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ABSTRACT

The hybrid modelling approach, which effectively solves the soil-structure interaction
problems, is extended herein for use in layered soil media. This approach partitions the entire
structure-soil system into a near field and a far ficld with a smooth interface. The near field
which consists of the structure and a portion of its surrounding soil is modelled by the finite
element method. The far field which is responsible for energy travelling away from the near
field is represented by an impedance model. Two analytical methods, appropriate to different
layered soil systems, are employed to simulate the semi-infinite far-field region. The system
identification method, which determines the approximate far-field impedance functions along
the interface between the near and far fields, is applied to the single-layer halfspace in which a
rigorous representation of the far-field is difficult to obta.in by direct solution. A boundary solu-
tion method is developed to cafculate the exact far-field impedance matrix for cases involving
layers of soil having a rigid lower boundary. By this method, the theoretical solution of the far

field is combined with the near-field finite elements through the variational principle.

Since the theoretical solution of rigid plates vibrating on the layered halfspace is required
in the system identification procedure, the dynamic behavior of the infinite rigid strip on a

single-layer halfspace is determined.

The modified Gauss-Newton method, which considers the second derivatives of the pro-
posed error function, is applied to systematically identify the far-field impedance functions for
the plane-strain case in the single-layer halfspace. Numerical results obtained using the
identified impedance functions indicate that these functions are efficient and effective in solving

the soil-structure interaction problem involving 4 single-layer halfspace.

The principle of the virtual work employed in the far field and the variational principle
employed in the near field constitute the boundary solution method. By evaluating the dynamic
behavior of the infinite rigid strip and the circular disk on the layers of soil with a rigid lower

boundary, the far-field impedance matrix generated by the boundary solution method



ju-
e

successfully shows its ability o account for enaigy iravelling away from the structure, waves
eflecting and refracting from the layer interfaces, and waves reflecting from the rigid lower
boundary.

The effectiveness and efficiency of the hybrid modclling for soil-structure interaction
analysis in laycred media are demonstrated by simulsiing the far field using the systern
identification method and the boundary solution method for different aforementioned soil con-

ditions.
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I. INTRODUCTION

In recent years, the analysis of soil-structure interaction and its effects on the earthquake
response of structures becomes significant because of the high safety and reliability require-
ments for massive structures such as nuclear power plants, offshore gravity towers, and dams.

Numerous investigations have been reported on this subject, however, many difficulties still

remain in obtaining the true response of these structures. These difficulties are caused pri-

marily by the semi-infinite nature of the soil medium and the embedment of the structures.
The nonhomogeneity and strain dependency of the soil and the uncertainties associated with
seismic input excitations further complicate the analysis. Since a rigorous mathematical
representation of the real structure and its surrounding soil is extremely difficult to define using
the present state of the art, several modelling mgthods are provided herein to approximate real
conditions. The analysis methods can be categorized into the substructure method and the

direct method.

In the usual substructure method of analysis the soil is idealized as a homogeneous or
horizontally layered halfspace and the strﬁcture is simplified using a stick model connected to a
rigid foundation with simple geometry such as a rigid circular disk [1,2,3,4,5] or an infinite rigid
strip [6,7,8,9]. The interaction problem is then reduced to the evaluation of the frequency
dependent impedance functions of the rigid foundation which when combined with the struc-
ture allow the response to be evaluated through the frequency domain. This simple method is
economical and it realistically considers the radiation of energy away from the foundation and
into the halfspace. However, it is restricted to structures which satisfy the rigid plate founda-
tion conditions mentioned above and to soil conditions which can be approximated by an elastic

or viscoelastic halfspace.

The direct method of analysis models the structure and a large portion of surrounding soil
as a single system using finite elements. This method can easily accommodate the embedment

of a structure and nonlinear soil properties, however, radiation damping is usually not properly



represented even though viscous dashpots are sometimes placed on the boundaries [16] to
allow outward wave transmission to simulate true radiation damping. In addition to the prob-
lem associated with wave transmission across the boundaries, waves are artificially reflected
from the finite element interfaces due to the the nonuniformity of the displacement fields

assumed in the finite elements [11]. These reflections further distort the solution.

A hybrid model has been used in the substructure method in an attempt to include the
advantages and avoid the disadvantages of the above two methods. In this method, finite ele-
ments are used in the near field to model the structure and a portion of i;s surrounding seil so
| that structural embedment and the nonhomogeneity and strain dependency of scil can be
treated. Since the soil region in the near field is limited in size, the number of degrees of free-
dom and the influence of artificial wave reflections can be greatly reduced. To treat radiation
damping, the far field, which shares a common interface with the near field, is represented by
an impedance matrix of a size corresponding to the number of degrees of freedom at the inter-
face. This impedance matrix, which accounts for the radiation of energy,-can be determined
using the system identification method [12,13] or the infinite element method [14]. The soil-
structure interaction problem is then solved efficiently and economically by the substructure

method of analysis in the frequency domain.

In the previous hybrid modelling studies, the soil medium was restricted to a homogene-
ous, isotropic and elastic halfspace. Engineers are however often interested in the 'dynamic
‘behavior of structures built on a layered soil deposit.l It is therefore the purpose of this
research to generalize the hybrid model to accommodate layered soil media. A far-field
impedance matrix, which accounts for both radiation and viscous damping, is determined by
two methods suitable to different soil deposits. The continuous far-field impedance functions
along a common interface between the near and far ficlds are determined by the method of sys-
tem identification for a single-layer halfspace which has wide application in modelling site con-
ditions. A boundary solution technique is used to solve the soil-structure interaction problem

for systems having a rigid lower boundary under the soil layers. Although, Waas [15] and



Kausel [16] solved the similar problem, i.e. layered soils terminated by a rigid boundary, their
formulation leads to a quadratic complex-vaiued eigenvalue problem which requires much com-

putational effort. The current method avoids this shortcoming and is more flexible to be used.

To calculate far-field impedance functions, the dynamic behavior of an infinite rigid strip
on the single-layer halfspace is determined in Chapter II. Results for different material proper-

ties of the layer and the halfspace are shown and compared with some existing data. The calcu-

lated strip response is then employed in Chapter III where the continuous far-field impedance‘

functions are determined iteratively by the system identification method. Two dimensional
inplane problems which can simulate the dynamic behavior of long tunnels, dams and other
massive long structures are considered. In Chapter 1V, the boundary solution method, which
combines the continuous solution of the far field with a finite element formulation of the near
field using the variational principle and the principle of virtual work, is used {o treat an extreme
case, i.e. the case of layers of soil underlain by rigid rock. In this special case, it is not practical
to generate bpundary impedances by the system identification method. ‘Numerical results are
presented and a comparison is made between the characteristics of the boundary solution
method and the semi-analytic method introduced by Waas and Kausel. Conclusions and

suggestions for future research are presented in Chapter V.






I1. VIBRATION OF AN INFINITE RIGID STRIP ON LAYERED MEDIA

A. General

The dynamic behavior of simple geometries, e.g. an infinitely long rigid strip as used in
two dimensional problems and a rigid circular disk as used in three dimensional problems, plays
an important role in soil-structure interaction analysis. Many investigations have been con-
ducted on this subject during the past decade, which basically involves two methods. One
method introduces the relaxed boundary assumption, i.e. it ignores the shearing stresses under
the plate for the vertical and rocking motions and the normal stress for the translational
motion; thus, the calculation of the plate response becomes a mixed boimdary value problem
represented by dual integral equations which can be reduced to a single Fredholm integral equa-
tion. The response of the plate is then obtained by numerically solving the Fredholm integral
equation. Employing this method, Karasudhi et al. [7], Luco and Westmann [8] solved the
problem of the rigid strip vibrating on the homogeneous halfspace and Robertson [5] and Luco
[2] solved the same problem for the circular disk. Luco [3,4] also extended this method for the
case of layered halfspace. The other method allows a distribution of stresses under the plate
expressed in terms of unknown constants. The response of a surface foundation, either rigid or
flexible, can thus be obtained by the principle of virtual work with known or assumed displace-
ment shape functions of the foundation. Oien [9] obtained the response of the rigid strip on
the halfspace by assuming the stress as the combination of a series of Tchebychev polynomi-
nals. With the assumption of constant stress distribution between nodal points on the surface
under the strip, Dasgutpa [17] calculated frequency dependent stiffness matrices for the
corresponding surface degrees of freedom. By employing a similar constant stress assumption
and discretization of the foundation, Wong and Luco [18] solved the vibration problem involv-
ing a rigid surface footing with arbitrary geometry on the homogeneous halfspace. Bycroft [1]
found the vertical response of the circular disk on the halfspace by adopting the static stress dis-

tribution under the plate and the Hankel transform. However, due to the complexity for the
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Hankel transform for three dimensional axisymmetric problems, the response of the circular
disk with a more complicated stress condition than the static stress distribution is difficult to

obtain.

Two dimensional problems may be solved by the Fast Fourier Transform method and its
inversion. Gazetas and Rogsset [6] used this method to calculate the dynamic behavior of the
rigid strip on a horizontally layered halfspace. It can be shown however that Simpson rule or
Gaussian quadrature is a much more efficient and more accurate method for solving these prob-
lems. For the case of a rigid boundary under soil layers, Waas [15] and Kausel [16] introduced
a vertical semi-analytic transmitting boundary. The advantage of the transmitting boundary is
that one can easily treat embedded structures. This method is however computationally expen-

sive due to the complex-valued quadratic eigenvalue solution required.

In the following sections, the finite element discretization is employed to calculate the
response of surface foundations. With the aid of the principle of virtual,work and the linear
stress assumption between nodes under the foundation, it is shown that solutions of the rigid
strip and other plane-strain flexible surface footings on a viscoelastic layered soil system can be

obtained accurately.
B. Basic Equations

1. Equations of Motion

For the two dimensional inplane wave propagation problems, motion in the normal y-
direction is taken to be invariant; thus, the energy will be restricted to radiate or reflect in the

x—z plane.

In Fig. 2.1, a system of n-1 horizontal layers of soil resting on a halfspace is considered.
"These soil layers are assumed to be homogeneous, isotropic and elastic or viscoelastic, and are
welded to each other at the interfaces. Within each layer or halfspace, the equations of

motions, written in terms of displacement u and w, are



)GA

A+G + GVu =pii

()\+G) + GV?w =pW - (2.1)

giving the corresponding stress components

= aa+2694

ax

— AA+2 G%f'i | 2.2)

— odu, dw
T = G( ﬂz+ ﬂx)‘

du 9w .

where XA and G are the Lame’s constants, A=-——
t')x az

is the change of volume per unit
volume, V is the gradient operator, and p is the mass density.

In order to avoid the complex nature of the displacement equations of motion, the above
equations are transformed into a simpler set of equations by introducing the dilatational and
shear wave potentials ¢ and ¢ which satisfy

38
ax 9dz

w__¢_ 9y (2.3)
dx

Substituting Eqgs. 2.3 into Egs. 2.1 with appropriate manipulations, two uncoupled equations are

obtained, namely



24 - D
vie -5
T = —é{'? (2.4)

in which C,=V(\+2G)/p and C;=VG/p are the dilatational and shear wave velocities, respec-

tively.
The general solution of the above equations for a steady state harmonic motion with an

excitation frequency « can be expressed as
¢ — (Ae~vz+Bevz) ei(mt—kx)
¢ = (Cefu’z_i_Dev’z) er‘(wrka) (25)

where k is the horizontal wave number, v=~/kI—k2 , v'=/K’—kj , ka='cu/ C, and ky=w/C;;

A, B, Cand D are constants which are determined by the loading or source condition.

Substituting Eqgs. 2.5 into Egs. 2.3 and 2.2, the displacements and stresses can be written

in matrix form as

u —ik —ik v’ —v' A
w —-v v —ik —ik B
= ilawt—kx)
Txe i2kGv -R2kGv  —GQK—k}) —GQK—k}) “lc|¢ 2.6)
onl  |GQK—~K}) GQK-K})  i2KGY —2kGv' D
or
Y=EeA gl (2.62)

in which Y=< u, w, 7, ¢, > is the displacement-stress vector, and e is the diagonal

matrix diag( e %, &%, e V7, e'%).



2. Transfer Matrix

The compatibility and equilibrium conditions at the horizontal interfaces between different
layers must be satisfied in order to obtain the displacements and stresses in all soil layers.
Thomson [19] and Haskell [20] introduced an efficient transfer matrix for this purpose which
not only assures compatibility and equilibrium at each interface but also indicates the relation-
ship between the displacement-stress vectors of different layers.

In Fig. 2.1, the transfer matrix between the (j-1)th and jth interfaces can be obtained
from the material properties of the jth layer. The term /=% is a common factor to all layers
and can be ignored for simplicity. By shifting the origin of the z axis to the (j-1)th horizontal

interface, the displacement-stress vectors at the (j-1)th and jth interfaces are, respectively,
Yj—l ‘: EJ. eJ(O) AJ

where e; (0) is an identity matrix, #; is the thickness of the jth layer, and the subscript "j" indi-

cates the material properties of the jth layer are adopted.

Vector Y;_; can be expressed in terms of vector Y; as
or

Y'_] =a;Y; (273)

J

where e;(—h;)=e;' (h)), since e, is a diagonal matrix, and a,=E; ¢;(—#) E; ..

Ignoring the subscript "j" for simplicity, the transfer matrix a can be written explicitly as
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#( CH—CH")+CH' L’§(2v'31@r'—(2 K-k 2H
kg ki v
K asHrR-kh) CH—y—é(CH—CH’)
ﬁ B
a= 2 2 2 QlkG 2 ¥
—(—4k vSHH2K—k}) S pE Qk*—kg) (CH—CH')
B B
2ik(r 2 - 7 ? ’
(21~ k3) (CH—CH) “((218 k,g) A _siev'sH)
8
SH
m( k?’-—-+ 'SH' CH'
Gkﬁ ) . )
' — (v SH—
) G ; 5 (v k2
CH'+ 2"2 2K (CH-CcH) li—g—(—ZvSH+(2k2—k§)§],{—
ki ki v
& v sir-2kSH) CH—E(CH CH))
ks v ks

in which SH=sinhv A, SH'=sinhv'h, CH=coshv k, and CH'=coshv’h.

(2.8

With the aid of the transfer matrix, the displacement-stress vector at any depth may be

expressed in terms of the displacement-stress vector at another depth. For example, the rela-

tionship between the (j-1)th and (n-1)th interfaces is

Yj—I = aj aj,,_] Tt Ap— Yn_j ' (2.9)

In addition, it is observed that the elements in the transfer matrix a are either even or

odd functions of the wave number k. Matrix a then has the form

€ 0 e 0
0eoe

= 2.10

a e 0eco ( )
0eoe

where an "¢" indicates an even function and an "o" indicates an odd function. The product of

any two matrices of this form is also a matrix of the same form. This characteristic will be
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employed later to simplify the computation of the plate response.

C. Displacement and Stress Relationship at Surface

The soil profile usually consists of multiple horizontal layers of soil underlain by rock with
the lower soil iayers being stiffer than the upper layers. If the thickness of any particular soil
layer is large compared with the structural dimension, it is practical to assume this particular
soil layer as a halfspace. If the rock underlying all soil layers is much stiffer than the soil, the

rock can be assumed to be completely rigid.

