SEISMIC ANALYSIS OF ROTATING MECHANICAL SYSTEMS

A REPORT TO

NATIONAL SCIENCE FOUNDATION

Grants CEE 8108119
and
CEE 8243133

by

A. H. Soni, Professor

School of Mechanical and Aerospace Engineering Oklahoma State University

Stillwater, Oklahoma 74078 and
V. Srinivasan*, Research Assistant

School of Mechanical and Aerospace Engineering Oklahoma State University

Stil1water, Oklahoma 74078

June 1984

* Presently with IBM, Watson Research Center

TABLE OF CONTENTS

LIST OF FIGURES 3
LIST OF TABLES 5
ABSTRACT 7
NOMENCLATURE 9
PREFACE 11
PART I: THEORETICAL DEVELOPMENTS 13

1. INTRODUCTION AND LITERATURE REVIEW 15
1.1 INTRODUCTION 15
1.2 RIGID BODY MODELS 19
1.3 BEAM MODELS 24
1.4 SUMMARY OF REVIEW 26
2. RIGID BODY MODEL 31
2.1 SCOPE OF CHAPTER 31
2.2 FORMULATION OF THE PROBLEM 31
2.3 NUMERICAL EXAMPLE 45
2.4 MERITS AND LIMITATIONS OF RIGID BODY MODEL 55
3. BEAM MODEL 56
3.1 SCOPE OF CHAPTER 56
3.2 FORMULATION OF THE PROBLEM 57
3.2.1 KINEMATIC RELATIONS 57
3.2.2 KINETIC RELATIONS 67
3.3 METHOD OF SOLUTION 70
3.3.1 GALERKIN'S TECHNIQUE 70
3.3.2 FINITE ELEMENTS 72
3.3.3 INTERMEDIATE DISKS AND FLYWHEELS 76
3.3.4 CHECK PROBLEMS 77
3.3.4.1 FREE VIBRATION OF A TIMOSHENKO BEAM 78
3.3.4.2 BUCKLING OF A TIMOSHENKO BEAM 80
3.3.4.3 FREE VIBRATION OF A ROTATING TIMOSHENKO BEAM 82
3.3.5 NUMERICAL INTEGRATION 84
3.4 EXAMPLE PROBLEM 84
3.5 MERITS AND LIMITATIONS OF BEAM MODEL 102
4. 3-D ELASTICITY MODEL 107
4.1 SCOPE OF CHAPTER 107
4.2 FORMULATION OF THE PROBLEM 107
4.2.1 KINEMATIC RELATIONS 107
4.2.2 KINETIC RELATIONS. 115
4.2.2.1 RELituons M GMLidorical POLAR COORDINATES 115
4.2.2.2 RELATIONS IN CARTESIAN COORDINATES 119
4.3 METHOD OF SOLUTION 124
4.3.1 GALERKIN'S TECHNIQUE 125
4.3.2 FINITE ELEMENTS 127
4.3.3 CHECK PROBLEMS 131
4.3.3.1 FREE VIBRATION OF BEAM. 132
4.3.3.2 BUCKLING OF A BEAM 132
4.4. EXAMPLE PROBLEM. 135
4.5 MERITS AND LIMITATIONS OF 3-D MODEL 135
5. CONCLUSIONS 145
REFERENCES 147
APPENDIX A: EXPRESSION FOR THE RATE OF CHANGE OF ANGULAR MOMENTUM OF A RIGID BODY USING EULER ANGLES 151
APPENDIX B: BEAM ELEMENT MATRICES 153
APPENDIX C: DISK MATRICES 161
PART II: COMPUTER PROGRAMS 1
6. GYROT USER'S MANUAL 3
1.1 PURPOSE 3
1.2 BACKGROUND THEORY 3
1.3 INPUT DATA 4
1.4 LISTING OF GYROT 7
1.5 SAMPLE INPUT DATA 17
1.6 SAMPLE RESULTS 21
7. ROBET USER'S MANUAL 25
2.1 PURPOSE 25
2.2 BACKGROUND THEORY 25
2.3 INPUT DATA 26
2.4 LISTING OF ROBET 31
2.5 SAMPLE INPUT DATA 47
2.6 SAMPLE RESULTS. 51
8. AXIST USER'S MANUAL 63
3.1 PURPOSE 63
3.2 BACKGROUND THEORY 63
3.3 INPUT DATA. 63
3.4 LISTING OF AXIST 67
3.5 SAMPLE INPUT DATA. 87
3.6 SAMPLE RESULTS 91

LIST OF FIGURES

1.1 TYPICAL NUCLEAR STEAM SUPPLY SYSTEM 14
1.2 TESSARZIK MODEL 20
1.3 NAKAMURA - ASMIS MODEL 21
1.4 SCHWEITZER - IWATSUBO MODEL 23
1.5 VILLASOR MODEL 25
1.6 LUND MODEL 27
1.7 SHIMOGO MODEL 28
2.1 EULER ANGLES FOR THE GENERAL MOTION OF A RIGID ROTOR 30
2.2 ROTOR AND BASE REFERENCE AXES 32
2.3 LINEAR ACCELERATION OF THE BASE 49
2.4 ANGULAR ACCELERATION OF THE BASE 50
2.5 DISPLACEMENTS OF ROTOR IN THE BEARINGS 51
2.6 DYNAMIC REACTION FORCES IN THE BEARINGS 52
2.7 DISPLACEMENTS OF ROTOR IN THE BEARINGS (BASE ROTATION EXCLUDED) 53
2.8 DYNAMIC REACTION FORCES IN THE BEARINGS (BASE ROTATION EXCLUDED). 54
3.1 EULER ANGLES FOR THE GENERAL MOTION OF A RIGID DISK 58
3.2 ROTOR AND BASE REFERENCE FRAMES 60
3.3 AN ELEMENTAL DISK IN $Y_{b} Z_{b}$ AND $X_{b} Z_{b}$ PLANES 66
3.4 A FINITE ROTOR ELEMENT 73
3.5 ROTOR-BEARING SYSTEM FOR EXAMPLE PROBLEM 85
3.6 LINEAR ACCELERATION OF THE BASE 87
3.7 ANGULAR ACCELERATION OF THE BASE 88
3.8 DISPLACEMENTS OF ROTOR IN THE BEARINGS (BASE ROTATION EXCLUDED) 90
3.9 DYNAMIC REACTION FORCES IN THE BEARINGS (BASE ROTATION EXCLUDED) 91
3.10 SHEAR FORCES AND BENDING MOMENTS AT MIDSPAN
(BASE ROTATION EXCLUDED) 92
3.11 DISPLACEMENTS OF ROTOR IN THE BEARINGS
(BASE ROTATION EXCLUDED, RPM $=0$) 93
3.12 DYNAMIC REACTION FORCES IN THE BEARINGS
(BASE ROTATION EXCLUDED, RPM $=0$). 94
3.13 SHEAR FORCES AND BENDING MOMENTS AT MIDSPAN (BASE ROTATION EXCLUDED, RPM $=0$) 95
3.14 DISPLACEMENTS OF ROTOR IN THE BEARINGS (BASE ROTATION INCLUDED) 97
3.15 DYNAMIC REACTION FORCES IN THE BEARINGS (BASE ROTATION INCLUDED) 98
3.16 SHEAR FORCES AND BENDING MOMENTS AT MIDSPAN (BASE ROTATION INCLUDED) 99
3.17 DISPLACEMENTS OF ROTOR IN THE BEARINGS (RIGID BODY MODEL) 100
3.18 DYNAMIC REACTION FORCES IN THE BEARINGS (RIGID BODY MODEL) 101
3.19 DISPLACEMENTS OF ROTOR IN THE BEARINGS (BASE ROTATION, AXIAL FORCE AND AXIAL TORQUE INCLUDED) 103
3.20 DYNAMIC REACTION FORCES IN THE BEARINGS (BASE ROTATION, AXIAL FORCE AND AXIAL TORQUE INCLUDED) 104
3.21 SHEAR FORCES AND BENDING MOMENTS AT MIDSPAN (BASE ROTATION,
AXIAL FORCE AND AXIAL TORQUE INCLUDED) 105
4.1 EULER ANGLES FOR THE GENERAL MOTION OF A RIGID RING 108
4.2 RING AND BASE REFERENCE FRAMES 111
4.3 DIFFERENTIAL ELEMENT OF A RING 118
4.4 ISOPARAMETRIC, SOLID OF REVOLUTION ELEMENT 128
4.5 GEOMETRY OF EXAMPLE PROBLEM. 136
4.6 DISPLACEMENTS OF ROTOR IN BEARINGS (NO BASE ROTATION) 137
4.7 DYNAMIC REACTION FORCES IN BEARINGS (NO BASE ROTATION) 138
4.8 BENDING STRESS AT MIDSPAN (NO BASE ROTATION) 139
4.9 DISPLACEMENTS OF ROTOR IN BEARINGS 140
4.10 DYNAMIC REACTION FORCES IN BEARINGS 141
4.11 BENDING STRESS AT MIDSPAN 142

LIST OF TABLES

1.1 GYROSCOPIC EFFECTS DUE TO BASE MOTION 18
2.1 NEWMARK'S INTEGRATION SCHEME 46
2.2 PARAMETERS OF THE ROTOR-BEARING SYSTEM ANALYZED. 47
3.1 COMPARISON OF NON-DIMENSIONAL FREQUENCY PARAMETER FOR A SIMPLY SUPPORTED TIMOSHENKO BEAM. 79
3.2 COMPARISON OF NON-DIMENSIONAL BUCKLING PARAMETER FOR A SIMPLY SUPPORTED TIMOSHENKO BEAM. 81
3.3 COMPARISON OF NON-DIMENSIONAL FRQUENCY PARAMETER FOR A SIMPLY SUPPORTED, ROTATING TIMOSHENKO BEAM. 83
3.4 PARAMETERS FOR THE ROTOR-BEARING SYSTEM. 86
4.1 FREE VIBRATION OF A SIMPLY SUPPORTED BEAM. 133
4.2 BUCKLING OF A SIMPLY SUPPORTED BEAM. 134

人日

Abstract

In this report we present the seismic analysis of a rotating mechanical system in the time domain. The earthquake excitation is assumed to be a deterministic function of time. The report is divided into two parts. Part I presents the theoretical developments of the models. Part II presents the corresponding computer programs along with the User's Manuals.

Literature available on seismic analysis of rotating mechanical systems is first reviewed in Part I. A rigid body model is then developed. In the rigid body model the rotating system is modeled as a rigid body spinning in three-dimensional space. Factors such as gyroscopic effects, rotor-bearing interaction effects, base rotation (including Coriolis effects) and base translation are included in the model. A numerical example is solved and the results are presented in graphical form.

Following this, a beam model is presented. The beam model incorporates the flexibility of the rotating system using Timoshenko beam theory. In addition to the factors mentioned in the rigid body model, factors such as rotatory inertia, shear deformation, intermediate disks and flywheels and effects of initial stresses due to axial force and axial torque are included in the beam mode1. The solution is obtained using finite elements in the spatial domain and finite differences in the time domain. A numerical example is solved and the results are presented in graphical form.

Finally, a three-dimensional elasticity model is proposed. The 3-D elasticity model incorporates the flexibility of the system using the threedimensional theory of elasticity. The solution is obtained using eight-noded, isoparametric solid of revolution finite elements in the spatial domain and finite differences in the time domain. A numerical example is solved and the results are presented in graphical form. Based on the performance of the

rigid body, beam and 3-D elasticity models, conclusions are drawn at the end of Part I.

In Part II we first present a User's manual and listings of a computer program called GYROT which is based on the rigid body model. This is followed by another User's manual and listings of ROBET, which is based on our beam model. Finally, we present a User's manual and listings of AXIST, which is based on our 3-D elasticity model.

NOMENCLATURE

$c_{x x i}$ etc. Damping coefficients of the fluid film in $i^{\text {th }}$ bearing.
h
i, j, k
$\underset{\sim}{k} \sim$
$k_{x x i}$ etc.
l_{i}
m
r
x_{G}, y_{G}, z_{G} A

E
$I_{0} \quad$ Moment of inertia of the rotor about x - or y-axis.
$X_{b}, Y_{b}, Z_{b} \quad$ Absolute displacements of point b.

$p \quad$ Mass density of the material.
$\psi, \vartheta, \phi \quad$ Precession, nutation and spin angles.
$\omega \quad$ Rotational speed of the rotor, a constant.
$\omega_{\mathrm{b}} \quad$ Angular velocity of the base.
A20

PREFACE

This is the final report of an investigation on the seismic behavior of rotating mechanical systems, supported by National Science Foundation. It covers the iiterature review, a rigid body model, a beam model and a threedimensional elasticity model.

The present report is divided into two parts. Part I deals with the theoretical developments of various models. Part II presents the corresponding computer programs and User's manuals.

In Part I, Chapter 1 gives a brief introduction to the seismic analysis of rotating mechanical systems. This is followed by a review of the models used and results obtained by various authors. The review covers all available literature and we believe that it presents the current state of the art in this area.

Chapter 2 presents a rigid body model. As a first order of approximation, the rotating system is modeled as a rigid body spinning in three-dimensional space. A rigid body approximation is the first step in our analysis sequence. The reader will notice that much of the kinematic relations developed in this Chapter is carried over to the higher-order models.

Chapter 3 presents a beam model. The flexibility of the rotating system is now taken into account using Timoshenko beam theory. The kinematic relations developed in this Chapter are very similar to their counterparts in Chapter 2. But in developing the kinetic relations, we have departed considerably from the rigid body model. A finite element method is used to obtain the seismic response in the beam model.

Chapter 4 presents a 3-D elasticity model. The flexibility of the rotating system is incorporated in the model using three-dimensional theory of
elasticity. The kinematic relations developed in this Chapter are similar to their counterparts in Chapters 2 and 3 . In developing the kinetic relations, we have followed a procedure similar to that of beam model. A finite element method is used to obtain the seismic response in the 3-D elasticity model.

Chapter 5 draws conclusions based on the performance of rigid body, beam and 3-D elasticity models. This is followed by references and appendices.

In this report, a deterministic analysis approach is used throughout. This means that the seismic excitation is treated as a known function of time. Historically, a deterministic approach preceeds a non-deterministic approach. A deterministic approach enables us to understand the basic dynamic behavior of the system under investigation. It also helps us to develop the governing equations for a complex system such as a rotating mechanical system. These equations will form the starting point for any nondeterministic analysis to be conducted in the future.

The reader will notice that we have adopted a Newton-Euler approach, rather than a Lagrangian approach, to formulate the governing dynamic equations in this report. A rotating mechanical system is a nonconservative system and as such it does not possess a potential function from which the generalized active forces can be derived. This makes the construction of Lagrangian for this system more difficult, if not impossible. On the other hand, the Newton-Euler approach is more direct and can be applied to a nonconservative system without any difficulty. Hence the Newton-Euler approach has been adopted throughout this report.

In Part II, Chapter 1 presents the GYROT User's manual and the associated listings. GYROT is a computer program based on the rigid body model. Chapter 2 presents the ROBET User's manual and the corresponding listings. ROBET is a computer program based on our beam model. Chapter 3 presents the AXIST User's manual and the corresponding listings. AXIST is a computer program based on our 3-D elasticity model.

PART I

THEORETICAL DEVELOPMENTS

FIG.1.1 TYPICAL NUCLEAR STEAM SUPPLY SYSTEM

1. INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

The dynamics of rotating machines has been a topic of interest to designers and research engineers for many years. Most studies have focused on the following:

- rotor stability
- balancing of the rotor
- dynamic response of the rotor

Dynamic response studies include response due to mass unbalance and response due to such environmental effects as foundation excitation.

The performance of rotating machines on such moving vehicles as aircraft was a major concern of early designers and led to investigations on the dynamic response of rotating machines to foundation excitation. Research in this area has recently been revitalized because of concern regarding the performance of rotating machines in earthquake environments. In such emergency installations as hospitals and fire stations and in nuclear power plants certain rotating machines must remain functional during and after an earthquake.

Figure 1.1 shows the primary circuit of a typical nuclear steam supply system in a pressurized water reactor. The heat generated in the reactor is carried by a primary fluid that condenses in a steam generator that transfers heat to a secondary fluid. The condensed fluid is then pumped up to the reactor by the reactor coolant pump. This pump is vital to the nuclear steam supply system and is the heart of the power plant. Failure of this pump could lead to catastrophic consequences. It is therefore essential that this pump
remain functional in the event of seismic activity.
The seismic analysis of rotating machines basically involves a transient dynamic response computation. The computation is performed after the rotor/bearing system has been suitably modeled and the foundation base has been subjected to a motion that simulates an earthquake. From these computations the designer checks the following, whether

- the lubricant fluid film preserves a minimum thickness at all times so that the rotor and bearing surfaces do not rub against each other
- the dynamic stresses induced in the rotor stay within allowable limits
- the bearing reaction forces can be adequately withstood by the supporting structures

Dynamic response computations in the seismic analysis can be carried out using any of the following methods:

- time history analysis, in which base excitation as well as response are treated in the time domain
- response spectrum analysis, in which excitation and response are considered in the frequency domain
- spectral density analysis, in which excitation and response are analyzed as random vibrations

All of these methods have been employed in the seismic analysis of rotors.

The difference between the seismic analysis of stationary structures and rotating structures must be noted at this point. Seismic analysis of stationary structures is well-developed and has become a routine practice in industry [1, 2]*. Seismic analysis of rotating components is relatively new; it differs from the seismic analysis of stationary structures in that the additional gyroscopic effects and rotor/bearing interactions must be considerred. It is well known that gyroscopic moments are developed whenever the spin axis of a rotating body is rotated. In rotating machines the spin axis rotates for any of the following reasons:

- overall rotation of the structure supporting the rotating machine
- flexibility of the members supporting the rotor
- differential translational motions of the support points on the rotor.
* Numbers in brackets refer to corresponding items under 'References'.

ROTOR-BEARING SYSTEM	DESCRIPTION	REMARKS
	RIGID ROTOR ON RIGID bearings. BASE TRANSLATION ONLY.	NO GYROSCOPIC EFFECT is FELT.
BASE	RIGID ROTOR ON RIGD bearings. BASE TRANSLATION AND ROTATION.	GYROSCOPIC EFFECTS ARE PRESENT.
	RIGID ROTOR ON flexible bearings. bASE TRANSLATION ONLY.	GYROSCOPIC EFFECTS ARE PRESENT EXCEPT FOR A SYMAMETRICAL ROTOR ON IDENTICAL BEARINES.
	RIGID ROTOR ON FLEXIBLE BEARINGS. BASE TRANSLATION AND ROTATION .	GYROSCOPIC EFFECT ARE PRESENT.

The presence of gyroscopic effects is illustrated in Table 1.1; a simple case of a rigid rotor mounted on two bearings is presented for four cases of base excitation. Three of the four cases involve gyroscopic effects.

A vast literature is available on the general dynamic response of rotors. This review is restricted to models used and results obtained by authors who have specifically addressed the problem of seismic analysis of rotating shafts.

1.2 RIGID BODY MODELS

Useful results have been obtained by modeling the rotor as a spinning rigid body. Some accuracy is sacrificed in ignoring the flexibility of the rotor itself, but such analyses provide certain physical insight into the problem and avoid complex mathematics.

Tessarzik model. The axial dynamic response of a rotating machine supported on a gas thrust bearing and subjected to stationary random environment has been obtained [3]. The rotor/bearing system was modeled by the linear, discrete parameter system shown in Figure 1.2. Only the axial vibration of the rotor was considered; the effect of rotation of the rotor was thus ignored. The film thickness of the gas thrust bearing was the primary concern in the analysis. The theoretical random vibration response compared well with experimental measurements obtained on an actual turbomachine, thereby validating the model.

Nakamura-Asmis model. The dynamic response of a uranium centrifuge subjected to seismic excitation has been obtained [4]. The centrifuge was modeled as a rigid body spinning in three-dimensional space (see Figure 1.3)

FIG.1.2 TESSARZIK MODEL

FIG.1.3 NAKAMURA-ASMIS MODEL

Rotor/bearing interactions were modeled by two sets of orthogonal springs and dashpots at each of the two bearing locations. Loci of the journal centers were obtained for Taft and El Centro earthquake excitations. The uranium centrifuge that was analyzed was found to be safely designed; safety was experimentally confirmed.

A similar model was proposed independently $[5,6]$ to study the dynamic response of a heat transport pump in the CANDU reactor. Response was obtained as a function of time using numerical integration of the governing equations. Responses were obtained for a unit step base excitation and the El Centro earthquake excitation. Gyroscopic effects were found to be of considerable importance. Contrary to common belief, it was found that gyroscopic effects did not necessarily strengthen or reduce motion of the assembly in the direction of excitation. It was also found that the gyroscopically-induced forces could be kept within reasonable values by providing close fitting, stiff supports. It was suggested that gyroscopically-induced forces could be minimized by mounting the equipment so that the external forces excited only the translational modes.

A rigid body model similar to that described above has been proposed [7] to obtain the transient dynamic response to seismic excitation.

Schweitzer-Iwatsubo model. A refined model for a rotating system can be obtained if the lubricant fluid film and the bearing support are modeled separately as springs and dashpots. Such a model facilitates inclusion of the influence of bearing masses in the analysis. One such model has been proposed [8] and used [9] for seismic analysis (see Figure 1.4). Emphasis was on reliability analysis. The earthquake excitation was treated as a nonstationary random process. Such physical parameters as mass, stiffness, and damping coefficients were allowed to vary randomly from their design

FIG.1.4 SCHWEITZER-IWATSUBO MODEL
values. The authors used the principles of random vibration to obtain the displacement response, system failure probability, and the period of first collision with the guard.

Dynamic response of gyroscopes to base excitation has been studied [10, 11], but these studies were restricted to gyroscopes. Rotor/bearing interaction effects were not included in these anayses. Such studies are less likely to be of interest to designers of rotating shafts.

1.3 BEAM MODELS

A more realistic model for the rotor is obtained if rotor flexibility is included in the analysis. In a limited number of studies, the rotor has been modeled as a beam for seismic analysis.

Villasor model. The dynamic response of a reactor coolant pump to earthquake excitation has been obtained [12] using the ANSYS finite element computer program. A major feature of this work was the use of beam, spring, and fluid elements to model the rotor and all of its supporting members (see Figure 1.5). The effect of rotation is not included in the analysis. The seismic analysis was performed using the response spectrum method; seismic velocity was the input excitation parameter. Nodal stresses and displacements were obtained. It was concluded that the reactor coolant pump was adequately designed to withstand the imposed seismic loading.

Lund model. An important element in the seismic analysis of rotating systems is the proper inclusion of rotor/bearing interaction effects. The nature of interaction is complicated by the fact that the restoring force

FIG.1.5 VILLASOR MODEL
acting on the rotor in a fluid film is not collinear with the perturbing force. It is therefore necessary to use at least four stiffness and damping coefficients -- two collinear and two cross-coupled in each case -- to describe the dynamic characteristics of a fluid-film journal bearing [13].

The damping coefficients for the fluid-film bearing are symmetric, but the stiffness coefficients are not symmetric [14, 15]. This important aspect of the problem has been recognized by Lund [16]. He proposed a beam model for the seismic analysis of a rotor that includes shear deformation, rotatory inertia, gyroscopic moments, internal hysteresis damping, and rotor-bearing interaction effects (see Figure 1.6). The vertical amplitude response of the rotor due to foundation shock pulse and to random excitation were obtained using a modal method developed earlier [17].

Shimogo model. The seismic response of a rotor supported on two bearings has been obtained [18] by modeling the rotor as a rigid rotor, a flexible rotor with distributed mass, and a flexible rotor with lumped mass (see Figure 1.7). The seismic excitations acting on the two bearings were assumed to be stationary Gaussian random processes. The rotor-bearing interaction was properly modeled, as done earlier by Lund. The authors concluded that the flexibility of the rotor should be taken into account in the seismic analysis for proper estimation of the bearing reaction forces.

1.4 SUMMARY OF REVIEW

The need to design reliable machines for earthquakes environments has focused attention on the transient dynamic response of rotating machines to

FIG.1.6 LUND MODEL

FIG.1.7 SHIMOGO MODEL
base motions. This type of analysis differs significantly from traditional structural dynamic analysis because of the presence of gyroscopic effects and rotor-bearing interaction effects.

A rigid body model for the rotor spinning in three-dimensional space seems to be satisfactory for predicting lubrication film thickness and bearing reaction forces when the rotor is supported on only two bearings. In all the models reported in this review, the base is subjected only to translational excitations. A rotating machine mounted on a structure would, however, be subjected to base rotations as well as base translations in an earthquake. When the rotor is supported on more than two bearings or the stresses and deflections in the rotor are to be estimated, the beam model should be used. Existing beam models reported in this review do not include the effects of base rotation.

FIG.21EULER ANGLES FOR THE GENERAL MOTION OF A RIGID ROTOR

2. RIGID BODY MODEL

2.1 SCOPE OF CHAPTER

In this chapter, we present a seismic analysis in which the rotating system is modeled as a spinning rigid body. A rigid body model represents the first order of approximation in our analysis. It includes such factors as gyroscopic effects, rotor-bearing interaction effects, Coriolis effects due to base rotation and the effects of base translation. The dynamical problem is formulated using Newton-Euler approach. A numerical example is solved for the case of a typical rotating system and the results are presented in graphical form.

