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ABSTRACT

The goal of this research is to investigate the role of joint behavior in the identification of
frame models from dynamic response data caused by seismic forcing functions. Including joint
rotation and deformation in the mathematical model for even simple structures significantly

affects the distribution of stiffness, and the accuracy with which response can be predicted.

An optical method has been devised for accurately measuring joint rotation of a structure
during earthguake excitation. This method has been applied to a simple six story frame in
which the columns have approximately the same stiffness as the girders. Response data have
been collected for a variety of base motion histories. Also studied are data previously collected
from a three story frame in which joint rotation information has been inferred from strain

measurements.

A number of different mathematical models of these structures are evaluated using sys-
tem identification. Each mathematical model depends on a number of parameters related to the
characteristics of the structure. An iterative method is applied to calculate the values of these
parameters which best reproduce the measured response of the structure. The forni of the
mathematical model has an effect on the degree to which the optimal parameters accurately
reflect physical properties of the structure. Further, the form of the model influences not only
the number of parameters and degrees of freedom, but also the set of response quantities

necessary for calculating an optimal set of parameters.
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CHAPTER 1

INTRODUCTION

In studying the properties of a structure, the analyst typically has a continuum of models
from which to choose. For many applications, the simplest and most coarse approximation to
actual behavior will suffice. By adding greater refinement to critical portions of the analysis,
prediction of response can be improved. This refinement takes its toll both in the analyst’s
time, and computational effort, usually in a computer. It would therefore be wise to add

sophistication t0 a model in a logical manner.

To predict the response of a structure to a prescribed input using an analytical model, cer-
tain parameters reflecting physical properties of the structure must be known or determined.
This may not always be trivial, both because the materials used may have some uncertainty,
and also because the materials can be used in some unfamiliar way. For example, the proper-
ties of concrete subjected to triaxial stress are both variable and imperfectly understood.
Further, while there are counter-examples, increasing a model’s analytical complexity often
increases uncertainty about physical parameters. An analytical model actually represents a con-
tinuum of models which, in practice, may be difficult to apply, since its parameters are difficult

to estimate.

System identification is a tool which can be used to evaluate a model. By systematically
adjusting the parameters to provide the best possible correlation between predicted and meas-
ured responses, the form of the analytical model can be appraised. System identification is a
generic term for this optimization process, and there are many approaches to applying it to
structural engineering. There have been many survey articles written on system identification
[4,7,8,11,20,21], so this discussion need not be exhaustive. Evaluating models by adjusting
parameters to it known response data is known as parametric identification. Much of the litera-
ture in parametric identification has been devoted to the determination of modal characteristics
[13,17]. While it is true that stiffness and damping matrices can be determined from modal

properties, little can be inferred about the participation of individual structural elements. An



algorithm used by Matzen [18] allows determination of element characteristics but, for
economic reasons, is only applicable to a structure with a small number of degrees of freedom.
Here, Matzen’s algorithm is extended to allow identification using a structure with a relatively

large number of degrees of freedom.

In a frame with even a small number of elements, accurately predicting response can
require a large number of degrees of freedom. For instance, in frames commonly approxi-
mated by a simple shear model, it is well known that the inclusion of rotational stiffness at its
joints significantly affects predictive accuracy [12]. Using data from a three story frame previ-
ously built by Clough and Tang [10,24], and a six story frame developed for this study, it is
shown that not only the rotational response, but also the deformation of‘ the joints, significantly

affects a model’s optimal precision.

The optimization algorithm to be used and its implementation in dynamic structural
analysis are described in Chapter 2, In Chapter 3 its application to a frame already studied in
some detail is discussed. Previously, accurate data concerning the dynamic rotation of frame
joints has been wunavailable. Chapter 4 describes an optical method of measurement which
allows high resolution and accuracy. This method has proved to be extremely useful in the
study of the effects of joint behavior on overall dynamic response. In Chapter 5 the application
of both the optimization and rotation measurement methods in the identification of parameters

of a six story frame are described and conclusions are presented in Chapter 6.



CHAPTER 2

ITERATIVE IDENTIFICATION

General System

Suppose we have a system subjected to a time dependent input p(t), which produces a set
of measurable outputs y, (r},j=1,...,n. If we have a model which we believe represents the sys-
tem, this means we have some rule by which, given an input, p(t), and some information about
the system in terms of a vector of constants, &, we can predict the output of the system,
x;{b,1). Here we include b as an argument to emphasize the dependence of the predicted out-

put of the system on the information supplied to the model.

One measure of how well the predicted response matches the measured response is the

squared-error loss function over a time interval 0<t<T:

T
n
B =3 [ glg@,n—y®2a @.1)
=1 0
Again, b is included as an argument to emphasize the dependence of I on b. If J(5)=0, then
the predicted response would exactly match the measured response. We would like to know

what value of b, if any, makes J a minimum value,

Unfortunately, very few models permit a closed form solution for b which minimizes J
globally. It is, however, often possible to generate an iterative scheme which will produce a b

which is a local minimum.

Gauss Newton Method

Given a set of parameters b;, we would like a systematic method of discovering a new set
b1 such that J(b,, ;) < J(b). Repeated often enough, this will lead to a minimum for J. If
the function J is approximately quadratic in a neighborhood of b, there will be little error in

the approximation



J(!ZH»]) = J(Q:) + (Qf)(é,ﬂy] - é,) (223)
+ Wb — 5 V) By — b))
where
- 9

VI, = 54, (2.2b)

and
8%
2 =
Vs 35,95, . (2.2¢)

To minimize J, its gradient with respect to b,,; is set to the zero vector. If the Hessian matrix

is invertible, it follows that

-1 '
by = b — lvgj(@)] V() (2.3)
Since J will not, in general, be exactly quadratic, we will want to be able to adjust the size of

the correction to b,. Thus we modify the equation by adding a step size variable, «:

bl = b, —a[sz(g,)]*l VJ). 2.4

The components of V.J and V2/ are found by taking the appropriate derivatives of the error

function:
Vi = f (B,1)—y, (0] S50, (2.50)
a 6 # jz: 0 b .0 =, db, ‘
8 o lf ag@.0 b
8b,8b; 2; {g” ab, an, (2.5b)

¢ 82, (b,1)
+ jovgj (x; (b,1) — () W dt] .

Experience has shown that the second integral, particularly when &; is close to a minimum, is
negligible when compared to the first. The Gauss-Newton iteration scheme, therefore, is to

choose « and calculate

bt = b —alaH @) vIB) (2.62)

where the approximate Hessian matrix, 4, is defined as

(2.6b)

S

n T . .
A, = 2% |[ ox (b, 8%, (6,0 dt‘.
=

| & " as, ab,

The technique for choosing e« is known as a line search algorithm since the multidimensional



minimization problern has been reduced to a single dimension.

Line Search
By establishing a search direction, the error function is reduced to being a function of one
variable

J) = Jb — adH (b)Y I (B)] 2.7

whose derivative is

5‘1- J@) = —J (b)) AH (b)) VI (8). (2.8)

If we are pointed in the right direction, J(0)<0. If the error surface were quadratic, then
the exact minimum would be at a=1. If J(1)>0 then there must be a minimum for 0<a<1.
In order to find a point closer to the minimum, a cubic polynomial is constructed so that its
values and derivatives- match J at the end points, and the minimum of the cubic is used as a
new trial point. If, on the other hand, J(1)<0 and J(1)<J(0), then a quadratic extrapolation

is made. In this way, successive approximations to the functional minimum are made until

some stopping criterion is met.

