OPTIMAL RELIABILITY OF LIFELINE LEVEE SYSTEMS under multiple matural hazards

by
Jack R. Benjamin
Frederlck A. Webster

This materlal is based upon work supported by the National Sclence Foundation under Grant No. CEE 80-13038.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors anhd do not necessarily reflect the views of the National Sclence Foundation.

Table of Contents

Page

1. INTRODUCTION 1-1
1.1 Problem Statement and Summary 1-1
1.2 Levee Types 1-2
1.3 Report Organization 1-2
1.4 References. 1-3
2. HAZARDS CAUSING FAILURE 2-1
2.1 Types of Fallure 2-1
2.1.1 OvertoppIng 2-1
2.1.2 Stabllity 2-2
2.1.3 Mechanlcal 2-3
2.2 Causes of Fallure 2-4
2.2.1 Flood Depth. 2-4
2.2.2 Flood Exposure 2-10
2.2.3 Erosion. 2-13
2.2.3.1 External Erosion 2-13
2.2.3.2 Internal Erosion. 2-16
2.2.4 Settlement and Subsldence. 2-18
2.2.5 Earthquake 2-19
2.2.5.1 Inertla Load. 2-20
2.2.5.2 Liquefaction. 2-20
2.3 References. 2-24
3. STABILITY MODEL 3-1
3.1 Probabllistic Considerations. 3-1
3.2 The Baslc Three-Dimensional Model 3-2
3.3 Sensitivity Studies 3-6
3.3.1 Influence of Soll Parameter Varlabllity. 3-6
3.3.2 Influence of The Phreatic Surface 3-7
3.3.3 Influence of Landside Subsidence 3-8

Page

3.3.4 Riverside and Crest Erosion. 3-9
3.3.5 Rapid Drawdown 3-9
3.3.6 Horizontal Earthquake Acceleration 3-10
3.4 ComparIson of Present Study 3-10 with Vanmarck's Methodology
3.5 Woodward Island Studies 3-11
3.6 Conclusions 3-13
3.7 References. 3-15
4. SYSTEM ANALYSES AND SCENARIOS 4-1
4.1 Systems Analyses Applled to Levees. 4-1
4.2 Scenarios in Levee Systems Analysis 4-4
4.3 References. 4-6
5. CONSEQUENCES AND DECISION MODELING 5-1
5.1 Consequences. 5-1
5.2 Decision Making 5-3
5.3 References. 5-6
APPENDIX $A-1$

1.0 INTRODUCTION

1.1 Problem Statement and Summary

This report is concerned with the development of probabilistic performance data on levees and levee systems subject to multlple natural hazards. These probabllistlc data are designed to fit into rellabllity and consequence scenarlos useful in the making of declsions under uncertalnty for the design or rehabllitation of levees from landsilde, eroslon, overtopping, subsidence, earthquake ground motion, and other hazards.

The key Issue in the present study proved to be the estimation of probablilitles of fallure for an extended system (l.e., the probabliltles of different levels of performance must be prescribed in terms of the extent of the levee system). It was found that the probabllistlc fallure analysis of a conventional slip clrcie landslide fallure by itself Is insufflcient. Such analyses do not define the three dimensional extent of the fallure and do not conslder end effects. Vanmarcke (Ref. 1-1) solved this problem by consldering a cyllndrlcal fallure surface and the correlation of materlal propertles. Central to the three dimenslonal approach is the spatial correlation of materlal properties. Thls report extends the concepts of Vanmarcke to include an ellipsoldal fallure surface, multi-layered levee geometry and several types of hazards.

The research presented in this report was primarlly concerned with developing reasonable procedures to estimate system component probabllistlc forecasts and then using these forecasts in a declsion under uncertalnty type of analysis involving the use of scenarlos. It was found in practical engineering studles of an actual levee system that essentlal technlques are lacking in the ratlonal presentation of prob-

Abstract

abllistic information to decision makers who are concerned with the portion of the levee that might fall, the extent of fallure, the interactlons of hazards, the time to fallure, and the consequences of each Ilkely fallure sequence. It was also found that scenarlos are a natural and expedient way in which to present the information.

1.2 Levee Types

In general there are two baslc types of levee designs to consider:

- dry levees - levees which are in use only when a river overbanks (e.g., Mississlppl River levees);
- wet levees - levees which are almost continually holding back water, although the water level may vary conslderably (e.g., Sacramento-San Joaquin Delta levees).

Although they both are designed to withstand an extreme flood condition, thelr response to such flood conditions may be very different.

1.3 Report Organization

This report is organized as follows: Chapter 2 discusses the types of hazards and causes of fallure of levee systems; emphasls is placed on natural causes. Chapter 3 discusses development of the three dimenslonal probabllistic stabllity model and its uses to study the effects of different hazards. Two general levee proflles were consldered in the study. Proflle C (Flgure 1-1) is based on the idealized recommendation of the Corps of Engineers (Ref. 1-2). Proflle w (Flgure 1-2) was taken from an extensive geotechnical study of the levees of Woodward Island in the Sacramento-San Joaquin Delta area of Callfornla. These two proflles represent what are referred to as controlled and casual construction, respectively. Chapter 4 places the levee rellabllity problem in the context of systems analysis and declsion makers in the process of designing or rehabllitating levee systems.

1.4 References

	Vanmarcke, E.H., "Rellabllity of Earth Slopes," Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GTil,
	Nov. 1977, pp. 1247-1256.
1-2	Corps of Engineers, Design and Constuction of Levees, EM 1110-2-1913. Dept. of the Army, March 1978.
1-3	Ang, A. H., and C. Cornell, "Rellabllity Bases of Structural Safety and Design," Journal of the Structural Devision, ASCE, Vol. 100, No. ST9, Sept. 1974, pp. 1755-1769.
1-4	Baker, W. J., "Rellabllity Analysis and Optimlzation of Earth Slopes," Notes of Massachusetts Institute of Technology Summer Short Course on Rlsk and Decisions In Geotechnical EngineerIng, Cambrldge, Mass., E. H. Vanmarcke, ed., June 1976.
1	Ballgh, M., and A. Azzouz, "End Effects on Stability of Cohesive Slopes," Journal of the Geotechnlcal Engineering Division, ASCE, vol. 101, No. GT11, Nov. 1975, pp. 1105-1117.
1-6	Benjamin, J. R., and C. A. Cornell, Probabllity, Statistics, and Decision for Clvil Englneers, McGraw-Hill Book Co., Inc., New York, NY, 1970, pp. 251-253.
1-7	C. A. Cornell, "First-order Uncertalnty Analysis of Soll Deformation and Stabllity," Proc. 1st Int. Conf. on Applications of Statistics and Probablility In Soll and Structural Engineer, Hong Kong University Press, Hong Kong, 1971, pp. 129-144.
1-8	Lambe, T. W. and R. V. Whitman, Soll Mechanics, John Wiley and Sons, Inc., New York, NY 1969.
1-9	```Vanmarcke, E.H., "Probabllistlc Modelling of Soll Proflles," Journal of the Geotechnlcal Englneering Division, ASCE, Vol. 103, No. GT11, Nov., 1977, pp. 1227-1246.```
1-10	Vanmarcke, E.H., "Probabillstlc Stabllity Analysis of Earthslopes," Engineering Geology, Chapter 16, Elsevier Sclentific Publlshing Company, 1980, pp. 29-50.
1-11	Wu, T.H., "Uncertalnty, Safety, and Decision In Soll Engineering," Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT3, Mar., 1974, pp. 329-348.
1	Wu, T.H., and L.M. Kraft, "Safety Analysis of Slopes," Journal of the Soll Mechanics and Foundation Division, ASCE, Vol. 96, No. SM2, Mar., 1970, pp. 609-630.

1-13 Yuceman, M., W. Tang, and A. Ang, "A Probabllistlc Study of Safety and Design of Earth Slopes," Structural Research Serles No. 402, University of lllinois, Urbana, lll., July, 1973.

1-14 Yucemen, M.S. and E.H. Vanmarcke, "Selsmlc Reliablity Analysis of Earth Slopes," Proceedings Fourth International Conference on Applications of Statistics and Probablility in Soll and Structural Engineering, University di Firenze (Italy), Pitagora Editrice, 1983.

1-15 Lumb, P., "Application of Statistics in Soll Mechanics," Soll Mechanlcs - New Horlzons, Butterworth \& Co., London, England, 1974, pp. 44-111.

FIGURE 1-2 LEVEE PROFILE W WITH SOIL HORIZONS, COORDINATES (X, Y), AND ELEVATIONS

2. HAZARDS CAUSING FAILURE

2.1 Types of Fallure

In general, a levee system is sald to have falled when the protected area is flooded as a result elther of water crossing the line of the levee from the riverside or water not belng able to cross from the landside. The former fallure can occur by overtopping from the riverside of the levee or by structural fallure of the levee from hydrostatic pressure, piping, erosion, or earthquake. The latter fallure can occur when accessorlal facllitles (l.e., plpes, pumps, ponds, and valves) fall to prevent flooding from interlor dralnage or through seepage.

2.1.1 OvertoppIng

Overtopping is caused by a flood stage which is higher than the levee crest helght. Levee crest heights are usually designed to withstand specifled peak flood stage plus a margin of safety which is based both on hydrologic and hydraulic considerations. However, what the designed crest helght is and what the actual helght is may differ considerably over time due to subsidence, erosion, compaction, etc. Levees which are poorly malntalned will be more susceptlble to overtopping over a perlod of time, because crest helghts wlll decrease due to one or a comblnation of the above causes.

Flood stages for a given return perlod are uncertaln. Hydrologic parameters used to predict discharge are based on limited historic records or on no historlc data. Therefore, a level of uncertalnty exists in these parameters. In addition, uncertalnty exists in the
hydrology of the flood. Although standard hydraulle technlques exlst to predict flood proflles for given discharges, they are idealizations of a real world phenomenon which changes in time.

2.1.2 Stabillty

The stabllity fallure of a levee at some location along the length Is a problem in continuum mechanics, since the center of fallure may occur anywhere along a reach, and the fallure length can be almost any value within practical limits. In addition, the fallure surface or zone of slippage may be any one of an infinite number of possibilities although fallures may well be assoclated with a zone of weakness or a weak seam between two layers. Figure 2-1 lllustrates the above three random varlables, and indlcates the continuum nature of each. To compllcate the problem, the possible centers of fallure, the lengths of fallure, and the zones of sllppage are all correlated to some degree with each other.

The conventional practice in evaluating existing levees is to look first at what are thought to be the weakest cross-sectlons, at least from the polnt of vlew of geometry. Soll samples are taken at these "weak" polnts and minlmum factors of safety computed for a twodimensional slice of the levee. In addition, a few "typlcal" cross-sections may also be evaluated. However, a systematic attempt is not made to find cross-sectlons with low soll strength and the three-dimensional aspects of the problem are not considered.

The fallure problem of levees is analogous to the problem of a long rod subjected to an axlal load F. The rod has a cross section, A, which varles randomly along the length, and has a unit strength, f_{y}, whlch also varles randomly along the length. The comblnatlon of geometry and strength is then the determining factor of whether the rod ylelds or not at any polnt, x. The probablilty of yleld for the entire rod length, glven the load F, is then:

$$
P_{F}=\operatorname{Prob}\left[F \geq \operatorname{Min}_{\text {for all } x}\left(A(x) f_{y}(x)\right)\right]
$$

If the load F is also a random function of x (disregarding the issue of equillbrlum) then the probabllity of yleld becomes:

$$
P_{F}=\operatorname{Prob}\left[1 \geq \operatorname{Min}_{\text {for all } x}\left(\frac{A(x) f(x)}{F(x)}\right)\right]
$$

In the case of a levee silp fallure, the random varlables include the average shear strength, \bar{s}, over the sllp surface, the area of the slip surface, A, the radlus of rotation, R, and the driving moment (assuming a circular arc surface), M. These varlables are not only a functlon of the locatlon along the levee, but also the geometry of the cross section, the unit welghts of the materlals, and the angle of Internal frictlon. Thus, the probabllity of slip fallure is:

$$
P_{F}=\operatorname{Prob}\left[1 \geq \operatorname{Min}_{\text {for all } x}\left(\frac{\bar{S} A R}{M}\right)\right] .
$$

2.1.3 Mechanical

Although they are not considered to be in the realm of fallures due to natural causes, mechanical (and/or electrical) fallure of dralnage structures, closure structures, and pumping plant equipment have been Identifled (Ref. 2-1) as one of three major fallure types. These devices are simliar to other mechanical or electrical equipment and are subject to operation and malntenance requirements. The rellabllity and avallability of these ltems during flood events must be included in the overall system rellabllity model.

2.2 Causes of Fallure

Many fallures have been assoclated with clrcumstances or mechanlsms outslde conventional theoretlcal analysls. Most of these fallures occur not because of the inadequacles in the state of the art, but because of overslghts that could have been avolded, or poorly understood phenomena. The probabllities of fallure of levees could decrease if the causes not easlly analyzed were dealt wlth ratlonally by acknowledging and quantifylng the uncertalnty involved.

2.2.1 Flood Depth

Although there is no conslstent rational basis for doing so, most levee systems in the Unlted States are designed to withstand the 100year return perlod flood stage without overtopping. However, the 100-year return perlod flood cannot be predicted with certainty. Thls is due to a number of factors. The first ls the definition of the 100 -year flood. One hundred years is the return perlod or recurrence Internal for this flood level and is deflned as the average number of years within which this event will be equaled or exceeded. Since it is only the average number of years, there is approximately a 33 percent chance that the "true" number of years is less than 100.

Other factors which must be considered in predicting a glven flood stage are hydrologic and hydraullc uncertalnty. Hydrologic design is generally based on past events and any attempt to predlct future events must be based on probabllity. Haan (Ref. 2-2) has pointed out the the hydrologlc probabllity model may be ralnfall input to a hydraullc model, to predict runoff, or a flood level frequency curve based on historlcal stream flows. In the former, not only is there hydrologlc uncertalnty, but hydraullc modelling uncertainty as well.

To calculate the exceedance probabillty requires that the englneer select a probablilty model for maximum floods. Very often this distrlbution is assumed to be elther the extreme-value type 1 distribution or the log-Pearson distribution, fit to the avallable historlc data.

Uncertalnty exlsts in selecting the underlying distribution parameters, since the recorded data are only a sample of the population, and the sample statistics (average and standard devlation and coetficlent of skewness) are only polnt estimates of the "true" population mean and standard deviation and coefflclent of skewness.

The traditlonal engineering approach for considering uncertalntles Is to develop confldence limlts on the "true" model parameters, and then assume an arbltrarlly conservative value for each parameter based on a preselected confldence level. Thls approach has a serlous drawback, however, in that it results in the use of design values assoclated with unknown levels of conservatism.

A more rational approach for considering uncertaintles in predicting maximum floods is to treat the "true" parameters as random varlables (more precisely, as functions of random varlables, namely the maximum annual floods) with a distribution function $f(\theta)$ which may be updated by gatherling data (l.e., flood stage data for n years) and using Bayes' theorem (Ref. 1-6 and 2-3). Knowing the distrlbution of the model parameters, the unconditional exceedance probability for maximum annual flood magnitude, x, is computed using the total probability theorem:

$$
P_{x}=P[x \geq x]=\int_{\text {all } \theta} P[x \geq x \mid \theta] f(\theta) d \theta
$$

In words, the conditional probabllity, $\mathrm{P}[\mathrm{X} \geq \mathrm{x} \mid \theta$, which is computed using the assumed probablilty model, with parameters θ, $\mid s$ multiplied by the probabllity of those parameter values actually belng the "true" values, and this product is summed over all posslble values of the "true" parameters.

The joint distribution of the parameters may be based solely on subjective judgment, if there is no recorded data, or it may be the result of combining the sample likelihood function (likellhood of observing the recorded data) and a uniform or other prlor distribution. in this latter case, the posterlor distribution of the model parameters (the one which is used to compute the exceedance probabllity) is the product of three factors:

or

$$
f^{\prime \prime}(\theta)=N L\left(\theta \mid x_{1}, \ldots x_{n}\right) f^{\prime}(\theta), \quad \text { for all } \theta
$$

The normalizing constant, N, Insures that $f^{\prime \prime}(\theta)$ is a proper probablilty density function. Thus,

$$
N=\frac{1}{\text { all } \alpha\left(\theta \mid x_{1}, \ldots x_{n}\right) f^{\prime}(\theta) d \theta} .
$$

The sample likellhood function is a function of the model parameters, θ, and is written:

$$
L\left(\theta \mid x_{1}=x_{1}, \ldots x_{n}=x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}=x_{i} \mid \theta\right)
$$

where $f\left(\left.x_{i}\right|^{\theta}\right)$ is the assumed underlying distribution of maximum annual floods. For example, if the distributlon were assumed to be extremevalue type 1 (Gumbel), then the likellhood function would be written:

$$
L\left(m_{x}, \sigma_{X} \mid x_{1}, \ldots x_{n}\right)=\prod_{i=1}^{n} \alpha \exp \left\{-\alpha\left(x_{i}-u\right)-\exp \left[-\alpha\left(x_{i}-u\right)\right]\right\}
$$

where $\alpha=1.282 / \sigma_{X}$, and $u=m_{X}-0.450 \sigma_{X}$ (Ref. 2-4). The mode I parameters, m_{X} and σX are uncertaln.

Assuming a log-Pearson distribution, there would be three model parameters to consider, m_{Y}, σ_{Y}, and γ_{Y} (coefficlent of skewness), where $Y=\ln (X)$, and X is the maximum annual flood. The sample likelihood functlon for a log-Pearson probablility distribution is written:

$$
\begin{array}{r}
L\left(m_{y}, \sigma_{Y}, \gamma_{Y} \mid y_{1}, \ldots y_{n}\right)=\stackrel{n}{i=1}_{n} \frac{1}{|\beta| \Gamma(\alpha)}\left[\left(y_{i}-c\right) / \beta^{\alpha-1} \exp (y-c) / \beta\right], \\
\text { for } c \leq y_{i}<\infty \quad(\beta>0), \\
-\infty<y_{i} \leq c \quad(\beta<0),
\end{array}
$$

where

$$
\begin{aligned}
& \alpha=\left(2 / \gamma_{y}\right)^{2}, \\
& \beta=\sigma_{y} \gamma_{y} / 2, \\
& c=m_{y}-\frac{2 \sigma_{y}}{\gamma_{y}},
\end{aligned}
$$

and $I: \cdot$) is the gamma function.

If the probability of exceeding the maximum annual flood magnitude, x, in any one year is p_{x}, then the probabllity of nonexceedance in one year is $1-p_{x}$, and the probablilty of nonexceedance in m years is written:

$$
P_{x}\left[N E_{m}\right]=\left(1-P_{x}\right)^{m}
$$

Solving for m, the number of years for which there is a probabllity $P_{x}\left[N E_{m}\right]$ of not exceeding flood level x,

$$
m=\ln \left(P_{x}\left[N E_{m}\right]\right) / \ln \left(1-P_{x}\right)
$$

Conversely, the magnitude of the design maximum annual flood, x, corresponding to a specifled probablilty of nonexceedance in a specifled number of years, m, is found first by solving the above equation for p_{x} :

$$
p_{x}=1-\left(P_{x}\left[N E_{m}\right]\right)^{1 / m}
$$

Once p_{x} is plaked a trial and error procedure is used to determine \times from the unconditional probabllity.

Tang and Yen (Ref. 2-5) account for model uncertalnty by Introducing a multiplicative factor which has a mean and varlance. Unfortunately, no data is avallable regarding the varlablilty of this factor, and therefore the level of uncertainty is subjectlve. Although, intultively, we belleve that the fewer simpllfylng assumptions used in the adopted formulation the less uncertalnty in the model there will be.

Uncertalnty in flood discharges can be translated into corresponding uncertainty in flood stage using standard hydraullc technlques. Stream reaches with a high degree of hydraullc sensitivity (l.e., relatively great changes in stage results from a relatively small change in discharge) wlll have a greater tendency for levee overtopplng than less sensitive ones.

