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ABSTRACT

The goal of this research is to investigate the role of joint behavior in the identification of

frame models from dynamic response data caused by seismic forcing functions. Including joint

rotation and deformation in the mathematical model for even simple structures significantly

affects the distribution of stiffness, and the accuracy with which response can be predicted.

An optical method has been devised for accurately measuring joint rotation of a structure

during earthquake excitation. This method has been applied to a simple six story frame in

which the columns have approximately the same stiffness as the girders. Response data have

been collected for a variety of base motion histories. Also studied are data previously collected

from a three story frame in which joint rotation information has been inferred from strain

measurements.

A number of different mathematical models of these structures are evaluated using sys­

tem identification. Each mathematical model depends on a number of parameters related to the

characteristics of the structure. An iterative method is applied to calculate the values of these

parameters which best reproduce the measured response of the structure; The form of the

mathematical model has an effect on the degree to which the optimal parameters accurately

reflect physical properties of the structure. Further, the form of the model influences not only

the number of parameters and degrees of freedom, but also the set of response quantities

necessary for calculating an optimal set of parameters.
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1

CHAPTER 1

INTR.ODUCTION

In studying the properties of a structure, the analyst typically has a continuum of models

from which to choose. For many applications, the simplest and most coarse approximation to

actual behavior will suffice. By adding greater refinement to critical portions of the analysis,

prediction of response can be improved. This refinement takes its toll both in the analyst's

time, and computational effort, usually in a computer. It would therefore be wise to add

sophistication to a model in a logical manner.

To predict the response of a structure to a prescribed input using an analytical model, cer­

tain parameters reflecting physical properties of the structure must be known or determined.

This may not always be trivial, both because the materials used may have some uncertainty,

and also because the materials can be used in some unfamiliar way. For example, the proper­

ties of concrete subjected to triaxial stress are both variable and imperfectly understood.

Further, while there are counter-examples, increasing a model's analytical complexity often

increases uncertainty about physical parameters. An analytical model actually represents a con­

tinuum of models which, in practice, may be difficult to apply, since its parameters are difficult

to estimate.

System identification is a tool which can be used to evaluate a model. By systematically

adjusting the parameters to provide the best possible correlation between predicted and meas­

ured responses, the form of the analytical model can be appraised. System identification is a

generic term for this optimization process, and there are many approaches to applying it to

structural engineering. There have been many survey articles written on system identification

[4,7,8,11,20,21], so this discussion need not be exhaustive. Evaluating models by adjusting

parameters to fit known response data is known as parametric identification. Much of the litera­

ture in parametric identification has been devoted to the determination of modal characteristics

[13,17]. While it is true that stiffness and damping matrices can be determined from modal

properties, little can be inferred about the participation of individual structural elements. An
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algorithm used by Matzen U8] allows determination of element characteristics but, for

economic reasons, is only applicable to a structure with a small number of degrees of freedom.

Here, Matzen's algorithm is extended to allow identification using a structure with a relatively

large number of degrees of freedom.

In a frame with even a small number of elements, accurately predicting response can

require a large number of degrees of freedom. For instance, in frames commonly approxi­

mated by a simple shear model, it is well known that the inclusion of rotational stiffness at its

joints significantly affects predictive accuracy U2l. Using data from a three story frame previ­

ously built by Clough and Tang [10,24], and a six story frame developed for this study, it is

shown that not only the rotational response, but also the deformation of the joints, significantly

affects a model's optimal precision.

The optimization algorithm to be used and its implementation in dynamic structural

analysis are described in Chapter 2. In Chapter 3 its application to a frame already studied in

some detail is discussed. Previously, accurate data concerning the dynamic rotation of frame

joints has been unavailable. Chapter 4 describes an optical method of measurement which

allows high resolution and accuracy. This method has proved to be extremely useful in the

study of the effects of joint behavior on overall dynamic response. In Chapter 5 the application

of both the optimization and rotation measurement methods in the identification of parameters

of a six story frame are described and conclusions are presented in Chapter 6.



(2.1)

CHAPTER 2

ITERAnVE IDENTIFICAnON

General System

Suppose we have a system subjected to a time dependent input p(t), which produces a set

of measurable outputs Yj (t),j = 1, ... ,n. If we have a model which we believe represents the sys-

tem, this means we have some rule by which, given an input, pet), and some information about

the system in terms of a vector of constants, Q, we can predict the output of the system,

Xj (Q,t). Here we include Q as an argument to emphasize the dependence of the predicted out-

put of the system on the information supplied to the model.

One measure of how well the predicted response matches the measured response is the

squared-error loss function over a time interval O<t<T:

n T

J(Q) = L J gj[Xj(Q,t) - y/t)l~ dt
j=! 0

Again, Q is included as an argument to emphasize the dependence of J on Q. If J (Q )=0, then

the predicted response would exactly match the measured response. We would like to know

what value of Q, if any, makes J a minimum value.

Unfortunately, very few models permit a closed form solution for Q which minimizes J

globally. It is, however, often possible to generate an iterative scheme which will produce a Q

which is a local minimum.

Gauss Newton Method

Given a set of parameters Qi, we would like a systematic method of discovering a new set

Qi+! such that J (Qi+!) < J (Q). Repeated often enough, this will lead to a minimum for J. If

the function J is approximately quadratic in a neighborhood of Qi, there will be little error in

the approximation

3
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where

and

J(lzi+l) = J(lzi) + \7J1(lzi)(lzi+l - lz)

+ 1/2(lzi +1 - lzY \72J (lz) (lzi +1- lzi)

(2.2a)

(2.2b)

(2.2c)a2J
\7

2
Jps = a i) .bp bs

To minimize J, its gradient with respect to lzi+l is set to the zero vector. If the Hessian matrix

is invertible, it follows that

(2.3)

Since J will not, in general, be exactly quadratic, we will want to be able to adjust the size of

the correction to lzi' Thus we modify the equation by adding a step size variable, a:

lzi+1 = lzi - a [\72J(lz)r1 \7J(lz). (2.4)

The components of \7J and \72J are found by taking the appropriate derivatives of the error

function:

(2.5a)

(2.5b)

negligible when compared to the first. The Gauss-Newton iteration scheme, therefore, is to

choose a and calculate

lzi+1 = lzi - a [AH(lz)r
1

\7J(lz)

where the approximate Hessian matrix, AH, is defined as

(2.6a)

(2.6b)
_ .f [fT fixj(lz,t) i)xj(lz,t) I

AHps - 2 ~ gj ab fib dt.
j~1 0 p s

The technique for choosing a is known as a line search algorithm since the multidimensional
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minimization problem has been reduced to a single dimension.

Line Search

By establishing a search direction, the error function is reduced to being a function of one

variable

(2.7)

(2.8)

whose derivative is

()
- J(a) = -VJ'(!!.;+l) AH-1(!!.) VJ(!!.;).oa

If we are pointed in the right direction, l (0) <O. If the error surface were quadratic, then

the exact minimum would be at a=1. If l (l) > 0 then there must be a minimum for 0< a < 1.