2.2 FORMULATION OF THE PROBLEM

Consider an axially symmetric rigid body spinning about its axis of symmetry and executing arbitrary motion in space. Its motion can be conveniently described using Euler angles as shown in Figure 2.1. XYZ is a reference system which preserves fixed orientation in space (i. e. no rotation) with the center of mass of the rotor as its origin. $x y z$ is another, non-spinning, reference system with its origin at the center of mass of the rotor, but $x y z$ can execute precessional (ψ) and nutational (θ) motion. In addition to these precessional and nutational motions, the rigid rotor can possess a $\operatorname{spin}(\phi)$ motion about the z-axis of the $x y z$ reference system.

The Newton's Law of Motion for the rigid body can be written vectorially

FIG.2.2ROTOR AND BASE REFERENCE AXES

$$
\begin{equation*}
F=m_{G} \tag{2.1}
\end{equation*}
$$

and

$$
M_{G}=\dot{H}_{G}
$$

where F is the resultant force acting on the rotor, ${\underset{\sim}{a}}_{a}^{a}$ is the absolute acceleration of the center of mass of the rotor, ${ }_{\sim}^{M}$ is the moment due to exernal forces taken about the center of mass and ${\underset{\sim}{G}}_{H_{G}}$ is the angular monentum of the rotor computed about its center of mass. A general expression for the time rate of change of the angular momentum can be derived as [19, 20]

$$
\begin{align*}
\dot{H}_{G}= & \left\{I_{0} \ddot{\theta}+I \ddot{\phi} \psi \sin \theta+\left(I-I_{0}\right) \dot{\psi}^{2} \sin \theta \cos \theta\right\} \varepsilon_{x} \\
& +\left\{I_{0} \ddot{\psi} \sin \theta-I \ddot{\phi} \dot{\theta}+\left(2 I_{0}-I\right) \ddot{\psi} \dot{\theta} \cos \theta\right\} \varepsilon_{y} \tag{2.2}\\
& +\{\ddot{\phi}+I \ddot{\psi} \cos \theta-I \ddot{\psi} \theta \sin \theta\} \varepsilon_{z}
\end{align*}
$$

where $\varepsilon_{x}, \varepsilon_{y}$ and ε_{z} are the unit vectors along the x, y and z axes. I is the moment of inertia of the rotor about the z-axis and I_{0} is the moment of inertia about the x - or y-axis. A detailed derivation of (2.2) is given in Appendix A.

Let us consider the case when the xyz reference system assumes an orientation with $\theta \cong \pi / 2$ and $\psi \cong 0$ as shown in Figure 2.2. The rotor is supported on two bearings and the bearing-base unit will be considered as another rigid body with a body-fixed reference system $x_{b} y_{b} z_{b}$. The origin b of the $x_{b} y_{b} z_{b}$ coordinate system is so chosen that in equilibrium position point G lies on the y_{b} axis. The lubricants in the bearings provide stiffness and damping for the relative motion between the rotor and the bearings. In the seismic analysis of such a rotor-bearing system, the base is subjected to
known translational and rotational motion. The analyst aims at predicting the translational and rotational response of the rotor.

The base excitation due to earthquake results in small, perturbational rotations and translations of the base about its equilibrium position. The rotor responds with small, perturbational rotations and translations of the xyz reference system from the position of $\theta=\pi / 2$ and $\psi=0$ as shown in Figure 2.2 Let ${ }_{\sim}^{\omega} \mathrm{b}$ be the known angular velocity and α_{b} be the known angular acceleration of the base given by

$$
\begin{align*}
& {\underset{\sim}{b}}_{b}=\dot{\theta}_{x b}{\underset{\sim}{x b}}_{\varepsilon}+\dot{\theta}_{y b}{ }_{\sim}^{\varepsilon} y b+\dot{\theta}_{z b}{\underset{\sim}{z b}}_{z b} \tag{2.3}\\
& \alpha_{\sim}^{\alpha_{b}}=\ddot{\theta}_{x b}{ }_{\sim}^{\varepsilon} x b+\ddot{\theta}_{y b}{ }_{\sim}^{\varepsilon} y b+\ddot{\theta}_{z b}{ }_{\sim}^{z b}
\end{align*}
$$

The small, perturbational translations of the center of mass of the rotor relative to the $x_{b} y_{b} z_{b}$ reference system can be specified by the displacements x_{G}, y_{G} and z_{G} along the x_{b}, y_{b} and z_{b} axes. Similarly, the small, perturbational rotations of the $x y z$ system relative to the $x_{b} y_{b} z_{b}$ reference system can be specified by the small rotations θ_{x}, θ_{y} and θ_{z} about the x_{b}, y_{b} and z_{b} axes and the sequence in which these rotations take place becomes immaterial. Since the rotations of the base ${ }^{\theta} x b, \theta_{y b}$ and $\theta_{z b}$ about x_{b}, y_{b} and z_{b} axes are also small, perturbational motions, it can be taken that

$$
\begin{aligned}
& \varepsilon_{\sim}{ }_{x b}{\underset{\sim}{x}}^{\cong} \underset{\sim}{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \varepsilon_{\sim} \underset{\sim}{\cong} \varepsilon_{z} \cong-j
\end{aligned}
$$

This leads to the approximate expressions

$$
\begin{array}{ll}
\theta=\pi / 2+\theta_{x b}+\theta_{x} & , \psi=\theta_{y b}+\theta_{y} \\
\dot{\theta}=\dot{\theta}_{x b}+\dot{\theta}_{x} & , \dot{\psi}=\dot{\theta}_{y b}+\dot{\theta}_{y} \\
\ddot{\theta}=\ddot{\theta}_{x b}+\ddot{\theta}_{x} & , \ddot{\psi}=\ddot{\theta}_{y b}+\ddot{\theta}_{y} \tag{2.5}
\end{array}
$$

In addition, it will be assumed that the spin velocity of the rotor remains constant so that

$$
\begin{equation*}
\dot{\phi}=\omega(\mathrm{a} \text { constant }) \text { and } \ddot{\phi}=0 \tag{2.6}
\end{equation*}
$$

Substituting (2.5) and (2.6) in equation (2.2) and retaining only the first order terms we get the linearized expression

$$
\begin{align*}
\dot{H}_{G}= & \left\{I_{0}\left(\ddot{\theta}_{x b}+\ddot{\theta}_{x}\right)+I \omega\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right)\right\} \varepsilon_{x b} \\
& +\left\{I_{0}\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right)-I \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right)\right\} \varepsilon_{y b} \tag{2.7}
\end{align*}
$$

In the above expression, terms involving I ω are the familiar gyroscopic
moments caused by the rotation of the spin axis.
The absolute acceleration of the point G can be obtained by considering the motion of the point b and the relative motion of G with respect to the $x_{b} y_{b} z_{b}$ reference system. Even though the unit vectors in various reference systems shown in Figure 2.2 can be approximately equated to their counterparts as shown in equations (2.4), their time derivatives cannot be equated in a similar manner. Hence,
where

$$
\begin{aligned}
& a_{\sim}=\ddot{X}_{b} \varepsilon_{\sim}^{x b}+\ddot{y}_{b}{\underset{\sim}{y b}}^{y b}+\ddot{z}_{b} \varepsilon_{z b}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\sim} r e l=\dot{x}_{G_{\sim}}^{\varepsilon} x b+\dot{y}_{G_{\sim}}^{\varepsilon} y b+\dot{z}_{G_{\sim}}{ }_{z b}
\end{aligned}
$$

This leads to

$$
\begin{aligned}
a_{G}= & \left\{\ddot{x}_{G}-2 \dot{\theta}_{z b} \dot{y}_{G}+2 \dot{\theta}_{y b} \dot{z}_{G}-\left(\dot{\theta}_{y b}^{2}+\dot{\theta}_{z b}^{2}\right) x_{G}+\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right) y_{G}+ \\
& \left.\left.\dot{\theta}_{z b} \dot{\theta}_{x b}+\ddot{\theta}_{y b}\right) z_{G}+\ddot{x}_{b}+h\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right)\right\} \varepsilon_{x b}+ \\
& \left(\ddot{y}_{G}+\dot{\theta}_{z b} \dot{x}_{G}-2 \dot{\theta}_{x b} \dot{z}_{G}+\left(\dot{\theta}_{x b} \dot{\theta}_{y b}+\ddot{\theta}_{z b}\right) x_{G}-\right. \\
& \left.\left.\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right) y_{G}+\dot{\theta}_{y b} \dot{\theta}_{z b}-\ddot{\theta}_{x b}\right) z_{G}+\ddot{y}_{b}-h\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right)\right\} \varepsilon_{y b}+ \\
& \left.\left(\ddot{z}_{G}-2 \dot{\theta}_{y b} \dot{x}_{G}+\dot{2}_{x b} \dot{y}_{G}+\dot{\theta}_{z b} \dot{\theta}_{x b}-\ddot{\theta}_{y b}\right) x_{G}+\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right) y_{G}- \\
& \left.\left(\dot{\theta}_{x b}^{2}+\dot{\theta}_{y b}^{2}\right) z_{G}+\ddot{z}_{b}+h\left(\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right)\right\} \varepsilon_{\sim}^{\varepsilon_{z b}}
\end{aligned}
$$

The external forces and moments acting on the rigid rotor can be evaluated by considering the rotor-bearing interaction. The nature of the interaction is complicated by the fact that the restoring force acting on the rotor in a fluid film is not collinear with the perturbing force in the $x_{b} y_{b}$ plane. Thus a perturbing force in the x_{b} direction gives rise to restoring forces in both the x_{b} and y_{b} directions and vice versa. Therefore, it is necessary to use at least four stiffness and damping coefficients, two collinear and two cross-coupled in each case, to describe the dynamic characteristics of a fluid-film journal bearing [13]. If x_{i}, y_{i} and z_{i} are the displacements of the rotor relative to the $i^{\text {th }}$ bearing along the x_{b}, y_{b} and z_{b} axes, then the forces acting on the rotor at the $i^{\text {th }}$ station can be
written as

$$
\begin{align*}
F_{\sim}= & -\left(k_{x x i} x_{i}+k_{x y i} y_{i}+c_{x x i} \dot{x}_{i}+c_{x y i} \dot{y}_{i}\right) \varepsilon_{\sim}^{\varepsilon} \\
& -\left(k_{y x i} x_{i}+k_{y y i} y_{i}+c_{y x i} \dot{x}_{i}+c_{y y i} \dot{y}_{i}\right){\underset{\sim}{y b}}_{\varepsilon_{y b}} \tag{2.11}\\
& -\left(k_{z z i} z_{i}+c_{z z i} \dot{z}_{i}\right){ }_{\sim}^{\varepsilon} z b
\end{align*}
$$

Here the damping coefficients may be symmetric ($c_{x y i}=c_{y x i}$) but the stiffness coefficients are not symmetric $\left(k_{x y i} \neq k_{y x i}\right)$. For oil-lubricated bearings, these coefficients are functions of the rotational speed (they are functions of the bearing Sommerfeld number) [21]. For gas lubricated bearings, they are not only functions of speed but, because of compressibility effects, they also depend on the time history of the rotor motion. Using these coefficients, the external forces and moment acting on the rotor can be written as

$$
\begin{align*}
\underset{\sim}{F}= & -\left\{\left(k_{x x 1}+k_{x x 2}\right) x_{G}+\left(k_{x y 1}+k_{x y 2}\right) y_{G}+\left(-\ell_{1} k_{x y 1}+\ell_{2} k_{x y 2}\right) \theta_{x}+\right. \\
& +\left(\ell_{1} k_{x x 1}-\ell_{2} k_{x x 2}\right) \theta_{y}+\left(c_{x x 1}+c_{x x 2}\right) \dot{x}_{G}+\left(c_{x y 1}+c_{x y 2}\right) \dot{y}_{G}+ \\
& \left(-\ell_{1} c_{x y 1}+\ell_{2} c_{x y 2} \dot{\theta}_{x}+\left(\ell_{1} c_{x x 1}-\ell_{2} c_{x x 2}\right) \dot{\theta}_{y}\right\} \underset{\sim}{\varepsilon_{x b}} \\
& -\left\{\left(k_{y x 1}+k_{y x 2}\right) x_{G}+\left(k_{y y 1}+k_{y y 2}\right) y_{G}+\left(-\ell_{1} k_{y y 1}+\ell_{2}^{k} k_{y y 2}\right) \theta_{x}\right. \\
& +\left(\ell_{1} k_{y x 1}-\ell_{2}{ }_{y x 2}\right) \theta_{y}+\left(c_{y x 1}+c_{y x 2}\right) \dot{x}_{G}+\left(c_{y y 1}+c_{y y 2}\right) \dot{y}_{G}+ \\
& \left(-\ell_{1} c_{y y 1}+\ell_{2} c_{y y 2} \dot{\theta}_{x}+\left(\ell_{1} c_{y x 1}-\ell_{2} c_{y x 2}\right) \dot{\theta}_{y}\right\} \underset{\sim}{\varepsilon_{y b}} \\
& -\left\{\left(k_{z z 1}+k_{z z 2}\right) z_{G}+\left(c_{z z 1}+c_{z z 2}\right) \dot{z}_{G}\right\} \underset{\sim}{\varepsilon_{z b}} \tag{2.12}
\end{align*}
$$

$$
\begin{align*}
& {\underset{\sim}{G}}_{M_{G}}=-\left\{\left(-\ell_{1} k_{y x 1}+\ell_{2} k_{y x 2}\right) x_{G}+\left(-\ell_{1} k_{y y 1}+\ell_{2} k_{y y 2}\right) y_{G}\right. \\
& +\left(\ell_{1}^{2} k_{y y 1}+\ell_{2}^{2} k_{y y 2}\right) \theta_{x}+\left(-\ell_{1}^{2} k_{y x 1}-\ell_{2}^{2} k_{y x 2}\right) \theta_{y} \\
& +\left(-\ell{ }_{1} c_{y x 1}+\ell_{2} c_{y x 2}\right) \dot{x}_{G}+\left(-\ell_{1} c_{y y 1}+\ell_{2} c_{y y 2}\right) \dot{y}_{G} \\
& \left.+\left(\ell_{1}^{2} c_{y y 1}+\ell_{2}^{2} c_{y y 2}\right) \dot{\theta}_{x}+\left(-\ell_{1}^{2} c_{y x 1}-\ell_{2}^{2} c_{y x 2}\right) \dot{\theta}_{y}\right\}{ }_{\sim}^{\varepsilon_{x b}} \\
& -\left\{\left(\ell_{1}^{k} x_{x 1}-\ell_{2} k_{x x 2}\right) x_{G}+\left(\ell_{1}^{k} x_{x y 1}-\ell_{2} k_{x y 2}\right) y_{G}\right. \\
& +\left(-\ell_{1}^{2} k_{x y 1}-\ell_{2}^{2} k_{x y 2}\right) \theta_{x}+\left(\ell_{1}^{2} k_{x x 1}+\ell_{2}^{2} k_{x x 2}\right) \theta_{y} \\
& +\left(\ell_{1} c_{x x 1}-\ell_{2} c_{x x 2}\right) \dot{x}_{G}+\left(\ell_{1} c_{x y 1}-\ell_{2} c_{x y 2}\right) \dot{y}_{G} \\
& \left.+\left(-\ell_{1}^{2} c_{x y 1}-\ell_{2}^{2} c_{x y 2}\right) \dot{\theta}_{x}+\left(l_{1}^{2} c_{x x 1}+\ell_{2}^{2} c_{x x 2}\right) \dot{\theta}_{y}\right\}{ }_{\sim}^{\varepsilon}{ }_{y b} \tag{2.13}
\end{align*}
$$

Using (2.7), (2.10), (2.12), and (2.13), the governing equations of motion as given by the vector equations (2.1) can be written in convenient matrix form as

$$
\begin{equation*}
[M]\{X\}+[C]\{X\}+[K]\{X\}=\{F\} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.[x]^{\top}-\Gamma x_{r} ; y_{6} ; 7_{6} a_{y} a_{y}\right] \tag{2.15}
\end{equation*}
$$

[M] is a diagonal mass matrix given by

$$
[M]=\left[\begin{array}{lllll}
m & 0 & 0 & 0 & 0 \tag{2.16}\\
0 & m & 0 & 0 & 0 \\
0 & 0 & m & 0 & 0 \\
0 & 0 & 0 & I_{0} & 0 \\
0 & 0 & 0 & 0 & I_{0}
\end{array}\right]
$$

Matrices [C] and [K] and vector $\{F\}$ can be further subdivided as

$$
\begin{align*}
& {[C]=\left[C_{1}\right]+\left[C_{2}\right]+\left[C_{3}\right]} \\
& {[K]=\left[K_{1}\right]+\left[K_{2}\right]} \tag{2.17}\\
& \{F\}=\left\{F_{1}\right\}+\left\{F_{2}\right\}
\end{align*}
$$

$\left[C_{1}\right]$ is a symmetrical damping matrix given by

$\left[C_{2}\right]$ and $\left[C_{3}\right]$ are due to gyroscopic and Coriolis effects, respectively, and both are skew-symmetric. They are given by
$\left[C_{2}\right]=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathrm{I} \boldsymbol{\omega} \\ 0 & 0 & 0 & -\mathrm{I} \boldsymbol{\omega} & 0\end{array}\right]$

$$
\left[c_{3}\right]=\left[\begin{array}{ccccc}
0 & -2 m \dot{\theta}_{z b} & 2 m \dot{\theta}_{y b} & 0 & 0 \tag{2.20}\\
2 \dot{m} \dot{\theta}_{z b} & 0 & -2 \dot{m} \dot{\theta}_{\mathrm{xb}} & 0 & 0 \\
-2 \dot{\theta}_{\mathrm{yb}} & 2 \dot{m}_{\mathrm{xb}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\left[K_{1}\right]$ is the stiffness matrix due to the fluid film and is given by

In general $\left[K_{1}\right]$ will be unsymmetrical due to unsymmetry in the fluid film bearing stiffness coefficients ($k_{x y i} \neq k_{y x i}$). $\left[k_{2}\right]$ is the supplementary stiffness matrix due to the base rotation and is given by the unsymmetrical matrix

$$
\left[K_{2}\right]=\left[\begin{array}{ccccc}
-m\left(\dot{\theta}_{y b}^{2}+\dot{\theta}_{z b}^{2}\right) & m\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right) & m\left(\dot{\theta}_{z b} \dot{\theta}_{x b}+\ddot{\theta}_{y b}\right) & 0 & 0 \\
m\left(\dot{\theta}_{x b} \dot{\theta}_{y b}+\ddot{\theta}_{z b}\right) & -m\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right) & m\left(\dot{\theta}_{y b} \dot{\theta}_{z b}-\ddot{\theta}_{x b}\right) & 0 & 0 \\
m\left(\dot{\theta}_{z b} \dot{\theta}_{x b}-\ddot{\theta}_{y b}\right) & m\left(\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right) & -m\left(\dot{\theta}_{x b}^{2}+\dot{\theta}_{y b}^{2}\right) & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\left\{F_{1}\right\}$ is the force vector due to base translation and $\left\{F_{2}\right\}$ is the force vector due to base rotation. They are given by

$$
\begin{align*}
& \left\{F_{1}\right\}^{T}=\left[\begin{array}{cc}
-m \ddot{X}_{b} & -m \ddot{Y}_{b}-m \ddot{Z}_{b} \\
\left\{F_{2}\right\}=\left\{\begin{array}{c}
-m h\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right) \\
m h\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right) \\
-m h\left(\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right) \\
-I_{0} \ddot{\theta}_{x b}-I \omega \dot{\theta}_{y b} \\
-I_{0} \ddot{\theta}_{y b}+I_{\omega} \dot{\theta}_{x b}
\end{array}\right\}
\end{array}\right\} \tag{2.23}
\end{align*}
$$

When the excitation is confined only to base translation (i.e. no rotation) [C_{3}] and $\left[K_{2}\right]$ become null matrices and $\left\{F_{2}\right\}$ becomes a null vector. Then the governing equations reduce to those of Nakamura [4] and Asmis [5, 6] if the cross-coupling terms in the fluid film stiffness and damping matrices are ignored. When both the translation and rotation of base are taken into account, the $[C]$ and [K] matrices become functions of time. It can also be seen that when a symmetrical rotor (i.e. $\ell_{1}=\ell_{2}$) is mounted on identical bearings (i.e. $k_{i j 1}=k_{i j 2}$ and $C_{i j 1}=C_{i j 2}$), the translational and rotational motion of the rotor are decoupled and if the base is subjected only to translational excitation, no gyroscopic effect is felt in the rotor motion. This special case has been pointed out in Table 1.1.

In the seismic analysis, solution for $\{x\}$ from (2.14) is sought when the rest of the quantities are known.

2.3 NUMERICAL EXAMPLE

The governing equations given by (2.14) can be solved numerically using direct integration approach. Among the many techniques that are available to carry out the numerical integration, the one due to Newmark $[22,23]$ is highly suitable for seismic analysis. The Newmark's integration scheme is an implicit, unconditionally stable technique and is widely used by seismic engineers. Table 2.1 presents the steps involved in Newmark's integration scheme.

As a numerical examle, the seismic response of a typical rotor-bearing system will now be presented. The parameters of the rotor-bearing system chosen for the analysis are given in Table 2.2. The axial degree of freedom is not considered in the numerical example for the sake of simplicity. The

Table 2.1 Newark's Integration Scheme

1. Initialize $\{x\}_{0},\{\dot{x}\}_{0}$ and $\left\{\ddot{x}_{0}{ }_{0}\right.$ to zero.
2. Set $\delta=1 / 2, \alpha=1 / 4$

$$
\begin{array}{lll}
a_{0}=1 /\left(\alpha \cdot \Delta t^{2}\right) & , & a_{1}=\delta /(\alpha \cdot \Delta t) \\
a_{3}=1 /(2 \alpha)-1 & , & a_{4}=(\delta / \alpha)-1 \\
a_{6}=(1-\delta) \cdot \Delta t & , & a_{7}=\delta \cdot \Delta t
\end{array}
$$

3. Calculate

$$
\begin{aligned}
\{\hat{F}\}_{t} & =\{F\}_{t}+[M]_{t}\left(a_{0}\{X\}_{t}-\Delta t+a_{2}\{\dot{X}\}_{t}-\Delta t+a_{3}\{\ddot{x}\}_{t}-\Delta t\right) \\
& +[C]_{t}\left(a_{1}\{X\}_{t}-\Delta t+a_{4}\{\dot{x}\}_{t-\Delta t}+a_{5}\{\ddot{x}\}_{t}-\Delta t\right)
\end{aligned}
$$

4. Solve $\left([K]_{t}+a_{0}[M]_{t}+a_{1}[C]_{t}\right)\{X\}_{t}=\{\hat{F}\}_{t}$
5. Compute $\{\ddot{x}\}_{t}=a_{0}\left(\{x\}_{t}-\{x\}_{t}-\Delta t\right)-a_{2}\{\dot{x}\}_{t}-\Delta t-a_{3}\{\ddot{x}\}_{t}-\Delta t$

$$
\{\dot{x}\}_{t}=\{\dot{x}\}_{t-\Delta t}+a_{6}\{\ddot{x}\}_{t}-\Delta t+a_{7}\{\ddot{x}\}_{t}
$$

6. Repeat from step 3 for all intervals

Table 2.2 Parameters of the Rotor-Bearing System Analyzed

m	$=24 \times 10^{3} \mathrm{~kg} \cdot$	ℓ_{1}	$=4.52 \mathrm{~m} \cdot$
I	$=4.57 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	ℓ_{2}	$=4.74 \mathrm{~m}$.
I_{0}	$=3.60 \times 10^{5} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	h	$=1.00 \mathrm{~m} \cdot$
		ω	$=3000 \mathrm{rpm}$
$k_{x x 1}$	$=5.89 \times 10^{8} \mathrm{~N} / \mathrm{m}$	$k_{x x 2}$	$=6.76 \times 10^{8} \mathrm{~N} / \mathrm{m}$
$k_{x y 1}$	$=5.10 \times 10^{7} \mathrm{~N} / \mathrm{m}$	$k_{x y 2}$	$=2.16 \times 10^{7} \mathrm{~N} / \mathrm{m}$
$k_{y x 1}$	$=-1.29 \times 10^{9} \mathrm{~N} / \mathrm{m}$	$k_{y x 2}$	$=-1.49 \times 10^{9} \mathrm{~N} / \mathrm{m}$
$k_{y y 1}$	$=1.87 \times 10^{9} \mathrm{~N} / \mathrm{m}$	$k_{y y 2}$	$=2.27 \times 10^{9} \mathrm{~N} / \mathrm{m}$
$c_{x x 1}$	$=2.80 \times 10^{6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$	$c_{x x 2}$	$=3.10 \times 10^{6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$
$c_{x y 1}$	$=-4.10 \times 10^{6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$	$c_{x y 2}$	$=-5.00 \times 10^{6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$
$c_{y x 1}$	$=-4.10 \times 10^{6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$	$c_{y x 2}$	$=-5.00 \times 10^{6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$
$c_{y y 1}$	$=1.17 \times 10^{7} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$	$c_{y y 2}$	$=1.37 \times 10^{7} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$

base is subjected to El Centro excitation as shown in Figure 2.3. The data for these translational accelerations are available at intervals of 0.02 seconds [24]. The base is also subjected to simulated angular accelerations as shown in Figure 2.4.

