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The earthquake induced ground motions, in general, have six components: three
translational and three rotational. These components are also correlated in general.
In this study, the response spectrum methods have been developed to obtain the struc-
tural design response for such correlated components. The forces induced in a structure
depend upon the orientation of the structure with respect to the impinging seismic
waves. An approach has also been developed to obtain the maximum or the worst-case
response which could possibly be induced in the structure when it is oriented in a par-
ticular direction. The numerical results demonstrating the application of these
approaches are presented for the proportionally as well as the nonproportionally damped
structures. The results indicate that a systematic approach, as given in the report,
should be used to obtain the worst-case. response to avoid an unconservative structural
design. Also, the rotational components of a ground input should not be customarily
disregarded. as Inconsequent1a11~e_ggc1a11y if the structure is large or tall.
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND AND SCOPHE

The ecarthgquake induced yround motions, as felt by
structures, will, in general, have six components: three
translational and three rotational., However, for the seigs-
mic de=gn of structures, it is a common practi-e to cor-
sider only the three translational components, In practice,
a structure is analyzed for these components applied along
the structural axes. The responses obtained for the three
components are then combined by the square-root-of-the-sum-
of-the-gsguares procedures [l1,35] to obtain the total
response. This assumes that the three excitation components
are uncorrelated.

In general, however, this assumption is not true.
Penzien and his colleagues have studied the correlative
character of the translational components in a series of
pépers [26,27]. The correlation between the components
considered along any three arbitrarily selected structural
axes can be shown to depend upon the orientation of the axes
with respect to the impinging seismic wave, In this study,
this correlation between the translational as well as the
rotational components has been considered.,

The rotational components are customarily neglected "as
being of.minor consequence” 1'nvcu:-:iSmic structural analyses,
Only a few researchers, notably Newmark {23], Rosenblueth

{28,29], Tso and Hsu [40] and Nathan and Mackenzie [22],



have considered ﬁhe rotational components in their work.
Here, the Newmark's approach [23] is utilized in describing
the rotational components; This is based on a simple
representation of the ground motion components és traveling
waves, (Earlier, the idea of ground motion as a traveling |
wave was also considered by Bogdanoff, Goldberg and Schiff
[4] to evaluate the effect of transmission time on. the
response of long structures,) With this representation, the
rotational components are related to the jerks of the
translational components and the shear wave velocity of .
propagation., Here, the methods to obtain the deéign |
response for such correlated excitations are developed,

For the purpose of describing the seismic design input
for the calculation of the design response for an earthquake
component, the smoothed elastic response speétra are now
commonly used [13,24,41}, For linear structures, the method
of the square-root-of-the-sum-of-sguares of the modal
responses, commonly abbreviated as SRSS, and its several
modifications are used, Several investigators {2,9,29,33,
35] have established the theoretical base~s for the SRSS and
its modifications, However, most of these studies have so
far been directed to the classically damped structural s =~
tems where the damping matrix of the structure can be |
uncoupled by the undamped norm=1 modes., Recently, Singh
1331 has extended the application of the‘response_spectrum
approach to the nonclassically damped systems also., The

theoretical basis of this approach was established by the



stationary random vibration theory. However, no numerical

validation of this approach by simulation is available, 1In
this study a numerical validation of this response spectrum
approach is provided for its application to the nonclassi-

cally daﬁped structures subjected to uncorrelated transla-

tional components., As a by-product, the validation results
for the classically damped systems are also obtained.

After validating the response spectrum methods for the
calculation of design response for uncorrelated components,
hére‘siﬁilar response spectrum approaches have Dbeen
developéd tor the correlated six component inputs. These
approaches, developed for the correlated components, can
employ the component response spectra direcdtly in their
methodology.

The response of a structure is shown to depend upon the
orientation of the structure with respect to the impinging
seismic wéves. For a particular orientation, the induced
response could be the maximum. Here, this maximum response
is being referred to as the worst-—~ase response., A direct
methodoiogy is developed to obtain the worst-case response,
irrespective of the orientation of the structure. The
numerical results demonstrating the application of this
methodology are presented. The rotational components have
also been considered in this approach and it is shown that
the effects of these can be significant for‘tall and large

structures,



The currently used seismic response evaluation proced-
ures are usually based on the method of mode disPlacement of
structural dynamics., However, some specific advantages can
be realized by emploving the method of mode acceleration.
Here, therefore, an alternative response analysis approach,
based on the method of mode acceleration, has also been
developed for the proportionally damped structural systems.
This 1s a generalization of the approach proposed by Singh
and Mehta {38j, which is now applicable to the correlated
six component inputs. This approach is computationally more
efficient than the mode displacement approach in as much as
it requires only first few modes for a sufficiently accurate
evaluation of the response; the effect of the omission of
the high frequency modes in this approach is rather inconse-
guential, even for the stiff structural systems. The numer-
ical results demonstrating the effectiveness of this alter-

-native approach are also presented.

1.2 REPORT ORGANIZATION

In Chapter 2, the development of the response spectrum
approach for the classically as well as the nonclassically
damped structures, subjected to three uncorrelated compon-
ents, is described. Some of the formulation in Chapter 2
may be available élSewhere, but it is given here ftor the
sake of completeness, and also because it is needed in the
subsequent chapters, A new modal superposition approach,

developed for the time history analysis of the nonclass -



cally damped structures, is also presented in this chapter,
The numerical results obtained for the validation of the
response spectrum approaches for the nonclassically as well
as classically damped structures are presented.

Chapter 3 describes the development of the mode dis-
placement procedures used with the correlated excitation
components, The relationships between the rotational and
translational components are developed here. The correla-
tion matrix of the correlated six components is defined in
terms of the autocorrelations and spectral density functions
of the uhcorrelated principal excirétion components. The
analytical development for the identification of the “worst‘ |
case" response are given. The numerical results for the
classically and nonclassically damped structures, employing
the methodology developed in this chapter, are presaented.

In Chapter 4, the analytical formulation of the
response spectrum approach employing the method of mode
acceleration and the numerical results obtained with this
approach are given.

The summary and yeneral conclusions are given in Chap-
ter 5. More detailed and specific conclusions are given in
various chapters themselves where the numerical results pre-
taining to the topic of the chapter are presented.

The appendices provide the details of some analytical

developments and expressions used in the main text,



Chapter 1II

RESPCNSE FOR THREE UNCCRRELATED EARTHQUAKE
' COMPONENTS

2.1 INTRCDUCTTON

For the calculation of structural design response for
earthquake lcocads prescribed in terms of response spectra,
the method of SRSS is most commonly used in practice. In its
simplest form, the method consists of obtaining the maximum
modal responses using response spectra and then their combi-
nation by the simple square-root-of-the-sum-of-the-squares
{SRSS) procedure! Several modifications to this mode res-
ponse combination rule have been suggested which especially
acount for the correlation between modal responsés; This
method and its modifications are applicable to the struc-
tures for which the energy dissipation can be defined in
terms of modal damping ratios. Mathematically speaking it
means that the damping matrix of the system is proportional
or classical [5].

Herein, the SRSS method as used in practice‘and its mo-
dification are reformulated and refined to cbtain more accu-
rate numerical results for structures subjected to multi-

component earthquakes. Three translational components of



excitation are considered and assumed uncorrelated. The
correlated components are considered in the next two chap-
ters. A comprehensive numerical simulation study is con-
ducted to verify the SRSS procedures.

The cases where the damping matrix of a system is non-
proportional or nonclassical, a response spectrum procedure
similar to the SRSS can still be used (see Singh{33]).
Here, this procedure is formulated such that the effect of
peak-factofs can be included in the calculation of design
response. Again, the formulation is developed for three un-
correlated earthquake components. A comprehensive study of
correlation between modal responses of a nonproportionally
damped structure is also conducted.

The verification of this response spectrum procedure
for non&laséicaily damped systems is also done by a compre-
hensivé simulation study. To obtain numerical results for
nonclassically damped systems by the modal analysis proce-
dure forlground acceleration defined in diqitized time his-
tory form, a new step-by-step time history anélysis approach
has been developed. This new approach has been used to ob-
tain resulfs fcr two ensembles of time histories. These re-

sults are discussed in the later part of this chapter.



2.2 ANALYTICAL BACKGROUND

The equations of motion of a multi-degree-of-freedom
_structure subjected to earthquake induced ground motion

aleng its geometric axes can be written as:

[M]fu} + [Cl{u} + [K]{u} = - [MI[r]{E} (2.1)
where [M] = mass matrix; [C] = damping matrix; (K] = stiff-
ness matrix; {u}= relative displacement wvector; {E} = the
acceleration vector of the ground motion components; [r] =

the matrix of the ground displacement influence coeffi-
cients, the columns of which are the influence coefficient

vectors f{r for each excitation component. In general, the

g}
earthquake motions as felt by a structure will have six com-
ponents, and thus [r] will be a Nx6 matrix where N is the
number of degrees-of-freedon. In this chapter, only three
translaticnal coﬁponents of excitations are considered and
are assumed to be uncorrelated. The more general case of
six correlated excitation components is considered in the
next two chapters.

As mentioned earlier, the SRSS procedure is most com-
monly used for the evaluation of design response for design
inputs defined in terms of response spectra. This requires

that a modal analysis approach be used. Thus here the solu-

tion of Eg. 2.1 by a modal analysis approach is sought.



The classical nermal mode approach can only be used for
a very special form of damping matrix [C]. Such damping ma-
trices are often called propertional, Rayleigh or classical.
A proportional damping matrix is a linear combination of the
mass and stiffness matrices. Such matrices can be decoupled
by the normal modes of the system. Another form of damping
matriz which also pcssesses a similar property was defined
by Caughey [5]. For classical [C], the solution of Eg. 2.1
can be obtained by the normal mode approach. However if [C]
is not classical, that is it can not be diagonalized by the
undamped modes of the system, a complex or damped mode ap-
proach 1is used. In the following sections, bkoth types of
structural systems, i.e., systems with classical as well as

nonclassical damping matrices, will be considered.

2.3 CLASSICALLY DAMPED STRUCTURES

If the damping matrix [C] is classical, then Eq. 2.1
can be decoupled into its modal equations by standard trans-

formation [7]. One such decoupled modal equation is:

.. - 2z T
V. + 2B.w. V. + w., V. = ={¥. E(t 2.2
5 Y 2Bylg Vo o4y Vo= {30 (E(D)] (2.2)
where Vj = the jth principal coordinate or the modal dis-
placement; wj = jth natural frequency; Bj =

{cpj}T[C]{qu}/ijmj is 3™ modal damping ratio; {o5) = rela-
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tive displacement mode shape; m = {¢j§T[M]{¢j} is the jTB
modal mass ; {Xj} = the vector of participation factors with
its elements as the participation factors for the excitation
components, defined és ij =§¢j}T[M]{rz}/mj 2=1,2,3. The
superscript 'T' represents the transpose of a matrix or vec-
tor, and dot over a time varying quantity represents its
time derivative.

A'response quantity of design interest, like displace-
ment, member forces and moments which are linearly related

to displacement, can be written in terms of modal quantities

as follows:

N T t
S(t) = -3 E. {¥.} {E{(t)} h,(t-t) dr (2.3)
=1 J J 0 ]
]
.th )
where ij = ] normal mode shape of the response quantity

3(t) which can be obtained by linear transformation from the
jth eigenvector - {¢j}, and hj(t) is the impulse response
function of Eq. 2.2. |

We are interested in the calculation of design res-
pense, It is a high value such that it is not likely to be
exceeded very often when earthguakes occur. To cbtain this,
the ensemble of earthguake motions which can occur at the

site should be considered. Thus the components ﬁg(t) should

be modeled by random processes to obtain the design res-
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ponse. The design response then may be considered to be a
value which will have a small probability of exceedance.
The magnitude of such response depends upon the root mean
square (RMS) value of response, probability of exceedance,
correlation character of the response random process, etc.
In. practice, however, this design response usually can be
obtained as a factor times the maximum RMS response. This
factor is called the "peak factor™ [42]). Herein, this sim-
piified approach is used to def;ne the design response. A
brief development of the RMS expressions and peak factors

are given in the following sections.

2.3.1 AUTOCORRELATION OF RESPONSE
Using Eq. 2.3, the autocorrelation function of the res-

ponse can be written as:

Ex{S(t,;)S(t,] =

N N T [Fifte T
L b Ejgk {Xj§ { [EX[{E(t,)}{E(t2)]"]
j=1 k=1 oJ o

‘h(timtn) By (temtp) dudea] ) () (2.4)
where Ex[.] denotes the expected value of [.]. For a given
correlation matrix, Ex[{E(tl)igE(ta)}T], of the excitation,

Eg. 2.4 can ke evaluated at least theoretically. If the ex-

citation components are stochastically nonstationary, then
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the definition of autocorrelation matrix and eﬁaluation of
Eg. 2.4 are very cumbersome. Therefore, often with the main
purpose of simplifying the analysis, the éarthquake motions
are assumed to be stationary random processes. With this as-
sumption, the motion components can be characterized by the
auto- and cress- spectral density functions. Furthermore, in
this chapter only uncorrelated components are considered.
Thus the cross-spectral density functions are Zero. Also,
only stationary response situations are considered. (The ef-
fect of these simplyfing assumptions on the calculation of
design responsé is evaluated by a simulation study, de-
scribed later.) Employing standard analytical manipulations
0of random vibration for stationary input and response, the

autocorrelation functicn in Eq. 2.4 can be shown to be:

3 N N
Ex[S(£,)S(tx)] =L & I £ ¥ .%
T p=1 §=1 k=1 I ° RIRE
J(_ @Q(w) e Hj(w) Hk(w) dw (2.5)

where §2(w) is the spectral density function (SDF) o¢f the
th

2 excitation component and Hj(w) is the well-known complex
fregquency response function defined as:

2
Hj(w) =1/ (wj -~ w2 + lejij) (2.6)



13

The stationary value of the mean square response can be ob-

tained from Eg. 2.5 by setting t,=t,=t.

2.3.2 DESIGN RESPONSE

To obtain the design response, Sd’ the root mean square
value is to be multiplied by the response peak factor. Let

this factor be C, then

S; = C2 Ex[sS?%(t)] (2.7)

For earthgquake motions defined by a spectral density
function, Eg. 2.7 can be used to obtain the design response.
Howefer, a direct prescription of the spectral density func-
tion for earthguake motion has not been possible so far. The
main difficulty being that earthqguake motions are inherently
nonstaticnary random processes and thus they can not be mo-
deled by spectral density function which, strictly speaking,
exist only for a stationary random process; In practice,
seismic desién input 1is often characterized by smoothed
ground response spectrum curves [13,24]. As it is often
convenient to use spectral density function in an analysis,
such as in Eg. 2.5, numerical methods have been developed
[11] to cbtain this from smoothed ground spectra.

A response spectrum value represents the maximum res-

ponse of an oscillator. This maximum response value is also

equal to the RMS response times the peak factor. For exam-
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ple, if the psuedo acceleration response spectrum value for
the Eth compcnent of excitation at frequency wj and damping
ﬁj is Rna(wj)’ and the peak factor relating the maximum res-
ponse to the root mean square relative displacement response

is Cldj’ then, using Eg. 2.7

2 teo 2 2 4
Cidj-[-_°° QR(w) IHj(w)izdm = Rﬁd(wj) = Rla(wj)/ wj
| (2.8)

in which the division of Rla(wj) by w; converts it into
the corresponding spectral displacement wvalue, Rid(wj)f The
peak factor, Czdj’ depends upcn the central frequency, band
width and duration of the motion and can be obtained by
procedures such as developed by Vanmarcke [44] and Mason
[20].

Eg. 2.8 defines the relationship between a response
spectrum curve and the spectral density function of ground
motion. To obtain the spectral density function from this
equation, the method described by Vanmarcke [42] and Gaspar-
ini and Vanmarcke {1l1] can be used. This will define the
spectral density function at discrete frequencies wj. Such
numerically obtained specﬁral density functiocns can be used
in Eg. 2.5 and 2.7 to obtain the RMS and the maximum res-
ponse, If the variaticn of spectral density function bet-
ween discrete frequencies is assumed linear, then the fre-
guency integral in Eg. 2.5 can also be obtained in closed

form.
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Although all the curves of a set of prescribed design
spectra, such as in References 24 and 41, supposedly belong
to the same ground motion, the spectral density functions
ocbtained by the above procedure for individual response
spectrum curves of different damping ratics may not be the
same. This internal ;nconsistency in the prescribed moticn
has been observed guite often, and is due to several rea-
sons: (1) the process of development of a design spectrum
[11], (2) the assumption of stationarity for nonstationary
earthquake motions, and (3) approximations inveolved in the
calculation of peak factors. With the curfent state-of-the-
art of random vibration analysis for earthgquake motions,
this inconsistency can nbt be resolved, or at least has not
been resolved rationally vet.

Thus, realizing that this internal inconsistency in the
definition of spectral density functions from a prescribed
spectrum can not be resclved with the current state-of-the-
art, the explicit use of éﬁ(w) in response calculations has
been avoided herein. This c¢an be accomplished if Eg. 2.8 can
be directly used in Eg. 2.5 to cbtain the mean sguare res-
ponse. This, indeed, can be done, as is shown by Singh and
Chu [35]. For this, Ex[S2%(t}] in Eq. 2.7 is expanded into
terms with j=k (called the single summation terms) and jzk
(called tﬁe double summation terms or also cross terms) as

follows:
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3 N 2 +co
- 2 2
s c i SN F [_” &, (u) 1H, (0) | 2dw

d =1 =7 J
N N
+ 21 I EE XY
j=1 k=3j+1 37’k 23tk

oo
[0 NG 1B )17 (B )12 du )

-0

(2.9)
where N(w) is defined as: |
. ., 2 2 2 2 2 10

N(w) = w* - w (wj touy - 4Bj6kijk) + wy ey (2.10)

The integral in the double summation term can be further

split into partial fractions, leading to

> 3 N
Sq T ORI LI gy a5 Ty
N N
+ 2 §=1 i:j+1 gjgk ijtzk ;% IOQ(wj) + A, Ilﬂ(wj)
+ Aj Ioz(wk) + Ay Ilz(wk)] } (2f11)
where IOﬂ(wj) and Ili(wj) are the frequency integrals de-

fined as:

+ oo

Log(uy) =j 8y (0) JH(0)|2dw (2.12)

+an

Iyp(eg) = j‘ B (0) w2 [Hj(w)]%du | (2.13)
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and the coefficients of the partial fracticns A,, A,, A; and
A, are defined in Appendix C.

It is seen that the frequency integrsal Ioz(wj) in Eqg.
2.12 can be defined in terms of the psuedo acceleration
spectrum and peak factor according to Eg. 2.8. To define the
integral Ill(wj) in Eq. 2.13 we need to have a relationship
similar to Eg. 2.8. This relationship is defined in terms of

the relative velocity spectrum value as follows:

2 + o0 2
2 2 _
Cpos f_,. t(0) w2 [E;(w)[% du = Ry (u)) (2.14)

where anfwj) = relative velocity response spectrum wvalue
for the zth component of excitation at frequency wj and
damping Bj, and Cavj = the peak factor for the relative vel-

ocity response of the oscillator. szj depends upon the du-
ration of motion, the band width and effective central fre-
quency of the relative velocity response.

The use of relative velocity spectra is rather uncommon
and these are rarely prescribed for designs in smooth spec-
tra form. In the absence of such availability these c¢an,
however, be obtained by making simplifying assumptions. See

Reference 32. For example, for the oscillator frequencies

within the range of excitation frequencies, the relative
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velocity spectrum is almost the same as the psuedo velocity
spectrum. For higher oscillator frequencies, however, rela-
tive velocity decreases faster than psuedo velocity. Thus
for frequency values higher than the so-called zero period
acceleration (ZPA) frequency, relative velocity spectrum may
be assumed\to be zero. For the in-between frequencies, a
log-log linear variation to achieve a wvalue egual to the
psuedo velocity spectrum value at some earlier fregquency may
be assumed [32]. However, these are approximations, and cer-
tainly a more appropriate approach would be to oktain the
smocthed relative velocity spectra for design in the same
way as the psuede acceleration spectra were obtained [24].
In the simulation study, to be described later, thesce rela-
tive veloéity spectra were obtained for the ensembles of
earthquake motions.

Employing Egs. 2.8 and 2.14 in Eqg. 2.11, the design

response in terms of response spectrum values can be written

as:

s° = 2 g I: 52 5 (R C 2

4 - e=1 { j:l ] Qj ( id(wj)/ Edj)
N N

+ 2 % )3 r.:_ ¥ .% [ A, (R, ,(w.)/C,,.)?2
§=1 k=j+1 ik ej ek 2R 2dj

*Ba (Ry (63)/C, )2 * Aa(Ryq(up)/Cppp)? + Ay(Ry (u,)/C, )21

(2.15)



19

To obtain the peak factors required in this equation, the
Vanmarcke's approach [42] is used. A brief outline of‘this
approach is given in section 2.5.

Egq. 2.15 defines a response‘ spectrum approach which
also incorporates the effect of modal peak factors in the
calculation of design response. Cften, however, the pezak
factors involved in Eg. 2.15 are assumed to be the same.
With this assumption, the design response can be rewritten
as:

2
s | (2.16)
=1 £

1))
il
=MW

th

where SE is the response for the ¢ component of excitation

defined as:

2 N » N N
S, = L S . + 2 p3 S . . (2.17)
where
505 = 85 Tay Reglyy) (2.18)
_ 2 2 '
2 2
* Az Ry g(uw) + As Ry (u )] (2.19)

It is seen that the total response for three uncorre-
lated components is equal to the square root of the sum of

the sguares of the responses of the individual components.
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See also the work of Chu, Amin and Singh [8]. Eg. 2.17 is
the same expression as developed by Singh and Chu [35] for
one excitation component. The single summation term in Eg.
2.17 is the same as the conventional SRSS approach. The
double summation terms which represent the effect of corre-
lation between modes are ihportant in certain cases. The
numerical results for Egs. 2.15, 2.16 and 2.17 are presented
and compared with the time history results later in Section
2.8.

The modal correiation coefficient for one component,

say the ch component, can be defined as follows [2]:

S (2.20)

Poik T Seix 7 Sy Sk
Whereas this correlation coefficient considering all the ex-

¢itation components can be written as:

3 \/3 . 3 )
pon = I S, /WIS, S, )
ik p=1 IR Tgog I oy RE

(2.21)

These two coefficients can have different values. However,
the coefficient in Eg. 2.20 is a more important indicator of
the importance of the double summation terms.

It is seen that the correlation coefficients defined by
Egs. 2.20 and 2.21 do not depend on Zj' That is, they re-

main the same for all response guantities. However, they are
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affected by the closeness cof modal fregquencies (a well known
fact), damping values and frequency characteristics of the
input. The correlation is also high when the modal freguen-
‘cies are higher than the highest frequency cof the input, see
Reference 38.

Here, the numerical wvalues of the modél correlation
coefficients are presented for the structure shown in Fig.
2!1..For this structure, the mass and stiffness properties
asIWell_as the eccentricity between mass and stiffness cen-
ters, represented by the e/r parameter (eccentricity divided
by the radius of gyration of a floor slab), can be easily
adijusted to create closely spaced frequencies. Tables 2.1
and 2.2 show the modal frequencies, damping ratios and par-
ticipation factors for the structures with thé a/r values of
.0 and .05. It is seen that when the e/r value is small the
frequencies are closely spaced.

Tables 2.3a and 2.4a show the modal correlation coeffi-
cient defined by Eg. 2.20 for these values of e/r. It is
séen_that the correlaticon is strong among the nearby modes
when e/r is small. In such cases it becomes essential to
consider the double summation terms 1in the calculation of
design response [30,31].

Tables 2.3b and 2.4b show the modal correlation coeffi-

cient as defined by Eg. 2.21, when twe excitation components
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are considered. These values are quite different from those
ianables 2.3a and 2.4a. In fact, the high correlation bet-
ween modes 1 and 2 for one component becomes small when two
components are ccnsidered. This is because the double summa-
tion terms of two components in Eg. 2.19 tend to cancel each

other out to give a small value of pjk.

2.4 NONCLASSICALLY DAMPED STRUCTURES

In this section, the evaluation of design response for
nonclassically damped structures is described. For nonclaé;
sically damped structures, the normal mcde approach can not
be used, and the 2N-dimension state vector approach [10,21}
is required. With this approach, it is possible to develop
an SRSS procedure as shown by Singh [33]. Here, a brief de-
scription of Singh's formulation is given as it is used in a
later section of this report where a new modal time history
analysis approach is developed, as well as in the‘following
chapters where correlated seismic components of the 1input
are considered. The development presented here 1is also
different frém that given by Singh [33] in as much as it
considers three compdnents and includes the peak factor in
the evaluation of design response.

In the state wvector approach, Egq. 2.1 1s rewritten,
with the help of an identity egquation, in the following

form:
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. 3 .
(Alty} + [Blly] = - I (D] X,(®) (2.22)
g=

where iz(t) is the Eth component of ground acceleration vec-

tor {E} and

(0] [M] -{iM] {0l {03}
[A]= ., [B]= and {D,}{= (2.23)
fM]  {C) ' [C] [K] (M]{r,} 2=1,2,3
and
fu]
{yl =4 (2.24)
fuj

is the ZN- dimension state vector of response.
Using the complex eigenvector matrix, [¢], of the fol-

lowing eigenvalue problem
p [Alfe} + [Bl{¢} = {0} (2-25)

Eg. 2.22 cén be decoupled. {(In Eg. 2.25, p 1s the eigenvalue
and {¢] is fhe corresponding elgenvector.) For this the
state vector {y} 1is expressed in terms of the eigenvector
matrizx [¢] and the complex-valued principal coocrdinates {2}

as,

iyt = [¢112} (2.26)
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Substituting in Eg. 2.22 and invoking orthognal properties

of the eigenvectors, the following equation for the jth
principle coordinate is obtained:
) 3 LR
2. - p. 2. = I F . X, (t 2.27
j "~ Py 2y Ty T g (%) ( )

where Z. =jth principal coordinate, pj=the complex jth ei-

genvalue and

F,. = -{6.}°1

*
23 5 M]{rlf / Aj 2=1,2,3 (2.28)

in which {¢.] = the lower part of the jth complex eigenvec-

tor-of Eg. 2.25 and

* T
Aj = i¢j} (ij{M] + [C])§¢j} , (2.29)

The solution of'Eq. 2.27 can be written as

3 jrt v pj(t—r) _

Z. = I F . X (t) e dr (2.30)
I g=1)o M *

In terms of Eg. 2.30, a response gquantity S(t) of de-

sign interest can now be written as follows:

3 2N t p.(t-1) .
S(t) =% {I qg.J[ X, (1) e ] dr} (2.31)
2 =1 “2J o

a5 = 9 Fy. (2=1,2,3) (2.32)
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in which gj is the mcdal response of S(t). This can be ob-
tained in terms of {¢j} and a vector ({T} which transforms

the relative displacement into the response S(t) as follows:

5= 1T} (4] (2.33)

Here we are primarily interested in the calculation of

the maximum value of S(t), i.e., the design response. Thus
as in the previous section, the excitation components ﬁl(r),
ﬁz(x) and i3(1) are considerd as sample functions of random
processes. Again, to simplify the analysis, the random pro-

cesses are assumed tc be stationary and the RMS value re-

-quired to define the maximum response is obtained.

2.4.1 RESPONSE AUTOCCRRELATION

In Eq. 2.31 the complex and conjugate terms are paired

and the autocorrelation function is defined as follows:

Ex[S(t;)S(t2)]} =

3 . N N Lty (s . .
g { = ) Jr J( EX[XR(Tl)XE(ra)]
g=1 i=1 k=1 a 0

Pj(t1'11) * p*j(tr'T;)]

(2.34)
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where Ex[iz(rl)ﬁm(rz)] = 0 has been assumed for &zm since

the accelerations in directions x,, X, and X3 are assumed to

be independent. Expressing Ex[ig(rl)ﬁz(rz)] in terms of the

spectral density function ég(w), and carrying out the stan-

dard algebraic manipulations of random wvibration,

can be written as

3‘ N N +o0
Ex[S(t,)S(t2)] = £ (¢ & j 3 (w)
g=1 j=1 k=1 J-w
ty dwty p.(t;-7q) pr.(ty~11)
(J[ e [qg. e 3 + q*Q. e idry)
0 j j

ta -iwt, Py (tz-12) p* (ta-t2)
( . e [an e + q*lk e ldtz)

For large t; and t, the response becomes stationary.

