OCTOBER 1983

NSF/CEE-83043 PE85-150241

UMEE 83R4

NONLINEAR ANALYSIS OF REINFORCED CONCRETE FRAME-SHEARWALL STRUCTURES SUBJECTED TO EARTHQUAKE MOTION

(USER'S GUIDE TO DRAIN-2D: EL7 FOR RC SHEARWALLS)

Anil Kumar James K. Wight

The University of Michigan

Department of Civil Engineering

NONLINEAR ANALYSIS OF REINFORCED CONCRETE FRAME-SHEARWALL STRUCTURES SUBJECT TO EARTHQUAKE MOTION

(USER'S GUIDE TO DRAIN-2D: EL7 FOR RC SHEARWALLS)

by

Anil Kumar Scientist, Cement Research Institute of India New Delhi-INDIA Presently Visiting Scholar at the University of Michigan

J. K. Wight Associate Professor of Civil Engineering

A Report on Research Sponsored by National Science Foundation Grant No. CEE-81-21843

Report UMEE 83R4 Department of Civil Engineering University of michigan Ann Arbor, MI 48109

October 1983

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

TABLE OF CONTENTS

	H	Page
ABSTRACT.		(i)
ACKNOWLED	XGEMENTS	.(ii)
LIST OF T	CABLES	.(i ii)
LIST OF F	FIGURES	.(iv)
CHAPTER		
1.	INTRODUCTION	. 1
2.	SHEARWALL ELEMENT EL7	. 4
	STRUCTURAL IDEALIZATION OF THE ELEMENT	. 4
	ELEMENT DEFORMATIONS	• 4
	ELEMENT STIFFNESS	• 5
	HYSTERESIS MODELS.	• 6
	FIXED FND AND INITIAL ELEMENT FORCES	. 8
	OUTPUT RESULTS	, Ģ
	INPUT DATA PREPARATION	. 11
3.	INPUT DATA AND SAMPLE RESULTS FOR A SEVEN STORY STRUCTURE	• 15
REFERENCE	ES	• 32
APPEN ELE	NDIX A-1 FORTRAN LISTING OF THE SHEARWALL	. 39
APPEN ELE	NDIX A-2 TANGENT STIFFNESS MATRIX OF THE SHEARWALL.	• 54

ABSTRACT

Element EL7 is a general purpose element for reinforced concrete shearwalls under reversed cyclic loading. The element is developed for use in the DRAIN-2D computer program for calculating the nonlinear response of multistory structures subject to earthquake motion. This report describes the essential features of the element and includes the FORTRAN listing of the subroutines. Input data and sample computer output for a seven story reinforced concrete frame-wall structure are presented to illustrate the data preparation procedure and output format for the shearwall element. A discussion on the computer results will be reported separately. Stiffness and hysteresis modelling for the shearwall element are taken from available literature, with a few modifications.

ACKNOWLEDGEMENTS

This report results from the investigation carried out by Dr. Anil Kumar during his stay at the University of Michigan on the scholarship granted by the Government of India. The investigation was a part of the research project directed by Prof. J.K. Wight and sponsored by the National Science Foundation through grant No. CEE-81-21843. The conclusions and opinions expressed in this report are solely those of the authors and do not necessarily represent the views of the sponsors.

The authors are thankful to Prof. Robert D. Hanson and Prof. Subhash C. Goel for making the earthquake records and the DRAIN-2D program available for the investigation.

Dr. Anil Kumar wishes to express his gratitude to Prof. J.K. Wight for his invaluable guidance, supervision and timely encouragement during the course of investigation. He also takes the opportunity of thanking Dr. H. C. Visvesvaraya, Director General, Cement Research Institute of India for his support and encouragement to conduct research at the University of Michigan. Thanks are also due to graduate students Vahid Sattary and Medhat Boutros for the useful discussions during the stage of writing programs.

The authors gratefully acknowledge the assistance of Mrs. Genny Singleton in typing the report and Eugene Leppanen in making the drawings.

(11)

LIST OF TABLES

	Pag
Table 1:	Data For a Seven Story Structure
Table 2:	Sample Results

LIST OF FIGURES

		Page
Fig. 1	Idealized Model of a Shearwall	•34
Fig. 2	Element Forces and Deformations	.35
Fig. 3	Axial Stiffness Hysteresis Model	•36
Fig. 4	Origin Oriented Hysteresis Model	•37
Fig. 5	Idealized Seven Story Frame-Wall Structure	•38

CHAPTER 1

INTRODUCTION

Reinforced concrete walls are often introduced into multistory structures to resist lateral loads, especially when the frame alone is insufficient for lateral resistance. Such a case occurs normally in tall structures when a frame alone does not provide an economical and structurally efficient system. The shearwalls, acting as predominant lateral resisting units, are assumed to behave linearly elastic in earthquake resistant design of frame-wall structures. This is because, until quite recently, reinforced concrete shearwalls have been thought to be brittle or semi-brittle elements. However, analytical and experimental investigations on shearwall systems (Refs. 8,10,12) and their satisfactory performance during several earthquakes have shown that walls are capable of showing ductile behavior, provided adequate care is taken in design and detailing.

A review of the available analytical investigations (Refs. 1,2,3,4) on the nonlinear seismic behavior of frame-wall structures shows that a shearwall is normally idealized as an equivalent column taking into account flexural deformation and sometimes shear deformation also. An extension of the equivalent column idealization is done by dividing the interstory shearwall element into a finite number of small segments (Ref. 2) to take into account a more general distribution of moments in shearwalls than in the case of beams and columns. The segment nodal points are condensed out of the element stiffness matrix before it is used in the analysis of the complete structure.

-1-

Experimental investigations on reinforced concrete walls (Refs. 5,8,12) have shown that bending deformation of a wall was caused primarily by the extension of the tension side boundary column. Also, a full scale test on a seven story frame-wall structure has indicated the possibility of shear yielding at the base of the wall under certain types of earthquake motions (Ref. 9). Kabeyasawa et.al.(Ref. 6) have proposed a simiplified model for a reinforced concrete wall taking into account the above features. The model was used (Ref. 6) for the psuedo-dynamic analysis of a seven story frame-wall structure. The writers of this report have developed the required subroutines for the above model to be used with the DRAIN-2D program for the nonlinear time history analysis of multistory frame-wall structures. Some additions and simplifications have been introduced by the writers in the model proposed by Kabeyasawa (Ref. 6). A general description of the shearwall model and user's guide for the preparation of data for the shearwall element are given in this report.

DRAIN - 2D COMPUTER PROGRAM

Drain-2D is a general purpose computer program for the nonlinear response of plane structures subjected to earthquake motion, and was developed by Kanaan and Powell (Ref. 7). The program concepts and features are described in Reference 7. The user's guide (Ref. 11) describes the extensions made to the original program (Ref. 7) and presents input data procedures. This report supplements References 7 and 11 and has to be used in conjunction with them. The data preparation procedure presented in this report is kept the same as in References 7 and 11 in order to provide continuity. The procedure followed for adding the new shearwall element, hereafter referred to as EL7, to the DRAIN-2D conforms to Chapter 4 of Reference 7. The four main subroutines developed

-2-

for the element EL7 are as follows. The number at the end of the subroutine names corresponds to the element type which is 7 in the present case. The other subroutines make a part of these four main subroutines.

1. INEL7: Input and initialization of element data.

- STIF7: Calculation of element tangent stiffness matrix at different time steps.
- 3. RESP7: Determination of increments of element deformations and forces in each component, determination of yield status of each component, and output of time history results. This is also referred to as "state determination phase".
- OUT7: Output of final envelop values for element deformations and forces.

The arrangement described above is used in the DRAIN-2D program and is adopted as such. The FORTRAN listing for the element EL7 is given in Appendix A-1. COMMENT statements are introduced at suitable places in the subroutines for understanding the underlying logic. The subroutine programs are developed for AMDAHL 470V/6 Computer at the University of Michigan using MTS. It is believed that these programs can easily be used on other systems.

CHAPTER 2

SHEARWALL ELEMENT EL7

STRUCTURAL IDEALIZATION OF THE ELEMENT

The shearwall member is idealized as three vertical line elements with infinitely rigid beams connecting the elements at the top and bottom floor levels (Fig. 1). The two outside truss elements represent the axial stiffness of the boundary columns. The axial stiffness varies with the sign and level of axial stress, and degraded with tensile history. The central vertical element which rigidly connects to the top rigid beam, is a one component model in which vertical, horizontal and rotational springs are concentrated at the base. The resistance of the wall section is lumped at the locations of the outer truss elements and the central vertical spring. The effect of strain gradient across the interior portion of the wall section is represented by the rotational spring in the central element, and the shear deformation is expressed by the deformation of the horizontal spring. Each of these components can have independent stiffness and hysteretic characteristics.

ELEMENT DEFORMATION

The shearwall element has six degress of freedom with reference to the global coordinate system. There are five deformations to be considered, i.e. axial extensions in the two truss members and the vertical spring, rotation of the rotational spring and extension in the horizontal spring (Fig. 2). The three deformations in the springs are sufficient to find the deformation pattern in the member. The five deformations are considered here for the sake of generality and could be useful for any future modifications.

-4-

The displacement transformation matrix relating increments of element deformation to the degrees of freedom in global coordinates, is as follows:

$$\begin{bmatrix} dv_1 \\ dv_2 \\ dv_3 \\ dv_4 \\ dv_5 \end{bmatrix} = \begin{bmatrix} 0 & -1 & B & 0 & 1 & -B \\ 0 & -1 & -B & 0 & 1 & B \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 & 0 & H \\ dr_5 \\ dr_6 \end{bmatrix} \begin{bmatrix} dr_1 \\ dr_2 \\ dr_3 \\ dr_4 \\ dr_5 \\ dr_6 \end{bmatrix}$$
(2.1)
or $\{dv\} = [a] \{dr\}$ (2.2)

The effect of large deformations is not taken into account in the above fromulation. The parameters B and H, therefore, remain constant.

ELEMENT STIFFNESS

The tangent stiffness matrix relating the element deformations and element forces is as follows:

$$\begin{bmatrix} ds_{1} \\ ds_{2} \\ ds_{3} \\ ds_{4} \\ ds_{5} \end{bmatrix} = \begin{bmatrix} (\frac{EA}{H})_{L} & 0 & 0 & 0 & 0 \\ 0 & (\frac{EA}{H})_{R} & 0 & 0 & 0 \\ 0 & 0 & K_{V} & 0 & 0 \\ 0 & 0 & 0 & K_{R} & 0 \\ 0 & 0 & 0 & 0 & K_{H} \end{bmatrix} \begin{bmatrix} dv_{1} \\ dv_{2} \\ dv_{3} \\ dv_{4} \\ dv_{5} \end{bmatrix}$$
(2.3)
or $\{ds\} = [k_{T}] \{dv\}$

where $\left(\frac{EA}{H}\right)_{L}$ and $\left(\frac{EA}{H}\right)_{R}$ represent the current axial stiffness of the left and the right hand columns respectively.

 $\ensuremath{\ensuremath{\mathsf{K}}}\xspace_V$ represents the current axial stiffness of the vertical spring

 K_{R} represents the current rotational stiffness of the rotational spring, and

 $_{\rm K_{\rm H}}$ represents the current stiffness of the horizontal spring.

-5-

The tangent stiffness in terms of nodal displacements is

 $[K_{\rm T}] = [a]^{\rm T}[k_{\rm T}][a]$ (2.5)

where [a] is given by equations 2.1 and 2.2. The matrix $[K_T]$ for the proposed shearwall element is given in Appendix A-2.

HYSTERESIS MODELS

Two types of hysteresis models are used in the formulation of the computer program. One is the axial-stiffness hysteresis model (Fig. 3) used for the axially loaded components of the shearwall element, such as the boundary columns and vertical spring. The other is the origin oriented hysteresis model (Fig. 4) used for the rotational and horizontal springs. The two models are described in the following. The boundary columns are assumed to have the same properties, that is, initial stiffness, yield load, yield displacement and strain hardening, and therefore have the same hysteretic properties. The other components possess individual hysteretic properties.

Axial Stiffness Hysteresis Model

Assuming that the member is initially loaded in compression, it follows segment ABO (computer print out code for this segment is 0) elastically as shown in Fig. 3(a). When the net axial load in the member changes sign from compression to tension, it follows segment OC (code=1) under increasing tensile load up to point C. The member yields at C and follows segment CM (code=2). If the displacement changes direction from a response point D on slope OC (code=1) the member unloads elastically along segment DE (code=3) parallel to the initial slope ABO (code=0). The member then follows a regular bilinear hysteresis rule between point D and point B. Point B is defined on the elastic slope in compression at a force equal to the tensile yield strength F_y . Point E is, therefore, determined with the condition that segment BE (code=4) is parallel to OC (code=0). If the

-6-

response point reaches the previous tensile response point D, the response point moves further on slope OC (code=1) renewing the coordinates of D and E. If the response point reaches point B along the slopes DE and EB, under continued compression, it moves on slope BA (code=0), the elastic slope in compression. Coordinates of D and E are updated when there is a change in the direction of displacement for the response point on slope BE (code=4) or OC (code=1).

After the tensile yielding occurs along segment CM (code=2), the response point moves in accordance with the regular bilinear hysteresis rule between point B and previous maximum tensile response point M (Fig. 3b). The slope of segment MG (code=9) is the same as the slope of the line joining M and O. The segment BF (code=6) has the same slope as (code=9). The slope of parallel segments MF (code=5) and BG (code=8) is obtained from the following relationship:

Slope of segment MF (or BG)

Initial slope in compression (slope of ABO) x slope of segment MG(2.6) Initial slope in tension (slope of OC)

Based on the information obtained for these slopes, the coordinates of points G and F are computed and stored.

When the response point reaches the previous maximum tensile response point M, the response point further moves on slope CM (code=2) under increasing displacement renewing the maximum response point M, point F and point G. If, under continued compression, the response point reaches point B along the slopes MF and FB, it moves on slope BA (code=7), i.e. the elastic slope in compression. A separate code number is assigned to slope BA because two slopes are originating from point B after tensile yielding has taken place. In case there is a change in the direction of

-7-

displacement from slope BF, the response point follows a slope parallel to FM (code=5) until it strikes slope GM (code=9) and then it further moves on slope GM. Similarly, the response point moved along a slope parallel to FM (code=5) after it unloads from slope GM until it strikes FB (code=6). Thereafter, the response point shall move on slope FB (code=6)

It may be noted that the codes for slopes DE and OBA are kept different even though they are parallel to each other. The same is true for slopes BE and OG, BG and MF, and GM and MF. This has been done for the sake of simplicity in the development of the algorithm for the computer program. Origin Oriented Hysteresis Model

The origin oriented hysteresis model (Fig. 4), which dissipates a small amount of hysteretic energy, is used for the rotational and horizontal springs at the base of the shearwall element. The response point moves along a line connecting the origin and the previous maximum response point (Fig. 4). Thus it will move either on slope AB (code=0) or CD (code=3). Initially, the point moves on slope AB (code=0) and then the slope BC (code=1) or slope AD (code=2) depending upon the direction of loading. When there is a change in the direction of displacement of the response point on slope AD or BC it will move elastically on CD (code=3). Once the response point reaches the previous maximum point it will follow slope BC or AD renewing the maximum response point, i.e. coordinates of points C and D. No hysteretic energy is dissipated when the response point oscillates within a region defined by the positive and negative maximum response points.

FIXED END AND INITIAL ELEMENT FORCES

The effects of static loads applied along the length of the element rather than those applied directly at nodes can be taken into account by

-8-

specifying fixed end force patterns. Such a loading contiion does not normally occur in shearwalls. However, this provision has also been incorporated for shearwalls for the sake of consistency with other available DRAIN-2D elements.

Elements may be stressed under static load, but sometimes it may be incorrect or inconvenient to determine the element forces by applying static loads to the structure. To allow for such cases, provision is made for intial forces to be specified in the element. These forces will typically be the forces in the elements under static loading as calculated by a separate analysis. The gravity loads, transferred by the transverse beams directly to the boundary columns of the shearwall, can be covered by this provision. For consistency, these forces should be in equilibrium with the static load producing them, although this is not essential. The computer program, however, does not make any corrections for any equilibrium unbalance resulting from the specification of initial forces.

To satisfy the requirement stipulated in DRAIN-2D program (7) that the structure remains elastic under static loading, the initial element forces should be less than the yield strength of the element. If desired, additional static loads can be applied together with initial forces. The element forces will then be the sum of initial forces and those due to additional static loads.

OUTPUT RESULTS

The following results are printed for the static loading conditions (t=0) and at each output time if a time history is asked for. 1. Yield Code: 0 to 9 for boundary columns and central vertical spring as explained in Fig. 3.

-9-

- : 0 to 3 for rotational and horizontal springs as explained in Fig. 4.
- (a) Axial force in boundary columns and central vertical spring (tension positive).
 - (b) Moment in rotational spring (anticlockwise moment positive).
 - (c) Force in horizontal spring (tension positive).
- 3. (a) Axial extension in boundary columns and central vertical spring.
 - (b) Rotation in rotational spring (anticlockwise rotation positive)
 - (c) Extension in horizontal spring.

The maximum positive and negative values of axial forces and extensions in boundary columns and the central vertical spring, moment and rotation in the rotational spring, and force and extension in horizontal spring are printed at the specified time intervals.

INPUT DATA PREPARATION

- E7. SHEARWALL ELEMENTS
- E7(a) CONTROL INFORMATION FOR GROUP (1015)-ONE CARD

Columns 5 Punch 7 (to indicate that group consists of shearwall elements)

- 6-10 Number of elements in group
- 11-15 Number of different axial stiffness types for boundary columns and vertical spring
- 16-20 Number of different rotational stiffness types for rotational spring
- 21-25 Number of different horizontal stiffness types for horizontal springs
- 26-30 Number of different yield patterns for boundary columns and vertical spring
- 31-35 Number of different yield patterns for rotational spring
- 36-40 Number of different yield patterns for horizontal spring
- 41-45 Number of different fixed end force patterns
- 46-50 Number of different initial element force patterns
- E7(b) AXIAL STIFFNESS TYPES (15,3F10.0)-ONE CARD FOR EACH STIFFNESS TYPE
 - Columns 1-5 Axial stiffness type number, in sequence beginning with 1
 - 6-15 Initial stiffness in compression
 - 16-25 Initial stiffness in tension
 - 26-35 Strain hardening in tension, as a proportion of the initial stiffness in tension

-11-

- E7(c) STIFFNESS TYPES FOR ROTATIONAL SPRINGS (15,E15.6,F10.0)-ONE CARD FOR EACH STIFFNESS TYPE
 - Columns 1-5 Rotational stiffness type number, in sequence beginning with 1
 - 6-20 Initial stiffness
 - 21-20 Strain hardening stiffness, as a proportion of the initial stiffness
- E7(d) STIFFNESS TYPES FOR HORIZONTAL SPRINGS (15,2F10.0)-ONE CARD FOR EACH STIFFNESS TYPE
 - Columns 1-5 Horizontal stiffness type number, in sequence beginning with 1
 - 6-15 Initial stiffness
 - 16-25 Strain hardening stiffness, as a ratio of the initial stiffness
- E7(e) YIELD DATA FOR AXIAL COMPONENTS (15,3F10.0)-ONE CARD FOR FACH TYPE
 - Columns 1-5 Yield data number, in sequence beginning with 1
 - 6-15 Tensile yield load
 - 16-25 Tensile yield displacement
 - 26-35 Compression displacement corresponding to tensile yield load
- E7(f) YIELD DATA FOR ROTATIONAL SPRINGS (15,2F10.0)-ONE CARD FOR EACH TYPE

Columns 1-5 Yield data number, in sequence beginning with 1.

