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ABSTRACT

In order to design carthquake resistant dams and to evaluate the safety of existing dams during
future earthquakes, reliable analytical procedures are necessary to predict earthquake induced stresses
and deformations. The objectives of this work are to develop efficient techniques for analyzing the
earthquake response of concrete gravity dams and investigate how dam-water-foundation rock interac-
tion, and alluvium and sediments that invariably deposit at the bottom of reservoirs, affect the dam
response.

In an initial investigation of the fundamental mode response of dams, the reservoir bottom
materials are modelled approximately by a reservoir bottom that partially absorbs incident hydro-
dynamic pressure waves. It is demonstrated that reservoir bottom absorption provides an important
energy radiation mechanism that can significantly affect the earthquake response of concrete gravity
dams. A general analytical procedure, based on the substructure mcthod, is then developed to compute
the response of concrete gravity dams to arbitrary earthquake ground motion including the simultane-

ous effects of dam-water interaction, dam-foundation rock interaction and reservoir bottom absorption.

Utilizing thc analytical procedure the response of dams to harmonic and earthquake ground
motion is computed for a wide range of parameters characterizing the dam, water, foundation rock and
reservoir bottom materials. It is shown that: {(a) the earthquake response of concrete gravity dams is
incrcased by dam-water interaction, but decreased by reservoir bottom absorption with the magnitude
of these cffects dependent on the flexibility of the foundation rock; (b) dam-water interaction and
reservoir bottom absorpiion both have a profound effect on the response of dams to vertical ground
motion, but relatively less effect on the response to horizontal ground motion if foundation-rock flexi-
bility is considered; (c) the significance of the response of concrete gravity dams to vertical ground
motion was overestimated in earlier studies that assumed a rigid reservoir bottom; and {(d) the
compressibility of the water should be considered in the earthquake analysis of concrete gravity dams
because the effects of dam-water interaction and reservoir bottom absorption are not properly

represented by the assumption of incompressible water.
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1. INTRODUCTION

In order to design earthquake resistant dams and to evaluate the safety of existing dams during
future earthquakes, reliable analytical procedures are necessary to predict the earthquake induced
stresses and deformations. The early research [5,6] was directed towards the analysis of hydrodynamic
effects in the earthquake response of concrete gravity dams. An analytical procedure, based on the sub-
structure method, was developed to compute the earthquake response of dams including the dynamic
effects of the impounded water [31. Utilizing this analytical procedure it was shown that dam-water
interaction and water compressibility have a significant influence on the dynamic response of concrete
gravity dams [4]; and that the contribution of the vertical component of ground motion to the total
response was especially important in the earthquake response of dams because of the large hydro-

dynamic pressure developed in the lateral direction {2,4].

Subsequently, the substructure method was extended to include the effects of interaction between
the dam and flexible foundation rock, which was idealized as a viscoelastic half-plane [8]. Utitizing this
analytical procedure it was shown that the response of concrete gravity‘dams is generally influenced o a

significant degree by dam-water interaction and dam-foundation rock interaction [10,11].

In the substructure method formulation, hydrodynamic effects contribute additional frequency-
dependent terms in the frequency domain cquations of motion for the dam [{3]). These hydrodynamic
terms can be interpreted as added mass, added damping and added force contributions of the
impounded water. They are obtained from the solution of the wave equation for appropriate accelera-
tions at the boundaries of the fluid domain. In the analytical procedure [8] all the hydrodynamic terms,
except the added force associated with vertical ground motion, were determined under the assumption
that the reservoir boitom is rigid, causing complete reflection of hydrodynamic pressure waves incident
at the reservoir bottom. Under this assumption, the hydrodynamic pressure on a rigid dam due to vert-
ical ground motion, and similarly the associated added force, are very large because hydrodynamic pres-
sure waves do not propagate in the upsiream direction, resulting in a truly undamped system without
any energy loss. This recognition [5,] led to a damping boundary condition arising from partial absorp-

tion of hydrodynamic pressure waves at the reservoir bottom [25] that was incorporated in subsequent

1



further demonstrated that an absorptive reservoir bottom provides an important energy radiation
mechanism, through refraction of pressure waves into the layer of reservoir bottomi materials, that

should be considered in the earthquake analysis of dams.

Because the effects of reservoir bottom absorption are shown to be significant in Chapter 3, a pre-
viously developed general analytical procedure [8], which considers all the important vibration modes in
the earthquake response of concrete gravity dams inciuding dam-water-foundation rock interaction, is
extended in Chapter 4 to include the cffects of absorptive reservoir bottom materials, such as alluvium
and sediments. The general analytical procedure is based on the substructure method, wherein each
substructure, dam, impounded water, foundation rock and layer of reservoir bottom materials, is ideal-
ized in a manner appropriate to its properties and dynamic behavior. The interaction between the
impounded water and reservoir bottom materials is approximately modelled by introducing a boundary
condition that allows partial absorption of hydrodynamic pressure waves incident on the reservoir bot-
tom. Including reservoir bottom absorption does not change the form of the frequency domain equa-
tions for the dam-water-foundation rock system, but it does affect the hydrodynamic terms. Contin-
uum solutions for the hydrodynamic terms including reservoir bottom absorption are presented and

numerical methods for their efficient evaluation are discussed.

The objective of Chapter 5 is then to ascertain the manner in which the response of dams is
affected by reserveir bottom absorption for a wide range of basic parameters characterizing the dam,
impounded water, foundation rock and reservoir bottom materials. The response of an idealized dam
mongalith to harmonic herizontal or vertical ground motion is presented in the form of frequency
response functions. Based on these response results, the cffects of reservoir bottom absorption on the
response of the dam including its interaction with the impounded water and foundation rock are investi-

gated and shown to influence significantly the response of dams.

Chapter 6 presenis the displacement and stress responses of the tallest, non-overflow monolith of
Pine Flat concrete gravity dam to Taft ground motion for a range of properties for the reservoir bottom
materials and various assumptions for the impounded water and foundation rock. Based on the resulis

from these analyses, the effects of reservoir bottom absorption, dam-water interaction and dam-



2. SYSTEM AND GROUND MOTION

The system considered consists of a concrete gravity dam supported on the horizonltal surface of
underlying flexible foundation rock and impounding a reservoir of water (Figure 2.1). For computing
the response of the dam to intense earthquake ground motion, it is appropriate to consider the two-
dimensional vibration of individual dam monoliths. This assumption, based on cbservations during
forced vibration tests of Pine Flat Dam and the earthquake response of Koyna Dam, is discussed else-
where in detail [8,24]. The system is analyzed under the assumption of linear behavior for the concrete
‘dam, the impounded water and the foundation rock. Thus, the possibilities of concrete cracking [23] or

waler cavitation [31] are not considered.

The selected morolith or dam cross-section is idealized as a two-dimensional finite element sys-
tem in order to model arbitrary geometry and elastic material properties of the dam. However, certain
restrictions are imposed on the geometry of the dam to permit a continuum solution for hydrodynamic
pressure in the impounded water. For the purpose of determining hydrodynamic effects, and only for
this purpose, the upstream face of the dam is assumed to be vertical. ‘This assumption is reasonable for
actual concrete gravity dams because the upstream face is vertical or almost vertical for most of 1hé
height, and the hydrodynamic pressure on the dam face is insensitive to small departures of the face
slope from vertical [30], especially if these departures are near the base of the dam, which is usually the
case. The water impounded in the reservoir is idealized by a fluid domain of constant depth and
infinite length in the upstream direction. The foundation rock underlying the dam and reservoir bot-

tom materials is idealized as a homogeneous, isotropic, viscoelastic half-plane.

The bottom of a reservoir upstream of a dam may consist of highly variable lavers of exposed
bedrock, alluvium, silt and other sedimentary material. Because these reservoir bottom materials are
not adequately modelled by the viscoelastic half-plane idealization of the foundation rock, they are
approximately modelled, as described in Chapters 3 and 4, by a boundary condition at the reservoir bot-

tom that allows partial absorption of incident hydrodynamic waves.

Over a period of time, the sediments may deposit to a significant depth in some reservoirs. The

thickness of sediment layer can be recognized in the analytical procedure by correspondingly reducing

5
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on the reservoir bottom results in a reflected hydrodynamic pressure wave in the water and {wo
refracted waves, dilatational and rotational, in the reservoir bottom materials. The angle of reflection is
equal to the angle of incidence and the angles of refraction of the two refracted waves are given by
Snell’s law. Although the boundary condition given by equation (3.7) allows for proper reflection of
hydrodynamic pressure waves for any angle of incidence, the only refracted waves allowed in the layer

of reservoir bottom materials are downward, vertically propagating dilatational waves.

The fundamental parameter that characterizes the effects of absorption of hydrodynamic pressure
waves at the reservoir bottom is the admittance or 'damping coefficient ¢. The wave reflection
coefficient «, which is the ratio of the amplitude of the reflected hydrodynamic pressure wave to the
amplitude of a vertically propagating pressure wave incident on the reservoir bottom, is related to the

damping coefficient [17,25; and Appendix A] by

1—gC
1+ gqC

(3.9)

The wave reflection coeflicient « is a more physically meaningful description of the behavior of hydro-
dynamic pressure waves at the reservoir bottom than is the damping éoefﬂcient g. Although the wave
reflection coefficient depends on the angle of incidence of the pressure wave at the reservoir bottom,
the value & for vertically incident waves, as given by cquation (3.9), is used herc for convenience. The
wave reﬂectiqn coefficient @ may range within the limiting values of 1 and —1. For rigid reservoir bot-
tom materials, C, =0 and g =0, resulting in « = 1. For very soft reservoir bottom materials, C,
approaches zero and g = oo, resulting in @ = —1. The material properties of the reservoir bottom
medium are highly variable and depend upon many factors. It is believed that « values from 1 to O
would cover the wide range of materials encountered at the bottom of actual reservoirs. Two typical
examples for homogeneous materials are: competent sandstone (£,=2 million psi, unit weight

=120 1b/ft?) has a=0.56; dense sand (E,=0.2 million psi, unit weight =100 1b/ft") has a =0.
The motion of the dam, as governed by equation (3.2), is affected by the hydrodynamic pressure
in the second term on the right side of the same equation; and the hydrodynamic pressure, as governed

by equation (3.5) subject to the boundary conditions of equations (3.6) to (3.8), is affected by the
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according to equations (3.10) and (3.11), can be separated into boundary conditions for p}{x,y,w) and
71(x,y,0). The frequency response function pj(x,y,w) for the hvdrodynamic pressure due to horizon-
tal ground acceleration of a rigid dam is the solution of equation (3.13) subject to the following boun-

dary conditions:

9p -
ax(O,y,w) I

g%(x,o,w) — iwg p(x,0,w) =0 (3.15)

lx,Hw) =0

The frequency response function pi{x,y.w) for the hydrodynamic pressure due to vertical ground
acceleration of a rigid dam is the solution of equation (3.13) subject to the following boundary condi-

tions:

9p _
ax 0, yw)=0

g—i—(x,(},w) — g Px0w) = —p ) (3.16)

plx,Hw)=0

.)

The frequency response function pi{x,y,w) for the hydrodynamic pressure due to horizontal accelera-
tion ¢{10,y) of the upstrcam facc of a dam in its fundamental vibration mode is the solution of equa-

tion (3.13) subject to the following boundary conditions:

@(O,y,w) =—p¢{0,y)
dx

9 (1 0.0) — iwg Bx.0.m) = 0 ) G.17)
9y

plx, Hw) =0

Y
The complex-valued frequency response functions B4 (x,y,@) and p;(x,y,w) for hydrodynamic
pressure can be obtained using standard solution methods for boundary value problems. They are

derived in Appendix B and summarized below for the upstream face of the dam (x=0):
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wolow) =w/C (3.22a)

- % (3.22b)

where w ; are the natural vibration frequencies of the impounded water with rigid reservoir botton; and

Y ,(y,@)=cosu ,y (3.23)
Furthermore, equation (3.18) reduces to the expressions derived carlier [2,3,25] for a rigid reservoir
bottom (Appendix C).

The substitution of equation (3.14) into equation (3.12) leads to the frequency response function
for the fundamental modal coordinate for a dam subjected to the /-component of harmonic free-field

ground acceleration (/= x,y):

—[ Ll + Bi{w)]

__—
e = —w’ [M+RelB)(@)]} + iw{2M ¢t 0,—oImB ()]} + oM, (3.2
in which
H
Bi(w) = — [ B(0,y,0) 610, ay (3.250)
0
H
Bi(w) = — [ 5:1(0,5,0) ¢ 10, ) dv (3.25b)
0

where 73 (0,y.w) and p;(0,y,w) were presented in equation (3.18). The effects of dam-water interac-
tion and reservoir bottom absorption are contained in equation (3.24) through the frequency-dependent
terms B§{w) and B;(w). Hydrodynamic effects can be interpreted as modifying the properties of the
dam by introducing an added force Bl {w), an added mass rcpresented by the real-valucd component of
Bi(w), and an added damping represented by the imaginary-valued component of B(w). The added
mass arises from the portion of the impounded water that reacts in phase with the motion of the dam.
The added damping arises from the radiation of pressure waves in the upstream direction, away from

the dam, and from their refraction and absorption into the absorptive reservoir bottom materials.
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FIGURE 3.1 Influence of reservoir bottom absorption on the hydrodynamic force on a rigid dam due
to harmonic horizontal ground motion.
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the upstream direction of the infinitely-long fluid domain, resulting in radiation of enérgy, As the exci-
tation frequency increases past w !, the hydrodynamic force contribution of the »" modc changes from
a pressure function that decays exponentially to onc that propagates in the upstream direction, thus
reducing the real-valued component of Fi(w) and increasing its imaginary-valued component (Figure
3.1). With increasing excitation frequency, a larger number of modes are associated with the propagat-
ing pressure waves, leading to increased energy radiation and hence smaller hydrodynamic force [Figure

3.1(a)] -- except for the local resonances at the natural vibration frequencies of the impounded water.

Because of reservoir bottom absorption, the frequency.—dependent eigenvaldes i, (w) of the
impoundecd water are complex-valued for all excitation frequencies. Consequently, the contribution of
the »™ natural vibration mode of the impounded water to the hydrodynamic force due to horizontal
ground motion is complex-valued for all excitation frequencies; wherein the imaginary-vatued com-
ponent arises from the radiation of energy due to propagétion of pressure waves in the upstream direc-
tion and their refraction into the absorptive reservoir bottom. As a result, if the reservoir bottom is
absorptive, Fi{w) contains a 90° out-of-phase component even for excitation frequencies less than w{
[Figure 3.2(c)]. Because of the additional energy radiation that resuits from reservoir bottom absorp-
tion, the hydrodynamic force is bounded for all excitation frequencies, the fundamental resonant peak
is reduced and the higher resonant peaks are virtually eliminated. The additional energy radiation has

little influence on the resonant frequencies of the impounded water.

The hydrodynamic pressure due to vertical ground motion is independent of the upstream x-
coordinate 5] because pressure waves do not propagate in the upstream direction, resulting in a truly
undamped system if the reservoir bottom is rigid. The frequency response function F§(w) for hydro-
dynamic force due to vertical ground motion is real-valued, in-phase or opposite-phase relative to the
ground acceleration, for all excitation frequencies. Reservoir bottom absorption leads to an imaginary-
valued component associated with radiation of energy because pressure waves refract into the absorp-
tive reservoir bottom for all excitation frequencies. This radiation damping reduces the response for all

frequencies and resulis in bounded resonant response peaks.
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component does not exist for any excitation frequency. It is apparent that, whereas the modulus of the
hydrodynamic force with an absorptive reservoir bottom may be predicted reasonably well for lower
excitation frequencies by neglecting water compressibility, this assumption does not recognize the radia-
tion of energy due to pressure waves propagating in the upstream direction and refracting into the layer
of reservoir bottom materials. For higher excitation frequencies, the incompressible solution greatly
overestimates the hydrodynamic force becausc energy radiation due to wave . propagation in the
upstream direction is especially significant. Thus, it may be concluded that the analytically predicted
effects of reservoir bottom absorption are not properly represented by neglecting compressibility of the
impounded water. The conflicting conclusions from experimental data may in part be due to unreliable

measurements of the phase angle between hydrodynamic force and acceleration of thé piston.

3.5 Dam Response

3.5.1 Basic System Parameters

The non-dimensional form of equation (3.24) shows that, if ?l(gu) = —w’ Y| (w) is expressed as a
function of the excitation frequency parameter w/w for a dam of fixed cross-sectional geometry and
Poisson’s ratio, it depends on three system parameters: ), = w{/w,, the ratio of the fundamental
natural vibration frequency of the impounded water to that of the dam alone; H/ H,, the ratio of water
depth to dam height; and «, the wave reflection coeflicient for the reservoir bottom materials. As seen
in equation (3.22b), @{= 7 C/2H, and it can be shown that w| = y Cy/ H, where y is a dimensionless
factor that only depends on the cross-sectional geometry of the dam and Poisson’s ratio, C; = m ,

E, is the Young’s modulus of elasticity and p, is the density of the concrete in the dam; therefore

™ CHA

= 2 C. H (3.26)

For fixed values of v, C, p, and H/H,, the frequency ratio , is proportional to 1//E;. Thus Q,
decreases with increasing F., or dam stiffness, and vice versa. If the reservoir is empty or the
impounded water is assumed to be incompressible, Y(0) expressed as a function of @/w; is indepen-

dent of E; and a. Also, the incompressible water case is equivalent to {3, = co.
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3.5.3 Effects of Reservoir Bottom Absorption

Frequency response functions for dams subjected to horizontal and vertical ground motions are
presented in Figures 3.3 to 3.6 for two selected values of 2, =10.67 and 1.0. Each plot contains
response curves for the-dam with full reservoir for five values of « and the response curve for the dam
with an empty reservoir. The latter is the familiar response curve for a single degree-of-freedom sys-
tem with frequency-independent mass, stiffness and damping parameters. The response of the dam
with impounded water, however, is affected by the frequency-dependent hydrodynamic terms in the

equations of motion for the dam, resulting in complicated shapes for the response curves.

The response behavior is especially complicated if the hydrodynamic pressure waves are com-
pletely reflected at the reservoir bottom (a=1) because at excitation frequencies equal to w/, the
natural vibration frequencies of the impouﬁded water, the added hydrodynamic mass and force are both
unbounded. As determincd by a limiting process, however, the response function due to horizontal
ground motion, has bounded values at w;, which appear as local dips or increases in the response
curve. Because of dam-water interaction, the resonant behavior is particularly complicated in the neigh-
borhood of w{ and w; where two resonant peaks can occur (Figure 3.3) or only a‘ single resonant peak
may appear {Figure 3.5}. In contrast, the response function due to vertical ground motion is dom-
inated by the unbounded response values at excitation frequencies equal to o/, (Figures 3.4 and 3.6).
In the neighborhood of w !, the added mass is controlled by the term [w?— (w2~ " and the added
force due to the vertical ground motion by [w?— (w ;)2]_1; because the latter term tends to infinity as
approaches w ; faster than the first term, the response is unbounded [18]. These unbounded peaks are
not the result of resonance in the usual sense, which is associated with the denominator in equation

(3.24) attaining a minimum, but arc caused by the unbounded added force.

