%, e/r = 0.01)

Floor 1 Floor 3 Floor 5-

Oscillator Spectrum Spectrum Spectrum
Period Value l

R . 2
Value l

R . 2
Value1

R . 2sec. g.:.units atlo g-units atlo g-units atlo

.020 .13 1.07 .24 1.19 .38 1.20

.040 .16 1.08 .24 1.19 .39 1.20

.080 .30 1.17 .32 1.13 .42 1. 23

.085* .30 1.18 .34 1.14 .44 1. 23

.132* .31 1. 24 .42 1.41 .96 1.43

.200 .47 1. 01 .38 1.15 .93 1.09

.340 1.36 1.37 3.85 1.45 6.23 1.47

.400 .77 1.02 1.41 1.05 2.00 1.06

1.000 .20 1.00 .22 1.00 .23 1.00

*Structural period

lValue obtained by complex mode approach

2Ratio of values obtained by normal mode to complex mode approach

t-'
Ln
t-'
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Table 4.1 Dynamic Properties of 30-D.0.F. Structure (First 10 Modes)

Mode Frequency Modal Participation
No. Cps Damping Factor

1 12.3495 0.0500 1. 9621

2 12.3612 0.0500 1. 9632

3 23.0685 0.0500 -0.0815

4 30.8771 0.0500 -0.7656

5 30.9180 0.0500 -0.}695

6 44.6019 0.0500 0.1479

7 48.1747 0.0500 0.4763

8 48.3239 0.0500 -0.4554

9 65.5549 0.0500 -0.3544

10 65.7332 0.0500 0.3548



Table 4.2 Reaponse Spectrum Value Obtained for Varioua Floora of a 30-D.0.F. Structure by Mode Diaplacement and Mode Acceleration Approachea
with Only 'Firat 4 Modea (Oacillator Damping 2%)

Floor 1 Floor 2 Floor 5 Floor 8 Floor 10

Ratio Ratio Ratio Ratio Ratio

Oacillator Spectrum Mode Mode Spectrum Mode Mode Spectrum Mode Hade SpectrlDD Hode Mode SpectrlDD Mode Mode
Period Value~ Diap1. Accl. Value* Diap1. Accl. Value* Dispi. Acci. Value· Displ. Accl. Value* Diapl

1
Accl.

Bee. ft/aec 2 APpr. l Appr. 2 ft/sec2 Appr .1 Appr. 2 ft/gec 2 Appr. l Appr .2 ft/aec2 Appr.~ Appr. ft/aec 2 Appr. Appr.
(1) (2) (3) (4 ) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

,

0.02 .56 .23 .99 .59 .46 .99 .75 .93 .99 .98 1.05 1.00 1.12 1.02 1.00

0.04 .59 .25 .99 .63 .48 .99 .83 .94 .99 1.13 1.04 1.00 1.JJ 1.01 .99

0.08 1.50 .68 .98 2.35 .90 .99 5.80 .99 .99 9.54 1.00 1.00 11. 72 1.00 .99

0.10 1.69 .32 .98 2.01 .50 .98 3.05 .94 .99 4.11 1.05 1.00 4.7I 1.03 1.00

0.15 2.30 .21 .98 2.42 .42 .98 2.80 .91 .99 3.14 1.11 1.00 3.33 1.06 1.00

0.20 2.35 .20 .99 2.42 .39 .99 2.61 .90 .99 - 2.78 1.13 1.00 2.87 1.07 1.00 t-'
V1

0.40 2.37 .18 .99 2.38 .37 .99 2.43 .90 .99 2.47 1.15 1.00 2.49 1.08 1.00 W

1.00 1. 26 .18 .99 1.26 .37 .99 1.27 .90 .99 1.27 1.15 1.00 1. 27 1.08 1.00

*Value obtained With -all modeg

lRatio of valueg obtained by mode diaplacement approach with 4 modea and with 30 modes

2Ratio of valuea obtained by mode acceleration approach with 4 modes and with 30 modes
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Table 5.1 Dynamic Properties of 15-D.G.F. Stiff Structural System

Mode Frequency Modal Participation
No. Cps Damping Factor

1 18.0113 0.0288 1.4174

2 18.0265 0.0289 1. 4180

3 35.4632 0.0216 -0.0517

4 45.3425 0.0915 -0.5491

5 45.3840 0.0918 -0.5507

6 70.5108 0.1412 0.3214

7 70.6530 0.1427 -0.3211

8 78.6324 0.0726 -0.0132

9 93.8843 0.1593 0.2277

10 93.9839 0.1599 -0.2273

11 119.8302 0.1713 0.1770

12 119.9124 0.1717 0.1769

13 126.8534 0.0805 0.0059

14 186.2789 0.0781 0.0045

15 267.9215 0.0735 -0.0037



Table 5.2 Response Spectrum Values for Various Floors of a l5-D.O.F. Nonproportionally Damped
Structure by Mode Displacement and Mode Acceleration Approaches with Only First 3
Modes (Oscillator Damping 1%, e/r = 0.05)