- 6-15 Moment in the spring at yield
- 16-25 Rotation in the spring at yield
- E7(g) YIELD DATA FOR HORIZONTAL SPRING (15,2F10.0)-ONE CARD FOR EACH TYPE
 - Columns 1-5 Yield data number, in sequence beginning with 1
 - 6-15 Force at yield
 - 16-25 Displacement at yield

-12-

E7(h) FIXED END FORCE PAITERNS (15,5F10.0)-ONE CARD FOR FACH PAITERN Omit if there are no fixed end forces

Columns 1-5 Pattern number, in sequence beginning with 1

6-15 Axial force in left boundary column

16-25 Axial force in right boundary column

26-35 Axial force in vertical spring

36-45 Moment in rotational spring

- 46-55 Force in horizontal spring
- E7(i) INITIAL ELEMENT FORCE PATTERNS (15,5F10.0)-ONE CARD FOR EACH INITIAL FORCE PATTERN

Omit if there are no initial forces

Columns 1-5 Pattern number, in sequence beginning with 1

- 6-15 Axial force in left boundary column
- 16-25 Axial force in right boundary column
- 26-35 Axial force in vertical spring
- 36-45 Moment in rotational spring
- 46-55 Force in horizontal spring
- E7(j) ELEMENT GENERATION COMMANDS (414, F6.0, 1113, 2F5.0, 15, F5.0)-ONE CARD FOR EACH GENERATION COMMAND

Elements must be specified in increasing numerical order. Cards for the first and last elements must be included.

- Columns 1-4 Element number, or number of first element in a sequentially numbered series of elements to be generated by this command
 - 5-8 Node number at element end i
 - 9-12 Node number at element end j
 - 13-16 Node number increment for element generation. If zero or blank, assumed to be equal to 1

-13-

- 23-25 Stiffness type number for boundary columns
- 26-28 Stiffness type number for vertical spring
- 29-31 Stiffness type number for rotational spring
- 32-34 Stiffness type number for horizontal spring
- 35-37 Yield data number for boundary columns
- 38-40 Yield data number for vertical spring
- 41-43 Yield data number for rotational spring
- 44-46 Yield data number for horizontal spring
- 47-49 Time history output Code. If a time history of element results is not required for the element covered by the command, punch zero or leave blank. If a time history print out at the interval specified earlier (Ref. 11) is required, punch 1.
- 50-52 Fixed end force pattern number for static dead loads on element. Leave blank or punch zero if there are no dead loads.
- 53-55 Fixed end force pattern number for static live loads on the element. Leave blank or punch zero if there are no live loads.
- 55-60 Scale Factor to be applied to fixed end forces due to static dead loads.
- 61-65 Scale factor to be applied to fixed end forces due to static live loads.
- 66-70 Initial force pattern number. Leave blank or punch zero if there are no initial forces.
- 71-75 Scale factor to be applied to initial element forces.

-14-

CHAPTER THREE

INPUT DATA AND SAMPLE RESULTS FOR A SEVEN STORY STRUCTURE

The two dimensional frame wall structure shown in Fig. 5 is used to demonstrate the inclusion of shearwall element EL7 in the DRAIN-2D program. The data given in Table 1 is prepared for the time history response analysis of the structure for the first ten seconds of EL CENTRO 1940 N-S with maximum acceleration magnified to 0.42g. The sample results (Table 2) from the computer output give the yield code, force and deformation in each component of the shearwall in each story at the end of 10.08 seconds. The envelopes of deformations and forces in all the elements of the structure, at the end of 10.1 seconds of the chosen earthquake motion, are also given. A detailed analysis and discussion of the computer results will be reported separately.

The structure shown in Fig. 5 represents a seven story frame wall structure analyzed in References 1 and 6. The gravity load, nodal masses, damping coefficients, stiffness and yield properties of columns and beams are taken as such from Reference 1. The properties of the shearwall element are calculated separately according to the requirements of the proposed model of the shearwall. The material and cross-sectional properties (dimensions and area of reinforcement) are taken from References 6 and 13. The horizontal members indicated by dashed lines (Fig. 5) are the pin-ended link beams (i.e. beams having zero bending stiffness) transferring horizontal forces, but no moments. A zero value of bending stiffness indicates error in the execution of beam column element (EL2) subroutines. Therefore, the moment of inertia for these beams have been assigned a value of 0.25 which is negligible as compared to the stiffness of other members. The input cards for the structure shown in Fig. 5 are listed in Table 1 and are identified by the corresponding sections in the User's Guide (Ref. 11). Both columns and beams are represented by element EL2 in group 1 and the shearwall elements are represented by element EL7 in group 2. Node numbers are shown near the nodes and the element numbers are shown in circles near the middle of the members. The units of force (load) and length are taken as kilograms and centimeters respectively for the preparation of data. TABLE 1 DATA FOR A SEVEN STORY STRUCTURE

START	RESPONSE	OF SEVEN	STORY	FRAME 2	E-WALL O	STRUC	TURE		.A BL
1	0.0	0.0				· · ·	· · · · · · · · · · · · · · · · · · ·		
2	600.0	0.0							
3	1100.0	0.0							
. 4	1700.0	0.0							
с С	2300.0	0.0							
7	2000.0	0.0							
8	4000.0	375 0							
9	600.0	375.0							
10	1100.0	375.0							
11	1700.0	375.0							5.0
12	2300.0	375.0							_B2
° 13	3150.0	375.0							
14	4000.0	375.0							
50	0.0	2175.0							
51	600.0	2175.0							
52	1100.0	2175.0							
53	1700.0	2175.0							
54	2300.0	2175.0							
55	3150.0	2175.0							
56	4000.0	2175.0							
8	50 5	7							
10	ວະ ວ ຮາ ຮ	, , , , , , , , , , , , , , , , , , ,							
11	52 5	7							BŜ
12	54 5	7							
13	55 5	7							
14	56 5	7							
1	1 1	1 7	1					<u> </u>	B4
1	7 8	9 10	11	12	13	14	****		
1	7 15	16 17	18	19	20	21			
5	7.22	23 24	25	26	27	28			RE
1	7 29	30 31	32	33	34	35			12.2
1	7 36	37 38	39	40	41	42			
. 1	7 43	44 45	46	47	48	49			
	7 50	51 52	53	54	55	56	001.0		· ·····
1	0.0	14400.0			12	1 7	981.0		
0	14490.0	14490.0).0	43	7	901.0		
10	26565.0	26565 0			45	7	981.0 981 ()		
11	14490 0	14490 0	Č	0.0	46	7	981.0		
12	14490.0	14490.0	Č	0.0	47	7	981.0		né
13	53130.0	53130.0	Ċ).0	48	7	981.0		Bo
14	14490.0	14490.0	Ċ	0.0	49	7	981.0		
50	14250.0	14250.0	Ċ	0.0	53	3	981.0		
51	26125.0	26125.0	C).0	52	1	981.0		
54	14250.0	14250.0	().0	56	2	931.0		
55	52250.0	52250.0	().0	·····		981.0		
1	7 505	0.02	1300).0	1	.0	1.0	1.0	200.0 Cl
8	0.0	-8728.6		0.0	50	7		· _ · · · · · · · · · · · · · · · · · ·	
11	0.0	-8728.6	C	2.0	53	7			
9	0.0	-15984.0	Ç	0.0	51	7			
10	0.0	- 15984.0	0	0.0	52	7			C2
12	0.0	-4849.2	0	.0	54	7			
14	0.0	-4849.2			ວບ ຄະ	1			~
13	0.0	-0018.4 1 ELCEN	1700 10	140 51	35 257 T	I CEC	DNDS NAY ACC	=0 420	·····
0.0	0.0 0.0	1 0.011 0	0.04 0.	.001	0.10	0.016	0,16-0,000	0.22 0.	019