Reservoir bottom absorption reduces the added force associated with both ground motion com-
ponents and the added mass to bounded values at w,. Consequently, the dips at w/ in the response
function due to horizontal ground motion are eliminated; and the unbounded values at w; in the
response function due to vertical ground motion are reduced to bounded peaks, which disappear for the

smaller values of «a.
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3.5.4 Influence of the Frequency Ratio O,

The response of the dam with an empty reservoir, when presented in the form of Figures 3.7 to
3.10, is independent of the Young’s modulus E; for the dam concrete. Similarly, the responsc curves
including hydrodynamic effects do not vary with E; if water compressibility is neglected [6]. However,
the results presented in Figures 3.7 to 3.10 demonstrate that the frequency ratio { ,, or correspondingly
the £, value, affects the response functions if water compressibility is included. The fundamental
resonant frequency of the dam decreases to a greater degree relative to w, for the smaller values of {2 ,,
i.e. larger values of £, This decrease in resonant frequency atslo depends on reservoir bottom absorp-

tiont, being less pronounced for a wave absorptive reservoir bottom than for a rigid reservoir bottom.

Wave absorption at the reservoir bottom affects the resonant peak and bandwidth in an especially
significant way. Comparison of Figures 3.7 and 3.9 for the response of the dam to horizontal ground
motion shows that decreasing ) ,, or increasing £, leads to larger resonant response over a narrower
bandwidth for a rigid reservoir bottom (Figure 3.7); but causes smaller resonant response over a wider
bandwidth for an absorptive reservoir bottom (Figure 3.9). This opposite trend in response results
from the manner in which the effective damping at resonance is altereld by reservoir bottom absorption.
Two mechanisms contribute to the effective damping of the dam-water system: energy dissipation in the
dam alone, represented by the viscous damping ratic &;; and added damping due to radiation and
absorption of hydrodynamic pressure waves, represented by the term Im[B(w)] in equation (3.24).
The added damping at the resonant frequency of the dam-water system is zero if the reservoir bottom
is rigid, because pressure waves do not refract into rigid reservoir bottom materials, nor do they pro-
pagate in the upstream direction at the resonant frequency, as it is less than w{. As , decreases, or
E; increases, the added mass at the resonant frequency increases, which proportionalty decreases the
viscous damping ratio in the dam. Because the added damping is zero at the resonant frequency, the
effective damping decreases with decreasing () ,, leading to larger resonant response (Figure 3.7). If
reservoir bottom absorption is included, however, the added damping is greater than zero at the
resonant freque‘ncy of the dam-water system because the natural vibration modes of the impounded

water contribute to energy radiation by propagation of pressure waves upstream and refraction into the
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dam response essentially as an incompressible fluid if the dam is flexible enough. Water compressibility
assumes significance in the response of concrete gravity dams because £ is generally in the range of 2

to 5 million psi for which the corresponding frequency ratio €, varies between 1.2 and 0.7,

3.5.5 Comparison of Responses to Horizontal and Vertical Ground Motion

Comparing the response of the dam to horizontal and vcrlical ground motions (Figures 3.7 and
3.8} it is apparent -- consistent with common view -- that the response of a dam with an empty reser-
voir to vertical ground motion is relatively small because the L{ term {equation (3.4)] is much smaller
for vertical ground motion (/=y} than for horizontal ground motion {(/=x). With water impounded in
the reservoir, the dam response is affected by the added hydrodynamic mass, damping and force terms
in equation (3.24). Because the added mass and damping are independent of the excitation direction,
the response functions due to horizontal and vertical ground motion display the same resonant fre-
quency and effective damping. However, as discussed in Section 3.4, the hydrodynamic force on a rigid
dam, and hence the added force Bj(w), strongly depends on the excitation direction, thus leading to

considerably different response due to the two components of ground motion.

This effect is summarized in Table 3.1 where the ratio of the resonant amplitude of horizontal
crest displacement of the dam with a full reservoir to that with an empty reservoir is presented for
several values of the frequency ratio , and two values of the wave reflection coefficient «: 1.0 and
0.5. In Table 3.1, the unbounded peaks that occur at excitation frequencies equal to @ in the response
to vertical ground motion with rigid reservoir bottom are ighored because they are not resonant peaks
in the usual sense caused by the denominator of equation (3.24) attaining a minimum, but are caused
by unbounded valucs of Bf{w). Whereas hydrodynamic effects result in increased response of the dam
to either ground motion component (Table 3.1}, if water compressibility is included the increase is
greater in the response to vertical ground motion because the effective earthquake force L{ is small and
the added force BY{w), which is comparatively large, dominates the numerator of equation (3.24). The

added force is comparatively large because it is the result of hydrodynamic pressures acting in the
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horizontal direction, same as the direction of primary displacement in the fundamental vibration mode
of the dam, whereas L{ is the result of effective earthquake forces acting in the vertical direction. In
contrast, for horizontal ground motion both the effective earthquake force and hydrodynamic pressurc

act in the horizontal direction, so B§(w) does not dominate L1

Hydrodynamic effects cause a larger increase in response to vertical ground motion than in
response to horizontal ground motion, as the ratios of the responses to the two ground motion com-
ponents show in Table 3.2, Thus, it ‘is apparent that dam response to vertical ground motion is rela-
tively more important if hydrodynamic effects are included. IAs seen in Tables 3.1 and 3.2, the
significance of the response to vertical ground motion depends on @, and «; increasing with decreasing
¢ ,, i.e. as water compressibility effects become more significant; increasing for larger o ie., as the
energy radiated through an absorptive reservoir bottom decreases; and the response is sensitive to «

only for systems with smaller  , values.



4. GENERAL ANALYTICAL PROCEDURE

4.1 Introduction

The response results presented in Chapter 3 demonstrated that absorptive reservoir bottom
materials can significantly affect the fundamental mode response of dams with impounded water due to
harmonic ground motion. Consequently, the effects of reservoir bottom materials should be included
in the earthquake analysis of dams. With this motivation, a general analytical procedure [8], based on
the substructure method, is extended to include the effects of absorptive reservoir bottom materials on
the response of concrete gravity dams to earthquake ground motion. As in the previcus analytical pro-

cedure [8], the cffects of dam-water interaction and dam-foundation rock interaction are included.

4,2 Frequency Domain Equations

4.2.1 Dam Substructure

The cquations of motion for the dam idealized as a planar, two-dimensional finite element system

(Figure 2.1) are:
mr.+ ch.+ ko, =—m:1 ¢ —m.1ral) + R (1) 4.1)

in which m,, ¢, and k, are the mass, damping and stiffness matrices for the finite element system; r. is

the vector of nodal point displacements relative to the free-field ground displacement (Figure 4.1):
rl=<ri iy e e, Ren, >

where rXand r} are the x- and y-components of displacements of nodal point »n; N is the number of

nodal points above the dam base; N, is the number of nodal points at the base; and

1"=<1010---10---10>

I

(137=<0101---01---01>

The force vector R .(7) includes hydrodynamic forces R, () at the upstream face of the dam and forces

R, (1) on the base of the dam due to interaction between the dam and the foundation rock.

39
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For harmonic ground acceleration a/(#) = ¢’ in the /= x (horizontal) or /=y (vertical) direc-
tion, the displaccments and forces can be expressed in terms of their complex-valued frequency
response functions: r.{0)=FlHw)e™, RAD=RAw)e®’, R, (=R w)e™ and R,(0) = Rilw)e™"
The vector ?(f(w) contains the frequency response functions for the x- and y-components of displace-
ment, (r)'and (r})’, n=1,2, - - - N+N,, duc to the /-component of ground motion. Partitioning r,
into r, for nodal points above the base, and r,, for nodal points on the base (Figure 4.1), and assuming
constant hysteretic damping in the dam, equation (4.1) can be expressed as [8]:

[—m)] {mw} R |
=—1 4.2)

Fllw) mol i T IR w)

k k,

4 (1+IT);) ka K o

2m 0
™) m,

where 7, is the constant hysteretic damping factor for the dam concrete. The hydrodynamic forces R,
will be expressed later in terms of the acceleration of the upstream face of the dam by analysis of the
fluid domain substructure. Also, the dam-foundation rock interaction forces R, will be expressed in

terms of the interaction displacements at the base by analysis of the foundation rock substructure.

4,2.2 Foundation Rock Substructure

The complex-valued, dynamic stiffness matrix $(w) for the foundation-rock region relates forces

and displacements [8]:

Slw) S,

SMw) Splw)

{?f((t))] ﬁj(ﬁ))
- (4.3)

(_l(w) 6;,(60)

The forces and corresponding displacements, relative to the free-field ground motion, at the surface of
the foundation-rock region (Figure 4.1) are expressed in terms of their complex-valued frequency
response functions. The forces and displacements at the foundation-rock surface under the dam base
duc to dam-foundation rock interaction are R (1) = R () e’ and r (1) = T,(w)e™". Similarly, the
hydrodynamic forces and displacements at the reservoir bottom are Q{1 = Q,lw)e™’ and

g(1) = qlw)e™'. Beyond a certain distance upstream of the dam, the hydrodynamic forces Q,, acting at
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0 o T'(w)
+ _ ===
0 S/ | [Fiw)

a * __Srq_St;,yl_Qh(w)

k k,
ki kg

+ (1+im)

om0
_meh

m,l (4.9)
The vector ﬁ,’,(w) of frequency response functions for hydrodynamic forces at the upstream face of the
dam contains non-zero terms corresponding only to the x-degrees of freedom (DOF). The vector
(_);,(m) of frequency response functions for hydrodynamic forces at the reservoir bottom contains non-
zero terms corresponding only to the y-DOF. Later, R J(w) and Q,(w) will be expressed in terms of
the accelerations of the upstream face of the dam and the reservoir bottom by analysis of the fluid

domain substructure.

4.2.4 Reduction of Degrees of Freedom
Equation (4.9} represents a set of 2{N+N,} frequency-deperident, complex-valued equations.
Enormous computational effort would be required for repeated solution of these equations for many
values of the excitation frequency. Thus, it is important to reduce the number of degrees of freedom.
An approach based on the Ritz concept is effective in the reduction of the number of DOF in
interacting structural systcms [8]. The displacements r, rclative to the free-field ground motion are

expressed as linear combinations of J Ritz vectors of an associated dam-foundation rock system:

J
J=1

where Z;{¢) is the generalized coordinate that corresponds to the j* Ritz vector ¢ ;. For harmonic
ground acceleration, equation (4.10) can be expressed in terms of the complex-valued frequency

response functions for the generalized coordinates:

-
Tl =3 Zwy, (4.11)

J=1
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shown later.

Introducing the transformation of equation (4.11) into equation (4.9), premultiplying by ¥,/ and
using the orthogonality properties of the cigenvectors of the associated dam-foundation rock system

with respect to the stiffness and mass matrices of equation (4.13), results in:
S(w)Z/(w) = L'(w) (4.17)

where the elements of the matrix S and the vector L' are:

Splw) = [0+ 1+ IAA8 , + ¢ /S (w) — U+in ) S0y, (4.18a)
Lo=—4¢,mJl/+{¢]) T_Rilz(‘”) - q[;bag,.q(m)g(;,l(m)(_)h(m) (4.18b)
for n,j=1,2,3 -+ J; Z'(w) is the vector of frequency response functions Z)(w) for the generalized

coordinates; 8 ,; is the Kronecker delta function; and ¥ is a subvector of ¢, that contains only the ele-

ments corresponding to the nodal points at the upstream face of the dam.

Equations (4.17) and (4.18) represent J simultaneous, complex-valued equations in the general-
ized coordinates for each excitation frequency_ w. These equations need to be solved over a range of
values of the excitation frequency to compute the frequency response functions. Fortunately, accuraté
solutions can be obtained by including only a small number of Ritz vectors, typically less than ten,

which profoundly reduces the computational effort [9].

4.2.5 Fluid Domain Substructure

Boundary Value Problem. -- The unknown hydrodynamic forces R,(#) and Q,(s), whose frequency
response functions appear in equation (4.18b), can be expressed in terms of accelerations of the
upstream face of the dam and the reservoir bottomlby analysis of the fluid domain. Assuming water to
be linearly compressible and neglecting its viscosity, the small amplitude, irrotational motion of water is

governed by the two-dimensional wave equation:

2 2 2
9p  op_ L3 (4.19)

ax? 9yt C?ar

where p(x,y,t) is the hydrodynamic pressure (in excess of hydrostatic pressure) and C is the velocity
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The frequency response function f)’(x,y,m) for the hydrodynamic pressure in the impounded
water is the solution of equation (4.20) subject to the boundary conditions in equations (4.21) to (4.23)
and the radiation condition in the upstream direction (negative x-direction).. After solving for
—1 . . o/ ~ - . .
p'(x,y.w), the frequency response functions Rilw) and —Q,(w) in equation (4.18b) are given as vec-
tors of the nodal forces statically equivalent to the pressure function 7'(0,y,®) at the upstream face of

the dam and the pressure function 5'(x,0,w) at the reservoir bottom, respectively.

Absorptive Reservoir Bottom. -- The boundary condition in equation (4.22) contains three terms that
contribute to the total acceleration of the reservoir bottom: the vertical free-field ground acceleration,
the madification of the free-field motion due to interaction between the impounded water and the foun-
dation rock, and the modification of the free-field motion due to interaction between the dam and the
foundation rock. Grouping the terms in equation (4.22) that are functions of the hydrodynamic pres-
sure (or force) on the left side of the equation, gives a more convenient form for the boundary condi-

tion at the reservoir bottom:

J o '
g—yﬁ(x,o,m) — o0l Glxw) = = plb, + T, (02, =xy (4.24)
J=1

The right side of equation (4.24) is identical to the right side of the boundary condition at the reservoir
bottom presented in reference 8, but the left side now contains an additional term that includes the

effects of water-foundation rock interaction.

By idealizing the foundation-rock region as a viscoelastic half-plane, the dam-foundation rock
interaction effects were rigorously represented in the analytical formulation of the preceding scctions.
This idealization is not appropriate for representing the effects of interaction between the impounded
water and the foundation rock because these effects should be dominated by the overlying alluvium and
sediments, possibly deposited to a significant depth, that are highly saturated and have a small shear
modulus. A hydrodynamic pressure wave impinging on such materials will partially reflect back into
the water and partially refract, primarily as a dilatational wave, into the layer of reservoir bottom

materials. Because of the considerable energy dissipation that results from hysteretic behavior and
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is given by

1 1

47
— (4.29)

Clw) = —j

Because the thickness of the sediment layer is not recognized explicitly, this compliance function is
applied at the reservoir bottom. The compliance function Clw) is imaginary-valued for all excitation
frequencies, so the wave absorptive model of the reservoir bottom materials introduces an additional

damping mechanism into the system.

The substitution of equations (4.25) and (4.29) into equation (4.24) gives the boundary condition

at the absorptive reservoir bottom:

J l -
[-6%-— wqlp(x,0w) = = plo, + Ta, (D Z @), i=xy (4.30)
=1

where ¢=p/p,C, This boundary condition allows for proper reflection of hydrodynamic pressure
waves for any angle of incidence. However, the only refracted waves allowed in the reservoir bottom
materials are downward, vertically propagating dilatational waves.

As discussed in Section 3.2, the fundamental parameter that characterizes the effects of absorption
of hydrodynamic pressure waves into the reservoir bottom materials is the admittance or damping
coefficient g. The wave reflection coefficient «, which is defined as the ratio of the amplitude of the
reflected hydrodynamic pressure wave to the amplitude of a vertically propagating pressure wave

incident on the reservoir bottom, is related to the damping coefficient g by equation (3.9).

Solution for Hydrodynamic Pressure Terms. -- The frequency response function B'(x,y,w) for the
hydrodynamic pressure in the impounded water is the solution of equation {(4.20) subject to the boun-
dary conditions in equations (4.21), (4.30) and (4.23) and the radiation condition. The linear form of

the governing equation and boundary conditions allows Z}'(x,y,m) to be cxpressed as:

J hrxd .
(% p.0) = Folxp.0) + T Zw) [p(x.p,0) + 5y (4.31)
=

In equation (4.31), the frequency response function pg{(x,y,w) for the hydrodynamic pressure due to
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9 I
{0,y =0
dx
(2 iwgls (4.35)
gy~ 0 alBlxn0.0) = —px,;(0 :
(x,Hw)=0
J

The complex-valued frequency response functions pj(x,y,w) and p/(x,y.w) can be obtained
using standard solution methods for boundary value problems. They are derived in Appendix B and

summarized below for the upstream face of the dam {(x=0):

2 .
- — F'n(w) [On(w)

F0,y.0) = =20 H Y, (yw) (4.36a)
BOTY0 P ,,g] Hluww) — ()21 + ilwg) Vi lw) — 0’/ C? iy 4
50,p.0) = £S L sin 2U=)) (4.36b)

. @ cos—w” + igC'sin wll ¢
C C
o0 2 )
70, y,w) = =20 H (o) fin () Y,{(yw) (4.36¢)
J

S H A w) ~ (@) 1+ o) w/u,z,(w)wm2,)C2

where the cigenvalues u (@) satisfy cquation (3.20) and the eigenfunctions Y ,(y,w) are defined by

equation (3.21), and

H
1
lo (@) = —)Y ,(yw)d , (4.37a)
a, (@ Hj(; V) dy 4 |
1 I
L) = = fo U Y () dy (4.37b)

The solution of equation €4.20) with the boundary conditions in equation (4.35) may be obtained
by use of a Fourier transform with respect to the spatial x-coordinate. Such a general solution is not
necessary, however, because the resulting pressure function ﬁ_f’(x,y,m) has little effect on the response

of the dam, as will be discussed in the next section.

Hydrodynamic Force Vectors. -- The frequency response functions for R,{(¢), the vector of hydro-

dynamic forces at the upstream face of the dam, and Q,(#), the vector of hydrodynamic forces at the
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contained in the hydrodynamic terms: Rg(w), fﬁ;,f‘(w), R,-b(w), Qllw), -(j_‘/-f(w) and ﬁj-b(w).

It can be argued and shown through numerical cxamples that several terms in equation (4.40) are
relatively small and can be dropped without introducing significant error [8,§]. Cne group of terms
arises from the hydrodynamic forces Q4 Qf and Q}’ at the rescrvoir bottom that are due to the various
excitations mentioned earlier. The other such term involves the hydrodynamic forces Rf’ at the

upstream face of the dam due to deformational motions of the reservoir bottom.

Dropping these terms from equations (4.40) leads to the final form for the elements of 8 and L:
Sy@) = [~ w’+ U+inIA21s,; + ¢ 113 (@) — (U+m )50y,
+ o e} TR (o) (4.41a)
Li=—¢ ml! + g/ TR (4.41b)

Equations (4.39) and (4.41) represent J compiex-valued equations in the frequency response functions
Zlw), j=1,2, - - - J, for the generalized coordinates that correspond to the Ritz vectors included in the
analysis. The matrix S{w) and vector L{w) are determined according to equation (4.41) for each exci-
tation frequency w of intercst and equation (4.39) is solved to give Z}(w). Repeated solution for the
excitation frequencies covering the range over which the earthquake ground motion and structural
response have significant components leads to the complete frequency response functions for the gen-

eralized coordinates.

Equations (4.39) and (4.41) are ideatical to equations (52) and (53) in reference 8, where a rigid
reservoir bottom was assumed for all retained hydrodynamic terms except ﬁ({(m). As derived here,
reservoir bottom absorption also affects the other hydrodynamic terms Rg{w) and R Jf(w), as seen in

equations (4.36a) and (4.36¢), but it does not change the form of the frequency domain equations,

4.3 Response to Arbitrary Ground Motion
The response of the dam to arbitrary ground motion can be computed once the complex-valued
frequency response functions Zf(w), b=x y, =12, -+ J for the generalized coordinates have been

obtained from the solution of equations (4.39) and (4.41) for excitation frequencies in the range of
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functions 5¢(0,y,e) and 5/(0,y,w) by the principle of virtual disptacements. Two aspects of the func-
tions pi(0,y,@) and ’p']-/'((),y,m) that fead to a large amount of computational effort in their evaluation

are examined in this section with the objective of developing an efficient analytical procedure.

