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A New Floor Response Spectrum Method
for Seismic Analysis of
Multiply Supported Secondary Systems

Abstract

The objective of this study is to present an improved floor-spectrum
method for seismic analysis of linear, multi-degree-of-freedom secondary sys-
tems multiply supported on linear, multi-degree-of-freedom primary systems.
The method defines and utilizes an extension of the conventional ficor response
spectrum denoted cross-oscillator, cross-floor response spectrum or, in short,
cross-cross floor spectrum (CCFS). The CCFS‘ is defined to be proportional to
the covariance of the responses of two fictitious oscillators subjected to the
motions of the primary system at two support points. Through this extended
concept, important effects, wﬁich are not accounted for in tﬁe curfent floor-
sp¢ctrum methods, are correctly included in the analysis. These effects include:
cross-correlations between motions of the support points, cross-correlations
between modal responses of ‘the secondary system, interaction between primary
and secondary systems, resonance or tuning between the frequencies of the
two subsystems and the non-classical damping effect df the combined primary-

secondary system.

The proposed method consists of two basic steps:‘(l) Generation of CCFS in
terms of the ground response spectrum and the modal properties of the pri-
mary system; and (2) determination of the mean peak response of the secon-
dary system by modal combination in terms of the CCFS, the modal properties
of the fixed-base secondary system, and the stiffinesses of the elements con-
necting the secondary to the primary system. The generation of the CCFS
requires repeated evaluations of the modal properties of combined oscillator-

primary systems. Recent results employing perturbation theory are used to
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make this evaluation efficient. The effects of interaction and non-classical
damping are implicitly included in the derived CCFS in approximate manners.
The eflects of cross-correlation between the support motions and cross-
correlation between the modal responses of the secondary system are included
in the derived CCFé and in the modal combination rule for the response of the

secondary system.

Several representative primary-secondary systems are numerically
analyzed. Results obtained using the proposed method are compared with
results obtained by considering the primary-secondary system as a single

structure. Close agreement is found between the two results for all cases.
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CHAPTER 1

Introduction

1.1 General Remarks

During the last three decades, a Ia;'ge amount of effort has been devoted to
the development of methods for seismic analysis of light, multiply supported
secondary systems which are attached to heavier primary systems. These
eflorts have been motivated mainly by the use of critically important secondary
systems, such as piping networks in nuclear power plants or refining facilities.
Although important contributions have been made and a lot-has been learned in
this period of time, most methods. currently used in practice are still heuristic
in nature and bave important shortcomings. Thus, it is worthwhile to study this
problem, once again. with the objective of developing a practical and accurate

method.

For the purpose of this study, a secondary system is defined as a linear-
elastic, viscously and classically damped system, whose masses and stiflnesses
are considerably smaller than the masses and stiflnesses of the system to which
it is attached. The system to which the secondary system is attached is'defined
as the primary system, and it is also assumed to be linear-elastic, viscously and
classically damped. The seismic excitation is applied to the primary system as a
rigid base excitation. The secondar}" system is assumed to be attached to the
primary system in any arbitrary manner.

Two approaches have been used by researchers to study the seismic
response of secondary systems: time history analysis and floor response spec-
trum analysis. In the former approach, the time histories of motions at the sup-

port points of the secondary system are obtained from a separate a‘nalysi‘s- of
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the primary system, which might include a crude model of the secondary sys-
tem to account for the effect of interaction between the two systems. Using
these motions as input into the secondary system, a separate analysis of the
secondary system is carried out {Kassawara and Peck [1973]). This approach
has two important deficiencies; it is very expensive and it is impossit“)'le to define
the proper input ground motion history -which characterizes potential future
earthquakes at the site. The floor response spectrum approach involves
specification of the motions 'at the support points of the secondary system in
terms of floor response spectra, and modal dynamic analysis of the secondary
system in terms of the floor spectra. This approach is more econormical than
the time history approach and can be based on a response spectrum descrip-
tion of the ground motion. However,.as currently applied to multiply supported
secondary systems, it does not properly account for important eflects such as
the cross-correlation between support excitations, ‘the cross-correlation
between modal responses, interaction between primary and secondary systems
and the effect of non-classical damping in the composite primary-secondary

system.

1.2 Current Approaches for Multiple Support Excitations

Amin, Hall, Newmark and Kassawara [1971], Shaw [1975], Vashi [1975] and
Thailer [1976], among others, have developed methods based on the floor
response spectrum approach to analyze multiply supported secondary systems.
All of these studies, however, have used heuristic techniques for combining the-
responses due to individual support excitations and/or the modal responses of
the secondary system. Thus, due to the subjective nature of the combination
techniques employed, important eflects such as the cross-correlalion between

modal responses or the cross-correlation between support excitations are not



properly accounted for. This leads to large errors in the estimation of the
response, as many numerical studies have demonstrated {see, for example,
Wang, Subudhi and Bezler [1983)).

Recently, Lee and Penzien [1980] developed a stochastic method to analyze
rhhlt.iply supportea secondary systerﬁs. This meﬁhod 'includ‘es the cross-
correlation between support excitations and the cross-correlation between
modal resp‘t.)nses. Using stationary random vibrations téchniques. they proceed
in twé baSié steps: First they determine the cross-power spectral density matrix
for the motions at the support 'poirits on the primary system. Then, using this
matﬁx as the ihput for the seconddry system. the mean of the extreme value of
any response of the secondary system is evaluated. This approach may be very
expensive and may not be attractive from practical standpoint, since the design
earthquake motion is most conveniently_: speciﬁed in terms of a response spec-.

trum rather than a power spectral density function.

In most of the above mentioned studies the effect of interaction betwe.en
the primary and secondary systems has not been included. However, Crandall
and Mark [1963], Amin, Hall, Newmark and Kassawara [1971], Pickel [1972],
Hadjidn [1978], Der Kiureghian, Sackman and Nour-Omid [1981], Igusa and Der
Kiureghian [1983] have shown that, depending on mass and frequency ratios,
there are many practical situations where this effect can be highly significant

and must be included in the analysis.

More receritly:. Igusa and Der Kiureghian [1983], using random vibration
techniques, developed an alternative method for the dynarnié analysis of multi-
ply supported . secondary  systems. This method accounts for interaction
between primary and secondary systems.‘ cross-correlation between Support
excitations, cross-correlation between modal responses for st.ochastic input,

resonance or tuning between frequencies of the two systems and non-classical



damping effects. In their method, the combined p;imar)'-secondar)' system is
considered as a single dynamic assemblage and the ground excitation is utiliied‘
as input. The modal characteristics of the gombined system are dgrived. using
perturbations methods, from the individual modal characteristics of th‘e fixed
base primary and the fixed base secondary systems. They also develﬁped a gen-j
eral modal combination rule for systems witb non-classical damping and closely
spaced frequencies for stationary inputs or inputé specified in terms of the
ground response spectrum. Using this method, they give the response of the
secondary system in terms of the derived prqperties of the combined system

and the ground response spectrum.

1.3 The Conventional Floor Spectrum Methods

The current methods used in practice for seismic analysis of multiply sup-
ported secondary systems, as described in Appendix N of the ASME Boiler and
Pressure Vessel Code [1980), are based on the concept of floor spectrum. This.

approach has the following important practical advantages:

(a) The approach avoids the dynamic modeling and analysis of the combined
primary-secondary system; which can be prohibitively costly if carrie;d out
directly.

(b) It avoids numerical difficulties that could arise in the analysis of the com-
bined system due to large differences between the properties of the two

!

systems.
(c) Once the floor response spectra are specified, the method then allows the
analyst to work on the secondary system independently of the primary sys-

tem characteristics.



(d)

The floor response spectrum method is inexpensive relative to time-history

integration methods.

However, as currently applied, the floor response spectrum approach has

several important shortcomings. These include:

(2)

(b)

(c)

(d)

(e)

The cross-correlation between the excitations at the suppoft points of the
secondary system are neglected or improperly considered.

The response is artificially separated into "pse‘u‘do-static" and "dyﬁamic"
parts, which has the consequence that a proper modal combination rule
cannot be developed. | |

The cross-correlation between responses of closely spaced modes in the
pri_rnarry and secondary systems is often neglected or improperly con-
sidered.

The interaction between the primary and secondary systems is neglected.
This interaction can be significant when the mass of the secondary system
is not negligible in comparison with the mass of the primary system .or
when the two systems have tuned or nearly tuned natural frequencies.
Finally, the eflect of non-classiéal damping of the combi.ned system, which
can be significant even when the two systems are individually modally
damped (Warburton and Soni [1977], Singh [1980], Ilgusa and Der

Kiureghian [1983]), is often not considered.

Furthermore, although efficient methods for generating floor response

spectra directly in terms of the ground‘response spectrufn have recently

become available (Singh [1975), Der Xiureghian, Sackman and Nour-Omid

[1981], lgusa and Der Kiureghian [1983]), in most applications the floor

response spectra are generated using "spectrum-compatible” ground time his-

tories in conjunction with time-history analysis of the primary system. This



approach, besides being expensive, is inappropriate since different time his-
tories compatible with the same ground response spectrum may lead to very

different estimates of the peak response (Singh, Singh and Chu [1973]).

1.4 Objectives of Study

The investigation presented herein endeavors to develop a theoretically
sound method for modal seismic analysis of linear multi-degree-of-freedom
secondary systems with multiple attachment points. The method is developéd
using elementary concepts from stationary random vibrations. It is based on
an extension of the conventional floor response spectrum concept, defined
through a cross-oscillator cross-floor response spectrum (CCFS). Thus, the
met.hqd allows analysis of the secondary system which is separate from the
analysis of the primary system. The CCFS include the eflects of cross-
correlation between modal responses of the secondary system and the cross-
correlation between the support excitations. Alsb. the eflects of interaction
and non-classical damping are included in these spectra by means of approxi-
mate methods. The interaction effect is accounted for, with sufficient accuracy,
by defining equivalent modal masses for multiply supported systems. These
masses represent the effect of each mode of the secondary system in perturb-
ing the dynamic properties of the primary system. ‘The‘non-classical damping
eflect, which is important only in the vicinity of tuning (resonance), is resolved
by using matching techniques in conjunction with known solutions for extreme

cases of perfect tuning and complete detuning.

The cross-oscillator cross-floor response spectra are evaluated directly in
terms of the input ground response spectrum and the modal properties of the
primary system. Once the CCFS and the fixed-base moda! properties of the

secondary system are obtained, the method allows one to carry out a modal



analysis of the secondary system independently of the primary system. To
combine the modal responses; a combination rule is derived in terms of the
modal properties of the secondary system and ordinates of the CCFS. The pro-
posed method accounts for all the impor;ta»nt eflects mentioned above and,

‘hence, resolves the shortcomings inherent in the conventional floor spectrum

methods.

1.5 An Overview
This study is divided in four well defined parts, each constituting a chapter.

A brief outline of each chapter follows:

In Chapter 2, an extension of the conventional floor response spectrum is
introduced and defined as a cross-oscillator cross-floor response spectrum.
Then, a modal combination rule, that accounts for cross-correlations between
modal responses and ‘cross-correlations between support excitations, is
developed. The formulation of the CCFS and the development of the modal
combination rule for multiply supported systems are based on fundamental
concepts from stationary random vibration theory. The CCFS are deﬁned to be
proportional to the covariance of the response of two flctitious oscillators sub-
jected to base excitations equal to the motions of the support points on the pri-
mary system. The dynamic propertles of these oscillators correspond to the
dynamic properties of the modes of the fixed-base secondary system.

In Chapter 3, equivalent masses .are deﬁned‘for the aforemeﬁtioned oscilla-
tors. These masses represent, in an approximaté manner, the effects of the

modes of the secondary system in perturbing the dynamic properties of the pri-

mary system and they are introduced to account for the eflect of interaction

between primary and secondary systems.



In Chapter 4, it is shown that the CCFS can be efficiently evaluated by using
systems compc;éed of the primary system and attached oscillators. Closed form
expressions for the modall characteristics of the combined oscillator-structure'
systems are preseﬁted. These closed form‘ expressions were derived'preﬁoﬁsly
by Der Kiureghian, Sackman and Nour-Omid [1981] using perturbations
methods and assuming classical darriping. These expressions are improved here
to approximately account for the effect of non-classical damping, which arises

when the primary and secondary systems have unequal modal damping.

In Chapter 5, simple numerical examples having basic features of most
important cases encountered in practice are presented. These examples illus-
“trate the application of the method and demonstrate, in each case, close agree-
ment between results obtained using this method and "exact"” results obtained

by considering the primary-secondary system as a single system.



CHAPTER 2

Modal Combination Rule for Secondary Systems
in Terms of Cross-Cross Floor Spectra

2.1 Introduction .

The main objective of this lchapter is to‘ develop‘ a modal combinatlion rule
that accoun‘t>s> for cross-correlations between rhodél responses and cross-
‘c:orrelations between support rno‘t:ions of. a multiply supported Asecondary‘ sys-
tem. This is ‘accomplished through the introduction of an extension of the’ con-
ventional floor spectrum defined as a cross‘-'oscitllator. cross‘-ﬂoor response

spectrum, or in short, cross-cross floor spectrum.

The analysis in this chaptér is based on the assufnption of stationary
response to stationary input. However, the final results for the se‘condary éys-
ten; fésponse are g"n)en in terms of cross-cfoss floor spectra. These a.fe in turn
derived 1n téfms of the ground‘.response spec‘trum.‘ Both of these spectfa
inherently include the non-stationarity of ‘the earthquake excitation. Thus, the

stationarity assumption used in this chapter is only an interim assumption.'