Eq. 2.34

due}
(2.35)

Consid-

ering such a situation, the integrals in the parentheses can

be shown to be

t, 1wty Pj(t1‘11) * p*j(tl‘Tl)
J( e {qgj e + 9y e tdr,
O t1'9’°°
iwt1
= ng(w) Hj(w) e
t2 _ihl'[z pk(tz"'[g) % p*k(tz_TZ)
e {dy © * g © jdtz
O t2—>m ) t
1wts

* *
= ng(“) Hk(w) e

(2.36)

(2.37)
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where

/ 2
ng(w) = 2[ vy (anBj-blj l.-Bj ) + iw an]

= 2By + iuayy) | | (2.38)

in which Azj is half the real parts of sz ; a and bgj are

L]
the real and imaginary part of qij’ respectively; and wj and
Bj’ which are analogous to the meodal fregquency and damping

ratio, are defined in terms of the real and imaginary parts

of pj as follows:

w, = lps| . By = - Real(py) / (v;) (2.39)

Substituting Egs. 2.36 and 2.37 in Egq. 2.35, the autocorre-
lation function o¢f the response is obtained. The mean
square value of this response 1s obtained by setting

t,=t;=t as:

Ex[s2(t)] = {

.oz
X 2

=1 =1 =1

xR

3

X

£

b * ' *

[ TRw) Gy i(e) Ggp ()] H,(w) Hyfo) |

{(2.40)
This expression of the mean sgquare response is a little
. different from the one given by Singh [33]. Here the separa-
ticn of modal terms 1s explicit; it can be of help in the

study of modal correlations and their relevance to the res-
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ponse evaluation procedures used with nonclassically damped‘

structures.

2.4.2 DESIGN RESPONSE

To calculate the design response Sd’ the root mean

square value is to be amplified by the peak factor, C, as:

) 3 N N
S54=C% % f{f I
g=1 =1 k=1

oo

+
[ 130) G,5(8) Gy (e)] H(e)E (u) ] du
) (2.41)
As design inputs for earthgquake analyses are defined in
terms of smocothed response spectrum curves, we will develop
Eg. 2.41 iﬁ terms of response spectrum values.‘ For this,

Egq. 2.41 is expanded into terms with j=k and jzk as:

2 3 N ’ + o0
s.=c2:f |t $ (w) |G, .(w)]|2 |E.(w)|2 dw
d 1=1  j=1 j:m ’ “] ]
N N T * *
+ I z § (w)G, . {w)G,, (w) H.(w)H, (w)de}
j=1 k=1 [w £ L] £k b k
j*k (2.42)

The terms with jzk can also be written as:

+eoo

3
5 (&%t f 3, (w)
e=1 j2k -

[(Ugsp * 03V, 00) (Hy(0) e (0) + B (W)H (0)]

b e Wy {Hj(w)H;(w) - H;(w)Hk(w)} ] dw)

(2.43)
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where

Upie = Bo5 Paxr Vagk T %5 Pk eix T (Bifax T 2adey)

(2.44)

FEqg. 2.43, after simplification, can also be written as:

2 N N
I 8 I I Ql(w)N'z(w)]H.(w)IZIHk(w)I2 dw
e=1  §=1 k=j+1 ]
(2.45)
where
' B 4 2 A
NTg(w) = wpq w” + Wpn W0 F Wpg 0T+ W,
w1 = Viix
Woo = Uzjk - (wj ooy - QBjﬁkijk) Vajk
- 2.486
2(Byuy = Byug) Wy | > ( )
_ 2 2
WQB - _(wj + wk - 4535}{0)]0)}{) Ul]k
2 2 ,
LFUR szk + Z(Bjmk ~ Bkwj)wjuk szk
2 2
Wag T ¥y Wk Ypgx

7

The integrand of Eg. 2.45 can be further broken into partial

fractions as follows:

N'(0) [By (0) 2 By (0) [2de = (B'y, + A", w?)H,(u) ]2

+ (A'y, + A", w?)[H (v)]2 (2.47)
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1 ? 1 1] - : .
where A 107 A PTL A 3y and A aq are defined in Appendix C.
With this division into partial fractions, Eg. 2.42 can
now be written in terms of the frequency integrals IOE(wj)

and Ill(wj)‘ defined by Egs. 2.12 and 2.13, as follows:

S2 c?2 g { § 4 {Aa I, (w) : I.,(w)]
= . w) + a, . W
d e=1 j=1 £j "0z 23 T1g
N N
+ 8 ¢ b [A' I . {w.) + A' I, (w.)
i=1 k=9+1 12 “0er 7 28 Tl

* ATy Igplu) * ATy, I (el (2.48)

Employing Egs. 2.8 and 2.14, the design response can
now be written in terms of response spectrum values and peak

factors as follows:

- 3 N
s, =C0C2%¢ { t 4 {(A,.R, (w.)/C,,.)2
d 1=1 j=1 £j"edt 3 gd i
2
Hag R (0y)/Chyq) )
N N
+8% ) (A", (R, ,(w.)/C, ;. )%+A", (R (w.)/C, _.)?
j=1 k=j+1 1e27ed T ; 2dj 28378v ] v
t 2 1
A (Ryq(up)/Cog)”™ * A

a0 Ry (40 /Coyp) *1 ]

(2.49)
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This equation defines the design response in terms of ground
regponse spectrum values and modal response peak factors.
Here again, if the peak factors are assumed egual, Eq.

2.45 can be written as:

3
Sd =v§ Sz (2.50)

> N 2 N N
S, = I S,. +2f I S . (2.51)
2 j=1 9'3 j=1 k=j+1 Ejk
in which
-— 2 2
ng 4 [{AQJ de(‘”j)} + {anj Rw(wj)} ] (2.52)
S =8 [ A R’ s A R
gk 12 Realey) 20 Rpuley)
t 2 ) 2
+ A"y Rmd(wj) + A, Rgv(wj) ] (2.53)

Egs. 2.50-2.53 are similar to the Egs. 2.16-2.19 for
proportionally damped systems. Again the double summation
terms in Eg. 2.51 represent the effect of correlation bet-
ween modes. The correlation coefficient between two modes

for the Zth excitation component is defined as follows:

Paik = S2ik 7 S29 Sox (2.54)
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When more than one component is considered, this coefficient

is defined as

3 3 2 3 2
p.. = % S . / (¢ S .}y( S,.)
jk 1=1 £ik 0=1 2] g=1 [
(2.55)
where
z 2 2
Spq = By Igg(uy) + agy Ip(uy) (2.56)
Seik = B agloplwy)th eIy (wy) + Alg Tap () *A 4, Ty, (ws)
' (2.57)

Here, unlike the proportional systems, this correlation is
seen to depend‘on the response quantity of interest. Thus,
different response quantities could have different degrees
of correlation in their modal responses.

Here again, theé system shown in Fig. 2.1, but with non-
proportional damping characteristics, was considered to ob-
tain the modal correlation coefficients for the résponses of
story shear, torsional story moment and column bending mo-
ments. Results are presented in Tables 2.5 through 2.10. A
scrutiny of these results shows that for low e/r values, the
modal correlation is high. However, 1t changes drastically
without any specific pattern when e/r becomes large. For

example, see the values of the correlation coefficient bet-
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ween modes 1 and 2 for story shear in the x;-and
Xp~directions for e/r=.05. Also, the values change, again
not with any specific pattern, when two components of exci-
tation are considered simultaneously. Thus mocdal correla-
tion does not seem to hold the same significance in this
case as it did for the proportionally damped systems. Thus
a complete expression with all modes included in the summa-
tion should be used in Eg. 2.49 for the calculation of de-

sign response.

2.5 EVAﬁUATION OF MODAL AND RESPONSE PEAK FACTORS

In the previous sections, response spectrum approaches
for the calculatioh of design response of c¢lassically and
nonclassically damped structures were described. These ex-
pressions, in general, regquire the peak factors C, czdj and
CEVj' Here, the Vanmarcke's approach [42] used for the cal-
culation cf these factors is cutlined.

In this approach, the peak factor C is obtained from

the solution ¢of the following eguation:

1. - exp(- 1I/2 Ge C)

in[ 2n( ) 1 =-§- (2.58)
1. - exp(-C2/2)

where,

n=-=-Us/ (20 In(p) ) (2.59)



34

2 0.6 1.2
= - = .60
8, = (1. - Aj/Aqh,) § (2.60)
Q= AZ/AO (2.61)
in which s = duration of earthguake {equivalent stationary

duration); p = probability that response will be less than
the design response where the design response =C % =C Ao ;

and Am is the m™ spectral moment [43] defined as equal to
tow m
A= f_«, lof™ & (w) du (2.62)

in which @R(w) is the spectral density function of the res-
pense quantity for which the peak factor is being obtained.
The parameters (¢ and § are often referred to as the
cental frequency and band width parameters of the response,
and these are defined in terms of the zeroth (mean sguare
st nd )
value), 1 and 2 moments of the response. However, if we

want to use response spectra as input, it is nct possible to

define the ISt spectral moment. Thus here the bandwidth par-

ameter is defined in terms of the Oth, an and 4th moment as
follows:
\[ 2
§ = 1. - AZ/AOA4 (2.63)

This definiticn of bandwidth parameter was used by Longuet-
Higgins [(19]. This parameter has similar characteristics to

the one defined by Vanmarcke, Eg. 2.60.
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This approach requires that the spectral density
function of the response guantity be known. If the spectral
density function for the acceleration of the ﬁth component
is §£(w), then the spectral density functions for the rela-

tive displacement and relative velocity of an oscillator

with frequency wj and damping Bj can be written as:

toai W) = #(v) iHj(w)lz | (2.64)

L]
—
€
~—
h

w? By (0) 1H ()] | (2.65)

where égdj(w) and ézvj(w), respectively, are the spectral
density functions for relative displacement and relative
velocity response. These density functions are used in the

calculation of the C

0d and Cij values by the approach de-

scribed above.

To obtain C, the spectral density functicn of structur-
a; response is required. This density function can be ceasily
identified from Egs. 2.11 and 2.47, respectively, for the

classically and nonclassically damped system as follows:

Classically Damped System:

& =z ) ¥, . |H, 2
g(w) r { o 5% 1Hj(w)]
N N
+251 I Ei8, ¥, . ¥ . [(By+w?B,) [H, (u)]?
§=1 ke=s+l Ik 2tk J

+ (BgrulAg) [H ()12 1} &, (u) (2.66)
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Nonclassically Damped System:

3 N 2 .
= . 2 2
§s(w) ;L.:l { ?:1 4(A2j + ailj) [HJ(w)]
N N
81 I [(A'1, + w? A", ) [H (0)]2
j=1 k=j+1 1t 207175
+ (A'B2 + e A'QR)IHk(w)IZ] i éz(w) (2.67)

It is clearly seen that the spectral moments which are re-

quired in the calculaticon of ngj and CQV can be directly

b
used to obtain the corresponding spectral moments for the
response gquantity S without explicitly knowing és(w). For

example, the mth spectral moment of response can be obtained

from Eg. 2.62 as:

A, = <[ lw)™ ¢ (u) du (2.68)

which, say, for a classically damped system can be written

as:

3 N 2 2
A (w) =% ( I S S SR
sm 0=1 =1 723 2djm

N N

+ 2k I L S S ¢ [Ay A .. + A, A .
j=1 k=j+1 3’k & ek rdjm 2v3m.
* B Apgem T B M)

(2.69)
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where Asm is the mth spectral moment of response S; and

A and A , respectively, are the mth spectral moments

f.djim Lvim
of displacement and velocity responses in the jth mode for
the zth excitation component.

In actual practice, the spectral density function of
the input motion will not be Kknown. Thus, to obtain the
peak factors scme assumption about this will have to be
made. To see how sensitive the response results are to this
assumption, two different spectral density functions were
emploved for the calculation of peak factors. The‘Kanai—Ta-
jimi [15,38]) form, as defined by Eg. 2.73, and the easy-to-
use white nolse spectral density function with cut-cff fre-
gquency of 30 cps. were used. An attempt was also made to
use ground spectra in the calculation'of peak factors. In
this method the spectral moments of the modal responses were.
obtained in terms of response spectra. For example, the mo-

ments for the calculation of CE were obtained as;

dj

2
AZdjo = k'Rza(wj) {2.70)

2 ' '
AZde =k sz(“j) S (2.71)

_ 2 2 2 2 2
Azdj4 = k [Ag "Rza(wj) +2mj(1~25j)R2V(wj)] (2.72)
where Ag = maximum ground acceleration. Some problems were

encountered in the evaluatiocn of the moments of the relative
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velocity in terms of response spectra. Here, thus, clvj Was
assumed equal to ngj in the numerical evaluation of the re-
sults. It is noted that the factor k appears both in the mo-
ments of response guantity S as well as in the moments of
the modal responses. Thus it cancels out, and can be assumed
equal to 1 without affecting the results.

For illustration purposes, the modal peak factor values
obtained by this approach for the structure shown in Fig.
2.1 for the Kanai—Tajimi spectral density function, white
noise spectral denéity function and smocthed response spec-

tra, are shown in Table 2.11. It is seen that they are not

drastically different from each other.

2.6 SIMULATION STUDY

In the develépment of the expressioﬁs for the design
response, several simplifying assumptions were made. Proba-
bly the most questionable one is the assumption of statio-
narity of input and regponse. Also, the relationships bet-
ween spectra and spectral density function and the procedure
for the evaluation of peak factors have inhe;eﬁt assump-
tions. Thus, to verify the wvalidity of these eguations for
the calculation of design response, a comprehensive simula-
tion study has been conducted.

The simulation study consists of:
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1l. synthetic generation of an ensemble of earthgquake mo-
tions with similar frequency content;

2. development cof the mean and mean-plus-cne-standard
deviation wvalues of the ground response spectra for
the ensemble;

3. evaluation of the design responsé using the expres-
sion developed in previous sections for the seismic
inputs defined by the spectra developed in step (2);

4. calculation of the maximum wvalue of the structural
respbnse of interest by the step-by-step time history
analysis method for the ensemble of time histories;
and

5. calculation of mean and mean-plus-cne-standard devia-
tion values of the maximum response obtained.in step
(4).

The wvalues obtained in step (3) with mean spectra as
inputs are compafed with the mean of the maximum value ob-
tained in step (5); likewise the wvalue with mean-plus-one-
standard deviation spectra as input in steé (3) are compared
with the mean-plus-one-standard deviation values obtained in
step (5). A good comparison of these valugs will verify the
response evaluation procedure used in step (3), in spite of

the assumption made in its derivation.
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This comparison of the results has been made for struc-
tures with different properties, different input motion
characteristic and different response quantities. The res-
ponse quantities which have been considered in this study
are the story shear, story torsional moment and éolumn bend-
ing moments.

As broad-band response spectra [13,24,41] are used as
seismic inputs for design‘purposes, the frequency content of
the motions used in this study was also defined by a broad-
band Kanai-Tajimi type of spectral density function of fol-

lowing form:

2 2 2

w, *+ 4Blw w
3
P(w)= & 5 -302w<30 cps. (2.73)
i=1 }j
222+4222
W =W ) ﬁiwiw

The parameters, Si’ Wy and Bi of this density function are
given in Table 2.12. This density function has also been
used in several earlier studies.

A sample function of ground motion with freguency char-
acteristic defined by this density function can be generated
as a summation of randomly phased harmonics according te the
following expression([7]:

s

. [ 4§Q(wk) Aw ]1/2 Cos(uw kt + ék)

X'g(t) =

i

(2.74)
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where Ns = number of harmonics, W = k Aw, Aw = fregquency
interval size = wc/Ns, and Qk are uniformly distributed ran-
dom variébles between 0 and 2I.

Using Eq. 2.74, several independent sample function
were obtained. Tco introduce nonstationarity, these time
histories were modulated by an envelope function e(t) [1]

as:
ii(t) = e(t) X' (%) | (2.75)

Two different forms of e(t) were used and these are shown in
Figs. 2.2. They essentially differ in the duration of their
strong motion phase. Thus, this simulation study has been
carried out for the two ensembles with their total and
strong motion phase durations of (15,4) and (30,15) seconds.
The first set has 75 time histories in its ensemble and is
referred to as 1l5-sec. time history set. The second set had
39 time histories and is referred to as 30—sec. time history
set. A typical sample function of the 15-sec. set 1is shown
in E‘iq‘. 2.3. The mean and mean—plus—o‘ne-standard deviation
psuedo—écceleration and relative velocity spectra for these
sets are also shown in Figs. 2.4 through 2.11.

The step-by-step time history analysis methods used in
step (4) of the simulation study for claésiéally and non-
classically‘damped systems are described in the following

section.
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2.7 TIME HISTORY ANALYSIS OF STRUCTURES

To solve Eq. 2.1, a numerical step-by-step integration
_procedure can always be used with any type of damping matrix
[C]. The most commonly used step-by-step procedure is based
on the assumption of linear wvariation of acceleration res-
ponse‘between any twoc consecutive time steps of integ:ation.
The analysislbecomes unstabkle and the solution blows up if
the time step of integration is not small.‘ Thﬁs, the time
step should be small enough sc as not to cause any instabil-
ity in the higher freguency or shorter pericd modes. Some-
times this can cause prqblems if the structure has many de-
grees of freedom and the highest frequency is very large. In
such cases, unconditionally stable procedures like the Wil-
son-6 method [7] are most appropriate. These unconditionally
stable procedures tend to damp out the higher modes com-
pletely, which may be desirable in some cases and undesira-
ble in others. In most cases, however, these procedures can
be successfully used. Yet, because they assume linear varia-
tion of acceleration response, these procedures are approxi-
mate.

For structures which behave linearly, another commoniy

used method i1s the mode superposition approach. The cur-
rently available approaches assume that the damping matrix

[C] is classical; that is, it can be decoupled by the normal
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modes. In such cases, each decoupled modal equation is
solved either by the assumption of linear acceleration res-
ponse as discussed in the previous paragraph or by the Duha-
mel's integral approach. The latter approach is exact in as
much as no assumption such as the linear wvariation of res-
ponse between two time steps is made. One such approach was
proposed by Nigam and Jennings [25]. This approcach has been
used here for the time history analysis of proportiocnally
damped systems. In this approach the recursive solution of
the decoupled normal mode equation such as Eq. 2.2, defining
the state vector at time step ti+1 in terms of the state
vector at step ti’ for three excitation components can be

written as follows:

Vj' »—A11 Aip | Vj B, Bia | X

vj ti+1 LAZI Aa?,— vj t, L.BEI BEZ.« k (tl

(2.76)

Where ﬁz(t) = acceleration at ti’ ig(t = acceleration at

i+1)

t and the elements A,;, B;;, etc. are defined in Refer-

i+l
ence 25.
Knowing the modal response time histories, the time

histories of displacement {u} can be easily obtained by a

simple mode superpcsition procedure. Other response quanti-
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ties such as bending moment can also be obtained at each
time step by simple linear transformation of {uj.

Often the modal superposition procedure is preferred,
as it lends a greater flexibility and control over the
step-by-step time history integration of each modal equa-
tion. If it is considered appropriate, costly numerical
integration of higher mode equations with smallér time steps
can be avoided if the higher modes are Known to contribute
insignificantly to the calculated response. Also, 1if the
higher medeé are to be included, then only their own egua-
tions need to be solved with shorter time steps and the oth-
er modal equations can still be integrated with larger time
steps.

To take advantage of these attributes of the modal ana-
lysis appreoach, and also to obtain results which will be
comparable to the design response results obtained from Egs.
2.48 and 2.50, which necessarily employ the modal analysis
techniques, here a new modal step-by~-step time history inte-
gration approach has been developed for the calculation of
the response of nonclassically damped systems. This ap-
proach as described in the following section, is mathemati-
cally exact as no assumption about the variation of res-
ponse, like the linearity of acceleration response between

two consecutive time steps, is made.
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2.7.1 TIME INTEGRATION OF NONCLASSICALLY DAMPED STRUCTURES

For nonclassically damped systems, a numerical integra-
tion approcach employing Fourier transforms was described by
Itoh [14]. Another approach in which coupled equations are
analyzed was presented by Clough and Mojtahedi [6]. Here a
different modal time history integration scheme 1s de-
scribed.

In this appreoach, Eq. 2.1 is first decoupled into
2N-modal equations such as Eg. 2.27. The complete solution
6f this equation will consist of the homogeneous solution

plus a pérticular solution as:

Z.=2. + Z. 2.77
J jh ip , ( )

where Zjh and ij are the homogeneocus and thé particular so-

lutions, respectively. The homogeneous solution of Eg. 2.27

can be written as:

zjh = ce J (2.78)

J

where cj = constant of integration. The particular solution,
ij, can be obtained by any standard integration technigque.
For example, the general form of the particular solution,
using the Qariation of parameter technique, can be written
as:

3
= I

4

t - pj(t"[)'
) F“jjfo X (1) e dr | (2.79)



46

However, for the digitized time history as shown in Fig.
‘2.12 with linear wvariation between two consecutive time
steps, an alternative approach to obtain the particular so-
lution may be algebraically more convenient. The accelera-

)th

ticn ﬁg(t) for the ith step between the ith and (i+1 dis~-

crete points of the time history can be written as follows:

.- T 1.4 (2.80)
X (£) = X () + 51X (%5 .4)

- Xz(ti)] t
where t is measured from ti and h is the size of the time
step. Substituting Eg. 2.80 into Eg. 2.27, the modal equa-

tion becomes:

3
2. = . 2., = L F_. + b t) - 2.8
37 Py By T Fpy (gt BT (2.81)
where
aJZ = Xz(ti) {2.82)
b2 = [Xg(ti+1) - Xz(ti)]/h (2.83)

The particular solution corresponding to such a forcing
function ihthe xg—direction can be obtained by the methed cof
undetermined coefficients as:

2
= .84
zﬁjp ng { b, + pj(au + bt) 1/ D, (2 )
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The complete solution of Eg. 2.79 can thus be written
as:
. pjt 3 2
Z. = c¢c.e + §=1[F2j{b2+pj(a£+b£t)/pj}] (2.85)
To obtain cj, the initial cendition on Zj at the beginning

of the time step will be used. Thus at t=0., Eq.'2.85 gives:

3

2
. = 2.(t=0) - L F__.(b, * .a . 2.86
cj = 23(£20) - I 5(by + pa,)/p; (2.86)

where Zj(t=0) is the same as Zj at time step ti, i.e.,
zj(ti)' Using Egs. 2.85 and 2.86, the solution at the end of
the time step t=h, that is (ti+l)' can be obtained as:

> Pp.h

3
- - B
Zj(t00) = (By(6)) = Ey (bytpia,)/pyle

3 2

Thus, knowing the solution Zj(ti) at the beginning of a
time step, the solution at zj(ti+1) at the end of the step
can be obtained from Eg. 2.87. A complete sglution of Eq.
2.81 at all discrete time points can be cobtained for a degi-
tized acceleration time history if the initial value of Zj
in the first step is known.

To obtain the initial wvalue of Zj in terms of the res-

ponse {u} and {u} of the system, Eg. 2.26 is used. For ex-
ample, if the system was in motion with certain initial wvel-

ocity and displacement at the start, i.e.,
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(¥}emg = (2.88)

the initial value of Zj at t=0 can be obtained from Eg. 2.25

as follows:

[¢]{Z}t=0 = {y}t..-o - (2.89)

Premultiplying by [@]T{A], and using the orthogonality of

complex modes with respect to [Al, we obtain:

= — T
zj(‘C—O) = {¢j§

The wvariables and constants in Eg. 2.87 are complex

(A1 {¥)g / A; (2.90)

gquantities. However, a recursive scheme to obtain real and
imaginary parts of Zj at any time step can also be devised.
Expressing the complex quantities in Eg. 2.87 in terms

of their real and imaginary parts as

2(E5) = Zgs(ty) + 4 Bp(ty)

2300 49) T 2gy (L) 1 205(% )
8 i \f1.-8. = -B ‘ 2.91
.= =-Blw. *+ 1lw. B, = -B.w. + . .
P i3 7 MY i i%5 7 Ydg ( )
F3/P5 T G5 T Ay

and substituting in Eg. 2.87, it can be written as:
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Zpy(ti41) * 12p5(%50) =

~B.w.h
3 e .
e [Cos(wdjh) + 1 Sln(wdjh)] [ sz(ti) + 1zlj(ti)

3 “n -

P ety ) (6, 0) Ko (£ 1/ + (054 )%, (5}
3 . - [}

2

(2.92)

Comparing the real and imaginary parts in Eq. 2.92, two sim-

ultaneous egquations are obtained to obtain ZRj and‘ZIj at t

= ti+1' These equations can be written in the following ma-

trix form:

sz Aqq Az sz
Zys) tier  Lhes Asa 15 )t
[ (2) 2 (. )
Bia B> Xg(ti)
3
+ I
¢=1
(2) (2) .
B2 Baz | X (t;,1) (2.93)

where the elements of the two matrices are defined as fol-

lows:
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-B.w.h

a,, =e I3 Cos(uyh)
-B.w.h

By, =—e I Sin(uy;h)
-f.w.h

Byy = e 5 7 Sin{ugy;h)
-B.w.h

= J 3]
A, , e Cos(wdjh)

(¢) -B.w.h
B;= e 7Y [(cy5-ey3/R)COS(ug )= (dy -, /h)Sin(uysh

re,./h

2]
{(e) -B.w.h
B,, = e I3 ley; Coslugsh) = £, Sin(ugh)1/h
- (C£j+egj/h)

(£) =Buh
Bpy= e [(cg5=ep3/R)Sin(ug h)+(dy -F) /h)Cos(uy h

+ fgj/h

(l)_ —ij.h

J R
Bz = e [e Sln(wdjh) + fij Cos(wdjh)l/h

L3

- (dyy+£, /)

Egs. 2.93 define the recursive solution of Eg. 2.27.

(2.
(2.
(Z.

(2.

)]

(2.

(2.

)]

(2.

(2.

The

94)

95)

96)

97)

98)

99)

100)

101)

SO-

lution marches from t=0 to the last discretized time step.
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2.7.2 DISPLACEMENT AND MEMBER RESPONSE OF NONCLASSICALLY
DAMPED STRUCTURES

Eg. 2.93 defines the complex valued principal coordi-
nates at discrete time steps. In Ferms of this sclution the
other response guantities 1like digplacements fu} and member
forces, S(t), which are linearly related to {u} can also be
obtained. For example, a response guantity can be written

in terms of Zj as:

N
g, 2. (2.102)

S(t) = 9%

L o I ]

where gj is the modal value of the response quantity defined

by Eg. 2.33, with its real and imaginary parts as:

.= o+ iogl. 2.103
95 IR 915 ( )

Combining the complex and conjugate pairs

N * k
S(t) = 1% (g, Z, + g, Z.) : (2.104)
j=1 J ] l 3 .

Substituting in terms of real and imaginary parts

N .
S(t) = +igo ) (Z2.+iZ.) + -ig__) (2, -iZ
S(t) o (qRJ 1gIJ)( rHig;) (gRJ 1qIJ)( R™1%7)
' '(2.105)
‘ N
S(t) =2 ¢ (gRj sz - 915 sz) | (2.106)

j=1
"To verify the correctness of the formulation of this

new procedure for nonclassically damped structural systems,

a classically damped structure was analyzed by this method
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and the Nigam and Jenning's approach, Eg. 2.76, discussed in
the earlier part of the section. The two approaches provided
exactly the same respOnse values. This cross-validated the
two approaéhes.

To further cross check the method numerically, another
slightly different formulation which obtained the particular
solution by Eg. 2.79 was developed. The details of this for-
mulation are given in Appendix A. The numerical results ob-
tained by these two methods for the same system again gave
exactly the same results, thus further validating this new

numerical integration scheme,

2.8 NUMERICAL RESULTS

For the verification of the response spectrum (RS) ap-
proaches presented in the previous sections, the numerical
results have been obtained for a three-story torsional
building and a stick model with 10 lumped masses.