Figure 2.5 presents the displacements of the rotor axis relative to the bearings. Figure 2.6 presents the dynamic forces exerted on the bearings. These forces are in addition to the static weight of the rotor carried by the bearings. The entire computation took only 1.2 seconds of CPU time in IBM System 370/168. Plots such as Figures 2.5 and 2.6 aid the designer in checking whether a minimum lubrication film thickness is maintained and the loads on the bearings are within allowable limits.

A major contribution of the present chapter is the incorporation of the effects of base rotation in the analysis. To assess the importance of the inclusion of base rotation, results were obtained for the case in which the base is subjected only to translational motion given by Figure 2.3. For this case, Figure 2.7 presents the displacements of the rotor in the bearings and Figure 2.8 presents the dynamic forces exerted on the bearings. It can be seen from these figures that the displacements and forces are under-predicted if the effects of base rotation are not included in the response computations.

A computer program called GYROT has been prepared, along with a User's manual, to automate the seismic response computation using the rigid body model presented in this chapter. The User's manual for GYROT and listings of the program can be found in 'Part II: Computer Programs' of this report.

2.4 MERITS AND LIMITATIONS OF RIGID BODY MODEL

In this chapter it was shown that factors such as gyroscopic effects, rotor-bearing interaction effects (i.e. stiffness and damping provided by the lubricants in the bearings), and effects of base rotation can be directly and systematically incorporated in the seismic analysis of a rotating mechanical system. Modeling the rotating system as a spinning rigid body enabled us in keeping the mathematical complexities to the minimum and helped us in understanding the role played by the various factors mentioned above. The rigid body model is also computationally economical (i.e. less computational time) and is easy to program.
However, it should be pointed out that in modeling the rotating system as a rigid body we have ignored the flexibility of the body itself. The effects of initial stresses due to axial force, axial torque and spin of the system cannot be included in the rigid body model. Also, if the rotating system is supported on more than two bearings, a rigid body model will not predict the relative motion between the rotor and the bearings correctly.
In the chapters that follow, we will develop models that do not have the above mentioned limitations. This is achieved by including the flexibility of the rotating system in our analysis.

3. BEAM MODEL

3.1 SCOPE OF CHAPTER

Following the development of a rigid body model in the previous chapter, we now present a beam model to predict the dynamic response of a rotating mechanical system. In this beam model, the flexibility of the rotating system is included in the analysis using Timoshenko beam theory. The Timoshenko beam theory is known to be superior to the classical Bernoulli-Euler beam theory in predicting the dynamic response of 'short' as well as 'long' beams. The beam model presented in this chapter includes the following factors:

1. Rotatory inertia
2. Shear deformation
3. Gyroscopic effects
4. Rotor-bearing interaction
5. Intermediate disks and flywheels
6. Axial thrust
7. Axial torque
8. Base translation, and
9. Base rotation.

The dynamical problem is again formulated using Newton-Euler approach.

The governing differential equations are posed in an integral form using Galerkin's method. A numerical solution to the problem is obtained by using finite elements in the spatial domain and finite differences in the temporal domain.

3.2 FORMULATION OF THE PROBLEM

The rotor is considered to be a shaft having circular cross section and is modeled using Timoshenko beam theory. The governing equations of motion of the rotor are derived by isolating an elemental disk of the rotor. This elemental disk will be treated as a rigid body to obtain such kinematic quantities as acceleration and rate of change of angular momentum. The elastic properties of the rotor will be taken into account while evaluating the forces and moments acting on the elemental disk.

3.2.1 KINEMATIC RELATIONS

Consider a rigid, circular elemental disk spinning about its axis and executing arbitrary motion in space. Its motion can be conveniently described using Euler angles as shown in Figure 3.1. $X Y Z$ is a reference system which preserves fixed orientation in space (i.e. no rotation) with the center of mass of the elemental disk as its origin. $x y z$ is another, non-spinning reference system with its orign at the center of mass of the rotor, but $x y z$

FIG.3.1EULER ANGLES FOR THE GENERAL MOTION OF A RIGID DISK
can execute precessional (ψ) and nutational (θ) motion. In addition to the precessional and nutational motions, the rigid elemental disk can possess a spin (ϕ) motion about the z-axis of the xyz reference system. The Newton's Law of Motion for the elemental disk can be written vectorially as

$$
\begin{array}{ll}
& F=\mathrm{ma}_{\mathrm{G}} \\
\text { and } & M_{G}=\dot{H}_{\mathrm{G}} \tag{3.1}
\end{array}
$$

where F is the resultant force acting on the elemental disk, a_{G} is the absolute acceleration of the center of mass of the elemental disk, M_{G} is the moment due to external forces taken about the center of mass and ${\underset{\sim}{G}}^{H_{G}}$ is the angular momentum of the elemental disk computed about its center of mass. A general expression for the time rate of change of the angular momentum can be derived similar to (2.2) as

$$
\begin{align*}
\dot{\sim}_{G} & =\rho\left\{I_{T} \ddot{\theta}+I_{p} \ddot{\phi} \dot{\psi} \sin \theta+I_{T} \dot{\psi}^{2} \sin \theta \cos \theta\right\} \text { ds } \varepsilon_{\sim}^{\varepsilon_{x}} \\
& +\rho\left\{I_{T} \ddot{\psi} \operatorname{Sin} \theta-I_{p} \ddot{\phi} \theta\right\} d s \varepsilon_{\sim}^{y} \tag{3.2}\\
& +\rho\left\{I_{p} \ddot{\phi}+I_{p} \ddot{\psi} \operatorname{Cos} \theta-I_{p} \ddot{\psi} \dot{\theta} \sin \theta\right\} \text { ds }{\underset{\sim}{z}}_{z}
\end{align*}
$$

FIG.3.2ROTOR AND BASE REFERENCE FRAMES
where $\varepsilon_{x}, \varepsilon_{\sim} y$ and ε_{z} are the unit vectors along the x, y and z axes. I_{p} is the second moment of the cross sectional area about the z-axis and I_{T} is the second moment of the cross sectional area about the x - or y-axis. For circular cross sections $I_{p}=2 \mathrm{I}_{\mathrm{T}}$.

Let us consider the case when the $x y z$ reference system assumes an orientation with $\theta \cong \pi / 2$ and $\psi \cong 0$ as shown in Figure 3.2 The rotor is supported on bearings and the bearing-base unit will be considered as a rigid body with a body-fixed reference system $x_{b} y_{b} z_{b}$. The origin b of the $x_{b} y_{b} z_{b}$ reference system is so chosen that in equilibrium position the axis of the rotor is parallel to the z_{b} axis and lies in the $y_{b} z_{b}$ plane. The lubricants in the bearings provide stiffness and damping for the relative motion between the rotor and the bearings. In the seismic analysis of such a rotor-bearing system, the base is subjected to known translational and rotational motion. The analyst aims at predicting the transient dynamic response of the rotor. The base excitation due to earthquake results in small, perturbational rotations and translations of the base about its equilibrium position. The rotor responds with small, perturbational rotations and translations of the xyz reference system from the position of $\theta=\pi / 2$ and $\psi=0$ as shown in Figure 3.2 Let ω_{b} be the known angular velocity and α_{\sim} be the known angular acceleration of the base given by

$$
\begin{align*}
& \omega_{\sim}^{\omega}=\dot{\theta}_{x b}{\underset{\sim}{x}}_{x b}+\dot{\theta}_{y b} \underset{\sim}{\varepsilon} y b+\dot{\theta}_{z b}{\underset{\sim}{z b}}^{\alpha_{z}} \ddot{\theta}_{x b}{ }_{\sim}^{\varepsilon} x b+\ddot{\theta}_{y b}{ }_{\sim}^{c} y b+\ddot{\theta}_{z b}{ }_{\sim}^{\varepsilon} z b
\end{align*}
$$

The small, perturbational translations of the center of mass of the elemental disk relative to the $x_{b} y_{b} z_{b}$ reference system can be specified by the displacements u_{x}, u_{y} and u_{z} along the x_{b}, y_{b} and z_{b} axes. Similarly, the small, perturbational rotations of the $x y z$ system relative to the $x_{b} y_{b} z_{b}$ reference system can be specified by the small rotations θ_{x}, θ_{y} and θ_{z} about the x_{b}, y_{b}, and z_{b} axes and the sequence in which these rotations take place become immaterial. Since the rotations of the base $\theta_{\mathrm{xb}}, \theta_{\mathrm{yb}}$ and $\theta_{z b}$ about the x_{b}, y_{b} and z_{b} axes are also small, perturbational motions, it can be taken that

$$
\begin{align*}
& \varepsilon_{\sim}^{y b} \xlongequal{\cong} \varepsilon_{y} \cong{ }_{\sim} \tag{3.4}\\
& \text { and } \quad \varepsilon_{\sim}^{z b} \xlongequal[\sim]{\varepsilon} z \cong-j
\end{align*}
$$

This leads to the approximate expressions

$$
\begin{array}{lll}
\theta=\pi / 2+\theta_{x b}+\theta_{x} & , & \psi=\theta_{y b}+\theta_{y} \\
\dot{\theta}=\dot{\theta}_{x b}+\dot{\theta}_{x} & , & \dot{\psi}=\dot{\theta}_{y b}+\dot{\theta}_{y} \tag{3.5}\\
\ddot{\theta}=\ddot{\theta}_{x b}+\ddot{\theta}_{x} & , & \ddot{\psi}=\ddot{\theta}_{y b}+\ddot{\theta}_{y}
\end{array}
$$

In addition, it will be assumed that the spin velocity of the rotor remains constant so that

$$
\begin{equation*}
\dot{\phi}=\omega(a \text { constant }) \text { and } \phi=0 \tag{3.6}
\end{equation*}
$$

Substituting (3.5) and (3.6) in equation (3.2) and retaining only the first order terms, we get the linearized expression

$$
\begin{align*}
\dot{H}_{G} & =\rho\left\{I_{T}\left(\ddot{\theta}_{x b}+\ddot{\theta}_{x}\right)+I_{p} \omega\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right)\right\} d s{\underset{\sim}{x b}}_{x_{x}} \tag{3.7}\\
& +\rho\left\{I_{T}\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right)-I_{p} \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right)\right\} d s{\underset{\sim}{y b}}_{\varepsilon_{y}}^{l}
\end{align*}
$$

In the above expression, terms involving Ipw are the familiar gyroscopic moments caused by the rotation of the spin axis.

The absolute acceleration of the point G can be obtained by considering the motion of the point b and the relative motion of G with respect to the $x_{b} y_{b} z_{b}$ reference system. Even though the unit vectors in various reference systems shown in Figure 3.2 can be approximately equated to their counterparts as shown in equations (3.4), their time derivatives cannot be equated in a similar manner. Hence,

$$
\begin{equation*}
a_{G}=a_{b}+{\underset{\sim}{b}}^{\omega_{b}}\left(\omega_{b} \times r\right)+\alpha_{\sim} \times \underset{\sim}{r}+2 \omega_{b} \times V_{r e l}+{\underset{\sim}{r e l}}^{r} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{b}=\ddot{X}_{b} \varepsilon_{\sim} x b+\ddot{Y}_{b} \varepsilon_{a b}+\ddot{Z}_{b} \varepsilon_{\sim}{ }_{z b} \\
& \underset{\sim}{r}=u_{x} \varepsilon_{\sim} x b+\left(h+u_{y}\right) \varepsilon_{\sim}^{y b}+\left(s+u_{z}\right) \varepsilon_{\sim} z_{b} \tag{3.9}\\
& V_{r e l}=\dot{u}_{x} \varepsilon_{x b}+\dot{u}_{y_{r}} \varepsilon_{y b}+\dot{u}_{z} \varepsilon_{z b} \\
& {\underset{\sim}{r e 1}}^{a_{r e l}} \ddot{u}_{x} \varepsilon_{\sim b}+\ddot{u}_{y} \varepsilon_{y b}+\ddot{u}_{z} \varepsilon_{\sim} z b
\end{align*}
$$

$$
a_{G}=a_{x_{\sim}}^{\varepsilon} x b+a_{y_{\sim}}^{\varepsilon} y b+a_{z_{\sim}}^{\varepsilon} z b
$$

where

$$
\begin{aligned}
a_{x}= & \ddot{u}_{x}-2 \dot{\theta}_{z b} \dot{u}_{y}+2 \dot{\theta}_{y b} \dot{u}_{z}-\left(\dot{\theta}_{y b}^{2}+\dot{\theta}_{z b}^{2}\right) u_{x}+\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right) u_{y} \\
& +\left(\dot{\theta}_{z b} \dot{\theta}_{x b}+\ddot{\theta}_{y b}\right) u_{z}+\ddot{x}_{b}+h\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right)+s\left(\dot{\theta}_{z b} \dot{\theta}_{x b}+\ddot{\theta}_{y b}\right) \\
a_{y}= & \ddot{u}_{y}+2 \dot{\theta}_{z b} \dot{u}_{x}-2 \dot{\theta}_{x b} \dot{u}_{z}+\left(\dot{\theta}_{x b} \dot{\theta}_{y b}+\ddot{\theta}_{z b}\right) u_{x}-\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right) u_{y} \\
& \left.+\dot{\theta}_{y b} \dot{\theta}_{z b}-\ddot{\theta}_{x b}\right) u_{z}+\ddot{\gamma}_{b}-h\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right)+s\left(\dot{\theta}_{y b} \dot{\theta}_{z b}-\ddot{\theta}_{x b}\right)
\end{aligned}
$$

and

$$
\begin{align*}
a_{z}= & \ddot{u}_{z}-\dot{\theta}_{y b} \dot{u}_{x}+2 \dot{\theta}_{x b} \dot{u}_{y}+\left(\dot{\theta}_{z b} \dot{\theta}_{x b}-\ddot{\theta}_{y b}\right) u_{x}+\left(\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right) u_{y} \\
& -\left(\dot{\theta}_{x b}^{2}+\dot{\theta}_{y b}^{2}\right) u_{z}+\ddot{z}_{b}+h\left(\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right)-s\left(\dot{\theta}_{x b}^{2}+\dot{\theta}_{y b}^{2}\right) \tag{3.10}
\end{align*}
$$

It is worth noting that in the kinematic relations developed in this section, the rotatory inertia, the gyroscopic effects and the base motions (including translation and rotation) have been taken into account.

FIG.33AN ELEMENTAL DISK $\operatorname{IN} y_{b} z_{b}$ and $\underset{b}{x_{b}}$ planes

3.2.2 KINETIC RELATIONS

The free body diagrams of the elemental disk in the $y_{b} z_{b}$ and $x_{b} z_{b}$ planes are shown in Figure 3.3. It is the flexural motion of the rotor that is of interest to us. Following Timoshenko beam theory [25], the effect of transverse shear can be included in the model by expressing

$$
\begin{align*}
& Q_{x}=k A G\left(\frac{\partial u_{x}}{\partial s}-\theta_{y}\right) \\
& Q_{y}=k A G\left(\frac{\partial u_{y}}{\partial s}+\theta_{x}\right) \tag{3.11}
\end{align*}
$$

The moment-curvature relations are given by the classical expressions

$$
\begin{align*}
& M_{x}=E I_{T} \frac{\partial \theta x}{\partial s} \\
& M_{y}=E I_{T} \frac{\partial \theta y}{\partial s} \tag{3.12}
\end{align*}
$$

The effects of initial axial force P and initial axial torque T can be included in the analysis by observing from Figure 3.3 that

$$
\begin{align*}
F & =\left(\frac{\partial Q_{x}}{\partial S}+P \frac{\partial \theta^{y}}{\partial S}+f_{x}\right) d S \varepsilon_{x} \\
& +\left(\frac{\partial Q_{y}}{\partial S}-P \frac{\partial \theta^{\prime} x}{\partial S}+f_{y}\right) d s \varepsilon_{y} \\
M_{\sim}^{M} & =\left\{\frac{\partial M_{x}}{\partial S}-Q_{y}+P\left(\frac{\partial u_{y}}{\partial S}+\theta_{x}\right)+T \frac{\partial \theta y}{\partial S}\right\} d s \varepsilon_{x} \tag{3.13}\\
& \left.+\frac{\partial M_{y}}{\partial S}+Q_{x}-P\left(\frac{\partial u_{x}}{\partial S}+\theta_{y}\right)-T \frac{\partial \theta_{x}}{\partial S}\right\} d s \varepsilon_{y}
\end{align*}
$$

Here f_{x} and f_{y} are the external forces per unit length, distributed along the rotor axis in the x_{b} and y_{b} directions. In particular, these forces act at discrete points along the rotor where the bearings are located. If $\left(u_{x}\right)_{i}$ and $\left(u_{y}\right)_{i}$ are the displacements of the rotor relative to the $i^{\text {th }}$ bearing along the x_{b} and y_{b} axes, then we can express

$$
\begin{aligned}
& f_{x}=-\sum_{i=1}^{n}\left\{\left(k_{x x}\right)_{i}\left(u_{x}\right)_{i}+\left(k_{x y}\right)_{i}\left(u_{y}\right)_{i}+\left(c_{x x}\right)_{i}\left(\dot{u}_{x}\right)_{i}+\left(c_{x y}\right)_{i}\left(\dot{u}_{y}\right)_{i}\right\} \delta\left(s-s_{i}\right) \\
& f_{y}=-\sum_{i=1}^{n}\left\{\left(k_{y x}\right)_{i}\left(u_{x}\right)_{i}+\left(k_{y y}\right)_{i}\left(u_{y}\right)_{i}+\left(c_{y x}\right)_{i}\left(\dot{u}_{x}\right)_{i}+\left(c_{y y}\right)_{i}\left(\dot{u}_{y}\right)_{i}\right\} \delta\left(s-s_{i}\right)
\end{aligned}
$$

where n denotes the total number of bearings and δ stands for Dirac's delta function. s_{i} 's are the z-coordinates of the bearing locations. Here, the
damping coefficients may be symmetric $\left(c_{x y i}=c_{y x i}\right)$ but the stiffness coefficients are not symmetric ($k_{x y i} \neq k_{y x i}$).

Using (3.4), (3.7), (3.10) and (3.13), the governing equations of motion (3.1) can be written as

$$
\begin{gather*}
\frac{\partial Q_{x}}{\partial S}+P \frac{\partial \theta_{y}}{\partial S}+f_{x}=\rho A a_{x} \\
\frac{\partial Q_{y}}{\partial S}-P \frac{\partial \theta_{x}}{\partial S}+f_{y}=\rho A a_{y} \tag{3.15}\\
\frac{\partial M_{x}}{\partial S}-Q_{y}+P\left(\frac{\partial u_{y}}{\partial S}+\theta_{x}\right)+T \frac{\partial \theta_{y}}{\partial S}=\rho\left\{I_{T}\left(\ddot{\theta}_{x b}+\ddot{\theta}_{x}\right)+I_{p \omega}\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right)\right\} \\
\frac{\partial M_{y}}{\partial S}+Q_{x}-P\left(\frac{\partial u_{x}}{\partial S}-\theta_{y}\right)-T \frac{\partial \theta_{x}}{\partial S}=\rho\left\{I_{T}\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right)-I_{P} \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right)\right\}
\end{gather*}
$$

The above four equations and the four equations given by (3.11) and (3.12) form a total of eight equations. The eight unknowns to be solved from these equations are: two shear forces, Q_{x} and Q_{y}; two bending moments M_{x} and M_{y}; two displacements, u_{x} and u_{y}; and two rotations, θ_{x} and θ_{y}.

3.3 METHOD OF SOLUTION

The equations of motion as given by (3.15) are in the form of partial differential equations involving spatial variable s and temporal variable t. A numerical solution to the problem will be attempted by employing finite elements in the spatial domain and finite differences in the time domain.

It has been recognized that the inclusion of the effects of initial axial torque and the effects of rotor-bearing interaction renders the problem nonconservative $[26,27]$. A finite element approach to solve the rotor dynamic problem has been attempted in the past [28] using Hamilton's extended principle. In this chapter we have used a more direct approach by deriving the governing equations from Newton's laws of motion. This approach has the advantage of giving the designer a better physical insight into the problem. The governing differential equations as given by (3.11), (3.12) and (3.15) must be rendered in an integral form before they can be solved using finite element method. This is achieved by the application of Galerkin's technique.

3.3.1 GALERKIN'S TECHNIQUE

In the Galerkin's technique, the displacements u_{x}, u_{y} and rotations θ_{x}, θ_{y} will be treated as the primary unknowns. Let $\delta u_{x}, \delta u_{y}, \delta \theta_{x}$ and $\delta \theta_{y}$ be arbitrary variations from their actual values. Then, according to Galerkin's technique, the equations of motion given by (3.15) can be written
in an integral form as

$$
\begin{align*}
& \int_{S_{1}}^{S}\left[\left(\rho A a_{x}-\frac{\partial Q_{x}}{\partial S}-P \frac{\partial \theta_{y}}{\partial s}-f_{x}\right) \delta u_{x}+\left(\rho A a_{y}-\frac{\partial Q_{y}}{\partial S}+P \frac{\partial \theta_{x}}{\partial s}-f_{y}\right) \delta u_{y}\right. \\
& \left.+\left\{\rho I_{T} \ddot{\theta} \ddot{\theta}_{x b}+\ddot{\theta}_{x}\right)+\rho I_{p} \omega\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right)-\frac{\partial M_{x}}{\partial S}+Q_{y}-P\left(\frac{\partial u_{y}}{\partial s}+\theta_{x}\right)-T \frac{\partial \theta_{y}}{\partial S}\right\} \delta \theta_{x} \\
& \quad+\left\{\rho I_{T}\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right)-\rho I_{p} \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right)-\frac{\partial M_{y}}{\partial s}-Q_{x}+P\left(\frac{\partial u_{x}}{\partial s}-\theta_{y}\right)\right. \\
& \left.\left.\quad+\frac{T \theta_{x}}{\partial s}\right\} \quad \delta \theta_{y}\right] d s=0 \tag{3.16}
\end{align*}
$$

subject to the constraints (3.11) and (3.12). It is to be noted that equation (3.16) is also a statement of the principle of virtual work. The equivalence between the principle of virtual work and the Galerkin's technique is well known to finite element analysts [29]. Using partial integration, equation (3.16) can be written in a more convenient form as

$$
\begin{aligned}
& \int_{S_{1}}^{s_{2}}\left[\rho A a_{x} \delta u_{x}+\rho A a_{y} \delta u_{y}+\rho I_{T} \ddot{\theta}_{x b}+\ddot{\theta}_{x}\right) \delta \theta_{x}+\rho I_{p \omega}\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right) \delta \theta_{x} \\
& \quad+\rho I_{T}\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right) \delta \theta_{y}-\rho I_{p} \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right) \delta \theta_{y}-f_{x} \delta u_{x}-f_{y} \delta u_{y}
\end{aligned}
$$

$$
\begin{aligned}
& +Q_{x} \delta\left(\frac{\partial u_{x}}{\partial s}-\theta_{y}\right)+Q_{y} \delta\left(\frac{\partial u_{y}}{\partial s}+\theta_{x}\right)+M_{x} \delta\left(\frac{\partial \theta_{x}}{\partial s}\right)+M_{y} \delta\left(\frac{\partial \theta_{y}}{\partial s}\right) \\
& +P \theta_{y} \delta\left(\frac{\partial u_{x}}{\partial s}\right)-P \theta_{x} \delta\left(\frac{\partial u_{y}}{\partial s}\right)-P\left(\frac{\partial u_{y}}{\partial s}+\theta_{x}\right) \delta \theta_{x}+P\left(\frac{\partial u_{x}}{\partial s}-\theta_{y}\right) \delta \theta_{y} \\
& \left.\quad+T \theta_{y} \delta\left(\frac{\partial \theta_{x}}{\partial s}\right)-T \theta_{x}\left(\frac{\partial \theta^{y}}{\partial s}\right)\right] d s \\
& =\left[\left(Q_{x}+P \theta_{y}\right) \delta u_{x}+\left(Q_{y}-P \theta_{x}\right) \delta u_{y}+\left(M_{x}+T \theta_{y}\right) \delta \theta_{x}+\left(M_{y}-T \theta_{x}\right) \delta \theta_{y}\right]{ }^{s}{ }^{s_{2}}
\end{aligned}
$$

The shear forces Q_{x}, Q_{y} and bending moments M_{x}, M_{y} appearing on the left hand side of equation (3.17) can be replaced by the unknown displacements, rotations and their derivatives using equations (3.11) and (3.12).