Other factors that must be assessed in the evaluation of the hydraullc uncertalnty are the potentlal and magnltude of debrls or sediment accumulation or lce jamming during the discharge event. Sources of debrls, sediment, and ice in upstream areas should be considered, as well as any historlcal evldence of lce or debrls blockage or sediment depositlon. The behavlor of such materlals within the leveed reach, and partlcularly at bends or constrictions, must be consldered.

Flood stages for a glven flow can change over time due to a varlety of factors, and any change will alter the hydrologic risk. Changes affecting flood stage include:

- Increased land use change that results in Increased runoff volumes, shorter times of concentration, and greater peak discharges for events having the same meteorologlcal characterlstlcs;
- removal of natural valley storage and conveyance due to excess encroachment in floodplains, including construction of levee systems, resulting in higher stages and discharges;
- construction of reservolrs that modlfy the flows so that historlcal records cannot be used for current rlsk assessment without hydrologlc reanalysis;
- changes to river bed or bank geomorphology or vegetative cover that signiflcantly alter stage-dlscharge relationshlps and flood elevations.

2.2.2 Flood Exposure

Even though levees are generally deslgned such that the probabllity of overtopping is small, levees exposed to flood stages lower than the crest for long duratlons are susceptible to damage and even fallure due to loss of stabllity, underseepage, sand bolls, and wave erosion. Bogardl (Ref. 2-6) Introduced the concept of "flood exposure" to take account of the comblned effects of flood stage and duration on levee systems. He defined flood exposure as the area under the hydrograph of hlgh water stages exceeding a specifled limlt, usually the toe elevation (for dry levees). At times of high water stages the following adverse phenomena have been observed along flood levees:

- saturation, loss of stability;
- underseepage and leakage;
- boll formation;
- wave erosion.

Saturatlon occurs generally by seepage below and laterally through the levee body by increased hydraullc pressure. Responding on the relative permeabllities of the levee materlal and substrata, seepage wlll occur elther more rapidly through the levee materlal, in which case stablility Is weakened and leakage is common, or through the substrata, in which case underseepage and boll formation with possible crevassing on the landside of the levee is likely.

Flood exposure is the function of two random varlables, flood stage and duration. To determine the resistance to such a load, it is necessary to perform stabllity analyses in which slope stablilty is calculated for a time dependent zone of saturation. Determining the
translent motion of the zone of saturation In an embankment can be time consuming and difflcult. An example from Reference 2-7 of the movement of the zone of saturation is shown in Figure 2-2a, with a typlcal saturation line secant-versus-time plot shown in 2-2b. A simplifled approach appears to be in order for use in determining levee stabllity. The two maln assumptions made in this approximation are:

- the time required for full saturation can be estimated, if permeabllity and porosity data are avallable for the levee, materlal;
- the shape of a moving saturation IIne in a homogeneous section Is independent of the soll permeabllity, provided the permeabllity remains constant along the moving saturation ilne.

The shape of the zone of saturation may be determined from translent flow nets, and depends on embankment geometry, initlal and final water depth, and Inltial phreatic surface. For our purposes it is adequate to model the moving zone of saturation as a stralght line, making an angle with the riverside slope of the levee, as shown in Figure 2-3. The equation of IIne $A B$ is given in terms of $\theta(t), \alpha$ and d :

$$
n(x, t)=\frac{x}{\tan [\theta(t)-\pi / 2-\alpha]}+d
$$

This equation assumes that the moving surface is a stralght Ilne rotating about point A.

From Reference $2-7$ the time required for the saturation line to move through each incremental distance $\Delta \mathrm{l}$ is written:

$$
\Delta t=\Delta I / v_{s} I
$$

where:

$$
\begin{aligned}
v_{s i}= & k l / n_{e}, \\
k= & \text { permeability, } \\
n_{e}= & \text { porosity, } \\
= & \text { average hydraulic gradient } \\
& \text { in the incremental distance, } \Delta l .
\end{aligned}
$$

The total time to complete the saturation is written:

$$
T=\Sigma \Delta t=\frac{n_{e}}{k} \Sigma \frac{\Delta 1}{i}
$$

Using this method, Cedergren (Ref. 2-7) developed a graph for approximating the time of saturation of earth structures in the general shape of a levee or dam (see Figure 2-4). The chart shown in Figure 2-4 is based on an effective porosity of 0.25 and $h=1$ foot, and neglects caplllarlty. To estimate the time of saturation of a levee, the time determined from Flgure 2-4 is multiplled by the height in feet of the final water stage above the initlal water stage. Note that in order to apply this procedure to the levee problem in the manner described, it is necessary to make the following approximations:

- the inltial phreatic surface acts as an Impervious surface and motion of the saturation line is as shown in Figure 2-3;
- the length, L, is measured from the point where the inltial water stage intercepts the rlverside slope to the landside toe of the levee.

Stabllity of the levee at any time after the onset of a flood exposure event can then be determined.

Immedlately following a flood event for which a rapid decrease in flood stage occurs, stabllity of a levee may be compromlsed due to the changing shape of the zone of saturation. During a rapld drawdown, the saturatlon line may be obtalned by the translent flow-net method (Ref. 2-7), which considers a succession of translent flow nets. Browzin
(Ref. 2-8) proposed a mathematical model of the time dependent nature of the saturation line shown in Figure 2-5. The proposed relationshlp is written:

$$
t_{H}=\frac{c n_{e}}{2 k} L C_{1}\left(\frac{H_{1}}{H}\right)+C_{2} \text { in } \frac{H}{H_{1}}+C_{3}\left(1-\frac{H}{H_{1}}\right),
$$

where $n_{e}=$ effective porosity,

```
    k = coefficlent of permeablilty,
```

and coefflclents C_{1}, C_{2}, and C_{3} are found from Figure 2-6. The factor c is introduced to correct posslble blases resulting from assumptions made, and ranges from about 0.9 to 1.4 . The shape of the saturation Ilne is assumed to be elliptlcal, so that:

$$
\frac{h^{2}}{H^{2}}+\frac{x^{2}}{a^{2}}=1
$$

Solving these equatlons at time, t_{H}, after the end of a flood exposure event will allow us to determine the stabllity of the levee as a function of time.

If the levee falls, flooding of the protected area would happen only it a second flood event occurs before the levee is repalred. Otherwlse, this type of fallure would not be the cause of flooding.

2.2.3 Erosion

2.2.3.1 External Erosion

External erosion of levees is generally caused by elther wind-wave action, or flow velocity (scourling). In the case of wind-wave action Bogardi (Ref. 2-9) descrlbes the hazard to the levee in terms of a critical degree of protection. The following development of the distribution function for this load is from Reference 2-9.

The flood stage, h_{1}, and the additional wave effect, h_{m}, result in the total helght, h_{T}. The value, h_{m}, is composed of the wave helght due to wind plus run-up on the slope. The task is to determine the distrlbution function of the random varlable, ht_{t}, where:

$$
F\left(h_{T}\right)=F\left(h_{1}+h_{m}\right)
$$

The model assumes that the random varlables, h_{1} and h_{m}, are independent. The distribution function of the annual highest stages, h_{1}, is assumed to be known and avallable from characterlstic stream gauges. For the calculation of wave effect, h_{m}, the baslc relationship is the following:

$$
h_{m_{i}}=f\left(D_{i}, v_{i}, \tan \alpha, \cos \beta\right), \quad \text { (See Figure 2-7). }
$$

Therefore, referring to the notation given in Figure 2-7, the wave effect on the cross section due to the wind having direction S depends on the corresponding fetch length, D_{1}, wind velocity, v_{i}, angle of levee slope, and the angle between the tangent of the levee and the examined direction. For the sake of simplicity only the most important variables have been mentioned.

In practice, the Inundation area along the flat-slope reaches of large rlvers is several kllometers wide. For these conditions the flood wave peak may last several days and during this perlod the water level changes very little. Thls justifles approximating the stochastic flood wave hydrograph by a constant peak value of random duration. Obvlously, the highest waves occuring during this perlod may create the critical erosion situation.

From past records covering several years of wind measurements of the meteorological stations situated in the vicinity of the investigated levee section, maximum wind velocitles for different directions (for Instance for the elght maln directions) and for different durations could be used. According to the above relationshlp, the maximum wave
effect for different directions can be calculated for the critical perlod. The hlghest of these glves one sample element of h_{m}. Naturally, the probabllity of the yearly hlghest waterlevels occurring in different months of the year should be consldered and the distributlon of the wave effect, corresponding to the monthly critical perlod should be welghted with the approprlate probabillties.

Other types of external erosion are caused by excessive stream veloclty, unstable streambed, and channel conflgurations which contribute to water flows impinging on levees and causing scour. When bank protection is subjected to stable currents, then surface erosion will occur when the tractlve force produced by flow veloclty exceeds the critical tractive force for levee surface protection. In addition, waves caused by unstable streambed formations near the levee, or flow Impingement on the levee produce uplift pressures in comblnation with stream veloclty and can cause surface eroslon when tractive forces are smaller than critical. Consequently, when bank protection is designed for flow veloclty alone and signiflcant waves occur along the bank, surface erosion may occur for flows substantlally less than the deslgn flow.

Scour may be the result of unforeseen clrcumstances. An example is glven in Reference 2-10, which descrlbes a levee fallure caused by scour. Naturally carrled sediments were deposited upstream of a channel Inlet, and, subsequently, sediment-free water was dellvered to a rather steeply sloped reach. This was responslble for general streambed degradation downstream of the channel. In addition, channel meandering resulted in flow impingement on the levee causing deep scour at the riverside toe. The angle of implngment was estimated to be approximately 25 degrees.

Wide streams which are free to meander will have polnts and angles of impingement which are uncertaln and should be addressed in design using probabilitles.

Turnbull and Mansur (Ref. 2-11) made the following observations regardling underseepage and sand bolls:

- sand bolls are the result of excessive hydrostatic pressure and seepage through deep pervious strata underlylng levees severlty is dependent upon the water head, source of seepage, perviousness of substratum, and characterlstics of the landside top stratum;
- there is a positive correlation between surface geology and location and occurrence of sand bolls;
- seepage flow and hydrostatic heads landward of a levee can be estimated theoretically, from plezometrlc data, and a knowledge of the foundation conditions.

Fallure due to seepage is progressive. Seepage under or through a levee applles pressure to the soll particles, and if the pressure is great enough to carry or 11 ft the particles, a sand boll or pipling of materlals from below or within the levee occurs. Plping, or sand bollIng, does not In Itself constitute fallure of the levee, however. Elther slope instabillty or the phenomenon of crevassing must occur as a result of piping in order that a levee fall from seepage. Turnbull and Mansur (Ref. 2-11) made the statement that "although a number of levee crevasses have occurred as a result of critlcal substratum pressures and concentrated seepage in the form of sand bolls or piping it is practically impossible to predict." It, however, data related to underseepage and crevassing does exlst, it appears possible to predlct the occurrence of crevassing probabilistically, given the occurrence of piping or sand bolls.

A pre-flood event condition whlch also influences the occurrence of plping or bolling is the amount and avallablity of substratum storage capaclty on the landside of the levee. If a large storage capaclty is avallable and a flood occurs, there may be a lag time of several days before seepage problems occur, slmply because the substratum storage
volume must be fllled before the pressure under the top stratum can be bullt up. By that time the flood may have disslpated. On the other hand, if the storage volume is already filled or nearly filled by previous storms, seepage related problems may be colncident with the present flood event.

Seepage flow and hydrostatic heads landward of a levee can be estlmated from theoretical conslderations, plezometrlc data and knowledge of the underlying strata. Obvlously the accuracy of such methods dependens on the degree of uncertalnty in the parameters used in the formulations and the sensitivlty to those parameters excluded.

Not all factors which influence the seepage flow and pressure lend themselves to theoretical analysis. Some of these factors include stratification of the foundation, lense deposits, and nonunlformity of the top stratum. However, some of the influences which may be evaluated are as follows:

- semi-Infinlte unconfined aquifer (Ref. 2-12) - for a sudden rlse In the water stage from an Inltial steady state level of H_{0} to H_{1} (See Flgure $2-8 a$), the change in head at a point x away from the river bank is written:

$$
h^{2}(x, t)=H_{0}^{2}+\left(H_{1}^{2}-H_{0}^{2}\right) \operatorname{erfc}\left(\frac{x}{2 \sqrt{D t}}\right)
$$

where:

$$
\begin{aligned}
D & =\left(k_{f}-h\right) / E, \\
k_{f} & =\text { hor } \mid z o n t a l \text { permeablilty of aquifer, } \\
h & =0.5\left[H_{0}+h(x, t)\right], \\
E & =\text { specific yleld of aquifer, } \\
\text { and erfc } & (\cdot) \text { is the complementary error function; }
\end{aligned}
$$

- finite unconfined aquifer (Ref. 2-12) - for a sudden rise in the water stage from an initlal steady state level of H_{0} to H_{1} in the river (See Figure 2-8b), the change in head at a point x away from the river bank is written:
$h^{2}(x, t)=H_{0}^{2}+\left(H_{1}^{2}-H_{0}^{2}\right){\underset{n}{ }=0}_{\infty}^{\infty}(-1)^{n}\left[\operatorname{erfc}\left(\frac{2 L n+x}{2 \sqrt{D t}}+\operatorname{erfc}\left(\frac{2 L n+2 L-x}{2 D t}\right)\right]\right\}$,
where L is the horizontal distance from the river bank to the barrler boundary.

Another cause of Internal erosion, and one which does not readily lend itself to analytical evaluation, is anlmal burrowing and activity (Ref. 2-13). Burrows of animals (squirrels, beavers, muskrats) in levees may Increase seepage and provide a path for water to flow during high water stages.

2.2.4 Settlement and Subsidence

Levees depend to some extent on freeboard to compensate for the lowerling of crest helght due to settlement and subsidence. It was pointed out in Reference 2-1 that levees with minimal or no compaction, or where embankment or foundation materlals are undralned or composed of materlals of high compressibllity, wlll often experlence a signiflcant amount of postconstruction settlement. This settlement can result in losses of freeboard as much as 15 percent of the total levee height. These settlement losses will contribute to increased chances of overtoppling and/or stabllity problems.

Another very Important hazard which causes fallure of some types of levees (particularly levees protecting highly organic lands used for agriculture) is subsidence of the levee and protected areas. In one study of the Sacramento-San Joaquin Delta area (Ref. 2-14), subsidence rates for islands and tracts protected by levees is as much as three

Inches per year. These subsidence rates have resulted in protected lands belng below normal water levels by as much as 10 to 20 feet, thereby increasing the pressure on levees significantly.

Prlmary causes of subsidence were found to be soll oxidation and shrinkage. Additional causes, some of which may be substantial in locallzed areas, are wind erosion, burning, man-caused compaction, removal of soll, geologic (tectonlc) subsidence and withdrawal of gas or ground water.

2.2.5 Earthquake

Earthquake ground motion can cause sllding fallure elther as a result of the change in materlal mechanical propertles by liquefylng, and/or an increase in loading by lmposing an addition driving force in the horlzontal direction.

Other possible lmpacts on levees resulting from earthquake ground shaking Include (Ref. 2-15):

- compaction and settlement of levees or foundations;
- lateral spreading of levees or foundations;
- slumping;
- ground cracking;
- lurching of levees;
- eroslon or overtoppling by earthquake generated waves (selches).

The potential hazards caused by earthquakes are greatest during high water when levees are already under high stress. The llkellhood of such a combination of events is greatest for wet levees in areas such as the Sacramento-San Joaquin Delta. However, Mississippl River levees during flood season are also vulnerable for extended perlods of time.

2.2.5.1 Inertla Load

The acceleration of the soll in an earthquake is another potential source of fallure. Conventionally, the soll is simply assumed to be accelerated and this is an added driving force. With levees, the posslbllity of site amplification and the influence of water entrapped in the levee must be considered. The site amplification analysis requires a first mode approximation for the levee as a shear beam above the soll level where the ground motion is assumed Imposed. Levee proflles will In general involve relatively long perlods for casual construction, such as found in the Sacramento-San Joaquin Delta. Engineered fills, such as earth dams, produce stiffer materlals and thus shorter perlods along with decreased abllity to deform without cracking.

2.2.5.2 Liquefaction

At this time, the state of knowledge of llquefaction does not allow the definition of the volume of materlal that loses its strength through increase in pore pressure. Hydraulically placed sands, for example, can lose thelr strength (friction) with a sufficient level or duration of vibration or both. One measure of the potential to fall is the number of blow counts it takes to move a standard probe one foot in the field. In effect, if the soll is highly likely to liquify, the blows of the sampling device on the soll will indicate this potentlal and the number of blows per foot wlll be small.

Liquefaction is an "either-or" phenomenon; either it does or does not occur for a glven earthquake motion at a given site. Apparently, only sandy solls are prone to Ilquefaction, and it must, therefore, be determined whether a site has susceptible soll.

Seed and ldriss (Ref. 2-16) and more recently Seed, Idriss, and Grango (Ref. 2-17) presented a simplifled procedure for evaluating the llquefaction potentlal for sand deposits. The procedure expresses the ratlo of the average cycllc shear stress, τ, developed as a result of earthquake ground motion to the effective over burden stress, σ_{0}^{\prime}, In terms of the maximum acceleration felt at the site. The relationship is written:

$$
\tau_{h} / \sigma_{0}^{\prime} \simeq 0.65 a_{m} \frac{\sigma_{0}}{\sigma_{0}^{1}} r_{d}
$$

```
where: \(a_{m}=\) maximum ground acceleration,
    \(\sigma_{0}=\) total overburden pressure,
    \(\sigma_{0}^{\prime}=\) effective overburden pressure,
    \(r_{d}=\) is a stress reduction factor varying from 1.0 at ground
        surface to 0.90 at 30 feet and 0.75 at 50 feet.
```

Values of this ratlo are then correlated with site soll parameters, such as the corrected standard penetration test (SPT) data for sites whlch have and have not llquifled durling earthquake. The SPT data is the number of blow counts per foot of penetration at different locations and depths. The correlated blow count is written:

$$
N_{1}=C_{N} N
$$

where

$$
\begin{aligned}
\mathrm{C}_{\mathrm{N}}= & \text { the correction factor as a function of overburden } \\
& \text { pressure, } \\
\mathrm{N}= & \text { Standard penetration test (SPT) blow count at the } \\
& \text { particular polnt in the fleld belng investigated. }
\end{aligned}
$$

The SPT blow counts, N, whlch measures resistance to llquificatlon, varles from point to point within a layer. This means that for a given earthquake load, portions of a layer may liquify, whlle other portions may not. A useful tool in the probabllistic slope stabllity analysis of a levee section or reach would be an estimate of the percentage of a layer which ilquifles during a given earthquake event. If, for example, 50 percent of a layer Ilquifles durling a partlcular ground motion, then the average shear strength of the whole layer for use in the slopestabllity analysls would be halved.

The dellneation between the soll resistance that is adequate, and that which is inadequate, to prevent Ilquefaction for a glven ground motion is shown in figure 2-9. Thls dellneation was emplrically developed from fleld observations. The Ilne of demarcation between Ilquefaction and non-liquefaction is obviously not fixed and could be consldered a random varlable, with the 1 ine shown in Figure 2-9 simply representing a mean value relatlonshlp between the strength parameter, N_{1}, and the cycllc stress ratlon causlng llquefaction.