Floor 1 Floor 3 Floor 5

Ratio Ratio Ratio

Oscillator Spectrum Mode Mode Spectrum Mode Mode Spectrum Mode Mode
Period

f~i;~:~
Displ. Acc1. Value* Displ. Accl. Value* Displ. Accl.
Appr. l Appr. 2 ft/sec 2 Appr. 1 2 ft/sec 2 Appr. l Appr. 2sec. Appr.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0.02 .58 .33 .99 .72 .88 .99 .93 1.14 1.00

0.04 .81 .42 .91 1.09 1.05 1.03 2.12 .90 .95 t-'
V1

0.06 2.41 .65 .97 5.50 .95 .99 8.38 1.04 1.00 V1

0.10 2.10 .30 .98 2.54 .84 .98 2.90 1. 23 1.01

0.15 3.18 .26 .99 3.44 .82 .. 99 3.65 1. 29 1.00

0.20 3.29 .25 .99 3.44 .81 .99 3.55 1.32 1.00

0.40 3.35 .2·4 .99 3.39 .81 .99 3.42 1.34 1.00

1.00 i. 78 .24 .91 1. 79 .81 .99 1. 79 1. 34 1.00

*Value obtained with allIS modes.

lRatio of values obtained by node displacement !approach with 3 mod.es -and wi th 15 modes.

2
Ratio of values obtained by mode acceleration approach with 3 modes ,and with 15 modes.



Table 5.3 Response Spectrum Values for Various Floors of a l5-D.O.F. Nonproportionally Damped
Structure by Mode Displacement and Mode Acceleration Approaches with Only First 3
Modes (Oscillator Damping 1%, e/r = 0.05).

Floor 1 Floor 3 Floor 5

Ratio Ratio Ratio

Oscillator Spectrum Mode Mode Spectrum Mode Mode Spectrum Mode Mode
Period Value l Displ. Acc1. Value l Displ. Accl. Displ. Acc1.

sec. g-units Appr. 2 Appr. 3 g-units Appr. 2 Appr. 3 Appr. 2 Appr. 3

(1) (2) (3) (4 ) (5) (6 ) (7) (8) (9) (10)

0.014* .12 .32 .99 .15 .87 .98 .19 1.17 1.00
0.020 .12 .33 .99 .15 .89 .99 .20 1.17 .99
0.028* .13 .34 .98 .16 .89 .99 .22 1.13 .99 t-'

0.04 .17 .48 .92 .23 1.06 1.03 .45 .91 .96 VI
0"\

0.055* .58 .69 .98 1.63 .95 .99 2.62 1.04 1.00
0.100 .40 .29 .98 .47 .84 .98 .54 1.24 LOI
0.150 .57 .26 .99 .62 .82 .99 .66 1.30 1.00
0.200 .54 .25 .99 .57 .81 .99 .58 1.32 1.00
0.400 .48 .24 .99 .48 .81 .99 .49 1.34 1.00
1.00 .17 .24 .99 .17 .81 .99 .17 1.34 1.00

*Structural period

lValue obtained with all 15 modes

2 .
Ratio of values obtained by mode displacement approach with 3 modes and with 15 modes

3
Ratio of values obtained by mode acceleration approach with 3 modes and with 15 modes
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FLljnA IWIIRER- 6-X

MEAN FLOOR SPEC FOR 5 PERCENT DAMPING ( 12 SEC TH • MODE DISPL WITH PF )
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MEAN FLOOR SPEC FOR 1 PERCENT OAMP1NG ( 15 SEC TH • MODE OlSPL 'WITH PF )
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MEAN FLOOR SPEC FOR 1 PERCENT DAMPING ( 15 SEC TH • MODE DISPL 1,JITH PF )
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MERN FLOOR SPEC FOR 5 PERCENT DRMPING ( 15 SEC TH • MODE DISPL \.lITH PF )
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FLOOR NUMBERA 3.X

MEAN FLOOR SPEC FOR 1 PERCENT DAMP1NG (30 SEC TH • MODE D1SPL WITH PF )
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MEAN FLOOR SPEC FOR 5 PERCENT DAMPING 130 SEC TH • MODE DISPL WITH PF )
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FLOOR NUH8ER- 6_X

MEAN FLOOR SPEC FOR 1 PERCENT DAMPING (30 SEC TH • MODE DISPL WITH PF I
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FL30R NUMBER- 6-X

MEAN FLOOR SPEC FOR 5 PERCENT DAMPING ( 3D SEC TH • MODE DISPL WITH PF )
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FLOOR NUMBER- 3.X

MEAN. ISTD FLOOR SPEC FOR 0.5 PER DAMP 30 SEC TH MD VS. MODE 01 SPL ~JOTPF
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FLOOR NUHBER· S-X

MEAN. 1STO FLOOR SPEC FOR 1 PER DAMP 3D SEC TH MO VS. MODE OlSPL \JOTPF
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MEAN. iSTD FLOOR SPEC FOR 0.5 PERCENT DAMPING ( 3D 5 TH • MODE DISPL P • 5
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FLOOR NUMBER- 6.X

MEAN. lSTO nOOR SPEC FOR 1 PERCENT ORMP) NG ( 30 5 TH • MODE D1 SPL P. 5 )

10.0

7.0

s.o
~.o

3.0

2.0

1• Il
to:)

1.0
Z....

0.7z
c
.... D.S
t-
a: D. ~
a:
~ 0.3
UJ
u
u 0.2
a:

0.1

0.07

0.05
o.o~

0.03

0.02

IJ
~

,
III ~ '":f

~\ r- eI ~( :T
\\.