3.3.2 FINITE ELEMENTS

Consider a typical rotor element with two nodes (see Figure 3.4). The unknown displacements and rotations will be expressed in terms of unknown nodal values and known shape functions as

FIG. 3.4 A FINITE ROTOR ELEMENT

$$
\begin{align*}
& u_{x}=\left(U_{x}\right)_{1} N_{1}(s)+\left(U_{x}\right)_{2} N_{2}(s) \\
& u_{y}=\left(U_{y}\right\rangle_{1} N_{1}(s)+\left(U_{y}\right)_{2} N_{2}(s) \tag{3.18}\\
& \theta_{x}=\left(\theta_{x}\right)_{1} N_{1}(s)+\left(\theta_{x}\right)_{2} N_{2}(s) \\
& \theta_{y}=\left(\theta_{y}\right)_{1} N_{1}(s)+\left(\theta_{y}\right)_{2} N_{2}(s)
\end{align*}
$$

where

$$
\begin{align*}
& N_{1}(s)=\left(s_{2}-s\right) /\left(s_{2}-s_{1}\right) \tag{3.19}\\
& N_{2}(s)=\left(s-s_{1}\right) /\left(s_{2}-s_{1}\right)
\end{align*}
$$

It is worth noting that a simple linear interpolation for the displacements and rotations has been used. Equations (3.18) can be expressed more conveniently in a matrix form as

$$
\begin{equation*}
\{u\}_{e}=[N]_{e}\{q\}_{e} \tag{3.20}
\end{equation*}
$$

where $[N]_{e}$ is a matrix of shape functions and $\{q\}_{e}$ is a vector of nodal displacements and rotations given by

$$
\{q\}_{e}^{\top}=\left[\begin{array}{lllllll}
\left(U_{x}\right)_{1} & \left(U_{y}\right)_{1} & \left(\theta_{x}\right)_{1} & \left(\theta_{y}\right)_{1} & \left(U_{x}\right)_{2} & \left(U_{y}\right)_{2} & \left(\theta_{x}\right)_{2} \tag{3.21}
\end{array}\left(\theta_{y}\right)_{2}\right]
$$

We also note that

$$
\begin{equation*}
\delta\{u\}_{\mathrm{e}}=[N]_{\mathrm{e}} \delta\{q\}_{\mathrm{e}} \tag{3.22}
\end{equation*}
$$

Substituting (3.20) and (3.22) in (3.17) and carrying out the necessary differentiations and integrations, we can express (3.17) in a matrix form as

$$
\begin{equation*}
\delta\{q\}_{\mathrm{e}}^{\top}\left[[M]_{\mathrm{e}}\{\ddot{\mathrm{q}}\}_{\mathrm{e}}+[\mathrm{C}]_{\mathrm{e}}\{\dot{\mathrm{q}}\}_{\mathrm{e}}+[K]_{\mathrm{e}}\{\mathrm{q}\}_{\mathrm{e}}\right]=\delta\{\mathrm{q}\}_{\mathrm{e}}^{\top}\{\mathrm{Q}\}_{\mathrm{e}} \tag{3.23}
\end{equation*}
$$

Here, $[M]_{e}$ is the elemental inertia matrix. $[C]_{e}$ is an elemental matrix that can be written as

$$
\begin{equation*}
[C]_{e}=\left[C_{G}\right]_{e}+\left[C_{C}\right]_{e}+\left[C_{D}\right]_{e} \tag{3.24}
\end{equation*}
$$

where
$\left[C_{G}\right]_{e}-$ Gyroscopic matrix,
$\left[C_{C}\right]_{e}$ - Coriolis matrix due to base rotation,
$\left[C_{D}\right]_{e}$ - Damping matrix due to bearing(s) located at the node(s).
$[K]_{\mathrm{e}}$ is an elemental matrix that can be written as

$$
\begin{equation*}
[K]_{e}=\left[K_{C}\right]_{e}+\left[K_{P}\right]_{e}+\left[K_{T}\right]_{e}+\left[K_{R}\right]_{e}+\left[K_{B}\right]_{e} \tag{3.25}
\end{equation*}
$$

where
$\left[K_{C}\right]_{e}$ - Conventional stiffness matrix for the beam element,
$\left[K_{p}\right]_{e}$ - Geometric stiffness matrix due to initial axial force,
$\left[K_{T}\right]_{e}$ - Geometric stiffness matrix due to initial axial torque,
$\left[K_{R}\right]_{e}$ - Supplementary stiffness matrix due to base rotation,
$\left[K_{B}\right]_{e}$ - Stiffness matrix due to bearing(s) located at the node(s).
$\{0\} e^{i s}$ a vector of nodal forces and moments due to base translation and rotation. The elemental matrices and the nodal force vector are given explicitly in Appendix B. It can be seen that $[M]_{e},\left[C_{D}\right]_{e},\left[K_{C}\right]_{e}$ and $\left[K_{p}\right]_{e}$ are symmetric matrices; $\left[C_{G}\right]_{e}$ and $\left[C_{C}\right]_{\mathrm{e}}$ are skew-symmetric matrices; $\left[\mathrm{K}_{\mathrm{T}}\right]_{\mathrm{e}}$, $\left[K_{R}\right]_{e}$ and $\left[K_{B}\right]_{e}$ are nonsymmetric matrices. These elemental matrices are to be properly assembled to obtain the global matrices.

3.3.3 INTERMEDIATE DISKS AND FLYWHEELS

The effect of intermediate disks and flywheels can be included in the analysis by considering them as spinning rigid disks that execute motion in three-dimensional space. Consider the node i where a rigid disk has been mounted on the rotor. The equations of motion for such a rigid disk have been derived in considerable detail in Chapter 2. It suffices to point out that these equations of motion can be written in a form similar to equation (3.23)

$$
\begin{equation*}
\delta\{q\}_{i}^{\top} \quad\left[[M]_{d}\{\ddot{q}\}_{i}+[C]_{d}\{\dot{q}\}_{i}+[k]_{d}\{q\}_{i}\right]=\delta\{q\}_{i}^{\top} \quad\{Q\}_{i} \tag{3.26}
\end{equation*}
$$

Here, $\{q\}_{j}$ is the vector of displacements and rotations at the $i^{\text {th }}$ node. $[M]_{d}$ is the inertia matrix for the disk. $[C]_{d}$ is a matrix that can be written as

$$
\begin{equation*}
[C]_{d}=\left[C_{G}\right]_{d}+\left[C_{C}\right]_{d} \tag{3.27}
\end{equation*}
$$

where

$$
\begin{aligned}
& {\left[C_{G}\right]_{d}-\text { Gyroscopic matrix for the disk, }} \\
& {\left[C_{C}\right]_{d} \text { - Coriolis matrix due to base rotation }}
\end{aligned}
$$

$[K]_{\mathrm{d}}$ is a supplementary stiffness matrix due to the base rotation. $\{0\}_{i}$ is a vector of nodal forces and moments due to base translation and rotation. These matrices and vector for the disk are given explicitly in Appendix C.

3.3.4 CHECK PROBLEMS

Before solving for the seismic response, which involves transient dynamic response computation, the performance of the finite elements formulated above must be tested against some known, closed form dynamic solutions available in
literature. Three such check problems were solved and they are given below.

3.3.4.1 FREE VIBRATION OF A TIMOSHENKO BEAM

Consider a beam of uniform cross section, simply supported at both ends. When both shear deformation and rotatory inertia are taken into account, the frequencies of free vibration ω_{n} of such a beam are given by the roots of the equation

$$
\begin{equation*}
\frac{\rho^{2} \omega_{n}^{4}}{k E G}-\left[\frac{\rho}{E}\left(1+\frac{E}{k G}\right)(n \pi / \ell)^{2}+\frac{\rho A}{E I_{T}}\right] \omega_{n}^{2}+(n \pi / \ell)^{4}=0 \tag{3.28}
\end{equation*}
$$

Using the finite elements developed in this chapter, the eigenproblem is posed as

$$
\begin{equation*}
[M]\{X\}=\frac{1}{\omega_{n}^{2}}\left[K_{C}\right]\{X\} \tag{3.29}
\end{equation*}
$$

It is well known in finite element literature that when simple linear interpolations as given by equations (3.19) are used, difficulties arise due to 'shear locking' phenomenon, particularly at low aspect ratios. This problem can be overcome by resorting to reduced, single point integration [29, $30,31]$ of the element stiffness matrix. Table 3.1 shows the comparison of the finite element and exact natural frequencies for various aspect ratios of
the beam. It is seen that reduced integration provides very good results at both low and high aspect ratios.

3.3.4.2 BUCKLING OF A TIMOSHENKO BEAM

Consider a simply supported beam of uniform cross section, acted on by an axial compressive load P_{C}. When shear deformation is taken into account, the buckling loads are given by the roots of the following equation.

$$
\begin{equation*}
p_{c}^{2}+k A G P_{c}-k E I_{T} A G\left(n_{\pi} / l\right)^{2}=0 \tag{3.30}
\end{equation*}
$$

Using the finite elements developed in this chapter, the corresponding eigenproblem is posed as

$$
\begin{equation*}
\left[K_{c}\right]\{x\}=P_{c}\left[K_{P}\right]\{x\} \tag{3.31}
\end{equation*}
$$

Table 3.2 compares the finite element and exact results. The reduced, single point integrations were performed on both the conventional and geometric stiffness matrices. It is again seen that reduced integration leads to better results at low as well as high aspect ratios.
TABLE 3.2 COMPARISON OF NON-DIMENTIONAL BUCKLING LOAD $\ell^{2} P_{n} / I_{T}$

Mode n	Aspect Ratio $r / 2 \ell$	10 ELEMENTS		15 ELEMENTS		EXACT
		Exact Integration	Reduced Integration	Exact Integration	Reduced Integration	
1	0.02	16.97	9.924	12.94	9.845	9.758
	0.04	11.31	9.604	10.27	9.520	9.450
	0.06	9.879	9.151	9.395	9.074	9.012
	0.08	9.026	8.635	8.738	8.566	8.510
	0.10	8.346	8.107	8.150	8.045	7.995
2	0.02	69.06	40.32	51.20	38.89	37.80
	0.04	42.68	36.11	37.75	34.94	34.04
	0.06	34.33	31.65	31.85	30.71	29.98
	0.08	29.16	27.76	27.59	26.99	26.40
	0.10	25.40	24.55	24.27	23.90	23.41

3.3.4.3 FREE VIBRATION OF A ROTATING TIMOSHENKO BEAM

Consider a rotating beam of uniform cross section, simply supported by bearings at both ends. When shear deformation, rotatory inertia and gyroscopic effects are included in the analysis, the frequencies of free vibration ω_{n} are given by the roots of the equation

$$
\begin{align*}
& \frac{\rho^{2}}{k E G} \omega_{n}^{4}-\frac{2 \rho^{2} \omega}{k E G} \omega_{n}^{3}-\left\{\frac{\rho}{E}\left(1+\frac{E}{k G}\right)(n \pi / l)^{2}+\frac{\rho A}{E I_{T}}\right\} \omega_{n}^{2} \\
& +\frac{2 \rho \omega}{E}(n \pi / \ell)^{2} \omega_{n}+(n \pi / \ell)^{4}=0 \tag{3.32}
\end{align*}
$$

Using the finite elements of this chapter, the corresponding eigenproblem is posed as

$$
\begin{equation*}
-\omega_{n}^{2}[M]\{X\}+i \omega_{n}\left[C_{G}\right]\{X\}+\left[K_{C}\right]\{X\}=0 \tag{3.33}
\end{equation*}
$$

The above form of matrix eigenproblem was solved using an algorithm due to Gupta [32]. The forward and backward travelling frequencies thus obtained are compared in Table 3.3 against the exact values for various rotational speeds. Reduced integration was used in the evaluation of the stiffness matrix. The agreement is found to be satisfactory.

3.3.5 NUMERICAL INTEGRATION

The governing equations for the rotor can be obtained by properly assembling the elemental and disk matrices and vectors. The final set of equations can be written in a matrix form as

$$
\begin{equation*}
[M]\{\ddot{x}\}+[C]\{\dot{X}\}+[K]\{X\}=\{F\} \tag{3.34}
\end{equation*}
$$

The above matrix equations can be solved numerically using direct integration approach. We have used the Newmark's integration technique outlined in Table 2.1.

3.4 EXAMPLE PROBLEM

As an example problem, the seismic analysis of a rotor-bearing system shown schematically in Figure 3.5 was carried out using the beam model. Additional parameters for the rotor-bearing system needed for the calculation are given in Table 3.4. The base of the rotor-bearing system was subjected to E1 Centro excitation shown in Figure 3.6. In some cases, the base was also subjected to simulated angular accelerations shown in Fig. 3.7. The rotor was divided into 19 finite elements.

TABLE 3.4 PARAMETERS FOR THE ROTOR-BEARING SYSTEM

$E=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
$\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$

FOR THE FLYWHEEL
$m=5000 \mathrm{~kg}$
$\mathrm{I}=2500 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

FOR THE BEARINGS
$\left(k_{x x}\right)_{I}=0.5890 \times 10^{9} \mathrm{~N} / \mathrm{m}$
$\left(k_{y x}\right)_{I}=-0.1290 \times 10^{10} \mathrm{~N} / \mathrm{m}$
$\left(c_{x x}\right)_{I}{ }^{1}=0.2800 \times 10^{7} \mathrm{~N} . \mathrm{s} / \mathrm{m}$
$\left(c_{y x}\right)_{I}=-0.4100 \times 10^{7} \mathrm{~N} . \mathrm{s} / \mathrm{m}$
$\left(k_{x x}\right)_{I I}=0.6760 \times 10^{9} \mathrm{~N} / \mathrm{m}$
$\left(k_{y x}\right)_{I I}=-0.1490 \times 10^{10} \mathrm{~N} / \mathrm{m}$
$\left(c_{x x}\right)_{I I}=0.3100 \times 10^{7} \mathrm{~N} . \mathrm{s} / \mathrm{m}$
$\left(c_{y x}\right)_{I I}=-0.5000 \times 10^{7} \mathrm{~N} . \mathrm{s} / \mathrm{m}$

$$
v=0.3
$$

$$
\omega \quad=3000 \mathrm{rpm}
$$

$$
I_{0}=1267 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
\left(k_{x y}\right)_{I}=0.5100 \times 10^{8} \mathrm{~N} / \mathrm{m}
$$

$$
\left(k_{y y}\right)_{I}=0.1870 \times 10^{10} \mathrm{~N} / \mathrm{m}
$$

$$
\left(c_{x y}\right)_{I}=-0.4100 \times 10^{7} \mathrm{~N} . \mathrm{s} / \mathrm{m}
$$

$$
\left(c_{y y}\right)_{I}=0.1170 \times 10^{8} \mathrm{~N} .5 / \mathrm{m}
$$

$$
\left(k_{x y}\right)_{I I}=0.2160 \times 10^{8} \mathrm{~N} / \mathrm{m}
$$

$$
\left(k_{y y}\right)_{I I}=0.2270 \times 10^{10} \mathrm{~N} / \mathrm{m}
$$

$$
\left(c_{x y}\right)_{I I}=-0.5000 \times 10^{7} \mathrm{~N} . \mathrm{s} / \mathrm{m}
$$

$$
\left(c_{y y}\right)_{I I}=0.1370 \times 10^{8} \mathrm{~N} . \mathrm{s} / \mathrm{m}
$$

The results can be better presented and discussed under the following four cases.

Case 1. Spin vs. No Spin

An important aspect of the seismic analysis of rotating system that distinguishes it from the seismic analysis of a stationary system is the presence of gyroscopic effects.

Figures $3.8,3.9$ and 3.10 present the displacements of rotor in the bearings, dynamic reaction forces in the bearings and shear forces and bending moments at midspan of the rotor as functions of time when the rotor is spinning at 3000 rpm and the base is subjected to only translational excitations shown in Figure 3.6. The x and y components of displacements and forces in bearings I and II are denoted with proper subscripts in Figures 3.8 and 3.9 , and in the subsequent figures to follow.

Similar results are presented in Figures $3.11,3.12$ and 3.13 when the gyroscopic effects are not taken into account. This means that the effect of spin speed is ignored, but the stiffness and damping provided by the fluid film lubricants in the two bearings are retained. This is analogous to the analysis procedure of Villasor [12] and is similar to the various existing structural dynamics computer codes.

It can be clearly seen by comparing the two sets of figures that the

x^{-}
2^{-}
NY NI S3OYO-

gyroscopic effects tend to magnify the response of the rotating system. Ignoring the effects of spin speed will underpredict the response and lead to unreitable estimates.

Case 2. Base Rotation vs. No Base Rotation

It is a common practice in seismic analysis to consider only the translational excitations of the base. Figures $3.14,3.15$, and 3.16 present the response of the rotating system when the base is simultaneously subjected to base translational excitations shown in Figure 3.6 and base rotational excitations shown in Figure 3.7. Comparison of Figures 3.8, 3.9 and 3.10 (base translation only) and Figures $3.14,3.15$ and 3.16 (base translation and rotation) shows the relative importance of inclusion of base rotation in the analysis. The base rotational components amplify the dynamic response and must be included in the analysis for reliable response computations.

Case 3. Rigid Body Model vs. Beam Model

In the previous chapter, we developed a rigid body model for the rotor that takes the effects of base rotation into account. Figures 3.17 and 3.18 present the displacements of rotor in the bearings and dynamic reaction forces in the bearings using the rigid body model. Comparison of these figures with

Figures 3.14 and 3.15 shows that the rigid body model overly underpredicts the response of the rotating sytem.

A single run for the beam model took about 36 seconds of CPU time in IBM System $370 / 165$ for execution. A single run for the rigid body model took about 2 seconds of CPU time for execution.

Case 4. Effects of Axial Force and Axial Torque

The results presented so far do not include the effects of any axial force or axial torque. Figures 3.19, 3.20 and 3.21 present the responses when an axial force of 2500 kN is applied and an axial torque of $500 \mathrm{kN} . \mathrm{m}$ is transmitted. Comparison of these figures with Figures 3.14, 3.15, and 3.16 reveals the magnification in the response due to initial axial force and torque and demonstrates the necessity to include them in the analysis.

A computer program called ROBET has been prepared, along with a User's manual, to automate the seismic response computation using the beam model presented in this chapter. The User's manual for ROBET and a listing of the program can be found in "Part II: Computer Programs' of this report.

3.5 MERITS AND LIMITATIONS OF BEAM MODEL

In this chapter it was shown that the flexibility of the rotating system

NY NI S3080」

can be included in the seismic analysis using Timoshenko beam theory. The beam model includes such factors as rotatory inertia, shear deformation, gyroscopic effects, rotor-bearing interaction (i.e. stiffness and damping provided by the lubricants in the bearings), intermediate disks and flywheels, initial stresses due to axial thrust and axial torque, base translation and base rotation (including Coriolis effects). The beam model is clearly superior to the rigid body model developed earlier. Since the beam model developed in this chapter uses a finite element solution procedure, the corresponding computer program has been written along the familiar, widely used finite element codes such as SAP IV and NASTRAN. Hence the user will find it easier to use the beam model and may also choose to include it along with other general purpose seismic analysis codes available in his organization. For the beam model, the computing time and the cost of computing are very reasonable.

One limitation of the beam model is that it can be used only for shaftlike rotating systems. A uranium centrifuge, for example, is a cylindrical shell-type structure rotating about its axis at a high speed and a beam model cannot be used to obtain the seismic response of such a centrifuge. Another, though minor, limitation of the beam model is that the initial stresses due to spin of the system cannot be included in the analysis. A three-dimensional model of the rotating system will avoid these limitations and is likely to enlarge the range of application.

4. 3-D ELASTICITY MODEL

4.1 SCOPE OF CHAPTER

In the last two chapters we presented a rigid body model and a beam model to obtain the seismic response of a rotating mechanical system. We now present a three dimensional elasticity model in which the rotating system will be modeled as a spinning elastic solid of revolution.

The dynamical problem is formulated using Newton-Euler approach. The governing differential equations are derived from the three dimensional theory of elasticity. A numerical solution to the problem is obtained using eightnoded isoparametric, ring-type elements in the spatial domain and finite differences in the temporal domain.

4.2 FORMULATION OF THE PROBLEM

The rotating body is a body of revolution, with the spin axis as the axis of revolution. The governing equations of motion of the rotating body are derived by isolating an elemental ring of the body. This elemental ring will be treated as a rigid body to obtain such kinematic quantities as acceleration and rate of change of angular momentum. The elastic properties of the rotating body will be taken into account while evaluating the forces and moments acting on the elemental ring.

4.2.1 KINEMATIC RELATIONS

Consider a rigid, circular elemental ring spinning about its axis and executing arbitrary motion in space. Its motion can be conveniently described using Euler angles as shown in Figure 4.1. $X Y Z$ is a reference system which

FIG.4.1 EULER ANGLES FOR THE GENERAL MOTION OF A RIGID RING
preserves fixed orientation in space (i.e. no rotation) with the center of mass of the elemental ring as its origin. $x y z$ is another, nonspinning reference system with its origin at the center of mass of the ring, but $x y z$ can execute precessional (ψ) and nutational (θ) motion. In addition to the precessional and nutational motion, the rigid elemental ring can possess a spin
(ϕ) motion about z-axis of the $x y z$ reference system.
The Newton's Law of Motion for the elemental ring can be written vectorially as

$$
\underset{\sim}{F}=(2 \rho \pi r d r d z){\underset{\sim}{G}}^{G}
$$

and

$$
{\underset{\sim}{M}}=\dot{\sim}_{G}
$$

where F is the resultant force acting on the elemental ring, ${\underset{\sim}{a}}_{G}$ is the absolute acceleration of the center of mass of the elemental ring, ${\underset{\sim}{M}}$ is the moment due to external forces taken about the center of mass and $\underset{\sim}{H_{G}}$ is the angular momentum of the elemental ring computed about its center of mass. A general expression for the time rate of change of the angular momentum can be derived as

$$
\begin{align*}
{\underset{\sim}{H}}_{G}= & \rho \pi r^{3}\left\{\ddot{\theta}+2 \ddot{\phi} \psi \operatorname{Sin} \theta+\dot{\psi}^{2} \operatorname{Sin} \theta \operatorname{Cos} \theta\right\} d r d z \underset{\sim}{\varepsilon} x \\
& +\rho \pi r^{3}\{\ddot{\psi} \operatorname{Sin} \theta-2 \ddot{\phi} \theta\} d r d z \underset{\sim}{\varepsilon} y \tag{4.2}\\
& +2 \rho \pi r^{3}\{\ddot{\phi}+\ddot{\psi} \operatorname{Cos} \theta-\ddot{\psi} \theta \operatorname{Sin} \theta\} d r d z{\underset{\sim}{\varepsilon}}^{\varepsilon}
\end{align*}
$$

where $\underset{\sim}{\varepsilon},{\underset{\sim}{x}}^{\varepsilon}$ and $\underset{\sim}{\varepsilon} z$ are the unit vectors along the x, y and z axes. ρ is the mass density of the material and r is the radius of the elemental ring. The cross sectional area of the elemental ring is given by drdz.

Let us consider the case when the $x y z$ reference system assumes an orientation with $\theta \cong \pi / 2$ and $\psi \cong 0$ as shown in Figure 4.2. The rotating system is supported on bearings and the bearing-base unit will be considered as a rigid body with a body fixed reference system $x_{b} y_{b} z_{b}$. The origin b of the $x_{b} y_{b} z_{b}$ reference system is so chosen that in equilibrium position the axis of the rotating body is parallel to the z_{b} axis and lies in the $y_{b} z_{b}$ plane. The lubricants in the bearings provide stiffness and damping for the relative motion between the rotating body and the bearings. In the seismic analysis of such a rotating system, the base is subjected to known translational and rotational motion. The analyst aims at predicting the transient dynamic response of the rotating body.

The base excitation due to earthquake results in small, perturbational rotations and translations of the base about its equilibrium position. The rotating body responds with small, perturbational rotations and translations of the $x y z$ reference system from the position of $\theta=\pi / 2$ and $\psi=0$ as shown in Figure 4.2. Let ${\underset{\sim}{\sim}}_{\mathrm{b}}$ be the known angular velocity and ${\underset{\sim}{\alpha}}_{\alpha}$ be the known angular acceleration of the base given by

$$
\begin{align*}
& {\underset{\sim}{\omega}}_{b}=\dot{\theta}_{x b} \stackrel{\varepsilon}{\sim}_{x b}+\dot{\theta}_{y b} \tilde{\varepsilon}_{\sim y b}+\dot{\theta}_{z b \sim}^{\varepsilon} z b \tag{4.3}\\
& {\underset{\sim}{a}}_{b}=\ddot{\theta}_{x b} \sim_{x b}+\ddot{\theta}_{y b \sim^{\varepsilon} y b}+\ddot{\theta}_{z b \sim_{z b}}
\end{align*}
$$

The small, perturbational translations of the center of mass of the elemental ring relative to the $x_{b} y_{b} z_{b}$ reference system can be specified by the displacements u_{x}, u_{y} and u_{z} along the x_{b}, y_{b} and z_{b} axes. Similarly, the small perturbational rotations of the $x y z$ reference system relative to the $x_{b} y_{b} z_{b}$ reference system can be specified by the small rotations θ_{x}, θ_{y} and θ_{z} about

FIG.4.2 RING AND BASE REFERENCE FRAMES
the x_{b}, y_{b}, and z_{b} axes and the sequence in which these rotations take place becomes immaterial. Since the rotations of the base $\theta_{x b}, \theta_{y b}$ and $\theta_{z b}$ about the x_{b}, y_{b} and z_{b} axes are also small, perturbational motions, it can be taken that

$$
\begin{align*}
& {\underset{\sim}{\varepsilon}}_{x} \cong \underset{\sim}{\varepsilon} \underset{\sim}{\cong} \underset{\sim}{i} \\
& \underset{\sim}{\varepsilon} \underset{y}{ } \cong \varepsilon_{y} \cong \underset{\sim}{k} \tag{4.4}\\
& \text { and } \quad{\underset{\sim}{z} b}^{\cong}{\underset{\sim}{\varepsilon}}_{z}^{\cong} \underset{\sim}{j}
\end{align*}
$$

This leads to the approximate expressions

$$
\begin{array}{lll}
\theta=\pi / 2+\theta_{x b}+\theta_{x} & , & \psi=\theta_{y b}+\theta_{y} \\
\dot{\theta}=\dot{\theta}_{x b}+\dot{\theta}_{x} & & \dot{\psi}=\dot{\theta}_{y b}+\dot{\theta}_{y} \tag{4.5}\\
\ddot{\theta}=\ddot{\theta}_{x b}+\ddot{\theta}_{x} & , & \ddot{\psi}=\ddot{\theta}_{y b}+\ddot{\theta}_{y}
\end{array}
$$

In addition, it will be assumed that the spin velocity of the rotor remains constant so that

$$
\begin{equation*}
\dot{\phi}=\omega \text { (a constant) and } \ddot{\phi}=0 \tag{4.6}
\end{equation*}
$$

Substituting (4.5) and (4.6) in equation (4.2) and retaining only the first order terms, we get the linearized expression

$$
\begin{align*}
& \dot{H}_{G}=\rho \pi r^{3}\left\{\left(\ddot{\theta}_{x b}+\ddot{\theta}_{x}\right)+2 \omega\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right)\right\} d r d z{\underset{\sim}{x b}} \tag{4.7}\\
& \quad+\rho \pi r^{3}\left\{\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right)-2 \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right)\right\} d r d z \varepsilon_{y b}
\end{align*}
$$

In the above expression, terms involving ω are the familiar gyroscopic moments caused by the rotation of the spin axis.