The llnear portion of the mean value relationshlp is written:

$$
m_{N_{1}}=87.7 \tau_{h} / \sigma_{0}^{\prime}
$$

Assuming a coefficlent of variatlon of 0.20 , the standard deviation of N_{1} is:

$$
\sigma_{N_{1}}=(0.2)(87.7) \tau_{h} / \sigma_{0}^{1}=17.5_{\tau_{h}} / \sigma_{0}^{1} .
$$

With this information, field data on the distrlbution of SPT blow counts In a given layer, and the distribution of σ_{0}^{\prime}, the probabilities of varlous percentages of a layer llquifying may be estimated for a glven maximum ground acceleration. For example, the probabllity of at least 50 percent of a layer Ilquifylng given an earthquake ground acceleration, a_{m}, and effectlve overburden is written:

$$
P\left[N_{1 R(50)}-N_{1 L} \leq 0 \mid a_{\max }, \sigma_{0}^{\prime}\right]=\int_{N_{1 R(50)}}^{\infty} f\left(N_{1 L} \mid a_{\max }, \sigma_{0}^{\prime}\right) d N_{1 L},
$$

where

$$
\begin{aligned}
N_{1 R(50)}= & f i f t y \text { percentile corrected blow count as measured in } \\
& \text { the fleld, } \\
N_{1 L}= & \text { the corrected blow count corresponding to } \\
& \text { liquefaction for a given ground acceleration. }
\end{aligned}
$$

One such fleld study determined that the distribution of SPT blow counts In a sand layer was such that $N_{1 R(25)}=7.56, N_{1 R(50)}=10.8, N_{1 R(75)}=$ 16.2, and $N_{1 R(100)}=41.0$. The mean value of $N_{1 L}$ for σ_{0} equal to 1,640 pounds per square foot was estimated to be 11.9 , with a standard deviation of 2.38. Assuming a normal distribution and an earthquake with a_{m} $=0.2 \mathrm{~g}$, there is a 99.97 percent chance that at least 25 percent of the layer llqulfles. There is a 99.7 chance that at least 50 percent of the layer liquifles. There is a 94.6 percent chance that at least 75 percent of the layer liquifles, but there is only a 0.02 percent chance that 100 percent of the layer will liquily.

If earthquakes are a hazard to a particular levee system, then this type of Informatlon becomes a necessary bullding block in the overall selsmic rlsk assessment.
2-1 Water Technologles Board, National Researh Councll, A Levee Pollcy for the National Flood insurance Program, Natlonal Academy Press, Washington, D.C., 1982.
2-2 Haan, C. T., "Adequacy of Hydrologic Records for Parameter Estimation," Journal of the Hydraulles Division, ASCE, HY8, August 1972, pp. 1387-1393.
2-3 Vicens, G. J., Rodrlguez-1turbe, J. C. Schoake, "A Bayeslan Framework for the Use of Regional information in Hydrology," Water Resources Research, Vol. 11, No. 3, June 1975, pp. 405-4 14 .
2-4 Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus, Hydrology for Engineers, 2nd ed., McGraw-HIll Book Company, N.Y., 1975, pp. 338-373.
2-5 Tang, W. H., and B. C. Yen, "Hydrologic and Hydraulic Design Under Uncertalnties," International Symposium on Uncertainties in Hydrologic and Water Resource Systems.
2-6 Bogardi, 1., "Flood Exposure Recommended as a Parameter For Describing the Fatlque Loading on Flood Control Structures," Bulletin of the International Association of Sclentific Hydrology, Vol. 3, 1968.
2-7 Cedergren, H. R., Seepage, Dralnage, and Flow Nets, 2nd ed.,John Wiley and Sons, New York, 1977.2-8 Browzin, B. S., "Nonsteady-State Flow In Homogenous Earth Dams AfterRapid Drawdown," Proceedings Fifth international Conterence on SollMechanics and Foundation Englineering, Parls, July 1961, pp. 551-554.
2-9 Bogardi, 1., "Hydrologlc, Hydraullc, Soll Mechanlcal and Meteorological Aspects of Models Devised For Determining the Degree of Protection Offered by Flood Levees," Bulletin of the International Assoclation of Sclentific Hydrology, Vol. XVI, September 1971, pp. 45-49.
2-10 Report on Levee Fallures and DIstress San Jacinto River Levee and Bautista Creek Channel, Riverside County, Santa Ana River Basin, Callfornla, prepared for U.S. Army Engineer District, Los Angeles, August 1980.
2-11 Turnbull, W. J., and C. 1. Mansur, "Investigation of Underseepage - Mississippl River Levees," Journal of the Soll Mechanics and Foundations Division, ASCE, SM4, August 1959, pp. 41-93.
2-12 Marlno, M. A., "Water-Table Fluctuation In Semipervious Stream -Unconfined Aquifer Systems," Journal of Hydrology, 19, North-Holland Publlshing Company, Amsterdam, 1973, pp. 43-52.
2-13 Department of Water Resources, Findings and Recommendations Based on the Inspectlon of Delta Levees During October 1980, State of Callfornla, December 1980.
2-14 Welr, W. W., "Subsldence of Flat Lands of the Sacramento-San Joaquin Delta," University of Callfornla Report as summarized by Agricultural Extension Service, San Joaquin County, August, 1980.
2-15 Department of Water Resources, Central Distrlct, Selsmiclty Hazards in the Sacramento-San Joaquin Delta, State of Callfornia, October 1980.
2-16 Seed, H. B., and 1. M. Idrlss, "Simplifled Procedure for Evaluating Soll Liquefaction Potential," Journal of the Soll Mechanlcs and Foundations Division, ASCE, Vol. 97, No. SM9, Sept. 1971.
2-17 Seed, H. B., Idriss, 1. M., and I. Arango, "Evaluation of Llquefaction Potential Using Fleld Performance Data," Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 3, March 1983.

FIGURE 2-1 POSSIBLE STABILITY FAILURE MODES

FIGURE 2a TIME MOVEMENT OF ZONE OF SATURATION

FIGURE 2b SATURATION LINE SECANT-TIME PLOT

FIGURE 2-3 SIMPLIFIED SATURATION LINE - TIME MODEL

FIGURE 2-4 TIME TO COMPLETE SATURATION

FIGURE 2-5 SATURATION LINE FOR RAPID DRAWDOWN

FIGURE 2-6 COEFFICIENTS FOR RAPID DRAWDOWN

FIGURE 2-7 LEVEE EROSION PARAMETERS

FIGURE 2-8a SEMI-INFINITE UNCONFINED AQUIFER

FIGURE 2-8b FINITE UNCONFINED AQUIFER

FIGURE 2-9 LIQUEFACTION RELATIONSHIP TO BLOW COUNTS

3.0 STABILITY MODEL

3.1 Probabllistic Considerations

During the course of this study probabilistlc stabllity models were developed for both circular arc and wedge-type landsilde fallures in three dimensions. The initlal work on the probablilty model utllized a Corps of Engineers levee geometry (see figure 1-1). Two levee proflies from Woodward Island in the Sacramento-San Joaquin Delta were also studled (Flgures 3-la and b). Woodward Island geotechnical Investigations produced a large amount of soll and cross-section geometry data. These data included 10 cross sections with surface geometrles and soll proflles, as well as phreatic surface locations. Data from numerous bore holes were obtalned and the soll propertles of each soll horlzon were estlmated from these data. Parameters for the Woodward Island soll horlzons are listed in Table 3-1. The correlation of cohesion and the tangent of the angle of internal friction was not estimated.

The analysis of the bore hole data indicated that the varlation in the parameters for each soll horlzon is random. Data for each soll horlzon were combined to obtaln the estimated means and coefficlents of varlation listed in Table 3-1. The correlation of soll propertles along the levee was estimated based on the assumption that each palr of data was jointly normally distributed with a correlation coefficlent that decayed exponentlally with the distance between the sample points. The sample likellhoods for each pair of data polnts were multiplled and the constant term in the exponentlal decay expression was determined by maximizing the sample likellhood.

Uncertalnty in the estimate of this decay parameter is large, but not unreasonable, given the type of casual construction and rehabllltation of the Woodward Island levees over the past 100 years, or so. A second case study (Ref. 3-1) Indlcates smaller coefflclents of varlation to be characteristic of carefully controlled engineered construction.

A computer program was developed (see Appendix) which obtains the probabllity of landsllde fallure of glven length along a levee. Characteristics of the program are discussed In Section 3.2. It is noted that this program was designed to provide reasonable estimates of fallure probabilitles for use in levee systems analysis. It was not developed to compete with varlous other computer programs whlch estimate safety factors in conventional geotechnlcal studies.

The probabllity model significantly extends that used by Vanmarcke (Ref. 3-1) by virtue of Including, not only a cylindrical, but also an ellipsoldal shape of the sllp surface. In addition, the model has the abillty to conslder wedge fallures that do not Include passlve earth pressure, and Includes posslble hydrostatic and ground acceleration effects from earthquakes.

3.2 The Baslc Three-DImensIonal Model

The essential characteristics of the analytlcal model are shown in Figure 3-2, using levee Proflle C, (Flgure 1-1). A clrcular arc fallure surface is assumed to exlst perpendicular to the levee axis. The arc may intersect the soll on the rlverslde of the levee proflle below the water surface so that hydrostatic load may exlst. The arc of the clrcle can be made very large to approxlmate a wedge-type of fallure. Note that this is not a general wedge fallure analysis, since it does not include passlve earth pressure influence at the toe. Single silces
can be consldered or the fallure surface can be assumed to be elther cyllndrical or ellipsoldal in shape in the direction of the levee axis. The model also Includes the posslble influence of a horizontal acceleratlon to approxlmate earthquake effects through the use of a static coefficlent.

For analysis, the levee is divided into segments, as shown in Figure 3-2. Sllces through the levee are consldered as shown. Each vertical prism of soll above the assumed fallure surface $1 s$ treated in turn in the analysis. A soll prism can contaln up to five soll horlzons. A horlzon can be damp, saturated, or a damp portlon can occur above a saturated portion as deflned by the phreatlc surface. The mean and varlance of soll denslty (damp and saturated), coheslon, tangent of the angle of Internal friction, and the influence of pore pressure are considered in the analysis for each horizon in accordance with Lambe and Whitman (Ref. 3-2). It is assumed that during fallure all segments are fully mobllized along the fallure surface so that the block of soll inltially moves as a rigid body.

The simplicity of the model is advantageous in that it allows the consideration of both circular arc fallures and wedge-type fallures in one model for several conditlons, Including hydrostatic loads, horlzontal acceleration loads, varlatlons in the phreatic surface, varlations In geometry, rapid drawdown, and fallures in both the riverside and landslde faces.

A mean safety factor and a probabllity of fallure assuming that the random varlable "safety factor" is lognormally distributed are computed for each analysis. Inltlal studles utillzed a normally distrlbuted safety factor; but when It was observed that the coefficlent of varlation of the safety factor was large for some solls (see Table 3-1), a change was made to the lognormal model.

Results of one such analysis are shown in Figure 3-3. Note that the probabllity of fallure generally decreases with an increase in the mean safety factor, but there are exceptions. As a consequence of the increase in varlance, the probablilty of fallure can increase whlle the mean safety factor increases, and vice versa. It is also important to note that an infinite number of possible fallure surfaces exist, each with lts own probabllity of fallure. The propertles of the fallure surfaces are highly correlated so that the most critlcal fallure surface is the one with the largest probabllity fallure, not the smallest mean safety factor. Many fallure surfaces can senslbly have the same probabllity of fallure. Thus, critical zones of fallure exist rather than a single critical surface, or arc, as determined in conventional analyses. That is, if probabllitles of fallure are rounded-off to values conslstent with the uncertalnty in the data, many different fallure surfaces have the same likellhood of fallure.

Fallure probabllitles are conditional on the radil and centers of rotation of the slip surfaces. To find the unconditional probabllity of fallure, the total probablility theorem is used:

$$
P[F]=\sum_{a \| 1} P\left[F \mid S_{i}\right] P\left[S_{i}\right]
$$

where S_{1} is silp surface, i. Although $P\left|S_{1}\right|$ is unknown, the unconditional probablility of fallure is just the weighted average conditlonal probabllity of fallure, given s_{l}, and wlll always be less than the maximum conditional probabllity of fallure:

$$
P[F] \leq \operatorname{Max}_{\operatorname{all} S_{i}} P\left[F \mid S_{i}\right]
$$

Therefore, a conservative and simple approximation to the probabllity of slip surface fallure is to determine the maximum conditional probability by trial and error and use that.

The very large varlabillty in the safety factor was also of interest. The coefficlent of varlation of the safety factor was on the order of 0.6 to 0.7 for the materlal properties Ilsted in Table 3-1. This magnitude of the coefficlent of varlation precluded the use of the normal distribution to model the safety factor. Note that the coefficlent of varlation of the safety factor was domlnated by the coefficlent of varlation of cohesion.

Using the developed model, the analysls of a levee sectlon conslsts first of a search of possible centers of silp and radil based on a single sllce. The analysis then considers the extent of fallure. Typlcal results are shown in Flgures 3-4 and 3-5. The most likely fallure length is one of the basic results of this type of analysis.

Vanmarcke (Ref. 3-1) used level crossing theory in examining the extent of fallure. This study uses the concept of a critical length. The critlcal length is defined as that length beyond which correlations essentially need not be consldered. If a levee is 5,000 feet in length and the critical length is 1,000 feet, then flive critical lengths exist In the levee and five Bernoulli type trials may be considered in estimating the landslide fallure probabillty of the 5,000 foot system. The critical length is necessarlly subjectively deflned, but it is a useful intuitive approximation in systems analysis because of its basic simplicity.

3.3 Sensitivity Studies

The analytical model is complex, and involves many parameters, depending on the number of soll horizons considered. it is, therefore, useful to examine the results of an analysis as a function of the propertles of key parameters in an effort to identify the dominant ones as well as posslbly reduce the amount of fleld data. The mean of a property is easler to estimate with adequate rellablilty than the varlabllity. However, the coefflcient of varlation may be typlcal of the partlcular class of soll, whlle the mean varles and can be establlshed wlth a few samples.

With the large number of parameters in even a proflle with two layers, the sensltivity study was limited to levee Proflle C with a cylindrical fallure surface analysis and two soll horlzons. Each soll horlzon is characterized effectively by four parameters, the damp and saturated densitles, the coheslon, and the tangent of the angle of internal frictlon. The difference between damp and saturated conditions for the latter two parameters was not consldered. The objective of the sensitivity study was to Investigate the influence of different levee varlables, as well as the varlabllity of each of the soll parameters on the mean safety factor and probabllity of fallure, since it is the most difflcult value to estimate. Landslde subsidence conditions and varying phreatlc surfaces were consldered.

3.3.1 Influence of Soll Parameter Varlabllity

As expected, the shape of the fallure probabllity curves is not altered by changes in the coefficients of varlation of the soll parameters. The coefficient of varlation of the cohesion had a significantly larger influence than those of the other parameters. This is conslstent with the observed influence of the cohesion on the safety factor for the solls considered.

The influence of the coefficlent of varlation of cohesion on the probablllty of fallure is shown in Flgure 3-4. Here, all other coefficients of varlation are equal to 0.2. Similarly, the Influence of the coefflclent of varlation of the tangent of the Internal friction angle Is shown in Figure 3-5. The dominance of cohesion in the strength propertles of the levee materlals is shown by the relative magnitudes of the probabillty of fallure.

In summary, the influence of a change in the coefficients of varlation of all the other soll parameters (density, frictlon) was less than that of cohesion.

3.3.2 Influence of The Phreatlc Surface

Studies were made of the influence of the phreatic surface using levee Proflle C (Figure 1-1). In the first set of analyses, the phreatic surface was located at five different levels, from the crest of the levee on the riverside to below the levee in the subsoll, as shown in Figure 3-6. The soll properties for the levee horlzons are given in Table 3-2.

Analyses were made assuming both cylindrical and ellipsoldal fallure surfaces, as dlscussed in Section 3.2. The probabllity of landsllde fallure and its corresponding mean safety factor were calculated as a function of phreatlc surface location and fallure length measured along the levee.

The steady state Influences of phreatic surface location are shown In Flgures 3-7a,b,c, and d. The assumption of a cylindrical fallure surface are deplcted In Figures 3-7a and 3-7b. Probabllitles of fallure are seen to be very sensitive to the location of the phreatic surface, whereas the mean safety factor ls relatively less varlable. Note that the probablilitles of fallure are on a logarlthmic scale In Figures 3-7b. End zone contribution to the total resisting moment is seen to decrease
with Increase in rupture lengths. Simllar results were obtalned assuming an ellipsoldal fallure surface, Flgures 3-7c and 3-7d. Note that the zone of "most likely" fallure length is narrower with an ellipsoldal fallure surface than with a cyllindrlcal fallure surface and that this zone broadens greatly for higher phreatlc surfaces.

The influence of a rapid rise in the phreatic surface was also studied. If, for example, the water level rlses rapldly from elevation 7.3 feet to 18.2 feet as shown in Figure 3-8, the phreatic surface as a function of time can be approximated by several stralght lines. Analyses were made of the probabilitles of fallure and safety factors for both cyllindrical and ellipsoldal fallure surfaces. The results are shown In Flgures 3-9a,b, c, and d. Note that the time between Inltlal and final phreatic surfaces depends on the permeabllity and geometry of the cross section.

3.3.3 Influence of Landside Subsidence

To study the Influence of subsidence on fallure (using a cyllndrical fallure surface), analyses were made with two different phreatic surface conditions and flive landside subsidence conditions. The geometry conflguratlons used are shown in Figure 3-10a and the results of the analyses are shown in Figures 3-10b, c, and d. The probabllity of fallure for maximum subsidence was almost 50 percent greater than for the original conflguration.

3.3.4 Riverside and Crest Erosion

Studies of levee slope stabllity as a function of both riverside and crest erosion were made using levee Proflle C. The water surface was assumed to be at the top of the levee. The crest erosion conditions considered are shown In Flgure 3-11. It was found that the effect of both riverside and crest erosion on the probabllity of fallure was minimal. This is intuitively obvious in the sense that a change of between 0.5 and 1 foot near the center of a 20 to 30 foot high earth structure or on one face wlli not slgnificantly affect any of the terms in the reslsting moment or driving moment equations.

3.3.5 Rapld Drawdown

Two different phreatic surfaces (FIg. 3-12a) were assumed prlor to a rapld drawdown in order to examine riverside levee slope stablilty. Levee Proflle C (Flgure 1-1) was used in the analysis along with a cyllndrlcal fallure surface. Drawdown was analyzed in accordance with Reference 3-2. The results of the analyses are shown In Figure 3-12b, and c. The relatively high probabillty of fallure due to a complete drawdown condition shows why it is cause for concern in geotechnical engineering. The difference in "most likely" rupture lengths is due to the greater coefficlent of varlation in the safety factor for the higher phreatic surface.

3.3.6 Horlzontal Earthquake Acceleration

The influence of a horlzontal earthquake acceleration of 0.05 g on levee Profile C was studied using both a cylindrlcal and an ellipsoldal fallure surface. Four different phreatic surface conditlons were considered (Figure 3-6). The analysis was accomplished by a silght modIflcation of the computer program to include horlzontal Inertia forces from each segment of each soll column in the soll mass. The inertial effects of the water on the riverside face of the levee were not considered.

The results of the studles are shown in Figures 3-13a and b for the two fallure surface assumptions. The effect of an earthquake acceleratlon is to Increase the probablility of fallure for the different phreatic surfaces by an almost constant amount. The probabllity of fallure approximately doubles and the mean safety factor is reduced by a factor of about two as a consequence of a 0.05 g horlzontal acceleration.

3.4 Comparison of Present Study with Vanmarcke's Methodology

As a check on the developed analytical methodology, an example presented by Vanmarcke (Reference 3-1) was studled. The methods differ In the correlation decay function, but are otherwise similar. Vanmarcke assumed an exponentlal decay using the square of the distance between locations, whlle thls study assumes a linear relationship with distance In the exponential decay. The difference between the two decay functions is not large from a practical polnt of view, since the two functions employ different coefflclents. The analytical model employed in the present study also includes a further Ilnearlzation of the Influence of correlation of materlal properties.

Jack R. Benjamin \& Associates, Inc. Consulting Engineers

The levee profile used in the comparison is shown in figure 3-14a and the soll propertles are glven in Table 3-3. The tirst analysls was made without a phreatic surface (dralned levee condition) using a cyllndrical as well as an ellipsoldal fallure model. A conventional slip-circle analysis was also made. The mean safety factor was computed at 1.17.

Using the data presented in Table 3-3 and a 250 foot long cylindrical fallure surface, the mean safety factor was found to be 1.21, and the probabllity of fallure was calculated to be 0.090. This probablity Is compared to 0.086 calculated by Vanmarcke. Using an ellipsoldal fallure surface and a rupture length of 300 feet, the probabllity of fallure was 0.049 and the mean factor of safety was 1.30. Figure 3-14b Is a plot of the probablilty of fallure versus fallure length for the two fallure surface assumptions. Figure 3-14c contains a similar plot for mean satety factor.

3.5 Woodward Island Studles

Limited analytical studies were made for two levee cross sections of Woodward Island. The geometrles are shown In Figures 3-1a and b. The soll properties for both sections were assumed to be the same for the same soll horizons.