In order to find a point closer to the minimum, a cubic polynomial is constructed so that its

values and derivatives match J at the end points, and the minimum of the cubic is used as a

new trial point. If, on the other hand, l (1) <0 and J (1) <J (0), then a quadratic extrapolation

is made. In this way, successive approximations to the functional minimum are made until

some stopping criterion is met.

The stopping criterion for the line search will affect the relative amount of time spent on

finding search directions and doing line searches. In general, spending too much time on either

is not economic. In practice, a good deal of trial and error is necessary to find a reasonable dis-

tribution of effort. In this case four or five iterations in the line search is probably a good

compromise. It is also desirable to have the line search end fairly soon in the event a poor

direction is chosen, since the improvement will be rather slight.

Structural Models

The mathematical model associated with dynamic behavior of an n degree of freedom

linear elastic structure subjected to rigid base motion is

d2u du
m~-+c-+ku
- dt 2 - dt -

(2.9a)
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du(O) = u(O) = 0
dt -

(2.9b)

h . h .. h d' . d k' h'ff . d
2
u duwere m 1S t e mass matnx, C 1S t e ampmg matnx, an 1S t e s11 ness matnx. ~2 ' ~d '- - - dt t

d2u
and 11: are vectors for relative acceleration, velocity, and displacement. =: is the base

dt

acceleration. 1. is a column vector whose elements are static displacements due to a unit dis-

placement of the base of the structure.

It is possible to find a matrix, E, so that M=E I mP and K =E I kP are both diagonal

matrices: Le., Mij=O if i ~ j. If we make the change of variables

u = py- -
then the differential equation of motion can be rewritten

M d
2
y + C !!I.. + KY

- dt2 - dt -

where

d2u_c = _pI cP and _F(t) = _pI mr~.
- - dt 2

If the additional assumption of proportional damping is made; that is,

(2.10)

(2.l1a)

(2.11b)

(2.12)

then ~, M, and K will all be diagonal, and the n coupled differential equations will be decou-

pled into n equivalent uncoupled single degree of freedom equations. The coefficients ao and

a 1 can be related to the damping ratios and frequencies by

(2.13)

where Ei is the damping ratio, and Wi is the characteristic frequency of the i lh mode.

Structural Identification

Geometric and material information describing a structure can be organized into a vector

!!., so that using the finite element method mass, damping, and stiffness matrices can be con-

structed which depend on !!.:
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(2.14)

By solving the differential equation

with boundary value

du (0) = u (0) = 0,
dt -

(2.15)

(2.16)

we arrive at a solution! (!!.) which is the predicted response of the structure, given!!., subjected

to a ground motion ~ (t).

Given measured response histories at a number of locations, Yi (t), the error of the model

which the differential equation represents, over some time interval O<t<T is defined as:

(2.17)

Applying the iterative scheme previously described requires calculating the sensitivities

ax· (b)
~b- , and the responses Xj (!!.). Given the structural matrices m, .f, and 15, the differential

p

equations could be solved directly. However, for even moderately small problems this can be

quite time-consuming since there must be n+1 integrations each time V J and AH are calcu-

lated. Using modal decomposition this effort can be significantly reduced.

Using the modal equations

(2.18)

.r can be calculated directly. The specific single degree of freedom integration algorithm will be

described subsequently. Differentiating (2.18) we get

aC' aK apt ..-a;;- .r - a;- .r - fib mrug
p p p

(2.19)

where it is assumed that

aMiib = o.
p

(2.20)

The time histories of the modal sensitivities are obtained from (2.19). This equation has the
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same form as (2.18), and the pseudo-forcing function on the right hand side of (2.19) is well

ac aK apt
known after (2.18) has been solved. The terms F' --ai:' and --a;- can all be calculated

p p p

using finite differences. This may require great precision since E. can be insensitive to changes

in parameters. It may prove desirable to calculate these sensitivities concurrently with calculat-

ing the structural property matrices.

Once the modal sensitivities :: are known, the sensitivities ::j can be calculated from
p p

(2.20

These can then be used to calculate a search direction for the Gauss-Newton iteration.

Numerical Integration Algorithm

The predicted dynamic response of a structure which has estimated structural property

matrices Ii, m, and .£, depends to some extent on the algorithm by which the equations of

motion are integrated. This can affect the values of identified parameters, particularly those

which affect response at higher frequencies. In this work, we have chosen to use the

Newmark-Wilson algorithm [5] for linear stepwise integration, primarily since it is uncondition-

ally stable.

Model Specification

A number of physical constants are incorporated into a finite element model for a struc-

ture. These constants specify the geometric dimensions and material properties of the struc-

ture.

In general, it is neither practical nor possible to optimize the finite element model with

respect to all the parameters describing a structure. As will be shown, some sets of parameters

are not independent. Additionally, The computational effort required for a large number of

parameters can be tremendous. Some parameters will be known with great precision, and may

have a relatively small effect on response. Little time need be spent optimizing these. Other
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parameters, that are known less exactly, may have a pronounced effect on overall response. It

would be wise to spend the bulk of the computational effort on these.

In structures with a repeated set of elements, the parameters associated with these ele­

ments may be known somewhat imprecisely. However, the analyst may be quite certain that all

the elements of a certain type behave identically. With this in mind it is desirable to group all

these parameters together. Thus, if one is studying the effective lengths of identical girders of

a three story frame, it may be more appropriate to optimize a single parameter representing all

these lengths. Thus, if the parameters describing a structure form a set Pk, the parameters to

be identified will form a new set bj . In general

Pk = bj [initial estimate for Pk]

for some j.

(2.22)

Redundant Degrees of Freedom

Suppose we model a structure that appears as though it had only two degrees of freedom;

r-------_ :)-v

Figure 2.1 Two degree of freedom frame

using symmetry, we use the reduced model
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Figure 2.2 Symmetric simplification

Let a;=[ 2fIt, then the stiffness matrix for this model is

(2.23)

Noting that we are going to try' to identify al and a2 using only lateral force F, we can apply

static condensation:

so that

[~= k = [;1 (2.24)

F=
3a r+ 9ala2

3
2al + 20!2

- 3a l
(}= ---- v.

3
2a 1+"2a2

v (2.25a)

(2.25b)

Now given any response pair (vm,Fm), it is possible to identify

3ar+9ala2

3
2a 1+"2a2

but not al and a2 separately. Given any (} response data which satisfies the assumptions of

static condensation, this cannot further reduce the problem.

However, suppose the structure we are studying is, in fact, accurately represented by a

three degree of freedom model
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8

V-t~

~O~~/2
"- POINT JOINT

M ELEMENT

Figure 2.3 Three degree of freedom frame

where ¢ represents the distortion of a joint element, with no physical dimension. If the consti-

tutive law of the joint is M=kj ¢, the stiffness of this model is

60:1 30:1
3
20:1

k= 30:1
3

20: 1+ 2
0: 2 0:1

3
1/20:1+kj20:1 0:1

Applying static condensation:

we find that

-30:1 0:1
() = ---3-v - ----'-:-3-¢.