4.4.1 Number of Vibration Modes of the Impounded Water

The frequency response functions pi(0,y,w) and ﬁf(O,y,w) defined in equations (4.36a) and
(4.36¢) are summations of the contributions of an infinite number of natural vibration modes of the
impounded water. In practice, the sums must be truncated at a finite number. The computational
effort required to evaluate the hydrodynamic terms is directly proportional to the number of vibration
modes in the sums, so only the significant vibration modes should be included. The sums should at
least include the contributions of all the vibration modes of the impounded water with natural vibration
frequencies less than the maximum excitation frequency .. considered in the analysis. The natural
vibration frequencies of the impounded water are functions of the wave reflection coefficient a, but
their dependence on « is slight, as shown in Section 3.4. Consequenﬁly, the criterion for determining
p

the number of inctuded vibration modes can be stated in terms of the natural vibration frequencies o),

of the impounded water with rigid reservoir bottom as the smallest value of » that satisfies:

W) > Wmax (4.46)

A few additional vibration modes should be included in the summations to ensure convergence of the-

hydrodynamic terms for excitation frequencies near @o,,. Several numerical experiments indicated that
five additional modes are sufficient. Thus, from equations (4.46) and (3.22b), the number N, of

included vibration modes is given by

+ 5 (4.47)

Equation (4.47) shows that the number N, of included vibration modes increases as the depth of the

impounded water increases and the maximum excitation frequency increases.
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5. COMPLEX-VALUED FREQUENCY RESPONSE FUNCTIONS

5.1 Introduction

This chapter presents the response of an idealized concrete gravity dam due to harmonic ground
motion in the form of complex-vatued frequency response functions. The response is compuied using
the general analytical procedure developed in Chapter 4. In contrast to Chapter 3, which only con-
sidered the fundamental mode resbonse, the results presented in this chapter include all the significant
vibration modes of the dam. VResponsc results are presented for a wide range of the important parame-
ters that characterize the properties of the dam, foundation rock, impounded water and reservoir bot-
tom materials. Based on the frequency response functions, the effects of reservoir bottom absorption
on the responsc of dams, including intcraction with the impounded water and foundation rock, are

investigated.

5.2 System, Cases Analyzed and Response Quantities

3.2.1 Dam-Water-Foundation Rock System

The idealized monolith considered in Chapter 3 as representative of concrete gravity dams has a
triangular cross-section with a vertical upstream face and a downstream face slope of 0.8 io 1. The dam
is assumed to be homogeneous and isotropic with linear elastic properties for the mass concrete:
Poisson’s ratio =0.2, unit weight =155 1b/ft’, and the Young’s modulus of elasticity E, is varied over a
practical range: £=2, 4 and 5 million psi. Energy dissipation in the dam concrete is represented by
constant hysteretic damping factor of n,=0.10. This value corresponds to a viscous damping ratic of

0.05 in all natural vibration modes of the dam on rigid foundation rock with an empty reservoir.

The finitc clement idealization of the dam monolith, shown in Figure 5.1, consists of iwenty ele-
ments and twenty-six nodal points. This idealization has forty-two degrees of freedom if the foundation

rock is assumed to be rigid, and fifty-two degrees of freedom if foundation-rock flexibility is considered.

The dam menotith is supported on the surface of foundation rock idealized as a homogeneous,

isotropic, viscoelastic half-plane. The material properties of the foundation rock are: Poisson’s ratio

63
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FIGURE 5.1 Finite element idealization of the dam monolith.



Dam-Water-Foundation Rock System Analyzed

67

Table 5.1 -- Cases of the Idcalized

Dam Foundation Rock [mpounded Water Reservoir Bottom
Case E, . . N .
T Condition | E/E, Condition H/H, | Condition o
(million psi} k

1 ;my’F rigid oo none 0 - -
2 4 rigid o full 1 rigid 1.0
3 4 rigid o0 full I absorptive | 0.75
4 4 rigid o0 full 1 absarptive | 0.3
5 4 rigid 0 futl | absorptive | 0
6 5 rigid o0 {ull 1 rigid 1.0
7 5 rigid oo full 1 absorptive | 0.5
8 2 rigid o futl 1 rigid 1.0
9 2 rigid ©0 full 1 absorptive | 0.5
10 any: rigid oo tull,incompressible 1 rigid amfr
B any flexible 1 none 0 - -
12 4 flexible ! full 1 vigtd 1.0
13 4 flexible [ full 1 ahsorptive | 0.75
14 4 flexible 1 full 1 absorptive | 0.5
15 4 flexible l full 1 absorptive | 0
i6 4 flexible 2 full 1 rigid 1.0
17 4 flexible 2 full 1 absorptive | 0.5
18 4 flexible 174 full 1 rigid [.0
19 4 flexible 174 full 1 absorptive | 0.5

E

Response results for these cases, when presented in normalized form, are valid for all £,.

] Responsc results for the case neglecting watcer compressibility are independent of e.
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FIGURE 5.2 Hydrodynamic effects in response of dams due to harmonic ground motion. Results
presented for full reservoir with varying values of the wave reflection coefficient a (Cases 2, 3, 4 and §
of Table §.1), and for no water (Case 1).



71

absorption eliminates the unbounded response values due to vertical ground motion and the dips in the

response function for horizontal ground motion.

Thus, reservoir bottom absorption primarily affects the dam response for excitation frequencies
less than o{, where material damping in the dam concrete is normally the only cnergy dissipation
mechanism present if the foundation rock is assumed 1o be rigid. For higher frequencies the upstream
radiation of energy dominates the energy radiation into the absorptive reservoir bottom, essentially

eliminating its effect.

5.3.2 Influence of Young’s Modulus E

The frequency response function for the dam, when presented in dimensionless form, is indepen-
dent of the Young's modulus E; for the dam concrete if there is no impounded water or its compressi-
hility is neglected [6]. The frequency response functions for Cases 2, 4, 6, 7, 8 and 9 due to horizontal
and vertical ground motion, presented in Figures 5.3 and 5.4, respectively, demonstrate that the E
value affects the response if water compressibility is included. Most affected is the fundamental
resonant frequency @,, the response in the neighborhood of this frequency, and the response of the
dam with rigid reservoir bottom due to vertical ground motion for excitation frequencies close to w, --
because of the response singularities discussed earlier. As £ increases, the normalized fundamental
resonant frequency ratio @,/w of the dam decreases due to dam-water interaction. This decrease in
the resonant frequency ratio also depends on reservoir bottom absorption, being less pronounced for a
wave absorptive reservoir bottom than for a rigid reservoir bottom [compare Figure 5.3(a) to (b), and

Figure 5.4(a) to (b)].

Reservoir bottom absorption affects the amplitude and frequency bandwidth of the fundamental
resonant peak in an especially significant way. The response to horizontal ground motion shows that
increasing £, causes larger resonant response over a narrower bandwidth for a rigid reservoir bottom
[Figure 5.3(a)]; but causes smaller resonant response over a wider bandwidth for a wave absorptive
reservoir bottom [Figure 5.3(b)]. This opposite response behavior results from the manner in which

the effective damping at the resonant frequency is influenced by reservoir bottom absorption, as
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FIGURE 5.4 . Influence of Young’s modulus £, for dam concrete on response of dams with full reser-
voir due to harmonic vertical ground motion. Results presented for rigid reservoir bottom (Cases 2, 6
and 8 of Table 5.1), absorptive reservoir bottom (Cases 4, 7 and 9) and incompressible water (Case
10).
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horizontal ground motion, but little influence on the response to vertical ground motion. As secen
above, the value of £, can significantly affect the fundamental resonant frcquency and the response
function for excitation frequencies near it. For larger excitation frequencies, however, the frequency
response functions for. both components of ground motion are are less affected by the £, valueg,

irrespective of whether the reservoir bottom is rigid or absorptive.

3.3.3 Effects of Warer Compressibility

To understand how compressibility of the impounded water affects the dam with a full reservoir,
the response obtained by neglecting water compressibility (Case 10) is also plotted in Figures 5.3 and
5.4. If water compressibility is neglected dam-water interaction results in frequency-independent, real-
valued added force and added mass; there is no added damping. With decreasing E;, the effects of
water compressibility on the fundamental rcsonant response become smaller. Although this trepd is
straighttforward for horizontal ground motion (Figure 5.3}, it is more complicated for the response to
vertical ground motion (Figure 5.4) because of the unbounded response peaks for excitation frequen-

cies equal to w; if the reservoir bottom is rigid.

Contrary to an earlier recommendation based on the tank experiments [20] described in Section
3.4, in the range of E, values encountered in concrete gravity dams, the effects of wave absorption at
the reservoir bottom on dam response are not properly represented by analysis that neglects water
compressibility [Figures 5.3(h) and 5.4(b)]. Although such an analysis provides a goond approximation
to the fundamental resonant frequency @,, the fundamental resonant response to horizontal ground
motion is overestimated because incompressible water does not allow radiation of energy upstream or
through the reservoir bottom; and the amplitude of the higher resonant peaks are overestimated by
even a greater margin. Therefore, water compressibility should be considered in the earthquake

analysis of concrete gravity dams.
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FIGURE 5.5 Response of dams due to harmonic horizontal ground motioen for four conditions: dam
on rigid foundation rock with no water (Case 1 of Table 5.1); dam on flexible foundation rock with no

water (Case 11); dam on rigid foundation rock with full reservoir {Cases 2 and 4); and dam on flexible
foundation rock with Tull rescrvoir (Cases 12 and 14).
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4); and dam on flexible foundation rock with full reservoir (Cases 12 and 14). As noted earlier [11],
interaction between the dam and flexible foundation rock affects the response of the dam in a simpler
manner than docs dam-water interaction (compare ¢urve 2 to 3). This is becausc the impedances of
the half-plane idealization for the feundation-rock region are slowly-varying, smooth functions of exci-
tation frequency without resonant frequencies, whereas the added hydrodynamic force, mass and damp-
ing are frequency-dependent functions with peaks at w,. Dam-foundation rock interaction rcduces the
fundamental resonant frequency @, of the dam, and reduces the amplitude of the fundamental
resonant peak and increases the bandwidth at resonance because of radiation and material damping in
the foundation-rock region. Similarly, dam-foundation rock interaction reduces the higher reson'ant fre-
quencies, although to a lesser degree than the fundamental resonant frequency, and substantially
reduces the amplitude of the higher resonant peaks. As shown carlicr [11], for decreasing valucs of
E,/E,, which for fixed E; means decreasing foundation rock modulus, each resonant frequency of the
dam decreases; the resonant amplitude at each of these frequencies decreases and the bandwidth at
resonance incrcases, implying an increase in the apparcnt damping of the structure. Dam-foundation
rock interaction, as also shown earlier [11], affects the response of the dam to horizontal and verticat

ground motions in a similar manner.

5.4.2 Hydrodynamic and Reservoir Bottom Absorption Effects

The effects of dam-water interaction and of dam-foundation rock interaction on the dynamic
response of the dam can be observed from the remaining response functions presented in Figures 5.5
and 5.6. The effects of dam-water interaction on the dam response to either ground motion component
are qualitatively similar for rigid and flexible foundation rock, whether the rescervoir bottom is rigid
[Figures 5.5(a) and 5.6(a)] or absorptive [Figures 5.5(b) and 5.6(b)]. Dam-water interaction leads to
almost the same percentage reduction in the fundamental resonant frequency irrespective of the

foundation-rock condition. This observation leads to the following expression:

Eo
8

|

i

!
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less pronounced for flexible foundation rock than for rigid foundation rock (compare the change from

curve 2 to 4 with the change from curve 1 to 3).

The conclusions deduced in Section 5.3 concerning the response to vertical ground motion from
responsc results for dams supported on rigid foundation rock are confirmed by Figures 5.5 and 5.6, in
which the effects of dam-foundation rock interaction are included. The significance of the response of
the dam to vertical ground motion, relative to the response to horizontal ground motion, increases
because of hydrodynamic cffects irrespective of whether the foundation rock is rigid or flexible. How-
ever aé noted before, reservoir bottom absorption reduces the felative significance of the response to

vertical ground motion.

The effects of reservoir bottom absorption on the response of the dam, supported on flexible
foundation rock, due to horizontal and vertical ground motion arc shown in Figures 5.7 and 5.8, respec-
tively. The response of systems with moduli ratio £,/E~=1 is presented for four values of the wave
reflection coefficient: a=1.0 (rigid reservoir bottom), 0.75, 0.5, and 0 (Cases 12, 13, 14 and 15).
Rescrvoir bottom absorption mainly affects the fundamental resonant peak due to horizontal ground
motion (Figure 5.7), reducing its amplitude as a decreases with little change in the resonaﬁt frequency,
and it essentially has no effect on the response for higher excitation frequencies, an observation noted
earlier from results for rigid foundation rock (Figure 5.2). The most pronounced effects of reservoir
bottom absorption on the response to vertical ground motion (Figure 5.8) are at excitation frequencies
near @, where the unbounded response peaks reduce to bounded values decreasing with a; at excita-

tion frequencies not close to w, the effects are relatively small.

Reservoir bottom absorption has a smaller effect on the response of the dam supported on flexible
foundation rock (Figures 5.7 and 5.8) than the response of the dam on rigid foundation rock (Figure
5.2). This can be explained by considering the damping due to dam-foundation rock interaction and
reservoir bottom absorption. As mentioned in the previous section, where the foundation rock was
assumed rigid, the primary effect of reservoir bottom absorption on dam-water interaction is to increase
the effective damping at the fundamental resonant frequency, where normally no damping exists other

than the material damping in the dam concrete. If foundation-rock flexibility is included, however,
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FIGURE 5.9 Effects of reservoir bottom absorption on response of dams with full reservoir due to
harmonic horizontal ground motion for various values of the moduli ratio £,/ E;.
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to vertical ground motion, except at excitation frequencies near the natural vibration frequencies o, of
the impounded water (Figure 5.10). The reduced importance of reservoir bottom absorption as E,-/ES
decreases was explained previously by consideration of the contributions to damping from dam-
foundation rock interaction, dam-water interaction, and reservoir bottom absorption. In particular, the
effects of reservoir bottom absorption are most signiﬁgzlnt if the foundation rock is rigid because,
except for material damping in the dam, there is no other damping mechanism at the fundamental
resonant frequency of the dam-water system. As the foundation rock becomes more flexible, more
energy radiates through the foundation-rock region because of d'am-foundation rock interaction, so that
the additional damping due to reservoir bottom absorption is not as effective in further reducing the

response.

The curves in Figures 5.9 and 5.10 arc replotted in Figures 5.11 and 5.12 to sﬁow further the
influence of the moduli ratio E_,-,/Es on the response of the dam. As E,-/ES decreases, which for a
fixed E; means an increasingly flexible foundation rock, the fundamental resonant frequency
decreases, the dam response at this frequency decreases and the frequency bandwidth at resonance
increases. These trends are the same for a rigid reservoir bottom [Fiéures 5.11(a) and 5.12(a)] and an
absorptive reservoir bottom [Figures 5.11(b) and 5.12(b)]. It is apparent from Figures 5.11 and 5.12
that the effects of decreasing moduli ratio £,/ £, on the fundamental resonant response of the dam are
qualitatively similar, whether the reservoir bottom is rigid or absorptive; but quantitatively, the relative
decrease in amplitude of the fundamental resonant peak depends on the wave reflection coefficient a,

being less pronounced for an absorptive reservoir bottom.

As the moduli ratio £,/ E; decreases, dam-foundation rock interaction introduces increased radia-
tion damping at the higher resonant frequencics, in addition to the damping from hydrodynamic effects,
thus reducing the amplitude of the the higher resonant peaks. For relatively flexible foundation rock,

eg. E;/E~=1/4, the higher resonant peaks are almost completely suppressed.
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0.2.2 Ground Motion

The ground motion recorded at Taft Lincoln School Tunnel during the Kern County, California,
earthquake of 21 July 1952 is selected as the free-feld ground acceleration for the analysis of Pine Flat
Dam. The Taft ground motion is a typical moderate earthquake, particularly in the short-period range
of its spectrum, which is the range of interest for concrete gravity dams. The ground motion acting in
the horizontal direction, transverse to the axis of the dam, and in the vertical direction is defined as the
S69E and vertical components of the recorded ground motion, respectively. These two components

and their maximum values of acceleration are shown in Figure 6.2.

6.3 Response Results

To evaluate the effects of reservoir bottom absorption, dam-water interaction and dam-foundation
rock intcraction, the tallest, non-overflow monolith of Pine Flat Dam was analyzed for the eight sets of
assumptions and conditions listed in Table 6.1. For each of the eight cases, the response of the dam
was computed for three excitations: S69E component, only; vertical pomponent, only; and S69E and

vertical components, simultaneously, of Taft ground motion.

The earthquake response of the dam was computed under the assumption of linear behavior of
the dam-water-foundation rock system using the analytical procedure developed in Chapter 4, where
the displacement history was obtained by Fourier synthesis of the complex-valued frequency response
functions for the generalized coordinates. These response functions for Pine Flat Dam were computed
for the excitation frequency range 0 to 25 Hz, which is adequate for the recorded Taft ground motion.
To represent accurately the response of the dam in this frequency range, the analyses for Cases 1 to 4
with rigid foundation rock included the first five generalized coordinates, and the analyses for Cases 3
to 8 with flexible foundation rock included the first ten generalized coordinates. For this probiem,
wma= 157 rad/sec and w=19.5 rad/sec, so the number of included vibration modes of the impounded
water N, =9 according to equation (4.47), and the eigenproperties of the impounded water were inter-
polated over the excitation frequency interval w = 14.6 rad/sec for a=0.5 and » =4.88 rad/sec for

a=0 according to equation (4.50). In the Fourier synthesis for the responsc history, 2048 time steps of
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0.02 seconds were used, of which the last half-number of steps formed a "quict zone" to reduce the

aliasing error inherent in the discrete Fourier transform.

The fundamental resonant period and effective damping ratio at that period, determined by the
half-power bandwidth method, both obtained from the frequency response function for horizontal
ground motion, are listed in Table 6.1 for each case, along with the corresponding psuedo-acceleration

S,(T.£) obtained from the response spectrum for the S69E component of Taft ground motion.

In a practical earthquake analysis of a dam, the displacements and stresses due to the static loads
(weight of the dam and hydrostatic pressure of the impounded water) would be included in the total
response. However, the effects of the static loads are notincluded in most of the results presenied here
because they complicate the interpretation of the effects of reservoir bottom absorption, dam-water
interaction and dam-foundation rock interaction on the dynamic response of the dam. However, an
example of a practical earthquake analysis, including the effects of the static loads, is presented at the

end of this chapter.

The results of the computer analyses consist of the response history of horizontal and verticai dis-
placements at the nodal points and the three components of plane stress at the centroid of the finite
elements. Only a small portion of the response results are presented to highlight the important effects.
The maximum horizontal displacement at the crest of the dam {nodal point 1) and maximum princibal
stresses at three critical locations in the dam monolith are summarized in Table 6.2 for the dam sup-
ported‘on rigid foundation rock (Cases 1 to 4), and in Table 6.3 for the dam supported on flexible -
foundation rock {Cases 5 to 8). Figures 6.3 to 6.20 show the history of horizontal displacement at the
dam crest (nodal point 1) and the distribution of envelope values of the maximum principal stresses in
the dam monolith (positive is maximum tensile stress, negative is minimum compressive stress) due to

Taft ground motion.
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6.4 Dam-Water Interaction Effects

The displacement history of Pine Flat Dam supported on rigid foundation rock with an empty
reservoir due to the S69E and vertical components of Taft ground motion is shown in Figure 6.3(a). It
is apparent -- consistent with common view -- that the response of the dam to vertical ground motion

compared to the response to horizontal ground motion is relatively small if the reservoir is empty.