The torsional bullding consists of three rigid floor
slabs connected by four corner columns. The mass centers of
the slabs and stiffness centers of the stiffness elements
provided by the column have been displaced to cause a tor-
sional moment. The damping is provided by the dampers in
the x,;~ and X; directions. By adjusting the stiffness, ec-

centricity between mass and stiffness centers and damping
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values, a variety of structural systems with different dy-
namic characteristics can be created. For example, by ad-
justing the lateral and torsional stiffnesses aﬁd eccentric-
ity between the mass and stiffness centers, a structural
system with well separated to closely spaced fregquencies can
be created. For closely spaced modal frequencies, modal
correlation is high as was shown in Sections 2.3 and 2.4.
Also, by adjusting the damping wvalues in the x;- and x, di-
rections a varying degree of nonproportional damping effect
can be introduced in the damping matrix of the structure.

The system with three eccentricity ratio parameters has
been considered: e/r=.01, .05 and .30. Here, e = eccentric-
ity between the masé and stiffness centers and r = radius of
gyration of the slab mass. The mocdal frequencies, damping
ratics and participation factors for the proportionally
damped system are shown in Tables 2.1 and 2.2 for two sys-
tems with e/r=.01 and .05 under the ccoclumns of normal modes.
For nonproportionally damped systems, the frequencies and
damping ratios are defined by Egs. 2.39. These values are
shown.in the same tables under the columns of complex modes.
It ié seen that for e/r=.0l1l, the modal £frequencies are
closely épaced.

The numerical wvalues have been obtained for the base

story shears in the x,- and x, directions, base story tor-
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sional -mement and coclumn bending moment about the x; and x,
axes in one of the columns of the base story. The results
_have been obtained for 15- and 30-sec. time history ensem-
bles, with mean as well as mean-plus-one-standard deviation
{mean+l sdv) spectra of the ensembles. The results have
also been obtained for excitation applied in cone as well as
in two directions.

The results are shown in Tables 2.13 through 2.34. The
results obtained under the normal mode section employ un-
damped normal modes of the structure with modal damping va-
lues defined in section 2.3. Thus, here the off-diagonal
terms of [¢]T[C]I¢] were ignored. The results in the time
history analysis were obtained with these modal parameters,
using the modal time history analysis approach described in
section 2.6. These are shown in Column (2) of the tables.
The results in Column (3) were obtained by the response
spectrum (RS) apprcaches, Eg. 2.17, which assumes the peak
factors to be equal. For the results in Columns. (4), (5)
and (&), Eq. 2.15 was used which includes the modal and res-
ponse peak factors. To obtain the peak factors, three
different forms of input were used: Kanali-Tajimi spectral
density function, white noise spectral density function and
the response spectra of the ensemble. The response results

in Column (3) through (6) are shown in the ratio forms. That
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. is, they are the ratios of the results obtained by the Eqg.
2.17 or Eg. 2.15 divided by the time history ensemble re-
sults.

The results shown in the section of the complex modes
are obtained by the ZN-dimensional state vector approach.
For the results in Column (3), Eg. 2.51 without peak factors
was used, whereas for the results in Columns (4}, (5) and
(6), Eg. 2.49 was used.
| The lower part of each table, entitled pércent error,
shows the difference between the results obtainedlby the
normal and complex mode approaches. It shows the effect of
fhe assumption of proportionality of damping matrix when in
fact it is not. Thé differences between the results for the
the normal and complex mode apprcaches obtained by the time
histeory analyses are, approximately, of the same magnitude
as the results obtained by the response spectrum analyses.
Also, in most cases this difference is larger when the fre-
quencies are closely spaced as 1s seen from the results in
the tébles for e/r=.01 and becomes small when the ffequen-
ciles are well separated as in the tabiesvfor e/r=.30.

The results obtained for a simple stick model, which
has well separated freguencies, are also obtained. This 10
story shear structufe with 10 degrees-of-freedom is shown in
Fig. 2.13. The frequencies and damping ratios are shown in

Table 2.35. Tables 2.36 and 2.37 show comparative results



56

for the total shear force at each story obtained by time
history analysis and by the normal modes approach.

Tables 2.13 through 2.26, 2.36 and 2.37 are for the
mean of the maximum response and tables 2.27 through 2.34
are for thé mean-plus-one~-standard deviation of the maximum
response. Also, the results for one as well as two excita-
tion components are shown in the tables. Almost half of the
tables are for 15-sec. time history ensemble inputs and the
remaining ones are for the 30-sec. time histories inputs.

A general comparison of the results obtained by the
time history analysis and response spectrum approaches shows
a rather good agreement. The response spectrum approaches
which consider peak factors seem to give better results for
small and large eccentricities. For e/r=.05, the results ob-
tained by the response spectrum are in general lower than
time history results for the response gquantities in.the di-
rection of the excitation (e.g. x;- base shear, and bending
moment along the x,-direction). Whereas, the base shear in
the direction orthogonal to the direction of excitation, as
well as the torsicnal moment, are over estimated by the res-
ponse spectrum approach (e.qg., Tables 2.17 and 2.18). How-
ever, when two components of excitation are considered, the
response spectrum approach gives a very good compariscon with

the time history results.
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In most cases it was noticed that the comparison bet-
ween the time history and response spectrum approaches im-
proves when peak factors are included, although there are
some cases where this is not necessarily true. For column
bending moment response in the X;-direction, some problems
were encountered in the calculation of the peak factor value
These were the limiting cases for which Vanmarcke's approach
is not applicable. The problem values are shown by '=---' in
the Tables.

These observations are in general true for the mean and
mean-plus~one-standard deviation results. This means that
the response spectrum approach willl predict accurate design
response for any percentile spectra used as seismic inputs.
In practice the mean-plus-one~standard deviation spectra are
usually préscribed as design inputs [24,41].

To see thch input for peak factor evaluation provided
better response, the mean and coefficient of variation of
the ratios reported in Columns (4), (5) and (6) of the Ta-
bles 2.13-2.34 are cbtained and shown in Table 2.38. It is
seen that on an average all three inputs 1éd to a good esti-
mate of maximum response when compared with the time history
ensemble results. Out of the three, the response spectrum
and white noise inputs provided a little better comparison
than the Kanai-Tajimi input. As white nocise is guite easy

to use, its use is recommended for the calculation of peak



58

factors in the evaluation of design response by the response

spectrum approach.



Chapter III

RESPONSE FOR SIX CCORRELATED EARTHQUAKE
COMPONENTS BY MODE DISPLACEMENT APPROACH

3.1 INTRODUCTION

In Chapter 2, the structural response for only uncorre-
lated translational earthquake components acting along the
structural axes was considered. In reality, however, a
structure will experience all six components: three transla-
tional and three rotational components of an earthquake.
Also, these components will in general be correlated with
each other. In this chapter, the methods are developed to
obtain design response for such six correlated earthdauake
éomponents.

Penzien, et al.[16,17,26,27] have investigated the cor-
relative character of the translational grouna motion compo-
nents in a series of papers. They have opined that there
exists a set of orthogonal directions along ﬁhich the compo-
nents are uncorrelated. These directions were called the
principal directions of excitation. The direction corres-
ponding to the most intense excitation was called the major
principal excitation axis, and the other two directicns were
designated as intermediate and minor principal excitation

axes. It was also observed that the epicentral direction

59
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and the major principal axis tend to coincide, though this
tendenﬁy was not very strongd.

Here it is assumed that such principal excitation axes
do exist and remain fixed during an earthguake. In general
they will not be fixed as the contribution of different
types of waves to an earthgquake moticon will change as tﬁe
motion progresses with time. Consideration of such changing
principal directions in the calculation of desi¢gn response
seems mathematically and practically impossible at this mo-
ment. We will, therefore, assume that the principal excita-
tion axes are fixed.

For an arbitrary orientation of a structure with re-
spect to the principal excitation axes, the motions compo-
nents experienced along the structural axes will be corre-
lated. Here the effect of this correlation is included in
the calculation of responée.

For design purposes, we are interested in the evalua-
tion of maximum response, irrespective of the direction of
impinging ground motions. Here, a method is developed to
obtain this maximum respcnse in terms of response spectra of
principal components and structural properties.

In Section 3.2, the relationships between the principal
components and the translational and rotationél conmponents

as experienced by a structure are established. This is fol-



61

lowed by a development of the correlation matrix of the ex-
citation components in Section 3.3. This correlation matrix
is then used in Section 3.4 to define the mean sguare and
design responses for a given ofientation of the structure.
Section 3.5 is devoted to the development of a method to oh-
tain the maximum response, followed by Section 3.6, giving
the numerical results for the structuresvsubjected to two
and three principal components. These results include the

effect of the rotaticnal components.

3.2 CORRELATED AND UNCORRELATED EARTHQUAKE COMPONENTS

Let the primed coordinate axes, x',, x', and x',;, be
along the geometric axes of the structure, as shown in Fig.
3.1. The principal excitation axes are shown by the un-

primed set x;, X, and X3 along which the acceleration compo-

nents Xl’ X2 and X3, respectively, ére uncorrelated. By a

simple geometric transformation, the acceleration components

P e !

L] --'
Xl, Xz’and X3 along the structural axes can be defined

in terms of uncorrelated components as:

= [D]" {E} | (3.1)

) :
where {E1}= the vector of excitaticn components aleong the

structural axes, {E} = the vector of uncorrelated or princi-
pal excitation components and [D] = the matrix of direction

cosines, all defined as:.
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£r} ' L) N e
Xl Xl d;i di» d;s
[(E'; 1= iz ; {E] = iz and [D] =ld,, daz da 3
e ’ e
1?3 Xq da: dsz dssJ

(3.2)
in which d__= the direction cosine of the m"" principal ex-
cltation axis with respect to the nth structural axes.

Very few studies in earthquake engineering have consid-
ered the rotatiocnal components of ground excitations. We be-
lieve, Newmark [23] was the first person to consider the ro-
tational effects of ground motions. He related the
rotational excitation to the translational components and
defined the ground spectrum for rotational components. Later
on, Rosenblueth [28,29], Nathan and Mackenzie [22] and Tso
and Hsu [40] have also considered the effects of the rota-
tional components on buildings in their investigations. In
this section, Newmark's approach [23] is used tO‘define.the
three rotational components of excitation.
| To define the instantaneous values of the rotational
components of excitation, the feollowing relationship between
the translational and rotational deformations is used:

*

Y (t) = [ax;/ax —,axi/ax;]/z (izj=zk) (3.3)

k! i

where i, j and k denote the axes, Yk(t) = the rotation about
the k-axis, expressed in terms of the spatial derivatives of

1
displacements Xi and Xj'
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The earthcquake motions occur due to propagation of
waves through the earth's crust. Usually, there will be
several types of waves mixed in a motion. However, we will
assume that the motion at a site has only cne predominant
wave which propagates with the wave frequency w. The ground .
displacements along the coordinate axes can then be written
as:

' 3 1

X. = Ai f(§=1 ijj - wt) ‘ (3.4)
where kj is the wave number or the number of wave lengths
contained in 2H. radius associated with direction j. In
earthquake structural engineering, Bogdanoff, Goldberg énd
Schiff [4] were the first ones to use the wave-form repre-
sentation for the earthguake induced ground motions to study
the travelling waves effect on 1long structures such as
bridges.

Egq. 3.4 is used to define the spatial derivatives re-

quired in Eg. 3.3 as follows:

t
GXi/ij = Ai kj £ (3.5)

where f'(u) denotes the functional derivative of f(u) with

respect to u. This derivative, however, can also be defined

alternatively in terms of the time derivative as follows:
' ]
dXi/dt = - Ai w £ | (3.6)

Thus, from Eg. 3.5
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¥ 1 k 2 ]
= - —d
axi/axj - dxi/dt (3.7)
Substituting for w/kj_= c = shear wave velocity in direc-

tion j, we obtain:

t l ¥

T
axi/ax
The shear wave velocities could be different in different
directions. For. simplicity, however, we will assume that
these velocities are the same in all directions and are
equal to c. Substituting in Egq. 3.3 and differentiating

with respect to time twice, we obtain the expression for the

rotational acceleration as follows:
Vo) = -2l %e) - ¥ (o)1 (3.9)
k 2c &t b i

Thus, a rotational acceleration component is related to the
jerks of displacement components in the plane of rotation.
Using Eg. 3.9, the three components of rotaticnal accelera-

tion felt by a structure c¢an be written as:

" __1d 5 o

() = -5y [Xp(t) - X, (t)] (3.10a)
__1da g o'

() = = 5z5p (X (t) - X5(0)] (3.10b}

ou _ _l_d_.. on " _ . .

or in matrix form:
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< " T AN
Yl 0] 1 1 Xl
e\ 1 d _ ot
< ?2 = =S 4t 1 0 1 <X2 > (3.11)
‘'3 -1 1 0] X3/

i
Substituting for the excitation vector {El} from Eq. 3.1,

we obtain,

¥y
- _ J T 5
¥, )= 16,1 [DI" (E} (3.12)
Y3
¥

where [G ] denotes the 3x3 matrix in Eg. 3.11. Consoli-
1

dating Egs: 3.1 and 23.12, the matrix representation of the
six components of the excitation, applied along the struc-

tural axes, in terms of principal components is as follows:

(E'(t)} = (T]T [DIT [E(t)} (3.13)
o N N T c
where [E = {X X X ¥ Y Y is the wvetor of

1 2 3 1 2 3}

excitation components acting along the structural axes and

[T} is the time derivative operator matrix defined as:
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-1 3 1 3 9

1 o6 o © Sc 3F 26 3%

(T] = |0 1 0 Sz3% 0 5o 3L
-1 3 1l 3

o 0 1 FEEE T ¢

(3.14)

It is analytically expedient to decompose matrix [T] into

two constant matrices as:
[T] = [Gy] + 4= 2= 1G,] (3.15)
! 2¢c 3t 2 :

where [G;] and [G,] are the constant transformation matric-

es, defined as follows:

[G,] ={0 1 0 0 0 0 (3.16a)

0 0] 9] 0 -1 1
[G>] =10 0 0 1 0 -1 ' - (3.16b)
LO o 0 -1 1 Od

Using Eg. 3.15 in Eg. 3.13, we obtain

T T T

' 1l 3
(E'(T)] = (16117 + 5z 57 [G217) [DIT {E(%)]

{(3.17)
This form of excitation will be used to evaluate the struc-

tural respocnse.
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3.3 CORRELATION MATRIX OF EXCITATIONS

In the evaluation of design response, we will need the
autbcorrelation and cross-correlation functions of the exci-
tation components. These are developed in this section.
Using Eg. 3.17, the correlation matrix of {E'(t)}] can be

written as:’

Ex[[E' (t) JIE' (t2)17] = ([6117+ 52 =161y 101"

3
3T,

Ex[ {E(t;)}{E(ta)} 11

D116 )+ 53 555 (G2 1)

' (3.18)
in which the correlation matrix of the principal excitatiocn
components 1s a diagonal matrix, as each component of the
excitation is a zero mean random process and 1s uncorrelated
with the other components. As discussed in Chapter 2, we
will assume that these components can be represented by sta-
tionary random processes. Thus, the correlation matrix of
principal excitation components can be written in terms of

their spectral density functions as follows:

oo iw(tl"tg)

Ex[ (E(t; )} {E(tz)} ] du (3.19)

I

\ﬁ
‘o
o

where [$¢] is a diagonal matrix of the spectral density func-
tions, defined as:

¢, (w) 0 0
[¢] = 0 ¥, (w) 0 (3.20)

0 0 b5 (w)
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§g(w) is the spectral density function of the zth principal

excitation component. Substituting Eq. 3.19 into Eg. 3.18,
we obtain:

to  de(t;-ts)
Ex[(E (e} (B (e)T1) = [ &

-0

16,15y m1Tre1DI (10, 1+3=4— 1, 1) du

T
¥ 2cat,

1 3
(iG] 22iT,

(3.21)

It is seen that since [$¢] is a diagonal matrix, the matrix

product [D]T[é][D] in Eg. 3.21 can be written as:

(p1%181(D] =
(8, (w) O o
fdi} (d2} fdsl] [0 #(w) 0 (13T fdxT fdayt
o} $
“O 3(“5
3 T
= E_ {dti éz(w) {dE} (3.22)
L=1
where §d£§ = Eth row of the coordinate transformation matrix

D] which consists of the airection cosines of the zth prin-
cipal excitation axes in the primed coordinates. Substitut-
ing Egq. 3.22 back into Eg. 3.21, and taking the proper time
derivative, the correlation matrix for the six excitation

components can be written as:
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T 3 +oo iw(tl"tz)
Ex[{E'(t)HE' (¢2)}7] =2 [ # (e
£=1 “-=
{ 1621719, 14,1716, 1+ 2= 16,17 (q,11a,17 (G, ]
4c?
- 32 (16,17 (a, 14,3 162 1-1621T(d, 1 {4, 17161 1) | du

(3.23)

The first and second terms in the above equation are the au-
tocorrelation functions of the translational and rotational
components, respectively. The third term, associated with
the imaginary guantity, represents the cross-correlation
between translational and rotational components. Eqg. 3.23

is used in the calculation of the design response.

3.4 STRUCTURAL RESPONSE

The equations of motion of a multi degrees-of-freedom
structural system, subjected to an input defined by Eg. 3.17

as follows:
(MIf%) + [CI{a} + [Kl{u} = - [M)[]{E'(£)] (3.24)

Here, [r] is the influence cocefficient matrix of order Nx6,

with its Eth column, {rz}, being the ground displacement in-

fluence vector for the ch component.
As we are primarily interested in the evaluation of de-

sign response for seismic inputs prescribed in terms of
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ground response spectra, it is necessary to use the modal
analysis approach. The following formulations are, there-

fore, developed 1in terms of the modal responses.

3.4.1  CLASSICALLY DAMPED STRUCTURES
As in Eq. 2.3; a response quantity of design interest,

S{t), can be written in terms of the modal quantities as:
N T t »
S(t) = £, Y.} fE" (1)} h,(t-1)dr ' (3.25)
1 ] ]

where ., ¥,
¢SJ { ]

2. The auteccorrelation function of S(t) can be written as:

] and hj(t) are the same as defined in Chapter

Ex[8(t1)8(tz)] =

N N ty [ta
§=1 }i:l <EJERJO fo hj(tl—Ti)hk(tE-Tz)

T

Ex[{E'(ty) }{E' (12)}°] {¥ } dr,dr, (3.26)

L !

Substituting for Ex{{E'(tl)}{E'(tz)}T

] from Eg. 3.23
into Eq. 3.26, the stationary autocorrelation function of

S{t) can be written as follows:

3
Ex[S8(t,)8(t})] = L { I
2 3

Fe lw{ty-tz)
f_ by (w) H(a)H* (u) e

oo

[ 17060 e,
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2
+.E__{x_}T

4(:2 ] L

RS ER IR R I

1w

T T T

- 3 1T0e ) A1 Hd, 1Tl i) Jae) o (3.27)

]
Focr given spectral density functions of the excitation

cocmponents, Egq. 3.27 can be used to cobtain the mean sguare
response. However, our main aim is to empioy the input res-
ponse spectra which are commonly used to prescribe design
earthgquakes. For this purpose, we will further simplify =Eqg.
3.27. Employing the transpose propertyvof the scalar quan-

T T _ T

tities in Eqg. 3.27, such as {Xj} [Gy ] {dg§

the mean square value defined by this eguation can be writ-

ten in matrix notations as:

3
Ex[S2]= I fd 17 (R 1id,] (3.28)
g =

1

where {dE} is the wvector of direction cosines of the ch

principal component. The 3x3 matrix [RQ] is a response ma-
th

trix, which is defined for the ¢ excitation components as
follows:

N N +oo * '
[R2]=§=1 SLILRIEERIY [t () (w)H] (u)du

+ 00 ‘ %
*hE LT, ] J[w B () wP H (0)H) (@)dw

+0°
+LLE Ty ‘[w B,(0) (-iu) Hj(w)H;<w>dw ;

(3.29)
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where

Ty, = G 1irg1ig a6, " (3.302)
Ty5) = 1621171717 (6217 /402 (3.30b)
1Ty = (e 1181150716116 ey i, 1T 16, 1Ty /2e -+ (3.300)

The three terms in Eq. 3.29 are caused by the transla-
tional, the rotational and the correlation between transla-
tional and rotational excitation components, respectively.

We will now define [RE} in terms of the response spec?
tra rather than the spectral density functions. For this,
the frequency integrals in Eg. 3.29 are split into partial

fractions to give the following:

N 5 '

l ! 1
1 = —

N N

+i ) g8 14

j=1 x=j+1 I K

§

-+ [I‘ij]( BlIOQ(wj)+lelﬂ(wj) + BZIOE(wk)+B411Q(wk))

(3.31)

where A,,.. As,, B;,.. By and C;,.. C, are the coefficients

of wartial fractions and are defined in Appendix C. The
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1] ¥
elements of matrices [lek], Jijk] and [F3jk] are de-
fined as follows:
' 6 6
I, _..=1I I G, G. (¥ .% . +7% .%.)
Imnijk p=1 g=1 lmp Ing ' pj gk qj pk
(3.32a)
1 6 &
_ 2
Pomajk = L % Ogpo Cope (000 + 8503)/4¢
p=4& gq=4
(3.32b)
' 153 &6
"3mn kzézl ézl(ezmpolnq“clmpgmq) (s ¥an gy o /2€
(3.32¢)
in which m=1,2,3 and n=1,2,3. The elements T and

'
I|3mnjk

ments of matrices [G,],

Lk = Tmifnk ¥ %ngfmk
1 ’ 1 6
Tamnix S 2 2 Comp (%o Tnk ~
p=4
6
e (1.
g=4 2ng mi

¥ .
gk aj

Imnijk

can be further simplified by substituting the ele-

(3.33)

Knj ka)

- ¥ . % (3.34)

mk)

The freguency integrals IOQ(wj) and Ilszj) are defined in

Chaptef 2.

These can be expressed in terms of the psuedo

acceleration and relative velocity response spectrum values

as in Egs. 2.8 and 2.14.
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For the case when rotational effects of traveling waves

are ignored, Eg. 3.31 simplifies to:

N 2 '
(ByJ =& &5 113550 Tgp(y)
]
N N : '
+ E z £.8. (T, . J[By T (w:) + By I. {w.)
j=1 k=j+1 kT 1k 0877 1275

Ay Ty (uy) Ay Ty, (u)] (3.34)

The effects of rotational components on the design response

have been numerically evaluated and discussed 1in section

3.6,

3.4.2 NONCLASSICALLY DAMPED STRUCTURES

Using the 2N-dimensicnal state vector approach, equa-
£ions similar to those in the preceding section can be der-
ived for the mean square response of nonclassically damped
structural systems excited by the correlated components.
For the six excitation components, the differential egquation
in terms of the principal ccordinates, similar to Eg. 2.27,

can now be written as:

Z. - p. Z. = {F.}T (E'(t)} (3.35)

where {Ej} is a ©xl1 wector, the ch element of which is de-

fined in Eg. 2.28. The response guantity, S(t), of design

interest can also be written as:
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2N t T p.(t-1)
S(t) = & Jf (g, ] {E'(1)} e - dr (3.36)
j=1Jo

in which {qj} is a vector of six elements, with the ch ale~

ment defined as:

T

*
9p: = =94 f¢.1 [M] {rz} / Aj , =1,..6 (3.37)

] J ]
Considering the complex and conjugate terms in pairs,

the response autocorrelation function can be written as:

o N N t; rts
Ex[S(t;)S{t,)] = by J[ j(
' j=lk=1J) 0 J O

T pj(tl_Tl) T p*j(tlutl)

(tay1” e + fqt,1T e )
! ' T
Ex[{E'(t;)}{E" (t2)] ) (3.38)
P (ta-T2) ¥, (to=12)
(fa 1" e s oigr T e ° ) dr, deg

Substituting for Ex[{E'(t;)}!E'(ts)}T] from Eq. 3.23, com-
bining the complex and conjugate terms as done in Chapter 2,
and after some manipulations, the stationary autocorrelation

function can now be written as:

Ex[S(t,)S(t.) 1=

3 N N to  iw(t,-t) .
SRS ) e $ (w)H, (w)H (&) (3.39)
p=1 =1 k=1 <£» IR
T T T W T T
O Y R o IR CHI LR
+ 280 161 1,019,362 1 - 16217 19,114,360 1) 1 (c))du



76

where {Gj} is a &xl vector, defined as:

(651 = 21w fagl + 2 [Aj] (3.40)

in which the elements of vector {aj} and {Aj} are defined by
Eg. 2.38. Here, however, { varies from 1 to 6&. The mean
square value is obtained by setting t;=t,=t.

Each term in Eg. 3.39 has two scalar guantities, such

as 10,1716, 1 1d

i QE. These sgcalars can also be written in

transpose form as was done in Eg. 3.27 to obtain Eg. 3.28.
This 1leads to the mean sgquare response as defined in

Eg.3.28. That 1is,

3 T
Ex(s?]= I (4] (R 11d,] (3.41)
e=1
where the respconse matrix [RE} is now defined as:
N N 4 .
[R 1 =% I ? (w) H.(w)H, (w)
o gEL k=L f-w : 1k
PG TG0 1G0T 16, 1T + w2[C2 116, 1(0y 1 16, 1T /ac?
S R R N L R E N FM L A R
(3.42)

Here, also, [RRJ is a 3x3 Hermitian matrix. The (m,n)th ele-

ment of this response matrix can be defined as:
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* *
. 61 mpC1ng '[m G 3Gy g (9)H; (w)Hy (u)du

t,(w) Hy(w) H (@) duw
GZmpGlnq - GlmpGnq)

1w * *

wr Gpj qu @z(w) Hj(w)Hk(w) dw }

(3.43)

Each frequency integral in Eq. 3.43, can now be defined

in terms of the fregquency integrals IOE and I12 by splitting

. the integrand into partial fractions as follows:

N

Rﬂmn = 4§=1{Am]AnJIOQ( j) * amjandlz(mj)

6 6
1

+ e B :f G G [A A T w.) + a .a .I W
4cip=4 g=4 TP 40d PJ ] 12(¢5) piiqytzeley) ]

' '

0B ntog(eg) + Apnlie(wy)

wo

=1

(u) + A

A’ 3mn 02 anllz(wk)}

+ B'

1
GZmpGan[B 1pq102(wj) Z2pg 1E(w])

4

ek
NS

e
S

+ B! + B! A ]

L]
3pglog{¥x) apgl1el¥x) * B igpPgg
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L 6 6
FEA2 T L (G, G = G. G )
2c p=1 g=1 2mp  1ng Inp~2ng
[C 1 pglontey) * Copglie(¥y)
13 . L]
*Clapglogtui) * Clapglie(wd! !

(3.44)

where the frequency integrals, IOE(wj) and Ilﬂ(wj)’ are the

same as before and the partial fraction factors A'

A

1pq’ " -
aA' , B' , ..., B' and C' .. and C' are defined

4pg 1pg Spgq lpg”” 4pgq

in Appendix C. Eg. 3.44 1is applicable to nonclassically
damped systems and can be used with prescribed ground spec-
tra to obtain the design response. Again, in Eg. 3.44, the
first and secdﬁd terms in the single and double éummation
parts on j and k are the responsés caused by the transla-
tional and ?otational components of excitation, respective-
ly. Whereas, the third term in double summation over j and
k 1s due to the correlation between the translational and
rotational components. ‘

For the case of purely translaticnal excitation, that

is, when the rotational effects of traveling waves are 1ig-

nored, Eg. 3.44 simplifies to:
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N
len =4 §=1 [Am]Anj IOl(wj) amjanj Ill(wj)]
N N
+ L L : I, {w,)+A" I, (w.)
j=1 k=1 Imn~0¢* 75 2mn~ 18 j
1 '
tA 3mn101(wk)+A anllz(wk)] (3.45)

The effects of the rotational excitation components on the
response of nonproportionally damped systems are numerically

evaluated in Section 3.6.

