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ABSTRACT

This study defines the basis for the aseismic design of
subsurface excavations and underground structures. It includes
a definition of the seismic environment and earthquake hazard,
and a review of the analytical and empirical tools that are
available to the designer concerned with the performance of
underground structures subjected to seismic loads. Particular
attention is devoted to development of simplified models that
appear to be applicable in many practical cases.
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CHAPTER 1

INTRODUCTION

The objective of this report is to provide a relatively
concise statement of the state of the art for the design of
underground structures in seismic environments. Like many other
state-of-the-art reports, it 1is intended to be brief and . to
focus on recommended practice. Its audience is intended to be
the practicing engineer who may have extensive experience in the
design of underground structures but limited awareness of the
special considerations necessary 1in a seismically active
environment.

The need to establish a consensus on seismic design pro-
cedures for underground structures has been recognized for a
number of years. In 1980, the International Tunneling
Association established a working group on the topic. Since
that time, the group has met regularly to discuss progress in
collection of case histories and preparation of appropriate
documentation and design recommendations. During this study we
have drawn heavily on the activities of that working group, and
have benefited significantly from the 1level of international
cooperation it has engendered. To what extent this report
satisfies the need for a seismic design manual, and reflects the
opinions of the international tunneling community, remains to be

determined.

The remainder of the report comprises four sections, four
appendixes, and a bibliography. The extensive use of Appendixes
reflects a desire to keep the main text brief, without leaving
the reader with an incomplete treatment. Specifically,
Chapter 2, on the subject of seismic environment, 1s amplified
in Appendix A; Chapter 5, in which simplified design procedures
are recommended, is supported by Appendixes B and C, which cover
theoretical developments, and Appendix D, which contains design
examples. Chapter 3 summarizes the current empirical base for
design of underground structures in rock, and Chapter 4 briefly
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reviews the analytical tools available toc the tunnel engineer
concerned with design in a seismic environment. Needless to say,
the report cannot be entirely comprehensive. However, we
believe 1t provides a basis for understanding the issues
involved in seismic design, as well as a rational approach that

may prove satisfactory in many cases of practical concern.
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CHAPTER 2

SEISMIC ACTIVITY

2.1 INTRODUCTION

This chapter contains a brief summary of the fundamental
concepts pertaining to the definition of the seismic environment
and the development of seismic input criteria for the design of
underground structures. The subject is more fully addressed in
Appendix A.

2.2 SEISMIC ENVIRONMENT

Seismologists typically classify earthquakes according to
four modes of generation — tectonic, wvolcanic, collapse, or
explosion. Regardless of the type of earthquake, an engineer
concerned with design of underground structures requires that
the seismic environment be defined in a gquantitative manner.
Specifically, the characteristics of earthquakes and ground
motion pertinent to the development of seismic input criteria
are the size of the earthquake, the intensity, and the frequency
content of the ground motion, and the duration of strong

shaking.

2.2.1 SIZE OF EARTHQUAKE

The size of the earthquake is most typically represented
for engineering purposes in terms of its magnitude. Several
different magnitude scales are currently in use, the most common
being the local magnitude, ML; the surface wave magnitude, MS;
the body wave magnitude, MB; and the moment magnitude, Mw.
Definitions of each of these scales and their application are
given by Housner and Jennings (1982). Physically, the magnitude
has been correlated with the energy released by the earthqgquake,
as well as the fault rupture length, felt area, and maximum
displacement. Typically the magnitude is estimated, either in a
deterministic or in a probabilistic manner, using general or

site specific correlations between the magnitude and the fault

z2-1



P T T T I S PR

SN

rupture length. The engineer will use the estimate of magnitude

in conjunction with empirical attentuation relationships to
define the intensity of the ground motion experienced at a

specific site at some distance from the earthquake source.

2.2.2 INTENSITY OF THE GROUND MOTION

The intensity of the ground motion 1s obtained from
recorded ground motion time histories. Several parameters,
including peak acceleration, peak velocity, peak displacement,
spectrum intensity, and root-mean-square acceleration are used,
but the most widely used measure 1s the peak ground accelera-
tion. However, peak ground acceleration is not necessarily a
good measure of damage potential since it is often repetitive
shaking with strong energy content that leads to permanent
deformation and damage. As a result, the term "effective peak
acceleration" has been used to refer to an acceleration which is
less than the peak wvalue but is more representative of the
damage potential (Newmark and Hall, 1982).

In view of the importance of predicting the ground motion
that will be experienced at a particular site, considerable
attention has been devoted tc developing attenuation relation-
ships based on correlations between field data on ground motion
and the magnitude and distance of the earthquake. Ideally, such
relationships should be established on a site specific basis.
In the absence of sufficient site data use can be made of
regional or global relationships such as given by Seed and
Idriss (1982). When doing so, care must be taken to ensure that
the correlation is based on data that is pertinent both in terms

of geoclogic environment and the earthquake magnitude.

2.2.3 FREQUENCY OF CONTENT OF THE GROUND MOTION

The frequency content of the ground motion is commonly
defined by a Fourier amplitude spectrum and/or a response

spectrum. Both are obtained from computation of the response of
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a single-degree-of-freedom (SDOF) oscillator to base motion.
The Fourier amplitude spectrum 1is a plot of the amplitude of
the relative velocity for an undamped SDOF oscillator, at the
end of a strong motion record, as a function of its frequency.
It 1is less widely used for design purposes than the response
spectrum, which is defined as a plot of the maximum response of
a SDOF oscillator as a function of its frequency and damping.
The response spectrum, which is commonly plotted in logarithmic,
tripartite form, derives its popularity from the fact that the
SDOF oscillator 1s a reasonably good analogue for representing
the significant response of many surface structures. This
analogy does not hold for underground structures since they tend
to move with the ground mass instead of vibrating independently.
Hence, response spectra are generally less important to the
designer of underground structures. However, they have applica-
tion in design of light structures located within an underground
excavation. In such cases the response spectra can be used to
define the fregquency content of a time-history input for a
numerical simulation of ground/structure response, and for
approximate definition of the peak ground motion parameters.

2.2.4 DURATION OF STRONG MOTION

The duration of strong motion can have a profound effect on
the extent of damage resulting from an earthquake. In particu-
lar, it is reasonable to suppose that the number of excursions
into the nonlinear range experienced by an undergound structure
and the surrounding media, will control the extent of permanent
deformation. Unfortunately, there is at present no universally
accepted method of gquantifying the duration of the ground
motion, and the effects of repeated, cyclical loading on the
performance of underground structures are very poorly under-
stood. Until such understanding can be gained through detailed
field investigations or numerical simulations, the designer
should ensure that any empirically based design criteria are
based on the performance of structures subjected to comparable
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loading, in terms of peak amplitude, frequency content, and

duration.

2.3 SEISMIC INPUT CRITERIA

Several alternative approaches can be used for defining
seismic input criteria. Cne approach - involves the use of
response spectra. This approach, which is the most widely used
for surface structures, 1is covered in Appendix A. Another
approach 1s to specify ground motion time histories. 1In this
case an ensemble of motion time histories, rather than a single
time history, should be specified. The family of motions should
have the same overall intensity and frequency content, and
should be representative of the anticipated shaking at the site
" due to all the significant potential earthquake sources in the
vicinity of the site. The procedure used to select the motion
time histories is described by Werner (1985).

An alternative approach for specifying seismic input cri-
teria involves the use of seismic regionalization maps of the
type used in current design codés and particularly in the seis-
mic design guidelines suggested by the Applied Technology
Council (ATC, 1978). This approach is covered next.

2.3.1 SEISMIC REGIONALIZATION MAPS

Seismic regionalization maps are intended to provide
representative intensities of shaking for the regions under
consideration, based on their seismologic and geologic charac-
teristics. This intensity factor 1is used, together with a
numerical factor that represents local site effects, in order to
incorporate the influence of the seismic environment in the
computation of equivalent forces upon which the seismic design
of the structure is based (Berg, 1982).

Although many seismic regionalization maps have been
developed through the vyears, the maps included in the design
provisions recommended by the Applied Technology Council (ATC-3)
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are the most current (ATC, 1978). These maps, which are
generally based on work by Algermissen and Perkins (1976), were
developed using probabilistic procedures incorporating (1) iden-
tification of significant earthquake sources, (2) assessment of
maximum credible magnitudes and magnitude-recurrence laws £for
each source, and (3) attenuation laws describing the intensity
of shaking as a function of magnitude and distance from an
epicenter. Based on the above principles, contours of locations
with equal probabilities of receiving specific intensities of
ground shaking are produced.

Two selsmic regionalization maps provided in ATC-3 are
reproduced 1in Figure 2-1; one corresponds to "“effective peak
acceleration (EPA)," and the other to "effective peak velocity
(EPV)." Neither of these parameters has precise physical defi-
nitions; however, a conceptual description of their significance
can be found in the commentary of ATC-3 (13978). The EPA and EPV
are related to peak ground acceleration and peak ground velocity
but are not necessarily the same as or even proportional to peak
acceleration and velocity. The EPA expressed in units of g's
(Aa) is used in ATC-3 to scale the intensity of the spectrum
shape to obtain a design spectrum. The EPV expressed as a
velocity-related acceleration in g's (AV) is used (1) to adjust
the spectrum shape to account for extended distance; and (2) to
represent the strength of shaking in the compuﬁation of equiva-
lent design forces.



JIiA 2-se11 5616

\

e
\ P
NOTE: CONTOURS SHOMW VALUE OF A_ \\ {
n3

Aa = EFFECTIVE PEAK ACCELERATION, g

(a) Effective peak acceleration

ozg
\ "4
y Qm
EFFECTIVE PEAK VELOCITY A
in./s (n/s} v

12 (c.3048) 0.4
6 (0. 1524) 0.2
3 (o.0762) 0.1
1.5 (0.0381) 0.05

NOTE: CONTOURS SHOW VALUE OF Av

(b) Effective peak velocity

FIGURE 2-1, ATC-3 (1978) SEISMIC REGIONALIZATION MAPS

2-6



R-8411-5616

CHAPTER 3

OCBSERVED EFFECTS OF SEISMIC LOADING
OF UNDERGROUND STRUCTURES

3.1 EFFECTS OF EARTHQUAKES

The previous chapter'provided a general introduction to the
subject of the dynamic environment associated with earthquakes.
Cur understanding of how surface structures, such as buildings,
dams, or soil slopes, respond to such an environment has

developed through observations made both during and after earth-

quakes. Early understanding of how to construct earthguake-
resistant structures was based purely on gualitative
observation. More recently, measurement and analysis have been

used as the basis for development of improved design procedures.
A similar developmental process is occurring for underground

structures, but the process is far from complete at present. 1In
this chapter, we begin to follow the path of that development by
reviewing the data on performance of underground structures,
Material presented will be primarily drawn from reports of the
effects of earthguakes, but some attention will also be devoted
to relevant experience of the performance of excavations close

to large underground explosions.

3.2 DAMAGE MECHANISMS

The effects of earthquakes on tunnels, mines, and other
large underground excavations have been the subject of several
reports. A comprehensive review of those reports and compila-
tion of readily available data was prepared recently by URS/
Blume and Associates on behalf of the National Science
Foundation and the Federal Highway Administration Department of
Transportation (Owen and Scholl, 1981). In their review,
earthguake damage to underground excavations was attributed to

three factors:
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® Fault slip
°® Ground failure
Shaking

Damage due to fault slip occurs when the excavation passes
through a fault zone. Under such circumstances damage 1is
generally restricted to the fault zone, and may range from minor
cracking of a tunnel liner to complete collapse, depending on
the fault displacement and the engineering properties of the
medium within which the excavation 1is constructed. Quite
obviously, fault slip cannot be prevented. Hence, if an excava-
tion crosses an active or potentially active fault zone, special
design/planning measures should be prepared. Either the under-
ground excavation and its support system must be designed to
accommodate that displacement without loss of utility, or post-
earthquake repair plans and emergency safety-related plans
should be developed in advance. '

Damage attributed to ground failure may be associated with
rock or soil slides, liquefaction, soil subsidence, and other
phenomena that may be triggered by ground motion. This type of
damage 1is particularly prevalent at portals and in shallow
excavations and is not the subject of this report. Suffice it
to say that the potential for occurrence of this type of damage
should be evaluated through particularly careful site investiga-
tion in the wvicinity of tunnel portals and other underground
shallow excavations.

Damage due to shaking or vibratory motion has been most
widely investigated and is the major topic of this report. For
lined tunnels, damage may . include cracking, spalling, and
failure of the liner as a direct consequence of the shaking.
Alternatively, wvibratory motion may reduce the strength of the
ground, thereby placing additional loads on the tunnel support
system. For unlined underground excavations 1in rock, such
damage occurs as rock fall, spalling, local opening of rock

joints, and block motion.
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earthquake shaking will be influenced by many variables; the

Naturally, the response of any underground excavation to

more 1mportant of which are the shape, dimensions, and depth of
the excavation, the properties of the so0il or rock within which
the excavation is constructed, the properties of any support
system, and the severity of the ground shaking. Summaries of
the performance of underground excavations during earthquakes
should account for all these variables. Unfortunately much of
the data essential for detailed analysis of damage experienced
during an earthquake are often unobtainable. Accordingly,
investigators of the performance of underground excavations have
attempted to develop direct empirical relationships between
damage levels and ground motion parameters. Such attempts are
fraught with difficulties since damage assessments may be highly
subjective and the peak ground motion experienced at a site must
often be deduced from very incomplete data. It is therefore
desirable that arrays of strong instruments be deployed in and
around important underground structures.

3.2.1 THE EMPIRICAL DATA BASE

The first step in development of an empirical damage model
is to define the various levels of damage to be considered.
Dowding and Rozen (1978) identified three levels of damage for
underground excavations in rock due to ground shaking. These
were no damage, minor damage, and damage. No damage meant no
new cracks or falls of rocks, minor damage meant new cracking
and minor rockfalls, and damage included severe cracking, major
rockfalls, and closure. Dowding and Rozen presented results of
correlation of the estimated peak surface acceleration and peak
particle velocity with reported damage. Their correlations are
reproduced in Figures 3-1 and 3-2. The numbers on the ordinate
axis are the designations of the cases tabulated in their paper.
The same numbering system is also used within the extensive
tabulation of damage prepared by Owen and Scholl (1981). It



should be noted that the peak ground motion parameters (accel-
eration and velocity) were not recorded at the sites of the
excavations but were calculated using empirical relationships
such as those described in Appendix A. Strong motion measure-
ments from instruments placed in and around tunnels could pro=-

vide much more reliable data in the future.

Review of data such as presented by Dowding and Rozen
suggests that no damage should be expected if the peak surface
accelerations are less than about 0.2 g, and only minor damage
should be experienced between 0.2 g and 0.4 g. The correspond-
ing thresholds for peak particle velocity are approximately
20 cm/s (8 in./s) and 40 cm/s (16 in./s). Of these two correla-
tions, the one based on velocity is probably to be preferred as
a design criterion since the peak particle velccity resulting
from an earthquake of a given magnitude can be predicted to fall
within reasonably narrow limits. Moreover, experiencé on the
performance of mining excavations adjacent to rock bursts has
indicated that damage 1s better correlated with peak velocity
than peak acceleration (McGarr, 1983). It should be emphasized
that the above relationships hold for rock sites only, and may
be very different for underground structures in soil because the
attenuation of motion with depth and the confinement of the
structure are very different than those for rock sites. Unfor-
tunately similar relationships have not yet been dJderived for
underground structures in soil.

3.2.2 SUPPORTING EVIDENCE

Supporting evidence for selection of an empirical design
criterion for rock sites 1is provided from experience in the
mining industry, civil construction involving blasting, and
weapons testing. As alluded to above,.there are a number of
cases in which underground mining excavations have been damaged
as a consequence of nearby rock bursts. The best documented
cases are for the deep level gold mines of South Africa, where

3-4
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rock bursts with body wave magnitudes up to 5.2 have been
triggered as a result of extensive longwall mining of the
tabular gold reefs. Whether any damage accompanies a rock burst
depends on the magnitude of the event and its proximity to the
mine . workings. Experience indicates that rock bursts with
energy release corresponding to up to a 2 to 2.75 magnitude
earthquake occasionally cause damage if assoclated with a major
rupture within about 30 m of the mine workings. Events of
larger magnitude are almost invariably damaging enough to cause
loss of production and possibly injuries or fatalities providing
they are sufficiently close to mine workings to generate veloci-
ties in excess of 60 cm/s (24 1in./s).