Interaction between the dam and the water impounded in the reservoir introduces frequency-
dependent hydrodynamic terms into the equations of motion that affect the dynamic response of the
dam. As described in Chapters 3 and 4, the hydrodynamic terms can be interpreted as an added force
(different for horizontal and vertical ground motion), an added mass, and an added damping. The
added hydrodynamic mass for a full reservoir and rigid reservoir bottom lengthens the fundamental
resonant period of the dam from 0.317 sec to 0.394 sec (Table 6.1). The damping ratio at the funda-
mental resonant period decreascs fr:om 5% to 4% because of the increased added hydrodynamic force at
the fundamental resonant period (Section 5.3). The ordinate of the psuedo-acceleration response spec-

“trum for the S69E component of Taft ground motion that corresponds to the modified fundamental
resonant period and damping ratio is also shown in Table 6.1. The interaction effects on the response
of a dam to a specified earthquake ground motion are controlled, in part, by the change in the response
spectrum ordinate for the fundamental resonant peak that corresponds to the change in the fundamen-
tal resonant period and damping. The added hydrodynamic force for horizontal ground motion has less
effect on the response because it is relatively small compared to the effective earthquake force associ-
ated with the mass of the dam. It was shown in Chapter 5 that dam-water interaction has little effect
on the higher resonant frequencies, but reduces the amplitude of the higher resonant peaks because of

the added damping present for higher excitation frequencies.

The response of the dam with full reservoir and rigid reservoir bottom due to the S69E com-
ponent of Taft ground motion is shown in Figure 6.3(h). In part, because of the lengthened funda-
mental resonant period and greater amplitude due to dam-water interaction effects, the maximum crest
displacement increases from 1.06 in. to 1.45 in. The higher vibration modes of the dam contribute

slightly less to the response because dam-water interaction reduces their corresponding resonant peaks.
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with an empty reservoir (Table 6.1). As the reservoir bottom becomes more absorptive, i.e. as the
wave reflection coefficient « decreases, the added damping at the fundamental resonant period increases
because of increasing refraction of hydrodynamic pressure waves into the reservoir bottom materials
and propagation of pressure waves upstream through the impounded water, resulting in an increased
effective damping ratio (Table_6.1). As shown in Chapter 5, reservoir bottom absorption primarily
affects the fundamental resonant response of the dam, and has little effect on the response to higher

cxcitation frequencics.

The response of the dam with fult reservoir due to the 56§E component of Taft ground motion is
shown in Figure 6.3(c)-(d) for a=0.5 and «=0. These results demonstrate that the main effect of
reservoir bottorn absorption is to reduce the larger displacement peaks without significantly changing
the frequency content of the response [compare Figure 6.3(c)-(d) to Figurc 6.3(b}]. Becausc of the
added hydrodynamic damping due to reservoir bottom absorption, the maximum crest displacement of
the dam with full reservoir decreases from 1.45 in. (for rigid reservoir bottom) to 1.25 in. for «=0.5,
and to 1.13 in. for a=0; the maximum principal stress at the downstream face decreases from 335 psi
(for rigid reservoir bottom) to 277 psi for a=0.5, and to 250 psi for ;x=0, and the maximum principal
stress at the upstream face decreases somewhat less [Figure 6.4(b)-(d)]). The area enclosed by a partic-
ular stress contour decreases, indicating that tensile stresses exceed the value corresponding to that con-
tour over a smaller portion of the monolith because of reservoir bottom absorption. However, the gen-

eral pattern of maximum principal stresses is not substantially altered.

Reservoir bottom absorption reduces the added hydrodynamic force and the response of the dam
to vertical ground motion for all excitation frequencies. In particular, it eliminates the unbounded
peaks in the added hydrodynamic force and in the dam response for excitation frequencies equal to the
natural vibration frequencies of the impounded water (Chapter 5). The effect of eliminating the
unbounded peaks can be seen in Figure 6.3(b)-{d) for the response of the dam with full reservoir due
to the vertical component of Taft ground motion. Reservoir bottom absorption drastically reduces the
maximum crest displacement from 1.00 in. (for rigid reservoir bottom) to 0.42 in. for «=0.5, and to

0.23 in. for «=0, and similarly reduces the maximum principal stresses in the dam monolith [Figure
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Table 6.3 -- Summary of Responses* of Pine Flat Dam,
On Flexible Foundation Rock, To Taft Ground Motion

Maximum Maximum Tensile Stress,
Horizontal in psi
Crest
Case Walter o Displacement, ; Upstream | Downstream Heel
ee
in inches Face Face
(4} Response to S69E Component, Only, of Taft Ground Motion
5 none - 1.01 172 181 200
6 full 1.0 1.7 236 - 245 354
7 full 0.5 1.59 218 229 331
8 full 0 1.55 213 232 321
{b) Response to Vertical Component, Only, of Taft Ground Motion
5 none - 0.16 23 42 34
6 full 1.0 .96 198 196 135
7 full 0.5 0.41 79 74 59
8 full 0 0.22 41 57 40
(¢) Response to S69E and Vertical Components,
Simultaneously, of Taft Ground Motion
5 none - 1.10 186 198 230
6 full [.0 1.73 247 238 346
7 full 0.5 1.72 242 225 346
8 Tull 0 1.71 240 239 348

*
Effects of static loads are excluded.
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maximum principal stresses throughout the dam monolith, as seen by comparison of Figure 6.7(a) to

6.4(a) lalso compare Case 5 in Table 6.3(a) to Case 1 in Table 6.2(a}].

The effects of dam-foundation rock interaction on the frequency response function of the dam are
similar for horizontal and vertical ground motion, as described in Section 5.4. The response of the dam
with an empty reservoir due to the vertical component of Taft ground motion is so small, however, that
it is difficult to discern the effects of c[am-foﬁndation rock interaction by comparison of Figure 6.6(a) to
6.3(a), except for the lengthening of the fundamental resonant period. Dam-foundation rock interac-
tion slightly reduces the maximum principal stresses in the-mono]ith due to vertical ground motion as
seen by comparison of Figure 6.8(a) to 6.5(a) [also compare Case 5 in Table 6.3(b) to Case 1 in Table

6.2(b)].

0.5.2 Hydrodynamic and Reservoir Bottom Absorption Effects

As noted in the preceding sections, the fundamental resonant period of the dam is lengthened
because of dam-water interaction and also because of dam-foundation rock interaction. Simultaneous
consideration of the two sources of interaction results in a fundamental resonant period of the dam that
is longer than the period including either interaction effect individually. In particular, dam-water
interaction, with a rigid or absorptive reservoir bottom, lengthens the fundamental resonant period of

the dam by almost the same percentage whether the foundation rock is rigid or flexible.

The respoense of the dam supported on flexible foundation rock with full reservoir and rigid reser-

voir bottom due to the S69E component of Taft ground motion is shown in Figure 6.6(b). Becausc of

dam-water interaction, the maximum crest displacement increases from 1.01 in. to 1.71 in.; and the
maximum principal stress increases from 172 psi to 230 psi at the upstream face, from 181 psi to 245
psi at the downstream face, and from 200 psi to 354 psi at the heel [Figure 6.7(a)-(b)]. The area
enclosed by a particular stress contour increases because of dam-water interaction, with little change in

the general patiern of the contours.

It was shown in Chapter 5 that if the foundation rock is rigid and the reservoir bottom is rigid, the

added hydrodynamic force for vertical ground motion is infinite at the natural vibration frequencies of
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(a) Empty Reservoir (b) Full Reservoir
Rigid Reservoir Bottom, a=1
25 25 25
50 25
75 40
) 50
50
40
(c) Full Reservoir (d) Full Reservoir
Absorptive Reservoir Bottom, a={0.5 Absorptive Reservoir Bottom, a=0

FIGURE 6.8 Envelope values of maximum principal stresses (in psi) in Pine Flat Dam on flexibic
foundation rock due to vertical component, only, of Talt ground motion. Initial static stresses are
excluded.
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6.6 Significance of the Response to Vertical Ground Motion

As seen in the preceding sections of this chapter, the earthquake responsc of Pine Flat Dam is
increased by dam-water interaction and decreased by reservoir bottom absorption, with the magnitude
of these effects depending on the condition of foundation rock, rigid or flexible, and on the component
of ground motion, horizontal or vertical. In particular, both dam-water interaction and reservoir bot-
tom absorption profoundly affect the response of the dam to vertical ground motion irresbective of the
foundation rock condition, but have relatively less affect on the response to horizontal ground motion,
with the magnitude of the eflects decreasing further if foundati&n—rock flexibility is considered. Stated
differently, the response of the dam with an empty reservoir due to vertical ground motion expressed as
a percentage of the response to horizontal ground motion is small; the percentage greatly increases
because of dam-water interaction with a rigid reservoir bottom; and. from this increased value it

decreases significantly becausc of reservoir bottom absorption.

The response of Pine Flat Dam to the S69E and vertical components, simultaneously, of Taft
ground motion is presented in Figures 6.9 to 6.20 to evaluate the signiﬁcance of the response to vertical
ground motion in the total dynamic response of the dam. All the conclusions stated in the preceding
paragraph would be fully applicable to the total response if the individual responses to the horizontal
and vertical components of ground motion were exactly in phase and the maximum responses were
directly additive. But this is not the case as is apparent from the response history of crest displacement
in Figures 6.9 and 6.10 for rigid foundation rock and Figures 6.15 and 6.16 for flexible foundation rock.
If the reservoir is empty, the contribution of the response to the vertical component is very small
whether the foundation rock is rigid (Figure 6.9 for crest displacement and Figure 6.11 for stresses) or

flexible (Figure 6.15 for crest displacement and Figure 6.17 for stresses).

For dams with impounded water, however, the main implication of the phase difference between
the responses to horizontal and vertical ground motion is that the contribution to the maximum
response from the vertical component may not be as significant as noted earlier from the dam responses
to the individual ground motion components. For example, if the reservoir bottom is rigid, the

increase of the maximum stresses in the dam with full reservoir is not as large (Figure 6.12 for rigid
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Such a complete analysis of Pine Flat Dam was performed. A wave reflection coeflicient a=0.5
for the reservoir bottom materials was assumed in the analysis. The distribution of envelope values of
the maximum principal stresses in the dam monolith due to only the static loads (weight of the dam
and hydrostatic pressure of the impounded water) is shown in Figure 6.21. The horizontal and vertical
displacements, relative to the free-field ground motion, at three levels on the upstream face of the dam
(nodal points 1, 73 and 118) and three locations on the base (nodal points 154, 158 and 162) due to
the S69E and vertical c;omponents, simultaneously, of Taft ground motion are shown in Figure 6.22. It
can be seen that the horizontal and vertical motions of the dém base permitted by foundation-rock
flexibility may not be inconsequential compared to the motion in the upper parts of the dam, although
they arc smaller. Figure 6.23 shows the distribution of envelope values of maximum principal stresses.
Stress results such as these, that include the stresses due to the static loads, make it possible to identify

the portions of the dam monolith that may crack during an earthquake.

The com.putation time required to obtain a complete history of displacements and stresses in the
dam (including formation of the dynamic stiffness matrix for the foundation-rock region from the com-
pliance data, eigenvalue analysis of the associated dam—foundationl rock system, and fast Fourier
transforms) is shown in Table 6.4 for Cases 7 and 8. Table 6.4 also includes the computation times
required for response analyses of the dam under the other assumptions for the impounded water, the
foundation rock and the reservoir bottom materials. Although each of these effects significantly com-
plicate the analysis, the additional computation time required to include them is small. In particular,
the extra cost of including reservoir bottom absorption is modest, demonstrating the efficacy of the pro-
cedures presented in Section 4.4 for the evaluation of the hydrodynamic terms. The overall efficiency
of the analytical procedure, as demonstrated by the data in Table 6.4, lies in the use of the substructure

method along with the transformation of displacements to generalized coordinates.
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Table 6.4 -- Computation Times for Complete Analysis
of Pine Flat Dam to S69E and Vertical Components,

Simultaneously, of Taft Ground Motion

Foundation Reservoir No. of Generalized Central Processor
Case Rock Water Bottom Coordinates Time  (sec)
1 rigid non.e - 5 9.2
2 rigid full rigid 5 10.0
3-4 rigid full absorptive 5 10.2
5 flexible none - 10 13.0
6 flexible full rigid 10 14.5
7-8 flexible full absorptive 10 14.8

*
CcDcC 7600 Computer
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FIGURE 7.1 Dam-water-foundation rock system.
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into equation (7.2) gives:

_LI
~w2M1 + iw )+ K,y

Yilw) = (7.5)

The response history of the modal coordinate Yi{#) due to a specified earthquake ground motion can
be computed frem its frequency response function, equation (7.5), using standard Fourier synthesis
techniques. The displacement response history of the dam is then given by equation (7.1). Further-
more, the maximum deformation and forces can be expressed directly in terms of the response spec-

trum for an earthquake ground motion [7.14],

The following secticns of this chapter present the extensions to equation (7.5) necessary to
include the effects of dam-water interaction, reservoir bottom absorption and dam-foundation rock
interaction in the simplified analysis of the fundamental mode response of concrete gravity dams to

earthquake ground motion.

7.4 Dams with Impounded Water

7.4.1 Exact Fundamental Mode Response

The equation of motion for the modal coordinate, equation (7.2, must be modified to include the
hydrodynamic pressure due to the impounded water that acts on the upstream face of the dam (Chapter
3). The hydrodynamic pressure in the impounded water is governed by the two-dimensional wave
equation subject to appropriate boundary conditions at: (a) the free surface, (b) the absorptive reservoir
bottom. and (¢} the upstream face of the dam. It was shown in Chapter 3 that including the interaction
between the dam and compressibie water results in the following complex-valued frequency response

function for the modal coordinate [Equation (3.24)]:

-"[Ll + Bo(w)]

7.
—wi{M; +RelB(&)]} + jw{C, —eIm[Bw)]} + K, (7.6)

?1(&)) =

in which the hydrodynamic terms are defined as:
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7.4.2 Approximate Fundamental Mode Response

Considering the cffects of water impounded in the reservoir, the frequency response function
Yi(w) for the modal coordinate associated with the fundamental vibration mode of the dam, equation
(7.6), is a complicated function of excitation frequency w that contains frequency-dependent hydro-
dynamic terms. In a simplified analytical procedure, it is advantageous to represent the dam-water sys-
tem by an equivalent single-degree-of-freedom (SDF) system with frequency-independent values for
the hydrodynamic terms. This was done in reference 7 for dam—‘water systems with rigid reservoir bot-
tom. If the reservoir bottom is absorptive, it is also possible to select frequency-independent hydro-
dynamic terms for an equivalent SDF system that approximates the fundamental mode response of the

dam with impounded water.

The properties of the cquivalent SDF system are defined as those of the dam with an empty reser-
voir modified by an added mass and an added damping that represent the hydrodynamic effects of the
impounded water and reservoir bottom materiats. The mass density A lx,y), k=x,y. of the

equivalent SDF system is defined as:
A, y) = m e, y)+m,(v) 8(x) (7.10a)
i lx,y) = m(x.p) (7.10b)

where 8{x) is the Dirac delta function. Because the hydrodynamic pressure on a vertical upstream face
acts in the horizontal direction, the "added mass" m,(y) only applies to the horizontal component of

the dam motion and is concentrated at the upstream face of the dam. The "added mass"® is defined as:

Z’l(ysd') r)
=7 7.1
) = P (7.11)

where the natural vibration frequency @, of the equivalent SDF system approximates the fundamental
resonant frequency of the dam with impounded water. If the reservoir bottom is absorptive, m,(y) is
complex-valued. Thus, it is not a mass quantity in the usual sense; only its real-valued component con-

tributes to an added mass, whereas the imaginary-valued component leads to an added damping.
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a comparison of equations (7.6) and (7.12) shows that f’l(cb,)=—}}|(d),)~ i.e. the equivalent SDF system
exactly predicts the fundamental resonant response of the dam with impounded water.

The natural vibration frequency @, of the equivalent SDF system is given by the excitation fre-

quency that makes the real-valued component of the denominator in equation (7.12) zero:

@

~ ST+ RelB. @1/ M,

o,

(7.16)

which must be evaluated iteratively for @ ,. Hydrodynémic effects always reduce the natural vibration
frequency because Re[B{w)]1>0 for all excitation frequencies. Equation (7.16) could have also been
obtained from the exact fundamental mode response, equation (7.6}, which demonstrates that the mass
of the equivalent SDF system defined in equations (7.10) and (7.11) reduces the fundamental resonant

frequency of the dam due to hydrodynamic effects by the proper amount.
The damping ratio of the equivalent SDF system &,=C)/ 2M @, is (Appendix F):

@

ér= r§|+§r (717J
Wy

where the added damping due to dam-water interaction and reservoir bottom absorption is represented

by the added damping ratie £,. defined as:

1 1 |o,
£r="3 M,

2
] Im[B(a,)] (7.18)

G

The added damping ratio £, is non-negative because Im(B(w)] €0 for all excitation frequencies.

For dam-water systems with a rigid reservoir bottom {(a=1). p,(y.@,) is real-valued (Chapter 3).
as is m,(y). For a real-valued m,{(y). equation (7.16) reduces to the earlier result [7] for the natural
vibration frequency of the equivalent SDF system, and the added damping ratio £, due to dam-water
interaction is zero:. so equation (7.17) reduces to the earlier expression for the damping ratio of the
equivalent SDF system [7]. An absorptive reservoir bottom {a<1) results in complex-valued m,(v).
which modifles the natural vibration frequency &, and increases the damping because hydrodynamic

pressure waves propagate upstream and refract inte the absorptive reservoir bottom at that frequency.
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increasing rapidly with water depth. Furthermore, the vibration period ratio T,./ T\ increcases as the
modulus of elasticity E, of the concrete increases [4] because of interaction between the closely-spaced
fundamental vibration frequencies of the dam and water (Chapter 3). As the reservoir bottom materi-
als become more absorptive, i.e. as the wave reflection coefficient a decreases, the natural vibration
period is reduced from its value for rigid reservoir bottom materials. This occurs because reservoir bot-
tom absorption eliminates the unbounded peaks in the hydrodynamic terms, thus reducing the value of
the added mass for excitation frequencies near the natural vibration frequencies of the impounded
water. The wave reflection coefficient e has little influence on tﬁe fundamental resonant period if £, is
small, but its effect increases with £, However, as shown in Figure 7.3, the 7/ 7| ratio is relatively

insensitive to E; if the reservoir bottom materials are absorptive with a<0.5.

The effects of reservoir bottom absorption on the added damping ratio £, (Figure 7.4), and hence,
on the damping ratio é,. of the equivalent SDF system (Figure 7.5), are more complicated than its
effects on the vibration period. As the wave reflection coefficient o decreases from unity, €, increases
monotonically from zero for small values of E,, but the trends are more complicated for larger values
of E;. This latter unexpected behavior in &, results from the previously described effects of reservoir
bottom absorption on the natural vibration frequency @&, of the cquivaient SDF system [equation
(7.16)], which is the frequency at which the added damping ratio is evaluated lequation (7.18)]. The
vialue of the added damping ratio &, depends on the relative values of @, and w{, the fundamental
natural vibration frequency of the impounded water. As L. increases, @, approaches w1, and the ima-
ginary component of the hydrodynamic term Bi(@,} increases as o decreases from unity to zero, thus
increasing &, (Section 3.5). Figure 7.4 also shows that the wave reflection coefficient o has a larger
effect on the added damping for targe E values than for smaller £, values. If the reservoir bottom
malerials are absorptive {(w< 1), the added damping ratio £, increases as E, increases, with the rate of
increase becoming smaller as « decreases.