The first part of this study examined the Influence of the soll property varlations on the safety factor and the probabllity of fallure. As expected, it was found that the most critical fallure surfaces, as deflned by the largest probabllity of fallure, depended on both the mean safety factor and the varlablllty of that factor so that the crltlcal fallure surface was not necessarlly assoclated with the minimum safety factor.

Although the minimum safety factor may not define the "most likely" fallure surface, it is important to note that a fallure zone exists in which many surfaces have very similar fallure probabllities. This belng true, from a practical engineering point of view, it is not necessary to determine the mathematically critical surface, since any arc in the broad fallure zone wlll have sufflclently similar propertles for engineering purposes.

Typlcal analytical results are shown in Figures 3-15a,b,c, and d, In which the mean safety factor and the probabllity of fallure are plotted agalnst fallure length. It is seen that the influence of the flood level, on the mean safety factor is much smaller than it is on the probabllity of fallure.

The probabillty of wedge fallure along the base of the levee had an extremely small value, beyond the range of valldity of the baslc data.

3.6 Conclusions

- The levee length beyond which correlation Influences can be neglected is herein called the critical length. This length is based on the decay of the probabllity of fallure wlth fallure length. Each such critical length in a levee reach can be consldered to be independent in response to the hazards or loads. The critical length Is a convenient approximation in the analysis of system performance.

A "most llkely" fallure length exists in each critical length of levee, but this length is not sharply deflned. Many lengths have about the same probabllity of fallure. Similarly, a wide varlety of sllp-surface descriptlons have about the same probabillty of fallure. A shorter "most likely" fallure length zone is assoclated with an assumed ellipsoldal fallure surface, whlle a longer length is assoclated with a cyllndrical fallure surface.

- The probabllity of fallure is a better Index of safety than the safety factor, if the silp surface penetrates through solls with differing propertles and large varlabilitles. The difference in characterlstlcs between an ellipsoldal and a cyllndrlcal fallure surface depends on the soll propertles. Dlfferences are more pronounced with highly varlable soll horlzons.
- Small varlations in levee geometry have a minor Influence on stablllty.
- Small varlatlons in the location of the phreatlc surface have a minor Influence on levee performance. Large varlations in phreatlc surface, as Induced by a long term Increase In water level or a rapld drawdown, result in major increases in the probabllity of fallure.
- Sensitivity studies Indicate that the varlabllity of the safety factor and thus the probablilty of fallure in these studies is domInated by the large varlabllity of the coheslon. Minor varlabllities can be neglected. It appears llkely that the coefflclent of varlation of soll propertles can be estimated subjectively from two factors, the natural varlablllty of the soll and the degree of control evidenced in levee construction. Casual construction is assoclated with much larger coefficlents of varlation than carefully controlled engineered construction.
3.7 References

3-1 Vanmarcke, E.H., "Rellabllity of Earth Slopes," Journal of the Geotechnical Englneering Division, ASCE, Vol. 103, No. GT11, Nov. 1977, pp. 1247-1266.

3-2 Lambe, T.W. and R.V. Whitman, Soll Mechanlcs, John Wiley and Sons, Inc., New York, N.Y., 1969.

Table 3-1
 WOOOWARD ISLAND SOIL PROFILE PARAMETERS

Horizon 1	Horizon 2	Horizon 3	Horizon 4	Horlzon 5
Mean COV				

Damp Density (pcf)	95.0	0.10	90.0	0.10	65.0	0.10	105	0.10	125	0.10
Saturated Density (pct)	42.6	0.10	37.6	0.10	7.60	0.10	47.6	0.10	62.6	0.10
 Cohesion (pcf) 150 0.70 200 0.45 150 0.60 200 0.35 160	0.30									
Tangent [Angle of Intemal Friction]	0.532	0.30	0.445	0.30	0.510	0.30	0.625	0.30	0.649	0.30

SOIL PROPERTIES FOR PHREATIC SURFACE STUDY

	Top Horlzon		Bottom Horlzon	
	Mean	cov	Mean	cov
Damp Unit Welght (pcf)	95.0	0.13	90.0	0.43
Submerged Unit Weight (pcf)	32.6	0.70	27.6	1.1
Cohesion (pst)	250	0.70	240	0.20
```Tangent [Angle of Internal Friction]```	0.51	0.16	0.4	0.60

## Table 3-3

## SOIL PROFILE PARAMETERS FOR VANMARCKE'S EXAMPLE

Horizon 1	Horlzon 2	Horlzon 3	
Mean Cov	Mean	COV	Mean Cov


Damp Density (pcf)	130	0.05	115	0.05	110	0.05
Saturated Density (pcf)	132.5	0.05	115	0.05	110	0.05
Cohesion (pst)	0.001	0.01	1000	0.18	480	0.18
Tangent [Angle of   Internal Friction]	0.84	0.20	0.001	0.10	0.001	0.10







FIGURE 3-4 PARAMETRIC STUDY: INFLUENCE OF COEFFICIENT OF VARIATION OF COHESION ON PROBABIIITY OF FAILURE (CYLINDRICAL FAILURE SURFACE)


FIGURE 3-5 PARAMETRIC STUDY: INFLUENCE OF COEFFICIENT OF VARIATION OF TAN $\emptyset$ UiN PROBABILITY OF FAILURE (CYLINDRICAL FAILURE SURFACE)

Jack R. Benjamin \& Associates, Inc. Consulting Engineers


FIGURE 3-6 LOCATION OF PHREATIC SURFACES (PS) USED IN LONG TERM ANALYSES


FIGURE 3-7a EFFECT OF LONG TERM PHREATIC SURFACE LOCATION ON MEAN SAFETY FACTOR (CYLINDRICAL FAILURE SURFACE)


FIGURE 3-7b EFFECT OF LONG TERM PS LOCATION ON PROBABILITY OF FAILURE (CYLINDRICAL FAILURE SURFACE)



FIGURE 3-8 INITIAL, INTERMEDIATE, AND FINAL PHREATIC SURFACES USED TO STUDY THE EFFECT

Jack R. Benjamin \& Associates, Inc.


FIGURE 3-9a EFFECT OF RAPID RISE IN PS ON THE PROBABILITY OF FAILURE FOR A CYLINDRICAL FAILURE SURFACE



FIGURE 3-9c EFFECT OF A RAPID RISE IN PS ON THE PROBABILITY OF FAILURE FOR AN ELLIPSOIDAL FAILURE SURFACE NOTE THE SHARP PEAK RELATIVE TO FIGURE 3-9a.

Jack R. Benjamin \& Associates, Inc.


FIGURE 3-9d EFFECT OF A RAPID RISE IN PS ON THE MEAN SAFETY FACTOR FOR AN ELLIPSOIDAL FAILURE SURFACE


FIGURE 3-10a CONFIGURATIONS USED IN THE STUDY OF LANDSIDE SUBSIDENCE


FIGURE 3-10b EFFECT OF LANDSIDE SUBSIDENCE ON THE PROBABILITY OF FAILURE


FIGURE 3-10c EFFECT OF LANDSIDE SUBSIDENCE, $\triangle$, ON THE PROBABILITY OF FAILURE FOR A CYLINDRICAL FAILURE SURFACE AND THE UPPER PS


FIGURE 3-10d EFFECT OF LANDSIDE SUBSIDENCE, $\Delta$, ON THE PROBABILITY OF FAILURE FOR A CYLINDRICAL FAILURE SURFACE

FIgure 3-11 CREST EROSIONS CONSIDERED


Jack R. Benjamin \& Associates, Inc. Consulting Engineers


FIGURE 3-12b EFFECT OF RAPID DRAWDOWN ON PROBABILITY OF FAILURE FOR A CYLINDRICAL FAILURE SURFACE


FIGURE $3-12 \mathrm{c}$ EFFECT OF RAPID DRAWDOWN ON MEAN SAFETY FACTOR FOR A CYLINDRICAL FAILURE SURFACE


FIGURE 3-13a EFFECT OF PSEUDO SEISMIC LOADING ON PROBABILITY OF FAILURE FOR VARIOUS PS LOCATIONS, CYLINDRICAL FAILURE SURFACE


FIGURE 3-13b EFFECT OF PSEUDO SEISMIC LOADING ON PROBABILITY OF FAILURE FOR VARIOUS PS LOCATIONS, ELLIPSOIDAL FAILURE SURFACE

FIGURE 3-14a GEOMETRY USED IN VANMARCKE'S EXAMPLE

Jack R. Benjamin \& Associates, Inc. Consulting Engineers


FIGURE 3-14b INFLUENCE OF FAILURE SURFACE ASSUMPTION ON PROBABILITY OF FAILURE WITH VANMARCKE'S EXAMPLE


FIGURE 3-14c INFLUENCE OF FAILURE SURFACE ASSUMPTION ON MEAN SAFETY FACTOR FOR VANMARCKE'S EXAMPLE $\qquad$

figure 3-15a ifffuence of flood level on probability of failure FOR WOODWARD PROFILE \#1


FIGURE 3-15b INFLUENCE OF FLOOD LEVEL ON MEAN SAFETY FACTOR FOR WOODWARD PROFILE \#1


FIGURE 3-15c WOODWARD PROFILE \#2

Jack R. Benjamin \& Associates, Inc.


FIGURE 3-15d WOODWARD PROFILE \#2

### 4.0 Systems Analysis and Scenarlos

### 4.1 Systems Analysis Applled to Levees

Levee systems consist of components, such as embankments broken down Into subreaches), hardware (e.g. closures, pumps, etc.), and operation and maintenance personnel. The system is surrounded by a physical and social environment, and suffers from aging.

Henley and Kuromoto (Ref. 4-1) polnt out that there are two basic approaches for analyzing causal relations in a systems analysis: forwards and backwards. Forward analyses start with fallure events and try to Identify all possible consequences. Fallure events are generally related to:

- human error, such as design error, operator error, malntenance error or neglect;
- materlals problems, such as low strength;
- the environment, such as earthquakes, subsidence, animal burrowing, flooding, etc.

On the other hand, backward analyses begln with a posslble system fallure (e.g., levee breach) and trace backwards searching for possible causes.

Event and decision trees are forward analyses, whereas backward analyses are typlfled by the fault tree. Generally, both of these approaches are used cooperatively to attain a complete systems rellablilty analysis. The backward analysis is used to identify the causal relationshlps leading to a speciflc fallure, the fallure being the top event of the fault tree (levee breach). The forward analysls assumes
different sequences of events and specifles a number of scenarlos ending In the system fallure. The Information which must be developed in order to write good scenarlos are component layout, component fallure characterlstics and system speciflcations.

Component fallures are classlfled as prlmary fallure, secondary fallures, or command faults. A primary fallure occurs when a component is in a non-working state caused by natural aging (e.g., eroslon, subsidence, etc.) and in need of repalrs to return to the working state. $A$ primary fallure may occur at loads below the deslgn allowable load condition. A secondary fallure is the same as a primary fallure except that the fallure is due to excessive demands caused by such events as earthquake, water stages greater than the design flood level, etc. In the terminology of fault tree analysis, primary and secondary fallures are known as baslc fallures. Note that these fallure classiflcations may be dependent. For example, If an earthquake shakes a levee whose materlal strength has been weakened over the years by rodents, or eroded by wave action, then the fallure is a comblnation of primary and secondary events.

A command fault is deflned as a component belng in the non-working state due to improper operation. For example, a closure is not closed In time to prevent a less than design flood from inundating behind a levee, or a closure is inadvertently closed causling water from a tributary behind a levee to flood the protected area.

An example of how multiple, dependent hazards can be handed for a levee is given by Ducksteln and Bogardi (Ref. 4-2). They present a methodology for determining the rellabllity of levee systems which takes Into account four types of fallure hazards: overtopping, subsoll fallure (bolls), slope stabllity, and erosion. The loads include peak flood level, duration, and volume. The flood helght can be assumed constant but random at all sectlons, or varying according to backwater effects and wind waves.

The resistance of each section is then determined for each of these loads and 15 expressed in terms of the flood parameter that triggers the fallure. Resistance values are determined by direct measurement (levee proflles, soll properties) and analysls (seepage, stablilty). in general, the flood parameters governing these four types of fallure are different.

The rellabllity model outlined In Reference 4-2 takes Into consideration the stochastlc character of the flood load, the random resistance of each section of the levee reach, and the different modes of fallure. Fallure of a levee section occurs if elther:

```
h > H;: overtopping,
h > H2: subsoll fallure (bolls),
h > H3 and w > W: slope stablllty fallure,
h + x > X: wave erosion,
where h = peak flood level,
w = flood exposure (the area of the stage
 hydrograph),
x = wave helght and run-up,
H1}=\mathrm{ crest helght,
H2}=\mathrm{ flood helght corresponding to onset of bolls,
H3,W = respectively, the smallest necessary flood helght
 and the largest allowable flood exposure for
 slope stablllty fallure,
X = the highest dynamlc water level (peak static
 level + wave + run-up) necessary for erosion
 fallure.
```

The fallure event is for a given levee section written as:

$$
\left.F=\mid h>H_{1}\right] \cup\left[h>H_{2}|\cup| h>H_{3} \cap w>W\right] \cup[(h+x)>x \mid .
$$

For ease of computing the fallure probabllity the fallure event can be divided into disjoint events:

$$
F=A \cup B \cup C \cup D,
$$

where

$$
\begin{aligned}
& A=\left\{h \leq H_{3}|\cap| h+x>x\right) \mid, \\
& \left.B=h \geq m \ln \mid H_{1}, H_{2}\right], \\
& C=\left[H_{3}<h \leq m \ln \left(H_{1}, H_{2}\right) \mid \cap(h+x>x \mid,\right. \\
& D=\left\{H_{3}<h \leq m \ln \left(H_{1}, H_{2}\right)|\cap| h+x \leq x|\cap| w>w \mid .\right.
\end{aligned}
$$

Subdividing the levee Into subreaches, each with its own fallure event deflned, the system fallure event is then deflned as:

$$
F=F_{1} \cup F_{2} \cup \cdot \cdot F_{n}
$$

Letting

$$
\begin{aligned}
H & =\min \left(H_{1}, 1, H_{2,1}\right), \\
H_{3} & =\min \left(H_{3}, 1\right), \\
t & =\min \left(W_{1}\right), \quad \text { for } H_{3}, 1<n<H,
\end{aligned}
$$

the conditional probabllity of fallure of the levee system, glven $\mathrm{H}_{\mathrm{H}} \mathrm{H}_{3}$, and $t$, Is written:

$$
P_{F \mid H, H_{3}, t}=1-F_{h}(H)+\int_{H_{3}}^{H} f_{t}^{\infty} f(h, w) d w d h .
$$

### 4.2 Scenarios In Levee Systems Analysls

Scenarlos are simply a serles of events that we Imagine happening In the future. We construct scenarlos in our every day lives, but rarely are they as developed or elaborate as those prepared by researchers working for the government or industry for military, politlcal, and economic forecastling.

The term "scenarlo writing" denotes a technique which attempts to set up a loglcal sequence of events in order to show how, starting from the present (or any other given) situation, a future state might evolve,
step by step. For the purposes of technologlcal forecasting, time does not always have to be introduced expllcitly, but may only be intervals of time, such as one year, ten years, etc.

Scenarlo writing is partlcularly sulted to dealing with several aspects of a problem more or less simultaneously that may be interrelated. By the use of a relatively extensive scenarlo, the analyst may be able to get a "feel" for events and for the branching polnts dependent upon critical cholces. These branches can then be explored more or less systematically.

Scenarlos force the analyst to deal with detalls and dynamics which he might easily avold treating if he restricted himself to abstract conslderations. Typlcally, no particular set of the many possible sets of detalis and dynamics seems especlally worth treating, so none are treated, even though a detalled investigation of even a few arbitrarlly chosen cases can be helpful.

Varlous methods have been employed to structure scenarios, Including morphological analysis, event-tree analysis, cross-impact analysis, bralnstorming, etc., and yet the one whlch appears to be most useful to decision makers regarding levee systems is the event tree. Not only can environmental events be constructed, technologlcal events and consequential events can also be evaluated.

### 4.3 References

4-1 Henley, E. J. and H. Kuromoto, Rellabllity Engineering and Rlsk Assessment, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1981.

4-2 Ducksteln, L. and 1. Bogardl, "Appllcation of Rellabllity Theory to Hydraullc Englneering Design," Journal of the Hydraulics Division, ASCE, Vol. 107, No. HY7, July, 1981.

4-3 Bowles, D. S., L. R. Anderson, and R. V. Canfleld, "A Systems Approach to Risk Analysis for an Earth Dam."

### 5.0 CONSEQUENCES AND DECISION MODELING

### 5.1 Consequences

Flooding is natural. However, when flooding comes in contact with developed areas, losses occur. Efforts to mltigate flood losses take many forms including flood-plain construction of levees. Flood-plaln management should undertake to minlmize the costs assoclated with floodplain occupancy by optimizing the inltial cost of development, the cost of flood protection, the cost of residual flood damage, and the cost of rellef and rehabllitation.

Tangible benefits from flood mitigation Include prevention of flood damage and land enhancement from more intensive use of protected land. The primary benefit from prevention of flood damage is the difference in expected damage throughout the llfe of a land use project with and without flood mitigation. Primary benefits include decrease or elimination of:

- costs of replacing or repalring damaged property;
- costs of evacuation, rellef, and rehabllitation of victlms, and emergency flood-protectlon measures;
- losses resulting from disruption of business;
- loss of crops, and/or cost of replanting crops.

Unfortunately, levee constuction activitles often encourage overdevelopment in flood hazard zones, thereby increasing the potentlal consequences when and If a levee is breached or overtopped durlng storm run-off.

Reference 5-1 states that there are approximately 160 milli an acres of land In flood plains, with more than 6 million dwellings and structures. In a recent six-year perlod there occurred 193 major natural disasters, of these approximately 80 percent Involved flooding. it has further been estlmated (Ref. 5-2), that levee overtoppling or fallure is Involved in approximately one third of all flood disasters. in 1978 the total flood damage was estimated at 3.8 bllllon dollars, and the average annual property loss durling the $1970^{\prime}$ s was 1.7 billion dollars.

In an example of a single Incident, a recent break in a SacramentoSan Joaquin Delta levee flooded 6,100 acres of prime farm land to a depth of twelve feet, causing an estimated direct loss of 10 milli in dollars (Ref. 5-3). The cost of closing the breach and dewatering the protected land was estlmated at 6.6 mllli ill dollars, with a crop loss estlmated at 3.25 mlll lion dollars. It was further estimated that 210,000 tons of quarry rock and 340,000 cublc yards of slit will be required to close the 600 foot long by 85 foot deep breach.

In addition to the direct consequences of property damage and repalr costs, there are many indirect consequences whlch should not be overlooked in the overall flood mitigation declsion process. For example, a simllar break in another Delta levee caused 11,000 acres to be Inundated by 150,000 acre-feet of water (Ref. 5-4). The inrushing water allowed salt water to encroach on the Delta from Sulsan Bay. In an attempt to flush the salt from the Delta, since many communltles rely on the Delta waters for fresh water, state and federal water projects began to release addltional fresh water from surrounding reservoirs and curtalled fresh water pumping for consumptlon. Within ten days over 300,000 acre-feet of water were released from reservolrs in order to cleanse the Delta and restore the hydraullc barrler between fresh and salt water. Even with this large Inflow of extra water, the Delta could not be entlrely flushed and the bulk of the salt had to be removed over the next several weeks by pumping. In additlon, unmeasurable damage was caused to the San Franclsco and Delta fisheries, wildlife, and water users in southern Callfornla. Although the Sacramento-San Joaquin Delta

Is unlque among levee systems, this example indicates that the consequences of levee fallure may be felt by many diverse interests both near and far, and that the planning of new levees or rehabilltation of existIng levees necessitates the incluslon of all consequences, not just the obvious ones.

### 5.2 Decision Making

Consequences are varlable with magnitudes assigned probabllitles of occurrence. For example, the length and depth of a breach cannot be known ahead of time. Repalr costs are a function of these dimensions and are, therefore, uncertaln. Often, only the expected value of these consequences is estimated, with no indicatlon of the varlablilty in the estimate. For expected value decision making this procedure is adequate. However, If there is any degree of rlsk aversion in the declsion making body, it is essentlal to estimate the varlability, as well as the expected value.

The impact of the difference between expected-value declsion making and risk-adverse decision making is lllustrated in the following example. Suppose there are two different Insurance situations the Federal insurance Agency (FIA) can find itself in. The first is a situation in which the fiA is asked to Issue flood Insurance pollcles for a community of 10,000 homes which is protected by a levee designed to the l00-year flood (disregarding the geotechnical rlsk of fallure at a lower level, the chance of overtopping is any year is 0.01). The probable number of times this communlty will be flooded in the next five years, for example, is governed by the binomial distribution. If a flood does occur in this communlty, all 10,000 homes wlll be flooded (the chance of this happening at least once in a flve-year perlod is 0.049). If each is insured to 100,000 dollars, this represents a potentlal loss to FIA of $1,000,000,000$ dollars. However, from an actuarlal point of view, we find that the expected number of damaged homes over a five-year perlod is only 500, representing an expected
monetary loss of $50,000,000$ dollars. Thus, the actuarlal premlum should be 1,000 dollars per year on the average for each homeowner in this commun ity.

In the second situation, the FIA is asked to insure homes In five separate communltles, geographlcally independent from one another, each WIth 2,000 homes and each protected by a 100-year levee. In a five-year perlod, the probable number of times any one of these communitles will be flooded is again governed by the binomlal distribution. As with the first situatlon, If a levee is overtopped, all 2,000 homes in that communlty will be flooded. Therefore, over a five-year perlod the total expected number of damaged homes in the flve communitles is 500 with an expected monetary loss (assuming 100,000 dollars per home) of $50,000,000$ dollars, just as in the first situation. However, the chance of floodIng 10,000 homes or more in the five-year period drops dramatically to 0.000044 .

Although there is a greater chance of some homes flooding in the second case ( 0.22 vs. 0.049 ), there is a much greater chance of sustalning catastrophic levels of monetary loss in the first case 10.049 vs. 0.000044 ). Therefore, a relatlvely new Insurance program, such as the National Flood Insurance Pollcy (NFIP), with an unestablished reserve to cover the type of catastrophic loss represented by the first situation, should be adverse to the extreme rlsks implicit in the use of the expected monetary value approach.

The graph in Flgure 5-1 shows two utllity curves representing two different rlsk attitudes. The stralght line represents an expected value utillty curve and is the rational one to use if a large enough reserve were avallable. The curved Ilne represents a typlcal rlsk adverse utllity curve and is the type that should be used to establlsh Insurance premlums for a new insurance program. If a rlsk adverse utillty curve were adopted, It would mean that the insurance premiums in the first situation should be higher than the second situation, or that the required levee design level in the first situation should be more