1" 1:::'
II

~

/ \
'a:: l\-

ll'" ~

",
~.-
~

~t--
~

~
I"':
~
~~

0.01
0.01 0.02 0.0140.06 0.1 0.20.3 0.50.71.0 2.0

PERIOD IN SEC.

Fig. 2.50 Comparison of Floor Spectra Obtained by Mode
Displacement Approach with Peak Factors
(3-T, K-T PSDF) and Time History Analysis for
1% Damping: Mean + 1 Standard Deviation
Spectra, 30-sec TH, Floor 6-X, ll-FRQ Model



208

FLOOR NUHBER- 3.X

MEAN FLOOR SPEC FOR 5 PERCENT DAMPING ( 30 SEC TH MD • MODE DISP IJPF 1 K.T J
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Fig. 2.52 Comparison of Floor Spectra Obtained by Mode
Displacement Approach with Peak Factors
(l-T, K-T PSDF) and Time History Analysis for
5% Damping: Mean Spectra, 30-sec TH, Floor No.
3-X, ll-FRQ Model



209

FLDOR NUNBER~ 3.X

MEAN flOOR SPEC FOR 1 PERCENT DRMP1NG ['30 SEC TH MD • MODE D1SP \..tPF 1 K-T )
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FLOOR NUHBERa 6-X

MEAN FLOOR SPEC FOR 1 PERCENT DAMPING (30 SEC TH MD • MODE DISP WPF 1 K-T )

10.0

7.0

5.0
1l.0

3.0

2.0

1• II
t.:)

LO
Z.-.

0.7
z
c
.-. 0.5
~

~ O.ll
a:
~ 0.3
UJ
w
w 0.2
~

0.1

0.07

0.05
0.011

0.03

0.02

J

J""l
U \ ..........

~[ rlR~cr
'-
\\ ....

I -,; 'Ill MJ IFHT
1/

~
/. ,

1-
~

I'"
.A "

~!.--" "1\
I~

~

:~
~

~~

0.01
0.01 0.02 0.OijO.060.1 0.2 0.3 0.5 0.7 1.0 2.0

PEAIOO IN SEC.
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FLOOR NUMBERm 6-X

MEAN FLOOR SPEC FOR S PERCENT DAMPI NG ( 30 SEC TH MO • MODE 01 SP WPF 1 K.T )
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FLOOR NUMBEAa 3.X

MEAN FLOOR SPEC FOR 0.5 PER DAMP 30 SEC TH MD VS. MODE DISPL ~PF ~HN INPUT
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FLOOR NUHBERa 3.X

MEAN FLOOR SPEC FOR 5 PER DAMP 30 SEC TH MO VS.MOOE DISPL ~PF ~HN INPUT
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FLDOR NUMBER- 6.X

MEAN FLOOR SPEC FOR 5 PER DAMP 30 SEC TH MD VS. MODE DI5PL WPF WHN INPUT
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Appendix I

CLASSICAL DAMPING: MODE DISPLACEMENT METHOD

I-A EXPECTED VALUES

The expected values required in Eq. 2.10 are obtained

as follows.

The solution of Eq. 2.3 is given by

z. (t) =: - JT X (T) h. (t-T) dT
Jog J

(1. 1)

where h. (t) is the impulse response function of Eq. 2.3.
J

Using Eq. 1.1, the expected value

E[Zi(t1) zk(tZ)] = 1:1 1:z E[ig(T 1) ig(T z)]
. hj(tl-T l ) hk (t 2- T2) dT l dT 2 (1. 2)

.. ..
in which the autocorrelation, E[Xg(T l ) Xg (T 2)], is defined

as

(1.3)

Using Eq. 1.3 in 1.2, and changing the order of integration,

the following is obtained

285
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For stationary response, when t l ~ 00

t l - t 2 = T I Eq. 1.4 can be written as

t 2 ~ 00 and

(1. 4)

iWTe dw (1. 5)

where H. is the complex frequency response function defined
J

by Eq. 2.13. Also it can be shown that

fOO W ep (w)
-'.

e iWT
E[Zj (t l ) zk(t 2)] i H. H~ dw

-00 g J

- E[ Zj (t l ) zk(t 2)] (1. 6a)

E[Zj (t l ) zk(t 2)] J:oo
2

ep (w) H. H~
iWT dT (I.6b)w eg J

1-B N~L1F1CAT10N FACTORS

The factors Al' A21 A3, A4 in Eq. 2.19 are obtained

as the solution of the following simultaneous equations:

(1. 7)



287

where

{A. }T = (AI' A2 , A3 , A4)
J

the elements of matrix [pJ are defined as

0 1 0 1

1 u 1 'x
[P] =

u v x y

v 0 y 0

(1. 8)

(1. 9)

in which

2 2 (1 2 s?) r 4 2 (l 2 (2)u = - r l - v = x = - -
J 1 ,

0
,

y 1 r l = w./w (1.10)
J 0

Also

WI (1) 0 vJ l (2) 16 s2 s? 2= ; = r 10 J

Wl (3) = 4 2
(s; ri + s?) vJ1 (3) r 4 (I.ll)r l =

J
, 1

The factors B l , B2 , ... , B4 and Cl , .. · ,C4 which

appear in cross-terms under double summation terms in Eq.