The stopping criterion for the line search will affect the relative amount of time spent on
finding search directions and doing line searches. In general, spending too much time on either
is not economic. In practice, a good deal of trial and error is necessary to find a reasonable dis-
tribution of effort. In this case four or five iterations in the line search is probably a good
compromise. It is also desirable to have the line search end fairly soon in the event a poor

direction is chosen, since the improvement will be rather slight.

Structural Models

The mathematical model associated with dynamic behavior of an n degree of freedom

linear elastic structure subjected to rigid base motion is

(2.92)



du (0)

= = 2,
o ) =0 (2.9b)
. ' . . , . . , . d*u du
where m is the mass matrix, ¢ is the damping matrix, and k is the stiffness matrix. —c?t?’ o

2

and u are vectors for relative acceleration, velocity, and displacement. is the base

—8
dt?
acceleration. r is a column vector whose elements are static displacements due to a unit dis-

placement of the base of the structure.

It is possible to find a matrix, P, so that M=P'mP and K=P'kP are both diagonal

matrices: i.e., M;=0if i # j. If we make the change of variables

u = PY ‘ , (2.10)

then the differential equation of motion can be rewritten

2

M c X ky = Fi (2.112)

i = d -
where
dzyg

C = PP and F@) = —P'wmr - (2.11b)
If the additional assumption of proportional damping is made; that is,

€ = agm + all_cs (212)

then C, M, and X will all be diagonal, and the n coupled differential equations will be decou-
pled into n equivalent uncoupled single degree of freedom equations. The coefficients ay and

a1 can be related to the damping ratios and frequencies by

E = lﬁ(iw?- +a,w), (2.13)

{

where E; is the damping ratio, and w, is the characteristic frequency of the i mode.

Structural Identification

Geometric and material information describing a structure can be organized into a vector
b, so that using the finite element method mass, damping, and stiffness matrices can be con-

structed which depend on b:



m=m@B) c=c) k=k(). (2.14)

By solving the differential equation

d*u du d’y,
L3 Rl = — 2.15
m(@) 5 +cl) o+ k)y mb)r — 5 (2.15)
with boundary vatue
du(0) _
S = u(0) = 0, | (2.16)

we arrive at a solution x (&) which is the predicted response of the structure, given b, subjected

to a ground motion y, (z).

Given measured response histories at a number of locations, y; (¢), the error of the model

which the differential equation represents, over some time interval 0<t<T is defined as:

n 1
1@ = % [ glg@.0-3012 2.17)
=1 0
Applying the iterative scheme previously described requires calculating the sensitivities
axj (L?) . . s .
T and the responses x;(b). Given the structural matrices 7, ¢, and £, the differential
b

equations could be solved directly. However, for even moderately small problems this can be
quite time-consuming since there must be n+1 integrations each time VJ and AH are calcu-

lated. Using modal decomposition this effort can be significantly reduced.

Using the modal equations

MY+ CY+KY = F() = —P' mrii, (2.18)
Y can be calculated directly. The specific single degree of freedom integration algorithm will be

described subsequently. Differentiating (2.18) we get

8Y 0¥ L 8Y _ _98Cy_ 8K . P
M 3, +C 3b, + K 30, abpl] 3%, Y a5, mirii, (2.19)
where it is assumed that
oM
a6, (2.20)

The time histories of the modal sensitivitics are obtained from (2.19). This equation has the



same form as (2.18), and the pseudo-forcing function on the right hand side of (2.19) is well

! t
known after (2.18) has been solved. The terms Q-q, —65;3 and 8F can all be calculated
ab,* ob, 35,

using finite differences. This may require great precision since P can be insensitive to changes
in parameters. It may prove desirable to calculate these sensitivities concurrently with calculat-

ing the structural property matrices.

N R
Once the modal sensitivities ar are known, the sensilivities ——- can be calculated from

db, ab,
9 f 9 oF aY
X P poX 21
36,  db, pad FTRRET (22D

These can then be used to calculate a search direction for the Gauss-Newton iteration.

Numericzl Integration A}gorithm

The predicted dynamic response of a structure which has estimated structural property
matrices k£, m, and ¢, depends to some extent on the algorithm by which the equations of
motion are integrated. This can affect the values of identified parameters, particularly those
which affect response at higher frequencies. In this work, we have chosen to use the
Newmark-Wilson algorithm [5] for linear stepwise integration, primarily since it is uncondition-

ally stable.

Moedel Specification

A number of physical constants are incorporated into a finite element model for a struc-
ture. These constants specify the geometric dimensions and material properties of the struc-

ture.

In general, it is neither practical nor possible to optimize the finite element model with
‘respect to all the parameters describing a structure. As will be shown, some sets of parameters
are not independent. Additionally, The computational effort required for a large number of
parameters can be tremendous. Some parameters will be known with great precision, and may

have a relatively small effect on response. Little time need be spent optimizing these. Other



parameters, that are known less exactly, may have a pronounced effect on overall response. It

would be wise to spend the bulk of the computational effort on these.

In structures with a repeated set of elements, the parameters associated with these ele-
ments may be known somewhat imprecisely. However, the analyst may be quite certain that all
the elements of a certain type behave identically. With this in mind it is desirable to group all
these parameters together. Thus, if one is studying the effective lengths of identical girders of
a three story frame, it may be more appropriate to optimize a single parameter representing atl
these lengths. Thus, if the parameters describing a structure form a set p,, the parameters to

be identified will form a new set b;. In general

o = b; linitial estimate for p,| 2.22)

for some j.

Redundant Degrees of Freedem

Suppose we model a structure that appears as though it had only two degrees of freedom;

F —— a—»v

Figure 2.1 Two degree of freedom frame

using symmetry, we use the reduced model
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( ¥)[

i

Figure 2.2 Symmetric simplification

Let a,= 2? , then the stiffness matrix for this model is
i
boe; 3o
3o 2a1+~§-a2

Noting that we are going to try to identify «; and o, using only [ateral force F, we can apply

static condensation:

— k= 2.24
0 - 30!1 2a1+ia2 o

2

30512 + 90!16!2

20 kS aad e’ (2.252)
2000 + lc\: ’
1 2 2
-3
g —1 (2.25b)
Yo S
a1+ 2&2

Now given any response pair (v,,,F, ), it is possible to identify

3o i+H9aas
3
2o+ <o
15
but not o; and «, separately. Given any 6 response data which satisfies the assumptions of

static condensation, this cannot further reduce the problem.