```
restrlctlve than in the second, or both. Requiring that the design
level of the levee in the flrst case be such that the chance of the
catastrophlc loss is the same as in the second case would mean a deslgn
flood equal to the 100,000 year event. Economlcally, this may not make
sense, and a more balanced solutlon would be more approprlate (also note
that the uncertainty in determining the 100,000-year event is tremen-
dous). In elther case, If no flooding occurs over a perlod of years and
the reserve is bullt up, the utility curve for NFIP approaches the
expected monetary loss value.
```


### 5.3 References

5-1 AlA Research Corporation, Deslgn Guldellnes for Flood Damage Reduction, Federal Emergency Management Agency, Washington, D.C., 1981.
5-2 National Research Councll, A Levee Pollcy For The National Flood insurance Program, National Academy Press, Washington. D.C., 1982.
5-3 "Callfornla Levee Break Costly," Engineerlng News Record, McGraw-Hill, September 2, 1982 (p.18).
5-4 Teerlnk, J.R., "The Delta Experlence With A Drought And Levee Fallure", presented to the Callfornla Water Commission, Sacramento, September 1, 1972.
5-5 Linsley, R. K., and J. B. Franzinl, Water Resources Engineerlng, Second EdItion, McGraw-HIII Cook Company, 1972, pp. 602-632.


FIGURE 5-1 UTILITY CURVES

## A. APPEND $1 \times$

## A. 1 Levee Stabllity Computer Programs

These computer programs were developed on the Hewlett-Packard 85 and 86 computers in Baslc language. Program SLOPE 86 inputs the levee geometry and horizon materlal properties. Program SEEK86EQX searches for the critical clrcle in a given levee conflguration. Program SUPERSTB, calculates the probabllity of fallure and corresponding safety factor for a levee with rupture length, $L$, for elther a cyllndrical or ellipsoldal fallure surface. The programs SEEK86EQX and SUPERSTB have the capabllity to analyze hydrostatic and/or earthquake effects, the latter beling accounted for by the inclusion of a horlzontal load from a constant pseudo-earthquake acceleration.

The basic analytical methodology for determinatlon of the mean factor of safety is simple and conventional, but several important assumptlons of a probabllistic nature are made that need a brlef explanation. First, in calculating the effective weight of a soll prism composed of several soll horizons and an estimated phreatic surface, the mean effective density of each successive layer from the top down to the fallure surface is used as in conventional analysis. The varlance of welght is simultaneously calculated from the mean density, the coefficlent of varlation of denslty, and the geometry with the additional assumption that the successlve random varlables (welght) are perfectly correlated. In the levees of primary interest, this appears to be a reasonable assumption, but there are no data to support the assumption of unity correlation coefficlent.

The computations for each successive soll prism yield cohesion capacity along the inclined fallure surface (mean and variance), friction capaclty (by comblning the mean and varlance of with the mean and
varlance of the tangent of the angle of Internal friction, assuming Independence between the welght and the frlctlon propertles), and loadIng influence (mean and varlance). The analysis Involves a great many soll prisms and each has its own mean and varlance for each of the above factors. For simplicity, it was assumed that the coefflclent of variatlon of total mass was about the same for all prlsms so that the mean coefficlent of varlation of all of the soll prisms could be used to characterlze the entire soll mass. The problem here is one of unknown correlation of propertles from prism to prism.

Owing to the large coefflclents of varlation of the soll properties, the safety factor was assumed to be lognormally distributed. With solls whose propertles have a small coefflclent of varlation, of the order of 0.2 , the safety factor can be assumed to be normally distrlbuted.

Finally, some fleld data on the varlation of soll properties along the levee were avallable. It was assumed that each test borlng represented about 100 square feet in horlzontal area or a square about 10 teet on a side. The correlation coefflclent of soll propertles between 10 foot square areas of soll was assumed to be of the form $\exp (-C X)$ in whlch $C$ was taken to be 0.015 , based on a maximum Ilkellhood estimate using palred data. $X$ is the distance between prisms in units of 10 teet.

```
10 FEEM **SLOFEBo** : MARCH 6, 19EG
2G FEM FFEFAFE EMEANAMENT SECTJON FOF [ALCLLATION
ZO OFTION BAGE 1
4# COm z(5.400),N(5,400, X(400),Y(400),W(400), SHOFT U(400),V(400).H(400),F0(4i
;
4E COH SHORT G1(5),G2(5),T(10),C(10),V1(10),V2(5),VE(5),V4 (10)
5O FFINTEF IS 4O1,8O
E. MASS STOFAGE IS ":DTOG"
EE ON KEY# 1:"1: FAW-GEO" GOTO 90
OC ON FEY# 2*"2) FRO-GEO" GOTO &1O
6" ON KEY# 3."\Xi) IN-SOIL" GOTO 16GO
64 ON KEY# 4,"4) SEEFEQX" GOTO 22OO
65 DN FEY# 5."E)SUFEFSTE" GOTO 81
7G CLEAF: D IIGF "CONT 7O" G) KEY LAFEL D WAIT 5OOO a GOTO 7O
BC FEM
81 CHAIN "SUFEFSTE"
8E FEM
C! ! ***** GEOFOリ *******
10O S FEAD FGW GEOTVIETFY OF EMEAN&FENT SECTION
11O CLEAF G FFINT i FFINT iD FFINT
129 N0=999 क N M=-999 क
13" DISF "INFUT COOFDINATES"
140 OTSF "10O FAIFS MAX, ENT UITH QQ%.O"
1EO FOF J=1 TO 9%
160 UISF "X(":I:") Y(:":I;")"
170 JNFUT X:I) Y(I)
189 IF X(J)=09% THEN 250
190 IF X(I)&MO THEN MO=X!I)
200 IF X(I)MM THEN MS=X(J)
2jO IF Y(I)YYO THEN YO=Y(J)
2-0 FFEINT USING 2GO : I.XiI),Y(I)
2O NEXT I
240 X(1)=999 क Y(J)=0
```



```
2GO IMAGE 2X,2D.5x,4D.DD.5X.MDD.DD
27% MAT N=ZEF
28G FOF I=1 TO 5
20% DISF
उO) DIGF "INFUT EOUNDAFY":I:" END WITH OQg"
30 FOF I=1 TO 2O
\Xi2", DJSF "N(";T:"*":J;")":
SO) INFUT N(I,J)
O4O IF N(I,J)=099 THEN OTO
OG NEXT J
Z6N(1.J)=999
3%N2=N2+J
BB NEXT I
SOH NS=INT ((N1*2+N2)/SO)+2
40% FOR I=1 TO 21.
41% FFINT LSING 4%O ; N(1.I).N(2,I).N(O,I),N(4.I),N(G,I)
420 NEXT I
4GO INAGE 7(4D)
442 GOSUE 147%
455, ASSIGN# 1 70 F里
40% FFIINT汼 1 : "FAAW SEE GEO",MO.MG.YO
47, FOF I=1 TO N1
48` FFIINT# 1. : X(I).Y(1)
Reproduced from
49% NEXT I
Reproduced from
```

5OG FOF 1=1 TO 5
510 FOF J=1 TCI 21
5工G FFINT\# 1 ; N(I,J)
5SO IF N(I,J)=799 THEN 5EO
54G NEXT J
5EO NEXT I
555 FFTNT "FAW DATA GTOFED UNDEF NAVE: "Fक:G FFINT
SGG ASSIGN\# 1 TO *
57G MASS STGRAGE IS ":D7OO"
5EO FFINT
600 GOTO 70

```

```

610! *** GEOMO4 ******
G2O! FREFAFE SEGTIGN GEONETFY FOF: CALCULATION
GBO CLEAF D FRINT D FFINT G FFINT
@4 DISF "INFUIT FILE NANE"
G5O INFUT F1\$
OO% FASS STOFAGE IS ":DTM1"
67% ASSIGN\# 1. TO F1क
6OG A婁="FAW SEE GEG"
69% FEAD\# 1 ; E悉,MO,MC.YO
70) IF E婁=A\$ THEN 7JO
71% GOSUE 13T0
720 6OTO 640
FG% OIGF "INFUT DISCFETIZATION STEF"
74O DIGF "(ALI INFUT X"EWILL EE EET TG NULTIFLES DF DISCFETIZATIQN STEF?"
7EO INFUIT LG
7SO OIGF "FECORDED MTN-X =":MO
77% DJSF "FECDFDED MAX-X =":MC
700 DISF "NAY FEDEFINE X OFIGIN"
7GG DISF "X OFIG",
BO% INFUT NE
GIO DIGF B DJGF "RECOF:DFD MJN-Y=":YO
82O DJSF क DISF "GIVE A HOTTOV TO THE LAST LAYEF"
83) DISF "Y-EASE"
840 IWFUT K
85O ME=INT (NS/L6+.5)*L6
86O NO=INT (MO-NES)/L6+.5)*LG
87O MC=INT ((MG-M5);L\&+.5)*L\&
\&B% FRINT USING "K_F" : "INFUT FILE NAME= ",FJ车
GGE, FFTNT G FRINT "DISCFETIZATION STEF JS":LO
890 FFINT USING 92O ; "X-MIN= ".MO
GO% FFINT USING 92O ; "X-MAX= ",MO
910 FEM
92O INAGE K.4D
9SO FFINT USING "K\&MDD.D" : "Y-BASE=",G
940 FOF I=1 TO 1O0
G5M FEAD\# 1 : X(I),Y(I)
900 IF XOI!=9%9 THEN 99%
97G NEXT I
9gG FEM JNTEFFOLATION ASSLINES X's AFE ALFEADY MULTFLS OF DISCF. STEF
990 FOF L=1 TO E
g惹 FEAD\# 1 : N(L.1)
1009 IF N(L. 1)=999 THEN 1240
1010 C=1 अ }\times9=1
10इ0z(L.1)=Y(N(L.1)) ; YG=Z(L.1)
10% J=0
1040 I=J+1 G FEAD\# 1 : N{L,I+1)% IF N(L,I+1)=999 THEN 117O
1050 x0= 人9
1060 xO=INT (x(N(L.I+1))/LG+.5)*LG
1070 ro=YG
10EO YG=Y(N(L,I+1))
1OSO IF X9-XO=0 THEN 104O
1100 T=(YO-YO)/(X9-XO)
1110 FOE J=LG TO XG-XO STEF LE
1120 0-my!


```
11SE ! FFINT XO+I:Z(L,L:
1]40 NE*T J
1160 GOTO 1040
1.70 JF L=1 THEN 1200
1200 FOF T=1 TO C
1205 IF Z{L.I)<= Z(L-1,I) THEN 1210
I29O FFJNT "STFANGE GEOM: :LAYEF":L:" IS ABOUE LAYEF":L-1:" AT X- ":MOHLG*OT-J
12%7 FRTNT Z(L.J):" %":Z{L-I,I)
120 HEEF 40, 15O % EEEF 200, SOO D GOTO 70
1210 IF Z(L.I)<E THEN Z (L.I)=E
1220 NEXT I
1200 NEXT L
1240 N2=L-1
1ごO NS=3NT (&*N2+7)/32)+1
1250 GOSUE 1470
1270 fGSIGN# 1 TO Fक
1230 FFIINT# 1 ; "FFOU SEE GEG".MO,MO, E,C,N2,L6
1270 FGIF D=1 TO N2
1300 FOF I=1 T0 E
1310 FFINT# 1 : Z(D.I)
1315 NEXT I
1320 NEYT D
```



```
1340 ASSIGN# 1 TO *
13GO MASS GTOFAGE IG ":DनGQ"
1360 60T070
1子T0 FEM ***
1OG ! WABNING FOF WFONG DATA FILE
1डO DTSF 5 DJSF
14OO DTSF "MTSMATCHET DATA FILES"
1419 DISF "DATA FTLE 1G ", B#
1420 DJSF "FILE SHOULD EE ":AF
143O DIS% "TFY AGAIN"
1440 FETURN
1450 FEFM **
1460 FEH FILE CFEATOF
147O DISF "I NEEO":NS:" FEOOROS TO STORE THIS"
1.4BO DISF "I NEED O FECOFDS IF FILE AFEADY EXISTS"
149% DISF "INFUT FJLE NAME. NE OF FEC"
15GO]NFUT F&,N区
15!O MASS STOFAGE JS ":DTGt"
1520 IF NB#O THEN CFEATE F&,NS
15WO FETUFN
```



```
16%%! *** SGMLFI ***
1GSO FEN FEAD SOIl FROFEFTIES AND FEGDY FQFE CALCULATION EY "STHBG*
16.0 CLEAF क FFINT G FFINT क FRINT
16%O DIGF "NE OF SOL l AYEFS (S MAX)"
16OG TNFUT NS
1670 NT=5
```



```
16B1 MAT U4=ZEF D NAT C=ZEF
16%0 DISF ig FFINT
17OG DISF "INFUT DANF WEIGHT: MEAN, C.VAF"
1%10 FFINT "DAFHF WEIGHT: MEAN. [.VAF"
17QOFOF I=1 TO NZ
17% DISF "LGYEF":I;
1740 TNFUT GJ(1),V2(J)
1%GOFFINT Gi(I).V2:I)
1760 NEXT J
17TO DISF G FFINT
17BO DISF "INFUT SUBN. WEIGHT:MEAN. C.VAF"
17OO FFINT "SUEMERGED WETGHT: MEAN. C.VAF"
Reproduced from
#Q%M rag %-1 TO H2
```

JQ.O LJar LHTER aJ:
1日QO INFUT G2(I),VE:I)
18%% FFINT GQ(I),US!J)
1日4, NEXT 1
1Q5% DJSF GFINT
JBGO DJSF "TAN OF FFICT. ANGLE: FEAN. C.VAF:
1日TQ FFINT "TAN FF ANG: MEAN, C.VAF"
18GO FOF I=1 TO N2*2-1 STEF 2
189G DISF "DFY LAYEF":(I+1),2:
190O INFUT T(J),V4(J)
1910 FFJNT "DFF:",T(I),V4(I)
1912 OJSF "WET LAYEF":(I+1)%2:
191.4 INFUT T(J+1),V4(I+1)
1Q1क FFINT "WET:".T(I+1), V/4(1+1)
19%O NEXT I
19% DISF Q FFINT
1940 DISF "COHESION (F/L`Z) : MEAN. E.VAF" 19EO FFTNT "COHESION (F/L`%): MEAN, C.VAF"
1950 FOF I=1 T0 N2*2-1 STEF 2
1GYODSF "DFY LAYEF":(I+1)%%
1与QO JNFUT [`] U1,J)
1.9\#% FFINT "DFY:",C(I),V1(I)
19%Q OTSF "WET (AYEF": {+1)/天:
1474 INFUT [.{J+1).V1(I+1)
19.76 FFINT "WET:", (:I+J),V1(J+1)
OलO NEXT I
OO! OJSF FFFINT
202O CIEAF
OOTO FEN STOFE FILE
2040 NT=INT ({NE*8+7)/子2)+1
2O% GOSUE 146%
9050 A生5OJL FFOF"
2070 ASSIGN\# 1 TO Fक
20马0 FRFJNT\# 1 : Aक

```

```

2OGE FFINT " GOIL FFOFEFTIES SAVER UNLEF THE NGME ":F电
2loे ASGTGN\# \& TO *
210S MASS STOFAGE IS ":DTOO"
2116 G0TO 7%
21CO END
2)\ FEM *******************

```

```

O% OHAJN "SEELEOEGX"
\#WO FEM

```

1G！＊＊＊SEEKBGEQX：STFEANLINED SLIF CIFCLE SEAFCH WITH END COFFECTIONS＊＊＊

ZO FFTNT＂SEEFBOEDX：STFEAMLINED VEFSION 1G－ALG－ES：E．Q．CAFAETLITY＂G FFJQT a FINT
40！SEE LIST OF FAIN UAFIAELES IN LJSTJNG OF OLD＂STEBG＂
SO OFTION BASE 1
 （400）

\(10 \mathrm{ACCEL}=\mathrm{O}\)
110 ON KEY井 1：＂1）EMEFMT＂GOTG 2 B 2 O
1 OO DN KEY\＃2．＂玉）SOIL＂GOTO Z6O
JO ON KEY\＃З＂＂3 FHFEAT＂GOTO 2460
140 ON FEY\＃4．＂4）CHE FHE＂GOTO 2770
145i ON FEY\＃E．＂E）SEEK－CF＂GOTO उ－2O
150 ON KEY\＃b＂＂b）ACCEL＂GOTO 5100
15＂ON KEY\＃7．＂7）DATE＂GOTO 2O2
160 ON FEY\＃8．＂8）DISF＂GOTO 1580
170 मिSS STGFAGE \(1 S\)＂ 0 OGO＂
180 ClEAF G FEY LAEEL D DISF＂CONT 1EO＂O OISF

20 GOTO 170
2O CLEAF
玉O DJSF＂ENTEF TJTLE AND TODAY＇S DATE＂
2OE INFUT TITLE
2O6 24 事＝＂OK TITLE \＆DATE＂
207 GOTG 180

2GG FFINT Q FFINT＂GFECIFICATIONS FRF：THIS FUN＂
22E FFINT i FFINT TITLEक F FFINT
FU FFINT＂GOIL FROFEFTIES：FJLE＂：Fま
24GFFINT＂EFEFHT GEOMETFY：FILE＂：FQक
2EG FFINT＂FHFEGTIC SUFFACE：＂：IV IF F \(=\)＝＂O＂THEN FRINT＂NONE＂ELSE FFiNT＂FILE
：F事：＂SUFF：＂：U9
26 FETUFA