Because rock bursts are similar in character to tectonic
earthquakes (although the resulting duration of shaking is
typically much shorter), the records of damage to mining excava-
tions provide direct evidence of the 1likely performance of
excavations very close to a causative fault. How pertinent the
experience is to the performance of excavations remote from the
source of an earthquake depends upon how important a role the
duration and dominant frequency of the ground motion plavy in
determining the extent of damage. If the frequency content is
relatively unimportant, then the experience gained in the mining
industry is relevant. Further, data on the effects of ground
motion induced by high explosives and nuclear weapons is also of
value. For the present we shall defer any discussion of the
importance of duration and frequency content and simply sum-
marize the empirical data base.

The reqguirement to minimize the damage to underground
tunnels due to conventional blasting has led to development of
empirical design criteria. For unlined tunnels in. rock
Langefors and Kihlstrom (1963) suggest that particle velocities
of 30 cm/s (12 in./s) cause rock to fall while velocities of
60 cm/s. (24 in./s) cause the formation of new cracks in the
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rock. These recommendations seem rather conservative when
compared with the results of the Underground Explosion Test
Program (UET), during which very large charges of high explo-
sives were detonated with the intent of establishing design
criteria for construction of undergroﬁnd installations. Damage,
consisting of intermittent spalling, was observed for particle
velocities above 90 cm/s (36 in./s). Continuous damage was

observed for particle velocities above 180 cm/s (72 in./s).

Since ‘the UET high explosive tests, several tunnel test
sections have been included within the scope of underground
nuclear tests. Although most of the tunnel sections have been
hardened, using various types of concrete and steel liners, some
have been supported only with rockbolts and light shotcreting.
Review of the performance of all those sections indicates that
tunnels hardened with rockbolts may survive peak particle
velocities 1in excess of 900 cm/s (360 in./s) but the threshold
for damage to unlined tunnels is on the order of 180 cm/s
(72 in./s). These values are so far in excess of anything that
could conceivably result from an earthquake one is tempted to
dismiss the problem of seismic stability of deep underground
excavations as trivial. However, there is one important differ-
ence between the ground motion resulting from an earthquake and
that generated by a nuclear explosion. The former usually lasts
for several seconds, subjecting the excavation to several stress
cycles, while the latter predominantly comprises a single pulse
{(compression) lasting some tens to hundreds of milliseconds.
The results of numerical experiments reported by Dowding et al.
(1983) suggest that the number of stress cycles 1s critical to
determining how much permanent deformation will occur within a

rock mass around a tunnel when subjected to earthquake loading.

3.3 CONCLUSIONS

The results of attehpts to catalogue records of the
performance of underground excavations subjected to seismic

loading and to develop simple empirical design criteria indicate
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a damage threshold of approximately 20 cm/s (8 in./s). No
damage should be experienced if the peak particle velocity is
beneath that threshold. This threshold is valid for underground
structures in rock and may not be applicable for other types of
excavations. Although there are important differences between
the ground motion resulting from large distant earthquakes and
rock bursts, detonation of high explosives, or nuclear explo-
sions, data from these sources provide supporting evidence that
adoption of this threshold value as a design criterion will be
conservative. It can be expected that this damage threshold
will rise as more data becomes available.

3-7
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MODELS OF THE SEISMIC RESPONSE OF UNDERGRCUND EXCAVATIONS

CHAPTER 4

4.1 INTRODUCTION

Once design progresses beyond the application of simple
empirical relationships, such as described in the previous
chapter, models become an integral part of the design process.
Selection of the appropriate model must be made by the designer
on the basis of the type and importance of the structure being
designed and the gquality of the available or obtainable geo-
technical data. Early selection is to be encouraged since the
model may have data needs that must be satisfied during site
investigation.

In this chapter, we shall briefly review the analytical
tocls that are available to the designer concerned with the
performance of underground excavations subject to seismic loads.
The analytical tools form the basis of more or less complicated
numerical models of the behavior of geologic media and inter-
actions between geologic media and underground structures. The
review starts with a brief discussion of analytical tocls used
to investigate relative displacements that occur along faults
and other discontinuities in rock masses. Specific considera-
tion 1s given to methods of evaluating the potential for
displacement on faults and blcck moction. Subsequently, atten-
tion 1is devoted to the subject of wave propagation in geologic
media and analytical tools for evaluating soil/structure

interaction effects.

4.2 RELATIVE DISPLACEMENT MODELS

Brief mention of the need to design underground excava-
tions, and any support systems, to withstand fault displacement
was made 1in the previous chapter. Fault displacement, whether
on the causative fault or triggered on some other fault, is one

form of relative displacement. For convenience, we have chosen

4-1



to differentiate this from block motion or relative motion of
rock mass in fractured media, which comprises the motion of some
finite block of material relative to its surroundings. Block
motion may be triggered by earthguakes, but has been more widely
investigated as a phenomenon associated with detconation of high

explosives or nuclear weapons.

4.2.1 FAULT DISPLACEMENT

Designers of surface structures are concerned with the
surface manifestation of a causative fault. The designers of
underground structures are also concerned with how that manifes-
tation might change with depth. 1In Chapter 2, little attention
was given to either of these design considerations, although it
was noted that one measure of the magnitude of an earthguake,
the moment magnitude, is defined in terms of the total elastic
strain-energy released and 1s therefore related to the -fault
displacement and rupture area. DMore specifically, the seismic
moment is defined as

MO = GAD (4-1)

in which G is the shear modulus of the rock, A the area of the
rupture surface, and D the average relative displacement
(Kanamori and Anderson, 1975). This relationship provides one
means of estimating the average fault displacement, providing
the fault geometry is adequately defined. A better alternative

is to use site specific data.

Geodetic surveying of surface movements associated with
large earthguakes has provided data on how displacements decay
with distance from the fault. Unfortunately, there is much less
data on the distribution of relative displacement on the fault
plane. However, some 1insight has been gained through use of
relatively simple numerical models in which the fault is modeled
as a dislocation in a semi-infinite <€lastic medium. For

example, Pratt et al. (1979) report the results of a series of
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simulations of strike slip and dip slip faults with various
geometries. It is difficult to draw general conclusions from
the few cases they considered, but their results did indicate
that there may be circumstances in which the displacement of the
medium adjacent to the fault may be greater at depth than on the
surface. However, it 1s generally assumed that the relative
displacement experienced underground is comparable to that
experienced on the surface. This assumption can be checked
gquite easily for a particular fault geometry and boundary
conditions using the displacement discontinuity method described
by Crouch and Starfield (1983).

Relative displacements may be experienced on faults other
than the causative fault. This may occur if the seismically
induced stresses and the local in-situ stress conditions are
such as to induce shear failure on the fault. Qualitative
predictions of such displacement using numerical models based on
finite element or finite difference methods are possible in
principal but lack of site data and the computational effort
required militate against making such calculations. As an
alternative, the problem of incipient fault motion can be
investigated using the simplified approach developed by Johnson
and Schmitz (1976). Their model is based on calculating the
shear and normal stresses, on a fault plane, that result from
propagation of a spherical wave from a source. Conditions of
incipient slip exist if the total shear stress (the sum of in
situ and induced stress) exceeds the shear strength. The model
was originally developed to investigate fault movement induced
by an explosion which can be adequately represented as a
spherical source. The spherical source is not a good idealiza-
tion of an earthquake, but the model should still provide a
basis for establishing an understanding of the more critical
fault orientations and locations.

4.2.2 BLOCK MOTION

For excavations 1n fractured media attention focuses on

containing the fractured mass or individual blocks of material

4=3
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defined by pre-existing fractures. However, it is convenient to
initiate the topic of analyvtical tools for design under such
circumstances by first considering the topic of spalling; a
phenomenon that may be induced by reflection of a stress wave at

a free surface.

Interest in the performance of underground excavations in
rock subjected to very high seismic loads, such as those induced
in the vicinity of an underground weapons test, resulted in
evaluation of spalling as a possible damage mechanism. Labreche
(1983) used the results of work by Rinehart (1960) on the sub-
ject of spalling to interpret damage observed in tunnels
adjacent to tests of both high explosives .and nuclear weapons.
He concluded that spalling due to tensile failure of the rock
mass was unlikely, except very close to a high explosive detona-
tion, because the spall thickness would be greater than the
spacing of pre-existing fractures. On the other hand pseudo-
spalling, or separation along pre-existing fractures, appeared

to be an important damage mechanism.

Rinehart (1960) showed that the pseudospall velocity will
approach the free-field particle velocity for stress waves that
have a wvery sharp front. For waveforms and wavelengths of
concern in design of underground excavations subjected to earth-
quake loading the pseudospall velocity is likely to be much less
because the stress wave will have completely engulfed the exca-
vation, thereby constraining the movement of potentially
unstable blocks or slabs. Hence simple spall models have very
limited application in design against earthquake loading.

Because of the relative unimportance of the dynamic
phenomena, including spalling or pseudospalling, it is conven-
tional to treat the behavior of an excavation in fractured media
as pseudostatic; as 1s the case for continuum modeling also.
However, in this case the primary concern is design against the
possibility of separation of blocks of material from the sur-

rounding medium. Blocks of ground which are kinematically
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capable of moving into the excavation are assumed to be accel-
erated differentially at the peak free-field ground accelera-
tion. An approach to defining the shape, dimensions, and
support requirements of such blocks are presented by Hoek and
Brown (1981), who primarily make use of simple graphical con-
structions coupled with limiting equilibrium considerations. A
more comprehensive approach to defining kinematically admissible
blocks is provided by the keyblock theory developed by Goodman
and Shi (1985). This method enables all critical blocks to be
identified, and some progress has been made in using this as a
starting point for predicting support requirements (Goodman,
Shi, and Boyle, 1982).

The alternative to attempting to identify blocks with
particular geometric shapes is to rely more on precedent. For
example, Barton (1981) has suggested modification of the Q
system to account for seismic effects. Also, Hendron and
Fernandez (1983) describe the application of Cording's (1971)
method for prediction of the support pressures for the roofs of
large underground excavations. They defined the required sup-

port pressure (pi) for the roof of a cavern as
p; = (1.0 + a/g) n B y (4-2)

in which n is an empirically derived factor, B is the span of
the cavern, vy 1is the unit weight of the material, a 1is the
ground acceleration, and g the acceleration due to gravity.
This equation implies that details of the structure in the roof
are relatively unimportant; a reasonable assumption if compres-
sive stresses in the roof are sufficient to inhibit slip along
the relatively steep fractures that have a potential for defin-
ing blocks kinematically capable of differential movement.

The alternative to simple design models 1s to resort to
more detailed simulation using one of the several available
numerical modeling methods. The latter are relatively well
developed for énalysis under static and pseudostatic conditions,
but have been applied only relatively recently to dynamic

4-5
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analysis of fractured media. Two fundamentally different
approaches to modeling of fractured media have been adopted.
One involves starting from a numerical procedure originally
devised to describe the behavior of a continuum, while the other
approacheé the problem as one of describing the behavior of a

discontinuum.

One continuum approach involves using special interface
elements, such as discussed by Goodman and St. John (1977).
This has the disadvantage that large shear displacements will
necessitate repeated rezoning, or redefinition of the finite
element mesh. Probably for that reason the large deformation
wave propagation codes such as HONDO (Key et al., 1978), DYNA2D
(Hallquist, 1978), and STEALTH2D (Hoffman, 1981) more tvpically
treat interfaces as slide lines between structurally independent
components. Although this approach appears to have been used
very successfully to study complex impact problems; application
to problems other than very simple lavered geologic media

appears to have been limited.

An alternative continuum approach relies on using special
constitutive descriptions of a fractured media that account for
the mechanical properties of the fractures and their spacing and
orientation. The CAVS model that was used by Wahi et al. (1980)
to investigate the stability of nuclear waste isolation caverns
subjected to simulated earthquakes 1is an example of such a
constitutive description. Such models readily permit the simu-
lation of the development of new fractures within a particular
element or zone, but do not explicitly represent the location of
each fracture. Accordingly, the kinematics of block movement

are ignored.

To overcome the difficulty in describing the kinematics of
blocky systems, Cundall (1971) developed the distinct element
method. In that method a fractured medium is viewed as an
assembly of interacting particles which, in the most general
implementations of the method, are completely free to move with
respect to each other. In its earlier implementation, the

blocks were considered to be rigid and infinitely strong;

4-6



R-8411-~-5616

A\

thereby restricting all deformations to the fractures and
severely limiting possible failure modes. Recent generaliza-
tions of the approach allow deformable blocks and development of
new fractures 'in addition to more comprehensive descriptions of
the mechanical behavior of the fractures (Cundall and Hart,
1983).

Although the distinct element method is based on the equa-
tions of motion of the individual particles, it has been most
widely applied to the solution of pseudostatic problems by
treating time as a fictitious quantity used to control the
sequence of events in a system that may exhibit complex non-
linear behavior. However, 1t 1s equally possible to perform
dynamic analyses. Such an approach is described by Dowding et
al. (1983) who report the application of a coupled distinct
element/finite element model in an investigation of the response
of a cavern to vertically propagating shear waves. One of the
most interesting aspects of their investigation was the extent
to which ground motion resulted in progressive slip on the faces
of blocks adjacent to the excavation. However, extremely high
accelerations were required for this to occur. Continuing
development of the distinct element method for dynamic analyses,
coupled with studies such as described by Dowding et al., will
undoubtedly contribute significantly to our understanding of the
basic mechanics of fractured media. )

4.3 VIBRATORY MOTICON

Although most of the relative displacement effects dis-
cussed above result from wave propagation from the source
through geclogic media it proves convenient to discuss the
direct effects of vibratory motion as a separate subject. This
discussion is split into two main parts. In one part, the
ground motion in the free field is considered; with particular
attention given to how the ground motion is influenced by the
geologic structure. In the other, consideration is given to how

underground structures respond to vibratory motion. The latter
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discussion 1is subdivided into three parts. First, results of
analyses of lined and unlined circular tunnels in elastic media
are summarized. Second, the bases for development of simple
models for investigating ground structure interaction effects
are discussed. Third, the capabilities of numerical models that
may be used to investigate ground/structure interaction effects

in greater detail are reviewed.

4.3.1 FREE~FIELD GROUND MOTION

The problem of free-field ground motion, alsc known as wave
propagation, in an infinite homogenecus isotropic elastic medium
was addressed as early as 1950 (Fung, 1965; and Desai and
Christian, 1977). This section describes the formulation and
solution of the three-dimensional wave equations and the depth

dependence of ground motion.

The motion of a continuum body must obey the equation

poay = :—;iji + Xy i=1,2,3 (4-3)
3
where p = Mass density of the continuum
a; = Particle acceleration
044 = Stress field
X, = Body force per unit volume

In the theory of elasticity, the above equation is known as the
Eulerian equation of motion of a continuum. If we limit our-
selves to the 1linear theory or infinitesimal displacement
theory, we can write the following relationships between strain,
eij’ particle displacement U, particle velocity Vi andlparti—
cle acceleration s,

-1
®i5 =% (84,5 * 1y 4) (4-4)
2
au. av, g 1.
i i 1
v, T /— , o, = = (4-5)
1 at 1 ot atz
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In addition to the above equations, the theory of linear elasti-
city is based on Hocke's law. For a homogenecus isgotropic

material, this is

where A and G are called Lame's constants. The stress field Oij
can be eliminated by substituting Equation 4~6 into Equation 4-3
and using Egquation 4-4 to obtain the well-known Navier's

eqguation

Gu, ..+ (A + G)u, .. + X =np

4=
1,337 J,33 1 8t2 ( )

The above equation can be cast in different forms and its gen-
eral solution for the case of a steady state harmonic motion can
be easily calculated (Achenbach, 1975). In the next section
some types of waves that satisfy the above equation of motion

are considered.

4.3.1.1 Plane Elastic Waves

Several types of waves can propagate in an elastic medium.
Their existence can be demonstrated from the basic field

egquation (Eg. 4~7), which in the absence of body force, is

2
2] ui
Pz TG Mgy T AT Ny gy (2-8)
In the following, the displacement components u ué; Ug will be

referred to by u, v, and w, and they represent, respectively,
the motion parallel to the direction of wave propagation, the
motion in the horizontal plane normal to the direction of wave
propagation, and the motion in the vertical plane normal to the

direction of wave propagation.