20:1+20:2 20: 1+ 2
0:2

(2.26)

(2.27)

(2.28)

So, response data from a structure correctly modelled by the three degree of freedom model

cannot satisfy the assumptions we used in identifying the two degree of freedom model (see

Eqn. 2.23b). This problem will be amplified if, instead of measuring the joint rotation, we

measure the rotation of the top of the column. Then, the measurement will be (}m=(}+¢'

Thus, while using two response quantities from the three degree of freedom model, the basic

assumptions made in this identification will be violated.
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It appears that if identification fails to converge for a set of response data, but does con-

verge when we include more data that we assumed was linearly related, this implies an underly-

ing problem with the mathematical model, rather than anything about the parameters of the

model that is being identified!

Statistical Interpretation of the Error Function

A dynamic structural model can be defined as a functional G which predicts a vector

response X(t) from an input function vg (t), and a vector of parameters!!. :

(2.29)

where ~ is a vector of error terms, and is often supposed to be normally distributed with zero

mean.

A question which often arises is whether the complete set of parameters is needed in the

model. In particular, if !!. is partitioned so that !!.t=<!!.b!!.2)t , an hypothesis which could be

tested is whether b2=b; , where b; could be a zero vector. The test is based upon the relative- - -

reduction in the error function when all the parameters are estimated as compared with the

error when !!.I is estimated with !!.2=!!.;' If the reduction is large, the hypothesis that !!.2=!!.; is

untenable.

Suppose !!.I has p parameters and !!.2 has q. Let!!. * be the optimal set of parameters with

!!.2=!!.;' With appropriate statistical assumptions, the statistic

F = [J(b *)-J(b)]/q
J(b)/(n-p)

(2.30)

will approximately have what is called an F(q,n-p) distribution. This distribution is tabled in

any of a number of sources [7]. The hypothesis that !!.2=!!.; is tested at the ex level of

significance by comparing F with the critical value F I-a (q ,n-p). If this critical value is

exceeded, the hypothesis that !!.2=!!.; is rejected.

The use of a squared error loss function, therefore, is not only a good subjective measure

of goodness-of-fit, but can be utilized as a quantitative tool for comparing alternative models.
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CHAPTER 3

THREE STORY FRAME

Model Description

The test structure consisted of two parallel single-bay, three-story, moment resistant steel

frames. The frames were fabricated from standard rolled shapes of ASTM A-36 grade steel.

Detailed in Figure 3.1, the two frames designated A and B are separated by a distance of 6 ft.

They are connected at floor levels by removable cross beams and bracing angles producing the

effect of a floor diaphragm rigid in its own plane. The total height of the structure is 17 f1. 4 in.

The story heights are 6 f1. 8 in., 5 ft. 4 in., and 5 f1. 4 in. The bar width is 12 ft. 0 in. Sections

W5-16 and W6-12 are used for columns and girders, respectively.

Fully penetrated welded girder to column connections are used in this structure. Figure

3.2 depicts the details of these connections. The panel zone thickness is 1/4 in. (i.e. the

column web thickness) for phase I of the experiments, and 1 in. (column web reinforced by

3/8 in. doubler plates on both sides) for phase II. Figure 3.3 lists the nominal section proper­

ties, and Figure 3.4 summarizes the estimated weights of the structure.
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Girder Column
W6xl2 W5x16

Nominal Nominal

b(in) 4.00 5.00
d(in) 6.00 5.00
tw (in) 0.23 0.24
tf (in) 0.28 0.36
A (in 2) 3.54 4.70
Ix (in 4) 21.7 21.3
Sx (in 3) 7.25 8.53
Zx (in 3) 8.23 9.61

Figure 3.3 Section properties

Floor Weight

3 9300
2 9288
1 9290

Figure 3.4 Floor weights (lb)

Instrumentation

The frames were instrumented with linear potentiometers at each floor to measure floor

translation. The frames had strain gauges attached to both flanges at the top and bottom of

each column. Assuming a linear variation of bending strain along the length of the column,

the relative rotation of the ends will be given by

9 (3.1)

where Ea and Eb are the bending strains at either end, L is the length of the column, h is its

height, and p is its curvature.

Additionally, in the Phase I experiments, LVDT's were attached to the first floor column

bases to permit measurement of the column end rotation. In Phase II, the column bases were

stiffened so that it was felt that the base would remain essentially rigid. Utilizing this
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information, the rotation of each joint relative to the base could be calculated.

Finite Element Model - Three Story Frame

In a previous study [15], Kaya and McNiven were able to show that by constructing a

mathematical model of this frame, using system identification, they were able to gain physical

insight into the seismic response. However, they found that when the effective column and

girder lengths were adjusted to minimize the difference between the predicted and actual

response, these lengths were substantially different from those in the real structure, particularly

in the frame whose joints were not reinforced, suggesting that joint behavior was important in

predicting total response. Their model did not include a joint element. They used static con-

densation to reduce the number of degrees of freedom to a size manageable for their

identification method, but as was discussed in the previous chapter, this can lead to errors.

Developed here is a finite element model where joint panel zones are assumed rigid for

flexural and axial deformations, but shear distortions are allowed. The column element

stiffnesses will be given by

k
2+f3 I-f3

k' I-f3 2+f3

o 0

(3.2)

The girder stiffnesses will be given by

(3.3)3EI
k = L O+2f3)

The joint stiffnesses will be given by

k = Gbht (3.4)

where

k' =
2EI

L O+2f3) f3 = (3.5)

and E, I, A, and A' denote Young's modulus, moment of inertia, section area, and effective

shear area, respectively.
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The displacement transformation matrices, Ai, for each element are given by (see Figure

35 for global coordinates)

Girders:

a) 0 0 0 1 0 0-111 0 0 1 0 0 0 0

b) 0 0 0 0 1 0 0-111 0 0 1 0 0 0

c) 0 0 0 0 0 1 0 o-1/1 0 0 1 0 0

Columns:

a) -111111 0 1 0 0 0 0 0 0 0 0 0 0

-111111 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 -1 0 0 0 0 0 0

b) 0-111 III 0 1 0 0 0 0 0 0 0 0 0

0-1/1111 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 -1 0 0 0 0 0

c) 0 o -1110 0 1 0 0 0 0 0 0 0 0

0 o -Ill 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0-72

Joints:

a) 0 0 0 0 0 0 0 0 0 1 0 0 0 0

b) 0 0 0 0 0 0 0 0 0 0 1 0 0 0

c) 0 0 0 0 0 0 0 0 0 0 0 1 0 0

d) 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table spring:

0 0 0 0 0 0 0 0 0 0 0 0 o 72

The global stiffness matrix will be

K = "LA.!!ii4i. (3.6)
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Figure 3.5 Three story frame
global coordinates

Identification

The primary goal of this study of the three story frame was to investigate the role of joint

behavior in the overall response. Therefore, a sequence of models of increasing complexity is

proposed. The nature and predictive power of each of these models is compared. In this way,

a number of interesting facts about the behavior of the joints is revealed. Additionally, the

identification algorithm is shown to be a valuable analytical tool.