3.5 MAXIMUM DESICN RESPONSE

Egs. 3.28 and 3.41 when multiplied by their peak fac-
tors will give the design response for any given orientation
of a structure relative to the principal components. Howev-
er, the orientation of a structure relative tc the princi-
pal components will never be known in advance. Our main in-
terest is " to cbtain the maximum wvalue o¢f the design
response, irrespective of the orientation of the structure.
That is, we are interested in the evaluation of the "worst
case" resgponse. In this section a methodoloéy to obtain the
maximum_mean square response 1s described. The methodology,
however, can also be used to obtain the design response, if
the peak factor effects are included. This approach is a
generalization of the approach proposed by Singh and Ashtia-
ny {37] earlier.

Rewrite Eg. 3.28 or 3.41 as follows:
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3
Ex[S2] = I  {d,} [R,]1{d,}= {d} [R]{d] (3.46)
2=

1

where {d} is a 9x1 vector and [R] is a 9x9 matrix as:

(d ] R, o
fdi=({d;1) and [R]= [R,] (3.47)
(d, - (R, ]

The direction cosines {dl}, {dz} and {d3} are orthogonal
vectors with‘the foilowing constraints:
T 1. 2=m

§d£} {d t = (3.48)
0. 22m

We are interested in a particular set of {d
such that Ex[S2] is maximum.
For this, the Lagrange multiplier approach can be used.

We define our auxiliary function as:

T

L{x}y = {d1” [R] {dl - A({d}j~{d}] - 3) (3.50)

where ) 1is the Lagrange multiplier. For the extreme value
of L{}), its partial derivative with respect to {d} must be

zera. This gives:

[R1{d} - a{d} = O | | (3.51)
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Eg. 3.51 is eguivalent to three independent eguations:

[Ry]{dy} = A{dal = 0O (3.52a)
[Ro1{dz} - Xda} = O (3.52b)
[Rz]{ds] - A{ds} = O (3.52¢)

These eqﬁations are to be solved in conjuction with the
constraints given in Eg. 3.48.

Each equation in Egs. 3.52 is an elgenvalue problem by
itself. Corresponding to each set, there will be three ei-
genvalues and a set of three-orthogonal eiqénvectors. Thus,
there exist nine possible direction cosines along which if
the princ¢ipal components are applied, they will give an ex-
freme value of L(X). These provide local maxima and minima,
and a systematic search will have to be made to obtain the
absolute maximum value.

The‘eigenvalues of Egs. 3.52 directly provide the res-
ponse Valﬁes due to the excitation for which matrix [R] is
defined. Thus, 1f we have solved +he eigenvalue problemn,

fqr, say the lSt excitation components, i.e.,
[Ry1{dy} - hyfdy} = {0.} (3.53)

the three eigenvalues i;;, X;, and X;3, respectively, define

the respénse due to the excitation 1 when it 1is applied
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(12 (13 (13
along the {d i, id i and {d } directions. Here
1 2 3

{d(l)} is the eigenvector of Eg. 3.53 for eigenvalﬁe hli'
1 .

To show this, consider Egq. 3.53 for the eigenvalue xli as
Ryl galHy - 1af)y = oy | (3.52)
1 |
| (1) o
Premultiplying this by {d, |} and invoking the const-
raint, Eg. 3.48, we cobtain:
hyy = 1aNT ey et (3.55)
1 1 :

which, as seen from Eg. 3.28 or Eg. 3.41, is the response
due to the lSt component of excitation alone. Eg. 2.55 can

also be written in general form as:

= gl T (1)

where x&i and {dél)} are the ith eigenpairs for the Eth

response matrix, [REJ' It is also noted that

T (i), - | |
[R,] fd,°"} =0 (3.57)

fait)

There are © possibilities of maxXimum response in each
elgenvector set. Thus, totally there are 18 possible combi-
nations one will have to examine to obtain the global maxi-
mum response. The eigenvalues and eigenvectors can be di-
rectly used to obtain the responses in various combinations

(1)

nf the axes and excitations. For example, let {d, 1 be
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the.ith eigenvectors of [R;], and let the principal compo-
nents 1, 2 and 3 be applied along the eigenvectors 1, 2 and

.3. Then the total mean sgquare response can be obtained from:

(1) T (1) (1 L1
Ex(S2) = Xy + {d JURpI{d_ } + {d  }T[Rpild_ }
2 2 3 3

(3.58)

in which X};; is the response due to excitation-1 applied

(1)
aleng direction {d }, the second term represents the
1

response due to excitation-2 applied along direction

1)
id 1, and the third term represents the response due to

2
(1)

excitation~3 applied along direction {d {. A more gen-
3

eral expression for all possible combinations can be written

as:
_ (m),T (m)
S =\ o+ % fa, ™" IR 1 1, (3.59)
mn mn Kem (k=1,2,3) g k £
gxn (2=1,2,3)
' . {m),T (m)
S = X + ¥ fd } R, 1 {4 i (3.60)
mn mn kzm (k=1,2,3) ) k 2
fzn (£=3,2,1)

These eighteen possibilities are enumerated in Appendix D.
Herein, the principal directions represented by the ei-
genvectors of matrices [R{], [R.] and [R;3] are called prin-
cipal respornse directions.
It 1is seen that the principal response directions are

different for each response gquantity because Sj and ij are
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different. Since the response matrix {Rg]'depends upon the
ch excitation spectral density fuﬁction, the principal res-
ponse directions will élso depend upon the frequency charac-
teristics ¢f the excitation. If the freguency characteris-
tics of +the input spectral density function are not
significantly different, their response matrices and corres;
ponding principal directions will not be much different

either. Especially, when the spectral density functions are

proportional, i.e.,
$2(w) = pa %1 (uw) (3.61la)
P3(w) = ps3 %1(w) (3.61b)

then all three sets of principal response directions will be
identical. In such a case, the search for the maximum res-
ponse 1is simplified considerably, as Eg. 3.58 can then be

written as:

Ex(S2) = A1y + pz2 hi12 + pa Xia (3.82)

It 1is seen.that this procedure does not require any
trial on structurai orientations to obtain the worst case
response. For an arbitrarily assumed directions of the
structural axes, one only needs to establish [R;], [Rp] and

[R3]. Once these have bheen established, the procedure de-
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scribed above can be used to identify the maximum response,
without any re-analyses of the structure.
Numerical results showing the applicaticn of this meth-

odology are given in the next section.

3.6 NUMERICAL RESULTS

In this section, several sets of numerical results are
presented for structures subjected to five and six correlat-
ed earthgquake components. The purpcse of this presentation
is to: (1) compare the maximum response obtained by Egs.
3.59 and 3.60 with the conventiocnal response spectrum ap-
proach; (2) show that in most cases the directions of the
principal excitation axes correspopding to the worst case
response are different from the geometrical axis of the
structure, and (3) study the effects of the rotational com-
ponents on the maximum response. The input motions in this
study are defined in terms of the spectral density func-
tiops, $,(w), ¥-,(w) and %;(w), respectively, of the major,
intermediate and minor principal excitation components.
These spectral density fuctions are assumed to be of Kanai-
Tajimi form as defined by Eg. 2.73 but with different param-
eters. These parameters were chosen rather arbitrarily and
are given in Table 3.1. These components represent three
broad band inputs with different intensities and somewhat

different freguency content characteristics.
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Three seemingly different types of structure have peen
considered in this study: 1) two multistory torsional struc-
tures with three and six rigid floors supported on columns,
and 2) a space frame of an arbitrary shape. The character-
istics of these structures and their calculated response are

described in the following sections.

3.6.1 TORSIONAL STRUCTURE

The three story torsiénal structure considéred here is
similar toc the one considered in Chapter 2 and showh in Fig.
2.1. For this structure the c¢olumn stiffnesses in three
stories are k;=6k, k;=2k and k;=k, where k is the combined
stiffness of the columns in the top story. The mass proper-
ties of the three floors are m;=3m, mp=2m and.m,=m, where m
= the mass of theltop floor. Each floor has 3 degrees-of-
freedom: two horizontal translation and a rotation about the
vertical axis. The fregquency characteristic of this struc-
ture can be easily changed by changing the frequency parame-
ter w? = k/m. The results have been obtained for three va-
lues of this parameter equal to 10., 33.4 and 50. cps. The
eccentricity parameter e/r has also been varied. The values
of e/r= .01, .05 and .30 have been c¢onsidered. The modal
frequencies and damping ratios obtained by the normal and
complex mode approaches are given in Tables 3.2, 3.3 and

3.4,
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The response quantities obtained for this structure
are: the base shears in two horizontal directions, the base
torsional moment and the bending moments about the two axes
of a column. Since these guantities are not affected by the
vertical excitation significantly, this component of excita-
tion has not been considered. However, the effect of verti-
cal excitation in introducing the rotational components has
been considered. Thus, this éystem is subjected to only
five excitaticon components: two translaticonal components
acting in the horizontal plane and three rotational compo-
nents acting about the twoc horizontal axes and one vertical
axis. Table 3.5 shows the participation factors for these
five components for the system with e/r=.01 and w = 10. cps.

The roct mean square values of various regponse guanti-
ties are shown in Tables 3.6 through 3.11. Thses have been
normalized by mg, the weight of the top slab. The moments
have mg-ft. units. For each response quantity, the numeri-
cal values have been obtained by:

1. The worst-case response approach: In this, Egs. 3.28
and 3.41 have been used for proporticnally and nonpropor-
ticonally damped systems. These values are shown in Column
{2) of Tables 3.6 through 3.11.

2. The conventional response spectrum approach with five

components: In this, the translational and the rotaticnal
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components of excitation are applied along the geometric
axes of the structure. The ratic of this value to the maxi-
mum value obtained in (1) above is shown in Column (3) of
Tables 3.6 through 3.11. The ratio shows the magnitude of
under estimation which will result if no search for the
worst-case response is made.

3. The worst-case response approach for only translation=-
al cbmponents: Here the rotational effects of the input are
ignored. These values are shown in Column {(4) of Tables 3.6
through 3.11. The ratios of the values in Column (4) to the
values in Column (Z) are shown in Column (6) of fhe tables,
and these show the effect of the rotational components.

4. The conventional response approach with only two prin-
cipal components: In this case, the principal components are
applied along the geometric axes. No rotational components
have been considered. The ratio of this value to the maximum
value obtained in step (3) is shown in Column (5). This ra-
tio shows the‘magnitude of possible under estimation of the
response 1f no search for the worst-case response is made.

Tables 3.7 through 3.9 are for the shear wave velocity,
c=1000. fps and Tables 3.10 and 3.11 are for the shear wave
velocity, <¢=2000. fps. |

It is seen that, for ¢=1000. fps, the contribution of

the rotational components to the response is gquite large.
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There will be a considerable underestimation o©f the res-
ponse, as shown by the ratios in Column (&), if the rota-
tional effects of the excitation are ignored. Furthermore,
it is also necessary to make a search for the weorst-case
response, as established in Section 3.5, otherwise some un-
derestimation of the response is likely to occur. This is
shown by the ratios in Columns (3) and (5) of these tables.
A structural model with the floor slab possessing six
degrees-of-freedom, instead of three considered above, was
also used to examine the effects on the response cf the ro-
tational inertias of the slab about the two horizontal axes
The numerical results of the two structural models, however,
did not differ much. This was because, in the model with six
degrees-of-freedom per flcor slab, the axial stiffness of
the columns was relatively large to prevent the slab rota-
tions about the horizental axes.
The results are alsc shown for a 6-story, 18 degrees-
of~freedom structure in Tables 3.12 and 3.13. The length of
each story in this model was 14 ft., and thus total height
of the structure was 84 ft. Comparing the results in Columns
(6) of Takles 3.12 and 3.13 with the corresponding results
in previoué tables, it is seen that the effect of rotational
components is now larger. That is, a taller structurevwill

be affected more by the rotational components. It, there-
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fore, seems that the rotational components of an excitation
snould not be neglected, especially for tall buildings.

The numerical results are alsc affected by the parame-
ter e/r; however, no special trends in the results are ob-
served,

A comparison of the results in the tables for ¢=1000
and 2000 fps clearly shows that an increase in the shear
wave velocity reduce the effect of rotational components.
This is due to the fact that the terms associated with the
rotational compcnents in Egs. 3.28 and 3.41 are always di-

vided by c?.

3.6.2 SPACE FRAME STRUCTURE

The space frame structure considered here is shown in
Fig. 3.1. In the analytical model, each joint has six de-
grees-of-freedom. The mass and stiffness properties of the
frame are given in Table 3.14. Only a proportionally damped
system with a constant modal damping ratio of B=.02 is con-
sidered. The médal frequencies and the participation fac-
tors of the system are given in Table 3.15.

The numerical results of the root mean square response
for the axial forcé, bending moment and maximum flexural
stresses in various members are shown in Tables 3.16 through

3.19. The values are in kips-in. units. The results are ob-
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tained with and without rotational components. The results
with all six components are shown in Columns (2} to (6), and
the results for only translational components are shown in
Columns (7) to (12).

The response values 1in Columns (2) and (7) are the
worst~case.response values. Whereas, those in Columns (3)
and (8) are obtained with the principal components applied
along the geometric axes. The values in Columns (3) and (8)
are reported in the ratioc form.

A comparison of the wvalues in Columns (Z) and (7) of
theée tables ghows that the rotational components contribute
significantly to the responses. in this case again. of
course, this contribution depends upon the shear wave veloc-
ity as well as the size of the structure. Also, =some res-
ponse quantities are affected more than others by the rota-
tional components.

Again, it is seen that if no search for the maximum
respense is made, the calculated value may be underestimat-
ed; see Columns (3) and (9). This under-estimation will de-
pend upon the symmetry of the structure and the characteris-
tics of the input motions. Thus, the cases shown here are
not typical; there could possibly be some cases where these

effects are even more pronounced.
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Columns (4) to (6) and (10) to (12) in Tables 3.16
through 3.19 show the orientations of the principal excita-
tions with respect to the structural axes to cause the maxi-
mum response, i.e., the worst-case response. This orienta-
ticn is given in terms cf three angleg, shown in Fig. 3.1.
These angles can be obtained frem the direction cosine ma-
trix obtained for the worst-case response. It is seen that
the directions for the worst~case response do not necessari-

ly coincide with the structural axes.



Chapter IV

RESPONSE FOR SIX CORRELATED EARTHQUAKE
COMPONENTS BY MODE ACCELERATION APPROACH

4.1 INTRODUCTION

The previocus two chapters were deveted to the analyti-
cal devélopment of the response spectrum approaches, which
were based on the method of mode displacement of structural
dynamics. These approaches reqguired that the seismic inputs
be prescribed in terms of the psuedo-acceleration and rela-
tive velocity spectra.

Often in these approaches, only a first féw modes are
used 1in the analysis, as usually the higher modes do not
contribute much to the response. However, there are situa-
tions involwving certain response. guantities or certain
structures . where the contribution of the high freguency
modes can not be neglected without affecting the accuracy of
the results. This truncation of the modes leads to the., so- .
called, "missing mass" effect.

To improve the accuracy of the reéults with only a
first few modes, recently Singh‘and Mehta [34,38] have pro-
posed an alternative response spectrum approach for the cal-
culation of design response for a single excitation compo-
nent. This approach is based on the "mode acceleration"

method [3,18,45] of structural dynamics. It regquires the
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seismic inputs to be defined in terms of ©relative
acceleration and relative velocity spectra.

Herein, a similar response spectrum approach, based on
the method of mode acceleration, iz developed for the calcu-
lation ¢f worst-case design responselof structures subjected
to the six correlated earthquake components. The inputs to
this approach are defined in terms of the relative accelera-
tion and relative velocity spectra of the three principal
ekcitation components.

In the next section, the mode acceleration formulation
is given for the calculation of mean sgquare and design res-
ponse for correlated multi-component excitations. The res-
pbnse equations are cast in the same form as in the previcus
chapter so that the same methodology can be applied to ob-
tain the worst-case design response. The numerical results
are presentéd to demonstrate the advantage of the mode ac-
celeration formulation over the mode displacement formula-

tion given in the Chapter 3.

4.2 ANALYTICAL FORMULATION

Here, we will only consider proportionally damped sys-
tems. For a linear multi-degree-of-freedom system with equa-
tions of motien as Eg. 3.1, a response gquantity, S(t), of
interest can be written as:

N
S(t) = I . V.(t) (&4.1)
j=1 3 3
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where, Vj(t) is defined by the solution of Eg. 2.2 and
represents the displacement in mode jJ. In Chapter 3, the
solution of Eg. 2.2 in terms of Duhamel's integral was sub-
stituted in Eg. 4.1 to obtain Eg. 3.25. This equation then
formed the basis of the formulation developed in Chapter 3.
Since the mode displacement Vj(t) was directly used in Eqg.
4.1, the formulation of Chapter 3 is called the mode dis-
placement formulaticn.

A different expression is obtained if Vj(t) in Eq. 4.1

is expressed in terms of modal acceleration ﬁj(t) and modal

Velociﬁy Vj' by employing Eg. 2.2. That 1is,

N T ., . - 2
= - . . + . } ) . .
S(t) Z EJ [ {Fji {(E' (L)} ZBJwJVJ + VJ 1/ 0y

(4.2)

Eg. 4.2 forms the basis of the mode acceleration formula-

tion, to be presented in the following secticn.

4.2.1 MEAN SQUARE AND DESIGN RESPONGE

We are interested in the evaluation of design response.
To obtain this, the mean sguare regponse is required. This
can be obtained from the autocorrelation function of S(t),

which can be written as follows:
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+ 1837 2Byey ExUEE' (€)1, (t2) ] + Bx[ (B’ (£1) 19, (ta)] )

T

+ 15370 28,0, Ex[EE' (£2) V. (£0)] + Ex[{E' (£2)}V,(£0)] )

¥ 4B B usuy ExIV,(£5)V, (t2)] + ExlV,(t)Vy (£2)]

+ 280, Ex[\}j(tl‘)‘\}k'(tz)] v 2B Ex[\}k(tz)‘\}j(tl)] ]
(4.3)
Various autc- and cross- correlation terms in the above
equation have beén ocbtained in terms of the input autocorre-
lation matrix, Eg. 3.23, and are given in Appendix B. Sub-
stituting these in the above eguation, the following is ob-

tained for the mean sguare response:

3
Ex[sS2] = & {d (4.4)
2=

1

The response matrix {RQ} for the Eth excitation can be writ-

ten as:
N N
(R ] =1 z (L. &, Jw, w.)
SRS RS K
. + oo + o0
{[rljk]f 2, (w)du + [rzjk}f 8, (w)uZdo]

- -—o0

o iz

H
-

it 2
H
—

2 2 F* *
(E58y /o5 w) (B (0 (0) By(a)
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[ Qﬁjﬁk w5y { [rljk] w2 o+ [szkl w? +'[T3jk] (-iw®)}
¥ [lek] wt o+ IFij] wé o+ [r3jk} (-iw®)
+ Z(ijj-ﬁkwk){ [rljk] (-iw3) + [szk] (-iw®) - [FBjk] wt

- 2ijj{ [rljk] (iw) + [rzjk] (iwd) + 1r3jk] w? ]

- 2skwk§ [rljk] (-iw) + [r2jk} (-iwd®) - [rsij w2 1] dw

+oeo

*
-+f 3, (0) (H,(u) + H(0)

4 — i3
{ [Fljki [szk] wd 4+ [TSjk] iwd ) dw )
(4.5)
Again, [R,] 1s a 3%3 Hermitian matrix. To define this ma-

£

trix in terms of response spectra, the frequency intecgral in
Eg. 4.5 are appropriately split intoc partial fractions, to

give as follows:

(R,] =
N N - , .
o by Gote) HlagdBar * o] Agy)
N 2 4 1 2 2
L (g 2egd Ty gy ey (2850 Ty (e =gy (0y) ]

t 2 2

+ [szj}Izwj(1—2Bj)I22(wj)~I3E(wj)] )

N N -
*Eo L. (£.8, / w.w.)
=1 k=j+1 37k J°k
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t

+ [T BTy (0 *Ba Ty (0 ) 4Bl ) () *Ba Ty, (wy) ]

(T3 550

]

+ CiTq,(uy)*Calyp (W) +CsT ) (uy )+Cy1

22 (o3
+ {rljkl[A1z2¢<wj)+A2 3095 )¥ ATy (0 ) +Ae T () ]

t

+ [T, 1By T

2E(wj)+BZI3E(wj)+B3122(wk)+B4132(wk)1

[T IZE(wj)+02132(wj)+03122(wk)+c4131(wk)}

o
ljk][clIlz(Uj)+C2122(wj)+C3112(wk)+C4122(Wk)]

+ [T, T 2 (032 ¥C2 15 (W) +CaT 5 (0 ) +Ca To (wy) ]

o3 [Ty (AT, (00 #Ro Ty (0 ) +As Ty () ¥R Ty (uy) ]

“40IT, 5 ML) Ty () + (B )® Ty () ]
F T, 1(B00)% T (60 + (Bw)® Ty (6]
T gp] (-BgwsTol Ty, (e0) = Ty (u)]

B luy Tigle) — Tu)])
T I00 T (e) = Ty * ey T (e) - Ty ()]
I, 0 ey Typ(es) = Typ(us) + g Ty e = Iy ()]
+ (g ImByuy Top(u) * By Tp (a)] ]

(4.6)
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-2
. and Agz are the mean sguare values of the

2

in which A
g

ground acceleration and rate of change of he ground acceler-

ation, respectively, which are defined in terms of the ac-

celeration spectral density function as follows:

+ a0

A, =[_w 8, (w) du (4.7a)
-2 +W
A, =f ¢ (u) w? du (4.7b)

The integrals Ili(wj) and IZE(wj) are mean sguare values of
the relative velocity and relative acceleration response of

an oscillator of freguency wj and damping Bj and are defined

as:
4o
Ippleg) = [ B(e) w? JE (0)] % (4.8)
+ 00
Ipp(e;) =j' 2, (v) w* [H(v)]2du (4.9)

- 00

These integrals can be obtained in terms. of the relative
velocity. and relative acceleration response spectra through
thelr respective peak factors. Another ihtegral, Igg(w,),

J
which is required in Eg 4.6, can alsc be defined in terms of

the above mean square values as follows:

I (05) = f_w §,(u) W JH,(u)|2du
-2

2 2 4 ‘
= (1-28 . Y - . 4.10
AgR +2wj(1 263)12£(w3) wjllg(wj) ( )
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The matrix [FQ] in Eg. 4.6 can ke further simplified by
collecting terms with similar coefficients. An element of

this matrix can be written in a simplified form as follows:

tman

] -2

R
N 2 2 2

Aoz

=1 k=1

+N 2 ‘ 1 :
§ (15/260) Ty (260 (122800 T g ()15 (u) ]

_q lmnjk
' 4 -2
Domnikl®y T1p(ws) = Agld

N N -
+L L (5.8 / w.w )

j=1 k=j+1 7 k Jk

' -2
U T mngu Fplagug) T E Lo ()T ()T F T (wy ) *Fgh )]

'
1 t ]
T ngk F 1Ty (o ) T (g v F g Ty (g )#E Ty Ty () +E squ]

T

"
t Tamngk! ¥l 1l1e vE

-2
" " . "
R T PAR N LR AT R VR PP R A LR

(4.11)

' 1 " 1
where Fl,.. ES; Fl,..ES; and Ei,.. and EE; are de-
fined in terms of A;,..A,;, By;,...and B, and are given in Ap-
pendix C. T ., etc. are the same as defined in Chapter
lmnjk

3, Egs. 3.32 and 3.33.
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4.2.2 PSUEDO-STATIC RESPONSE
| No special advantage 1s gained 1f Eg. 4.11 is used in
lieu of Egq. 3.31 for the evaluation of Rtmn' To obtain accu-
rate response, Eg. 4.11 will alsoc require a complete set of
modes, especially for the evaluation of the first two terms.
These terms, however, can be obtained by a simple static
analysis without an evaluation of the modal guantities.
The following analysis shows that the response associ-
ated with the first two terms in Eg. 4.6 1s precisely the
mean sguare value of the response of the following psuedo-

static problem:
(K){u_} = [M] [r] (E'] (4.12)

where {us} = a vector of the time dependent displacements
obtained as a soluticn of Eg. 4.12, without any considera-
tion of the vibration effects. The response quantity, S(t),

is related to [us} by a simple linear transformation as:

S(t) = (k47 fu_] | (4.13)

We.will now show that the mean sguare value of this
gquantity 1s directly related to the first term cf Eq. 4.6.
For this, we expand fu,} in the vector space of {¢j}, the
modal wvectors of Eg. 3.1, as follows:.

N
j =1 V. ls.] (4.14)
]
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where Vsj are the ccoefficients of the expansion. To cbtain

these coefficients, we substitute Eg. 4.14 into Eg. 4.12,

premultiply the result by {¢j;T, and invoke the orthogonali-
L : T _ z
ty condition of the modes, i.e., {¢j} [K]{¢k}~6kj wy to
give as focllows:
T
{¢j} (MI[r] {E'}
Vey = _ (4.15)
T
i K
§¢J} [ ]{¢J}

2
The denominator in Eg. 4.15 is egual to wj. Substituting

for f{¢ }T

] Mlir] = {Kj}T in Egq. 4.15, we obtain

T 2
Vs = 1850TIE') /g (4.16)
Substituting for Vsj in Eg. 4.14 gives:
(E'}) {¢.} / wy (4.17)

Using Eg. 4.13, the psuedo-static wvalue of the response

guantity, S{t), can now be defined as:

N T T 2
S(t) =1 (1T 37{E" ) R 17Hes) / v, (4.18)
j=1 2 3 J
Since the response mode shape Ej is equal to {ki}T{¢j}, the
above equation reduces to:
N T >
S(t) =% L. ({T.}7{E'}) / w. (4.19)
9=1 J ] J
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The mean sguare value of the static response from Eq. 4.19

can then be written as:
Ex[S2(t)] = ’ (4.20)

£i8y (7))

[ R
Elllacib

=1 k=1

The covariance matrix of excitation in Eg. 4.20 can now
be defined from Eg. 3.23 by letting t,=t,=t as follows:

)

Ex[ {E'(£)1[E' (£)17] = : (6,15 a,11a, 1706, )
x{{E' (£) J{E' (t)] —z=1[w ( [G117§d11d, 1[Gy ]

T

v w2G, )71 T

. [G,1/4c? ) 8, (w)du (4.21)

The imaginary term assoclated with the odd powers of w will
cancel out when integrated over the freqguency domain.

Further, substituting for A and A from Egs. 4.7 in Eg.

gl gl
4.21, we obtain:
' [} T 3 2 T T
ExU{E (O HE(R)] = 1 Ay 16:071d,)(0, 17161
2
+ Ay, [6:171a,11a,1716,1/4c7 )
(&.22)
Substituting Eq. 4.22 in Eq. 4.20,
N N . %
Ex[S2(t)] = 1 1 -—pl—E-
i=1 k=1 "3 ¥ x
3
T T T 2
E:l ({Kji [Gy 17 Hd, T 170G, 113, ] By + (4.23)
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In Eg. 4.23, the terms like {Xj}Tlci]T{dz} are scalars and,
thus, they can also be rewritten as {dE}T[G1]{X}. Making
such changes, Egq. 4.23 can be rewritten as:
3 T (s)
Ex[s8?2] = ¢ id. i [R ] 14,3 (4.24)
PP 2 2

where the response matrix {Rés)], associated with the

psuedo~static response, is defined as:

(s)y -
[R,77] =
N N ;g >
i (L TR AL LN LTS -
i=1 k=1 Y ;¥ x J g
T -2
+ 2 (G, {Y IREIN (6,17 a 2 ) (4.25)
4C2 3 . d
which can be rewritten as:
sy, N0 " 2
gl =2 L o gz [lek} Agl
=1 k=1 Y3V k |
-2 (4.26)
+ [szk] Ag2 -

Egq. 4.26 is identical to the first two terms of Eg. 4.6.
Thus, the first two terms of Eg. 4.6 can be obtained by a
psuedo-static analysis of Eg. 4.12.