In the foliow'mg sections. first the équations of‘ motion of the sécondéry
system are formulated. The power spectral density and the mean square of the §
response are then obtained as a function of crdss terms between floor motions.
These cross quantities are closely examined. Their interpretation in terms of
the cross-correlation of responses of two oscillators attached to the primary
structure leads to the formal definition of cross-cross floor spectra. The final
result of this chapter is a modal combination fule fﬁr the ‘mean peak response
of the secondary system in terms of a four-fold summation involving the cross-
Cross t"'loor‘spectra and the modal properties of the fixed base'secondary sys-

tem. Two of these sumimations are over the fixed base modes of the secondary
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system, and the other two are over the support points. Thus, cross-correlation
between modes and between support motions are included in the modal combi-

nation rule.

2.2 Formulation of Equations of Motion

Consider a linear primary system with N degrees of freedom which is sub-
jected to‘base input ug(t). Attached to this system at n, degrees of freedom is
an n, +n degrees of freedom linear secondary system, which may represent an
extended equipmept item or a piping system. The attached degrees of freedom
in the primary and secondary systems are selected to be /=1,..,n, and
1=1,..,n,, respectively, so that the unattached degrees of freedom are
I=n4+1,...N and i=ng,+1,..,n,+n. These definitions are schematically illus-
trated in Fig. 2.1.

‘Let u=[y, U,]T deﬁote the vector oi; total displacements of the primary
system, which has been partitioned into attached (U,) and unattached (Ug)
degrees of freedom. Similarly, let u=[u, u;]7 denote the partitioned vector of
total displacements of the secondary system. The coupled equations of motion

for the primary and secondary systems can be written, respectively, as

" ﬁ, fJa Ug i _ . £l - :

M[Uc] + C[U,} + K[Uc = CRuy + KRy, + 1, (2.1)
and

I

T

I B e B =

In the above, M, C, and K are the conventional mass, damping, and stiffness

m, 07']
0 l!l:l]uE

matrices of the primary system, respectively; R is the influence vector that
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couples the ground motion to the degrees of freedom of the primary system; m.
c, and k are the mass, damping, and stiffness matrices of the fixed base secon-
dary system; ¢, and k. are coupling matrices‘which include the damping.s and
.stiﬂnesses of the elements connecting the primary and secondary systems, and
m,, ¢, and k, a.Lre‘mat‘rices associated with the attachment points of the
secondary system. Note that the full matrices in Eq. (2.2) are the mass, damp-
ing, and stiffness matrices of the secondary system when it is considered as a
free-free system. The n,-vector f repres‘enlts the invteraction forcgs exerted by
the secondary system on th>e i)riméry system. It should be clear that U, = u,
for compatibility.

The complete solution for thé combined system involves a sim‘u‘ltaneous
solution of Egs. (2.1) and (2.2). Forj prgctical reasons mentioned in the previous
chapter, however, a solution of the secondary system which is separate from
the solution of the primary systérn is desired. The coupled equations of motion
for the unattached degrees of ‘frvt:aedom of the secondary system can be written,

using the partitioning in Eq. (2.2) and the identity u, = U,, as
mii; + ciy +ku; = —¢, U, -k, U, ‘ : o (2.3)

Thus, the solution for the secondary system ug is obtained in terms of the
rﬁotions of the primary system at the attachment degrees of freedom, U, . These
moti‘o;'xs are functions of the interaction force f, as shown in Eg. (2.1), and Eq.
(2.3) re1;na'ms coupled. The staﬁdard simplifying approximation in order to
decouple Eq. (2.3) is to neglgct the interaction between primary and secondary
systems (ASME Boiler and Pressure Vessel Code, Appendix N, [1980]). In that
case U, can be obtained from Eq. (2.1) with £=0, and FEq. (2.3) can be solved
directly. It has been shown (Amin, Hall, Newmark and Kassév_vara [1971], Pickel

[1972]. Der Kiureghian, Sackman and Nour-Omid [1981], Igusa and Der
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Kiureghian [1983]), however, that the eflect of interaction is negligible only
when the secondary system is‘suﬂfciently light in comparison to the primary
system and there is no tuhing between the frequencies of the secondary system
and the dominant frequencies of the primary system. In the present work,
interaction will be retained and an approximate methpd to account for this

effect Will be described in the next chapter.

For the sake of simplicity, the damping terms on the righl-hand side of
Egs. (2.1) and (2.3), which are generally small for structural systems, are

neglected. Thus, Eq. (2.3) is rewritten as
mii, + ci, + kuy = ~k. U, , (2.4)

Experience has shown ‘that the above approximation has negligible effect for

. the vast majority of systems encountered in practice.

2.3 Power Spectral Density of Secondary System Response

In order to develop a response spectrum method, it is essential to use a
modal approach. Let &=[& ¢, - éy] and ¢=[g, ¢2 - pn] denote the
modal matrices of the primary system and the fixed base secondary system,
respectively. Also, let Q;,Z; and w;.{; denote the modal frequencies and damp-
ing ratios of modes / and i of the primary and secondary systems, respectively.
Using Eq. (24) and following standard techniques in stationary random vibra-
tions‘ (Clough and Penzien [1975]), the one-sided power spectral density func-
tion of the total displacement u, at degree of freedom r of the secondary sys-
tem is obtained as

Gy (@) = 30 3 9y hil=0)h; () Gayq, (©) (2.5)

i=]1j=1
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in which ¢, is the 7—th element of ¢,, h;(w) = (wf - w?+ 2i¢;0;2) ' is the com-
plex frequency response function associated with mode i of the fixed base

secondary system where i=+v =1, and Gq‘qj(u) is the cross-power spectral den-

sity of the modal loads. These loads are given by

- |
g = -¢1T—n:Uu : (2.sa)

where m; = ¢/my, is the modal mass associated with mode i of the fixed base
secondary system. Writing the matrix multiplication in Eq. (2.6a) in an

expanded form, the modal force is written as

q; = —

?fms

1 |
—17-1:- 1 Z‘Plt cll\’) Uk ('2'6b)

where Uy is-the K—-th element of U, and represents the total displacement of
the K-th attachment point, and kyx is the (I,K) element of the‘coupling‘
stiffness matrix k., which is assoc}\ated v‘vith the attached degree of freedom K
and unatt‘ached degree of freedomi of‘the secondary -sy;étem. The croés-pc;wer

spectral density function Gq‘qj(r.)) is given by the expression

'lm'JK L=1 t=1 1=1

thq,(ﬁ’) - 5t Zu: zlvukczx)(iﬁﬂukch)GVKUL(w) - (2.7)

where GUXUL(D) is the cross-power spectral density of the total displacement

respohses of the primary system at the attachment points K and L . No.te that
the first two sums are over the attachment points, whereas the two sums inside
parenthesis are over the unattached degrees of freedom of the secondary sys-
tem.

Introducing Eq. (2.7) into Eg. (2.5), th;a péwer spectral density function

Gu,u, (@) takes the form
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-n n Ry Ny )
Gu,u,(w) = Z Z aﬁ;arj E E biijL C),?Qj"h.i(—&))hj(:.))GngL(&)) (28)
is1j=1 K=1L=1
in which
¥n L ‘
Qp = and by = ) wukak. (2.9)
el 771-"912 : [El [ ‘

It is noted that a, is a constant which depends on the i—th mode of the fixed
base secondary system, whereas b, is a constant that depends on the i-th
mode shape of the fixed base secondary systerﬁ and the coupling stifIness
matrix k.. The effect of interaction is implicitly included in the cross-power
spectral density function Gy, UL(:.)).

The term ufw,?h‘-(—u)hj(w)G'gKgL(o) in Eq. (2.8) may be interpreted as the
cross-power spectral density of the total displacement responses of two oscilla-
tors having frequencies w; and w; and damping ratios {; and ¢;, which are sub-
jected to base inputs Ug and Ug, respectively.‘ Figure 2.2 illustrates this idea
schematically.‘ This interpretation is central to the subsequent developm‘ent‘ of

the cross-cross floor spectrum method in this study.

Let X% and Xﬁ denote the total displacements of the two fictitious oscilla-

tors described above, and let GX&X,Q (w) denote their cross power spectral den-

sity function
Gx&'{xﬁ (U) = w{"w’?hi(—w)h,- (Q)GUKUL(Q) | (2.10)

Introducing this notation in Eq. (2.8), the power spectral density G, 4 () can be

rewritten as

n

G“rur(w) = i i B Ay KZ:] Lg—ﬂl biijL Gxtjl-rxﬁ (Q) (211)

i=1jy=1
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Gn-(w)

In a similar way, using the identity Gyy(w)=—=——, the power spectral den-
w ‘

sity of the absolute acceleration %, at degree of freedom r of the secondary
system is given by

i i nar,-;Z: f JLGX‘T x], (w) “ 7(2.,12)

lj 1 1L=1

’ 1
where GX&X-TL(Q) is the cross-power spectral density of the total accelerations
J

XX and Xﬁ of the two fictitious oscillators, and is given by
X«XT(“’) = wfwfhi (-w)k; (w)Gu y, (@) - {(R13)

in which GUKUL(Q) is the cross-power spectral density of the total acceleration
responses of the primary system at the attachment points K and L.

It will be shown later in Chapter 4 that the two formulations in Eqs (2.11)
and (2 12) lead to expressxons for the responses of the secondary system given
in terms of the total displacement ground response spectrum and the absolute
acceleration ground response spectrum, respecti.\fely. It is ‘welll known that the
total displacement ground response spectrum is very sensi£ive.to the base-line
correction criterion applied to accelefograms (Trifunac, waadia’ and Brady
[1973]).'and hence it is unreliéble for use in practice. Bécause of this, it is
desirable to ﬁn‘d ';he displacemenf response of the secondary system as a func.-
tion of the relative displacement ground response spectrurﬂ. Towards that end,
it is shown in Appendix A that the power ‘spectral densit;y of t.He relative dis-
placen"xent‘ of the secondary system with respect £o the ground can be>

expressed as

u v, (U) - 21121 aﬂa‘rJ Z 2 bl.KbJL GX&XQ(Q) (2-14')

=1L=1
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where Gu,_u'_(:.)) is the power spectral density of the relative displacement v, at

degree of freedom 7 of the secondary system with respect to the base of the

primary system, and VGI\"&Xﬁ (w) is Lhe cross-power spectral density of the rela-

tive displacements X% = X.Zr'(—ug and X,i = Xﬁ —u, of the two fictitious oscillators
described above. These terms are schematically defined in Figs. 2.3 and 2.4. It
will be shown later in Chapter 4 that Eq. {(2.14) will lead to a formulation in
terms of the relative displacement ground response specyLrum. It must be evi-
dent that for oscillators attached to degrees of freedom perpendicular to the
direction of the input excitation, the corresponding relative displacements are
X = XJ and X§ = X].

Since in practice only relative displacements and absolute accelerations of
the secondary system are of interest, in the following development only Egs.
(2.12) and (2.14) will be considered. It is worthwhile to note in these equations
that due to symmetry, the imaginary parts in the summations on the right-‘hand

sides cancel out so that the left-hand sides are always real-valued..

2.4 Mean Square of the Secondary System Respénse

The respoi’ise quantity of engineering interest is the rﬁean ;)f tﬁe peak
response of the Secondary systerﬁ over the duration of £he seismic excitation.
It is known (Davenport [1964], Vanmarcke [1976], Der Kiureghian [1980]), that
for a stationary process the mean peak response ié related to the root-mean
square value of the response through a peak factor. Hepce. as an intermediate
step. the mean square response of the secondary sysié_m is formulated in Lhis
section. The mean square of a genéric response quantity s is related to its

one-sided power spectral density function by the relation

E[s?] = 7Gss(w)dc.) ' | (2.15)‘
0
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Thus, integrating Egs. (2.12) and (2.14) over the frequency domain, the mean

squares of the absolute acceleration and the relative displacement at’ aegree of

freedom r are obtained, respectively

n o n Ng 7y
E[uf]l= Y Y anay 3 Y bixdi A : (2.18)
i=1j=1 K=1L=1 :
and
n on Ry Ty . _
E[‘U.’?] = Z 2 aﬂ-a.,.j Z b‘LKb]LAgZJKL (217)
i=1j=1 K=1L=1 _ ‘ . . ‘
where
My = Re{cx&xﬁ(u)do (2.18)
and
Aok = R?{Gx&xﬁ (w)do _ (2.19)

The above two terms respectively denote crﬁss-correlations betweén accelera-
tions and displacements of the two fictitious oscillators defined earlier. As indi-
céted ea.rlier. these quantities will be derived in terms of their respective
ground response spectra, i.e., )\é’.,-,-n -willl be derived in terms of the relative dis-
placement grounﬂd response spectrum and Ag;;x will be derived in terms of the

pseudo-acceleration ground response spectrum.