Considering that @, is less than @, equation (7.17) shows that dam-watecr interaction reduces the

effectiveness of structural damping. Unless this reduction is compensated by added damping due to

reservoir bottom absorption, the overall damping ratio £, will be less than &, (Figure 7.5).
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FOUNDATION ROCK

FIGURE 7.7 Displaced configuration of dam with rigid base on flexible foundation rock.
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The coupling impedances Ky1(w) and Kyylw) in the dynamic stiffness matrix, which are usually -
neglected in the analysis of multistory buildings [1,28,29], have a significant influence on the funda-
mental mode response of dams, as shown in Figure 7.8 for the idealized triangular dam monolith. The
additional radiation damping associated with the coupling impedances is significant for a squat, heavy
structure such as a concrete gravity dam because, unlike slender multistory buildings, its base transla-

tional motion is comparable in amplitude to the rotational motion.

7.3.3 Approximare Fundamental Mode Response

Following the procedure developed earlier for building-foundation systems [28,291, the contribu-
tion of the fundamental vibration mode of the dam to the earthquake response can by modelled by an
equivalent SDF system on a fixed base. The properties of the equivalent system are defined to recog-
nize the reduction in stiffness and change in damping of the dam due to dam-foundation rock interac-

tion.

The natural vibration frequency @ of the equivalent SDF system that models the fundamental
mode response of the dam on flexible foundation rock with an empty reservoir is given by the excite{— '
tion frequency that makes the real-valued component of the denominator in equation (7.22) zero.

Neglecting the effect of the second-order damping term, @ ; is given by

)

@ = (7.24)

T T+ RelFG@ )]

which must be evaluated iteratively. The vibration frequency @, will be less than w; because
Re[F(w)] > 0 for all excitation frequencies. Substituting equation (7.23), after dropping the coupling
impedance terms, into equation (7.24) gives the corresponding expression presented in reference 28 for

building-foundation systems.

The frequency response function for the equivalent SDF system with natural vibration frequency
@ ; and damping ratio E}, can be shown have the following form (Appendix F):

. 2

Wy

w]

—L,

— — (7.25)
) M] + iw{2§.f-M1w‘,-] +w_,vM1

7’1 (w) =
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The damping ratio éf is determined by equating the resonant response of the cquivalent SDF system,
from equation (7.25), to the exact fundamental mode response of the dam on flexibie foundation rock,
from equation (7.22), at the natural vibration frequency & T’]((B_,)= _)-’l(a')‘,). It can then be shown
that the damping ratio & , is (Appendix F):

3
1+ &y (7.26)

£ = [i"w—’

where the added damping due to dam-foundation rock interaction is represented by the added damping

ratio & , defined as:

]

_ 32
£, = ——[-'f’i] Im{F(& )] (7.27)

The added damping ratio £ ; is positive because Iml[F{w)] <0 for all excitation frequencies. Equation
(7.26) for the damping ratio of dam-foundation rock systems has the same form as for building-

foundation systeﬁas [28.29].

7.3.4 Response Results

Figure 7.9 shows the absolute value of horizontal acceleration at the crest of the triangular dam
monolith, relative to the rigid dam base, due to horizontal harmonic free-field ground acceleration,
computed from equation (7.22), for several values of the moduli ratio £,/ E; and a hysteretic damping
factor for the foundation rock of m ,~=0.10. As the moduli ratio £,/ E, decreases, which for a fixed
value of E; implies a decrease in the foundation rock modulus £,, the fundamental resonant frequency
of the dam decreases and the amplitude of the resonant peak also decrecases. These effects due to
foundation-rock flexibility and damping, both material and radiation, have been discussed extensively
for buildings (1,28,29] and for concrete gravity dams (Chapters 5 and 6). The frequency response
function for the equivalent SDF system, computed from equation {7.25), with the natural vibration fre-
quency & y and damping ratio Ef given by equations {7.24) and (7.26), respectively, is also presented in
Figure 7.9. These results demonstrate that, over a wide range of excitation frequencies, the equivalent

SDF system accurately represents the fundamental mode response of dams supported on flexible
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foundation rock.

The lengthening of the fundamental resonant period of the idealized triangular monolith due to
dam-foundation rock interaction, determined from the resonant peak of ¥i(w), equation (7.22), is
shown in Figure 7.10 for a range of E/E, values. The vibration period 7}- of the equivalent SDF sys-
tem, where ~T_/--=27r/c?;‘,- is computed from equation (7.24), is close to the fundamental resonant period
of the dam-foundation rock system for large values of E,/FE, but its accuracy decreases as E,/ES
decreases, i.e. as the foundation rock becomes more flexible. However, the increasing error in the
vibration period T,- has little effect on the accuracy of the SDF system response, as shown in Figure
7.9, because the damping due to foundation-rock flexibility increases as £,/ E, decreases resulting in
response functions that do not resonate sharply. The added damping ratio € , due to dam-foundation
interaction is presented in Figure 7.11, and the damping ratio Ef of the equivalent SDF system is
shown in Figure 7.12, with a range of values for the hysteretic damping factor n , for the foundation
rock. The damping ratios £ ; and E‘,- increase with increasing foundation-rock flexibility and damping
factor m,. Considering that @, is less than w,, equation (7.26) indicates that dam-foundation rock
interaction reduces the effectiveness of the structural damping. However, unlike for slender multistory
buildings [281], for a wide range of E,/ES and % , values this reduction is morc than compensated by the
added damping due to dam-foundation rock interaction, which leads to an increase in the overall damp-

ing of the dam, as shown in Figure 7.12.

The cffects of dam-foundation rock interaction on dam response may be neglected if the moduli
ratio E,/ E, is relatively large. In particular, as shown in Figures 7.10 and 7.11, if E,/ E, is greater than
five, the increase in the vibration period is less than five percent, the increase in the damping ratio é, is

less than two percent; and consequently, the foundation rock may be treated as rigid.
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FIGURE 7.11 Added damping ratio £ ; due te dam-foundation rock interaction for a range of E/ E,
values and various values of n s, the constant hysteretic damping factor for the foundation rock.
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7.6 Dams on Flexible Foundation Rock with Impounded Water

7.0.1 Exact Fundamental Mode Response

When modified to include effects of dam-water interaction and reservoir bottom absorption, the
frequency domain equations for the fundamental mode response of dams on flexible foundation rock,

equation (7.21), become (Appendix D):

—?M +ieC+ Ky —w’B)(w) —w? [Ly+Bglw)] —w?[L{ +By(e)] ¥ilw)
—w? L+ Bylw)] —w?lmt Byl + Kpplw)  —w?[LF+ Boylwd] + K yprte) B | Bgle)
—w? (L + By {w))] —w? IL§+ Bople) ] + Kyl b —w? U+ Baglad 1+ K el b2 8 (w)
L+ Bplw)
= —{ m+ Byolew) (7.28)
Li+ Boy(w)

where the hydrodynamic terms Bglw) and Bj{w) are defined by equation €7.7); and the additional

hydrodynamic terms associated with the rigid-body motion of the dam due to foundation-rock flexibility

are.
H H .
Bylw) = f Poly,m) dy, Byylw) = f vy poly,w) dy (7.29a)
0 0
H H
Buw) = [ yB (v)dy,  Balw) = [ yFi(y.w)dy (7.290)
0 0

The functions py(y,@) and 5,(y,0) in equation {(7.29) are defined in equation (7.8), and B¢ (y,w) is the
frequency response function for hydrodynamic pressure on the upstream face of a rigid dam rotating

about the centroid of its base:

> : u o) Iy, (w)
= Hlp o) = w1+ ilwq) \fup2e) e/ C?

P rw) =2pH Y, (y,m) (7.30)

where
1 H
lylw) = E{ yY (y.@) dy (7.31)

and u ,(w) and Y ,(y,w) are defined in equations (3.20) and (3.21), respectively.
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7.6.2 Approximate Fundamental Mode Response

Equivalent SDF systems have been developed in the Sections 7.4 and 7.5 to approximate the fun-
damental mode response of dams considering the effects of dam-water interaction and dam-foundation
rock inleraction separately. In a similar manner, the fundamental mode response of dams simultane-
ously considering the two types of interaction can be represented by an equivalent SDF system on a

fixed base.

However, the parameters of the equivalent SDF system -- natural vibration frequency and damp-
ing ratio -- are especially complicated because of the hydrodynamic terms associated with the rigid-body
motion of the dam in the water-foundation rock coupling term F,(w) defined in equation (7.33). It is
therefore desirable to find an approximation to the hydrodynamic terms Boglw)/ my, Boglw)/ mih] and
Boolw)/ mi ()% in F.(w), that pcrmit simpler cxpressions for the parameters of the equivalent SDF
system. For this purpose only, the hydrodynamic terms in F,.(w) are approximated by consideting only
the contribution of the fundamental vibration mode to the rigid-body displacements of the upstream
face of the dam: 1= (L{/M ¢ 0.y) and y= (L{ /M) 0,y). With this assumption each of the
above hydrodynamic terms associated with the rigid-body motion of the dam is equal to the hydro-
dynamic term By{w)/ M, associated with the fundamental vibration mode of the dam: and, F.{w) is

then:

Fo(w) = 531_1 By(w) Fla) (7.34)

where Bi{w) and Flw) are defined in equations (7.7b) and (7.23), respectively. The effect of using the
approximate expression for F,.(w), equation (7.34), instead of the exact expression, equation (7.33), in
the frequency response function Yi{w), equation (7.32), is demonstrated in Figure 7.13, where the
response of the idealized triangular dam monolith on flexible foundation rock with a full reservoir due
to horizontal harmonic ground motion is shown for several cases. The approximation of the hydro-
dynamic terms in equation (7.34) for F,{(w} introduces little error in the fundamental resonant fre-
quency, but the fundamental resonant peak errs on the conservative side, with the errors decreasing as

Es/ E,; becomes smaller.
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The properties of the equivalent SDF system can now be obtained by consideration of the funda-
mental mode respense of dams on flexible foundation rock with impounded water, as expressed in
equation (7.32) and (7.34). The mass of the equivalent system is still given by eguation (7.10) with
the "added mass" is described by an expression similar to equation (7.11), but evaluated at a differeni

frequency:

piy.o)

W¢ 0.y {(7.35)

ig(p) =

where the natural vibration frequency @, of the equivalent SDF system approximates the fundamental

resonant frequency of the dam on flexible foundation rock with impounded water.

The natural vibration frequency is approximately given by the excitation frequency that makes the
real-valued component of the denominator in equation {7.32) zero, which upon use of equation (7.34)

for F,(w) and neglect of the second-order damping terms leads to (Appendix F):

1

1
- o : (7.36)
VT RelB G 0T M, ] {\/1+Remf,~“)1 }

@]

The first parenthesis represents the portion of the reduction in the natural vibration frequency due tb
dam-water interaction, associated with the added hydrodynamic mass that arises from the "added mass"
distribution given in equation (7.35), in a manner similar to that shown in Section 7.4 for dams on rigid
foundation rock with impounded water. The second parenthesis represents the portion of the reguction
in the natural vibration frequency due to dam-foundation rock interaction associated with the
foundation-rock flexibility term Rel[F(@)], in a manner similar to that shown in Section 7.5 for dams
on flexible foundation rock with empty reservoirs. Because Flw) is a slowly-varying, smooth function
of excitation frequency, as is RelB{w)] if the reservoir bottom materials are significantly absorptive,
the foundaticn-rock flexibility term Re[F{w)] may be evaluated at @ ;, and the added hydrodynamic
mass Re[B(w)] may be evaluated with sufficient accuracy at @,. Consequently, the natural vibration

frequency @ from equation (7.36) may be expressed as:

N 1 I
)] = *

N JT+ReIB G )M, | | VTS RelF@ )]

! } (137
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evaluated at @:

2

£@) = _1—[%]— ImlF(& )] (7.42)
1

2

The special cases for a dam on rigid foundation rock and a dam with an empty reservoir are con-
tained in equation (7.38) for the natural vibration frequency, in equation (7.40) for the damping ratio,

and in equation (7.39) for the frequency response function for the equivalent SDF system.

7.6.3 Response Results

The effectiveness of the equivalent SDF system in representing the fundamental mode response
of the triangular dam monolith on flexible foundation rock with a full reservoir is shown in Figure 7.14
for several values of the moduli ratio £,/ E; and wave reflection coefficient &. The "exact" fundamental
mode response was computed using equation (7.32) with approximate the F,{w) given by equation
(7.34); and the response of the equivalent SDT system was computed using equation (7.39), with the
natural vibration frequency @, and damping ratio é computed from equaiions (7.38) and (7.40), respec-
tively. The equivalent SDF system represents with an acceptable degree of accuracy the dam response
including interaction with the flexible foundation rock and impounded water and the effects of reservoir

bottom absorption.

The effects of dam-water interaction, reservoir bottom absorption and dam-foundation rock
interaction on the fundamental resonant period are shown in Figure 7.15. For a given moduli ratio
E,/ E,, the fundamental resonant period lengthens with increasing depth of water, and the peried shor-
tens as the wave reflection coefficient o decreases. A particular case of these trends was seen in Figure
1.3 for E/ Eg=co (rigid foundation rock). As FEy/ E; decreases, the fundamental resonant period of the
dam lengthens due to increasing flexibility of the foundation-rock rclative to that of the dam. A partic-
ular case of this trend was seen in Figure 7.10 for #H/ =0 (empty reservoir). It is apparent that the
fundamental resonant period obtained from the the resonant peak of Yi(w), equations (7.32) and
(7.34), is approximately represented by the natural vibration period T, of the equivalent SDF system,

where Tl=2—rr/c51 is given by equation (7.38). The error between the exact and approximate values of
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FIGURE 7.15 Comparison of exact and approximate (equivalent SDF system) values of the ratio of
the fundamental vibration periods 7y and 7, of the dam on flexible foundation rock with impounded
water and the dam on rigid foundation rock with empty reservoir. Results presented for E~=4 million
psi.
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reservoir bottom materials {a=1), the reduction of the natural vibration frequency due to hydro-
dynamic effects results in a decreased added damping ratio £ ;(&;) arising from foundation-rock flexibil-
ity, as shown in Figure 7.17, without contributing additional damping to &,(&,) (Figure 7.16). The net
effect of these trends is shown in Figure 7.18(a), where for a particular £,/ E; value, the damping ratio
& decreases as the depth of the impounded water increases. For absorptive reservoir bottom materials
{w<1), the reduction in the natural vibration frequency due to hydrodynamic effects is less than for
non-absorptive reservoir bottom materials {see Figure 7.3), so the reduction on .ff(cﬁl) due to dam-
water interaction is less (Figure 7.17), and dam-water interaction and reservoir bottom absorption con-
tribute additional damping, as réprcscnted by the added damping ratio £,{@;). The net effects of these
contributions to the overall damping ratio & are shown in Figure 7.18(b) for absorptive reservoir bot-
tom materials. If the moduli ratio is relatively large (E,/ E;>1/2), the increase in the added démping
ratio £,(@;) dominates the decrease in £ (@) (Figure 7.17), so £ increases as the depth of the
impounded water increases. However, if the moduli ratio is relatively small (£,/E,<1/2), the added
damping ratio £,(@)) is very small (Figure 7.16) and the reduction of £ ;(&,) due to dam-water interac-
tion effects (Figure 7.17)} dominates, resulting in a decrease ofé as the depth of the impounded water

increases.

7.6.4 Simplification of the Damping Ratio

Because the damping ratio &,(&) due to dam-water interaction and reservoir bottom absorption
depends on the moduli ratio E,/FE; (Figure 7.16) and the damping ratio £ ;(&,) due to dam-foundation
rock interaction depends on the water depth ratio H/H,, and wave reflection coefficient « (Figure
7.17), it would be cumbersome to compute these two added damping ratios in a simplified analytical
procedure. It is possible, however, to uncouple the effects of dam-foundation rock interaction from the
evaluation of ¢,{(@() and the effects of dam-water interaction from the evaluation of & /(&4), and still
obtain a reasonable estimate of the damping ratio £ of the equivalent SDF system. The effects of
dam-foundation rock interaction on the added hydrodynamic damping ratio & ,(&) can be neglected by

evaluating Im[B{w)] at &,, the natural vibration frequency of the dam on rigid foundation rock with
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impounded water; equation (7.41) then becomes:
2
£06) = l‘”—’] £, (7.43)
)

where £, is given by equation (7.18). Similarly, the effects of dam-water interaction and reservoir bot-
tom absorption on the added damping ratio £ /{(&;) due to dam-foundation rock interaction can be
neglected by evaluating Im[F(w)} at & ;, the natural vibration frequency of the dam on flexible founda-

tion rock with an empty reservoir;, equation (7.42) then becomes:

2
Erlay) = [m’] £y (7.44)

Wy

where £, is given by equation (7.27). The substitution of equations (7.43) and (7.44) into equation

(7.40) gives the simplificd expression for the damping ratio &:

P~ [_‘"_”‘_*1
w] w1

According to equation (7.45), the contributions of dam-water interaction and dam-foundation rock

3
Ei+&,+ &, (7.45)

interaction to the damping of the system are obtained independently and summed with the structural
damping, with its effectivencss properly reduced by the interaction effects, to give the damping ratio £
of the equivalent SDF system. In conjunction with the approximation used to obtain equation (7.43),

the effective earthquake force L, is evaluated at &,, so that L, = L, + Byla,).

The equivalent SDF system’s representation of the fundamental vibration mode of the triangular
dam monolith is shown in Figure 7.19, where the response was computed from cquation (7.39) using
the two definitions of the damping ratio &: "exact” £ given by equation (7.40), and simplified & given by
cquation (7.45). The simplified expression for the damping ratio overestimates the damping in systems
with an absorptive reservoir bottom («=0.5), resulting in underestimation of the resonant response.
The simplified damping ratio is more accurate if the reservoir bottom is rigid («=1) because the added
damping due to dam-water interaction is zcro, but the resonant rcsponse is slightly overcsiimated

because the added force term in f,l is overestimated in the approximation.
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The final result of the series of approximations used to simplify the analysis of the fundamental
mode response of dam-water-foundation rock systems is shown in Figure 7.20 for the triangular dam
monolith. The exact fundamental mode response of the dam on flexible foundation rock with full
reservoir was computed using equation (7.32) and the exact water-foundation rock coupling term F,{(w)
given by equation (7.33). The‘ response of the cquivalent SDF system was computed using equation
(7.39) with the natural vibration frequency @; and damping ratio € evaluated from equations (7.38) and
(7.45), respectively. These results demonstrate that the equivalent SDF system provides a good
approximation of the fundamental mode response of concrete gfavity dams for a wide range of values
for the moduli ratio E,/ES and wave reflection coefficient e«. The quality of the approximation is satis-
factory for preliminary design of dams, considering the complicated effects of dam-water interaction,
reservoir bottom absorption and dam-foundation rock intcraction that are included; the number of
approximations necessary to develop the simplified expressions for the properties of the equivalent SDF

system;, and noting that the approximate results generally err on the conservative side.