1. Halfspace

If the nth layer in Fig. 2.1 is a halfspace, waves which penetrate through the (n-1)th inter-
face will never return. In other words, energy will radiate continuously along the (n-1)th inter-
face. Recognizing this radiation condition, those terms corresponding to e¢** and e*“ in Eq. 2.5

can be omitted. Therefore, the dilatational and shear wave potentials become
¢ = Ae vz gilwr ho
¢ —_ Ce“v'zei(wt—kx)

Shifting the origin of the z axis to the (n-1)th interface, the dispacement-stress vector at

that location has the form
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u —ik v’
" Y _ik 4 (2.11)
el T n2kGv  —cei-kp| | ¢/, :
T4 . G(Z kz—kﬁ) 12 kG‘U! "
e
or
Y, =g,A, (2.11a)
By employing Eq. 2.9, the displacement-stress vector at the top surface can be written as
Yo=a 2 - a,8, A, (2.12)
or

A ‘ (2.122)

where R; and R; are 2x2 matrices, u=<u, w>7, and s=<r,, a,,>".

If the top surface is horizontal and only surface tractions are applied, the displacements
and stresses at surface may be related through the Fourier transform and its inversion. In Eq.

2.12a, the surface tractions at location x for a specific horizontal wave number k are

=R, A, e (2.13)

Moving factor ¢ * to the left side of the above equation and integrating it along the

entire x axis, the Fourier transform of the surface tractions can be obtained as

o0

Ty (k) ,
. so(k) = fs@(x) e"dx =Ry A, (2.14)

a,, (k)

with its inverse transform being

{frxz (x)

Uzz(x)}ﬁ = so(x) = ﬁ_j;s(;‘(k) e i 2.15)
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Similarly, the Fourier transform pairs for displacements are

(k) -
L‘:*(k) = w0 = Ju e =R A, (2.16)
and
u(x) 1 7 . e
winl, = W) = 5 J k) e ak @

To calculate the response of the surface foundation, it is important to know the dispiace-
ments in terms of the surface tractions. Substituting Eqs. 2.14 and 2.16 into Eq. 2.17 and elim-

inating vector A, gives

[

1 o0 _ 00 o -
y(x) E;LRI R;! Lso(ﬁ) e *Edge ™ gx

ﬁ :£ R _fm so(£) e *EdE o (2.18)

Therefore, if the stress distribution along the horizontal surface is known, the displacements at

any point on the surface can be found from the above equations.

The physical meaning of the Fourier transform in this problem is the response
corresponding to a specific wave number k in the system resulting from the general sources or
loadings. The corresponding analogy of the inverse transform is that the waves generated by

such sources or loadings will propagate in all directions.

In addition, comparing Egs. 2.14, 2.16 with Eq. 2.12a, the displacements and stresses in

Eq. 2.12a may be thought of directly as their corresponding Fourier transforms.



14

2. Rigid Rock

If the bottom material is rigid, waves will be restricted to propagate between the top sur-
face and the rigid lower boundary. Energy generated by any source will not dissipate unless
there is energy dissipation in the soil materials. Assuming no slippage occurs during wave pro-
pagation, the displacements at the rigid boundary are zero. Using Eq. 2.9, displacements and

stresses at the top surface can be written as

u 0
w 0 :
=a a ' 3, (219
TXZ -l T.XZ
G.ZZ Gﬂ
0 [

or.

S, ' . (2.19a)

where T, and T, are 2x2 matrices.

Comparing the above equation with Eq. 2.12a, the stresses at the rigid rock interface may
be taken as unknown coefficients. A similar derivation, as in the case of the halfspace, may be
obtained by replacing the matrix R, by matrix T;. Therefore, displacements at the top surface

become

uﬂ(x) = E:[;Tl T21 J;SO(“;) e :k&d,;: e”“dx

o

- 2177 _fm T L so(£) —HEdE o g (2.20)
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D. Linear Stress Model

In the mixed boundary value problem, stress and displacement conditions are specified
separately over different portions of the boundary, e.g. stresses at the free boundaries and dis-
placements under rigid plates. There is no direct method to solve this kind of problem.
Although, Karésudhi et al. [7] and Luco [2,3,4,8] solved the response of rigid plate by the
Fredholm integral equations, the shortcoming is that they had to simplify the system with
relaxed boundary conditions. In addition, the Fredholm integral equation cannot be used to

solve the same problem for a flexible surface foundation.

‘ In the two dimensional problems, a model established from the proposed stress distribu-
tion with unknown coefficients under the surface foundation gives a satisfactory and efficient
solution. There are many possible stress models, either continuous or discrete. The selection
of a suitable model depends significantly on the foundation type, e.g., flexible or rigid. For
wider application and easier understanding, the finite element model for the foundation is
selected. In Fig. 2.2, the massless plate is partitioned into several intervals with uniform spac-
ing b. The stress components at the surface of the upper soil stratum are assumed to be
linearly distributed within each interval as expressed by

n—1 )
Te=0Y K(g+ h,q_,+ h,q,) e

J=—n+1

n=-1
o,=0 Y hXp+ ho,p_, + hpy ™ (2.21)

J=—n+1

where g; and p;, which depend on the motion of the foundation, are the nodal values of shear-
ing stress and normal stress at node j, respectively; » and —»n are two edge nodes having zero

stress on one side, and
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1+—(x_b—jb) if (—1)b<x<jb, —n+1<j<n
B0 = | 1= i jpcx< (D, —ngj<nm1 2.22)
0 otherwise

Since the motion is analyzed in the frequency domain, the common harmonic factor e™’ will be
ignored for simplicity. In addition, only stress r,, will be considered in the following deriva-

tions.

Substituting Eqs. 2.21 and 2.22 into Eq. 2.14, the Fourier transform of the jth component

of 7, is
ib b (+1) e b .
re (0= ([ 0+ LByeract+ [ 1-ED) ek ay) g,
/ (Db b “ib b
4 . kb ke
= —megin oL gD 4. 2.23
Fosint o eq; (2.23)
and the Fourier transforms corresponding to edge nodes n and -n are, respectively,
"(k) fb (1+221) s (L 1= pows (2.24)
= (K) = +—) e™dx g, = (—+———)e" g, .
i (106 b a ik b2 1
and
—(n-1)b ;
* _ x+nb it . —1 I_e—-lkb — inkb
T (k) = _fnb (=252 e gy = (b ) e g, (2.25)

Combining the contributions of all nodes to the Fourier transform of shearing stress

results in
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q_pi1
g1
, 4 . 2 kb in-iw — ikb kb i(a~1) kb
rxz(k)=;k75m7{e , o, @ M1 e . e 13 @ }
‘ q1
In—1
kb . kb -
+ (——}FL——-—l b‘;cz ) ek g+ ( 3—k+———1 ;(2 ) e g, (2.26)

To calculate the response of the surface foundation, it is advantageous to simplify the above
equation by considering separately the symmetric and antisymmetric foundation motions. If the

stress under the foundation is symmetric with respect to its central axis, i.e., g_;=q;, Eq. 2.26

becomes
q0
8 ., kbl “
* = Y 207 e _ 4
Ty (k) TR {2 , coskh, , cos(n—1) kb,}

9n-1

+ (—2—sin nkb+ —2—~(cos nkb—cos(n—1) kb)) g

k bk? !

= le q: (2.27)

If the stress is antisymmetric during the motion, i.e. g;=—g¢_; and gy=0, Eq. 2.26 becomes
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q
8 . kb “
T (k) = ——sin*=={isinkb, isin2kb, --- , isin(n~1)kb}{ . |
bi? 2
Gn—1
2eosnkb | 2 . . ,
LERERT L 2 (G _ .
+( m ¥e (isin nkb—isin(n—1) kb)) g,
=df ¢ (2.28)

It can be shown that both terms corresponding to g, in Egs. 2.27 and 2.28 are equal to zero
when k approaches zero. For different motions of the surface foundation, the shearing and
normal stresses are different. When symmetric loading is applied to the foundation, the normat

stress is symmetric; whereas, the sheéaring stress is antisymmetric. The stress vector may be

written as
Ty (k) a7 07| [ q
[crzz*(k)] - [OT d’ l P } | (2.29
or
s =G, 1, (2.292)

If the foundation is subjected to antisymmetric motion, the shearing stress is symmetric but the

normal stress is antisymmetric; thus,

Ty (k) 47 07 ] (q
o, ] T 10T &f | |m (2.30)

or.
s =G,r, (2.30a)

in which p; and p, are vectors of the nodal values of normat stress having a number of terms
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similar to q; and q, respectively. The term 0 designates a zero vector.

E. Compliance and Impedance of the Rigid Strip

For the steady state harmonic motion, it is appropriate to use the principle of virtual work
to obtain the compliance or impedance matrix of the system. The expression of the virtual

work is
sW= [5t7(x) u(x) ax (2.31)

where 8t is a 2-component vector of admissible virtual forces under the foundation, t=s, u is
the corresponding 2-component real displacement vector, and a is the half width of the founda-

tion.

Substituting Eqs. 2.29a or 2.30a into Eq. 2.18 or Eq. 2.20 gives

u(x) 1 7 .
{ w(x)]o - gl; QG;r; e *ax (2.32)

where Q = R’ for the case of bottom boundary as a halfspace, or Q = T’ for the case of rigid
bottom boundary; j=s for symmetric loading, or j=a if the foundation is in antisymmetric

motion.

Substitution of Eq. 2.32 into Eq. 2.31 gives

L] .

W= 5[ [87(0) e ax Q G, x, dk (2.33)

—oo—g

It is obvious that the integration of the virtual forces along x in the above equation is the com-
plex conjugate of the Fourier transform of itself. With the aid of the discretization of the foun-

dation, Eq. 2.33 becomes

8W =i ( %T—IEJTQ G, dk) r, (2.349)
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or

in which G,- is the complex conjugate of matrix G;, and F, is the compliance matrix of nodal

degrees of freedom under the foundation.

It is difficult to recognize the symmetry of matrix F; from Eq. 2.34. However, if the sym-
metry can be demonstrated in the integrand, then there is no doubt that F; is symmetric. In
Fig. 2.3 two nodes I and J of the surface foundation are considered. The submatrix which
represents the displacements at node I due to unit forces applied at node J for a specific wave

number & is
£, = (G7QG))y

, or more explicitly, for the case of symmetric loading applied to the foundation,

( ) L kb, |isingkb 0 | [Qu Quf |isinkb 0
fy (Wsm 3 0 costid |0y 0n|| 0 cosikb
kb 5 Qqsinfkbsindkb  —iQy,sinfkbeosJkb
= (-—sm2 =), - (2.35)
bt ) iQycosikbsin/kb  Oxcoslkbecostkd

where Q,, are functions of k only and characterize the material properties and the layering con-

dition of the system; and Q,=— (5.

Interchanging I and J in above equation results in

(@) (5 8 R kb) Qy1sinJkb sinikb —iQy,sindkbeos Ikh
i} = (—=sin

bl ) i cosJkbsinlkb  (Ohcostkbeosikh (2.36)

Comparing Eq. 2.35 with Eq. 2.36, it is obvious that (f;;) .=(f;) ] A similar proof can be
shown, if node I or J is at the foundation edge or if antisymmetric loading is applied. There-
fore, the compliance matrix of those surface nodal degrees of freedom is symmetric. In addi-

tion, it has been shown in Eq. 2.10 that the elements of matrix a are always even or odd
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functions of k. A similar condition can be found in (Q,,, giving

o-|2 ]

Thus elements of matrix f are even functions of the wave number. Equation 2.34 may be

simplified further as
aW =51/(2-[T/Q Gk ) x, 2.37)
0

In order to find the response of the surface foundation, it is required to know its displace-
ment shape functions at the surface. For a flexible foundation, it is possible to approximate
displacements by another finite element model. However, the focus in this chapter is on the
response of the rigid strip so that its behavior can be described by rigid body motion. There are
three degrees of freedom, i.e., vertical, translational and rotational displacements at the center

of the plate. Under vertical loading, the displacement vector u{x) at the surface is

u{x) 0

wlo| = 1]8r (2.38)
; for translational and rocking motions, the displacement vector becomes

u(x) 10|[|An

w[ =10 x|lan (2.39)

where Ay, Ay and A, are the vertical, translational and rotational displacements of the rigid

strip; and | x | <a.

Substituting the above two displacement shape functions into Eq. 2.31, virtual work can

be expressed in the form of
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T
W ==51140,0, ---,0,b,2b, ---,2b, b Ay
== 81'3 By AV (2.40)
for vertical motion or in the form of
b2b -+ 266 0 0 - 0 0o |"fAx
8 W = SraT 1 A
00 -+ 0020 48 --- 2(n-1DF (n—-3—)b2 M
T An
=317 Be Ay | (2.41)
for translational and rocking motions.
Since 8r, is arbitrary, Egs. 2.34a and 2.40 lead to
Forg=By Ay (2.42)
or
UV = By AV : (2423)

where Uy represents the displacements of the discrete nodes at the top surface for vertical

motion of the plate.

By employing the reciprocal theorem, the applied vertica_l loading at the center of the plate

can be expressed in terms of the nodal forces r, as given by
V==8B[r,
The relationship between vertical loading and vertical displacement of the rigid strip is
V=BlF,'By Ay = Kyy Ay (2.43)

in which K,y is the vertical impedance of the rigid strip with its corresponding compliance
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being Cyp=1/K}y. Similarly in translational and rocking motions, the horizontal force A and

rocking moment M of the plate are related to Ay and A, through

H _ Ayl | Knn Kuu
M = B¢ F," Be Ay =

[A”} (2.44)

KMH KMM A M

where Ky and Ky, are the principal impedances of the translational and rocking motions,
respectively; and K=Ky is the coupling impedance between the two motions. The compli-

ances of the two motions are given by the inversion of the corresponding impedance matrix.
F. Numerical Computation

1. Truncation Error

Owing to the limitation of computer accuracy, numerical error may be significant if the
soil is horizontally layered, This problem occurs when the real part of vh in Eq. 2.7 is larger
than the real part of v'4 by a certain amount in a specific layer with thickness 4. After various
subtractions are carried out, the number of significant digits in the result may be reduced to
zero. This problem has been discussed in several references [21,22,23]. To demonstrate the
significance of this problem explicitly, one soil layer with thickness h over the halfspace is con-
sidered. Referring to Eq. 2.12, the displacements and stresses at the top surface can be written

in terms of the unknown constants A as given by

u R
e [2]:

wherc a=E e E ' and e = digg( &%, eV, &', V'),

For the extreme case, i.e., the quantity of €’ is much larger than the other exponential

terms, matrix e may be expressed numerically as

e = diag( e'", 0,0, 0)
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Thus, Eq. 2.45 becomes

In order to obtain displacements u in terms of stresses s, the inversion of matrix R, is
necessary. However, a’ is a rank one matrix, i.e., all 2x2 submatrices are singular; therefore,
the inversion of Ry’ is trivial. Since the elements in the matrix R, have a common factor e,
the determinant of R, equals to zero multiplied by the factor e?*”. Because of the truncation
in actual calculations, the determinant never vanishes in above situation. Once e’/ becomes
much larger than other exponential terms, the truncation error multiplied by e®* will dom-

inate; thus, distorting the true determinant of R,. In this case, accurate integration of Eq. 2,35

is not possible.