2.27 are obtained from the following simultaneous equations:

where

and [PI] {C.}
J

(1.12)

(G l , C2 , C3 , C4)

(1. 13)
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and the elements of [pJ are defined in Eq. 1.9. Also,

a

(I.14)

The elements of the matrix [p' ] are defined as

a 1 a 1

1 u' 1 x
[P' ] = (1. 15)

u l v' x Y

v' a y a

in which u l 2 2 (1 8
2) v' 4

wI / W= - r 2 = r 2 r 2 =k , ,
<: 0

,

and x,y are the same as in Eq. 1. 9. Also,

~.]3 (l) a ; ~'J3 (2) = 4 D 8
2 W

3
(3) 4 C 6

2 + Dr 0 r 0 r

W
3

(4) C (1. 16)r

whereas the coefficients Ar , Br , Cr ' Dr in Eqs. 1.14 and

1.16 are obtained as the solution of the following

si~ultaneous equations:

Twhere {A} = (A , B , C , D )r r r r

and the elements of [P"] matrix are defined as

(1.17)

(I.18)
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a 1 a 1

1 u" 1 x"
[p"J = (I.19)

u" v" x" y"

v" a y" a

in which

u" 2 2 (1 2 ( 2 ) v" 4= - r 2 = r 2k

x" = 2 2 (1 2 S?) y" 4 (1. 20)- r 1
= r 1J

and the vector {W4} is defined as

\v4 (1) = 4 S· Sk r 1 r 2 \.J4 (2) 2 2 [1 4 ( S~
J

; = r 1 r 2 J

+ 6
2

) + 16 6? S2 J W
4

(3) = 4 2 (1 4 62)- r 1 r 2 -k J k , k

2 r 4 (1 - 4 s?) W
4

(4) r 4 r 4 (1. 21)- r 1
=

2 J
, 1 2

I.C FREQUENCY INTEGRALS

The closed form integration for the form are required

in the evaluation of integrals in the resonance case.

I J:: (a 2 6 + a 1
4 2 + a 2

6 2
c1 = w w Wo w w w

0 0 0

c

+ a 3 w8 ) IH 1
4

dw
0 0

= we Am(r, So' a a 1 ' a 2 , a
3

) = w A (1. 22)
0' c m

where ao ' aI' a 2 and a3 are constants, r ::: W Iw and foro e



throughout this work.
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In Eq. 1. 22, A is defined asm

M1{ [1- Zi So r-r2
] [1 + 2i So r - ::]}A == 2 in 2 - inm 1 + 2i S r - r 1 - Zi S r-

0 0

2N1 + ml rl+r2
)

- 2r/l - S~}+ - £n
2r J1 - (32 (1+r2) + Zril - s2

0 0

where

B~} (1. 23)

1 4 2
+ az}{7 [(aom1 ==

(32 2 + a 3)(1 + 4 So) + a18 r
0

4
- 2 (2) a + a 1m2 == 7 [2(1 - a 3] ;o 0

M1 == ffi1/Zi So r and HZ ffi2/4i 6
0

r (1. 24)
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The first term in Eq. 1.23 depends on the ratio r,

and can be evaluated as follows

Ml {tn [~
- 2i S r _ r

2
]

I' = 0

2 2+ 2i S r - r
0

G
2i 2+ S r

- r JlQ,n 0

- 2i S r- r 2 f
0

=
ml

r Qr2 8
0

where

Qr = 2(IT-s) r < 1

= IT r = 0

= 28 r > 1

-1 2 S r
in which S 0= tan

!1_rj 2
.

(1.25)

(1.26)

The closed form integration for the following forms

are also required.

I f:: (ao
2 2 + a l w4) IHol2 dwc2 = w w
0 0

c

= w . Bm(r, so' ao , a l ) = w . Bm (1.27)c c

where ao and a l are constants and for brevity Bm is used

for Bro(r, 8
0

, ao ' a l ). In Eq. 1.26, Bro is defined as
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m1 2N1 + m1 {l+r2 - 2rJ1 - B~}B P + Q,n 2m 2 6 r r
2r/l 13

2 2rJl 6
20 - l+r +

0 0

(1. 28)

in which the coefficients ml and Nl are defined as follows

a + a 1 2 a1 20 N1 (1. 29)m1 = 2 r = - zr

The coefficient P depends on the value of r and canr

be obtained as

P = 2(n-8) r < 1r

== rT r = 1

28 r > 1 (1. 30)