In all cases the data being used are from the results of a test in which the EI Centro earth-

quake record was used as a seismic forcing function. These earthquake records were scaled to

produce elastic response in the test structure. In the phase II tests, the test earthquake was 40%

of that recorded. In the phase I tests, the test earthquake was only 10% of that recorded.
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Identification Using Displacement

The first four models were analyzed using only 6 seconds of displacement response in the

identification. It is shown that displacement, while providing some useful information about

stiffness distribution, offers limited capability for identifying many structural properties.

Modell

In the first model, 4 parameters were used. The first three parameters were associated

with the effective column lengths of the Phase I structure. All the columns on each floor were

taken to have effective lengths that were their clear span times one of these parameters. One

parameter was associated with mass proportional damping. The table stiffness was set very

high, simulating a rigid base. All the other physical constants were set at their measured

values.

The computer program converged from an error of 20.2 to an error of 0.35 in five steps.

The rapid convergence can be seen in Figure 3.6.

20

15

0:
o
0:
ffi 10

5 '

2 3
STEP

Figure 3.6 Algorithm convergence

The resulting effective column length factors were 1.05, 1.04, and 1.12 from the top of the

structure down. The displacement time histories, both before and after identification can be

seen in Figure 3.7. The resulting match can be seen to be quite close. The closeness of the

first two column factors suggests that one parameter could be used for both floors.
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Model 2

To determine the necessity of incorporating three parameters for effective column

lengths, a new model was entered with only three parameters. One parameter was associated

with the effective column lengths of the top two floors, one parameter with the first floor, and

one parameter with mass proportional damping. Otherwise this model is identical to model 1.

Again, convergence of the algorithm is quite rapid, reducing the error from 20.4 to 0.35

in seven steps. The column length factors were 1.05 for the top two floors and 1.11 for the first

floor. While the number of parameters has decreased, the error associated with the optimized

parameters remains unchanged.

Model 3

It appears that the accuracy of the model is relatively insensitive to changes in distribution

of parameters among the columns. To emphasize this, a new model was entered with 5 param­

eters. Only one of these was associated with the columns. One parameter was associated with

the effective girder lengths at each of the three floors. Finally, one parameter was associated

with mass proportional damping. Convergence was even more rapid, resulting in a final error

of only 0.08 in 4 steps. More importantly, the resulting column effective length factor was

1.009. This indicates the variations in girder length are more critical than column lengths.

However, the resulting girder length factors are far different than 1.0 - ranging from 0.32 to

52.3! The most reasonable explanation for this is that the girder lengths are not independent

with respect to translation. That is, while the algorithm converges using only displacements,

the identified parameters do not form an independent set. Thus one could expect another set

of girder lengths to form a model with the same error. One could reasonably expect a whole

class of models with the same error. In fact, investigations of the error surface in the vicinity

of this minimum have shown the possibility of wide variations in parameter values, without

significant change in the error function.
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Identification Using Displacement and Rotation.

It appears that the girder and column length factors do not form an independent set of

parameters with respect to displacement response data. However, the rotation data, inferred

from strain measurements, are not of the same magnitude as the displacement data. If used

directly, identifying the parameters with the use of the rotation data could be expected to have

little or no effect. The rotation data, therefore, are scaled by the modulus of elasticity of the

steel, E=29.6xl06 psi. While somewhat arbitrary, this constant causes the two sets of data to

be of the same order of magnitude. It should be pointed out that the relative weighting of the

response variables will undoubtedly have appreciable effect on the parameter values, as it

influences the response that the identification procedure will attempt to accommodate. Subse­

quent identifications were performed utilizing approximately 12 seconds of data.

Mode/4

This model was the same as Model 3, but all the response data was used to identify the

phase II structure. After five iterations, the model had converged to an error of 3.84. Note

that this error is summed over twice as many integrals as without the inclusion of the rotational

response. The resulting effective column length factor was 1.12. The resulting effective girder

length factors were 0.958, 0.721, and 0.694, listed from the top of the structure down. The

apparent reduction in girder lengths and increase in column lengths was also noted in [15]. The

important characteristic is that these factors are roughly equal.

Mode/5

In Kaya and Tang [15,24] it was noted that the change in girder stiffness could be attri­

buted to the pitching motion of the table. In the previous models, we used the effective table

pitch stiffness as was suggested in Tang. Model 5 is the same as Model 4, with the addition of

a table stiffness parameter. In the phase II structure this reduced the error to only 3.78. How­

ever, in the phase I structure, this model reduced the error to 0.53. In the phase I model the

resulting column length factor was 1.15 and the resulting girder length factors were 0.53, 0.63,

and 0.55. In both cases, the resulting table stiffness factor was about 0.6. It appears that the
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algorithm tends to soften up the system by increasing the base stiffness, and in order to com-

pensate, decreases the effective girder lengths. Thus, it appears that the girder and base factors

do not form an independent set.

Model 6

In the previous models, the parameter adjustment primarily took place in the effective

girder lengths. In contrast, Model 6 is an attempt to permit the joints to accommodate the

response. Thus, a four parameter model was entered, with one parameter associated with the

columns, one parameter with the base stiffness, and one parameter with the effective joint

panel thickness. After identification the errors in the phase I and phase II models were 0.632

and 4.08, respectively. This is only slightly larger than in Model 5, but the identification was

done with two fewer parameters. The resulting parameter values are also interesting

Phase I Phase II
parameter value value

column 1.09 1.07
base 0.96 0.97
joint 2.16 5.27
damping 1.35 1.54

Figure 3.8 Model 6 parameters

in that while the column and base parameters are much closer to the estimated values, the

identified joint parameters accurately reflect the fact that the frame in the phase II experiments

has reinforced joints. Thus, while it is possible to adjust the effective girder lengths to accom-

modate the behavior of the frame, it appears more sensible to attribute this behavior to the

joints, particularly in light of the crude approximation inherent in the joint modelling. The

results of the identification using this model utilizing the phase II data can be seen in Figure

3.9.
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CHAI'TER 4

DYNAMIC MEASUREMENT OF SMALL ANGLES

Design Objectives

Typically, structural models have fairly low frequency response - the highest frequency of

interest being on the order of 100hz. Therefore, an angle measurement device capable of

response up to 2 khz would be adequate. The maximum amplitude of rotational response is

often in the milliradian range. This poses two problems:

(0 The instrument must be very sensitive.

(2) The instrument must be very insensitive to motions other than those which are to be

measured.

It is very desirable, additionally, that the instrument be both economic, easy to fabricate, and

easy to use.

Existing Method§

RVnT - Rotational Variable Differential Tran.sformer

This is a transformer with variable coupling produced by moving a ferromagnetic core

within the coils. In order to effect zero output for zero displacement, two secondary windings

connected in electrical opposition are used. A mathematical analysis of the performance of this

type of instrument was first described in detail by Atkinson and Hynes [3].