GGC FEM GENEFATE A EASTE COOFO USED EY CONUEN．ELLIFS AND CYL．
29O FOE \(I=1\) TO NE
उO Yo（T）＝0
उ10 Ү（I）\(=0\)
OO NEXT I
उ3 \(H=40\)
उ4O FETUF

Soo ！＊＊＊SOlL－2＊＊＊
उ7O LLEAF 0 TASS STOFAGE IS＂：D7O1＂
उ曰0 A車＝＂SOIL FROF＂
उOO DJSF＂Soil Froperty File Neme＂：
4OO INFUT Fま
41G ASSIGN\＃ 1 TO F末
42G REAL井 1 ：E年
450 IF A事 \(=\) G\＄THEN 460
Reproduced from
440 GOSIF 215
best available copy．
450 GOTO 380
```

->- に,-」

```

```

479 FEGGD\# 1 : G1(),V20,G2(),VZ0,T(),V4(0,C(),V1!)
4BO ASSIGN\# 1 TO *
4% z2क="OR SOIL INF口"
EO% GOTO 17%
519 FEM **************************************
5,O! *** ELLJFSE ****
5G5 REM **************************************
54% FEM : ANALYZE ONE SLICE
550 K=1 % E2=E D ES=E D E4=E D GS=1

```

```

579 G%=62.4
58% IENTFY=-1
50,) FOF: I=1. TO N2
6O% Z(I)=ZO
\&10 FQF: D=1. TO NS
G2% Z(I)=Z(I)+Y(D.J. +W(D,I)
OG NEXT D
640 FO!J)=0
6EO YO(I)=0

```

```

67O YG(I)=YO-S0F (B2*EO-(XO-XE(I))*(XO-X6(I))) ! 8/16/8E
GRO NEXT I
690 ! JF Fक="O" THEN 890
7OO FOF I=2 TO NO

```


```

7O JF F4O= EQ OF: FO= EQ THEN 75O
74O GOTO 1OEO ! --' SLIF CJFCLE DOES NOT INTEFSECT ITH SLICE
75O IF F4>F DF FGSES THEN EOG
76O ! GASE OF NOFHAL LATEFAM HYDFALHIIC LDAD
770 01=.5*(Z(1)+Z(I-1)) G 0%=.5\#(Z(I)-2(J-1))

```

```

790 GOTO 10%0
GOG ! COHFUTE FE, THE X GOGFO OF THE FOINT WHEFE Z(X) INTEFSECTE YO (X)
810 MN=(Z(I)-Z(J-1))/LG S SLOFE m
8С(EE=\(I-1)-X@(I-1)*NN ! INTEFCEFT b

```



```

B64 MEAN=(xG(I)+X6(I-1))/2
EGE IF (FOOT1-FEAN)* (FOOT1-MEAN) (FOOT2-MEAN)* (FOOTC-MEAN) THEN FG=FOOCT EISE F:
=FCIOTE ! Q/16/ES

```

```

8GG HG=Z(1-1)+(Z(I)-Z(I-1));(XG(I)-XG(I-I))*(F5-Xb(I-1)
GiG IF F4<= EQ THEM GBO
Q1G (YB(J-1) EXCEEDS Z (J-1)
520 01=.5*(Z(1)+H6) , O2=.5*(2(1)-H6)

```


```

95G XAL=FE % YAL=HE
G0G EOTO 102O
97(% YO(I) EXCEEDS Z(I)
q8: 01=.5*(7(I-1)+HE) i) O2=-(.5*(Z(I-1)-HG))

```


```

1010 XAF=F5 % YAF=H6
O% NEXT ]
103O FOF I=1 TG N2
1040 HI=H(I)+70 9 M=O

```

```

1OEE FEQ=O ! E.G. NONENT SUNMAND
1O6 FOF D=! TO NE

```

```

HWN NEAI A
109O ! FFINT H(I).HI

```

```

11|0 IF DOEEZ THEN 1.30
1100 Y6(1)=0 G GOTO 15%O
11%O IF T=1 THEN 35GO
1140 JF I=NQ THEN SEGO
1150 H1=(H1-Y6(I))*(H1)YO(I)
1160 WO=0
11%OZ1(I)=Z(I)-Yक(I) 可 UIX=O
11BO FOF D=1 TO NS
110G D1=D*2-1 ! MAKE DFY
1200 Z1(J)== 1(J)-WO
1210 IF Y(D,I)=0 THEN 1290
1200 IF Y(D.I)\&Z1(I) THEN 12GO

```

```

12S5 FEO=FE[+M1.*(YO-Yठ(J)-71(J);2)
1240 N=F+N1
1250 GOTG 1410
1200 MI=G1(D)*Y(D.J)*L6*L7 i) U|X=U1X+Y(D.I)*\&G
1205 FEQ=FEO+M1* YO-YG(J)-Z1!I)+Y(D,I)%Z)
12%)
12@OZ1(J)=Z1(J)-Y(D,I)
1290 IF W(D.T)=0 THEN 1380
1OO JF (N,N.I)<Z1\&I) THEN 13EO

```

```

1马\5 FEQ=FEQ+N1*(YG-YS(J)-又1(I)%2)
1उ@ F=N+N1
1-TOD1=D*2 ! WET
134% GOTO 1410

```

```

1SES FEQ=FED+N1* (YO-YS(I)-Z1(1)+W(D.I);2)
1.50% F=N+N1
1उTO DI=D*2 ! WET
13日O WG=W(D.I)
150G NEXT D
1400 D=0-1
14.0 G05114 उ6g%

```

```

1.4SO DEF FNDETF(XA,XB,XC,YA,YF,YC)=, 5* (XE*YC-XCWYB-XA*YC+XC*YA+XA*YE-XE*YA)

```

```

14%OFFILTE=-(HJ*GG*EQ*LG*GS*LT*TGDJ)*FACTFQ) AO=FFICTJ+FFICTE
1400 JF GO\& THEN AO=0
14%O A1=LG*L7*C(D1)*E2*G5*FACTCO
1490 A2=A2+AO
1400 AS=0卫+A1

```

```

1EG G=G+G1+FO{]) व FQ=FG+FO(I)

```

```

FEO*ACCEL.*FACTCA I FFINT
1EOO NEXT I
15%G IF AES (G)`,OOO THEN S=(AZ+GS) GG*GGN (G) ELSE S=-1
154O ! FFINT " XO,YO, B,A2,AZ G, S AFE ":G FFINT
E41 ! FFINT MO:YO:G:A2:AS:G:G:Q FRINT
355O FETUFN
1500 FEF ****************************************************
15%G! **** DJSF-4 ****
1500 CLEAR
yFO DJSF

```

```

=".1%

```

```

16\varrhoO DISF I ! COFY ---NHF GB WILL NOT ACCEFT COFY STMNT
1530 13=0
1640 FOF K=1 TO 2
Reproduced from
best available copy.

```
10001 1]={(-J)*1N((N-1)/2)+1
167O I2=F゙NINT ((N2-1)/2)+1
1680 SCALE XO(I1), X6(12),70,75+70
1640 XAXIS 20.L6
1700 YAXIS X-(I1).10
1710 FOF: I=I1 TO IO STEF: 5
17%OFOF T=INT (20/10)*10+10 TO 20+7O STEF 10
17马O FLGT X6(I).J
1740 FEN LIF
175O NEXT J
1760 NEXT J
1770 IS=丁2*E-5-I
17日O FOF: I=1 TO N2
1790 2(J)=70
18OG NEXT I
1@1O FOF L=NT TO 1 STEF -1
182O MOVE XE(II).ZO
1B3O FOR I=J1 TO 12
184GZ(I)=Z(I)+Y(L,I)+w(L.J)
1日FO DFAWW XO(I),Z(I)
18,0 NEXT I
1870 FEN UF
18BO NEXT L
1890 FOF I=I1 TO I2
1900 JF X6(I) XO-E THEN 1940
1910 JF X6iJ) 人XO+E THEN 1940
```



```
19%O IF YG(I)= Z:I! THEN 1G5O
10AO YG(1)=Z(I)
19EO NEXT I
1.0O MONE x- (I 1).ZO
15%0 FGF I=It TO I2
1980 7(1)=20
1900 FOF M=NE TO 1 GTEF -1
2OQOZ(I)=Z(I)+W{N.])
20.G NEXT N
20% DFAN Y6(J).z(1)
O@क NEXT I
2G4% FEN UF
2OEO MOQE XG(I1), YG(I1)
2OGO FOF 1=I1 TO IS
2OOO DFAW Xb(I).YC(I)
QGO NEXT J
O@O ! COFY
2100 NEXT K
2110 GOTG 170
21EOFEM ***********
213O EFEF 4O, 15O D EEEF 2OO, SO O GOTO 1.70
240 FEN ****************
2IEO ! WAFNING FOF WFONE DATA FJLE
2160 DISF % DISF
2179 DISF "FISMATCHED DATA FTLES"
21EO DJSF "DATA FILE IS ":E#
2150 DISF "FILE SHOULD EE ":A⿻三丨口
2こOG DISF "TFY AGAIN"
2ञGFETUFN
2卫gO FEMM **********************
2QOO FEM FILE EREATOF
2240 DISF "I NEED":NT:" FECOFDS TO STOFE THIS"
225O DISF "I NEED O FECQFDS IF FILE EXISTS"
2Q6O DISF "INFUT FILE NAME. NUMEEF OF FECOFDS (NE)"
2%70 INFUTT F#.NS
22EG MASS STOFAGE IS ":[TOJ"
229G IF NS#G THEN CFEATE F#,NS
OOO FETLIFN
```

2SO FEN ENTFYY FDF NEW EMEANUNENT INFOSMAUIOG
2OG CLEAF S NASG STORAGE IS ":DTOI"
2\Xi4O DISF "INFUT FILE NAME WITH EFEF. FFOCESSED GEOMETFY"
2SEG INFUT FQ\&
2马@ ASSIGN\# 1 TO FP乐
23% A$="FRO SEC GEO"
2土@O FEAD# 1 : B#
2SO IF E婁=A& THEN 24%O
24O% GOGUB 2140
2410 6OTO 2540
2420 Z1$="OH EMEFKT INFO"
24%O GOTO 170
2440 FEEM ****************************
245O FEM INFUIT FHFEATIC SUFFACE
2460 CLEAF क MASS STOFAGE IS ":DTO1"
2470 IF FQक\#"O" THEN 25OO
2490 DISF "GIVE EMEKIT INFO FJFST"
2400 GOTO 2`40
25OG ASSJGN\# 1 TO FG゙事
25j0 FEAD\# 1 : E\$
25O FEAD\# 1 : X8.M9,2O,N2.NS.LG
25G FOF I=1 TO N2
25A% XG\&T)=L6*(I-1)+X日
25GO NEXT I
2EGO FOF L=1 TO NS
25OO FOF I=1 TO NQ
SEGO FEATH 1 : Y(L.I)
25cg NEXT I
26G0 NEXT L
2S10 DISF "NAME FILE WJTH FHFEATIC SUFFACE"
2GO" DISF "INFUTT O IN NO FHFEATIC SUFFACE"
2与TO INFUT Fक
26\alpha0 IF Fक\#"O" THEN 27%O
ZSEG DISF "NO FHFEATIC SURFACE"
26GO FOF I=1 TG NO
2670 H(I)=0
26EO FOF L=1 TO NS-1
2bG\mp@code{W(L.T)=O}
27O% Y(L_, J)=Y(L,I)-Y(L+I,I)
2710 NEST L
270 Y(L.I)=Y(L.J)-70
2720 (|(1, I)=0
2740 NEYT I
2750 NF=O
276% GOTO ङ1GO
2770 FEN ENTFY THFOUGH SFF\#4
Z%EO IF F'保"O" THEN 26IG
こ750 ASSJGN\# 2 TO F%
2BG0 FEAD\# 2 : F事
2B1O GD="FFO SEC GEO"
2E%O IF A婁=B車 THEN 2840
2BOO FEM FEH FEEM
2g4O FEAD\# 2 ; A.A.A.N4,NE.L7
2BEO 1F N4=N二 AND LG=L7 THEN 2BBO
2BEO FRINT G FFINT "FHFEATIC SLIFFACE INCOMFATIELE WITH EMEFMT."
2日70 GOTO 2120
2QEO DTSF "CHOUSE SUFFACE NUNEEF: O TO ":NS
2gSO INFUT L.1
29C0 |9=L1
2G10 JF LI=O THEN 2650
29%GFDR L=1 TO LI
25SO FOF I=1 TO N4
2940 FEAD\# 2 : Z,I)
2G5O NEXT I
Q@C NEXT L

```


FYGU FUR: \(1=1\) iU N:
2900 IF \(Z(I) \times Y(1 . I)\) THEN \(H(1)=Z(1)-Y(1 . I) E L S E H(I)=0\)
3000 FOF \(L=2\) TO NS
\(30: 0\) IF \(Z(I)<Y(i, I)\) THEN 3060
300 JF Z(I) \(\mathrm{Y}(\mathrm{L}-\mathrm{-1}, \mathrm{I})\) THEN SO 0
OOS \(W(L-1, I)=Z(I)-Y(L . I)\)
ZO40 Y(L-1, I) \(=\mathrm{Y}(\mathrm{L}-1, \mathrm{I})-\mathrm{Z}(\mathrm{I})\)
3050 GOTO 3090
\(3000(L-1 . I)=0\) a) \(Y(L-1, I)=Y(L-1, I)-Y(L, I)\)
3070 GOTO 3090
\(3080 W(L-1, I)=Y(L-1, I)-Y(L, T)\) D \(Y(L-1, I)=0\)
उOCO NEXT L
3100 IF \(Z(I)<=70\) THEN 3140
31.0 IF \(Z(I) M(L-1, I)\) THEN \(Z 160\)
\(310 \mathrm{~W}(\mathrm{~L}-1, I)=\mathrm{Z}(\mathrm{I})-\mathrm{ZO} \mathrm{Y}(\mathrm{L}-1, I)=\mathrm{Y}(\mathrm{L}-1 . I)-\mathrm{Z}(\mathrm{I})\)
3150 GOTO 3170
उ140 \(W(L-1, I)=0\) a \(Y(L-1, I)=Y(L-1, I)-Z O\)
3150 GOTO 3170
\(3100 \mathrm{~W}(\mathrm{~L}-1 . \mathrm{J})=\mathrm{Y}(\mathrm{L}-1, \mathrm{I})-70\) a \(\mathrm{Y}(\mathrm{L}-1 . \mathrm{I})=0\)
\(31 \% \mathrm{NE}\) KT I
उ180 AESIGN\# 1 TO *
3100 MAES STOFAEE IS ":D700"
200 23事="OH FHFEAT IAFO"
210 EOT0 170

323 FEM COHFUTE A NUMEEF OF CIFCLES: DEDUCE CRITICAL CIFCLE FROM GUTFUT
22LO REM THE CODTNG BELOW 15 THE IMFLEMENTATION OF THE O.M.S.

\(\mathrm{L}=1\)
32GO CLEAF D DISF "DEGGFTBE SEAFCH FEGTON" a DISF
उOTO DISF "XHIN,XMAX. STEF"
उ2go INFUT X2. XS, M2
उ2OG DIGF "YMIN. YMAX. STEF"
3 SOO INFUT YZ. YS. MS
33J DIGF "NE OF CIFCL FEF CENTEF FOINT. STEF OF RADIUS CHANGE":
350 INFUT \(\mathrm{K} 2, \mathrm{M} 4\)

"a ACCEL: " Q"S":
33O DISF "FADIUS SHIFT ME: BG = YO-ZG-ME INSTEAD OF THE USUAL BG=YG-ZO"
3540 INFUT MS
उBEG IF MS\#G THEN FRINT "*NOTE: SEAECH BEGTNS AT ZO + ":ME:
BSEO 57=75: USE THIS TO CALC. NINIMLN FACTOF OF SAFETY \(S\)
3 STO FAT S=ZEF (9) MAT \(X=Z E F\)

\(3 S G\) FOR YOFY TO YS STEF ME
340 GLEAR
\(3410 \mathrm{HC}=\mathrm{YO}-70-\mathrm{MS}\) क \(\mathrm{EBA}=\mathrm{EO}-(\mathrm{kO}-1) * M 4\)

\(340 \mathrm{FOF} \mathrm{E}=\mathrm{E} 9\) TO EE STEF -H4
3450 DISF

3470 FOF \(\times 0=12 \mathrm{TO} \times 3\) STEF M2
3480 DISF \(\times \mathrm{O}\) :
3450 1 \(1=12+1\)
3500 gosue 540
SE10 \(5(k 1)=5\)
350 IF \(5 \times 9\) OR S . 00001 THEN 5590
उ50 \(57=5\)
5540 \(31=\times 0\)
उ550 \(\mathrm{J}=\) YO
SESO EGMIN=E
E5\% GOTO 5590
\(3580 \mathrm{~S}(1 \mathrm{l})=99.90\)
3500 NEXT \(\times 0\)

```

Z6Q NEXT E
SQXO FEINT
-----"" (1) PEINT
Z64O NEXT YO
S5FO FFINT USING TO60 ; 57,.\1.J2.EST1N
SGOO IMAGE 1OX. "NIN S=".4D.2D." AT XO,YO,E =". SSD.D)
3670 EEEP 200, 250 i) GOTO 170
36BO FEF **** END COFFECTION SUFFOUITINE ****
3\&G! EEGIN SLE TO COFFECT FOF ENO EFFECTS
Z7OG ! DELTA=LO
Z70 ! SET LIF DEFAUL T FACTOFG FOF NOMJNAL (NORMAL, CASE
37O FACTF 1=1 % FACTF2=1
37O FACTCO=1 \& FACTDM=1
37% FACTUH=1 i) FACTFW=1 क FACTCA=1

```

```

37@G ! COMFUTE THE NOMINAL AFC LENGTH

```


```

Al. ! G/1\&/G%
З7OG JF B2*EQ= (XO-XC)* XO-XC) THEN YC=YO-SOF (EZ*E2-(XO-XC)*(XO-X[), ELEE YC=
AF: E/1.0/83
TQOG XF=XG(I) a YF=Y\&(I)
ZG:O 1 G=FNHYF(XE,XF,YB,YF) +FNHYF (XF XE,YF,YC)
S日"O FXO=x9-xG(I)
उE"O Fr'%=r口-Ye\J!
3Q\& ! EHEC\& FOF FIFST ENTFY: IENTFY= - - --> 15t ENTFY
SEEO ! = J - - - NON-15t ENTFY
SEQO IF IENTEY=1 THEN GOTO SQEO
SQO IENTFY=3
土日@G ! *** FJFST ENTFY ***
3\&%O : [HEEF FQF GASE 1-L AT I-1

```

```

HEN GOTO 406O
OIO CHESK FOF CAEE 2-L AT J

```

```

3Q\#G! FFTWT "EFFOF: 3St ENTFYY GNE NOT I-L OF 2-L"

```

```

9与G% ! FETLIFN
39% ! *** NON-15t ENTEY ***
BQG EHECY FOF EASE 1-FA AT I+I

```

```

HEN GOTO 4-2O
S950: CHECK, FOF CASE 2-F AT J
4GO IF XG(I)= XAF AND XG(I)+L6/2%= XAF THEN 4840
4O]O ! CHECE TO SEE IF NOMTNAL CAGE OCCURS

```

```

4OG FFINT "EFFQF: DOES NOT FALL INTO ANY OF THE FNOWN CATEGOFIES"

```

```

G%:XAL:XAF:口 FFINT
4OEG FETUFN
406O : FFINT

```


```

4050 X0=X6(I)+L6/2 B) Y[=YO-5OF (E2*EZ-(XO-XD)* (XO-XD)) ! B/16/GZ

```

```

41.10 AB=FNHYF(XA.XE,YA.YE)
4%O AEG=FNDETF(XA.XE.XG.YA.YEIYG)
4130 GF=ABG:UJ}
4140 FXI=XG-(X6(I)-L6/2-(XE-XA), S)

```

```

4}0 FYJ=YO-(YA+YE+YG)?
4170 IF FYO\#\# THEN CF=FY1,FYO ELSE CF=O
41EO HS=H7+(H1-H7)/(XOCI)-XAL)*(XE-(XE-XA); S-XAL)
4199 ]F H1\#O THEN DF=HS/H1 ELSE DF=O
if-i;"F!m,