The absolute acceleration of the point G can be obtained by considering the motion of the point b and the relative motion of G with respect to the $x_{b} y_{b} z_{b}$ reference system. Even though the unit vectors in various references systems shown in Figure 4.2 can be approximately equated to their counterparts as shown in equation (4.4), their time derivatives cannot be equated in a similar manner. Hence,
where

$$
\begin{align*}
& \underset{\sim}{a} b=\ddot{x}_{b \sim}^{\varepsilon} x b+\ddot{\gamma}_{b} \underset{\sim}{\varepsilon} y b+\ddot{z}_{b \sim}^{\varepsilon} z b \\
& \underset{\sim}{r}=u_{x \sim x b}^{\varepsilon}+\left(h+u_{y}\right) \underset{\sim}{\varepsilon} y b+\left(z+u_{z}\right){\underset{\sim}{z b}} \\
& \underset{\sim}{v}{ }_{r e 1}=\dot{u}_{x \sim} \varepsilon_{x b}+\dot{u}_{y}{\underset{\sim}{\sim} y b}+\dot{u}_{z}{ }_{\sim}^{\varepsilon} z b \tag{4.9}\\
& {\underset{\sim}{r e l}}^{r e}=\ddot{u}_{x \sim x b}+\ddot{u}_{y \approx y b}+\ddot{u}_{z \sim z b}
\end{align*}
$$

This leads to

$$
{\underset{\sim}{a}}_{G}=a_{x \sim x b}{ }_{x}+a_{y \sim y b}{ }^{\varepsilon}+a_{z \sim z b}
$$

where

$$
\begin{align*}
& a_{x}=\ddot{u}_{x}-2 \dot{\theta}_{z b} \dot{u}_{y}+2 \dot{\theta}_{y b} \dot{u}_{z}-\left(\dot{\theta}_{y b}^{2}+\dot{\theta}_{z b}^{2}\right) u_{x}+\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right) u_{y} \\
& +\left(\dot{\theta}_{z b} \dot{\theta}_{x b}+\ddot{\theta}_{y b}\right) u_{z}+\ddot{x}_{b}+h\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right)+z\left(\dot{\theta}_{z b} \dot{\theta}_{x b}+\ddot{\theta}_{y b}\right) \\
& a_{y}=\ddot{u}_{y}+\dot{2}_{z b} \dot{u}_{x}-2 \dot{\theta}_{x b} \dot{u}_{z}+\left(\dot{\theta}_{x b} \dot{\theta}_{y b}+\ddot{\theta}_{z b}\right) u_{x}-\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right) u_{y} \\
& +\left(\dot{\theta}_{y b} \dot{\theta}_{z b}-\ddot{\theta}_{x b}\right) u_{z}+\ddot{\gamma}_{b}-h\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right)+z\left(\dot{\theta}_{y b} \dot{\theta}_{z b}-{ }_{x b}\right) \\
& a_{z}=\ddot{u}_{z}-\dot{\theta}_{y b} \dot{u}_{x}+2 \dot{\theta}_{x b} \dot{u}_{y}+\left(\dot{\theta}_{z b} \dot{\theta}_{x b}-\ddot{\theta}_{y b}\right) u_{x}+\left(\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right) u_{y} \\
& -\left(\dot{\theta}_{x b}^{2}+\dot{\theta}_{y b}^{2}\right) u_{z}+\ddot{z}_{b}+h\left(\dot{\theta}_{y b} \dot{\theta}_{z b}+\ddot{\theta}_{x b}\right)-z\left(\dot{\theta}_{x b}^{2}+\dot{\theta}_{y b}^{2}\right) \tag{4.10}
\end{align*}
$$

and

It should be pointed out that in the kinematic relations developed in this section, the gyroscopic effects and the base motions (including translation and rotation) have been taken into account.

4.2.2 KINETIC RELATIONS

We now turn to the evaluation of forces and moments acting on the elemental ring. Since the rotating system is a solid revolution, the stresses acting on the elemental ring, and hence the forces and moments, can be evaluated more conveniently in cylindrical polar coordinates.

4.2.2.1 RELATIONS IN CYLINDRICAL POLAR COORDINATES

The rotating solid of revolution is under a state of initial stress. The initial stresses can result from:
(1) Steady spin of the body about the axis of revolution. This will result in initial stresses $\sigma_{r r}^{(0)}, \sigma_{\phi \phi}^{(0)}, \sigma_{z z}^{(0)}$ and $\tau_{z r}^{(0)}$, forming an axi-symmetric distribution of initial stresses.
(2) Axial thrust on the rotating system. This will result in initial streses $\sigma_{r r}^{(0)}, \sigma_{\phi \phi}^{(0)}, \sigma_{z z}^{(0)}$ and $\tau_{z r}^{(0)}$, again forming an axi-symmetric distribution of initial stresses.
(3) Torque transmitted by the rotating system. This will result in initial stresses $\tau_{r \phi}^{(0)}$ and $\tau_{\phi z}^{(0)}$, forming an anti-symmetric distribution of initial stresses.

All the six components of initial stresses mentioned above are independent of ϕ.

Let $\sigma_{r r}, \sigma_{\phi \phi}, \sigma_{z z},{ }^{\tau} r \phi, \tau_{\phi z}$ and $\tau_{z r}$ be the incremental stress components and u, v and w be the incremental displacement components along the r, ϕ and z directions, respectively. The components of incremental strain, within the framework of linear theory, are given by

$$
\begin{align*}
& e_{r r}=\frac{\partial u}{\partial r} \\
& e_{\phi \phi}=\frac{u}{r}+\frac{1}{r} \frac{\partial v}{\partial \phi} \\
& e_{z z}=\frac{\partial w}{\partial z} \tag{4.11}\\
& e_{r \phi}=\frac{1}{r} \frac{\partial u}{\partial \phi}+\frac{\partial v}{\partial r}-\frac{v}{r} \\
& e_{\phi z}=\frac{\partial v}{\partial z}+\frac{1}{r} \frac{\partial w}{\partial \phi} \\
& e_{z r}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}
\end{align*}
$$

The components of incremental rotation are given by

$$
\begin{align*}
& \omega_{r}=1 / 2\left(\frac{1}{r} \frac{\partial w}{\partial \phi}-\frac{\partial v}{\partial z}\right) \\
& \omega_{\phi}=1 / 2\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial r}\right) \tag{4.12}\\
& \omega_{z}=1 / 2\left(\frac{\partial v}{\partial r}+\frac{v}{r}-\frac{1}{r} \frac{\partial u}{\partial \phi}\right)
\end{align*}
$$

The incremental stress and strain components are related to each other by Hooke's law

$$
\begin{aligned}
& \sigma_{r r}=\frac{E}{(1+v)}\left\{e_{r r}+\frac{v}{(1-2 v)}\left(e_{r r}+e_{\phi \phi}+e_{z z}\right)\right\} \\
& \sigma_{\phi \phi}=\frac{E}{(1+v)}\left\{e_{\phi \phi}+\frac{v}{(1-2 v)}\left(e_{r r}+e_{\phi \phi}+e_{z z}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& \sigma_{z z}=\frac{E}{(1+v)} e_{z z}+\frac{v}{(1-2 v)}\left(e_{r r}+e_{\phi \phi}+e_{z z}\right) \\
& { }^{\tau} r \phi=\frac{E}{2(1+v)} e_{r \phi} \tag{4.13}\\
& \tau_{\phi z}=\frac{E}{2(1+v)} e_{\phi z} \\
& \tau_{z r}=\frac{E}{2(1+v)} e_{z r}
\end{align*}
$$

where E is the Young's modulus of the material and v is the Poisson's ratio.
Consider an isolated element of the ring as shown in Figure 4.3. In evaluating the resultant force acting on this element of the ring due to seismic excitation, the effects of initial stresses must be taken into account. Within the framework of linear theory, the forces acting on the element of the ring along the r, ϕ and z directions are given by [33] as

$$
\begin{aligned}
F_{r}= & \frac{1}{r}\left[\frac{\partial}{\partial r}\left\{r \sigma_{r r}+r\left(1+e_{r r}\right) \sigma_{r r}^{(0)}+r\left(1 / 2 e_{r \phi}-\omega_{z}\right) \tau_{r \phi}^{(0)}+r\left(1 / 2 e_{z r}+\omega_{\phi}\right) \tau_{z r}^{(0)}\right\}\right. \\
& +\frac{\partial}{\partial \phi}\left\{\tau_{r \phi}+\left(1+e_{r r}\right) \tau_{r \phi}^{(0)}+\left(1 / 2 e_{r \phi}-\omega_{z}\right) \sigma_{\phi \phi}^{(0)}+\left(1 / 2 e_{z r} \omega_{\phi}\right) \tau_{\phi z}^{(0)}\right\} \\
& +\frac{\partial}{\partial z}\left\{r \tau_{z r}+r\left(1+e_{r r}\right) \tau_{z r}^{(0)}+\left(1 / 2 e_{r \phi}-\omega_{z}\right) \tau_{\phi z}^{(0)}+\left(1 / 2 e_{z r}+\omega_{\phi}\right) \sigma_{z z}^{(0)}\right\} \\
& \left.-\left\{\sigma_{\phi \phi}+\left(1 / 2 e_{r \phi}+\omega_{z}\right) \tau_{r \phi}^{(0)}+\left(1+e_{\phi \phi}\right) \sigma_{\phi \phi}^{(0)}+\left(1 / 2 e_{\phi z}-\omega_{r}\right) \tau_{\phi z}^{(0)}\right\}\right] r d r d \phi d z \\
F_{\phi}= & \frac{1}{r}\left[\frac{\partial}{\partial r}\left\{r \tau_{r \phi}+r\left(1 / 2 e_{r \phi}+\omega_{z}\right) \sigma_{r r}^{(0)}+r\left(1+e_{\phi \phi}\right) \tau \tau_{r \phi}^{(0)}+r\left(1 / 2 e_{\phi z}-\omega_{r}\right) \tau \tau_{z r}^{(0)}\right\}\right.
\end{aligned}
$$

FIG.4.3DIFFERENTIAL ELEMENT OF A RING

$$
\begin{aligned}
& +\frac{\partial}{\partial \phi}\left\{\sigma_{\phi \phi}+\left(1 / 2 e_{r \phi}+\omega_{z}\right) \tau_{r \phi}^{(0)}+\left(1+e_{\phi \phi}\right) \sigma_{\phi \phi}^{(0)}+\left(1 / 2 e_{\phi z}-\omega_{r}\right) \tau_{\phi z}^{(0)}\right\} \\
+ & \frac{\partial}{\partial z}\left\{r \tau_{\phi z}+r\left(1 / 2 e_{r \phi}+\omega_{z}\right) \tau_{z r}^{(0)}+r\left(1+e_{\phi \phi}\right) \tau_{\phi z}^{(0)}+r\left(1 / 2 e_{\phi z}-\omega_{r}\right) \sigma_{z z}^{(0)}\right\} \\
& +\left\{\tau_{r \phi}+\left(1+e_{r r}\right) \tau_{r \phi}^{(0)}+\left(1 / 2 e_{r \phi}-\omega_{z}\right) \sigma_{\phi \phi}^{(0)}+\left(1 / 2 e_{z r}+\omega_{\phi}^{(0)}\right\} r d r d \phi d z\right. \\
F_{z}= & \frac{1}{r}\left[\frac{\partial}{\partial r}\left\{r \tau_{z r}+r\left(1 / 2 e_{z r}-\omega_{\phi}\right) \sigma_{r r}^{(0)}+r\left(1 / 2 e_{\phi z}+\omega_{r}\right) \tau_{r \phi}^{(0)}+r\left(1+e_{z z}\right) \tau_{z r}^{(0)}\right\}\right. \\
& +\frac{\partial}{\partial \phi}\left\{\tau_{\phi z}+\left(1 / 2 e_{z r}-\omega_{\phi}\right) \tau_{r \phi}^{(0)}+\left(1 / 2 e_{\phi z}+\omega_{r}\right) \sigma_{\phi \phi}^{(0)}+\left(1+e_{z z}\right) \tau_{\phi z}^{(0)}\right\} \\
+ & \left.\frac{\partial}{\partial z}\left\{r \sigma_{z z}+r\left(1 / 2 e_{z r}-\omega_{\phi}\right) \tau_{z r}^{(0)}+r\left(1 / 2 e_{\phi z}+\omega_{r}\right) \tau_{\phi z}^{(0)}+\left(1+e_{z z}\right) \sigma_{z z}^{(0)}\right\}\right] r d r d \phi d z
\end{aligned}
$$

4.2.2.2 RELATIONS IN CARTESIAN COORDINATES

Since the incremental displacements, stresses and strains are periodic in ϕ, one can seek the solution to the problem using harmonic decomposition. In this, the unknown displacements, stresses and strains will be expanded as fourier series in ϕ. The displacements, for example, will be expanded as

$$
\begin{gather*}
u=U_{0}+\sum_{n=1}^{\infty} U_{n c} \cos n \phi+U_{n s} \sin n \phi \\
v=v_{0}+\sum_{n=1}^{\infty} V_{n c} \cos n \phi+v_{n s} \sin n \phi \tag{4.15}\\
w=W_{0}+\sum_{n=1}^{\infty} W_{n c} \cos n \phi+W_{n s} \sin n \phi
\end{gather*}
$$

Here, U_{0}, V_{0}, and W_{0} correspond to the zero harmonic, and $U_{n c}, U_{n s}, \ldots, W_{n s}$ correspond to the $n^{\text {th }}$ harmonic. Solutions for the various harmonics can be found independently and then superposed to obtain the overall solution.

The zero harmonic modes, U_{0} and W_{0}, can be excited by a base motion along the axial direction of the rotating system. However, the more important bending modes due to base excitation are represented by the first harmonic terms [34]. So we shall restrict our attention to the expansion

$$
\begin{align*}
& u=u_{1 c} \cos \phi+u_{1 s} \sin \phi \\
& v=v_{1 s} \sin \phi+v_{1 c} \cos \phi \tag{4.16}\\
& w=w_{1 c} \cos \phi+w_{1 s} \sin \phi
\end{align*}
$$

It should be noted that both the symmetric and anti-symmetric harmonics have been retained in (4.16). This is because of the presence of gyroscopic effects that couple the flexural motion in two mutually perpendicular planes.

The expansion in (4.16) leaves us with six independent, unknown Fourier coefficients of displacements; namely $U_{1 c}, U_{1 s}, V_{1 c}, V_{1 s}, W_{1 c}$ and $W_{1 s}$. These coefficients, however, have the disadvantage that they cannot be interpreted as the displacements of a physical point on the rotating system. This makes it difficult to relate these coefficients to the bearing reaction forces which are specified in literature as functions of the displacements and velocities of the rotor axis relative to the bearing. So we shall adopt an expansion, which is similar to (4.16) but morre in line with our kinematic relations, as

$$
\begin{gather*}
u=u_{x} \cos \phi+u_{y} \sin \phi \\
v=-u_{x} \sin \phi+u_{y} \cos \phi \tag{4.17}\\
w=-r \theta_{y} \cos \phi+r \theta_{x} \sin \phi
\end{gather*}
$$

The above expansion involves only four unknown coefficients, namely u_{x}, $u_{y},{ }^{\theta}{ }_{x}$, and θ_{y}, and this time these coefficients can be interpreted as the displacements of the center of mass of the elemental ring and the rotations of the elemental ring.

In a similar fashion, the incremental stresses and strains can be expanded as

$$
\begin{align*}
& \sigma_{r r}=\sigma_{r r c} \cos \phi+\sigma_{r r s} \sin \phi \\
& \sigma_{\phi \phi}=\sigma_{\phi \phi c} \cos \phi+\sigma_{\phi \phi s} \sin \phi \\
& \sigma_{z z}=\sigma_{z z c} \cos \phi+\sigma_{z z s} \sin \phi \tag{4.18}
\end{align*}
$$

$$
{ }^{\tau_{r \phi}}={ }^{\tau_{r \phi c}} \cos \phi+\tau_{r \phi S} \operatorname{Sin} \phi
$$

$$
\tau_{\phi z}=\tau_{\phi z C} \cos \phi+\tau_{\phi z s} \sin \phi
$$

$$
\tau_{z r}=\tau_{z r c} \operatorname{Cos} \phi+\tau_{z r s} \operatorname{Sin} \phi
$$

and

$$
\begin{align*}
& e_{r r}=e_{r r c} \cos \phi+e_{r r s} \sin \phi \\
& e_{\phi \phi}=e_{\phi \phi c} \cos \phi+e_{\phi \phi s} \sin \phi \\
& e_{z z}=e_{z z c} \cos \phi+e_{z z s} \sin \phi \\
& e_{r \phi}=e_{r \phi c} \cos \phi+e_{r \phi s} \sin \phi \tag{4.19}\\
& e_{\phi z}=e_{\phi z c} \cos \phi+e_{\phi z s} \sin \phi \\
& e_{z r}=e_{z r c} \cos \phi+e_{z r s} \sin \phi
\end{align*}
$$

Equations (4.11), (4.12), (4.17) and (4.18) can now be substituted in (4.14) to find the forces acting on an element of the ring along the r, ϕ and z directions. Resolving these components of forces along the x and y directions and taking their moments about the center of mass of the ring, and integrating these forces and moments along ϕ, we finally obtain the forces and moments acting on the elemental ring shown in Figure 4.2 as

$$
\begin{aligned}
& \underset{\sim}{F}=\pi\left[\frac { \partial } { \partial r } \left(r \sigma_{r r c}-\right.\right.\left.r \tau_{r \phi S}\right)+\frac{\partial}{\partial z}\left(r \tau_{z r c}-r \tau_{\phi z S}\right)+2 \frac{\partial}{\partial r}\left(r \frac{\partial u_{x}}{\partial r} \sigma_{r r}^{(0)}+r \frac{\partial u_{x}}{\partial z} \tau_{z r}^{(0)}\right) \\
&\left.+2 \frac{\partial}{\partial z}\left(r \frac{\partial u_{x}}{\partial r} \tau_{z r}^{(0)}+r \frac{\partial u_{x}}{\partial z} \sigma_{z z}^{(0)}\right)\right] d r d z \underset{\sim}{\varepsilon}{ }_{x} \\
&+\pi\left[\frac{\partial}{\partial r}\left(r \sigma_{r r s}+r \tau_{r \phi C}\right)+\frac{\partial}{\partial z}\left(r \tau_{z r s}+r \tau_{\phi z c}\right)+2 \frac{\partial}{\partial r}\left(r \frac{\partial u_{y}}{\partial r} \sigma_{r r}^{(0)}+r \frac{\partial u_{y}}{\partial z} \tau_{z r}^{(0)}\right)\right. \\
&\left.+2 \frac{\partial}{\partial z}\left(r \frac{\partial u_{y}}{\partial r} \tau_{z r}^{(0)}+r \frac{\partial u_{y}}{\partial z} \sigma_{z z}^{(0)}\right)\right] d r d z \underset{\sim}{\varepsilon} y
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{M}=\pi\left[\frac{\partial}{\partial r}\left(r \tau_{z r S}\right)+\frac{\partial}{\partial z}\left(r \sigma_{z Z S}\right)-\tau_{\phi z C}+\frac{\partial}{\partial r}\left\{r \frac{\partial\left(r \theta_{x}\right)}{\partial r} \sigma_{r r}^{(0)}+r \theta_{y} \tau_{r \phi}^{(0)}+r \frac{\partial\left(r \theta_{x}\right)}{\partial z} \tau_{z r}^{(0}\right.\right. \\
& +\frac{\partial}{\partial z}\left\{r \frac{\partial\left(r \theta_{x}\right)}{\partial r} \tau_{z r}^{(0)}+r \theta_{y}{ }_{\phi}^{\tau}(0)+r \frac{\partial\left(r \theta_{x}\right)}{\partial z} \sigma_{z z}^{(0)}\right\} \\
& \left.+\frac{\partial\left(r \theta_{y}\right)}{\partial r} \tau_{r \phi}^{(0)}-\theta_{x} \sigma_{\phi \phi}^{(0)}+\frac{\partial\left(r \theta_{y}\right)}{\partial z} \tau_{\phi z}^{(0)}\right] r d r d z \underset{\sim}{\varepsilon}{ }_{x} \\
& -\pi\left[\frac{\partial}{\partial r}\left(r \tau_{z r c}\right)+\frac{\partial}{\partial z}\left(r \sigma_{z z c}\right)+\tau_{\phi z s}+\frac{\partial}{\partial r}\left\{-r \frac{\partial\left(r \theta_{y}\right)}{\partial r} \sigma_{r r}^{(0)}+r \theta_{x}^{\tau}{ }_{r \phi}^{(0)}-r \frac{\partial\left(r \theta_{y}\right)}{\partial z}(0)\right\}\right. \\
& +\frac{\partial}{\partial z}\left\{-r \frac{\partial\left(r \theta_{y}\right)}{\partial r} \tau_{z r}^{(0)}+r \theta_{x}^{\tau}{ }_{\phi}^{(0)}-r \frac{\partial\left(r \theta_{y}\right)}{\partial z} \sigma_{z z}^{(0)}\right\} \\
& \left.+\frac{\partial\left(r \theta_{x}\right)}{\partial r} \tau \underset{r \phi}{(0)}+\theta_{y} \sigma_{\phi \phi}^{(0)}+\frac{\partial\left(r \theta_{x}\right)}{\partial z} \tau_{\phi z}^{(0)}\right] r d r d z \underset{\sim y}{\varepsilon}
\end{aligned}
$$

Using (4.4), (4.7), (4.10) and (4.20), the governing equations of motion for the spinning elemental ring can be written as

$$
\begin{aligned}
& \pi\left[\frac{\partial}{\partial r}\left(r \sigma_{r r c}-r \tau_{r \phi S}\right)+\frac{\partial}{\partial z}\left(r \tau_{z r c}-r \tau_{\phi z s}\right)+2 \frac{\partial}{\partial r}\left(r \frac{\partial u_{x}}{\partial r} \sigma_{r r}^{(0)}+r_{\partial z} \frac{\partial u_{z}}{} \tau_{z r}^{(0)}\right)\right. \\
& \left.+2 \frac{\partial}{\partial z}\left\langle r \frac{\partial u_{x}}{\partial r} \tau_{z r}^{(0)}+r \frac{\partial u_{x}}{\partial z} \sigma_{z z}^{(0)}\right)\right]=2 \pi \rho r a_{x} \\
& \pi\left[\frac{\partial}{\partial r}\left(r \sigma_{r r s}+r \tau_{r \phi c}\right)+\frac{\partial}{\partial z}\left(r \tau_{z r s}+r \tau_{\phi z c}\right)+2 \frac{\partial}{\partial r}\left(r \frac{\partial u_{y}}{\partial r} \sigma_{r r}(0)+r \frac{\partial u_{y}}{\partial z} \tau_{z r}^{(0)}\right)\right. \\
& \left.+2 \frac{\partial}{\partial z}\left(r \frac{\partial u_{y}}{\partial r} \tau_{z r}^{(0)}+r \frac{\partial u_{y}}{\partial z} \sigma_{z z}^{(0)}\right)\right]=2 \pi \rho r a_{y} \\
& \pi r\left[\frac{\partial}{\partial r}\left(r \tau_{z r S}\right)+\frac{\partial}{\partial z}\left(r \sigma_{z z S}\right)-\tau_{\phi z C}+\frac{\partial}{\partial r}\left\{r \frac{\partial\left(r \theta_{x}\right)}{\partial r} \sigma_{r r}^{(0)}+r \theta_{y} \tau_{r \phi}^{(0)}+r \frac{\partial\left(r \theta_{x}\right)}{\partial z} \tau_{z r}^{(0)}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\partial}{\partial z}\left\{r \frac{\partial\left(r \theta_{x}\right)}{\partial r} \tau_{z r}^{(0)}+r \theta_{y} \tau_{\phi z}^{(0)}+r \frac{\partial\left(r \theta_{x}\right)}{\partial x} \sigma_{z z}^{(0)}\right\} \\
& \left.+\frac{\partial\left(r \theta_{y}\right)}{\partial r} \tau \tau_{r \phi}^{(0)}-\theta_{x} \sigma_{\phi \phi}^{(0)}-\frac{\partial\left(r \theta_{y}\right)}{\partial z} \tau_{\phi z}^{(0)}\right]=\pi \rho r^{3}\left\{\left(\ddot{\theta}_{x b}+\ddot{\theta}_{x}\right)+2 \omega\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right)\right\} \\
& -\pi r\left[\frac{\partial}{\partial r}\left(r \tau_{z r c}\right)+\right. \\
& +\frac{\partial}{\partial z}\left(r \sigma_{z z c}\right)+\tau_{\phi z s}+\frac{\partial}{\partial r}\left\{-r \frac{\partial\left(r \theta_{y}\right)}{\partial r} \sigma_{r r}^{(0)}+r \theta_{x}^{\tau}{ }_{r \phi}^{(0)}-r \frac{\partial\left(r \theta_{y}\right)}{\partial z} \tau_{z r}^{(0)}\right\} \\
& \\
& +\frac{\partial}{\partial z}\left\{-r \frac{\partial\left(r \theta_{y}\right)}{\partial r} \tau_{z r}^{(0)}+r \theta_{x}^{\tau}{ }_{\phi z}^{(0)}-r \frac{\partial\left(r \theta_{y}\right)}{\partial z} \sigma_{z z}^{(0)}\right\} \\
& \left.+\frac{\partial\left(r \theta_{x}\right)}{\partial r} \tau_{r \phi}^{(0)}+\theta_{y} \sigma_{\phi \phi}^{(0)}+\frac{\partial\left(r \theta_{x}\right)}{\partial z} \tau_{\phi z}^{(0)}\right]=\pi \rho r^{3}\left\{\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right)-2 \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right)\right\}
\end{aligned}
$$

4.3 METHOD OF SOLUTION

The equations of motion given by (4.21) are in the form of partial differential equations involving spatial variables r, z, and temporal variable t. A numerical solution to the problem can be obtained by employing finite elements in the spatial domain and finite differences in the time domain.