A number of manufacturers produce this type of device. A Schaevitz model RVDT was

acquired to test its suitability. In static tests, the RVDT was capable of resolving 10-4 radians.

However, when the device was subjected to vibration, such as tapping the case lightly with a

pencil, the induced signal noise reduced the resolution by at least an order of magnitude.

Thus, while an RVDT might prove useful in static small angle measurement, its dynamic

behavior is not adequate.
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LVnT With Stationary Arm

A balanced lever arm is attached to the structure on a pivot. A perfectly balanced arm

will not rotate if its pivot is rotated or translated. This should permit measuring a distance

change at the end of the arm with an LVDT. It is, however, difficult to balance the arm "per-

fectly". Further, the measurement apparatus at the end of the moment arm is likely to have

significant effect. Clough and others have reported attempting this method without appreciable

success.

Strain Gauge

If strain gauges are placed on opposite sides of the neutral axis of a beam, strains at the

extreme fibers can be measured. Using a linear elastic analysis, one can calculate the relative

rotation between the ends. Theoretically, this can be extended throughout a structure. Indeed,

this method is quite straight-forward to implement. It relies heavily on two assumptions:

(1) The entire structure has linear elastic response.

(2) The method of connecting the beams does not contribute to relative rotation.

--f----------}-~~R~
STRAIN GAGE }'

Figure 4.1 Strain gauge placement

Obviously, in a variety of situations, these assumptions will not be appropriate. Kaya [15] has

done some analysis work with this type of measurement using data collected by Clough and

Tang [10].
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Rotational Accelerometers

There are a number of highly accurate rotational accelerometers built commercially, pri-

marily for aerospace and military applications. Servo accelerometers are among the most accu-

rate and stable.

Typically, the servo accelerometer is a closed loop, torque balance system. In the ilIustra-

tion below, relative motion of a balanced mass is detected by a position sensor whose output

signal is applied to an electronic amplifier. The output current from the servo amplifier is

applied to the torque motor. Thus mass is held in the same relative position. The current

through the torque motor is accurately proportional to input acceleration.

DC OUTPUT

TORQUE MOTOR

STOP

DC POWER ---------1CONDITIONING I-- ~

Figure 4.2 Rotational servo accelerometer

Specifications for a typical range of servo accelerometers are as follows [22]:

Range
(rad/sec2)

Cross Axis
Sensitivity

(rad/g-sec2)

Natural
Frequency

(hz)

±50
±100
±500

±1000
±1500

0.2
0.2
1.0
2.0
3.0

30
50

100
120
130

resolution:
linearity:
hysteresis:

0.0005% full scale
0.1% full scale
0.02% full scale
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There are two main drawbacks in the use of these devices for structural testing. Most

important, in a typical case, rotational acceleration will be far smaller than linear acceleration at

a given point. This makes the cross-axis sensitivity an important factor. Second, these devices

are only reliable at approximately 60% of their natural frequency. Generally, the higher the

natural frequency, the greater the cross-axis sensitivity. These devices could be useful in a

number of tests, particularly if it is possible to order special designs aimed at minimizing the

shortcomings.

Ring Lasers

A ring laser is one which supports circulating light beams: independent oscillations for two

counter-rotating beams. For instance, Figure 4.3 shows a resonator where three mirrors define

a triangular path.

Figure 4.3 Ring laser

There are two mode conditions, one for each route around the ring:

P = q'A

where

(4.0
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P optical perimeter of ring

q an integer

A = resonant wavelength.

If there is a region in the resonator where the velocities for the two directions are unequal, let

them be (u +du) and (u-du). Then there are two oscillating frequencies:

where

qcfo = -.p

(4.2)

(4.3)

If samples of both beams are fed to a common detector, a beat frequency will be generated,

given by

au I
!b = h-f1 = 2fo-;; p' (4.4)

If the resonator is rotated about an axis perpendicular to its plane, the resolved component of

translational velocity, at a given position in the path, is then added to the light velocity. An

integration must be performed around the ring to find the net unbalance between the two

beams [23].

For a beam length dl

au = Orcos (}

where

o = angular velocity

r = distance from rotation axis to dl

(} angle between light path and translation velocity.

But cos (} = r d1: where ¢ is angle about the axis, so

J au dl = Jo,.2d¢ = 20A

where A = the area enclosed by the resonating beams.

(4.5)

(4.6)
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The beat frequency from rotation is then

(4.7)

For a square resonator with sides of length L, and a ReNe laser oscillating at 632.8 nm, this is

(4.8)

Thus, a practical instrument can be constructed with very high resolution, digital output, and

virtually no cross-axis sensitivity. In fact, a square resonator with L = 1m has been used to

accurately measure the rotation of the earth! Since these devices are presently being con-

structed out of a single crystalline block, they should be quite durable and economic, if con-

structed in any quantity.

There are two principal disadvantages to using ring lasers to instrument a structure. First,

they tend to drift, though some researchers have been able to achieve drift rates as low as 0.1

deg/hr [l6l. Second, the size of the apparatus makes it unsuitable for small models. It would,

however, be easily applied in instrumenting a real structure.

Optical Lever

A lever arm permits amplifying an angle change, therefore increasing the ease with which

it may be measured. In several of the previous instruments, a mechanical lever is employed.

The fundamental problem with most of these methods, in dynamic application, is the mass of

the lever arm. A light beam has no mass and, from this point of view, is most desirable.

If a mirror is attached to a structure, and a beam of light directed at it, rotations of the

mirror will cause the reflection of the beam to move. Statically, an observer can merely meas-

ure the deflection and, depending on his distance from the mirror, obtain any desired degree of

accuracy.
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f
LIGHT SOURCE

rMIRROR

D----/-/-/r p---------..;.~~~.. _-_-_-_------!"ll'.w--.
// \ '

// \ \

fj// \ \
OBSERVER \ \,

\

Figure 4.4 Mirror attached to frame

For small mirror angle change, 0, the deflection d will be given by d=2rO, where r is the dis-

tance from the observer to the mirror.

~o------ r

Figure 4.5 Measuring spot deflection

For example, from a 1 milliradian structural rotation, at a distance of 2 meters we could expect

a 4 mm movement.
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One of the simplest methods of electronically measuring the beam deflection is to direct

the beam at a pair of adjacent photocells.

INCIDENT
LASER BEAM

SPLIT
PHOTOCELL

O( x)

DIFFERENTIAL
AMPLIFIER

Figure 4.6 Adjacent photocells

As the spot moves onto either photocell, the output from that photocell will increase, and the

output from the other photocell will decrease. The output from the differential amplifier will

reflect the spot motion.

Since the detector will be some distance from the structure, and presently available photo-

cells are fairly small, it is desirable to use a source with small dispersion. A typical helium

neon laser has a dispersion of only about 1 milliradian. A simple two lense system can be

employed to optimize the size of the spot.

INITIALLY
PARALLEL

DIVERGENT
WHEN d ~ d

l

1....._..::.d__.I......._-=d_'_.1

Figure 4.7 Beam dispersion
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The response characteristics of the system depend, to a large extent, on the light source

used. Lasers tend to have an approximately Gaussian distribution of intensity.