Dunkin [21] developed a good numerical scheme to solve this difficulty. In his deriva-
tion, terms having the factor e**?% were recognized as more important in the calculation of
the determinant of R,’. Other terms having ¢’*#, ¢'n ¢®~¥)* gtc. as factors are considered to
—v'h

be zero or negligible. However, Dunkin did not realize the importance of & when the quan-

tity €* is relatively small. More correctly, the determinant of R, should include both et 7%
and ¢®“% terms. In the following, a simpler and more complete procedure than Dunkin’s

method is developed.

Considering a multi-layered system on the halfspace, the displacements and stresses at the

top surface may be expressed as

u ' "
{ 5 ]0 =a a - aj_l (b,+bj) aj+] vt A, 8y An
le Rl(l)
= [ rM | TR ] ] Ay (2.46)

; _ M " . . " Sk, ~u R
where b=E; ¢; E;!, b/=E, e; E;! in which e/=diag( 0,0, ¢/, ¢ /"), and RV and R?
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are products of b}, bj and other transfer matrices, respectively. Since bj'- is a rank one matrix,
the most important contribution to the def(R{’+R{?) comes from the interproduct of columns

with each other. If b; is also rank one, det(R;) can be written as

det(R;) = det(R{V+ R{?)

| ”r;ln r;y] [,3@ ,3@” s
= det + .
AP Pl

= D=l D) + R el P 1)

If b} is of higher rank,
det(Ry) = (ri rlP =i r3) + (P rfd 1P ri?) + P e = 1) (2.48)

(uj+v' DA,

In Eq. 2.47, all terms have the common factor e 7%, The factors in Eq. 2.48 are not

(witv' Db, e(vj~v'j) hy
b

explicit; however, terms having factors of e '/ , and unity which comes from

W —v' Dk ' . . . .
e 7 "7"=1 are all included in the determinant. Therefore, the truncation error due to the

large numerical vatue of ¢’/ is avoided and the accuracy of solution is retained.

If more than one layer of seil have the truncational problem, the solution procedure can
be extended simply by separating each corresponding troubled transfer matrix into the sum of
two matrices. For example, if two layers j and j+1 are involved, displacement-stress vector

becomes

u I . "
l ]0= a - A (bj‘{'b,) (hj+1+bj+]) A2 """ Ay g An

=a; - a;q (bbb thbi bbb a, - a8, A, (2.49)
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or

u R1(4) Rl
s |q = R2(4) A, = R,

The reason for choosing the jth and (j+1)th layers is for convenience. Seclection of any

R](l)
RZU)

R1(2)
R:,(2)

RI(S)

+ R2(3)

+ + A,

two or more layers will not affect the solution procedure. If all b, and b; are rank one, the
determinant of R, may be obtained by an equation similar to Eq. 2.47, i.e. by the sum of the
interproduct of columns of two different Rz(’”). The contributions to the determinant then only

. . SR Y T U
include terms with the factor ¢ 2 7 7 1T

If b; is not rank one, an equation similar
to Eg. 2.48 should be adopted to include other important terms. However, the determinant cal-
culations in Eqs. 2.47 and 2.48 are not explicit when the number of layers having numerical
problems are more than one. In Fig. 2.4, a table is presented giving the contribution of each
multiplication. Each entry in the tabie is the multiplication of the first column elements of the
corresponding matrix in the first column of the table and the second colu.mn elements of the
correspondiné matrix in the first row of the table. The determinant of R, is then the sum of
those nonzero entries. Figure 2.4 shows that if all R;"") are rank one, only the inverse diagonal
entries, i.e. the asterisk positions, exist. However, if the importance of e '/ " and/or ¢ M
cannot be ignored, all inverse lower triangular entries, i.e. asterisk and cross positions, should
be included when obtaining the determinant of R,. The contributions from other entries are

zero. The derivation of the results in Fig. 2.4 can be obtained by considering the characteristics

of the rank one matrix, which is not shown here.

The truncational problem also occurs in the calculation of RyR;! of Eq. 2.18. In this
case, a procedure similar to finding the determinant of R, may be applied. However, the inter-
products of columns between different matrices as in Eqs. 2.47 and 2.48 should be replaced by
the corresponding matrix multiplications. If only one soil layer has the truncational problem, it
can be shown that

( adj(R{DY+ adj(RD))
det(R,)

R B'= (R + R
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- 2 =02 2
ity ’l(i?) 3 rl Ty rd P
il R o ol T e =@ (2.50)

f21 rar ra 4 F4

where adj(R{") is the adjoint matrix of R(’) and
fim I HR 4170 + G 097
if b} is rank one; or
ti= (VAP 4 DEDY + GRFP 4270 + GRFP 41357

if b} is not of rank one. Similar caiculations can be carried out for other .

For two or more troubled layers, a similar table as Fig. 2.4 used for the calculation of # is
shown in Fig. 2.5, in which R,'” represents adj(R,'")/det(R,). The entries in the table
become the product of one row in R{? by one column in E(i). The required row and column
in this calculation depend on the calculated ¢/, and the relations in Fig. 2.4, i.c. asterisk, cross
and zero, remains in Fig. 2.5. If more layers possess the truncational problem, Figs. 2.4 and
2.5 can be expanded simply by mounting other R? matrices in the first row and first column

respectively, and those entries in the inverse upper triangular part are always equal to zero.

In addition, if m layers have trouble with the term e””, the number of matrices in the
first row or column of Figs. 2.4 and 2.5 is 2™. A similar procedure may be applied to a layered

system with rigid lower boundary by changing g, A, to U, in Eq. 2.46.

2. Numerical Integration

Direct numerical evaluation of the integrals in Eq. 2.38 is impossible due to the singulari-
ties existing on the axis of wave number k, when materials of the layered system are elastic.

These singularities come from the zero determinant of matrix R; in Eq. 2.18 or matrix T in
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Eq. 2.20. Ewing et al. [24] avoided these singularities by transforming the integration to the
complex plane and evaluating it by contour integration. If the elastic halfspace is chosen for
the lower boundary, the integral of Eq. 2.18 can be separated into several poles and two branch
cut integrations as shown in Fig. 2.6, The poles which correspond to singularities represent the
Rayleigh surface waves. The surface waves are generated from multiple reflections of waves
between the horizontal interfaces. The branch cuts, which end respectively at the dilatational
wave number ke, and shear wave number kg, of the haifspace, represent the wave refractions
or encrgy transmission into the halfspace. For the case of rigid lower boundary, there is no
energy radiation. The integral in Eq. 2.20 can be transformed into an infinite series of Rayleigh

modes, i.e. an infinite number of poles.

Owing to the complexity of evaluating the integration in the complex plane caused by zero
damping, viscoelastic behavior of the soil is introduced, which also has the additional benefit of
giving more realistic solutions. The equations governing harmonic motions of viscoelastic
material are identical to those of elastic media, except that the elastic constants A and G are
replaced by their complex moduli A and G°. The comptex moduli depend on the viscoelastic

model assumed for the material. For a Voigt solid

A lw) = A (1+im%)

G'(w) = G (1+zw%') (2.51)

where  is the excitation frequency, A" and G’ are constants of viscosity.

If »=A"/A=G"/G is introduced [25], the number of viscous constants is reduced to one.
It implies that the viscoelastic behavior is the same in both dilatational and shear deformations.

Equation 2.51 may now be written as
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A=A (1+inw)
G =G (1+inw)

For a Voigt solid, the energy loss per cycle of harmonic vibration is proportional to the excita-
tion frequency. However, over a considerable range of frequencies, several materials including
rocks and soils exhibit energy loss substantially independent of the frequency of vibration [8].
Such rﬁaterials may be idealized as a constant hysteretic solid which differ from Voigt model in
the value assigned to n. In the voigt model, v is considered to be constant and energy loss is
proportional to . For a hysteretic solid, » is replaced by 2¢/w, where € is a constant, and the

energy loss is then independent of w. Therefore, for a constant hysteretic soild
A =6 (1428
G =G (1+28)

For the purpose of practical use, the following numerical results are calculated for a constant

hysteretic model.

After damping is introduced into the sail property, the poles and branch cuts in Fig. 2.7
will deviate from the real axis and move into the lower half plane. The extent of deviation
depends on the percentage of critical damping in materials. In this éase, there is no singularity
on the real k axis so that direct integration is possible. Although the convergent rate of direct
integration may not be as fast as the complex domain integration, the existence of the factor
1/k* in the integrand of Eq. 2.35 greatly improves the convergence. The upper limit of integra-

tion is truncated to as low as 50.0 in the following numerical results.

When the upper limit of integration is finite, Gaussian quadrature is very efficient in
evaluating the integral. The integrand function is approximated by & polynomial in Gaussian
quadrature. If the integration domain is big and the integrand is complicated, it is difficult to

obtain a good evaluation by the lower quadrature integration through the whole domain. It is
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also inappropriate to use many quadrature points, i.e. a very high order polynomial. In addi-
tion, the integrand in Eq. 2.37, whicf'; depends on the condition of the soil profile, involves
some transcendental functions such as sinh, cosh, sin and cos. However, this difficulty can be
_ treated by partitioning the whole integration domain into smaller subdomains, and adopting an
appropraite order of quadrature integration in each subdomain. The selection of subdomain
depends on the integrand value of that region. There are some inherent domain separators, i.e.
kaj=w/ ij and kﬁj=w/ Csj of the jth soil stratum. If the soil is elastic, choosing kaj as a domain
separator, the values of v= —kaj will convert from real to complex numbers when k
moves form the right side of kaj to the left side on the k axis. A similar relaticn can be found
between v' and kpj. Although the soil is assumed viscoelastic, similar phase conversion will
affect the accuracy of integration, if kaj or kﬁj is included within a subdomain carelessly. How-
ever, the influence of kaj and kﬁj may be negligible if a large critical damping ratio, e.g., 0.10,
is introduced inﬁto the materials. Also, subdomains around kaj and kﬁj are usually more impor-

tant to the ihtegration than those subdomains with higher k values. Therefore, larger sub-

domains are chosen for large values of &k and finer subdomains should be adopted close to kaj

and kﬁj.

Another factor influencing the solution is the number of finite elements under the plate.
[t is reasonable to use a coarse approximation for the lower frequencies and more elements for

the higher frequencies.

Damping in material, thickness of soil layer, and stiffness ratio between layers are three
possible factors which will affect the required number of subdomains along the & axis and the
number of elements under the plate. In the following, numerical solutions are obatined for the
case of only one scil layer over the halfspace or rigid rock. These solutions provide good gui-
dance for the determination of solutions for multi-layered systems. Tables 2.1 and 2.2 show
the required subdomain and element numbers for the single-layer system with different

material dampings and with different stiffness ratios. The results for cases indicated in Tables
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2.1 and 2.2 converge up to five significant digits. In Table 2.1, the subdomain numbers are
satisfactory for wave number &k from 0.0 to 10.0. Eight equal subdomains are exploited for
large k values, i.e. from 10.0 to 50.0. The first columns in Tables 2.1 and 2.2 show the

numbers necessary for the nondimensional frequency, ap=wa/C;,, equal to 0.01, in which a is
the half width of the plate and Cs1 is the shear wave velocity of soil layer. The second columns

show the required numbers for ag eqﬁal to 3.0. For medium frequencies, both subdomain and
element numbers are adjusted between the two values given in the first and second columns.
In addition, 10-point Gaussian integration is employed in each subdomain. Upon numerical
calculation, the influence of layer thickness on the numbers of subdomains and elements is of

minor importance.

Although it may be more appropriate to evaluate the integrals involved in the solution for
the case of figid lower boundary by the residue theorem, direct integration will be used subse-

quently for all solutions.

3. Numerical Results

By employing the above procedure, the response of an infinite rigid strip on a single-layer
system is evaluated for discrete nondimensional frequencies aq from 0.0 to 3.0. In these stu-
dies, the influence of certain parameters, namely, damping in the soil, stiffness ratio for soil
layer and halfspace, and the ratio of layer depth to plate widih, on the plate response arc inves-

tigated. A Poisson ratio of 1/3, which is a fairly representive value for soils, is used in ail solu-
tions. A relaxed boundary condition, which includes only the normal stress under the plate for
the vertical and rocking motion cases and only the shearing stress for the translational motion,

is used so as to compare the results with the results of exact solutions.

Although similar solutions for the single-layer system has been calculated [6], they are
not used herein for comparision, because the solution calculated by the Fast Fourier Transform
method is not as accurate as the solution calculated by the principle of virtual work, especially

when evaluating the peak values.
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In Fig. 2.8, the solution of a viscoelastic homogeneous halfspace is shown and is com-
pared with the elastic solution modified by the correspondence principle [26] to account for
internal damping. The agreement between them is very good for the vertical, translational and
coupling compliances over the whole frequency range considered. Although slightly bigger
differences are observed for the rocking motion, possibly due to the approximate nature of the
correspondence principle, the agreement is still satisfactory. It is therefore verified that the
linear stress model with finite element discretization under the plate provides an accurate and

efficient method to evaluate the response of the surface foundation.

The solutions for different stiffness ratios between layer and halfspace are shown in Figs.

2.9 and 2.10. The ratios chosen are Csf/ Cs|2= 1.0, 3.0, 10.0 and oo, in which 1.0 represents a

system which is totally homogeneous and oo represents a single laver system with a rigid lower
boudary. The real part of the translational compliance exhibits several peaks in the nondimen-
sional frequency range from 0.0 to 3.0. Considering only the case of rigid boundary, the first
peak corresponds to a frequency very close to ag=0.1% which is the first natural frequency of
the soil layer excited by the vertical propagating shear waves, as predicted by the one-
dimensional amplification theory, ag=ma/2H, where H is the depth of the layer. The second
peak which is at ay=0.2a is due to the first natural frequency of the stratum excited by the

vertical dilatational waves, a0=wanl/2HC51. The third peak and those following correspond to

‘the second, third, etc., natural frequencies due to the vertical shear wave excitation. The value
of the third peak is less than that of the fourth, possibly due to the interference of the dom-
inant dilatational waves on the shear waves. Thus, only the dominant dilatational waves affect
the translational response with the influence from other dilatational waves being minor. The
shear wave effect is not shown explicitly in the vertical compliance; therefore, dilatational waves
govern the vertical motion of the plate. There is only one peak shown in the rocking response,
which is at a frequency close to the first natural frequency of the stratum due to the vertical
dilatational waves, since rocking is influenced primarily by the dilatational waves and only

secondarily by the shear waves. The behavior of the coupling compliance is interesting, in the
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sense that the first pcak corresponds to the dominant vertical dilatational waves and the second
corresponds to the third natural frequency for the vertical shear waves. When the stiffness
ratio decreases, the compliance peak becomes wider and lower; thus, approaching the homo-
geneous halfspace solution. This observation is attributed in part to the phemomenon of

energy being transmitted into the lower halfspace.

The compliance solutions corresponding to different ratios of layer depth to plate width,
H/a, are shown in Figs. 2.11 and 2.12. Although the peaks corresponding to different H/a
ratios shift with respeci to the nondimensional frequency aq, they shift very little with respect
to the actual frequency w. When the depth ratio increases, it is apparent that the peak values
decrease, with the plate response becoming closer to the homogeneous halfspace solution. It is
also shown that the rocking compliance corresponding to f/a=5.0 and the compliance for the

halfspace are almost identical over a large range of nondimensional frequencies.