-1 2 6 r
where 6 tan 0

==
11-r2t

I-D COEFFICIENTS AT RESONANCE

For w c = 00, the factors Am' Bm. and A~ in Eq. 2.43

are defined as

1 + 12 62 + 16 64
o 0

(1.31)
Bm (1 - 4 Bo/n)

Am' (A - 4 6 /3n)/Bmom
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Also the factor Cm and C~ in Eg. 2.46 are defined as

(1 + 4 + 4 83 Ao r

(1.32)



Appendix II

NONCLASSICAL DA}WING: MODE DISPLACEMENT

METHOD

II-A EXPECTED VALUES

In Eq. 3.28, the expected values are evaluated as

follows:

which can be written as

Considering stationary response, with t 1 ~ 00, t 2

and (t l -t2) ~ T, the above equation can be written as

~ 00

(II.2a)

294



For j = k
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E[z.(t) z.(t 2)]
J J

2 iWTF. ep (w) e
J g dw (II.2b)

Similarly other expected values required in Eq. 3.31

can be obtained as follows:

iWT
¢ (w) e

g dw-'-
(-Pj+iw) (-p~-iw)

(II. 3a)

For j = k

= F. F:' Joo
J J -00

(II.3b)

Also

For j = k

(II.4a)

and finally

~k

= F. F.
J J

-'oO' ...1... Ioo

= Fj' F~
- 00

iWT
¢g(w) e

----,.T-"t_"'------- dw
( - p '.'+ i w) ( - p . - i w)

J J

iWT
¢ (w) e

g dill

(-P~'+iw) (-p~-iw)

(II.4b)

(II. Sa)
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For j k

II. D AHPLIFICATION FACTORS

iWT
cD (w) e
->.o<.g,..-,.---.,...- d W

-}'2 2
(pj + W )

(II.5b)

The coefficients Al , Bl , Cl and Dl in Eq. 3.48 are ob

tained as the solution of the following simultaneous

equation

where

and [pJ is a 4x4 matrix whose elements are

(11.6)

(11.7)

a 1 a 1

1 u l- x
[pJ = (II. 8)

u v x y

v a y a

in which u "" 2(1 2 2 1 , 2 2 (l 2 2
So) , v = x - xl - 13 . ) ,

J
and 4 Also,y = r 1 "

Wl (1) = a Wl (2) = 4 13
2 C! Wl (3) = C! + 4 13

2 D!,
0 J

,
J 0 J

,

Wl (4) D! (11.9)
J
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The factors Aj , Bj , ... , Ak , Bk , ... , etc. in Eq.

3.48 are obtained as the solution of the following

simultaneous equations:

(11.10)

where

(Aj , Bj , Cj , D
j

) and {Ak}T = (Ak . Bk , Ck , Dk)

(11.11)

and the elements of [p] are the same as in Eq. 11.8 and the

matrix [P'] is defined as

0 1 a 1

1 u 1 x'
[p I] = (11.12)

u v Xl y'

V 0 y' a

in which x' - 2 2
(1 - 2 62) and y' 4 u and v are= r 2 = r 2 ,k

the same as defined in Eq. 11.8. Also

W2 (1) = 0 W2 (2) = 4 F2 6
2 W2 (3) = 4 Fl 6

2 + F2,
0 0

,

W2 (4) Fl

W3 (1) = 0 W3 (2) 4 F4 6
2 , W3 (3) = 4 F3 62 + F4,
0 0 •

W3 (4) = F3 (I1. 13)

Whereas the coefficients Fl , F2 , F3 , and F4 in Eq.

11.13 are obtained as the solution of the following

simultaneous equations
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(II. 14)

where

and the elements of 4x4 matrix [pit] are defined as

(II. 15)

(1I.16)

In Eq. 11.17, the coefficients C1 , Cz' D1 , DZ' EZ' E3 are

defined as follows:
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Cl
2 2 4 13 k ) C = 2 2= - (Yl + Y2 - Yl Y2 6· Yl Y2J

, 2

D = 4 Yl Y2 [a
k

a
j 13 k 6· + bk b

j 11 - 6~ /1 - s?1 J J

+- ak b. 6k /1 - s? + a. bk S. )1 - 6
2 ]

J J J J k

DZ
Z Z EZ = 8·E .(y 6k )= 4 Y1 Y2 ak a. 6· - Y2J

, 1 1 J

E3 = 8· El Yl Y2 ( Y1 13 k - Y2 13.)
J

E = - Yl Y2 [a. ak (Y2 13 • - Yl 6k )1 J J

- a. bk ylJl - 13
2

+ ak b j Y2 Jl - s? ] (11.18)
J k J

11-C COEFFICIENTS IN RESONANCE CASE

In Eg. 3.52, A is defined using Eg. 1.22 in Appendix
m

I-C as follows:

in which

(11.19)

b 0 b l 4 62 C.' / wZ bZ (C~/w2 + 4 62 4
; = D./w )

0 0 J 0 J 0 0 J . 0
,

b3 D~ (II. 20)
J

The coefficient D in Eg. 3.57 is also defined using
m

Eg. 1. 22 in Appendix I-C as follows:

D = Am(r, So' co' c 1 ' c 2 , c 3) (11.21)m



where

co
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(11.22)



Appendix III

CLASSICAL DAMPING: MODE ACCELERATION METHOD

III-A EXPECTED VALUES

For stationary response, the expected values required

in Eq. 4.13 can be obtained by following the procedure

described in Appendix I-A. Thus, it can be shown that

"

J~oo
2 .'- iWTE[Xg(t l ) zk(t 2)] == <P (w) w H~ e dw (111.1)

g

.. ..