As a final remark for this section, it is noted that the mean square’ of any
general displ’ace‘ment-related quantity, such as the internal force of a member
or the relative ‘displacement between two points, can be obtained from Eq.
(2.17) by redefining the coefficients a,; and a,;. For this purpose, it is sufficient

to replace the terms g, and g, in the definition of la.,.i and ap; by the

~
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corresponding modal responses when the fixed base secondary system is stati-
cally_ displaced into its i—th and j—th mode shapes. respeclively. For a generic
response quantity s, the modal response can be expressed as s; = gT:p,_-. where g

is an n-vector of constants. Equation (2.17) may then be used to compute the

T,
mean square £[s?], provided a, is replaced b —g—%—a ,i.e.
i Wy
nalg fpt lgTg; 172 2 ‘
igljzl m; f-’v. m; f-’, Kz-l LX=:1 ’ Y

As an example, for relative displacement between degrees of freedom r and s,

the vector g contains 1 and -1 for the r~th and s —th elements and zeros else-

where.

2.5 Interpretation of Cross-Correlation in Terms of Cross-Cross Floor Spectra

In the previous section, the mean square responses of the secondary sys-
tem were obtained as functions of the cross-correlation terms Ad;;xz and Agyx
which were associated with the responses of two fictitious oscillators of fre-
quencies w; and w;, and with damping ratios ¢; and ¢;. These oscillators were
assumed t»o be subjected to base excitations equal to the motions of the pri-
mary system at the support points K and L, respectively. In this section, these
cross-corrélation gquantities are intevrpreted in terms of a generalization of the
conventional floor spectra. For notational simplicity, the superscripts on the

cross-correlation terms are dropped in the following analysis.

First consider the term Ao.tﬁcx- This may be regarded as the mean square of
the response of a fictitious oscillator of frequency w; and damping ratio {"1-
which is attached to the K—th degree of freedom of the‘primary system. To
clarify the procedure, the interaction between the secondary and primary sys-

tems and the interaction between the oscillator and the primary éystem are
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ignored at this time. Figure 2.5(a) illustrates this concept schematically. If
S_'K(:.)i.('i) denotes the mean floor response spectrum associated with the degree
of freedom K, then by definition it is equal to-the mean peak response of the
oscillator. Thus, using the relation between the mean square and the mean of

the peak of a stationary process, the following relation can be written

4

Aoikx = ;155}?(9:‘-(1) = pﬁ('g}a((f-’t-ftiwx-ft) (2.21)

in which pix is a peak factor associated with the response of the oscillator
(Davenport [1964], Vanmarcke [1976], Der Kiureghian [1980]), and by definition
Six(wi. ¢ wi,éi) = SE(wi.¢1). The reason for the latter definition will becdme
clear shortly. Note that Six(wi.¢;; wi.¢;) has the square dimension of the floor

spectrum.

Now consider the term ‘Ao.inK- This may be regardea asv the cross-
correlation of the responses of two fictitious oscillators of frequencies ;" and
w; and damping ratios ¢; >e’md ¢; » both attached to the K—th degree of 'freedom
of the primary system. Figure 2.5(b) illustrates this c‘oncept. This term may not

vbe‘interpreted in terms of the conventional floor spectra. However, based on
the relation in Eq. (2.21), an extension of the floor spectrum cén be defined,

which may then be used to interpret Ag;jxx - Consider the following relation

1 =
Ao ijKK = p—ﬁsxx(wi.ﬁ:wj.g“,-) (2.22)

where px and p,x are peak factors associated with motions of the two oscilla-
tors. In this relation, Sig(w;.¢iiw;.¢;) may be interpreted as a cross-oscillator
floor response spectrum associated with the K~th degree of freedom of the pri- .

mary system.
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Next consider the term Ag.x. This term may be regarded as the cross-
correlation of the responses of two identical oscillators of frequencies o, and
damping ratios ¢; which are attached to the degrees of freedom K and L of the
primary systemn, as illustrated in Fig. 2.5(c¢). Following the above idea, the rela-
tion

1 3 ‘
Aoz = m-su(w-;-fﬁwi-&) \ | (2.23)

is defined, where Sy (w;.¢;w;.¢;) may be interpreted as a cross-floor response

spectrum associated with degrees of freedom X and L of the primary system.

-

Finally, consider the general term Ag;;x- It is clear now, that this is the
cross-correlation of the responses of two fictitious oscillators of frequencies w;
and w; and damping ratios {; and ¢, . which are attached to degrees of freedom
K-and L of the primary system, respectively, as illustréted\in Fig. 2.5(d). The
following relation‘is defined

1
PikP;L

Aoijra = Si(wi.¢ii wj.¢5) | , (2.24)

where S'n(w‘-.{‘-:w_,;.(j) ’can be intefpreted as the cross-oscillator, cross-floor
response spectrum associated with the degrees of freedom K and L of the pri-
mary syétem. For brevify. this mos£ general term may be called the cross-cross
Jloor spectrum or CCFS. Note that this term is a cross term not only between
two oscillators (modes of the secondary system) but also between two "floors".
This is the reason for using two “cross” terms in its definition. I‘t is important to
realize that this cross-cross term contains the effect of cross correlation
between modal responses of the secondary systerﬁ as well as the cross correla-
tion between motions of support boints K and L. An efficient method for gen-

erating the CCFS’s directly in terms of the input ground response spectrum is
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presented in Chapter 4.

Using the relation E[sp..]=p E[s?]/? between the mean of the peak and
e : ' , )
the root-mean-square of a stationary process, where p is the peak factor, and

substituting Eq. (2.24) in Eq. (2.16), the mean of the peak acceleration at the

degree of freedom r of the secondary system is obtained as

[ ]1/2 ‘

- non ‘ E -
E[urmaz] = E E QpiQry Z E u'( il _Sﬂ(wt'qt'(‘)] f]) (2-25)
i=lj=1 K=1L=1 plf@] .

In a similar manner, the mean of the peak relative displacement at the degree

of freedom r is obtained as

[ n e

nﬂ
E [vr.muz ] P

an-XZ= g buxbj 'fﬂ‘sn(wzvﬁ-% ¢5) | (2.26)

]

1}
s

It can be shown (Der Kiureghian [1981]) that the peak factors are relatively
insensitive to the characteristics of the respo‘r‘)se processes and the ratios

P/ pix are near unity. Thus, the above expressions can be simplified to

[n n ‘ng N - 172
E[tUr maz] = IZ Y aria,; Z Z w&b;i Smu..c,.w, ¢,)J (2.27)
i=lj=1 K=1L=1
| n Ny Ny - 172 '
E vy mas] = tzuil a; Ksz St (i ap. )| . (228)

It should be noted that in principle there is no need to make this approximation
and it is done here for the sake of simplicity and ﬁo avoid time consuming c;':xl-
culations. Alsb. it will be seen in Abpendix B, that the peak flactors pikx are only
intermediate values and neéd not be evaluated even in cases where the effect of
peak factors is to be ‘inclu’ded in the analysis. Expressibns for these factors‘are

given in Appendix B.
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Equations (2.27) and (2.28) provide modal combination rules for the mean
vaiues of peak responses of the secondary system in terms of the CCFS's. Note
that the coefficients a, and .bU{- as given in Eq. (2.9), are functiohs of the
characteristics of the secondary system only. Thus, having the CCFS's, the
secondary system can be analyzed 'mv.iependently of the primary system. It is
emphasized that tﬁe formulation presented here not énly includes the effect of
correlation between modal responses of_ the secondary system, but also the
correlation that exists between the excitations at the.various attachment
_points. It can be shown that due the narrow-bandedness of the floor motions,
strong correlation exists between modal responses even when modal frequen-
cies are well spaced. Also, the floor motions are in general highly correlated due
to the filtering of the ground motion through the primary system. Thus, all
cross terms in Egs. (2.27) and (2.28) are important and must be retained in all
cases to obtain accurate results. As indicated in Chapter 1, these effects are

commonly neglected or improperly handied in the current practice.

In the next chapter, a method will be introduced to approximately account
for the effect of interaction betva.;een the primary and secondary systems. This
will be done through the definition of equivalent maﬁses for the ﬁétitious oscil-
lators introduced above such that the motions of the primary system at the

éttachment points are properly modified in account of the interaction.

2.6 Properties of the Cross-Cross Floor Spectra

In this section, a short list of the main properties and features of the

~

cross-cross floor spectra is given:
(a) In this chapter, cross-cross floor spectra were defined in terms of the
cross-correlation of the responses of two fictitious oscillators associated

with two modes of the secondary system. Because the responses are real



(b)

(c)

(d)

(e)
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quantities; the expectation of their product, or cross-correlation, will be
real valued. Thus, cross-cross floor spectra are real valued functions. Also,
these real funclions can be positive or negative depending on how the

responses of the two oscillators are correlated.

The cross-cross floor spectra, Siz (i, ¢;; wj. ¢,). depend on two modes of the
fixed base secondary system. Thus, unlike conventional floor spectra which
can be represented as two-dimensional curves, the CCFS must be

represented by surfaces. Figure 2.8 shows the cross-cross floor spectrum

_surface S,g for the five story system shown in Fig. 4.2. In Fig. 2.6(a), only

the values around the fundamental frequency of the S£ructure ‘(4.025
rad/s) have been plotted. For this example, it can be observed that S, has
a large peak when the two oscillators are tuned to the fundamental fre-
gquency of t.he structure, two.valleys when only one oscillator is tuned, and
practically zero values elsewhere. In Fig. 2.6(b), the peak value was trun-
cated and the figure rotated to see more details on the surface. There, it
can be observed that a negative peak begins to appear when‘t.he two oscil-. |
lators are tunéd to the second frequency of the stfucf.ure..

The "diagonal” term Six{w;. i wy, &) corrésponds to the square of the éon-
ventional floor response spectfum for frequency w;, damping ratio ¢; and

"floor" K.

The following symmetry property holds
Sia (Wi ¢ii g, ¢y) = Spelwy, &i 0. &5)

As mentioned in the previous section, due to the narrow-bandedness of the
floor motions, strong correlation exists between the floor motions and
between the modal responses of the secondary system. Thus, the "cross”

terms S'Iq,(w.;,(.;;uj.(j) in general are not negligible in relation to the
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"diagonal” terms Sgx{w:. ¢, w;.¢;), and all the cross terms in Egs. (2.27) and

(2.28) must, in general, be retained.
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CHAPTER 3

Effect of Interaction Between
Primary and Secondary Systems

3.1 Introduction .

Research on dynamic behévior of composite primary-secondary systems
has shéwn that the effec£ of dynamic ‘interaction between the two subsysterr.xs
can be important in two situations: (a) when the mass of the s‘econ‘dary system
is not sufficiently small in relation to the mass of the primary‘system. and (b)
when one or more frequencies \of the fixed base secondary system are in reso-
nance (tuning) with one or more of the dominant frequencies of th>e primary
~system. Generally, interaction tends to reduce the response of the secondary
system. Therefore, neglecting its effect is a ponservative me?sure.' Hov;rever. the
conservatism can be very large, i.e., the respoﬁse can be overestimated by as
much as several hundred percent in some cases. Thus, it is important t'o\

account for this effect in the floor spectrum method to be developed.

Neglecting the eﬁ'ect of interaction is equivalent to assuming that th‘e
motions at the support points on the primary system are the same as those in
absence of the secondary system. In reality, the support motions are affected
by the presence of the secondary system, and in particular their frequency
content is modified. This modification on the frequen;:y content is alue to a
shift of the modal frequencies of the primary system as the secondary system is
attached to 1t The shift depends on the ratio of masses of the two systems as
well as their respective stifinesses. To make this point clearer, consider an

S
oscillator with a small mass attached to a primary system and tuned to its fun-

damental frequency. If the motion of the primary system without interaction is

considered as input into the oscillator, i.e., if interaction is neglected,
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resonance will occur and the oscillator will have a large response. However, 1f
the primary-oscillator system is considered as a single unit, the frequencies of ‘
the combined system will shift away from the tuning frequency and resonance |
will not occur. Thus, the response of the oscillator can be expected to be

smaller in the latter case where interaction is included.

Although interaction between primary and secondary systems‘haé been
studied before (Crahdal] and Mark [1963], Amin, Hall, Newmark and Kassawara
[1971], Pickel [1972]. Newmark [1972]., Hadjian [1978]), most previous studies
have been limited to single degree of freedom secondary systems. For this
case, Der Kiureghian, Sackman and Nour-Omid [1981] recently developed a per-
turbation technique to .évaluate the modal characteristics of the combined
equipment-structure system that includes the effect of interaction. Igusa and
Der Kiuregﬁian [1983] have more recently extended this method to multi-
degree-of-freedom secondary systems with multiple attachment points. In both
of these approaches the response of the combined ‘primary-secondary system is
given in terms o.f the ground response spectrum. No methods haQ;a yet been
developed to account for the effect of interaction in the floor response spec-
trum approach for multiply-supported secondary systems and this effect is
currently neglected in practice { ASME Boiler and Pressure Vessel Code, Appen-
dix N, 1980).

In this cﬁapter. an approximate method for incorporating the effect of
interaction in the cross-cross floor spectrum method is developed. For this
purpose, the fictitious oscillators representing modes of the secondary system
aré assigned mass values such that proper shifts in the frequenc;ies of the pri-
mary system-are achieved. The shifts are essentially equivalent to the actual
shifts that occur in the combined p‘rimary-secon'dary system. This results in a

modification of the frequency content of the support motion of each oscillator,
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making it approximately equal to the motion of the support point in the actual
composite primary-secondary system. Thus, the cross-cross floor spectra com-
puted with mass oscillators implicitly include the eflect of interaction between

the primary and secondary systems.

3.2 Equivalent Masses for Fictitious Oscillators

The simple primary-secondary system shown in Fig. 3.1a will be used to
first introduce the concept of equivalent' masses for fictitious oscillators .
representihg modes of the secondary system.