For different damping ratios, £ =2%, 5% and 10%, the solutions are'shown in Figs, 2.13
and 2.14. The real parts of the compliances decrease and their peaks become flatter when the
damping increases. However, the imaginary parts of the compliances, which represent the
energy dissipataion during plate motion, increase with damping in the lower frequency range
and decrease in the higher frequency range. The behavior is possibly due to the larger propor-
tion of energy dissipated by material damping in the lower frequency range but by radiation

damping in the higher frequency range.

The solution for the relaxed boundary condition case can be obtained by removing the
coupling submatrices of the nodal degrees of freedom between the normal and shearing stresses
from the compliance matrix F of Eq. 2.34a. The comparison between solutions with complete
restricted and relaxed boundaries are shown in Figs, 2,15, 2.16, 2.17 and 2.18 for diﬁ“erenf
depth ratios, stiffness ratios and critical damping ratios. The response is completely matched
for the translational motion and has only minor differences for the wvertical motion. The
discrepencies in the rocking compliances are greater; but, they are still acceptable. The

differences between the solutions for two different boundary conditions, i.e. halfspace or rigid
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boundary under the layers of soil, are minor with respect to depth, stiffness, and damping ratio.

Solutions of systems with more than one soil layer can be obtained by the same pro-

cedure. Certainly, the nature of the plate compliances becomes more complicated.

Solutions presented in this section will be employed later to find the corresponding far-

field impedance functions through the method of system identification.
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III. SYSTEM IDENTIFICATION METHOD

A layer of soil with medium depth over the homogeneous viscoelastic halfspace is con-
sidered in the present study. Thlc purpose is to supplement previous works which modelled the
soil as a homogencous halfspace. The hybrid formulation is applied here for the analysis of
plane-strain problems, e.g., long gravity dams or tunnels where it is reasonable to assume two
dimensional behavior, with the far-field impedance matrix being determined by the method of
system identification. Although most of the concepts used are similar to those presented before

{12,13], they are briefly repeated here for the sake of completeness.
A. Hybrid Modelling Approach

1. Hybrid Model

The hybrid model is obtained by partifioning the total soil-structure system into two sub-
structures, namely the near field and the far field. The near field consists of the structure con-
cerned and a portion of the foundation soil within the smooth interface shown in Fig. 3.1. The
far field consists of the remaining soil region outside this interface. In the previous investiga-
tions [12,13] the interfaces were chosen to be hemispherical for three-dimensional problems
and semi-cylindrical for plane-strain problems in the case of a homogeneous elastic hal.space.
Although, one soil layer of medium depth over the halfspace is of interest in this investigation,
the interface remains to be a semi-cylinder as shown in Fig. 3.1c. However, it is not permitted
to intersect the horizontal boundary between the soil layer and the halfspace. Selecting the
interface in this manner keeps a homogeneous boundary; thus, reducing the complexity of the

proposed impedance model.

Both the structure and the soil in the near field may be modelled in discrete form using
the finite element method, thus taking advantage of its ability to accommodate irregular

geometries such as those encountered with embedded foundations. Nonhomogeneous and
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nonlinear soil properties in the immediate vicinity of the foundation can also be modelled by

assigning appropriate properties to the affected finite elements.

In the present investigation, the far field is one soil layer over a halfspace with a semi-
c'ylindrical cavity in the top layer, sharing 2 common interface with the near field. It takes into
account not only the loss of energy due to the waves travelling away from the foundation but
also the energy reflecting back into the near field from the horizontal boundary between the
layer and the halfspace.” To represent this behavior accurately, the development of a far-field
impedance matrix which corresponds to the degrees of freedom at the_ common interface is
necessary. Since a rigorous solution to layered soil problems with a semi-cylindrical pit appears
mathematically intractable at present, the far field is modelled in this investigation by continu-
ous impedance functions distributed over the interface. The far field impedance matrix may
then be obtained by the principle of virtual work. This matrix, when combined with the near-

field equations of motion, eflectively and efficiently simulates the total soil-structure system.

2. Equation of Motien

The equation of motion for the isolated near field subjected to ground excitation along the

interface can be written as
Mii + Ca + Ku = p(9) + () (3.1)

in which u(#) is the vector of nodal point displacements in the near field (including interface
nodes) relative to the motion of the boundary, and 4 and ii are the corresponding velocity and
acceleration vectors. M and K are the near-field mass and stiffness matrices, respectively.
Viscous damping matrix C accounts for energy dissipation in the near field due to material
damping. Vector p(#) contains the components of effective inertia loading on the system due
to earthquake ground motion, and wvector f(f) contains the far-field interaction forces

corresponding to the interface degrees of freedom.
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For steady state response, Eq. 3.1 can be transformed into the frequency domain, giving
(—w™ + iwC + K) Ulw) = P(w) + Flw) (3.2
or
S(w) Ulw) = P(@) + Flw) | (3.22)

where S(w)=—w’M+iwC+XK is the frequency dependent impedance matrix which characterizes
the mass, damping and stiffness properties of the near field. Ulw), P(w) and Flw) are the
Fourier transforms of the displacement, loading and interaction force vectors, respectively, and

w is the excitation frequency.

The vector U of nodal point displacements can be partitioned into two parts: U,
corresponding to the nodal displacements at the boundary common to the near and far fields,
and U, corresponding to the remaining nodal displacements of the near field. Thus, Eq. 3.2a

can then be written in the partitioned form

Snn Snb Un | Pn 0
Because there is no interaction force in the interior of the near field, only vector F,

corresponding to the interface degrees of freedom exists in the vector Flw).

For the isolated far field, the interface dynamic force-deflection relationship is
Sf(m) Uf(w) = Ff(m) 3.4

where Sf(w) is the far-field impedance matrix which has to be determined by a separate
analysis. In rigorous form, it is a full matrix of which the elements characterize the mass, both
radiation and viscous damping, stiffness properties, and layering condition of the far field. It is

complex valued and frequency dependent.
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The equations of motion for the far field are incorporated into the frequency domain

near-field equations by employing the conditions of compatibility and equilibrium at the inter-

face, i.e.,
Uf = Ub

Substitution of Egs. 3.4 and 3.5 into Eq. 3.3 leads to the following equations of motion for

the hybrid model of the entire soil-structure system.

Snn Snb Un Pn
ST Su+s,| [U) =12, (3.6)
or
S(w) Ulw) = P(w) ' (3.6a)

where S(w) is the impedance matrix of the total hybrid system including both the near and far

fields.

3. Dynamic Response

For a prescribed earthquake input motion, the Fourier amplitude, P{w), of the resulting

load vector, p(#), can be obtained from

Ty
P(w) = [p() e 3.7
0

where T, is the time duration of excitation. The time histories of response of the system can
then be obtained by the inverse Fourier transformation of the complex frequency response, i.e.,

solution U(w) of Eq. 3.6, into the time domain using

u(y) = EI;LU(w) e oy (3.8)
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The transform pairs of Eqs. 3.7 and 3.8 can be evaluated efficiently and economically by using

the Fast Fourier Transform (FFT) techniques.

The definition of a realistic input motion to the soil-structure systems is still a debatable
issue. The seismic energy arriving at a particular site depends upon so many factors, such as
fault rupture mechanism, travel path of the seismic waves, and local soil conditions, that a
complete characterization of the earthquake ground motion uniqﬁe to a particular site seems
impossible and impractical. Therefore, it is reasonable and prudent to specify a site-dependent
response spectrum from which time histories of motion can be generated ‘to be used as input to

the soil-structure system.

B. Far-Field Impedance Functions

1. Mathematical Model

The main purpose of the hybrid modelling approach is to find an accurate representation
of both the radiation and viscous damping in the far-field soil region and the energy reflection
from the horizontally layered boundary. The development of the far-field impedance matrix,
S f(cu), requires the solution of sets of partial differential equations with prescribed boundary
conditions at the interface common to both the near and far fields and at the horizontal boun-
dary between the layer and halfspace. Since such analytical solution is difficult io obtain, a
semi-analytical approach is adopted. A dynamic eguivalent Winkler’s assumption which was
used successfully to simulate the far field in the case of elastic halfspace will be extended for
the single-layer system of this study. In this assumption the far field soil region is represented
by different continuous impedance functions in principal directions. This is equivalent to
decomposing the far-field soil region into infinite infinitesimally thin soil elements in the radial
direction which have only principal directional impedances to account for both stiffness and
damping. Also, these elements act indepe_ndently of each other. Although, the material may

not be uniform within each infinitesimally thin soil element due to the soil layer, the proposed
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far-field impedance function may be chosen as a smoothly varying function along the semi-
cylindrical interface. The success of the dynamic equivalent Winkler’s assumption is assured by
placing the interface at a reasonable distance from the structure since the influence of founda-
tion irregularities on stresses and displacements along the semi-cylindrical boundary diminishes

with distance from the foundation.

In general, the far-field impedances can be expressed in terms of a Fourier series involv-
ing the angle ¢. Since for horizontally layered halfspaces the far field possesses material and
geomettic symmetry about the vertical axis, the impedance functions must be symmetric in ¢;

thus giving

SR (R’Ha‘ﬁa Csla Cszsglagb bO) = ?SRH (R,H, Csl’ C52,§1,§2, bo)cosn¢

S¢(R1Hs¢3 C‘sl’ Csyf]"fb bo) = ES¢H(R’H7 Cxl’ Csz’glagb bo)cosn¢ (3.9)
0

in which S and Sy are the complex valued far-field impedances per unit area in the radial and
tangential directions to the semi-cylindrical interface as shown in Fig. 3.2. Coefficients SRn and
S¢" characterize all properties of soil layer and halfspace, which are functions of the interface
radius R, the laver depth H, the shear velocities Cs1 and CS2 and damping ratios £; and &
carresponding to soil layer and halfspace, respectively, and also the non-dimensional frequency
parameter &, defined by by=wR/ CS1 where w is the excitation frequency, Cfm, G; and
p; are the shear moduius and mass density of the corresponding material.

The number of terms required in Egs. 3.9 to properly represent the far field depends upon
the complexity of the soil condition. A constant distributed impedance function along the
interface was appropriaie for the elastic halfspace. However, a more sophisticated impedance
function is required to represent the far field of the single-layer system. For the sake of
minimizing the number of unknown coefficients to be determined, Egs. 3.9 are limited to the

first two terms, i.e., the constant and the first trigonometric terms, in this investigation; thus,



41
giving
Sg (H/R,$,Cyf C, 1,62, by) = Sp+Sp cosg = (g +igr) + p,+il g, Jcosd
Se(H/R.6,Co/ Cy 61,62, b9) = Sy +Sy,c080 = (ny+igy) + (ng +ily, )cosd (3.10)

where the x's and {’s are the real and imaginary parts, respectively, of the coefficients of the

unknown far-field impedance functions.

These continuous far-field impedance functions can be discretized at the boundary nodes
to obtain the far-field impedance matrix. This can be achieved by using the principle of virtual

work expressed as
5w = [su”pds (3.11)

where 8u is the 2-component vector of kinematically admissible virtual displacements on the
interface, and pis the corresponding 2-component vector of real interface forces in equilibrium,

and s is the distance along the interface.

According to the assumed model of the far field, the interface forces and displacements

are related by

HEEMIN
Po) |0 Syl 4 (3.12)

where Sp and §, are the continuous far-field impedance functiens defined in Egs. 3.10.

For consistency, the far-field displacements expressed in cylindrical coordinates will be
transformed into Cartesian coordinates, as used for the near-field finite element model, by the

relation

i singg cosg | | ¥
B S| o

Substituting Eqs. 3.12 and 3.13 into Eq. 3.11 gives
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Spsin’p+S,cos’¢  (Sp—S,)singcosal| [u,
sW = [s<u u

T
> (8g—S,)singcosd SRcosz¢+S¢sin2¢ ]r a¢ (3.14)

U

The displacements on the interface may now be expressed in terms of the same interpola-

tion functions as used for the near-field finite element discretization to ensure compatibility of

01

displacements along the interface. Thus, for element "p" on the interface

Uy N uy
HEANIN a1

where u, and u, are the nodal point displacement vectors at the interface, and N are the finite

element interpolation functions.

The contribution of element "p" to the total virtual work can then be obtained by substi-
tuting Eq. 3.15 into 3.14 , giving

u .
sWP = s<ul ul>, S;Z[ x] (3.16)
. P

uZ
in which,

(Spcos’p+Ssin"p) NN - (Sg—S,)sindcosp N'N

S = fp[ (Sg—S,)singcospNTN  (Sgsin’p+S,c0s2¢) NTN| dé (3.16a)

S7 is the 6x6, consistent far-field impedance matrix in Cartesian coordinates for element "p" on
the interface. Because of the complexity of the terms in Eq. 3.16a, six and seven Gaussian
quadrature points along an element interface are needed for the constant and trigonometric
terms in Eqs. 3.10 ,respectively, to avoid incomplete integration.

The far-field impedance matrix for the entire interface may be obtained by standard finite
element assembly procedure [27], and then used in the hybrid system as indicated by Eq. 3.6 to

solve the soil-structure interaction problem.
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2. Parameter Identification

The unknown far-field impedance funptions Sr and S, are determined by the method of
system identification. System identification is an iterative process in which the unknown param-
eters of the postulated model are determined by systematically adjusting them so that the
resulting model provides a best fit to the actual observed behavior of the system. In the
present investigation, which is concerned with two dimensional problems, the "observed
behavior" is taken as the theoretical solutions for the dynamic response of an infinitely long,
rigid, massless strip footing on the viscoelastic layered halfspace in the vertical and coupled
translation-rocking modes of vibration. These solutions have been obtained in Chapter II by a

proposed stress model under the plate, as defined by

Ay Cyy v
A H{ ™ CHH CHM : (3 1 7)
Ay Curr Cumr

In this equation, the coupling compliance Cyps equals Cyy owing to the reciprocal condition.
The corresponding hybrid model of the rigid strip, with the near field modelled by finite ele-
ments and far field by impedance functions, must reproduce these known solutions within some

prescribed tolerance level.

For a prescribed value of the excitation frequency and for the assumed values of far-field
impedance functions, the equation of motion for the hybrid system, Eq. 3.6, can be solved to
vield the complex displacement amplitudes (compliances) of the rigid massless strip footing.
These comg;]iances depend on the assumed far-field impedances and will, in general, be in error
with the known compliances. To systematically minimize these errors using the methods of
system identiﬁcation; an error function containing the sum of squared errors of all the strip

compliances considered is formed giving,

NC
JB.w) =3 |UBw-C
=1



Iy

NC ‘
= Y{{Re(U)—Re(CHVP+Im(U)—Im(CH)? (3.18)

=1

in which, 8 is an n-dimensional vector containing all of the far-field impedance coefficients (in

the present case B has 8 parameters, ng, {&, etc., given by Egs. 3.10), U=U,(B,w) are the

strip compliances from the hybrid model, C;=C;{w) are the known strip compliances, w is the
excitation frequency, and NC is the total number of strip compliances considered in the solu-

tion.