-17-

										•				
0.26	0.000) o.:	29 0.	.006	0.33	-0.001	0.3	7 0.0	20	0.43-	0.024	0.47	0.008	
0.58	0:043	0.0	52 0.	.009	0.66	0.014	0.7	2-0.0	09	0.72-	0.026	0.79	-0.039	
0.79	-0.057	0.1	87-0.	.023	0.87	-0.034	0.9	4-0.0	40	0.94-	0.060	1.00	-0.079	
1.07	-0.067	1.0	07-0.	038	1.09	-0.043	1.1	7 0.0	90	1.32~	0.170	1.38	-0.083	
1.41	-0.083	1.4	44-0.	095	1.48	-0.689	1.5	1-0.1	03	1.54-	0.128	1.63	0.114	
1.70	0.236	: 1.8	30 O.	143	1.85	0.178	1.9	2-0.2	61	2.01-	0.319	2.21	0.295	
2.27	0.263	2.:	32-0.	298	2.39	0.005	2.49	5 0.2	87	2.52-0	0.047	2.57	0.152	
2.65	0.208	2.	71 0.	109	2.77	-0.033	2.8	9 0.1	03	2.98-	0.030	3.07	0.052	
3.13	-0.155	3.:	21 0.	007	3.25	-0.206	3.3	9 0.1	93	3.42-0	0.094	3.53	0.171	
3.60	-0.036	3.6	57 0.	037	3.74	-0.074	3.8	3 0.0	31	3.90-	0.183	4.01	0.023	
4 06	-0.044			022	1 22	-0 197	4 3	1-0 1	76	1 42 1	5 146	A A7	-0.005	
6 62	0.044	- A C	57-0	205	A 76	0.061	4.0	3-0.2	73	1.92	A 178	5 04	0.000	
	0,23,	· ·		007	6 02	A 125	6.2/		20	5 00 1 5 00 1	A 400	5.04	.0.024	C3
5.11	0.210		= - 0	100	5.23	0.123	5.00		4.9 0 C	0.00 V	0.103	5.00 5.00	-0.024	
5,45 E 04	-0.022		31 = 0.	057	5.01	-0.014	5.83 E 0/		30	0.11-9 C 66 /	0.024	5.00 C A	0.005	
5.61			$\frac{1}{2}$	001	5.00	-0.033	0.0.		46	0.90	0.011	0.01	0.024	
6.09	-0.067	6.	13 0.	001	6.17	0.049	6.15	9 0.0	15	0.19-0	0.020	6.23	~0.038	
6.28	0.021	6	33-0.	006	6.37	-0.060	6.38	3-0.0	16	6.41	0.020	6.46	-0.018	
6.48	-0.003	6.	52 0.	004	6.53	-0.004	6.50	5-0.0	10	6.58-	0.002	6.60	-0.017	
6.64	0.037	6.6	59 0.	046	6.71	0.039	6.7:	з 0.0	01	6.77.	0.029	6.77	0.002	
6.81	0.011	6.8	35 0.	002	6.91	0.009	6.99	9-0.1	00	7.07	0.036	7.12	0.008	
7.14	-0.028	7.	15 0.	003	7.17	0.027	7.23	3 0.0	58	7.30-0	0.049	7.37	0.030	
7.41	0.011	7.4	3 0.	019	7.46	-0.025	7.5:	3-0.0	35	7.57 (0.004	7.60	-0.063	
7.64	-0.028	7.6	57-0.	020	7.69	0,007	7.79	5-0.0	05	7.79-0	0.060	7.84	-0.036	
7.88	-0.072	7.9	96-0.	014	7.99	- 0.0 06	8.00	0.0	22	8.07 (0.047	8.13	0.026	
8.13	-0.034	8.2	20-0.	013	8.22	0.066	8.28	з О.О	31	8.33 (0.025	8.40	0.035	
8.46	-0.037	8.5	53-0.	034	8.60	-0,010	8.64	4-0.0	26	8.73 (0.153	8.82	-0.003	
8.86	0.023	8.8	88-0.	026	8.91	- 0 .002	8.96	5-0.1	85	9.05	0.126	9.09	0.032	
9.12	0.096	9.	15 0.	125	9.25	-0.033	9.29	9-0.0	45	9.43	0.130	9.44	-0.166	
9.51	0.042	9.6	63-0.	094	9.70	0.082	9.8	1-0.0	88	9.90 (0.006	9.94	-0.001	
9,99	0.059	10.0	<u>)2-Q.</u>	071	10.05	-0.045	10.05	5~0.0	22 1	0.11	0.009			
	1.49	0.00	094			·				· · · · · · · · · · · · · · · · · · ·				<u> </u>
4	4	50	20	26	42	EO								a
	84	5	- 23	4		0				·· <u>·····</u> ·····				
Ĩ	24562	50	ັດ	000	50	non õ	2850:	35 0	4 0	4 0	20			
2	24562	5.0	ŏ	900	29	500.0	1425	17.5	4.0	4.0	2.0			
3	24562	5.0	õ	627	30		22568	30.7	4.0	4 0	2.0			
4	24562	5.0	ŏ	627	15	500.0	11284	10.3	4.0	4.0	2.0			
5	24562	5 0	ŏ	627	40	200.0	1120	25	4 0		2.0			
1		<u> </u>	v	~ ~ ~						- a ()	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
•				() ()		00		0 0	4.0	4.0	2.0			
2		0.0		50.0		0.0		0.0	4.0	4.0	₹.0			
2	25	0.0	-2	50.0		0.0		0.0	4.0	4.0	₹.0			
2 3 1	25	0.0 0.0 0.0 31832	-2	0.0 50.0 0.0	127 3	0.0 0.0 0.0		0.0 0.0 0.0	4.0	4.0	2.0			
2 3 1 2	25 1 2	0.0 0.0 31832	-2 27.3	0.0 50.0 0.0 47310	327.3	0.0 0.0 0.0		0.0 0.0 0.0	4.0	4.0	2.0	•		
2 3 1 2	25 1 2 1 1	0.0 0.0 31832 15916	-2 27.3 53.6	0.0 50.0 47310 23656	327.3 363.6	0.0	26 A	0.0 0.0 0.0	4.0	4.0	2.0	2.4	0.37	
2 3 1 2 3	25 1 2 1 1 3 4	0.0 0.0 31832 15916 47501	-2 27.3 53.6 18.2	0.0 50.0 47310 23656 4475(22375	327.3 363.6 018.2	0.0 0.0 0.0	36.4	0.0 0.0 0.0 2618	18.2	4.0 2.4	0.37	2.4	0.37	
2 3 1 2 3 4	25 1 2 1 1 3 4 3 2	0.0 0.0 31832 15910 47501 23750	-2 27.3 53.6 18.2 9.1	0.0 950.0 47310 23656 44750 22375	327.3 663.6 018.2 509.1	0.0 0.0 0.0 11836 5918	36.4 18.2	0.0 0.0 0.0 2618 1309	18.2 09.1	4.0 2.4 2.4	0.37	2.4	0.37	
2 3 1 2 3 4 1	25 1 2 1 1 3 4 3 2 1	0.0 0.0 31832 15916 47501 23750	-2 27.3 53.6 18.2 99.1 0.0	0.0 50.0 47310 23656 4475(22375	327.3 563.6 018.2 509.1 0.0	0.0 0.0 0.0 11836 5918	36.4 18.2 0.0	0.0 0.0 0.0 2618 1309	18.2 09.1	4.0 2.4 2.4	0.37 0.37 0.0	2.4 2.4	0.37	1.0
231234122	25 1 2 1 1 3 4 3 2 1	0.0 0.0 31832 15916 47501 23750	-2 27.3 33.6 18.2 9.1 0.0 0.0	0.0 50.0 47310 23656 44750 22375	327.3 663.6 018.2 509.1 0.0 978.0	0.0 0.0 0.0 11836 5918 10328	36.4 18.2 0.0 00.0	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0	4.0 2.4 2.4 8:	0.37 0.37 0.0 378.0	2.4 2.4 10328	0.37 0.37 0.0 00.0	1.0
2 3 1 2 3 4 1 2 3 4	25 1 2 1 1 3 4 3 2 1 1	0.0 0.0 31832 15910 47501 23750	-2 7.3 3.6 8.2 9.1 0.0 0.0	0.0 50.0 47310 23656 44750 22375 80 69	327.3 663.6 018.2 509.1 0.0 978.0 980.0	0.0 0.0 0.0 11836 5918 10328 7160	36.4 18.2 0.0 00.0	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0	4.0 2.4 2.4 8: 6:	0.37 0.37 0.0 378.0- 980.0	2.4 2.4 10328 ~7160	0.37 0.37 0.0 00.0 00.0	1.0 1.0 1.0
2 3 1 2 3 4 1 2 3 4	25 1 2 1 1 3 4 3 2 1 1 1	0.0 0.0 31832 15916 47501 23750	-2 27.3 3.6 18.2 93.1 0.0 0.0 0.0	0.0 50.0 47310 23656 44750 22375 80 65	327.3 663.6 018.2 509.1 0.0 378.0 384.0	0.0 0.0 0.0 11836 5918 10328 7160 1644	36.4 18.2 0.0 00.0 00.0	0.0 0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0	4.0 2.4 2.4 8: 6!	0.37 0.37 0.0 378.0 980.0 344.0	2.4 2.4 10328 -7160 -1644	0.37 0.37 0.0 00.0 00.0	1.0 1.0 1.0 1.0 E
23123412345	25 1 2 1 1 3 4 3 2 1 1 1	0.0 0.0 31832 15910 47501 23750	-2 27.3 33.6 18.2 93.1 0.0 0.0 0.0 0.0	0.0 50.0 0.0 47310 23656 44750 22375 80 65 10	327.3 563.6 018.2 509.1 0.0 378.0 378.0 380.0 344.0	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142	36.4 18.2 0.0 00.0 00.0 00.0	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0	4.0 2.4 2.4 8: 6! 1: 1	0.37 0.37 0.0 378.0 380.0 344.0 120.0	2.4 2.4 -10328 -7160 -1644 -1142	0.37 0.37 0.0 00.0 00.0 00.0	1.0 1.0 1.0 1.0 1.0 1.0
231234123456	25 1 2 1 1 3 2 1 1 1 1	0.0 0.0 31832 15916 47501 23750	-2 27.3 33.6 18.2 99.1 0.0 0.0 0.0 0.0 0.0	0.0 50.0 0.0 47312 23656 4475(22375 83 65 11 11	327.3 63.6 018.2 609.1 0.0 378.0 380.0 344.0 120.0 156.0	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142 7401	36.4 18.2 0.0 00.0 00.0 00.0 00.0	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0	4.0 2.4 2.4 8: 6: 1: 1: 5:	0.37 0.37 0.0 378.0 380.0 344.0 120.0 156.0	2.4 2.4 -7160 -1644 -1142 -7401	0.37 0.37 0.0 00.0 00.0 00.0 00.0 00.0	1.0 1.0 1.0 1.0 1.0 1.0
2312341234567	25 1 2 1 1 3 2 1 1 1 1 1 1	0.0 0.0 31832 15916 47501 23750	-2 27.3 3.6 8.2 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 50.0 0.0 47312 23656 4475(22375 22375 80 65 11 11 54	327.3 63.6 018.2 509.1 0.0 378.0 380.0 344.0 120.0 156.0 346.0	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142 7401 1146	36.4 18.2 0.0 00.0 00.0 00.0 00.0 00.0 00.0	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.0 2.4 2.4 8: 6: 1: 1: 5:	0.37 0.37 0.0 378.0 378.0 344.0 120.0 156.0 346.0	2.4 2.4 10328 -7160 -1644 -1142 -7401 -1146	0.37 0.37 0.0 00.0 00.0 00.0 00.0 00.0 0	1.0 1.0 1.0 1.0 1.0 1.0
23123412345671	25 1 2 1 1 3 2 1 1 1 1 1 1	0.0 0.0 31832 15910 47501 23750	-2 27.3 3.6 8.2 9.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7	0.0 550.0 47312 23656 44756 22375 22375 83 65 12 11 54	327.3 563.6 018.2 509.1 0.0 378.0 380.0 344.0 120.0 156.0 346.0	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142 7401 1146 3	36.4 18.2 0.0 00.0 00.0 00.0 00.0 00.0 00.0	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.0 2.4 2.4 8: 6: 1: 1 5: 4	0.37 0.37 0.0 378.0 380.0 344.0 120.0 156.0 346.0	2.4 2.4 -7160 -1644 -1142 -7401 -1146 1.0	0.37 0.37 0.0 00.0 00.0 00.0 00.0 00.0 0	1.0 1.0 1.0 1.0 1.0 1.0
2 3 1 2 3 4 1 2 3 4 5 6 7 1 8	25 1 2 1 1 3 2 1 1 1 1 1 1 1 2	0.0 0.0 31832 15916 47501 23750 8 9	-2 7.3 3.6 8.2 93.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 7	0.0 50.0 47312 23656 4475(22375 22375 80 65 12 11 54 54	327.3 563.6 509.1 0.0 378.0 344.0 120.0 156.0 346.0 1 1	0.0 0.0 11836 5918 10328 7160 1644 1142 7401 1146 3 3	36.4 18.2 0.0 00.0 00.0 00.0 00.0 00.0 00.0 00	0.0 0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1	4.0 2.4 2.4 2.4 8: 6: 1: 1: 5: 1: 5: 1: 1: 1: 1:	0.37 0.37 0.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 378.0 379.0 374.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.4 2.4 10328 -7160 -1644 -1142 -7401 -1146 1.0 1.0	0.37 0.37 0.0 00.0 00.0 00.0 00.0 00.0 0	1.0 1.0 1.0 1.0 1.0 1.0
231234123456718 15	25 1 2 1 1 3 2 1 1 1 1 1 1 2 3	0.0 0.0 31832 15910 47501 23750 8 9	-2 7.3 3.6 9.1 0.0 0.0 0.0 0.0 0.0 0.0 7 7 7	0.0 550.0 47312 23656 4475(22375 22375 80 65 12 11 54 54	327.3 663.6 018.2 509.1 0.0 378.0 384.0 120.0 344.0 120.0 346.0 1 1 1	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142 7401 1146 3 3 3	36.4 18.2 0.0 00.0 00.0 00.0 00.0 00.0 00.0 3 3	0.0 0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1	4.0 2.4 2.4 2.4 5 15 15 1 1 1	0.37 0.37 0.0 378.0 378.0 344.0 156.0 346.0 1 1	2.4 2.4 10328 -7160 -1644 -1142 -7401 -1146 1.0 1.0	0.37 0.37 0.0 00.0 00.0 00.0 00.0 00.0 0	1.0 1.0 1.0 1.0 1.0 1.0
231234123456718 1522	25 1 2 1 3 2 1 3 2 1 1 1 1 1 1 1 2 3 4	0.0 0.0 31832 15916 47501 23750 8 9 10 11	-2 7.3 3.6 9.1 0.0 0.0 0.0 0.0 0.0 0.0 7 7 7 7	0.0 550.0 47310 23656 44750 22375 22375 80 65 10 11 11 1 1	327.3 663.6 018.2 509.1 0.0 378.0 384.0 120.0 344.0 156.0 146.0 1 1 1	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142 7401 1146 3 3 3 3 3	36.4 18.2 0.0 00.0 00.0 00.0 00.0 00.0 00.0 3 3 3 3	0.0 0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0 0.0 0.0 1 1 1	4.0 2.4 2.4 8: 69 1: 1 5 1 1 1 1 1 1	0.37 0.37 0.0 378.0 378.0 344.0 120.0 156.0 346.0 1 1 1	2.4 2.4 -7160 -1644 -1140 -7401 -1146 1.0 1.0 1.0	0.37 0.37 0.0 00.0 00.0 00.0 00.0 00.0 0	1.0 1.0 1.0 1.0 1.0 1.0
2 3 1 2 3 4 1 2 3 4 5 6 7 1 8 5 2 9	25 1 2 1 3 2 1 3 3 1 1 1 1 1 1 1 2 3 4 5	0.0 0.0 31832 15916 47501 23750 23750 8 9 10 11 12	-2 7.3 3.6 9.1 0.0 0.0 0.0 0.0 0.0 0.0 7 7 7 7 7	0.0 550.0 0.0 47312 23656 4475(22375 22375 83 65 12 11 54 54 11 1 1	327.3 663.6 018.2 509.1 0.0 378.0 384.0 120.0 344.0 156.0 346.0 1 1 1 1	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142 7401 1146 3 3 3 3 4	36.4 18.2 0.0 00.0 00.0 00.0 00.0 00.0 00.0 3 3 3 4	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.0 2.4 2.4 8: 6! 1: 1: 1: 1: 1: 1: 1:	0.37 0.37 0.0 378.0 380.0 344.0 120.0 156.0 346.0 1 1 1 1 1	2.4 2.4 -7160 -1644 -1142 -7401 -1146 1.0 1.0 1.0 1.0	0.37 0.37 0.0 00.0 00.0 00.0 00.0 00.0 0	1.0 1.0 1.0 1.0 1.0 1.0
2 3 1 2 3 4 1 2 3 4 5 6 7 1 8 5 2 9 6 1 2 2 9 6	25 1 2 1 3 3 1 1 1 1 1 1 1 2 3 4 5 7	0.0 0.0 31832 15916 47501 23750 23750 8 9 10 11 12 14	-2 7.3 3.6 9.1 0.0 0.0 0.0 0.0 0.0 7 7 7 7 7 7 7	0.0 550.0 47312 23656 4475(22375 22375 83 65 11 1 54 54 1 1 1 1 1 2 2	327.3 663.6 018.2 509.1 0.0 378.0 344.0 120.0 346.0 1 1 1 1 1	0.0 0.0 0.0 11836 5918 10328 7160 1644 1142 7401 1146 3 3 3 3 4 4	36.4 18.2 00.0 00.0 00.0 00.0 00.0 00.0 00.0 0	0.0 0.0 0.0 2618 1309	18.2 09.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 1 1 1	4.0 2.4 2.4 8: 6: 1: 1: 1: 1: 1: 1: 1: 1: 1:	0.37 0.37 0.037 0.037 0.0378.0- 380.0 344.0 120.0 156.0 346.0 1 1 1 1 1	2.4 2.4 -7160 -1644 -1142 -7401 -1146 1.0 1.0 1.0 1.0 1.0 1.0	0.37 0.0 00.0 00.0 00.0 00.0 00.0 00.0 0	1.0 1.0 1.0 1.0 1.0 1.0
	0.268 0.5797 1.17275 3.606215 1.80988441 1.223.306215 5.5666667.14 1.489 2.681468 1.46814 1.4683 1.4682 1.23451 4.823451 4.823451 4.823451 4.823451	$\begin{array}{c} 0.26 & 0.000\\ 0.58 & 0.043\\ 0.79-0.057\\ 1.07-0.067\\ 1.41-0.083\\ 1.70 & 0.236\\ 2.27 & 0.263\\ 2.65 & 0.208\\ 3.13-0.155\\ 3.60-0.036\\ 4.06-0.044\\ 4.62 & 0.257\\ 5.11 & 0.218\\ 5.45 & 0.172\\ 5.81-0.023\\ 6.09-0.067\\ 6.28 & 0.021\\ 6.48-0.003\\ 6.64 & 0.037\\ 6.28 & 0.021\\ 6.48-0.003\\ 6.64 & 0.037\\ 6.81 & 0.011\\ 7.14-0.028\\ 7.41 & 0.011\\ 7.14-0.028\\ 7.41 & 0.011\\ 7.14-0.028\\ 7.88-0.072\\ 8.13-0.034\\ 8.46-0.037\\ 8.86 & 0.023\\ 9.51 & 0.042\\ 9.99 & 0.059\\ 1.49\\ 4 & 4\\ 8 & 15\\ 2 & 84\\ 1 & 24562\\ 3 & 24562\\ 4 & 24562\\ 5 & 24562\\ 4 & 24562\\ \end{array}$	$\begin{array}{c} 0.26 & 0.000 & 0.3 \\ 0.58 & 0.043 & 0.6 \\ 0.79 - 0.057 & 0.3 \\ 1.07 - 0.067 & 1.6 \\ 1.41 - 0.083 & 1.4 \\ 2.27 & 0.263 & 2.3 \\ 2.65 & 0.208 & 2.3 \\ 3.13 - 0.155 & 3.3 \\ 3.60 - 0.036 & 3.6 \\ 4.06 - 0.044 & 4.5 \\ 4.62 & 0.257 & 4.6 \\ 5.11 & 0.218 & 5.3 \\ 5.45 & 0.172 & 5.8 \\ 5.45 & 0.172 & 5.8 \\ 5.81 - 0.028 & 5.8 \\ 6.09 - 0.067 & 6.3 \\ 6.28 & 0.021 & 6.3 \\ 6.48 - 0.003 & 6.5 \\ 6.64 & 0.037 & 6.6 \\ 6.81 & 0.011 & 6.8 \\ 7.14 - 0.028 & 7.6 \\ 7.41 & 0.011 & 7.4 \\ 7.64 - 0.028 & 7.6 \\ 7.88 - 0.072 & 7.8 \\ 8.46 - 0.037 & 8.5 \\ 8.86 & 0.023 & 8.8 \\ 9.12 & 0.096 & 9.5 \\ 9.51 & 0.042 & 9.6 \\ 9.99 & 0.059 & 10.6 \\ 1.43 & 0.06 \\ 4 & 4 & 50 \\ 8 & 15 & 22 \\ 2 & 84 & 5 \\ 1 & 245625.0 \\ 3 & 245625.0 \\ 4 & 245625.0 \\ 5 & 245625.0 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

E2

-18-

50	9	10	7	3	1	1		1		1	3	5	1.051	.275		
57	10	11	7	3	1	1		1		1	2	4	1.051	.275		
64	11	12	7	5	1	1		1		1	1	1	1.0	1.0		
71	12	13	7	4	2	2		2		1	6	7	1.051	.275		
78	13	14	7	- 4	3	2		2		1	6	7	1.051	,275		
84	<u>\$5</u>	56	7	4	3	2		2		1	G	7	1.051	. 275		
7	7	4	7	2	4	7		2	0	- 7		·				
1	163750	0.00	1473750	0.0		0.02										
2	20468	75.0	184218	7.5		0.02										
3	589500	0.00	5305500	0.0		0.02										
4	736879	50.0	6631879	5.0		0.02										
ţ	0.12	25450	E 11		0.02											
2	0.15	50900	E 11 E		0.02											
3	0.14	44800	E 11		0.02											
4	0.13	38600	E 11		0.02											
5	0.1	32290	E 11		0.02											
6	0.1:	25870	E 11		0.02											
7	0.1	19340	E 11		0.02											
1	80008	0.0	0.	.02												
2	100000	0.00	Ő	.02												
1	1266	76.8	0.0	359	0	.0773										
2	1266	76.8	0.00	588	ŏ	0619										
3	14484	45.0	0.0	273	ŏ	0246										E7
4	14484	15.0	0.02	218	õ	0196										
i:	1900000	$\frac{1}{2}$	0.003	237	v											
2:	3610000		0.00	187												
	2220000		0.00	184												
	2020000		0.00	191												
	740000		0.00	178												
6	2460000		0.00	175												
7	2160000		0.00	172												
5	22200	24 0	0.4	167												
, ,	3334	24 0	0.3	324												
. 1	-576	10 0	-57610	20		0.0			0 0		0.0					
2	-493	30 0	-49380	ñ.ő		0.0			0.0		0.0					
3	-4119	50.0	-41150	õ.õ		0.0			0.0		0.0					
4	-3293	20.0	-32920	5.0	·	0.0			0.0		0.0					
5	-2469	30.0	-24691	3.0		0.0			0.0		0.0					
6	- 164	SO 0	-16460	ñ ñ		0.0			0.0		õõ					
7	-97	30.0	-817/	$\frac{1}{2}$		0.0			0.0		0.0					
·	S 11	3	500 0	1	3	1 1	1	3	1 1	1	0.0	1 0	10	4	1 08	
ว	13 20	, ,	500.0	2	<u>a</u> .	, <u>,</u>	2	4	2 2	4		1.0	1 0	2	1 00	
2	20 2	7	500.0	~ う	-, d	2 2	2	Δ	3 2	4	0 0	1.0	1 0	3	1 02	·
ă	27 2	1	500.0	2	A	1 2	5	Δ	4 2	i		1.0	1 0	4	1 08	
5	34 4	1	500.0	~ ?	-7 d	5 2	2	-7 Δ	 	÷		1.0	1 0	יז ק	1 02	
6	dt As	, 1	500 0	~ ?	4	3 2	2	Δ	7 2	÷	å å	1.0	1.0	5	1 08	
7	48 51	3	500.0	~ ?	A	7 2	2	4	7 2	•	0 0	1.0	1 0	7	1 08	
STOP	<u>,,, ,</u>		300.0		<u>·v</u>		<u> </u>			•	<u>v</u> _v		1.0			<u> </u>
								·								

.

TABLE 2 SAMPLE RESULTS

0.0 3110238

. . .

20112 201	N GROU	2	SXEAR WALL ELEGENTS,	TIAE = 10.0	80			
X O V NO	NOT NOT	200%		LEFT AXIAL Refier	RIGHT AXIAL Merses	CENTRAL AXIA SPRING	L ROTATIONAL SPRING	NORJZONTAL SPRJKG
•	•	2	YILD CODE	S	so I	0	£	m
			TOTAL FORCE/HOHENT	+0+30+55-0-	-0*43442+05	-0.18338+06	-0-3901E+07	0.61172+04
	•	e t	TOTAL DEFORMATION	0.51582-01	-0.11365+00	-0-3110E-01	-0.3307£-03	0.37232-01
*	n	07	YIELD CODE	S	دی	a	Ś	m
			TOTAL FORCE/HOMENT	-0.6471£+05	-0+36035+0-	-D.1220E+06	-0.31602+07	0.14132+05
,	Ċ		TOTAL DEFORMATION	-0.33752-01	0.6375E-03	-0.16562-01	-0.59272-03	0.45042-01
n	07		TIELD CODE	£	m	0	m	m
			TOTAL FORCE/MONENT	-0*#236E+05	-0:3057E+05	-0.12665+06	-0.22066+07	40+3177E+0
-	Ş	i	TOTAL DEFORMATION	-0.20392-01	-0.1398£-01	-0-17192-01	-0.51112-03	0.66422-02
7		オ つ	TIELD CODE	Ŧ	n	0	m	m
			TOTAL FORCE/HONENT	-0.37682+05	-0.28472+05	-0.92912+05	-0.1906£107	0,25538+05
u	i	•	TOTAL DEFORMATION	-0-13598-01	-0.1163E-03	-0.12612-01	E0-34464.0-	0-29712-01
n	1 7		TILD CODE	บ	m	0	m	0
			TOTAL FORCE/HORENT	-0-19132-05	-0-28682+05	20-39762-05	-0.17502407	-0,34785+05
	•	2	TOTAL DEFORMATION	-0.35172-52	10-31221.03	-0-31126-03	-0-20002-03	-0.14788-03
ø	-	20 37	XCOD GIZIX	4	•-	0	en	0
			TOTAL FORCE/HONEST	+0-23635+0+	-0.22101+05	-0-34172-05	-0.14512407	-0.10105-05

TOTAL DEFORMATION -0.59658-02 -0.33108-02 -0.46378-02 -0.52158-03 -0.10182-01 0 m 0 m m XOOD GIJIA \$\$ с С С

~

TOTAL FORCE/MGMENT -0.1475E+05 -0.1224E+05 -0.1280E+05 -0.1421E+07 -0.6832E+04

TOTAL DEFORMATION -0.23685-02 -0.11065-62 -0.17378-02 -0.51411-03 -0.68325-02 1806al Displacement Envelopes, Time = 10.100