One type of particle motion can be defined by
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(4-9)

V=W=o0
Substitution of Equation 4-9 into the field equation, leads to
the relationship

0 cé = A + 20 (4-10)

_ [a+ 2G _
Cp = 5 | (4-11)

where CP has been substituted for ¢ and represents the wave

orxr

velocity. The pattern of motion expressed by Equation 4-9 re-
mains unchanged when (x * c¢t) remains constant, and L is the
wavelength. The particle velocity is in the direction of pro-
pagation, namely the x-direction. Hence this motion is said to

represent a compressional wave or P-wave.

A second type of motion can be defined by

u =20
v = A sin %E (x £ ct) (4-12)
w =10

which represents a train of plane waves of wavelength L pro-
pagating in the x-direction with a velocity c¢. The substitution
" of Eguation 4-12 into the field equation yields a value for the

wave velocity, C given by

SI

G
- 413

5 ( )
The particle velocity is in the y-direction and is perpendicular
to the direction of propagation, namely the x-direction. Such a

motion is said to represent transverse or shear waves (S-waves).
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A third type of motion, which represents transverse waves

can alsc be defined by

u = @
= in 2%
W = A sin T (x * Cst)

This wave 1is similar to the previous wave except that the parti-
cle motion is in the gz-direction. In order to differentiate
between the two motions, one is referred to as transverse hori-
zontal (SH) and the other is transverse vertical (SV) depending
on whether the wave is propagating in a horizontal or a vertical

plane, respectively.

For all of the above waves, since at any instant of time
the wave crests lie in parallel planes, the motion represented
by Equations 4-9, 4-12 and 4-14 are called plane waves. These
waves may exist only in an unbounded elastic continuum. In a
finite body, a plane wave will be reflected when it hits the
boundary. If there is another elastic medium beyond the bound-
ary, refracted waves occur in the second medium. The problem of
reflection and refraction is addressed in a later section of
this chapter. Of course, arbitrarily incident plane waves can
propagate within a medium. For these waves, the governing
equations of motion can be found elsewhere (Achenbach, 1975).

4.3.1.2 Surface Waves

In addition to the waves that propagate within an elastic
medium (i.e., body waves), it is possible to have another type
of waves; one that propagates over the surface of the medium and
penetrates to only a minor extent into the interior of the body.
These are called surface waves. These types of waves also
possess the characteristic that the amplitude of displacement in
the medium decreases exponentially with increasing distance from

the boundary.
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One type of surface wave is the Rayleigh wave, which occcurs
on the free surface of a homogeneous, isotropic, semi-infinite
medium. In a two-dimensional elastic half-space with y > 0 and
a stress free surface at y = 0, the motion can be defined by the

real part of the following expressions

u=aePY exp [ik (x = ct)]
v = B e ¥ exp [ik (x - ct)] (4-15)
w =20

where i is the imaginary number -1, and A and B are complex
constants. The ccefficient b is considered to be a real and
positive constant so that the amplitude of the wave decreases
exponentially with increasing y, and tends to zero as vy
approaches infinity. The constants in the above expressions are
chosen such that the displacement equations satisfy the equa-
tions of motion and the boundary conditions on the free surface.

The proof of the existence of Rayleigh waves can be found
in books on classical theory of elasticity (Fung, 1965) and is
not repeated here. However, an illustration of the elliptical
retrograde type motion and a discussion of the relative propa-
gation velocities of compressional, shear and Ravleigh waves are
included within Appendix A. The illustration shows that the
Rayleigh waves the particle motion is in the plane of wave
propagation. Surface waves with motion perpendicular to the
direction of propagation can occur if the shear wave velocity in
the upper layer is less than that in the lower stratum. These
waves are known as Love waves. Again, the equations of motion
governing these types of waves can be derived analytically
(Achenbach, 1975).

4.3.1.3 Reflection and Refraction of Plane Waves

To illustrate the problem of reflection and refraction of

plane P and S waves, we consider a homogeneous isotropic elastic
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medium occupying a half space and with a free surface. Plane P
waves hitting the free boundary are reflected into the medium as
plane P waves and plane S waves. Similarly incident SV waves

are reflected as both P and SV waves.

If the medium consists of two or more layers, then incident
P waves propagating in one laver are reflected into P and SV
waves and refracted into the aajacent layer as P and SV waves.
The same holds for incident SV waves. The SH waves behave dif-
ferently. A train of SH waves will not generate P waves at the
interface; it is reflected and refracted as SH waves.

4.3.1.4 Amplification of SH Waves

Body and surface waves are created by disturbances caused
by an earthquake. The amplitude and freguency content of the
earthquake motion depend on the source and transmission path as
well as site characteristics. Along the transmission path, body
waves are influenced by the geometry and material properties of
the medium. They are reflected and refracted between layers of
different material properties — a phenomenon which results in a
local decrease or increase of the wave amplitude and affects the
frequency content of the resulting motions.

For the practicing engineer, the problem is to determine
the characteristics of the ground motion at a site (surface
and/or underground motion) on the basis of the motion recorded
at other sites. In view of the complexity of the wave propaga-
tion problem, it is not possible at present to solve the general
problem which includes body waves (P and S-waves) and surface
waves. Therefore, consideration has been restricted here to the
case of vertical propagation of horizontally polarized shear
waves in a horizontally layvered medium; a case for which an
analytical solution can be easily derived using one dimensional
wave theory. While this approximation has its limitations in
representing the actual problem, it is based in part on the

observation that body waves reaching the site from the source of
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the disturbance arrive, in general, with nearly vertical inci-

dence to the ground surface and not in a straight line from the

source to the site (Tsai and Housner, 1970).

A continuum solution to the one-dimensional wave eqguation
can be used to analyze the free-~field response of a horizontally
layered site subjected to vertically incident shear waves. The
analysis is carried out in the frequency domain by utilizing the
Fourier Transform of the input motion to represent the motion as
the superposition of harmonic signéls of different frequencies.
The frequency-dependent transfer function of the system is
obtained by computing the response of the system to unit har-
monic input motion. The time-dependent system response to the
actual input motion is then obtained as the inverse Fourier
Transform of the product of the system transfer functions and
the wvarious harmonic signals that comprise the input motion.
The above procedure is carried out when the motion is defined at
the base of the soil layers. A deconvolution procedure can be
used to compute the subsurface motion once the surface motion is
defined.

The theoretical derivation of the equations for the above
procedure are involved and beyond the scope of this report.
They can be found in Desai and Christian, 1977. The result of
this exercise is to define the amplification factor or the ratio
of the amplitude of motion at the free surface to the amplitude
of motion at rock/soil interface. A typical shape for the
amplification factor of a uniform soil layer above rock is shown
in Figure 4-1. For other cases computer programs such as FLUSH
(Lysmer et al., 1975) and SHAKE (Schnabel et al., 1972}, that
are based on the above procedure, can be used. These codes are

discussed in a later section of this chapter.

4.3.2 SEISMIC ANALYSIS OF UNDERGROUND STRUCTURES

A wide range of analytical tools have been used to investi-
gate the behavior of underground excavations subjected to

seismic loading. Because they can be analyzed in closed form,
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particular attention has been devoted to analysis of lined and
unlined circular tunnels. The emphasis of that work has been on
investigating the results of plane waves propagating perpendicu-
lar to the longitudinal axis of the tunnel. For the case of
waves propagating along the axis, use has been made of simpli-
fied models in which the tunnel liner is idealized as a beam on
an elastic foundation. More recently, attention has turned
towards the use of a number of different numerical procedures
that enable ground/structure interaction problems to be studied
in either the time domain or freguency domain. The following
subsections comprise a brief review of these three areas of
investigation.

4.3.2.1 Circular and Noncircular Tunnels

A considerable body of literature is devoted to the devel-
opment and application of analytical solutions to the problem of
plane waves propagating, in an elastic medium, normal to a
tunnel axis. Interaction of the wave and the tunnel causes a
distortion of the cross-sectional shape and stress concentra-
tions over and above those resulting from the in-situ stresses
existing prior to excavation. Interaction can also take the
form of entrapment and circulation of the seismic waves around
the tunnel. However, this is only possible when wavelengths are
less than the tunnel's radius (Glass, 1976) and the circulating
waves appear to be heavily damped because thgy radiate energy
inte the solid (Cundall, 1971).

Using closed-form solutions, Mow and Pao (1971) investi-
gated the interaction of steady state P-, SV-, and SH-waves with
cylindrical cavities. For P-waves propagating normal to the
longitudinal axis, they demonstrated that the peak dynamic
stress concentrations were approximately 10% to 15% higher than
that resulting from static stress equal to the peak free-field
stress and occur for wavelengths that are approximately 25 times
the cavity diameter. The stress concentrations resulting from
Sv-and SH-waves were also a few percent higher than the static
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equivalent. The importance of these results is not so much that
the dynamic effects are small, but that static or pseudostatic
analyses are adequate for wavelengths typically associated with

earthquake~-induced ground motion.

Results presented by Mow and Pac indicated that there will
be wvery little concentration of stress if the wavelength is
short in comparison to the diameter of the cavity. Such short
wavelengths are unlikely to be important for earthquake loading,
except very near to the source, but can be important for excava-
tions subjected to loading from conventicnal or nuclear explo-
sions. For very short waveiengths, the wall of the excavation
acts like a plane free surface at which the stress wave 1is
reflected as a wave of opposite sign. Hence, incoming compres-
sion waves induce, upon reflection, tensile stresses and create
stress concentrations that interact with the reflection. The
presence of tensile stresses raises the possibility of spalling;
a phenomenon that has been covered in Section 4.2.2.

The real problem of spalling at underground excavations is
more complex than considered by Rinehart, since the incoming
stress creates stress concentrations that interact with the
reflection. The problem of interaction can be investigated
quite simply in closed form. Typical results from a number of
recent calculations using a computer code developed by Garnet
et al. (1966) are reproduced in Figures 4-2 and 4-3, in which
the relationship between time, stress, and distance from the
tunnel wall is illustrated for the case of a triangular plane
P-wave engulfing the opening. The total duration of the wave-
form is equal to the travel time across eleven tunnel diameters,
with the stress rising linearly to a peak in one tunnel
diameter. At time zero, the wave has just reached the wall of
the tunnel; its front can be seen clearly in Figure 4-2. The
front is indeed reflected, but providing the wavelength is
greater than about ten tunnel diameters the induced radial
stress remains compressive. Figure 4-3a indicates that the
induced hoop stress is tensile, but this is to be expected since
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the P-wave induces a biaxial stress state in which the peak
confining stress 1is related to the peak stress by the factor
v/ (1l - v).

The case of lined circular tunnels can also be analyzed in
closed form. Results comparable to those for the unlined tunnel
are reproduced in Figure 4-3b. What is noticeable in these
figures is that there is a minor increase in the radial stress
in the rock and a marked concentration of hoop stress in the
liner. This is observed because the liner properties were
chosen so as to make the liner appear stiff relative to the rock
medium. Whether a liner will significantly interact with the
medium depends upon the compressibility ratio and the flexibil-
ity ratio (Hendron and Fernandez, 1983). Of these, the flexi-
bility ratio is the more important because it is related to the
ability of the liner to resist distortion.

The flexibility ratio, F, is defined by

28 (L - uﬁ) R>

F = 3
Eg(l + v) t

in which E and v are the Young's modulus and Poisson's ratio of

the medium and E R, and t are respectively the Young's

r Vg
modulus, Poissonfi rﬁiio, radius, and thickness of the liner.
Several investigators have discussed the relationship between
the flexibility ratio and the extent to which a liner modifies a
tunnel response to either static or dynamic loads (for example,
Peck, Hendron, and Mohraz, 1972, and Einstein and Schwartz et
al., 1679). They concluded that the liner can be considered
perfectly flexible if the flexibility ratio exceeds 20. In that
case the liner conforms to the distortions imposed on it by the
medium. If, on the other hand, the flexibility ratio 1s low
then the 1liner will resist the distortion o¢f the medium.
Whether there is a concentration of stress in the liner depends
mainly on the relative elastic modulus of the liner and medium.
For the case illustrated in Figure 4-3b the elastic modulus of

the liner is twice that of the medium. However, the liner has a
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very high flexibility ratioc (approximately 1000). Accordingly,
the distortion of the medium is substantially unrestrained. In
general it would be conservative to check that the liner is
capable o¢f withstanding the unrestrained distortion of the

medium.

Several closed-form solutions are available for estimating
ground/structure interaction for c¢ircular tunnels. The solu-
tions more commonly used for static design of tunnel liners were
reviewed by Duddeck and Erdmann (1982). They are based on the
assumption that the liner behaves as a thin shell. 1In fact, the
more general solution of a concentric elastic ring of any thick-
ness can be derived quite simply; the necessary equations for
the dynamic case are given by Garnet et al. (1966). Use of the
static solution should be perfectly acceptable for evaluating
the response to wavelengths typically associated with earth-
guakes, particularly if the static overstress 1s increased 10%
to 15% above the peak dynamic free-field stress.

A note of caution in regard to the use of any of the lined
tunnel solutions is 1in order. As O'Roark et al. (1984) point
out, there are differences between the case of external loading
cof a 1lined tunnel and emplacement of a liner in a previously
stressed mediun. Providing the surrounding medium remains
elastic, the liner stresses immediately after installation can
be conservatively estimated by assuming that the processes of
excavation and liner installation occur simultaneously. In
practice, the liner is frequently installed after at least 50%
of the elastic displacement of the medium has already taken
place and the liner loads are correspondingly lower. To evalu-
ate the effect of earthquake loading the solution for external
loading should be used. Since both medium and liner are assumed
to be linearly elastic the postexcavation and earthquake induced
stresses, or thrusts and bending moments, can be superimposed to
estimate the total loads. - Remember, however, that the earth-
quake loading is cyclic and one is concerned with the states of
liner and medium at both extremes of the cycle.
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Because of the availability of relatively simple closed-
form analytical solutions for lined and unlined circular tunnels
the conditions resulting from plane wave propagating normal or
near-normal to the tunnel axis are relatively well understood.
Much 1less attention has been devoted to investigating the
behavior of excavations, supported or unsupported, of different
shapes. However, the general conclusions reached for the
circular tunnels should be applicable. Most importantly, we
expect the response to earthquake loading to be near enough
pseudostatic and we expect ground/structure interaction effects
to be relatively unimportant providing the ground support system
is relatively flexible. In practice, the ground support is
generally flexible and the conservative approach of assuming
that the liner experiences the unrestrained deformation of the
medium can be adopted. 1If this approach results in the conclu-
sion that special provisions need to be made to provide adeguate
safety, then it would be appropriate to conduct more thorough
ground/structure interaction calculations using one of the

numerical modeling tools discussed below.

4,3.2.2 Simple Ground/Structure Interaction Models

If the flexibility ratio of a liner, as defined above, is
low then the liner is stiff compared to the medium and will
resist the distortions imposed on it by the medium. Of course
it will be conservative to design the liner to withstand the
unrestrained distortions of the medium. However this approach
may be unduly conservative for stiff liners, and the liner may
become very difficult to design. In such cases the ground/
structure interaction is important and should be considered in

the design.

Little attention has been devoted to deriving analytical
solutions for ground/structure interaction problems for the case

of waves propagating along the axis of the structure. This is
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due, in part, to the fact that several assumptions or approxima-
tions are needed to derive a solution for a simple ground/struc-
ture model. These assumptions restrict the application of the
results to a limited class of problems. This ground/structure
interaction problem has first been addressed in the design of
" the Trans-Bay Tube of the San Francisco Bay Area Rapid Transport
(Parsens Brinckerhoff, 1960) system and later by the Japan
Society of Civil Engineers (1975, 1977).

The analytical procedure for estimating strains and
stresses experienced by a structure that resists ground motion
based on: (a) the theory of wave propagation in an infinite,
homogeneous, isotropic, elastic medium; and (b) the theory of an
elastic beam on an elastic foundation. The beam theory is
necessary to account for the effects of interaction between the
ground and the structure. The details of this procedure and the
assumptions made to arrive at a "closed-form solution" are
discussed in detail in Appendix C. 1Its application in design is
summarized in Chapter 5.