We will now‘develop a procedure to obtain this psuedo-

and A
g

statlic response matrix 1in terms of A without

al 2

evaluation of the modal guantities.

We rewrite Eg. 4.12 as
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lM]{rp} E (t) (4.27)

From this

6 . (4.28)
} =& fu 1 E (%)
p“_':.

fu
1 sp p

S

where {usp} is obtained as a solution of the following li-

near simultaneous eguations:

[Kliuspi = [Mlirpl (4.29)

The response quantity S'(t) can also be obtained from Eg.

4.28 as
: " 4.30)
= E .
S(t) ;:1 Sp p(t) (
where
s_ = (k.17 fu__} (4.31)
p 1 5P

Eg. 4.30 can also be rewritten as:

T

s(t) = {s'}” {E'} (4.32)

where now [{S'}] is a 6x1 vector. The mean sgquare value of

S(t) is then obtained as

T T

Ex[82(t)] = {8'}" Ex[{E'}{E"}"] {8"} (4.33)

Substituting for the covariance matrix from Eg. 4.22 and

after some algebraic manipulation, we obtain
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: 3 .
Ex[52(t)] = 2 {d,}%( [Gy) {S'}15"3T 16,1 A
p=1 * gL
1 ' 1, T T ;2
(4.34)
which can be rewritten as:
3 T ,{(s)
Ex[S82] =1 {d,}7[R)""]{d} (4.33)
=1
where [Rés)] is the response matrix assocciated with the
psuedo—stétic response and i1s defined as:
(s)y, _ ' v, T T 2
(8,51 = [61) {s73s") 16117 A,
-2
+ 2= 16,) 18" 16217 A, (4.36)
4C2 g

By substituting for [G,} and [G,] from Eg. 3.1, and carrying
out the matrix multiplications, a term of this matrix can be

defined as follows:

(s) ' , 2
tmn - " m S on Agi
, 6 6 .
t— I b sz GZn s' st A 0
4c? p=4 g=4 P d P 9 g

(4.37)
It is seen that in the above equation, the first term is as-
sociated with the psuedo-static response for the translatory
motion and the second term is due to the rotational effects.

Trus, to evaluate the first term of Eg. 4.6, We-first

need to obtain the six elements of {S'}. These are obtained
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by a simple algebraic sclution of linear Egs. 4.29 and the
use of Eg. 4.31. Eg. 4.37 then gives the terms reguired to
define the first term of Eg. 4.6.

The total response, defined by Eq. 4.4, can now be

written as a sum of the psuedo-static and dynamic responses.

That is,
3 T {s) (D)

Ex(S%) = & {d 37 ([R;7'1 + IR)7']) {d,}] (4.38)
=1

in which an element of the dynamic response, [RéD)I, is

the same as Eg. 4.11 without the first two terms and a typi-
cal element of the static response matrix,.[RéS)], is giv-
en by Eg. 4.37.

The mean square response for the case of purely trans-
lation components is obtained by neglecfinq the terms asso-

ciated with the rotational effects. In such a case, an ele-

ment of the response matrix [RE] can be written a

= ' 1 2
Rimn S m S n A gt
N :
fI (82 20% )T, L1202 (1-282 )1, (0. )=I,, (w.)]
3=1 . J J imnjk J 377185 22175
N N
+Z z (g-gk / wzjwzk)

j=1 k=j+1
Mimngkl Frigpley) + Falg (uy)

k) + Fg A2 ] (4.39)

+ FBIlQ(wk) + FqI gﬁ«

20 (¥
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Here again, the first term represents the psuedo—static
response and the remaining terms represent the dynamic part
of the response.

The main advantage in the use of Eg. 4.11 or 4.39 is
that only a first few mocdes are necessary in calculation of
the response, because the terms associated with Ilz and 122
become small

for the modes with frequencies higher than the input fre-
quency.

To obtain the design response, Eg. 4.11 and 4.33 need
to be multiplied by the sgquare of the response peak factor.
The peak factor can be evaluated as described in Chapter 2.

The numerical results presented here, however, are only for

the mean sguare response.

4.3 TEHE WORST-CASE MEAN SQUARE RESFPONSE

The evaluation of the worst-case response, irrespective
of the orientation o©f the structure, is done in exactly the
same manner as in Chapter 3. The only difference being that
in Chapter 3 the response matrix [RQ] is defined by the mode
displacement approach and here by the mode acceleration ap-

proach.
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4.4 NUMERICAL RESULTS

The main purpose of the development in this chapter was
to alleviate the problem associated with the evaluation of
the high frequency modes for the calculation of design res-
ponse. It was claimed that if the mode acceleration approach
is used, the higher modes can be excluded from the summation
process without significantly affecting the accuracy of the
results. Here, some numerical results are presented which
support fhis claim and alsc demonstrate the advantages of
adopting the mode acceleration apprcach cover the mode dis-
placement approach.

To show this, the torsional multisfory structure used
in Chapters 2 and 3 has been analyzed aéain. By changing the
frequency parameter w=\[§75 , flexible to stiff structural
systems can be obtéined.

~ The inpuﬁ to this structure consists of the five
earthquake components: twe translaticnal components applied
in the horizontal plane and three rotational components ap-
plied about the two horizontal axes and a vertical axis.
The numerical results have been obtained for the root mean
square respcnse values of the story shears, tecrsional moment
and column bending moments. To show the effectiveness of the
mode acceleration formulation, the response results have

been obtained with all nine modes (complete set) as well as
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with only the the first three modes. The results ére shown
in Tables 4.1-4.5 and are in the mg-ft unité. The wvalues
cbtained with all nine modes are called "egaét" values.
Both formulations, the mode displacement presented in Chap-
ter 3 and the mode acceleration presented in this chapter,
provid exactly the same values when all the nine modes are
used in the analysis. Two types of response values are ob-
tained for each case:

1. The maximum response, in which the methodology de-
scribed in section 3.5 was used. These values are shown in
Column (1) for nine modes, in Column (3) for 3 modes with
the mode displacement approach and in Column (5) for 3 modes
with the mode acceieration approach. The values in Cclumn
(3) and (5) .are shown in the ratio form. That is, they are
divided by the values in Column (1).

2. The response, with inputs applied along the geometric
axes of the structure, without making any search for the
maximum response. These values are designated as "RS" in Ta-
bles 4.1 through 4.5 and their ratios to the wvalues in Co-
lumn (1) are shown in Columns (2), (4) and (6).

The Tables 4.1 through 4.3 are for a stiff system with
frequency parameter, w= 50 c<ps. The lowest frequency of
this system is 20.8 Table 4.1 is for e/r=.01 and has closely

spaced modes, whereas Tables 4.2 and 4.3 are for e/r=.05 and
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e/r=,30. The frequencies of the system with e/r=.30 are not
closely spaced.

The response ratics shown in Column (3) indicate that
the mode displacement approach severely underestimates the
response when only the first few modes are used. The mode
acceleration approach, however, provides an excellent esti-
mate of the response, even with the first few mecdes. Similar
conclusion can be drawn for the response values shown in Co-
lumns (2), (4) and (6). The comparison of wvalues in Column
(2) with Column (1), Column (4) with Coclumn (3) and Column
(6) with Column (5) shows that if no search is made for the
maximum value, the calculated response is likely to be un-
derestimated. This underestimation is about 10 tb 18% for
the response wvalues shown here. With other structural sys-
tems with gross asymmetry in the plan, the underestimation
can be significantly large.

Tables 4.4 and 4.5 are for the structural systems which
are not so stiff. In these cases it is seen that the mode
displacement approach also gives better response values with
only the first few modes. This is because the high frequén—
cy modes, which are neglected here, are not very dominant
ncw. The values obtained by the mode acceleration approach

are even better.
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It is, thus, seen that the mode acceleration approach
will, in general, provide more accurate response values than
the mode displacement approach for the same number of modes
used in the analysis. The use of the mode acceleration ap-
proach in lieu of the mode displacement apprcach is, thus,
recommended.

It 1is, however, noted that the mode acceleration ap-
proach reguires the input to be defined in terms of the re-
lative acceleration and relative velccity spectra. Such pre-
scriptions of the input are, rather, uncomﬁon curreritly.
The psuedo acceleration spectra are more commonly prescribed
as the design inputs. However, in principle there should be
no special difficulty in the development of the design in-

puts in the form of the relative spectra.



Chapter V

SUMMARY AND CONCLUSIONS

This study is centered around the subject of evaluation
of the design response of structures subjected to multicom-
ponent earthquake meticons. For design purposes, the earthg-
uake motions are often characterized by the smocothed ground
response spectra which supposedly represent the spectral
characteristics of the ground motions expected at a site.
The analytical development work in this study has, there-
fore, béen directed toward the development of approaches
which can employ the ground spectra as inputs 1n their meth-
odology for the calculation of design response.

The ﬁethod of the sguare-of-the-sum-of-the-squares 1is
commonly used for the calculation of the design response
from given response spectra. In Chapter 2, this method has.
been reevaluated and refined to include the modal peak fac-
tors in the calculation of design response for the classi-
cally as well as nonclassically damped structural systems
subjected to three uncorrelated excitation components ap-
plied zlcong the structural axes. The concept of the modal
correlation often used 1in the context of closely spaced
modes has been further explcred, especially for the multi-

component excitations and the nonclassically damped systems.
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It is observed that though the correlation between two
closely-spaced modes may be streng and significant for one
component of excitation, it loses its significance when mul-
ticomponents are considered. In fact, the significance of
this ceorrelation, and thus the importance of the double sum-
mation terms in the mode combination procedures, can not be
assessed in a straightforward manner when nonproportionaily
damped systems under multicomponent excitations are consid-
ered. Since the evaluation cof the double summaﬁion.terms in
the mode combination rules does not pose any special prob-
lem, their inclusion in all the cases is advocated, irre-
spective of the closeness cf the modal frequencies.

As several aséumptions are made in the development of
response spectrum procedures, a comprehensive numerical si-
mulation study involving an ensembles of accelefation time
histories has been conducted for the validation‘of the pro-
posed approaches. For the time history analysis of the pro-
poertionally damped systems, an already available modal su-
perposition approcach has been used. For nonproportionally
damped structures, a new modal superposition time history
integration approach has been developed and used. The re-
sults obtained by the response spectrum approaches for time
history ensemble'spectra as input have been compéred with
the time history ensemble results, both for the proportion-

ally and nonproportionally damped structures. The compari-
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son shows that the response spectrum approaches both for the
proportionally and nonproportionally damped structures can
be used for the accurate predictions of the design responses
from the ground spectra. The inclusion of the modal peak
factors in the spectrum approaches can improve the numerical
accuracy of the results. For the caculation of the peak fac-
tors, the easy-to-use band-limited white noise spectral den-
sity function, with cut-off frequency encompassing the fre-
guencies of the input, can be emploved. In an overall
sense, the results presented in Chapter 2 validate the ap-
plicability of the response spectrum approaches for the pro-
portionally and nonproportionally damped linear structures
for the calculation of the design response(

| In Chapter 3, the effect of the inevitable correlation
between the earthguake components, experienced by structures
alcng arbitrary sets of axes, is considered. Based on the
assumption of the existence of the principal excitation di-
rections, as observed by Penzien, et. al.[26,27], the corre-
lation between the translation as well as the rotational
componenfé of e#citation has been evaluated. The rotational
components are expressed in terms of the Spatiél derivative
of the translation components and the shear wave velocity,
as was done by Newmark [23]. The correlation matrix of the
gix components applied along any arbitr;ry set of structural

axes 1s expressed 1in terms of the autccorrelation of the
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principal components and the direction cosines of the
principal excitation axes. A procedure is developed to ob-
tain the maximum value of a structural response quantity,
irrespective of the orientation of the structure. The num-
erical results obtained by this procedure are presented for
the proportionally and nonproportionally damped structures.
It is shown that a search for the maximum response, as de-
scribed in this chapter, should be made; otherwise the cal-
culated response may be significantly underestimated.

The numerical results, showing the effect. of the rota-
tional components, have also been presented in Chapter 3. It
is shown that the contribution of the rotational components
can be very large. This contributicn increases with the
size of the structure. For example, a taller structure will
be affected more than a shorter structure. Likewise, a lar-
ger structure in plan will also be affected more than a
‘smaller structure because of differential movement caused by
the passage of the seismic shear wave. The effect of the
rotational components, however, decreases with higher shear
wave velocity. The results indicate that the effect of the
rotational components can not be ignored simply on the basis
of a preconceived notion that these components are unimpor-
tant. The results presented here clearly demonstrate the

importance c¢f the rotaticnal components. However, further
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research in this area, especially with a more advanced model
of seismic wave propagation to define these components is
also necessary.

In Chapter 4, the approach of Chapter 3 1is applied to
develop a response spectrum apprcach based on the mode ac-
celeration method of structural dynamics. The use of such an
approach is especially desirable 1if the high freguency
structural modes contribute to the response significantly.
This happens in stiff structural systems. In the commonly
uéed modé displacement approach, such high modes must be
calculated explicitly and included in the modal analysis.
In the mode acceleration formulation, these modes, howeverh
need not be calculated explicitly; the;r effect can be in-
cluded through a simple static analysis of the structure.
The input in this approach must be prescribed in terms of
the relative acceleration and relative velocity spectra of
the ground motion. Again, the fermulation in this chapter
considers all six earthquake components. The possible cor-
relation between the six components is alsec considered. The
solution is cast in such a form that the maximum reéponse
evaluation mefhodology, developed in Chapter 3 can be used.
The ﬁumerical results, demonstrating the benefité of this
alternatiﬁe formulation, and alsc the importance of the ro-
tational.components in the calculation of the design res-

ponse, are presented.
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TABLE 2.1

DYNAMIC CHARACTERISTICS QF STRUCTURE IN FIG. 2.1, e/r=.01

COMPLEX MODE NORMAL MODE
APPROACH APPROACH

Mode |Frequency |Damping|Frequency|{DampingtiParticipation fact.

No. cps. Ratio cps. Ratio [xy=~direc |x,-direc
1 4.4475 0z22 4.4168 0226 0.8309 -0.8309
2 | a.aas0 | .c109 | a.agaz | .ozz5 | 1.1708 | 1.1709
3 | 4.aa89 | .0336 | 4.4797 | 0224 | -0.8251 | ©.8251
& | 12.4620 | .0623 | 12.3760 | .0619 | 0.2378 | -0.2378

TABLE 2.2

DYNAMIC CHARACTERISTICS OF STRUCTURE IN FIG. 2.1, e/r=.05

COMPLEX MODE NORMAL MCDE

APPROACH APPROACH
Mode|Frequency|Damping Frequency|Damping|Participation fact.
No. cps. Ratio cps. Ratio [x,-direc fx,~direc
1 4.3041 0214 4.2937 0215 0.8425 -0.8425
2| alasoo | .ozaz | a.samz | 0223 | 11708 | 11709
3| 4595z | L0231 | a sosz | .oz31 | -0.8135 | o 8133
"o | 12,3206 | 0587 |12.0307 | 0802 | 0.2811 | -0 2611
s | 12.a09 | casl |17 4635 | Los23 | o.33m1 | o aaei
6 | 12.5713 | Losoa |12 9115 | .ooas | -0.2328 | 5.3338
7| 17 a3se | Lossz |17 38a7 | 0870 | -o.095e | o oene
o | 17.9955 | 0a92 |18 o102 | .osor | o 1283 | o 1297
5 | 1s.0953 | 1321 18,6581 | L0833 | o.0m9a | o omen




TABLE 2.3

MODAL CORRELATION COEFFICIENTS FOR PROPORTIONALLY DAMPED
STRUCTURE SHOWN IN FIG. 2.1, e/r=.01

Excitation Along x,

i Mode Number
1 2 3 4 5 6 7 8 9
1 1.0
2 0.973 He:
3 0.901 B.97% 1.0
4 0,168 (173 0,179 1.0
5 G108 01FH D180 0,999 1.0
6 G170 0.176 D181 06.095  $5.999 1.0
b 0.21%  0.222  0.229 0.758  0.763 0.766 1.0
8 0.216  0.223  6.220 0.758 0.763 0.786 1.0 1.0
9 n.217 0.223 0.230 0.758 0.762 0.765 3.999 1. 0410 1.0

Excitation Along x, And Xx;

Mode Number
4 5 6 7 5]

[

[
D
()]
e

=0 064 1.0
(3,901 -0, 058 T.n
2.170 0,002 $.182 1.0
ARSI G0.177 =0.003 0.013 1.0
n.172 a2 t, 184 0.995 0.0 1.2
(., 217 0,00 0,23 0. 7% 0037 Q. 704 1.0
0.ung g.225%  ~0.001 0.033 0. 760 {.038 0.010 1.0
1H.219 o, noh 0,232 0,75% 0D.037 0,763 0.999 . OGS 1.0

B e I e

TABLE 2.4

MODAL CORRELATION COEFFICIENTS FOR PROPORTIONALLY DAMFED
STRUCTURE SHOWN IN FIG. 2.1, e/r=.05

Excitation Along X%,

Mode Number
4 S <] 7 8 9

L
bt

=

3¢

w

1.0

L5671 1.8

0. 244 1.618 1.0

0,140 0.178 0.188 1.0

0. 1495 0,174 0.194 0.965 1.0

18 9,181 0.200 0.908 3.978 1.0

.18% 0,219 .22 0.739  0.767 0.77% 1.0

U. 188 0.223 0.245 0.738 0.763 0,773 0,991 1.0

0.191 ).226 0.2LY9 0.739 3.762 771 0,969 0,992 1.0

e
D

NG GO N
<

Excitaticn Aleong x; And x;

1 Mode Number
i 1 2 .3 4 5 ) 7 8 9
I 1.0
2 0.1H 1.6
B D.ng =1 018 1.0
B 0,103 0. 00e o190 1.0
thoadh (R A BN S137 R R N 1.0

153 a.nng 4,202 0, il B.017 1o

i.187 0Ny .7°43 .37 0.037 . 776 .o

1, 00 0,22%  =0,005 0.016 . 760 0,030 n,otl 1.0

.19l tooun 0.250 . 736 .037 0.7h8 1}, 969 N.009 1.0

(SIS

Reproduced from
best available copy. .
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TABLE 2.5
MODAL CORRELATICN COEFF. FOR BASE SHEARS AND TORSIONAL MOM.

FOR NONPROPORTIONALLY DAMPED STRUC. SHOWN IN FIG 2.1,
e/r=.01

Base Story Shear in x;

i Mode Number
b 1 2 3 4 5 & 7 8 9
1 1,000
2 -0, 9u0 1.000
3 -1).975 0.85%8 1,000
4 0.124 -6,087 -0,136 1.4000
5 =0, 090 0.063 0,098 =D,921 1.000
6 -0, 157 n.109 0,172 =0.967 0.820 1.000
7 0.157 ~0.110 -0.173 0.678 -0.5%29 =~0.708 1.000
3 -J.125 0n.087 0.138 -0.,539 0.420 0.560 -0,937 1.000
9 -0, 185 0,130 0,206 =0.765 0.597 0,811 =-0.972 0.854 1.600
Basea Story Shear 1in X:
i Mode Number
3 1 2 3 4 5 5] 7 3 9
] 1.000
2 -0, 940 1.000
3 -0.979 0,861 1. 000
14 0.122 =0.086 -0.150 1.000
5 -0.091 0G.063 0,112  =0.024 1.000
6 =0, 140 0,098 0,173 =0,982 0.84h8 1.000
7 0.154 =0.108 =0, 189 0.678 -0.526 ~0,743 1.000
8 ~0.126 H.u89 (1.1%% =-0.552 0. u27 0.607 =0.943 1,000
9 ~0,168 0H.118 n.206 -0.735 0.573 0,804 -0.988 (. 890 1,000
Toersional Moment
i Mode Number
] 1 2 3 4 5 5 7 8 S

1,000
=0, 940 1.000
-0.979 0.861 1.000
~-0.0u1 0.030 0,049 1,000

0.034  =0.025 =0, 042  =0,907 1.000

0.046 =0.G34 -0.055% =0.974 .806 1,000
-0, 054 0.039 0,065 0.2 =0.147 =0.272 1,000

0,048 =0.035 =0,059 =03.0093 0.065 0.125  -0.904 1.000

0,061 =0.045% =0.074 =0.308 0.215 0,379 =0.97Y4 0.804 1,000

N0 A DA B0 N —
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TABLE =Z.

&

1 FOR

NONPROPORTIONALLY DAMPED STRUCTURE SHOWN IN FIG. 2.1,
e/r=.01

Bending Moment in x,

1 Mode Number
j 1 2 3 4 5 6 7 8 9
1 1.000
2 -0, 920 1,000
3 -0. 714 0.492 1.000
4 -0.009 0.027 -0.106 1.000
5 0009 ~0.021 .07} -0.909 1.000
& 0D.061  =0.074 0D.120 =0.445 0.385 1.000
7 =0, 008 0.030 =0.12% n.279 -0.189 -0.532 1.000
3 0.0 -0.029 0,094  -0,150 0.107 0,438 -0.907 1,000
9 0,052 =0.071 0.147  -0.098 0.078 0.802 -0.u478 0.486 1., 000
Bending Moment in X;
1 Mode Number
] 1 2 3 4 5 G 7 8 9
1 1.000
2 -0.668 1,000
3 -}, 962 0.488 T, 00 ‘
Yy =1.030 0,038 0.029 1. 000
5 -0,126 0.076 0.145 =0.388 1,004 .
[¢) .038 =0.049 =-0.031 0.975 f1.376 1,000
7 =0 . 0438 0.050 0,0u% 0.2u5% 0106 -0.268 1,000 ]
] -0.161 0,105 0,182 =0.308 0,423 0.364 =0.290 1.000
9 0L35 =0.087 =0.028  -0.325%  -0,037 0.405  -0,966 0,377 1,000




MODAL CORRELATION COEFF. FOR BASE SHEARS AND TORSTONAL MOM.
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TABLE 2.7

e/r=.05

Base Story Shear in x,

SHOWN IN FIG 2.1,

Mode Number
1 2 3 4 5 6 7 8 G
1 1.000
2 0,170 1.000 .
3 =0.430 .0.128 1.000
L 0.024  =0.071  =0.7141 1.000
bl 0.n05% (3.123 0.187 =0.558 1.G00
6 -0.023 0.088 0.166 =0.983 0.533 1.000
7 0.008 =0,119 =, 196 0.641 =-0.303 -0.702 1.000
8 =0.004 0.118 0,189 -0,599 0.298 6.657 ~0,976 1,600
9 0.001 0.153 0.237 =0.727 0.430 0.799 =0.961 r.932 1.000
Pase Story Shear in X%,
i Mode Number
] 1 2 3 4 5 6 7 8 g
| 1.000
2 -0.6u42 1.000
3 .238 =0.81717 1.0060
4 0,116 -0.121 0,127 1.000
5 -1, 12Y .12 -0.138 ~0,928 1. 00
6 -0 N2y 0.025 =0.02% =0.983 0,243 1,060 )
7 0.132 =~-0.138 0.4 0,615 =0 420 «11.659 1,000
8 ~{), 123 .129 -0.134 -0.560 0,386 0,601 =1.978 1000
9 -0..134 D.ho -0, 46 -0.638 0,442 0.682 -0.991 0.945 1.000
Torsional Moment
- Mode Number
3 o z 3 4 g 6 7 8 S
| G0
2 -0.6037 T.000
3 0n.068 ~0,718 1,00t
H 0.066 N.075 0 =0.126 1,000
5 0,015 0.090  ~0.088 -0, 428 10650
6 ~-0.08% ~0.160 0,210 =0.647 ~-0,410 1,000
f 0,088 (h.112 =0, 176 1,220 .38 =01, 5480 1,000
8 -0.,0%3  =0,05%3 0.026  -~0.169  -0.164 0,325 =01.915 1.000
9 -0.106  -0.133 .21 -0.276 -0.h00 063 0,879 1n.822 Tomog

Reproduced from
best available copy.
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TABLE 2.8

1l FOR

NONFRCPORTIONALLY DAMPED STRUC. SHOWN IN FIG. 2.1, e/r=.05

Bending Moment in x;

005

Mode Number
3 1 z 3 4 5 & 7 8 g
1 1. 000
2 -(1.658 1,000
3 -.u52 ~0.01%3 1.000
4 0.191 -0.070 -0,201 1.0
5 -0.016 0.034 0.026 =0,2p7 1.000
6 -0.191 0,057 U197 =0.8%% ~0.302 1.000
7 0.223 =0.095 «~0.237 . 605 0.281 =0.768 1.000
g -0.172 0.079 0.185 =0.484 =0.181 0.592 =0,900 1.000
9 -(),233 0.093 0.246 -0.620 -0.327 0.805% =0.960 0.750 1,000
Bending Momant in xa
Mode Number
1 z 3 4 5 5] 7 8 9
1 1.000¢
2 =0. 729 1.000
3 0.5%4  -0.74Yy 1,000
I .087 -0.068 0.058 1,000
5 -0. 146 .156 =0,146 -0.781 1.000
6 .10 =0.15%8 0,156 -0.19¢7  =-0.457 1.000
7 0.0L9  -0.026 - 0,019 $.297 =0.120 =0.251 1.000 B
8 ~0).130 0,140 =0.3131 =-0.522 (3.452 N0.036 -0.787 1,000
4 .