7.7 Summary

It has been shown in this chapter that although dam-water-foundation rock interaction introduces
frequency-dependent, complex-valued hydrodynamic and foundation interaction terms in the governing
equations, frequency-independent values for such terms can be defined and an equivalent single-
degree-of-freedom system can be developed to represent approximately the fundamental mode response

of concrete gravity dams. The displacements of the dam relative to the rigid base arc [equation (7.1)]:
reCe,p, ) = ¢, y) V(D) k=x,y (7.46)

The modal coordinate Y(¢) can be expressed in terms of the frequency response function 1}-’1(w) for

the equivalent SDF system given in equation (7.39):

2 o~
Gy —L
o1 | —wM+ iw2E M)+ iM,

V(o) = ( (7.47)

The natural vibration frequency @, of the egquivalent SDF system approximates the fundamental

resonant frequency of the dam on flexible foundation rock with impounded water [equation (7.38)1]:
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o f

@]

) (7.48)

_|a.,
w =1

w

in which w1 is the fundamental natural vibration frequency of the dam on rigid foundation rock with an

empty reservoir, and @, and @ ; are [equations (7.16) and (7.24)):

@i

&, = (7.49)
" JT+RelBi@ )/ M,
o= 2L (7.50)
’ T+RelF@,)] -
The damping ratio £ of the equivalent SDF system is [equation (7.45)]:
. 3
- @, .
- 2r g+ E,+E (7.5D
w1 || @

in which £, represents the added damping duc to dam-water interaction and reservoir bottom absorp-
tion lequation (7.18)] and &, represents the added damping due to dam-foundation rock interaction

fequation (7.27)1:

2
- ___1__1_. f_:)_’_ 5 :
&, = M, [wl] Iml{B(&,)] (7.52)
Y
&,
§f = ——;—[;—Ll Im[F(cZa_/-)I (7.53)
1

In equation (7.47), Ml and EI are the generalized mass and generalized earthguake force including

hydrodynamic effects {equation (7.14)]:

H
By = M, + Rel [ Fily.é ) 6110, dy (7.54a)
0
H
Li=1L;+ f Py, ,) dy (7.54b)
0

where pi(y,®,) is the frequency response function for hydrodynamic pressure on the upstream face due
to acceleration of the dam in its fundamental mode of vibration, evaluated at an excitation frequency

equal to @, [equation (7.8)]:
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evaluated in the following steps:

1. Compute the natural fundamental vibration frequency w1 and vibration mode ¢ {{x,y) of the

dam on rigid foundation rock with an empty reservoir.

2. Compute the natural fundamental vibration frequency of the dam @), as modified by dam-
water interaction and dam-foundation rock interaction, using equation (7.48) where &, and
@y, are computed iteratively from equations (7.49) and (7.50), or more¢ conveniently from

data presented in Figures 7.3 and 7.10, respectively.

3. For an estimated damping ratio €, for the dam concrete and constant hysteretic damping fac-
tor m ; for the foundation rock, evaluate the damping ratio £ from equation (7.51) where £,
and ¢, can be computed from equations (7.52) and (7.53), or more conveniently from

data presented in Figures 7.4 and 7.11, respectively.

4. With the known mass density of the dam and the hydrodynamic pressure function p(y,&,)
computed from equation (7.55), the generalized mass M, and earthquake force Zl can be

evaluated from equatioh (7.54).

5. The maximum displacement of the dam over the duration of the earthquake is then giveh

by equation (7.56) using the response spectrum for the earthquake ground motion.

In practice, ¢(x,») would be obtained in discrete form by analysis of a finite clement idealization of

the dam, and A and L, would be computed by numerically evaluating equation (7.54).

For the special case of rigid foundation rock, @ j/~w resulting in & =&, from equation (7.48), and
£ =0 in equation (7.51). If the reservoir is empty, @ ,=w | resulting in & =& y from equation (7.48),
£,=0 in equation (7.51), 1':1=L1 and M1= M. If the reservoir impounds water, but the reservoir bot-
tom materials are non-absorptive (a=1), then &, is zero.

The maximum effects of the earthquake ground motion can be represented by equivatent lateral

forces acting horizontally on the dam. The equivalent lateral forces are obtained from the maximum

deformation of the dam, given hy equation (7.56) [7]:

It~

Silxy) = =1 i%ﬁ i (e, 1) @ 10, p) (7.57)
i

=



8. CONCLUSIONS

The available substructure method for the analysis of the linear response of concrete gravity dams
to earthquake ground mation including the effects of dam-water-foundation rock interaction has been
extended to consider the effects of the alluvium and sediments invariably present at the bottom of
actual reservoirs. The interaction between the water and the reservoir bottom matcrials is approxi-
mately modelled by a boundary condition that permits partial absorption of hydrodynamic pressure

waves at the reservoir bottom.

Utilizing this analytical procedure, the response of idealizéd concrete gravity dams to harmonic
ground motion was presented in Chapters 3 and 5 for a wide range of system parameters. Based on the
frequency response functions, it was shown that the partial absorption of hydrodynamic pressure waves
into the alluvium and sediments at the reservoir bottom may have a significant effect on the dynamic

response of dams. Specifically, the response results in these chapters lead to the following conclusions:

1. The unbounded resonant peaks in the frequency response function for hydrodynamic force
on a rigid dam due to horizontal and vertical ground motion, characteristic of a rigid reser-
voir bottom, are eliminated by including reservoir bottom absorption. In gcnefal, the addi-
tional energy radiation through a wave absorptive reservoir bottom smoothes the frequency

response functions for hydrodynamic force,

2. Reservoir bottom absorption primarily affects the dam response of dams on rigid foundation
rock for excitation frequencies less than w{, where material damping in the dam concrete is
the only damping mechanism present. At higher excitation frequencies the radiation of
energy through upstream propagation of hydrodynamic pressure waves dominates the energy
radiation into the absorptive reservoir bottom materials, essentially eliminating its effect.
However, because of reservoir bottom absorption, the response to vertical ground motion at

excitation frequencies equal to @ is bounded.

3. Dam-water interaction with an absorptive reservoir bottom («w<C1) and rigid foundation rock
reduces the fundamental resonant frequency of the dam to a value less than w1, but not as

much as for a rigid reservoir bottom (a=1), where the fundamental resonant frequency is

179
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Therefore, the compressibility of the impounded water should be considered in the earth-

quake analysis of concrete gravity dams.

Utilizing the general analytical procedure of Chapter 4, the earthquake response of Pine Flat Dam
te Taft ground motion was presented in Chapter 6 for a range of properties of the reservoir bottom
materials and various assumptions for the impounded water and foundation rock. These tesponse

results tead to the following conclusions:

1. The earthquake response of dams is increased by dam-water interaction and decreased by
reservoir bottom absorption with the magnitude of these effects depending on the flexibility

of the foundation rock and on the component of ground motion.

2. Both dam-water interaction and reservoir bottom absorption have profound effect on the
response of dams to vertical ground motion irrespective of the foundation-rock condition;
but relatively much less effect on the response of dams to horizontal ground motion, espe-

cially if foundation-rock flexibility is considered.

3. The significance of the response of dams to vertical ground motion was overestimated in
carlier studies based on the assumption of a rigid reservoir bottom. An absorptive reservoir
bottom that models the alluvium and sediments at the bottom of a reservoir gives a more
realistic estimate of carthquake response, especially of the response to vertical ground

motion and its significance in the total response of the dam.

The effects of reservoir bottom absorption, dam-water interaction and dam-foundation rock
interaction on the response of a dam depend, in part, on the particular dam and earthquake ground
motion, so that the conclusions deduced in Chapter 6 from the computed response of Pine Flat Dam to
Taft ground motion would not apply in their entirety to all dams and ground motions. Whereas the

detailed observations may be problem dependent, the broad conclusions should be valid for many cases.

The response results presented in this investigation, and the conclusions from previous work
[4,11], have demonstrated that the response of concrete gravity dams to earthquake ground motion is
affected by: interaction between the dam and impounded water, compressibility of the impounded

water, interaction betiween the dam and flexible foundation rock, and the alluvium and sediments at the
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al(t)

A&f(w)

Bl {(w)

Bi(w)

Boo, Bog
BHHa B@l

€.

NOTATION

l~component of free-field ground acceleration

Fourier transform of a)(1); defined in equation (4.43)

breadth of the dam base

added hydrodynamic force due to l-component of ground motion

added hydrodynamic mass (real-valued component) and damping (imaginary-valued com-

ponent) due to fundamental vibration mode of dam
hydrodynamic terms defined in equation (7.29a)
hydrodynamic terms defined in equation (7.29b)
damping matrix for the finite element system
velocity of pressure waves in water

=2M§ 1wy

defined in equation (7.15b)

=Efle;

= E/p,

=VEdp,

compliance function for the reservoir bottom materials, equation (4.29)
duration of free-field ground motion

Young’s modulus of elasticity of the foundation rock

Young’s modulus of clasticity of the reservoir bottom materials

187



mx,y)
m, (y)

a1 (x,p)

m, my,
m;
M

M,

Ny

Ny
plx,y, 1)
P(x,p,0)

Po(x,y,w)
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defined in equation (7.15¢)

vector whose clements are defined in equation (4.18b)

integrals defined after equation (7.19)

vector whose elements are defined in equation (4.41b)

mass density of dam concrete

"added mass" of dam due to hydrodynamic effects; defined in equation (7.59)

mass density of equivalent SDF system, k=ux,y; defined in equation (7.10)

total rﬁass of the dam defined after equation (7.19)

=(L1)%/ M,, effective mass of a dam in its fundamental vibration mode

submatrices of m,

mass matrix for the finite element system

moment at rigid base of the dam due to dam-foundation rock interaction
generalized mass of the dam in the fundamental vibration mode

generalized mass of the equivalent SDF system defined in equation (7.15a)

number of nodal points above the base

number of nodal points at the base

number of vibration modes of the impounded water included in the hydrodynamic terms
hydrodynamic pressure in the impounded water

frequency response function for p(x,y,t) due to the /-component of ground motion

frequency response function for hydrodynamic pressure with a rigid dam due to /-

component of ground motion



?;/'(CU)

r,,(f)
Ri(w)
Rb(l‘)

R/(w)

R (1)

R (w)

if((z))

R;,([)

Rj(w)

R /(o)
R/(w)
S{w)

RCY
3/
hY

= rq.qq

Slw)
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vector of frequency response functions for displacements of nodal points at the surface of

the foundation rock underlying the dam

veetor of nodal displacements for finite element p

vector of nodal forces at the upstream face of the dam statically equivalent to p} (0, y,0)
vector of forces at the base of the dam due to dam-foundation rock interaction

vector of frequency response functions for R,(f) due to the /-component of ground

motion

vector containing hydrodynamic forces R ,(#) and dam-foundation rock interaction forces
R,(1)

vector of frequency response functions for R (¢ due to the /-component of ground

motion

vector of frequency response functions for forces at the surface of the foundation rock

underlying the dam
vector of hydrodynamic forces at the upstream face of the dam

vector of frequency response functions for R,(#) due to the /-component of ground

motion

vector of nodal forces at the upstream face of the dam statically equivalent to 5/(0,y,@)
vector of nodal forces at the upstream face of the dam statically equivalent to er(O, V@)
matrix defined in equation (4.3)

dynamic stiffness matrix for the foundation rock region; defined in equation (4.5b)
matrix defined in equation (4.14)

submatrices of $(w)

matrix whose elements are defined in equation (4.18a)
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A, vibration frequency for the #” mode of the associated dam-foundation rock system

o lw) eigenvalue for " natural vibration mode of the impounded water; defined in equation
(3.20)

¢ viscous damping ratio of the dam (without water) in its fundamental vibration mode

E damping ratio of the equivalent SDF system: equation (7.40)

£ added damping ratio due to dam-foundation rock interaction; equation (7.27)

& 1(®) added damping ratio defined in equation (7.42)

£ damping ratio defined in equation (7.26)

£, added damping ratio due to dam-water interaction and reservoir bottom absorption; equa-
tion (7.18)

£,.(@) added damping ratio defined in equation (7.41)

£, damping ratio defined in equation (7.17)

P density of water

Py density of the foundation rock

o density of the reservoir bottom materials

D density of the dam concrete

o,(0) vector of planar stress components in finite element p

Y, (yw) eigenfunction for »™ natural vibration mode of the impounded water; defined in equation
(3.21)

df(x,y) fundamental natural vibration mode of the dam without water; k= x,y denotes x- and y-

components of modal displacements, respectively

X n vector defined in equation (4.16)



APPENDIX A: BOUNDARY CONDITION AT THE RESERVOIR BOTTOM

The boundary condition at the reservoir bottom relates the hydrodynamic pressure to the sum of
the vertical component of free-field ground acceleration and the acceleration due to interaction between
the impounded water and the reservoir bottom materials. Because of the approximation that hydro-
dynamic pressure waves incident on the reservoir bottom only excite vertically propagating dilatational
waves [n the reservoir bottom materials, it is sufficient to consider only interaction in the y-direction.

The hydrodynamic pressure p(y,t) in the water is governed by the one-dimensional wave equation:

ik 1 9’
o E?%f’ 720 (A1)

=

Similarly, the interaction displacement v(y, t) in the layer of reservoir bottom materials is governed by

2V
s y<0 (A.2)

v _ 1
8y:  C?

@ | @

where C, = /E,/p,, E,is the Young’s modulus of elasticity and p, is the density of the reservoir bot-
tom materials. At the reservoir bottom, the acceleration boundary condition staies that the normal

pressure gradient is proportional to the total acceleration:
g—i({),r) = —plaf(D6,+ ¥v0,0],  I=x,y (A.3)

where the term aj(7) 8,, is the vertical component of free-field ground acceleration and ¥(0,¢) is the
acceleration of the reservoir bottom due to interaction between the impounded water and and the reser-

voir bottom materials. Equilibrium at the surface of the reservoir bottom materials requires that:

p&ﬂ=—ggﬁm0 (A.4)

The D’Alembert solution to equation (A.2) is v = g(y+ C,1) where g, is the waveform of the
refracted wave propagating vertically downward in the reservoir bottom materials. An upward propagat-

ing wave does not exist because of the radiation condition for the assumed infinitely thick layer of

reservoir bottom materials. Note that %(O, 0 =g (C,0) and ¥(0,0) = C*g".(C,1), where the prime

indicates the derivative of g, with respect to the argument (y+ C,¢). Differentiating equation (A.4)
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APPENDIX B: FREQUENCY RESPONSE FUNCTIONS FOR HYDRODYNAMIC PRESSURE

The frequency response functions 7 (x,y.0), 7§ (x,y,@}, pilx,y,e) and I)f(x,y,w) for hydro-
dynamic pressure in the water are solutions of the Helmholtz equation, equation (3.13), subject to the
boundary cenditions in equations (3.15), (3.16}, (3.17) and (4.34), respectively. Because of the rec-
tangular fluid domain and particular form of the boundary conditions, the four boundary value prob-

lems can be solved by separation of variables, where:
plx,y,@) = polx,@) 5,(y,0) (B.1)

The substitution of equation (B.1) into equation (3.13) and subsequent separation gives the equation

for the y-direction:

&P, 5
: B,=0 (B.2)
e +up
and for the x-direction:
dz_
> — Kk P = (B.3)

where k?= (u’—w?/C?) and u is a constant to be determined. The general solution of equation (B.2)
is:
niyw) = Alw}e™ + Blw)e™ ™ (B.4)
and the general solution of equation (B.3) is:
Bo(xw) = Clade™ + Dlw)e™ (B.5)
The radiation condition in the upstream direction {negative x-direction) is satisfied by D{w)=0.

The solutions for the four frequency response functions for hydrodynamic pressure are obtained by

determining the coefficients 4 (w), Blw) and Clw) that satisfy their respective boundary conditions.
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The coefficients C,{w) that aliow p{x,y,w) to satisfy the boundary condition at the upstream face

arc determined by substitution of equation (B.9) into the first boundary condition of equation (3.17):
dp .
{0, y,w) = —p f{y)
gy P pfly

where f(y)=¢{€0,y) for this case, gives

f: Colwd e, Y ,(y,) = —pd{10,y)

n=1

Multiplication of both sides of the above equation by Y.,-(y,w), integration over the depth of the water,

and use of the orthogonality condition in equation (B.8) gives

1 ) I, (o)

" Hlu o) — (wg)?i+ ilog) ki, 8.1

Clw) =-2p

where /1,(w) is defined in cquation (3.19b). Substitution of equations (B.17) into equation (B.9) gives
the frequency response function for hydrodynamic pressure in the impounded water due to horizontal
acceleration of the dam in its fundamental vibration mode:

/Lpzz(&’) 11,,((0} KX

e Y,(yw) (B.1D

P 575 I P L BT

which gives equation (3.18¢) if cvaluated at x=0.

B.2 Selutions for 53 (x,y,») and 5/(x,y,0)

The frequency response functions pg(x,y.@) and pi(x,y,@) are similar because they are fre-
quency response functions for hydrodynamic pressure due to horizontal acceleration of the dam.
Repeating the steps in equations (B.6) to (B.11) with £(3) =1 results in p§(0,y,w) as given in equation

(3.18a) and [y,(w) as defined in equation (3.19a).

The frequency response functions p/(x,y,w) is similar to p1{x,y,w), except that it is due to hor-
izontal acceleration ¥ ;{(y) of the dam that corresponds io the j™ Ritz vector of the associated dam-
foundation rock system. Repeating the steps in equations (B.6) to (B.11) with f(y) = () results in

I)ﬂO,y,w) as given in equation (4.36¢) and 7,,(w) as defined in equation (4.37b).



APPENDIX C: HYDRCDYNAMIC PRESSURE WITH RIGID RESERVOIR BOTTOM

The frequency response functions for hydrodynamic pressure in impounded water with rigid reser-

voir battom can be obtained from equations (3.18) to (3.21) by setting the damping cocfficient ¢ for

, ) ) 2ip ) H . . ,
the reservoir bottom materials cqual to zcro. From cquation (3.20), ¢ Wt —1, which, by Euler’s

identity, is equivalent to cos2u ,{w)H = —1 and sin2u ,(w) H = 0. Consequently, the eigenvalues of
the impounded water with rigid reservoir bottom are real-valued and given by

2n—1 7
2 H

Mn(w) = Moy T

The natural vibration frequencies of the impounded water are: @ ,=u ,C. The eigenfunctions of the
. - ‘ . in () -ip ()
impounded water for g=0 are, from equation (3.21), Y,(y,@) = #le™ "+ "7 or:

Y, (y,@) = cosu ,y.

The frequency response functions for hydrodynamic pressure are given by equation (3.18) using

g=0and Y ,(y,w) defined above:

[On

KH

X
e " cosy v

Py =2 5

=1 Kn

—y - pC 1 . wlH—y)
76 (x,v,@) - COS“’_’LI sin ==

C

— . - lln K©
Pilx,y,w) ==2p ¥ —- """ cosp ¥

=1 Kn

where k, = /2~ w?/ ? and equation {3.19) reduces to:

o n
fCOSM,,yd_,V:-L 1)
0

ly, = T 2n—1

=~

H
1
hy= —f¢f‘(0,y) COSH Y dy
0

T

These results for a rigid reservoir bottom were presented in refere aces 2,3 and 29,
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The vector T' of total accelerations can be represented as:
Fr=a]l + g0l + 8(Ne® + F (D.2)

in which a,{#} is the horizontal component of free-ficld ground acceleration; ug{#) is the horizontal
translation of the dam base relative to the free-field ground motion; and 6(s) is the rotation of the base

about its centroid.

The fundamental mode response of the dam can be determined by expressing the displacements

relative to the rigid base as:
r= Y1) (D.3)

where ¢, is the fundamental vibration mode of the dam on a rigid base and Yi(r) is the generalized
coordinate corresponding to that mode. The fundamental vibration mode of the dam is the solution of
the eigenvalue problem: k¢ 1= wfmd |, where w; is the fundamental natural vibration frequency of the

dam on rigid basc with an cmpty reservoir.