Solid of revolution elements have been used in the past to study the seismic behaviour of axisymmetric tower structures [34]. The solid of revolution elements developed in this paper differ from those of Liaw and Chopra [34] because of the inclusion of both the symmetric and anti-symmetric harmonics in the displacement functions given by (4.16) and the special form of Fourier coefficients given by (4.17). The governing differential equations must be rendered in an integral form before they can be solved using finite
element method. This is achieved by the applicationi of Galerkin's technique.

4.3.1 GALERKIN'S TECHNIQUE

In the Galerkin's technique, the displacements u_{x}, u_{y}, and rotations ${ }^{\theta}, \theta_{y}$ will be treated as the primary unknowns. Let $\delta u_{x}, \delta u_{y}, \delta \theta_{x}$ and $\delta \theta_{y}$ be arbitrary variations from their actual values. Then, according to Galerkin's technique, the equations of motion given by (4.21) can be written in an integral form as

$$
\begin{aligned}
& \pi \iint\left[\left\{2 \rho r a_{x}-\frac{\partial}{\partial r}\left(r \sigma_{r r c}-r \tau_{r \phi S}\right)-\frac{\partial}{\partial z}\left(r \tau_{z r c}-r \tau_{\phi z S}\right)\right.\right. \\
& \left.-2 \frac{\partial}{\partial r}\left(r \frac{\partial u_{x}}{\partial r} \sigma_{r r}^{(0)}+r \frac{\partial u_{x}}{\partial z} \tau_{z r}^{(0)}\right)-2 \frac{\partial}{\partial z}\left(r \frac{\partial u_{x}}{\partial r} \tau_{z r}^{(0)}+r \frac{\partial u_{x}}{\partial z} \sigma_{z z}^{(0)}\right)\right\} \delta u_{x} \\
& +\left\{2 \rho r a_{y}-\frac{\partial}{\partial r}\left(r \sigma_{r r s}+r \tau_{r \phi C}\right)-\frac{\partial}{\partial z}\left(r \tau_{z r s}+r \tau_{\phi z c}\right)\right. \\
& \left.-2 \frac{\partial}{\partial r}\left(r \frac{\partial u_{y}}{\partial r} \sigma_{r r}^{(0)}+r \frac{\partial u_{y}}{\partial z}{ }_{\tau}(0)\right)-2 \frac{\partial}{\partial z}\left(r \frac{\partial u_{y}}{\partial r}{ }_{\tau}{ }_{z r}^{(0)}+r \frac{\partial u_{y}}{\partial z} \sigma_{z z}^{(0)}\right)\right\} \delta u_{y} \\
& +r\left\{\rho r^{2}\left(\left(\ddot{\theta}_{x b}+\ddot{\theta}_{x}\right)+2 \omega\left(\dot{\theta}_{y b}+\dot{\theta}_{y}\right)\right)-\frac{\partial}{\partial r}\left(r \tau_{z r s}\right)-\frac{\partial}{\partial z}\left(r \sigma_{z z s}\right)+\tau_{\phi z c}\right. \\
& -\frac{\partial}{\partial r}\left(r \frac{\partial\left(r \theta_{x}\right)}{\partial r} \sigma_{r r}^{(0)}+r \theta_{y} \tau_{r \phi}^{(0)}+r \frac{\partial\left(r \theta_{x}\right)}{\partial z} \tau_{z r}^{(0)}\right) \\
& -\frac{\partial}{\partial z}\left(r \frac{\partial\left(r \theta_{x}\right)}{\partial r} \tau_{z r}^{(0)}+r \theta_{y}{ }^{(}(0)+r \frac{\partial\left(r \theta_{x}\right)}{\partial z} \sigma_{z z}^{(0)}\right) \\
& \left.-\frac{\partial\left(r \theta_{y}\right)}{\partial r} \tau_{r \phi}^{(0)}+\theta_{x} \sigma_{\phi \phi}^{(0)}-\frac{\partial\left(r \theta_{y}\right)}{\partial z} \tau_{\phi z}^{(0)}\right\} \delta \theta_{x} \\
& +r\left\{\rho r^{2}\left(\left(\ddot{\theta}_{y b}+\ddot{\theta}_{y}\right)-2 \omega\left(\dot{\theta}_{x b}+\dot{\theta}_{x}\right)\right)+\frac{\partial}{\partial r}\left(r \tau_{z r c}\right)+\frac{\partial}{\partial z}\left(r \sigma_{z z C}\right)+\tau_{\phi z s}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\partial}{\partial r}\left(-r \frac{\partial\left(r \theta_{y}\right)}{\partial r} \sigma_{r r}^{(0)}+r \theta_{x} \tau_{r \phi}^{(0)}-r \frac{\partial\left(r \theta_{y}\right)}{\partial z} \tau_{z r}^{(0)}\right) \\
& +\frac{\partial}{\partial z}\left(-r \frac{\partial\left(r \theta_{y}\right)}{\partial r} \tau_{z r}^{(0)}+r \theta_{x}^{\tau}(0)-r \frac{\partial\left(r \theta_{y}\right)}{\partial z} \sigma_{z z}^{(0)}\right) \\
& \left.\left.+\frac{\partial\left(r \theta_{x}\right)}{\partial r} \tau_{r \phi}^{(0)}+\theta_{y} \sigma_{\phi \phi}^{(0)}+\frac{\partial\left(r \theta_{x}\right)}{\partial z} \tau_{\phi z}^{(0)}\right\} \delta \theta_{y}\right] d r d z=0
\end{aligned}
$$

The above equation (4.22) is also a statement of the principle of virtual work. When (4.22) is partially integrated, certain boundary terms appear as a result. These boundary terms correspond to the boundary conditions at the locations of the bearings. If $\left(u_{x}\right)_{i}$ and $\left(u_{y}\right)_{i}$ are the displacements of the rotor axis relative to the i th bearing along the x_{b} and $y_{b} a x e s$, then the forces due to bearing lubricants can be expressed as

$$
\begin{aligned}
& f_{x}=-\sum_{i=1}^{n}\left\{\left(k_{x x}\right)_{i}\left(u_{x}\right)_{i}+\left(k_{x y}\right)_{i}\left(u_{y}\right)_{i}+\left(c_{x x}\right)_{i}\left(\dot{u}_{x}\right)_{i}+\left(c_{x y}\right)_{i}\left(\dot{u}_{y}\right)_{i}\right\} \delta\left(z-z_{i}\right) \\
& f_{y}=-\sum_{i=1}^{n}\left\{\left(k_{y x}\right)_{i}\left(u_{x}\right)_{i}+\left(k_{y y}\right)_{i}\left(u_{y}\right)_{i}+\left(c_{y x}\right)_{i}\left(\dot{u}_{x}\right)_{i}+\left(c_{y y}\right)_{i}\left(\dot{u}_{y}\right)_{i}\right\} \delta\left(z-z_{i}\right)
\end{aligned}
$$

where n denotes the total number of bearings and δ stands for Dirac's delta function, z_{i} 's are the z-coordinates of the bearing locations. The damping coefficients may be symmetric $\left(c_{x y i}=c_{y x i}\right)$ but stiffness coefficients are not symmetric ($k_{x y i} \neq k_{y x i}$).

4.3.2 FINITE ELEMENTS

Consider a typical solid of revolution element with eight nodes (see Figure 4.4). It is an eight-noded isoparametric element where the displacements are assumed to vary parabolically within each element. The unknown displacements and rotations will be expressed in terms of unknown nodal values and known shape functions as

$$
\begin{align*}
& u_{x}=\sum_{i=1}^{8} N_{i}\left(\xi_{1}, \xi_{2}\right)\left(U_{x}\right)_{i} \\
& u_{y}=\sum_{i=1}^{8} N_{i}\left(\xi_{1}, \xi_{2}\right)\left(U_{y}\right)_{i} \\
& \theta_{x}=\sum_{i=1}^{8} N_{i}\left(\xi_{1}, \xi_{2}\right)\left(\theta_{x}\right)_{i} \tag{4.24}\\
& \theta_{y}=\sum_{i=1}^{8} N_{i}\left(\xi_{1}, \xi_{2}\right)\left(\theta_{y}\right)_{i}
\end{align*}
$$

where ξ_{1} and ξ_{2} are the natural coordinates for the element. Expressions for the shape functions $N_{i}\left(\xi_{1}, \xi_{2}\right)$ can be found in [] and, in fact, it is possible to formulate a variable node element in which the number of nodes can be chosen between 4 and 8 .

Equations (4.24) can be expressed more conveniently in a matrix form as

$$
\begin{equation*}
\{u\}_{\mathrm{e}}=[N]_{\mathrm{e}}\{q\}_{\mathrm{e}} \tag{4.25}
\end{equation*}
$$

where $[N]_{e}$ is a matrix of shape functions and $\{q\}_{e}$ is a vector of nodal displacements and rotations given by

个
z

FIG.4.4 ISOPARAMETRIC, SOLID OF REVOLUTION ELEMENT

$$
\begin{equation*}
\{q\}_{\mathrm{e}}^{\mathrm{T}}=\left[\left(U_{x}\right)_{1}\left(u_{y}\right)_{1}\left(\theta_{x}\right)\left(\theta_{y}\right)_{1} \cdot \cdots\left(U_{x}\right)_{8}\left(U_{y}\right)_{8}\left(\theta_{x}\right)_{8}\left(\theta_{y}\right)_{8}\right] \tag{4.26}
\end{equation*}
$$

It should be pointed out that $\left(U_{x}\right)_{i}$ and $\left(U_{y}\right)_{i}$ are not the displacements of the $i^{\text {th }}$ node itself; they are the displacements of the center of mass of the elemental ring passing through the $i^{\text {th }}$ node. $\left(\theta_{x}\right)_{i}$ and $\left(\theta_{y}\right)_{i}$ are the rotations of this elemental ring.

We note that

$$
\begin{equation*}
\delta\{u\}_{e}=[N]_{e} \delta\{q\} e \tag{4.27}
\end{equation*}
$$

Substituting (4.25) and (4.27) in the partially integrated form of (4.22) and carrying out the differentiations and integrations we get

$$
\begin{equation*}
\delta\{q\}_{\mathrm{e}}^{\top}\left[[M]_{\mathrm{e}}\{\ddot{\mathrm{q}}\}_{\mathrm{e}}+[C]_{\mathrm{e}}\{\dot{\mathrm{q}}\}_{\mathrm{e}}+[K]_{\mathrm{e}}\{q\} \mathrm{e}^{]}=\delta\{\mathrm{q}\}_{\mathrm{e}}^{\top}\{\mathrm{Q}\}\right. \tag{4.28}
\end{equation*}
$$

Here, $[M]_{\mathrm{e}}$ is the elemental intertia matrix. [C] $]_{\mathrm{e}}$ is an elemental matrix that can be written as

$$
\begin{equation*}
[C]_{e}=\left[C_{G}\right]_{e}+\left[C_{C}\right]_{e}+\left[C_{D}\right]_{e} \tag{4.29}
\end{equation*}
$$

where

$$
\begin{aligned}
& {\left[C_{G}\right]_{e}-G y r o s c o p i c ~ m a t r i x,} \\
& {\left[C_{C}\right]_{e}-\text { Coriolis matrix due to base rotation, }}
\end{aligned}
$$

$$
\left[C_{D}\right]_{e} \text { - Damping matrix due to bearing(s) located at the node(s). }
$$

$[K]_{e}$ is an elemental matrix that can be written as

$$
\begin{equation*}
[K]_{\epsilon}=\left[K_{C}\right]_{e}+\left[K_{G}\right]_{e}+\left[K_{R}\right]_{e}+\left[K_{B}\right]_{e} \tag{4.30}
\end{equation*}
$$

where
$\left[K_{C}\right]_{e}$ - Conventional stiffness matrix,
$\left[K_{G}\right]_{e}$ - Geometric stiffness matrix due to initial stresses,
$\left[K_{R}\right]_{e}$ - Supplementary stiffness matrix due to base rotation,
$\left[K_{B}\right]_{e}$ - Stiffness matrix due to bearing(s) located at the node (s).
$\left\{Q_{j}\right.$ is a vector of nodal forces and moments due to base translation and rotation. $[M]_{e},\left[C_{D}\right]_{e},\left[K_{C}\right]_{e}$ and $\left[K_{G}\right]_{e}$ are symmetric matrices;
$\left[C_{G}\right]_{e}$ and $\left[C_{C}\right]_{e}$ are skew-symmetric matrices; $\left[K_{R}\right]_{e}$ and $\left[K_{B}\right]_{e}$ are nonsymmetric matrices. These elemental matrices are to be properly assembled to obtain the global matrices.

The elemental matrices mentioned above are obtained after performing a numerical integration over the element using a Gaussian scheme. It may be mentioned that the conventional and geometric stiffness matrices can be derived by minimizing the potential

$$
\pi=1 / 2 \iiint\left[\left(\sigma_{r r} e_{r r}+\sigma_{\phi \phi} e_{\phi \phi}+\sigma_{z z} e_{z z}+\tau_{r \phi} e_{r \phi}+\tau_{\phi z} e_{\phi z}+\tau_{z r} e_{z r}\right)\right.
$$

$\left.+2\left\{\sigma_{r r}^{(0)} e_{r r}^{\prime}+\sigma_{\phi \phi}^{(0)} e_{\phi \phi}^{\prime}+\sigma_{z z}^{(0)} e_{z z}^{\prime}+\tau_{r \phi}^{(0)} e_{r \phi}^{\prime}+\tau_{\phi z}^{(0)} e_{\phi z}^{\prime}+\tau_{z r}^{(0)} e_{z r}^{\prime}\right\}\right] r d r d \phi d z$
where

$$
\begin{align*}
& e_{r r}^{\prime}=1 / 2\left\{\left(\frac{\partial u}{\partial r}\right)^{2}+\left(\frac{\partial v}{\partial r}\right)^{2}+\left(\frac{\partial w}{\partial r}\right)^{2}\right\} \\
& e_{\phi \phi}^{\prime}=1 / 2\left\{\left(\frac{u}{r}+\frac{1}{r} \frac{\partial v}{\partial \phi}\right)^{2}+\left(\frac{1}{r} \frac{\partial u}{\partial \phi}-\frac{v}{r}\right)^{2}+\left(\frac{1}{r} \frac{\partial w}{\partial \phi}\right)^{2}\right\} \\
& e_{z z}^{\prime}=1 / 2\left\{\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right\} \\
& e_{r \phi}^{\prime}=\left(\frac{\partial u}{\partial r}\right)\left(\frac{1}{r} \frac{\partial u}{\partial \phi}-\frac{v}{r}\right)+\left(\frac{u}{r}+\frac{1}{r} \frac{\partial v}{\partial \phi}\right)\left(\frac{\partial v}{\partial r}\right)+\left(\frac{\partial w}{\partial r}\right)\left(\frac{1}{r} \frac{\partial w}{\partial \phi}\right) \\
& e_{\phi z}^{\prime}=\left(\frac{u}{r}+\frac{1}{r} \frac{\partial v}{\partial \phi}\right)\left(\frac{\partial v}{\partial z}\right)+\left(\frac{\partial u}{\partial z}\right)\left(\frac{1}{r} \frac{\partial u}{\partial \phi}-\frac{v}{z}\right)+\left(\frac{\partial w}{\partial z}\right)\left(\frac{1}{r} \frac{\partial w}{\partial \phi}\right) \\
& e_{z r}^{\prime}=\left(\frac{\partial u}{\partial r}\right)\left(\frac{\partial u}{\partial z}\right)+\left(\frac{\partial v}{\partial r}\right)\left(\frac{\partial v}{\partial z}\right)+\left(\frac{\partial w}{\partial r}\right)\left(\frac{\partial w}{\partial z}\right) \tag{4.32}
\end{align*}
$$

We have adopted a more direct Newtonian approach to the problem because it seems to be more appropriate to the rotating system under consideration.

4.3.3 CHECK PROBLEMS

The performance of finite elements formulated above must be tested against some known, closed form dynamic solutions available in literature, before we use them in our seismic analysis. Two such check problems are given below.

4.3.3.1 free vibration of a beam

The frequencies of free vibration of a simply supported Timoshenko beam are given by the roots of equation (3.28). Using the finite elements developed in this chapter, the eigenproblem can be posed as

$$
\begin{equation*}
[M]\{x\}=\frac{1}{\omega_{n}^{2}}\left[K_{c}\right]\{x\} \tag{4.33}
\end{equation*}
$$

Table 4.1 shows the comparison between the finite element and Timoshenko beam natural frequencies for various aspect ratios. It can be seen from Table 4.1 that the eight-noded element gives better results than the four-noded element. It is also observed that reduced, 2×2 integration gives better results for low aspect ratio beams. But for higher aspect ratios, 3×3 integration gives better results.

4.3.3.2 BUCKLING OF A BEAM

The buckling loads for a simply supported, Timoshenko beam are given by the roots of equation (3.30). Using the finite elements developed in this chapter, the eigenproblem can be posed as

$$
\begin{equation*}
\left[K_{c}\right]\{x\}=P_{c}\left[K_{G}\right]\{x\} \tag{4.34}
\end{equation*}
$$

Table 4.2 compares the finite element and Timoshenko beam buckling loads for various aspect ratios. Here again we see that the eight-noded element has a superior performance over the four-noded element. For low aspect-ratios, the reduced 2×2 integration gives better results. But for higher aspect ratios, the 3×3 integration gives better results.

しヤとて	$9 て ゙ か 1$	L2•81	$22 \cdot 12$	LI・で	OL．0	2
$0 \downarrow \cdot 92$	10．81	$88^{\circ} 22$	\＆ャ＊ 62	08.62	$80^{\circ} 0$	
86.62	LI \dagger ¢	60.62	0 O「て	29＊てか	$90^{\circ} 0$	
t0＊ャ¢	$0 \square^{\circ} 2$ ¢	19＊9ع	0カ・69	$29 * 69$	t0．0	
08＊ 2ε	$68^{*} \downarrow$	して「9t	でゅ8L	$\varepsilon \cdot \square 8 L$	20.0	
$966 . L$	796.9	$9 \angle 0 * 8$	ャてع•6	$96 \varepsilon^{\circ} 6$	OL•0	
019.8	790．8	LOO＊ 6	10． LL	L0．11	$80^{\circ} 0$	
210.6	8عで 6	L26＊6	$\varepsilon s^{\circ} \varepsilon L$	$\angle G^{\circ} \varepsilon L$	$90^{\circ} 0$	L
09ガ6	ても＊OL	98．01	68.81	L6．8L	$\bigcirc 0^{\circ} 0$	
$89 L 6$	LICL	$08^{\circ} \mathrm{E}$ L	01＊加	10° bt	20.0	
Kı0241 ueag охи⿱亠䒑sou！！	ио！7елбәұи！ 2×2		บо！7елбวұи！2x2	ио！วелбәти！χ^{\times}¢	$\begin{aligned} & \text { 82/4 } \\ & 0!7 \mathrm{Py} \\ & 7 j \partial \mathrm{dsy} \end{aligned}$	$\begin{gathered} \omega \\ \text { әроW } \end{gathered}$
	şuәməl̇ papon 8 әл！」		squəแว⿺廴 pəpon \square ว＾！」			

4.4 EXAMPLE PROBLEM

As an example problem, the seismic analysis of a rotor bearing system was obtained using the 3-D elasticity model. The geometry of the rotor is shown in Figure 4.5. The bearings are located at nodes 3 and 18. The stiffness and damping coefficients for the lubricants in the bearings were taken from Table 3.4

The base was first subjected to purely translational excitations given by the El Centro earthquake history in Figure 3.6. The displacements of the rotor in the bearings are given in Figure 4.6 with proper subscripts. The dynamic reaction forces on the bearings are shown in Figure 4.7. Figure 4.8 shows the bending stress at midspan.

The base was then subjected to translational as well as simulated rotational excitations as given in Figure 3.7. The displacements of the rotor in the bearings are given in Figure 4.9. The dynamic reaction forces on the bearings are shown in Figure 4.10. Figure 4.11 shows the bending stress at midspan.

A typical run for the example problem took about 2 minutes of CPU time in IBM System 3081.

4.5 MERITS AND LIMITATIONS OF 3-D MODEL

In this chapter, we have shown that the flexibility of the rotating system can be included in the seisimic analysis using three-dimensional theory of elasticity. This represents the most general treatment of the problem thus far. The three-dimensional elasticity model is superior in formulation to the beam and rigid body models. Since the method of solution is based on a finite

FIG.4.5 GEOMETRY OF EXAMPLE PROBLEM

NY NI S3コצO』

BEARINGS

element procedure, it can be easily implemented along with other finite element codes in the user's organization.

A major limitation of the 3-D model is the cost. A price has been paid for the general creatment of the rotor-bearing system in the form of large memeory requirement and relatively large computing time. The 3-D model is recommended for those problems where accurate modeling is of greater concern over the cost of computing.

$$
\begin{aligned}
& \text { 以 }
\end{aligned}
$$

5. CONCLUSIONS

In this report we have presented a rigid body model, a beam model and a 3-D elasticity model to predict the seismic response of a rotating mechanical system.

In the rigid body model, the rotating system is modeled as a rigid body spinning about its axis of symmetry. It is shown that factors such as gyroscopic effects, rotor-bearing interaction effects (i.e. stiffness and damping provided by the lubricants in the bearings), effects of base rotation (including Coriolis effects) and base translation can be directly and systematically incorporated in the seismic analysis. The rigid body model keeps mathematics to the minimum and is easy to program. It is computationally economical.

The beam model incorporates the flexibility of the rotating system using Timoshenko beam theory. In addition to the factors mentioned in the rigid body model, factors such as rotatory inertia, shear deformation, intermediate disks and flywheels and effects of initial stresses due to axial force and axial torque are included in the beam model. The beam model uses a finite element approach and the solution can be obtained within reasonable computer time and cost. We strongly recommended it for all shaft-like systems.

The 3-D elasticity model incorporates the flexibility of the rotating system using the three-dimensional theory of elasticity. This enables the
model to take into account such factors as effect of initial stresses due to spin and systems that do not have the appearance of a shaft, in addition to the factors mentioned in the beam model. The $3-D$ elasticity model is the most-rigorous of the three model and also the most expensive. We recommend the 3-D model for those systems that do not look like a shaft and where cost of computation is not of great concern.

A more general three-dimensional model is under development. The threedimensional model uses eight-noded, isoparametric solid-of-revolution finite elements. It is expected that the three-dimensional model will increase the range of problems that can be solved under seismic analysis of rotating mechanical systems.