KENT GATIVE TIME POSITI 0.0 0.0 0.0	TIME POSITI	0.0	ж.	-DISPLAG TINE 0.0	22552NT 2226AT1VE 0.0	1111 0.0	POSITIVE 0.0	TIME 0.0	IION Keative O.O	TIRE . 0.0
0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
			0.0						000	0 0 0 0
0.0	\sim			0.0	0.0	0.0	0.0	0.0	0.0	
0.0	c.	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	n.	0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-3.034 2.	~	76	0-0	0.0	-0.055	2.64	0.00671	2.74	-0.00807	5.92
-3.034 2.	~	76	0.0	0.0	-0.050	2.62	0.00567	2.74	-0.00556	5.52
-3.034 2.	~	76	0.0	0.0	-0.080	2.20	0.00537	2.74	-0.00583	5.92
-3.034 2.		76	0.0	0.0	-0-051	2.20	0.00780	2.74	-0.00692	5.92
-3.034 2.7	5.7	و	0.0	0.0	-0.069	2.64	0.00664	2.74	-0.00817	5.92
-3.034 2.7		9	0.0	0.0	-0.056	2.10	0.00269	2.66	-0.00331	2.22
-3.034 2.7	~	6	0.0	0.0	-0.071	2.20	0.00805	2.74	-0.00675	5.92
-4.924 2.7		7	0.0	0.0	-0-033	2.64	0.00464	2.70	-0.00599	2.24
-4.924 2.7	~	đ	0.0	0.0	-0.134	2.62	0.00433	2.70	-0.00452	2.24
-4.924 2.7	5.7	a .	0.0	0.0	-0.135	2.20	0.00410	2.70	-0.00474	2.24
-4.924 2.7	2.7	7	0.0	0.0	-0.096	2,20	0.00544	2.70	-0.00520	2.24
-4.924 2.7	2.7	3	0.0	0.0	-0.115	2.64	0.00434	2.70	-0.00597	2.24
-4.924 2.71	2.71	7	0.0	0.0	-0.076	2.10	0.00304	2.68	-0.00372	2.22
-4.924 2.71	2.7		0.0	0.0	-0.120	2.20	0.00539	2.70	-0.00492	2.24
-6.405 2.7	2.7	2	0.0	0.0	-0.124	2.64	0.00361	2.64	-0.00525	2.24
-6.405 2.7	2.7	5	0.0	0.0	-0.179	2,62	0.00343	2.64	-0.00361	2.24
-6.405 2.7	2.7	2	0.0	0.0	-0.180	2.20	0.00318	2.64	-0.00405	2.24
-6.405 2.7	2 . 7	2	0.0	0.0	-0.127	2.20	0.00450	2.64	-0,00435	2.24
-6.405 2.7	~	2	0.0	0.0	-0-154	2.62	0.60323	2.64	-0.00513	2.24
-6.405 2.	~	72	0.0	0.0	150.0-	2.12	0.00323	2.66	-0.00405	2.22
-6.405 2.	~	72	0.0	0.0	-0.161	2.20	0.00439	2.64	-0.00396	2.24
-7.9444 2.		22	0.0	0.0	-0-148	2.64	07600.0	2.64	-0.00497	2.22
-/.4444 /.		2 2	0 0 0 0		C17.0-			h9•7	-0.00200	77.7
-7.444 7.		202			-0.152	2.20	0,00406	19.0	01100.0-	· · · ·
-7.444 2.	j.	20	0.0	0.0	-0.166	2.62	0.00278	2.6%	-0.00480	2.22
-7.444 2.	~	70	0.0	0.0	-0.103	2.12	0.00341	2.64	-0.00425	2.22
-7.444 2.		70	0.0	0.0	-0.193	2.20	0.00390	2.64	-0.00365	2.22
-6.441 2.6	2.5	Ð	0.0	0.0	-0.166	2.64	0.00332	2.64	-0.00466	2.20
-8.441 2.6	3.5	8	0.0	0.0	-0.242	2.62	0.00321	2.64	-0.00330	2.20
-8.441 2.6	÷.	Ð	0.0	0.0	-0-244	2.20	0.00256	2.64	-0.00355	2.20
-8.441 2.t		80	0.0	0.0	-0.171	2.20	0.00426	2.64	-0.00371	2.20-
-8.441 2.	2	6+B	0.0	0.0	-0.209	2.62	0.00266	2.64	-0.00445	2.20
-8.441 2.	6	69.	0.0	0.0	-0.111	2.12	0.00354	2.64	-0.00421	2.22
-P.441 2	\sim	. t.B	0.0	0.0	-0.217	2.20	60400.0	2.64	-0.00322	2.20
-9.544 2.	~	66	0.0	0.0	-0.178	2.64	0.00328	2.64	-0.00443	2.20
-9.544 2.	~	66	0.0	0.0	-0.200	2.62	00100.0	2.64	-0.00334	2.20
-9.544 2.	~	б б	0.0	0.0	-0.242	2.20	0.00293	2.64	-0.60347	2.20

Reproduced from best available copy

from	e coby.
ס	- C
oduce	ieve
Repi	Dect.

							10.100		CROUP	+ NG X G 1 G	FNVELOPES,	18250275
2.10	-0,00049	2.62	C.0U314	2.20	-0.241	0.0	0.0	2.66	-10.625	2.20	12.152	Śċ
2.20	-0.00418	2.64	0.00357	2.12	-0.119	0.0	0.0	2.66	-10.625	2.20	12.152	55
2.18	-0.00342	2.62	0.00070	2.62	-0.232	0.0	0.0	2.66	-10.625	2.20	12.152	5 C
2.16	-0.00212	2.62	17500.0	2.20	-0.169	0.0	0.0	2.66	-10.625	2.20	12.152	53
2.16	-0.00245	2.62	0.00158	2.20	-0.271	0.0	0.0	2.66	-10.625	2.20	12.152	5,
2.10	-0.00187	2.62	0.00216	2.62	-0-269	0.0	0.0	2.40	-10.625	2.20	12.152	51
2.18	-0.00412	2.62	0.00170	2.64	-0.184	0.0	0.0	2.66	-10.625	2.20	12.152	50
2.20	-0.00347	2.64	C. UU 3B4	2.20	-0.233	0.0	0.0	2.66	545.6-	2.22 .	10.064	63
2.20	-0.00420	2.64	0.00358	2.12	-0.117	0.0	0.0	2.46	-9-544	2.22	10.804	9 17
2.20	-0.00434	2.64	0.00294	2.62	-0.224	0.0	0.0	2.66	-9.544	2.22	16.884	47
2.20	-0.00378	2.64	6.00393	2.20	-0.183	0.0	0.0	2.66	479-5-	2.22	10.484	4 6

BEAH COLUNN ELERENTS (TYPE 2)

ELEN No.	NODE NC.		BENDING	TIRE	SHEAK FONCE	TIME	FORCE	TINE	FL HINGE NOTATION	THE	A C C U H HOT A T I G N S
-	-	POSITIVE SVITIVE	5791036.00 -6635738.00	5.920	22872.43 -28918.70	5.920	181307.69	2.640	0.00013	5,920 0.0	0.00013
	8	POSITIVE	2736118.00	5.920	28918.70	2.760	0.0	0.0	0.0	0.0	0.0
		NFGATIVE	-4208790.00	2.760	-22672.43	5.920	-181307.69	2.640	0.0	0.0	0.0
2	8	POSITIVE	561257.81	2.260	5635.31	2.200	153129.31	2.640	0.0	0.0	0.0
		NECATIVE	-1936843.00	1.940	-14574.49	0 16 . 1	0.0	0.0	0.0	0.0	0.0
	<u>c</u> 1	PUSITIVE	-2435536.00	1.940	14574.49	2.200	0.0	0.0 2.640	00	0.0	0.0
n	15	POSITIVE	899546.38	2.260	7210.64	2.260	126302.69	2.640	0.0	0.0	0.0
		NEGATIVE	-1908394.00	2.640	-:3594.00	2.700	0.0	0.0	0.0	0.0	0.0
	22	POSITIVE	1263618.00	2.260	13594.00	2.700	0.0	0.0	0.0	0.0	0.0
		REGATIVE	-2325099.00	2.700	-7210.64	2.260	-:26302.69	2.640	0.0	0.0	0.0
3	22	POSITIVE	590757.38	2.220	4209.92	2.220	100210.94	2.640	0.0	0.0	0.0
		NEGATIVE	-1437764.00	1.900	-9638.27	1.900	0.0	0.0	0.0	0.0	0.0
	29	POSITIVE	696160.94	2.220	9636.27	1.900	0.0	0.0	0.0	0.0	0.0
		NEGATIVE	-1454689.00	1.920	-4209.92	2.220	-100210.94	2.640	0.0	0.0	0.0
5	29	POSITIVE	571394.63	2.180	3916.36	2.240	74714.01	2.640	0.0	0.0	0.0
		KFGATIVE	-1733150.00	2.640	-11450.89	2.660	0.0	0.0	0.0	0.0	0.0
	36	FOSITIVE	645759.13	2.240	11450.89	2.66C	0.0	0.0	0.0	0.0	0.0
		NFGATIVE	-1722449.00	2.660	-3916.36	2.240	-74714.81	2.640	0.0	0.0	0.0
9	36	POSITIVE	466442°75	2.200	3477.39	2.200	48947.56	2.640	0-0	0.0	0.0
		NECATIVE	-1505192.00	2.640	-10087.84	2.640	0.0	0.0	0.0	0.0	0.0
	6 3	PUSITIVE	576758.50	2.200	10067.64	2.640	0.0	0.0	0.0	0.0	0.0
		NEGATIVE	-1521100.00	2.640	+3477.39	2.200	-48947.56	2.640	0.0	0.0	0.0
٢	43	POSITIVE	304053.50	2.180	2456.46	2.180	23309.26	2.640	0.0	0.0	0.0
		NECATIVE	-1686380.00	2.620	-13629.76	2.620	0.0	0.0	0.0	0.0	0.0
	50	POSITIVE	432604.50	2.180	13629.76	2.620	0.0	0.0	0.0	0.0	0.0
		NEGATIVE	-2402657.00	2.620	-2456.46	2.180	-23309.26	2.640	0.0	0.0	0°0
9	2	POSITIVE	6739860.00	5.920	30405.77	5.920	260591.50	2.620	0.0	0.0	0.0
		NFGATIVE	-7011049.00	2.760	-31921.25	2.71.0	0.0	0.0	0.0	0.0	0.0
	G	3VITI204	4662323.00	5.920	31921.25	2.760	0.0	0.0	0.0	0.0	0.0

-22-

۰.

				-								
0.0	0000	0000	0000	0000 •••• 0000	0000		0000	0000	0000	0000	0000	0.0
0.0	0000	0000 0000	0000	0000 0000	0000	0000 0000	0000	0000	0000	0000	0000	0-0
0.0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0.0
2.620	2.620 0.0 2.620 2.620	2.620 0.0 2.620 2.620	2.620 0.0 0.0 2.620	2.620 0.0 0.0 2.620	2.620 0.0 2.620 2.620	2.620 0.0 0.0 2.620	2.200 2.00 2.200	2 • 200 0 • 0 2 • 200	2.200 2.200 2.200	2.200 0.0 2.200	2.200 0.0 2.200	2.200
-260591.50	222740.06 0.0 0.0 -222740.06	185032.69 0.0 -185032.69	147708.44 0.0 -147708.44	110570.06 0.0 -110570.06	73446.25 0.0 -0 -73446.25	36378.52 0.0 -0.0 -36378.52	262444 . 56 0.0 0.0 -262444 . 56	224369.06 0.0 -224369.06	106238.75 0.0 -186238.75	148558.88 0.0 0.0 -148658.88	111200.94 0.0 0.0 -111200.94	73807.13
5.920	2.260 2.680 2.680 2.200	2.260 2.700 2.700 2.260	2.220 2.620 2.220	2.240 2.640 2.640 2.240	2.200 2.640 2.640 2.200	2.180 2.620 2.620 2.180	5.920 2.760 2.920 5.920	2.200 2.680 2.680 2.200	2.260 2.700 2.700 2.260	2.220 2.620 2.620 2.220	2.240 2.640 2.540 2.240	2.200
-30405.77	23038.12 -17838.71 17838.71 -23038.12	20812.47 -15715.78 15715.78 -20812.47	17359.66 -9782.81 9782.81 -17359.66	16203.11 -12246.15 12246.15 -16203.11	14884.41 -11621.93 11621.93 -14884.41	18004.66 -12481.20 12481.20 -18004.66	29624.65 -32842.26 32842.26 -29624.65	20338.54 -20533.88 20533.08 -20533.08	18610.96 -17934.59 -17934.59 -18610.96	15166.20 -11975.68 11975.68 -15166.20	14601.87 -14447.49 14447.49 -14447.49	13127-80
2.760	2.220 2.680 2.200 2.680	2.260 2.640 2.260 2.700	2.220 2.640 2.620	2.180 2.640 2.240 2.560	2.200 2.640 2.640 2.640	2.180 2.620 2.180 2.180 2.620	5,920 2,760 5,920 2,760	2.220 2.680 2.680 2.680	2.260 2.640 2.700	2.220 2.640 2.620 2.620	2.180 2.640 2.240 2.560	2,200
-4959413.00	3300102.00 -2464765.00 3632522.00 -2886841.00	2952296.00 -2193005.00 3291444.00 -2604802.00	2565044.00 -1393828.00 2642853.00 -1546828.00	2369537.00 -1859532.00 2494268.00 -1825317.00	2241189.00 -1708038.00 2224127.00 -1778539.00	2360943.00 -1671170.00 3040481.00 -2073201.00	6642216.00 -7126182.00 4467039.00	2063214.00 -2898602.00 3257471.00 -3261562.00	2626801.00 -2518229.00 2956479.00 -2941054.00	2230791.00 -1727955.00 2319058.00 -1870577.00	2045060.00 -2184121.00 2158461.00 -2161141.00	1949850.00
NECATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NECATIVE POSITIVE NECATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE REGATIVE	POSITIVE NEGATIVE POSITIVE REGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE REGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	SALLISUA
	6 1 1 6	16 23	23 30	37	37 44	44 51	د ۱۰	10	17 24	24 31	31 36	36
	σ	0	11	12	13	14	15	16	17	16	19	20

0 0 0 0 0 0 0	0000 0000 0000	0.0 -0.00052 0.0	0000	0000	0000	0000	0000	0000	0000	¢000 ••••	0.000 0.000
000 •••	0000	0.0 2.760 0.0	0000	0000	0000	0000	0000	0000	0000 0000	0000	0000
000	0000	0.0 -0.00052 0.0	0000	0000	0000	0000	0000	0000 0000	0000	0000 •••• 0000	0000
0.0 0.0 2.200	2.200 0.0 2.200	2.200 0.0 2.200 2.200	2.200 0.0 2.200 2.200	2.200 0.0 2.200	2.200 0.0 2.200	2.180 0.0 0.0 2.100	2.180 0.0 0.0 2.180 2.180	2.180 0.0 0.0 2.180	2.640 0.0 2.640 2.640	2.620 0.0 2.620 2.620	2.620 0.0 2.620 2.620
0.0 0.0 -73867.13	36479.90 0.0 -36479.90	187459.81 0.0 0.0 187459.81	157396.69 0.0 0.0 9.02 157396.63	129371.19 0.0 0.0 129371.19	102724.54 0.0 -0 -102724.94	76468.50 0.0 0.0 -76468.50	50237.08 0.0 -50237.08	23910.18 0.0 0.0 -23910.18	112185.38 0.0 0.12185.38	96022.06 0.0 0.0 -96022.06	69.08947 0.0 0.0 63.08947-
2.640 2.640 2.200	2.186 2.620 2.620 2.160	5.920 2.760 2.766 5.920	2.200 1.940 1.940 2.200	2.260 2.700 2.700 2.260	2.220 1.900 1.900 2.220	2.240 2.660 2.660 2.240	2.200 2.640 2.640 2.200	2.180 2.626 2.626 2.180	5.926 2.766 2.760 5.920	2.200 1.940 1.940 2.200	2.260 2.700 2.700 2.260
-13378.53 13378.53 -:3127.86	14690.95 -15794.79 15764.79 -14650.95	26505.85 -25320.01 25320.01 -26505.85	14700.80 -5504.60 5504.60 -14700.80	15110.68 -5690.99 5690.99 -15110.68	12515.57 -1411.67 1411.67 -12515.57	12398.24 -2968.96 2968.96 -12398.24	10917.52 -2647.65 2647.65 -10917.52	14820.52 -1265.85 1265.85 -14620.52	22.71811 E7.76241- E7.76241 22.71811-	2738 . 6 6 - 8 3 6 4 . 4 6 8 3 0 4 . 4 6 - 2 7 3 8 . 6 4	3826.81 - F358.39 8358.39 - 3826.39
2.640 2.640	2.180 2.620 2.160 2.160	5.920 2.760 5.920 2.760	2.260 1.940 2.200 1.940	2,260 2,640 2,260 2,700	2.220 1.900 2.220 1.920	2.180 2.640 2.240 2.660	2.200 2.640 2.540	2.180 2.620 2.100 2.620	5.920 2.760 5.920 2.760	2.260 1.940 2.200 1.940	2.260 2.640 2.260 2.700
-1999379.00 1966479.00 -2014185.00	1969559.00 -2062513.00 2437708.00 -2675953.00	6271622.00 -6166749.00 3666090.00 -3326552.00	2001456.00 -495282.13 -2529596.00 -1156056.00	2062369.00 -745619.25 2470857.00 -1117689.00	1830595.00 -197763.69 1924106.00 -226710.38	1824913.00 -479576.75 1936855.00 -431342.38	1653349.00 -316272.50 1621927.00 -475992.56	1841710.00 -146722.00 2604555.00 -230933.30	2864207.00 -3327666.00 1359740.00 -2124001.00	237684.94 -1117406.00 633093.80 -1373937.00	472455.38 -1168085.00 675576.19 -1404165.00
 NEGATIVE FOSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIYE Negatiye Positiye Negatiye	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE
4 17	5.2	3	11	16 25	25 32	32 39	39 11	4.6 5.3	5	12	19 26
	21	53	53	24	25	26	27	28	29	30	E

Reproduced from best available copy.