A main assumption in the above procedure is that the struc-
ture is supported by an elastic foundation characterized by a
foundation modulus. The latter is defined as a spring constant
per unit length of the structure. Unfortunately, there is no
universally agreed upon approach for the derivation of the
foundation modulus and different procedures may yield widely
different answers. One approach, presented in Appendix C, 1is
based on the two-dimensional, plane strain solution to the
Kelvin's problem. The approach, in effect, neglects the width
of the structure and therefore its transverse stiffness. A more
general approach would be to use a numerical solution to derive
the foundation modulus. Numerical solutions require the use of
a computer program, such as a large general-purpose finite
element code and are described in the next section. Regardless
of how the foundation modulus is obtained, a range of values,
rather than a single wvalue, should be used in parametric
analyses to estimate bounds on the strains and stresses experi=-
enced by the structure énd ground medium due to dynamic loading.

420
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We believe +that simple models for the ground/structure
interaction, when used in conjunction with relatively simple
structural design models for liners, are generally adequate for
pfeliminary design of underground excavations with internal
structures or supports that resist ground deformation. of
course, there will be many instances in which the structure is
either too complex or too important to rely on such simple pro-
cedures alone. In these cases, one of the numerical methods
discussed below should be used.

4,3.2.3 Numerical Modeling of Ground/Structure Interaction

In recent years, numerical modeling techniques have seen a
tremendous growth and have been found to be very useful as toocls
for analysis. As opposed to closed-form analytical solutions
which exist for a relatively small class of problems, numerical
methods can be used for analysis and design of complex struc-
tures. A large number of publications have covered the differ-
ent numerical methods used to analyze wave propagation and
ground/structure interaction problems (Desai and Christian,
1977). Herein, an overview of the different numerical methods
available is presented. This is followed by a very brief sum-
mary of some popular computer programs used for the dynamic
analysis of underground structures.

The numerical methods of analysis fall under one of the
following categories: (a) finite difference method; (b) finite
element method; (c¢) boundary integral equation method; and
(d) method of characteristics. The usefulness, validity and
application of each of the above methods greatly depends on the

type of problem under consideration.

The finite difference method was the main method of analy-
sis before the development of finite element methods. The
method involves a discretization of the governing equations of
motion for the soil/structure system. The discretization is
based on replacing the continuous derivatives in the governing
equations by the ratio of changes in the variables over a small,
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but finite, increment. rThe differential eguations are thus
transformed into difference equations. The method of solution
of these equations for transient analysis can be based either on
an implicit scheme or an explicit scheme. The implicit scheme
regquires the solution of a set of simultanecus equations and
large storage may be needed. Explicit schemes are relatively
straightforward and may require less effort than dimplicit
schemes. For certain types of problems, it is possible to
obtain unconditionally stable explicit schemes. The choice of
the best solution scheme depends on the particular application.
The finite difference method can be difficult to apply when
nonhomogeneity and nonlinearities exist, but this difficulty can
be overcome using the so-called integrated finite difference
techniques. Another situation common in wave propagation prob-
lems inveolves infinite media. Accordingly there is a need to
create appropriate boundary conditions that will simulate the
physical behavior of the actual problem. The most popular
approach 1is the use of viscous dashpots to eliminate boundary

reflections,

In the finite element method, the continuum is discretized
into an equivalent system of smaller continua which are called
finite elements. Each element 1is assigned constitutive or
material properties and its equations of state are formulated.
Subsequently the elements are assembled to obtain equations for
the total structure. As 1in the case of the finite difference
method, the solution scheme can be based either on an implicit
or an explicit formulation. 1In either case, a finite difference
is used to represent the time dimension. The main advantage of
the finite element method is that arbitrary boundaries and
material inhomogeneity can be easily accommodated. As in the
finite difference method, energy absorbing boundaries are used

to approximate the wave propagation in an infinite medium.

The boundary integral equation method involves numerical
solution of a set of integral equations that connect the bound-

ary, or surface, tractions to the boundary displacements and is
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based on solution of integral rather than differential equa-
tions. It requires the discretization of only the surface of
the body and the surface of the excavation into a number of
segments or elements. The numerical solution is first obtained
at the boundary segments and then the solution at different
points within the medium 1is cobtained from the solution at the
boundary. In this method, the infinite medium can be handled
very éasily since the integral equation applies for a 1locad
applied on an infinite or semi-~infinite medium. The method is
most popular for the analysis of linear, static problems.
Recently it has been applied to the solution of linear dynamic
problems and to the analysis of traveling wave effects on the
seismic response of surface structures (Werner et al., 1979).
To date, it has not been widely used to handle material non-

linearities and nonhomogeneities.

The remaining approach is the method of characteristics.
In this method, a set of partial differential equations 1is
converted into a set of ordinary differential equations. The
latter is often solved by using the finite difference method.

4.3.2.4 Computer Program for Dynamic Analysis

Many computer programs based on the above analytical proce~-
dures are avalilable. Only a few of the more popular, readily
available codes that are well suited for investigating the
problems of wave propagation and ground/structure interaction

can be described here.

SHAKE Code (Schnabel et al., 1972) - This code can be used
to analyze the free-field response. The so0il medium is
comprised of a system of horizontal wviscoelastic layers of
infinite horizontal extent, and an equivalent linear model
is used to represent the strain dependence of the material
properties of each soil layer. The medium can be subjected
to input motion from vertically incident shear waves or
compressional waves. A continuum solution to the one-

dimensional wave equation 1is employved. The solution is
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carried out in the frequency domain and is then transformed
back into the time domain through the use of Fast Fourier

Transform techniques.

FLUSH Ceode (Lysmer et al., 1975) - This code can be used to
compute the two-dimensional response of a soil/structure
system. Similarly to the SHAKE code, the soil medium is
comprised of a system of homogeneous viscoelastic soil
layers of infinite horizontal extent, and an equivalent
linear model 1is used to represent the strain-dependent
shear moduli and damping ratios. The medium can be sub-
jected only to vertically incident shear waves or compres-
sional waves. The soil/structure system can be modeled
using either a conventional plane strain model or a
modified two~dimensional model which attempts to simulate
three-dimensional wave propagation effects through the use
of in-plane viscous dampers attached to each nodal point of
the soil medium. The s0il medium is bounded by a rigid
base and by transmitting boundaries (viscous dashpots)
along the sides. The solution technique is the same as
that used for the SHAKE code.

ADINA code (Adina Engineering, 1981) - This code 1is a
general purpose finite element program for the two-
dimensional and three-dimensional analysis, static and
dynamic analysis of structural systems. Its library of
elements includes structural as well as solid elements and
the library of constitutive models permits analysis of
linear and nonlinear materials. The input motion can
consist of horizontal and vertical motions from any arbi-
trary combinations of waves. The infinite medium 1is
approximated by the use of transmitting boundaries (viscous
dashpots). Several solution techniques are available.
Those include direct time integration method (with both
explicit and implicit formulations), normal mode method for
linear dynamic analysis, and determination of frequencies

and mode shapes. Similar capabilities are offered by other
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general-purpose finite element codes such as SAPIV (Bathe
et al., 1974) and ABAQUS (Hibbit et al., 1982}.

HONDO code'(Key et al., 1978) - This finite element program
can be used to analyze two-dimensional wave propagation and
solil/structure interaction problems. The medium is modeled
with 4-node guadrilateral element. Both linear and non-
linear material behavior can be considered. The solution
scheme is explicit, with a variable integration time step.
In a recent version of the code, the medium can be bounded
with energy absorbing boundaries (viscous dashpots) in
order to simulate an infinite medium. The code accepts
only pressure locading. Similar capabilities are offered by
other finite element codes, such as DYNA2D (Hallquist;
1978), and finite difference codes such as STEALTH
(Hoffman, 1981).
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FIGURE 4-2.
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CHAPTER 5

RECOMMENDED PROCEDURES FOR PRELIMINARY DESIGN
OF UNDERGROUND STRUCTURES

5.1 INTRODUCTION

Despite the availability of relatively sophisticated
methods of investigating the dynamic response of underground
structures to seismic loading, design tools remalin relatively
simple. In this section we recommend simple procedures: to
facilitate identification of factors important to design, to
define design loads, and to verify design adequacy. These, or
similar procedures, should always be used as a starting point
for any analyses of subsurface excavations and their ground
support system, and underground structures. Should the results
of preliminary evaluation suggest that special precautions will
be required to assure acceptable performance then more rigorous
analyses may be justified. However, care must be exercised to
ensure that the refined methods will indeed lead to an improved
gsolution. Often the uncertainty in the data defining the prob-
lem will be insufficient to support more detailed analyses, and
the improvement may be illusory rather than real.

5.2 DESIGN AGAINST FAULT DISPLACEMENT

It is impractical to attempt to design a tunnel to with-
stand a potential offset at an active fault. Instead, features
that mitigate the effect of the offset and facilitate post-
earthquake repairs should be incorporated in the design. These
features typically consist of either excavation of an oversize
section through the fault zone and use of a flexible support
system, or incorporation of a flexible coupling, 1f the tunnel
is lined. The former approach was used where the San Francisco
Bay Area Rapid Transit (SFBART) crosses the Hayward fault in the
Berkeley Hills; a slightly enlarged section in the vicinity of
the fault was lined with closely spaced steel rib sections
(Kuesel, 1968). The latter approach is more commonly used for
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submerged tunnels or conduits, since in these cases 1t 1s neces-

sary to ensure that the section remains watertight.

The design of flexible couplings, or Jjoints, has received
considerable attention because they are also required at inter-
faces between different geologic media and between sections of
an underground structure that will respond differently to seis~
mic loading. For example, the ASCE Working Group for Seismic
Response of Buried Pipes and Structural Components provide
details of an interface between buildings and buried pipes
{ASCE, 1983); Douglas and Warshaw (1971) describe a seismic
joint used at the transition between the SFBART tube and an
offshore wventilation structure; and HEradilek (1977) offers
recommendations for the design cf reinforced concrete conduits
crossing a known active fault gzone. In every case the design
objective is to achieve the necessary flexibility in the liner,
or conduit, to permit the relative motion without significant
damage. How this objective is achieved will be site and project

specific.

5.3 DESICN OF PORTALS AND VERY SHALLOW TUNNELS

In Chapter 3 it was noted that tunnel portals appear to be
particularly susceptible to damage. This may be attributed to
the occurrence of superficial failures that may be entirely un-
related to the tunnel, or may result from transition problems
such as described above. The site investigation required to
determine the potential for superficial failures is beyond the
scope of this study. However, it is appropriate to note that
the principal failure modes of concern are slope instability,
soil 1liquefaction, and differential settlement. Particular
precautions should be taken if a portal structure also acts as a

soil retaining wall.

Design to withstand relative motion was discussed above.
As noted, the primary objective is to increase the flexibility
so differential motion can be survived without significant
damage. For tunnels in soll or rock such flexibility is best

provided by closely-spaced steel sets, or ribs. Static desigr
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procedures for this type of support are relatively well estab-

lished. ©Special design considerations for flexible support in a

dynamic environment are discussed in the section following.

5.4 DESIGN AGAINST GROUND SHAKING

Discussion in this section i1s restricted to consideration
of simplified models that may be used to estimate the stresses
and strains that an underground excavation may be subjected to
as a result of ground shaking during an earthquake, and the
resulting additional dynamic loads that will be applied to a
support system. Types of excavation for which these models are
appropriate include lined and unlined tunnels in scil and rock,
subaqueous tunnels, and cut and cover construction. The dis-
tinction between the several types is drawn not upon the basis
of the function that the excavation serves but upon: (a) the
nature of the geologic medium; (b) the extent to which any
support system may resist the ground moticn in the medium; and
(c)} the method of construction.

Before proceeding it 1is worthwhile to clarify the termin=-
ology that will be used, and to elaborate on the subject of
ground/structure interaction. From an analytical standpoint,
the simplest case to consider 1is that of a compressional wave
propagating parallel to the axis of a subsurface excavation.
That case 1s illustrated in Figure 5-1, in which the wave is
shown as introducing longitudinal compression and tension. For
practical purposes, interaction between the wave and the exca-
vation can be ignored; although the changes in axial stress will
cause some closure or enlargement of the excavation as the rock
or soil responds to the applied loads. The case of an under-
ground structure subjected to an axially propagating wave is
slightly more complex since there will be some interaction
between the structure and the medium. However, the interaction
is 1likely to be relatively unimportant since the induced
stresses normal to the axis of the tunnel will be less than if
the wave were propagating normal to the tunnel axis. Also, the
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deformation mode would be one of hydrostatic compression or

tension.

For the case of a wave propagating normal to the tunnel
axis, the stress induces a deformation of the cross-section,
such as illustrated in Figure 5-2. As discussed in Chapter 4,
the type of asymmetric deformation of the cross-section 1llus-
trated in that figure will be observed only if the wavelength is
short relative to the tunnel diameter. In most cases of
interest, the wavelength will be relatively long and the defor-
mation will be approximately pseudostatic. Expressed simply,
that means that the tunnel is not subjected to any severe stress
gradients, so the deformation will appear toc be symmetrical
about the center plane of the section. However, the deformed
shape of the tunnel will still be approximately elliptical since
the free-field stresses 1in the direction of propagation and
normal to the direction of propagation will be unegqual.

In the more general case, the wave may induce curvature of
the structure in the manner illustrated in Figure 5-3. That
will induce alternate regions of compression and tension along
the tunnel. In a subsurface excavation, or one with a very
flexible liner, the rock or so0il mass will experience tension
and compression on opposite sides; in the region of positive
curvature, the tension is on the side marked top and compression
is on the side marked bottom. In contrast, a stiff lining would
exXperience compression in the top and tension in the bottom.
This is because the stiff liner would resist the deformation of
the medium. This idea of relative stiffness and the concept of
interaction of the 1liner, or ground support system, and the
medium are important to the discussion that follows.

5.4.1 STRUCTURES THAT CONFORM TO GROUND MOTION

In this case any liner or internal structure is considered
to offer little or no resistance to .ground motion. The case is
pertinent to most tunnels in rock and many soils, since the
liner stiffness is low in comparison te that of the medium. A

Swd
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full description of the derivation of the equations included in
this section and a discussion of the assumptions made in order
to derive these equations are included in Appendix B. The
following is a summary of the theoretical basis and the

recommended design procedure.

The analytical procedure for estimating strains and
stresses experienced by structures that conform to the ground
motion during seismic excitation is based on the theory of wave
propagation in homogeneous, isotropic, elastic media (Newmark,
1967). Starting from the equation describing particle motion
resulting from propagation of a plane wave in the x-direction it
can be shown that the axial strain (9u/0x) and curvature
(azu/axz) in the direction of propagation are respectively:

1
; — —> (5-1)
2 c2 2

w|
x|
|
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in which (ou/0t) and (azu/atz) are the particle veloccity and
acceleration, t the time, and ¢ the apparent wave propagation
velocity.

The strains and curvatures experienced in the free field in
response to different wave types can be evaluated from Equa-
tion 5-1. For example, in the case of a P-wave, for which the
particle motion is 1in the direction of wave propagation, the
axial or longitudinal strain (82), and its peak value (52m) are

given by:

(5=2)
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in which ci) is the P-wave velocity and Vp the peak particle
velocity. The corresponding strain normal to the direction of
propagation and the shear strain are both zero.

Similarly, the maximum shear strain (ym) and the curvature

(l/pm) due to an S-wave are given by:
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in which Cg is the sS-wave velocity, Vg the maximum particle
velocity, and ag is the maximum particle acceleration. In this

case, there are no axial or normal strains.

Equations 5-2 and 5-3 describe the strains and curvature in
the direction of propagation of P- or S-waves. In the more
general case, the P- or S-wave propagates at an angle ¢ with
respect to the axis of some excavation or structure within the
medium. The corresponding strains and curvatures, expressed as
a function of the angle of incidence,  are summarized in
Table 5-1. Since the angle of incidence is generally not known,
the most critical angle of incidence and the maximum values of
strain and curvature are also tabulated. Similar data are
provided for Ravleigh waves,. Estimation of the peak ground
motion characteristics (velocity and acceleration) is discussed

in Appendix A.