REFERENCES

1. Smith, C. B., "Seismic and Operational Vibration Problems in Nuclear Power Plants," Shock Vib. Dig., 8 (11), pp. 3-13 (1976).
2. Engineering Design for Earthquake Environments, IMechE Conf. PubT. 197812, London (1979).
3. Tessarzik, J. M., Chiang, T., and Badgley, R., H., "The Response of Rotating Machinery to External Random Vibration," J. Engrg. Indus., Trans. ASME, 96 (2), pp. 477-489 (May 1974).
4. Nakamura, K., Fukui, S., and Oowa, T., "Aseismic Design of Uranium Centrifuges," J. JSME, 79 (689), pp. 92-95 (April 1976) (In Japanese).
5. Asmis, G. J. K., and Duff, C. G., "Seismic Design of Gyroscopic Systems," ASME Paper 78-PVP-44,ASME/CSME Pressure Vessels Piping Confo, Montreal, Canada (June 1978).
6. Asmis, G. J. K., "Response of Rotating Machinery Subjected to Seismic Excitation," Engineering Design for Earthquake Environments, IMechE Conf. Publ. 1978-12, London, pp. 215-225 (1979).
7. Nakagawa, E., Sugita, T., and Azuma, T., "Earthquake Response Analysis of a Flexible Rotor supported in Fluid-Film Bearings," IshikawajimaHarima Engrg. Rev., 18 (1), pp. 1-5 (1978) (In Japanese).
8. Schweitzer, G., Schiehlen, W., Müller,P. C., Hübner, W., Lückel, J., Sandweg, G., and Lautenschlager, R., "Kreiselverhalten eines elastish gelagerten rotors", Ing. Arc., 41 pp. 110-140 (1972).
9. Iwatsubo, T., Kawahara, I., Nakagawa, N., and Kawai, R., "Reliability Design of Rotating Machine against Earthquake Excitation," Bull. JSME, 22 (1973), pp. 1632-1639 (Nov. 1979).
10. Ganiev, R. F. and Lyutyi, A. I., "Stability of a Gyroscope on a Vibrating Base in Resonance Conditions," Prikladnaya Mekhanika, 8 (11), pp. 4350 (1972).
11. Kuz'ma, V. M., "Resonant Modes of a Gyroscope on a Randomly Vibrating Base," Prikladnaya Mekhanika, 16 (9), pp. 104-109 (1980).
12. Villasor, A. P., "Seismic Analysis of a Reactor Coolant Pump by the Response Spectrum Method," Nuclear Engrg. Des., 38, pp. 527-542 (1976).
13. Ruddy, A. V. and Smith D. S., "An Introduction to the Influence of the Bearings on the Dynamics of Rotating Machinery," Tribology Intl., 13 (5), pp. 199-203 (1980).
14. Lund, J. W., "Rotor-Bearing Dynamics Design Technology; Part III: Design Handbook for Fluid Film Type Bearings," Rept. No. AFAPL-TR-65-45, Pt. III, Wright-Patterson AFB, OH, May 1965).
15. Lund, J. W. and Thomsen, K. K., "A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubricated Journal Bearings," Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization, ASME Conf., Chicago, pp. 1-28 (1978).
16. Lund, J. W., "Response Characteristics of a Rotor with Flexible, Damped Supports," Symp. Dynamics of Rotors, IUTAM, Lyngby, Denmark, SpringerVerlag, pp. 319-349 (1975).
17. Lund, J. W., "Modal Response of a Flexible Rotor in Fluid-Film Bearing," J. Engrg. Indus., Trans. ASME 96 (2), pp. 525-533 (May 1974).
18. Shimogo, T., Aida, T., and Nakano, M., "Seismic Response of a Flexible Rotor," Proc. 2nd Intl. Conf., Vib. Rotating Mach., Churchill College, Cambridge, Engl., pp. 321-326 (Sept. 14, 1980.)
19. Goldstein, H. H., Classical Mechanics, 2nd Ed., Addison-Wesley, Reading, 1980.
20. Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill, New York, 1970.
21. Lund, J. W., "Evaluation of Stiffness and Damping Coefficientes for Fluid-Film Bearings," Shock and Vibration Digest, 11 (1), pp. 5-10 (1979).
22. Newmark, N. M., "A Method of Computation for Structural Dynamics," Journal of Engineering Mechanics Division, ASCE, 85, pp. 67-94 (1959).
23. Bathe, K. J., and Wilson, E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, N. J., 1976.
24. Hudson, D. E., Brady, A. G., Trifunac, M. D., and Vijayaraghavan, A., Strong Motion Earthquake Accelerograms, California Institute of Technology, EERL 71-50, Sept. 1971.
25. Timoshenko, S. P., 'On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars', Philosophical Magazine, 41, pp. 744-746 (1921).
26. Ziegler, H., 'Principles of Structural Stability', Blaisdell Publishing Co., Waltham, Ma. 1968.
27. Zorzi, E. S., and Nelson, H. D., 'The Dynamics of Rotor-Bearing Systems with Axial Torque - A Finite Element Approach', Journal of Mechanical Design, Trans. ASME, 102, pp. 158-161 (1980).
28. Nelson, H. D., 'A Finite Rotating Shaft Element Using Timoshenko Beam Theory', Journal of Mechanical Design, Trans. ASME, 102, pp. 793-803 (1980).
29. Zienkiewicz, 0. C., 'The Finite Element Method', 3rd Edition, McGrawHill, London, (1977).
30. Pawsey, S. F., and Clough, R. W., 'Improved Numerical Integration of Thick Shell Finite Elements', International Journal for Numerical Methods in Engineering, 3, pp. 545-586 (1971).
31. Hughes, T. J. R., Taylor, R. L., and Kanoknukulchai, W., 'A Simple and Efficient Finite Element for Plate Bending', International Jourrial for Numerical Methods in Engineering, 11, pp. 1529-1543 (1977).
32. Gupta, K. K., 'Free Vibrations Analysis of Spinning Structural Systems', International Journal for Numerical Methods in Engineering, 5, pp. 395-418 (1973).
33. Novozhilov, V. V., 'Foundations of the Nonlinear Theory of Elasticity', Graylock Press, Rochester, NY (1953).
34. Liaw, C. Y. and Chopra, A. K., 'Earthquake Analysis of Axisymmetric Towers Partially Submerged in Water', Earthquake Engineering and Structural Dynamics, 3, pp. 233-248 (1975).

APPENDIX A
 EXPRESSION FOR THE RATE OF CHANGE OF ANGULAR
 MOMENTUM OF A RIGID BODY USING EULER ANGLES

Consider the axially symmetric rigid body shown in Figure 2.1. We have an $x y z$ coordinate system with its origin at the center of mass G. The xyzsystem undergoes precessional (ψ) and nutational (θ) motions. In addition, the rigid body undergoes a spin (ϕ) motion about the z-axis.

Because of the rotational symmetry of the body about the z-axis, the x, y, and z axes become the principal axes of inertia with the corresponding principal moments of inertia being $\mathrm{I}_{0}, \mathrm{I}_{0}$ and I respectively. The rate of change of angular momentum for such a body is given by

$$
\begin{align*}
\dot{\sim}_{G}= & \left\{I_{0}^{\alpha} \alpha_{x}+\left(I-I_{0}\right) \omega_{y} \omega_{z}\right\} \underset{\sim}{\varepsilon_{x}} \\
& +\left\{I_{0}^{\alpha} y+\left(I_{0}-I\right) \omega_{z} \omega_{x}\right\}{\underset{\sim}{\sim}}_{y}^{\varepsilon_{y}} \tag{A.1}\\
& +I \alpha_{z \sim z}^{\varepsilon}
\end{align*}
$$

where the angular velocity and angular acceleration of the rigid body are given by

$$
\begin{align*}
& \underset{\sim}{\omega}=\omega_{x_{\sim}}^{\varepsilon} x+\omega_{y_{\sim}}^{\varepsilon} y+\omega_{z} z_{\sim}^{z} \\
& =\dot{\theta} \varepsilon_{\sim} x+\dot{\psi} \sin \theta \varepsilon_{\sim}^{y}+(\dot{\theta}+\dot{\psi} \cos \theta) \varepsilon_{\sim}^{z} \tag{A.2}
\end{align*}
$$

Preceding page blank

$$
\begin{align*}
& \alpha=\alpha_{x} \varepsilon_{\sim}+\alpha_{y} \varepsilon_{\sim}^{y}+\alpha_{z} \varepsilon_{z} \\
&=(\ddot{\theta}+\ddot{\psi \phi} \sin \theta) \varepsilon_{\sim} \\
&+(\ddot{\psi} \sin \theta+\dot{\psi} \dot{\theta} \cos \theta-\ddot{\phi} \dot{\theta}) \varepsilon_{\sim} y \\
&+(\ddot{\psi} \cos \theta-\ddot{\psi} \theta \sin \theta+\ddot{\phi}) \varepsilon_{\sim} \tag{A.3}
\end{align*}
$$

Substituting (A.2) and (A.3) in (A.1) we get

$$
\begin{align*}
\ddot{\sim}_{G}= & \left\{I_{0} \ddot{\theta}+I \ddot{\psi} \dot{\phi} \sin \theta+\left(I-I_{0}\right) \dot{\psi}^{2} \sin \theta \cos \theta\right\} \varepsilon_{x} \\
& +\left\{I_{0} \ddot{\psi} \sin \theta-I \dot{\phi} \dot{\theta}+\left(2 I_{0}-I\right) \ddot{\psi} \cos \theta\right\} \varepsilon_{y} \tag{A.4}\\
& +\{\ddot{I} \ddot{q}+I \ddot{\psi} \cos \theta-I \ddot{\psi \theta} \sin \theta\} \varepsilon_{z}
\end{align*}
$$

APPENDIX B

beam element matrices

$$
\text { Let } \ell=s_{2}-s_{1}
$$

(1) Inertia Matrix

(2) $[C]_{e}=\left[C_{G}\right]_{e}+\left[C_{C}\right]_{e}+\left[C_{D}\right]_{e}$
(2a) Gyroscopic Matrix
$\left[C_{G}\right]_{\mathrm{e}}=\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ & & 0 & \rho I_{p} \omega \ell / 3 & 0 & 0 & 0 & \rho I_{p} \omega \ell / 6 \\ & & 0 & 0 & 0 & -\rho I_{p} \omega \ell / 6 & 0 \\ & & & 0 & 0 & 0 & 0 \\ & & & & 0 & 0 & 0 \\ & & & & & & 0 & \rho I_{p} \omega \ell / 3 \\ & & & & & & 0\end{array}\right]$

(2c) Bearing Damping Matrix
$\left[C_{D}\right]_{e}=\left[\begin{array}{cccccccc}\left(c_{x x}\right)_{1} & \left(c_{x y}\right)_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \left(c_{y x}\right)_{1} & \left(c_{y y}\right)_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \left(c_{x x}\right)_{2} & \left(c_{x y}\right)_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \left(C_{y x}\right)_{2} & \left(C_{y y}\right)_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The above damping matrix is applicable only to those elements whose node(s) are supported on bearing(s).

$$
\text { (3) } \quad[K]_{e}=\left[K_{C}\right]_{e}+\left[K_{p}\right]_{e}+\left[K_{T}\right]_{e}+\left[K_{R}\right]_{e}+\left[K_{B}\right]_{e}
$$

(3a) Conventional Stiffness Matrix

Upon reduced (single point) integration the above conventional stiffness matrix reduces to

(3b) Geometric Stiffness Matrix Due to Axial Force
$\left[K_{P}\right]_{e}=P\left[\begin{array}{cccccccc}0 & 0 & 0 & -1 / 2 & 0 & 0 & 0 & -1 / 2 \\ & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\ & & -\ell / 3 & 0 & 0 & -1 / 2 & -\ell / 6 & 0 \\ & & & -\ell / 3 & 1 / 2 & 0 & 0 & -\ell / 6 \\ & & & & 0 & 0 & 0 & 1 / 2 \\ & & & & & 0 & -1 / 2 & 0 \\ & & & & & & -\ell / 3 & 0 \\ & & & & & & & -\ell / 3\end{array}\right]$

Upon reduced (single point) integration, the above geometric stiffness matrix reduces to

(3c) Geometric Stiffness Matrix Due to Axial Torque
$\left[K_{T}\right]_{\mathrm{e}}=T\left[\begin{array}{cccccccc} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 / 2 & 0 & 0 & 0 & -1 / 2 \\ 0 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 \\ 0 & 0 & -1 / 2 & 0 & 0 & 0 & -1 / 2 & 0\end{array}\right]$

$$
\begin{aligned}
& \begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

$\underset{a}{a}$
11
•ه
(3e) Bearing Stiffness Matrix
$\left[K_{B}\right]_{e}=\left[\begin{array}{cccccccc}\left(k_{x x}\right)_{1} & \left(k_{x y}\right)_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ \left(k_{j x}\right)_{1} & \left(k_{y y}\right)_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \left(k_{x x}\right)_{2} & \left(k_{x y}\right)_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \left(k_{y x}\right)_{2} & \left(k_{y y}\right)_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The above stiffness matrix is applicable only to those elements whose node(s) are supported on bearing(s)

$$
\begin{aligned}
& \text { (4) Force Vector Due to Base Motion }
\end{aligned}
$$

 L A O,

APPENDIX C

DISK MATRICES

(1) Inertia Matrix

$$
\begin{array}{r}
{[M]_{d}=\left[\begin{array}{cccc}
m_{i} & 0 & 0 & 0 \\
0 & m_{i} & 0 & 0 \\
0 & 0 & \left(I_{0}\right)_{i} & 0 \\
0 & 0 & 0 & \left(I_{0}\right)_{i}
\end{array}\right]} \\
\\
\text { (2) }[C]_{d}=\left[C_{G}\right]_{d}+\left[C_{C}\right]_{d}
\end{array}
$$

(2a) Gyroscopic Matrix

$$
\left[C_{G}\right]_{d}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & (I)_{i^{\omega}} \\
0 & 0 & -(I)_{i} \omega & 0
\end{array}\right]
$$

(2b) Coriolis Matrix

$$
\left[c_{C}\right]_{d}=\left[\begin{array}{cccc}
0 & -2 m_{i} \dot{\theta}_{z b} & 0 & 0 \\
2 m_{i} \dot{\theta}_{z b} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(3) Supplementary Stiffness Matrix

$$
[K]_{d}=\left[\begin{array}{cccc}
-m_{i}\left(\dot{\theta}_{y b}^{2}+\dot{\theta}_{z b}^{2}\right) & m_{i}\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right) & 0 & 0 \\
m_{i}\left(\dot{\theta}_{x b} \dot{\theta}_{y b}+\ddot{\theta}_{z b}\right) & -m_{i}\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right) & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(4) Force Vector Due to Base Motion

$$
\{Q\}_{i}=\left\{\begin{array}{l}
-m_{i} \ddot{x}_{b}-m_{i} h\left(\dot{\theta}_{x b} \dot{\theta}_{y b}-\ddot{\theta}_{z b}\right) \\
-m_{i} \ddot{\gamma}_{b}+m_{i} h\left(\dot{\theta}_{z b}^{2}+\dot{\theta}_{x b}^{2}\right) \\
-\left(I_{0}\right)_{i} \ddot{\theta}_{x b}-(I)_{i} \omega \dot{\theta}_{y b} \\
-\left(I_{0}\right)_{i} \ddot{\theta}_{y b}+(I)_{i} \omega \dot{\theta}_{x b}
\end{array}\right\}
$$

where

$$
m_{i}=\text { Mass of the } i^{\text {th }} \text { disk }
$$

$(I)_{i}=\underset{\text { Moment of in axis }}{ } \quad \underset{i}{\text { spin }}$ of the $i^{\text {th }}$ disk about the
$\left(I_{0}\right)_{i}=$ Moment of inertia of the $i^{\text {th }}$ disk about an axis perpendicular to the spin axis and passing through the center of mass of the disk.

PART II

COMPUTER PROGRAMS

1. GYROT USER'S MANUAL

1.1 PURPOSE

GYROT is a computer program written in Fortran to carry out the seismic analysis of a rigid rotor in time domain. GYROT is a part of a series of computer program packages that are developed at the School of Mechanical and Aerospace Engineering, Oklahoma State University under the sponsorship of National Science Foundation. These computer programs are intended for the use of designers who want to carry out seismic calculations for rotating mechanical systems.

This user's manual describes the way in which the data is supplied to the program. It also includes a listing of the program and a sample output.

1.2 BACKGROUND THEORY

GYROT is based on the rigid body model developed in Part I, Chapter 2 of this report.

GYROT is a self-contained program. The only external subroutine used is a commonly available IMSL routine LEQT2F to solve a set of linear simultaneous equations.

1.3 INPUT DATA

Data and Description

	PM (7F10.5)
AMASS	- Mass of the rigid rotor, in kgs.
AI	- Moment of inertia of the potor about the axis of rotation, in $\mathrm{kg} . \mathrm{m}^{2}$.
AIO	Moment of inertia of the rotor about an axis perpendicular to the axis of rotation and paşsing through the center of mass, in $\mathrm{kg} . \mathrm{m}^{2}$.
ALL	- Distance between the location of the first bearing and the center of mass of the rotor, in m.
AL2	- Distance between the location of the second bearing and the center of mass of the rotor, in m.
H	- Vertical height of the center of mass of the rotor from the base reference point b , in m .
RPM	- Rotational speed of the rotor in revolutions per minute.
NFREE	(I5)

NFREE - Number of degrees of freedom for the rotor.

Note: - NFREE is either 5 or 4. If NFREE $=5$, then the stiffness and damping coefficients of the bearings in the axial direction (i.e. of the thrust bearing) must be supplied in the following cards. If the axial degree of freedom is to be deleted from the analysis, then set NFREE $=4$. If NFREE is set to 4, the computer prints out a message that "THE Z DEGREE OF FREEDOM IS DELETED".

AKXX1, AKXY1, AKYX1, AKYY1, AKZZ1 (5E11.4)
These are the stiffness coefficients of bearing \#1. If NFREE $=4$, then leave AKZZ1 blank.

CXX1, CXY1, CYX1,CYY1, CZZ1 (5E11.4)
These are the damping coefficients of bearing \#1. If NFREE $=4$, then leave CZZ1 blank.

AKXX2,AKXY2,AKYX2,AKYY2,AKZZ2 (5E11.4)
These are the stiffness coefficients of bearing \#2. If NFREE = 4, then leave AKZZ2 blank.

CXX2,CXY2,CYX2,CYY2,CZZ2 (5E11.4)
These are the damping coefficients of bearing \#2. If NFREE $=4$, then leave CZZ2 blank.

TIME, ACCX, ACCY, ACCZ, VELX, VELY, VELZ (7F10.5)
These are the initial conditions for the base translation. Set TIME $=0.0$

ACCX,ACCY,ACCZ are the initial accelerations of ponit b in the x_{b}, y_{b} and z_{b} directions, respectively, in $\mathrm{m} / \mathrm{s}^{2}$.

VELX, VELY, VELZ are the initial velocities of point b in the x_{b}, y_{b}, and z_{b} directions, repsectively, in m/s.

ACCTX,ACCTY,ACCTZ, VELTX,VELTY,VELTZ (6F10.5)
These are the initial conditions for the base rotation. ACCTX,ACCTY,ACCTZ are the initial angular acceleration of the base about the x_{b}, y_{b} and z_{b} axes, respectively, in rad $/ \mathrm{s}^{2}$.

VELTX, VELTY, VELTZ are the initial angular velocity of the base about the x_{b}, y_{b}, and z_{b} axes, respectively, in rad/s.

TIME, AX, AY, AZ, TX,TY,TZ (7F10.5)
TIME - Time at which the acceleration data is specified, in seconds.
$A X, A Y, A X$ are the linear acceleration of the base reference point b in the x_{b}, y_{b}, and z_{b} directions, respectively, in $\mathrm{m} / \mathrm{s}^{2}$.
$T X, T Y, T Z$ are the angular acceleration of the base about the x_{b}, y_{b}, and z_{b} axes, respectively, in $\mathrm{rad} / \mathrm{s}^{2}$.

Note: Card \#9 must be repeated for all the time values at which the base acceleration data is given. The program is terminated by supplying a blank card in this place. The value of TIME must be supplied in the increasing sequence and the program stops whenever it reads the value of TIME as zero.

1.4 LISTING OF GYROT

C**** READ AND PRINT MASS, MOMENTS OF INERTIA,L1,L2,H,RPM AND NFREE
C*** READ (5, 100) AMASS, AI, AIO, AL1, AL2,H,RPM
READ (5, 100) AMASS, AI, AIO, AL1, AL2,H,RPM
100 FORMAT(7F10.5)

-

$\begin{array}{lll}* & * & * \\ * & * & * \\ * \\ * & * & * \\ \circlearrowright & * \\ u\end{array}$ C****

$$
\begin{aligned}
& \text { GYROT - PROGRAM TO COMPUTE THE SEISMIC RESPONSE OF A } \\
& \text { RIGID ROTOR IN THE TIME DOMAIN. } \\
& \text { WRITTEN BY DR.V.SRINIVASAN, MARCH } 1982 \text {. } \\
& \text { DIMENSION AM }(5,5), \operatorname{AK}(5,5), C(5,5), F(5), A K 1(5,5), A K 2(5,5) \\
& \text { DIMENSION C1(5,5),C2(5,5),C3(5,5),F1(5),F2(5), } \\
& \text { DIMENSION XOLD(5),VXOLD }(5), A X O L D(5), \operatorname{XNEW}(5), \operatorname{VXNEW}(5), \text { AXNEW(5) } \\
& \text { DIMENSION A }(5,5), B(5,1), W \operatorname{KAREA}(50), \operatorname{DIS}(6), \text { FOR }(6) \\
& \text { PI=4.O*ATAN }(1.0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C**** } \\
& \text { C**** READ BASE ACCELERATIONS } \\
& \text { C**** }
\end{aligned}
$$

SUBROUTINE MASS(AMASS, AIO, AM)
DIMENSION AM 5,5$)$
DO $100 I=1,5$
DO $100 \cup=1,5$
100 AM $(I, J)=0.0$
AM $(1,1)=$ AMASS
AM $(2,2)=$ AMASS
AM $(3,3)=$ AMASS
AM $(4,4)=$ AIO
AM $(5,5)=$ AIO
RETURN
END

176
1.5 SAMPLE INPUT DATA

24297.0	3368.0	200440.0	3.22	5.28	1.0	3000.0
4						
$+0.5890 E+09+0.5100 E+08-0.1290 E+10+0.1870 E+10$						
$+0.2800 \mathrm{E}+07-0.4100 \mathrm{E}+07-0.4100 \mathrm{E}+07+0.1170 \mathrm{E}+08$						
$+0.6760 \mathrm{E}+09+0.2160 \mathrm{E}+\mathrm{OB}-0.1490 \mathrm{E}+10+0.2270 \mathrm{E}+10$						
$+0.3100 \mathrm{E}+07-0.5000 \mathrm{E}+07-0.5000 \mathrm{E}+07+0.13$0.0				+08		
0.0				-0.0466	0.0297	0.1183
0.02	-0.014	0.024	0.003			
0.04	-0. 108	-0.230	0.019			
0.06	-0. 101	-0.275	0.068			
0.08	-0.088	-0.397	0.029			
0. 10	-0.095	-0.390	0.029			
0. 12	-0.120	-0.060	0.054			

1.6 SAMPLE RESULTS

00	000	000	000
00	000	000	000
$\stackrel{\text { Nin }}{\sim} \underset{\sim}{N}$			

00°	00°	00°	00°	
$\stackrel{\\|}{\sim} \underset{\sim}{\underset{\sim}{\sim}}$				

$\begin{aligned} \times 2 & =0.2186 E-05 \\ F \times 2 & =0.1358 E+04\end{aligned}$

 $\begin{aligned} X t & =0.3901 E-05 \\ F X 1 & =0.2226 E+04\end{aligned}$

$\begin{aligned} \text { TIME } & =0.10000 \\ \text { ACCX } & =-0.9500 \mathrm{E}-01 \\ X 1 & =0.1915 \mathrm{E}-05 \\ \text { FXI } & =0.1511 \mathrm{E}+04\end{aligned}$

TIME	$=0.12000$
ACCX	$=-0.1200 E+00$
$X 1$	$=0.2960 E-05$
FX $1=0.2311 E+04$	

2. ROBET USER'S MANUAL

2.1 PURPOSE

ROBET is a computer program written in Fortran to carry out the seismic analysis of a flexible rotor in time domain. It is the second of a series of computer program packages that are developed at the School of Mechanical and Aerospace Engineering, Oklahoma State University under the sponsorship of National Science Foundation.

This user's manual describes the way in which the data is supplied to the program. It also includes a listing of the program and a sample output.

2.2 BACKGROUND THEORY

ROBET is based on the beam model developed in Part I, Chapter 3 of this report. ROBET uses two-noded finite rotor elements, such as the one shown in Figure 3.4.

ROBET is a self-contained program. The only external subroutine used is a commonly available IMSL routine LEQTIB to solve a set of linear, banded simultaneous equations lacking symmetry.

2.3 INPUT DATA

Card \#

1

2

Data and Description

NNOD , NELEM, NNOEL, NFREE, NEQ,NLC, NUC, IKC, IKP (9I5)
NNOD - Number of nodes in the model
NELEM - Number of elements in the model
NNOEL - Number of nodes per element $=2$ in our case

NFREE - Number of degrees of feedom per node $=$ 4 in our case

NEQ - Number of final set of equations
NLC - Number of lower codiagonals (excluding diagonal)

NUC - Number of upper codiagonals (excluding diagonal)

IKC - Index for conventional stiffness matrix $=0$ for reduced integration, $\neq 0$ for exact integration.

IKP - Index for geometric stiffness matrix due to axial force $=0$ for reduced integration, $\neq 0$ for exact integration.

RPM,P,T,H,NBEAR,NDISK,NPINT (4E11.4,315)

RPM - Spin speed of the rotor in revolutions per minute

P - Axial tension on the rotor, in N.
T - axial torque on the rotor in the $+z$ direction, in $\mathrm{N}-\mathrm{m}$.