However, suppose the structure we are studying is, in fact, accurately represented by a

three degree of freedom model
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“é B

M
g
7

w_  POINT JOINT
M ELEMENT

7rnT

Figure 2.3 Three degree of freedom frame

where ¢ represents the distortion of a joint element, with no physical dimension. If the consti-

tutive law of the joint is M=k;¢, the stiffness of this model is

6&1 3(11 ‘50!1
k=13, 2a1+—%a2 o (2.26)
'Eal [(45] ‘/2a1+kj
Applying static condensation:
v
o=k |0 Q.27
0 ¢
we find that
-3
9 = ";1 v — 6”3 é. (2.28)
2(11"‘36!2 2&1‘{'3(12

So, response data from a structure correctly modelled by the three degree of freedom model
cannot satisfy the assumptions we used in identifying the two degree of freedom model (see
Eqn. 2.23h). This problem will be amplified if, instead of measuring the joint rotation, we
measure the rotation of the top of the column. Then, the measurement will be 8,,=84+d¢.
Thus, while using two response quantitiés from the three degree of freedom model, the basic

assumptions made in this identification will be violated.
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It appears that if identification fails to converge for a set of response data, but does con-
verge when we include more data that we assumed was linearly related, this implies an underly-
ing problem with the mathematical model, rather than anything about the parameters of the

model that is being identified!

Statistical Interpretation of the Error Function

A dynamic structural model can be defined as a functional G which predicts a vector

response Y () from an input function v, {¢), and a vector of parameters 4:

Y = Glnb) +e | (2.29)
where € is a vector of error terms, and is often supposed to be normally distributed with zero

mean.

A question which often arises is whether the complete set of parameters is needed in the
model, In particular, if b is partitioned so that 6'=(b;,6;)", an hypothesis which could be
tested is whether szgﬁ , where 25 could be a zero vector. The test is based upon the relative
reduction in the error function when all the parameters are estimated as compared with the
error when b, is estimated Iwith by=b;. If the reduction is large, the hypothesis that b=b; is

untenable.

Suppose b, has p parameters and b, has q. Let b” be the optimal set of parameters with

92=Q§ . With appropriate statistical assumptions, the statistic

(& )=I()]/q
J (Y (n—p)

will approximately have what is called an F(q,n-p) distribution. This distribution is tabled in

F =

(2.30)

any of a number of sources [7]. The hypothesis that b,=b; is tested at the « level of
significance by comparing F with the critical value F;_,(q,n—p). If this critical value is

exceeded, the hypothesis that b;=b, is rejected.

The use of a squared error loss function, therefore, is not only a good subjective measure

of goodness-of-fit, but can be utilized as a quantitative tool for comparing alternative models.
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CHAPTER 3

THREE STORY FRAME

Model Description

The test structure consisted of two parallel single-bay, three-story, moment resistant steel
frames. The frames were fabricated from standard rolled shapes of ASTM A-36 grade steel.
Detailed in Figure 3.1, the two frames designated A and B are separated by a distance of 6 ft.
They are connected at floor levels by removable cross beams and bracing angles producing the
effect of a floor diaphragm rigid in its own plane. The total height of the structure is 17 ft. 4 in.
The story heights are 6 ft. 8 in., 5 ft. 4 in., and 5 ft. 4 in. The bar width is 12 ft. 0 in. Sections

W5-16 and W6-12 are used for columns and girders, respectively.

Fully penetrated welded girder to column connections are used in this structure. Figure

3.2 depicts the details of these connections. The panel zone thickness is 1/4 in. (i.e. the -

column web thickness) for phase I of the experiments, and 1 in. (column web reinforced by
3/8 in. doubler plates on both sides) for phase II. Figure 3.3 lists the nominal section proper-

ties, and Figure 3.4 summarizes the estimated weights of the structure.
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Girder Column
Woéx12 W5x16
Nominal Nominal

bin) 4.00 5.00
d(in) 6.00 5.00
1, (in) 0.23 0.24
t;(in) 0.28 0.36
A (in?) 3.54 4.70
1, (in®) 21.7 21.3

Sx (in®) 7.25 8.53
Z,. (in®) 8.23 9.61

Figure 3.3 Section properties

Floor Weight

3 9300
2 0288
1 9260

Figure 3.4 Floor weights (Ib)
Instrumentation
The frames were instrumented with linear potentiometers at each floor to measure floor
translation. The frames had strain gauges attached to both flanges at the top and bottom of
each column. Assuming a linear variation of bending étrain along the length of the column,

the relative rotation of the ends will be given by

L L

g P

€,1e,
2

l___

'D|»—l

€, + = ]dx (3.1)

|t 3“}"‘

where ¢, and €, are the bending strains at either end, L is the length of the column, h is its
height, and p is its curvature.
Additionally, in the Phase I experiments, LVDT’s were attached to the first floor column

bases to permit measurement of the column end rotation. In Phase II, the column bases were

stiffened so that it was felt that the base would remain essentially rigid. Utilizing this
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information, the rotation of each joint relative to the base could be calculated.

Finite Element Model - Three Story Frame

In a previous study [15], Kaya and McNiven were able to show that by constructing a
mathematical model of this frame, using system identification, they were able to gain physical
insight into the seismic response. However, they found that when the effective column and
girder lengths were adjusted to minimize the difference between the predicted and actual
response, these lengths were substantially different from those in the real structure, particularly
in the frame whose joints were not reinforced, suggesting that joint behavior was important in
predicting total response. Their model did not include a joint element. They used static con-
densation to reduce the number of degrees of freedom to a size manageable for their

identification method, but as was discussed in the previous chapter, this can lead lo errors.

Developed here is a finite element model where joint panel zones are assumed rigid for
flexural and axial deformations, but shear distortions are allowed. The column element
stiffnesses will be given by

248 1-8 0
k = k'|1-8 2+8 0 . 3.2

A
0 0 Z:(1+28)

The girder stiffnesses will be given by

_ 3ET
k= T8 G-
The joint stiffnesses will be given by
k = Gbh (3.4)
where
2EI 6FT
LS = 35
K= Tawm T e 63

and E, I, A, and A’ denote Young’s modulus, moment of inertia, section area, and effective

shear area, respectively.
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The displacement transformation mairices, A4,, for each element are given by (see Figure

3.5 for global coordinates)

Girders:
a) 0001 00-11001000TC0
b) 00 00 100-1/100 1000
¢ 000001 00-1100T1T00
Columns:
a)-1/11/10 1 0 0 0 0 0 0 00 0O
-/1vy10 010 600000060
0 0000O0OT11-1000O0O0O0
b) 0-1/11/10 1 0 0 0 0 C 0 0 0 O
0-1/11/10 0 1 0 ¢ 0 0 O 0 O O
00000O0O01-1000O00
¢ 0 0-1/10 6 1 0 0 06 0 0 0 0 O
0 0-1/710 0 0 0 0 00 0O0 1 1
0 000 VO 0001000 0-72
Joints: |
a) 0000000O0O0CT1CO0O00O0TO
b 000 000O0O0CO0CO0OT1000
¢ 6 0000CO0O0COCGOGCGOOTL OO0
d 000C0O0O0O0O0OODOOOTI1O
Table spring:

0 000CO0GCO0OO0O0O0D0O0O0GCOCT2

The global stiffness matrix will be

K = Eéitkfﬁf . (3.6)
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Figure 3.5 Three story frame
global coordinates

Identification

The primary goal of this study of the three story frame was to investigate the role of joint
behavior in the overall response. Therefore, a sequence of models of increasing complexity is
proposed. The nature and predictive power of each of these models is compared. In this way,
a number of interesting facts about the behavior of the joints is revealed. Additi;)nally, the

identification algorithm is shown to be a valuable analytical tool.