The substitution of equations (D.2) and (D.3) into (D.1), premultiplication of equation (D.1a) by
¢, use of the orthogonality properties of ¢ with respect to m and k, and the assumption of viscous

damping in the dam gives:

MY (D + C YD + K Y + Lidiolo) + LY6() = —Lyao) + ¢,/R(2) (D.4a)
Ly Y10 + myiig(0) + LEGD + V(D =—m,a,(0) + {1} TR(D) (D.4b)
LYY () + L iigle) + 1,6(0) + M(0) = ~L§ a,(0) + {¢) TR(2) (D.4¢)

where M;=¢'me, is the generalized mass; m,=({1}"'m] and /,={¢’) Tme’ are the total mass of the
dam and mass moment of inertia of the dam about the centroid of its base, respectively; L ={e} 'm],
Li=¢ml, L{ =¢me® Ki=wiM;, C;=2M w1 and &, is the fraction of critical damping for the
fundamental vibration mode. If the reservoir is empty, the vector R(¢#) of hydrodynamic forces is zero

and equation (D.4) reduces to equation (7.19).

For harmonic horizontal ground acceleration a,(f)=e™’, the displacements and forces can be
14

represented in terms of their complex-valued frequency response functions: ¥,(f)=Y(w)e™’,
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of absorptive reservoir bottom materials, is:
[~ gl (x,0,0) =0 (D.8)
oy

where g=p/p,C, as defined in Chapters 3 and 4. The boundary condition at the free surface is:
plx,Hw) =0 (D.9)
where H is the depth of the impounded water.

The linear form of equation (3.13} for hydrodynamic pressure, and the linear form of the above

boundary conditions, allows p(x,y,w) to be expressed as:
0x,0,0) = Bolx,v.0) + Polx,p,0) o) + B (x,y,0)6w) + 71(x,7.0) ¥i(w) (D.10)

The expressions for the frequency response functions for the various hydrodynamic terms are
given in Chapters 3 and 7, as derived in Appendix B. The frequency response function polx,y,w) for
hydrodynamic pressure due to the horizontal component of ground motion of a rigid dam is given in
equations (3.18a); the frequency response function pi{x,y,w) for hydrodynamic pressure due to the
horizontal acceleration ¢40,y) of the upstream face of the dam in it.s fundamental vibration mode is
given in cquation (3.18c); and the frequency response function p¢ (x,y,w) for hydrodynamic pressure

with a rigid dam rotating about the centroid of its base is given by equation (7.30).

The vector R(w) of frequency response functions for the hydrodynamic forces on the upstream

face of the dam are, [Tom equation (D.10):
R{w) = Rolw) + Tolw) Rolw) + 8(w) Riw) + ¥1(0) Ry(w) (D.11)

in which the x-DOF elements of Rolw), R§(w) and R;(e) for the upstream face nodal points are the
nodal forces statically equivalent to the corresponding pressure functions at the upstream face of the
dam: 70,0}, 56 0,p,w) and 71(0,y,w), respectively. The y-DOF elements of the hydrodynamic

force vectors are zero.



APPENDIX E: SOLUTION FOR FUNDAMENTAL MODE RESPONSE OF DAMS

The frequency domain cquations for the fundamental mode response of dams on flexible founda-
tion rock with impounded water are given by equation (D.12). The three-by-three system of complex-
valued cquations can be solved for ?1((»), the frequency response function for the modal coordinate
corresponding to the fundamental mode of vibration of the dam.

However, equation (D.12) contains three terms, m,, I, and L§ that represent the inertial forces
on the dam due the rigid-body motion allowed by foundation-rock flexibility, which complicate the
selution for ?1(cu). It can shown from numerical results that the dam response is accurately
represented by assuming that the mass terms m,, [, and Lj are approximated by the contributions

from only the fundamental vibration mode:
m, = m|
L§ = m b (E.1)
1, = m, (h))?

in which m=(L})¥ M, and i/=L{/L, are the effective mass and eflective height, respectively, of
the dam in its fundamental mode of vibration [28). The substitution of equation (E.1) into equation

(D.12) and appropriate factorization gives a convenient non-dimensional form of the frequency domain

equations:
82+ —g2 / -2 /
B+ 1288 +1-8" B0 M, 8° U+ Bylw)s by
B le) Ko Aw)
~B2 114 Byiwi/ L] —p? (14 2007 SEV
lﬂl ”110)12
Bogtel]  Kypde)
82 1+8, w1/ L9 _p [ig SO T b
(] g | P vy *
thI LT h]
2 0 .'l/l] -
B2 [1+8, W)/ L e
A7 By o) LY 0, N 1+ Byl L
By, lm) Kyaglw)
S T il P Bt R gl [=— Lt 1By (E.2)
m;hl‘ ’"]T“'IZ h; _ . wlz .
G(w'hl 1+309(wifm1h1
a2l Bugto! | Kyl 4 )2
m;(h[‘lz fn;wlz hI’

in which B=w/w1.
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involve differences in hydrodynamic terms that are small; and (b) they are associated with higher-order
excitation frequencies, 8% and B° respectively. Neglecting the terms G(») and G,{w) in equation
(E.3) results in equation (7.32), where F(w) is defined in equation (7.23) and F.{w) is defined in equa-

tion (7.33).
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. 1 .
G e \/1+Re[31(&31)]/M1]

1

(F.3)
J1+RelF(@ )]

Because Flw) is a slowly-varying, smooth function of excitation frequency, as is Re[B{w)] if the reser-

voir bottom materials are significantly absorptive, the foundation-rock flexibility term Re[F(w)] may be

evaluated at & ;, and the added hydrodynamic mass Rel{B;(w)] may be evaluated with sufficient accu- .

racy at &,. Consequently, the natural vibration frequency @; from equation (F.3) is:

~ 1
@01= wi
\/i +Rel By(@ )/ M,

' 1+ RelF(o )]

I ] (F.4)

The natural vibration frequencies @, and @ ;, for dams on rigid foundation rock and dams with empty
reservoirs, respectively, are:

ar 1

- (F.52)

@1 /1+RelB @)/ M, '
@r _ 1 (F.5b)
W] 1+RelF(a /)]

Substitution of equation (F.5) into equation (F.4) gives equation (7.38).

The frequency response function 7’1 (w) for the equivalent SDF system can be obtained from the
frequency response function T’;(M) for the fundamental mode response of the dam, equation (F.1).
Evaluating the frequency-dependent terms at excitation frequency @i, using equations (F.2) to (F.3)
for the real-valued terms in the denominator of equation (F.1), and grouping the imaginary-valued

terms gives the frequency response function T’](w) for the equivalent SDF system:

Yilw (F.6)
-—w[ ] [ +w|2M1+1w~

where L, = L, + By{@1) is the generalized earthquake force, and = contains the imaginary-valued

terms in the denominator of equation (F.1). Multiplying numerator and denominator of equation (F.6)
by (@ /@)’ using equation (7.38) and recognizing that wiM,=& M), where M=M,+RelB (@ )],

results in:
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o2
1 1 |
my) = ————|— ) F.11
¢, (@) 2 M, ml] Im([B;(a)] (F.1D)
and & /(@) is the added damping ratio due to dam-foundation rock interaction, defined as:
Y
w
£Er@y) = —1—[——1- Im[F (@I (F.12)
' 2 ]
Substituting the following identities:
Im[FBl = Re[FlImIB] + Im[FIRel Bl
RelFBy] = Re{FIRe{B|] — ImI Flim[ 58]
into equation (F.10), and using the definitions in equations (F.11) and (F.12) again, gives:
o [ZHer+ 6,0 + £, + £, ORIF] + €@ )RelBII/ My
1
. 13 . 33
)
~ [—| &RelF] — | 2L £RelFIRe[B1/ M, (F.13)
]

after neglecting the term Im[F1Im[B;] because it introduces a third-order damping term into €. The

terms Re[B;] and Rel[F] are obtained from the approximations in equation (F.4) and the definitions in

equation (F.5):

RelB /M, = RelB{& )I/M, = l

2
@]

RelF] = Re[Fla )] = [ -
Wy

-1

which upon substitution inte equation (F.13) and grouping of damping terms gives the damping ratio £

of the equivalent SDF system:

3
= f.l"r ‘5/' 1 ~ 1 ~
= [—||— —fy F.14
¢ [wI [wl E1+ (@,,/w,)zg’(w'H (&r/wl)zfj(wl) (F.14)

Equation (F.14) was presented in Chapter 7 as equation (7.40).
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Committee: V.V. Berterc, P.F. Fratessa, S.A. Mahin, J.H. Sexton, A.C. Scordelis, E.L. Wilson, L.A. Wyllie,
H.B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)a06

*Reports marked .IA arc no loncer available from EERC.
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73-8

73-9

73-10

73-11

73-12

73-13

73-14

73-15

73-16

73-17

73-18

73-19

73-20

73-21

73-22

73-23

73-24

73-25

73-26

73-27

74-1

74-2

74-3

74~-4

74-5

"Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames,"” by M.B. El-Hafez and G.H. Powell
1973 (PB 248 315)A09

"Experimental Investigation into the Seismic Behavior of Critical Rejions of Reinforced Concrete Components
as Influenced by Moment and Shear,” by M. Celebi and J. Penzien - 1973 (PB 215 8B4)A0%

"Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams,” by M. Celebi and J. Penzien -1973
{PB 239 588)A03

"General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures.' by A. Kanaan and
G.H. Powell - 1973 (PB 221 260)A08

"A Computer Program for Earthquake Analysis of Gravity Dams including Reservoir Interaction,” by
P. Chakrabarti and A.K. Chopra = 1973 (AD 766 2711A04

“Behavior of Reinforced Concrete Deep Beam-Column Subassemblages Under Cyclic Loads," by O. Kusti and

J.G. Bouwkamp - 1973 (PB 246 117)Al2
"Earthquake Analysis of Structure-Foundation Systems." by A.K. vaish and ».K. Chopra - 1973 (AD 766 272)AG7
"Deconvolution of Seismic Response for Linear Systems,” by R.B. Reimer - 1973 (PB 227 179)A08

“SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems." by K.-J. Bathe,
E.L. Wilson and F.E. Peterson - 19273 (PB 221 967)A09

“snalytical Tnvestigations of the Seismic Response of Long, Multiple Span Highway Bridges,” by W.S. Tseng
and J. Penzien - 1973 (PR 227 816)Al10

"Barthquake Analysis of Multi-Story Buildings Including Foundation Trnteraction,” by A.K. Chopra and
J.A. Gutierrez -~ 1973 (PR 222 970)A03

"ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams.”" by R.W. Clough, J.M. Raphael and
§. Mojtahedi - 1973 (PB 223 763)A09 ’

"Cyclic Plastic Analysis of Structural Steel Joints." by R,B. Pinkney and R.W. Claugh - 1973 (PB226 B43)}A08

“QUAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping
Finite Element Procedures," by I.M. Idriss, J. Lysmer., R. Hwang and H.B. Seed - 1973 (PB 229 424)A05

"Dynami¢ Behavior of a Multi~sStory Pyramid Shaped Building," by R.M. Stephen, J.P. Hollings and
J.G. Bouwkamp - 1973 (PB 240 718)A06

Unassigned
"Olive View Medical Center Materials Studies, Phase I," by B. Breslex and V.V. Bertero - 1973 (PB 235 4986) AGS
Unassigned

"Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J.M. Kelly and P.P. Cillis
1973 (PB 226 024)A03

"DRAIN - 2D User's Guide," by G.H. Powell - 1973 ({PB 227 016}A0S5
"Earthquake Engineering at Berkeley - 1973," (PB 226 033)all
Unassigned

"Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C.Y. Liaw and A.K. Chopra
1973 {(AD 773 052)A09

"Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their
Implications on Seismic Design,"™ by V.V. Bertero and R.G. Collins - 1973 (PB 235 106)Al3

"Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages,” by V.V. Bertero, H. Krawinkler
and BE.P. Popov-1973 (PB 234 172)A06
“Seismic Risk Analysis,” by C.S. Oliveira - 1974 (PB 235 920)A06

“Settlement and Liquefaction of Sands Under Multi-Directional Shaking," by R. Pyke, C.K. Chan and H.B. Seed
1974 .

"Optimum Design of Earthquake Resistant Shear Buildings,"” by D. Ray, K.S8. Pister and A.K. Chopra - 1974
(PB 231 172)A0D6

"LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. Udaka,
H.B. Seed and R. Hwang - 1974 (PB 236 796}A05

"Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D, Ray
1574 {PB 233 213)a06
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75-26

75-27

73-28

75-29

75-30

75=31
75-32

75-33

75-34

75~35

75-36

75-37

75=-38

75-39

75-40

75-41

76-1

76-2

76-3

76-4

"Dynamic Properties of an Eleven Story Masonry Building," by R.M, Stephen, J.P. Hpllings, J.G. Bouwkamp and
D. Jurukovski - 1975 (PP 246 945)A04

"State-of-the-Art in Seismic Strength of Masonry - An Evaluation and Review," by R.L. Mayes and R.W. Clough
1975 (PB 249 Q401207

"Frequency Pependent Stiffriess Matrices for Viscoelastic Half-Plane Foundations," by A.K. Chopra,
P. Chakrabarti and G, Dasgupta - 1975 (PB 248 121)A0Q7

"Hysteretic Behavior of Reinforced Concrete Framed Walls,” by T.Y. Wany, V.V. Bertero and E.P. Popov - 1975
(PB 267 298)}Al17

Unassigned

“Influence of Seismic History on the Liquefaction Characteristics of Sands,” by H.B. Seed, K. Mori and
C.¥. Chan-1975 {(Summarized in EERC 75-28)

"The Generation and Dissipaticn of Pore Water Pressures during Soil Liquefaction," by H.B. Seed., P.P. Martin
and J. Lysmer ~ 1975 (PB 252 648)A03

"Identification of Research Needs for Improving Aseismic Design of Building Structures," by v.V. Bertero
1975 (PB 248 136}A05

"Evaluation of Soil Liquefaction Potential during Earthquakes," by H.B. Seed, I. Arango and C.XK. Chan - 1975
(NUREG 0026)Al3

"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction
Analyses,” by H.B. Seed, I.M. Tdriss, F. Makdisi and N. Banerjee - 1375 (PB 252 €35)A03

"FLUSH - A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Praoblems," by
J. Lysmer, T. Udaka, C.-F. Tsai and H. B. Seed - 1975 (PB 259 332)A07

Unassigned
Unassigned

"Predicting the Performance of Structures in Reqgions of High Seismicity," by J. Penzien - 1975
(PB 248 130} 403

"Efficient Finite Element Analysis of Seiémic Structure - £oil - Direction,"™ by J. Lysmer, H.B. Seed, T. Udaka,
R.N. Hwang and ¢.-F. Tsai - 1975 (PB 253 570)A03

"The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading,"
by R.W. Clough and L.-Y. Li~- 1975 (PB 248 841)A05

"Farthquake Simulator Study of a Steel Frame Structure, Volume IT - Analytical Results,” by D.T. Tang ~ 1975
(PB 252 926)Al0

"ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response,” by D.P. Mondkar
and G.H. Powell - 1975 (PR 252 386)A08

"Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete
structures,” by M, Murakami and J. Penzien - 1975 (PB 259 S30)A05

"Study of a Method of Feasible Directions for Optimal Elastic Desiqgn of Frame Structures Subjected to Earth-
equake Loading,” by N.D. Walker and K.S. Pister - 1975 (PB 257 781)A06

"An Alternative Representation of the Elastic-Viscoelastic Analogy," by G. Dasqupta and J.L. Sackman - 1975
(PB 252 173)A03

"Effect of Multi-Directional Shaking on Liguefaction of Sands,” by H.B. Seed, R. Pyke and G.R. Martin = 1975
(PB 258 781)A03
“Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings - Screening Method," by

T. Okada and B. Bresler - 1976 (PB 257 906)All

"Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and
T-Beams," by S.-Y.M. Ma, E.P. Popov and V.V. Berterc - 1976 [(PB 260 843}Al2

"Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R.M. Stephen, E. Gartenbaum
and J.G. Bouwkamp - 1976 (PB 273 279)A07

"Earthquake Induced Deformations of Earth Dams," by N. Serff, H.B. Seed, F.I. Makdisi & C.-Y. Chang ~ 1976
(PB 292 065}A08
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UCB/EERC~77/02

UCB/EERC-#7/03
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UCB/EERC-77/06
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UCB/EERC-77/10

UCB/EERC~77/11

UCB/EERC-77/12

UCB/EERC-77/13

UCB/EERC-77/14
UCB/EERC-77/15

UCB/EERC-77/16
UCB/EERC-77/17
UCB/EERC-77/18
UCB/EERC-77/19
UCB/EERC-77/20
UCB/EERC-77/21
UCB/EERC-77/22
UCB/EERC=77/23
UCB/EERC-77/24
UCB/EERC-77/25
UCB/EERC-~77/26
UCB/EERC-77/27
UCB/EERC-T77/28
UCB/EERC-77/29

UCB/EERC-77/30

"PLUSH - A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Inter-
action,” by M.p. Romo Organista, J. Lysmer and H.B. Seed - 1977 (PBBL 177 651}A05

“8oil-Structure Interaction Effects at the Humbcldt Bay Power Plant in the Ferndale Earthquake of June
7, 1975," by J.E, Valera, H.B. Sced, C.F. Tsai aad J. Lysmer - 1977 (PB 265 795}A04
Seed and C.K.

"Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H.B.

Chan - 1977 (PB 267 352)}1h04

“Seismological Studies of Strong Motion Records,™ by J. Shoja~Taheri - 1977 (P3 289 655)}A10

Unassigned

"Developing Methodologies for Evaluating the Earthguake Safety of Existing Buildings," by No. 1 -

B. Bresler; No. 2 - B. Bresler, T. Okada and D, Zisling; No. 3 - T. Okada and B. Hrecler; No. 4 — V.V,

Bertero and B. Bresler - 1977 (PB 267 354)A08

"A Literature Survey ~ Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Cnen and
R.W. Clough - 1977 (pPB 277 933)A07

"DRAIN-TABS:
R.

A Computer Program for Inelastic Earthgquake Response of Three bimensional Buildings," by
Guendeclman-Israel and G.H. Powell -~ 1977 {pB 270 693)YAa07

"SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic hnalysis and Design

of Structural Walls with Substructure Option,” by D.Q, Le, H, Peterson and E,P. Popov - 1377
(PB 270 567)A05 '

“Ixperimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks.,” by D.P. Clough
(PB 272 280)Al3

"Earthquake Engineering Research at Berxkeley =~ 1976," =~ 1977 (PB 273 507)A09

"Automated Design of Earthquake Resistant Multistory Steel Building Frames,™ by N.D. Walker, Jr. « 1977
(PB 276 526)A09

"Concrete Confined by Rectangular Hoops Subjected to Axial loads,” by J. Vallenas, V.V. Bertero and
E.P, .Popov - 1977 (PB 275 165}A06

"Seismic Strain Induced in the Ground During Earthquakes,” by Y. Sugimura -~ 1977 (PB 284 201)Aa04
Unassigned

"Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames,” by S.W.
Zaga)jeski and V.V. Bertero - 1977 (PB 280 137)A07

"Earthguake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices,” by J.M. Kelly and
D.F. Tsztoo - 1977 (PB 273 506}A04

"Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings," by C.W. Roeder and
E.P. Popov - 1977 {(PB 275 528)Al5

"A Simplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments,” by F.I.
Makdisi and H.B. Seed -~ 1977 (PB 276 B20}A04

"The Performance of Earth Dams during Earthquakes,"” by H.B. Seed, F.I. Makdisi and P. de Alba - 1977
{PB 276 821}A04 ) :

"Dynamic Plastic Analvsis Using Stress Resultant Finite Element Formulation,” by P. Lukkunapvasit and
J.M. Kelly - 1977 (PB 275 453)A04 .