Since the eflect of interaction is most important when tuning exists, con-
sideration will be focused on ﬁhe special case where the fundamental frequency
of the secondary system is tuned to the frequency of the primary system. In
the combined 3-degree-of-freedom system, the two tuned frequencies will shift
- away from one another and two closely spaced modes will result. The third fre-
quency (corresponding to the second mode of the secondary system) will
remain approximately constant. A similar effect can be achieved if an oscillafor
representing the tuned mode of the secondary system, i.e., having the same fre-
quency, is attached to the primary system, provided the oscillator mass is prop-
erly adjusted (Fig. 3.1b). This procedure is numerically shown iﬁ the following
paragraph.

For the system shown iﬁ Fig. 3a and described above, the following relation
holds for the properties of the individual subsystems:

kK
7]

w8 = 0% =0.3820 =

where w,; is the fundamental frequency of the secondary system and [} is the
frequency of the primary system. If the combined system is analyzed, these two

equal frequencies are shifted away from one another by a small amount which
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‘ A .
depends on the ratio of masses. For example, when —Tr% = 100, the two shifted

frequencies of the combined system are:

k

¢ = 0.3322 —
m
02 = 0.4372 £
m

The third frequenéy of the combined system is essentially eqﬁal to the second
frequency of the secondary system. Now consider the system shown in Fig.
3.1b. It consists of the primary system and an attached oscillator having a fre-
quency equal‘ to the fundamental frequency of the secondafy system. If a mass
equal‘to the effective modal mass (Clough and Penzien [1975]) of the first mode
of the secéndary system, mii = 1.8944m, is assigned to the oscillator, the two

frequencies of this system are found to be:

6?2 = 0.3329 £
m
02 =04383 £
m

~ As can be observed, these are very close to the actual frequencies of the com-
bined primary-secondary system. It shouid be clear that with the above
equivalent mass, the fictitious oscillator will modify the frequency.content of
the support motion around w; such that it will be approximately equal to the
support motion in the actual system. This concept will now be extended to mul-

tiply supported secondary systems such as that shown in Fig. 3.2.

In deriving properties of composite primary-secondary systems, Igusa and
Der Kiureghian [‘1983] have shown that when mode i of a secondary system is

perfectly tuned to mode f of a primary system, the resulting shift in the
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frequency (); of the primary system is

[mi [wirkc$f]2 11/2 . : ‘ - .‘ (31)

where m; and M; are the modal masses, k. is the coupling stiffness matrix
defined in Chapter 2, and ‘®; is a vector containing -the elements of the mode
shapes of the primary system that are associated with the attachment ‘points.
On the other hand, for a single-degree-of-freedom oscillator attached a‘t degree
of freedom K of the primary sysliem and having mass m, the resulting shift is

derived from Eq. {3.1)
1| ‘ ‘
AQy =~ Ewt—l———fbqu . (3.2)

Imposing the condition that the shift in frequencies given by Egs. (3.‘1_) and (3.2)

be equal, the equivalent mass my for the oscillator is obtained

1 (el 3 ' '

may = —L Lk ®] (3.3)
my oy 5

In the special case where there is a single attachment point, it can be shown

that the above expression is equivalent to the eflective mass of mode i of the

secondary system. This concept was utilized in the numerical example above.

From Egq. (3.3), it can be seen that the equivalent mass associated with sup-
pbrt point K can be Qer); large when the ordinate CIJ;é is small. In the limit, myg -
tends to infinity when @,ﬁ tends to zero. This is logical, since when the‘osc‘illator
is placed neér a zero point of a mode shape, it then requires a very large mass
in order to cause the proper shift in the frequency of that mode. Howevef use
of léfge masses, which may generate large effective mass ratios, will violate the

assumptions made in arriving at Eqs. (3.1) and (3.2). Thus, a limit for the value
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of the equivalent masses has to be imposed. On the other hand, when the mode
Shﬁpe ordinate ¢4, is small, the /-th modal response associaled with support
point K makes a small contribution to the total response and the effect of
interaction is not important. Thus, in this case, any‘small mass can be used for
the oscillator. For practical use, the following upper limit for the equivalent

mass is proposed

My < Mot (34)

where my, is the total mass of the secondary system.

3.3 Numerical Examples

| The two systems shown in Fig. 3.3 are studied to examine the accuracy of
the proposed method to account for the affect of interaction. This is done by
comparihg the frequency Shifts in the actual primary-secondary system with

that caused by the fictitious oscillators with equivalent masses. Tuning between

primary and secondary systems is assumed in both examples.

3.3.1 Example System A

Consider the system in Fig. 3.3a, where the fundamental frequency of the
secondary system is tuned to the fundamental frequency of the primary sys-
tem. The dimensionless nodal‘ masses of the secondary system are assumed to
be m =3.203 and its interstory.and connecting dimensionless stiffnesses are
assumed to be &k =100. ‘The mass ratio between the two systems,
m/ M =0.03203, is large enough to produce an important effect of interaction.
The frequencies of the two systems considered individually and the frequencies
of the combined primary-secondary system are given in Table 3.1. In this table,

the first five frequencies correspond to the primary system and the remaining
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five to the secondary system. Table 3.2 shows the equivalent masses my for the
first mode of the secondary system and for each support point. These are com-
puted using Eg. (3.3). | Table 3.3 shows the frequencies of the V+1 degree of
freedom systems defined by the primary system and oscillators representing
the first mode of the secondary system. The three first columns of this table
correspond to the oscillator located at support points 1,3 and 5, respectlively.
The fourth column corresponds to the oscillator located at support 5, but a
mass m ;5= 16.015 equal to the total mass of the secondary system is uséd. The
first five frequencies in each column correspond to the primary system and the
sixth to the shifted frequency of the oscillator (first mode of the secondary sys-
tem).

Comparison of the first six frequencies in Tables 3.1 and "3.3, which
correspond to the ‘shiftedvfrequencies of lhe primary system and mode 1 of the
secopdary system, reveals that the equivalent masses for the fictitious oscilla-
tors prbperly‘ account for the frequency shifts. The biggest discrepancy

_between frequency shifts occurs when m,5=m,,, = 16.015 is used in place of‘the
computed equivalent mass m,s=90.616. As explained earlier, the effect of

interaction in this case is not important.

3.3.2 Example System B

This example represents a case where a secondary system is attached
between two priméry systems. Propei‘ties of individual systemé are given in Fig.
3.3b, where it is noted that‘t.he ratio of mass is m/M =0.02. For simplicity, the
foundation is modeled as a‘very.stiff story. The frequencies of the individual
systems are given in the first column of Table 3.4, Note that the fundamental
frequency of the secondary system is tuned to the fundarﬁental'frequency of

primary system Bl. The second column in Table 3.4 shows computed
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frequencies of the combined system. A one-to-one correspondence between the
frequencies of the combined system and the individual systems can be observed
in this table. Table 3.5 shows computed equivalent mass values for the two
attachment points and the first mode of the secondary system. Finally, Table
3.6 shows the frequencies of the N+1 degree of freedom systems defined by the
primary system anL‘l the oscillators representing the first mode of the secon-
dary system. In this table, column 1 corresponds to the oscillator attached to
support point 1 and column 2 to the oscillator attached to support point 3 of
the primary system. Column 3 also corresponds to the oscillator attached to
support 3, however, the equivalent mass m 3 is taken to be equal to the total
mass of the secondary system, i.e.,, m ;3=my, =6.0. It is observed in Table 3.5
that the equivalent mass m,g is much larger than the tptal mass of the secon-
dary system. This is because the component of the first primary mode for sup-
port 3 is essentially zero. Using this equivalent mass results in sﬁifts in frequen-
cies of the primary system which are not consistent with the actual shifts
shown in Table 3.4. (For example, compare the third frequencies in the second
columns of Tables 3.4 and 3.6.) On the other h‘an‘d. the case where
m 3 =my, = 6.0 is used, results in reasonable shifts in the frequencies for all
modes. Thus, the upper bound for equivalent masses defined in Eq. (3.4) should

be utilized to avoid improper shifts in frequencies of the primary system.

It is worthwhile to analyze this example in more detail. From the first
column of Table 3.4, it can be seen that the secondary system is tuned to the
primary system Bl and not to primary system B2. Thus, in practice, the secon-
dary system will dynamically interact only with sy'st,em B1 and not with system
B2. This is observed in the second column of Table 3.4, where it is shown that
the frequencies of the combined system corresponding to system B2 have prac-

tically remained constant and the frequencies of system B1 have been modified
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due to the presence of the secondary system. From this, it is clear that the
motion of system B2 will be essentially the same as the motion in abéence of the
secondary system. It can be concluded then, thal for the evaluation of cross-
cross floor spectra, one needs the correct equivalent mass (m,) -attached to
system B1 to produce the necessary modification in the motion of support 1/
and any small mass attached to system B2, such that the motion on support
point 2 is not modified. In that way, the actual motion on the support points is
reproduced and the cross-cross floor spectra will account properly for the
effect of interaction.

From the results shown in Tables 3.3 and 3.8, it is concluded that
equivalent masses defined above can be used to ap‘proxim‘ately account for the
effect of interaction between the primary and secondary systems. The accuracy

of this method will be examined further in Chapter 5.
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Table 3.1. Shift in Frequencies for Example A

Frequencies, rad/s

Individual systems | Combined system

4.025 3.711

11.750 11.795

Primary 18.520 18.548

23.790 23.804

27.140 27.148

4.025 4.359

5.588 5.589

Secondary  B.494 8.489

9.678 9.669

11.410 11.405

Table 3.2. Equivalent Masses my for Eiample A

Suppori 1 | Support 3 | Support §
Mode
my m,s ™m,s
1 7.348 12.594 90.6186

Table 3.3. Frequencies of N+1 Systems for Example A

Frequencies, rad/s

supp 1, m,, | supp 3, m,3 | supp 5, m,s | supp 5, my,
3.709 3.709 3.668 3.882
11.787 11.760 11.890 11.776
18.529 18.540 18.688 18.548
23.797 23.798 23.892 23.811
27.139 27.152 27.169 27.144
4.359 4.358 4.309 4.155
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Table 3.4. Shift in Frequencies for Example B

Frequencies, rad/s

Individual systems .| Combined system
: B.740 9.047
Primary B1 ‘
22.883 22.778
10.705 10.589
Primary B2
28.025 27.803
Foundation 70.711 74.338
8.603 B.118
Secondary 15.897 15.936
20.770 20.770

Table 3.5. Equivalent Masses m, for Example B

Support 1 | Support3
Mode
mi, ms
1 © 1.710 247.928

Table 3.86. Frequencies of N+1 Systems for Example B

Frequencies, rad/s

supp 1. m,, | supp 3.m;3 | supp 3, My
9.088 8.6818 8.617
22.760 22.755 22.751
10.495 16.364 10.884
27.789 29.048 27.812
74.338 74.338 74.338
8.141 5.268 8.274
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Figure 3.2 Schematic Nlustration of Multiply Supported Structure
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Secondary
Primary Syslem
System

DIMENS]ONLESS PROPERTIES

SECONDARY SYSTEM:
Nodal Mass ; m=3.203
Internodal Stiffness ; k=100
Connection Stiffness ; k=100

PRIMARY SYSTEM:
, Floor Mass ;: M= 100
ol i Interstory Stiffness ; x=20.000

(a)

DIMENSIONLESS PROPERTIES

SECONDARY SYSTFH:
Nodal Mass; m=2.0
Internodal Stiffness ; x=252.713

Secondary Connection Stiffness ; k=252.713

t .
Subsystem B1 System Subsystem B2 PRIMARY SUBSYSTEY B1:

Floor Mass ; ¥ =100
Interstory Stiffness ; X=20,000

1 3
. _ PRIMARY SUBSYSTEM B2:

2 4 Floor Mass ; ¥=100 ,

Interstory Stiffness ; K=30.000

5 — PRIMARY SUBSYSTEH F:
Floor Mass ; =100
Subsystem F Interstory Stiffness ; K=500.000
oo 7777
(b)

Figure 3.3 Schematic Mustration of Combined Systems
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CHAPTER 4

Evaluation of Cross-Cross Floor Spectra

4.1 Introduction

In Chapter 2, a modal combination rule was developed giving the response
of a secondary system in terms of cross-cross ﬁoor‘spectra (CCFS). For practij
cal implementation of the method, it is essential that an efﬁcieht procedure for
generating the cross-cross floor spectra is developed. This will be the main

objective of Lthis chapter.

The key for the generation of the CCFS's is the N+2 deg;ee of freedom sys-
tem shown in Fig. 2.5. This system is compésed of the primary system to which
are attached two fictitious oscillators at degrees of freedom ("'floors") X and L.
The cross-cross floor ’spectrum associated with floors K and L was defined to be
proportional to tl';e cross-correlation of the responses of the two oscillators as
the composite system is subjected to the base input (see Section 2.5). The use
of this system permits expressing the response of the two oscillators in terms of
the known ground input excitation rather than in terms of the unknown
motions of the two support points.