Once the strains have been evaluated the free-field
stresses can be estimated by assuming that the medium can be
treated as a linear elastic material. On that basis, the
maximum stresses resulting from P- and S-waves listed in
Table 5-2 were derived. These are, of course, the free-field
stresses that would be used as boundary conditions if simple
continuum models are to be used for design of lined or unlined
tunnels. I1f, instead, the tunnel structure is treated as a
gimple beam, then the design strains and curvatures are given
directly by Table 5-1. The design stresses can then be easily
calculated by using the equations of the beam theory.

Box structures in rock and stiff soil are subject to rack-
ing deformations due to shear distortions in the medium. The
amount of racking imposed on the structure is estimated on the
basis of the assumed soil deformations. The analytical solution
of the one-dimensional wave propagation problem for SH-waves

described in Chapter 4 or a computer program such as SHAKE can
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be used to estimate the free-field shear deformations versus
depth at a given site. An example of the soil deformation with
depth is shown in Figure 5-4a. The amount of racking imposed on
the structure can be taken as equal to the difference between
the soil deformations at the top and that at the bottom of the
structure, such as points A and B in Figure 5-4b. The structure
needs to be designed to accommodate that amount of deformation
providing, of course, that toleration of such deformation does

not jeopardize safety or functional requirements.

The above approach to design of underground structures may
lead to very conservative design requirements if the structure
is very stiff relative to the medium. This 1is the case for
structures with shear walls, for example. In these circum-
stances a numerical analysis of the soil/structure interaction
becomes necessary. In general, a relatively simple two-
dimensional parametric analysis of a structure such as
illustrated in Figure 5-4b, is all that is needed. A general
purpose computer program for structural analysis, such as ADINA
code, would normally be appropriate. The results of such an
exercise would be used to determine the relative properties of
soil and structure for which the interaction becomes important;
and to refine the estimate of racking deformation imposed on the
structure. The latter should be smaller than the racking
estimated on the basis of the free-field deformations,

5.4.2 STRUCTURES THAT RESIST GROUND MOTION

In this case the liner or internal structure is considered
to resist the ground motion; ground/structure interaction 1is
important because the structure is stiff relative to the sur-
rounding medium. The case 1is usually pertinent only to
structures in soft soil, but it is always advisable to check the
relative stiffness of the ground and any 1lining or internal
structure. The results presented here comprise further
development of the work of several investigators, including
Kuesel (1969) and Kuribayashi et al. (1975, 1977). Again, a

Sw?
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summary of theoretical development and the recommended design
procedure are presented here. Additional information on the

theoretical background is provided in Appendix C.

The analytical procedure for estimating strains and
strésses experienced by structures that resist the ground motion
during seismic excitation is based on the theory of wave propa-
gation in an infinite, homogeneous, isotropic, elastic medium,
together with the theory for an elastic beam on an elastic
foundation. The beam theory 1s necessary to account for the
effects of interaction between the soil and the tunnel struc-
ture. In the interest of brevity, only the effects of trans-
verse shear waves are discussed. However, the same approach can
be used to evaluate the effects of vertical shear waves and
compressional waves.

A tunnel structure subjected to an incident sinusocidal
shear wave with a wavelength L and amplitude A, as shown in

Figure 5-5, will experience transverse and axial displacements:

. ; 2nx . ol : 2nx _
uy = cos ¢ sin (E7EB§*$) A u, sin ¢ sin (37855_5) A (5-4)

Assuming the structure behaves like a beam, the curvature due to
transverse displacements is given by:
azu 2

Lo —t-- (22)" cos sin (%) A (5-5)
The resulting forces and bending moments experienced by the
structure are identified in Figure 5«6 and can be easily calcu-
lated if there is no ground/structure interaction. However, 1if
the structure is stiffer than the surrounding medium. it will
distort less than the free ground deformations, and there will
be interaction between the tunnel structure and surrounding
medium. This interaction can be considered simply if it is
assumed that the tunnel structure behaves as an elastic beam
supported on elastic foundation. However, this approach
involves estimating the foundation modulus.
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To arrive at an estimate for the fdundation mcdulus, the
two-dimensional, plane-strain solution to the Kelvin's problem
was used. The equation defining the vertical displacement due
to a point load was integrated numerically to study the effect
of a displacement that 1is sinusoidally varyving. From the
results of those calculations, and the general form of Kelvin'sg
solution, the foundation modulus for the transverse deformations
was deduced to be:

K = 2nC

. 4 (1=v)
h L !

C = By (1)

E d (5=6)

where d represents the width of the tunnel and E and v are
medium properties. This modulus is consistent with that derived
by Biot (1965) for the case that the medium is compressible

The expressions for the forces applied on the structure can
be obtained from the solution of the governing equations giveﬁ
above. These expressions need to be maximized with respect to
the wavelength, L, and the angle of incidence, ¢ (see Appen-
dix C). The results are summarized in Table 5-3 for the case of

transverse-horizontal and transverse-vertical shear waves.

5.4.3 GROUND MOTION DISPLACEMENT SPECTRUM

In order to calculate the design forces using the eguations
listed in Table 5-3, the ground displacement amplitude (A) must
be estimated. ©One approach would be to estimate the natural
period of the ground which is used to enter a ground motion
spectrum and pick the displacement amplitude. The following
paragraphs summarize methods for deriving a ground motion spec-
trum, and for estimating the natural period of the ground.

The procedure used to select a design spectrum for surface
structures is discussed in Appendix A; it is based.primarily on
strong motion data from surface records, considered in conjunc=-
tion with specified design levels of structural resistance.
However, because ample strong motion data are not generally
available at the depths of concern for design of underground



structures, the development of ground motion spectrum for use in
design of these structures requires alternative approaches that
incorporate depth-dependent attenuation effects. One such
approach uses  site response analysis techniques to compute
free-field motions at any desired depth, considering soil pro-
perties of the actual site profile under consideration. One-
dimensional analysis procedures are most widely used for this
purpose, although it should be noted that such procedures ignore
effects from all but vertically propagating body waves.

Two types of site response analyses can be used to compute
free-field motions at depth. One type uses a deconvolution
procedure, consisting of definition of input motions at the
ground surface and use of the one-dimensional wave eguation to
compute the corresponding subsurface motions. However, because
results from this procedure can be guite sensitive to uncertain-
ties in definition of surface input motions and/or subsurface
soll properties, care must be taken both in its application and
during interpretation of its results (Schnabel et al., 1972).
In the second type of site response analysis, surface motions
are applied at the subsurface soil/rock interface and the
motions at the ground surface are calculated. The calculated
surface motions are then scaled so that some measure of their
strength (e.g., their spectrum intensity, or the area under the
response spectrum over the frequency range of interest) is
identical to that of certain designated surface motions. The
scale factor can then be applied to the calculated motions at
the required depths. By repeating this calculation for a range
of soil properties and input ground motion, a plot of the ground
motion displacement amplitude as a function of the natural
period of the ground can be derived. This plot of the ground
displacement amplitude at the depth of concern is referred to as

the ground motion spectrum.

The final stage in determining the displacement amplitude’
of ground motion is to estimate the natural period for the site
and then use that to enter the ground motion spectrum. The
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natural period can be easily calculated if the earthquake ground
motion is attributed primarily to shear waves land it can be
assumed that the medium consists of a uniform soil laver over-
lying a hard layer. In these circumstances the ground.deforma-
tion may be approximated by an arc of a sine curve as shown in
Figure 5-7. The dynamic response of this medium is analogous to
that of a shear beam subjected tc a base motion. In this case,

the natural period of the ground is given by

_ 4H
T = c, (5-7)

where H represents the thickness of the soil layer and Ty the
shear wave velocity. The period is thus equal to the time it
takes a shear wave to travel four times the thickness of the
solil or, in other words, to repeat itself. The case of a medium
with several horizontal soil layers is covered by Idriss and
Seed (1968).

5.4.4 CUT AND COVER CONSTRUCTION

Cut and cover construction is treated as an independent
topic merely because 1t involves substantially different con-
struction practice than other forms of underground excavations.
Typically, a backfill is placed between the medium and the
underground excavation and that backfill may consist of rela-
tively poorly compacted material. Despite these differences,
the methods of design are identical. It is recommended that an
approach similar to that described in the previous sections be

used.

The major difference 1s that under horizontal shear waves
(SH-waves) the foundation modulus or spring constants in the
soll/structure interaction model should reflect the properties
of the interface material between structure and soil. Since in
this model the spring constant 1is based on the assumption of a.
uniform rather than layered medium, two cases may be considered
in order to bound the problem. In one case the spring constant



1s based on the properties of the backfill and in the other on
the properties of the medium. It is believed that such an ap-
proach will prove to be conservative and realistic.

Under vertical shear waves (SV-waves), the ground support
is placed in direct contact with the medium. As a result the
same procedure outlined in the previous sections applies in this

case.
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FIGURE 5-6. IDENTIFICATION OF DESIGN PARAMETERS FOR A TUNNEL
SECTION (Modified from Owen and Scholl, 1981)
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TABLE 5-2.

MAXIMUM STRESSES RESULTING FROM BODY WAVES

Maximum Normal Stress

Maximum Shear Stress

P-Wave

S-Wave

{1-v)E zg
(l+v){(1l-2v) C
b =0
E Vs

(1+v)(1-2v) 2 CS

o = 45°
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TABLE 5-3. MAXIMUM FORCES RESULTING FRCM SHEAR WAVES

Transverse-Horizontal Waves

II.

1/3

Bending moment = % (4 EIC2) A

Shear force = C A

it
Q
b=

Axial Force

1/3
&
<),

- 4| 4C”
Pressure = 5 (E I

4{(1-v)
(3=2v ) (1+v)

where C =

and A corresponds to the amplitude of the horizontal
motion

Transverse-Vertical Waves

. 1 2 /3
Bending moment = 3 (4 EIB™) A

Shear force B A

It

Axial force c a

4\1/3
_ 4 [4B
Pressure = 5 (E I) A

_ . Ed
where B = 2(1=v) (1497

and A corresponds to the amplitude of the vertical motion

< b QL

Hwmuuu

modulus of elasticity of concrete
moment of inertia of tunnel cross-section

width of tunnel
modulus of elasticity of soil medium
Poisson's ratio of soil medium
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A.1 CAUSES OF EARTHQUAKES

Seismologists typically classify earthquakes according to
one of four modes of generation — tectonic, volcanic, collapse,
or explosion. Tectonic earthquakes, which are by far the most
common, are produced when the rock breaks in response to various
geologic forces. Tectonic earthquakes are associated with
relative displacement that occurs along faults, which may be
created or reactivated during the earthquake. Volcanic earth-
quakes, as the name implies, accompany volcanic eruptions.
Collapse earthquakes accompany events such as landslides or the
collapse of roofs of underground caverns or mines. Seismic
events analogous to tectonic earthquakes may also cccur in deep
mines and in open cut excavations. These violent releases of
strain energy which are "explosive like" in nature are known as
rockbursts. Explosion earthquakes are man-made, and arise from
detonation of chemical or nuclear devices. This chapter deals
specifically with tectonic earthquakes since these are of
primary concern during design of underground structures. How-
ever, the techniques used to quantify the ground motion are
equally applicable to other types of earthguake.

A.1.1 PLATE TECTONICS

As noted above, faults play a critical role during tectonic
earthquakes. These faults may be related to the local geologic
environment or to the global pattern of faults that define
the boundaries between relatively stable regions of the
earth's surface. According to the theory of plate tectonics,
these stable regions, or plates, are moving relative to one
another, and it is this movement that results in concentration
of earthquakes along the plate boundaries. The boundaries can

be classed as spreading zones (where plates are moving apart),
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shear zones (where plates are sliding past one another), colli-
sion zones (where plates collide), or subduction =zones (where
one plate slides underneath another).

A comparison of the location of reported earthquakes and
plate boundaries indicates that there is a marked correlation
between the two. Indeed, approximately 90% of the total seismic
energy for shallow earthqugkes occurs within the subduction
zZones alone. However, events do occur within plates and these
cannot be explained by the theory of plate tectonics. These
earthquakes arise from more localized systems of tectonic
forces. An example of a significant intraplate earthquake is
the New Madrid, Missouri (1811-12) event.

A.1.2 FAULT RUPTURE PROCESS

Once relative movement along a fault is initiated as a
result of critical buildup of strain energy in the rock by the
tectonic or other forces, it spreads outward in all directions
along the fault surface. The propagation of the rupture front
is often irregular, reflecting the variability of rock mass
properties and the irregular geometry of the fault surface. The
final extent of the fault rupture will depend upon the total
strain energy available and how it is dissipated and redistri-
buted during the rupture and relative motion. Details of this
complex process are beyond the scope of the discussion here, but
it is appropriate to note the features of the rupture process
that are employed to characterize the ground shaking that will
be experienced by adjacent structures. These are the stress
drop, the total relative displacement, the fault geometry, and
the fault rupture length.

Large magnitude earthguakes are associated with a large
release of energy, which corresponds to a large stress drop and
large relative displacement over a large area. The stress drop
appears to be correlated with the amplitude of the seismic waves



generated, while the fault displacement 1is correlated with
duration of ground shaking and distribution of amplitudes.
Large relative displacements result in larger amplitudes of low
frequency, or long period, waves. Other geometrical features of
the faulting, including aspect ratio (length to depth), planar-
ity, and the occurrence of bifurcation, or branching, have a
profound effect on the freguency content, duration, and ampli-
tude distribution. Numerical models have been develcped to
quantify relationships between the fault rupture process and the
resulting characteristics of the ground shaking. Unfortunately,
these models are still in the development stage and prediction
of the characteristics of tectonic earthquakes and the asso-
ciated ground motion is based primarily on empiricism. It is
established, however, that what 1is experienced at a particular
site as a consequence of an earthquake will depend upon the size
of the earthquake, the site geology and location relative to the
causative fault, and how the seismic waves propagate through the
intervening geologic media.

A.2 WAVE PROPAGATION IN GEOLOGIC MEDIA

Two classes of seismic waves result from fault rupture.
These are body waves — which propagate through the interior of
the rock — and surface waves — which propagate along or near the
ground surface. The principal types of body waves are P-waves
{also known as dilatational waves or compressional waves), and
S-waves (also known as distortional waves or shear waves). P-
and S-waves respectively excite particle motion that is parallel
to and perpendicular to the direction of propagation. These
motions are illustrated in Figure A-la. The propagation veloci-
ties depend upon the material and geometrical properties of the
medium. For example, the P-wave velocity, in an infinite, homo-
geneous, isotropic, and elastic medium, is:

C_‘/ (1 = v) E
< (1 + v) (1L - 2v) p
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In the same circumstances, S-waves propagate with wvelocity:

- G _ E
Cs = \JE; - 3/2 (1 +v) p

From these relationships it can be seen that P-waves propagate

in an infinite medium at least {2 times as fast as S-waves.

The most significant types of surface waves are Rayleigh
waves and Love waves. Rayleigh waves induce elliptic retrograde
particle motion in a vertical plane; i.e., the vertical and
horizontal components of particle motion are contained in the
plane of wave propagation. Love waves excite particle motion
that is horizontal and predominantly normal to their direction
of propagation and occur in a stratified solid if the S-wave
velocity is greater in the lower stratum. These types of waves
are illustrated in Figure A=-1b. Rayleigh waves propagate at a
velocity approaching the S-wave velocity, while Love waves
propagate at a velocity somewhere between the S-wave velocity'of
the surface layer and that of the lower stratum. Relative
propagation velocities of P-, S$S-, and Rayleigh waves in a semi-
infinite, isotropic, elastic medium are illustrated in Fig-
ure A-2. Love waves are not included in that figure because

they do not occur in homogeneous media.

The seismic waves that propagate from the source to the
site are influenced by the geometry and material properties of
the transmission path. Along transmission paths within the
subsurface medium, both P- and S-waves are reflected and
refracted as they encounter interfaces between layers with
different material properties. Interference between reflected
and refracted waves can result in a local increase or decrease
in amplitudes of the waves as they propagate from the source of
energy release. Other irregularities in the transmission path,
such as variations in surface topography and discontinuities and
inhomogeneities in the subsurface, greatly complicate the
reflection and refraction processes. The surface topography and
near surface stratigraphy influence the characteristics of
surface waves.
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In addition to undergoing modifications due to the charac-
teristics of the transmission path, the amplitudes of the
seismic waves are modified as a result of geometric spreading
effects and attenuation resulting from the dissipative proper-
ties of the subsurface soil and rock materials. The nonlinear
characteristics of the subsurface materials also affect the
dynamic characteristics of those components of ground shaking
associated with wave lengths comparable to or shorter than the

‘characteristic dimensions of the various subsurface layers.

