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ARSTRACT

The purpose of the study has been to investigate the bhehavior of semi-rigid
beam to column connections subjected to static and cyclic loadings. Tests were
conducted on bolted connections comprised of top and seat beam flange angles,
and double web angles, to determine moment-rotation hehavior under monotonic
(static) loading, and to evaluate cyclic performance under constant amplitude
and variable amplitude displacements. Fram the static tests, geometric
parameters which affect connection performance have been gquantified, and
compared with analytical models formulated to predict the initial stiffness and
complete non-linear moment-rotation behavior of the connections.

In the cyclic tests, the beam—column connections exhibited ductile
behavior, with generally stable moment-rotation hysteresis loops heing
established at each controlled displacement amplitude. The tests culminated in
the formation and subsequent propagation of fatigue cracks at the toe of the
fillet in one or more of the beam flange angles., From the constant amplitude
cyclic tests, 1linear log-log equations have been established relating fatigue
life to connection cyclic hysteretic energy absorption, and to a generalized
flange angle rotation parameter. The empirical relationships established by the
constant amplitude fatigue tests have been applied to a linear cumulative damage
model; the results of several variable amplitude block cyclic tests are

compared with damage summations predicted by the model.
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I. INTRODUCTION

1.1 Background, Research Objectives

The satisfactory performance of ductile moment-resisting steel frame
building structures in an earthquake environment is dependent upon the ability
of the beam—column connections to provide the rigid frame behavior and energy
absorption capacity necessary to withstand the seismically induced lateral
forces. Considerable experimental data have been generated on the
moment-rotation behavior of beam—column connections (1-45), the results of which
have demonstrated thét the connections can contribute adequate strength and
ductility to ensure the required performance of the structural system,
Recently, studies have been reported (46-58) which consider the effect of
connection flexibility on the performance of building frames. The analytical
predictions of frame behavior are typically based on assumed non-linear
mathematical models of the heam—colum connections. However, there is a
continuing need for additional experimental data to substantiate the
appropriateness of the mathematical models used to describe the behavior of
semi-rigid connections, including those utilizing both welded and bolted
connection  elements. Such  information 1is needed for modeling the
load—deformation behavior of complete building systems, and for possible
application to the retrofitting of existing structures as a means of improving
their resistance to lateral forces.

From cyclic tests of connections and subassemblages, it has been found that
the performance of steel frame building structures, under seismically induced
load histories, may be limited by low cycle fatigue of the connection elements.

Consequently, recent attention has been directed to the applicability of



cumulative damage models for predicting the cyclic response and eventual failure
of structural connections and frames subjected to earthquake type loadings (5,
59-62). Additional information, both experimental and analytical, 1s required
to determine the efficacy of such models in assessing the total time-history
performance of a complete building system,

The objective of the research program herein has been to experimentally
determine the moment-rotation performance of semi-rigid beam-column connections
under static (monotonic) and cyclic loadings. Specifically, the effect wvarying
the stiffness of the various connection elements on the static response of the
connections, and on their hysteretic response under cyclic controlled displace-
ment Joading, has been studied. From these tests, the significant material and
geometric parameters affecting the connection behavior are identified, and used
to formulate models of the non-linear connection moment-rotation response. The
constant amplitude and variable amplitude cyclic tests have served to identify
the mechanisms of distress under severe excursions of connection rotation, to
quantify hyseretic energy absorption capacity under cyclic loading, and to
 establish bench-mark fatigue life relationships. A linear damage accumulation
model has been examined for for prediction of connection fatigue response under

variable amplitude loading.

1.2 Scope of Investigation

In an initial investigation, NSF Grant No. 79-23520 (63), tests were
conducted of bolted bheam to column connections comprised of top and seat beam
flange angles, and double web angles,to determine moment~rotation behavior under
monotonic (static) loading, and to measure energy absorption capability under

cyclic loading. AS™ A36 steel was used for the members and connection



elements; the fasteners were 3/4-inch diameter, AST™ A325 high-strength bolts.
A pair of duplicate specimens was tested simultanecusly by framing simply
supported beam sections into a centrally-loaded stub column.

T™wo beam sizes, W14X38 and W8X21, were used in the test program. For the
top ana seat (flange) angles, the thickness, length, and gage (in the legs
attached to the colum flange) were varied, together with beam depth, to effect
connections of varving stiffness. WVariations in the thickness and length of the
web angles were investigated also. The results of the static tests were used to
quantify the effect of the test variables on the non-linear moment—- rotation
behavior of the connections, and to estahlish semi-empirical models of
connectiocn response. The data were compared, also, to predictions of
moment-rotation behavior using a two dimensional finite element model of the
connection,

The cyclic tests in the initial investigation consisted of subjecting the
connections to several stages of full reversal, controlled amplitude
displacements of progressively increasing magnitude. The connections {exhibited
ductile behavior, with generally stable moment-rotation hystersis loops being
established at each displacement amplitude to the time that testing was
discontinued, The tests culminated in the formation and subsequent propagation
of fatigue cracks at the toe of the fillet in one or more of the beam flange
angles. The cyclic tests demonstrated that the effectiveness, under seismically
induced loading, of connections of the type studied may be limited by low-cycle
fatigue of the connection elements.

The scope of the current investigation (Grant No. CEE-8115014) extended
the initial study by including the static testing of additional bolted
connections utilizing a wider range of connection element stiffnesses. BRecause

major slip occurred in two of the earlier tests in which 3/4-inch diameter bolts



were used, 7/8~inch diameter, A325 bolts were used in all of the test specimens
in the present study. Slip was observed in one of the tests in which the
7/8-inch bolts were used,

The empirical equation developed in the initial study was found to offer
reasonable predictions of the static moment-rotation response of the connections
in the present series of tests; i.e., those using the 7/8-inch diameter bolts.
In addition, a three—dimensional finite element model has been generated to
represent one flange angle of the test connections; the load-displacement
relationship predicted by the model has been compared to the results of a double
angle pull test conducted as an extension of the test program.

As a consequence of the fatigue failures exhibited by the connection
elements in the initial test program, a series of constant amplitude cyclic
tests was conducted in the present study to establish bench-mark strain based
fatigue 1life curves for bolted connections of varying stiffness. Fatigue lives

on the order of lOl

to 10° cycles to failure were considered in this phase

of the study. Besides the constant amplitude tests, two specimens were
subjected to several blocks of full reversal, controlled displacements of
progressively decreasing magnitude for comparison with the low-to-high amplitude
block loadings examined in the initial study.

From the constant amplitude cyclic tests,a linear log-log relationship
between fatigue life and a generalized flange angle rotation parameter has been
established for the low cycle, strain based fatigue tests considered in the
investigation, A similar relationship, between fatigue life and hysteretic
energy absorbed per test cycle, has also been developed. The empirical
relationships established by the constant amplitude fatigue tests have been

applied to a linear fatigue damage accumulation model to predict the behavior of

the specimens subjected to the variable amplitude cyclic loadings. In addition,



the total hysteretic energy accumﬁlated at the connections under both constant
amplitude and variable amplitude cyclic loading has been examined.

As a final phase of the present investigation, a pilot study was conducted
using connections comprised of top and seat angles welded to the beam flanges
and bolted to the supporting column, together with web angles also welded to the
beam and bolted to the column., The results of two static tests,-using

connections framed to W14X38 beam sections, are reported.
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IT. DESCRIPTICN OF TEST PROGRAM

2.1 Materials

The material for all of the test specimens, including beam sections, stub
columns, and framing angles, was specified to be ASTM A36 steel, supplied by two
local fabricators. The mechanical properties obtained from selected coupon
specimens for material supplied by each of the fabricators is given in Table
2,1, For the all-bolted specimens, the beam—column connections were made using
either 3/4-inch diameter or 7/8-inch diameter ASTM A325 heavy hex high-strength
bolts, and A325 hardened washers, For the combined bolted-welded test
specimens, welding of the top and seat angles, and of the web angles, to the
beam sections was accomplished using AWS E70 electrodes. No tests of the

mechanical properties of the bolts or the filler metal were conducted,

2.2 Description of Test Specimens

The specimens consisted of a pair of beam sections attached to a centrally
positioned stub column wsing the particular flange and web angles to be
investigated in a given test. The connections contained top and seat angles
bolted to the flanges of the supporting stub column, together with double web
angles bolted to the column flanges., For the all-bolted specimens, the flange
and web angles were connected to the beam sections using the same diameter bolts
as those used in the connection to the colum flange. In the combined
bolted~-welded specimens, the top and seat angles were attached to the beam
flanges by continuous longitudinal and transverse fillet welds (with returns on

the end of the beam); the double web angles were similarly welded to the web of



the beam,

Two beam sizes, W8X21 and W14X38, have been used throughout the testing
program. FEach of these sections has a flange width to thickness ratio of 6.6,
typical of that encountered in huilding applications. For the W14X38 sections,
the overall test beam length was 20 feet, and for the W8X21 sections, 12 feet,
so that the span-to-depth ratios were slightly less than 20 in each case. The
stub colum for the W8X21l beams was a WL2X58 section, and a Wi2X96 column
section was used with the W14X38 beams. Heavy column sections were selected to
eliminate column panel zcne distress as a contributing behavior factor, thereby
confining the moment-rotation interaction to the connection elements. It is
noted here that the same stub column sections were used repeatedly throughout
the testing program without exhibiting any evidence of inelastic behavior. The
general configurations of typical test members using the l4-inch and 8-inch deep
beams are shown in Figures 2.la, and 2.1b, respectively.

The web angles were centered on the beam web and proportioned initially for
shears equal to 1-1/2 times the end reactions the member would experience at its
A,T.5.C. allowable uniform load as a simply supported beam with a span equal to
the length of the test beam (64). The lightest web angles used would thus be
adequate, also, for shear forces corresponding to the increased loads that would
be permitted if end connections had been used that were capable of developing
cne-half the beam allowable moment at working load.

The top and bottom flange angles were of the same size in a particular test
specimen, Because the connections were to experience moment reversals, it was
felt that a symmetric arrangement would reduce the parameters influencing the
moment-rotation behavior, yet still represent a realistic design configuration,
For each of the two beam gizes, three different thicknesses of the top and

bottom angles were  tested. Initial angle thicknesses were selected



approximmately equal to thé flange thickness of the beam being supported, 1t
was reasoned that these sizes, together with the use of standard gages in the
legs of the angles attached to the column flange, would provide the bending
flexibility required of semi-rigid connection response, At the same time, the
connections would be expected to exhibit sufficient moment capacity (and energy
absorption capability) to contribute significantly to the résistance of a
structural frame subject to earthquake induced loads.

The details of the connection angles used to frame the W14X38 and W8X2l
beams to the stub columns are shown in Figures 2,2a and 2.2b, respectively
(all-bolted specimens), and in Figure 2.3 (combined bolted-welded specimens).
For the W14X38 beam tests, 3/8-inch, 1/2-inch, and 5/8-inch thick top and seat
angles were used; these angles were of 5/16~inch, 3/8-inch, and 1/2-inch
thickness for the W8X21 beam tests., PFor the 14-inch deep beams, the bolt
diameter (3/4-inch and 7/8-inch), and the length and thickness of the web angles
were varied for the static mcment-rotation parameter studies. In addition, the
length of the flange angle, and the gage and bolt spacing on the leg attached to
the column flange were varied in one static test series of W8X21 beam specimens.
Dimensions of the various connection elements are presented in the test specimen
schedules, Tables 2.2 and 2.3 (all-bolted specimens using 3/4-inch and 7/8-inch
diameter bolts, respectively), and Table 2.4 (combined bolted-welded test
specimens) .

Bolting of the connection elements was accomplished with an air wrench
using the standard turn—-of-the-nut method. (A4) A325 flat hardened washers were

.uSed under the turned elements in all of the connections. The holes were all of
standard size, 13/16-inch diameter for the 3/4-inch diameter bolts, and
15/16-inch diameter for the 7/8-inch diameter bolts,

Welding was accomplished using the shielded metal—-arc process by a local
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steel fabricator in accordance with standard welding practice. All of the
connection angles were welded to the beam sections in the fabricator's shop;
the combined beam-connecticn assemblies were then delivered to the testing

laboratory for holting to the stub column by project personnel,

2.3 Testing Equipment and Test Procedures

A pair of duplicate specimens was tested simultaneously by framing the
beams into a centrally loaded stub colum using the arrangement shown
schematically in Figure 2.4. The beam sections are supported at the ends by
roller-type seats located at the beam mid-depth, and designed to allow
longitudinal movement so that no direct axial forces would be introduced as the
specimen deflects. The height of the beam supports is adjustable to accomodate
the mounting of beams of dJdifferent depth in the structural loading frame;
photographs of the supports are shown in Figure 2.5.

Adjustable roller-type guides were used to ensure vertical movement of the
stub column and, consequently, to prevent torsional displacements at the
beam-colum interface. The quides are comprised of rollers mounted on channels
attached to the top and bottom of the stub column; the rollers ride against the
flanges of the actuator supporting columns of the main structural loading frame.
Photographs of the roller quides are shown in Figure 2.6. The rollers were
oiled and checked periodically to permit freedom of movement in the vertical
direction along the loading frame support columns. Photographs of the complete
test set-up, including loading frame, beam supports, and roller gquides are shown
in Figures 2.7 and 2.8.

A 55 kip, servo—controlled, hydraulically actuated ram was used to apply

load to the test members through the stub column, Figure 2.4, Local monitoring
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of the actuator displacement was accomplished through an X-Y plotter. 1In
addition, the output data from the various measuring devices, described later,
were transferred directly to the College of Engineering VAX 11/780 computer
system for subsequent retrieval and graphic display; the basic elements of the
recording system are illustrated schematically in Figure 2;9.

Using the test arrangement and loading system illustrated in Figure 2.4,
the connections were subjected to combined shear and bending moment., For both
the static and cyclic tests the controlled input variable was the rate and
magnitude of actuator movement and, correspondingly, the displacement of the
stub column. Displacement control was imposed to avoid the possibility of
instantaneous collapse of the test member should complete separation occur in

any of the connection elements during testing.

2.3.1 Static Tests

For each of the all-bolted static test specimens, the beam sections were
first mounted in the end supports and then bolted to the stub column, which had
been blocked in the loading frame to effect a centered, level member. The
erection sequence proceeded as follows. For each beam size the actuator load
cell was initialized to a lcad equal in magnitude and opposite in sense to the
total weight of the specimen (beams plus stub column) less one-half the weight
of the beams, Having thus established the initial load cell reading, the
actuator was next attached to the top of the stub column. The bolts were then
loosely inserted in all of the connection elements. Power was supplied to the
actuator to maintain the specimen in a level position as the supporting blocks
were removed from beneath the stub column. The bolts in the legs of the angles

attached to the column flanges were then tightened, followed by tightening of
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the remaining bolts in the angle-to-heam connections, At this point the load on
the specimen caused by fit-up (recorded by the load cell) was removed by
adjusting the position of the stub column. Thus,’the average static moment at
the beam—column  interface, resulting from the erection operations, was
essentially null. This established the point of origin for the subsequent
load-displacement (and moment-rotation) plots; the static moments thereafter
calculated from the load-cell output thus excluded the weight of the specimen
from the measured moment-rotation response of the connection. (The same
installation and load initialization procedure was used for the bolted-welded
test specimens except, of course, that erection consisted only of bolting the
connection angles to the stub column, the angles having been previocusly shop
welded to the beam sections),

It should be noted that, as a result of member configuration tolerances,
slight misalignment of the connection elements, and welding distortions, local
residual stresses were introduced during the erection cperations. All specimens
were prepared by area fabricators using standard shop practice, so that the
fit-up stresses would be of the order encountered during normal field erection.