The error function J{B,w), which can be visualized as a surface in an n-dimensional space
corresponding to the n parameters in the far-field impedance vector 8, is minimized for discrete
values of @ to give the corresponding 8 over the desired range of frequencies. Methods of sys-
tem identification are used to systematically adjust the originally assumed values of the far-field
impedance coefficients. There are several iterative methods [28] which can be used for this
purpose. To speed the rate of convergence, the modified Gauss-Newton, method [29] which
makes use of the information on second derivatives is selected for the present study. The pro-
cedure of this method is to expand the error function J(B,w) into a Tayler’s series, neglecting
the terms of order higher than two, and then equating the gradient to zero which leads to the

equation
g(Bi_],w) + h(Bf‘_l,W) (B, e Bi—l) =0 (3.19)

where B,_; and B, are the parameter vectors at iterative steps i—1 and i, respectively,

(8o — | 3L 8 . 8J
g’ (B,w) PRI '35, (3.19a)
is the gradient vector, and
B 8%/
88> = 0Bi8B,
h(B,0) = : : : : (3.19b)
87 8%J
88,981~ 88,’
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is the nxXn Hessian matrix.

If the Hessian matrix is invertible, B; can be expressed as
Bi=B.)—2h'B 0 g | (3.20)

or
B, =B ~xd, (3.20a)

where d, ; = h ' (8,_,0) g(B,_;,0) is the search direction vector as defined by the modified
Gauss-Newton method, and scalar A is a positive parameter selected to ensure a decrease in

error within each iteration cycle.

The components of gradient vector in Eq. 3.19a are obtained by taking the partial deriva-

tives of the error function at 8,5, i.e.,

8 X _ dRe(U) 8Im(U)
—6,8,- =2 E{[Re(U,—) Re(C)] %, + Um(U)—Im(C)] o5, (3.21)
Similarly, the coeflicients of the Hessian matrix are
pey, e[ dRe(U) dRe(U) §Re(U,)
=2 -[Re(U)~Re(C)} ———>"
38,95, ,=1{ o8, 0B, RelU-RelOI S
Im(U) §Im(U) 82Im(U)
+ HiIm(U)—Im(C)] ——— 3.22
%, 38, [Im(U)—Im(C})] 58,98, } (3.22)

Since the effort required to calculate the second derivatives in Eq. 3.22 is prohibitive, the

coefficients in the Hessian matrix are approximated by

(3.23)

8’/ — 9 NCdRe(U) dRe(U) N 8Im(U) 8Im(U)
aﬁfaﬁk i=1 aBJ aﬁk (')BJ aﬁk

A justification for neglecting the two higher order terms in Eq. 3.22 is that near the minimum

these terms are small compared with the first order terms. The approximation given by Eq.
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3.23 makes the Hessian matrix positive semi-definite, a property that the original matrix based
on Eq. 3.22 does not possess. To ensure that the inverse of the Hessian matrix in Eq. 3.20,
does exist, it is necessary only to add a small positive constant to the diagonal elements. The
added term can be considered as an approximation to the higher order terms ignored in Eq.
3.23, and it improves the search direction. In addition, since the response quantity U (8,w) is
not an explicit function of B, but is obtained through a numerical process involving the solu-
tion of Eq. 3.6, the partial derivatives 3 U,/98 ; in Egs. 3.21 and 3.23 are replaced by finite
- differences A U/AB;.

The error function J(B,w) defines an n-dimensional surface which in two dimensions is
gasy to visualize as shown in Fig. 3.3. The modified Gauss-Newton method is an iterative pro-
cess in which the error is minimized by obtaining successively better estimates of the far-field
impedance vector 8 until a point B* is located \_;vhere the slope of the error surface approaches
zero. The slope of the error profile at a point 8; along the search direction d;_; is obtained by

differentiating the error function with respect to the step size A, giving
ai——l(ﬁi) = _gT(ﬁiaw) diy (3.24)

At any step i—1, a typical iteration cycle proceeds a follows -- The far-field impedance matrices
corresponding to the parameter vector 8,1 are formed as explained earlier and then they are
combined with the near-field finite element equations to give the equations of motion, Eq. 3.6,
for the hybrid model. These equations are solved to obtain the response U, of the rigid strip
and the error is evaluated according to Eq. 3.18. The slope of the error surface, a,_(8,_)) is
obtained by substituting 8, | for 8, in Eq. 3.24 which is then compared against a specified
tolerance on slope taken sufficiently close to zero. If the slope is less than the specified toler-
ance, the error surface is considered flat and the error J is assumed to be minimized. The
parameter vector 8, | in that case is the desired far-field impedance vector 8. If the slope is
greater than the specified tolerance, a line search along the direction d, | is made as shown in

Fig. 3.3. According to Eq. 3.20 each value of the step size parameter A defines a different point
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B, along this direction. Within a linc search, the step size A is systematically adjusted so that a
point B, is obtained where the slope of the error profile is sufficiently small and the error is
minimized in that direction. The parameter vector 8, so obtained is then used as the next

point in the iteration process.

To start the iterative process one must have an initial estimate B, of the far-field
impedance function.. The success of the method depends upon the accuracy of this estimate. If
the starting vector 8 is far from the true minimum, either the convergence may be very slow
or the solution never converges. 1t is possible that, even the iterative process converges to a
minimum, the error at that point is still large. This implies one of two possibilities -- either it
is a local minimum, or it is a global minimum but the model chosen for the far-field impedance
is not adequate. In the first eventuality, one may start from a different set of starting values 8,
until the true minimum is achieved. In the second case, one may try including additional terms
in the Fourier expansion of Egs. 3.9. If that does not work either, ther} it implies that the
chosen model is not realistic. If, however, at the minimum the error approaches zero, it
signifies that the chosen mathematical model for the far-field impedances is adequate and that

the iterative process has converged to the true minimum.

C. Numerical Computation

1. Finite Element Model and Soil Condition

A quadratic planar 9-node element [30] is employed to discretize the near field. The
accuracy and stability of this element has been attributed to the addition of the ninth node to
the center of the more conventional 8-node element. The ninth node increases the flexibility
of the &node element under geometric distortion, which is especially valuable to the wave pro-
pagation problems. A typical finite element mesh selected for system identification procedure is
shown in Fig. 3.4. The dimension of each element varys smoothly to diminish most artificial

reflection of energy due to the nonuniformity of the assumed displacement field within the
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finite elements. The element size chosen is not bigger than 1/4 of the shortest shear wave
length considered to ensure the error due to the finite element approximation being negligible.
This selection is based on the study of one-dimensional wave propagation problem; however,
very good results have been shown for multi-dimensional problems [12,13] by satisfying this
requirement. Since the entire system employed to generate the far-field impedance functions is
a simple rigid strip on the layered halfspace, its dynamic behavior can be decomposed into a
symmetrical and an antisymmetrical motions. Therefore, only half of the system with some

appropriate boundary conditions imposed on the central axis is required.

A single-layer halfspace is considered in the present study. The radius of the common
boundary between the near and far fields, R, has been assigned to 3/4 of the depth of the top
layer, H. The Poisson’s ratios chosen for top layer and halfspace are v;= »»=1/3 which fairly
represent the typical value of soils. To account for the hysteretic behavior of the soil, a small
damping ratio, 2%, is assigned to both the layer and hélfspace. The impedance function will be
evaluated wiIth respect to different stiffness ratios between the layer and the halfspace. This

ratio is defined as CSZQ/ Cfl , where C; and C;, are the shear wave velocities of the layer and the
halfspace, respectively.

The computational detail about the condensation of the near-field impedance matrix, S,
and the assembly of the near-field and far-field impedance matrices through their interface
degrees of freedom to calculate the plate response is almost identical to the previous report

[13]. It is therefore not repeated here.

2. Numerical Results
Since there are 8 unknown parameters, ﬁT=<nR0, LRy Moy Lo MRy LR Moy Ly > 1N

the far-field impedance functions, the number of components of plate response required for
system identification procedure should be more than the undetermined parameters. Two sets
of plate response for R/a=3.75 and 2.8125 are selected, which are obtained through the

numerical procedure in Chapter Il by changing the half width of the rigid strip "a" with respect
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to a fixed depth of layer H. Therefore, the selected interface radius R and the determined
impedance functions are constant for different R/a ratios. Those identified impedance parame-
ters have been plotted in a nondimensional form in Figs. 3.5 to 3.8 as a function of the nondi-

mensional frequency b= wR/ Csl' For any particular frequency, those distributed far-field

impedance functions are directly proportional to the shear modulus, &, of the top layer, and
are inversely proportional to the interface radius R. Therefore, with specified stiffness, depth
ratios between soil layer and halfspace and with associated damping and Poisson ratios of the
materials, the identified impedance functions for any size of the far field with any shear

modulus and mass density can be obtained from these nondimensional curves.

In Figs. 3.5 to 3.8, three sets of impedance parameters corresponding to stiffness ratios of
Csi /Cﬁ =1.0, 3.0 and 10.0 are shown. Because there is only one constant term assumed in
Egs. 3.9 for the homogeneous halfspace, Cé/ Cfi =1.0, the corresponding data are only shown
in the first two figures. In addition,the original impedance data of sz/ Csz1 =1.0 were calculated
upon elastic property, the correspondence principle is then applied to consider the material
damping, 2%, in the soil medium. Although, some figures show a similar behavior as in the
plate response, i.e., the fluctuation in solution for larger stiffness ratio is higher, there is no
obvious relationship between impedance parameter and the propagation of waves. It is due to
the approximate nature of the impedance functions and the numerical iterative searching pro-

cedure.

To show how the impedance function varies along the cylindrical interface, four locations
corresponding to ¢ =07, 30°, 60° and 90° are chosen. Equations 3.10 are applied to calculate
the impedance functions at each location. The impedance functions corresponding to
Cszz/ Csz1 =3.0 and 10.0 are shown in Figs. 3.9 and 3.10, respectively. The impedance values at
¢=0° 30° 60° and 90° are quite different in the whole frequency range considered. The
peaks of ¢=07 are usually the deeps of ¢=90°. It is possibly due to the fact that at ¢=0° the
reflecting waves which influence this location are dominately generated by those waves emitting

from its own direction. However, the wave propagating in all ¢ directions will reflect to the
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free surface, ¢=90°, and then affect the corresponding impedance values. Therefore, the
impedance function corresponding to ¢=0° can be considered as the result of the direct
reflection of waves from the horizontal soil boundary. Impedance functions at ¢=230", 60° and
90¢ are more or less influenced by the waves emitting from other directions and the waves hav-

ing multiple reflections.

There are some nodal points in Figs. 3.9 and 3.10, in which the impedance function at
each location passes. It can be considered at those specific frequencies the corresponding
impedance function may be represented by a constant term in Egs. 3.10. However, those nodal
points are primarily due to numerical calculation. No relationship could be found between the

nodal points and the soil condition.
The identified far-field impedance functions corresponding to sz/ CSZ1 =3.0 are exploited

to calculate the plate response which is then compared with analytic solution in Figs. 3.11 and
3.12. Very good agreement between two solutions has been shown for R/a of 2.8125 and 3.75
in the whole frequency range considered. Although, there are some peaks corresponding to the
natural frequencies of the layered system in the plate response, the error between the two solu-
tions never exceed 5%. Because the calculation is based on the physical frequency w, the range
of nondimensional frequency ay transformed from o for different R/a is not constant. To
investigate the range of applicability of the proposed far-field impedance function, the compli-
ances of rigid strip for R/a ratios of 2.25 and 4.5 are shown in Figs. 3.13 and 3.14. Although, a
somewhat larger error of 15% is observed in the rocking compliance, good agreement between
the caleulated and analytic solutions still remains. In addition, the two R/a ratios used
represent a reasonable range of the interface distance of the near field. For R/a ratio greater
than 4.5, the economy and efficiency of the hybrid modelling diminish because the required
near-field finite element system becomes too large. For R/a less than 2.25, the nonuniformity
of stress and displacement fields due to irregularity of foundation or local nonlinearity of soil

property may affect the accuracy of the solution.
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The identified impedance functions of sz / CfI =10.0 are also applied for R/a ratios of

2.25, 2.8125, 3.75 and 4.5. Fairly accurate solutiocns have been shown in Figs. 3.15, 3.16 and
3.18 by the proposed impedance model for the cases of 2.8125, 3.75 and 4.5. The error
observed in the result of R/a=2.25, Fig. 3.17, is somewhat larger especially in the high fre-

quencies. However, it is still within reasonable range.

There is a tendency that the error corresponding to the larger stiffness ratio is bigger. The
reason is that the identified far-field impedance functions are numerically governed by those
strip compliances with higher fluctuation in the system identification procedure. The errors in
other compliances are then mitigated. It is therefore concluded that the assumed continuous
impedance functions gradually lose its effectiveness to simulate the real soil-structure interac-
tion behavior when the stiffness ratio between layer and halfspace is getting large. It is possible
to include more trigonometric terms in Eqgs. 3.10 to modify current assumption, however, the
computational efforts required by the procedure of system identification increase significantly.
When the halfspace is much stiffer than the above soil layers, those soil layers can be assumed
being underlain by a rigid boundary since only negligible amount of energy is radiated into the
very stiff halfspace. Upon this assumption, there is alternative way in which an analytic solu-
tion is exploited to find an exact far-field impedance matrix, which will be introduced in the

next chapter.
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1V, BOUNDARY SOLUTION METHOD

A. General

If the stiffness of underlying rock is very large compared with the stiffness of the upper
soil layers, one can assume the rock as a rigid base for the soil. Wave propagation in the lay-
ered system is now different from the case of layered soil over a flexible halfspace, since there
is no energy transfer into the rigid rock. Al energy in the soil will reflect and propagate
between the rigid base and the free surface resulting in an infinite number of surface wave
modes. If the soil is purely elastic, for a specified excitation frequency there are a finite
number of real Rayleigh and Love surface modes and an inflnite number of damped Rayleigh
and Love surface modes. These real modes, which do not dissipate energy, radiate energy in
the form of wave propagation; however, the damped modes dissipate and radiate energy in their

travelling path.

There are some disadvantages in using the system identification method to find far-field
impedances for layered soil underlain by rigid rock. The most significant disadvantage results
from the highly oscillatory behavior of plate response with respect to the frequency when the
soil layers are elastic or have low damping. The system identification method minimizes an
error function between true response and calculated response through a set of far-field
impedance parameters. If the proposed far-field model is not able to represent the true boun-
dary impedances, the minimum error may be unacceptably large. Because of the above men-
tioned oscillatory behavior of the plate response, the number of Fourier expansion terms
needed in Eq. 3.9 for the proposed far-field impedances may be so large that the computational
effort is unacceptable; thus, making the system identification approach impractical. Also when
rigid base rock is present, the uncoupled far-ficld impedances along a semi-cylindrical or a
hemispherical boundary around the structure cannot adequately represent the wave reflections
at the rigid boundary. Because of these problems, a boundary solution procedure is used,

which combines finite element modelling of the near field with a true contintum model of the

Preceding page blank
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far field.

B. Boundary Solution Method

The boundary solution procedure simulates a field where the standard finite element
approximation is not feasible or inefficient by.a set of trial functions having parameters for unk-
nown displacements or stresses. These functions which are independent of each other satisfy
the governing equations in their homogeneous forms. The parameters are determined by
approximately satisfying the boundary conditions of the field. Certainly the choice of trial func-
tions is more difficult than the finite element shape functions. However, in the following dis-
cussion analytic solution, which satisfies both equations of motion and some boundary condi-

tions, is determined to substitute for those irial functions.