A.3 CHARACTERISTICS OF EARTHQUAKES AND GROUND MOTION

The characteristics of earthquakes and ground motion perti-
nent to the development of seismic input criteria are the size
of the earthquake and the intensity, frequency content, and the
duration of the ground motion. The generally accepted means of
defining each of these characteristics for engineering applica-
tion is summarized in the following subsections.

A.3.1 SIZE OF THE EARTHQUAKE

The size of an earthquake is most typically represented for
engineering purpocses in terms of the earthguake magnitude. The
magnitude 1is calculated from measurements recorded on seismo-
graphs but is, of course, independent of the point of observa-
tion. Several different magnitude scales are currently in use,
the most common of these being the local magnitude, M. ; the
surface wave magnitude, MS; the body wave magnitude, MB; and the
moment magnitude, M, Choice of which magnitude measure to use
is governed to a considerable extent by the characteristics of
the event itself. The means of defining each and the normal
application of each is summarized in Table A-1. The relative
values of the different magnitude scales is illustrated in
Figure A-3.

Physically, <the magnitude has been correlated with the
energy released by the earthquake, as well as the fault rupture
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length, felt area, and maximum fault displacement. Several

magnitude vs. fault rupture length correlations derived using
worldwide data are shown in Figure A-4; similar curves have been
derived for specific areas and specific types of faults. In
current engineering applications, such curves are used in
estimating design earthgquakes. For such estimation the fault
rupture length is usually assumed to be equal to 1/2 or 1/3 of
the total length of existing faults (Slemmons, 1977).

A.3.2 INTENSITY OF THE GROUND MOTION

Both gualitative and quantitative measures have been used
to characterize the intensity of the gfound shaking. Qualita=~
tive measures are based on observed effects of the earthquake
motions on people and on structures and their contents. The
various intensity scales, such as the Rossi-Forel and Modified
Mercalli scales, are examples of qualitative measures of the
ground shaking. Quantitative measures, on the other hand,
correspond to gquantities for representing the intensity of the
shaking that are obtained directly from ground metion time
histories. Typically a single parameter is used to describe the
intensity. Peak acceleration, peak velocity, peak displacement,
spectrum intensity, root-mean-square acceleration, and Arias
intensity are among the parameters that have been used for this
purpose. ©Of these, the most widely used measure is the peak
ground acceleration. However, it should be remembered that peak
ground acceleration is not a good indicator of the damage
potential of ground motion; i.e., it is repetitive shaking with
strong energy content that leads to structural deformation and
damage. As a result, the term "effective acceleration" has been
used to refer to an acceleration which is less than the peak
free~-field acceleration and is more representative of the damage
potential of ground motion (Newmark and Hall, 1982).

In view of the emphasis on peak ground motion that would be
experienced at a site, considerable attention has been devoted
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to developing attenuation relationships. These are empirical
relationships derived from measured free-field data on ground
motion strength, duration parameters, magnitude, distance, and
in some instances, site conditions. Not surprisingly, attenua-
tion relationships have been most commonly derived for peak
acceleration. However empirical relationships for ©peak
velocity, peak displacement, and the other single-parameter
measures of the intensity of the ground shaking have alsoc been
developed. Several relationships for peak acceleration are
summarized in Table A-2 for illustrative purposes.

Since the empirical attenuation relationships are derived
through statistical regression, the form of the equation can
vary markedly from one investigator to the next. However, the
resulting attenuation curves are, in general, more sensitive to
the availability of strong motion data than to the regression
equation form. A comparison of recent peak acceleration vs.
distance correlations derived using strong motion data is given
in Figure A-5. The figure illustrates that the wvarious correla=-
tions are in relatively good agreement for earthquakes of
magnitude 6.5. The quality of this agreement may be attributed
to the large data base for earthquakes of this magnitude. On
the other hand, the data base on 7.3 magnitude earthqguakes is
more limited and the relationships diverge substantially at a
distance less than 10 km from the fault. Accordingly, one is
led to the conclusion that while such relationships provide a
valuable basis for developing seismic design criteria where data
are ample, they should be used with caution for conditions where
the data are sparse or nonexistent.

A.3.3 FREQUENCY CONTENT OF THE GROUND MOTION

To define the frequency content of the ground shaking, a
frequency spectrum is required. Two types of spectra are widely
used in current earthquake engineering practice. One type is
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the response spectrum, which is useful because it indicates
ground motion frequency characteristics in a form that is of
most direct application to structural analysis and design,
especially where linear response 1is to be estimated. The
response spectrum is defined as a plot of the maximum response
of a single=-degree-of-freedom oscillator, as a function of its
frequency and damping ratio. This response can be plotted in a
linear form or in the more familiar logarithmic, tripartite
form. A brief explanation of how this type of response spectrum
should be interpreted is provided in Figure A-6.

. The second principal type of frequency spectrum is the
Fourier Amplitude spectrum, which 1is defined as a plot of the
amplitude of the relative velccity for an undamped single-
degree-~of-freedom oscillator at the end of the record as a
function of its frequency. Such spectra have been used in
studies of ground shaking and strong motion seismology for site
amplification studies at strong motion accelerometer stations,
evaluations of wave transmission characteristics recorded by
differential arrays of accelerographs, and source mechanism
studies. They are not considered further in this text.

A.3.4 DURATION OF STRONG MOTION

In addition to the strength and frequency content of the
ground shaking, the duration of strong shaking will also
influence the effects of the earthquake motion on the response
of structures. In particular, the number of excursions of the
structure into the nonlinear range is likely to control the
extent of permanent damage. Unfortunately there is, at present,
no single universally accepted approach for quantifying the
duration of strong shaking for a given ground motion accelero-
gram. Several approaches, including specifying the time between
the first and last excursions of ground acceleration above some
specified level, have been proposed; however these have not yet
been developed to a point where they can be incorporated into
routine seismic design criteria.
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A.4 SPECIFICATIONS OF SEISMIC INPUT CRITERIA

At present, the most widely used approach for specifying
seismic input criteria for surface structures is through devel-
opment of response spectra. Two aspects of this approach for
defining seismic design criteria should be noted. First, the
response spectra should be representative, not only of the
anticipated characteristics of the ground motion at the site,
but also of an acceptable level of structural response. Second,
a response spectrum approach should not be used if (1) the
structure's response is highly nonlinear; or (2) the structure
is sufficiently long that earthquake input motion could vary
significantly in amplitude and phase along its length. In these
cases the specification of seismic input criteria in the form of
motion time-histories is most appropriate. Definition and use
of motion time-~histories for design/analysis of underground
excavations are discussed in Chapter 2. The discussion
here is more relevant for free-standing structures, either on
the surface or within underground excavation, and serves
primarily to illustrate an alternative approache to definition

of seismic input criteria.

The two approaches currently in use for developing response
spectra — deterministic and probabilistic - differ in the method
used to account for the various uncertainties associated with
the earthquake process. The most important uncertainties are
the timing and location of future earthquakes of a given size
and the characteristics of the resultant ground shaking that

would be experienced at a particular site.

A.4.1 DETERMINISTIC APPROACH

Deterministic methods do not directly account for the
uncertainties in the occurrence of earthquakes. Instead,
gspecific earthquake events asscciated with particular faults or
other geologic features are identified, and the sizes {(magni-
tudes, epicentral intensities, etc.) and source-site distances

associated with these events are used for the development of the
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response spectra. Standard ground motion vs. distance attenua-
tion curves derived from statistical regression analyses are
used to establish the general levels of shaking at the site.
These' ground shaking 1levels are then used to derive response
spectra by scaling standardized spectrum shapes.

Standardized spectrum shapes are developed from statistical
analysis of response spectra with different levels of damping
for an ensemble of measured ground motion records either for a
variety of geologic settings or one specific type of geologic
setting. An example of a general response spectrum is given in
Figure A-7. That particular spectrum was adopted by the Nuclear
Regulatory Commission as a standard for design of nuclear
facilities.

Site dependent spectra are developed by grouping ground
motion records according to local site geology. Examples of
such spectrum shapes, which are incorporated in the ATC-3 provi-
sions for the development of seismic regulations for buildings,
are reproduced in Figure A-8.

A.4.2 PROBABILISTIC APPROACH

Probabilistic methods differ from deterministic methods in
that they use simple probabilistic models as tools for estima-
ting effects of uncertainties in the occurrence of earthquakes
and in the attenuation relationships. The occurrence of earth-
quake events in time and space within each potential earthquake
source 1is represented using a simple probabilistic model. Most
commonly, it is assumed that future earthquake events are
spatially and temporally independent. Accordingly, it is often
assumed that the future occurrence of seismic events in time can
be described as a homogeneous Poisson process with a uniform
occurrence rate. Also, the spatial distribution of earthquakes
in a particular source 2zone is almost always assumed uniform,
although any number of such zones can be defined as a basis for

A-10
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probabilistically modeling the ground shaking. In general,
earthquake magnitudes are considered to be exponentially distri-
buted. When coupled with applicable ground motion attenuation
relationships this approach leads to definition of the proba-
bility of exceeding a given level of ground shaking at the site.

The current practice in its simplest form is typically to
use peak ground acceleration as the single measure of the
strength of shaking at the site. Peak acceleration vs. proba-
bility curves are developed and are entered at a selected
probability level in order to define the peak ground accelera-
tion. This acceleration is then used to gcale a fixed spectrum
shape (which may be site-independent or site-dependent) in order
to obtain the site design response spectra. This approach is
summarized schematically in Figure A-9. However, because the
use of fixed spectrum shapes has certain limitations, some
investigators have developed procedures for probabilistically
defining the spectral amplitudes of the design spectrum on a
frequency-by-frequency basis. Although this approach would
appear to be more refined than the fizxed spectrum shape
approach, it does require frequency-dependent attenuation data
which often are not really available.

A=11
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FIGURE A-2.
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IN A SEMI-INFINITE ELASTIC MEDIUM
(Richart et al., 19740)
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FIGURE A-3.
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TABLE a-1. DEFINITION AND APPLICATION (Housner
and Jennings, 1982)
Magnitude Definition Application

Local, M,

Logarithm of peak amplitude (in microns)
measured on Wood-Anderson seismograph
at distance of 100 km from source and on
firm ground. In practice, corrections
made to account for different instrument
types, distances, site conditions.

Used to represent size of
moderate earthquake. More
cleosely related to damaging
ground motion than other
magnitude scales.

Surface Wave, Ms

Logarithm of maximum amplitude of surface
waves with 20-sec period.

Used to represent size of
large earthguakes.

Body Wwave, Mb

Logarithm of maximum amplitude of P-waves
with l+sec period.

Useful for assessing size
of large, deep-focus earth-~
quakes which do not gen-
erate strong surface waves.

Mement, M"

Based on total elastic strain-energy re-
leased by fault rupture, which is related
to seismic moment Moy (Mo = G+A'D, where
G = modulus of rigidity of rock, A = area
of fault rupture surface, D = average
fault displacement).

Avoids difficulty asso-
ciated with inability of
surface wave magnitudes to
distinguish between two
very large events of dif-
ferant fault lengths
{saturation).
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The response spectrum represents graphically the maximum
response of a simple damped oscillator to dynamic motion of its
base. Each point on the spectrum, shown above as a heavy jagged
line, corresponds to the response of an oscillator with a
frequency (f) denoted on the horizontal logarithmic scale and
the designated percentage of critical damping. The three other
logarithmic scales show the response quantities:-

. Maximum relative displacement between the mass and its
base (S.).
. Maximumd'pseudo velocity (S..). This quantity is by

definition equal to wS 4, here w 1is the circular
natural frequency (2rf).” It is close to the maximum
relative velocity at intermediate and high frequencies
and can be used to define the maximum strain energy
(1/2 msv2) stored in the spring.

. Maximum pseudo acceleration (Sa). This quantity is
by definition equal to wS_, or w2sy. It is the same
as the maximum acceleration when the system 1is
undamped and can be used to define the force (msa) in
the spring. The force {(R) can also be defined“from
the relative displacement using the relationship R =
de = mwzsd.

The popularity of the response spectrum derives largely from the
fact that the simple damped mass spring system is a useful
analogue of surface structures and provides a simple means of
estimating amplification factors for structures with different
natural fregquencies. The response spectrum may be used to
evaluate the response of free standing structures located within
the underground excavations, but is of little value for design
of the excavations themselves.

FIGURE A-6. THE RESPONSE SPECTRUM FOR EARTHQUAKE GROUND MOTION
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APPENDIX B~

THEORETICAL DEVELOPMENT OF SEISMIC RESPONSE WHEN
GROUND/STRUCTURE INTERACTION IS IGNORED

B.1 INTRODUCTION

This appendix provides a detailed description of the
assumptions made to arrive at the recomﬁended preliminary design
procedure for structures in soil and rock summarized in
Chapter 5. Part of this appendix overlaps the material pre-
sented in Section 5.4.1 but is included for clarity and ease of

reference.

As discussed before, the analytical method for estimating
the strains and stresses experienced by an underground struc-
ture when it conforms to ground motion is based on the theory
of wave propagation in an infinite, homogeneous, isotropic,
elastic medium. The casge 1s pertinent to most tunnels in rock
and many soils, since the liner stiffness is low in comparison
to that of the medium.

B.2 SEISMIC STRAINS

The particle motion associated with a plane wave propagat-
ing in the x-direction in an infinite medium can be represented
by

u({x,t) = f(x-ct) (B-1)
where t represents time and ¢ the apparent wave propagation

velocity.

The first and second derivatives of the displacement func-
tion with respect to location in time, t, and space, X, are

2
au 87u
22 = f/(x - ct) —x = f"{(x - ct)
ax 8x2
(B-2)
Su . s%u 2
ﬁ = =-¢c £ (X - Ct) _8? = ¢"f (X - Ct)
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From the above eXxpressions, the following relationships can be

derived
du _ _ 19u -
dx c 8t (B-3a)
and
azu 1 82u (B=3b)
8x2 c2 8t2
au . : Bzu
where 5x 1S _a measure of strain, — represents the curvature,
2 9X
and g% and é—% represent, respectively, the particle wvelocity
ot
and acceleration. In the special case where the displacement

function can be assumed as a sine or cosine function

= o 2T _ _
u=u sin § (x ct) (B-4)

where L is the wavelength and u the maximum displacement ampli-
tude, Equation B-3b yields

2 2

_2_1)2 1 2%u
c” at

u, (L = — (B-5)
wWith the maximum particle acceleration defined as an. the maxi-

mum displacement amplitude is given by

2 2
- L _{T
Yo = (2nc) 4y = (55) 2 (B-6)

where T represents the period of the wave. Of course, the above
equation is valid only for a sinusoidal wave.

For a P-wave, the particle motion is in the direction of
wave propagation (Fig. A-1) and, as a result, the axial or
longitudinal strain is given by

au2

€, = % 55 {B~=7)
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The axial strain can be related to the particle velocity of the
s0il (Eg. B-3a) as follows

au
=, & _ .1 - _
e, = % 3 =+ - (BR-8)

2
at
where cp represents the P-wave velocity. By setting the maximum
particle velocity due to P-wave equal to Vs the maximum axial
strain will be given by

V
5y = + P | (B-9)
m Cp

The strain normal to the x-axis and the shear strain are zero
because of the assumed nature of the wave.

For a shear wave, the particle motion is in the direction
perpendicular to that of wave propagation (Fig. A-1) and, as a
result, the shear strain is given by

Q@

u
y = 3 (B-‘lO)

-
s

The shear strain can be related to the particle velocity of the
soil as follows
au

n _ 1l - -
e Eai (B-11)

S S
where Cg represents the apparent S-wave velocity. By setting
the maximum particle velocity equal to Vs’ the maximum shear
strain will be given by

vF."a
= = (B-12)

b
m 8

In this case, the longitudinal and normal strains are zero.