J~oo
2 iWTE[zj (t l ) Xg (t 2)] == <P (w) w H. e dw (111.2)g J

f:oo
4 .'- iWTE[zj (t l ) zk(t2)] == <P (w) w H. H~ e dw (111.3)g J

Other expected values required in Eq. 4.13 are given

in Appendix I-A.

III-B A}WLIFICATION FACTORS

The coefficients Al , Bl , Cl and Dl in Eq. 4.12 are

obtained from the solution of the following si~ultaneous

equations:

301

(111.4)
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where

(111.5)

and [p] is a 4x4 matrix whose elements are the same as

defined in Eq. 1.9. Also

(III. 6)

The factors AZ' BZ' CZ' DZ in Eq. 4.15 are obtained

as the solution of the following simultaneous equations:

(111.7)

where

(111.8)

and

4 s~ , W2 (3) = 1 , W2 (4) = a
(III. 9)

Matrix [P] is the same as defined in Eq. 1.9.

The coefficients Aj ... D
j

and Ak , .,Dk which appear in

cross-terms under double summation in Eq. 4.Zl are obtained

from the solution of the following simultaneous equations:

[ P ] { A .} = {W
3

}
oJ

and (111.10)
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where

and

C. ,
J

D. )
J

(III. 11)

and the elements of [P] are the same as given in Eq. 1.9

and the elements of matrix [P I] are the same as defined in

Eq. 1.15. Also,

W3 (1) = 0 W3 (2) = 4 62 B W3 (3) = 4 A 6
2 + B,

0 r , r 0
,

W3 (4) = Ar

W4 (1) = 0 \;J4 (2) 4 62 D W4 (3) = 4 (32 C + D,
0 r ,

0 r ,

W4 (4) = C (111.12)r

whereas the coefficients Ar , Br , Cr ' Dr in Eqs. 4.20 and

111.10 are obtained as the solution of the following

simultaneous equations:

where

(111.13)

{A}T = (A
r'

(111.14)

and the elements of 4x4 matrix [p!I] are the same as

defined in Eq. 1.19. Also,

o (III. 15)
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111-C COEFFICIENTS IN RESONANCE CASE

In Eq. 4.28, Vrn is defined as

(111.16)

in which ao = 1, a 1
Appendix I-C.

= 0 and B is defined by Eq. 1.27 inm _~

The coefficient, F in Eq. 4.29, is defined asm

F = A (r
m m'

(111.17)

in which bo - - 4 6; ; b1 = - (1 - 4 s;) ; b2 =

and A is defined by Eq. 1.22 in Appendix I-C.m

1 . b = 0 .
'3 '

In Eq. 4.34, the coefficient G is defined as
m

wherein b ' = 4 62
o 0

bi = 1 , b2 = 0 , b) o.

The factor H which appears in Eq. 4.41 is obtained
m

by the following equation

(111.19)

in which c = 4 62 Br c = B + 4 S2 A ; c2 = A
0 0 1 r o r r

c3 = 0 and the factor, A in Eqs. 111.18 and III. 19 isrn
defined by Eq. 1. 22 in Appendix I-C.

~



Appendix IV

NONCLASSICAL DAMPING: MODE ACCELERATION

METHOD

IV-A EXPECTED VALUES

Following the description in Appendix II-A, the

expected values required in Eq. 5.5 can be obtained as

follows:

..
. E[Xg(t l ) Xg ('2)] d'2 (IV.l)

Substituting t 2 - '2 = u and d'2 = -du, Eq. IV.l can be

written as

..
E[Xg(t l ) zk(t 2)]

.. ..
o E[Xg(t l ) Xg (t 2-u)] du (IV.2)

Using Eq. 1.3, and after some algebraic manipulations

Eq. IV.2 can be written as

..
E[Xg(t l ) zk(t)]

305

(IV.3)



306

Now

Fk Joo ¢ (w)
-00 g

P~ e
Pkt2

+ w2 e-
iwt2

dw (IV.4)

hence

.. ..

E[Xg(t l ) zk(t 2)] =
iWT

w2
¢ (w)e dw (IV.5)
g (Pk+iw)

Similarly the other expected values in Eq. 5.5 can be shown

to be as follows:

·· ..k -'-

f~oo
2 iWT

E[Xg(t l ) zk(t 2)] F~ ¢ (w)· w e dw (IV.6)= -
(P~+iw)g

.. ..

f~ro
2 iWT

E[Xg (t 2) Zj(t l )] F. ¢ g (w) e dw (IV.7)= - w (p.-iw)J J

.....1... -'.