The boundary solution methed is to minimize the discrepancy between an analytic solu-
tion of the far field and a finite element approximation of the near field at their interface
through the variational principle and the principle of virtual work. It is equivalent to finding a
hyperelement for the far-field region by employing appropriate functions as the element shape
functions. These functions are chosen so that the governing equations of the far field are
automatically satisfied. In Fig. 4.1, the near fiekd which includes the structure is discretized by
finite elements and the far field, which has a semi-infinite domain, is represented by the
degrees of freedom at the interface. The selection of the interface is not arbitrary but depends

on the analytic solution of the far field.

The displacements and stresses at any point on the interface may be expressed by a series

of uncoupled modes of the analytic solution as
u(s) = N(g) ¢
t(s) = G(s) ¢ 4.1)

where N(s) and G(s) are the matrices of modal displacement and stress vectors respectively, ¢

is the vector of corresponding modal participation factors, and s is the distance of the common
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boundary between near and far fields. Also, G(s) is the differential of N(s) multiplied by the

elastic constants.

The finite element approximate displacements on the interface can be written as
u(s) = N(s) U, ' 4.2

in which N(s) is the finite element shape functions exploited in the near field and at the inter-

face, and U, is the nodal displacement vector containing the interface degrees of freedom.

Considering the far field independently and prescribing the interface displacements in
terms of the finite element approximate displacements, i.e., u=1u, the principle of virtual work
gives

S5t (- ds=0 (4.3)

M

where 8t is the variation of forces along the interface.

In abové equation, the error or residual due to the discrepancy of displacements between
the near and far fields is then forced to zero in an average sense. Substitution of Eqs. 4.1 and
4.2 into Eq. 4.3 gives

s’ (fG'Ndse~ [6'NasU,) =0 - (4.4)

Su

Ignoring the arbitrary quantity 8¢ above, modal participation factors can be expressed as

e=(f6™Nas) (f6Nas) U, @.5)
sll s!l
or
c= K:lxchb (4.5a)

in which K= [ "N ds and K= [ "N as.
SH sll
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Since the interface is the only nontrivial displacement boundary of the far field, boundary

integration is thus limited along the interface.

Now considering only the near field and prescribing the interface as a force boundary, i.e.
téking the interface forces as the sum of unccupled modal forces of the far field, the variational
expression of the equations of motion and the force boundary conditions is then given by

J 887 (divor — p) @V — [857GE— 0 ds =0
V 8
where o is the symmetric stress tensor, 5u are the displacement variations of the near field,

and t are the real forces applied in the near field and on the interface.
Integrating the above equation by parts and analyzing the motion in the frequency domain
leads to
[suToqids — [ir(6VT ) dV + [suTwpu a¥ ~ [s57 G~ 0 ds =0 @.6)
s v v 5 '
in which n is the unit normal vector of the near-field boundary, #r is the trace of the multiplica-
tion of two matrices, w is the excitation frequency, and s=s+s,. Since, on=t, 5i=0 on s,
and #(8VaA a)=1r(5ec), where e is the symmetric strain tensor, Eq. 4.6 can be written as
—[ (o€ @) av + o [507pT a¥ + f65T¢ ds =0 4.7)
: V 14 5
Substituting Eq. 4.1 and the finite element approximation of the near field into Eq. 4.7,
the equation of motion due to harmonic loadings becomes
~8UT(fBTD B dV — o?[ pN'N 1)U + sUJ[N'G ds ¢ = —8UP (4.8)
V Vv 5
in which B is the differential of ﬁ, D is the 6x6 constitutive matrix, U is the displacement vec-

tor including the degrees of freedom of both the near field and the interface, and P contains

boundary forces other than the interactive forces at the interface. In addition, the boundary s,
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in the above equation is identical to the boundary s, in Eq. 4.5.
Substituting Eq. 4.5 into Eq. 4.8 and expressing K= fV B”DBdJV, =prNTNdV and
S=K—w’M, one obtains
SU~—-(KIK;'K,,) U, =P 4.9)
or

Snn Snb
S,;Il; Sbb + Sj

u) [,
Ub = Pb : (4.92)

where subscripts "n" and "b" represent degrees of freedom of the near field and the interface,

respectively; S f=~K£K;1KC,, is the far-field impedance matrix corresponding to the nodal dis-
placements at the interface, P, and P, represent the earthquake input or other loadings applied

to the hybrid system. S, is a full symmetric matrix provided K, is symmetric.

Considering two different modes i and j with respect to a specified frequency w, the
corresponding modal displacements and stresses are u;, w;, t; and t;, and the equations of

motion for each mode are
divo, + o’pu, =0 k=iot f

Multipling the equations of motion of mode j by the displacements of mode i and

integrating throughout the far field leads to

fuir(diva'j +wlpu;) @V =10
4

Integrating by parts gives

fufro-j-ﬁ ds — J;tr(Vu,-To'j) dv + wzfvpu,»rujdV = 4.10)

s

or
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Juity s~ [ irie,opav + o[ pufuav =0 (4.100)
s | 4 v

Similarly, by considering the equations of motion of mode i and the displacements of

mode j gives

fufti ds — J;tr(ejai) dv + wzjl:pufu,-dV =0 4.11)

Since tr(e;o;)=1r(e;0,), subtracting Eq. 4.10a from Eq. 4.11 gives

fu,-TtJ- ds = fujTt,- ds (4.12)

§ 5
In Eg. 4.12, s includes both the force boundary s, and the displacement boundary s,.
However, the entire force boundary of the far field except the interface is free from stress,

therefore, only the interface is then involved in the energy integration. In addition,

u =1 g
u; =mn; ¢
ti=2g¢
=8¢

; thus, Eq. 4.12 can be further modified to give

c,-fn,-ng ds ¢, = cjfang,. ds ¢ | (4.13)
§ $

or
Cf(K‘-)ﬁ €= (Kc),»jc,» (4.132)

Matrix K, is then a symmetric matrix.
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In the above derivation, it is implicit that no matter how complicated the continuous far
field is, the boundary solution method can simplify the problem tremendously if the analytic

solution of the far field is available.

C. One Dimensional Wave Propagation

The one dimensional problem can be visualized as uniform plane waves propagating in a
multi-dimensional homogeneous space. A simple example is adopted to verify the boundary
solution method. In Fig. 4.2a, a periodic loading is applied at one end of a homogeneous bar

with the other end extending to infinity. This problem can be solved by the following equation,

du 8%u

al  Paf
To satisfy the radiation condition, the displacement is chosen as

iw(—Z)

u(x,t) = Ae C = y(x)e™!

and the stress is

o(x, 1) = —E' () et

C

where A is an unknown constant; C=+/ E/p is the longitudinal wave velocity of the bar, E is

Young’s modulus and p is the mass density.

There are two ways to calculate the far-field impedances. Since the wave front is uniform
and the cross section of the bar is homogeneous, the impedance may be obtained by simply
dividing the stress by the displacement. Therefore,

__olx) _ ple
S = e EC ipwC (4.14)

A minus sign in the above equation indicates the opposite directions of the displacement and

the stress at the far-field end.
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Another method just follows the derivation of the boundary solution procedure. In Fig.
4.2, the bar is modelled by a few one dimensional finite elements in the near field and the far
field is represented by a dashpot attached at the interface point. Referring to Eqs. 4.1 and 4.2

and ignoring e’ for simplicity, the modal and finite element shape functions are, respectively,

—iwx

Nx)=e ¢

_ex

M(x) = wE—%e c

and
Nix) =1

since there is only one mode corresponding to plane waves.

Substituting the above equations into Egs. 4.5 and 4.9a, it is seen that.

) _ iszO
K, = M) Ny, = —E—’g—e ¢
o uxg
Ky = M)NG)_,, = -—E%e C (4.15)
Kczb iw ,
S =g =BG ieC

The impedance coefficient S, is exactly the same as in Eq. 4.14; thus, the feasibility of the

boundary solution method is verified.

D. Two Dimensional Wave Propagation

The major part of the derivation for the two dimensional inplane wave propagation prob-
lems has been shown in Chapter II. Due to the difficulty in handling the radiation of energy

into the halfspace, the boundary solution method is restricted to the problems of layered soil



61

underlain by rigid rock, in which the analytic solution of the far field can be discretized by
uncoupled modes. With a lower rigid boundary as shown in Fig. 4.3, only Rayleigh surface

waves exist in the inplans motion of the system.

The displacements and stresses at the top surface can be expressed in terms of the

stresses at the lower rigid boundary as

U 0 hi Hy

w 0 by bul| |7 (4.16)
=a, a RN Y — .

Txz 152 n=l Ty Bz tu} O n

Tz o lyy 4
0 n

or
u Tl
sl,= || (4.16a)

To calculate the Rayleigh surface modes, the boundary condition of the free surface,
so=0, is used. For nontrivial s,, the determinant of T, must vanish. This introduces the
characteristic function of the Rayleigh sufface waves. Within the Rayleigh function, besides the
boundary conditions of the free top surface and rigid bottom rock, the assumption of homo-
geneous and infinite horizontal soil layers is aiso implied. Consequently, the interface which
separates the near and far fields is chosen to be vertical throughout zll the layers as shown in
Fig. 4.3. Boundary stresses at the vertical interface are different from the stresses employed in
the calculation of the transfer matrix, which are a,, in the x-direction and r,, in the z-
direction. By employing Eqs. 2.2 and 2.7 , o, and 7, in the jth layer at depth z can be written
in terms of the unknown constants A, as

!A‘

J

[crxx(z)} [—-G(2v2+k§) ~GQu+k])  —2kGY 2kGv'
= 417

7. () 2kGv ~2kGv  =GQI~k}) ~GQI~kD)],

L : (dm2)  —vid~2) w/d=D) —v/(d~2
in which e,'=diag( @i T g T QTR g Ty
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Substituting Eq. 2.6 into Eq. 4.17, the displacements and stresses at the vertical interface

at any depth may be expressed in terms of the displacements and stresses at the successive

lower horizontal interface as

u(z)

—ik —ik v —v u
w(z) —v v ~ik ~-ik R
oD T |-G —GQHK])  —i2kGy' kv | ¥ B |,
7 (2) i2kGv ~2kGv  —GQK—-k}) ~GQK—k}) ol
i
in which
Zk—k2(CH—CH’)+CH ( @k-kp) Hiaysi)
(4]
K (ausmr@i-i3) S CH—2—k—2—(CH—CH’)
Kk} v k
=146 H
=52 (—QuP+k}) CH+ QK k}) CH) —( Qv+ k) (2K k}) ==+4 k*' SH')
B ‘ B
G (—arcvsH+QIe—K3) S kG KD (CH—CH
kg v 4
k2—+ ISHI) r)
Gkﬁ 2
k_(cH-ci) S wsH-12200)
G @ ko v
(2v2+kﬁ) 26 .
((2 2+k,3)—— —2v'SH') CH—-
kg i kB
M(CH—- CH)+CH' ~’k7(—2vSH+(2k2—k§)~Bi,1—
kﬁ ks v

, while SH;, SH;', CH; and CH' are different from the definitions indicated in Eq. 2.8, they are

SH; = sinhv;{d—2)

CH; = coshv,(d—z2)

!

SH;' = sinhv ;' (d;—z)

CH,' = coshv ' (d;—2)

r
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Due to the discontinuities at the horizontal interfaces and the undetermined number of
layers, an exﬁlicit form of the modal displacement-stress vector is difficult to obtain. With the
aid of the transfer matrix between the layer interfaces, the displacements and stresses at the

vertical interface can be written in terms of the stresses on the rock surface as

u(z) 0
(2) 0 ,
(::xfz) = fj(Z) Qqp " Ay Ty 4.18)

sz(Z) Tz

In order to express displacements and stresses as the sum of uncoupled modes, the modal

participation factor needs to be chasen. Since the top surface is free from stress, Eq. 4.16 gives
0 t33(k,') t34(k,') szi
) t43(k,-) t44(k,-) Uzzf "

for the ith Rayleigh mode with wave number &;.

Either 7,," or o,,’ can be taken as the unknown factor of mode i. Therefore, if a;=7,,/ is

chosen,

szi 1
(-4

t33(k,‘) o t43(k[)
t34(k,-) - t44(k,~).

where £, =—

Substituting Eq. 4.19 into Eq. 4.18, the ith modal displacements and stresses at the verti-

cal interface at depth z are
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u(z) 0

i(z) _ , 10
0'1:,{(22) = f;(Z) 3;4.1 SRR T 1] (4.20)

7' (2) €

These modal displacements and stresses will be adopted in Egs. 4.5 and 4.9a to calculate
the far-field impedance matrix for the two dimensional inplane motion. If the soil profile at the
right side of the near field is different from the left side, two independent far-field impedance
matrices for either side have to be evaluated, because Rayleigh surface waves which propagate

in the right region are not the same as in the left region.
E. Axisymmetrical Three Dimensional Wave Prepagation

1. General Equations

In the cylindrical coordinate system, the displacements u, v and w in the radial, vertical

and circumferential directions, respectively, can be written as

Y (ufcosnd + uSinnd)

n=0

=J i(ﬁs”cosne + wisinng) } - 421

n=0

u
Vv
o0

¥ (—Vsinnd + Vjcosnd)
=0

or

T [cos né
- sinng

—nflcosn@
;wn[sinno (4.21a)

: = =
Il

Evﬂ --sinnég
cos né




which contain symmetric and antisymmetric components about =0 axis.
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These generalized

displacements %, v and W are functions of r and z only and do not depend on 8. The purpose

of using a minus sign in the sine term for the circumferential displacement is to obtain the

same stiffness for both the symmetric and antisymmetric components.

The strain-displacement relations expressed in the cylindrical coordinates are

Qs Q>
~ =

~ f=
+
~ =

9y
80
a

=

|

Q

F4
du, Ow
6z+8r

1ou, dv_

r89+6r
law v
r 69 Bz

in which

EH‘

€gg
Vrz
Yo
Yo:

(6

24
,

v
r

-4

r ar r

8

dz

26_,, n
Tea”
n

25 2z

N

rz’
H
X
n
ve:"
n

<l g =

cpsn@
sinn@

cosnf
sinn

njcosnd
sinn@

[cps né
sinxé

—sinné
cosné@
—sinnd
cosné

(4.22)

The symmetric and antisymmetric components of the stresses may also be written as
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20, alcosné
7 \sinn@
20_ nlcosné
. €, 88 Isinng
Oea €oo —n{cosné
- ¢ 25" {sinne
ZZ D z | | (4 23)
T [ = Yol —n{cosne )
z \sinn®
Tro Yro
r ——n|—sinné
gz} Yoz gf ) cosnd

—n|—sinné
lz":"“" cosné

where D is the 6x6 constitutive matrix of the isotropic and elastic or viscoelastic materials.

The general equations of wave propagation expressed in the cylindrical coordinates are

) 042G 0w, , Bus

pii = (\+2G . 38 +2G Y
. 8A __Qé)(m,,) 2_G_aw, '
pw=A+2G) PR Py (4.24)
1 GA do, . P

where, A and G are real or complex Lame’s constants depending on the material,

A= Lraf'jr) +lr g;+%—- is the dilatation, and
= L2
2wy = du_9dw
z Or

are the rotations in r, z and @ directions respectively, and p is the mass density.