```
```

42O IF FYO\#O THEN FFF=FW1/FXO ELSE FFF=O

```

```

424O FACTF 1=1+AF*CF
425O FACTFQ=1+DF*EF
42OO FACTCO=1+EF
42%% FACTDM=1+AFWBF
4ZGO FACTVH=1+FFF'\#GGF
42@Q FACTFW=1 +6GF
4उO- FACTCA=1+AF
4Z.0 FETUFN

```

```

4OF XA=XAF G YA=YAF

```


```

4SめG XG=XF O YG=. E* (Z (I+1)+Z(I))
4Z%O AB=FNHYF(XA,XE,YA,YB)
4.EO AEG=FNDETE(XA,XG.XE,YA.YG_YE)
42cO AF=AEG/U1X
4400 FXf=X0-(X6(T)+L6/9+(XG-XA);S)
4410 IF FXO\#O THEN EF=FX1.FXO ELSE EF=0
44OFFY=YO-(AA+YB+YG) (G
44\sigma0 IF FYO\#O THEN CF=FY1 /FYO ELSE CF=O
4.4.G HS=H1+(HE-H1)/(XAP-XG(I))*(XE-(XE-XA) (J-YOCI))
44EO IF HJ\#O THEN DF=HSYHJ ELSE DF=O
44EO EF=AE,G?
4.70 F(N)=XG-(XG(T)+LG/2+iXN-YA)/Q)
44EO IF FXOAO THEN FFF=FWDFEXO ELGE FFF=O

```

```

45GO FACTF 1=1 -AF*CF
4EIO FACTFQ=1+DF*EF
4FOFFACTCO= 1+EF
45,O FACTOM=1+AF*EF
4540 FACTUH=1+FFF\$GGF
45EO FACTFW=1+GGF
45GO FACTEA=1+AF
45gG FETUFN

```

```

45,GO XA=XAL G YA=YAL
400% XE=XE(I) ; YB=Y\&(I)

```

```

462G XD=X[ G YD=, E* (2(]+1)+Z(I))

```

```

4640 AF=ABCDE/U1X
4650 FX1=XO-(XG(I)+LG/2-(XD-XA);马)
4660 IF FXO\#G THEN EF=FX\/FXO EISE FF=O
4\&7O FY 1=YO- (YA+YD+Y(O)/马
4\&EO IF FYO\#O THEN CF=FYI/FYO ELSE GF=O
4690 HE:H7+(H)-H7) (XO(I)-XAL)* (XC-(XD-XA)/3-XAL)
47OO JF H1\#O THEN DF=HS:H1. ELSE DF=0
471O AF=FNHYF(XA,XE,YA,YE) G FC=FNHYF{XE,XC,YE,YE)
4720 EF=(AE+EC)/LC
47ふ)F(W1=X0-(XD+XA)/2
474O TF FXO\#O THEN FFF=FW1/FXO ELSE FFF=O
475! IF H(J)\#O THEN GGF=.5* (XD-XA)* (H%t.5* (H(I)+H(I+1)));(H(I)*LG) EISE GGF=O
476. FACTF1=AF*OF
477% FACTFO=DF*EF
47BO FACTCO=FF
47G FACTDF=AF*BF
4EO% FACTUH=FFFF*GGF
4BJO FACTFW=GGF
4g2O FACTCA=AF
48G9 FETUFN

```

```

4ESY XA=XAF a YA=YAF

```

```

4@日G XD=x[C \ YD=.5*(Z(I-1)+Z(]))
4BOG GECDE=FNDETF:XA.XD,XE,YA.YD,YE) +FNDETF(XD,XC,XE,YD,YC,YE)
4900 AF=ABCDE/UI*
4910 FX1=X9-(XG{I)-L6;2+(XD-XA);
4%こO JF FXO\#O THEN EF=FX1/FXO ELSE EF=O
49\#G FYJ=YO-(YA+YD+YO)/S
49.4 IF F゙YO\#G THEN CF=FY1/FFYG ELSE CF=0

```

```

4G60 IF H1\#O THEN DF=HG/H1 ELSE DF=O
4970 AE=FNHYF(XA,XE,YA,YE) , EC=FNHYF(XB,XC,YF,YC)
49日G EF=(AB+EC)/L9
4970 FW1=XO-(XO+XA)%O
5ODO IF FXO\#O THEN FFF=FW1/FXO ELSE FFF=O

```

```

5O%O FACTF1=AF*CF
EOSO FACTF%=OF*EF
5O40 FACTCO=EF
5OFO FACTDD=AF*GF
5OsO FACTVH=FFF*GGF
EO%G FACTFW=GGF
5OBO FACTCA=AF
50%0 FETUFN
51g! JNFUT HOFIZONTAL ACCEL
51OE CLEAF
S1U DISF "ENTEF EAFTHOUANE HOFIZONTAL ACCELEFATION IN G UNITG":G TNFUT ACEEL
5115 Z5क="O\& ACCEL"
51% GOTO 170

```

1G！＊＊＊SUPEFSTE ：HAS EEEN STFEAMLINED＊＊＊＊：FENUMEEFED DN MAY 2 O
20 FFINTEF IS 4O1， 122 D FFINT CHF 15 © FFINT D FFINT
उO FRINT＂SUFEFSTE：VEFSTON ZO－ALG－GS：E．G．GAFABILITY：SLICE SIZING TIED TQ FI
T LENETH＂a FFINT a FFINT
TE ：AUGOO GZ CHANGE：L2 WAG SET TO ACCUFHLATE IN TWO CASES
40 OFTIDN BASE 1.
 （40）

70 SHORT L（2O）
BO DIM TITLE［80］

入 F＂
100 DN KEY\＃1．＂1）EHEHNT＂GOTO 4760
110 ON KEY\＃2，＂2）SOLL＂GOTO Sob
120 ON KEY\＃シ＂＂I FHFEAT＂GOTO 4000
130 ON KEY\＃4．＂4）TITLE＂GOTG 2EO
140 ON KEY\＃E．＂E CONQEN＂GOTO 4ZEO
150 ON KEY\＃6．＂0）ELLIFS＂GOTO 7 OO

179 ON FEY\＃En＂Gy DISF＂GOTG 7760
18O DN KEY\＃©，＂O）ACCEL＂GOTO FEOO
190 ON FEY\＃10．＂10）DECAY＂GOTO OM40
20 GS＝62． 4 G ACCEL＝0
210 MASS STOFAGE IS＂：D7O＂＂
2\％CIEAR T FEY LABEL O DISF＂CONT 2EO＂D DISF

240 GOTO 220
2EO OJSF＂ENTEF TITLE AND TODAYG＂S DATE＂
26 INFUT TITIE
27G 24ゅ＝＂TITLE IS JN＂
280 GOTO 220
2G0 \(\mathrm{FEM} *\)
SOG FFINT G FFINT＂SFECIFJCATIGNS FQF THIS FUN＂

SOO FFINT＂SOIL FROFEFTIES：FILE＂FW
उS FFINT＂ENEFHT GEOMETFY：FILE＂：FG\＃
340 FFINT＂FHFEATIC SIFFACE：＂：IF Fक＝＂O＂THEN FFINT＂NONE＂ELSE FFIAT＂FILE＂
Fक：＂SURFACE：＂：UG
S5C FETUFN
シ白 FEF ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
BTG FEN GENEFATE EASIC COAFDINATES USED EY CONVEN．ELITFSE AND CYLINDEF，
3QG FOF \(I=1\) TO N
SGU \(Y(6(1)=0\)
\(400 Y 9(1)=0\)
\(416 \quad 7(1)=20\)
\(4 \mathrm{COF} \mathrm{I}=1 \mathrm{TO} \mathrm{NE}\)
\(4 \mathrm{SO} Z(J)=Z(I)+Y(D . I)+W(D . I)\)
44G NEXT D
4ET NEXT I
\(460 \mathrm{H}=40\)
476 DISF＂ELLIF．COOFD．XO＝＂：
48… INFUT xの
49＊DTGF＂ELLJF．COOFDn YO＝＂：
5OG INFAT YO
5jC DTSF＂GIIF FADTUS \(B=":\)
Ern ThEM：

```

5 4 9 ~ R E T U F N
55, FEM ***********************
569 ! *** SOIL-2 ***
579 CLEAF: 9 MASS STOFAGE IS ":DTO1"
5g% A聿="5GJL FFOF"
5G% DJSF "Soil Froperty File Name":
क% INFUT Fक
GHASEIGN\# 1 TO F\&
62G FEAD\# 1 : E\$
6S IF A市=B舟 THEN 6OO
640 GOSUF 45O%
650 EOTO 5%%
GOO CO=1 ! COFF: COEFF. GF SOIL FFOFEFTIES IN THE VEFTITAL DIFECTION
G% READ\# 1 ; G1(),V2(),G2(),VZ?,T(),VA(),E(),V1()
680 ASSIGN\# 1 T0 *
60% Z2क="OL, SOIL JNFOF"
70) GOTO 210
7!G FEEM *****************************
720 *** ELLIFSE ***
730 AO事="ElF""
74O FFINT "ELLIFSOIDAL FAILUFE SUFFACE" G FFINT
7EO LLEAF D FFINT "STEBE: DONEQ" D GGSLIE OOO
760 Gीका!4 370
770 DJGF "FLNFUFE LENGTH:FILENGTH=":
780 INFUT FLENGTH
79% OISF" "NE OF SLICES JN FLENGTH/2 N%=":
EOO INFUT N%

```

```

NT
G2O FMTH=1OMGOO ! FIND FADIUS TANBENT TO SUFFACE
BQO FOEF I=1 TO NE

```


```

EEO IF FITEHF*= FWIN THEN GOTG ETO
860 FWIN=FTENF
BZO NEXT I
8日% IF FMINGE THEN GOTO G2%

```

```

GOO FAUSE
O10 GOTO 2OO
920 L 1=FLENGTH/SOF (1-FNIN*FHIN/(E*EO)

```

```

94% LT=FLENNTH/2/NF ! WAS LT=L1/%/NT IN THE GLD FROGRAM
GEO DJSF" OFTIMJZED LONGITUDINAL SLICE WTDTH=";LT:" FLFT LENGTH= ":FLENGTH:"
LIFGE MAIOF AXIS LI=",LJ
900 Fg=0
9% FRJNT USING GGO ; XO,YO\#H,LI
9B% IMAGE /"ELLIFS.GENTEF\# XO=".4D.DO.1OX."YO=",4D.DD,"MIN AXIS=",4D. DDD.10X, "F
7 FMIS=".4D.ODD
GGG FFJNT D FFINT "TFANSVEFSE SEGMENT WJDTH =":LG B FFINT "LONGITUDINAL SI INE |
DTH =":L_7
100 60BUB उ52%
1O1O FOF V=1 TONT

```



```

10EO G5=SOF (L7*L7+(ES-H4)* (EZ-F4))/L7 ! a % % % 8G
1060 GOSUE 1120
10%G NEXT K
JEO GOSUE 3O4O
1050 FEEF 2O0, 250
अ19 EOTO 210
1110 FEM ******************************************

1140 JENTEY $=-1$（9） ！FFINT EZ：ES：B4
1150 FCFI $I=1$ TO N2


$1180 \mathrm{FOO} \mathrm{F}=0$
1100 NEXT I
1200 ！IF F＂$=" 0$ THEN 1750
1210 FOOTCHK $=-1$
$120 \mathrm{FOF} \mathrm{I}=\mathrm{TO} \mathrm{NO}$


1250 JF F4 42 OR FOCE2 THEN 1270
J26O EOTG 155O！SLIF CJFCLE IS AFOVE THE ITH SLICE
1270 JF F4 EGC DF FGSEC THEN 1330
1ZBO ：CASE OF LATEFAL HYDF LGAD FULLY HOUNDING THE i TH SLICE


$1310 \operatorname{GOTO} 15 \mathrm{E}$
139！THE FOLLOWING IS THE FEFINEO INTEFSECTION SCHEHE：
$1330 \mathrm{NH}=(2(I)-z(J-1)$ L 6 ！SLOFE M





$1 \leq 9 \mathrm{MEAN}=(X 6(I)+X b(J-1) / 2$

$5=F O G T Z \quad \therefore \quad \therefore 18 / 8 \mathrm{Z}$

142 IF FOOTCHK $=1$ THEN GOTO $151 O$ ：IF FAG＝E2 OF FOOTCHK＝THEN 17 O
1450（YG（1－1）EXCEEOS Z（I－1）

$1460 \quad H 7=H(1-1)+(H(1)-H(1-1)) /(X 6(I)-x 6(I-1)) *(F 5-X 6(J-1))$


$14 \xi \mathrm{FOOTCHF}=1$
1400 GOTO 1550
1．50\％（YE（J）EXCEEDS Z（1）




15 NOM NET
1560 FOF $J=1$ TG NE
$157 \mathrm{~F}=\mathrm{O} \mathrm{F} \boldsymbol{\mathrm { F }}=\mathrm{G}$

1E5GFEQ＝O ！E．Q．MOMENT SUMMAND
$16 \mathrm{GOF} \mathrm{D}=1 \mathrm{TQ} \mathrm{NS}$
$1610 H 1=H 1+W(D, I)$
160 NEXT D

1640 IF DOSES THEN J6EO

1660 IF $I=1$ THEN 360
1670 TF T＝N THEN SOSO
$16 \mathrm{E} 0 \mathrm{HJ}=(\mathrm{HI}-\mathrm{Yo}(\mathrm{I})) *(\mathrm{HIYY} \mathrm{Y}(\mathrm{I})$
1690 W0＝0

1710 IF A9⿻木口＂＂YL＂THEN 2150

$1730 \mathrm{FOF} \mathrm{D}=1 . \mathrm{TO} \mathrm{NB}$
$174021(J)=$ ZJ（J）－WO
17EO！BELDW：DO－SDFY：Dミ－WWT
$1760 \mathrm{DO}=2 * \mathrm{D}-1$（3） $\mathrm{D} 2=\mathrm{D} * 2$ 玉 $\mathrm{D} 1=\mathrm{DO}$




```
1BOG FJ=ソ2(D)*F1.
```



```
#
1QO}FGO=FQ+FE
```






```
1日कด GQT0 25G%
```



```
1G8O FJ=v2(D) 必他
```



```
\therefore"1日/BE
19OG FO=FO+FEO
```







```
19!% JF (N&O,J)=O THEO ZJ4%
19(0) IF W(D.I)<ZJ(I) THEN 206O
```



```
15(%) FJ=vS(D)*Mt
```



```
Z
OOGOFFOFFED
```



```
OO FH=F+N1 位 U=U+U1*C(DC)**O
```



```
204O DI=D2 ! WET
```




```
玉Oन0 F1=\S(D)*M1
```



```
\therefore*1日% B
2OO FO=FO+FEO
```



```
211O N={N+M1 % U=U+U1*G(D)%*)
```



```
ONO DJ=WG ! WET
214O|O=W!O4T)
Zf%NEXTD
21BOD=D-1
270 GOTO -5E%
21E10 UK1=0
S19O FOF D=1 TO NS
200 DJ=%合-1 ! NAFE DFY
```



```
2OG IF Y (D.I)=0 THEN 2.%O
```




```
2250 F(1=V2(D)*F|
226% M= N+M1.
```




```
#
##GFG=FC+FEG
2OO GOTO 25GO
```



```
2z20 F'1=Yこ(0)*N1.
2马品 H=N+N+N
```




```
\/1日/日%
2З6O F:G=FG+FED
2STO Z1(I)=Z.(I)-Y(D.I)
2SBO IF W(I.I)=0 THEN Q55O
2उOG JF W(D.I)<Z1(I) THEN 2480
```



```
240 Fij=US(D)*N1
24%O M=M+M1
2430 F=FF+F!*FI+2*FI*SOF (F)*CG ! ST/E/83
```



```
\Xi
245O FO=F:O+FEO
24कO D1=D*2 ! WET
2470 GOTO 2580
24g0 MJ=(G2(D)+GS)*W(D,I)*L6*L7 % U1X=U1X+W(D,1)*LG! MDH, 2/2B/日G
2490 F1=VS(D)*N1
2500 M=M+N11
2510 F=F+FI*FI+2*FI*SOF (F)*CQ ! S/1日/83
```



```
二/18/E"
25GOG=FC+FEO
2540 D1=D*2 ! WET
25今0 wO=W(J.1)
25GO NEXT D
2570 D=D-1
25% GOSUE 6O#G
```




```
FO| FFJET1=(M*FACTFJ +NWWFACTFW)* YG-YS(I))/GS*T(G1)
```




```
E:"FFICT1:FRICTQ
2670 IF AOQ THEN AO=0
```



```
8
26@O A1=L与*L7*C{D1)*E2*G5*FACTCO
2670 01=v1(D1)
26BO DEN=NWFACTDFT+NWWFFACTUH
2690 G1=DEN* (XO-XO(T)) +FEO*ACCEL*FACTCA i IF ABS (G1)* OOG THEN GOTG 271O
2700 0%=0 D GOTO 2720 ! MAY 19 12.01 FM
```



```
 3/19/83
27%O JF ACCEL=O THEN GOTO 27EO
27SO TOQ=SOF (F)/AHS (DEN)
274O IF OG%2*TOG THEN O9=2*TO9 (BOGUS, EUT WHAT CAN WE DO?
27!O L=1.+L.%*FACTCO
276% ! FFJNT "LO. FACTCO. LO*FACTCO, L. AFE:":LG:FACTCO:LO*FACTCO:L
27%0 NO=NO+1
27(B) SFEQ=SFEQ+FEQ*FACTCA ! LISE TO COMFLITE G LEVEL AT WHICH FS=1
9790 JF A9叓"CYL' THEN 2810
2GOG US=US+U*FACTCA i) US=US+UF/U क UO=UO+U1X*FACTCA
2810 A2=A2+AO a) AS=AJ+A1
2890 04=04+00 % 05=05+01
2GOO FEF NGTE CHANGES IN Q9 AND G!
```



```
2850 !
2日@O NEXT I
2870 IF ド#1 THEN 2910
2g@0 N=1F (L/10)
2890 IF N:1 THEN S590
2900 DISF "N=",N
240 IF L=0 THEN 108O
2920 G6=F6+L7*GE*)
2GO5 ! FFJNT " K=":&;" GE=":GE:" L=":L:" SLIFACE AFEA =",L7*GE*L O FFINT
20%a me-NE.4.0
\(2940 \mathrm{LO}=\mathrm{LO}+\mathrm{L} 7 * 2\)
 9
2760 ！FFINT＂＊＊＊Q．DB，NF：＂：Q：DQ：NQ a FFINT

2900 FRINT
उOOO FETUFN
O1O FEM＊＊＊
SOZG FEM ：GET FESLI TS FOF THE ENTIFE SUFFACE：USED BY ELLIFSE，CY TNGEF AND E VENTIONAL FLANE STFAIN ANALYSEG．
SOSO FEM ENTFY FOF ELLIFSE \＆CYLINDEF
30 JF \(N \subset\) THEN \(N=1\)
SEO N1＝1F（2WG6，10OWN）
SOGO IMAGE／／＂FUFTUFE LENGTH＝＂，SD／＂FUFTUFED SUFFACE＝＂，MD．TDE／
BOTO IMAGE ；＂TOTAL－HALF FUFTURE＂，＂（1×．MD．2DE，DD．2O）
उ日G \(\mathrm{C}=\mathrm{O} \mathrm{O} \mathrm{G}\)
उ690 \(C 7=1-.0048 *(N+N 1-2)\)
उ190 C7＝亿7＊（07）
3110 GOTG 3140
उ1\％O FEM ENTFY FQF CONYENTIONAL FLANE STFAIN CASE
\(313067=0\)
\(\therefore 140 \quad 04=04\)／NB
З」 50 05＝05／NE

SOO FEINT USING 3070 ：AR． \(04, A B, Q E, G\)