-}, 050 0,05% -0.157 =~0.083 0.378 =(.94] 0.548

1.000
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TABLE 2.9

MODAL CORREL. COEFF. FOR BASE SHEARS AND TORS. MOM. FOR

NONPROP. DAMPED STRUC.
e/r=_01

EXCITATION ALONG x,; AND x,
Base Story Shear in x;,

SHOWN IN FIG. 2.1 FOR TWO INPUTS,

i Mode Number
J 1 2 3 4 5 o 7 8 S
1 1.000
2 -0.716 1.00n0
3 =i}, Thl 0,140 1.000
iy 0.124  ~0.066 =0.10% 1.000
5 -0.066 .064 0.010  =0,657 1. 000
6 -0.112 0.010 0.172  =0.693 0.01% 1.000
7 0.157 -Q.UBN =i, 134 0.682 -0.380 =0.508 1. 000
8 -0.092 0.091 0.014 =0, 399 0.439 0.008 -0.667 1,600
9 -0.131 0.011 0.205 =0.545 0.008 0.811 -0.694 0.008 1.000
Base Story Shear in X:
i Mode Number
b 1 2 3 4 5 € 7 g 9
1 1,000
2 -0.716 1.000
3 -0, 747 0,140 1. 000
] 0.122 =0.065 =0.116 1,000
5 -1, 066 0.165 0,011 =0.658 1.000
6 -0.100 0,003 O.172 -0.70u4 0.016 1,000
7 0,154 =0.082 =0.1486 0.682 =0.376 =0.533 1,000
8 -0.092 0.091 0.015 =0.4h04 0.439 0.009 -0.668 1.000
Q -0. 119 0.010 0,205 -0.524 0.008 0.804 -0, 705 0,008 1,000
Torsional Momen<t
Mode Number
1 2 3 L 5 6 7 8 g
1 1.000
z -0.717 1000
3 -0, 716 (1, 140 1.000
4 -(.028 0,010 0.035 1.000
5 0.009 -0,000 =0.001  =0.649 1.000
6 0.033 =0.003 =0.055 -0.6495 .15 1. 000
7 ={1.075 1. agui 0,045 .23/ =0 117 =0.19% 1. 000
& -4, 000 =000 G000 =0, 1 (1. D86 0.002 -0,644 1.000
9 0.044 =0.004 <G.074 -0.218 3.002 0.379 =-0.692 0,007 1.000

Reproduced from A2
best available copy. S




130

TABLE 2.10

MODAL CORREL. COEFF. FOR BASE SHEARS AND TORS. MOM. FOR
NONFPROP. DAMPED STRUC. SHOWN IN FIG. 2.1 FOR TWO INPUTS,

e/r=.05

EXCITATION ALONG x, AND X,
Base Story Shear in x,

Mode Number

] 1 2 3 4 5 3] 7 8 9
1 1.000
z ~0).204Y 1.000
3 -0.043 =0.271 1.000
i 0.07% =-0.098 0.005% 1.000
5 -0, 076 0.116 =-0.0208 =-0.,792 1,000
[3) =1.025 0.069 0.103 =0.739 (}.282 1.000
1 0.07% -0.130 =01.020 0.628 =0.347 =0.616 1.000
8 ~U. 089 0.103 ~0.07% -0.486 0.337 .287 -0.803 1.000
9 -0.012 0.120 0.154 =-0,5%20 0.225 0.782 -0.7u2 0,250 1.000
Base Story Shear in x;
Mode Number ‘
3 1 2 3 4 5 6 7 8 9
1 1.000
2 0,088 1, N0
3 412 0. 063 1. 000
4 -0, 037 =0.131 0.065% 1.000
5 0.080 0,120 =0.046 -(),882 1.0060
& -0.026 0,004 = 026 -0.28Y4 0.026 1.000
7 -0.04% =0.147 0.076 0.51% =0.h%0 =-0.517 1.000
8 0,122 0.111 -0.019 -0.311 o.u17 0,187 =762 1.000 )
3 -0.077 0.109 =0.107 =0.473 0.226 0.660 =0.764 3.239 1.000
Torsional Mement
Mode Number
b 1 z 3 & 5 6 7 8 Q
1 1.000
2 - 214 1,000
3 =0.248 0,260 1,000
i 0,050 ~0.006 <=0.04h9 1.000
5 -0 0l 0.088 =0.021 -0.821 1.000
6 =0.004 =0, 1510 0,120 =0.186  =0,393 1.000
7 .02 0.062 =0.069 G.160 0.077 =0.406 1.000
g 0,008 ~0.000  -0.009 -0.107 0.056 a.071 =0.746 1.000
9 -0).049  -0.110 0,137 -0.110 -0.239 0.621 =-0.753 0.173 1.000
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TABLE 2.11
MODAL PEAK FACTORS FOR THREE DIFFERENT INPUTS, e/r=.05,
7 SEC., p = 0.5
Rsponse| Kanai-Tajimi White Noise
Spectra SDE 3DF
Mode
Number Cldj ngj civj Czdj czvj
(1} (2) (3) {4) (5) (6)
1 2.830 2.71%9 2.986 2.870C 3.003
2 2.843 2.739 2.998 2.883 3.014
3 2,857 2.759 3.010 2.896 3.028
4 3.1%0 3.188 3.295 3.221 3.274
5 3.180 3.194 3.305 3.232 3.280
6 3.201 3.200 3.315 3.243 3.287
7 3.241 3.231 3.395 3.333 3.335
8 3,283 3.233 3.404 3.343 3.340
S 3.210 3.235 3.413 3.354 3.345
TABLE 2.12
KANAI-TAJIMI SPECTRAL DENSITY FUNCTION, EQ. 2.73

i 8. W, B.
i i i
ft?®-Sec/rad | Rad/Sec
1 0.0015 13.5 C.3925
2 0.000495 23.5 0.3600
3 0.000375 33.0 0.3350
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TABLE 2.14

1 OF STRUCTURE IN FIG.

INPUTS IN x,~DIREC., e/r=.01

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. | Ranai~| White
Quantity History|Spectra| Tajimi} Noise
(1) (2) (33 {4) | (5) ‘[ (6)
i b
c Bending ) |
¢ M] Moment in 42,0384 0.95 0.95 | ©¢.79 | 0.88
M O| x,-Direc. | !
P D|l-—-~mmmmon |- e s e e jomm—m—— [~wm—=—-
L & Bending | 1
E Moment in 3.0408 0.78 0.73 { - § -
X ¥:-Direc. } F
T T
Bending | I
N Moment in 49.5760 ¢.89 1.01 1} 1.10 | 1.Q3
O M| x,~Direc. | i
R Qf-====-~~- Bl e e T L e e bl it {rmmm—— |-
MD Bending | |
A E| Moment in 3.9945 1.42 1.23 ! 1.28 | 1l.z2
L ‘®%p-Direc. | |
E
R| x;-Direc 17.9 23.4
A B R et
O] xz-Direc 31.4 138.0
R
TABLE 2.13

MEAN BASE SHEAR AND TORSICONAL MOMENT RESPONSE OF STRUCTURE
INFPUTS IN x,-DIREC., e/r=.01

IN FIGC 2.1 FOR 15 SEC.

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai~] White
Quantity History|Spectra| Tajimi| Noise
(1) (2) (3} (4) (%) (6)
Base Shear 24.1824 1.00 1.01 1.09 1.03
c in x;-Direc
L e it el e e B el T e
M O|Base Shear 0.8982 1.13 0.80 1.50 1.00
P D|in x,-Direc
TR Al e el I B B e il Eat it
E Torsional 2.5668 1.10 1.00 1.01 1.00
X Moment
Base Shear 28,4551 0.99 1.00 1.10 1.03
N in Ry-Direc
O e e el el o e el e
R O)Base Bhear 0.5265 1.62 1.37 1.46 1.14
M Djin x;-Direc
N A e B e el e B el Dttt
L Torsional 3.1378 1.41 1.23 1.27 1.12
Moment
P
E E| x,-Direc 17.7 16.6
A e e e R L e
C R|] ®x,-Direc. -14.7 22.48
EOof--mmmmm e e e e e
N R Torsien 34.8 7.9
T




TABLE 2.15

MEAN BASE SHEAR AND TORSIONAL MOMENT RESPONSE OQF STRUCTURE
IN FIG. 2.1 FOR 30 SEC. INPUTS IN x,~DIREC., e/r=.01

Type Time RS With Peak Factor
of History RS Time Higtory
Response Response Time Resp. Kanai-| White
Quantity History|Spectra| Tajimi| Noise
(1) (2) (3) {4) (5) (6}
Base Shear 28.7411 1.03 1.04 1.10 1.05
C in x,-Direc
O il B el T el Kl Babadedenkadid
M C¢|Base Shear 0.8856 1.22 0.42 1.47 1.10
P D|in #;-Direc
L Ej-==rs-rmunu|rrmemceceafccemeen v mcac | o mmmemf e -
E Torsional 3.0679 1.11 1.01 1.05 1.01
X Moment
Base Shear 34.5225 1.03 1.04 1.11 1.06
N in x,-Direc
o Ml---mm=-—— s e e e e e
R O|Base Shear 0.7160 1.38 1.29 1.31 1.08
M D{in x,-Direc
A E|-=ca—- P L T T e ] LT P PR P
L Torsional 4.1835 0.81 1.17 1.17 1.12
Moment
P
E E! ®;~Direc. 20.1 20.0
R Rj-~-rmommmo [ m e m e ==
C R} x,-Direc. -16.4 -5.4
o e Rl R e
N R Torsion 20.4 S0.9
T
TABLE 2.16
MEAN BENDING MOMENT RESPONSES OF COL. 1 QF STRUCTURE IN FIG.
2.1 FOR 30 SEC. INPUTS IN x,~DIREC., e/r=.01
Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-| White
Quantity History|Spectral] Tajimi| Neise
(1) (2) (3) (%) (3) (6)
C Bending
O M| Moment in 50.1255 0.96 0.97 0.84 0.92
M O] x%x,-Direc.
(AR I e e bl B L R L L e e e A R
L E Bending
E Moment in 3.8340 1.08 1.07 - -
X Xz;-Direc.
Bending
N Moment in 60.3229 1.03 1.03 1.11 1.06
O M| %, -Direc.
ROy{=----—r—-———f-———mmmmmr - e | — e
MD Bending
A E| Moment in 5.2751 1.25 1.18 1.18 1.13
L ®,-Direc.
Z
R| x,-Direc 20.3 28.1
A R R
0| #,-Direc. 31.8 52.1
R
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TABLE 2.17

MEAN BASE SHEAR AND TORSIONAL MOMENT RESPONSE OF STRUCTURE
IN FIG. 2.1 FCR 15 SEC. INPUTS IN x,-DIREC., e/r=.05

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Ranal-] White
Quantity History|8pectra| Tajimi| Noise
(1) (2) (3) (4) (5} (6)
Bage Shear 22 .8879 Q.88 0.91 1.14 1.00
cC in x,-Direc
O Mf--mmmmmmmm e m e e e e e o e
M O|Base Shear 7.5267 1.35 1.19 1.19 1.13
P Djin x,-Direc
T ol I et B B R EE T
E Torsional 8.3714 1.18 0.92 1.04 1.04
X Moment
Base Shear 25.8960 0.92 0.95 1.09 0.99
N in x,-Direc
[ G el el e e el
R O|Base Shear 7.0282 1.33 1.14 1.19 1.08
M D|in x,-Direc
F G o e el [l el el Rttt R Dl
L Torsional 10.3500 1.18 1.07 1.05 1.07
Moment
P
E E| xy-Direc. 13.1 18.4
e L LT T
C R| xz=Direc -6.6 -8.0
EOl---——mmrmmm | -
N R| Torsion 23.6 23.4
T
TABLE 2.18
MEAN BENDING MOMENT RESPONSES OF COL. 1 OF STRUCTURE IN FIG.
2.1 FOR 15 SEC. INPUTS 1IN x,-DIREC., e/r=.05
Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-| White
Quantity History|Spectra| Tajimi]| Neise
(1) (2} (3) {4) {5) (6)
C Bending
O M| Moment in 39.4383 0.92 0.95 1.15 1.02
M 0} x,-Direc.
P D T e B T T, B il Bkl Elid
L E Bending
E Moment in 15.5089 1.31 1.08 1.14 1.11
X ®xz-Direc.
Bending
N Moment in 45,3322 0.95 .0.97 1.09 1.01
& M| x,-Direc. ’
R Ol-———-——sr s i rsmmmmmmc fmemr e mn ] mmm i m ] mmmm | e e —
MD Bending
A E| Moment in 16.7141 1.26 3.11 1.12 1.1¢
L x;-Direc.
E
R| x,-Direc 15.0 18.9
% Riwmmsmmmmmm e e e o f
O] x,~Direc. 7.8 3.7 |
R |
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TABLE 2.19

MEAN BASE SHEAR AND TORSIONAL MCOMENT RESPONSE OF STRUCTURE
IN FIG. 2.1 FOR 30 SEC.

INPUTS IN x,-DIREC.,

e/r=.05

MEAN BENDING MOMENT RESPONSES OF COL.
2.1 FOR 30 SEC.

e/r=.05

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-| White
Quantity History|Spectra| Tajimi}| Noise
(1) (2) (3) (4) {5} (6)
Base Shear 27.1730 1.00 1.03 1.17 1.08
C in »,-Direc
o ] i el [l B Il ettt
M O}Base Shear 9.8576 1.20 1.14 1.12 1.06
P Djin x,-Direc
L Ej-——-r s s e e s e — s e e e
E Torsicnal 10.7589 1.07 0.98 0.89 0.98
X Moment
RBase Shear 30.9376 1.00 1.02 l.12 1.05

N in ®,-Direc
O M- | e e e e e e e
R O|Base Shear 2.1545 1.19 1.12 1.1z 1.03
M D]in x,-Direc
A Bl-wc-emr s | mmecmmme e i e e m e e e e
L Torgional 13.0475 1.09 1.05 1.02 1.02

Moment
P
E E| x,-Direc 13.9 13.8
] B i et
C R} xp-Direc -7.1 ~8.0
E Of==rmmmmmmememmmm e e e
N R Torsion 21.3 23.7
T

TABLE 2.20

1 OF STRUCTURE IN FIG.
INPUTS IN x,-DIREC.,

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-{ White
Quantity History|Spectral Tajimi] Noise
(1) (2) (3) (4) (5) (&)
C Bending .
QO M| Moment in 47.7437 1.01 1.03 1.16 1.07
M 0| x;-Direc.
F el Rl [l Il e el e
L E Bending
o Mement in 21.1113 1.5 1.05 1.06 1.02
X Xz-Pirec.
Bending
N Moment in 55.1707 1.00 1.00 1.10 1.05
O M| X,-Direc.
R Ofmrmmommmmmm e mmm e e e e e e e v - -
MD Rending
A E| Moment in 22.4227 1.12 1.06 1.05 1.02
L Xz-Direc.
E
R| x,-Direc 15.6 15.1
% Rp=mmmmmmmmm e e
C| x,-Direc. 6,2 3.5
R
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TABLE 2.21

MEAN BASE SHEAR AND TORSIONAL MOMENT RESPONSE OF STRUCTURE

IN FIG. 2.1 FOR 15 SEC.

INPUTS IN x,&x,-DIREC.,

e/r=.05

Type Time RS With Peak Factor
of History RS Time Hdistory
Response Response Time Resp. Kanai-}| White
Quantity History|Spectra| Taiimi| Noise
(1) (2) (3) (4) (5) (B)
Base Shear 24,1900 0.96 0.98 1.13 1.03
o4 in x,-Direc
O M [N S (RS, (P e L T T T
M C|Base Shear 32.6554 1.00 1.01 1.07 1.02
P Dlin ®z-Direc
o S T B T DT B T P
E Torsional 16.7561 1.22 1.10 1.67 1.11
X Moment
Base Shear 26.53838 0.98 0.98 1.09 1.01
N in ®;-Direc
oI T B e el el e
R O} RBase Shear 27.6810 0.92 Q.95 1.08 0.99
M Dlin x,~Direc
L Ol Bl Bl Bl bl bt bbbl Bttt bl Eltkbdeded
L Torsional 14.6¢672 1.17 1.06 1.04 1.06
Moment
P
E E} »y-Direc 0.3 10.5
R R|=-m=mmmmmmrmm e [ oo
C R| wx,=Direc -15.0 -21.6
EOol--————-——— =
N R Torsion -11.4 -16.1
T
TABLE 2.22
MEAN BENDING MOMENT RESPONSES OF COL. 1 OF STRUCTURE IN FIG.
2.1 FOR 15 SEC. INPUTS IN x;-4&x,-DIREC., e/r=.05
Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-f Wnite
Quantity History}Spectra| Tajimi| Noise
(1 (2) (33 (4) (5 (8)
o4 Bending
O M| Moment in 46,4398 0.99 1.00 1.08 1.02
M G| x,~Direc.
sl e e e el It Tl R T
LE Bending
E Moment in 58.2417 1.05 1.05 1.08 1.06
x ra~Direc.
Bending
N Moment in | 48.6731 0.98 0.99 1.06 1.01
O M| x;-Direc.
N Il e ettt B [ I
M D Bending
A E| Moment in 49,6452 0.97 0.99 1.08 1.02
L %,-Direc.
E
R| x;-Direc 4.3 3.8
% Rl=mrrememe e mme e mmem e m
C| xz-Direc. -14.8 ~20.9
L R
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TABLE 2.23

MEAN BASE SHEAR AND TORSIONAL MOMENT RESPONSE OF STRUCTURE

IN FIG, 2.1 FOR 15 SEC.

INPUTS IN x,-DIREC.,

e/r=.3

MEAN

BENDING MOMENT RESPONSES OF COL.
2.1 FOR 15 SEC.

e/r=.3

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanal-| White
Quantity HistorylSpectra| Tajimi} Noise
(1) (2) (3) (4) (5) (6)
Base Shear 20.0987 0.92 0.95 1.24 1.06
c in x;~-Direc
O Mj—mmrmmemm e | mrmm e e e
M OlBase Shear 17.9893 .94 0.92 Q.84 0.88
P Dlin X ;~Direc
T el e il Bt il Gl Dl b Dl
E Torsional 14.5%467 0.91 0.93 0.81 0.87
X Moment
Base Shear 20.4091 0.92 0.95 1.24 1.06
N in ®x,-Direc
O U Il A Bl B B et
R U|Base Shear 17.8975 0.%4 0.92 0.84 0.88
M D}in %x,-Direc
L O et e B Il B
L Torsional 14.8616 ¢.90 0.82 G.80 0.86
Moment
F
E E|] x;~Direc 1.5 1.4
R Rf----mmmrm o [ e -
C R} x;-Direc ~0.5 -0.5
E Q] --=emmmmeme | memme e e m v e
N R Torsion 2.2 1.3
T.
TABLE 2.24

1 OF STRUCTURE IN FIG.
INPUTS IN x,-DIREC.,

Type Time RS With Peak Factor
of Histery RS Time History
Response Response Time Resp. Kanai-| White
Quantity HistoryiSpectra] Tajimi] Noise
(1) (2) (3) (4) (3) (&)
Cc Bending
0 M| Moment in 33.4334 0.93 0.96 1.09 1.01
M 0| x,-Direc.
F o B i el B e e el E LR
L E Bending
E Moment in 30.3383 Q.95 Q.93 Q.90 0.90
X #,=-Direc.
Bending
N Moment in 34.0675 0.93 0.96 1.08 1.00
O M| x,-Direc.
DR R i e e e B e
M D Bending
A E| Moment in 30.2386 Q.95 0.93 0.91 Q.91
L %y-Direc
E
R} r,-Direc. 1.9 1.9
%R e e
0| =,-Direc -0.3 ~-0.1
R
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TABLE 2.25

MEAN BASE SHEAR AND TORSIONAL MOMENT RESPONSE OF STRUCTURE

IN FIG. 2.1 FOR 30 SEC. INPUTS IN %, -DIREC., e/r=.3
Type Time RS With Peak Factor
of History R3 Time History
Response Response Time Resp. Kanali~]| White
Quantity HistoryfSpectra| Tajimi| Noise
(1) (2) (3) (2) (5) (6)
Rase Shear 23.4013 1.00 1.63 1.25 1.11
c in %;-Direc .
O Mp-—--=—~m——m mmmmmme e e e mm o e e e e e
M OlBase Shear 20.9401 1.00 0.99 0.92 0.95
P Dlin xz-Direc
T 1 Z T e N e et EEE Tt
E Torsional 17.4604 0.91 G.84 0.84 0.88
X Moment
Base Shear 23.7054 1.00 1.03 1.24 1.11
N in x,-Direc
O Mi-emmmmmmm e | mmm s e m—— e f mm o s ) m s e |
R OfBase Shear 20.8217 1.00 0.39 0.92 0.9%
M Dlin x,-Direc
A Ej-——--—-—~--f e e e el i
L Torsional 17.6861 0.91 0.93 .84 0.88
Moment
P
E E| x,-Direc 1.3 1.3
R Rl-wemmemm e e e e =
C R} xp;-Direc. -0.5 ~0.6
E Of--mmmmmee e
N R Torsion 1.4 1.6
T
TABLE 2.26
MEAN BENDING MOMENT RESPONSES OF COL. 1 OF STRUCTURE IN FIG.
2.1 FOR 30 SEC. INPUTS IN x,~-DIREC., e/r=.,3
Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-| White
Quantity History]Spectra| Tajimi| Noise
(1) (2) (3} (%) (5) (6}
c Bending
0 M| Moment in 39.4743 0.98 1.00 1.11 1.05
M O] x;-Direc.
P Dlwwmemmemm e e b b e
L E Bending
E Moment in 36.5436 0.97 0.97 0.92 0.93
X Xy-Direc.
Bending
N Moment in | 40.2641 0.98 1.00 1.11 1.04
O M| %;-Direc.
| e Lttt
MD Bending
A E}] Moment in 36.5004 0.97 0.%6 0.92 0.93
L ®y-Direc.
E
R} x,-Direc 2.0 1.8
% Rj=mmmmmm s f e
Q} xz-Direc. ~-0.1 -0.2
R
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TABLE 2.27

MEAN+1 SDV BASE SHEAR AND TORSIONAL MOMENT RESPONSE OF
INPUTS IN x,-DIREC.,

STRUCTURE IN FIG. 2.1 FOR 15 SEC.

MEAN+1 5DV BENDING MOMENT RESPONSES OF COL.
IN FIG. 2.1 FOR 15 SEC.

INPUTS IN x,-DIREC.,

e/r=.01
Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. ¥anai-f§ White
Quantity History|Spectra| Tajimi] Noise
(1) (2) (3) (4) (5} (&)
. Base Shear 28.7081 1.00 1.00 1.05 1.02
c in x,-Direc
O M|=wmmmmmmmmn s mmeme o mm e ——— o e e e o e
M OfBase Shear 0.8389 1.11 0.83 1.33 1.0z
P D!in x,-Direc
[ Ol Rt bt e St Bt bbbl el Ittt B
E Torsional 2.981% 1.08 1.01 1.03 1.00
X Moment
Base Shear 34.3384 0.99 0.99 1.06 1.02
N in x,-Direc
O M|-—-—mm--m— e e e e e e e
R O|Base Shear 0.7083 1.33 1.23 1.27 1.09
M D|in x,-Direc
LN Ol e el et B I I
L Torsional 4.0719 1.25 1.14 1.15 1.13
Moment
o
E E| xy-Direc 19.6 19.0
R.R|-----=—--—— -7 -
C R} xp-Direc -15.¢6 5.3
E Of - e e e
N R Torsian 36.6 58.0
T -
TAELE 2.28

1 OF STRUCTURE

e/r=.01

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-{ White
Quantity History|Spectraj Tajimi| Noise
(1) (2) (3) (4) (5) (5)
[of Bending
0 M| Moment in 49,7289 0.94 0.94 0.84 0.99
M O] x;-Direc.
O R Bl I el I I
L E Bending
E Moment in 3.9170 0.87 0.84 ——— -—-
X #;-Direc.
Bending
N Moment in £59.7547 Q.99 1.00 1.06 1.02
0 M} x,-Direc.
e e Ll I B B E L e T Tl [ pepupupion
MDD Bending
A E| Moment in 5.1956 1.26 1.15 1.15 1.12
L ®p-Direc,
E
R| %x,-Direc 20.2 26.5
% Rl=mmmmeem e e
O] x,-Direc. 2.6 82.2
R
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TABLE 2.29

MEAN+1 SDV BASE SHEAR AND TORSIONAL MOMENT RESPONSE OF
INPUTS IN x,-DIREC.,

STRUCTURE IN FIG.

2.1 FOR 30 SEC.

MEAN+1 SDV BENDING MOMENT RESPONSES OF COL.

e/r=,01
Tyvpe Time R3S With Peak Factor
of History R3 Time History
Response Response Time Resp. Kanai-{ White
Quantity History)Speczra| Tajimi] Noise
(1) {2} (3) (4} (3} (e)
Base Shear 32.02867 1.01 1.03 1.09 1.06
c in x,=-Direc
(O Rl Bl B e e Rl T
M O|Base Shear 1.0599 1.19 .87 1.35 1.10
P Djin #,-Direc
T o e el I B e I e ]
E Torsional 3.5650 1.14 1.07 1.10 1.07
X Moment
Base Shear 35,7997 1.02 1.01 1.07 1.04
N in x,-Direc
Q Ml--—mewrmeer fama—— Rt Rl R L R Rl Rl b el Rttt
B OBase Shear 0.8713 1.23 1.18 1.17 1.03
M Diin x,-Direc
Y% [ETRRIRSEPR, P F D (U P S -———
L Torsional 4.9136 1.13 1.10 1.08 1.05
Moment
13
E E|l x,-Direc. 21.8 21.8
L S e g i T
C R[ Xz-Direc. -17.8 -15.0
S i el el
N R Torsion 37.8 36.4
T
TABLE 2.30

1 ©F STRUCTURE

IN FIG. 2.1 FOR 30 SEC. INPUTS IN x,-DIREC., e/r=.01
Type Time RS With Peak Factor
of Hiztory RS Time History
Response Response Time Resp. Kanai-] White
Quantity BistoryiSpectra] Tajimi] MNoise
(1) (2) (3) (4) (5) (6)
jod Bending
O M| Moment in 56.6765 0.97 Q.38 0.51 .95
M O} x;~Direc.
P Dfmm=mmmmmme e b e e e e e
L E Bending
E Moment in 4.7725% 1.32 1.29 - -—-
X Xa-Direc.
Bending
N Moment in £9.8549 1.01 1.00 1.07 0.95
O Ml x=,-Direc.
rRO}--———-——--——-{--————y -y - -
MD Bending
A E{ Moment in 6.2817 1.15 1.10G 1.08 1.05
L H,-Direc.
E
R| %x,-Direc 21.1 26.2
A Y R T Y [T ppap
0} x,-Direc 31.6 13.2
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TABLE Z.31

MEAN+1 SDV BASE SHEAR AND TORSIONAL MOMENT RESPONSE OF
INPUTS IN x,-DIREC,,

STRUCTURE [N FIG. 2.1 FOR 15 SEC.

MEAN+1 SDV BENDING MOMENT RESPONSES OF COI.

IN FIG, 2.1 EOR 15 SEC.