-btl!
I=ae

t -~~---------

Figure 4.8 Gaussian intensity distribution

The differential amplifier output will therefore be approximately proportional to a cumulative

normal distribution:

x

Cfe-bt2dt.
o

Secondary Effects

(4.9)

If the spot is centered on two photocells with the same conversion characteristics, varia-

tions in ambient light will have little effect on differential photocell output. However, if the

photocells are unbalanced, or the beam is not centered, ambient light can produce noise. This

is primarily due to nonlinear photocell response at high intensity - particularly at the center of

the laser spot. The simplest method of reducing this effect is to conduct tests in the dark.

However, filters are available which can remove virtually all ambient light, leaving virtually all

the laser beam intact. This application makes the monochromaticity of lasers extremely impor-

tant.

It is difficult to place the laser, mirror, and detector collinear. If the detector is placed to

the side, linear motion of the mirror will produce a deflection of the spot:
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LASER

-----

MIRROR

i
--- !----».

DISPLACED
MIRROR

Figure 4.9 Induced secondary output

This deflection will be at right angles to the measurement we are interested in if the plane of

the laser beam contains the motion of the mirror. Properly aligning the detector will minimize

this effect.

Use of a pentagonal prism in place of the mirror will remove the effect of rotations

orthogonal to those being measured:

LASER

VOBSERVER

Figure 4.10 Pentagonal prism

Rotations of the prism about an axis out of the paper will not produce a beam deflection.

As was previously discussed, the output from the split photocells will not be a linear func-

tion of spot displacement. The instrument could be made linear by moving the photocells to

keep the spot centered and measuring the movement of the photocells directly. The technique

used for this linear measurement would depend on the maximum displacement and frequency

response expected. The success of this approach would depend on the accuracy and rapidity
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with which the photocells can be positioned. A possible alternative is to keep the spot centered

by rotating the mirror. The principal advantage of this system is that the mirror need only

move a minor amount. It is conceivable that the mirror could be constructed out of a single

piezoelectric crystal so that the motion of the mirror could be controlled by applying a voltage

to the crystal. While providing a linear output, all these techniques require greater expense and

development time than merely measuring photocell output. Further, the photocell output is

close to linear over a large segment of its response.

The desired output is the difference of two relatively strong signals. It is necessary to

minimize the effect of the magnitude of each photocell output on the measurement of the

difference. Electronic devices designed to do this are known as instrumentation amplifiers.

Fortunately, it is now possible to construct a high quality instrumentation amplifier incorporat­

ing only one integrated circuit. The circuit diagram and printed circuit layout for this device is

shown in Figures 4.11 and 4.12.

While designed to measure joint rotation, it is interesting to note that this device has since

proved valuable in measuring the physical properties of the materials used in a model structure.

A rod of material was clamped at one end and set vibrating. The beam was aimed directly at

the photocells with the material interposed. As less of the beam was interrupted, the photocell

. output increased. Thus, the characteristic frequency of the vibrating rod was measured by the

photocell output. From this, the modulus of elasticity could be derived.
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o

o FRED

Figure 4.11 Printed circuit (2x) - Instrumentation Amplifier

o
v-

o

V+

GAIN TRIM /OUTPUT TRIM

~
IK

• v-

• 10.0. ~
(opt)•

+

10.0. I
(opt) r

- I ADS2D n:~~f1.I 1 I·002
P.f

I ----.,...l] • God
I·OIP.~

Rs =IOOK

Figure 4.12 Parts layout (2x)-Instrumentation Amplifier
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CHAPTER 5

SIX STORY FRAME

Studies of the three story frame proved quite fruitful - insight has been gained into both

the behavior of the structure and the performance of the identification procedure. A number

of questions were left open. To answer some of these, a new test model was developed.

The three story frame was a simple structure with relatively few degrees of freedom. We

wished to determine the effect of increasing the number of degrees of freedom on the optimi­

zation procedure without greatly increasing the structure's complexity. In the hope of eventu­

ally being able to generalize previous speculations made by Kaya and McNiven [15] on data

necessary for identification, the new structure was again a simple moment resistant frame, but

with six stories.

The methods outlined in the previous chapter for making dynamic measurements of joint

rotation, have not been applied in a structural test environment. While there are several advan­

tages to being able to make kinematic measurements of rotation, testing the methods on a sim­

ple frame was essential. This also allows an assessment of their value in the identification of

structural properties.

A Model Design Note

Data acquisition equipment is constrained to measuring a limited frequency bandwidth.

Therefore, even when studying relatively simple frames, it is important to keep the important

frequency content of response within the limits of the measuring apparatus.

In a model which has repetitive elements, it is desirable to be able to relate the modal fre­

quencies of the whole structure to the modal frequencies of a single element. To illustrate,

consider a shear structure model where each story has the same stiffness and mass.
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m
--VN

k m
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--V2

k
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--VI
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Figure 5.1 Repetitive shear model

The stiffness and mass matrices for this structure are given by

k -k

-k 2k -k
-k 2k

KN

2k -k

-k 2k

MN = mINxN •

The natural frequencies, w2, of the structure will be given by the solutions of

(S.la)

(5.1b)

(5.2)

By expanding about the last column, the frequencies can be found as the roots of the recur-

sively defined polynomials:

P 1(W 2) = k - w2m

P 2(W 2) = m 2w4 - 3mkw2+ k 2

Pn = (2k - w2m)Pn_1 - k 2Pn_2•

If we use the change of variables w2 = tklm, we get

(S.3a)

(S.3b)

(S.3c)

k(l-t)

k 2(t 2-3t+1)

k [(2-t)Pn-l-kPn-2].

(S.4a)

(S.4b)

(5.4c)

The roots, t, of these polynomials will be the same as the roots of

I-t

t2-3t+l

(2-t)Pn-l-Pn-2·

(5.5a)

(5.5b)

(5.5c)
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An alternative formulation can be obtained by expanding the determinant about the first

column:

where

(5.6)

2k-mw2 -k

-k 2k-mw2

-k
-k

2k--mw2

2k-mw2 -k

-k 2k-mw2

(5.7)

However, the Qn have the same recursion formula as the Pn:

with

QI 2k - w2m

Q2 m 2w4
- 4mkw2+ 3k2.

Hence,

(k-w 2m)Qn_1 + k 2Qn_2

[(2k-mw 2)Qn_1 + k 2Qn_2] - kQn-1

Qn - kQn-I'

Applying the same change of variables, w2=tk/m, to the Q's gives

(5.8)

(5.9)

k (2-t)

k 2(t 2-4t+3)

k [(2-t) Qn-l+kQn-2].