32	26 33	FOSITIVE NECATIVE POSITIVE NECATIVE	400538,94 -939776,94 459137,50 -980292.81	2.220 2.220 2.220 2.220	2865.62 -6277.14 -6277.14 -2065.62	2.220 1.900 2.220	63895.56 0.0 0.0 -63895.56	2.662 2.662 2.60 2.620 2.620	2003 0003	0000	0000 ••••
66	33	POSITIVE NEGATIVE POSITIVE NEGATIVE NEGATIVE	413407.00 -1164841.00 460642.44 -1160532.00	2.180 2.540 2.240 2.660	2835.12 -7706.16 7706.16 -2835.12	2.240 2.660 2.260 2.240	47792.19 0.0 0.0 47792.19	2.620 0.0 2.620 2.620	0000	0000	0000
н С	4 0 4 7	POSITIVE NECATIVE POSITIVE NEGATIVE	352670,56 -1026460,44 377806,75 -1001277,38	2.200 2.640 2.440	2434.96 -6759.05 6759.05 -2434.96	2,200 2,640 2,640 2,200	31590.09 0.0 0.0 -31590.09	2.620 0.0 0.0 2.620	0000	0000	0000
35	4 7 5 4	POSITIVE NEGATIVE POSITIVE NEGATIVE	354096,75 -1211507.00 563891.69 -1735760.00	2.130 2.130 2.180 2.180	3060.02 -9824.08 9824.08 -3060.02	2.180 2.620 2.620 2.180	15240.84 0.0 -15240.84	2.620 0.0 2.620 2.620	0000		0000
36	7 14	POSITIVE NEGATIVE POSITIVE NEGATIVE	3155786.00 -3059350.00 1892679.00 -1597519.00	5.920 2.760 5.920 2.760	13462.54 -12418.31 12418.31 -13462.54	5.920 2.760 2.920 5.920	116728.75 0.0 -116728.75	2.200 0.0 2.200	0.0 -0.00018 0.0	0.0 2.760 0.0	0.0 0.0 0.0
37	14 21	POSITIYE NEGATIYE POSITIYE NEGATIYE	1170002.00 -159909.38 1474652.00 -528018.69	2.260 1.940 2.200 1.940	8717.54 -2293.12 2293.12 -8717.54	2.180 1.940 1.940 2.180	99838.31 0.0 0.0 -99838.31	2.200 0.0 2.200	0000	0000	0000 •••• 0000
Ð	21 28	POSITIVE NFGATIVE POSITIVE NEGATIVE	1236610.00 -429734.25 1468014.00 -618060.25	2.260 2.640 2.260 2.700	9015.38 -3204.65 3204.65	2.260 2.700 2.260	83089.75 0.0 -83089.75	2-200 0-0 2-200	0000	0000	0000
6 E	28 35	POSITIVE NEGATIVE POSITIVE NEGATIVE	1233180.00 -153945.44 1260237.00 -186414.19	2.220 1.900 2.220 2.620	8370.03 -1075.18 1075.18 -0378.03	2.220 1.900 1.900 2.220	66399.38 0.0 0.0 -66399.38	2.200 0.0 2.200	0000	0000	0000
0 11	35 42	POSITIVE NEGATIVE POSITIVE NEGATIVE	1225219.00 -358202.00 1291377.00 -333082.50	2.180 2.640 2.240 2.660	8336.39 -2256.20 2256.20 -8336.39	2.240 2.660 2.660 2.240	49618.66 0.0 0.0 49618.66	2.200 0.0 2.200	0000	0000	0000 0000
	4 2 4 9	POSITIVE NEGATIVE PCSITIVE NEGATIVE	1130864.00 -261346.25 1072864.00 -320738.19	2.200 2.640 2.640 2.640	7345.74 -1940.32 -7400.32 -7345.74	2.200 2.640 2.640 2.200	32806.83 0.0 0.0 -32806.83	2.200 0.0 2.200	0000	0000	0000
42	149 56	POSITIVE NEGATIVE POSITIVE NEGATIVE	1325412.00 -246893.56 1902575.00 -400707.19	2.180 2.620 2.620 2.620	10749.03 -2159.02 2159.02 2159.02	2.130 2.620 2.620 2.180	15816.00 0.0 -15816.00	2.200 0.0 2.200	0000	0000	0000
C 3	9	POSITIVE NFGATIVE	4807300.00 +2541438.00	2.740 5.920	21918.88	2.740 5.920	00	0.0	-0-00031 10-00036	2.740	0.00031

Reproduced from best available cop

	5	POSITIVE NEGATIVE	2042646.00 -4732587.00	2.740 5.920	22c33.36 -698.34	5 .920 2.740	0.0	0.0	0.0	0.0	0.0
3 3	15 16	POSITIVE NEGATIVE POSITIVE NEGATIVE	3850065.00 -1664791.00 1204926.00 -3999999.00	2.700 2.240 2.700 2.240	18935.31 0.0 19964.91	2.700 0.0 2.240 0.0	0000	0000	3330	0000	0000
å 2	22 23	POSITIVE REGATIVE POSITIVE REGATIVE	3312407.00 -1254177.00 690870.63 -3575561.	2.640 2.240 2.640 2.640	17182.45 0.0 18560.50	2.640 0.0 2.240 0.0	0000 0000	0000 ••••	0000	0000	0000
9 7	30	POSITIVE NEGATIVE POSITIVE NEGATIVE	3111903.00 -1094801.00 506777.44 -3429487.00	2.640 2.220 2.640 2.220	16544.76 0.0 18050.74 0.0	2.640 0.0 2.220 0.0	0000	0000	0000	0000	0000
u 7	9E 7E	POSITIVE NEGATIVE POSITIVE NEGATIVE	3182333.00 -911991.44 574875.94 -3246898.00	2.640 2.200 2.540 2.200	16772.32 0.0 17445.08 0.0	2.640 0.0 2.200	0000	0000	0000	0000	0000
8 T	() 3 3 3	POSITIVE NECATIVE POSITIVE NECATIVE	3147233.00 -822169.69 518211.13 -3209489.00	2.640 2.200 2.640 2.200	16619.36 0.0 17229.70 0.0	2.640 0.0 2.200	0000	0000	0000	0000	0000
6 11	50	POSITIVE REGATIVE POSITIVE REGATIVE	2402756.00 -432547.50 -0.0 -2603655.00	2.620 2.180 0.0 2.180	14347.94 0.0 15570.60	2.620 0.0 2.180 0.0	0000	0000	0000	0000	0000
50	9 10	POSITIVE NEGATIVE FOSITIVE NEGATIVE	4568877.00 -2651884.00 2577183.00 -4713545.00	2.740 5.920 2.740 5.920	23040.92 -5974.16 23487.34 -5535.38	2.740 5.920 5.920 2.740	0000	0000	0.0 -0.00164 0.00115	0.0 5.920 2.740 0.0	0.0 -0.00164 0.00115
51	16	POSITIVE NEGATIVE POSITIVE NEGATIVE	3712096.00 ~2130734.00 1866287.00 -3983373.00	2.700 2.240 2.240 2.240	19913.55 -3487.40 21001.00 -2400.00	2.700 2.240 2.700 2.700	0000	0000	0000	0000	0000
52	23 24	POSITIVE NEGATIVE POSITIVE NEGATIVE	3099904.00 -1664632.00 1250631.00 -3514142.00	2.640 2.240 2.540 2.640	17457.69 -1601.11 19114.71 0.0	2.640 2.240 2.240 0.0	0000	0000	0000	0000	0000
53	30 31	POSITIVE REGATIVE POSITIVE NFGATIVE	2891547.00 -1516137.00 1047202.44	2.640 2.220 2.640 2.640 2.220	16634.32 -996.42 18510.04 0.0	2.640 2.220 2.220 0.0	0000 0000 0000	2000 ••••	0000	0000 0000	0000 0000
54	7.E 4.E	POSITIVE NEGATIVE ECSITIVE NEGATIVE	2947763.00 -1320354.00 1096090.00 -3170045.00	2.640 2.200 2.540 2.540	16848.51 -223.97 17737.59 0.0	2.640 2.200 2.200	0000 0000	0000	0000	0000	0000

-26-

		0000- 0000 0000 0000 0000 0000	0000 0000 0000 0000 0000		0 0	0000 0000 0000 0000 0000	0000 0000 0000 0000	• • • • • • • • • • • • • • • • • • •	0000 0000 0000 0000 0000	0000 0000 0000 0000	000000000000000000000000000000000000000
16598.57 2.640 -151.40 2.200 17667.99 2.200 0.0 0.0	13603.71 2.620 0.0 0.0 14350.11 2.180 0.0 0.0	22360.52 2.740 -1134.70 5.920 22154.63 5.920 -1359.96 2.740	19102.63 2.700 0.0 0.0 19813.63 2.240 0.0 0.0	17301.18 2.640 0.0 0.0 18441.80 2.240 0.0 0.0	16563.56 2.640 0.0 0.0 18031.95 2.220 0.0 0.0	16770.38 2.640 0.0 C.0 17447.01 2.200 0.0 0.0	16398,45 2,640 0,0 0.0 17450,64 2,200 0.0 0.0	14938.81 2.620 0.0 0.0 14979.70 2.180 0.0 0.0	0.01 2.740 -0.02 5.920 0.02 5.920 -0.01 2.740	0.01 2.700 -0.01 2.240 0.01 2.240 -0.01 2.240	0.01 2.640 -0.01 2.240 0.01 2.240
2872054.00 2.640 1316183.00 2.200 1048833.00 2.640 3139429.00 2.200	2173556.00 2.620 -436491.06 2.180 249901.75 2.620 2360174.00 2.180	u646611.00 2.740 2116704.00 5.920 2475515.00 2.740 4868201.00 5.920	3747863.00 2.700 1455257.00 2.240 1407535.00 2.700 4126766.00 2.240	3209063.00 2.640 1057772.00 2.240 865458.56 2.640 3701159.00 2.240	3001395.00 2.640 -936836.81 2.220 630564.94 2.640 .3576173.00 2.220	3051620.00 2.640 -772126.50 2.200 704427.19 2.640 3389928.00 2.200	2968326.00 2.640 -759349.31 2.200 564566.06 2.640 3404876.00 2.200	2426122.00 2.620 -77330.19 2.180 230999.44 2.620 2604321.00 2.180	u.62 2.740 -4.53 5.920 4.37 2.740 1294049.00 0.0	3.18 2.700 -3.40 2.240 2.95 2.700 1294049.00 0.0	2.60 2.640 -2.89 2.240 2.34 2.640
44 FOSITIVE 45 FOSITIVE 45 POSITIVE 86ATIVE	51 POSITIVE NEGATIVE 52 POSITIVE NEGATIVE	10 POSITIVE - NEGATIVE - 11 POSITIVE - NEGATIVE -	17 POSITIVE NEGATIVE - 18 POSITIVE - NEGATIVE -	24 POSITIVE - NEGATIVE - 25 POSITIVE - NEGATIVE -	31 POSITIVE NEGATIVE POSITIVE NEGATIVE	38 POSITIVE NEGATIVE 39 POSITIVE 39 NEGATIVE	45 POSITIVE NEGATIVE 46 POSITIVE NEGATIVE	52 POSITIVE NEGATIVE 53 POSITIVE NEGATIVE	11 POSITIVE NEGATIVE 12 POSITIVE NEGATIVE	18 POSITIVE NEGATIVE 19 PUSITIVE NEGATIVE	25 POSITIVE NEGATIVE 26 POSITIVE
55	5 6	57	58	59	60	61	62	63	64	65	6 b

-27-

Reproduced from	best available copy.

					-28-							
											,	
0.0	0000	0000	0000 ••••	0000	0.00201 -0.00161 0.0 -0.00148	0.00016 0.0 0.0 -0.00103	0.0 0.0 0.00 -0.00126	0.0 0.0 0.0 -0.00144	0.0 0.0 0.0117	0.0 0.0 0.0 -0.00 112	2.0000.2 0.0 0.0	0.00034
0.0	0000 0000	0000	0000	0000	2.740 0.0 0.0 5.920	2.680 0.0 2.220	0.0 0.0 2.20	0.0 0.0 2.20	0.0 0.0 2.220	0.0 0.0 2.200	0.0 0.0 2.200	2.680
0.0	0000	0000	0000	0000	0.00201 0.0 0.0 -0.00148	0.00016 0.0 0.0 -0.00103	0.0 0.0 0.0 -0.0126	0.0 0.0 0.0 -0.00144	0.0 0.0 0.0 -0.00117	0.0 0.0 0.0 -0.0	0.0 0.0 0.0 -0.00062	0,00004
0.0	0000	0000	0000	0000	0000 0000	0000	0000	0000	0000	0000 0000	0000	0.0
0.0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000 0000	0000	0.0
2.640	2.640 2.220 2.220 2.640	2 • 646 2 • 200 2 • 500 2 • 646	2 • 640 2 • 200 2 • 500 2 • 640	2.620 2.180 2.180 2.620	2.720 0.0 5.920 0.0	2.680 0.0 2.220 0.0	2 • 6 4 0 0 • 0 2 • 2 2 0 0 • 0	2.640 0.0 2.220 0.0	2.640 0.0 2.200	2.640 0.0 2.700 2.00	2.640 0.0 2.180 0.0	022.2
-0.01	10.0- 10.0- 10.0-	10.0- 10.0-	10.0- 10.0-	0.00 0.01 0.01 0.01	11697.54 0.0 12995.03 0.0	11362.88 0.0 12375.46 0.0	11082.09 0.0 12327.04 0.0	11042.84 0.0 12340.79	11124.11 0.0 12160.93 0.0	11187.52 0.0 12135.11	10000.97 0.0 11770.41	12596.55
0.0	2.640 2.22C 0.0	2.640 2.200 2.640 0.0	2.640 2.200 2.640 0.0	2.620 2.180 2.620 0.0	2.740 5.920 2.700 5.920	2.680 2.240 2.680 2.220	2.640 2.520 2.5640 2.220	2.540 2.220 2.220 2.220	2.640 2.200 2.5640 2.220	2.640 2.200 2.640 2.200	2.620 2.180 2.640 2.200	2.700
-1294049-00	2.35 -2.74 2.08 -1294049.00	2.46 -2.53 2.18 -1294049.00	2.35 -2.54 2.16 -1294049.00	1.80 -1.67 1.18 1.18 -1294049.00	2526301.00 -1199091.00 427213.44 -2513798.00	2324022.00 -659700.86 409352.75 -2485159.00	2184321.00 -800621.31 380585.19 -2511271.00	2139563.00 -727506.81 401774.50 -2532642.00	2167610.00 -715175.38 422498.63 -2500646.00	2190312.00 -701066.69 437847.19 -2495665.00	00.177521 00.431642- 00.1777645- 20.43777645-	2391543.00
NLCATIVE	FOSITIVE RECATIVE POSITIVE RECATIVE	POSITIVE REGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE PCSITIVE NFGATIVE	POSITIVE NFGATIVE POSITIVE NEGATIVE	POSITIYE HEGATIYE POSITIYE NEGATIYE	POSITIVE NEGATIVE PCSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE NEGATIVE POSITIVE NEGATIVE	POSITIVE REGATIVE POSITIVE HEGATIVE	FOSITIVE NFGATIVE PUSTIVE NLGATIVE	POSITIVE NFGATIVE POSITIVE NFGATIVE	905111VS
	32 33	39 40	ар 11	53 54	12	19 20	26 27	8 94	4 0 7	48	5 tt 5 S	
	67	ç. Q	69	70	11	72	73	74	75	76	"	7.8

		NEGATIVE	-591832.56	5.920	0.0	0.0	0.0	0	0.0	0.0	0.0
	31	POSITIVE NEGATIVE	-2642841.00	5.520	12198.08	0.0	0.0		-0.00280	5.920	-0.00374
ſ	6				CC 13011			c			
5	202	TATISON			67.10611	100.7		2		7	170000
		3 A T T Y O Z V	C2 • C3 6 7 9 C	2.680	11867.09	2.220		•			20
	-	NEGATIVE	-2467993.00	2.220	0.0	0.0	0.0		-0.00081	2.220	-0.00068
c d	ŗ		00 6990466	043 C	10 07711	0.12.0		¢	c c	c c	
2		TTTTTTTTTT	-599705.25	040.2		0.0				0.0	0.0
	28	POSITIVE	590875.06	2.640	11828.43	2.220	0.0		0.0	0.0	0.0
	ł	NEGATIVE	-2413001.00	2.220	0.0	0.0	0.0	•	. 10000 - 0-	2.220	-0.00041
81	34	POSITIVE	2326054.00	2.640	11579.52	2.640	0.0	0.	0.0	0.0	0.0
		NECATIVE	-630772.31	2.220	0.0	0.0	0.0	.	0.0	0.0	0.0
	35	POSITIVE	537318.88	2,640	11873.52	2.220	0.0	0.	0.0	0.0	0.0
		NEGATIVE	+2406962.00	2.220	0.0	0.0	0.0	•	. €000°0-	2.220	-0.00037
82	11	POSITIVE	2368184.00	2.640	11710.29	2.640	0.0	0.	0.0000	2.640	0.00002
1		NEGATIVE	-578466.56	2.220	.0*0	0.0	0.0	••	0.0	0.0	0.0
	42	PUSITIVE	573643.31	2.640	11654.45	2.200	0.0	•	0.0	0.0	0.0
		NEGATIVE	-2333374.00	2.200	0.0	0.0	0.0	••	0.0	0.0	0.0
83	4.8	POSITIVE	2362357.00	2.640	11648.57	2.640	0.0	0.	.0000*0	2.640	0.00001
		NEGATIVE	-598487.13	2.200	0.0	0.0	0.0	•	0.0	0.0	0.0
	49	PUSITIVE	542439.00	2.640	11762.34	2.200	0.0	•	0.0	0.0	0.0
		NEGATIVE	-2374565.00	2.200	0.0	0.0	0.0	•	-0*0000	3 2.200	-0.00008
94	55	POSITIVE	2268120.00	2.640	11282.45	2.640	0.0	0.	0.0	0.0	0.0
	1	NEGATIVE	-357829.31	2.200	0.0	0.0	0.0	0.	0.0	0.0	0.0
	56	POSITIVE	400817.81	2.620	10574.35	2.200	0.0	0.	0.0	0.0	0.0
		NECATIVE	-1902434.00	2.200	0.0	0.0	0 0 0	•	0.0	0.0	0.0
1825 UL 7	S ENVEL	CPES, ELEME	ENT GROUP 2	TIME =	10.100						
4 V A H S		FRENTS (TYD	/// 12 34								
	NON HAIL	DE NODE			LEFT AXIAL Member	RIGHT AXIAL MEMPER	CENTRAL SPRI	AXIAL NG	ROTATIONAL SPRING	HORIZONTAL SPRING	
		6 13 PC	SITIVE FORCE TIME		0.1471E+26 2.2200	0.14362+06 2.6600	0°0 0°0	•	31725+08 0. 2.6600	,3405£+06 2,2000	
		2 N	EGATIVE FONCE TIME		-0.38865+06 1.9000	-0.3567£+06 1.5800	-0.3279£+ 2.10	00 - 0.	39055+08 -0	.36202+05 2,7600	
		9d	SITIVE DISP Time		0.78035+00 2.2200	0 • 66042 + 00 2 • 6600	0.0	0.2	689 E-02 0.	7855+01 5.9200	

-29-

POSITIVE FORCE TICE

13

~

20

NEGATIVE DISP TIME

0.12765+06 0.12715+06 0.0 0.34772+06 0.1276500 0.34772+06 2.2600 2.6200 0.0 1.9000 2.2400