For a select number of test specimens, strain gages were mounted on both
faces of the leg of the top flange angle attached to the column to determine
local strains introduced during the bolting operation, and to monitor the
surface conditions as testing progressed. In addition, for all tests, LVDTs
were mounted to each flange of the heam sections on either side of the stub
column, and seated against the flanges of the column. The device used to seat
the LVDT probe and to accomodate the rotations developed during a test is
illustrated in Figure 2.10. The data from a pair of IVDTs mounted on one beam
section were used to determine the angle of rotation of the connection as

testing progressed. The IVDT data were compared, also, to rotations calculated
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from the actuator displacement readings.

Resides the direct strain measurements and LVDT displacements, light gage
aluminum channel-shaped devices with attached strain gages were used to detect
slip between the top and bottom flange angles and the elements to which they
were connected. These devices (slip monitors) were intended only to record the
presence of major slip, not the magnitude thereof.

After a specimen had been mounted in the loading frame and the
displacement-measuring devices attached, the test was undertaken using an
actuator displacement rate of 1.0 in./min. for the 14-inch deep beams, and 0.75
in./min. for the 8—inch beams (except for specimen 857, for which a rate of 1.0
in./min. was used). The upward (downward for specimen 8S4) movement of the
actuator (and stub column) was continuous, with load, displacement, LVDT, strain
gage, and slip indicator output each being sampled two times per second. 1In
addition, the actuator load and displacement were recorded locally on an X-Y
plotter to allow continuous visual monitoring of the system behavior., A test
was concluded when the actuator displacement reached 4 inches for the 20-foot

long W14X38 beam specimens, and 3 inches for the 12-foot long WBX21 beams.

2.3.2 Cyclic Tests

The preparation and installation of the specimens in the cyclic tests was
the same as that used for the static loading, descrihed above. During mounting
of a test member in the loading frame, the initial load setting was established
to exclude the contribution of the weight of the specimen to the static moment
at the connection in the mamner described above for the static tests. 1In
addition, the same arrangement of LVDTs and slip monitors as in the static tests

was employed for measuring joint rotations and determining slip in the flange
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angles, respectively,

2.3.2,1 Low-to-High Amplitude Block Tests

For the low-to-high amplitude cyclic tests, Figure 2.1la, an initial range
of actuator displacement of 0.4 inches (0.2-inch amplitude) was selected,
approximately 10 percent of the total displacement used in the static tests of
the 14-inch beams. The initial displacement amplitude was intended to produce a
hysteresis loop representing minimal non-linear response (estimated from the
corresponding static moment~rotation curves). In all tests, the full range of
controlled displacement was set to provide egual displacement amplitudes about
the initial horizontal beam position. Full reversal of displacement was chosen
to provide the symmetry required for comparison of test data from beams of
different depths, and to aporoximate the reversals that might be exhibited under
extreme conditions during seismic loading.

For the specimens tested in the initial study (using 3/4-inch diameter
bolts), the first displacement cycle in each test was applied sinusoidally using
a frequency of 0,10 Hz, This relatively slow rate of actuator movement was
selected to allow visual monitoring of the load- displacement relationship, to
ensure that the strain and displacement measuring devices were recording
properly, and to check the alignment of the lateral support devices, Additional
individual cycles were then applied using a frequency of 0.10 Hz or 0.25 Hz
until a stable hysteresis loop was established; usually this occurred within a
few cycles after the initial cycle had been run., To complete the sequence, ten
additional cycles were applied continuously at a frequency of 0.25 Hz, so that a
total of 12 to 15 complete cycles were normally imposed at one displacement

amplitude. The displacement range was then increased to 0.8 inches and the
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above procedure repeated; i.e., several individual cycles followed by a
continuous run of 10 cycles at 0.25 Hz. Each sequence was followed by an
increase of 0.4 inches in the displacement range and the process repeated,
resulting in displacement-time histories typified by the block arrangement
illustrated in Figure 2.lla.

For the specimens tested in the current investigation (using 7/8-inch
diameter bolts), a constant test frequency of 0.25 Hz was used at each
displacement amplitude. Otherwise, testing followed the same procedure as that

described in the previous paragraph for specimens tested in the initial study.

2.3.2,2 High-to-Low Amplitude Block Tests

The high-to-low amplitude cyclic tests, Figure 2.11c, were intended to
follow basically the reverse time-displacement histories as those imposed in the
low-to-high amplitude tests, for specimens of duplicate geometry. However, for
one of the specimens tested under these conditions, 8Bl, fatigue cracking was
not as extensive, at the conclusion of the intended block history, as that
exhibited by the corresponding low-to~high test specimen, 8C3., Thus, to
complete the testing of specimen 8Bl, the displacement amplitude was again
increased to the same magnitude, 1.2 inches, as that of the first block of
cycles in the sequence. The fatigue crack then grew considerably larger during
the first cycle of the higher amplitude, and the test was stopped.

The other specimen tested under the high-to-low amplitude history, 14B1,
exhihited appreciable fatique cracking during the first block of imposed cycles;
the cracks continued to grow, albeit at a reduced rate, during the remainder of
the test. Testing of specimen 14Bl was concluded after five blocks of loading

at decreasing displacement amplitudes (compared to nine plus blocks sustained by
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its companion specimen, 14C3), due to the presence of extensive cracking in two

of the beam flange angles.

The constant displacement amplitude cyclic (fatigue) tests, Figure 2.1lb,
were conducted at a frequency of 0.25 Hz (with some exceptions, as noted in the
tables in which the fatigue test data are reported). For several of the
specimens, a number of "half" cycles (displacement excursions from the null
position to the maximium displacement amplitude and return) were applied before
proceeding with the full reversal test cycles, This was done to apply several
initial cycles of tensile strain to the top flange angles in an effort to
promote the initiation of fatigue cracking first in those angles, so that the
subsequent crack propagation could be easily monitored with the specimens
mounted in the testing machine. It should be noted that fatigue cracking did
initiate first in the top flange angles to which the half cycles had been
applied before continuing with the full reversal cycles.

All of the cyclic tests were terminated when observed fatigque cracking had
progressed partially across the face(s) of one or more of the flange angles at
the toe of the fillet (see following discussions of test results). No test was

extended to the point of complete fracture of a connection element.
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TIT. FXPERIMENTAL INVESTIGATICN

3.1 Static Tests

3.1.1 Scope of Investigation

Fighteen all-bolted specimens were tested in the étatic test
investigations, eleven in the initial study (63), and seven in the current
program. In addition, two combined bolted-welded members were tested in the
latter investigation. The purpose of this phase of the study was twofold: (1)
to quantify the static moment-rotation behavior of the semi-rigid beam—column
connections; and (2) to identify and measure the effect of various geometric
parameters on the connection behavior., The static tests were intended, also, to
serve as a frame of reference against which the cyclic hysteresis behavior of
the connections could be campared.

The geometric variables that were altered in the parametric study included:
the depth of the beam sections (W8X21 and W14X38 sections), the thickness and
length of the top and bottom beam flange angles, the gage and spacing of bolts
in the leg of the flange angles connected to the column flange, the bolt
diameter (3/4-inch and 7/8-inch), and the thickness and length of the web

angles.

3.1.2 Test Results
Summaries of the test results for the static test investigations are
presented in Table 3.1 (bolted specimens, 3/4-inch diameter holts), Table 3.2

(bolted specimens, 7/8-inch diameter holts), and Table 3.3 (bolted-welded
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specimens). Details of the corresponding specimen geometries are reported in
Tables 2.2, 2.3, and 2.4, respectively.

Tables 3.1-3.3 include the initial stiffness of the connections (initial
slope of the moment-rotation curve). The slope was measured tangent to the
moment-rotation (M-¢} curve at the origin as the derivative of a second degree
polyncomial fit through the first several data points. The tables also list:
(1) the slope and intercept moment of a secant line from the origin and

3 radians; and (2) the

intersecting the M-¢ curve at a rotation of 4.0X10
moment, and the slope tangent to the M-y curve at 24)(10"'3 radians, a rotation
achieved in all of the static tests. Although the latter slope offers a measure
of the degradation of connection stiffness as the applied moment increases, it
should not be interpreted as a constant or £inal slope for a specific
connection, In some tests, the connections continue to "soften" as the moment
increased, never actually reaching a constant M-¢ slope at the conclusion of
loading. The tangent slope at the rotation of 24}(10-3 radians does, however,
allow comparisons to be made among the various connections at a comon point, as
well as cuantifying the degree of connection softening in a particular test.
Similarly, the secant slope offers an additional indication of the early
stiffness of the connection. In some respects the secant slope may be more
representative than the initial tangent slope, because the latter is highly
sensitive to any irreqularities in the first few data points from which it was
calculated,

The moments reported in Tables 3.1-3.3 (and the figures to follow) were
calculated directly from the actuator locad cell readings, To obtain the
corresponding ¢ values, initially the displacements measured by the IVDTs
mounted to each flange of the beam were converted to relative rotations between

the flange of the stub colum and the end of the beam. The rotations were also
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independently calculated using the actuator displacement and the beam span by
considering rigid body movement of each beam segment and correcting for elastic
curvature from bending of the beam. Because of the high stiffness of the stub
column, and the transfer of load in friction between the connecting elements
(except for the slip encountered in three tests) the beam did rotate essentially
as a rigid body with respect to the colurn flange, which was maintained in a
vertical position by the lateral support system.

A typical comparison of the M—¢ relationship obtained from INDT data with
the results obtained from the displacement measurements is shown in Figure 3.1.
The curves labeled East and West represent the data from individual pairs of
IVDTs mounted to the flanges of each of the two beam segments framing into the
central stub colum. It can be seen from Figure 3.1 that the ILVDT data obtained
from each of the two connections in the test member were very close, and
consistent with the M-¢ curve calculated wusing the actuator displacements,
Consequently, the data reported in Tables 3.1-3.3, and plotted in the figures to
follow, use rotations calculated from actuator displacements; the results may
thus be considered to represent an "average" of the behavior exhibited by the
connections attached to each face of the stub column.

For each of the static tests, the beams were observed to rotate, with
respect to the stub column, by pivoting about a point near the surface of the
beam compression flange, as illustrated in Figures 3.2a (holted specimens) and
3.2b (bolted-welded specimens). The heel of the tension flange angle was
observed to "curl around" the end of the beam flange in the all-bolted specimens
(Figure 3.2a); however, this deformation pattern was less pronounced in the
bolted-welded specimens (Figure 3.2b), as the weld return served to restrain the
movement of the heel of the angle. It should be noted that the beam set-back

was 1/2-inch for all of the test specimens (Figures 2.2, 2.3).
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Photographs of typical deformation patterns observed in the connection
flange and web angles are shown in Figures 3.3 and 3.4, respectively. With the
exception of specimens 1452, 852, and 8510, post-test inspection revealed no
apparent inelastic deformation in either the flanges or the web of the beams.
Similarly, no distress was evident in the stub columns, because, as discussed
previcusly, intentionally heavy sections were selected to confine the study to
the response of the beams and their connection elements,

In the testing of specimen 1482, major slip first occurred when
approximately one-half the final actuator displacement had been reached. After
the specimen had been dismantled, the holes in both legs of the tension flange
angle and in the beam flange were elongated, as were the holes in the beam web.
The plastically deformed steel formed a protruding lip on the bearing surface of
each of the elements exhibiting the elongated holes. Post-test inspection of
specimens 852 and 8510 indicated patterns of distress in the connection elements
similar to those observed in specimen 14S2.

At the conclusion of each of the static tests, there was no rupture nor
were there any cracks observed by visual inspection in any of the fasteners or

connection elements,

3.1.3 Discussion 9£ Static Test Results

3.1.3.1 Bolted Test Specimens

The moment-rotation curves for the tests reported in Tables 3.1 and 3.2 are
plotted in Figures 3,5 through 3,15, The figures provide comparisons of the
initial stiffness and non-linear connection behavior for test members in which

individual geometric parameters were altered. General observations with respect
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to these test resgults are discussed in the following paragraphs.

From practical design considerations, one of the most apparent means of
increasing the initial stiffness and total moment transfer capability in a
connection of the type studied is to increase the thickness of the angles
attached to the top and bottom flanges of the supported beam. This flange
dimension was, therefore, the principal vari%ble investigated in both the static
and cyclic test series.

Figure 3.5 presents the moment-rotation curves for two W14X38 beam
specimens fastened with 3/4-inch diameter bolts, one (14S1) with flange angles
of 3/8-inch thickness, and the other (1482) with 1/2-inch thick flange angles.
Both the initial stiffness and the moment developed at comparable rotations are
greater for specimen 14S2. For example, at a rotation of 24X10"3 radians,
specimen 1452 developed a connection moment of about 950 k—-in., or almost 1-1/2
times the 668 k-in. mament of specimen 14S1. The rotation of 24X10™3 radians
has been used for purposes of comparison among the test members in Tables
2.1-3.3 and in this discussion because it was a number easily reached in all of
the static tests. The rotation corresponds to a deflection of approximately
2-3/4 inches for the 14-inch beam tests, or approximately four times the
mid-span deflection a W14X38 beam, 20 feet long, would exhibit as a simply
supported member at its A,7.5,C., allowable uniform load (assuming full lateral
support) . For the 8-inch beam tests, a rotation of 24X1073  radians
corresponds to a deflection of about 1.6 inches, four times the déflection, at
allowable load, of a 12-foot long simply supported beam using the W8X21
sections, These deflections were considered to be reasonably representative of
a severe ductility demand, even under seismic loading conditions.

Specimen 1452 exhibited major slip in the leg of the tension flange angle

bolted to the beam (and in the legs of the web angles attached to the beam web)
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at a rotation of approximately 12x1073

radians, followed by slip in the leg of
the flange angle bolted to the column face at approximately 2ox10'3 radians,
For the static tests, in which the rate of actuator movement was the controlled
input variable, slip as indicated in Figure 3.5 corresponds to a gradual‘drop in
moment until bearing is achieved in the connected elements. With bearing
established, the stiffness of the connection prior to slip is regained, with no
anticipated permanent degradaticn in the capacity of the connection (harring
premature bolt shear failure or tear—out in the connected parts).

The effect of flange angle thickness cn the moment-rotation behavior of
W14X38 beam connections using 7/8-inch diameter bolts is shown in Figure 3.6.
As with the members fastened with 3/4-inch diameter bolts, the initial stiffness
and the moment developed at comparable rotations increased with increasing
flange angle thickness, The initial slope of the moment-rotation curve was
247x103 k—-in./radian for specimen 14585 (3/8-~inch thick angles), 2§6X103 and

3

258X10° k-in./radian for specimens 1486 and 14S9, respectively (1/2-inch thick

angles), and 579X103 k-in,/radian for specimen 1458 (5/8-inch thick angles).

Similarly, at a rotation of 24%107°

radians, the connection moment increased
from 736 k-in. for specimen 1485 (3/8-inch thick angles) to an average of 1038
k-in. for the two specimens with 1/2~inch thick flange angles, and 1561 k-in,
for specimen 1458, with 5/8-inch thick angles. It should be noted also that in
contrast to specimen 14S2, which was fabricated using 3/4-inch diameter bolts,
no slip was exhibited by the ld-inch beam specimens fastened with the 7/8-inch
diameter bolts,

The effect of bolt diameter on the static moment-rotation behavior of the
l4-inch beam specimens is illustrated in Figures 3.7a (specimens with 3/8-in.
thick flange angles) and 3.7b (specimens with 1/2-inch thick £lange angles).

Compariscn of Figures 3.7a and 3.7% (and Tables 3.1, 3.2) shows that the initial
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stiffnesses of the connections (initial slope of the M-¢ curve) are
approximately the same for specimens with flange angles having the same
thickness. BReyond the initial portions of the M-¢ curves, however, the
connections fastened with 7/8-inch diameter bolts developed moderately larger
moments, at comparable rotations, than those fabricated using the 3/4-inch
diameter bolts. For example, specimens 1486 and 1459 developed an average
moment of approximately 1040 k-in. at 24X10"3 radians, compared to a mcoment
of 947 k-in., for specimen 1482. (Although specimen 1482 exhibited major slip,
a projection of the M-¢ curve that might be expected had slip not occurred would
still £fall below those of 14S6 and 14S9). Similarly, specimen 14S5 developed a
moment of 763 k-in. at a rotation of 24X1073 radians, about 14 percent higher
than the moment for specimen 1451 at that rotation, 668 k-in,

The closeness of the initial slopes for the l4-inch beam specimens fastened
with the 7/8-inch and 3/4-inch diameter bolts was not anticipated, as it was
expected that the connections with the 7/8-inch diameter holts would initially
he stiffer, by developing an increased clamping force between the connected
elements, by having a smaller clear distance between the bolt head (and washer)
and the toe of the fillet in the angle, and by having a smaller clear distance
between the two bolts on the column gage line. No explanation is offered at
this time for the difference between the anticipated and observed effect of bolt
diameter on initial connection stiffness for the l4-inch beam specimens {and for
the 8-inch beam specimens, as discussed subsequently).

In contrast to the influence of flange angle thickness on the
moment-rotation hehavior of the l4-inch beam specimens, moderate changes in the
size of the web angles did not as significantly affect the connection
performance., Figures 3.8 and 3.9 show the effect of web angle thickness and

length, respectively, on the M~¢ relationships for W14X38 sections with 3/8-inch
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thick flange angles, TFor example, increasing the thickness of the web angle hy
50 percent, from 1/4—-inch to 3/8-inch (specimens 14S1 and 14S4), produced a
corresponding increase in moment, at a rotation of 24}{10_3 radians, of

approximately 25 percent, from 668 k-in., to 822 k-in, 2An apparently lesser
influence on post-elastic moment capacity was exhibited by a change in the
length of the web angles, as comparison of specimens 14S1 and 1483, Figure 3.9,
indicates. At a rotation of 24X1073 radians, specimen 14S3, with web angles

having a length of 5-1/2 inches, developed a moment of 652 k-in,, some 17 k-in.
less than the 668 k-in, moment of specimen 14S1, which had the standard 8-~1/2
inch long web angles. It should be noted that specimen 14S3 had the only
non-symmetrical comnection in the test series, with the legs of the web angles
attached to the beam column stub each using two bolts placed in the upper two
holes of the standard detail, Figare 2.2a. In this location, with the web
angles closer to the beam tension flange, they would be expected to contribute
differently to the moment transfer capability of the connection than if they had
been positioned at mid-depth, closer to the pivot point of the connection. The
arrangement used is of practical importance, however, in that it represents a
normal positioning of web angles designed for shear transfer in beams using

simple (flexible) framing.

The influence of flange angle thickness on moment-rotation behavior was
examined also for the W8X2l beam specimens, the results of which are shown in
Figures 3.10a, 3.10b, and 3.11. Figqure 3.10a presents a comparison of the
M-¢ curves for specimen 881, with a flange angle thickness of 5/16-inch, and
specimen 8582, with 3/8-~inch thick flange angles. The gage in the legs of the

flange angles attached to the stub column was 2 inches, and the angle length was
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6 inches in both of these specimens. The bolt diameter was 3/4 inches.
Although comparison of the initial portion of the moment-rotation relationships
indicated a considerably stiffer connection for specimen 8S2 relative to that of
8S1  (123.4X10°  k-in./radian vs.  66.7X10° k~-in./radian), and a
correspondingly greater moment transfer capability, specimen 8S2 exhibited major
slip in the connection elements at a rotation of approximately 16X1073
radians, Unlike specimen 1452, in which slip also occurred, specimen 882 did
not regain nor approach the stiffness it had maintained prior to slip., The
stiffness continued to degrade with continued loading, the slope of the
M-¢ curve reducing to only 1.5X103 k-in./radian at a rotation of 24}{10-3
radians. As there were no cracks nor other geometric irregularities cbserved in
the connection elements of specimen 882, either during testing or upon post-test
visual inspection, no explanation is offered for the singular behavior of thig
specimen,

In Figure 3.10b, the moment-rotation curves for specimens 856 (5/16-inch
flange angle thickness) and 8S7 (3/8-inch angle thickness) are compared. In
these specimens, the bolt diameter was 3/4 inches, the gage in the legs of the
flange angles attached to the column was 2-1/2 inches, and the angle length was
6 inches. As with the l4-inch deep beam tests, both the intitial stiffness and
the moments developed at common rotations were greater for the W8X21 beam
connection having the heavier flange angles. For example, the 1/16-inch
increase in flange angle thickness of specimen 8S7 over that of specimen 8S6
effected a greater than 50 percent increase in moment (381 k-in. vs. 244
k-in.) at a connection rotation of 241073 radians., As no slip occurred in
either of these two tests, the comparative behavior of the two specimens, shown
in Pigure 3.10b, may be considered representative of similar connections framing

the 8-inch deep beams.
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Figure 3.11 presents a comparison of the M-¢ curves for specimens 8S8
{(5/16-inch thick flange angles), 859 (3/8-inch thick angles), and 8510 (1/2-inch
thick angles). For each of these specimens the bolt diameter was 7/8 inches,
the gage 1in the legs of the flange angles attached to the column was 2 inches,
and the angle length was 6 inches. Again, the initial connection stiffness and
the moments at comparable rotations increased 'with increasing flange angle
thickness. At 24x1073 radians, the connection moment developed in specimen
858 was 380 k-in., increasing to 423 k-in. in specimen 859, and 634 k-in., for
specimen 8510. It may be noted, also, that specimen 8S10 exhibited major slip
at 5.3}'{10_3 radians; this specimen had the thickest flange angles, 1/2 inch,
of all the WBX2l beam members. (It was also the only specimen fastened with
7/8-inch diameter bolts that exhibited slip in either the static or cyclic test
series.) Specimen 8510 was similar to 1482 in that it was able to regain, after
slip, the stiffness it held Jjust pricor to the occurrence of the slip (c.f.,
Figures 3.5 and 3.11).

The effect of bolt diameter on the moment-rotation behavior of the 8 inch
beam specimens is illustrated in Figures 3.12a (specimens with 5/16-inch thick
flange angles) and 3.13b (specimens with 3/8-inch thick flange angles). As with
the 14~inch beam specimens discussed previously, there were no consistent,
significant differences in the initial stiffnesses of the specimens fabricated
using the two bolt sizes. In fact, the initial slope of the M-¢ curve for
specimen 852, with 3/4-inch diameter bolts (123;4X103 k-in./radian), is

greater than that of specimen 889, 104X103

k-in,/radian, which had 7/8~inch
bolts as the fasteners. It should be noted, again, that the behavior of
specimen 852 is somewhat of an anomaly, in that it was the only specimen, of all

of those tested under either static or cvclic loading, that did not regain a

positive slope to the moment-rotation curve after slip occurred.,  Thus,
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corparison of the moments developed at either 4}(10'-3 or 24}(].0-3 radians
cannot be significant for these two specimens. Additional data, including tests
of specimens with a greater range of flange angle thicknesses, are needed hefore
the relative effect of bolt diameter on connection behavior can be hetter
quantified.

The effect of varying the gage in the leg of the flange angle attached to
the column flange was examined in the W8X21 beam test series. With an angle
thiqkness of 3/8 inch, gages of 2, 2-1/2, and 4-~1/2 inches were used in
specimens 882, 857, and 8854, respectively. The bolt diameter was 3/4 inches for
each of these specimens, To accommodate the 4~1/2 inch gage in specimen 834, a
6X6X3/8 angle was used in place of the smaller 6X3-1/2X3/8 and 6X4X3/8 angles
used in the other two specimens., Specimens 8S1 and 856, with flange angles of
5/16~-inch thickness, had gages of 2 inches and 2-1/2 inches, respectively.
Complete details of the aimensions for these specimens are presented in Table
2.2.

The static test results for these five specimens are summarized in Table
3.1, For the two members having 5/16-inch thick flange angles, the
moment-rotation curves are plotted in Figure 3.13a; the curves for the three
specimens with flange angles of 3/8-inch thickness are compared in Figure 3.13b.
As expected, changes in flange angle gage had a pronounced effect on both the
initial slope of the M-¢ curve, and on the moment capacity of the connection at
large displacements. For example, with the 3/8-inch thick flange angles, the
initial connection stiffness decreased from 123.4X103 k-in,/radian to
15.3X103 k-in./radian as the angle gage was changed from 2 inches to 4-1/2
inches (specimens 8S2 and 8S4). Specimen 857, with a gage of 2-1/2 inches,
exhibited an initial M-¢ slope of 48.0X103 k-in,/radian, intermediate in

stiffness between those of the other two members. At a rotation of 24X10_3‘
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radians, specimen 8S7 achieved a moment of approximately 380 k-in., more than
twice the 165 k-in. moment of specimen 884 at that rotation. It should be
noted again, that specimen 852 sustained slip at about 16X1073 radians, after
which its moment-rotation curve reduced to a slope of only 1.5%10°
k-in,/radian at a rotation of 24X10_3 radians. This bhehavior is not
considered indicative of the performance expected of the connection had slip not
occurred; consequently, comparison of specimen 882 with the other two members
at large displacements is not appropriate.

The two connections with 5/16-inch flange angles exhibited the same
relative response as those with 3/8-inch angles; i.e., decreasing the gage
results in an increase in initial comnection stiffness and subsequent moment
capacity at large displacements. For specimen 8S1 (2-inch gage), the initial
slope of the M—¢ curve was 66.7X10°> k-in./radian, almost double the 39.5X103
k-in./radian slope for specimen 8S6 with a 2-1/2 inch gage. Similarly, at a
connection rotation of 24%107° radians, specimen 8S1 develcoped a moment of 329
k-in., significantly higher than the 244 k-in. moment in specimen 8S6.

For the W8X2l1 beam sections, the effect of changing the length of the
flange angle was examined. As indicated in Table 2.2, with all other connection
dimensions remaining the same, a flange angle length of 6 inches was used for
specimen 851, and a length of 8 inches used for specimen 853. The cne-third
increase in flange angle length resulted in a corresponding increase of about
one-third in the 1initial connection stiffness (104.7X103 k-in,/radian vs,
66.7X103 k-in./radian), and the development of higher moments at large
displacements (422 k-in. vs. 329 k-in. at a rotation of 24X107> radians).
The complete moment rotation curves for specimens 8S1 and 853 are plotted in
Figure 3.14.

Finally, in Figure 3,15, a comparison is made between a WlL4X38 section
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specimen (1451) and a W8X21l specimen (8S5) in which the dimensions of all of the
connection elements were the same except for the length of the web angle (8-1/2
inches for 1481, and 5-1/2 inches for 8S5)., As seen from the M-¢ curves of
Figure 3.15 and the data recorded in Table 3.1, the initial slope of the
moment-rotation curve is increased significantly, from 76.7x103 k-in./radian

to 195.0%10° k-in./radian, for the W14X38 specimen in comparison to the W8X21

member. Similarly, the moment developed at 24X1073 radians was 668 k-in. for

specimen 1481, about double the 337 k-in. moment of specimen 8S5, The increase
in initial connection stiffness and moment development capability are to be
expected, as the deeper beam section provides, at comparable rotations, a larger
displacement of the tension flange angle (and larger force in the angle)
together with a larger mcoment arm from the position of the tension flange angle

to the pivot point of the connection in the vicinity of the compression flange.

3.1.3.2 Bolted-Welded Test Specimens

The moment-rotation curves for the two bolted-welded test specimens are
shown in Figure 3.16. WNumerical values for the initial slope, secant slope at
4.0%1073, and slope at 24X107° radians are pregented in Table 3.3, together
with the moment developed at both 4.0X10™>  and 24X107° radians. As
expected, specimen 14WS2, fabricated using 1/2-inch thick flange angles,
exhibited the larger initial stiffness, and dJdeveloped larger moments at
comparable rotations than did specimen 14WS1, which had 3/8-inch thick flange
angles.

Comparison of the data in Table 3.3 for the bolted-welded specimens with
the test results for comparable all-bolted specimens 1485 (3/8-inch flange angle

thickness; 7/8-inch bolt diameter), and specimens 1456 and 1459 (1/2-inch thick



30

angles, 7/8-inch bolt diameter) indicates that the initial stiffnesses of the
bolted-welded specimens are somewhat higher than those of the all-bolted
specimens (Table 3.2). This may be attributed to the greater restraint against
movement of the heel of the angle at the end of the beam flange in the welded
elements, as illustrated in Figure 3.2. The weld return, together with the
continuous longitudinal fillet welds connecting the top and seat angles to the
beam flange, did not permit the angles the freedom to curl around the beam end
(as in the all-bolted specimens) in accomcdating the rotations between the end
of the beam and the flange of the column. The greater restraint thus imposed by
the welded connection resulted in a larger initial stiffness for those specimens
in comparison to the all-bolted members, where greater relative movement was
more easily achieved.

In addition to the higher initial stiffnesses, the bolted-welded specimens
developed moderately larger moments than those in the bolted specimens at
comparable rotations. For example, specimen 14SW2 developed a mement at 1235

k.-in. at 24x1073

radians, almost 20 percent larger than the approximately
1040 k.-in. average moment for specimens 14S6 and 14S9. Similarly, specimen
14SW1 developed 923 k.-in. at 24X107° radians, compared to 763 k.-in. for
specimen 1485 at that rotation. However, because only two specimens fabricated
in the bolted-welded configuration were teéted in this study, the above
observations should be considered preliminary, and not necessarily indicative of
the relative performance of the welded specimens with respect to the all-bolted
specimens when a more complete range of section depths, and flange and web angle
sizes are considered. Such tests have heen proposed as part of the continuation
of the current investigation.

The summary of the static tests in the following section, 3.1.4, refers to

the behavior of all-holted test specimens; generalizations regarding the
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performance of the combined bolted-welded specimens were not considered

appropriate from the limited data available at this time.

3.1.4 Summary of Static Test Results

For all of the specimens tested in the static test series, the connections
exhibited a moment-rotation response which becomes non-linear relatively early
in the lcading sequence. This non-linearityv is contributed to, in part, by
local yielding and eventual plastic hinge formation at each toe of the fillet in
the flange angle attached to the tension flange of the beam. Another hinge
develops in the vicinity of the bolt 1line in the leg of the flange angle
attached to the column, together with progressive plastic hinging in the
outstanding legs of the web angles. It is of interest to note, however, that
each of the connections developed a moment greater than two times the capacity
that would be predicted by simple plastic hinging mechanisms in the leg of the
tension flange angle attached to the column flange and in the legs of the web
angles; further analysis of this post—elastic connection response is presented
below,

Inspection of Figures 3.5 through 3.15 shows that each of the test
specimens (with the exception of specimen 8S2) was able to develop increasing
moments through the full range of rotations imposed during the test, In fact, a
nearly constant or slightly decreasing positive M-¢ slope was cbserved during
the latter stages of loading for these static test specimens, It is believed
that this nearly constant stiffness at large deformations can be attributed to,
in part, to material strain hardening, and to the consequences of significant
changes in the geometries of the connecting angles. The increasing deflection

of the tension flange angle at large connection rotations produces a continuous
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change in the internal force distribution in the legs of the angle, with axial
tension hecoming an increasingly larger factor (relative to bending) as the
angle progressively "flattens out.” A gradual transition from a predominantly
flexural to a combined flexural-axial response in the tension flange angle, with
the accompanying strain hardening, can thus be expected to contribute to the
ability of the connection to achieve a considerably greater moment capacity than
that predicted by a simple plastic hinge mechanism, as noted above.

From the static tests, was been found that the geometric parameters that
most  significantly affect the static moment-rotation performance of the
semi~rigid connections investigated were: the depth of the beam section to
which the connection elements were framed; the thickness of the flange angles;
and the gage in the leg of the flange angles attached to the column flarge.
Although the data are inconclusive, it appears that bolt diameter has a minimal
effect on the initial stiffness of the connections; however, increasing the
bolt diameter effects a corresponding increase in moment capacity at large
rotations {(beyond about 4X10-3 radians). Variations in the length of the
flange angles, and in the length and thickness of the web angles, had a less
pronounced effect on connection response than the other parameters listed above,

Analvtical models proposed in the initial investigation (63) to predict the
initial stiffness of the semi-rigid connections have been applied to the
specimens tested in the current study. Comparisons of the predicted stiffnesses
with the experimental data from the static test investigations are presented in
Section 4,1, Further, using the results of the parametric study, a
semi-empirical analytical model has been developed to generate complete
non-linear moment-rotation curves for the connections; the results of this

phase of the study are reported also in Section 4.1.
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3.2 Cyclic Tests

3.2.1 Scope of Investiqatiqn

The purpose of this phase of the investigation was twofold: (1) from the
variable amplitude cyclic tests, to quantify the cyclic mement-rotation behavior
of the semi-rigid beam-column connections; and (2) from the constant amplitude
cyclic tests, to obtain base-line fatigue data for connections of varying
stiffness, The objectives of the variable amplitude tests have been to
determine enerqy absorption capabilities under complete reversal of moment, and
to qualitatively describe the characteristics of the attendant hysteresis loops.
From the constant amplitude tests, fatigue life relaticnships have been
developed for application to appropriate cumulative damage models for predicting
total fatigue lives of connections subjected to variable amplitude displacement
histories, The fatiqgue tests have served, also, to provide additional data from
which the total energy absorption capacities of connections of varying stiffness
could bhe evaluated.

The intent of the cyeclic tests was to examine the connection response to
moment reversals, not the behavior of a complete subassemblage under seismic
loading. Consecuently, the rate of loading in the <cyclic tests was
"quasi-static,"” and was not intended to suggest that the loading would be the

direct result of actual earthquake induced ground motions.

3.2.2 Variable Amplitude Block Tests

Seven specimens were tested under the low-to-~high amplitude block

displacement histories; the geometric parameters that were varied in this test
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series included the beam depth (W14X38 and W8X21 sections), the flange angle
thickness, and the bolt diameter. Two specimens were tested under high-to-low
amplitude block histories; one was an 8-inch beam connection, the other was a
W14X38 beam connection, Details of the test specimens are reported in Tables

2.2 and 2.3; the testing procedures are described in Section 2.3.2.

3.2.2.1 Test Results

As discussed previously, all of the cyclic test specimens were subjected to
complete displacement reversal to facilitate comparison of the hysteresis loops
generated for beams of different depth. The tests were terminated when cbserved
fatigue cracking had progressed partially across the faces of the flange angles,
No test was extended to the point of complete rupture of a connection element.
No slip was observed during the cyclic tests.

Figure 3.17a shows front and rear views of a top flange angle from specimen
14C1 after the test was stopped. It can be seen that cracking had progressed
over most of the width at the toe of the fillet in the leg bolted to the column
flange. (It should be noted that, for the majority of the cyclic test
specimens, fatigue cracking initiated, in one or more of the flange angles, at
the toe of the fillet in the leg bolted to the beam flange; otherwise, the
appearance of the crack patterns is similar to that shown in Figure 3.17a).

After disassembly of test specimen 14CL (and several of the other cyclic
test specimens), it was discovered that significant cracking had progressed in
the vicinity of the bolt hole under the washer. Although the formation of
fatigue cracks had an c¢bservable effect on the lcad-displacement hysteresis
loops, the decrease in maximum load was usually a small percentage of the

maximum load for the stabilized
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The permanent distortions shown in the flange and web angles of specimen 14C1,
Figure 3.17b, give an indication of the large deformations experienced by the
connection angles during the cyclic tests.

As mentioned previocusly, the specimens were intended to simulate, within
reason, actual connections in situ. During the erection procedure, it would be
natural to seat the beam on the bottom flange angle for support, thereby
aligning the bottom angle as required at the expense of the top angle., As a
consequence, the top angle would be subjected to the greater initial strains
resulting from any lack of fit during the bolting procedure. This same erection
sequence was followed in the test program, and is believed to explain the
tendency of the top angle to form the first cracks in most of the cyclic tests,
Also, the hysteresis loops tended to exhibit signs of stiffness degradation
first in the negative moment region, corresponding to tension in the top flange
angle,

Sumaries of the cyclic test results are presented in Tables 3.4 through
3.8 for the W14X38 beam specimens, and in Tables 3.9 through 3.12 for the
connections framed to the W8X21 sections. Complete hysteresis loop traces at
each displacement amplitude for each of the nine test specimens are shown in
Figures 3.18 through 3.26. The tables include the actuator displacement
amplitude, the number of cycles imposed at each amplitude and test frecuency,
and the cumulative number of test cycles. For each displacement amplitude, the
range of rotation (peak-to-peak) and the range of moment is given for the
hysteresis loops. The area enclosed by a single hysteresis loop is given as
well as the cumulative loop area. For the specimens tested in the initial study
(14C1, 14C2, 8Cl, 8C2) the areas of the hysteresis loops, other than for the
single cycles reported in the tables, were calculated as the average of the

first and last loop areas at a particular displacement amplitude and test
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frequency. Por those specimens investigated in the present study (14C3, 14C4,
14B1, 8C3, 8Rl1), the areas of all of the hysteresis loops at each displacement
amplitude were taken to be the same as the single reported area for purposes of

calculating cumulative hysteretic energy.

3,2.2.2 Discussion 9§ Test Results

In the variable amplitude cyclic test series, stable hysteresis loops were
maintained,for the l4-inch beam specimens, within a few cycles after a change in
amplitude was Iimposed relative to the preceding displacement under the
block-type loading. TFor several of the 8-inch deep beam connections, a
continual, though small, softening (loss of moment) was noted for each
progressive cycle at a constant displacement amplitude; however, the succeeding
hysteresis loops were otherwise similar in appearance. As seen in Figures 3,18
through 3.26, the moment-rotation behavior of the connections was characterized
by hysteresis loops of continually decreasing slope for relatively small
displacements -in the non-linear range. In contrast, the loops exhibited a
moderate "pinching" effect at larger amplitudes, the degree of pinching being
more pronounced in the W14X38 beam connections than in the W8X21 members. This
increase in stiffness observed toward the tip of each hysteresis hoop may be
attributed, in large measure, to the changing gecmetry of the connection during
each half cycle of locading; this behavior is explained in greater detail
subsecuently.

As noted earlier, each of the variable amplitude cyclic tests culminated in
the formation and subseguent propagation of fatigue cracks originating at the
toe of the fillet in one or more of the beam flange angles. The cracks

generally initiated in the region of greatest restraint against displacement;
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i.e., in the region between the bolt in the leg of the flange angle attached to
the column and t*he first bolt from the end of the beam in the leg attached to
the beam flange. The tests were terminated when cracking had progressed at
least partially across the face of the angle at the fillet; no tests were
extended to the point of rupture of a connection element. The connections
maintained ductile behavior during the full extent of the cyclic tests, and
exhibited only modest loss of maximum moment from the time fatigue cracking was
noticed to the termination of a test, No slip was observed during the cyclic

tests, nor was there any local buckling of the connection elements.,

Discussion of Moment-Rotation Hysteresis Loops

The shape of the hysteresis loops for the cyclic test specimens can be
described in terms of the changes in the gecmetry of the connection as the
moment is reversed. Consider one half of a typical loop, shown as a solid 1line
in Figure 3.27. Point 1 in Figure 3,27 corresponds to one extreme of the
actuator movement (Point 1 in Figure 3.28, actuator displacement vs. time).
The portion of the moment-rotation curve that is generated as the actuator moves
from Point 1 to Point 3 can be divided into three regions based on the
configuration of the connection; these regions are labeled I, II, and III in
Figure 3.27.

The initial loading of the connection in a cycle, culminating in the
attainment of maximum negative moment, causes the connection to assume the
configuration shown in Figure 3.29a. In this configuration the beam is pivoting
about a point near BFA, the current compression flange angle. The remaining
connection angles are pulled away from the column flange, generating the tension

forces which establish the corresponding resisting moment at the beam—column
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interface. With the bottom angle in full bearing on the colum flange, the
stiffness of the connection is now at a relative maximum. The completion of
this initial loading is indicated as Point 1 in Pigure 3.27.

Reversal of the direction of actuator movement, with the specimen in the
configuration shown in Figure 3.29a effects a period of essentially elastic
unloading at a slope comparable to the initial slope of a statically loaded
connection, This is identified as Region I in Figure 3.27.

Region II is a transition stage. During this time, the geometry of the
connection is undergoing significant change. The campression force in BFA,
which bears on the column face in Region I, decreases and eventually converts to
a tension force as the moment is reversed; hence, the angle moves away from the
column face (see Figure 3.29b).

The force in the top flange angle, TFA, changes from tension to compression
in Region II, causing that angle to move toward the column face. As a result,
the center of rotation of the connection moves (reflecting the redistribution of
forces taking place) and eventually maintains a position near the top of the
beam. During the time when both flange angles are temporarily bent away from
the column face, the connection stiffness is at a minimum, The stiffness of
Region II is not a constant for all loading histories. The initiation of vyield
in the flange angles is affected by the presence of residual stresses (and,
later, fatique cracks). The response of the connection in Region II is
analogous to a rigid beam on an elastic-plastic foundation, where the foundation
is represented by sprinas with changing stiffnesses. The relative stiffnesses
of the springs depends on the magnitude of the connection rotation at the
previous reversal of mament. As a result of this hehavior, it is hypothesized
that unloading from the central range of Region II will not be at a slope equal

to that of Region I. Rather, the slope will lie between the limits established
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from the Region I response and the Region TII slope immediately preceding
unloading. (This has not been experimentally tested in the ©present
investigation.) The end of Region II is reached when angle TFA has folded back
upon the colum face in compression. The behavior of the connection in Region
ITI occurs only in cvclic loading, and hence cannot be compared to a monotonic
static test,

Region III can be considered geometrically the reverse of the configuration
existing in Region I. As shown in Figure 3.29c, the compression angle in
bearing against the column face is now TFA, whereas flange angle BFA and the web
angles are now pried in tension from the column. The center of rotation is
again stationary, located near the top flange of the beam, The change in
stiffness as the configuration changes from that of Figure 3.29%9b to the one in
Figure 3,29c can be determined by noting the difference in the slope of the
moment-rotation curve. The magnitude of this change depends on the connection
details, as discussed bhelow,

Comparing the change in slope between Regions TII and IIT in specimens 14C1
and 14C2, for example, (Figures 3.18 and 3.19, respectively), it can be seen
that the change is more pronounced in specimen 14Cl. This difference can be
attributed to the thicker flange angles of specimen 14C2, the web angles and
bolt diameter heing identical for the two specimens, Assuming the angles behave
as beams, an analogy may be drawn between a span-to—depth ratio for a beam and
the ratio of an "effective" gage length, g - db’ to the thickness of the
angle, t, for the 1leg of the flange angle mounted to the column flange. TFor
specimen 14C1l, (g - db)/t is 4.7 and, for specimen 14C2, 3.5, indicating a
stiffer beam in bending for the flange angles of specimen 14C2, During the

transition phase of Region IT the stiffer flange angles of specimen 14C2 offer

more resistance to movement than the flange angles of specimen 14Cl. Thus, when
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the compression flange angle goes into bearing, the change in stiffness is
greater in specimen 14Cl than the corresponding change in stiffness of specimen
14C2. The same obhservations may be drawn by comparing the relative response of
the other three 14-inch beam specimens, 14C3, 14C4, and 14Bl. Specimens 14C3
and 14B1, with (g - db)/t ratios of 3.25; exhibited very little evidence of
pinching of the hysteresis loops, while 14C4, with a (g - db)/t ratio of 4.3,
exhibited perhaps a bit more prominent pinching than the other two members,
(The pinching effect in specimen 14C4 was still considerably less pronounced
than that of 14Cl1, however, as comparison of Figures 3.18 and 3.21 indicates).
By comparing the moment-rotation curves of specimens 8C1, 8C2, 8C3, and
8Bl, the observations of the previous paragraph are again applicable, Specimen
8Cl, with a (g - db)/t ratio of 4.0, exhibited a more prominent change in
slope from Region TII to Region TIITI than that of specimen 8C2, with a (g -
db)/t ratio of 3.3, or specimens 8C3 and 8B1, with identical ratios of 3.0.
In fact, the latter three specimens are distinguished as having exhibited almost

no consistent pinching behavior at all, even at large displacements.

Connection Hysteretic Energy Capacity

The "average" hysteresis loop area at each displacement amplitude, and the
total hysteretic energy accumulated at the termination of testing, is presented
in Tables 3.4 through 3.12 for the nine variable amplitude test specimens. In
general, for the low-to-high amplitude block tests, it was found that, with the
exception of the first cycle following an increase in displacement amplitude,
the hysteretic energy absorbed per cycle remained reasonably constant at each
amplitude. Further, the ductile behavior of the connections was evident by the
increase in hysteresis loop area with each succeeding increase in displacement

amplitude (and connection rotation) through the full range of testing, even with
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pinching evident at the larger amplitudes.,

As a consequence of the general stability of the oconnections at large
rotations, and of the ductility of the comnection elements, it is reasonable
that the overall energy absorption capacities of like connections would increase
directly with the depth of the beam sections to which they are attached. This
is demonstrated, for example, by comparing the data for specimens 14Cl1 and 8C2,
both of which contained 3/8-inch thick flange angles and were fastened with
3/4-inch diameter bolts. For specimen 14Cl, the total accumulated hysteresis
loop area was 520 k-in., more than twice the 243 k-in, achieved by specimen
8C2.

The hysteretic enerqgy absorption performance of the specimens framed to a
particular beam section, however, exhibited limited consistency. For example,
specimen 14C4, fabricated with 3/8-inch thick angles and 7/8-inch diameter
bolts, developed only 345 k-in. of hysteretic energy, well helow the 520 k-in.
of specimen 14C1 (3/8-inch flange angles, 3/4-inch bolts). It may be noted that
fatigue cracking was observed during the block of cycles applied at a
displacement amplitude of 1.6 inches for specimen 14C4; these cracks thereafter
propagated continuously, and the test was discontinued after nine cycles were
applied at a displacement amplitude of 1.8 inches. In contrast, fatigue
cracking was not observed in specimen 14C1 until the twelfth cycle at a 2.0-inch
displacement amplitude, enabling the latter member to accumulate considerable
hysteretic energy at the large loop areas corresponding to that displacement.

Comparison of the behavior of specimens 14C]1 and 14C4 serves to illustrate
the sensitivity of total hysteretic energy absorption capacity to the formation
and rate of propagation of fatigue cracks in the connection elements,
particularly the flange angles. Fatigue crack initiation, in turn, is

influenced by such factors as surface irreqularities formed during the rolling
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or fabrication of the connection angles, residual stresses introduced during the
erection process, and concentrations of stress resulting from the restraint
against movement in the area adjacent to the bolts in each leg of the flange
angle. Further illustration qf the dependency of energy absorption on fatigue
behavior is o¢btained by comparison of specimens 14C3 and 14Bl1. Geometrically
the same, specimen 14C3 was tested under low-to-high amplitude loading, with
displacement amplitudes increasing in blocks fram 0.2 to 2.0 inches, and
accumulated a 683 k-in. total hysteresis loop area. A fatigue crack was
detected during the 1.6 inch displacement amplitude block, and progressed at a
moderate rate until the test was stopped during cycling at an amplitude of 2.0
inches, Specimen 14Bl1, in a high~to-low amplitude test, exhibited fatigue
cracking during the first block of cycles at a displacement amplitude of 1.8
inches; these cracks continued to grow, although at decreased rates, as the
displacements were lowered progressively to 1.0 inches, At this point, a large
crack had extended to the limit permitted in the other tests, and cycling of
specimen 14Bl1 was discontinued. The total hysteretic energy achieved was 514

k—-in., about 75 percent of that for the companion member, 14C3.

The influence of fatigue crack propagation on hysteretic energy absorption
is further demonstrated by camparison of the behavior of specimen 14B1 with that
of specimen 8Bl. Although fatigue cracks were first detected in specimen 8Bl
during the first block of cycles at its largest displacement amplitude, 1.2
inches, crack retardation (temporary cessation of crack growth) was chserved at
succeedingly smaller displacement amplitudes, At 0.2 inches, the crack lengths
were still within the limits permitted in the cyclic test series; the amplitude
was then increased again to 1.2 inches, and the crack extended rapidly during

the first cycle at that amplitude. The total hysteretic eneregy accumulated by
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specimen 8R1 was 216 k—-in,, greater than that for its companion specimen, 8C3,

(186 k—in.), which was tested under low-to-high amplitude block loading.

The consequences of fatigue crack acceleration or retardation on energy
absorption capacity during variable amplitude cyclic loading are evident from
the above comparisons. The differences in the crack growth rates between the
low-to-high and the high-to-low amplitude tests also serve to illustrate the
dependence of cyclic performance (and, correspondingly, damage accumulation
models) on  sequencing history as well as on amplitude of load or displacement,
Thus, a linear damage rule of the form proposed by Miner (65), although simple
to apply, cannot be expected to offer a consistently accurate prediction of
damage accumulation for displacement histories more typical of a seismic event;

this is discussed further in Section 4.3.

3.2.3 Fatigue Tests

Sixteen specimens were tested under constant amplitude cyclic (fatique)
displacement histories. The geometric parameters that were varied in this test
series were the beam depth (W14X38 and W8X21 sections) and the flange angle
thickness (3/8 inch and 1/2 inch for the 1l4-inch beam specimens, 5/16 inch and
3/8 inch for the WBX21 specimens). The bolt diameter was 7/8 inch for all
specimens in this test series, Details of the test specimens are reported in

Table 2.3; the testing procedures are described in Section 2.3.2.

3.2.3.1 Test Results

A compilation of the fatigue test results for the sixteen specimens is
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presented in Table 3.13. The table includes the nominal chord rotation, the
fatique life, and the total accumulated hysteresis loop area for the specimens.
The fatigue data for each of the specimens (except 8F6), including range of
rotation, range of moment, and individual hysteresis loop area at selected
percentages of the total fatigue life are presented in Tables 3.14 through 3.17.
No hysteresis loop areas are available for specimen 8F6 because of a malfunction
in the data recording equipment.

As discussed in Section 2.3.2.3, several of the fatigue test specimens were
subjected to a number of initial "half" cycles before continuing with the full
reversal displacements, in order to induce first cracking in the top flange -
angles, where inspection was easiest. Cracking did initiate in the top angles
for these specimens, with the origin of cracking at the toe of the fillet,
usually in the leg of the angles mounted to the beam flange. Fatigue "failure"
was defined as the number of cycles at which the longest fatigue crack had
extended over approximately three-fourths of the width of the flange angle. For
some of the test specimens, this crack had grown through the thickness of the
flange angle at one or more points by the time it had reached its limit length.

Camplete hysteresis loop traces at selected cycles are shown in Figures
3.30 through 3.44 for the £fifteen fatigue specimens for which data are
available., For a few of the low amplitude tests (e.g., sSpecimens 14F8, 14F4,
and 8F2) the hysteresis loop traces shown in the figures appear somewhat erratic
and non-coincidental. This is attributed to the sensitivity of the recorded
data to slight self adjustments in the testing apparatus at low actuator loads
corresponding to reversals in the direction of actuator movement, The irregular
appearance of the tops of the hysteresis loops results from the limited number
of digitized data points that could be recorded by each channel of the recording

equipment, particularly in those specimens in which elastic displacements were
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vrevalent, In general, however, it can be seen that the hysteretic response in
specimens 14F3, 14F4, and B8F2 was reasonably consistent, with only small
inelastic displacements evident during each cycle, and 1little degradation of
moment carrving capability even toward the end of a test when fatigue cracking
- was quite extensive.

For the specimens tested at large dispiacement amplitudes, and which
exhibited fatique failures at the lower 1lives in the test program, it is
apparent that the hysteresis loops were quite stable throughout each test, and
that only nominal loss of moment occurred for the complete connection even
toward the end of a test. Specimen 8F7, shown in Figure 3.40, typifies the
response observed in the large displacement constant amplitude tests, The
hysteresis loops are large and quite stable, with minor pinching evident toward
the end of the 1loop. ©Note also the gradual, though rather nominal, loss of
moment exhibited by the specimen toward the end of the test (Nf = §7 cycles).
This behavior was exhibited by the fatigue test specimens in spite of the fact
that fatigue cracks had progressed to some depth through the thickness of the
flange angle at the time they had reached the limit length at the surface.
Because the crack was extending rapidly along the surface at the time testing
was stopped, however, it was felt that the recorded fatigue life was very close
to the total number of cycles that could be tolerated before complete rupture of
one of the flange angles. The fatigque cracks were generally first visually
detected as a series of fine hairline cracks which coincided with slight
irreqularities in the surface of the flange angle at the toe of the fillet., As
cycling progressed, these individual cracks would eventually coalesce into a
single crack, which then propagated more rapidly along the surface (and through
the thickness, as the increasing width of the openhing at the surface would

indicate).
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The appearance of the fatigue cracks in specimen 14F9 at 126, 134, 158, and
214 cycles is shown in Figure 3,45, Note the irregularity of the crack front,
typical of that observed in all of the cyclic test specimens. Although cycle
126 is reported as the time at which a fatigue crack was first observed in
specimen 14F9, the actual onset of visible cracking prchably occurred slightly
earlier, as the previous time the test had been stopped to examine for cracks
was at 105 cycles. It should be noted, also, that the testing of specimen 14F9
was stopped at 230 cycles, at which time the crack shown in Figure 3.45 had a

total surface length of about six inches.

3.2.3.2 Discussion of Test Results

The test data for the four sets of fatigue tests are plottéd in Figures
3.46 through 3.49, Figures 3.46 and 3.47 present the data for the W14X38 beam
specimens fabricated with flange angles of 3/8-inch and 1/2-inch thickness,
respectively, The data in Fiqures 3.48 and 3.49 represent the W8X21 beam
specimens with flange angle thicknesses of 5/16 inch and 3/8 inch,respectively.
In the figures, the total fatigue lives (number of complete cycles of
displacement, as identified in Figure 3.28) are plotted as a function of the
total nominal range of rotation in an individual cycle, the range of rotation
being calculated directly from the controlled actuator displacements., For each
of the four sets of tests, the data generally are seen to follow a linear
log-log relationship for the range of fatigue lives obtained., Using standard
regression analysis, Manson-Coffin (66-68) type fatigue life relationships, with
two empirically determined constants, have been generated for each of the four
individual sets of data, and are shown in the figures.

In order to develop a single expression capable of predicting constant
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amplitude fatigue lives for specimens with varying geometries, a
non-dimensionalized nominal flange angle chord rotation index was calculated for
each of the sixteen specimens tested in this phase of the study. This chord
rotation index may be considered representative, proportionally, of the surface
strain in the tension flange angle of the test specimen at a particular’
displacement amplitude. The numerical values of the chord rotation index, R,
are reported in Table 3.13 for each of the test specimens. The applicability of
a relationship between R and Ne as a model for predicting constant amplitude
cyclic life expectancies is discussed in Section 4.2, where an analysis of the
cyclic test data is apresented. The efficacy of using such a fatigue life
relationship as a baseline for cumulative damage assessment under variable
amplitude displacement excursions is explored also in Section IV.

Tables 3.14 through 3.17 include the total hysteretic energy (summation of
moment-rotation hysteresis loop areas) accumulated by each of the specimens
during fatigue testing., Typical of structural elements subjected to
strain-based, low-cycle fatigue loading, the total accumulated hysteretic energy
for a specific type of connection was not found to be constant over the range of
fatigue lives considered in the investigation. From examination of the data in
Tables 3.14 through 3.17, there appears to be a general trend toward increasing
total hysteretic energy accumulation at the longer fatigue lifes corresponding
to the smaller per cycle loop areas. For example, with the WBX21 specimens
containing 3/8-inch thick flange angles (Table 3.16), the total hysteretic
energy increases from 116.6 k-in., for specimen B8F] (tested at a 1.5-inch
actuator displacement amplitude, and exhibiting a fatigue life of 10 cycles) to
approximately 308 k-in. for specimen 8F2 (which was tested as a displacement
amplitude of 0.5 inches, and had a fatigue life of 560 cycles). This trend is

not consistent, however, as the somewhat erratic pattern of energy accumulation
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in the l4-inch beam fatigue test specimens indicates (Tables 3.14, 3.15). It is
apparent that additional data are required, covering a greater variety of
specimen geometries, and for tests conducted over a broader range of fatigue
lives, before any correlation between total energy absorption capacity and
fatigue performance can be attempted. It may be noted here, however, that a
linear log-log relationship between energy absorbed per cycle and fatigue 1life
expectancy has been established for the specimens tested in this study; such a
relationship offers promise as a means of predicting fatigue 1lives under
constant amplitude testing, and as a baseline for use in damage accumulation
models involving variable amplitude test excursions, The results of this
analytical phase of the study are examined in Section IV.

As one element of the constant amplitude cyclic test program, it was
intended that the separate stages of crack initiation and propagation be studied
during each fatigue test. This turned out to be a rather formidable task
hecause, as noted earlier, the fatigue cracks first appeared as a series of
fine, hairline cracks separated from one another both along the width of the
flange angle and in elevation from the toe of the fillet in the angle. These
individual cracks would grow, at varying rates, until they eventually coalesced
into a single, irregular crack similar in appearance to the one shown in Figure
3.45d. Beyond that point, the crack, usually not symmetrically positioned on
the face of the flange angle, would extend cuite rapidly to the limit length
established for that test specimen. It was guite difficult, then, to define a
representative crack growth history from among the several individual cracks
that first appeared on the specimen surface.

The crack growth rate through the thickness of the affected flange angle
was also difficult to determine. To obtain depth measurements, the fatigue test

was stopped periodically with the top flange angle in the full tension position.
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A 0.001-inch thick feeler gage was then inserted in the open crack to try to
probe to the crack root.* The results of these measurements have been analvzed
in a separate study (69), using a fracture mechanics crack growth model to
predict the growth pattern. The results of that investigation are not reported
here because it was felt that too few measurements were made to offer meaningful
interpretations of the correlation between through-thickness c¢rack growth and
the observable surface crack growth behavior. Additional studies in this area

have bheen proposed for consideration in a subsequent study.

*Because of the complex geometries of the test members and the loading
apparatus, other potential non-destructive crack size measurement techniques,
such as ultrascnic inspection, were not attempted.
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TV, ANALYTICAL INVESTTIGATICN

4,1 Static Mests

In the initial study (63) a number of analytical models were investigated
for their ability to predict the moment-rotation characteristics of semi-rigid
beam—to-column connections. Tt was determined that the initial stiffness of the
connection could he reasonably predicted by a simple model which models the legs
of the connecting angles as an assembly of beams., In addition, it was
determined that the complete moment-rotation curve was best predicted by an
empirical model which incorporates the physical and material characteristics of
the connection as parameters. These models were utilized in this study in an
attempt to predict the behavior of the specimens tested in the investigation,
In addition to these models, a three dimensional finite element model using
solid isoparametric elements was developed in an attempt to predict the

moment-rotation curve for a typical connection,

4.1.1 Prediction 9£ Moment-Rotation Rehavior

4,1.1.1 Ream Model for Initial Stiffness

The initial stiffness of the connections under study is assumed to
correspond to the physical behavior indicated by Figure 4,1a; namely, that the
center of rotation of the connection is located at the point of contact of the
hottom f£lange of the beam with the compression flange angle at the end of the
beam. Also, it is assumed that the material is linearly elastic and that
displacements are small, From these assumptions, the horizontal displacement of

the heel of the top flange angle, X, (Figure 4.la) is:
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X = ¢d (4.1)
where:
¢ = rotation of end of beam with respect to column face

It is assumed that the vertical leg of the flange angle can be represented

by "stiff" beams and "flexible" beams as shown in Figures 4.1a, 4.2a, and Fiqure

4,3, where:

A = assumed beam length, flange angle leg adjacent to column face

moment at end A of beam AR

3

moment at end B of beam AB

"5a

F

I

shear force in beam (nominal bolt force)
Tt is assumed that the outstanding legs of the web angles can also be
represented by "stiff" beams and "flexible™ beams, as shown in Figures 4.1b, and

4.2b and Fiqure 4.4, where:

Ac = assumed beam length, web angle leg adjacent to column face

Py = pitch, center-to-center spacing of bolts in legs of web angle
Ai = di $(i=1,2,3), displacement of heel of web angle for beam i

d = distance from assumed center of rotation to beam i
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dl = &/2+ (n-1p /2

d2 = (n=-2)d/2

d, = &/2 - (n-l)p /2

F. = ghear force in beam i

( moment at end C of beam i
MCD)i
M = moment at end D of beam i
Moe),
Neglecting the bending moment in the compression flange angle at the
assumed center of rotation, and including both flexural and shear deformation,

the total resisting moment of the connection is

M = Mf + M (4.2)
Mf = moment contributed by flange angle
Mc = mament contributed by web angle
where
M =

Mc(stiff) + Mc(flexible)

Mo(stiff) = moment contributed by stiff portion of web angle
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i

MC(flexible) moment contributed by flexible portion of web angle

Considering equilibrium of the beam shown in Figure 4.2a and using the

slope deflection equations, it can be shown (71) that
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b 3

6EI.D 6EI_D 2-r
M. =
£ B (1+r2)

*E__l*__{39.+ 1+ —2  [1-—27(m=+38 } ¢ (4.3)
b (1+1,) 2

Similarly considering the beams in Figure 4.2b:

24E1

M _(stiff) = -3—-§——-[d12 . d22 . d32]¢
bc (1+r3)
. 12ET 2-1
_ 4 4 2 2
M _(flexible) = [1- 10d . “+ da "¢ +
o B 3(1+r ) 4+rr el a2
c 4
12EI 2-r
5 5 2 2
[1- 1ldg ™+ d.,% 10
B 3(1+r ) 4+r5 f1 £2
c 5
where:
12E1,
i 1 2 2
r. = .= = = =
17T T TTERY Ay TRt 1= 12,5405
S1 1
P = (no. of bolts) x dW Al =b t, =t
P, = L-p1 AZ =B ty, =t
Pz = dy Ay = by ty =t
p, = I/ZELC—dw-(n—l)pc] Ay = B, t, = t,

Pg = P. - dw AS =B t5 =t
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dy; = [2d+(n—l)pC+LC+dw]/4

dy, = [2d-(n-l)pc-Lc-d2]/4

df1 = d/2+(n—2)pc/2

dep = (n-2)(d-p.)/2

n = number of bolts in beam web (2 or 3)

Pguations 4.1 through 4.4 were evaluated for the specimens of this
investigation which were tested statically. These equations were evaluated for
both inclusion and exclusion of shear deformation; the results are compared in
' Table 4.1 with the corresponding test data. The test results presented in this
table are taken from Tables 3.1 and 3.2, which include results from both the

initial investigation and the current study.

4.1.1.2 Empirical Mcdel

In the initial study (63) an empirical model was developed to predict the
moment-rotation behavior of semi-rigid beam to column connections of the type
investigated herein. The resulting equation is:

_ 3 5
¢ = Ci®D + Cy(R)° + C, (KM) (4.5)

where

©-
l

rotation of beam with respect to column

=
It

moment developed by beam to column connection
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B, o=t a; = -1.12808769
P, = 4 @y = -1.2870455
A 6, = -.41454097
P, =1L a, = -.69412158
P, = bt/ az = 1.34994572
and:
c, = .2232429% 1077
c, = 1850728 X 1077
c, = .3188976% 107

Comparisons of Equation 4.5 with the results of the test investigations are

presented in Figures 4.4 through 4.18.

4.1.1.3 Three Dimensional Finite Element Model - Flange Angles

Observations from all of the static tests indicated that a major portion of
the connection deformation take place in the tension flange angle.
Consecquently, both analytical and experimental studies were carried out to

determine its deformational characteristics, Pull tests were conducted to
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determine experimentally the behavior of the flange angle (see Appendix B,1) and
a three dimensional finite element model of the flange angle was generated to
analytically determine its behavior (see Appendix BRB.3). The moment-rotation
characteristics for hoth the experimental and analytical studies were determined
from the force-displacement relationships by assuming that the mcoment is
calculated by multiplying the force in the angle by the depth of the beam, and
that the rotation is calculated by dividing the flange angle displacement by the
depth of the beam. A comparison of the pull test data with the finite element
results is presented in Appendix B; a more detailed report of this study is

given in Reference 692,

4.1.2 Discussion

Comparison of the test results with the predicted initial slopes, Table
4,1, indicates that slopes predicted by Equations 4.1 to 4.4 are reasonable,
although not precise. The comparison also indicates that, in general, the
predicted values are too low for the thinner angles and too high for the thicker
angles for specimens using both the 3/4-inch diameter bolts and 7/8-inch
diameter bholts. It also appears that inclusion of shear deformation in the
prediction equations produces results that are generally more accurate.

Results obtained from the three-dimensional finite element analysis (see
Figure B,10) for predicting the full moment-rotation curves were encouraging.
The program and model developed in this investigation produced results far more
accurate than the two—dimensional or three-dimensional models developed in the
initial investigation (63). This appears to indicate that material
nonlinearities are more significant than geometric nonlinearities in the
behavior of the flange angle. In addition, it appears that solid elements are

necessary to accurately model the behavior of the flange angles., Although the
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finite element analysis developed in this study is much more efficient than that
of the initial study, the effort required to predict the full moment-rotation
characteristics of the connections is still prohibitively large for design
purposes,

Results presented in Figures 4.4 to 4.18 indicate that the empirical model,
Fquation 4.5, is a good predictor of the overall moment-rotation characteristics
of connections of the type studied in this investigation, The equation is
simple and suitable for incorporation into computer programs for design purposes

or nonlinear analysis of frames with semi-rigid connections.

4.2 Fatigue Tests

4.2.1 PFatigue Life Predictions

This study employved the low cycle fatigue concept to generate baseline
fatigue data in terms of two different parameters. In low cycle fatigue, the
baseline fatigue data are usually expressed in terms of plastic strain. For
most metals, the plot of plastic strain versts the number of cycles to failure
produces a linear relationship on a log-log plot, This observation led Coffin

(A6, 67) and Manson (68) to propose the following equation:

Ae - c
p = eg(N2)
2
where
Ae . .
p = plastic strain
2
EE = fatigue ductility
Nf = total number of cycles to failure
¢ = fatigue ductility exponent

A number of researchers have concluded that if the strain at critical
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locations in the structure could be measured, these measurements, together with
Miner's Rule (65), baseline fatigue data, and an appropriate cycle counting
method, could be used to make a reasonably good prediction of the life of
structural components under random loading. Methods like that of Neuber's Rule
(70) could be used to estimate local behavior if the external load is known for
simple specimens. However, for complex systems such as connections, predicting
strain at critical locations is not an easy task.

In order to establish baseline fatigue data in this study, four sets of
constant amplitude tests were conducted, as discussed in Section III. Then, in
order to develop a single expression for predicting fatigue lives for specimens
of varying geometry, a parameter, R, representative of the degree of deformation
in the tension flange angle, was considered, The parameter R, called the

"nominal flange angle chord rotation index,™ is defined as

C e[ )
where:

a = beam depth

t = flange angle thickness

¢ = rotation of end of beam with respect to column face

d = diameter of washer
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e = gage in the flange angle; distance from the heel of
the angle to the center of the bolt hole in the leg
of the flange angle attached to the column face

Referring to Figure 4.1(a) we can write

tang = ééf (4.7)
X
tano (g—tw/Z-t) (4.8)

Since one complete reversal goes through the relative beam to column

rotation twice, the total chord rotation index, R, is found as

R = 2tan o (4.9)

Ecquations 4.7 to 4.9 are then combined to give Equation 4.6.

Figure 4.19 shows a plot of R versus the number of cycles to failure on a
log-log scale for the constant amplitude cyclic tests, The least sguares fit of
a straight line through the data resulted in the following equation, which

relates R to the number of cycles to failure, Nf:

Ng = 1.868(R) >+ 231 (4.10)

At high displacement amplitudes, plastic strain is the predominant cause of
energy dissipation in semi-rigid connections. In this study the amount of

dissipated enerqgy is approximated as the area of the hysteresis loop under the
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moment-rotation curve. To examine the effect of energy dissipation on fatigue
life, the energy per cycle at approximately midlife, E, was plotted against the
number of cycles to failure for all of the constant displacement amplitude
cyclic tests on a log-log scale, as shown in Figure 4.20. This figqure indicates
that a linear relationship exists for each heam depth. Using a least squares
fit, the following equations were obtained for beams of 14-inch depth and 8-inch

depth, respectively:

N = sa4.9(m) 1%
Ne = 298.65(R) 1+263
where:
Ne = number of cycles to failure; fatigue life for constant

displacement amplitude cyclic test
E = energy per cycle; area of single hysteresis loop
The parameter E becomes an alternative to the parameter R, so that the
equations of Fiqure 4,20 could he considered as baseline fatigue relationships
which could be used with Miner's Rule to calculate the life of a specimen under

random loading.

4,3 Variable Amplitude Cyclic Tests

4.3.1 Prediction of Damage Accumulation
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To predict the cumulative damage for the specimens tested under the
low-to-high amplitude and high-to-low amplitude cyclic loadings, the chord
rotation index, R, was calculated as described above for each test displacement.
Fouation 4,10 was then used to predict the number of cycles to failure, Nf,
and the cumulative damage ratio, n/Nf, was calculated using the number of
applied cycles, n, obtained from the test data. The results of this analysis
are presented in Tables 4.2 and 4.3.

Cumulative damage in the variable amplitude cyciic tests was also predicted
using energy dissipation. The average hysteresis loop area, obtained from the
tests, was chosen to represent the dissipated energy, E, and Equations 4.11 and
4.12 were then used to predict the number of cycles to failure, Ne. The
cumulative damage was then calculated. The results of this analysis are
presented in Tables 4.4 and 4.5,

Comparison of Tables 4.3 and 4.4 with Tables 4.5 and 4.6 indicates that

slightly better predictions of cumulative damage are obtained using energy

dissipation, E, to predict fatigue 1life., Predictions based on the chord L

rotation index, R, are seen to be smaller than those obtained using E.
Additional tests are needed, however, to further refine the proposed fatigque
life relationships, for application to a linear cumulative damage model, as
above, or to cther models appropriate to the prediction of fatigue behavior
under random loading conditions. Such tests have been proposed as an extension

of the present investigation,
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V. SUMMARY AND CONCLUSIONS

5.1. Static Tests

In an initial investigation (63) and in the current study, a combined total
of 18 bolted beam to column connections were tested under monotonic loading to
generate static moment-rotation relationships. The connections consisted of top
and seat angles bolted to the flanges of beam sections and a supporting stub
colum, together with double web angles bolted to the beam web and column
flange. ASTM A36 steel was used for the members and connection elements; the
fasteners were ASTM A325 high-strength bolts. Eight of the test connections

were framed to W14X38 beam sections; of these, four were fastened with 3/4-inch
‘ diameter bolts, the remaining four with 7/8~inch diameter bolts, Ten
connections were framed to W8X21 beam sections: seven of these were fabricated
using 3/4-inch diameter holts, the remainder with 7/8-inch diameter bolts. For
the top and seat flange angles, the thickness, length, and gage {in the leg
attached to the column flange) were varied, together with the beam depth and
holt diameter, to effect connections of varying stiffness. The thickness and
length of the web angles were varied also,

In all of the static tests, the connections exhibited a moment-rotation
response that became non-linear relatively early in the loading sequence, This
is attributed, primarily, to loccal vielding and eventual plastic hinge formation
at each toe of the fillet in the angle attached to the tension flange of the
beam, Another hinge developed in the vicinity of the bolt line in the leg of
the flange angle attached to the column, together with progressive plastic

hinging in the outstanding legs of the web angles. fTwo of the specimens



63

fastened with 3/4-inch diameter boltg, 852 and 1482, and one specimen fastened
with 7/8-inch bolts, 8510, exhibited slip in the connection angles during
testing. These were the stiffer connections for each beam size, developing the
larger moments (and, correspondingly, larger bolt shear forces) in each test
group.

With the exception of specimens 852, 8S10, and 14S2, all of the test
connections were able to develop continually increasing moments through the full
range of rotations imposed during the tests. (The maximum Trotations
corresponded to deflections exceeding four times the deflection, at allowable
load, of simply supported beams having the same section and span as those in the
test program). During the latter period of loading, a nearly constant or only
very gradually decreasing positive slope of the moment-rotation curve was
exhibited by each of the specimens (except 8S2). This nearly constant stiffness
at large deformations has been attributed to material strain hardening, and to
the consequences of progressive changes in the gecmetries of the connecting
angles. The increasing deflection of the tension flange angle at large
connection rotations produces a continuous change in the internal force
distribution in the legs of the angle, with axial tension becoming an increasing
factor as the angle progressively "flattens out." The gradual transition from a
predominately flexural response to a combined flexural-axial response, with the
accompanying strain hardening, can thus account for the ability of the
connections to achieve considerably greater moment capacities, by a factor of at
least two, than those predicted by a simple flexural plastic hinge mechanism.

From the static tests, it has been found that the geometric parameters that
most  significantly affect the static moment~rotation performance of the
semi-rigid connections investigated are: the depth of the beam section to which

the connection elements are framed; the thickness of the flange angles; and
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the gage in the leg of the flange angles attached to the colum flange.
Although the data are inconclusive, it appears that bolt diameter has a minimal
effect on the initial stiffness of the c¢onnections; however, increasing the
bolt diameter effects a corresponding increase in moment capacity at large
rotations (beyond about 4X10“3 radians). Variations in the 1length of the
flange angles, and in the length and thickness of the web angles, had a less
pronounced effect on connection response than the other parameters,

An analytical model developed toc predict the initial stiffness of the
semi-rigid connections has been found to correlate reasonably well with the test
results for the specimens considered in the investigation. The model represents
the legs of the connectiocn angles as an assembly of "stiff" and "flexible" beam
elements, the stiff elements associated with the segments of the angles confined
by the connecting bolts, and the flexible elements representing those segments
between the bolt lines and at each end of the angles.

Using the results of the parametric test program, an empirical model has
been generated to predict the complete non-linear moment-rotation behavior of
the test connections. With the exception of the stiffest connections in hoth
the W14X38 and W8X21 test series, this model offers reasonable approximations to
the moment~rotation curves of the connections up to the 1limits of rotation
examined in the test program. For the stiffest connections of each beam size,
the model underestimates the moments developed at the larger connection
rotations.

In a pilot study, tests were conducted of two specimens comprised of flange
and web angles welded to W14X38 beam sections and bolted to the flanges of the

_supporting stub column, AWS E70 electrodes were used for the angle to heam
welds; 7/8-inch diameter A325 bolts were used in the attachment of the angles

to the stub column. For specimens of comparable geometry, the combined
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bolted-welded connections exhibited higher initial stiffnesses than the
corresponding all-bolted specimens. This. 6 was attributed to the greater
restraint against movement of the heel of the angle at the end of the beam
flanges occasioned by the presence of the weld return on the top and seat
angles. In addition to the higher initial stiffness, the bolted-welded
specimens developed moderately larger moments than those in the all-bolted
specimens at comparable rotations. These results are considered preliminary,
however, and not necessarily indicative of expected relative performances when a
more complete range of section depths, and flange and web angle sizes are
considered. Such tests have been proposed as part of a continuation of the

current investigation.

5.2 Cyclic Tests

5.2.1 Variable Amplitude Block Tests

Nine specimens, with gecometries comparable to those of the static test
series connections, were tested under variable amplitude cyclic loadings. Five
of the specimens were framed to the W14X38 beam sections, the remaining four to
the W8X21 beams. The other geometric parameters that were varied were the bolt
diameter and the thickness of the top and seat flange angles.

Seven of the specimens were tested under low-to-high amplitude block
displacement histories;  the other two were subijected to high~to-low amplitude
block loadings. The tests were conducted using full reversal of displacement to
generate data indicative of the displacement extremes to which the connections
could be subjected under seismic loading. The test procedure consisted of

cycling sinusoidally between controlled limits of displacement, while monitoring
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the range in moment and the local displacements (rotations) developed during
each cycle, The diSplacemenﬁ—time histories followed a sequential bhlock loading
pattern, with a total of 12-15 cycles applied in each block before the amplitude
was altered (increased in the low-to-high amplitude tests, decreased in the
high-to-low amplitude tests).

Stable hysteresis loops were established, for the l4-inch test specimens,
within a few cycles after an increase in amplitude was imposed relative to the
preceding displacement under the low-~to-high amplitude block loading pattern.
For several of the 8-inch deep beam connections, a continual, though small,
softening (loss of moment) was noted for each progressive cycle at a constant
amplitude; however, the succeeding hysteresis loops were otherwise similar in
appearance.

For each of the test specimens, the mament-rotation behavior was
characterized by loops of continually decreasing slope for relatively small
displacements in the non-linear range. In contrast, the hysteresis loops
exhibited a moderate "pinching" effect at larger amplitudes, the degree of
pinching being more pronounced in the W14X38 beam connections than in the W8X21
members. This increase in connection stiffness observed toward the tip of each
hysteresis loop may be attributed, in large measure, to the changing gecmetrv of
the connection during each half cycle of loading. As rotation progresses,
following a reversal in the direction of the moment at the connection, there is
a period when both flange angles are drawn away from the column. With the
connection in this configuration, the slope of the moment-rotation curve
decreases as rotation proceeds. Eventually, the vertical leg of the compression
flange angle folds back into full bearing on the colum flange, with the
connection exhibiting a concurrent increase in relative stiffness (pinching of

the M—-4¢ curve).
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Each of the cyclic tests culminated in the formafion and subsequent
propagation of fatigue cracks at the toe of the fillet in one or more of the
beam flange angles. The tests were terminated when cracking had progressed at
least partially across the face of the angle at the fillet; no tests were
extended to the point of rupture of a connection element, The connections
maintained ductile behavior during the full extent of the cyclic tests, and
exhibited only modest loss of maximum moment from the time fatigue cracking was
noticed to the termination of the test. WNo slip was observed during the cyclic
tests, nor was there any local buckling of the connection elements.

In general, for the low-to-high amplitude block tests, it was found that,
with the exception of the first cycle following an increase in displacement
amplitude, the hysteretic energy absorbed per cycle remained reasonably constant
at each amplitude, Further, the ductile hehavior of the connections was evident
by the increase in hysteresis loop area with each succeeding increase in
displacement amplitude, even with pinching evident at the larger amplitudes.

As a result of the general stability of the connections at large rotations,
and of the ductility of the connection elements, it was found that the overall
energy absorption of like connections increased directly with the depth of the
beam sections to which they were attached. The hysteretic energy absorption
performance of specimens framed to a particular beam section, however, exhibited
limited consistency. ‘This was attributed largely to the sensitivity of total
energy absorption capacity to the time of formation, and rate of propagation of
fatigue cracks in the connection elements, particularly the top and seat flange
angles. Fatique crack initiation, in turn, is influenced by such factors as
surface irreqularities formed during the rolling or fabrication of the
connection angles, residual stresses introduced during the erection process, and

stress concentrations at the toe of the fillet in each leg of the angles.



5.2.2 Constant Amplitude (Fatigue) Tests

Sixteen specimens were tested under constant displacement amplitude cyclic
loading. Nine of the specimens were framed to the W14X38 beam sections, the
remaining seven framed to the WBX21 beams, For each of the beam sizes, two
thicknesses of the top and seat flange angles were used in the test members.
The bolt diameter was 7/8 inch for all specimens in this test series, With the
exception of several specimens which were initially subjected to a number of
half cycles (null position to maximum displacement and return), the constant
amplitude tests were conducted using full reversal of controlled displacement.
The displacement amplitudes chosen resulted in fatigue lives ranging from nine
to approximately 3500 cycles to "failure" (failure was defined as the number of
cycles at which the longest fatique crack had exterxied over approximately
three-fourths of the width of the flange angle).

As with the variable amplitude tests, the specimens tested in the constant
displacement amplitude series exhibited fatigue cracking that initated at the
toe of the fillet in one or more of the beam flange angles, Again, the observed
hysteresis loops remained cuite stable throughout each test, with only nominal
loss of moment evident even toward the end of a test, when fatigue cracks had
progressed to some depth through the thickness of the flange angle,

For each of the four test sets in the constant amplitude series (two
thicknesses of flange angle framed to both W14X38 and WBX21 beam sections), it
was found that a linear log-log relationship exists bhetween the cyclic range of
rotation in the connection and the resultant total fatigue life, To develop a
single expression capable of predicting constant amplitude fatique 1lives for
specimens of varying gecmetry, a nominal chord rotation index, R, indicative of

the magnitude of the surface strain in the tension flange angle, was determined
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for each of the sixteen test specimens in the series. For the combined data, a
linear log-log expression was generated relating the chord rotation index, R, to

the total number of cycles to failure, N

£

N, = 1.868(R) "2 2231

At large displacement amplitudes, plastic strain is the predominant means
of energy dissipation in the semi-rigid connections. 1In this study, the amount
of dissipated enerqy is approximated as the area of the hysteresis loops under
the moment-rotation curve. To examine the effect of energy dissipation on
fatique life, the energy per cvcle, E, measured at approximately mid-life, was
compared to the number of cycles to failure for each of the constant amplitude
test specimens. Again, a linear expression, on a log-log scale, was found to
provide a reasonably good relationship between energy per cycle and total

fatigue life, for each of the beams sizes individually:

844 .9(g) -2V

=z
1]

{(14-inch beam section)

-1.2639 (8-inch beam section)

=z
]

298,65 (E)

The low cycle, constant amplitude fatigue relationships between N and R
or E were then applied to Miner's linear damage accumulation model in an attempt
to predict the behavior of the specimens subjected to the variable amplitude
cyclic displacements. Cumulative damage summations for both the low=to-high
amplitude and the high-to-low amplitude block cyclic tests ranged from 0.4279 to
1.2848. In general, slightly better predictions of cumulative damage were
obtained using energy dissipation, E, to predict fatigue 1life, than were
obtained from the fatigue relationship based on the chord rotation index.

Additional data, leading to more refined fatique life relationships, are needed
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to improve variable amplitude fatigue life predictions using Miner's Rule or
other cumulative damage models; such tests have been proposed as a continuation

of the present investigation.
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APPENDIX A

NOMENCLATURE

cross~sectional area of flange angle, t X L

B' - t/2

overall length of leg of flange angle adjacent to column face
B', - t/2

overall length of leg of web angle adjacent to column face
coefficients in empirical equation of static M—¢ curve

a+ t/2

Modulus of Elasticity of steel, 29000 ksi

energy per cycle; area of single hysteresis loop

shear force in beam representative of angle leg

shear modulus of steel

P,%1P,%2 -— P °n

overall length of flange angle

overall length of web angle

resisting moment transferred from beam to column through connection
moment in beam representing connection angle

moment contribution of web angles

moment in connection at elastic limit

moment contribution of flange angle

vield moment of connection

fatigue life for constant displacement amplitude cyclic test

parameters affecting relationship between M and ¢



Symbol

5

]
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nominal flange angle chord rotation index, 2 [(d+t) tan ¢]

—g-dw/2-t
elastic section modulus

plastic section modulus

g-k

9-4,/2 - t/2

dc db/z - tc/2
depth of beam

diameter of bolt

diameter of bolt hole

diameter of washer

gage in flange angle; from heel of angle to center of bolt hole
in leg adjacent to column face

gage in web angle; from heel of angle to center of
bolt hole

distance from heal of angle to toe of fillet, flange angle
distance from heel of angle to toe of fillet, web angle
number of applied constant amplitude displacement cycles
number of bolts in beam web

pitch, center-to-center spacing of bolts in leg of flange angle
adjacent to column face

pitch, center-to-center spacing of bolts in each leg of web angle
thickness of flange angle

thickness of web angle

exponents in empirical equation of static M—¢ curve

length of flange angle used in finite element analysis

displacement of heel of flange angle
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strain at initial vieldng in connection angles

length of beam representative of flange angle leg adjacent to
column face

length of beam representative of web angle leg adjacent to
column face

stress at initial yielding in connection angles

rotation of end of heam with respect to column face
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APPENDIX B

B.} Pull Tests

The main objective of the pull tests was to investigate the behavior of the
flange angle only. A total of two pull tests was conducted. The general
configuration of these specimens is shown in Figure B,1.

Flange angle thicknesses of 1/2~inch and 3/8-inch were investigated. 2n
imposed displacement rate of 0.624 inch/minute was applied to the specimens
through the actuator ram, which was attached to the center plate, as shown in
Figure B,1l. Figure B.2 shows the lcad vs. the average displacement obtained
from the LvDTs attached to the two flange angles for specimens with a flange
angle thickness of 1/2-inch. For the purpose of analysis, the experimentally
obtained load-deformation curve was approximated by the smooth curve. It should
be noted that Figure B.2 depicts the load—deformation curve for two flange
angles attached as shown in Figure B,1. The assumption was made that the
actuator load was evenly carried by the two flange angles, allowing for the load
displacement curve for cne flange angle to be obtained as shown in Figure B.4.

Figure B,.3 shows the actuator load vs. the average of the two LVDT
displacements for specimens with 3/8-inch thick flange angles, together with a
smooth approximated curve for the purpose of analysis., Because of actuator load
limitations, the test was discontinued when a load of approximately 50 kips had
been applied to the specimen. Again, the assumption was made that each flange
angle carries half the actuator load, to obtain the load-displacement curve for

one flange angle as in Figure R.4,

B.2 Specimens With Top and Bottom Flange Angles

In addition to the pulltests, tests were conducted of two specimens
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comprised of top and seat angles attached to W14X38 beam sections., The purpose
of these tests was to study the ability of the results of the pull tests, and of
a finite element analysis (discussed in Section B.3), to predict the
moment-rotation characteristics of a connection with top and seat flange angles
only. The test configuration for the specimens with top and bottom flange
angles was identical to the specimens tested in the present investigation,
Figure 2,2a, except that the web angles were cmitted.

The results of tests for moment-rotation obtained for specimens with
1/2-inch thick flange angles and 3/8-inch flange angles are shown in Figures B,9

and B,10, respectively.

B.3 Three Dimensicnal Finite Element Analysis

The finite element analysis program used in the analytical study is
described in Reference 69. The model used in the analysis was developed from a
portion of the flange angle, as shown in Figure B.5, by considering approximate
boundary conditions and conditions of symmetry. Instead of modeling the entire
length of the horizontal leg, only 1.75 inches of the 1/2-inch thick flange
angle, and 1.625 inch of the 3/8~inch thick flange angle was modeled, since test
observations indicated no appreciable dJdeformation in the remainder of the
horizontal leg.

A model was generated for hoth the 1/2-inch thick and 3/8-inch thick
angles, each model consisting of 150 twenty-node isoparametric elements
producing a total of 993 nodes, as shown in Figure B.6., For simplicity, the
bolt hole in the vertical leg was modeled as a square with an area equivalent to
that of a circular hole having a 15/16-inch diameter.

Symmetry conditions were imposed on Face A by restraining displacements in

the Y direction on this face. Bolt head restraint was simulated by restraining
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all displacements for nodes at the intersection of the bolt hole and the front
face of the angle. Displacements in the Z direction were restrained along line
B-B and displacements in the X direction were restrained along line A-A,

Loading on the model was created by imposing uniform displacement of Face B
in the X direction, as shown in Figure B.7, in small increments.

The stress~strain relation used -in the analysis was obtained by conducting
tension tests on sample coupons of flange angles used in the pull tests. The
results were approximated by the bi-linear relationship indicated by Figure B.8.

Comparisons of the moment-rotation diagrams obtained from the pull tests,
the finite element analysis, and the connection tests are shown for 1/2-inch and
3/8-inch thick flange angles in Figures B.9 and B.l0, respectively, for a 14X38
beam section. For the 1/2-inch thick flange angles, the initial slopes from the
finite element analysis, pull test, and connection test are 430,000, 365,000,
and 840,000 k.-in./radian, respectively, while for the 3/8-inch thick flange
angles, the slopes were 209,000, 338,000, and 135,000 k.-in,/radian,

respectively.
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FIG. B.1 GENERAL CONFIGURATION OF PULL TEST SPECIMEN
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FIG. B.2 LOAD DEFORMATION CHARACTERISTICS OF PULL TEST
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FIG. B.3 LOAD DEFORMATION CHARACTERISTICS OF PULL TEST
SPECIMEN (FLANGE ANGLE THICKNESS OF %-INCH)
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FIG. B.5 PORTION OF THE FLANGE ANGLE MODELED FOR FINITE
ELEMENT ANALYSIS
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FIG. B.7 LOADING DIRECTION FOR FINITE ELEMENT MODEL

-
€
FIG. B.8 STRESS-STRAIN DIAGRAM OBTAINED FROM COUPON TEST
USED IN FINITE ELEMENT ANALYSIS OF FLANGE ANGLE
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FIG. B.9 COMPARISON OF MOMENT—ROTATION CURVES FOR

CONNECTIONWITH TOP AND BOTTOM FLANGE ANGLE ONLY, T=%-inch
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TABLE 2.1

MECHANICAL PROPERTIES OF TEST MATERIAL

Mechanical Properties*
Yield Stress | Ultimate Strength | Elongation in 2-inch
Designation (ksi) {ksi) Gage Length (percent)
ASTM A36 42.8 69.9 23.8
42.9 67.9 22,9
39.3 68.0 32.5
37.6 67.9 31.9
53%* 80** - -
36.5 71.9 31.3
43,7 69.9 31.3
40.0 64,0 34 .4
38.0 66.0 37.5

* Top five entries represent stock used in fabrication of specimens in
initial study (with 3/4" dia. bolts); bottom four entries represent
stock used in fabrication of specimens in current study (with 7/8" dia.
bolts, welds).

** Flange angle material, specimen 1452.
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TABLE 4.1

COMPARISON OF PREDICTED INITIAL CONNECTION STIFFNESS

WITH TEST RESULTS

Initial Slope (k.-in./radian}

Predicted
Specimen Including Excluding
Number Test Shear Shear
1481 195,000 152,900 172,000
1482 295,000 328,700 409,800
1483 115,900 150,000 169,500
1454 221,900 212,200 240,900
1485 247,000 191,000 217,000
1486 286,000 408,800 518,900
1488 579,000 748,000 1,093,000
1489 258,000 408,800 518,900
851 66,700 62,100 72,300
882 123,400 103,200 129,000
883 104,700 63,300 73,500
854 15,300 12,500 13,000
885 76,700 52,900 59,700
856 39,500 31,700 34,500
887 48,000 51,400 58,200
858 70,000 80,100 94,500
8359 104,000 132,700 169,400
8510 427,000 292,600 453,500
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FIGURES



Holes for Attachment
to Load Actuator

Cap Plate

Stub Column

Web Angle

Flange Angle

135

Hole for Mounting
to Support Frame

4

5 W14 X 38

©

W 14 X 38 i'r%

v

@

200-0" -

a. W 14 X 38 BEAM TEST SPECIMEN

A
L

\J

1‘21_0!!

b. W 8 X 21 BEAM TEST SPECIMEN

FIG. 2.1 GENERAL CONFIGURATIONS OF TEST SPECIMENS
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FIG. 2.5 BEAM SUPPORTS FOR TEST SPECIMENS
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FIG. 2.6 LATERAL SUPPORT SYSTEM FOR TEST SPECIMENS
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FIG. 2.7 LOADING FRAME AND TEST SET-

FIG. 2.8 CLOSE-UP OF TEST CONNECTION

4
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Bar Attaching LVDT
to Beam Flanges

1

LvDT

W 14 X 38

16”

Position of W 8 X 21
with respect to LVDT s

/
W 8 X 21
%/ Position of W 14 X 38
*/

with respect to LVDT s

/‘

Bar for Attachment

to Stub Column

Aluminum

Plastic
A Flexible Rod
Pin
/f
J| {71
o | @
o = o / ¥
N ; ~> — 333
o~ : w,
- Threaded Hole
{ i for LVDT Probe
Yy
15/18" Yo 11/16”‘

- » Bl Ll

3/16"

FIG. 210 LVDT MOUNTING APPARATUS
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960

LVDT Data i—-Actuator Data
East Connection

720 800 880

560 640

-inches

480

Specimen 1454

Moment
490

e
[

320

240

0. 4 8 12 16 20 24 28 32 36 40
“Rotation, radians (X1000)

e

FIG. 3.1 COMPARISON OF MOMENT-ROTATION CURVES OBTAINED FROM
LVDT MEASUREMENTS WITH CURVE OBTAINED FROM ACTUATOR
DISPLACEMENTS
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Moment, Kip-inches

Connection Details

Flange

Web

1481
t = 3/8"

Angles: ‘thickness variable
gage on col. = 24"
length = 0*-g"

Angles: 2L -4x3sx4x0 " - 85"

. Bolt Diameter: 374"

T T T T
4.00 8.0a0 1|2.0D 16.00 20.00 2400 28.00

Rotation, radians (X1000)

FIG. 3.5 EFFECT OF FLANGE ANGLE THICKNESS ON STATIC
MOMENT-ROTATION BEHAVIOR — W14X38 BEAM CONNEC-

TION (BOLT DIAMETER = %")

H

T T
32.00 36.00

!
40.00
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o
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o Connection Details
= Flange Angles: thickness variable
o} — 1 M
= gage on col. = 2%
length = 0'-8"
2 Web Angles: 2L-4X3:X5X0'-8%"
jon )
o)
Bolt Diameter: 7/8"
(=]
A ! T 1 [ 1 1 T [ 1
0.0 1,9 8.0 12.0 16.0 20.0 24.0 28.0 32.10 36.0 ug.o

Rotation, radians (X1000)

FIG.3.6 EFFECT OF FLANGE ANGLE THICKNESS ON STATIC MOMENT-
ROTATION BEHAVIOR — W14X38 BEAM CONNECTION (BOLT

DIAMETER = 7%")
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o 1455
S d,=7/8"
[
[s e}
S
&~ 1451
o~ = 1"
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& Connection Details
o Flange Angles: L-6X4X3/8X0'-8"
O
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o Bolt Diameter: varjable
o
[en]
g
o T T T T T T T T 1
0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0

Rotation, radians (X1000)

FIG.3.7a EFFECT OF BOLT DIAMETER ON STATICMOMENT-ROTATION
BEHAVIOR — W14X38 BEAM CONNECTION (FLANGE ANGLE
THICKNESS = 3%")
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— 1459
db:7/8u

1452
d,=3/4

Moment, Kip-inches
ELPD. 0

500.0

400.0

e Connection Details

Flange Angles: L-6X44X0'-8"
Web Angles: 2L-4X3%:X%X0'-8%"

Bolt Dijameter: variable

1
b.0 4.0 8.0 2.0 16.0  20.0  24.0 28,0  32.0  35.0
Rotation, radians (X1000)

FIG.3.7b EFFECT OF BOLT DIAMETER ON STATIC MOMENT-ROTATION
BEHAVIOR — W14X38 BEAM CONNECTION (FLANGE ANGLE
THICKNESS = 2")
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gage on col. = 24"
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_
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FIG. 3.8 EFFECT OF WEB ANGLE THICKNESS ON STATIC
MOMENT-ROTATION BEHAVIOR — W14X38 BEAM CONNECTION
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Moment, Kip-inches

Connecticon Details

Flange Angles:
Web Angles:

Bolt Diameter:

[ -6x4x3/8x0'-8"
thickness = %"

gage on col., = 24"
length variable

3/4"

® T T T T T t
4.00 8.00 12.00 15.00 20.00 24.00
Rotation, radians (X1000)

; T
28.00 32.00

1
36.00

-—
40.£)d

'FIG. 3.9 EFFECT OF WEB ANGLE LENGTH ON STATIC MOMENT-ROTATION
BEHAVIOR — W14X38 BEAM CONNECTION
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FIG.3.11 EFFECT OF FLANGE ANGLE THICKNESS ON STATIC MOMENT-
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DIAMETER = 7", ANGLE GAGE = 2")
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FIG. 3.12a EFFECT OF BOLT DIAMETER ON STATIC MOMENT-ROTATION
BEHAVIOR — W8Xx21 BEAM CONNECTION (FLANGE ANGLE
THICKNESS = 5/16")
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BEHAVIOR — W8X21 BEAM CONNECTION (FLANGE ANGLE
THICKNESS = %")
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FIG. 3.15 COMPARISON OF STATIC MOMENT-ROTATION BEHAVIOR

OF W14X38 and W8X21 BEAM CONNECTIONS
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Connection Details
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length = 0'-8"
Web Angles: 2ZL-4X3LX4X0'-8%"
Bolt Diameter: 7/8"

Weld Size: 5/16" {flange angles)
3/16" (web angles)

Rotation, radians (X1000}

FIG. 3.16 EFFECT OF FLANGE ANGLE THICKNESS ON STATIC
MOMENT-ROTATION BEHAVIOR OF W14 X 38 BEAM CONNECTIONS -
BOLTED-WELDED SPECIMENS
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b. REAR VIEW

FIG. 3.17a FLANGE ANGLE FROM SPECIMEN 14Cl| AFTER CYCLIC TEST
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b. WEB ANGLES — END VIEW

FIG. 3.177b FLANGE AND WEB ANGLES FROM SPECIMEN 14CI| AFTER
CYCLIC TEST



kip—inchg_s*___ j

mem

-10
| |

167

v

s

10 15
i B

{Rotation, Radians (X1000) ]

Connection Details

Flange Angles: thickness = 3/8" -
gage on col. = 24"
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FIG. 3.20 STABLE HYSTERESIS LOOPS FOR SPECIMEN 14C3
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FIG. 3.21 STABLE HYSTERESIS LOOPS FOR SPECIMEN 14C4
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FIG. 3.22 STABLE HYSTERESIS LOOPS FOR SPECIMEN 1481
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FIG. 3.25 STABLE HYSTERESIS LOOPS FOR SPECIMEN 8C3
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-~ =300 Flange Angles: thickness = 3/8"
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~ =400 Bolt Diameter: 7/8"

FIG. 3.26 STABLE HYSTERESIS LOOPS FOR SPECIMEN 8B1



178
MOMENT

fREGION il
r .

REGION I

ROTATION

b 4

REGION |

FIG. 3.27 :II:ESP'II%AL MOMENT-ROTATION HYSTERESIS LOOP — CYCLIC

ACTUATOR
DISPLACEMENT

0 TIME

3

FIG. 3.28 TYPICAL TIME-ACTUATOR DISPLACEMENT CYCLE



177

F10A0 4TVH-INO DNIHNA NOILOINNOD 40 SNOILYHNDIINOD 62°€ DI

‘NOILYHNDIINOD (1l NOIDIY 2 NOILYHNDIANOD I NOID3Y 9 NOILVHNOIINOD 1 NOID3Y '®

:
!
!

A A




178

Moment, Kip-inches

Connection Details

Flange Angles: L-6X4X3/8X0'-8"
gage on c¢ol, = 24"

Web Angles: 2Z2L-4X3%X4X0'-8%"
Boit Diameter: 7/8"

FIG. 3.30 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F3



179

Moment, Kip-inches

20
_—
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Connection Details

- =500 Flange Angles: L-6X4X3/8X0'-8"

gage on col. = 24"
- -600 Web Angles: 2L-4X33X4X0'-8%"
L -700 Bolt Diameter: 7/8"

FIG. 3.31 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F2
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Rotation, radians {(X1000)

Connection Details

-400

Flange Angles: L-6X4X3/8X0'-8"
gage on col. = 24"
~500 Web Angles: 2L-4X31XLX0' 83"
- -600 Bolt Diameter: 7/8"

FIG. 3.32 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F1
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s / Rotation, radians (X1000)

Connection Details

Flange Angles: L-6X4X3/8X0'-8"
gage on col. = 24"

Web Angles: 2L-4X3%5X4X0'-8%"

Bolt Diameter: 7/8"

FIG. 3.33 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F9
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Connection Details

Flange Angles: L-6X4X3/8X0'-8"
gage on col. = 2%"

Web Angles: 2L-4X34X4X0'-84"
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FIG. 3.34 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F4
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gage on col. = 24"
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FIG. 3.35 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F7
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FIG. 3.36 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F5
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FIG. 3.37 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F6
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FIG. 3.38 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 14F8
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FIG. 3.39 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 8F8
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FIG. 3.40 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 8F7
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FIG. 3.41 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 8F1
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FIG. 3.42 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 8F4
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FIG. 3.43 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 8F3
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FIG. 3.44 SELECTED HYSTERESIS LOOPS FOR SPECIMEN 8F2
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- CRACK PATTERN AT 126 CYCLES

b. CRACK PATTERN AT 138 CYCLES

FIG. 3.45 FATIGUE CRACK PATTERN FOR SPECIMEN 14F9



c. CRACK PATTERN AT 158 CYCLES

d. CRACK PATTERN AT 214 CYCLES

FIG. 3.45 FATIGUE CRACK PATTERN FOR SPECIMEN 14F9
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FIG. 4.1a DEFLECTED CONFIGURATION FOR FLANGE ANGLE MODEL
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FIG. 41b DEFLECTED CONFIGURATION FOR WEB ANGLE MODEL
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FIG. 4.4 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 14S1
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FIG. 4.5 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 1452

1
L0, 00



Moment, Kip-inches

Lo, 0o

i

205

960.0

B?U. 0

Test

8100.0
|

720.0

Predicted

S50.0  640.0
|

{

UB0.0

J

320.0

Connection Details

Flange Angles: L-6x4x3/8x0'-8"
gage on col, = 24"

240.0

1

Web Angles: 2L-4x3%x3/8x0" -8%"
Bolt Diameter: 374"

160.0

80.0

-

c
3T 1 ¥ U b 1 T
< u,lﬂO 8?00 lé.ﬂo lé.OO 20.00 24.00 28.00 32.00 36.100 40.00

Rotation, radians {X1000)

FIG. 4.6 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 1484
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FIG. 4.7 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 1455
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WITH TEST RESULTS FOR SPECIMENS 14S6 AND 1489
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FIG. 4.9 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 1458
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FIG. 410 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 881
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FIG.4.11 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 8S2
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T FIG. 4.12 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
- - WITH TEST RESULTS FOR SPECIMEN 8S3
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FIG. 413 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 8S5
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FIG. 4.14 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE

WITH TEST RESULTS FOR SPECIMEN 856
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FIG. 4.15 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 8S7



Moment, Kip-inches

215

Predicted

Connection Details
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FIG. 4.16 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 858
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FIG. 4.17 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 859
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FIG. 418 COMPARISON OF PREDICTED MOMENT-ROTATION CURVE
WITH TEST RESULTS FOR SPECIMEN 8S10
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