(5.10a)

(5.10b)

(5.10c)

So the zeros of the Pn I may be discovered by using the alternative set of formulas:

P~ = Q~ - Q,:-l

where the Q~ are defined by

(5.11)

(2-t)Q~_1 + Q~-2

2 - t

t2 - 4t + 3;

(5.12a)

(5.12b)

(5.12c)
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hence,

P~ Q~ - Q~-l

(2-t)Q~_1 + Q~-2 - Q~-l

O-t)Q~-1 + Q~-2'

(5.13)

It is interesting to note that

P;O)

P~ (0

P~ 0)

P~ (0

P; (0

P~ (0

P~ 0)

P~ (0

o
-1

-1

o
1

1

o
-1

(5.14)

Since, by definition, P~ (O=P~-l (0-P~-2 0), this pattern evidently repeats. Hence,

P~n+l (0 = ° n=O,1,2, ...

Thus,

(5.15)

Proposition: A repetitive shear structure with 3n+1 stories has, as one of its modal fre-

quencies, the same frequency as that of a single bay.

Asymptotic Behavior

Consider story i of an N story repetitive shear structure, with story shears Vj and V-I'

Vi V·.. ~
f I : --,

I

I --1
I I

I I
I I, I

Ciii(

Vi-I

Figure 5.2 Single story of shear structure
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Statics suggests that

(5.16)

This and the constitutive relation

combine to give

d2v
m-2-' = k (Vj+1-2Vj+Vi-l)·

dt

If the time and distance scales of Vj (x) = v (i ,x) are changed by setting

UN(S,t) = v(Ns,Nt) 0< s< 1

where v is here extended differentiably between integer values of i, we have

1 1
U(s+- )-2u (s)+u (s--)

k N N
1

N 2

(5.17)

(5.18)

(5.19)

(5.20)

The effect of the distance translation is to make the domain of u independent from N. The last

expression contains the second central difference of u so, as N approaches infinity, this

becomes

(5.21)

Applying the technique of separation of variables, and applying the boundary conditions for a

cantilever

u (0) = a
u'(O) = a
u"(l) = a
u"l(l) = 0,

lead to

2 kn -
m

where n=1,3,5,7, ...

(5.22)

(5.23)
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Thus, as N gets large, the roots of the Pn will have the approximate ratios 12, 32, 52, 72,...

1 1.00
2 0.382.62
3 0.20 1.55 3.25
4 0.12 1.00 2.35 3.53
5 0.080.69 1.72 2.83 3.68
6 0.060.50 1.29 2.24 3.14 3.77
7 0.040.38 1.00 1.792.623.343.83
8 0.03 0.300.79 1.452.18 2.893.483.86
9 0.03 0.24 0.65 1.20 1.84 2.49 3.10 3.58 3.89

10 0.020.200.53 1.00 1.562.152.743.243.663.91

Figure 5.3 Roots of polynomials P~

Design of the Six Story Frame

Utilizing the design considerations of the previous section, a frame was designed

to be tested on a small shaking table test facility at the University of California at

Berkeley (see Figure 5.4). The frame was designed to have a highest modal frequency

of about 20hz, since that is the approximate limit of the response of this table.

Figure 5.4 Six story frame on the table



To make the joints as simple and as continuous as possible, the columns were

constructed out a single piece of material. The girders, also made of the same material

were then set into the columns (see Figure 5.5).

I"'~---24"'---~·1

811"----_J
TOP
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12"

f.-

12"

12"

-'- .1 J,.

t r I I J,. -t-

FRONT

I-:L-
( I 1...

SIDE

Figure 5.5a Geometry of six story frame
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After testing the properties of several different materials, lexan was chosen since it was

easy to machine, had material properties which were apparently independent of fre-

quency, and could be glued with a solvent to produce very homogeneous joints.

1/4
11

~
v

-+ f..- 1/16" ~

A

Figure 5.5b Joint detail

Instrumentation

Schaevitz LVDT accelerometers were attached to the joints on one side of the

structure. These were chosen since they respond to frequencies up to about 100 hz,

and also down to and including 0 hz. Mirrors were attached to the joints on the other

side of the structure to become a part of an optical rotation measurement apparatus

described in the previous chapter. The photocell targets were mounted on a stage

which could be translated a controlled amount and measured with a micrometer.



Figure 5.6 Photocell targets

Lasers and optical benches were mounted in a stable rack. This rack had adjustable

shelves, permitting precise alignment and adjustment of the laser systems:

Figure 5.7 Lasers and optical benches
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The lasers were carefully aligned to minimize parallax errors. As was noted in the

previous chapter, the output of each target will only be linear over a moderate range.

However, each photocell target was calibrated over a wide range. In this way, by fitting

a polynomial to the calibration curves for the targets, the output of the apparatus could

be linearized over a much larger range.

Finite Element Model - Six Story Frame

Developed here is a finite element model where joint panel zones and beams are

allowed to distort both in shear and in flexure, but are assumed rigid for axial

deformations. Using Figure 5.8 as a reference for global coordinates, the transforma-

tions from the local element coordinates to global coordinates will be given.

86 :t cP6V6-t1

85
:\cP5V5-{

84
;'\ +4

Dr
V4-E

83 Ot.e.
V3-t ~ 4>3

82 OM.V2~ ~+2

81

~4>1VI-t

Figure 5.8 Six story frame global coordinates

Horizontal member i:

(5.24)
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where

0 1 Ih _1/2 o 0

a h 0 0 0 0 0 1 (5.25)

0
b b

0 o 0
2 4

Vertical member i:

AV [Q4x3 ... Q4x6Q4x6.Q4x6Q4x6 ... Q4x6J 2~i~6 (5.26a)

AV rf!~x3 b4x6 Q4x6 ... Q4x6J i=l (5.26b)

where

0 1 -lh o -Ih 0

0 0 0 0 0 0
a V

h h
(5.27a)

2 4
0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 1 -Ih 0 Ih 0

bV

0 0 0 0 0 0
(5.27b)

1
h h

0 0 0
2 4

where

-Ih o -Ih
0 0 0

f!:. h
4

0 0

0 0 0

Joint i:

:1 j = [Q ... Q hx3 Q ... QJ 1 ~ i ~ 6

:1 = [1Jx3 Q ... Q] i = base

The beam stiffness matrices will be given by

3 4

N-Jeb----~z-N

(5.27c)

(5.28a)

(5.28b)

(5.29)

lie

2L 2 L2

2EI L2 2L 2

L3 -3L -3L
3L 3L

-3L 3L
-3L 3L

6 -6
-6 6

(5.30)
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4L 2 -L 2 -3L 3L

N -L2 4L 2 -3L 3L
30L -3L -3L 36 -36'

3L 3L -36 36

The beam mass matrices will be given by

(5.31)

4L 2 -3L 2

mL -3L 2 4L 2

420 -22L 13L
-13L 22L

-22L -13L

13L 22L
156 54
54 156

(5.32)

L is the length, m = mass/length, and N = normal force. The joint stiffness matrices

will be given by

Gbht

(5.33)

Material Properties

The total frame weighed 18.4kg. The consistent mass matrix was calculated

using this number. In addition, the accelerometers and mirrors contributed to the

frame's translational mass. The accelerometers and associated hardware averaged

65.5g. The mirrors with their hardware averaged 20.1g.