OBO IF GOO THEN ACFIT＝－（（AC＋AS＋（G－SFEQ＊ACOEL）／SFEO）
※4O FFINT USJNG Z天FO A ACFIT F FFINT

उOO FFINT USTNO ESO

SSOG FEM LOGNOFMAL DJGTFJELITJON

उ20 5\％SoF（LOG（v＊ET）2＋1））

\(340 \mathrm{~F}=1=0 \mathrm{CO}(\mathrm{F}) / \mathrm{SO}\)
उडक EOTO \(x \%\)
OAO F1＝SGN（S－1）＊ 6
子 7 O \(78=1\)－（FJ（O）
SBEG \(Z=A E S\)（F1）
वृO \(\quad \gamma=F N F(Z)\)
\(3400 \quad F=Y * T B+(1-Y)(T B=0)\)

34OO FFINT USING उ44O：－FJ．F
3430 FFINT

उ4．O FFINT O FFTNT USING EGO
SATO JFAGE＂FIVEFSJOE FAILURE＂
उ4 40 IMACE＂LANDSIDE FATLUFE＂
Z4F0 FFTNT
EOG RETUPN
उ51 \(\mathrm{CET} * ~\)

उSGO FFINT UETNG JEGO
उGGO FETUFN

FE＂

```

OO JHAGE /" \& EQ

```

```

NOM" "EX.""S"
BEgO MMAGE SC("--")
JOQ REM IF F==1 AND L\& 10
ZGOO FFINT "CIFCLE DOES NOT INTEFSECT EMEANFMENT"
TG10 FFINT
36OO GOTO 4570
SESO FEM HAD CIFCLE
SE4O FFIINT G FFINT "GIFCLE GOES EEYDND DEFINED LIMJTS"
365O GOTO 457%
SGO FIET NOFHAL DISTFIEUTION
367O DEF FNF (X)
\#6日0 T=1;(1+.2310419*)

```


```

S70 FS=1/GQF (2*FJ )*EXF (-{XO2,2))*FS
2%O FNF=FG
37OO FN END
उ74G FEM **************************************************
35G! *** DJSF--4 *********
3%O OLEAF
37O DJSF "INFUT M4.MS: M4=7E (7E+ZO). ME=1O (YAXIS) IN HN VEFSION":
3700 INFUT NA, NE
37O DISF G OLEAF

```

```

"L"=", L%

```

```

3日20 DISF " M4=":M4:" ME=":NE:
डB%O DISF %) COFY
28% IS=0
3EकOGFF=1 TO 2
BEGO GCLEEAF
3日% } 1=(t-1)*1NT (Na-1), ()+1
S日GO J==ト*INT ((N2-1) %)+1

```

```

300% SCALE x-(11) "0(I2).20.m4+20
390 xAXTE 20,LO
उ%\mp@code{YAYIS Xe(11%.10}
TOQ YA>1S X6(11) ME
Q440 FOF 1=11 TO ]2 STEF E
B9GO F[IR J=INT (2O%1O)*1O+10 TO 20+70 STEF 1O
3GG Fl_OT XE(I), J
उQOO FEN UF
J9GO NEXT J
3950 NEXT I
40MO IS=I2*5ーI-5
4O1O FGF J=1 TO N%
4O% z(I)=ZO
4%O NEXT J
4O40 FGF L=NY TQ 1. GTEF -1
40GO MOUE X6(11). ZO
400O FGF: I=I1. TO IZ
4O7G Z (J) =Z(I)+Y(L,I)+W(L,J)
40日O DFifw xo(I),Z(I)
4090 NEXT J
4100 FEN UF
4110 NEXT L
412O FOF: I=J1 TO I2
41%O IF XE{I}XXO-E THEN 417O
414O TF Xb(I)`XO+E THEN 4170
4150 YG(1)=YO-GOF (E%2-(xO-x6(1)) 2)
416O JF YG(I)<= Z(I) THEN 41EO
4170 Ү'(I)=Z(J)
AJBO NEXT I
46% MOUE XG (II). ZO

```

\(4919 \quad 2(1)=70\)
4OO FOF：N－NT TO 1 STEF－ 1
\(4=2(\mathrm{I})=\mathrm{Z}(\mathrm{I})+4(\mathrm{~N}, \mathrm{I})\)
4240 NEXT N
4ごG DFiAN X
4\％6 NEYT I
4FO FEN UF

\(4 \% 50\) FCIF \(I=11\) TO I2
4 BO DFAU X（I）．YG（I）
4ZJO NEXT I
4220 1 C．OFY
43 OO NEXT K
\(4 \Xi 40\) GOTO 210
4－5O FEM
4З6O！＊＊CQNVENTICNAL FLANE STFAIN ANALYSIS＊＊＊
4370 A9 \(=\)＂CJF：＂
4 SGO CLEAF i FFINT＂CONVENTIONAL FLANE STFATN SLIF CJFCLE＂D GCGUFA ZOG
4390 GOSUB 370
\(440 \mathrm{~L} \quad \mathrm{~L}=1\)

\(44 O \mathrm{FCOO}\) ！MDH IAN 1483
4440 FFINT＂CIFCLE CENTEF：XQE＂；XO：＂YQ＝＂：Y＂
\(44 \%\) FFINT＂EIFCLE FADJUS：E＝＂： E

ICE MTDTH＝＂ L 7

INT
4430 GUSUF उEOO
44 あ ド＝1
\(4 E O E=F \quad E \quad E=\mathrm{E}=\mathrm{E}=\mathrm{E}\)
\(4510 \quad 65=1\)
45：GOSUF 1120
4530 GOSUE 3120
4546 EEEF 2GO，250
4550 EOTO 210
456のFEM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

459 O ！WAFNING FOF WFONG DATA FILE
460 OJGF OTSF
4610 DJSF＂MISMATCHED DATA FILES＂
46OO DISF＂DATAFILE JS＂：E
463 DISF＂DATA FILE SHOULD EE＂：A车
4640 OISF＂TFY AGGJN＂
4650 FETLIFN
\(46 \omega \mathrm{OFEM} *\)
46\％O FETM FILE CFEATOF
4 GOG DJGF＂I NEED＂：NG：＂FECQFDS TO STGFE THJG＂
460 O DSF＂I NEED O FECORDS JF FTLE EXISTS＂
4700 DIGF ＂INFLIT FILE NANE＂NE GF FECOFDS＂
4710 INFUT FW \({ }^{4} \mathrm{NW}\)
47 F FASS GTOFAGE IG＂：DTOJ＂
47 O IF NWH THEN CFEATE FW．NZ
47\％C FETUFN
47 Fi FEM ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
4760 FEN ENTFY FOF NEW EMEANFTENT SECTION
\(47 \cdots\) CLEAF i MASS STOFAGE IS＂DVO1＂
47EO DISF＂INFUT FILE NANE WITH EMEF：FFOCESEED GEOMETFY＂
4760 1NFIIT FO事
4EGO ASSIGN\＃ 1 TO FGt
4曰リG Aq＝＂FFO SEC GEQ＂
AEO FEAD\＃ 1 ； \(\mathrm{H}^{2}\)

Reproduced from
best available copy．
```

48%O GOTO 47G0
486O Z1क="O\&G ENE\&NT JNFO"
4870 GOTO 210
4g¢0 FETV ****************************************
4BOC FEM JNFUT FHFEATIC SUFFACE
4900 CLEAF i] NASS STOFGGE IS ":0791"
4910 IF F9年"O" THEN 4940
49%O DISF "GJUE ENEFHT INFO FIFST"
4980 60TO 4780
4940 ASSIGN\# 1 TO FG*
4%EO FEAD\# 1 ; H\$
4900 FEAD\# 1 : x日, x9, 2O.N2.NG.1.6
4970 FGFR I=1 TO N2
4930 人6(I)=L6*(I-1)+X日
4970 NEXT I
EO90 FOF: L=1 TO NE
SO1O FOF T=1 TO N2
EOQO FREAD\# 1 : Y(L.I)
5OSO NEXT I
EOqO NEXT L
5OGO DISF "NAME FILE WTTH FHFEATIC SUFFACE"
EOSO DISF "INFUT O IF NO FHKNGUFF."
5070 INFUT F\$
50日0 ]F F"क\#"O" THEN 5`4%
5OgQ DISF "NG FHFEAT]C SUFFAEE"
SmO FOF J=1 TG NO
Ef(0 H(J)=0
E1OO FOF L=1 TO NS-3.
51>0 W(L.J)=0
E1.7% r(L.J)=r(L_I)-r(L+1.I)
515% NEXT L
F160 Y(L, I)=Y(L, I)-2O
5\70 (1, ])=0
51BO NEXT I
519% N5=%
5200 GOT0 5Gzo
52\O FEEN ENTRY THFU| SFK\#4
5马SO MASG STOFAGE IS ":D7O1"
52"O IF F車"O" THEN EOSG
5%40 ASEIGN% 2 TO F'\$
525G FEAD\# 2 ; E串
52GO A末="FFO SEC GEO"
59%O JF AD=E婁 THEN 5290
SOGO REM FEM FEM
5CO FEAD\# 2 : A.A.A.N4,NE.LZ
5OO IF N4=N2 AND L.
SIIO FFINT "FHFEATIC SUFFACE INCOHFATIELE UJTH EMERMT"
5+%O GOTO 456%
5-%O ITGF "WHOOSE SUFFACE NUNEEF O TO":NE
5%+4, INFLIT LI
5SF!, |9=L 1
56O IF L1=0 THEN 5OPO
SGO FGF L=1 TC L 1
ESEOO FOF I=1 TG N4
5SOG FEAD\# 2 : T(I)
54OO NEXT J
54j0 NEXT L
54.0 ASSIGN\# 2 TO *
54O FOF T=1 TO N2

```

```

545% FOF: L=2 TO NS
540O TF Z(J)<Y(L.J) THEN 5EIO
54%O IF Z(I)YY(L-1.J) THEN 5SGO
54(%O W(L-1,T)=Z(I)-Y(L.EI)
5490 Y(L-InI)=Y(L.-1,I)-Z!1)

```


5EO GOTO 5E4O

EEAG NEXT L
55EiG JF \(2(1)<=20\) THEN 5500
ELGO IF Z（I）YY（L－1．I）THEN EGlO
5570 W \((L-1, I)=Z(J)-Z O \quad Y(L-1, J)=Y(L-1, I)-Z, I)\)
5580 GOTO 56\％

5600 EOTO 560
\(5610 W(L-1,1)=r(L-1, I)-Z 0\) a \(Y(L-1, I)=0\)
565 NEXT I
SGO ASSIGN\＃ 1 TO＊
5649 MASS STOFAGE IS＂：D7OO＂
5SEO ZS里＂DK FHFEAT INFO＂
5660 G0T0 210

5hGo ！＊＊＊- －D FINITE CYLINDFICAL FAILUFE＊＊＊
5650 A9ま \(=\)＂CY＂
5700 CLEAF a GOSUE 370
\(5710 \mathrm{k}=0\)
E7GO DSF＂＂JNFLIT CYLINDEF LENGTHE．EWD WITH \(999 "\)
57 人1
5740 INFUT L（EJ）
ETGO IF L（1゙1）\＃ 909 THEN EOTO
579 FOF \(2=1\) TO \＆ \(1 \cdots 1\)
\(577011=1\)（K）

\(58017=1 / 2\)

EGOO FFINT＂CYLINDEF CENTEF：XO＝＂：XO：＂YO＝＂：YO
5BSO FFINT＂CYL JNDEF FADJUS： \(\mathrm{E}=\mathrm{B}=\mathrm{B}\)
E8AO FFINT D FFINT＂CYIINDEF LENGTH＝＂：LT＊2
5日EO FFINT GFFJNT＂TFANGUEFGE SEGNENT WJDTH＝＂：LG

1N

\(58 巴 0 k=1\)
\(589 \quad \mathrm{H}=\mathrm{F}\) a \(\mathrm{FO}=\mathrm{A}\) i） \(\mathrm{H} 4=\mathrm{B}\)
\(5900 \quad 65=1\)
59.06051 E 1120
\(5900 \quad 60=66+40\)
5950 ：\(=10 / 60\)
\(5940 \quad A S=A B+U Z\)
\(59505=05 *(1-1)+45 *)\)

\(597 O\) FFINT USING 59OG：UO，US，USFR日
598！g＠SUE BO4Q
5\％GG IMAGE＂END AFEA（＂．MD．BDE，＂）＂．16X．MD．2DE．DD．DD
GOO FFINT i FFINT i）FRINT D FFINT
GIO NEXT K2
6Oक BEEF 2OO，2EO
6OTO EQTO \(2 \square\)
604G FEM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
OOEO FEM DECAY FUNCTION
GOEO CLEAF D DISF＂TFY ME SOFE DTHEF DAY＂
6O7O WAJT 5OGO
कण〇 GOTO 2נ0
GOG9：EEGIN SUE TCI COFFEET EFFECTG
610：DELTA＝LG
OJI \(!\) SET UF DEFAULT FACTOFS FOF NOMINAL ENOFMAL）CAEE
O120 FACTF1＝1 G FACTF \(2=1\)
613GFACTCO＝1 G FACTDH＝1
OI 4 FACTUH＝1 9 FACTFW \(=1\) क FACTCA＝1

\footnotetext{
Reproduced from
best available copy．
}

G160 : COHFUTE THE NOMTNAL AFC LENGTH

G150 \(\times F=X \quad\) (1) a \(Y F=Y 6(1)\)
GOQ L. \(\mathcal{G}=F N H Y F(X B, X F, Y B, Y F)+F N H Y F(X F, X C, Y F, Y C\))

क〇ण FYO=YO-Yठ(I)
G2GO 1 GHECF FOF FIFST ENTFY: IENTFY=-1 - - 1 ISt ENTFY
640 ! \(\quad=1 \cdots \cdots\) NON-1 \(\quad=1\) ENTRY
625 IF IENTFY=1 THEN GOTO BT2O
6260 IENTFY \(=1\)
G270: *** FJFST ENTFY ***
62BO : CHECK FOF CASE \(1-\mathrm{L}\) AT \(\mathrm{I}-1\)
 HEN 6420
GOO ! CHECK FQF CASE \(2-L\) AT I
6310 IF \(X_{6}(I) \geqslant=X A L\) AND \(x 6(I)-L 6 / 2=X A L\) THEN \(696 \%\)
6320! *** NON-15t ENTFY ***
GZOQ ! [HECK FOF CASE 1-F AT I+1
 HEN 6690
OSGO ! CHECK FRF CASE 2-R AT]

QTO : CHECK TC SEE IF NOMTNAL CASE OCCUFS

GEDO FFINT "EFFGF: NOT ANY OF THE FNOWN CASES": B FFINT

6\%: XAL : XAF: A FFINT
6410 FETUFN
040 ! *** CASE 1-1 ***
\(6430 \times A=X A L \quad Y A=Y A L\)

INT

\(043{ }^{\circ} \mathrm{AE}=\mathrm{FNHYF}(X A, X E, Y A, Y E)\)
GADO AEG=FNDETF: OX, XE, XE, YA, YE,YG)
GEO AF=AEG/G1

6 OO IF FXO\# THEN EF=FX3/FXO ELSE BF=0

ESAO IF FYO\# THEN CF=FYI/FYO ELSE CF=O

G5G IF H1\#O THEN DF=HSAHJ ELSE DF=G
\(65 E 0\) EF \(=A B / 1.9\)

6600 IF FXOHO THEN FFF=FW1/FXO ELSE FFF=O

GOO FACTF \(1=1+A F * C F\)
\(6 \mathrm{6O}\) FACTF \(2=1+\mathrm{DF}\) *EF
664 FACTCO \(=1+E F\)

GOEO FACTUH=1+FFFWGGF
607 FACTFU=1+GGF 9 FACTCA \(=1+A F\)
\(66 E O\) FETUFN
6050 ! ** CASE A. - F ***
\(67 G Y A=X A F \quad Y A=Y A F\)

IN?


```

GEO AE=FNHYF (XA.XE.YA.YE)
OGO AEG=FNDETF(XA, XG,XE,YA,YG,YE)
67% AF=AEG/LIIX

```

```

G790 IF FXO\#O THEN EF=FFX1/FXO ELSE BF=O
GGOO F(YI=YO- (YA+YB+YG), S
6B%O IF FYO\#O THEN CF=FEYAFYO ELSE CF=O

```

```

6ESO HS=HI+(HE-HD)/(XAF-Xb(I))*(XE+(XA-XE)/3-XGGJ): ! O4 MAF OS
GQ4O JF HJ\#O THEN DF=HE/H1 ELSE DF=O
6G5O EF=AE/L9
6B6O F(1)=XO-(Xo(I) +LG(2-(XA-XE);2)
GETO JF FXO\#O THEN FFF=FWJ,FYG ELSE FFFF=O

```

```

689O FACTF1=1+AF*CF
GOO FACTFS=1+DF*EF
6%10 FACTCO=1+EF
65O FACTDN=1+AF*EF
GCSO FACTUH=1+FFFF*GGF
6540 FACTFA=1+GGF B FACTCA=1+AF
6SEO FETUFN
6500 !
657% 的=YAL \# YA=YAL

```

```

INT
AGO XE =XG(I) (% YE=YGOT)

```

```

7C10 人D=xC क YD=. 5* (Z (1+1)+Z(I)
7OQG AECDE=FNDETFUXA,XE,XO.YA,YB,YBY +FNDETFGO,XB,XC,YD,YE,YC)
708O AF=AECDE/LIX
7040 FXI=xO (XE(1) +1.6/2-(XD-YA)/马)
7OEO IF FXO\#O THEH EF=FXJ/FXO ELGE EF=O
7OGO FY, =YO-YA+YD+YC), S
7OCO JF FYO\#G THEN CF=FYJ/FYO ELSE LF=O
70日0 ! HS=H1-({YA+YE) (2-YS(1))

```

```

71GO IF H1\#O THEN DF=HS/HI ELSE DF=O
7110 AE=FONHF(XA,XE,YG:YE)
7,O EC=FNHYF(XE,XG,YE,YC) I EF=OAEFEO LG
71SO FONJ=xO-(XO+XA)%
740 1F FXO\#O THEN FFF=FW1FFYO ELSE FFF=O

```

```

F1SO FAGTF =AF*CF
7170 FACTFS=DF*FF
713O FACTCO=EF
71FO FACTDM=GFWEF
72OG FACTUH=FFFWGG%
7210 FACTFW=GGF a FACTCA=AF'
72こO FETUFH
72O0 ! *** CASE *-F****
724O XA=XAF D YA=YAF

```

```

INT
7%O XE=Y0(1) G YE=Y\&(1)

```

```

72@O XD=XE YD=n5*(Z (1-1)+2(1)
FQG AECDE=FNDETFIXA.XD,XE,YG,YD,YB) +FNDETF(XD,XC,XE,YD,YC,YE)
FGO AF=ABCDE/U1X
7S|O FAJ=XO-(XG(I)-LG(2-(XH-XD);
7OO IF FXOHO THEN EF=FXI/FXO ELSE EF=O
7OOFOH=YO-(YG+YD+YC)%%
7\#4O IF FYO\#G THEN CF=FY1/FYO ELSE CF=O
7550 ! HC=H1-(YA+YC)/2-YO(J))
7GO HS=H1+(HS-H1)/(XAF-XG(I))*(XC+(XG-XD) / F-XG(I) ) ! O4 NAF GO
7%O IF H1\#O THEN DF=HS/HJ ELSE DF=O

```

```

7CO EC=FNHYF(XE,YC,YE,YC) , EF=, AS+EC, LO
740% R(1-X0-(XD+XA)/2
741% JF FXO\#G THEN FFF=FW1/FXG ELSE FFF=O
742O IF H(I)\#O THEN GGF=.5*(XA-XD)*(HB+.E*(H{I)+H(I-1)))/(H(I)*LG) ELSE GGF=G
74O FACTF 1=AF*CF
7440 FACTF2=DF*EF
7ASO FACTCO=EF
746O FACTDM=AF*EF
777O FACTUH=FFF*GGF
748O FACTFH=GQF D FACTCA=AF
749G FETUFN
7GOG ! INFUT GFOUND ACCELEFATION. Q UNJTS.
7G10 CLEAF:
7SOO UISF " INFUT HGFJZONTAL ACOELEFATION IN Q LINITS":
7EOO INFUT ACCEL
7540 Z5%="0\& ACCEL"
755% GOTO こ1%

```
```