J~oo
2 iWT

E[Xg (t2) zj'(t l )] F': ¢ g (w) e dw (IV.8)= - w 'Ok
J (p.-iw)

J

Using the following:

I. • ..

E[ Z j (t 1) zk (t 2) ] (IV.9)
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Other expected v~lues required in Eq4 5.5 can be ob-

tained from Appendix II-A.

IV-B AMPLIFICATION FACTORS

The coefficients AI' A2 , A3 , A4 in Eq. 5.21 are ob

tained from the solution of the following simultaneous

equations

(IV.IO)

where

(IV.II)

and the elements of matrix [p] are the same as defined in

Eq. 11.8. Also

(IV.12)

The coefficients Bl , B2 , B
3

, B
4

which appear in Eq.

5.23 are obtained as the solution of the following equa-

tions

(IV.13)

in \\7hich

(IV.14)
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and

WZ(l) 4 6Z Z WZ(Z) Z + 4 62 A' .= a j ; = a.
0 J 0 j ,

W2 (3) I W2 (4) a= A.;
J

Matrix [p] is the same as defined in Eq. IV.IO.

(IV. 15)

The coefficients A
j

, B
j

, A
k

, B
k

, etc. which appear

in the cross-terms in Eq. 5. are obtained as the solu-

tion of the following simultaneous equations:

and ·(IV.16)

where

{A.}T = (A BCD)
J j' j' j' j

and (IV.l7)

The elements of matrix [P] are the same as defined in Eq.

IV.lO and the matrix [PI] is the same as defined in Eq.

Il.12. Also

W3 (1) 4 FZ 6Z , W3 (2) = 4 6Z Fl + FZ ' W3 (3) Fl .
0 0

W3 (4) a

W4 (1) = 4 F4 62 . H4 (Z) 4 62 F3 + F4 . W4 (3) = F
0 0 3 ,

H4 (4) = a (IV.18)
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whereas the coefficients Fl , F2 , F3 and F4 in Eq. IV.1S

are obtained as the solution of the following simultaneous

equations

(IV.19)

where

(IV.20)

The elements of matrix [pff] are the same as defined in

Eq. 11.15, and

WS(l) = Dl ; WS(2) = Cl Dl + D2 + E2 ;

WS(3) = Cl D2 + C2 Dl + E3 : WS(4) = C2 D2 (IV.2l)

In Eq. IV.2l, the coefficients Cl , C2 , Dl , D2 , E2 and

E3 are defined as follows:

(IV.22)

D = 4 a. ak , D = 4 Yl Y2 [a. ak 8. 13 k1 J 2 J J

+ b. bk Jl - 13? /1 - 13 2 -. a. bk 13 . Jl - 13
2

J J . k J J k

b. 13k /1
2 E2 S.El(Yl 13 k)- ak - 13 j ] ; = 13 . - Y2J J

E3 = 8 Yl Y2 El(Yl 13k - Y2 Bj ) ; El = - a j ak (Y2 13k

- Y1 8j) + a j bk Y2 ,/1 - 13~ - ak b j Y1 )1 - 6;
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IV-C COEFFICIENTS IN RESONANCE CASE

In the first single summation term denoted by I', as
s

given by Eq. 5.25, A is defined as:
m

A Am (yc' So' a
0'

a 1 , a2 , a 3)m
where

4 S2 2 t 1 + 4 S2 2a = w t 1 a1 t 3/wo0 0 0 0

2 0a2 = t 3/wo a =3

(IV.23)

(IV.24)

In the second single summation term, I" given bys

Eq. 5.31, the factor B is defined asm

B Bm(y c' So' b
0'

b 1 , b2 , b 3) (IV.25)m

in which

b
2 {1 + 16 S2 (1 2 S2) } + 4 A. S2a.

0 J 0 0 J 0

b 1 A. 2 s2 {1 + 2 (1 2 S2)2}- 8 a. - ;
J J 0 0

b2 16 2 s2 (1 2 S2) b 3
2 S2 (IV.26)a. - = - 4 a.

J 0 0 J 0

In Eq. 5.36, the factor C is defined as
m

C - C (y
m m c'

(IV.27)
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in which

c 4 8
2 F1 + F2 {1 + 16 8

2 (1 - 2 82) }
0 0 0 0

c 1 = F1
8 8

2 F {1 + 2 (1 - 2 82)2}
o 2 0

,

c 2 = 16 8
2 F2

(1 - 2 8
2 ) ; c 3

- 4 8
2 F (IV.28)