In Section 4.2, it is shown that the N+2 degree of freedom system can be
replaced by two N+1 degree of freedom systems. In Sections 4.3 and 4.4, the
modal properties of a typical N+1 DOF system are obtained by use of perturba- '
tion techniques. Using the modal properties of the two N+1 DOF systems, an ~
expression for the cross-cross floor spectrum in terms of the ground design

spectrum is derived in Section 4.5.
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4.2 Approach for Evaluating the Cross-Cross Floor Spectra

The cross-cross floor spectrum associated with floors K and L was defined
to be proportional to the cross-correlation of the responses of two oscillators
attached to these floors. If interaction beltween primary and secondary systems
is not considered, the motion of the support points will not be affected by the
presence of the seéondary system. Thus, the motion of these points can be con-
sidered to be the same as those generated in absence of the secondary system.
It is obvious then, Lhat in this case the response of each oscillator in Fig. 4.1a
' can be obtained from the corresponding N+1 degree of freedom system shown
in Fig. 4.1b. Furthermore, the cross-correlation ;)f their responses can be

evaluated using these two N+1 DOF systems.

When interaction is considered, the real motions of the support points are
different from those in absence of the secondary system. To introduce this
effect in an approximate way, equivalent masses for oscillators.attached to sup-
port points were defined in Chapter 3. These masses were obtained using Nﬂ—l
degree of freedom systems such that proper shifts in the frequencies‘ of the pri-
mary system were achieved. It should be clear that the N+1 system with
equivalent masses can also be. used in the manner shown in Fig. .4.1b,to obtain
cross-cross floor spectra which approximately include the effect of interaction.
The first N+1 degree system is composed of the prirnar_y system and the oscilla-
tor representing mode i of the secondary system. The oscillator has mass mqg
and is attached to degree of freedom K of the primary system. For conveni-
ence, this system will be called the Ai system. The sgcond N+1 degree system,
the [j system, is composed of the primary system and the oscillator represent-
ing mode j of the secondary system. Its mass is m;; and it is attached to degree

of freedom L of the primary system.
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Der Kiureghian, Sackman and Nour-.Omld [1981] used perturbation
methods to derive the dynamic properties of an N+1 degree of freedom system
composed of an N degree of freedom primary structure and a light appendage
modeled as a single-degree-of-freedom oscillator. This approach will be used
here Lo avoid ‘the numerical solulion of the eigenvalue problem for tﬁe many
N+1 degrees of fréedom systems Lhat are needed, thus providing an efficient
and practical method for generation of the CCFS's. Following this scheme, the

evaluation of the cross-cross floor spectra involves two basic steps:

(a) Synthesis of the dynamic modal properties of the N+1 degrees of freedom
systems using perturbation methods which exploit Lthe relative lightness of
the oscillators. This process involves the modal characteristics of the pri-

mary system and the properties of the two oscillators.

(b) Determination of the cross-cross floor spectra by combining the product
of the modal responses of two N+1 degrees of freedom systems defined by

the primary system and the oscillators with dynamic characteristics

(wi.¢imix) and (w;.¢5.m;; ), respeclively.

4.3 Modal Characteristics of an Oscillatbr-Structure System

In this section, for the sake of completéness of this study, the closed form
éxpressions obtained by Der Kiureghian, Sackman and Nour--Omid [1981] for the
modal characteristics of an N+1-degree of freedom combined oscillator-
structure system are presented. These are functions of the modal properties of
the N-degree of fre;edom primary s‘truct.ure avnd‘t:he dynamic properties of the
light oscillator attached to it. The stuciy considered cases of gross detuning
between the oscillator and ffequencies of the pfimary sy>stem and near or per-
fect tuning between the oscillator and one of the frequencies of th‘e primary

system. Well spaced modes in the primary system were assumed in both cases.
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Their results will be used in the evaluation of the cross-cross floor spectra and

they will be listed in this section without further explanation.

For notational purposes, the modal properties of the primary system alone
are deinoted by capital letters and the‘ dynamic properties of the oscillator by
lower case letters. The properties of the combined N+1-degree system are
denotled by capita.l letters superposed by a capital letter indicating the degree
of freedom of the primary system where the oscillator is attached. The N+1-th
degree of freedom of the combined system corresponds to the oscillator which
is assumed to be attached to t.he K—-th degree of freedom\of the primary sys-
tem. Also, the first ¥ modes of the combined system™ are assumed to
corresp_bnd‘to the modified modes of the prfmary system and the N+1-st mode
corresponds to the new mode generated by the oscillator. With this -'hotaLion
the mode shapes for Lhe first N modes of the combined system are:

( 3
LY

_| ek ) | | -
of={ " I=1,..N (4.1)

o
q’ﬁH.JJ

in which &ff,, ;=ay &% . where ay is a modal amplification factor. As a first
approximation, it is assumed that the portion of modal vectors corresponding
to the degrees of freedom of the primary system retain their shapes; i.e.

¢f=dy for J=1,..,N; I=1,..,N. The frequencies for these modes are given by‘
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and the modal amplification factors, for /= 1,...,N, are given by
[ﬁ [ 2 Jir2 )1
o+ Yuk Bu + Yux N
—l_—z‘—-—l[l"'——z—*—] -(1+ﬁu)J J Bir <0
&y = [ [ ‘ 2 ]1/2‘]-1 ‘ (4.3)
+ ¥ g F
- [&’—2-7‘—”(-+ IE AUl o] | aum0

where §,; and yyx are the detuning parameter and the effective mass ratio for

mode /, respectively, defined by

_ N7 -w? _ mg ‘ : :
By = o Yuk = —MT‘Pfa (4.4)

where m,y is the mass and w,; is the frequency of the oscillator. #; is the modal

mass corresponding to mode [/ of the primary system.

The mode shape of the N+1-st mode is given by

!

[#fv.

o = qa;’(‘.y” ) {@1;] (4.5)

Y S
L1

where



47

\&: b,
o QwYuk FN
J=1 K/ ‘ ) ‘
o = - j - S (4.6)
‘i’NJ
P au%;.rxg—-
‘.’=1 K

The frequency of this mode is given by

1/72 . . - '
@y (4.7)

N
X _
Qy,, = [1 + Y XYk
/=1

When the frequency of the oscillator is ncar or perfeetly tuned to the fre-
quency Qr of the primary system but well spaced from the other modes, it is
necessary to improve the results for the 7—th mode sﬁape of the combined sys-

tem. The refined mode shape for this mode is given by

3

(}fa- %y 1 %y
JuT VIVK 3 oar Oxr
oK = . ; | N  (4.8)
ﬁav?"h{ w1 Sar -
Gr T b ayr by
-1

A theoretically sound criterion to define when the frequency of the oscillator
can be considered detuned from a frequency of the primary system can be
fouﬁd in Igusv‘a and Der Kiureghian [1983].

In the evaluation of the damping ratios for the combined system, when the
primary system is proportion_aliy damped, Der Kiureghian, Sackrﬁan and Nour-
Omid [1981] assumed that, for light damping, the combined system also very
nearly has p:opprtional damping. With this assumption, the following :expres-

sions for damping ratios were derived
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where Z; is the damping ratio of the primary system and ¢, is the damping ratio
of the oscillator. For perfect tuning between modes 7 and T, the damping ratios

for the combined system become

Z; I#T,N+1
Zf ~ Zr+ it T (4.10)
2 ’

In the expressions in Eq. (4.10), small effective mass ratios yux were assumed.

As it will be seen in the next section, the validity of the above damping
ratios, for the case of near or perfect tuning and very small effective mass
ratio, is questionable. In the next section it will be shown that, for very small
effective mass ratios, the use of the damping ratios in Egs. (4.9) and (4.10) pro-
duces unacceptable results for the ‘respohses evaluated in the vicinity of tun-

ing.

4.4 Modal Damping Ratios

A system is said to be classically or proportionally damped, if its equations
of motion can be uncoupled using the modal shapes resulting from the
undamped eigen-problem. For practical reasons it is desirable to treat struc-‘
tures as classically damped. Unfortunately, for primary-secondary systems, it
is known that evén if both systems are individually classically damped, the com-
bined system will not be necessarily classically damped. When the mass of the

secondary system is small with respect to the mass of the primary system, the



49

effect of non-classical damping becomes crucial in the response of the secon-
dary system for cases of near or perfect tuning. This effect is also present in
the N+1 degree systems used in evaluating the cross-cross floor speclra. Thus.
it is necessary to consider this effect to properly evaluate the spectra in the
cases of near of perfect tuning between the frequency of the oscillator and one
or more frequ'enciés of the primary system. An extensive discussion of this

eflect can be found in Igusa and Der Kiureghian [1983].

Figures 4.3 to 4.8 show the effect of considering classical damping in the
evaluation of a typical cross-cross floor spectrum for the structure shown in
Fig. 4.2. The dotted line in these figures corresponds to the exact CCFS
obtained through random vibration theory. The solid line corresponds to the
solution obtained makihg use of the classiycal damping assumptic;n. A very small
mass ratio { m/ M =107%) wa‘s aséumed to dramatize this effect. As it may be
seen f:jorﬁ the figures, for very small ‘mass ratios, the ‘assumption of classical
démping is unacceptable in the vicinity ;)f tuﬁiné. The error due to the assumi_:-
tion’ of classical damping decreases rapidly for larg‘er effective mass r‘atios. This
is shown in Fig. 4.7, where a mass ratio m/ M = 1072 has been assumed. In this
ﬁgure. because the mass ratio is still small, the exact solution was obtained as

before, without considering interaction.

The mathematically exact method to analyze non-classical damping is solv-
~ ing the eigenproblem in the complex domain (Hurty and Rubinstein [1964]). To
avoid dealing with complex modes, in this section an approximate procedure is
presented to consider the effect of non-classical damping in the N+1 degree of
freedom systems. To make the procedure clear, three frequency regions are

considered for the oscillator:
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Complete detuning

In this case, the frequency of the oscillalor is far from all [requencies of
the rprimary system. From Figs. 4.3 to 4.6, it may be seen that the assumption
of proporiionalily in the damping matrix gives very good resulls in this region.
Thus, the expressions in Eq. (4.9) can be used. When the effective mass ratios
Yukx are small, the damping raLio’s can be approximated by

z; [=1..N

K -
= e I=N+1 (4.11)

Perfect tuning.

W};en w; 1s identical td the T—th frequency of the primary system. Qr, the
use of proportional damping tends to underestimate the true value of the
resbonse (Igusé and Der Kiureghian ‘[1983]).- Based- on compaﬁsoﬁs between
éxact solutions and Solutions considering proportional damping, Der
‘ N ‘ ‘ .

Kiureghian, Sackman and Nour-Ornid [1981] have shown that the use of the fol-

lowing damping ratios will produce better results:

Zr I#T N+1

K -~ .
B=\vze 12141 (#.12)

The use of these values for the damping ratios will tend to slightly overestimate

the response.

Near tuning

The behavior of Eq. (4.10) in the region of near tuning, i.e., small but
nonzero f;p, is shown in Fig. 4.8. It is seen that the assurption of classical
damping results in damping ratios for modes T and N+1 which are almost con-

stant up to a frequency very close to the perfect tuning, and then abruptly
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change to the values given by Eq. (4.10).7

This ébrupt change is nol realistic and gives rise to erroneous estimales of
the response in the vicinity of tuning (see F‘igs.‘4.3 to 4.6). To improve the
results, Lthe following melhod is proposed. Once the solution is known for the
two extremes, lLe., complete detuning and perfect tuning, the solution fdr th‘e
intermediale cases is delerminaled through a matching pfocess. In the present
case, a smooth variation in the values of the modal damping ratios between
_their extreme values is assumed. This is schematically shown in F'ig. 4.9. In this
figure the dotted line represents the variation 6f the damping ratios assuming

classical damping and the solid line represents the assumed smooth variation.

The parameter B, in Fig. 4.9 is based on a detuning criterion defined by
Igusa and Der Kiureghian [1983], and it is given by the relation:

a1 fzu_c_l} l %;:Z{{(_} | | B (4.13)

where e is the relative error tolerance for evaluation of the mean square

A

response to white noise input excitation.

Figures 4.10 to4.13 show the improved results for the acceier;tion cross-
cross floor spectra shown in Figs. 4.3 to 4.6. The 'solid lines fepresent the
approximate solution and the dotted lines represent the exact solution. To pro-
duce a smooth variation of the damping ratios in the near tuning region, the

following interpolation expressions were used:

+Z -z -
Zg2 1+292 Icos(ﬁl%‘]‘) =T
0
Zf = . (4.14)
Zegt+ & | Zg—{y Bir | _
s+ 3 cos(r] A 1) I=N+1

From the figures, it may be seen that Ll';e proposed method to account for the
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effect of non-classical damping gives good resulls for reasonable differences in
damping between secondary and primary systerns. The detuning parameter 8¢

was evaluated assuniing e = 0.5.