In addition, a shear wave gives rise to a curvature along
the direction of wave propagation which can be defined
{Eg. B-3b) as



i (B-13)

By setting the maximum particle acceleration due to shear wave

equal to a.. the maximum curvature will be given by

a

1. -
5 (B-14)

Q
n N

Finally a P- or S-wave propagating at an angle ¢ to the axis of
the structure will cause longitudinal, normal and shear strains
which are summarized in Table 5-1. The curvature along the axis
of the structure is also given in the table. Each of these
guantities can be maximized by adjusting the value of the angle
of incidence, ¢. The maximum value for each gquantity is shown
in Table 5-1.

The strains experienced by the tunnel structure can be
easily calculated 1f the structure is treated as a simple beam.
The design strains and curvatures are given directly by
Table 5-1. The combined longitudinal strain from axial deforma-
tion and bending is also of interest. This strain is given by

Y Ra
3 =R cosz¢ + —£ sin ¢ cosz¢ (B-15a)
ap c 2 ,
P c
p
for a P-wave, and by
Vs Ras 3
Eas = E; sing cosp + ;5— cos™ ¢ (B-15b)
s

for an S-wave where R represents the distance from the neutral
axis to the extreme fiber of the tunnel cross-section. It is
apparent from the above expressions that the maximum value for
the axial strain and bending strain occur at different values of
the angle of incidence and, as a result, the value of ¢ that
will maximize the longitudinal strain varies depending on the
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dimension of the structure. An upper 1limit to the combined
longitudinal strain is given by the sum of the maximum of each

of the axial and bending strain, i.e.,

v Ra 0° axial strain
&om = EE + 0.385 ~§R ;o0 o= (B-162a)
p P cp 35° 16' bending strain
for a P-wave where i, and
VS RaS 45° axial strain
fsm " 2c. Ytz 7 ¢ 7 , ‘ | (B-16D)
S cq ' 0° bending strain

for an S-wave. Noting that

- JZ(l-v)
Cp = YTi-2v) Cq (B=17)

it can be easily shown that, in a medium with a Poisson's ratio
smaller than 0.33, +the maximum axial strain is due to a com-
pressional wave 1f it is assumed that the particle velocities
due to P- and S-waves are egual. The bending strain is usually
much smaller than the axial strain. As a result, the upper
limit for the combined longitudinal strain is, in general, due

to a compressional wave.

B.3 SEISMIC STRESSES

Once the strains have been evaluated, the stresses in the
medium around the tunnel structure can be estimated by using the
three-dimensional constitutive relations for a linear, elastic,
isotropic material; namely,

o, = (1+v)?l-2v) [(1~v) £ + v(ay + sz)] (B~18a)
and
Tey = C Yxy (B-18b)

Be§
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in which Oy and txy are, respectively, normal and shear stress,
and E, G, and v the elastic modulus, shear modulus, and
Poisson's ratio of the medium. The maximum stresses in the
medium due to body waves along with the angle of incidence for
the wave are summarized in Table 5-2. These values were found

as follows.

For a P-wave, the strain components for a wave propagating

parallel to the axis of the tunnel are (from Table 5-1)

= R
8 =
X C
p
{B-19)
Sy =&, = 0
From Equation B-18a, the normal stress is given by
v
g = i) E _p (B-20)

p {(1+v)(1-2v) cp

The maximum shear stress 1s obtained for a wave traveling at
45 deg to the axis of the structure and is given by

v
1. = G =B~ (B=21)

For a shear wave, the maximum normal stress is obtained for a
wave propagating at 45 deg to the axis of the structure. In
this case, the strains are equal to

\

— — s —
g = Sy = EE; (B=22)

e =0
z

The maximum normal stress i1s thus given by

v

_ E s '
°s T W) (-] 2c, (B-23)

The maximum shear stress is obtained when the wave is travelling
parallel to the axis of the structure and is given by
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<

1. =G E—z- (B=24)
It is interesting to know that for a medium with a Poisson's
ratio greater or equal to 0.19, the maximum normal stress in
that medium is due to a shear wave rather than a compressional
wave. In the above conclusion, the particle wvelocity due to
P-wave and that due to S-wave are assumed to be egqual. The
maximum shear stress is also due to a shear wave.

The maximum stresses in the medium resulting from P- and
S-waves are summarized in Table 5-2. These are, of course, the
free-field stresses that would be used as boundary conditions if
simple continuum models are to be used for design of lined or
unlined tunnels. If, instead, the tunnel structure is treated
as a simple beam, then the stresses are obtained by using the
equations from beam theory and the strains and curvature given
in Table 5-1; namely, the axial stresses are given by the
relation

where ¢ is the axial or longitudinal strain and E is the elastic
modulus of the tunnel section material, and the bending stresses

are given by

where R 1s the distance from the neutral axis of the tunnel
section and p is the radius of curvature. For example, for a

shear wave the maximum axial stress is given by

E’Vs
o4 = E £y T 3G (B-25)
S
and the maximum bending stress is given by
, E’'Ra
E'R S
b p ci



The upper limit for the longitudinal stress is given by the sum
of the maximum for the axial and bending stresses. This

approach is conservative since the maxima do not occur at the
same time.

Be8
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APPENDIX C

THECRETICAL DEVELOPMENT OF SEISMIC RESPONSE WHEN
GROUND/STRUCTURE INTERACTION IS CONSIDERED

C.1 INTRODUCTICN

This appendix provides a detailed description of the
assumptions made to arrive at the recommended preliminary design
procedure for subagueous tunnels summarized in Chapter 5. Part
of this appendix overlaps the material presented in Chapter 5
but is included for completeness, clarity and ease of reference.

As discussed in Chapter 5, the analytical procedure for
estimating the forces experienced by structures that do not
conform to the ground'motion during seismic excitation is based
on the theory of wave propagation in an infinite, homogeneous,
isotropic, elastic medium, and the theory for an elastic beam on
an elastic foundation. The equations for wave propagation are
used to determine the free ground deformations or the ground
deformations in the absence of the tunnel structure. Since the
tunnel structure is stiffer than the surrounding soil, the
structure will not conform to the free ground deformations. The
beam theory is necessary to account for the effects of inter-
action between the soil and the tunnel structure. This approach
parallels, in part, the procedure developed for the design of
the Trans~Bay Tube for the San Francisco Bay Area Rapid Transit
(Parsons Brinckerhoff, 1960), and the work of several investi-
gators (Kuribayvashi et al., 1975 and 1977).

In the following discussion, the procedure outlined above
is developed. The effects of first transverse horizontal shear
waves, and subsequently vertical shear waves and compressional
waves are considered, and the equations needed to estimate the
forces acting on a subaqueous tunnel structure during an earth-
quake excitation are derived.



C.2 FORCES DUE TO TRANSVERSE-HORIZONTAL SHEAR WAVES

A tunnel structure subjected to an incident sinusoidal
shear wave with a wavelength [ and amplitude A, as shown in

Figure C-1, will experience a transverse displacement,

_ : 2nx _
uy = A cos ¢ sin f7€3§_§ (C~-1)
and an axial displacement,
u,. = A sin ¢ sin ~2NX (C=2)
X L/cos ¢

where ¢ 1s the angle of incidence between the direction of wave
propagation and the axis of the structure. Assuming the struc-
ture behaves 1like a beam, the curvature due to transverse
displacements is given by

2

3% u 2
1l _ _ _ {2&n 3 . 2nX _
5 = _3;5X = (f_)- cos” ¢ A sin (E?EEE_E) (C-3)

where p is the radius of curvature. The resulting forces in the

tunnel structure are (a) a bending moment,

2
_E'I _ [2nm 3 . 2RX _
M= 5= = (L ) cos” ¢ E'I A sin (57555“5) (C-4)
(b) a shear force,
8x ~ \L L/cos ¢

(c) an egquivalent load dehsity (load per unit length) necessary
to cause the curvature,

4 .
- 9V _ (2n 5 , . 2nx ) _
P = 5% - (L ) cos”™ ¢ E'TI A sin (E7ES§-5 (C-6)
and (d) an axial force,
_ {2n : ' 2nx _
Q = (L ) sin ¢ cos ¢ E'A_ A cos (L/cos ¢) (€-7)
where E’, I, and Ac represent, respectively, the elastic

modulus, the moment of inertia, and the cross-sectional area of
the tunnel structure.
c-2
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These forces and bending moments are experienced by the
tunnel structure 1if, as assumed, there 1s no soil/structure
interaction. However, we are considering the case when the
structure is stiffer than the surrounding medium. Accordingly,
it will distort less than the free ground deformations and there
will be interaction between the tunnel structure and the sur-
rounding medium. This interaction can be taken into account if
it is assumed that the tunnel structure behaves as an elastic
beam supported on elastic foundation. In that case, the differ-
ential equation for the tunnel structure can be written as

d4 u

E'I t-op (C-8)

dx4

where U, represents the actual displacement of the structure and

P represents the pressure between the structure and surrounding
soil. If it 1is assumed that the soil provides a support that
can be idealized as a series of linear elastic springs, then the
pressure P can be written as

P = K (qy - u (C~-9)

h £)

where K, corresponds to the transverse horizontal foundation

h
modulus of the surrounding medium, and is equal to the spring

constant per unit length of the structure. The differential
equation for the beam structure is, therefore,

4
3" up

3 X4

4 =
E'I + Kh u K

" n uy (C=10)
The curvature of the tunnel structure obtained by solving the
above equation 1is smaller than the curvature given by Equa-

tion C-3 by a factor

(C-11)
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The forces to which the tunnel structure is subjected can be
obtained by multiplying Egquations C-4 through C-6 by the above

reduction factor. The bending moment in the structure is thus
given by
2m)® s
- L cos” ¢ ' . 2nX _
TR (2n)4 z ~ E'L A sin (L/cos @) (c-12)
== (==]" cos~ ¢
K L
h
the shear force by
B
_ L cos” o \ ( 2nx ) _
E'l A cos L/coss (C=-13)

(2] s \
- L cos” & . 2nx _
P ; a E'I A sin (L/cos¢/ (C-14)
1+ B2L (§£ cos® ¢
Kh L

The same approach can be used to derive the expression for
the axial force. In this case, the governing differential
equation is

d2 u
a

5 - ) ({C-15)

a b.4

! =
E Ac + Ka {u

dx
where u_ is the actual axial deformation of tunnel structure and
Ka corresponds to the axial foundation modulus of the surround-
ing medium. The axial deformation given by Equation C-2 should

be reduced by the factor R, given by

- 1 -
Ry = BA_ [ 12 X (C-16)
1 + 00— (——) cos” ¢
K L
a
which is obtained by solving the above differential equation.
The axial force experienced by the tunnel structure is,

therefore,
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_ L / sin¢ cosd 2nx ) _
Q= ETh > E'A_ A cos (L/cos¢ (C=-17)
1 + T c (%ﬂ) cos2 0}
a /

which is obtained by reducing the axial force given by Equa-
tion C-7 by the factor R, .

The design forces are obtained by maximizing the expres-
sions for bending moment, shear force, pressure, and axial force

with respect to (a) location along the tunnel structure; (b} the

angle of incidence, ¢; and {(c) the wavelength, L. The first
e . . . 2% 2nx
condition 1s met by setting sin (E?EBEE and cos (E?EEEE) equal

to unity. The second condition is met by setting the partial
derivatives of Equations C-12 through C-14 and C-17 with respect
to ¢ equal to zero. The value of ¢ that will maximize the value
of the bending moment, shear force, and pressure is zero which.
corresponds to a wave parallel to the axis of the tunnel struc-
ture. There is no value for ¢ that will maximize the wvalue of
the axial force and which 1s independent of the properties of
the structure and surrounding soil medium. It is recommended
that an angle of incidence of 45 deg be used in design. This
value of ¢ will maximize the wvalue of the axial force when the
soil/structure interaction is neglected (Eg. C-6). The maximum

forces are thus given by

M = , 7 E'I.A (C-18)
S E
K, \L
2]
V = L E‘I.A (C"lg)
m ' 4
1+ E'I (Zn)
K. \T
h
)
P = L ET.A ' (C-20)
m E'L (2n)
trro o\
h



L
= E'A_.A ) (C-21)

c | 2n 2 ¢
2+ (ﬂ-)
Ka L

As noted above, Equations C-18 through C-21 need to be
maximized with respect to the wavelength, L. Before this step
can be taken, the expressions for the foupdation moduli, Kh and
K need to be defined. The process of definitiqn reqguires some
explanation since both depend on the wavelengths of the ground
motion to which the structure is subjected.

C.2.1 FOUNDATION MODULI UNDER HORIZONTAL LOAD

The foundation medulus 1s defined as the ratio of the
pressure between the tunnel structure and surrounding medium and
the reduction of free digplacement in the medium due to the
presence of the tunnel structure, Eguation C-9. To arrive at an
estimate for the foundation moduli, the two-dimensional, plane-
strain solution te the Kelvin's problem 1is used. Kelvin's
problem is an example of a singular solution in elasto-statics
of a concentrated force at a point in an infinite, homogeneous,
isotropic, elastic medium. This problem is illustrated in
Figure C-2. The equation defining the vertical displacement,
uy’ along the X-axis due to a vertical concentrated load Uy, can
be written as

_ 3 = 4v) o -
uy«—-ém%!lnx (C=-22)

where G and v represent, respectively, the shear modulus and

Poilsson's ratio of the elastic medium.

In the present application, the solution corresponding to a
sinusoidal load in an infinite elastic medium is sought. Since
no closed-form solution to this problem exists, a numerical
procedure should be used. The procedure involves, first the
solution to the case of a constant pressure applied to a finite
strip in an infinite body is derived. The solutidn for a sinu~

soidal distribution of loading can then be found by dividing the



wavelength inte several segments and assuming the pressure on
each segment to be constant. In the present case, this
procedure 1is applied to calculate the displacements under a
sinusoidal line load. Each wavelength was divided in 10 and
20 segments and a line load of 4, 6, 8, and 10 wavelengths were
considered. It was found that the calculated displacements
became insensitive to the number of wavelengths when the latter
exceeded 6, and that 10 segmenis were enough Lo represent each

wavelength.

As a result of this analysis, the vertical displacement
under a sinusocidal load may be approximated by

_ (3 = 4v) . 2nx
Uy T TIén(i-vye M SR L

(C=-23)

where ¢ represents the maximum amplitude of the pressure. For
a tunnel structure with width d and subjected to a horizecntal
shear wave, the pressure may be defined as the load per unit
length over the width of the tunnel structure, or

P
g = q (C~-24)

Substitution of the above equation in Eguation C-23 yields a.

maximum amplitude for the displacement given by

-6 -4v) L (C~25)

Yym T 16rG(1-v) d

from which the foundation modulus can be defined as follows,

_ P _ 16nG(1-v) d _
mTu, TG-@) (C-26)

This expression for the foundation modulus is consistent with
the derivation of Biot (1965) for the case of an incompressible

material.

The procedure described for the case of a vertical sinu-
soidal load applies for the case of an axial sinusoidal load.
1t yvields the same value for the foundation moduli of the soil
medium in both axial and transverse horizontal directions; i.e.,

Ka = Kh.



The above expression for the elastic modulus can be written

in a more convenient form

_ _ 2nC
Kh = Ka = 1 (C-27a)
where
_ 8(1-v) - 4(1-v) .
c = m‘:‘*j—)' Gd = (3=dvy (17v) Ed {C-27b)

The reascon for this form will be apparent later.

C.2.2 DPESIGN FORCES DUE TO TRANSVERSE-HORIZONTAL SHEAR WAVES

The maximum wvalues for the bending moment, shear force,
pressure, and axial force are given by Eguations C-18 through
C-21. The expressions for design forces are found by maximizing
these equations with respect to the wavelength. 1In the follow-
ing, the expressions for design forces are derived for two
cases, In one case the foundation modulus is assumed to be
constant or independent of the wavelength, while in the other it
is assumed to be a function of the wavelength and is given by
Equation C-27. The purpose 1is to study the effect of the
variation of the foundation modulus on the design values since
the expression for the foundation modulus derived in the above
section may not apply in some cases.

The design wvalue for the bending moment is obtained by
setting 9M/9L = 0 in Equation C-18. If the foundation modulus
is assumed tc be independent of L, the value of the wavelength
that will maximize the value of the bending moment is given by

1/4

E'I
L = 2n (—-) (Cc-28)
my Ky

and the bending moment is given by

1 1/2 _
Mdl =3 (KhE'I) A (C=-29)

On the other hand, if Kh is assumed to be a function of

the wavelength, L, as given by Equation C-27, then the value of

Cc-8
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the wavelength that will satisfy the condition 8M/8L = 0 is
given by
1/3
_ E'I
Lm2 = 2mn (_ZC‘ ) {C-30)

and the bending moment is given by

My = % (a £11c2y/3 (C=31)
2

where C 1s given by Equation C-27b. These equations for the
wavelength and bending moment can be rewritten as

1/4

E'I
by, = 27 (E*g) (C-32)
and
My = i% (E’I Kh)1/2 A ' (C-33)

in order to compare them with the corresponding equations
derived for the case where Ky is assumed to be independent of
the wavelength. It 1is interesting to note that the values of
the bending moment given by Eguation C-29 and Equation C-33 are

within 10%.

For the shear force, the value of the wavelength that
satisfies the condition 98V/3L = 0 when Kh is assumed to be
independent of L is given by

1/4 ‘
L, = 2n (%%l) (c-34)
1 h
and the shear force is given by
_ 3 (L grog 3)1/4 }
vdl =z (3 E'IK, ) A (C-35)

In the case where K, 1is assumed to be a function of the wave-

h
length, the shear force is maximum for L equal to zeroc and is

given by



\% = CA (C=36)

where C is given by Eguation C-27b.

For the pressure, the value of the wavelength that satis-
fies the condition 8P/9L = 0 when Kh is assumed to be indepen-
dent of L is equal to zero, and the pressure is given by

A (C=37)

In the case where Kh is assumed to be a function of the wave-

length, the pressure is maxXimum for

Ly, = 2 (%%i);/4 = 21 (%él)l/s (C-38)
and is given by
- 4 /3 _
sz = % K, A = % (ggf) A (C-39)

where C is given by Eguation C-27b.

For the axial force, the wvalue of the wavelength that
satisfies the condition 9Q/8L = 0 when Ka is assumed to be
independent of L 1is given by

E'A_ 1/2
LQl = 2n ( 5 ) (C-40)
and the axial force is given by
Y ! 1/2 _
Qq =37 (2 E'A_K.) A (C-41)

1

In the case where Ka is assumed to be a function of the wave-
length, the axial force 1s maximized for L equal to zero and is

given by

Qq = CA (C=-42)
2

where C is given by Equation C-27b.
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The design forces resulting from transverse-horizontal
shear waves are summarized in Table C-1 for the two cases underx
consideration. It is recommended that the equations derived for
the second case, or the case where the foundation modulus 1is
assumed to be a function of the wavelength, be used unless it is
believed that the approach used to derive the foundation modulus
does not apply for the case under consideration.

C.3 FQORCES DUE TO VERTICAL SHEAR WAVES

The same procedure described above for the case of
transverse-horizontal shear waves can be applied to the case of
vertical shear waves. As a result, the forces acting on the
tunnel structure due to a vertical shear wave are also given by
Equations C-18 through C-21. However, the value of the founda-
tion modulus and the wave amplitude should correspond to that of
a vertical shear wave.

C.3.1 FOUNDATION MODULUS UNDER A VERTICAL LOAD

In the case o0f a transverse-horizontal shear wave, a
singular solution in elasto-statics corresponding to a line load
in an infinite, homogeneous, isotropic, elastic medium was used
to derive an expression for the foundation modulus. In the case
of a vertical load, the above assumption of an infinite medium
may not apply if the s0il medium above the tunnel structure is
much softer than the soil medium below it. It is thus prefer-
able to use a solution based on a load on a semi~infinite
medium. A solution similar to that of Kelvin's problem but for
a locad on a semi-infinite medium exists and is known as the
Flamant's problem. In this case the vertical displacement u,

L

due to a vertical concentrated force can be written as

u, = - L%%%l oy (¢n |xl - ¢n ]al] (C-43)

where a is a constant and corresponds to a rigid body motion.
It should be noted that the above equation is similar to equa-

tion C-22 and as a result, the same solution procedure used in

c-11
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the previous problem applies. As a result,' the foundation

modulus 1is given by

_  2nG d -
KV = TIv) T {C~44)

which can be written in a more convenient way as

_ 2nBk ’ .
KV = =5 {(C~45a)

where -

_ _Gd Ed
T (I-v) T Z(I-v (T (C~45b)

B

C.3.2 DESIGN FORCES DUE TC VERTICAL SHEAR WAVES

The same procedure used in Section €.2.2 to obtain the
design values for the bending moment, shear force and pressure
when the structure is subjected to transverse-horizontal shear
waves applies for the case of a vertical shear waves. Only the
constant C, which appears in the eguation for the foundation
medulus, should be replaced by its equivalent B which was
derived in the above section. As a result, the design values

for the case are given by

1 2 1/3
- i H -
My = 5 (4 E'IBY) A (C-46)
Vd = B A (C-47})
4\ 1/3
_ 4 [aB -
Fa 73 (EI) A (C-48)

where B = G4/(1-v).

‘The design value for the axial force is the same as that
given by Equation C-42 since the foundation modulus in the axial
direction is the same as that in the case of transverse hori-
zontal shear waves, The axial force is thus equal to
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qa - CA (C=-49)

where C 8(1l-v) GA/(3-4v).

In all of the above expressions, the wvalue of the dis-
placement amplitude A 1is obtained from the design spectrum
for wvertical shear waves or taken egual to 1/2 to 2/3 of the
displacement due to transverse-horizontal shear waves.

C.4 FORCES DUE TO COMPRESSIONAL WAVES

The same approach used to analyze a tunnel structure sub-
jected to a shear wave can be used to study the effects of a
compressional wave. In this case, the curvature of the struc-
ture is given

2
% = (%E) sin ¢ cos? o A sin (57%%2—5) (C=50)

It is apparent by comparing the above equation to Equation C-3
that the curvature of the tunnel structure due to a compres-
sional wave is smaller than that due to a shear wave. As a
result, the bending moment and shear force in the tunnel are
smaller when the structure is subjected toc a P-wave than when it

is subjected to a S-wave.

The tunnel structure when subjected to a P-wave will also

experience an axial deformation given by
2nx ) (C-51)

u,_ = A cos ¢ s1in (E?EBg_a

X
As in the case of S-waves, the theory of an elastic beam on an
elastic foundation yields a reduction factor for the axial
deformation given by

_ 1 (C=52)

Ry = ETA_
L2

a

[ye)

2
n 2
E—) cos ¢
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The axial force is thus equal to

2n

== cos ¢
_ L , . 2nX ~
Q = TR 3 E AC.A.Sln (E?EEE_ﬁ) (C=-53)
1 + 7 < (iﬂ) cos2 0}
a

The maximum value for the axial force is obtained by setting
(a) sin (E7%%§_5) equal to one, and (b) 98Q/6¢ = 0. The angle of
incidence that satisfies the second condition is equal to zero
which results in a wave parallel to the axis of the structure.

As a result, the maximum axial force is given by

2n
L
Q = = 5 E'A-A (C=54)
1+ ¢ (2&)
K L
a

The above expression needs to be maximized with respect to the
wavelength, L. Agaln, two cases will be considered. The first
case corresponds to a foundation modulus, Ka’ equal to a
constant or independent of the wavelength. The second case
corresponds to a foundation modulus that is a function of the
wavelength and is given by Equation C-27. In the first case,
the wvalue of the wavelength that satisfies the condition
8Q/8L = 0, is given by

g'a |\
LQ = 2n T (C-55)
1 a ’
and the axial force is given by
-1 1/2 _

1 :

In the case where the foundation modulus 1s given by Equa-
tion C-27, the wvalue of the wavelength that will maximize the

axial force is equal to zero and the axial force is given by

Q. = CA. (C-57)
d,

where C is given by Equation C-27b.

C-14
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It is apparent that both assumptions for the fcundation
modulus yields the same value for the axial force. This above
expression 1is alsc the same as that obtained for a tunnel
structure subjected to a shear wave. However, in this case the
value of the displacement amplitude, A, corresponds to that of
compressional waves which is, in general, smaller than that for
shear waves. As a result, the maximum bending moments, shear
and axial forces in the tunnel structure are, in general, caused
by shear waves.

Csl3



TABLE C-1. DESIGN FORCES RESULTING FROM TRANSVERSE-

HORIZONTAL SHEAR WAVES

Case 1.

Bending Moment = % (Kh E:’I)l/2 A
Shear Force =
Pressure = K, A

. -1 '
Axial Force = (2 Ka E Ac)

Case 2.

Bending Moment = 12 (K E’I)l/z A=z (4 c? E’I)l/3 A

3 h
Shear Force = CA
4 1/3
Pregssure = % Kh A = % (%gf) A
Axial Force = CA
E’ = Modulus of elasticity of tunnel structure

Foundation Modulus is Independent of the wavelength

1 3 o
(§ Kh E I) A

ST

1/2
2 A

Foundation Modulus is a Function of the Wavelength

A _ = Area of tunnel cross section
I = Moment of inertia of tunnel cross section

d = width of tunnel

E = Modulus of elasticity of soil medium

v = Poisson's ratio of soil medium

Ky = Foundation modulus for transverse-horizontal
Ka = Foundaticn modulus for axial load

c= 23w gg

(3-4v) (1+v)

C=1l6
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APPENDIX D

APPLICATIONS

D.1 INTRODUCTION

Three examples on the seismic degsign of underground struc-
tures are included in order to illustrate the application of the
methodology described in this report. One example is for the
case where the structure is stiff compared to the surrounding
medium and it resists the ground motion, and the other two are
for the case where the structure is flexible compared to the
surrounding medium and it conforms to the ground motion.

D.2 EXAMPLE OF A STRUCTURE THAT RESISTS GROUND MOTION

To 1illustrate the application of the methodology developed
for structures that resist ground motion, the design conditions
for the Trans-Bay Tube of the San Francisco Bay Area Rapid
Transport (SFBART) system are considered (Parsons Brinckerhoff,
1960). The properties of the submerged tube and the surrounding
s0il medium are summarized in Figure D-1. The solution proce-~
dure involves three steps: (1) calculation of maximum forces
due to transverse horizontal shear waves; (2) calculation of
maximum forces due to vertical shear waves; and (3) calculation
of design forces due to combined effects of horizontal and
vertical shear waves. The operations involved in the first and
second steps are illustrated in Tables D~1 and D-2, respec-
tively. The maximum values of the bending moment, shear, and
axial forces are then combined using the square root of the sum
of the squares of the values calculated in Steps 1 and 2, to
obtain the design value {(Step 3) for each quantity. The design

values are summarized in Table D-3.

The design forces calculated using the recommended design
procedure compare very well with those calculated in the actual
preliminary design analysis of the Trans Bay Tube, provided that
the same displacement amplitudes given by Parsons Brinckerhoff
(1960) are used. No attempt has been made to redefine the

D=1



seismic environment for this structure. In this example,
ground/structure interaction reduced the maximum bending
moment and shear force applied on the structure by a factor of

3 and 2, respectively.

D.3 UNLINED EXCAVATION IN ROCK

In this example we consider whether special ground support
would be required for underground excavations in welded tuff, at
a site at which the peak particle velocity due to an earthguake
is estimated to be 28 cm/s. The P-wave velocity and density for
the welded tuff are estimated to be 3000 m/s and 2.2 g/cu,
respectively. From Table 5-1, the peak longitudinal and normal

strains resulting from a P-wave will be:

v -4
e = & EE = + 1.0 x 10
p

The corresponding normal stress is, from Table 5-2,

\Y
(1-v)E B = +p cp2 € =z + 2 MPa

“m T T (1-2v) <
where the designation = has been adopted to denote the fact that

the stresses are superimposed upon the initial field stresses.

The potential significance of the induced stresses will
depeﬁd very much upon the initial stresses. In the case con-
sidered, the excavations are relatively deep, and the pre-
excavation vertical stresses are in the range of 7 to 9 MPa.
The pre-excavation horizontal stresses have not been measured,
but it is very likely that they exceed estimated peak seismic
loading of 2 MPa. In that case, P-waves propagating parallel to
the tunnels would be unlikely to cause serious loosening of the
roof. P-waves propagating perpendicular to the tunnel axis
could temporarily result in low total horizontal_stresses, with
some potential for joint opening and joint shear displacement.
The rock support system should be designed to be sufficient to
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inhibit large block movements and minor rock falls. In view of
the rather low peak ground motions and total stress, rockbolts
and wire mesh would probably prove to be satisfactoryv.

D.3.2 UNDERGROUND BOX STRUCTURE IN SOIL

Recently a finite element analysis of a tunnel structure in
a soil medium has been carried out by Agbabian Associates (1985)
in support of the development of seismic design criteria for the
Metro Railil Project of the Los Angeles area. A three-dimensional
analysis of the soil/structure system shown in Figure D-2 was
performed as part of this investigation. In addition, three
two~dimensional analyses have been completed. The latter cor-
respond to a vertical slice through the cross section of the
tunnel, a wvertical slice through the length of the tunnel and
soil medium, and a horizontal slice through the length of the
tunnel and soil medium. The results from the 2-D and 3-D models
were in good agreement. Further, the results showed that this
particular structure closely followed the surrounding soil
medium with very little ground/structure interaction. A compar=-
ison of the horizontal motion of the soil and structure at the
level of the roof slab is shown in Figure D~-3. As a result, the
racking deformation experienced by the structure were similar to
those calculated for a free-field medium. This verifies that
the basic assumption inherent in the development of design
provisions for underground structures with flexible liner are
indeed wvalid.
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TABLE D-1. DESIGN FORCES DUE TO TRANSVERSE~HORIZONTAL SHEAR WAVES
ILLUSTRATIVE CALCULATION — SEFBART

C = FEE TR B4 = tommeeaey(ieoraey 3738 x 10° x 35

c=1.722 x 16° 1b/ft

My = 173 (aE'1¢5)Y% A = 1/3 (4 x 1,611 x 1077 x (1,722 x 105)%)3 4
My = 4.14 x 10° A lb-ft

V.=CA=1.722 x 105 & 1b

Qg4 =CA =1.722 x 108 A 1b

4 1/3 8,4\1/3
Py = 4/5 2= A =4/5 (4 Q22 x 10 ) A
e 1.611 x 10
3 6
Py = 4.82 x 10° A4 1b/ft

If the values of the amplitude, A, obtained for the SFBART are
used, then the design forces are given by:

My = 4.14 x 107 x 0.01854 = 7.68 x 10’ 1lb-ft
vy = 1.722 x 10% x 0.01144 = 1.97 x 10° 1b
Py = 4.82 x 10% % 0.00786 = 3.79 x 10% 1b/ft

The corresponding values for SFBART were respectively 7.78 x 107

1b-ft, 1.69 x 10° 1b and 4.93 x 10% 1b/ft.
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TABLE D-2. FORCES DUE TO VERTICAL SHEAR WAVES
ILLUSTRATIVE CALCULATION — SFBART

6
_ Ed _3.738 x 10° % 35 _ 7
B = s@coy(isv) ~ 2(1-0.49)(170.456)" 9-608 x 10" Ib/ft
Md = % (4 x 1.611 X 1013 X (8.608 x ]_07)2)1/3 A
My = 2.61 x 10% A 1b-ft
Vy = B.61 x 10/ A 1b
7

Qd = 8.61 x 10" A 1b

P, = A=1.91 x 10° A 1b/ft

d 13

4 (4(8.608 % 107)4)1/3
>\ 1.611 x 10

If the values of the amplitude, A, are assumed to be egual to 2/3
of those for the transverse-horizontal shear wave, then the design

forces are given by

My = 2.61 x 102 x 0.01236 = 3.23 x 10’ 1b-ft
_ 7 5

V, = 8.61 x 10’ x 0.00763 = 6.57 x 10° 1b

Py = 1.91 x 10° % 0.00524 = 1.0 x 10% 1b/ft

The corresponding values for SFBART were respectively 5.06 x :l.O'7

1b-ft, 1.04 x 10° 1b and 2.8 x 10% 1b/ft.
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TABLE D-3. COMBINED EFFECT OF HORIZONTAL AND VERTICAL
SHEAR WAVES

1/2
M. = (7.68 x 10)% + (3.23 g 107)? = 8.33 x 10’ 1b-ft

‘ 1/2
(1.97 z 109)2 + (6.57 x 10°)2 = 2.08 x 10° 1bs

<
il

The corresponding values for SFBART were respectively 9.28 x 107

6

1b-ft and 1.98 x 10~ 1bs.