The modulus of elasticity of the lexan is listed as 1-300,000 by the manufacturer.

To estimate this more exactly, a piece of material was clamped at one end, and a

number of loads were applied to the end. By measuring the deflections at midspan,

the modulus of elasticity in flexure was estimated at 237,000.

Modal damping ratios were determined by exciting the model in the nth mode,

and recording the exponential decay. For any two positive peaks m cycles apart, Va

and Vm , the damping ratio g can be determined from

[
VaI gIn - = 2m7/" ( 2)lh
Vm 1-~

(5.34)
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which can be simplified for low damping to

vo-vg= m
27TmVm •

For the six story model, modal ratios and frequencies were determined to be

Mode Frequency (hz) Damping Ratio (%)

(5.35)

1
2
3
4
5
6

1.95
5.85
9.95

13.9
17.5
19.9

0.6
0.4
0.5
0.6
0.6
0.2

The damping coefficients ak and am can be derived from two sets of modal damping

ratios gi and natural periods 1j , as follows:

47T (T2g2- T1g2)

T:j-T[

T1T2(T2g1- T1g 2)

(T:j-Tf)

In the six story model, using the first two modes we have

0.13

0.00012

Identification

(5.36)

(5.37)

(5.38)

(5.39)

The six story frame was subjected to a reproduction of the same El Centro earth-

quake record as the three story frame. As in the identification of the three story

frame, the rotation measurements were scaled by the modulus of elasticity of the

material to produce quantities of the same order of magnitude. In all of these

identifications, both the acceleration and rotation time histories were used.

Modell

The first model was developed using only two parameters - one for the columns,

and one for mass proportional damping. In the six story frame, the column and girder

parameters were not associated with the effective lengths, but rather with the moment
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of inertia. After three steps, the error had decreased from 23,400 to 7,199. The

column parameter changed from l.0 to 0.93, while the damping factor changed from

1.0 to 6.6. Thus while the overall response is approximated using close to the actual

column geometry, it is apparent that some further investigation is required.

Model 2

The second model included one more parameter associated with the shear

modulus of the joint. The estimate of shear modulus was derived from the measured

elastic modulus by assuming a Poisson's ratio of 0.25. This produced still more

improvement in response matching, producing an error of 5090 in five steps, with

resulting parameters of 1.03 for the columns, 0.86 for the joint modulus, and 1.16 for

the damping parameter. It is apparent that the inclusion of the joint parameter

significantly improves response matching. It would seem that, for this model at least,

the joint behaves more flexibly than would be expected from measurements of

material behavior.

Model 3

Response history matching using the joint shear modulus parameter reflects the

degree to which joint shear deformation accounts for the total response of the frame.

In order to assess the relative effect of joint flexure, a new model was applied using

four parameters - one again associated with the column moment of inertia, one with

mass proportional damping, and one associated with each joint moment of inertia. In

four steps, the error function arrived at 3149, with the column parameter reaching

1.04 and the damping parameter reaching 1.2. The joint moment of inertia parame­

ters, however, became 0.18 and 1.4. Interestingly, while the flexural deformations

seem to account for more error than the shear deformations, it is unclear from this

analysis whether the two flexures were in fact different, or just impossible to identify

separately. Since the construction of the frame was designed to keep the joints as
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homogeneous as possible, it seemed reasonable to assume that the joint parameters

should be lumped together.

Model 4

In this model the joint moments of inertia were associated with a single parame­

ter, and an additional parameter was included to represent the shear modulus. With

the addition of the column and damping parameters, this model has four parameters.

In 5 steps the error was reduced to 3077, which is not a very substantial improvement

over Model 3. The column parameter was 1.04, and the damping factor was 0.75. The

inclusion of the joint shear parameter is therefore relatively unimportant. Further, the

shear factor became 0.34 while the flexural factor became 1.48, indicating that the two

are not independent.

ModelS

In Model 5 the shear parameter of Model 4 was replaced by a parameter associ­

ated with the moment of inertia of the girders. If the joint flexural parameters are the

logical set, the inclusion of the girder parameter should not decrease the error

significantly, and also should not be independent. In fact, the error became 2700.

This is only slightly smaller than in Model 4. The parameter associated with the girder

became 0.86 while the parameter associated with the joint became 2.37. Figure 5.9

depicts the measured and predicted response histories of this model.
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Figure 5.9a Sixth floor acceleration before
identification (in!sec2 vs. seconds)
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Figure 5.9b Sixth floor acceleration after
identification (in! sec2 vs. seconds)
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Figure 5.9g Third floor acceleration before
identification (in/ sec 2 vs. seconds)
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Figure,5.9q Fourth floor rotation before
identification (milliradians vs. seconds)
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CHAPTER 6

CONCLUSIONS

It has been shown that the use of modal decomposition in the Gauss-Newton

iterative identification procedure greatly reduces the computational effort required. At

the same time, the technique appears to be quite stable, and converges rapidly.

This technique was applied to data resulting from seismic tests of a pair of three

story frames previously investigated in some detail. It was discovered that even

though the frames were very similar the identification procedure was able to determine

accurately which of these frames had reinforced joints, but only when the

identification included information gathered about the rotation of the joints in addition

to their translations.

This data, however, was not kinematic in nature. Rather, it was inferred from

strain measurements using the assumption that the whole frame remained linear and

elastic. An optical technique was developed for the dynamic measurement of joint

rotation.

A new six story frame was built, and instrumented with these optical instru­

ments. This frame was built with joints that were as homogeneous as possible. With

the use of the rotational data, it was found that the joint behavior still plays an impor­

tant role in the structure's behavior, and in the identification.

Therefore, a tool has been developed for the identification of elements in struc­

tures with a relatively large number of degrees of freedom. This tool, when applied to

the data made available through the use of the optical instrumentation, is valuable in

describing structural behavior.
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APPENDIX

COMPUTER PROGRAMS

Computer Program Input

I. Integration parameters

0,0: ,e for integration

) Rank parameters

NP - number of parameters

NDOF - # of total degrees of freedom

NINDF - # of recorded degrees of freedom

NXNT - # of modes for integration

NGP - # of global coordinates

'i Parameter specification - for each range of same values

Ei - fixed value associated with global parameter i

lEi - code for computing global coordinates:

-i same as global parameter i

ofixed

i xf3,

IG PS - start of range

IGPE - end of range

4. NFN - # of normal forces

ffY - normal forces, if any

5. NDEL - # of dof to delete from stiffness matrix

degrees of freedom, if any

6. NCNDNS - # of dof to condense

degrees of freedom, if any

7. R, - static displacements for i=l, ... ,N

8. Measurement identification

75
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For i=l, ... ,NINDF IR j =

1 displacement

2 velocity

3 acceleration

IDFi = dof for this measurement

9. End tolerance

SLMIN - minimum slope for line search termination

IT - maximum iterations

ENDTOL - necessary improvement for continuing

DDF - factor for finite differences

10. Initial estimates. f3j.i=l, ... ,NP

If absent, use data file TEMP.
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