4.5 Mod‘ai Combination Rule for Evaluating Cross-Cross Floor Spectra

Ounce the modal properties of the combined ~N+1 degree of freedom sys-
tems are known, the evaluation of the cross-cross floor spectra is straightfor-
ward. Using stationary random vibrations techniques, the cross power spectral
density function of typical responses (i.e., accelerations or displacements) of

the Llwo oscillators-is given by

N+1N+
Gu‘KZ(U) = ]21 JEI ‘I’ﬁn,]‘l’)en../ HF(U) H}(‘U) Gu,u,(”) (4-15)
=1 /=1

where ¥ff,,; and Hf(w) are, respectively, the effective participation factor and
the complex frequency response function associated with mode / of the N+1

DOF Ki system. Gﬁ,ﬁy(w) is the power spectral density function of the input

ground acceleration. Integrating GinZ,(Q) over the frequency range and follow-
ing the procedure used by Der Kiureghian [1981], the cross-correlation Ag sk of

the responses of the two oscillators is given by

+1N+1 .
Ao = I:Z___:l }“‘:1 VY haapl 5?('1‘}77 S(f.zl5(08zh) (4.16\)

where p[( and S(QK.Zf) are the peak factor and the ground res;.>onse spectrum
ordinate associated with mode / of the N+1 degree of freedom Ai system. The
term pf% is the cross- modal correlation coefficient for the two N+1 DOF sys-
tems, Ki and Lj, and is given in terms of the modal frequencies and damping
ratios of these systems by the expressions previously derived by Der Kiureghian

[1980]. This coefficient, in case of white noise input. is given by:
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i 2\/2"2?{(01’@ 02 (zf+ Zh + ([0fFF - [071?) (2f - 2p) }
Pl = — SOF O+ (ZFv ZpFOF+ 0P (17

Using Eq. (4.16) together with Eq. (2.24), and approximating the ratios

PirPjL by unity. the cross-cross floor spectrum ordinate is given by

pfp

_ N1 N+1 _ 0 _
Sz (e diiw;.65) = 3 JZ VY Yk el 5K 2150525 (4.18)
. I=1 /=1

Although the eflect of the peak factors is seldom significant in the evaluation of
Si . for completeness the necessary expressions to consider them are given in
Appendix B.

From Eq. (4.18), the cross-cross floor spectrum of pseudo-acceleration and
the cross-cross floor spectrum of relative displacement can be written as

Shlon v ) = 3 3 OersTF hors T oS OF IS, (0828 (419

I=1J

Staloutingty) = 5 0 Sl ALY 65, 705, (0820 (420)

where

PF: _Qﬁlggi - (4.21)

Mf .
is the modal participation factor, and
Hf = (2FTMK &K . (a.22)

is the modal mass associated with mode [ of the combined system. In the above

‘expressions, MX is the mass matrix and R¥ is the influence vector associated

with the N+1 degree of freedom A% system. 5,(0fZF) is the corresponding
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ground acceleration response spectrum ordinate.
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Figure 4.2 Structure used for Figures 4.3 to 4.6 and 4.10 to 4.13
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CHAPTER 5

Numerical Examples

5.1 Introduction

In the previous chapters, the theory for a method to analyze secondary :
systems was presented. In tfis chapter, two simple é)’stems are studied in
detail, to examine the accuracy of the cross-cross floor spec‘trum.approach in
different situations. These two systems represent two extreme cases encoun-
tered in practice; namely, a secondary system attéched to.an ordinary ;truc-
ture, repres_enting a situation where support motions are strongly correlated,
and a secondary system attached between two structures, representing situa-
tiops where support motions are weakly correlated‘. Each system is stud_ied for:
(a) different ratios of masses between the secondary and primary systems to
examine how- the method accounts for the eflect qf .interaction, (b) tuning
between frequencies of the primary and secondary systems aﬁd (c) d‘iﬁ'erc-ent
.damping ratios f‘o‘r the primary and secondary system; to examine the accu;‘acy'

of the method in cases of non-classical damping.

5.2 Example A

The first example primary-secondary system is showﬁ in Fig. 5.1. This com-
bine‘d system represents a regular shearﬂ building supporling a secondary sys-
tem, which is also modeled as a shear structure. The propertiés of the primary
system and the acceleration ground response spectrum used in the modal‘
‘analysis are listed in the aforementioned ﬁguré. Tweive different cases are
solved using the cross-cross floor spectrum ap‘proa‘chv.‘yTh‘e results are corh-

pared with results obtained by a modal spectrum analysis of the combined
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primary-secondary system using the CQC modal combination rule (Der
Kiureghia‘n (1981]). The latter results will be considered "exact”. The twelve
cases are separated into four groups which are subsequently presented in the
following subsections. The results of the analysis of each case are presented in

tables at the end of this chapter.

5.2.1 Examples Al - Detuned, Classically Damped Systems.

This group of examples are intented to examine the proposed method for
detuned and classically damped systems. Thus, freqhenci-es‘ of the secondary
5ystem afe selected such that there is no tuning between the primary and
secondary system frequencies. Also, the modal damping ratios-of the two sys-
tems are assumed to be {secondary = Zprimary = 0.05, which will give rise to classi-
cal d_am'ping in the combined system. Diﬁeren£ ratios of masses ;re>considered
to examine the eflect of interaction under £hese conditions. The ratios Qf
masses and stiffnesses between secondary and primary systems are shown in
Table 5.1, where m is the nodal masé of the secondary system, M is the nodal
mass of the primary system, k£ is the intefstory and(connecting stifinesses of
the secondary systgm and X is the interst.ory stifiness of the primary system.
The natural frequencies of the secondary system are listed in Table 5.2. These

can be compared with the frequencies of the primary system in Fig. 5.1.

Dimensionless total accelerations and felative (to the grouf)d) displace-
ments are obtained using the CCFS »approach and are comparea with the
"exact" values in Table 5.3. A remarl;able agréement between "exact'” and CCFS
rgsult.s can be observed in this table. Also, cor;lparing the resqlts for thé three
mass ratios, it is concluded that interaction eflects have not importance when

the frequencies of the two systems are not tuned.
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5.2.2 Examples A2 - Detuned, Non-Classically Damped Systems.

This group of example systems havg the same properties as the previous
group, except that the modal damping ratios of the primary and secondary sys-
tems are now assurned to be different, i.e.; {secongary = 0.02 and me = 0.05 are
assumed. Results for accelerations and displacements are presented in Table
5.4. Note the good agreement between the approximate and the "exact” solu-
tion, especially for displacements which are the necessary quantitigs‘ for
evaluation of stresses. These results show the adequacy of the approximate
method employed to account for the effect of non-classical damping, at least

for detuned syslems.

5.2.3 Examples A3 - Tuned, Classically Damped Systems.

In this group of examples systems, the damping ratios are assumed to be
equal, i.e.. {secondary = Zprimary = 0.05 ar‘e assumed. However, the masées and
stifinesses of the secondary system are selected such that perfect tuning
occurs between the fundamenial modes of the primary and secondary systems.
Table 5.5 gives tho»a‘ mass and stiffness ratios for each case. Table 5.8 shows the
frequencies of the secondary system which can be compared with thé frequen-
cies of the primary system in Fig. 5.1. Note that not only are the fundamental |
frequencies tuned, but the 5-th frequency of the secondary system is very close

to the 2-nd frequency of the primary system.

Results for the three examples systems are shown in Table 5.7. Again very
good agreerﬁent is found between the solution oBtained employing the CCFS
method and the "e‘xact" solution. In this table, the eﬁect of inte;action
between the primary and secondary systems can be observed by comparing the
results for the iﬁcreasing mass ratio. In particular, ekﬁmple system A31, which

corresponds to a mass ratio of 0.00032, represents a case where there is
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practically no interactioﬁ. Example‘system A33, on the other hand, has a mass
ratio of 0.032 and exhibits approximately 40 percent reducticn in the response
due to interaction. By comparing the results in Table 5.7, it is concluded that
the CCFS method accurately accounts ‘for the eflect of interaction, at least for

classically damped systems.

5.2.4 Examples A4 - Tuned,Non-Classically Damped Systems.

This group of examples have the same properties as the previous group,

except that the modal damping values are assumed to be unequal, i.e., {gecon-

dary = 0.02 and Zppimary = 0.05.

The results of the analysis are shown in Table 5.8. The larger errors
observed for cases A41 and A42 are due to the increased importance of non-
classical damping effect for light secondary systems. The results are generally
good, indicating the ability of the proposed method to account for effects such
as ihteraétion. tuning and non-classical damping. Again, it is interesting to
cbmpare cases A41 and A43. The former represénts a case where the interac-
tioﬁ is negligible and the latter represents a case where the interaction is
important. Iﬁ example A43, the effect of interaction is found to be a reduction

of more than 50 percent in the response quantities.

5.3 Example B

The combined‘primar&-secondary system shown in Fig. 5.2 is anavlyzed in
this section. It represents two iﬁdepéndent shear buildings, Bl and B2, which
for simplicity have been connected tp a common f.bundation, F. The foundation
is modeled as a very rigid story. Connecting the two primary buildings is a
secondary systém which i1s modeled as a three-degree-of-freedom system. The

properties of buildings B1, B2 and foundation F, and the acceleration ground
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response spectrum employed in the analysis are listed in Fig. 5.2. I'he modal -
frequencies of the two primary structures are given in Table 3.4 in“Chaptér 3.
Thg same twelve analyses perfo_rrnedl for Example A are carried ou§ for the sys-
tem defined as Example B. Since these cases were already described‘ in Sec‘tion :

5.2, in this seclion only a brief description is presented for each group of exam-

ples.

5.3.1 Examples Bl - Detuned, Classically Damped Systems.

The characteristics of three example seconciary sys’tems and their frequen-
cies are shown In Tables 5.9 and 5.10, respectively. These examples are intented
to examine_ the effect of variation of the ratio of masses on the response of the
secondary system. No tuning or non-classical damping are considered. The
results for these three cases are shown in T‘aﬂble 5.11. Again, a g‘ood agreement
betweep the "exact” results and . CCFS results is observed. As before, it is noted
tﬁat in cases of detuning, no important dynamic interaction occurs. This indi-
cates that the response of the secondary system is insensitive to the .mass

ratio, as long as the frequencies remain the same.

5.3.2 Examples B2 - Detuned, Non-Classically Damped Systems.

Results for this group of example systems, which include the effect of non-
classical damping due to different damping ratios; for the secondary and pri-
mary systems ( ¢secondary = 0.02:Zprmary = 0.05 ), are shown in ’Table 5.12.
Although unconéervative results are observed, the errors are negligible for all

practical purposes.
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5.3.3 Examples B3 - Tuned, Classically Damped Systems.

The properties of the secondary systems analyzed in this subsection and
- their frequencies are shown 1n Tables 5.13 and 5.14, respectively. Note that the
fundamentlal frequency of the sécondary system is tuned to the {undamental
freq’uency of the primary system, which is also to the fundamental frequency of
building B1l. Due to this tuning, interaction eflects are expected to be impor-
lant. [t is interesting to nole that in this case interaction will vccur only
between the secondary system and Building Bl.. As in the equivalent Examples
A3, the damping ratios for primary and secondary systems are considered to be
equal, ..e., {secondary = Zprimary = 0.00 are assumed. Results for these cases are
shown in Table 5.15. Again, for all practical purposes, the errors.are found to be
acceptably small. Also, by comparing cases B31 and B33, observe that the‘effect

of interaction is signiﬁcaht and it is closely predicted by the CCFS method.

5.3.4 Examples B4 - Tuned, Non-Classically Damped Systems.

Finally, three cases, which include all the effects considered above, are
studied. The damping ratios are considered to be (s ondary = 0.02 and
Zprimary = 0.05, and the tuned frequencies in Table 5.14 are assumed. Results of
the analyses are presented in Table 5.16. These indicate errors of 10-15 per-
cent, all on the conservative side. Fronﬁ the examples in the preceding sections,
it should be clear that for small mass ratios the main sburcé of errors is the.
non-classical dampiﬁg effect, and for large mass ratios the main source of the
error is the Approximation in accounting for the in;eraction eerct. For all

practical purposes, these errors are believed to be acceptably small.
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5.4 Concluding Remarks for Numerica! Examples -

Two example systerns qf very diflerent nature have been studied in detail
for different and ex‘treme‘ sitp’ations and results for 24 cases are presented.
From these results, itvcan be concluded that the proposed me_thod is able to
properly acéount for effects such as the correlation between support excita-
lions, th‘e correlation between modal res‘ponses. the effect of dynamic interac-
tion between primary and secondary systems, the effect of tuning and the effect
of non-classicul damping. The errors listed in the Tables at the end of this
chapter are cons1dered to ‘be acceptable for engineering purposes and negligi-
ble in comparison with the expected errors resulting from metﬁods currently
employed. In this regard, it is worth noting that in the existing methods errors
exceeding se\;'eral hundred or thousand percent are often encountered (Wang,
Subudhi and Bezler [1983]). Thus, it is concluded that the proposed cross-
cross floor spectrum method is a powefful and accurate to£>1 for seismic

analysis of multiply supported secondary systems. y
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Table 5.1. Propcertics of Example Systems Al and A2

’ | - | _ !
| Case | m/M(%) | k/K(%)

All, A21 0.02 0.05
Al2, A22 0.20 0.50
| A13, A23 2.00 | 5.00

Table 5.2. Frequencies of Example Systems Al and A2

Mode | Freq. (rad,’s)

16.11
22.36
33.99
38.73
45.66

W N -

)
~
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Table 5.3. Comparison of Resulls for Examplc System Al

Accelerations .