-C.21958404 -C.25108406 -O.18328406 -O.27508408 -O.24958408 1.5600 2.2400 2.58400 2.7200 0.3397±+08 0.3428£+06 1.9000 2.2600 -0.1733E+06 -0.1999E+06 -0.1369E+06 -0.3479E+08 -0.3338E+06 2.6200 2.5200 2.5600 2.5600 0.3112E+08 0.3345E+06 1.9000 2.2200 -0.1464E+06 -0.1407E+06 -0.1060E+06 -0.3199E+08 -0.2740E+06 2.0000 2.6600 2.6600 1.9200 0.2822E+08 0.3057E+06 1.9000 2.2400 -0.1140E+06 -0.12698+06 -0.7500E+05 -0.2909E+08 -0.2818E+06 0.22462+08 0.21522+06 1.5800 2.2000 -0,10668-05 -0,11005-06 -0,46038-05 -0,23285-08 -0,23908-06 2,4000 2,7400 2,3000 2,3000 2,6400 -0.8465E-01 -0.9770E-01 -0.1857E-01 -0.7777E-02 -0.7370E+00 2.6200 2.6200 2.5200 2.5600 2.7200 -0.6174E-01 -0.6677E-01 -0.1438E-01 -0.8300E-02 -0.2769E+00 2.6400 2.6400 2.6000 2.6600 2.6200 0.69511-02 0.30572+00 2.6400 2.2400 -0.5426E-01 -0.6203E-01 -0.1018E-01 -0.8457E-02 -0.2818E+00 2.4000 2.7200 2.9200 2.5200 2.6600 0.5728E-02 0.1104E+01 2.6600 5.9200 -0.1247E+00 -0.1226E+00 -0.2486E-01 -0.7033E-02 -0.1135E+01 2.2000 2.2400 2.2400 2.5800 2.2500 0.6269E-02 0.8038E+00 2.6600 2.2600 0.6632E-02 0.3893E+00 2.6400 2.2200 2.2200 2.9200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6772E+05 0.5092E+05 0.0 2.7400 2.4200 0.9827E+05 0.0 2.6200 0.57602+05 0.0 2.4000 0.0 0.94728-01 0.01208-01 0.0 2.2600 2.6200 0.4703E-01 0.3738E-01 0.0 2.7200 2.4000 0.4736E-01 0.4090E-01 0.0 2.5000 2.0000 0.7060E+05 0.6550E+05 2.5200 2.6400 0.6956E-01 0.5333E-01 2.2400 2.6200 .2.7200 0.1022E.06 2.26C0 0.6261E+05 2.7400 2.4200 NEGATIVE YORCE TIFE TIME TIME NEGATIVE FORCE TIRE NEGATIVE FORCE TIME NEGATIVE FORCE TIME POSITIVE FORCE TIRE POSITIVE FOACE POSITIVE FORCE TIME POSITIVE FURCE NEGATIVE FORCE TIME DISP TIKE DISP NEGATIVE DISP Tire POSITIVE DISP TIME PCSITIVE DISP NEGATIVE DISP TIRE POSITIVE DISP TIME NEGATIVE DISP TIME POSITIVE NEGATIVE 5 đμ 5 48 20 57 эr 5

=

<u>م</u>

۵

٩ Reproduced from best available copy.

m

-30-

2.2200

2.6500

0.2237±+08 0.1177±+06 1.8800 2.1800 -0.7223405 -0.56922405 -0.18892405 -0.23172408 -0.11992406 2.4000 2.7400 2.3000 2.2000 2.6200 -0.3516E-01 -0.2404E-01 -0.2564E-02 -0.1199E+00 2.4000 2.7400 2.3000 2.6200 2.6200 0.7121E-02 0.2152E+00 2.6400 2.2000 -0.5100E-01 -0.5283E-01 -0.6247E-02 -0.8373E-02 -0.2340E+00 2.44000 2.47400 2.57400 2.5000 2.2000 0.7153E-02 0.1177E+00 2.6400 2.1800 0.0 0.2003E-01 0.3032E-01 0.0 2.7400 2.4000 0.0 0.0 0.2890E+05 0.4785E+05' 0.0 2.7400 2.4000 C.42678-01 0.39958-01 0.0 2.7400 2.4000 POSITIVE FORCE NEGATIVE FORCE TIRE FOSITIVE DISP TIRE NEGATIVE DISP TIPE POSITIVE DISP TIME NEGATIVE DISP TIRE 55

4 B

~

.

-31-

REFERENCES

- 1. Charney, F.A. and Bertero, V.V., "An Evaluation of the Design and Analytical Seismic Response of a Seven Story Reinforced Concrete Frame-Wall Structure," <u>Report No.UCB/EERC-82/08</u>, University of California, Berkeley, August, 1982.
- 2. Emori, K. and Schnobrich, W., "Dynamic Analysis of Reinforced Concrete Frame-Wall Structures," <u>Engineering Structure</u>, Vol. 2, April, 1980, pp. 103-112.
- Fintel, M. and Ghosh, S.K., "Design of Walled Structures for Earthquake Loading" <u>CSCE-ASCE-ACI-CEB</u> <u>International Symposium on Nonlinear Design</u> of <u>Concrete Structures</u>, University of Waterloo, Ontario, Canada, <u>August</u>, 1979.
- 4. Fintel, M. and Ghosh, S.K., "Application of Inelastic Response History Analysis in the Aseismic Design of 31-story Frame-Wall Building," <u>Earthquake Engineering and Structural Dyanmics</u>, Vol. 9, Issue No. 16, <u>Nov-Dec.</u>, 1981, p.543.
- 5. Hiraishi, H., Yoshimura, M., Isoishi, H. and Nakata, S., "Planar Tests on Reinforced Concrete Shearwall Assemblies" <u>Report Submitted to Joint</u> <u>Technical Coordinating Committee, US-Japan Cooperative Research Program</u>, <u>Building Research Institute, Tsukuba, Japan, January 1981.</u>
- 6. Kasbeyasawa, T., Shiohara, H., Otani, S. and Aoyama, H., "Analysis of the Full Scale Seven Story Reinforced Concrete Test Structure-Test PSD3", Report for the Third Joint Technical Committee Meeting, US-Japan Cooperative Research Program, Building Research Institute, Tsukuba, Japan, July, 1982.
- 7. Kanaan, A.E. and Powell, G.H., "General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," <u>Report No. EERC 73-6</u>, University of California, Berkeley, April, 1973.
- 8. Oesterele, R.G., Fiorato, A.E., Johal, L.S., Carpenter, J.E., Russel, H.G. and Corley, W.G., "Earthquake Resistant Structural Walls - Tests of Isolated Walls" <u>Report to NSF</u>, Portland Cement Association, Skokie, Illinois, November, 1976.
- 9. Okomoto, S., Nakata, S., Kitagawa, Y., Yoshimura, M. and Kaminosono, T., "A Progress Report on the Full Scale Seismic Experiment of a Seven Story Reinforced Concrete Building-Part of the US-Japan Cooperative Research Program," <u>BRI Research Paper No. 94</u>, Building Research Institute, Tsukuba, Japan, March, 1982.
- 10. Park, R. and Paulay, T., "Reinforced Concrete Structures," John Wiley and Sons, Inc., New York, 1975.
- 11. Powell, G.H., "DRAIN-2D User's Guide" <u>Report No. EERC</u> 73-22, University of California, Berkeley, October 1973.

- 12 Wang, T.Y., Bertero, V.V. and Popov, E.P., "Hysteretic Behavior of Reinforced Concrete Framed Walls" <u>Report No. EERC 75-23</u>, University of California, Berkeley, December, 1975.
- Wight, J.K., "U.S.-Japan Cooperative Research Program: Construction of the Full Scale Reinforced Concrete Test Structure," <u>Report No. UMEX</u> <u>83</u>R2, University of Michigan, August, 1983.

Fig. 2 Element Forces and Deformations

(b) Hysteresis Rule after Tensile Yielding (Degrading Bilinear Relation)

Fig. 3 Axial Stiffness Hysteresis Model

Fig. 4 Origin Oriented Hysteresis Model

Fig. 5 Idealized Seven Story Frame-Wall Structure

-38-

APPENDIX A-1

FORTRAN LISTING OF THE SHEARWALL ELEMENT EL7

SUBROUTINE INEL7(/KCONT/,/FCONT/,/NDOF/,/NINFC/,/ID/. 1/X/./Y/./NN/) COMMON/INFEL/IMEM,KST.LM(6).NODI.NODJ.KOUTDT.FL.WID,STO(3).ST1(3). 1ST2(3), STS0(2), STS1(2), PY(5), DELY(5), DELC(3), KODY(5), KODYX(5), 2ST5(3), ST6(3), STS3(2), P1(3), D1(3), P2(3), D2(3), P34(3), D34(3), 3P56(3),D56(3),P89(3),D89(3),P9(3),D9(3),P51(2),D51(2),SDF0(5). 4FTOT(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5), 5TSENN(5).TVENP(5),TVENN(5),REST(48) COMMON/WORK/KSHE, NMEM, NAXT, NROT, NHST, NYAX, NYRO, NYHS, NFEF, NINT, 1FATYP(30.3), FRTYP(30,2), FHTYP(30,2), VAX(30,3), YRO(30,2), 2YHS(30,2), FEF(30,5), FINIT(30,5), INEL, INODI, INODJ, INC, IINC, 3IAXB, IAXBT, IAXC, IAXCT, IHS, IHST, IRO, IROT, IKDT, FINT, FFINIT, 41YAXB, IYAXBT, IYAXC, IYAXCT, IYRO, IYROT, IYHS, IYHST, KFDL. 5IKFDL, KFLL, IKFLL, FDL, FFDL, FLLM, FFLL, FLLF, INIT, IINIT, 6SFF(6), SSFF(6), DD(6), FFEF(5), W(1212) DIMENSION KCONT(1), ID(NN, 1), X(1), Y(1), COM(1), YESNO(2), AST(2) EQUIVALENCE (IMEM.COM(1)) DATA AST/2H _2H */ DATA YESNO/4H YES.4H NO / DATA INPUT SHEAR WALL ELEMENT NDOF = 6 NINFC=152 KSHE=KCONT(1) NMEM=KCONI(2) NAXT=KCONT(3) NROT=KCONT(4) NHST=KCONT(5) NYAX=KCONT(G) NYRO=KCONT(7) NYHS=KCONT(8) NFEF=KCONF(9) NINT=KCONT(10) PRINT 10. (KCONT(1), I=2.10) 10 FORMAT(29H SHEAR WALL ELEMENTS (TYPE 7)//// 40H NO. OF ELEMENTS =14/ 1 40H NO. OF AXIAL STIFF TYPES =14/ 2 40H NO. OF ROT SPRING STIFF TYPES 3 =14/ 40H NO. OF HOR SPRING STIFF TYPES =14/ 4 5 40H NO. OF AXIAL YIELD PATTERNS =14/ 6 40H NO. OF ROT SPRING YIELD PATTERNS =14/ 40H NO. OF HOR SPRING YIELD PATTERNS 7 =14/ 8 40H NO. OF FIXED END FORCE PATTERNS =14/ 40H NO. OF INITIAL FORCE PATTERNS =14) 9 INPUT STIFFNESS PROPERTIES PRINC 20 20 FORMAT (////18H AXIAL STIFF TYPES// COMP MODULUS, 15H 12X,5H TYPE,15H TENS MODULUS. 21711 TENS HARDENING) DO 30 N=1.NAXT READ 40.1. (FATYP(N, J), J=1,3) 30 PRINT 50 .N. (FATYP(N,J), J=1.3) 40 FORMAT(15,3F10.0) 50 FORMAT(2X, 14, 3X, E12.4, 3X, E12.4, 7X, FG.3) PRINT 22

С C ¢

С

С

¢ С

С

```
22 FORMAT(//23H ROT SPRING STIFF TYPES//
                       INIT MODULUS. 17H STRN HARDENING)
    12X, SH TYPE, 15H
     DO 32 N=1.NROT
     READ 42.1. (FRIYP(N, J), J=1,2)
 32
    PRINT 51.N. (FRTYP(N, J), J=1.2)
 42 FORMAT(15,E15.6,F10.0)
51 FORMAT(2X,14,3X,E12.4,7X,F6.3)
     PRINE 21
 21
    FORMAT(//23H HOR SPRING STIFF TYPES//
    12X, SH TYPE. 15H
                       INIT MODULUS, 17H STRN HARDENING)
     DO 31 N=1, NHST
     READ 41.I. (FHTYP(N,J), J=1,2)
 31
     PRINT 51, N, (FHTYP(N, J), J=1,2)
 41
     FORMAT(15,2F10.0)
С
С
      YIELD PROPERTIES
С
     PRINE 110
110 FORMAT(////41H YIELD PROPERTIES OF THE AXIAL COMPONENTS//
    12X.5H TYPE.22H TENS YIELD LOAD(PY).
    218H TENS YIELD STRN, 18H COMP STRN AT PY)
     DO 200 N=1,NYAX
     READ 120, I. (YAX(N,J), J=1,3)
200
     PRINT 130, N, (YAX(N, J), J=1, 3)
120 FORMAT(15,3F10.0)
130 FORMAT(2X, 14, 6X, F12.2, 4X, E13.4, 4X, E13.4)
     PRINE 111
     DO 202 N=1.NYRO
     READ 122.1.(YRO(N,J),J=1,2)
202 PRINT 131, N, (YRO(N, J), J=1, 2)
    FORMAT(2X, 14, 4X, E13.4, 4X, E13.4)
131
122 FORMAT(15,2F10.0)
III FORMAT(////31H YIELD PROPERTIES OF ROT SPRING//
                      LOAD AT YIELD.
    12X, SH TYPE, 17H
    21711
             STRN AT YIELD)
     PRINT 112
     DO 201 N=1,NYHS
     READ 121 . I. (YHS(N, J), J=1,2)
201 PRINT 131.N. (YHS(N,J), J=1,2)
112 FORMAT(////31H YIELD PROPERTIES OF HOR SPRING//
    12X, SH TYPE, 17H
                       LOAD AT YIELD, 17H STRN AT YIELD)
121 FORMAT(15.2F10.0)
     DO 140 N=1,NYAX
     YAX(N, 1) = ABS(YAX(N, 1))
     YAX(N,2)=ABS(YAX(N,2))
     YAX(N,3) = -ABS(YAX(N,3))
140 CONTINUE
     DO 150 N=NYHS
     YHS(N.1)=ABS(YHS(N,1))
     YHS(N,2)=ABS(YHS(N,2))
150
     CONTINUE
     DU 160 N=1.NYR0
     YRO(N. 1)=ABS(YRO(N, 1))
     YRO(N,2)=ABS(YRO(N,2))
     CONTINUE
160
С
С
      FIXED END FORCE PATTERNS
С
     LF (NFEF.EQ.0)G0 TO 250
```

-40-

PRINT 210 FORMAT(////25H FIXED END FORCE PATTERNS// 210 12X.8H PATTERN, 15H AXL FORCE LFT. 15H AXL FORCE RHT. 219H AXL FORCE CENTRAL, 22H MOMENT IN ROT SPRING. 321H FORCE IN HOR SPRING, 5X, 10HLL RED FAC/) DU 220 N=1, NFEF READ 230, I. (FEF(N, J), J=1,5) 220 PRINE 240, N. (FEF(N, J), J=1,5) 230 FORMAT(15,5F10.0) 240 FURMAT(2X, IG, 3X, F12.2, 3X, F12.2, 5X, F12.2, 8X, F12.2, 7X, F12.2) C INITIAL FORCE PATTERNS C 250 IF (NINT. EQ. 0) GO TO 300 PRINT 260 260 FORMAT(////28H INITIAL END FORCE PATTERNS// 12X.8H PATTERN, 15H AXL FORCE LFT, 15H AXL FORCE RHT, 219H AXL FORCE CENTRAL, 22H MOMENT IN ROT SPRING. 321H FORCE IN HOR SPRING) 00 270 N=1.NINT READ 280 .I. (FINIT(N, J), J=1,5) 270 PRINT 240, N. (FINIT(N, J), J=1.5) 280 FORMAT(15,5F10.0) С С ELEMENT SPECIFICATION С 300 PRINT 310 FORMAT(////22H ELEMENT SPECIFICATION// 310 13X, 4HELEM, 2X, 4HNODE, 5H NODE, 5H NODE, 6H WIDTH, 5H BAXS, 5H CAXS, 25H ROTS, 5H HORS, 5H BAXY, 5H CAXY, 5H ROTY, 5H HORY, 6H TIME . 313HFEF PATTERNS , 18HFEF SCALE FACTORS . 14HINITIAL FORCES/ 44X,2HNO,GH (,SH J,GH DIFF.7X,SHTYPE,SHTYPE,SHTYPE,SHTYPE,SHTYPE,SHTYPE,SHTYPE,SHTYPE,SHTYPE,SHTYPE,SHTYPE,12H DL L 1.1 0L ,17H NO. SCALE FAC./) 6 18H LL C 00 319 J=1.5 KODY(J)=0 KODYX(J)=0319 CONTINUE KST=0 00 320 J=98.152 320 COM(J) = 0.[MEM=1 330 READ 340, INEL, INODI, INODJ, IINC, DSW, IAXBT, IAXCT, IROT, IHST, IIYAXBI, IYAXCT, IYROT, IYHST, IKDT, IKFDL, IKFLL, FFDL, FFLL, 21INIT_FFINIT 340 FORMAT(414, F6.0, 1113, 2F5.0, 15, F5.0) IF(INEL.GT.IMEM)GO TO 380 350 NOD [= I NOD [NODJ=INODJ INC=IINC IF(INC.EQ.O)INC=1 IAXB=IAXBT IAXC=IAXCT KOUIDI=IKOT WID=DSW/2. IHS=IHST 1081=081 IYAXB=IYAXBT IYAXC=IYAXCF

```
IYHS=IYHST
     IYRO=IYROT
     YNT=YESNO(2)
     IF (KOUTDT.NE.O) YNT=YESNO(1)
     KFDL=IKFDL
     KFLL=IKFLL
     FOL = FFOL
     FLLM=FFLL
     FLLF=1.0
     IF (KFLL.EQ.0)G0 TO 360
     FLLF=FEF(IKFLL,G)
     IF(FLLF.EQ.O)FLLF=1.E-6
360
    INIT=IINIT
     FINT=FFINIT
     ASTT=AST(1)
     [F(INEL-NMEM)330,380,330
С
370
     NODI=NODI+INC
     NODJ=NODJ+INC
     ASTT=AST(2)
С
380 PRINT 390, ASTT, IMEM, NODI, NODJ, INC, DSW, IAXB, IAXC, IRO, IHS,
    ILYAXB, IYAXC, IYRD, LYHS, YNT, KFDL, KFLL, FDL, FLLM, INIT, FINT
390 FORMAT(A2, 14, 16, 215, F5, 1, 14, 715, 3X, A3, 16, 15, 3X, F8, 2,
    1F9.2, I7, F11.2)
Ç
      LOCATION MATRIX
С
С
     DO 400 [=1,3
     I.M(I) = ID(NODI, I)
     LM(I+3) = ID(NODJ, I)
400
     CALL BAND
C
С
      ELEMENT PROPERTIES
С
     FL = ABS(Y(NODJ) - Y(NODI))
     STO(1)=FATYP(IAXB, 1)
     STI(1)=FATYP(IAXB,2)
     ST2(1)=FATYP(IAXB,3)*ST1(1)
     STO(2)=STO(1)
     Sf1(2)=Sf1(1)
     ST2(2)=SI2(1)
     STO(3)=FATYP(IAXC.1)
     ST1(3)=FATYP(IAXC,2)
     SF2(3)=FATYP([AXC,3)*ST1(3)
     STSO(1)=FRTYP(IRO,1)
     STS1(1)=FRTYP(IR0,2)*STSO(1)
     STSO(2)=FHTYP(IHS.1)
     STS1(2)=FHTYP(IHS,2)*STSO(2)
     PY(1)=YAX(IAXB.1)
     PY(2)=PY(1)
     DELY(1)=YAX(IAXB,2)
     DELY(2)=DELY(1)
     DELC(1)=-ABS(YAX((AXB.3))
     DELC(2)=DELC(1)
     PY(3)=YAX(IAXC, 1)
     DELY(3)=YAX(IAXC,2)
     DELC(3) =- ABS(YAX(IYAXC,3))
```