In all cases the data being used are from the results of a test in which the El Centro earth-
quake record was used as a seismic forcing function. These earthquake records were scaled to
produce elastic response in the test structure. In the phase II tests, the test earthquake was 40%

of that recorded. In the phase I tesis, the test earthquake was only 10% of that recorded.
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Identification Using Displacement

The first four models were analyzed using only 6 seconds of displacement response in the
identification. It is shown that displacement, while providing some useful information about

stiffness distribution, offers limited capability for identifying many structural properties.
Model 1

In the first model, 4 parameters were used. The first three parameters were associated
with the effective column lengths of the Phase I structure. All the columns on each floor were
taken to have effective lengths that were their clear span times one of these parameters. One
parameter was associated with mass proportional damping. The table stiffness was set very
high, simulating a rigid base. All the other physical constants were set at their measured

values.

The computer program converged from an error of 20.2 to an error of 0.35 in five steps.

The rapid convergence can be seen in Figure 3.6,

ERROR

STEP

Figure 3.6 Algorithm convergence

The resulting effective column length factors were 1.05, 1.04, and 1.12 from the top of the
structure down. The displacement time histories, both before and after identification can be
seen in Figure 3.7. The resulting match can be seen to be quite close. The closeness of the

first two column factors suggests that one parameter could be used for both floors.
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Figure 3.7a Third siory displacement before
identification (inches vs. seconds)

Figure 3.7b Third story displacement after
identification (inches vs. seconds)



22

Figure 3.7c Second story displacement before
identification (inches vs. seconds)

Figure 3.7d Second story displacement after
identification (inches vs. seconds)
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Figure 3.7e First story displacement before
identification {inches vs. seconds}

Figure 3.7f First story displacement after
identification (inches vs. seconds)

23



24

Model 2

To determine the necessity of incorporating three parameters for effective column
lengths, a new model was entered with only three parameters. One parameter was associated
with the effective column lengths of the top two floors, one parameter with the first floor, and

one parameter with mass proportional damping. Otherwise this model is identical to model 1.

Again, convergence of the algorithm is quite rapid, reducing the error from 20.4 to 0.35
in seven steps. The column length factors were 1.05 for the top two floors and 1.11 for the first
floor. While the number of parameters has decreased, the error associated with the optimized

parameters remains unchanged.
Model 3

It appears that the accuracy of the model is relatively insensitive to changes in distribution
of parameters among the columns. To emphasize this, a new model was entered with 5 param-
eters. Only one of these was associated with the columns. One parameter was associated with
the effective girder lengths at each of the three floors. Finally, one parameter was associated
with mass proportional damping. Convergence was even more rapid, resulting in a final error
of only 0.08 in 4 steps. More importantly, the resulting column effective length factor was
1.009. This indicates the variations in girder length are more critical than column lengths.
However, the resulting girder length factors are far different than 1‘.0 - ranging from 0.32 to
52.3! The most reasonable explanation for this is that the girder lengths are not independent
with respect to translation. That is, while the algorithm converges using only displacements,
the identified parameters do not form An independent set. Thus one could expect agother set
of girder lengths to form a model with the same error. One could reasonably expect a whole

- class of models with the same error, In fact, investigations of the error surface in the vicinity
of this minimum have shown the possibility of wide variations in parameter values, without

significant change in the error function.
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Identification Using Displacement and Rotation

It appears that the girder and column length factors do not form an independent set of
parameters with respect to displacement response data. IHowever, the rotation data, inferred
from strain measurements, are not of the same magnitude as the displacement data. If used
directly, identifying the parameters with the use of the rotation data couid be expected to have
little or no effect. The rotation data, therefore, are scaled by the modulus of elasticity of the
steel, £=29.6x10°% psi. While somewhat arbitrary, this constant causes the two sets of data to
be of the same order of magnitude. It should be pointed out that the relative weighting of the
response variables will undoubtedly have appreciable effect on the parameier values, as it
influences the response that the identification procedure will attempt to accommodate. Subse-

quent identifications were performed utilizing approximately 12 seconds of data.
Model 4

This model was the same as Model 3, but all the response data was used to identify the
phase II siructure. After five iterations, the model had converged to an error of 3.84. Note
that this error is summed over twice as many integrals as without the inclusion of the rotational
response. The resulting effective column length factor was 1.12. The resulting effective girder
length factors were 0.958, 0.721, and 0.694, listed from the top of the structure down. The
apparent reduction in girder lengths and increase in column lengths was also noted in [15]. The

important characteristic is that these factors are roughly equal.
Model 5

In Kaya and Tang [15,24] it was noted that the change in girder stiffness could be attri-
buted to the pitching motion of the table. In the previous models, we used the effective table
pitch stiffness as was suggested in Tang. Model § is the same as Model 4, with the addition of
a tablelstiﬂ'ness parameter. In the phase Il structure this reduced the error to only 3.78. How-
ever, in the phase I structure, this model reduced the error to 0.53. In the phase I model the
resulting column length factor was 1.15 and the resulting girder length factors were 0.53, 0.63,

and 0.55. In both cases, the resulting table stiffness factor was about 0.6, It appears that the
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algorithm tends to soften up the system by increasing the base stiffness, and in order to com-
pensate, decreases the effective girder lengths. Thus, it appears that the girder and base factors

do not form an independent set.
Model 6

In the previous models, the parameter adjustment primarily took place in the effective
girder lengths. In contrast, Model 6 is an attempt to permit the joints to accommodate the
response. Thus, a four parameter model was entered, with one parameter associated with the
columns, one parameter with the base stiffness, and one parameter with the effective joint
panel thickness. After identification the errors in the phase I and phase II models were 0.632
and 4.08, respectively. This is only slightly larger than in Model 5, btit the identification was

done with two fewer parameters. The resulting parameter values are also interesting

Phase I  Phase II

parameter value value
column 1.09 1.07
base 0.96 0.97
Joint 2.16 5.27
damping 1.35 1.54

Figure 3.8 Model 6 parameters

in that while the column and base parameters are much closer to the estimated values, the
identified joint parameters accurately reflect the fact that the frame in the phase I experiments
has reinforced joints. Thus, while it is possible to adjust the effective girder lengths to accom-
modate the behavior of the frame, it appears more sensible to attribute this behavior to the
joints, particularly in light of the crude approximation inherent in the joint modelling. The
results of the identification using this model utilizing the phase 1I data can be seen in Figure

3.9
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Figure 3.9a Displacement at floor 3, before
identification {inches vs. seconds)

Figure 3.9b Displacement at floor 3, after
identification (inches vs. seconds)
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Figure 3.9¢c Displacement at floor 2, before
identification (inches vs. seconds)

Figure 3.9d Displacement at floor 2, after
identification {inches vs. seconds)



Figure 3.9e Displacement at floor 1, before
identification (inches vs. seconds)

Figure 3.9f Displacement at floor 1, after
identification (inches vs. seconds)
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CHAPTER 4

DYNAMIC MEASUREMENT OF SMALL ANGLES

Design Objectives

Typically, structural models have fairly low frequency response - the highest frequency of
interest being on the order of 100hz. Therefore, an angle measurement device capable of
response up to 2 khz would be adequate. The maximum amplitude of rotational response is

often in the milliradian range. This poses two problems:
(1) The instrument must be very sensitive.

(2) The instrument must be very insensitive to motions other than those which are to be

measured.

It is very desirable, additionally, that the instrument be both economic, easy to fabricate, and
easy to use.

Existing Methods

RVDT - Rotational Variable Differential Transformer

This is a transformer with variable coupling produced by moving a ferromagnetic core
within the ccils. In order to effect zero output for zero displacement, two secondary windings
connected in electrical opposition are used. A mathematical analysis of the performance of this

type of instrument was first described in detail by Atkinson and Hynes [3].

A number of manufacturers produce this type of device. A Schaevitz model RVDT was
acquired to test its suitability. In static tests, the RVDT was capable of resolving 10~ radians.
However, when the device was subjected to vibration, such as tapping the case lightly with a
pencil, the induced signai noise reduced the resolution by at least an order of magnitude.
Thus, while an RVDT might prove useful in static small angle measurement, its dynamic

behavior is not adequate.
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LVDT With Stationary Arm

A balanced lever arm is attached to the structure on a pivot. A perfectly balanced arm
will not rotate if its pivot is rotated or translated. This should permit measuring a distance
change at the end of the arm with an LVDT. It is, however, difficult to balance the arm "per-
fectly". Further, the measurement apparatus at the end of the moment arm is likely to have
significant effect. Clough and others have reported attempting this method without appreciable

SUCCeSSs.,

Strain Gauge

If strain gauges are placed on opposite sides of the neutral axis of a beam, strains at the
extreme fibers can be measured. Using a linear elastic analysis, one can calculate the relative
rotation between the ends. Theoretically, this can be extended throughout a structure. Indeed,

this metheod is quite straight-forward to implement. It relies heavily on two assumptions:
(1) The entire structure has linear elastic response.

(2) The method of connecting the beams does not contribute to relative rotation.

NEUTRAL
AX1S

e e

STRAIN GAGE 7

Figure 4.1 Strain gauge placement

Obviously, in a variety of situations, these assumptions will not be appropriate. Kaya [15] has
done some analysis work with this type of measurement using data collected by Clough and

Tang {10].
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Rotational Accelerometers

There are a number of highly accurate rotational accelerometers built commercially, pri-
marily for aerospace and military applications. Servo accelerometers are among the most accu-

rate and stable.

Typically, the servo accelerometer is a closed loop, torque balance system. In the illustra-
tion below, relative motion of a balanced mass is detected by a position sensor whose output
signal is applied to an electronic amplifier. The output current from the servo amplifier is
applied to the torque motor. Thus mass is held in the same relative position. The current

through the torque motor is accurately proportional to input acceleration.

DC POWER CONDITIONING DC OUTPUT
; wp
TORQUE MOTOR
POSITION j DAMPING
SENSOR /7 NETWORK
% BALANCED |\~
MASS

Figure 4.2 Rotational servo accelerometer

Specifications for a typical range of servo accelerometers are as follows [22]:

Cross Axis Natural

Range Sensitivity Frequency
(rad/sect)  (rad/g—sec?) (hz)
+50 0.2 30
+100 0.2 50
-+ 500 1.0 100
+ 1000 2.0 120
+1500 30 130

resolution:  0.0005% full scale
linearity: 0.1% full scale
hysteresis:  0.02% full scale
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There are two main drawbacks in the use of these devices for structural testing. Most
important, in a typical case, rotational acceleration will be far smalier than linear acceleration at
a given point. This makes the cross-axis sensitivity an important factor. Second, these devices
are only re-liable. at approximaiely 60% of their natural frequency. Generally, the higher the
natural frequency, the greater the cross-axis sensitivity. These devices could be useful in a
number of tests, particularly if it iS possible to order special designs aimed at minimizing the

shortcomings.

Ring Lasers
A ring laser is one which supports circulating light beams: independent oscillations for two
counter-rotating beams. For instance, Figure 4.3 shows a resonator where three mirrors define

a triangular path.

BEAM |
————
| I |

\k : LASER M

MIRROR BEAM 2
DETECTOR
Figure 4.3 Ring laser
There are two mode conditions, one for each route around the ring:

where
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P = optical perimeter of ring
g = an integer
A = resonant wavelength.

If there is a region in the resonator where the velocities for the two directions are unequal, let

them be (u+du) and (u-du). Then there are two oscillating frequencies:

fi = foll+(=1) §uﬁ T[>] =12 4.2)
where
fo = %- (4.3)

If samples of both beams are fed to a common detector, a beat frequency will be generated,

given by

fb'—'fz'"f1=2fo§uE —}[, (4.4)
If the resonator is rotated about an axis perpendicular to its plane, the resolved component of
translational velocity, at a given position in the path, is then added to the light velocity. An
integration must be performed around the ring to find the net unbalance between the two

beams [23].

For a beam length dl

Su = Qrcosé 4.5)

where

) = angular velocity

distance from rotation axis to dl

r

6 = angle between light path and translation velocity.
But cos 8 = ra;,—‘? where ¢ is angle about the axis, so
§ 8udi= fQrap =204 (4.6)

where A = the area enclosed by the resonating beams.
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The beat frequency from rotation is then

fy = 5{%{; : 4.7

For a square resonator with sides of length L, and a HeNe laser oscillating at 632.8 nm, this is

fp = L(1.58x10%. 4.8)

Thus, a practical instrument can be constructed with very high resolution, digital output, and
virtually no cross-axis sensitivity. In fact, a square resonator with L = 1m has been used to
accurately measure the rotation of the earth! Since these devices are presently being con-
structed out of a single crystaliine block, they should be quite durable and economic, if con-

structed in any guantity.

There are two principal disadvantages to using ring lasers to instrument a structure. First,
they tend to drift, though some researchers have been able to achieve drift rates as low as 0.1
deg/br [16]. Second, the size of the apparatus makes it unsuitable for small models. It would,
however, be easily applied in instrumenting a real structure.

Optical Lever

A lever arm permits amplifying an angle change, therefore increasing the ease with which
it may be measured. In several of the previous instruments, a mechanical lever is employed.
The fundamental problem with most of these methods, in dynamic application, is the mass of

the lever arm. A light beam has no mass and, from this point of view, is most desirable.

If a mirror is attached to a structure, and a beam of light directed at it, rotations of the
mirror will cause the reflection of the beam to move. Statically, an observer can merely meas-
ure the deflection and, depending on his distance from the mirror, obtain any desired degree of

accuracy.
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Figure 4.4 Mirror attached to frame
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For small mirror angle change, #, the deflection d will be given by d=2r8, where r is the dis-

tance from the observer to the mirror.

I LIGHT SOURCE
— MIRROR
d P
-
JL -
-
-
e
-
. r .

Figure 4.5 Measuring spot deflection

For example, from a 1 milliradian structural rotation, at a distance of 2 meters we could expect

a 4 mm movement.
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One of the simplest methods of electronically measuring the beam deflection is to direct

the beam at a pair of adjacent photocells.

INCIDENT

LASER BEAM f=x
N

/ SPLIT

/ | PHOTOCELL

‘ +

0(xi

DIFFERENTIAL
AMPLIFIER

Figure 4.6 Adjacent photocells

As the spot moves onto either photocell, the output from that photocell will increase, and the
output from the other photocell will decrease. The output from the differential amplifier will

refleet the spot motion.

Since the detector will be some distance from the structure, and presently available photo-
cells are fairly small, it is desirable to use a source with small dispersion. A typical helium
neon laser has a dispersion of only about 1 milliradian. A simple two lense system can be

employed to optimize the size of the spot.

DIVERGENT
WHEN d # d'

INITIALLY
PARALLEL

Figure 4.7 Beam dispersion
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The response characteristics of the system depend, to a large extent, on the light source

used. Lasers tend to have an approximately Gaussian distribution of intensity.

I=qe

§

Figure 4.8 Gaussian intensity distribution

The differential ampiifier output will therefore be approximately proportional to a cumulative

normal distribution:
ox) = Cf e ar 4.9)
0

- Secondary Effects

If the spot is centered on two photocells with the same conversion characteristics, varia-
tions in ambient light will have little effect on differential photocell output. However, if the
photocells are unbalanced, or the beam is not centered, ambient light can produce noise. This
is primarily due to nonlinear photocell response at high intensity - particularly at the center of
the laser. spot. The simplest method of reducing this eﬂ'ecf is to conduct tests in the dark.
However, filters are available which can remove virtually all ambient light, leaving virtually all
the laser beam intact. This application makes the monochromaticity of 'lasers extremely impor-

tant.

It is difficult to place the laser, mirror, and detector collinear. If the detector is placed to

the side, linear motion of the mirror will produce a deflection of the spot:
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e
,,,,, DISPLACED
df _---- MIRROR

Figure 4.9 Induced secondary output

This deflection will be at right angles to the measurement we are interested in if the plane of
the laser beam contains the motion of the mirror. Properly aligning the detector will minimize

this effect.

Use of a pentagonal prism in place of the mirror will remove the effect of rotations

orthogonal to those being measured:

45°
MIRROR
]
LASER
L o 7 MIRROR
Y osserver

- Figure 4.10 Pentagonal prism

Rotations of the prism about an axis out of the paper will not produce a beam deflection.

As was previously discussed, the output from the split photocells will not be a linear func-
tion of spot displacement. The instrument could be made linear by moving the photocells to
keep the spot centered and measuring the movement of the photocells directly. The technique
used for this linear measurement would depend on the maximum displacement and frequerncy

response expected. The success of this approach would depend on the accuracy and rapidity
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with which the photocells can be positioned. A possible alternative is to keep the spot centered
by rotating the mirror. The principal advantage of this system is that the mirror need only
move a minor amount. It is conceivable that the mirror could be constructed out of a single
piezoelectric crystal so that the motion of the mirror could be controlled by applying a voltage
to the crystal. While providing a linear output, all these technidues require greater expense and
development time than merely measuring photocell output. Further, the photocell output is

close to linear over a large segment of its response,

The desired output is the difference of two relatively strong signals, It is necessary to
minimize the effect of the magnitude of each photocell cutput on the measurement of the
difference. Elecironic devices designed to do this are known as instrumentation amplifiers.
Fortunately, it is now possible to construct a high quality instrumentation amplifier incorporat-
ing only one integrated circuit. The circuit diagram and printed circuit layout for this device is
shown in Figures 4,11 and 4.12.

While designed to measure joint rotation, it is interesting to note that this device has since
proved valuable in measuring the physical properties of the materiais used in a model structure.
A rod of material was clamped at one end and set vibrating. The beam was aimed directly at
the photocells with the material interposed. As less of the beam was interrupted, the photocell

“output increased. Thus, the characteristic frequency of the vibrating rod was measured by the

photocell output. From this, the modulus of elasticity could be derived.
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Figure 4.11 Printed circuit (2x) - Instrumentation Amplifier

@

GAIP;ITRIM {C)UTPUT TRIM
it |
@ 1K @
—_ . L1 '
-]
GAIN
00 5 SELECT e V4
® {opt) .
+ o .ooz,.«.fI Im,.,,fI e Out
ADS20  iov ‘I 1 00Zut
('gp‘?; %.Oi,u.f e Gnd
S AP
—tege  MeTIOOK o V-

Z,

Figure 4.12 Parts layout (2x)-Instrumentation Amplifier
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CHAPTER 5

SIX STORY FRAME

Studies of the three story frame proved quite fruitful - insight has been gained into both
the behavior of the structure and the performance of the identification procedure. A number

of questions were left open. To answer some of these, a new test model was developed.

The three story frame was a simple structure with relatively few degrees of freedom. We
wished to determine the effect of increasing the number of degrees of freedom on the optimi-
zation procedure without greatly increasing the structure’s complexity. In the hope of eventu-
ally being able to generalize previous speculations made by Kaya and McNiven [15] on data
necessary for identification, the new structure was again a simple moment resistant frame, but

with six stories.

The methods outlined in the previous chapter for making dynamic measurements of joint
rotation, have not been applied in a structural test environment. While there are several advan-
tages to being able to make kinematic measurements of rotation, testing the methods on a sim-
ple frame was essential. This also allows an assessment of their value in the identification of

structural properties.

A Model Design Note

Data acquisition equipment is constrained to measuring a limited frequency bandwidth.
Therefore, even when studying relatively simple frames, it is important to keep the important

frequency content of response within the limits of the measuring apparatus.

In a model which has repetitive elements, it is desirable to be able to relate the modal fre-
quencies of the whole structure to the modal frequencies of a single element. To illustrate,

consider a shear structure model where each story has the same stiffness and mass.
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Figure 5.1 Repetitive shear model

The stiffness and mass matrices for this structure are given by

k —k
-k 2k —k
-k 2k .
Ky = (5.1a)
. 2k —k
—k 2k
MN = mINxN. (Slb)

The natural frequencies, w2, of the structure will be given by the solutions of

Py(w?) = det(Ky — w'My)= det(Ky — mw?lyy) = 0. (5.2
By expanding about the last column, the frequencies can be found as tie roots of the recur-

sively defined polynomials:

Pi(w? = k— w'm (5.3a)
Py(w?) = m?w*— 3mkw? + K2 (5.3b)
P, = Qk— wmP,_| — k*P,». (5.3¢)

If we use the change of variables w? = tk/m, we get

Pi(t) = k(1-1) (5.4a)
Py(t) = K*(*=3t+1) (5.4b)
P,(1) = klQ=D)P,_—kP,_,]. (5.4c)

The roots, t, of these polynomials will be the same as the roots of

PiD) = 1-t (5.52)
Py(t) = =3t+1 (5.50)
P, (1) = 2-1)p, 1—P,_» ‘ (5.50)
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An alternative formulation can be obtained by expanding the determinant about the first

column:

P, = (k=w?m)Q,_1+k*Q,_>

where
dhk—mw?  —k ]
-k 2k—mw? —k
-k 2k—mw? .
0, = det,y, . .
. 2k—mw?  —k
—k 2k—mw?

However, the (J, have the same recursion formula as the P,:

Q, = (Zk_mw2)Qn~l + szn-l
with

Q) = 2k — whm

0, = miw*— dmkw? + 32,
Hence,

P, = (k_w2m)Qn*l + szn**-?
= [(2k—mwz)Qn~1 + szn—Z] - an—l
= Qn - an—l'

Applying the same change of variables, w’=tk/m, to the Q’s gives

o = k(2—1)
0 = kX (r'—41+3)
Q,, k[(2—r)Q,w1+an_2].