Displacements x 1072

Case | DOF ‘
CCFS | Exact | Error (%) | CCFS | Exact | Error (%)
1 | 0487 | 0.487 | 0.0 | 2609 | 2.610 0.0 |
2 | 0.468 | 0.468 0.0 | 2.385 | 2.386 0.0
A11 | 3 | 0.399 | 0.399 0.0 2.086 | 2.087 0.0
4| 0.419 | 0.419 0.0 1.707 | 1.709 -0.1
5 10372 | 0.372 0.0 1.273 | 1.275 -0.2
1 | 0.486 | 0.486 0.0 2610 | 2609 | 00
2 | 0.466 | 0.467 -0.2 2.385 | 2.385 0.0
Al2 | 3 | 0.399 | 0.398 0.3 2.086 | 2.087 0.0
| 4 | 0418 0.418 0.0 1.707 | 1.709 -0.1
5 | 0.370 | 0.371 -0.3 1.273 | 1.276 -0.2
1 . 0.474 | 0.478 -0.8 2.615 | 2.608 0.3
2 | 0.452 | 0.457 -1.1 2.390 | 2.388 0.1
A13 | 3 | 0.398 | 0.396 0.5 2.088 | 2.094 -0.3
"4 | 0.405 | 0.407 -0.5 1.706 | 1.720 -0.8
5 | 0.359 | 0.361 -0.8 1.271 | 1.290 -1.5
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Tablc 5.4. CompariSdn of Results for Examplc System A2

1
|
V

Acceleralions

Displacements x 1072

i

Case | DOF }— ,

CCFS | Exact | Error (%) | CCFS | Exact | Error (%)

1 | 0.552 | 0.541 2.0 2.610 | 2.610 0.0

2 | 0.538 | 0.532 1.1 2.386 | 2.386 0.0

A21 | 3 | 0411 | 0.411 0.0 2.086 | 2.087 0.0

4 | 0.498 | 0.490 1.8 1.708 | 1.710 -0.1

5 | 0.450 | 0.431 4.4 1.274 | 1.276 -0.2

1 | 0.547 | 0.538 1.7 2.611 | 2.609 0.1

2 | 0532 | 0.528 0.8 2.386 | 2.386 0.0

A22 | 3 | 0411 ! 0.411 0.0 2.086 | 2.087 0.0

4 | 0492 | 0.487 1.0 1.708 | 1.710 -0.1

5 | 0.444 | 0.428 3.7 1.274 | 1.276 0.2

1 | 0513 | 0517 | -0.8 2.615 | 2.608 0.3

2 | 0.494 | 0.504 -2.0 2.391 | 2.389 0.1

A23 | 3 | 0.407 | 0.406 0.2 2.088 | 2.094 -0.3

4 | 0.453 | 0.458 -1.1 1.707 | 1.720 -0.8

5 | 0.406 | 0.403 0.7 1.272 | 1.291. -15

Table 5.5. Properties of Example Systems A3 and A4

Case m/M(%) | k/ K (%)
'A31, A41 | 0.03203 0.005 |
A32, A42 | 0.32030 0.050
A33, A43 | 3.20300 0.500
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Tablc 5.6. Frcquencics of Example Systems A3 and A4

f

Mode

Freq. (rad/s) o

[ L v B

|

4.025
5.588
8.494
9.678
11.410

Table 5.7. Comparison of Results for Example System A3

‘Accelerations Displacements x 107!
Case | DOF — -
CCFS | Exact | Error (%) | CCFS | Exact | Error (%)
1 1.777 | 1.773 0.2 1.136 | 1.134" 0.2
2 | 2547 | 2.541 0.2 1.614 | 1.611 | 0.2
A31 3' | 2.039 | 2.034 0.2 1.2_94 1.292 | 0.2
4 | 2509 | 2.504 0.2 1.573 | 1.570 0.2
5 1.703 | 1.700 02 1.063 | 1.061 0.2
1 .] 1.835 | 1.608 1.7 1.051 | 1.037 1.4
2 | 2331 2.296 1.5 1485 | 1464 | 14
A32 3 | 1.862 | 1.837 1.4 1.189 | 1.174 |. 1.3
4 | 2.289 | 2.261 1.2 1.441 | 1422 | 1.3
5 | 1.555 | 1.537 1.2 0.974 | 0962 | 12
1 1.071 | 1.008 6.3 0.715 | 0.693 | 3.2
2 | 1.467 | 1.384 6.0 0.976 | 0.932 4.7
A33 3 | 1.154 | 1.103 4.6 0.775 | 0.748 3.6
4 | 1.408 | 1.353 4.1 0.924 | 0.882 4.8
5 | 0.962 | 0.935 2.9 0.623 | 0.600 3.8
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Tablc 5.8. Comparison of Results for Example System A4

|
DOF

1

Accelerations

\, Displacements x 107!

v CCFS | Exact | Error (%) | CCFS | Exact | Error (%)
1 | 3.205 | 2.924 9.6 2.002 | 1.834 9.2
2 | 4684 | 4.251 10.2 2.920 | 2.656 9.9
A4l | 3 | 3762 | 3.414 10.2 2.349 | 2.434 10.1
4 4661 @ 4.224 10.3 2.893 | 2.622 10.3
5 | 3.159 | 2.865 10.3 1.955 | 1.772 10.3
1 | 2651 | 2.443 8.5 1.865 | 1.543 7.9
2 | 3853 | 3.502 9.1 2.414 | 2.219 8.8
Ad2 |3 | 3089 ! 2.835 9.0 | 1.939 | 1.783 8.7
4 | 3.826 | 3.509 9.0 2.382 | 2.184 9.1
5 | 2598 | 2.386 8.9 1.610 | 1.477 9.0
1 | 1.359 | 1.298 4.7 0.882 | 0.869 1.5
2 | 1.894 | 1.790 5.8 1.236 | 1.182 4.6
A43 | 3 | 1492 | 1.426 46 | 0.983 | 0.949 3.6
| 4 | 1848 | 1.772 4.3 1.192 | 1.132 5.3
5 | 1.273 | 1.235 3.1 0.806 | 0.773 4.3

Table 5.9. Properties of Example Systems B1 and B2

Case m/M(%) | k/ K(%)
B11, B21 0.02 0.04
B12, B22 0.20 0.40
B13, B23 2.00 4.00
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Tablc 5.10. Frequcncics of Example Systems Bl and B2

Table 5.11. Comparison of Results for Example System B1

Accelerations

Displacements x 1072

Case | DOF : -
CCFS | Exact | Error (%) | CCFS | Exact | Error (%)
1 1.029 | 1.028 0.1 1.025 1.025. 0.0
. B11 1.208 1.207 0.1 1.047 | 1.047 0.0
1.052 1.051 0.1 0.874 0.873 0.1
1 1.022 1.025 -0.3 1.025 1.027 -0.2
B12 1.201 1.201 0.0 1.045 | 1.046 -0.1
1.046 1.043 0.3 0.871 0.870 | 0.1
0.962 0.998 -3.8 - 1.021 | .1.047 -2;5
B13 1.123 | 1.142 -1.7 1.020 | 1.042-| -2.1
0.988 0.974 1.4 0.849 0.846 0.4
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Table 5.12. Comparison of Results for Example System B2

J ; |
Accelerations Displacements x 1072 ‘
Case | DOF i
CCFS | Exact | Error (%) | CCFS | Exact ( Error (%)
1.361 1.348 1.0 1.080 1.080 0.0
B21 1.830 1.631 -0.1 1.150 1.150 0.0
1.381 1.367 1.0 0.939 | 0.939 0.0
1 - 1.347 ; 1.341 0.4 1.078 1.081 -0.3
B22 1.613 1.620 -0.4 1.144 1.147 -0.3
1.367 1.356 0.8 0.935 | 0.934 0.1
1.222 | 1.281 46 | 1.059 | 1.092 | -3.0
B23 1.447 1.531 -5.5 1.092 1.128 ' -3.2
3 1.244 1.259 -1.2 0.895 | 0.901 -0.7

Table 5.13. Properties of Example Systems B3 and B4

Case m/M(%) | k7 K(%)
B31, B4: 0.02 0.0126
B32, B42 0.20 | 0.1260
B33, B43 2.00 1.2600

Table 5.14. Frequencies of Example Systems B3 and B4

Mode | Freq. (rad/s)
1 8.603
2 15.900

20.770
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Table 5.15. Comparison of Results for Example System B3

|
’ |

I
| |

Accelerations

Displacements x 1072

S
I

Case | DOF : . ‘

CCFS | Exact | Error (%) | CCFS .| Exact | Error (%)

2543 | 2535 | 0.3 3.533 | 3.523 0.3

B31 2 | 3.364 | 3.354 0.3 4.661 | 4.648 0.3

L2277 | 2.271 0.3 3.204 | 3.197 0.2

2.477 | 2.422 2.3 3.448 | 3.376 2.1

B32 2 | 325 | 3.193 . 2.1 4.526 | 4.439 2.0

| 3 | 2194 2157 | 17 | 3.008 | 3.053 1.5

! 1 | 2.024 | 1.821 11.1 2.897 | 2.613 10.9

B33 2 | 2559 | 2.333 | 9.7 3.664 | 3.385 8.2

3 1.651 | 1.549 6.6 2.413 | 2.293 5.2

Table 5.16. Couiparison of Results for Example System B4 -

Accelerations Displacements x 1072
Case | DOF

CCFS | Exact | Error {(%Z) | CCFS | Exact | Error (%)

4.320 | 3.967 8.9 | 5.934 | 5472 8.4

B41 5.956 | 5.414 10.0 8.164 | 7.440 9.7

4,152 | 3.761 10.4 5.714 | 5.193 10.0

3.974 | 3.615 9.9 5.475 | 5.011 9.8

B42 5.447 | 4.913 10.9 7.488 | 6.780 10.4

3.781 | 3.409 | 109 | 5.222 | 4.731 10.4

2.662 | 2.296 | - 15.9 3.786 | 3.313 14.1

B43 3.495 | 3.010 16.1 4.975 | 4.311 15.4

2.340 | 2.064 13.4 3.354 | 3.007 11.5




Secondary
Primary System  System :
‘ DIMENSIONLESS PROPERTIES
1 !
PRIMARY SYSTEM:
, Floor Mass; M=100
2 2 Interstory Stiffness ; K=20.000
GROUND ACCELERA'I:ION SPECTRUNM:
174
3 3 o) = .[zg;, c]
4 4 Fre i
quencies of Primary System
Mode | Freq. (rad/s)
5 5 :
1 4.025
2 11.750
7777 77 3 18.520
4 23.790
] 27.140
Figure 5.1 - Combined System. Examples A
DIMENSIONLESS PROPERTIES
PRIMARY SUBSYSTEM B1:
GROUND ACCELERATION SPECTRUM: Floor Ma=s ; M=100
w 1V Interstory Stiffness ; X=20.000
Rfwl) = '[2000(]
PRIMARY SUBSYSTEN B2:
Floor Mass ; M=100
Interstory Stiffness ; X=30.000
Secondary
PRIMARY SUBSYSTEM F:
Subsystem B1 System Subsystem B2 Floor Mass ; M= 100
Interstory Stiffness ; K= 500,000
1 —O—0—0— 3
' 1 2 3
Frequencies of Primary System
2 4 -
Mode | Freq. (rad/s)
1 8.803
S 2 10.480
Subsystem F 3 22.750
> 7777 4 27.790
] T74.340

Figure 5.2 Combined System. Examples B
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CHAPTER 6

Summary and Conclusions

6.1 Summary

A method to evaluate the seismic response of multiply supported se‘con-
dary systems was developed within Lthe framework of a stationary random vibra-
tion theory and the response spectrum method of describing the ground
motinn. This new method can be seen as an extension of the conventional floor
response speclrum method. It allows one to analyze the secondary system
separately of the primary system.

The concept of cross-oscillator cross-floor response spectrum was intro-
duced. This can be seen as an extension of the conventional floor response
spectrum whicﬁ accounts for effects such as correlation between support exci-
tations, correlation between modal responses, interaction betwegn primary and
secondary systems, tuning between frequencies of primary and secondary sys-
tems, and non-cfassical damping due to difference in damping ratios of the pri-
mary and secondary systems.

The method consists of two main steps: (a) evaluation of CCFS in terms of
ground response spectrum, and (b) evaluation of secondalry systerﬁ response by
modal combination in terms of the CCFS.

The CCFS is evaluated by employing a svet of two N+1-degree-of-freedom
systems, each -composed of the N-DOF primary system and an oscillator
attached to a selected floor of the primary system. The modal properties of the
N+1-DOF systems are obtained, using perturbation techniques, in closed form
in terms of the modal properties of the primary system and the properties of

the two oscillators. An equivalent mass is assigned to each oscillator to account
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for the effect of interaction between the primary and sécondary systems.
Finally, the CCFS are expressed in terms of the modal properties of Lhe two

N+ 1-DOF systems and the ordinates of the ground response spectrum.

Using methods from stationary random vibration theory, a modal combina-
tion rule for systems subjected to multiple support excitations was developed.
This combination rule expresses the mean maximum response of the secondary
system in terms of the CCFS and the fixed-base modal properties of the secon-
dary system. All the eflects mentioned above are included in this combination

rule.

6.2 General Conclusions

The main contribution of this work is the development of a practical and
accurate method for the modal analysis of multiply supported secondary sys-
tems. This method is based on a floor spectrum approach ‘wbich allows one to
analyze the secondary systemn separately of the primary system. Although the
method, in its final form, was presented in terms of response spectra, it also
can be-used in the framework of random vibrations with the input motio>ns

described by their power spectral density functions.

From the basic assumption in the theoretical development and from the
numerical results presented in Chapter 5, it can‘be concluded that the method
is adequate for seismic analysis of general secondary systems used in struc-
tural engineering practice. Also, it can be concluded that the approximations
employed to account for the effect of interaction and non-classical damping are
sufficiently accuraﬁe for all practical purposes. These effects, which normally
result in significant reduction in the response, are entirely ignored in the

current practice.
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Appendix A

Cross Power Spectral DenSity Function
for Relative Displacements

In this appendix, it will be shown that the power specfral density of the
relative displacement of the secondary system with réspect to the ground, v,, is

given by

Y bbby GX@XJQ(U) | | ' (A.1)

Gy v (@) = Y

0l ks

o ¥ a'f]"

1 1L=1

—

s

-

b

where a, and b,x are defined in Eq. (2.9) and‘GX&X;,Z (w) is the cross-power spec-
tral density of the relative displacements X and X} of the two oscillators
shown in .Fig. 2.4. For simplicity, Eq. (A.1) will b‘e“px“oven first for systemé having
all their dynamic degrees of freedom in the direction of the input excitat‘ion.
Then. the proof will be extended for general tridimensional ‘svystems. The
dynamic degrees of freedom in tﬁe directioﬁ of'the iriput are called "paralle‘l”
degrees of freedom and the dynamic degrees of ffeedom orthogonal to these

are called "'normal” degrees of freedom.
Considering a system with only parallel degrees of freedom, the relative

displacements are given by: ' N
Up T Uy, Xk = Xk-u, XRE=XL-u,£ - ' (A.2)

Substituting these expressions into Eq. (A.1), the following relation is

obtained

rr

Gup (2) = Gy, (9) = Guy, (9) + Gua, (&) =

lLZ:l bucbjy ( G&Jl}xﬁ (w) - Gx&u, (w) - Gu,X[L () + Gu,ug(w) ) (A.3)

n n R,
2 an'“ijZ

i=lj=1
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Changing the order of summation for the last three terms, the right hand side

of the above expression vcan be written as

Ng n Tg
2 2 Qm Apj z, 2 bleJL Gx&xf Q) 2 Z ar] jL 2 2 a-bix Gx,f“‘(u (Q)
i=1j=1 K=1L= j=1L=1 is1K=1 . e

n‘ "6 ‘n By . n n
- 2 P a‘nbtK Z E L Gu X (Q) + E Z aribﬂ( 2 arjbjL Gupu (Q)
i=1 K=1 j=1l=1 LA i=1 K= i ¢

Using the expressions for the coefficients a5 and b;x given in Eq. (2.9), the dou-
ble sums inside parenthesis in the above expression, which are independent of
w, can be evaluated. These can be written, in general, as

5

i=1

D ngs

anbig = E ;n“w—'% ilin

1 is] ITely

where “il;nu is an ng-vector of ones and k. is the coﬁpling stiffness matrix.
'Assuming that all the dynamic degrees of freedom are translational, the matrix

k. is related to the stiflness matrix of the fixed base secondary system, k,

through
k{1}, +k {1}, =0
The above relation is obtained by observing that a rigid body translation of the

secondary system should not cause any internal forces. Thus,

n @i .
P anbr = - 3 Loy, (A4)
K= my Wy ‘

i=1 1 i=l

Now express the vector {1}, as a linear combination of the eigenvectors of the

fixed base secondary system, i.e.,

f1{n = iaj¢j
i=l1
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Introducing this expression in Eq. (A.4), and using the orthogonality of the

modal shapes with respect Lo the stifiness matrix,

n Ty
;Kzaﬂ tK__z POy

i=1

The sum on the right hand side of the above expression corresponds to the

r-—th element of the vector )1{,, Thus

n Tg - .

' Y e by =1 (A.5)
K=

Using this result, Eq. (A’3) is written

Gayy () = Guyy () = G () + Gy (&) =

Mg

2 Z Qpi Qyy Z 2 bixbj, G T}z’ji(“) 2 2 Ambig )HT (o) + | (A.8)

t=1j=1 K=1L=1 i=1 K=1

B

i i Qrj bjL Gu,:\’ﬁ (Q) + Gu,e.g(w)

j=1lL=1

From Eqgs. (A.8) and (2.11) it is clear that in order to prove Eq. (A.1), it is

sufficient to show that

Gu,u,(a}) == i ij

i=1

ombuGyp, (@) | (a7

Using a standard techniques of random vibration theory, the following relation
can be obtained for the cross-power spectral density function, Gurn,(w) :
Rg

- KE aribixoizhi("w)GUKu,(w) (A.8)

i= 1

Gy, (@

—_

In this expression, the term w?h;{— c.))GJKu (w) may be mterpreted as the cross-

N
v
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power spectral dénsity of the ground displacement u, and the total displace-
menl response of an oscillator of frequency »; and damping ratio ¢; which is

subjected to base input Ux. This is the same as GXJ(u (w) and, thus, Eq. (A.1) is
?

proven.
Now, let us consider a general tridimensional system. For parallel degrees
of freedom, the relative displacements are give by Eq. (A.2). For normal degrees

of freedom, the relative displacements are equal to the total displacements, i.e.,
=uw,  Xk=Xk X}=x} | (A.9)

In order to prove Eq. (A.1), the sums over the support points is split into
sums over the parallel support points (subindices K1 and L1 ) and sums over
the normal support points (subindices X2 and L2 ). Then, Eq. (A.1) is rewritten

as is given by

c ﬁ n ’;21 "u:b

v,vr(o) = 1'.=lj§1 Qpi Qyj B Xl JLl x& xQ (Q) +
Mgafia) NgyMap
;2 Z btKZbJLlGx& Iz (U) + & ng\ b"K’bJ'LZGX{KqX,’iz (U) + .(A.lO)
Rg2Pa2

e‘ bigabirals,. . w

2 & bucebire ,3&2)‘}22( )}

where mn,, is the number of parallel support points and ng, is the number of
normal support points. Introducing the relations given by Egs. (A.2) and (A.9)

into Eq. (A.10), the following expression is obtained

v,u,(w) = i 2 Qpi Bpj

i=1j=1

N, n

g ; bucrbjri [ Gz, X%, (w) - Gx&,u,(‘-’) -G, 1, (@) + Gyyu, ()] +
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LPE

a2 =21 - . L : :
;2 ‘j_,: bi‘Kij[,l [ Cytn 75 (w) - le’;}z'ug(w)'] + ‘ _ (A.11)
Ra1Ng2 G ( )]
)) = +

I burbie | Oxgy Xﬁz(c’) up¥f e
33 Gyr 7 ()

bixabjiz 7,\@
Xz L2 I8 e X

grouping and combining terms, this equation is written as

n n

n n t
byen () igljgl »n i KZ=:1L=1 X&XJTL( )
n a1 Ny :
2 1'J JLl Z 2 e bixG 7.;(“ (U) -
j=111 i=1K=1 q
n Matg n Ng '
Y Y anbi Y 205G, XE(Q) + (A.12)
i=] K1 j=il=1 7
n Rai n Naj
Z E anb 2 Qry bJ’LlGu,u,(Q)
i=l K1 j=1 L1

' As before, let us evaluate the generic term

izl K=1

This double summation can be written in terms of the parallel and normal sup-

. port points as N
Ng n Pay n Na2 7
i Y aubic = ) ) anbi + A bikz : (A.13)
t=1K=1 1=1 K1 i=1 K2 ‘

or, as in the previous proof,
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n

‘ n o el & r {0dng . /
A bix = Z O ¢i K io; + 2 a,.irplkc Elin . (A14)
1=1 1 3 ’ '

Rga 1=

Qe

n
by
p

=

]

K

1

If a rigid body translation is given in the parallel direction, the following rela-

tion is- oblained
B, ) o [1 5
kc{min";}+k[é]=o | (A.15)

where 1is a vector of ones associated with the parallel dynamic degrees of free-
dom and U is a vector of zeros associated with the normal degrees of freedom.
Again, it is considered thal only translational dynamic degrees of freedom exist.
If the translation is given in | the normal di;‘ection, a similar expression is

obtained

!ogn“ 0

= ‘ .16
kc[mn” +k{n1=0 (A.18)
Introducing Eqgs. (A.15) and (A.16) into Eq. {A.14), this becomes

ixz a’?‘ibiK= _i aﬁ¢irk[g]—iaﬁ¢iTk[g} (A17)
' = i=l ‘

1 i=1

The vectors of zeros and ones can be expressed as a linear combination of the

eigenvectors of the fixed base secondary system, i.e.,

[g]?;::laj?j : [.?.j:jgﬁjvj (A.18)

Introducing Eq. (A.18) into Eq. (A.17) and using the orthogonality of the mode

shapes with respect to the stiffness matrix, Eq. (A.17) becomes

a X

n ) n n .
Qpibig = = Z Prly — 2 ¥riBi (A.19)
K=1 is] i=1

n
by
~

i=1
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From Eq. (A.18), it can be scen that

n

L

S oy = 1 Y ¢nBi =0 for r parallel

=) =1

n n L

Yoy =0 5 Y ¢nfi =1 for r normal
i=1

and

n .

z E anbi}( = =1
K=

Then, for a résponse in the direction of the input the following relations

hold:

Up = U —Ug

I
I
— .

n - : n 1
Loga =1 = f} i: aribig) =
i=1 i=1 X1 .
n n Na2
2 ﬁt¢ﬂ =0 - 2 i aﬁbﬂ(g =0
i=1 ‘ i=1 K2
and Eq. (A.12) becomes
Ry Ty
Gy, v, (@) = Z E CriQrj 2 z bixb;i Gx{TxT (w) +
i=lj=1 K=1L=1
» 5 33 (@) (A20)
abix G W)+ a; b G w)+ G, w .20
1§1X=l i Ouk Gygeu, () s1i= Gt ’“nxﬁ(“)) il

This equation is identical to Eq. (A.6) which has been already proven. Thus, Eq.
(A.1) or Eq. (A.10) are valid relations for the response of parallel degrees of

freedom.
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For a response normal to the direction of the input excitation, the follow-

ing relations hold:

Up S Uy

n n Nai

zat‘;’n =0 - 2 arby = 0

izl ) i=1 K1

n n ﬂsi'a

YBign=1 = Y Y Bnbige = -1
1 i=s1 K2

=

and Eq. (A.12) becomes

D

: ] | .
Gurur(w) = G“rur(w) = E i r Qrj Z Z biijL GX(T x7 (Q)
islj=1 K=1L=1 K71L

(A.21)

which, obviously, is true.
Thus, it is concluded that Eq. (A.1) is valid for any general tridimensional

system when only translational dynamic degrees of freedom afe bonsidered.

which is common practice for most systems.
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Appendix B

Response Including Peak Faclors

In Secti‘pn 4.3, the ratiq between the peak factors was approximated by
unity in order to have simple and efficient expressions for evaluating the
cross-cross floor spectra and the final respon_s‘e of the secondar}' sys£em. This is
not a condition for the method, and in this appendix, the necessary expressions
to consider those peak factors will be presented. In order to avoid to define
again every term, the same notation used in Chapter 4 of the main text will be
used here. It was shown, in the main text, that the mean square of a general
response s of a secondary multiply supported structure can be written as

n n Ng N4 : )
E[‘Sz] = 2 z U.,-,O'j Z 2 bl'.ijLAO.inL ‘ (Bl)

i=lj=1 K=1L=1

where’ai can be determinated by static analysis (Eq. 2.20). From the relation

E[Smex) =pE[s?}% and the expression for Ag; i, given by Eq. (4.16), it is clear

that E[s_..] depends only on the ratio 2°_ and not con the peak factors

pfps

PixP;; used to define the cross-cross floor spectrum (see Chapter 2). Expres-
sions for evaluating p, pffand pf can be found in Der Kiureghian [1980], [1981].
These expressions, which are based on improvements of expressions given by

Davenport [1964], are written below without further explanations.

The general expression for the peak factor over duration 7 is

= V2Inv, (0)T + __0.5772___ (B.2)

where v, (0)7 is an equivalent-statistically-independent mean zero-crossing rate

given by
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max[2.1,6v(0)7] 0.00<4<0.10
ve(0)T = {(1.636°%° -0.38)u(0)r 0.10<6 <0.69 (B.3)
v(0)T 0.69<6 < 1.00

Assuming wide band input, ¥(0) and & for the modal peak factor pfare given by:

Zfll/z

)

and for the global peak faclor p by‘:

of |

v(0) = 6—2[

' [, 1172 | Jire2
S -

For the problem presented in this work, A,,. m =0,1,2, are given by

n, n,

Am = 2 2 00, Z Z bthJLAm YKL ; ‘ (B.4)
isljy=1 K=1l=]
where
N+IN+1 _
Am ikt = 21 .121 Vi1V 0 08y ;ﬂ‘%S(QFZf)S(Qf z5) (B.5)
where

Re ] o™ Hf(w)HH(-w) G, ;. (w)dw
() ) 99

pity = T" - - A 7T (B.8)
{.{”m;Hﬂ“), Ga,u,(w)dwjo'w"‘ ’Hf(w)‘ Gy u, (w)dw
and
[" ]1/2
{f Gua, (w)dwfu 5|6, (e)do]
whly, = - : 172 (B.7)

Guyiy()to [ [y ()44
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Expressions for approximating these coefficients, for wide-band inputs, can be

found in Der Kiureghian [1981] and Der Kiureghian and Smeby [1983]).

In the evaluation of the peak factors, the spectral moments Ag, Ay, and A;
are needed. This implies that the numerical effort for 1ncorporatipg lthe peak
factorsis eéuivalent to evaluating the response three times. Since the improve-
ment/in Lhe final results is usually small, the use of peak [actors is nol deemed

to be necessary in the practical implementation of the cross-cross floor spec-

trum method.
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