PY(4)=YRO(IYRO,1) DELY(4)=YRO(IYRD,2)

c	PY(5)=YHS(IYHS,1) DELY(5)=YHS(IYHS,2)
G	LUADS DUE TO FIXED END FORCES
100	DU 480 I=1,6
	$\frac{1}{1} \left(\frac{1}{1} - 1$
500	
500	CALL TOANS(SEE FREE)
520	TELEVIEL SO ALCO TO EZA
200	$\frac{1}{10} \frac{1}{10} \frac$
529	EFFE(1)=EFE(KELL 1)
~~~	CALL TRANS(SSEE FEFE)
	D0.540 I = 1.6
	FLL=FLLF+FLLM
	[F(1.EQ.3.OR.1.EQ.6)FLL=FLLM
540	SSFF(1)=SSFF(1)*FLL
570	DO 580 1=1,6
580	OD(I)=SFF(I)+SSFF(I)
	CALL SFORCE(DD)
c	
C	MODIFY TO GET INITIAL FORCES
	IF(KFDL, EQ.O)GO TO 531
501	00 501 1=1,5
531	$\frac{1}{1} \frac{1}{1} \frac{1}$
	D(1) 583 f=t 5
	SSEF(I)=FEF(KFII,I)+FLLM
583	SFF(I) = SFF(I) + SSFF(I)
C	
C	INITIAL FORCES
C	
610	LF( [NLT.EQ.0)GU TO 630
~~~	DU 620 [=1,5
620	SFF(l)=SFF(l)+FINI(INIT,I)*FINT
č	INTELATING CLEMENT FOROGE
č	INCLALIGE ELEMENT FORCES
630	00.631 (=1.5
631	FTOT(1) = SFF(1)
	DU 650 [=1,5
	SS=FTOT(1)
	IF(SS.LT.O.)GO TO 640
	SENP(I)=SS
	GU TU 650
640	SENN(I)=SS
650	
c	CALL FINISH
č	CENEDATE MISSING ELEMENTS
Č	IF (IMEM. FO. NMEM)RETURN
	IMEM=IMEM+I
	IF(IMEM.EQ.INEL)GO TO 350
	G0 T0 370
	END
	SUBROUTINE STIF7(/MSTEP/,/NDOF/./NINFC/./COMS/./FK/./DFAC/)

COMMON/INFEL/IMEM.KST,LM(6).NODI.NODJ.KOUTDT.FL.WID.STO(3).ST1(3).

	<pre>ist2(3).sts0(2).sts1(2).pv(5).delv(5).delc(3).kodv(5).kodvx(5). 2sts(3).st6(3).sts3(2).p1(3).d1(3).p2(3).d2(3).p34(3).d34(3).</pre>
	3P56(3),D56(3),P89(3),D89(3),P9(3),D9(3),PS1(2),DS1(2),SDF0(5), 4FTOT(5),VTOT(5),SENP(5),SENN(5),VENP(5),VENN(5),TSENP(5), 5TSENN(5),TVENP(5),TVENN(5),REST(48)
c	COMPLETATION CONTACT CONS(4) CR(C, C)
Ċ	EQUIVALENCE (IMEN, COM(1))
c c	STIFFNESS FORMULATION
	D0 10 J=3,57
C	
زا م	CALL FSTF7(ST , KODY)
C C	PREVIOUS STIFFNESS
	IF(MSTEP.LT.2)GO TO 30 CALL FSTF7(STF , KODYX)
C C	STIEFNESS DIFFERNCE
	$00 \ 20 \ 1 = 1.5$
20 30	DO 31 [=1,6
31	DO 31 J=1.G FK(1.J)=0.0
	PARS=WID*WID*(ST(1)+ST(2)) FK(1,1)=ST(5)
	FK(1,4) = -SI(5)
	FK(1,0) = FL(5)(0) FK(2,2) = ST(1) + ST(2) + ST(3)
	FK(2,3)=WID*(ST(2)-ST(1)) FK(2,5)=-FK(2,2)
	FK(2.6)=-FK(2.3) FK(3.3)=PARS+ST(4)
	FK(3,5)=FK(2,6) FK(3,6)=-PARS+SI(4)
	FK(4,4)=Sf(5)
	FK(5,5)=FK(2,2)
	FK(5,6)=FK(2,3) FK(6,6)=PARS+FL*FL*ST(5)+ST(4)
	DO 60 L=1.6 DO 60 J=1.6
60	$FK(J,I)=FK(I,J)$ $FE(MSIEP_GI,I)GO_TO_8O$
C C	INITIAL STIFFNESS FOR STEPO BETA O CORRECTION FOR STEP 1
ç	
	IF (MSTEP.EQ.1)CC=DFAC
40	DO 40 I=1,35 FK(I,1)=FK(I,1)*CC
80	RE TURN END
	SUBROUTINE TRANS(/SF/,/FE/) COMMON/INEEL/IMEM.KST.LM(G) NODI NODI KOUTDT EL WID STO(2) STI(2
	1ST2(3),STSO(2),STS1(2),PY(5),DELY(5),DELC(3),KODY(5),KODYX(5),

```
2ST5(3).ST6(3).STS3(2),P1(3).D1(3).P2(3).D2(3).P34(3).D34(3).
    3P5G(3),D56(3),P89(3),D89(3),P9(3),D9(3),P51(2),D51(2),SDF0(5),
    4FTOT(5), VTOI(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
    STSENN(5).TVENP(5),TVENN(5),REST(48)
     DIMENSION SF(6).FE(5)
     SF(1) = -FE(5)
     SF(2) = -FE(1) - FE(2) - FE(3)
     SF(3)=WID*(FE(1)-FE(2))+FE(4)
     SF(4) = FE(5)
     SF(5)=-SF(2)
     SF(G)=WID*(FE(2)-FE(1))+FL*FE(5)+FE(4)
     RETURN
     END
     SUBROUTINE FSTF7(/STIF/./KOD/)
     COMMON/INFEL/IMEM, KST, LM(6), NODI, NODJ, KOUTDT, FL, WID, STO(3), ST1(3),
    1ST2(3).STS0(2).STS1(2),PY(5),DELY(5),DELC(3),KODY(5),KODYX(5).
    2ST5(3),ST6(3),STS3(2),P1(3),D1(3),P2(3),D2(3),P34(3),D34(3)
    3P56(3).D56(3).P89(3),D89(3),P9(3),D9(3).P51(2),D51(2),SDF0(5),
    4FTOT(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
    5TSENN(5).TVENP(5),TVENN(5),REST(48)
     DIMENSION STIF(5), KOD(5)
     DO 25 I=1.3
     KYY=KOD(I)+1
     GO TO (30,35,40,30,35,55,60,30,55,60),KYY
30
     STIF(I)=STO(I)
     GO TO 25
35
     STIF(I) = STI(I)
     GO TO 25
     STIF(I)=ST2(I)
40
     GO TO 25
55
     STIF(1)=S15(1)
     GO TO 25
60
     STIF(I)=STG(I)
25
     CONTINUE
     00 80 1=1.2
     N=1+3
      XYY=K00(N)+1
     GU TO (85,90,90,95),KYY
85
     STIF(N)=STSO(1)
     GO TO 80
90
     STIF(N)=SISI(()
     GO TO 80
95
     STIF(N)=STS3(1)
80
     CONTINUE
     RETURN
     END
     SUBROUTINE RESP7(/NDOF/,/NINFC/,/KBAL/,/KPR/,/COMS/,/DDISM/,
     1/DD/./TIME/./VELM/,/DFAC/./DELTA/)
С
С
      STATE DETERMINATION , SHEAR WALL ELEMENTS
     COMMON/INFEL/IMEM.KST.LM(6).NODI.NODJ.KOUTDT.FL.WID.STO(3).ST1(3).
    1ST2(3), STS0(2), STS1(2), PY(5), DELY(5), DELC(3), KODY(5), KODYX(5),
    2ST5(3), STG(3), STS3(2), P1(3), D1(3), P2(3), D2(3), P34(3), D34(3)
    3P56(3),D56(3),P89(3),D89(3),P9(3),D9(3),P51(2),D51(2),SDF0(5).
    4FTOT(5).VIOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
    51SENN(5), TVENP(5), TVENN(5), REST(48)
     COMMON/WORK/DV(5),DF(5),FLIN(5),STRS(5),FDUM(5),DSUB(5),DELV(5).
    1FACAC, FAC, FACTOR, DELI, DTOT, STOT, DSO, DS , DS2, DS3, DS4, DS5, DS6,
    2057,058,059,K000,REM(1148)
     DIMENSION COM(1), COMS(1), DDISM(1), DD(1), VELM(1)
```



```
EQUIVALENCE(IMEM.COM(1))
С
     DO 10 J=1.NINFC
10
     COM(J)=COMS(J)
     DO 11 J=1.5
11
     KODYX(J)=KODY(J)
     IF (IMEM.EQ. 1) IHED=0
С
С
      DEFORMATION INCREMENTS
С
     DV(1) = -DDISM(2) + WID * DDISM(3) + DDISM(5) - WID * DDISM(6)
     DV(2)=-DDISM(2)-WID*DDISM(3)+DDISM(5)+WID*DDISM(6)
     DV(3) = -DDISM(2) + DDISM(5)
     DV(4) = DDISM(3) + DDISM(6)
     DV(5) = -DDISM(1) + DDISM(4) + FL*DDISM(6)
С
      FORCE INCREMENTS IN VARIOUS COMPONENTS
С
С
     CALL FSTF7( STRS , KODY )
     DO 12 I=1.5
     DF(I) = STRS(I) + DV(I)
     vrot(1)=vrot(1) +ov(1)
12
     FLIN(I) = FTOT(I) + OF(I)
     CALL RSPAX(1)
     CALL RSPAX(2)
     CALL RSPAX(3)
     CALL RSPSP(1)
     CALL RSPSP(2)
C
С
      NEW FORCE, UNBALANCED FORCE DUE TO CHANGE OF SLOPE
С
     DO 790 1=1.5
     FDUM(I) = FTOT(I)
     DSUB(I)=FLIN(I)-FTOT(I)
     IF(ABS(DSUB(I)).GT.1.E-8)KBAL=1
790
     CONTINUE
С
      DEFORMATION RATE FOR DAMPING
С
      IF (DFAC.EQ.O.O.AND.DELTA.EQ.O.O)GO TO 800
      tF(TIME.EQ.0.)G0 TO 737
     KEAL=1
     DELV(1)=-VELM(2)+WID*VELM(3)+VELM(5)-WID*VELM(6)
     DELV(2) = -VELM(2)-WID*VELM(3)+VELM(5)+WID*VELM(6)
     DELV(3) = -VELM(2) + VELM(5)
     DELV(4)=VELM(3)+VELM(6)
     DELV(5)=-VELM(1)+VELM(4)+FL*VELM(6)
С
С
      BETA-O DAMPING FORCE
С
      [F(DFAC.EQ.O.)G0 TO 830
     DO 835 I=1.5
     IF(I.GF.3)60 TO 840
     DSUB(I)=DSUB(I)+DFAC*STO(I)*DELV(I)
     GO TO 835
840
     N=1-3
     DSUB(I)=DSUB(I)+DFAC*STSO(N)*DELV(I)
835
     CONTINUE
С
С
      STRUCTURAL DAMPING FORCE
С
```

.

```
830
    IF (DELTA.EQ.O.)GO TO 800
     DO 865 I=1.5
     DSI_=DELTA + SIGN(ABS(FDUM(I)), DELV(I))
     DSUB(I)=DSUB(I)-DSL+SDFO(I)
     SDFO(I)=DSL
865
     CONTINUE
Ç
С
      UNBALANCED LOAD VECTORS
С
800
     IF (KBAL.EQ.0)GO TO 737
     CALL TRANS( DD , DSUB )
С
С
      EXTRACT ENVELOPES
737
    DO 743 [=1,5
     IF(SENP(I).GE.FDUM(I))GO TO 738
     SENP(I)=FDUM(I)
     TSENP(I)=FIME
     GO TO 741
738
     IF(SENN(I).LE.FDUM(I))GO TO 741
     SENN(I)=FDUM(I)
     TSENN([)=TIME
741
     IF(VENP(I).GE.VTOT(I)) GO TO 742
     VENP(I)=VTOT(I)
     TVENP(I)=TIME
     GO TO 743
742
     IF(VENN(I).LE.VIDT(I))GO TO 743
     VENN(I)=VTOT(I)
     TVENN(I)=TIME
743
     CONTINUE
С
¢
      PRINT TIME HISTORY
Ċ
     [F(KPR.1.T.O)G0 TO 200
     IF (KPR.EQ.O.OR.KOUTDT.EQ.O) GO TO 240
200
     IF ( IHED .NE .O)GD TO 220
     KKPR=IABS(KPR)
     PRINT 210.KKPR, TIME
210 FORMAT(/// 18H RESULTS FOR GROUP, 13.
    128H SHEAR WALL ELEMENTS, TIME =F8.3//
    25X.5H ELEM.2X.4HNODE.2X.4HNODE.22X.10HLEFT AXIAL.
    32X. 11HRIGHT AXIAL, 2X, ISHCENTRAL AXIAL, 2X, 10HROTATIONAL,
    42X. 10HHORIZONTAL/7X, 2HNO, 5H
                                    I.GH
                                              J.26X.6HMEMBER.
    5GX, GHMEMBER, 9X, GHSPRING, 9X, GHSPRING, 6X, GHSPRING)
     IHED=1
220 PRINT 230. IMEM.NODI, NODJ, (KODY(I), I=1,5), (FTOT(I), I=1,5),
    1(VIOT(I), [=1,5)
230 FORMAT(19.216/23X,11H YIELD CODE, 10X,16,6X,16,9X,16,7X,16,6X,16//
    123X. 18HTOTAL FORCE/MOMENT, 5E13.4//23X, 17HTOTAL DEFORMATION,
    25E13.4)
С
С
      SET INDICATOR FOR STATUS CHANGE
    KST=0
240
     DO 245 [=1,5
     [F(KODYX(1).NE.KODY(1))KST=1
245 CONTINUE
¢
С
      UPDATE INFORMATION IN COMS ARRAY
С
     DU 250 J=40,152
250 COMS(J)=COM(J)
```

```
COMS(2) = COM(2)
      RETURN
      END
      SUBROUTINE OUT7(/COMS/,/NINFC/)
      COMMON/INFEL/IMEM,KST.LM(G),NODI.NODJ,KOUTDT.FL,WID.STO(3),ST1(3),
     1ST2(3), STSO(2), STS1(2), PY(5), DELY(5), DELC(3), KODY(5), KODYX(5),
    2ST5(3),ST6(3),STS3(2),P1(3),D1(3),P2(3),D2(3),P34(3),D34(3)
    3P56(3), D56(3), P89(3), D89(3), P9(3), D9(3), PS1(2), D51(2), SDF0(5),
    4FT0T(5).VTOT(5).SENP(5),SENN(5).VENP(5),VENN(5).TSENP(5).
    STSENN(5).TVENP(5).TVENN(5),REST(48)
     DIMENSION COM(1).COMS(1)
      EQUIVALENCE (IMEM, COM(1))
C
С
       ENVELOPE OUTPUT , SHEARWALL ELEMENTS
С
     DU 10 J=1.NINFC
10
     COM(J)=COMS(J)
      IF (IMEM.EQ. 1) PRINT 20
20
     FORMAT(32H SHEARWALL ELEMENTS (TYPE 7)////
     15X, 5H ELEM, 2X, 4HNODE, 2X, 4HNODE, 22X, 10HLEFT AXIAL,
    22X, I HRIGHT AXIAL, 2X, I HCENTRAL AXIAL, 2X, 10HROTATIONAL.
    32X, 10HHORIZONTAL/7X, 2HNO, 5H I, 6H
                                                J,26X,6HMEMBER.
    46X, GHMEMBER.9X.GHSPRING, 9X, GHSPRING, 6X, GHSPRING)
С
     PRINT 30.IMEM.NODI, NODJ, (SENP(I), I=1,5), (TSENP(I), I=1,5),
         (SENN(I), I=1,5), (TSENN(I), I=1,5), (VENP(I), I=1,5),
     î
    2(TVENP(1), 1=1,5), (VENN(1), 1=1,5), (TVENN(1), 1=1,5)
     FORMAT(19.216/23X.14HPOSITIVE FORCE.GX.5E12.4/23X.
114H TIME.GX.5F12.4//23X.14HNEGATIVE FORCE.GX.
30
    11411
    25E12.4/23X.14H
                                 TIME, 6X. 5F12.4//23X. 13HPOSITIVE DISP
           .6X.5E12.4/23X.13H
    з
                                          TIME,6X,5F12.4//
    423X, 13HNEGATIVE DISP.6X, 5E12.4/23X, 13H
                                                          TIME.
    56X, 5F 12.4//)
     RETURN
     END
С
С
       STATE DEFERMINATION OF AXIAL COMPONENTS
c
     SUBROUTINE RSPAX(1)
     COMMON/INFEL/IMEM.KST.LM(6).NODI.NODJ.KOUTDT.FL,WID,STO(3),ST1(3).
     iST2(3),STS0(2),STS1(2),PY(5),DELY(5),DELC(3),KODY(5),KODYX(5),
    2ST5(3),ST6(3),STS3(2),P1(3),D1(3),P2(3),D2(3),P34(3),D34(3),
3P56(3),D56(3),P89(3),D89(3),P9(3),D9(3),PS1(2),DS1(2),SDF0(5),
    4FIOT(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
    STSENN(5), TVENP(5), TVENN(5), REST(48)
     COMMON/WORK/DV(5), DF(5), FLIN(5), STRS(5), FDUM(5), DSUB(5), DELV(5),
     IFACAC, FAC. FACTOR, DELI, DTOT, STOT, DSO, DS . DS2, DS3, DS4, DS5, DS6,
    2DS7, DS8, DS9, KODD, REM(1148)
     KODD=KODY(I)
     DELI=DV(I)
     STOT=FTOT(I)
     DTOT=VTOT(1)
     FACAC=0.
20
     FACTOR=1.-FACAC
     KODYI=KODD+1
     G0 T0(701,702,703,300,705,500,707,708,709,710),K0DY1
С
С
      ON SLOPE O <GET FACTOR FOR STATUS CHANGE
```