So the zeros of the P,’ may be discovered by using the alternative set of formulas:

P, = Q,— Quy
where the Q, are defined by

Q= Q=0)0u-i + Qyes

Q) =2-1¢
0, = 22— 41+ 3

(5.6

(5.7

(5.8)

(5.9

(5.10a)
(5.10b)
(5.10¢)

(5.1D)

(5.12a)
(5.12b)
(5.12c)
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hence,

Py = 0= 00y (513
= =00, + Q5 = 0,
= (l_t)Qr;fl + Qr;»—Z'

It is interesting to note that

PL(D) =0 (5.14)
Py(l) = —1
Py (1) = -1
P, =0
Ps(l) = 1
Pe() = 1
Pi(1) =0
Py(1) = —1

Since, by definition, P, {1)=P,_, (1)—P,_, (1), this pattern evidently repeats. Hence,

P (D = 0 2=01.2,.. (5.15)
Thus,

Proposition: A repetitive shear structure with 3n-+1 stories has, as one of its modal fre-

quencies, the same frequency as that of a single bay.

Asymptotic Behavior

Consider story i of an N story repetitive shear structure, with story shears ¥, and V;_;.

Vi |_V|’
fr «—f—=1 7
' -
/ J
// y
—~—————
Vi-i

Figure 5.2 Single story of shear structure



Statics suggests that

d%v,
m .
dr?

Vi—Via = f1 =
This and the constitutive relation

k(V,'_v,—l) = Vi1

combine to give

dzv;
m
dr?

=k (VH 1—‘217,-+V,'_1).
If the time and distance scales of v;(x) = v (i,x) are changed by setting

uy{(s,1) = v(Ns,Nt) O0<s< 1
where v is here extended differentiably between integer values of i, we have
d’u o dy
m m —
ar dt*

= Nk Oy =2v,4v2 )

u (H-JIV)_M (s)+u (s—%)

1
N?

=k
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(5.16)

(5.17)

(5.18)

(5.19)

(5.20

The effect of the distance translation is to make the domain of u independent from N. The last

expression contains the second central difference of u so, as N approaches infinity, this

becomes
o _ k 9
512 m §s’

(5.21)

Applying the technique of separation of variables, and applying the boundary conditions for a

cantilever
u© =0
w'(@0) = 0
u"(1) = 0
u"(1) = 0,
lead to

w2 = n2 X here n=135.7,..
I

(5.22)

(5.23)
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Thus, as N gets large, the roots of the P, will have the approximate ratios 12, 3%, 5% 7°,...

(-3

1.00

0.38 2.62

0.20 1.55 3.25

0.121.00 2.35 3.53

0.08 0.69 1.72 2.83 3.68

0.06 0.50 1.29 2.24 3.14 3.77

0.04 0.38 1.00 1.79 2.62 3.34 3.83

0.03 0.30 0.79 1.45.2.18 2.89 3.48 3.86

0.03 0.24 0.65 1.20 1.84 2.49 3.10 3.58 3.89

10 0.02 0.20 0.53 1.00 1.56 2.15 2.74 3.24 3.66 3.91

(N-RE- BRI R TS S

Figure 5.3 Roots of polynomials P,

Design of the Six Story Frame

Utilizing the design considerations of the previous section, a frame was designed
to be tested on a small shaking table test facility at the University of California at
Berkeley (see Figure 5.4). The frame was designed to have a highest modal frequency

of about 20hz, since that is the approximate limit of the response of this table.

Figure 5.4 Six story frame on the table
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To make the joints as simple and as continuous as possible, the columns were
constructed out a single piece of material. The girders, also made of the same material

were then set into the columns (see Figure 5.5).

TOP

Izll

'2"

I2Il

:_i

12"

12*

12

? _ B [

FRONT SIDE

Figure 5.5a Geometry of six stoty frame
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After testing the properties of several different materials, lexan was chosen since it was
easy to machine, had material properties which were apparently independent of fre-

guency, and could be glued with a solvent to produce very homogeneous joints.

174

]

11}

/2

y

>l 1/18"

Figure 5.5b Joint detail

Instrumentation

Schaevitz LVDT accelerometers were attached to the joints on one side of the
structure. These were chosen since they respond to frequencies up to about 100 hz,
and also down to and including 0 hz. Mirrors were attached to the joints on the other
side of the structure to become a part of an optical rotation measurement apparatus
described in the previous chapter. The phoiocell largets were mounted on a stage

which could be translated a controlled amount and measured with a micrometer.



Figure 5.6 Photocell targets

Lasers and optical benches were mounted in a stable rack. This rack had adjustable

shelves, permitting precise alignment and adjustment of the laser systems:

Figure 5.7 Lasers and optical benches
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The lasers were carefully aligned to minimize parallax errors. As was noted in the
previous chapter, the output of each target will only be linear over a moderate range.
However, each photocell target was calibrated over a wide range. In this way, by fitting
a polynomial to the calibration curves for the targets, the output of the apparatus could

be linearized over a much larger range.

Finite Element Model - Six Story Frame

Developed here is a finite element model where joint panel zones and beams are
allowed to distort both in shear and in flexure, but are assumed rigid for axial
deformations. Using Figure 5.8 as a reference for global coordinates, the transforma-

tions from the local element coordinates to global coordinates will be given.

Y, ‘Ae.

A e R L g

Figure 5.8 Six story frame global coordinates

Horizontal member i:

A" = (055 Oses afis O3pe -+ Osygl (5.24)
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where
0 1 % -A00
g” =0 0 0 0 01 (5.25)
b b
0 Y 3 0 00

Vertical member i:

A" = (043 QureivebineQaxe -+ * Daxel 2Ki<6 (5.26a)
A" = la43 baxs Quxs =+ Ogeel =1 (5.26b)
where
0 1 =% 0-%0
0 0 0 0 0 0
a’ = P (5.27a)
1 Yy 0 0 O
0 ¢ 0 0 0 0
00 0 000
) 01 -A20%0
b =100 0 000 (5.27p)
h h
kl > 3 000
—l/?, 0 _1/2
0 0 0
a = h (5.27¢)
-— 0 0
P
0 0 @
Joint i:
A =0 00350 -0 1<i<6 (5.28a)
é = El3x3g e Q] i = base (5.28h)
The beam stiffness matrices will be given by
3 .4
k =k —k .d, ,(D (5.29)
H et [ s mcmmamiintits 19 e N
where
207 L? -3L 3L
2pr| LF 202 3L 3L
ko = J31-3L 3L 6 -6 (5.30)

3L 3L -6 6
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4L? —1? -3L 3L
N |-L? 4L? -3L 3L

ke = 30f|-3L -3 36 -36| (5.31)
3L 3L =36 36
The beam mass matrices will be given by
412 —3L% 221 —13L
=r |=3L2 4L 13L 22L
- (5.32)

m = 20|-22L 13L 156 54
—13L 22L 54 156

L is the length, m = mass/length, and N = normal force. The joint stiffness matrices

will be given by

Gbht
(5.33)

Material Properties

The total frame weighed 18.4kg. The consistent mass matrix was calculated
using this number. In addition, the accelerometers and mirrors contributed to the
frame’s translational mass. The accelerometers and associated hardware averaged

65.5g. The mirrors with their hardware averaged 20.1g.