INPUTS IN x,-DIREC.,

e/r=.05
Type Time RS With Peak Factor
of History RS T Time History
Response Response Time Resp. Kanai-| White
Guantity History|Spectra] Tajimi| Noise
(1) (2) (2) () (5) (%)
Base Shear 26.9092 0.94 0.96 1.12 1.02
L C in x,-Direc
L el S Ml B T
M O|Base Shear 9.7278 1.21 1.11 1.0%9 1.07
P D{in Xp-Direc
L E|==ememmemmm [ mmmmmmmme e e e e e e e e e
E Torsional 10.3743 1.10 1.01 1.00 1.01
X Moment
Base Shear 30,8444 0.95 0.97 1.07 1.00
N in x,-Direc
Lo B e It B I I e
R O!Base Shear 9.0535 1.20 1.08 1.09 1.03
M Dlin x,-Direc
A El---=-mmmemm | e e e s m e e e e e
L Torsional 12.9587 1.09 1.03 0.99 1.02
Moment
P
E El x,-Direc 14.6 15.7
R R|{======ec-mme-mmmememra e
C R} x.-Direc -6.9 -7.9
E Of-r-mmmrmm e o e e
N R Torsion 24,9 23.35
T
TABLE 2.32

1 OF STRUCTURE

e/r=.05

Type Time RS With Peak Factor
of History RS Time History
Response Response Time Resp. Kanai-} White
Quantity History|Spectra} Tajimi| Noise
(1) (z) {3) (4) (5 (6)
o] Bending
O M| Moment in 46.0620 G.37 Q.99 1.13 1.04
M Cf x,-Direc.
L it R e il [ JUpuupI SN IO
L E Bending
E Moment in 20.1079 1.17 1.07 1.06 1.04
X X,-Direc.
Bending
N Moment in 53.8456 0.97 0.3%8 1.67 1.01
O M} x,-Direc. '
R O|mmmem e e o mmem e el
M D Bending
A E| Moment in 21.4019 1.15 1.06 1.04 1.04
L X;-Direc.
E
R{ x,-Direc. 16.9 1.9
A - IR [
O] x,-Direc 6.4 3.8
R
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TABLE Z.33

MEAN+1 SDV BASE SHEAR AND TORSIONAL MOM. RESPONSE OF
STRUCTURE IN FIG. 2.1 FOR 15 SEC. INPUTS IN x,-&x;-DIREC.,

e/r=.05
Type Time RS With Peak Factor
of History RS Time History
Respanse Response Time Resp. Kanai-| White
Quantity History|Spectra] Tajimi| Noise
(1) (2) (3) (4) (5) (6)
Base Shear 28.5099 1.00 1.01 1.11 1.05
c in xy-Direc
I e el It e el e
M U|Base Shear 39.8522 0.3%8 0.98 1.01 0.99
P Olan %x,-Direc
[ N el b Dl e el kil Il
E Torsional 21.3731 1.09 1.01 0.96 1.01
X Moment
Base Shear 31.9329 0.98 0.98 1.05 1.01

in x,-Direc
Base Shear 33.4897 Q.94 0.95 1.04 0.98
in x;-Direc

RN OZ
Moo=

Torsional 18.9684 1.03 0.97 0.93 0.96

Moment

P

E E|l %,-Direc. 12.0 9.1
0 - [SRPNONPNNIPRPRSEN [ . ——
C R| xz-Direc -16.0 -19.4
E Qlrmmmmmmmmaee [cmmme e [ e
N R Torsicn ~-11.3 =-15.7

T

TABLE Z.34

MEAN+1 5DV BENDING MOMENT RESPONSES OF COL. 1 OF STRUCTURE
IN FIG. 2.1 FOR 15 SEQ. INPUTS IN x;-&x,-DIREC., e/r=.05

Type Time RS With Peak Factor
of History RS Time History
Response Eesponse Time Resp. Kanal-| White
Quantity History|Spectra| Tajimi{ Noise
(1 (2} {3) (4) (5) (8)
ot Bending
0 M} Moment in 53.9901 1.02 1.03 1.08 1.04
M Of x,-Direc.
Rl e Il I I B T T RN
L E Bending
E Moment in 70.7030 1.01 1.01 1.02 1.01
X X,-Direc.
Bending
N Moment in 57.6737 0.99 ¢.99 1.04 1.01
O M{ x,-Direc. '
FR Of-mmmmmme e e e e el
MD Bending
A E{ Moment in 59.6700 Q.37 0.97 1.01 1.00
L xz;-Direc
E
R{ x;-Direc. 6.8 3.7
% Rfmmmmmmmm e e L
O] xp-Direc ~15.6 -19.4
R




DYNAMIC CHARACTERISTICS OF STRUCTURE IN FIG. 2.13
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TABLE 2.35

Mode |Frequency| Damping |Participation
Number cps. Ratio Factor

1 1.064 0113 318.984
T2 | siies | . 0274 | -108.733
3 | s.zoo | .oas5 | e0.008
4 | 717 | oenn | a1.108
s | s.eso | . 0776 | 20.975
6 | 10.a38 | .oso0 | 22.180
“ 9 | 117es | L1008 | 1e.288
s | 12,825 | .1102 | 11.512
9 | 13.605 | .1165 |  7.732
10 | 12.085 | .12a5 | 3,603
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TABLE 2.36

MEAN STORY SHEAR RESPONSES OF STRUCTURE IN FIG. 2.13 FOR 15
SEC. INPUTS

Time Rs With Peak Factor
Story History RS Time History

Number Response Time Resp. Fanai~] White
(x1Q8} History|Spectra| Tajimi{| Noise

(1) (2} (3) (4) (3) (6)
1 0.4717 0.96 .99 1.13 1.02

2 0.4541 0.97 1.00 1.12 1.01

a 0.4262 0.92 1.01 1.11 1.02

4 0.3962 0.99 1.02 1.10 1.02

5 C.3666 0.98 1.01 1.08 1.00

& 0.3328 0.96 1.00 1.06 0.98

7 Q.2910 0.94 1.00 1.03 0.96

a 0.2388 G.92 0.99 1.01 0.95

9 0.1735 .90 0.98 Q.99 0.94

10 0.0928 .89 g.98 0.97 0.94

TABLE 2.37

MEAN STORY SHEAR RESPONSES OF STRUCTURE IN FIG. 2.13 FOR 30
SEC. INPUTS

Time Rs With Feak Factor
Story History RS Time History

Number Response Time Resp. Kanai-| White
{x108) History|Spectral Tajimi] Noise

(1) (2) (3} (&) (5) (&)
1 0.6739 0.99 1.03 1.11 1.04

2 0.6546 1.00 1.C3 1.09 1.03

3 0.6221 1.00 1.03 1.08 1.02

2 0.5840 0.59 1.062 1.07 1.01

5 Q0.5418 0.97 1.01 1.08 0.99

2] 0. 4880 0.96 1.00 1.02 0.97

7 0.4207. 0.94 0.99 1.01 0.96

8 0.3414 0.93 0.99 0.99 0.495

9 0.245%4 0.91 0.98 0.97 0.94

10 0.1298 0.89 0.98 0.96 Q.94




MEANS AND COEFFICIENTS OF VARIATION OF RESPONSE RATIOS GIVEN
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TABLE 2.38

IN TABLES 2.13 THROUGH 2.34

Without With Peak Facto
Peak Factor {Resp, Spcctraf Kanai-lajimi ]| White Norse

Type of

Response | Mean Cov. Mean Cov, Mesn Ccov. Mean cov,

x1-Shear| 0.98 0.04h 1.00 0.05 1.14 0.04 1.05 0.03
0 nlxo-snear| 1.08 | 0.12 | 0.96 ] 0,18 | 1.32 | 0,17 | 10z | .06
b b|Torsion | 1.0n | 0,10 | 9.06 | 005 | 0.96 | 0,10 |0ie7 | 6i07
£ w0097 005 | 0.98 | o.05 | 1.02 | 0,11 | 0.99 | 006
“fetmon. | T1T0n |Toma 1700 | Torz 102 |Tor0r | 100 | on0s

x1-Shear] 0.98 0.04 0.99 0.03 1.12 0.05'§ 1.04 0.03
o mlxa-shear| 113 o 16 | 1os | om0 Torhn |6 Taree
m.0|Toraion | 1,06 | 0,15 | 0.9 | 0.20 | 0.99 | 0,74 |0.99 | 0.09
A (el el el I ISPl INNPRR PR PR e

xz-wom. | 1.09 | 0.13 | 1.05 | 0.08 | 1.06 | 0.09 | 1.03 | 0.08

Overail,

Mean and COV{ 1.033] 0.128} 1.007§ ©.112] 1.088[ 0.117] 1.012} G.065
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TABLE 3.1

PARAMETERS OF THE SPECTRAL DENSITY FUNCTIONS OF THE
PRINCIPAL COMPONENTS

Excitation i 803 W, Bzi'
in Direction ft?-Sec/rad Rad/Sec

1 0.0015 13.5 0.3925
1 2 | 0.000495 | 23.5 | 0.3600
s | 0.000375 | 33.0 | 0.3350
1 0.0010 15.5 C.5000
2 N 0.00033 | 27.5 | 0.4000
N 0.00025 | 42.0 | 0.3000
1 0.0005 10.5 0.3000
3 2 | 0.000165 | 19.5 | 0.2000
N 0.000125 | 33.0 | 0.1800
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TABLE 3.2

DYNAMIC CHARACTERISTICS OF STRUCTURE IN F1G. 2.1 FOR e/r=.Cl
AND w=10 cps.

COMPLEX MCODE NORMAL MODE
APPROACH APPROACH
Mode |Frequency|Damping|Frequency|Danping
No. cps. Ratio cps. Ratio
1 6,2367 064 £.2362 0097
2 ©.2375 0129 6.2369 L0087
3 8.3126 0499 8.2941 0500

5 12.8008 0331 12.7959 0293
6 | 16.0028 | 0708 | 16.03a1 | 0792
71707107 | Loz7s | 17.7211 | .0z06
& | 177189 | o1as | 17.7211 | .0z07

TABLE 3.5

PARTICIPATION FACTORS OF STRUCTURE IN FIG. 2.1 e/r=.01 AND
w=10 cps. FOR THE EXCITATION COMPONENTS

Mode| Participation factors in x, direction |

2
No. X, X2 X4 Xg Xg
1 1.437 |-1.437 62 .30 52.30 0.028
2 1.437 1.437 {-62.31 62.30 0.000

3 ~-0.031 0.031 ~1.14 -1.14 1.574
4 -0.071 0.071 ~7.29 -7.2% 0.028
5 -0.072 {-0.072 7.30 7.30 |-0.078
3] -0.037 0.037 -0.45 -0.45 ©.107
7 0.666 0.666 ~-8.03 8.03 0.000
8 ~0.665 0.665 -8.03 -8.03 |-0.040

9 ~0,003 0.003 -0.04 ~0.04 1.515
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TABLE 3.3

DYNAMIC CHARACTERISTIC OF STRUCTURES IN FIG. 2.1 FOR e/r=.01
AND w=33.4 cps. ’

COMPLEX MCDE NORMAL MODE
APPROACH APPROACH

Mode | Freguency |Dampingi Frequency|Damping
No. cps. Ratic cps. Ratio

TABLE 3.4

DYNAMIC CHARACTERISTICS OF STRUCTURE IN FIG. 2.1 FOR e/r=.01
AND w=50. cps.

COMPLEX MODE NORMAL MODE
APPROACH APPROACH

Mode | Frequency|Damping|Frequency|Damping
No. cps. Ratio cpS. Ratio

1 31.1429 L0127 31.0945 .0100
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TABLE 3.6

BASE SHEARS, TORSIONAL MOMENT AND COLUMN BENDING MOMENTS FOR
STRUCTURE IN FIG 2.1, ¢=1000. fps, e/r=.01, w=10. cps.

Translational [Translational
and Rotational Excitation in

Excitations Xq-&X,-Direc.
Type of |Maximum RS Maximum RS q/2
Response Resp. Max. Resp. Max.

(1) (2) (3) (4) (5) (e)
Shear in [18.075 | 0.900 |11.876 | 1.000 | .657

X,-Direc.

Shear in |25.422 0.869 }116.527 C.964 650
c X,-Direc
O L I B e I Rl TR
M O|Torsional] 0.329 0.986 0.206 0.986 .626
P D Moment
R T e e il ke R e
E Moment in}é45.121 0.90C 129.625 1.000 .657
X X,-Direc.

Moment in}63.435 0.869 }39.741 0.964 .626

®,-Direc.

Shear in (20.795 0.898 |13.592 1.000 .654

x;-Direc.

Shear in [20.795 0.870 }13.592 0.961 .654
N X,-Direc.
O Mj-==-===—==]~rmmmmm e e e e e e
R O}Torsional} 0.314 0.955 0.198 0.9390 .631
M D} Moment
AEBEl---mrmer e e e e e e e e e
L Moment in)51.902 0.888 }33.905 '1.000 .B653

x,-Direc.

Moment in|51.902 0.8639 |33.905 0.961 .653
Xz-Direc.




BASE SHEARS, TORSIONAL MOMENT AND CCLUMN BENDING MOMENTS FOR
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TABLE 3.7

STRUCTURE IN FIG 2.1, ¢=1000. fps, e/r=.01, w=50. cps.
Translational [Translational
and Rotational Excitation in
Excitations X, ~&x,-Direc.
Type of [Maximum RS Maximum RS 4/2
Response Resp. Max. Resp. Max.
(1) (2) (3) (4) (5) (6)
Shear in 4.319 0.921 3.349 1.000 775
x,-Direc.
Shear in 4.315 0.829 3.349% 0.867 .775
C ®x,-Direc.
S U I B et B It el It
M O]Torsiconalj 0.074 0.984 0.001 0.996 014
P D Moment
O Ol et e it bkl Bl bl I it Rkl bl
E Moment in}fl0.793 0.921 8.362 1.000 .775
X x;-Direc.
Moment in|10.793 0.829 8.362 0.867 .775
x,-Direc.
Shear in 4.319 0.921 3.349 1.000 .775
®,~Direc.
‘ Shear in 4.319 0.829 3.349 0.867 775
N ®y,-Direc.
O U el e e il LR bt bl ettt
R OfjTorsionalj 0.073 0.984 0.001 0.996 ;0.014
M D Moment
A Ef-mmrr—mm e e e e e e e
L Moment in§l0.794 0.921 B.362 1.000 .775
®y-Direc.
Mement injl0.7%4 0.829 8.362 0.867 775
®x,-Direc.
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TABLE 3.8

BASE SHEARS, TORSICNAL MOMENT AND COLUMN BENDING MOMENTS FOR
STRUCTURE IN FIG 2.1, c=1000. fps, e/r=.3, w=1l0. cps.

Translational lTranslatiocnal
and Reotational Excitation in

Excitations X;-&X,-Direc.
Type of |Maximumnm RS Maximum RS 4/2
Response Resp. Max. Resp. Max.

(1) (2) (3) (4) (5) (6)

Shear in |17.734 0.903 }11.513 1.000 . 649
X,~-Direc.

Shear in §18.073 0.894 11.742 0.983 .650
X>~-Direc.

Moment in}43.621 0.893 |27.875 1.000 .639
x,~-Direc.

MEEdEON
o
=
- Q
3
0]
3]
=

Moment inl44.392 0.885 }28.404 0.983 . 640
X,=Direc.

Shear in {17.819 0.902 111.557 1.000 .649

x,-Direc.

Shear in |17.819 0.893 }J11.557 0.984 . 649
N Xy-Direc.
O Myim~-—=m-rmo—frmemmmms e mm e e e e e [ e e -
R OlTorsionall 3.831 0.982 2.972 C.982 .776
M D Moment
A El--—----- ] e e e e e -
L Moment in{43.820 0.893 j27.981 1.000 .639

X,-Direc.

Mement in|43.820 0.884 |27.981 0.984 .639

X>-Direc.
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TABLE 3.9

BASE SHEARS, TORSIONAL MOMENT AND COLUMN BENDING MOMENTS FOR

STRUCTURE IN FIG 2.1, c=1000. fps, e/r=.3, w=50. cps,.
Translaticnal [Translational
and Rotaticnal Excitation in
Excitations Xy -&x~Direc.
Type of [Maximum RS Maximum RS 4,2
Response Resp. Max. Resp. Max.
(1) (2) (3) (&) (5) (6)
Shear in 4.329 0.921 3.352 1.000 774
x,-Direc.
Shear in 4. 329 0.830 3.352 0.8867 774
c Rp-Direc.
O Mi---mmmmm e e e e e m e
M OfTorsionalf 0.066 0.775 0.032 0.996 . 485
PD Moment ‘
I O B el I el B B B
E Moment in{l0.538 0.917 8.107 1.000 769
X x;-Direc.
Moment infl0.539 0.826 8.107 C.867 . 769
Xx=Direc.
Shear in 4.329 0.821 3.352 1.000 774
x,-Direc.
Shear in 4.329 0.830 3.352 0.867 774
N x,~Direc.
O Mj=rrmrmmmm fmmm e m e e s e e
R OjTorsionaly 0.068 0.982 0.032 0.9%86 {0.471
M D Moment
A BEjrermmrm e rm e mm e e e e e f
L Moment inf{l0.539 0.917 8.107 1.000 .769
X,-Direc.
Moment in{l10.539 0.826 8.1C7 0.867 769
%xs-Direc.
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TABLE 3.10C

BASE SHEARS, TORSIONAL MOMENT AND COLUMN BENDING MOMENTS FOR
STRUCTURE IN FIG 2.1, ¢=2000. fps, e/r=.01, w=10. cps.

Translational |[Translational

and Rotaticnal Excitation in
Excitations X;-&X-Direc.
Type of [Maximum RS Maximum RS 4,2
Response Resp. Max. Resp. Max.
(1} (2) (3) (4) (3) (6)
Shear in $13.701 0.959 111.876 1.000 .869
x;-Direc.
Shear in [19.136 0.925 [16.527 0.964 . B84
C Xz-Direc.
oI L el Bl el et e R
M O|Torsionalj 0.244 0.988 0.206 0.986 .B44
P D Moment
L E]l--~-—~ Rl e e el Hadndt el T
E Mcment in|34.185 0.95% [29.625 1.000 .867
X %, -Direc.
Moment 1in|47.738 0.925 39.741 0.964 .B32
X,-Direc,
Shear in |15.708 | 0.958 j13.592 | 1.000 | .856
Xx,-Direc.
Shear in |15.708 0.923 {13.592 0.9601 .856
N Xs,-Direc.
O L el e e B Tl
R O|Torsicnal] 0.234 0.992 0.198 0.990 .846
M D Moment
A Ej~——-—m e e e e e e e e
L Moment in{3%8.191 0.958 [33.9C5 | 1.000 .865
x4, -Direc.
Moment in}39.191 0.923 {33.905 0.961 .865
X;~Direc.




BASE SHEARS,
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TABLE 3.11

TORSIONAL MOMENT AND COLUMN BENDING MOMENTS FOR

STRUCTURE IN FIG 2.1, ¢=2000. fps, e/r=.3, w=1lC. cps.

Translational {Translational
and Rotational Excitation in
Excitations ®y ~&xs~Direc.
Type cof iMaximum RS Maximum RS 4/2
Response Resgp. Max. Resp. Max.
(1) (2) (3) (4) (3) (6)
Shear in (13.037 0.983 111.513 1.000 .883
X,=Direc.
Shear in §13.291 0.969 111.74z2 0.983 . 883
C ®xx-Direc
O It el e ekl I
M OiTorsicnal] 3.227 0.981 2.998 0.981 .929
P D Moment
O B il ittt R B TS R e
E Moment ini{31.736 0.978 127.875 1.000 .878
X X.-Direc,.
Moment in{32.3209 0.966 [28.404 0.983 .87%
x;-Direc.
Shear in 113.089 0.983 }11.557 1.000 . 883
¥,;-Direc,.
Shear in §13.08% 0.968 |11.557 0.984 883
N #,=Direc
O Mj==-mmmmm e e e e m e e | — e —
R OjTorsicnalj 3.198 0.982 2.972 0.982 929
M D Moment
F R O R e e et et [ et el ket
L Moment in{31.860 0.979 (27.981 1.000 878
#*;-Direc.
Moment in|31.860 0.966 127.981 0.984 . 877
Xz=-Direc,
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TABLE 3.12

BASE SHEARS, TORSIONAL MOMENTS AND COL. BENDING MOM. FOR A
SIX STORY STRUCT. IN FIG. 2.1, c=1000 fps, e/r=.3, w=33.4
cps.

Translational Translaticnal

and Rotational Excitations
Excitations
Type of tMaximum RS Maximum RS 4/2
Response Resp. Max. Resp. Max.
(1) (2) (3) (4) (5} (6)

Shear in [30.138 0.767 |12.835 0.997 L3226
X3 -Direc.

Shear in 130.138 0.762 j12.835 0.984 .426
N %x,~Direc.
I L e I e B R el IR
R O1Torsional}l0,060 0.999 7.744 0.998 .770
M D Moment
F O I e el el Rl e el e e el L R e
L Moment in|51.692 0.754 20,540 0.995 .397

Xj-Direc.

Moment inl51.692 0.752 {20.540 0.98% .397

x,-Direc.

TABLE 3.13

BASE SHEARS, TORSIONAL MOMENTS AND COL. BENDING MOM. FOR A
S5IX STORY STRUCT. IN FIG. 2.1, ¢=2000 fps, e/r=.3, w=33.4
cps. )

| | Translational | Translaticnal |

[ |]and Rotational | Ercitations |

] | Excitations | ]

; + : +

| Type of |[Maximum| RS |Maximum| RS | 4/2

fResponse | Resp. | Max. | Resp. | Max. |

(1) ] 2y | (3 | (&) | 5y | (8)

f — t —+ 1 f

|Shear in |17.904 | 0.885 |12.835 | 0.997 | .717
| l | |

|x,-Direc.

{Shear in [17.904 | 0.887 |12.835 | 0.984 | ,717
N  [xz;-Direc. | | | ]
O M[--v=mmore |- f=mmmmmm fommm—- | =mm=m=- j======
R O|Torsicnal| 9.363 | ©.998 | 7.744 | 0.998 | .827
M D} Moment | | J | P
A E[---m--w-- == = frmmmmm- oo ===
I |Moment in|30.683 | 0.859 [20.540 | 0.995 | .669
}xl—Direc.F { £ { %
|Moment in|{30.683 | 0.855 [20.540 | 0.989 | .669

fxz-Direc. | | | | ]
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TABLE 3.14

MASS, STIFFNESS, AND CROSS SECTIONAL PROPERTIES OF THE SPACE
FRAME IN FIG. 3.1

Memberf Length d A Ix Iy Iz

Number} (inch) {(in.) (in.) Ksi Ksi Ksi
1 301. 12.75 36.9 641.7 |641.7 }1283.4
2 312. 12.75 36.9 641.7 |641.7 §1283.4
3 354. 12.75 36.9 641.7 1641.7 11283.4
4 2%4. 12.75 36.9 641.7 1641.7 §1283.4
5 71. 10.75 11.81 §160.7 }160.7 321.4
& 101. 10.75 11.91 1160.7 |1860.7 321.4
7 108. 10.75 11.91 1160.7 §160.7 321.4
8 51. 10.75 11.91 1160.7 {1&60.7 321.4

JCINT COORDINATES IN INCH

jeint X1 Xa X3
Number (inch) {(in.) (in.)
1 48.0 0.0 0.0
2 80.0 78.0 0.0
3 -6.0 95.0 6.0
4 -6.0 -12.0 6.0
5 48.0 18.0 300.0
& 8.0 76.0 312.0C
7 0.0 80.0 360.0
8 0.0 0.0 300.0
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TABLE 3.15

NATURAL FREQUENCIES AND PARTICIPATICN FACTORS ¥FOR THE SIX
COMPONENTS OF EXCITATION COF SPACE FRAME IN FIG. 3.1

Mode |Freguency Participation factors in xp direction
No. cps. X X; X3 Kq Xg Xg
1 0.56U -0.5460 | 2.3337 | -0.1074 {-774.17 | -141.40 |~-121.33
2 0.633 2.2605 | 0.5021 0.1388 1-116.31 £86.11 | -160.03
3 1.210 0.2753 | 0.5557 | -0.0L448 |-~174. 15 74.00 95. 06
N 2.673 0.0984 | 0.0759 | -0.5542 [-253.73 180.40 | -0.5346
5 8.831 0.0562 [-0.0302 | -0.3229 |- 79.29 98.53 |-1.8u84
6 10,276 0.0098 |[~0.0208 0.3323 | 126.48 | -121.03 | 9.0406
7 11.853 -.0346 |~0.0182 0.0190 17.51 - 2.78 | 2.0906
8 13.241 ~0.136% | 0.0757 1.2742 | 383.52 | -378.99 [12.31%1
9 13.990 0.0478 | 0.0056 | -0.6682 [~2071.43 192,39 {-0.5572
10 15,501 -0.0937 | 0.1096 1.1526 | 304.69 | -308.07 |-3.5955
11 26.0278 0.0053 | 0.0138 | -0.2616 [ -92.31 93.54 | 3.1276
12 37.9432 -0.0015 | 0.0051 | -0.0959 | -60.98 30.19 | 0.%635
13 52,2059 -0.0119 | 0.0026 0.0070 ~9.,13 -22.05 | 0.6944
14 69.2649 0.0049 1-0.0071 0.6293 | 231.97 | -218.81 [-0.4793
15 81.4734 0.0144 | 0.0104 1.023% | 314,65 | -326.3% |-0.7878
16 86.4379 0.0092 | 0.0276 0.7315 | 206,00 [ -215.84 |-0.50L46
17 93,7806 0.0030 | 0.0047 0.0175 2.79 -2.95 |-0.1664
18 101.5223 ~0.0065 | 0.0137 G.0177 -0.57 | 4.77 [-0.2279
19 106.8117 -0.0057 | 0.0021 | -0.0048 | -10.36 22.25 | 0.5578
20 110.2381 -0.0011 ] 0.0112 6.0361 10.18 -8.87 | D.Lpk6
21 | 117.7470 ~0.0029 }=0,0237 | =0.0450 | =14.50 25.69 [ 0.6562
22 127.9208 0.0010 | 0.0116 0.0565 17.86 -19.76 | 0.5118
23 140.8611 0.0035 | 0.0124 0.1291 35.81 -22.49 |-0.3713
oh 161.7969 ~0.0011 |-0.0012 | -0.0263 -6.71 -0.65 | U.1323
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TABLE 3.16

" AXIAL FORCES IN THE SPACE FRAME OF FIG. 3.1, ¢=1000. fps

SiX COMPONENTS EXCITATION 3 TRANSLAT IONAL EXCITATION
(1) 2] (3 feny ey [y {7) (8} (9 foo{ainlne)
1 .88 LB9% 117 22 12 5.570 L9932 |.374 (110 -3 3
2 15,472 .91 P17 24 1 3.719 991 . 236 17 -3 3
3 16.886 879 {117 | 23 | us L, 324 918 |.256 [108 I B -
4 24,111 842 17T 25 10 5.738 .914 {.238 13 -2 95
l 7.962 L9006 117 24 42 0.682 .904 {.086 15 12 88
€ 5.884 -B97 {117 25 15 1.686 .979 .70 13 ~7 6
7 10. 002 .903 §117 20 Bu4 2.286 .83% |.279 T8 2 T2
8 13.163 .9215 {116 24 70 0.639 L824 | .pu9 J 14 -6 28
TABLE 3.17

BENDING MOMENTS ABOUT x%3-AXIS IN THE SPACE FRAME COF FIG.
c=1000. fps

3.1,

SIX COMPONENES EXCILIATION

3 TRANSLAT IONAL EXCITATION

Mﬁ:@er ner:3§§1m ﬁ_. Angle in Deg. chﬁgﬁse F‘Tﬁ‘% % Angle in Deg.
(1) (2) 13) piu) [{5) {(6) (7} (8) (9) ey pivypaes
| 195. 44 .96z 32 1-18 16 144,53 .99 |, 740 11 ~3 2
2 22815 .926 43 j-22 12 154 .85 . 986 679 12 -3 9y
3 147.24 | 988 5 f=10 | 23 124.83 | 992 1.848 | 12 | -3 9
4 197.36 § .967 | 34 {-15 | wy.96 | 997 .76 { 8| -4 | 2
5 137.05 § .838 {110 | 10 [123 103.32 | .839 |.753 {101 2 1
£ 308.83 | .816 {119 | 23 | 11 108.21 | .980 {.350 8 f -2 | 92
7 106.06 | 803 f118 | 23 | 79 23.56 L7554 {.222 f1un |-8a | 71
8 299.3% | .854 1119 § 24 8 125.59 | 991 [.420 9} -3 (108
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TABLE 3.18
COMBINED NORMAL STRESSES IN THE SPACE FRAME OF FIG. 3.1,
¢=100C. fps
SI1X COMPONENTS EXCITATION 3 TRANSLATIONAL EXCITATION
Moo |retponse| maw [t [ N o] meR, | A PR
(1) {2} (33 (L) |{5) (é) (7) (8} (9) (o)1)
1 1.934 987 | 16 | -6} 16 1.818 989 |.ou0 { 19 | -3 3
2 z.026 | .951 |12a | 19 1 1.629 .990 |.804 | 20 | -3 3
3 1.778 990 F 16 | -6 | 11 1.681 L9971 f.onus { 21 | -3 3
4 2.180 988 | 16 | -6 1 16 2,099 990 |.963 [ 17 | -3 3
5 ‘6.222 L850 11 13 43 4.247 L858 1,683 101 2 3
6 10,245 809 1119 | 23 § 12 3,256 963 [.318 J 10 ] -2 ] ou
7 5,056 BHi 112 | 12 | 98 3.466 .828 |.689 [103 3§ 84
8 16,956 L8611 |19 2y 8 4471 .979 | .u0s 11 -3 97
TABLE 3.19
AXIAL FORCES IN THE SPACE FRAME OF FIG. 3.1, ¢=2000. fps
51X COMPONLNTS fXCITATION 3 TRANSLATIONAL EXCITATION
G IR S B s B TN NN STy IPeYPara,
{1 (2) (3} (&) fi5) s (7) (8} () feroforyfoie
1 8.886 913 1116 | 19 1 5.570 932 f.627 |110 | -3 3
2 8.233 -836 1121 f 23 1 1 32719 | 991 fowsz v | -3 ) 3
3 9.229 889 e | 21 ] 77 4,324 918 |.u69 [108 3] 72
g 12,707 .873 f118 | 26 { 12 5.738 9t boust § a3 | -2 ) oos
5 4,011 909 116 | 25 } 28 0.682 904 f.170 | 35 | 12 { 88
6 3,202 939 f130 § e | 12 1.686 979 |.s27 | 13 | -7 5
7 5.362 .896 (113 {17 | 93 2.288 .835 l.uze | 78 2|71
8 6.603 913 116 ] 24 | sy 0.639 824 LLovr § oy | -6 | 28
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TABLE 4.1

BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING MOMENT COF
STRUCTURE IN FIG. 2.1, e/r=.01, w=50 cps.

Exact Response Approximate Response
Value Using 3 Modes By
S Modes Mode Displc. Mcde Accl.
Type Maximum| SRSS8 |R-Max.| SR3S (R-Max.| SRSS
of Resp. Max. [A-Max.}A-Max.|A-Max.|A=~Max.

Response (1) (2) {(3) (4) (5) (&)

Base Shear in| 4.319 .21 .786 .702 .9%0 : .913
X;-Direction

Base Sheér in] 4.319 . 829 .786 . 642 .990 .821
xz-Direction
Torsional 0.073 .984 . 430 .423 11.000 .984
Moment
Bending

Mem. of Col.1}10.794 .921 .786 .701 .990 .913
in x,=-Direc.

Bending
Mom. of Col.2(10.801 .B2% .786 . 642 .9%0 .913
in xz-Direc.