“Preliminary Experimental Study of Seismic Uplift of a Steel Frame,” by R.W. Clough and A.A, Huckelbridge
1977 (PB 278 769)MD8

"Earthquake Simulator Tests of a Nine~Story Steel Frame with Columns Allowed to Uplift,"” by A.A.
Huckelbridge -~ 1977 (PB 277 944)A09

"Nonlinear Soil~Structure Interaction of Skew Highway Bridges,” by M.-C. Chen and J. Penzien - 1977
(PB 270 176)A07

"Seismic Analysis of an Offshore Structure Supported on Pile Foundations,” by D.D.-N. Liou ard J. pPepzien
1977 (pB 283 180)A06

"Dynamic Stiffness Matrices for Homogenecus Viscoelastic Half~Planes," by G. Dasgupta and A.K. Chopra -
1977 (PB 279 654)A06

"h Practical Soft Story Earthquake Isolatien System,™ by J.M. Kelly, J.M. Eidinger and C.J. Derham -
1977 (PB 276 814}A07

“Seismic Safety of Existing Buildings and Incentives for Hazard Mitigation in San Francisco:
Exploratory Study,” by A.J. Meltsner - 1977 (PB 281 970}A05

An

"Dynamic Analysis of Electrohydraulic Shaking Tables,” by D. Rea, S. Abedi-Hayati and Y. Takahashi
1977 (PR 282 569)A04

"An Approach for Improving Seismic - Resistant Behavior of Reinforced Concrete Interior Joints,” by
B. Galunic, V.V. Bertero and E.P. Popov = 1977 (PB 290 870)A06
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UCB/EERC-79/01
UCB/EERC-79/02
UCB/EERC-79/03
UCB/EERC-79/04
UCB/EERC-79/05
UCB/EERC-79/06

UCB/EERC-79/07

UCB/EERC-72/08

UCB/EERC-79/09

UCB/EERC-79/10

UCB/EERC-79/11
UCB/EERC-79/12
UCB/EERC-79/13
UCB/EERC-79/14

UCB/vEERC—79/15
UCB/EERC-79/16
UCB/EERC-79 /17
UCB/EERC~79 /18
UCB/EERC-79 /19
UCB/EERC-T79/20
UCB/EERC-79/21
UCB/EERC-79/22

UCB/EERC-79/23

UCB/EERC-79/24
NA U/ /

XB/EERC~79/25

UCB/EERC-73/26

UCB/EERC-79/27

UCB/EERC-79/28

UCB/EERC=-79/29

"Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages,'
E.P. Popov and V.V. Bertero = April 1979(PB 298 267} AOG

by B. Parzani,

"The Development of a Mathematical Model to Predict the Flexural Response of Reinforced Concrete Beams
to Cyclic loads, Using System Identification," by J. Stanton & H. McNiven - Jan. 1979(PB 295 875)Al0

"Linear and Nonlinear Earthquake Response of Simple Torsionally Coupled Systems."” by C.L. Kan and
A.K. Chopra - Feb. 1979(PB 298 262)A06

"A Mathematical Model ©f Masonry for Predicting its
Y. Mengi and H.D. McNiven - Feb. 1979(PB 298 266)A06

Linear Seismic Response Characteristics," by

"Mechanical Behavior of Lightweight Concrete Confined by Different Types of Lateral Relnforcement,”
by M,A. Manrique, V.V. Berterc and E.P. Popov - May 1979(PB 301 1l4)A06

"Static Tilt Tests of a Tall Cylindrical Liguid Storage Tank,” by R.W. Clough and A. Niwa = Feb. 1979

(PB 301 167)A06

“The Design of Steel Energy Abscrbing Restrainers and Their Incorpora<ion into Nuclear Power Plants
for Enhanced Safety: Volume 1 - Summary Report,” by P.N. Spencer, V.F. Zackay, and E.R. Parker -
Feb. 1979 (UCB/EERC-79/07) AQ9Y

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into Nuclear Power Plants
for Enhanced Safety: Volume 2 - The Develcpment of Analyses for Reactor System Piping,""Simple Systems"
by M.C. Lee, J. Penzien, A.K. Chopra and K, Suzuki "Complex Sz‘stems" by G.H. Powell, E.L. Wilson,

R.W. Clcugh and b.G. Row - Feb., 1979 (UCB/EERC-73/08)Al0

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into
for Enhanced Safety: Volume 3 - Evaluation of Commercial Steels," by W.5. Owen, R.M.N. Pelloux,
R.0. Ritchie, M. Faral, T. Ohhashi, J. Toplosky, S$.J. Hartman, V.F. Zackay and E.R, Parker -
Feb. 1979 (UCB/EERC-79/09) A04

Nuclear Power Plants

"The Design of Steel Energy Absorbing Restrainers and Their Incorporation into
for Erhanced Safety: Volume 4 - & Review of Energy-Absorbing Devices," by J.M.
M.S. Skinner - Feb. 1979 {(UCB/EERC-79/10)A04

"Conservatism In Summation Rules for Closely Spaced Modes," by J.M. Kelly and J.L. Sackman - May
1979 (PB 301 328)A03

Nuclear Power Plants
Xelly and

"Cyclic Loading Tests of Masonry Single Piers; Volume 3 - Height to Width Ratio of 0.5." by
P.A. Hidalgo, R.L. Mayes, H.D. McNiven and R.W. Clough - May 1979(PB 301 321)a08

"Cyclic Behavior of Dense Course-Grained Materials in Relarion to the Seismic Stability of Dams," by
MN.G, Banerjee, H.B. Seed and C.K. Chan - June 1979{PB 301 373)al3

"Seismic Behavior of Reinforced Concrete Interior Beam-Column hubassemblages," by 5. Viwathanatepa,
E.P. Popcv and V.V. Bertero - June 1979(PB 301 326} Al0

"Optimal Design of Localized Nonlinear Systems with Dual Performance Criteria Under Earthquake
Excitations,” by M.A. Bhatti - July 1979(PB 80 17 109)A06

"OPTDYN - A General Purpose Optimization Program for FProblems with or without Dynamic Constraints,”
by M.A. Bhatti, E. Polak and K.S. Pister - July 1979(PB 80 167 (091) 205

"ANSR~II, Analysis of Nonlinear Structural Response, Users Manual.," by D.P. Mondkar and G.H. Powell
July 1978{PB 80 113 301)A05

"Soil Structure Interaction in Different Seismic Environments," A. Gomez-Masso, J. Lysmer, J.-C. Chen
and H.B. Seed - Bugust 1979(PB 80 101 520)a04

"ARMA Models for Earthquake Ground Moticns," by M.K. Chang, J.W. Kwiatkowski, R.F. Nau,

R.M. Oliver
and K.S. Pister - July 1979 (PB 301 166)ACS '

"Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V. Bertero and
E.P. Popov - August 1979(PB 80 165 905)Al2

"Studies on High-Frequency Vibrations of Buildings - 1: The Column Effect," by J. Lubliner - August 1979
(PB 80 158 553)A03

"Effects of Generalized Loadings on Bond Reinforcing Bars Embedded in Confined Concrete Blocks,™ by
S. Viwathanatepa, E.P. Popov and V.V. Berterc - August 1979(PB 81 124 0l8)al4

"Shaking Table Study of Single-Story Masonry Houses, Volume 1: Test Structures 1 and 2," by P. Gulkan,

R.L. Mayes and R.W. Clough - Sept. 1979 (HUD-000 1763)Al2

"Shaking Table Study of Single-Story Masonry Houses, Volume 2: Test Structures 3 and 4.," by P. Gulkan,

®.L. Mayes and R.W. Clough - Sept. 1979 (HUD-00Q 1B3%)alz2

"Shaking Table Study of Single=Story Masonry Houses, Volume 3: Conclusicns and Recommendations,'

by R.W. Clough, R.L. Mayes and P. Gulkan - Sept. 1979 (HUD-000

Summary,
1837)A06

"Recommendations for a U.S.-Japan Cooperative Research Program
by U.S5.-Japan Planning Group - Sept. 1979{PB 30l 407)a06

Utilizing Large-Scale Testing Facilities,”

"Earthquake~Induced Liquefaction Near Lake Amatitlan, Guatemala," by H.B. Seed, I. C.X. Chan,

A. Gomez=Masso and R. Grant de Ascoli - Sept. 1979 {NUREG-CRL341)A03

Arango,

"Infill Panels: Their Influence on Seismic Response of Buildings," by J.W. Axley and V.V. Bertero
Sept. 1979(PB 80 163 371)al0

"3iD Truss Bar Element (Type 1)
(PB 80 169 709)A02

for the ANSR-II Program,"” by D.P. Mondkar and G.H. Powell - Nov. 1979
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UCB/EERC-80/28

UCB/EERC-80/29

UCB/EERC-80/30

UCB/EERC-80/131

UCB/EERC-80/32

UCB/EERC-30/33

UCB/EERC-80/134

UCB/EERC-80/35

UCB/EERC-80/36

UCB/EERC-80/37
UCB/EERC-8(/38

UCB/EERC-80/39

UCB/EERC-80/40

UCB/EERC-80/41

UCB/EERC-80/42

UCB/EERC-80/43

UCB/EERC-81,/01

UCB/EERC-81/02

UCB/EERC-81/03

UCB/EERC-81/04

UCB/EERC-81/05

UCB/EERC~-B1/06

UCB/EERC-81/07

UCB/EERC-81/08

UCB/EERC-81/09

UCB/EERC-81/10

UCB/EERC-81/11

UCB/EERC-81/12

"$haking Table Testing of a Reinforced Concrete Frame with Biaxial Response,” by M.G. Oliva
October 1980(pB8L 154 304)Al10

"Dynamic Properties of a Twelve-Story Prefabricated Panel Building," by J.G. Bouwkamp, J.P. Kollegger
and R.M. Stephen - October 1980(pPBS82 117 128}A06

"Dynamic Praperties of an Eight-Story Prefabricated pPanel Building," by J.G. Bouwkamp, J.P. Kollegger
and R.M. Stephen - October 1980 (PBB1 200 313}A05

"Predictive Dynamic Response ©of Panel Type Structures Under Earthguakes,” by J.P. Kolleager and

J.G. Bouwkamp - October 1980(PRS1 152 316YA04

“The Design of Steel Energy-Absorbing Restrainers and their Incorporation into Nuciear Power Plants
for Enhanced Safety (Vol 3): Testing of Commercial Steels in Low-Cycle Torsional Fatigque." bv

P. €reneeor, E.R. Parker, f. .Jonaewaard and M. bDrory

"The Uesign of Steel Energy-aAbsorbing Restrainers and their Incorporation into Nutlear Fower #lants
for Enhanced Safety (Vel 4): Shaking Table Tests of Tiping sveatems with Energy-Absorbing Restrainers."”
by S.F. Stiemer and W.G. Godden - Sept. 1980 (PB82 201 880)}A05

“The Design of Steel Energy-Absorbing Restrainers amd their Ineorg oration into Nuclear Power Plants
for Enhanced safety (Vol S5): Summary Report,” by P. Spencer

"Experimental Testing of an Energy~Absorbing Base Isolation System," by J.M.
K.E. Beucke -~ october 1980(PB81 154 072)A04

Kelly, M.S. Skinner and

“Simulating and Analyzing Artificial Non-Stationary Earthquake Ground Motions," by R.F. Nau, R.M. Oliver
and K.S. Pister - October 1980 (PB81 153 397)A04

"Earthquake Engineering at Berkeley - 1980," - sSept. 1980(PBBL 205 574)AQ09

"Inelastic Seismic Analysis of Large Panel Buildings," by V. Schricker and G.H. Powell - Sepr. 1983

(PBB1 154 338)Al3

“Dynamic Response of Embankment, Concrete-Gravity and Arch Dams Including Hydrodynamic Interaction,”
by J.F. Hall and A.K. Chopra - October 1980(PB81 152 324)all

"Inelastic Buckling of Steel Struts Under Cyclic Ioad Reversal,”™ by R.G. Black, W.A. Wenger and
E.P. Popov - Octobey 1980(PBS1 154 312)A08

“Influence of Site Characteristics on Building Damage During the October 3,
P. Repetto, I. Arango and H.B. Seed - Sept. 1980(PR81 161 739)A05

1974 Lima Earthguake," by

“Evaluation of a Shaking Table Test Program on Response Behavicr of a Two Story Reinforced Concrete
Frame,” by J.M. Blondet, R.W. Clough and $.A. Mahin (PB82 196 544)all

"Modelling of soil-structure Interaction by Finite and Infinite Elements,” by F. Medina -
December 1980(PB81 229 270)A404

"Contrel of Seismic Response of Piping Systems and Other Structures by Base Isolation,” edited by J.M.
Kelly - January 1981 (PBE81 200 735}A0S

"OPTNSR - An Interactive Software System for Optimal Design of Statically and Dynamically Loaded
Structures with Nonlinear Response,” by M.A. Bhatti, V. Ciampi and K.S. Pister - January 1981
{PBBLI 218 851)AD9

"Analysis of Local variations in Free Fie¢ld Seismic Ground Motlons," by J.~C. Chen, J. Lysmer and H.B.
Seed - Januaxy 1981 (AD-AQ99508)Al3

"Tnelastic Structural Modeling of Braced Offshore Placforms for Seismic Loading," by V.hA. Zavas,
P.-S.B. Shing, S.A. Mahin and E.P. Popov - January 1981 (FB82 138 777)A07

"Dynamic Response of Light Equipment in Structures," by A. Der Kiureghian, J.L. Sackman and B. Nourx=-
Omid - April 1981 (pB81 218 497)A04

"Preliminary Experimental Investigation of a Broad Base Liguid Storage Tank," by J.G. Bouwkamp, J.P.
Kollégger and R.M. Stephen - May 19B1{PBB2 140 385)A03

“The Seismic Resistant Design of Reinforced Concrete Coupled Structural Walls," by A.E. Aktan and V.V.
Bertero - June 1981(PB82 113 358)Al1l

"The Undrained Shearing Resistance of Cohesive Soils at Large Deformations," by M.R. Pyles and i.B.
Seed - August 1981

"Experimental Behavior of a Spatial Piping System with Steel Energy Absorbers Subjected to a Simulated
Differential Seismic Input,” by S.F. Stiemer, W.G. Godden and J.M. Kelly - July 1981 (PB82 201 898)A04

"Evaluation of Seismic Design Provigions for Masonry in the United States," by B.I. Sveinsson, R.L.
Mayes and H,D, McNiven — August 1981 (PBB2 166 075)A08

"Two=-Dimensional Hybrid Modelling of Scoil-Structure Interaction," by T.-J. Tzong, S. Gupta and J.
Fenzien - August 1981(PB82 142 118)A04

"Studies on Effects of Infills in Seismic Resistant R/C Construction,” by S. Brokken and V.V. Bertero -
October * 1981 (PB82 166 190}A09

225



UCB/EERC-82/19

UCB/EERC-82/20

UCB/EERC-82/21

UCB/EERC~82/22

UCB/EERC-82/23

UCB/EERC-82/24

UCB/EERC-B3/25

UCB/EERC-82/26

UCB/EERC-82/27

UCB/EERC-83/01

UCB/EERC-83/02

UCB/EERC-83/03

UCB/EERC-83/04

UCB/EERC~83/05

UCB/EERC~83/06

UCB/EERC-83/07

UCB/EERC-83/08

UCB/EERC-83/09

UCB/EERC-83/10

UCB/EERC-83/11

UCB/EERC-8B3/12

UCB/EERC-83/13

UCB/EERC~83/14

UCB/EERC-83/15

UCB/EERC-83/16

UCB/EERC—-83/17

"Experimental Studies of Multl-support Seismic Loading on Piping Systems,” by J. M. Kelly and
A. D. Cowell - November 1982

"Generalized Plastic Hinge Concepts for 3D Beam=-Column Elements,” by P. F.-8. Chen and G. H.
November 1982 (P83 247 981)A13

Powell -

"ANSR-III: General Purpose Computer Program for Nonlinear Structural Analysis,” by C. V. Oughourlian
and G. H. Powell - November 1982 (PB83 251 330)Al2

"Solution Strategies for Statically Loaded Nonlinear Structures,” by J. W. Simons and G. H. Powell -
November 1982 (PB83 197 970)A06

"Analytical Model of Deformed Bar Anchorages under Generalized Excitations," by V. Ciampi, R.
Eligehausen, V. V. Bertero and E. P. Popov - November 1982 (PBB3 169 532)a06

"A Mathematical Model for the Response of Masonry Walls to Dynamic Excitations," by H. Sucuoglu,
Y. Mengi and H. D. McNiven - Novewmber 1982 (PBB3 169 011)a07

"Earthgquake Res
(PB83 251 215)

"Computational Models for Cyclic Plasticity, Rate Dependence and Creep,” by B. Mosaddad and G. H.
Powell -~ November 1982 (PBB3 245 B29)A08

nse Considerations of Broad Liquid Storage Tanks," by F. J. Cambra - November 1982

"Inelastic Analysis of Piping and Tubular Structures," by M. Mahasuverachai and G.
1982 (PBB1 245 S$87)A07

H. Powell - November

"The Economic Feasibility of Seismic Rehabilitation of Buildings by Base Isolation,"” by J. M, Kelly -
January 1983 (PB83 197 9B8B)AQS

"Seismic_Moment Connections for Moment-Resisting Steel Frames,” by E. P. Popov - January 1983
(PBB3 195 412)A04

"Design of Links and Beam-to-Column Connections for Eccentrically Braced Steel Frames," by E. P.
and J. O. Malley - Januvary 1983 (PB83 194 811)A04

Popov
"Numerical Techniques for the Evaluation of Soil-Structure Interaction Effects in the Time Domain,”
by E. Bayo and E. L. wilson - February 1983 (PBB3 245 605)A09

"A Transducer for Measuring the Internal Forces in the Columns of a Frame-wall Reinforced Concrete
Structure," by R. Sause and V. V. Bertero - May 1983 (PBB4 119 494)A06

amic Interactions between Floating Tce and Offshore Structures," by P. Croteau - May 1983
(PB84 119 4861Al6

"Dynamic Analysis of Multiply Tuned and Arbitrarily Supported Secondary Systems," by T.
and A. Der Kiureghian -~ June 1983 (PB84 118 272)All

Igusa

"a Laboratory Study of Submerged Multi-body Systems in Earthquakes,” by G. R. Ansari - June 1983
(PB83 261 842)Al7

“gffects of Transient Foundation Uplift on Earthquake Response of Structures,” by C.-S. Yim and
2. K. Chopra - June 1983 (PBB3 261 336)A07

"Optimal Design of Priction-Braced Frames under Seismic Loading," by M, A, Bustin and XK. $. Pister -
June 1983 (PBS4 119 288} A06

“Shaking Table Study of Single-Story Masonry Houses: Pynamic Performance under Three Component
Seismic Input and Recommendations,” by G. C. Manos, R. W. Clough and R. L. Mayes - June 1983

"Experimental Error Propagation in Pseudodynamic Testing," by P, 8. shing and 3, A. Mahin ~ June 1983
(PB84 119 270)A09

"Experimental and Analytical Predictions of the Mechanical Characteristics of a 1/5-scale Model of a
7-story R/C Frame=Wall Building Structure," by A. E. Aktan, V. V. Bertero, A. A. Chowdhury and

T. Nagashima - August 1983 (pBB4 112 213)A07

"Shaking Table Tests of Large-Panel Precast Concrete Building System Assemblages," by M, G. Oliva and
R. W. Clough - August 1383

"Seismic Behavior of Active Beam Links in Eccentrically Braced Frames,"” by K. D. Hjelmstad and E. P.
Popov - July 1983 (pBR4 119 676) A0Y

"system Identification of Structures with Joint Rotation," by J. 5. Dimsdale
July 1983 (PB84 192 210)A06

“Construction of Inelastic Response Spectra for Single-Degrese-of-Freedom Systems,” by $. Mahin and
J. Lin - July 1983 (PBB4 208 B834)A0S

227