67

Sezawa [31] solved Eqs. 4.24 for a homogeneous halfspace by employing the Fourier
expansions of the displacements, i.e., Eq. 4.21, as
= S (A kH, e + B"SH, e — T H, e ) [“’5”9

sinn@ e’

n

w= ):( A"kvH,e™" + C"ICH,e™"?) [‘;‘l’;,’jg fot (4.25)

RA —vz n Iyt vz n,t H ~'zy {—sinnd i,
v~E(A kH,,e + B"H, e™v? — C"vy He )[com&et

dH,(kr)
where k& is the horizontal wave number, H,,’=——Ld;——~, v and v’ are the same as in Eq. 2.5,

A", B" and C” are constants. Also, H,=H,"? (kr) is the second kind of Hankel’s function of
order n. H, and the exponential terms represent waves that propagate away from the source in

the r and :z directions, respectively.

To write Eq. 4.25 in matrix form, the nth Fourier components of the displacements are

n
n anl _;_Hn _viHnl ‘ "

e—'UZ

A
= |-kvH, KH, evs B (4.26)
C

=l Fl =i

l:—kH,, H, -U—H

Owing to the existence of the soil layers, not only the outgoing waves but also the incom-
ing waves in the z direction must be included. Also, the following derivations are applicable to
all components of the Fourier expansion, the superscripts "»" and "™ will no longer be held for

simplicity. Eq. 4.26 is then expanded as

! n ’ ’

. KH, TH, —vH,

wit=|—kvH, KH, ev? B,
v

ka,, H —v2H,
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kH,' —':~H,, v'H,’

evz A2
+ | kvH, k*H, ev'? B, 4.27)
v'z
LxH, H, vIH, G
r r
or
H, 2
u " rH" k k —v'
wh= kH, —-v v k kleA (4.27a)
v 11
i, H,

where e =diag( e7v%, "%, ¢7V%, ¢"2, ¢, ") and A =(A4,,4,,B,B,,C;,C) 7.

2. Transfer Matrix

To set up the transfer matrix between layers, the continuity of displacements and stresses
at the layer intetface must be satisfied. In cylindrical coordinates the contacted stresses 7,,, o

and 7,, may be obtained by Eqs. 4.23 and 4.27. After some adjustments, the displacements and

stresses can be written together as

' n
H, 2H,
u kH,
w
' n

Tz H, r H,,
L kH,

I |24, H,
Ty, r

LH, H,
| r
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k k -’ v
—v v k k
—-2kGv 2kGv  GQK—k}) GQK—k})
2 2 g2 : ' e A (4.28)
GQi—k3) GQK—ki) —2kGv 2kGv
1 1
-Gy GU'J
or
E!
Y = H(r) [ E"] e(z) A= H(r) Ee(2) A’ (4.28a)

~ where A'= ( A4y, 4,5, Cy, Cy, By, B)T.

The purpose of rearranging the displacements and stresses in this order is to decouple the

characteristic equations of Rayleigh and Love waves.

Shifting the origin of the z axis to the jth horizontal interface, the displacement-stress
vector at the jth and (j+1}th interfaces can be obtained by employing the material properties of

the jth layer,
Yj+1 = H Ej ej(hj) AJ’ : (429)

The displacements and stresses at the jth interface are then written in terms of the dis-

placements and stresses at the (j+1)th interface as

Since h=d;;1—d; is the thickness of the jth layer and e is a diagonal matrix, the above

equation becomes
Y_] =H Ej ej(—hj) E;l I'Iw1 YJ+1 (4.31)

or
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Yj == H aj H_] Yj+l (4.31a)
where
a/
S
in which
2’(2 Y ] 2 ! ¥
== (CH-CH)+CH _((2k2—k,5.)———2 SH")
B
~kz—(—2vSH+(2 K—kZ) SH CHw—zﬁ( CH—-CH')
k3 v ki
a =
2k°-k3)? SH'
G(—‘”‘;2 vSH+ 2ﬂ) S, 2kG(2k2 k3) (CH—CH")
kg kg v k3
2k*—k2)?
2kG(2k2 - g HCR) sH_4i2,
ki ki kﬁ
—( 'SH'—~ szH
Gkj B v kg
CH' SH—k2
G 7 ) ka (w
2"2 =~(CH-CH}+CH' —f(ZvSH—(Zkz—kE)-S—},I
k3 kg v
-k or- B ovsry  cu-2k (e
k k32
i ]
and
. _SH
) CH Gv'
a = —GU’SH’

CcH'

, a; is the transfer matrix of the jth layer, and
CH = coshvh, CH'=coshv'h

SH = sinhvh, SH' =sinhv'h
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The displacement-stress vector at the top surface can thus be expressed in terms of the

displacement-stress vector at the bottom rigid boundary as

Yo=Haa - a,  H'Y,=HTH'Y, (4.33)
or
u m t;z‘ L3 ha u
w by In I3 4 w
Trz - 1 B2 B3 Iy - Tr @.332)
= ’ 234
L 41 Iy lay Iy G2
v Iss Ise v
To:z)g lss les 79z},
If there is no slippage at the surface of the rigid rock, the stresses at the top surface are
Tz By Iy Trz Trz
Tof = H 43l HJ_I Onf =~ H’ T’ H,‘l - (434)
Toz 0‘ lg6 Toz|, Toz],,
where
H, an
H = kH,
n
—Hn Hn'

If the top surface is free from stress, the nontrivial stresses at fhe rigid boundary is
guaranteed by equating the determinant of H T' H ! to zero. Since the determinant must van-
ish for arbitrary r, the possible solutions are restricted to k=0 or to the case where the deter-
minant of T equals to zero. However, k=0 representing standing waves occurs only when the
excitation frequency is equal to one of the natural frequencies of the layered system and when
the soil is purely elastic. It is also a trivial solution. Therefore, the characteristic values of &

come from
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33 tag — g iz =10 (4.35)
and

tes = 0 (4.36)

The solutions of Eq. 4.35 represent the wave numbers of the circular Rayleigh waves with
respect to a specific frequency w. Similarly, Eq. 4.36 generates the wave numbers of the circu-
lar Love waves. Although, the derivation of Rayleigh functions is slightly different between the
two and three dimensional problems, i.e., i=v/—1 exists in the transfer matrix of the two
dimensional case, the final characteristic equations are the same. Therefore, the wave numbers

of Rayleigh surface modes are identical in both cases.

3. Modal Stresses and Displacements

The derivation of the transfer matrix simply depends upon the boundary conditions of the
top free surface and the bottom rigid rock; therefore, in order to use boundary solution
method, the interface between the near and far fields is again chosen vertically throughout all

the layers as shown in Fig. 4.3.

The boundary stresses at the vertical interface in the cylindrical coordinates are o, 7,
and 7,5. Using Eqgs. 4.22, 4.23 and 4.27, the nth Fourier components of the boundary stresses

are obtained as

o, et ~2kGy Gy GQI—Kk}) GQIE—k)
ro b= | H —’}H,, —G(v+k}) —GQv+k})  2kGV' —2kGv'
T8 =Gy GV
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H' 2
(- +"7Hn> (ﬁHn'—ﬁHN)
! 4 2kG 2kG —2Gv 2G' ,
LT A o K :
(rH,, rzH,,) ( . +( T VH,)
or
s = (H1 Fl + H2 Fg ) e A (4373)

Eliminating the common factor A’ in Eqs. 4.29 and 4.37, o,,, 7,, and 7, can also be writ-
ten in terms of the displacement-stress vector at the rigid rock. Therefore, the boundary

stresses in the jth layer at depth z become
Ej(Z) = (H] F1 + H2 F2 )j ej(dJ'—Z) EJ_I A1 0t Ap I’I_l Yn (438)

where e(d—z) =diag( eu(a‘-—z)’ e“—v(d—z), eu’(d—z), e-—u'(d—z)’ eu’(d—-z), e—v'(d—z))'

To write the above equation explicitly, F;, e and E™! are multiplied together as
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where SH, SH', CH and CH" are functions of z as in Eq. 4.18.

Due to the discontinuity between different layers, the modal shape functions of displace-
ments and siresses cannot be shown explicitly. However, the transfer matrix, Eq. 4.32,
corresponding to each layer plays an important role in the calculation of the displacements and

stresses at any point on the vertical interface.

It is neéessary to choose modal participation factors of the Rayleigh and Love modes
before determining the corresponding displacement and stress functions. The characteristic
equations corresponding to the Rayleigh and Love waves have been shown in Eqs. 4.35 and
4.36, respectively. Owing to the decoupling of the Rayleigh and Love waves, the boundary dis-
placements and stresses corresponding to different kinds of surface modes can be evaluated

individually.

If the ith mode of the Rayleigh wave number is substituted into Eq. 4.34, one obtains

t33(k,-) t34(k,~) Tz ]
l‘43(k,—) f44(k,—) H! oLt =10 (4.39)
tg6(k;) Toz, 0

The numerical values of the stresses at rigid rock are not required; therefore, they may be

combined with H™! to give
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t33(k,») t34(k,—) o; 0
(k) tag(k) Bit=10
tss (k)| | i 0

Since #(k)=0 and £;3(k) t(k)— n4(k) 133(k)=0 with respect to the Rayleigh wave

number k;, the above equation can be simplified to

t33(k;) t34(k;) l O
f43(k,-) I44(k,-) Eta; =10 (4.40)
tﬁﬁ(k,‘) 0 0

_ t33(k,;) _ t43(k,-)
(k) B tuk)’

in which ¢, = and «; is the unknown modal participation factor of the

ith Rayleigh mode. Similarly, if k; is the wave number of the jth Love mode, Eq. 4.39

becomes
tg}(kj) f34(kj) 0 0
(k) ta(k) 0y, =10 (4.41)
0

tﬁﬁ(kj)

, since r33(k;) 144(k))— 134(k;} 143(k;)=0. v, is the unknown modal participation factor of the
jth Love mode. When choosing «; and y; as the modal participation factors of the Rayleigh
and Love modes, respectively, the corresponding displacements and stresses can be determined
by Eqgs. 4.33 and 4.38 after substituting for H! Y,, using (0, 0, 1, £, 0, 0) 7 for the Rayleigh
modes and (0, 0,0, 0,0, 1)7 for the Love modes. Since the calculation of the Rayleigh and
Love waves can be separated, it iS not necessary to evaluate the whole 6x6 transfer matrix for
each- wave mode. The calculation of the modal displacements and stiresses of the Rayleigh

waves requires only the E' of Eq. 4.28a and a’ of Eq. 4.31a. Similarly, only E' and &" are

required for the calculation of the Love waves.

The final modal displacements and stresses of the nth Fourier components at depth z on

the vertical interface can be written as
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for the Love waves. r; and 1; are functions of the specific Rayleigh and Love wave numbers,
respectively, and depth z. They are calculated by employing' the previous equations such as
Eqgs. 4.31, 4.38, 440 and 4.41. In addition, r; and 1; are independent of thel order of the
Fourier component. The computational effort is thus greatly reduced if a large number of the
Fourier components are required to simulate the general motion of the near-field. Using Eqgs.
4.42 and 4.43, the boundary displacement and stress formulations for the axisymmetrical three
dimensional problems are found. These equations are used in the boundary solution method to

generate the far-field impedance matrix as required for a soil-structure interaction analysis.

In the axisymmetrical three dimensional problems, there are some interesting observa-
tions to be noted. If an axisymmetrical structure is in simple torsional motion, all displace-
ments and stresses in Eq. 4.43, except v and 7, are zero. The corresponding far-field

impedance matrix can be obtained completely by employing Eq. 4.43 with #=0, which means
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that only the Love waves will radiate energy into the far field. If the same structure is sub-
jected to symmetrical vertical loading, only the Rayleigh waves will carry energy away from the
near field. On the contrary, the far-field impedance matrix can be obtained by choosing r»=0 in
Eq. 4.42; however, Eq. 4.43 is no longer adopted to ensure that v and 7,, are zero. If more
Fourier components are needed to simulate the structural dynamic behavior, n is greater. than
zero. In this case, both the Rayleigh and Love waves are responsible for transmitting energy

through the interface between the near and far fields.

The numerical computation of the far-field impedance matrix can be reduced using the
characteristics of matrix K.. In matrix K, the elements corresponding to two different Love
modes always vanish. Thus, if only Love waves are present, K. becomes a diagonal matrix.
To prove this advantage, two different Love modes i and j are considered. Substitution of the

corresponding displacement and stress functions into Eq. 4.5 leads to

(K., = f(cr,,j Ukt V) ds = f(cr,,j Ut g, v,) ds= (K.);

in which ds=r;d# dz for the axisymmetrical problems, r; is a constant, and the integrations

with respect to # and z are independent.

Employing Eq. 4.43, the above equation becomes

1 mH/’ 2
n ' n n n n
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depending on the Fourier component number n, and H,' and H, are functions of k and r,

only.

Since W); is not necessarily equal to W), the only way to satisfy the above equation is to

réquire that f11[111d2=0- In this case, (K.) and (X.);; will vanish. A similar condition can be
z

found in two dimensional antiplane motions. However, this numerical evaluation advantage

does not exist if the off-diagonal entries are related to the Rayleigh waves.
F. Numerical Results

1. Wave Number, Numerical Integration and Near-Field Model

Because the lower boundary is taken to be rigid, the response of undamped structures
tends toward infinity at resonance when the soil is elastic. It is therefore practical to include
some internal damping in the soil system to reduce the peak values of response so that more
realistic behavior of the soil can be obtained. Results shown later are calculated using the con-

stant hysteretic model, i.e. Eq. 2.33.

It is necessary to determine the wave numbers of the Rayleigh and Love modes before
evaluating the boundary integration of Eq. 4.5. The characteristic equations of Rayleigh and
Love‘ waves have been shown in Egs. 4.35 and 4.36, respectively. They are complex-valued
transcendental functions. In general, the roots of these nonlinear equations cannot be
evaluated straightforward, They usualiy must be found by a numerical searching procedure
with good initial approximations. The nature of complex value of these functions further com-
plicates the calculation. These difficulties can however be overcome by employing Muller’s
method [32], which éan find any prescribed number of roots, real or complex, of arbitrary func-
tions efficiently. Muller’s method, which is an extension of the secant method, approximates a
root using a parabola which goes through three existing points. If the roots are real, this situa-
tion may be pictured graphically as in Fig. 4.4. The process is then repeated using three out of

four known points as basic approximations. Muller’s method is iterative, converges almost
PP > g
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guadratically in the vicinity of the root, and does not require the evaluation of the derivative of
the function. To avoid the repeated detection of the same root during iteration, all known
roots shouid be factored out of the function. Another advantage of the Muller’s method is that

only a rough initial approximation of the root is needed.

Since the Rayleigh and Love equations are even functions of wave number k, if k,, is one
root of either one of them, —k,, should be another roct. In addition, in the development of
the far-ﬁéld impedance matrix, only those modes which decay or transmit energy in the positive
x or r-direction are included. Therefore,if k=a+iB is a modal wave number, only modes with
negative 3 values need be involved. If B=0, which occurs in the elastic case, only modes with
positive wave number are chosen in the calculation. Although the number of surface modes in
the system of soil layers over rigid boundary is infinite, it is not necessary to include all of them
in the calculation. Since surface waves dissipate energy in the path of propagation, the required
number of surface modes can be determined by considering their individual contributions to

the dissipation of energy from the near field.

Gaussian gquadrature is always a good selection for finite domain integration. The evalua-
tion of the boundary integral can be achieved by using Gauss-Legendre integration along each
element boundary at the interface. Since transcendental functions are involved, the required

number of quadrature points needs to be determined numericaily.

The quadratic 9-node element is again selected for the near field because of its accuracy
and stability in wave propagation problems. Although, the dimension chosen for the 9-node
element must be no greater than 1/4 of the shortest shear wave length for which accuracy of
representation is required, its selection here is based on the study of one dimenaional waves
propagating through a semi-infinite rod. For the two dimensional inplane and three dimen-
sional axisymmetric problems. the corresponding element size will be investigated subse-

quently.



80

2. Two Dimensional Problems

The vibration of an infinite rigid strip over a single-layer system is considered to investi-
gate the accuracy and efficiency of the boundary solution method. In Fig. 4.5, three different
meshes with 3, 4 and 6 elements at the vertical interface are used and 6 quadrature points are
applied along each element. The nondimensional frequency, ay=wa/C;, is used in the calcula-
tion over the range 0.0 to «, where a is the halfwidth of the plate and C, is the shear wave
velocity of the top layer. Therefore, the element dimensions of the 3 meshes shown

corresponding to ag=m are 1/3, 1/4 and 1/6 of its shear wave length, respgctively.

The calculated plate compliances are shown in Figs. 4.6 to 4.8 and are compared with the
solutions e_valuated by Waas’ semi-analytic transmitting boundary in [33]. Good agreement is
observed between them. The very small differences shown may come from the different finite
element discretizations used in the near field by the two methods. Results using different finite
element meshes, i.e. 3, 4 and 6 elements at interface, are also compared. The maximium error
observed between the coarse mesh, 1/3, and the fine mesh, 1/6, is in the rocking response,
which is less than 4%. In other responses the difference is lower than 1%. The bigger error in
the rocking response is possibly due to the fact that the stress variation under the rigid plate in
rocking motion cannot be sufficiently approximated using only a few, less than 3, elements. It
is therefore concluded that 1/3 of the shortest shear wave length considered can be used as the

element dimension with the errors of solution being limited to 4%.

Although 1/3 of the wave length as the element dimension is satisfactory, 1/4 is used
conservatively to investigate other important factors such as required quadrature points along
each element boundary at the interface and the necessary number of surface modes in the far

field.

In Fig. 4.9, results based on 3, 4 and 6 quadrature points along each element at the inter-
face are calculated. Since the differences between them are difficult to resolve from the figures,
only one set of data is plotted. Therefore, if the element dimension is satisfied by the wave

length requirement, integration by 3 quadrature points along each element boundary can bring
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very satisfactory result.

The number of modes required is another important factor, which dominates the compu-
tational effort needed to generate the far-fleld impedance matrix. In the two dimensional
inplane fnotion, there is a common factor e~ in both the displacement and stress functions.
If k=a—iB is chosen, ¢~ ** becomes e;‘*x e~"*% where e '** represents the wave propagating
with horizontal wave length 27/ and ¢ #¥ is a decay factor which represents the attenuation of
the wave amplitude. If the factor e " of a specific surface mode at distance xg is very small,
it may be considered that this mode has already dissipated_most of its energy before reaching
the boundary common to the near and far fields so that it can be ignored in the calculation. To
investigate the necessary number of wave modes, the intérface is located at a nondimensional
distance xp/a=1.50 from the central axis. Results including surface modes vﬁth the largest 8
limited to 5.0, 8.0 and 10.0 are calculated. The differences between them are less than 0.5%.
The corresponding numbers of Rayleigh modes used in the above analysis are listed in Table
4.1 for ag=0.057r and ag=1, respectively. The numbers of modes for medium frequencies are
adjusted between values corresponding to the above two frequencies. In Table 4.1, it is shown
that the solution can be obtained accurately using only a few modes. The freedom of choosing
the number of modes shows the flexibility of the boundary solution method. Further reduction
of modes is possible; however, the computational cost paid for the far-field impedance calcuta-

tions is already minor compared to the cost paid for the near-field finite element calculation in

the soil-structure interaction analysis.

The sclution calculated by the boundary solution method is also compared with the solu-
tion of the proposed stress model under the plate in Chapter II. A very good agreement
between them is observed in Fig. 4.10. Again, the biggest error is in the rocking response for
the case of coarse finite element discretiiation in the near field. However, this error is within

89%.
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3. Axisymmetrical Three Dimensional Problems

The modal displacement and stress functions of Eqs. 4.42 and 4.43 are employed in the
boundary solution méthod to evaluate the behavior of a simple circular disk resting on a
sihgle—layer system. Since there is no available analytic solution, the impedance instead of the
compliance of the circular disk calculated by Kausel’s semi-analytic transmitting boundary [33]

is used for comparison.

Similar investigations to those previously described for the two dimensional problems,
which consider element dimension, quadrature points and number of modes, are pursued for
. nondimensional frequencies ay=wa/C, in the range 0.0 to 2.0, in which a is the radius of the
circular disk. The elements chosen have dimensions of 1/2, 1/3 and 1/4 of the shear wave
length for ay=2.07 as shown in Fig. 4.11. In Figs. 4.12 to 4.15, results of different finite ele-
ment meshes are shown and compared with the solution calculated by Kausel’s semi-analytic
method. The agreement is very good for nondimensional frequencies as high as ago=1.5m. For
higher frequencies, the solutions based on an element size of 1/2 of the shear wave length for
ap=2.0m become worse, which means that the corresponding finite element mesh in the near
field is unable to transmit waves with freq.uencies higher than ap=1.5#. However, the solutions
using element sizes of 1/3 and 1/4 of the shear wave length for @y=2.0ar are quite satisfactory.
There is a peak shift which octurs in the high frequency range between solutions by the boun-
dary solution method and the semi-analytic method. This discrepancy may come from the
different finite element discretizations at the interface, where it is approximated by two-node
linear elements in the semi-analytic method and by the more efficient quadratic elements in the
boundary solution method. In addition, the peak shift is more significant in the torsional and
translational motions than in the vertical and rocking motions. This is because the behavior of
the first two motions is governed by the shear waves, while the latter two are governed by the

longer dilatational waves.

Solutions using 3, 4 and 6 quadrature points along an element boundary at the interface

have been_ calculated. The differences between them are not obvious in Figs. 4.16 and 4.17. A
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similar conclusion, as in the two dimensional problems, is reached. If the element dimension is
less than 1/3 of the shear wave length of the highest frequency considered, 3-points integration

aleng an element boundary can produce very good results.

Table 4.2 shows the numbers of the Rayleigh and Love waves employed for a;=0.17 and
ay=2.07 corresponding to the largest = 5.0, 8.0 and 10.0, respectively, where ry/a=1.333 is
chosen. The differences between the results using different 8 values are also negligible, i.¢. less
than 0.5%. Therefore, only a few Rayleigh and Love modes are required in the far field to give
a very accurate solution. The numbers of surface modes for medium frequencies are between

the two numbers corresponding to ag=0.1x and 2.07 respectively.

Moreover, because the 9-node ring elements are used to approximate the near field in the
axisymmetrical problems, the agreement between the solutions using different finite element
meshs in the case of a circular disk is not as good as that described previously for the two

dimensional rigid strip, where 9-node planar elements were employed.

4. Compariscn with Semi-Analytic Method

There are some advantages in using the boundary sclution method over the semi-analytic

transmitting boundaries introduced by Waas and Kausel.

(1) No eigenvalue solution is required in using the boundary solution method, only the modal

wave numbers need to be determined by the Muller’s method.

(2} The computational effort required is less. In the boundary solution method, the major
operations necessary are m’ n to generate K. and K,,, m*/6 for LU decomposition of K,,
m’n for K;! K, and mn? to generate 8 +; in which ¢ depends on the operations required
to calculate thé transfer matrices of Egs. 4.20 and 4.31, m is the number of modes
employed, and n is the degrees of freedom on ihe interface. Also, m is usually small

comparing with a.

The total operations required for the semi-analytic method are pn® for the solution

of the eigenvalue problem and for some intermediate manipulations and gn’ to generate
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4)

(%)
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the impedance matrix, where g is greater than 1, p is usually a large number which
depends dominantly on the iterations required to solve the quadratic complex-valued
eigenvalue problems. It is therefore concluded that the computer cost to generate the
far-field impedance marix increases quadratically by the boundary solution method and

cubically by the semi-analytic method as # increases.

It is not necessary to recalculate the modal wave numbers in the boundary solution
method if a different finite element mesh is used in the near field. However, all calcula-

tions must be repeated when using the semi-analytic method.

Any kind of element may be applied in the near field without increasing the computa-
tional effort in the boundary soiution method. However, the use of sophisticated ele-
ments along the interface, e.g. quadratic element, will signifcantly increase the cost of
computation in the semi-analytic method. This increase is mainly due to the required

solution of the eigenvalue problems.

In the boundary solution method, the selection of the number of surface modes is flexi-
ble. In the semi-analytic method, all eigenvectors are required to ensure the inversion of

the matrix of eigenvectors.

5. Remarks

If the soil is elastic and if the excitation frequency is over the first natural frequency of

the system, there is a finite number of real modes, i.e. their wave numbers are real. After

introducing damping in the system, these real modes switch to damped modes but with rela-

tively small imaginary parts, 8. It is important to include all these modes in the calculation of

the far-field impedance matrix, because most energy is carried away from the near field by

them.

The tfruncation error mentioned in Chapter Il exists in the calculation of the Rayleigh

wave numbers. The same procedure described in that chapter must be applied in finding the

Rayleigh wave numbers. However, the truncational problem never occurs in the calculations of
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Love wave numbers [21] and the far-field impedance matrix.
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V. CONCLUSIONS AND RECOMMENDATIONS

Based on the numerical results presented herein, several conclusions can be drawn:

1.  The far-field impedances as generated by the system identification method for the case of
a single-layer halfspace and by the boundary solution method for the case of multiple
layers having a rigid lower boundary can be used effectively and efficiently in the hybrid

modelling of soil-structure interaction.

2. The continuous impedance functions for the single-layer halfspace should be applied

within the range 2.25< R/a<4.5.

3.  The formulation of the boundary solution method is independent of the near field.
Therefore, the dynamic behavior of an arbitrary semi-buried structure can be analyzed
and the interface between the near and far fields can be placed as close as possible to the

structure.

4, The diniension of 9-node element for wave propagation problems must be no greater than

1/3 of the shortest shear wave length considered.

5. In the boundary solution method, a few modes of surface waves and the 3-point Gaussian
quadrature along a finite element boundary suffice to obtain the correct far-field

impedance matrix.

6. To calculate the far-field impedance matrix for the case of layers of soil on rigid rock, it is
more advantageous to use the boundary solution method than the semi-analytic method

introduced by Waas [15] and Kausel [16].

Both methods presented herein for finding far-field impedances as used in the hybrid
model can be extended to accommodate more sophisticated problems. The following studies

are recommended:

Preceding page blank
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The continuous far-field impedance functions distributed along a semi-spherical boundary
for three dimensional problems involving a single-layer halfspace can be obtained by the
system identification method by involving an additional impedance component on the

interface in the circumferential direction.

There is a disadvantage in the boundary solution method for deep soil deposits due to the
large number of finite elements needed in the near field. However, a2 hyperelement
approach, as described in Refs. 33 and 34, may be substituted for the lower region of the
near field to greatly reduce the degrees of freedom. The boundary solution technigue or

Ritz vectors [35] may be used in defining the hyperelement.

The boundary solution method can be extended to solve the general three dimensional
soil-structure interaction problem, in which a small cylinder discretized by the solid finite
elements is chosen to model the near field. The displacements and stresses in the far field
can be approximated by adopting a finite number of Fourier components [36]. The gen-
eralized . far-field impedance matrix corresponding to the degrees of freedom on the

cylindrical surface can then be obtained.

If only surface waves propagating in the system of soil layers with a rigid lower boundary
are considered as the earthquake excitation to the structures, a formulation which is simi-
lar to the boundary sclution method can be derived to find the consistent earthquake
‘input to the near field. In this formulation, both the incoming and outgoing wave effects

must be included in the displacements and stresses of the far field.
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£=1002 £ =0.05
c/c:
dg = 0.01 dp = 3.0 dp = 0.01 ap = 30
3.0 36 28 26 20
10.0 30 24 22 18
oo - - 18 14

TABLE 2.1 NUMBER OF SUBDOMAINS FOR INTEGRATION

£E=002 £ =005
c2/c?
=001 | a@y=30 | a,=0.01 | a,=3.0
3.0 26 44 26 44
10.0 34 52 32 50
oo - - 36 54

TABLE 2.2 NUMBER OF DISCRETE ELEMENTS UNDER RIGID STRIP
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B |a=0057 |ag=m
5.0 7 7
8.0 1 11

10.0 12 13
00 - oo

TABLE 4.1 NUMBERS OF RAYLEIGH MODES FOR DIFFERENT IMAGINARY
PARTS OF WAVE NUMBER ( £=0.05, H/a =2.0, »=0.30)

ap=0.0lw ag = 27
B
RAYLEIGH | LOVE | RAYLEIGH | LOVE
5.0 7 3 9 5
8.0 11 3 13 6
10.0 13 6 5 8
(o] oS o0 oo o0

TABLE 4.2 NUMBERS OF RAYLEIGH AND LOVE MODES FOR DIFFERENT
IMAGINARY PARTS OF WAVE NUMBER ( £=0.05, H/a = 2.0, v=1/3)
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FIG. 2.1 SURFACE FOOTING ON LAYERED SOIL SYSTEM



o

«j-1 J Jj+l---n

FIG. 2.2 DISCRETIZATION OF SURFACE FOUNDATION
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U, = (f” )

FIG. 2.3 DYNAMIC LOAD-DISPLACEMENT RELATIONSHIP BETWEEN TWO NCODES
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o Rzm R2(2) R2(3) R2(4)

RV E 0 0 0 *

R | 0 0 * x
R | 0 * X X
R % X X X

FIG. 2.4 CALCULATION OF DETERMINANT OF R,

. 1‘{2(1) ﬁg(z) §2(3)' 1—12(4)

R | 0 0 x X
R1(3) 0 " % %
R® | = % x x

FIG. 2.5 CALCULATION OF R; Ry
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~
~

FIG. 2.6 CONTOUR INTEGRATION ON THE COMPLEX PLANE

?Im(k)

BRANCH CUTS

FIG. 2.7 BRANCH POINTS AND POLES MOVING FROM REAL AXIS
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|__~STRUCTURE

N /" SOIL
. .- LAYER

HALFSPACE

(a) STRUCTURE IN LAYERED HALFSPACE

(b) NEAR FIELD ‘\
INTERFACE

SOIL LAYER

HALFSPACE

(¢) PAR FIELD

FIG. 3.1 HYBRID MODELLING OF SOIL-STRUCTURE INTERACTION IN
LAYERED HALFSPACE
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(a) CONTINUOUS FAR-FIELD IMPEDANCES

Y

(b) FPINITE-ELEMENT CONSISTENT IMPEDANCES

FIG. 3.2 FAR-FIELD MODELLING BY IMPEDANCE FUNCTIONS
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