TABLE 4.2

BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING MOMENT OF
STRUCTURE IN FIG. 2.1, e/r=.05, w=30 cps.

Exact Response Approximate Response
Value Using 3 Modes By
9 Modes Mode Displc. Mode Accl.
Type Maximum] SRSS §R-Max.| SRSS {R-Max.|] SRSS
of Resp. Max. jA-Max.|A-Max.jA-Max.|A-Max.
Response (1) 2y | (3) (4) (57 | (&)
Base Shear in| 4.319 .921 . 786 702 .891 .913

¥,-Direction
Base Shear in{| 4.319 .8239 .786 . 643 .991 -B21
Hz=Direction
Teorsional G.085 .982 . 600 _5B5 ]1.077 11.062
Moment
Bending
Mom. of Col.1j10.753 .920 . 787 .702 .890 .820
in x;-Direc.

Bending
Mom. of Col.2}10.844 .830 . 756 .BA2 .990 .821
in x.-Direc.
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TABLE 4.3

BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING MOMENT OF
STRUCTURE IN FIG. 2.1,

e/r=.3 , w=50 cps.

Exact Response

Approximate Response

XKz-Direction

Value Using 3 Mcdes By
8 Modes Mode Displc. Mode Accl.
Type Maximum| SRSS JR-Max.f SRSS |R-Max.} SRES
of Resp. Max. jA-Max.[A-Max.]|A-Max. |A-Max.
Response (1) (2) {(3) (4) (5) (6)
Base Shear in| 4.329 .921 g00 718 g9l .913
x;-Direction
Base Shear in| 4.329 830 800 656 991 .822

Torsional 0.068 982 §z2.221 [2.103 §1.371 §i.357

Moment

Bending
Mom.. of Col.1]10.539 917 g0z 715 991 .909
in x,-Direc.
S - Y - S I.__.._,.._ —— o e -

Bending
Mom. of Col.2|11.117 834 798 .662 991 .825
in x;-Direc.

TABLE 4.4

BASE SHEAR, TORSICNAL MOMENT AND COLUMN BENDING MOMENT OF
STRUCTURE 1IN FIG. 2.1, e/r=.01, w=33.4 cps.

Exact Response

Approximate Response

Value | Using 3 Modes By
9 Modes Mode Displc. "Mode Accl.
Type Maximum| SRSS |R-Max.| SRSS |R-Max.} SRSS
of Resp. Max. |A-Max.|A-Max.[A-Max.}lA-Max.
Response (1) (2) (3) (4) (5) (6)
Base Shear in| 6.186 | .849 885 725 | .980 | .B32
X, ~Direction
Base Shear in} 6.186 798 886 694 980 780
Kz-Direction
Torsional 0.072 984 472 .468 11.032 |1.015
Moment
Bending
Mom. of Cel.1|34.593 849 396 .324 438 372
in x,-Direc.
_____________ B il st P PSSR SN ST
Bending
Mom. of Col.2]34.628 798 396 310 438 .349
in X;-Direc.
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TABLE 4.5

BASE SHEAR, TORSIONAL MOMENT AND COLUMN BENDING MOMENT OF

STRUCTURE IN FIG. 2.1,

e/r=.01,

w=10 cps.

Exact Response

Approximate Response

Value Using 3 Modes By
9 Modes Mcde Displc. Mode Accl.
Type Maximum] SRSS [R-Max.{| SRSS {R-Max.! SRSS
[s33 Resp. Max., [A-Max.jiA-Max.|A-Max.{A-Max.
Response (1) (2) (3) (4) (5) (&)
Base Shear inj20.7%6 898 . 988 . 885 .9%6 894
¥, -Direction
Base Shear inj{20.73¢ 870 888 860 896 . 866
X,-Direction
Torsiocnal 0.314 995 965 961 887 983
Moment
Bending
Mom. of Col.1}151.902 898 989 885 996 . 893
in x;-Direc.
Bending
Mom. of Cel.2§52.077 870 988 860 S96 . 866
in xp;-Direc
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}
A MULTISTORY TORSIONAL BUILDING WITH ECCENTRIC
MASS AND STIFEFNESS CENTERS



164

= T

ok . T
AP —

15

a, 15 SECOND TIME HISTORY

b, 30 SECOND TIME HISTORY

Figure 2.2: INTENSITY ENVELOPE FUNCTION FOR 15 AND 30
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Appendix A
TIME HISTORY ANALYSIS OF NONCLASSICALLY DAMPED
SYSTEMS

To cfoss check the formulation developed 1in section
2.7, here an alternative formulation is developed. Using
the particular solution obtained by Eq. 2.73, the complete
solution of Zj, can then be written as:
2. = ¢ epjt + ? F th X, (1) epj(t—T) dr- (A.1)

3 3 p=1 M) T® .

where t is again measured from ti' For ig(r) varying linear-
ly between any two consecutive time Stepé, the above eqgua-
tion also canlbe written as:

p.t
Z.=c¢c. e +

=MW

t pj(t-t)
:1 ngjfo (ae + bzt) e dr (A.2)

For a linear behaving structure, response quantity S(t),
which is linearly related to the displacement vector {u} can

be written as:

S(t)

1l
1
o]
N

(A.3)

in which gj the jth modal response is defined by Eg. 2.33.

Cembining complex and conjugate pairs of the above equation:

S(t) = (9, 25 + g; z;) (A.4)

p
j=1

177
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N N
S(f) =1 2 Re(gy Zy) =1 S,(t) (A.5)
=1 j

1

where

pjt 3 t pj(t-T)
S,(t)=2 Relg c, e +3 J[ 9;F,4 (3,7bt)e dr]
(A.6)
Substituting for g.c. = r. + is., . = -8 .. + iw.. and
9 953 j it Py 3] dj

Foo= . = a_. t+ 1 b, .. The real part of Egq. A.6 become:
93%03 T Y 23 23 P d

Sj(t)

It
ko
o
—
s
r
;
o
13}
€
o3
.
t
i
w
w
62}
H.
jo]
€
o,
(R
(+
o

t -ﬁjwj(t—t)
1Jf (ag + bQI) e

Cos wdj(t—t) - b Sin wdj(t-t)] dt

2]

(A.7)
Te obtain unknown real and imaginary parts, rj and sjj of
the constant of integration, the initial condition on the
response will be used. To apply the initial conditions we
alsc need the dérivative of Sj(t).

-BLw.t

éj(t) =2e 47 -Bju Iz, Coslug ) - 5 Sin(ugt)]
- wdj[rj Sin(wdjt) + sj Cos(wdjt)]}
3 t —ijj(t—r)
+ Ezl { Zalj(ag+b2t) + ZJ[O (a2+bit) e

0] Sin wdj(t-x)]

g'~5juj[alj Cos wdj(tux) -b
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-wdj[aﬁj Sin wdj(t—t) + sz Cos wdj(tvt)] jdt )

(A.B)

Applying the initial conditions, Sj(t:O) and Sj(t=O), on
Egs. A.7 and A.8 and proceeding similarly as explained in

Chapter 2, the unkown wvalue of rj and sj can be written as:

- L -
r, = Sj(t—O)

3 (R.9)
1 . 3 -
. o= = -B.w, S.(t=0)-S.(t=0) +2% X (t=0
55 Zugs [ ﬁjwj j( ) J( ) - 25 o ¢ )]
(A.10)

where Sj(t:O) and éj(t:O) are the same as Sj and éj at
the time step ti' Substituting rj and sj in Egs. A.7 and
A.8, the solution at t=h, that is at time step ti+1 can be
obtained as:

-f.w.h

Sj(ti+1) =e JJ {Sj(ti) Cos(wdjh)

e [mBesSL ()-8 ()

I 2 Xg(ti)]Sin(wdjh)}

o
3 .

+ % 2 (a . P . -Db . P ) (A.11)
£

and
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. *ijjh '
Sj(ti+l) = e {—ijj [Sj(ti) Cos(wdjh)

1 .
___—{—ij. Sj(ti)‘s-(t-)

wdj j i
3 aw
+§:1 Zagj Xﬁ(ti)} Sln(wdjh)]
- wdj Sj(ti) Sln(wdjh)
. ; -3 .
-] - —- {
[ ijj Sj(ti) Sj(ti) +2§:1 agsz\ti)]Cos(wdjh) }
3
+ I [ 2 a,. (a, + b, t)
p=1 23 £ 2
TByuslags Paoy 7 Pgy Passg) T9ai(Bey Fagg Py Fegy) |
(A.12)
Where P . and P, _. are defined as:
RCT L5
h "ijj(h—T)
Pch :J[o (a2+b21)‘e' Cos wdj(h—r) dr (A.13)
h —ijj(h—'f)
stj :fo (a2+b21) e Sin wdj(h—t) dr (A.14)

The clecosed form sclution of the above integrals can be writf

ten ac:
Pl . —ij]h PZ 2
Pocy = (1/hl~‘j) [ X, (t;) [e (hPr;;;z) - (1-2Bj)]
. —ijjh 2 2
* X (t ) le (Pz/wj) + (Bj“j h + (1-25j))] }

(A.15)
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"‘B-U.h Pq

2 2
- ¥ 33 - -
PESj —(l/hwj){ X (ty) fe (hP, ;;}) + ZBj(l Bj)]
. ~ijjh Py V[“‘“E‘
X (t ) (e (*;;11 + ﬁj(l -2 (1-Bj))} }
(A.16)
in which P,, P,, Py and P, defined as:
P, = —ijj Cos(wdjh) + wdj Sin(wdjh) (A.17a)
2 2 :
P, = w j(ZBj-l) Cos(mdjh) - zﬁjijdj Sln(wdjh) (A.17k)
Py = _wdj Cos(wdjh) - ijj Sin(wdjh) . : (A.17¢)
2 2 _
P, = Zsj“jwdj Cos(wdjh) + wj(Zﬁjul) Sln(wdjh) (A.174)
Thus, using Egs. A.11 and A.12, Sj(ti¥1) and Sj(ti+1)

at the end of each time step can be obtained by knowing the
initial wvalue at that time step, Sj(ti) and éj(ti). A
conplete solution of these equations at all discrete time
boints can be obtained for a digitized acceleration time
history if the initial wvalues of Sj ans éj in the first
step are known. By the same procedure, explained in section
2.7, the initial wvalues of Sj and éj af t=0 can be ob-
tained as:

2N

Sj (t=0) = §:1 gj Zj(t=0) | | (A.18)
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. N
S. (t=0) =
3 (2=0) .,

ot b

9 éj(t=0) (A.19)

in which Zj(t=O) is defined by Eg. Z2.90 and Zj(tZO), simi-

lar to Zj(t=0), can be written as:

2,(£=0) = {6,111yl g / Ay (A.20)

Therefcre, if the system starting acceleration ({ﬁ}), veloc-
ity ({u}) and displacement ({u}) is known. The 1nitial
value of Zj and Zj at t=0 will be known, sc as Sj and Sj
at t=0.
Now Substituting for P, . and P, . from Egs. A.13 and
- gc) 25]
A.14 in Egs. A.11 and A.12 . These two simultaneous egua-

tions can be written in the feollowing matrix form:

S. A A S.
j 11 12 i
5.5 tiy  |Bes Boz| |5t
(%) (2} (.. )
By Biz X ()
3
+
g=1
(2) (%) -
| Baa Bz2 2 (ti+1)J (A.21)

where the elements of the two matrices are defined as fol-

lows:



AIZ

AZI

()

Bll

Il
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“b.u.h
By%s -

e Ewdj Cos(wdjh) + ijj Sin(wdjh)] /wdj

-B_w.h

33

e Sin(wdjh) / wdj

-B.w.h w.?
-e 7 sin(ug h)

wdj

-8 .w.h

33

e lug; Cos(ugsh) = B.os Sin(uyh)] /wdj

1
s {e 07 agj(Pl‘g;fﬁ P2}
J

a

- 2 R 5 R
b, (Fs EG;?I‘) } =5 o Sin(ugh)

dj

2
- 2 -
o {agjw (1 ZBj) + 2sz ij.w |

3 a3

(A.22)

(A.23)

(B.24)

(B.25)

(A.26)

(A.27)
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(9) 2 -f.u.h 1
Bar = w.2 ¢ [-t(a Qjﬁjwj szwdj)(Plaﬁafzpa)
i j
(b B‘w - a,.w..) (Py - 1 Py)
05739 7 fagtag) e T RTE
an.
- .__-J_ 2 - :
“dj W {wdj Cos(wdjh) ijj51n(wdjh)} ]
1
+ hwjz [(a QJBJwJ + 23 dg)“’ (1- 25 )
T2 (Bgy Byuy -3y wgy) Byegugyl
(2) -B.w.h
2 1
B22 :F{ -e 3 hw_z [( QJBJwJ + bﬂjwdj) P2
]
2
(byyByus = agyugy) Pal * agy uy
. 1 2
- (agyByey ¥ Bpgugy) [Byey 5 (172850

2
dej - W-h ijdj]

23°5%5 7 2e3 Yay’ j

}

(A.28)

(A.29)
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Appendix B

CORRELATION TERMS IN EQUATiON 4.3

Ir this Appendix, various auto- and cross- correlation

terms required in Eq. 4.3 are obtzined

Term: {Kj}T EX{{E'(t1)}0k(ta)]

This term can be written as:

T1=(0,37 Ex[(E'(£:) 1V, (ta) 1= 4 17, ER({E" (£:) 17, ()]
(B.1)
Substituting for V, (t;), as solution of Egq. 2.2 as:
T (*2
Vk(tz) = - {Xk} {O {E'(I)}hk(tz—T) dr {B.2)

we obtain:

t
Tl::i_{gj}T‘[ 2Ex[{E'(t1)}{xk§T fE' (1)) h

- T2 :
= 9 {XJ}TA[ EX[{E'(tl)}{E'(T)}T] {Kk} hk(ta—r) dr

(B.3)

Substituting for Ex{?E'(tl)}{E‘(I)}T] from Eg. 3.23, and
considering the stationary response at t,+=, the above egqua-

tion can be written as:
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1,17 ExLIE' (£2) 1V, (£2)]
A T, . T T
e [ epiea® et e iy
w? T T T
el TR RN CNICE RN C LW
238 CgTien” a7 160 ()
- 151716207 g, 11a, 1T 16:) 133 ) ]
¥ iw(tl—tz) . '
@R(w) Hk(w) e do } | (B.4)
Since the products term like {Kj§T [Gl]T {dgl are scalars,
T

they can also be written as i{d [G,y ] {Xj§ in Eg. B.4.

¢}
Also carrying out differentiation with respect to t,; and
substituting for the wvector and matrix products as in Egs.

3.30, the above eguation reduces to:

1117 ExUE' (£0) 1V, (2)) =
NE T -+ ot , " iW(tl“tg)
521 CH RSP [m w8 (u) H (u) e du
"‘—_“ * iw(tl'tZ)
1T, f 1w® 8 (0) B (0) e dw
| te * lw(ty-tz)
+ (T4, f w2 3 (u) Ho(u) e dw 14,

(B.5)



187

Similarly, the ctationary values of other related cross-cor-

relation terms are obtained as:

{17 Ex[{E' (£1) 1V, (t2) ] =
NE . foo . fw(ty-ta)
2
2:1 R, f_.,, w2 3, (0) H (o) e du
+oo % iw(t1—t2)
+ ”;ij]f 0t 8, (0) B (u) e duw
Fo % iw(t,-t;)
+ ”31}«:][ (-16%), (0) H_(0) e  awlfq,]
(B.6)
(1,17 Ex[(E'(t,) ]V, (t;)]) =
k 2 ] 1
NE - o iw(t-ts)
_ 521 ERENTEA. fw iu ¢, (0) Hi(u) e duw
oo iw(ty-ty)
+ (rzjk]f 1w B, (u) Hi(w) e du
+oo lw(t;-tz)
+ [r3jk]f w? &) (o) Hi(u) e dwl{d,}
(B.7)
T . y _
(9,37 Ex[{E'(tz)}V_ (t,)] =
NE T + oo iw(t,-ty)
5:1 fa, 17 [Ty ] L w? &, (w) Ho(v) e du
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oo iw(ty-ty)
+ [Ty J’_w Wt 8, (0) H(u) e duw
= fu(t;-ts)
£ Ty L (-iu®) 8, () B (o) e dwl{d,}
(B.8)
B.2
Term: Ex[Vj(tl) Vk(ta)]
Substituting for Vj(tl) and Vk(tz), we obtain:
ty rte
J j (7171 BB (4 1B (t2)) ")
C 0
hj(t1‘T1) hk(tz'Tz) dTlde]{Zk} (B.9)

Substituting for the correlation matrix of the ground accel-
eration terms from Eg. 3.23, and letting t;»~ and tp»=, we

get

EX[Vj(tl) Vk(tz)] =

NE - +eo . i6(ty—-ts)
. ) . )
5:1 fd, ) [{rljk}‘Lw’éﬁ<w, H()H, (u) e du
pd * iw(tl"ta)
T, f_.., B, (0) WH (w)H (0) e dw
oo * iW(ti_tz)
+ ”33'1(1[_ By (w) (-iw)H, (@)H () e dul fd,}

(B.10)
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Using Eg. B.10, other related autocorrelation functions in-
volving the derivities of Vj and Vk can be obtained as fol-
lows:
an+m
n m
{at;) (3tz)

Ex[V,(t1) Vy(tz)] =

a 3™
V.(t;) ———V,(tz)] n and m=1,2

Ex]|
(at, )" (3ty)

(B.11)

NE Foo 5 lw(t;-tz)
T[[lek].lw wn+m§2(w)Hj(w)Hk(w)e do  +

oo iw(ti-t,)
2 *
[rzjk]_ﬂw ST () E (0B, (0) e du  +

feo iu(ty-ts)

[rsjk]f_°° (-ig? Ly 8, (v) H w)H;(w) e dy] {d

(B.12)

Thus Ex[Vj(t1) Vk(tz)] can be obtained from Eg. B.12 in

which n=1 and m=2. And
Ex[V (1) Vi(t2)] = = Exl V (%)) V(t2)] (B.13)

Also Ex[Vj(t}) Vk(tz)] can be obtained from Eg. B.12 in

which n=m=1.
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Appendix C

COEFFICIENTS OF PARTIAL FRACTIONS

c.1 CLASSICAL DAMPED SYSTEMS

c.1.1 .Al’ AZ’ AB AND AQ

Partial fraction coefficients A;, A,, Az and A, used in

Egs. 2.19, 3.31 and 4.6 are obtained from solution of the

following simultaneous eguations:

[QIT{A} = {W} (C.1)
where
o 1 o 1] (2, ) w, )
1 u 1 s A, Wo
tQ 1= {Al= {Wi=
u v 3] t As W
v 0O t 0] |24 ) Wa | (C.2)
in which
2 2 _ 4
u = —2wk (1 - ZBk) Vo= gy
2 2 4 (C 3)
= ~Zw. (1 - 28, t = w. .
= vy 85) ‘3
2 2
W, = O. W, = 1. W, = wj Wy,

(C.4)
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Coefficients of partial fractions B;, B,, Ba and B,,
used in Egqs. 3.31 and 4.6, are obtained from solution of the

following set of simultaneocus equations:
[Q1{B} = {wW'} (C.5)

in which [Q] remains the same, and

B ( 1 1
z2 2z
B, wj Wy
{Bl= _ > w'i= < 2
"Ba ~(w.+wk-46jﬁkijk)
B, ) L 0. J (C.8)

c.1.3 Cl’ C2, C:3 AND C4 1

Coefficients of partial fractions C,, C,, C; and C,,

used in E@s. 3.31 and 4.6, are obtained from the solution of

the following set of simultaneous eguations:
[glicy = {w"i (C.7)

in which [Q] remains the same, and

Cy ) 0. h
C?, (ij]"Bkwk)
o (7Y e |
Ca (Bkwj—ﬁjwk)ijk
C4) 0. p (C.8B)
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1 ' "

¥
c.l1.4 El,.. ¥ F.,.. F F AND F

1

57 "1 5 71 - 5
The partial fraction cecefficients Fl’ FZ’ F3,
1 1 L] t 1 " \i " "
Fl’ FZ’ F3, FQ, FS; and Fl’ Fz, F3, F4 and
"

ES’ used in Eg. 4.11, are defined as follows:

4
F1 = 4Bjﬁkijk Ay - wj A, + Q(ijj-ﬁkwk)

2 2
F, = A, + 2[2Bj8kijk + wj(1~2§j)]A2 + 4(ijj~ﬁkwk)cg

Fgr Fgi

2 - 2
Cy + . - ]
1t oug(1-48)

(C.9a)

-1.

(C.9b)

4 2 2
FS = QBjBkijk Ay ~ Wy A, + 4(ijj-ﬁkwk) Cy + wk(l-éﬁk)

2

2
+ wk(l—zsk)]A4 + 4(ijj—ﬁkwk)04

F, = Az + 2[28j6kijk

F:A2+A4

1 4

F = QBjBkijk Bl - wj [Bz + 4(ijj -Bkmk)ca - 1]

2 2
Fo, = By + Zlgﬁjﬁ + wj(1~2ﬁj)]B2

KY3%k

2 2 2
+ 4(ijj—6jwk)[C1 + wj(l—Zﬁj)Ca] - wj

1 4

F - Qﬁjskijk B3 - wk !_Bq + 4(ﬁjwj —Bkwk)cq - 1]

W

(C.9¢c)

~1.

(C.9d)

(C.S8e)

(C.10a)

(C.10b)

(C.10c)
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2 2
F, = By + Z[ZBjBkijk * oy (1-28, ) 1By

4
2 2 2
+ 4(ijj—ﬁjwk)fc3 + wj(l—ZBj)Cq],— Wy
(C.104)
] .
FS = BZ + B4 + 4BJBkawk (c2+cq) - 2 (C}.OE)
" 4 4 2
Fl = wj(ﬁjwj - 6kwk)A2 + QBjBkijk c, - wj C, - ijj
{(C.11la)
" 2 2
F2 = - (Sjwj—ﬁkwk) A, - 2 wj(l—ZBj)(ijj-Bkwk) AZ‘
2 2
C, + 2[25j8kijk + wj(l-ZBj)]CZ
(C.11b)
" 4 4 3
F3 = wk(ﬁjwj - Bkwk)A4 + 4Bjﬁkijk Cy -~ Wy Cs - Bkwk
(C.1lc)
" 2 2
F4 = - (ijj—ﬁkwk) Ay - 2 wk(l—ZBk)(ijj-Bkwk) B,
' 2 2
Cq + ZIZSjBkijk + wk(l-ZBk)]C4
(C.11d)
L5}
Fg = -(Bju =Bpu,) Az + Ag + Cp + Cy (C.1l1le)

where A.,,.. A;; B,,.. By; and Cy,.. and C4; are defined by

Egs. C.1, C.5 and C.7.
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c.2 NONCLASSICAL DAMPING SYSTEM

L ' ' 9

Bigr Boyr By AND Ay,

c.2.1

1 ¥ 1 4
100 Boge By

and A4g' used invK. 2.48, are obtained from solution of

The partial fraction coefficients A

the following simultaneocus eguations:

[R1i{a, 1 = (W1 (C.12)
where [Q] remains the same; and elements of {WE} ére defined
1] 1 ¥ 1 ¥
by Eg. 2.46 and {AQ§ = {Ali A22 A32 AQE}
! 1 1] 1
C.2.2 A , A , A AND A
lpg’ "Zpg 3pg 4pg , ,
The partial fraction coefficients Al , A ;
' , prg 2rgq
Iy and A , used in Eq. 3.44, are obtained from the
3pg 4pg
solution of fclliowing simultaneous eguations:
1
p2 = W c.13
(ol pq} { pq} ( )
1
where [(Q] remains the same and {qu} and {qu} are defined

as:
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| ( N\
Alpq CO
1
A2pq cl
t .
fa = ! > {W__ 1= > _ (C.14)
pg A3pg pa C,
]
c
\, 4pq/ \_ 3J
in which
C. = a_. C.l5a
0 pj gk ( )
Z
Cl Aijqk apjaqk (wj +wk -QBjBkijk)
- 2 T 5 a _A a A . C.15b
(Bywy B ) (BpyBan ~ Bgqifpy) ¢ )
2
C2 apjaqk'wj Wy Aijqk(w Wy —gﬁjskijk)
ijwk (ijj Bkwk)(aijqk aqkApj) (C.15c)
. 2 2
C3 = Apj Aqk wj@k (C.15d)
L) 1 ] ] ]
c.2.3 , B , B , B AND B
lpg’” “Zpg 3pg 4pg 5pq ' ‘
The artial fraction coefficients B ; B .
' ' P ' 1pg 2pg
B , B and B , used in Eg. 3.44, are obtained as
3pg” T4pg Spq
follows:
1 4 [
B: = -y, A.
Ipg Y “zpq
1 i 2 2 '
B = A + Zw., 1-28.) A
2pg 1pg wy (17284) Bopg
1 4 '
B

3pg
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4pg 3pq 4pg
' 1 '
"spa T Papg T Papg (C.16)
1 1 1
c.2.4 Clpq’ Czpq’ Capq'AND C4pq
1 L T

The coefficients of partial fractions C , C , C

' lpg’ “2pg’ “3pg
and C4pq’ used in Eg. 2.44, are obtained from the solution

of the following simultaneous eguations:

C = W c.17
(@)1 pq} { pq} ( )
where
r 4 \ H\
Clpq cO
L] "
C2pq c1
L]
{ }: L] > . {W" }: 1] >
pg C3pg : rg c,
!
gpéqu O.J (C.18)
in which
L
CO = (aijqk - pjaqk) + Z(ijj-ﬁkwk)apjaqk (C.19a)

c, = - (

a LA
pj gk

2 2
- Apjaqk)(wj,+wk —4Bjﬁkmjwk)

+ 2(ﬁjwj B )A LA + 2ijk(6kwj —ijk)apjaqk

C., = (

a .A - A .a
pj ak ri g

piTak
(C.19b)

2 2
k)ujwk + ijwk(ﬁkwj—ﬁjwk)Aijqk

(C.19¢)
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Appendix D

RESPONSE COMBINATIONS

The eighteen possible response combinations expressed

by Eg. 3.60 and 3.61 are enumerated here.

D.1 EXCITATION-1

(1) T (1) {1 T (1
Sip = s ¢ dd 1TIRe A )+ fd T JTIR: A ]
(D.1)
1 (1) {1 (1 { }
S =13, + {d O TIRs1id 1+ 1d 3 TIRp1Md )
11 2 2 3 3
(D.2)
{1) {1) (1) (1)
Si: = hie o+ id }T[Ra]gdl IS iTIRa1fa
(D.3)
t (1 (17 (1 { )
S = ye t fd  3TIRsI{A )+ ta 4 TiRaVid ]
12 1 1 3 3
(D.4)
{1) {1) (1) (1))
S1a = s * ld }T[Rz]{dl b+ ofa 1 TIRy1fd 3
(D.5)
' (1) {1 13 {13
S =ys + {d  3TIRs1fd } + {d  1TIRs1id ]
13 1 1 2
(D.5)
D.2 EXCITATICON-2
- {2) T (2 (2) T {2
Sz1 = 2z; t+ {d }TIRy ] {d i+ {d 17 IRs){d §
2 2 3 3

(D.7)
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SZZ

SBS

Aoz

EXCITATION-3

Agy *

CRSNEIENIE
@ TR Tia
fa 1 TIRs (A

:2)}T[R1]{d
ERRNEIEWIT:
{d;:“ 1TIR, 11d
ta " TIR. 11a
CIERERIT
{d:“ TR, 114
i@ " 1TiR, 1 g

(3>
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+

{d
3

{a

(37 T
]

t3) o
}

'{3)T

fa

J

(a) 7
}

(3)

[Ry]{d
3

(3)

[Rp}{d
3

(3)

[Ry]){d
2

{3

(R, 1{d
2

(D.

(D.

{D.

(D.

(D.

(D.

(D.

(D.

(D.

8)

9)

10)

11)

-12)

13)

14)

15)

16)

17)
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(2)
T
= dgaz *+ {dx }

(3)

[Rz]{d
1

199

(D.18)