The modulus of elasticity of the lexan is listed as 1-300,000 by the manufacturer.
To estimate this more exactly, a piece of material was clamped at one end,l and a
number of loads were applied to the end. By measuring the deflections at midspan,

the modulus of elasticity in flexure was estimated at 237,000,

Modal damping ratios were determined by exciting the model in the »" mode,
and recording the exponential decay. For any two positive peaks m cycles apart, v

and v, , the damping ratio £ can be determined from

Vv
In[;:-] = dmm ﬁ-_%il-)g (5.34)
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which can be simplified for low damping to

Vo~V

§ (5.35)

2amy,,

For the six story model, modal ratios and frequencies were determined to be

Mode  Frequency (hz)  Damping Ratio (%)

1 1.95 0.6
2 5.85 0.4
3 9.95 0.5
4 13.9 0.6
5 17.5 0.6
6 19.9 0.2

The damping coefficients @, and @, can be derived from two sets of modal damping

ratios ¢, and natural periods 7, , as follows:

41r (Tzfz— T[fz)

a, = T2-77 (5.36)
T\ Ty (Ty¢—T£))
= (5.37)
"" (T2-17)
In the six story model, using the first two modes we have
a, = 013 (5.38)
a, = 0.00012 (5.39)

Identification

The six story frame was subjected to a reproduction of the same El Centro earth-
quake record as the three story frame. As in the identification of the three story
frame, the rotation measurements were scaled by the modulus of elasticity of the
material to produce quantities of the same order of magnitude. In all of these

identifications, both the acceleration and rotation time histories were used.

Model 1

The first model was developed using only two parameters - one for the columns,
and one for mass proportional damping. In the six story frame, the column and girder

parameters were not associated with the effective lengths, but rather with the moment
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of inertia. After three steps, the error had decreased from 23,400 o 7,199. The
column parameter changed from 1.0 to 0.93, while the damiping factor changed from
1.0 to 6.6. Thus while the overall response is approximated using close to the actual

column geomeiry, it is apparent that some further investigation is required.

Model 2

The second model included one more parameter associated with the shear
modulus of the joint. The estimate of shear modulus was derived from the measured
elastic modulus by assuming a Poisson’s ratio of 0.25. This produced still more
improvement in response matching, producing an error of 5090 in five sieps, with
resulting parameters of 1.03 for the columns, 0.86 for the joint modulus, and 1.16 for
the damping parameter. It is apparent that the inclusion of the joint parameier
significantly improves response matching. It would seem that, for this model at least,
the joint behaves more flexibly than would be expected from measurements of

material behavior.

Model 3

Response history matching using the joint shear modulus parameter reflects the
degree to which joint shear deformation accounts for the total response of the frame.
In order to assess the relative effect of joint flexure, a new model was applied using
four parameters - one again associated with the column moment of inertia, one with
mass proportional damping, and one associated with each joint moment of inertia. In
four steps, the error function arrived at 3149, with the column parameter reaching
1.04 and the damping parameter reaching 1.2. The joint moment of inertia parame-
ters, however, became 0.18 and 1.4. Iaterestingly, while the flexural deformations
seem to account for more error than the shear deformations, it is unclear from this
analysis whether the two flexures were in fact different, or just impossible to identify

separately. Since the construction of the frame was designed to keep the joints as
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homogeneous as possible, it seemed reasonable to assume that the joini parameters

should be lumped together.

Model 4

In this model the joint moments of inertia were associated with a single parame-
ter, and an additional parameter was included to represent the shear modulus. With
the addition of the column and damping parameters, this model has four pararneters.
In 5 steps the error was reduced to 3077, which is not a very substantial improvement
over Model 3. The column parameter was 1.04, and thé damping factor was 0.75. The
inclusion of the joint shear parameter is therefore relatively unimbortant. Further, the
shear factor became 0.34 while the flexural factor became 1.48, indicating that the two

are not independent.

Model 5

In Model 5 the shear parameter of Model 4 was replaced by a parameter associ-
ated with the moment of inertia of the girders. If the joint flexural parameters are the
logical set, the inclusion of the girder parameter should not decrease the error
significantly, and allso should nbt be iﬁdependcnt. In fact, the error beéame 2700.
This is only slightly smaller than in Model 4, The parameter associated with the girder
became 0.86 while the parameter associated with the joint became 2.37. Figure 5.9

depicts the measured and predicted response histories of this model.
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Figure 5.9c¢ Fifth floor acceleration before
identification (in/sec? vs. seconds)
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Figure 5.9d Fifth floor acceleration after
identification (in/sec® vs. seconds)
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CHAPTER 6

CONCLUSIONS

It has been shown that the use of modal decomposition in the Gauss-Newton
iterative identification procedure greatly reduces the computational effort required. At

the same time, the technique appears to be quite stable, and converges rapidly.

This technique Was applied to data resulting from seismic tests of a pair of three
story frames previously investigated in some detail. It was discovered that even
though the frames were very similar the identification procedure was able to determine
accurately which of these frames had reinforced joints, but only when the
identification included information gathered about the rotation of the joints in addition

to their translations.

This data, however, was not kinematic in nature. Rather, it was inferred from
strain measurements using the assumption that the whole frame remained linear and
elastic. An optical technique was developed for the dynamic measurement of joint

rotation.

A new six story frame was built, and instrumented with these optical instru-
ments. This frame was buiit with joints that were as homogeneous as possible. With
the use of the rotational data, it was found that the joint behavior still plays an impor-

tant role in the structure’s behavior, and in the identification.

Therefore, a tool has been developed for the identification of elements in struc-
tures with a relatively large number of degrees of freedom. This tool, when applied to
the data made available through the use of the optical instrumentation, is valuable in

describing structural behavior.
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I.

APPENDIX

COMPUTER PROGRAMS

Computer Program Input
Integration parameters

O, .0 for integration

2 Rank parameters

NP - number of parameters

NDOF - # of total degrees of freedom
NINDF - # of recorded degrees of freedom
NXNT - # of modes for integration

NGP - # of global coordinates

3. Parameter specification - for each range of same values

o

£ - fixed value associated with global parameter i
IE; - cade for computing global coordinates:
-1 same as global parameler i
0 fixed
1 x8;
IGPS - start of range
IGPE - end of range
. NFN - # of normal forces
FN - normal forces, if any
. NDEL - # of dof to delete from stiffness matrix
degrees of freedom, if any
. NCNDNS - # of dof to condense
degrees of freedom, if any
. R, - static displacements for i=1,...,N

. Measurement identification

75
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Fori=1,. . NINDF IR, =
1 displacement
2 velocity
3 acceleration
IDF, = dof for this measurement
9. End tolerance
SLMIN - minimum slope for line search termination
IT - maximum iterations
ENDTOL - necessary improvement for continuing
DDF - factor for finite differences '
10. Initial estimates. g8, i=1,...,NP

If absent, use data file TEMP.
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(PB 2388 436)A06

*cyclic Loading Tests of Masonry Single Piers: Wolume 1 - Height to Width Ratic of 2," by P.A. Hidalgo,
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