701 DSO=STO(I) DELI

IF(DSO)32.110.31 FAC=-STOT/DSO 31 IF(FAC.GE.FACTOR) GO TO 32 FACTOR=FAC STOT=0.0 KODD=1 GO TO 110 32 STOT=STOT+FACTOR*DSO GO TO 110 С С ON SLOPE 1 .GET FACTOR FOR STATUS CHANGE С 702 DS =ST1(I)+DELI IF(DS)33,110,35 33 K00D=3 GO TO 300 35 FAC=(PY(I)-STOT)/DS IF(FAC.GE.FACTOR)GO TO 38 FACTOR=FAC STOT=PY(I) K00D=2 GO TO 110 38 STOT=STOT+FACTOR*DS GO TO 110 C С ON SLOPE 2.GET FACTOR FOR STATUS CHANGE С 703 DS2=DELI*ST2(I) IF(DS2)40.110.45 40 KODD=5 GO TO 500 45 STOT=STOT+DS2*FACTOR K000=2 GO TO 110 С С ON SLOPE 3<GET FACTOR FOR STATUS CHANGE С 300 DS3=STO(I)+DELI (F(DS3)50,110.55 FAC=(P34(I)-STOT)/DS3 50 tF(FAC.GE.FACTOR)GO TO 60 FACTOR=FAC STOT=P34(I) K00D=4 GO TO 110 55 FAC=(P1(I)-STOT)/DS3 IF(FAC.GE.FACTOR)GO TO 60 FACTOR=FAC STOT=P1(I) K00D = 1 GO TO 110 60 STOT=STOT+FACTOR*DS3 GO TO 110 C С ON SLOPE 4.GET FACTOR FOR STATUS CHANGE C 705 DS4=ST1(1)*DELL IF(DS4)65,110,70 65 FAC=(-PY(I)-STOT)/DS4 IF(FAC.GE.FACTOR)GO TO 75

		FACTOR=FAC
		STOT = -PY(1)
		KODD=0
		G0 T0 110
	70	KODD=3
		60 TO 300
	75	STOT=STOT+FACTOR+DS4
	•••	
	c	
	č	ON SLODE & GET EACTOD EOD STATUS CHANCE
	Son	DES-DELLASTELL
	500	
	on	11(033/60, 110, 63)
4	ay	FAG = (FSG(1) - 5101)/055
		TACTOR-CAC
		SIU(=P56(1))
	85	FAC=(P9(1)-S101)/0S5
		IF (FAC.GE.FACTOR)GU TU 90
		FACTOR=FAC
		STOT=P9(1)
		K0D0=9
		CO TO 110
	90	STOT=STOT+FACTOR*DS5
		GO TO 110
	C	
	¢	ON SLOPE G.GET FACTOR FOR STATUS CHANGE
	707	DSG=DELT*STG(1)
		IF (DSG) 120, 110, 125
	120	FAC=(-PY(I)-STOT)/DSG
		IF(FAC.GE_FACTOR)GO TO 130
		FACTOR=FAC
		K0DD=7
		CO TO 110
	125	K0DD=5
		G0 T0 500
	130	STOT=STOT+FACTOR*DS6
		GO TO 110
	C	ON SLOPE 7, GET FACTOR FOR STATUS CHANGE
	708	DS7=DELI*SIO(I)
		IF (DS7) 140. 110, 145
	140	K0D0=7
		GU TU 150
	145	FAC=(-PY(I)-STOT)/DS7
		IF (FAC.GE.FACTOR)GO TO 150
		FACTOR=FAC
		STOT = -PY(I)
		KODD=8
		G0 T0 110
	150	STOT=STOT+FACTOR+DS7
	-	GO TO 110
	С	
	ċ	ON SLOPE 8. GET FACTOR FOR STATUS CHANGE
	709	DS8=ST5(() DELL
		(F(DS8))160_110_165
	160	FAC = (-PY(I) - STOI)/DSR
		LE (EAC GE EACTOR) GO TO 170
		The second s

· -50-

```
FACTOR=FAC
     STOT=-PY(1)
     K0D0=7
     GO TO 110
165 FAC=(P89(I)-STOT)/DS8
     IF(FAC.GE.FACTOR)GO TO 170
    FACTOR=FAC
     STOT=P89(I)
     KODD=9
     GO TO 110
170
    STOT=STOT+FACTOR*DS8
     GO TO 110
сс
      ON SLOPE 9, GET FACTOR FOR STATUS CHANGE
710
     DS9=STG(I)*DELI
     IF (DS9) 175, 110, 180
175 K00D=5
     GO TO 500
180
     FAC=(P2(I)-STOT)/DS9
     IF(FAC.GE.FACTOR)GO TO 185
     FACTOR=FAC
     STOT=P2(I)
     KODD=2
     GO TO 110
185
    STOT=STOT+FACTOR+DS9
      CHECK COMPLETION OF CYCLE
110
    FACAC=FACAC+FACTOR
     (F(FACAC.LT.0.9999999)G0 TO 20
     IF (KODD.EQ. 1) CALL VRTX1(I)
     IF (KODD.EQ.2)CALL VRTX2(I)
     IF (KODD.EQ.4)CALL VRTX4(I)
     EF (KODD. EQ. 6) CALL VRIXG(I)
     IF (KODD.EQ.9)CALL VRTX9(I)
     KODY(I)=KODD
     FTOT(I)=STOT
     VTOT(I)=DIDI
     RETURM
     END
     SUBROUTINE VRTX1(1)
     COMMON/INFEL/IMEM,KST,LM(6),NODI,NODJ,KOUTDT,FL,WID,STO(3),ST1(3),
    isr2(3).sts0(2).sts1(2).py(5).dely(5).delc(3).Kody(5).kodyx(5).
    2ST5(3),ST6(3),STS3(2),P1(3),D1(3),P2(3),D2(3),P34(3),D34(3),
    3P56(3),D56(3),P89(3),D89(3),P9(3),D9(3),P51(2),D51(2),SDF0(5),
    4FTOT(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
    5TSENN(5), TVENP(5), TVENN(5), REST(48)
     COMMON/WORK/DV(5),DF(5),FLIN(5),STRS(5),FDUM(5),DSUB(5),DELV(5),
    IFACAC, FAC, FACIOR, DELL, DTOT, STOT, DSO, DS , DS2, DS3, DS4, DS5, DS6,
    2057, D58, D59, K000, REM(1148)
     P1(1)=STOF
     D1(I)=DTOF
     D34(I)=(-PY(I)-STOT+STO(I)*DTOT-ST1(I)*DELC(I))/(STO(I)-ST1(I))
     P34(1)=(-ST0(1)+PY(1)-ST1(1)+ST0T+ST0(1)+ST1(1)+(DT0T-DELC(1)))
    I/(STO(I)-ST1(I))
     RETURN
     END
     SUBROUTINE VRTX2(1)
     COMMON/INFEL/IMEM,KST,LM(G).NODI.NODJ.KOUTDT.FL,WID,STO(3).ST1(3),
    1ST2(3).STS0(2).STS1(2),PY(5),DELY(5).DELC(3).KODY(5).KODYX(5).
```

Reproduced from best available copy.

С

С

С

```
25T5(3),ST6(3),ST53(2),P1(3),D1(3),P2(3),D2(3),P34(3),D34(3),
3P56(3),056(3),P89(3),089(3),P9(3),D9(3),P51(2),D51(2),SDF0(5),
4FTOT(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
5TSENN(5), TVENP(5), TVENN(5), REST(48)
COMMON/WORK/DV(5), DF(5), FLIN(5), STRS(5), FDUM(5), DSUB(5), DELV(5),
IFACAC, FAC, FACTOR, DELT, DTOT, STOT, DSO, DS , DS2, DS3, DS4, DS5, DS6,
2DS7.DS8.DS9.KODD.REM(1148)
P2(1)=STOT
 P9(1)=STOT
 D2(I)=DTOT
 D9(1)=DTOT
 TOTO/TOT2=(1) 3TG
 ST5(1)=STG(1)*STO(1)/STI(1)
P56(1)=(ST5(1)+ST6(1)+(DT0T-DELC(1))-ST5(1)+PY(1)-ST6(1)+ST0T)
t/(ST5(1)-STG(1))
 D56(1)=(-PY(1)-STOT+SI5(1)*DTOT-ST6(1)*DELC(1))/
1(ST5(1)-ST6(1))
 P89(1)=(ST5(1)*ST6(1)*(DELC(1)-DTOT)+ST5(1)*STOT+
tsre(1)*PY(1))/(sts(1)-ste(1))
D39(1)=(STOT+PY(1)+ST5(1)*DELC(1)-ST6(1)*DTOT)/
1(ST5(1)-ST6(1))
 RETURN
 END
 SUBROUTINE VRTX4(1)
 COMMON/INFEL/IMEM.KST.LM(6).NODI.NODJ.KOUTDT.FL.WID.STO(3).ST1(3).
1ST2(3),STSO(2),STS1(2),PY(5),DELY(5),DELC(3),KODY(5),KODYX(5).
2ST5(3), ST6(3), STS3(2), P1(3), D1(3), P2(3), D2(3), P34(3), D34(3)
3P5G(3),D5G(3),P89(3),D89(3),P9(3),D9(3),PS1(2),DS1(2),SDF0(5),
4FTOT(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
STSENN(5), FVENP(5), TVENN(5), REST(48)
 COMMON/WORK/DV(5),DF(5),FLIN(5),STRS(5),FDUM(5),DSUB(5),DELV(5),
IFACAC, FAC, FACTOR, DELL, OTOT, STOT, DSO, DS, DS2, DS3, DS4, DS5, DS6.
2DS7, DS8, DS9, KOOD, REM(1148)
 SDIFF=P34(1)-STOT
 VDIFF=D34(1)-DTOT
 P34(1)=STOT
 034(1)=010r
 Pi(I)=Pi(I)-SDIFF
 D1(I)=D1(I)-VDIFF
 RETURN
 END
 SUBROUTINE VRTXG(1)
 COMMON/INFEL/IMEM,KST,LM(G).NODI,NODJ,KOUTDT,FL,WID,STO(3),ST1(3).
1ST2(3), STSO(2), STS1(2), PY(5), DELY(5), DELC(3), KODY(5), KODYX(5),
2$T5(3), $T6(3), $T$3(2), P1(3), D1(3), P2(3), D2(3), P34(3), D34(3)
3P56(3), D56(3), P89(3), D89(3), P9(3), D9(3), PS1(2), DS1(2), SDF0(5),
4F FOT(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
5TSENN(S), TVENP(5), TVENN(5), REST(48)
 COMMON/WORK/DV(5).DF(5),FLIN(5),STRS(5),FDUM(5),DSUB(5),DELV(5),
IFACAC.FAC.FACTOR.DELL.DTOT.STOT.DSO.DS .DS2.DS3.DS4.DS5.DS6.
2DS7.DS8.DS9.KODD.REM(1148)
 SDIFF=P56(1)-STOT
 VDIFF=D56(I)-DIOT
P56(1)=STOT
 D56(1)=DTOf
 P9(1)=P9(1)-SD1FF
 09(1)=09(1)-V01FF
 RETURM
 END
```

```
SUBROUTINE VRIX9(1)
     COMMON/INFEL/IMEM.KST.LM(6).NODI.NODJ.KOUTDT.FL.WID.STO(3).ST1(3).
    1ST2(3), STSO(2), STS1(2), PY(5), DELY(5), DELC(3), KODY(5), KODYX(5),
    2SI5(3), STG(3), STS3(2), P1(3), D1(3), P2(3), D2(3), P34(3), D34(3),
    3P56(3), D56(3), P89(3), D89(3), P9(3), D9(3), P51(2), D51(2), S0F0(5),
    4FTOT(5).VTOT(5),SENP(5),SENN(5),VENP(5),VENN(5),TSENP(5).
    STSENN(5), TVENP(5), TVENN(5), REST(48)
     COMMON/WORK/DV(5), DF(5), FLIN(5), STRS(5), FDUM(5), DSUB(5), DELV(5).
    IFACAC, FAC, FACTOR, DELI, DTOT, STOT. DSO, DS .DS2, DS3, DS4, DS5, DS6,
    2DS7, DS8, DS9, KODD, REM(1148)
     SDIFF=P9(I)-STOT
     VDIFF=D9(I)-DTOT
     P9(1)=STOT
     D9(1)=DT01
     P5G(I)=P5G(I)-SDIFF
     D56(I)=D56(I)-VDIFF
     RETURN
     END
C
      STATE DETERMINATION OF SPRING COMPONENTS
     SUBROUTINE RSPSP(I)
     COMMON/INFEL/IMEM,KST,LM(6).NODI.NODJ,KOUTDT,FL,WID,STO(3).ST1(3).
    1ST2(3), STSO(2), STSI(2), PY(5), DELY(5), DELC(3), KODY(5), KODYX(5),
    2ST5(3),STG(3),STS3(2),P1(3),D1(3),P2(3),D2(3),P34(3),D34(3)
    3P56(3), D56(3), P89(3), D89(3), P9(3), D9(3), PS1(2), DS1(2), SDF0(5),
    4FTOF(5), VTOT(5), SENP(5), SENN(5), VENP(5), VENN(5), TSENP(5),
    STSENN(5), TVENP(5), TVENN(5), REST(48)
     COMMON/WORK/DV(S), DF(5), FLIN(5), STRS(5), FDUM(5), DSUB(5), DELV(5),
    1FACAC.FAC.FAC.OR, DELI, DTOT, STOT, DSO, DS .DS2, DS3, DS4, DS5, DS6.
    2DS7, DS8, DS9, KODD, REM(1148)
     N=1+3
     KODD=KCDY(N)
     DELI=DV(N)
     STOT=FTOT(N)
     DTOT=VTOI(N)
     FACAC=0.0
177 FACTOR=1. -FACAC
     KODYI=KODD+1
С
¢
      ON SLOPE O ,GET FACTOR FOR STATUS CHANGE
     GO TO(113,114,115,303),KODYI
113
     DSO=STSO(I)*DELL
     [F(DSO)31.41.51
31
     FAC=(-PY(N)-STOF)/DSO
     IF (FAC.GE.FACTOR) GO TO 61
     FACTOR=FAC
     K0DD=2
     STOT=-PY(N)
     GO TO 41
51
     FAC=(PY(N)-STUT)/USO
     IF (FAC.GE.FACTOR) GO TO 61
     FACIOR=FAC
     KODD=1
     STOT=PY(N)
     GO FO 41
61
     STOT=STOT+FACTOR*DSO
     GO TO 41
      ON SLOPE I.GET FACTOR FOR STATUS CHANGE
С
114
     DS =STS1(I)+DELI
     IF(DS )71.41.81
```

71 KODD=3

	CU TO 202
81	STAT=STAT+FACTOR+DS
.	G0 T0 41
С	ON SLOPE 2 GET FACTOR FOR STATUS CHANGE
115	DS2=STS1([]*DFL[
• • • •	IE(DS2)91 41 101
91	STOT = STOT + FACTOR + DS2
• •	60 TO 41
101	K0DD=3
	G0 T0 303
СÇ	
C	ON SLOPE 3, GET FACTOR FOR STATUS CHANGE
303	DS3=STS3(I)+DELI
	IF(DS3)111,41,121
111	FAC=(-PS1(I)-STOT)/DS3
	IF(FAC.GE.FACTOR)GO TO 131
	FACTOR=FAC
	K0DD=2
	STOT = -PST(I)
	GO TO 41
121	FAC=(PS1(I)-STOT)/DS3
	IF(FAC.GE.FACTOR)GD TO 131
	FACTOR=FAC
	K000=1
	STOT=PS1(I)
	GD TO 41
131	STOT=STOT+FACTOR DS3
41	FACAC=FACAC+FACTOR
	IF(FACAC.1.T.O.9999999)G0 TO 177
	IF(KODD.EQ.1)G0 T0 750
	IF(KODD.EQ.2)G0 10 760
760	
150	PSI(1)=SIUI
	051(1)~0101 STS2(1)~STO(070T
760	0010770
100	PSI(I) = PIPI
770	KDDY(N)=K0D0
	FTOT(N) = STOT
	Y01(N) = D101
	RETURN
	END

•

APPENDIX A-2

TANGENT STIFFNESS MATRIX OF THE SHEARWALL ELEMENT

K _H	0	0	-ĸ _H	0	-нк _н
	$\frac{(\frac{EA}{H})_{L} + K_{V} +}{(\frac{EA}{H})_{R}}$	$-B\left(\frac{EA}{H}\right)_{L} + B\left(\frac{EA}{H}\right)_{R}$	0	$-\left(\frac{EA}{H}\right)_{L}-K_{V}$ $-\left(\frac{EA}{H}\right)_{R}$	$B\left(\frac{EA}{H}\right)_{L} - B\left(\frac{EA}{H}\right)_{R}$
	$-B\left(\frac{EA}{H}\right)_{L} + B\left(\frac{EA}{H}\right)_{R}$	$B^{2} \left(\frac{EA}{H}\right)_{L} + K_{R}$ $+ B^{2} \left(\frac{EA}{H}\right)_{R}$	0	$B\left(\frac{EA}{H}\right)_{L} - B\left(\frac{EA}{H}\right)_{R}$	$-B^{2} \left(\frac{EA}{H}\right)_{L} + K_{R}^{\delta}$ $-B^{2} \left(\frac{EA}{H}\right)_{R}$
-K _H	0	0	к _н	0	HR _H
	$-\left(\frac{EA}{H}\right)_{L}-K_{v}-\left(\frac{EA}{H}\right)_{R}$	$B\left(\frac{EA}{H}\right)_{L} - B\left(\frac{EA}{H}\right)_{R}$	0	$\left(\frac{EA}{H}\right)_{L+K_{V}}$ + $\left(\frac{EA}{H}\right)_{R}$	$-B\left(\frac{EA}{H}\right)_{L}$ $+B\left(\frac{EA}{H}\right)_{R}$
-HK _H	$B\left(\frac{EA}{H}\right)_{L} - B\left(\frac{EA}{H}\right)_{R}$	$-B^{2} \left(\frac{EA}{H}\right)_{L} + K_{R}$ $-B^{2} \left(\frac{EA}{H}\right)_{R}$	HK _H	$ = B \left(\frac{EA}{H}\right)_{L} + B \left(\frac{EA}{H}\right)_{R} $	$B^{2} \left(\frac{EA}{H}\right)_{L} + H^{2} K_{H}$ $+ K_{R} + B^{2} \left(\frac{EA}{H}\right)_{R}$