0 0 o 2



NOMENCLATURE

[AJ = real symmetric matrix of order 2n, defined by Eq. 3.2

{A .} ,{A k} vectors defined in Eq. 111.10
oJ 0

A. ,B. ,C. ,D. = coefficients of partial fractions defined by
J J J J

Eqs. 11.10, 111.11 and IV.16

A maximum ground acceleration
g

Aj constant defined by Eqs. 3.33 and 5.12

A* B* = diagonal elements of matrices: [¢JT[A][¢] and
j' J

Ak,Bk,Ck,Dk coefficients of partial fractions

A BCD = coefficients of partial fractionsr' r' r' r

Al ,A2 ,A3 ,A4 = coefficients of partial fractions

A ,C ,D ,E ,G ,H = frequency integrals defined by Eq. 1.22
ill m m m m m

A~ = a factor function of frequency integrals

a. ,b.
J J

real and imaginary parts of the jth element of

complex eigenvector {¢.}
J

constants

constants

[B] = real symmetric matrix of order 2n, defined by Eq. 3.2

B1 ,B2 ,B3 ,B4 = coefficients of partial fractions

Bm = frequency integral defined by Eq. 1.27

bo ,b1 ,b2 ,b3 constants

b~,bl,b2,b3 = constants

[CJ = damping matrices

312
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I , , ,- t tco ,c l ,c 2 ,c3 - cons an s

[D] = real symmetric matrix of order 2n defined by Eq. 3.2

Dl ,D2 = constants of partial fractions

E[·] = expected value

El ,E 2 ,E3 = constants of partial fractions defined in Eqs.

II. 18 and IV. 22

e/r = eccentricity ratio

{F} = complex s~l~etric matrix defined by Eq. 3.9

{Fk } = vector of unknowns defined by Eq. IV.20

Fj = jth element of {F} defined by Eq. 3.10

F(w ) = ratio of frequency integrals defined by Eq. 2.38o

Hj = complex frequency response function defined by Eq. 2.13

h. = impulse response function
J

11 ,12 ,13 = frequency integrals defined by Eqs. 2.22, 2.23

and 4.9, respectively

I b ,lb2 = frequency integrals defined by Eqs. 2.34

I d ,ldd frequency integrals in double summation terms

1d,Id (w o) = frequency integrals in double summation terms

I g = frequency integral defined by Eq. 4.8

I' ,I I (w ) = frequency integrals in single summation termss s 0

I' ,I" = frequency integrals in single summation termss s

I (w ) = frequency integral in single summation termss 0

1sl ,I s2 = frequency integrals in single summation terms

i = 1=1"

[K] = stiffness matrix
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K,Kl,KZ = constants of proportionality

[M] = mass matrix

N,Nl,NZ = functions to define the integrands

n = number of degrees of freedom

[P],[P'],[P"J matrices of order 4x4 used in Appendix I,

II, III and IV

PF(Wo ) = peak factor in floor spectra

p = probability of nonexceedance

p. = jth complex eigenvalue
J
.'.

p~ = jth complex conjugate eigenvalue
J

Ra(wo,B o) = floor response spectrum value at frequence Wo

and damping 6o

{R~} = vector of unknowns as defined in Eq. 1.14
J

Rd,Rdd = frequency integrals in the double summation terms

R pseudo acceleration spectrap

R relative velocity spectra
r

Rs,R~,R~,Rsl,Rs2 = frequency integrals in single summation

terms

R = relative velocity spectra
v

{r} = displacement influence vector

r = mth element of displacement vector {r}m

S peak factor for ground accelerationg

S peak factor for pseudo accelerationp

S peak factor for relative accelerationr
S peak factor for relative velocityv

t l ,tZ,t3 = coefficients defined by Eq. 5.9
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factors defined by Eqs. 3.40, 3.41 and 5.15, 5.16

Ujk,Vjk = coefficients defined

V = frequency integral defined by Eqs. 111.16
.m

coefficients defined by Eqs. 3.43Xjk'Yjk

Xjk,Yjk

X (t) = ground acceleration time:history
g

X,X = absolute acceleration of floora am
x = relative acceleration of floora

{x} relative displacement vector

{y} 2n-dimensional state vector defined by Eq. 3.3

{z} = vector of complex value principal coordinates

{z'} = vector of principal coordinates

z. = jth element of {z}
J

a = decay rate defined by Eq. 2.49

B· jth modal damping ratio
J

Bo = oscillator damping ratio

y. = jth participation factor
J

o,oe = band with parameters, defined by Eqs. 2.51 and 2.52

Sj = real part of complex eigenvalue Pj

n,n,n = relative displacement, velocity and acceleration of

the oscillator, respectively

na = absolute acceleration of the oscillator

8· = imaginary part of p.
J J

,\ = eigenvalue

'\k = spectral moements defined by Eq. 2.53

\f~ = moments of floor response defined by Eq. 2.68
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~ moments pseudo acceleration response defined by
p~

Eq. 2.54

A
V

£ moments of relative velocity response defined by

Eq. 2.55

{p} a vector defined by Eq. 3.18

0'· standard deviation of nana
¢ (w) spectral density of ground motion defined by Eq.

g

2.105

¢ spectral density function of floor motionm

[¢] = modal matrix

{¢.} = jth eigenvector of [¢]
J

{¢j}£ = lower half part of complex eigenvector

{~j}u upper half part of complex eigenvector

¢j = mth element of eigenvector {¢j}

w = natural circular frequency

Wj = jth natural frequency

Wo oscillator frequency

va = level crossing rate defined by Eq. 2.50
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