H - Height of the rotor axis from the base, in m .

NBEAR - Number of bearings in the system.
NDISK - Number of disks (and flywheels) in the system.

NPINT - Number of points at which internal stresses are to be evaluated.

ZC (I), ID (I, 1), ID (I, 2) , ID (I, 3), ID (I, 4) (E11.4,4I5)

ZC(I) - $\quad z$ coordinate of the $i^{\text {th }}$ node, in m.
ID (I,J) - Index for the $j^{\text {th }}$ degree of freedom at
the $\mathrm{ith}^{\text {node. }}$
Note: This card must be repeated for each of the NNOD nodes.
$\begin{array}{ll}J=1 & \text { corresponds to }\left(U_{x}\right)_{i} \\ J=2 & \text { corresponds to }\left(U_{y}\right)_{i} \\ J=3 & \text { corresponds to }\left(\theta_{x}\right)_{i} \\ J=4 & \text { corresponds to }\end{array}$
ID $(I, J) \neq 0$ to delete ${ }^{y}$ the $j^{\text {th }}$ degree of
freedom at $i^{\text {th }}$ node.
$I D(I, J)=0$ to keep the $j^{\text {th }}$ degree of
freedom at $i^{\text {th }}$ node. (Leave it blank).
NOD (LK, 1), NOD (LK , 2), EYM(LK) , EPR (LK) , ERHO (LK) ,
EAREA(LK), EAIT(LK) $(215,5 E 11.4)$
NOD (LK, J) \quad - JTH NODE OF THE (LK) ${ }^{\text {TH }}$ element
EYM (LK) \quad Young's modulus for the (LK) element, in N / m^{2}.
$E P R(L K) \quad$ - Poisson's ratio for the $(L K)^{\text {th }}$ element
$E R H O(L K) \quad$ Mass density of the $(L K)^{\text {th }}$ element, in $\mathrm{kg} / \mathrm{m}^{3}$.
EAREA (LK) - Area of cross-section of the $(L K)^{\text {th }}$ element, in m^{2}.
EAIT(LK) - Transverse second moment of area of the (LK) ${ }^{\text {th }}$ element, in m^{4}.
Note: This card must be repeated for each of the NELEM elements.

NODIS(I), DMASS (I), DIO(I), DI (I) (I5,3E11.4)
NODIS(I) - Node number at which the $i^{\text {th }}$ disk (or flywheel) is located.
DIMASS(I) - Mass of the ith $^{\text {tisk }}$ (or flywheel), in Kg .
DIO(I) - Transverse moment of inertia of the $i^{\text {th }}$ disk (or flywheel), in Kg.m.
DI(I) - Polar moment of inertia of the $i^{\text {th }}$ disk (or flywheel), in Kg.m².

Note: This card must be repeated for each of the NDISK disks (or flywheels) in the model. If NDISK $=0$, skip this card.
$\operatorname{NOBER}(\mathrm{I}), \mathrm{BK}(I, 1,1), \operatorname{BK}(\mathrm{I}, 1,2), \operatorname{BK}(I, 2,1)$, BK (I, 2, 2) $(15,4 E 11.4)$

NOBER(I) - Node number at which the $i^{\text {th }}$ bearing is located.
$B K(I, J, K)$ - The $(j, k)^{\text {th }}$ coefficient in the stiffness matrix for the lubricants in $i^{\text {th }}$ bearing.
$\mathrm{BC}(\mathrm{I}, 1,1), \mathrm{BC}(\mathrm{I}, 1,2), \mathrm{BC}(\mathrm{I}, 2,1), \mathrm{BC}(\mathrm{I}, 2,2)$ (4E11.4)
$B C(I, J, K) \quad$ - The $(j, k)^{\text {th }}$ coefficient in the damping matrix for the lubricants in $i^{\text {th }}$ bearing.

Note: The 6th and 7th cards must be repeated for each of the NBEAR bearings. If NBEAR $=0$, skip these cards.

KELP (I) (IS)
NELP(I) - Element number in which the ${ }^{\text {th }}$ internal stress point is located.

Note: This card must be repeated for each of the NPINT points. If NPINT=0, skip this card.

TIME, ACC, ACC Y, ACC, VEL X, VEL, VEL (7F10.5)
TIME $=0.0$
ACCX, ACCY, ACCZ are the initial acceleration of point b in the x_{b}, y_{p}, and z_{p} directions, in $\mathrm{m} / \mathrm{s}^{2}$. VELA, VEL, VEL are the initial velocity of point b in the x_{b}, y_{b}, and z_{b} directions, in mas.

ACCTX, ACCTY, ACCTZ, VELTX, VELTY, VELTZ (6F10.5)
ACCTX, ACCTY, ACCTZ are the initial angular accleration of the base along x_{p}, y_{b}, and z_{b} axes, in rad /s. VELTX, VELTY, VELTZ are the initial angular velocity of the base along x_{b}, y_{b} and z_{b} axes, in rad /s.

11
TIME - Time at which the acceleration data is specified, in s.
$A X, A Y, A Z$

TX,TY,TZ
TIME, AX, BY, AZ, TX, TY, TX are the linear acceleration of the point b in the x_{b}, y_{b} and z_{b} directions, in $\mathrm{m} / \mathrm{s}^{2}$. are the angular acceleration of the
base along the $2^{x_{b}}, \quad y_{b}$ and z_{b} directions, in rad /s.

Note: This card must be repeated for all the time values at which the base acceleration data is given. The program is terminated by supplying a blank card in this place. The value of TIME must be supplied in the increasing sequence, and the program stops whenever it reads the value of TIME as zero.

2.4 LISTING OF ROBET

0.
0
0
80
80
88
8

88
88
88
88
88
80
80
80
88
88

0
88
88
888
888

80
48
88
88
888
88

[^0]
121 FORMAT(//7X,'NODE \#',7X,'Z',25X,'ID MATRIX'/)

 I SUM $=0 \quad 11$, NNOD
DO $20 ~$ REE $35,30,35$
 ISUM-IS
ID $(1, J)=I S U M$ \circ

0
0
0
앙 8ㅛN 웅 135 FORMAT (//5XX, 'COMPUTED NUMBER OF EQUATIONS $=$ '. $15 / /$) $\underset{C^{*} * * * * *}{C^{* * * *}}$ initialize the matrices $\begin{array}{lll}\text { DO } & 40 \quad I=1, \text { NEQ } \\ \text { DO } & 40 \\ J=1 \\ 1\end{array}$ $M(I, J)=0.0$
 *37X,'MODULUS', 10X:'RATIO', 23X,'CROSS-SECTION' 3 BX .'SECOND MOMENT',
 40 FORMAT(2I5,5E11.4)
YM $=E$ EYM (LK)
PR $=E P R($ LK $)$

$\begin{array}{rr}55 & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ 85 & \\ 80 \\ 75 & \\ 90 & \\ 90\end{array}$

75 CONT INUE

$$
\begin{aligned}
& C * * * * \\
& C * * * \\
& \text { C**** }
\end{aligned}
$$

C**** SET INITIAL CONDITIONS FOR THE ROTOR AND BASE

SUBROUTINE GYRO(RHO,AL,AIP,SP,ACG)
 2089

ㅇ

SUBROUTINE DISKI(AMASS,AIO,AI,SP,DM,DCG)

8

> SUBROUTINE DISKD(AMASS, VELTX, VELTY, VELTZ, ACCTZ,DCC,DKR) DO $100 \quad I=1,4$
DD $100 ~ J=1,4$
DCC $(I, J)=0.0$
$\operatorname{DKR}(I, J)=0.0$

[^1]

2.5 SAMPLE INPUT DATA

202

2.6 SAMPLE RESULTS

0000000000000000000

$$
\begin{aligned}
& 0+\exists 008 L \cdot 0 \\
& \text { 人LISN } 30
\end{aligned}
$$

COMPUTED NUMBER OF EQUATIONS =

$$
0.5000 E+04 \quad 10=0.1267 E+04
$$

$\mathrm{ACCTZ}=0.0$
$\mathrm{VELTZ}=0.0$
00

00
㘳先
$F X=0.0$
$F X=0.0$
$M X=0.0$
**** INITIAL CONDITIONS OF THE BASE AND ROTOR ****
$\begin{aligned} \text { ACCTX } & =0.0 \\ \text { VELTX } & =0.0\end{aligned}$
$\begin{aligned} & \\ C C Z & =0.0 \\ E L Z & =0.1183 E+00\end{aligned}$
TIME $=0.02000$
ACCX $=-0.1400 E-01 \quad A C C Y=0.2400 E-01$
$A C C T Z=0.0$
$\mathrm{ACCTY}=0.0$
\circ
$\operatorname{ACCT} X=$
$A C C Z=0.3000 E-02$
THETAY

$A C C X=-0.1400 E-01$
$\mathrm{ACCTZ}=0.0$
0
$\operatorname{ACCTX}=0$
$A C C Z=0.1900 E-01$
TIME $=0.04000$
$00+30801 \cdot O-=X 90 V$
＊＊＊＊NODAL DISPLACEMENTS＊＊＊＊
NODE

$\begin{aligned} & \text { Z } \\ & \stackrel{y}{\mid} \\ & \stackrel{\rightharpoonup}{玉} \end{aligned}$	
	0000000

 ナmmmNNT－MNm－NNmmmmm

$\begin{array}{ll}\text { TIME }= & 0.06000 \\ \text { ACCX }=-0.1010 F+00\end{array}$
$\triangle C C T Z=0.0$

0
0
$\operatorname{ACCT} Y=$
 - 3 19

 **** nodal displacements **** o0000000000popopipó
**** displacements and dynamic reaction forces on bearings ****

thetay 0000000000000000000

$$
\operatorname{ACCTZ}=0.0
$$

$$
0
$$

$$
\dot{0}
$$

$$
\operatorname{ACCTV}=
$$

TIME $=0.10000$

0
0
11
\times
0
4

$\mathrm{ACCZ}=0.2900 \mathrm{E}-01$

$\mathrm{ACCTZ}=0.0$
0
$\operatorname{ACCTY}=$ 4 Pr

$+0+329 \angle 9^{\circ} 0=X W$

$\varepsilon 0+38 \mathrm{~S} 2+0-=10$
THETAX
**** NODAL DISPLACEMENTS ****
う

$A C C X=-0.9500$

TIME $=0.12000$

$A C C T X=0.0$
$A C C Z=0.5400 E-01$

$10-30009 \cdot 0 \cdots=1007$
$A C C X=-0.1200 E+00$

**** DISPLACEMENTS AND DYNAMIC REACTION FORCES ON BEARINGS ****

$F X=0.8072 E+03$	$F Y=0.7606 E+03$
$F X=0.1553 E+04$	$F Y=0.1068 E+04$
$M X=0.1969 E+04$	$M Y=-0.1668 E+04$

8
0
0

$0^{\circ} 0=2100 \nabla$
ACOTY $=0.0$

3. AXIST USER'S MANUAL

3.1 PURPOSE

AXIST is a computer program written in Fortran to carry out the seismic analysis of an elastic rotor in the time domain. It is the third of a series of computer program packages that are developed at the School of Mechanical and Aerospace Engineering, Oklahoma State University under the sponsorship of the National Science Foundation.

This user's manual describes the way in which the data is supplied to the program. It also includes a listing of the program and a sample output.

3.2 BACKGROUND THEORY

AXIST is based on the 3-D elasticity model developed in Part I, Chapter 4 of this report. AXIST uses eight-noded isoparametric, solid of revolution elements, such as the one shown in Figure 4.4.

AXIST is a self-contained program. An external subroutine used is a commonly available IMSL routine LEQT1B to solve a set of linear, banded simultaneous equations lacking symmetry.

The user is also required to supply a subroutine called INSTR which gives the initial stresses in the rotating system at any (r, z) location.

3.3 INPUT DATA

Card \#

1

Data and Description

NNOD, NELEM, NNOEL, NFREE, NEQ, NLC, NUS, NGAS1, NGAS2 (9I5)

NNOD - Number of nodes in the model NELEM - Number of elements in the model

NNOEL - Number of nodes per element = 4 or 8
NFREE - Number of degrees of freedom per node $=4$ in our case
NEQ - Number of final set of equations
NLC - Number of lower codiagonals (excluding diagonal)
NUC - Number of upper codiagonals (excluding diagonal)
NGAS1 - Number of Gaussian points in the ξ_{1} direction
NGAS2 - Number of Gaussian points in the ξ_{2} direction

RPM, P, T, H, NEAR, NPINT (4E11.4, 2I5)
RPM - Spin speed of the rotor in revolutions per minute
P - Axial tension on the rotor, in N.
T - Axial torque on the rotor in the $+z$ direction, in $N-m$.
H - Height of the rotor axis from the base, in m.
NBEAR - Number of bearings in the system.
NPINT - Number of points at which evaluated.
$R C(I), \quad \operatorname{ZC}(I), \quad \operatorname{ID}(I, 1), \quad \operatorname{ID}(I, 2), \quad \operatorname{ID}(I, 3)$, $\operatorname{ID}(I, 4)(2 E 11.4,4 \mathrm{I} 5)$
$R C(I)$ - r coordinate of the $i^{\text {th }}$ node, in $Z C(I) \quad-\quad{ }_{z}$ coordinate of the $i^{\text {th }}$ node, in
$I D(I, J)$ - \quad Index $_{\text {. }}$ for the $j^{\text {th }}$ degree of freedom at the $i{ }^{\text {th }}$ node.
Note: This card must be repeated for each of the NNOD nodes.
$J=1$ corresponds to $\left(U_{x}\right)_{i}$
$J=2$ corresponds to $\left(U_{y}\right) i$
$J=3$ corresponds to $\left(\theta_{x}\right)_{i}$
$J=4$ corresponds to $\left(\Theta_{y}\right)_{i}$
$\operatorname{ID}(I, J) \neq 0$ to delete the $j^{\text {th }}$ degree of
freedom at $j^{\text {th }}$ node.
$\operatorname{ID}(\mathrm{I}, \mathrm{J})=0$ to keep the j th degree of
freedom at $i^{\text {th }}$ node. (Leave it blank)
(NO D(LK,J), J=1, NNOEL), EYM(LK), EPR(LK), ERHO(LK). (813, 3E11.4)
$\operatorname{NOD}(L K, J)$ - jth node of the (LK)th element
EYM(LK) - Young's modulus for the (LK) th element, N / m^{2}
$E P R(L K)$ - Poisson's ratio for the (LK)th element.
ERHO(LK) - Mass density of the (LK)th element, in $\mathrm{kg} / \mathrm{m}^{3}$
Note: This card must be repeated for each of the NELEM elements.
$\operatorname{NOBER}(I), \quad \operatorname{BK}(I, 1,1), \quad \operatorname{BK}(I, 1,2), \quad B K(I, 2,1)$, BK ($\mathrm{I}, 2,2$) ($\mathrm{I} 5,4 \mathrm{E} 11.4$)
$\operatorname{NOBER}(\mathrm{I})$ - Node number at which the $i^{\text {th }}$ bearing is located.
$B K(I, J, K)$ - The ($j, k)$ th coefficient in the stiffness matrix for the lubricants in $i^{\text {th }}$ bearing.
$B C(I, J, K)$ - The ($j, k)$ th coefficient in the damping matrix for the lubricants in fth bearing.

Note: The 5 th and 6 th cards must be repeated for each of the NBEAR bearings. If NEAR $=0$, skip these cards.
$\operatorname{NELP}(\mathrm{I}), \mathrm{XI} 1(\mathrm{I}), \mathrm{XI} 2(\mathrm{I})(\mathrm{I} 5,2 \mathrm{~F} 10.5)$
NELP(I) - Element number in which the ${ }^{\text {th }}$ internal stress point is located.
XII (I) - Gaussian coordinate along ${ }_{\xi}$ th stress point.
XI2(I) - Gaussian coordinate along ξ_{2} direction for the $i^{\text {th }}$
stress point.

TIME, ACCX, ACCY, ACCZ, VELX, VELY, VELZ (7F10.5)

These are the initial conditions for the base translation. Set TIME $=0.0$. ACCX, ACCY, ACCZ are the initial accelerations of point b in the x_{b}, y_{b} and z_{b} directions, respectively,
$\mathrm{m} / \mathrm{s}^{2}$. VELX, VELY, VELZ are the initial velocitiees of point b in the x_{b}, y_{b}, and z_{b} directions, respectively, in m / s.

ACCTX, ACCTY, ACCTZ, VELTX, VELTY, VELTZ (6F10.5)

These are the initial conditions for the base rotation.
ACCTX, ACCTY, ACCTZ are the initial angular accelerations of the base about the x_{b}, y_{b} and z_{b} axes, respectiely, in rads . VELTX, VELTY, VELTX are the initial angular velocities of the base about the x_{b}, y_{b} and z_{b} axes, respectively, in rads.

TIME, AX, FY, AZ, TX, TY, TX (7F10.5)
TIME - Time at which the acceleration data is specified, in seconds.
$A X, A Y, A Z$ are the linear accelerations of the base reference point b in the x_{b}, y_{b}, and z_{b} directions, respectiely, in

TX, TY, TZ are the angular accelerations of the base about the x_{b}, y_{b} and z_{b} axes, respectively, in $\mathrm{rad} / \mathrm{s}^{2}$.
Note: Card \#10 must be repeated for all the time values at which the base acceleration data is given. The program is terminated by supplying a blank card in this place. The value of TIME must be supplied in the increasing sequence and the program stops whenever it reads the value of TIME as zero.

3.4 LISTING OF AXIST

$\operatorname{DO} 10 I=1, \operatorname{NNOD}$
$\operatorname{READ}(5,120) \operatorname{RC}(I), Z C(I), \operatorname{ID}(I, 1), \operatorname{ID}(I, 2), \operatorname{ID}(I, 3), I D(I, 4)$

225

DSHF $(7,2)=-0.5 * U P \times 1 * U M X 1$

FORMAT(: **** ERROR, ZERD OR NEGATIVE JACOBIAN FCR ELEMENT \#'. I5)
END
 (1,11)=DR

$B(2, J 4)=-R * D Z$ | 3 |
| :---: |
| $\frac{3}{5}$ |
| $\frac{11}{5}$ |
| $\frac{4}{3}$ | $\stackrel{\square}{\circ}$

> DO $100 \quad I=1,5$ D $(\mathrm{I}, \mathrm{J})=0.0$, NNOEL $J 2=\cdot J 1+1$
> $\operatorname{DR}=A U(1,1) * \operatorname{DSHF}(U, 1)+\operatorname{AU}(1,2) * \operatorname{DSHF}(U, 2)$

 к

00007210

235

(5)

O

\circ
0
0
1

SUBROUTINE INSTR(R, $Z, S P, P, T, S R R, S P P, S Z Z, T R P, T F Z, T Z R) ~$
$C^{* * * * *}$ THIS SUBROUTINE MUST BE SUPPLIED BY THE USER
END

3.5 SAMPLE INPUT DATA

3.6 SAMPLE RESULTS

240

$$
\begin{aligned}
& \text { connectivity matrix } \\
& \text { の }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { in } \\
\text { w } \\
\text { 号 } \\
\text { Z }
\end{array}
\end{aligned}
$$

COMPUTED NUMBER OF EQUATIONS = 72

$$
88
$$

$$
\begin{aligned}
& \text { THETAY } \\
& 0.0000 \mathrm{E} \text { OD } \\
& 0.0000 \mathrm{E} \text { CO } \\
& 0.0000 \mathrm{~F} \text { : } 00
\end{aligned}
$$

$$
\begin{aligned}
& 0.0000 \mathrm{E} .00 \\
& 0.0000 \mathrm{E} \text { O }
\end{aligned}
$$

$$
\begin{aligned}
& 0.00 \text { OE OO } \\
& 0.0000 \text { O OC }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ACCTY }=0.0000 E 00 \\
& \text { VELTY }=0.0000 E 00
\end{aligned}
$$

$$
\begin{array}{ll}
8 & 8 \\
0 & 8 \\
0 & \ddot{0} \\
8 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& 8 \\
& \stackrel{8}{0} \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 00 ~ 30000 \cdot 0 \\
& 00 ~ \\
& 00000 \cdot 0
\end{aligned}
$$

$$
\begin{array}{ll}
0.0000 \mathrm{E} & 00 \\
0.00 G O E & 00
\end{array}
$$

246

Accry $=0.0000500$

ACCTX $=0$. OOCOE 00
 0. $1711 \mathrm{E}-05$ $0.8995 \mathrm{E}-06$ $90-\exists 0 \angle \varepsilon .6^{\circ} 0$ 0.9633E-06 0.1164E-07 0.1190E-07 -0.8800E-06 -0.9177E-06 $-0.9432 E-06$ -0.1685E-05 30-38691•0--0.1955E-05 so-3!soz'0-

THETAX	THETAY
$-0.4767 E-05$	$0.1966 E-0 E$
$-0.4983 E-05$	$0.2063 E-05$
$-0.574 E E-05$	$0.2393 E-05$
$-0.4119 E-05$	$0.1698 E-05$
$-0.4151 E-05$	$0.1711 E-05$
$-0.2185 E-05$	$0.8995 E-06$
$-0.2270 E-05$	$0.9370 E-06$
$-0.2332 E-05$	$0.9633 E-06$
$-0.1434 E-07$	$0.1164 E-07$
$-0.4486 E-07$	$0.1190 E-07$
$0.2157 E-05$	$-0.8800 E-06$
$0.2243 E-05$	$-0.9177 E-06$
$0.2305 E-05$	$-0.9432 E-06$
$0.4091 E-05$	$-0.1685 E-05$
$0.4123 E-05$	$-0.1698 E-05$
$0.4739 E-05$	$-0.1955 E-05$
$0.4956 E-05$	$-0.2051 E-05$
$0.5720 E-05$	$-0.2388 E-05$

\vdots
\vdots
\vdots 0. 1178E-05 -. 1032E--05
 0.7919E-05 0.8073E-05

\pm
0
\vdots
\vdots
0

 $0.8003 \mathrm{E}-05$ 18
0
1
ω
$\stackrel{n}{n}$
∞
0
0

 0
0
$\stackrel{1}{O}$
$\stackrel{1}{0}$
0
0

0 $\begin{array}{cc}\text { **** NODAL } & \text { DISPLACEMENTS } \\ \text { NODE } \# & \text { UX }\end{array}$ $0.1125 E-05$ 0. 1062E-05 $0.9985 \mathrm{E}-06$ $0.3901 \mathrm{E}-05$ $0.3969 \mathrm{E}-05$ 0.5988E-05 \begin{tabular}{l}
n

0

\multirow{2}{0}{}

0

0

0

0

0

 $0.5872 \mathrm{E}-\mathrm{O5}$

15

0

1

4

\hline 10

0

0

0

0
\end{tabular} $0.6686 \mathrm{E}-05$ $0.6021 \mathrm{E}-05$ 10

0
1
0
0
0
0
0

0 | n |
| :--- |
| |
| |
| |

 $0.4026 \mathrm{E}-05$

 - N
 \bullet ∞ σ 으 N $\stackrel{m}{-}$ \pm 12 6 ₹ $\stackrel{\infty}{\sim}$

THETAY
$0.5938 E-05$
$0.6180 E-05$
$0.7036 E-C 5$
$0.5199 E-05$
$0.5256 E-05$
$0.2877 E-05$
$0.2965 E-05$
$0.3085 E-05$
$0.3829 E-07$
$0.3955 E-07$
$-0.2824 E-05$
$-0.2909 E-05$
$-0.3025 E-05$
$-0.5176 E-05$
$-0.5235 E-05$
$-0.5931 E-05$
$-0.6172 E-05$
$-0.7033 E-05$

$$
\begin{aligned}
& \text { 吕 } \\
& \text { 品 } \\
& \stackrel{2}{2} \\
& \dot{0}
\end{aligned}
$$

TPZ

¢ ¢ ¢ \% \%			
			-
$\stackrel{8}{\circ}$	-	-	
$\begin{aligned} & \stackrel{w}{N} \\ & \stackrel{y}{c \mid} \\ & \hdashline \end{aligned}$	$\begin{aligned} & \underset{\ddot{w}}{\stackrel{u}{0}} \\ & \hline \end{aligned}$		

$$
\begin{aligned}
& \begin{array}{lllllllll}
\text { BEARING \# } & 1 & \text { AT NODE \# } & 3 & U X=0.2409 E-05 & U Y=0.2644 E-O 5 & F X=0.1386 E ~ O 4 & F Y=0.3377 E \\
\text { BEARING \# } & 2 & \text { AT NODE \# } & 18 & U X=0.2590 E-O 5 & U Y=0.3059 E-O 5 & F X=0.1388 E ~ O 4 & F Y=0.339 O E
\end{array}
\end{aligned}
$$

ACCTY= O.OODOE OO
ACCTK= 0.0000 F .00

 $0.2721 \mathrm{E}-\mathrm{O}^{5}$
$0.2798 \mathrm{E}-05$

 -0. 2679E-05 -0.2756E-05 $-0.2870 E-05$
$-0.4867 E-05$
 5
0
4
5
$\stackrel{5}{5}$
$\stackrel{0}{5}$
0
0

[^0]: $\mathrm{C}^{* * * * *}$
 $\mathrm{C}^{* * * * *}$ READ AND PRINT NODAL DATA

 WRITE $(6,121)$

[^1]:

