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ABSTRACT

This thesis investigates the rigid body motions of skew bridges,
corcentrating on the in-plane translaticnal and rotational displacements
of the bridge deck induced by impact between the deck and the abutments.
Experience in the San Fernando Earﬁhquake of February 9, 1971
demonstrates that this feature is particularly important for skew
bridges.

A simple model, in which the bridge deck is represented by a rigid
rod restricted by column and abutment springs is examined first. This
model illustrates the mechanism by which in-plane rotational vibrations
is triggered after the closure of the gap between the bridge deck and
the abutment. It also shows that the force—deflection relations of the
columns and the abutments are particularly important features for the
response of the bridge. Methods for the exact and approximate estimation
of the elastic stiffness of elastically founded, tapered bridge columns
with octagonal cross section are presented next. The methods are applied
to a bridge used later as an example. In addition, the yielding of the
columns is examined and the force—deflection relations for bending about
two orthogonal axes are estimated.

The abutments are treated as rigid bodies and the soil embankments
as Winkler Foundations with elastic spring constants increasing
with depth. For the examination of the yielding of soil the Rankine
theory is used. Based on these assumptions an approximate force-
deflection relation for the abutments is constructed.

The response of a more complicated bridge model applied to a bridge
near Riverside, California is examined at the end of the thesis and

examples of the results are given. This model, in which the bridge deck
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is still represented as a rigid rod, has three in-plane degrees of
freedom: two orthogonal displacements and a rotation, and is capable of
capturing many of the more important features of the nonlinear, yvielding

response of skew bridges during strong earthquake shaking.
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CHAPTER 1
TNTRODUCTION

1.1 PBACKGROUND ON THE SEISMIC RESPONSE OF HIGHWAY ERIDGES

The 1971 San Fernando Earthquake revealed the vulnerability of
highway bridges to earthquake loadingé and, thus, presented a major
turning point in the development of research on the seismic response of
freeway structures. Actually, prior to the San Fernando Earthquake, very
little damage was observed worldwide to reinforced concrete bridges as a
direct result of earthquake shaking. According to Imbsen, Nutt and
Penzien (Ref. 2} the damage to bridges prior to the San Fernando
Earthauake had been caused by:

(1) Tilting, settlement and overturning of substructures,
(ii} Displacement of supports and anchor bolt breakage, and

(iii) Settlement of approach fills and wingwall damage.
More specifically, in California from 1933 until 1971, eleven separate
earthquakes ranging in magnitude from 5.4 to 7.7 on the Richter scale
affected approximately 1,000 bridges. However, none of these bridges was
close to the area of intense shaking and the total amount of damage was
about $100,000. In the case of the San Femando Earthquake, many bridges
were located within the zone of the intense shaking and the resulting
damage was approximately $6,500,000 for this earthcquake alone (Réf. 3).

As a result of the San Fernando Earthquake, there has been an
increased public awarmness of the seriousness of the earthquake hazard to
highway bridges. A reflection of this concern was the recognition of the
need for extensive research in order to provide engineers with
information about designing highway bridges that are more earthquake

resistant. Thus, immediately following the San Fernando Earthquake,
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research efforts were initiated to develop new seismic design criteria
taking into account the vibrational properties of the bridge elements
and the soil (Ref, 4). The result of these efforts was the formation of
the basis. for a new national seismic bridge design code (Ref. 4). In
addition, publication of many research results provided explanations for
the observed behavior of individual bridges during earthquakes
(especially the San Fernando Earthquake) or predicted the seismic
response of particular bridges (Refs. 2 and 8).

These research efforts paved the way for significant advances
during the last decade in the design and construction of seismic
resistant bridges. However, in view of the complexity of the problem,
significant gaps still remain in the understanding of the vibrational
response of highway structures; and numerous aspects of the problem
remain still unexplored. The solution of these problems requires the
continuation of both analytical and experimental research.

1.2 STATEMENT QF THE PROBLEM

One of the observations from damage to freeway structures caused by
the San Fernando earthquake was that several moderate span bridges with
relatively large skew angles showed a tendency to rotate in a horizontal
plane in a direction that increased their skewness (Refs. 5, 6, and 7).
The same behavior was later observed during the recent Coalinga
Earthquake of May 1983. In the San Fernando Earthquake this
susceptibility of skewed bridges to rotational displacements caused, in
some cases, severe damage to columns and abutments. The damage to
bridges was relatively minor during the Coalinga Earthquake.

It has been concluded (Ref. 5) that this rotation was a direct

result of the interaction between the structure and the approach fill,
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and it was suggested that research on this phenomenon was required. This
is the subject of this thesis which has as its purpose the investigation
of the in-plane rotational vibrations of short span skew highway
bridges, including the effects of interaction with the abutments.
1.3 EXAMPLES QF SKEW BRIDGES WHICH SHOWED RQTATION QOF THEIR DECKS
DURING RECENT EARTHQUAKES

Some of the bridges that were highly susceptible to in-plane,
rotational displacements and which suffered extensive damage during the
San Fernando Earthquake include the following.

a. The San Fernando Road Overhead (Refs. 5 and 6) The two San
Fernando Road Overhead bridges, part of the Golden State-Foothill
Freeway interchange, are seven—span skew structures that carry the
Golden State Freeway over the San Femando Road and the Southern Pacific
Railroad. The central spans over the railroad were constructed of both
steel and precast prestressed concrete girders. The other spans are of
reinforced concrete box construction. The structure suffered collapse of
the simply-supported steel girder spans. It seems probable that the
steel girders fell from their steel bearings and then, with the onset of
large horizontal deformation, the girder span rotated in a horizontal
plane by the pounding at skew joints until some of the girders slipped
free from the piers. In Fig. l.la one can see the permanent set of the
bridge in the directon of increasing skewness.

b. Northbound Truck Route Undercrossing (Refs. 5 and 6) This
bridge, which is also part of the Golden State-Foothill Freeway
interchange is a three-span continucus concrete box bridge approximately
225 feet long. It has large angles of skewness at each abutment. The

bridge rotated in a horizontal plane about the western end resulting in
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a large permanent displacement of the superstructure at the eastern
abutment and severe bending failures at the tops of the columns in the
eastern pier. Pictures of the damage to this bridge are shown in Figq.
1.2,

vc. Foothill Boulevard Undercrossing (Refs. 5 and 6) This
structure, which is part of the Foothill Freeway Bridges, is a pair of
four-span continuous reinforced concrete box girder skewed bridges. The
bridge rotated in the horizontal plane, and a permanent offset of about
four inches in the direction of increasing skewness was observed at the
abutments. The damage to the coclumns of this bridge is shown in
Fig. l.lb. It appeared that the bridge rotated at about the third
column, which did not suffer extensive damage.

Damage of a similar nature, but much less intense, occurred during
the 1983 Coalinga, California earthquake. Fig 1.3 shows the rotation of
the skew bridge where Interstate 5 crosses the railroad near Coalinga
(The bridge is marked 5.FRE 8§l). The bridge experienced a rotational
deflection of about one inch, which was accompanied by minor spalling of
the reinforced concrete railing wall,

1.4 ORGANIZATION OF THE THESIS

This thesis has been divided into six chapters. Chapter 1 is a
general introduction with a brief history of the research on the seismic
response of bridges and a statement of the problem to be studied in the
thesis. Chapter 2 presents the examination of a simple model for the
rigid body motions of skew bridges. The relatively stiff bridge deck is
modeled as a rigid body. The identification of the important parameters
and their effects cn the response of the model are the principal

features of this chapter. Two of the most important elements in the
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nonlinear response of skew bridges are believed to be the bridge columns
and the abutments. Chapters 3 and 4 present methods for the estimation
of the yielding force-deflection relations for the bridge columns and
abutments, respectively. Examples of the applications of the methods are
included in both chapters. Chapter 5 introduces a more detailed model in
the dynamics of skew bridges. The model includes the nonlinear effect of
the abutments, expansion gaps, yielding of the columns, and elastometic
pads. This chapter also presents some examples of the earthquake
response of a mathematical model based on the Nichols Road Overcrossing
(Bridge #56-725 near Riverside, California). Chapter 6 includes a
summary of the thesis and some conclusions based on the research.
Mathematical notations have been defined where they first appear,
while some formulas and details of the solutions of some examples appear

in the appendices.
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CHAPTER 2

A SIMPLE MCDEL FOR THE RIGID BODY ROTATIONS OF SKEW BRIDGES

2.1 INTRODUCTION

The purpose of this chapter is to develop and analyze a simple
model which captures the basic features of the complicated rigid body
motions of a skew bridge.

In the first part of the chapter, the possible distortions of a
bridge deck are described. Then a simple model of a skew bridge is
proposed and the simplified assumptions on which the model is based are
discussed. Following next is the derivation of the equations of motion
of the model along with the identification and discussion of the
important parameters. Finally, the kinematic mechanism of the mcdel is
described, the effects of several parameters on the dynamic response of
the model are examined, and some conclusions are drawn concerning more

detailed modeling of skew bridges.

2.2 MOTIONS AND DISTORTIONS QF A BRIDGE DECK

Basically, there are six principal types of moticn of a bridge deck
relative to the ground of concern here; these are shown in Fig. 2.1 and
include:

a. Rigid body lorgitudinal translation during which the deck
translates longitudinally as a rigid body,

b. Rigid body lateral translation where the deck translates
laterally as a rigid bedy,

c. Rigid body rotation about a vertical axis during which the deck

rotates in its own plane,
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d. Vertical flexure during which the deck bends in a vertical
plane,

e. Lateral flexure in which the deck bends in its plane, and

f. Torsional distortion during which the deck is twisted about an

axis paralle] to the centerline of the roadway.

2.3 THE MODEL

The most basic assumption on which the model is based is the
rigidity of the bridge deck. Thus, the deck is represented as a one~
dimensional rigid bar having the mass and length of the real deck.
Consequently, the model is capable of capturing only rigid body motions
a, bandc. Motions d, e and f will be neglected.

For simplicity, the model is assumed to be undamped; and the only
lateral resisting mechanisms taken into account are the bridge piers and
the abutments.

Bach set of piers is idealized by tweo linearly elastic springs.
One spring is directed in the longitudinal direction and resists
distortions of type a and one spring is directed in the lateral
direction and resists distortions of type b. The two springs are
assumed to have equal stiffness, k, which can be estimated from the
properties of the piers.

It is also assumed that there are two sets of piers symmetrically
located with respect to the center of mass of the deck. Thus, the
resulting model is symmetric with respect to both the longitudinal axis,
X, and the lateral axis, Y. The inclusion of only two sets of piers in
the model restricts it to the case of moderate span bridges. The

rotational resistance of the model comes from the moments of the pier
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springs generated by rotation about the center of mass of the deck. No
other form of rotational resistance is included.

Each abutment is represented by a gap in the longitudinal
direction, which, in practice, is used to allow thermal expansion of the
bridge deck and a linearly elastic spring of stiffness kg also oriented
in the longitudinal direction. The values of the length of the gap and
the stiffness of the spring are the same for both abutments, so symmetry
is preserved. The contact between the deck and the abutments is assumed
to be frictionless, Finally, the bridge is assumed to be skew at angle
8 with respect to the longitudinal direction. The model is illustrated
in Fiqg. 2.2.

Summarizing the above assumptions, we can see that, basically, the
model is a rigid bar supported by springs with a gap at each end where
springs modeling the abutment are located. The model has considerable
symmetry, but the skewness of the deck with respect to the abutments
means that longitudinal motion large enough to close the abutment gaps

will induce rotation.

2.4 EXCITATION - GEOMETRY AND FORCES OF THE MODEL

To simplify the equations of motion, we assume that the only
excitation is ground motion directed along the longitudinal X-axis,
This assumption, combined with the symmetry of the model, leads to
motion of the center of mass only along the X-axis. All the other
points of the deck can move in the Y direction only as a result of
rotation in the X, Y plane if such rotation occurs. Therefore, the model
has two degrees of freedom: 1longitudinal translation and rotation in

the X, Y plane.
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The geometry needed for the model includes expressions for the
displacemente of points 1, 2, 3, and 4 of the deck as functions of X and
¢+ These expressions are presented in detail in Fig. 2.3. The
equations were derived based on the assumption of small displacements
and small angles of rotation (sin¢ = ¢, cos¢= 1). The displacements
of every point are measured with respect to the initial position of the
point with positive displacements occurring in the positive direction of
the corresponding coordinate axis.

The forces which are exerted on the deck during its motion come
from the piers, the abutment, and the inertia of the deck itself. The
forces of the piers and the abutments are calculated as the reactions of
linearly elastic springs. It should be pointed out that abutment forces
at points 3 and 4 of the deck occur only when the left or right gaps,
respectively, are closed. To account for this, coefficients by and by
are introduced into the equations. These coefficients take the values of
1 or O depending on the closure of the gaps. The forces which act on

the deck are given in detail in Fig. 2.4.

2.5 EQUATIONS OF MOTTON
The equations of motion are derived using Newton's second law
written about the center of gravity.
L Fy=mX (2.1)
IM = I§ (2.2)
From (2.1} and the expression of the forces provided in Fig. 2.4, one
gets:
“£x,1 ~fx ,2 ~fab,4 ~fap,3 Mg =WK  or
& (x + 1} sin6$) —k{x - 1, sin8¢) —b4kab(x ~ 1sin 9¢ - a)
b3k (X + 1sin9p + a) - m¥g = m¥ (2.3)
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From equation (2.3), one can find the first equation of motion,

2k + (by + bgkgy by = by
x + X + kap 18ings
m m
b3 - b4
G m—— kab a = XG (2-4)
m
Similarly, equation (2.2) gives:
”fx,l] lsin(e + ¢) + fy,l 1lcos(e + ¢) + fx,2 1lsin(6 + ¢) -
fy,z Ticos(e + ¢) + fab,4 1sin(s + ¢) - fab,3 Tsin(8 + ¢) = I¢

or
—k (x + 11singg) 1;(sing + ¢cose)—k17cos6ply (coss - ¢sine) +
+(x ~175in0¢)1 1(sin6 + ¢cosp)-k1jcos0d(cosd - ¢sink) +
gk (X — 1sind¢— a)l (sind + ¢cosd) -

b3k (x +1sin6g + a)l(sind + ¢cos @) = Iy (2.5)

From (2.5), after carrying out the algebra and neglecting the second

order terms, one finds the second equation of motion:

1
¢ + ""I"‘ [2k1%sin26 + kab]z(b3 + b4)51n26+(b3 + b4)kab] cosga +
1
2k13cos®s]s + ~(b3 - bpkgp Tsink +
1
+ =——(by + b3)kgnalsing =0 (2.6)
I
k
Let wg = -— (2.7)
m

(Note that the small amplitude frequercy of the rod is

2k

£x '-'\ é\ﬁ'“k)

m
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Let vy be the nondimensional ratio of the abutment stiffness k,, to the

pier stiffness k:
kap = vk (2.8)
Note also that the mass moment of inertia, I, of the node modeling the

deck is given by:

(2.9)

The combination of (2.4), (2.6), (2.7), (2.8), (2.9) gives:

X + [2+ (by +by)v] 2X + (by - by)y sineup +
(by - byg)vauwd = Xg (2.10)

]l 2 2 a
b+ [6 5" sin“6 + 3y(by + by)sin“g + 3y(by + by) —cos¢
1 1
8
- wix
1 1
a

+ 3(by + by)y — singu? = 0 (2.11)
1

.2 .
157 sin
+ 6 --%— COSZG]m,‘%q) + 3(bg - byly

where bs and b, are defined in Fig. 2.4. In order to find the response
of the xﬁodel to a given ground input acceleration ﬁG' the system of
nonlinear coupled differential equation (2.10), (2.11) has to be solved.
For this purpose, a computer program was written using the method of

Runge-Rutta Gill for sclving the equation.

2.6 DARAMETFRS QF IMPORTANCE

The nost important parameters involved in the model are:

a. The Angle of Skewness Since the primary purpose is to

investigate the response of skew bridges, it is clearly important to
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understand how variations in ¢ affect the response of the model. In
application, the values of § are usually between 10° and 60°.

b. The Abutment Stiffness k., As mentioned in the introduction of
the thesis, the behavior of skew bridges during strong earthquake
shaking is believed to be strongly controlled by the interaction between
the bridge deck and the approach £il11. The abutment stiffness models
the reaction of the soil upon the bridge deck after the gap closes.
Consequently, it will be very important to understand its influence on
the response of the model.

There is no generally accepted method for calculating the value of
the abutment stiffness. However, the geometry of most bridges indicates
that the abutment stiffness is higher than the stiffness of an
individual bridge column. Thus, the factor y which relates kap EO the
pier stiffness is taken to be greater than one (valuesof vy =1, vy = 2,
vy =5,y =10 will be examined).

c. The Abutment Gap a This is the other parameter of the model
which is related to the degree of interaction between the deck and the
soil. Larger gaps imply less contact between the deck and the abutment
springs. Consequently, the degree of interaction between the bridge
deck and the soil will decrease with an increase in the gap. The gap at
the abutment is intended to allow thermal expansion of the bridge deck.
When the gap exists, its size is typically 1 to 2 inches.

d. The Location of the Columns The distance 1; defines the position of
the columns with respect to the center of the deck (see Fig. 2.2). It
will be useful to examine cases in which the columns are located near
the center of mass of the deck and cases in which the columns are close

to the ends of the deck. In actuality, there are bridges with columns
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located very close to the center of the bridge deck (1; approaches
zero}. However, in the model under consideration, the only rotational
resistance of the deck results from the resisting moments of the pier
springs with respect to its center of mass. Therefore, it would be
unrealistic to examine values of 1; too close to zero as the deck would
have almost zero torsional resistance.

e. The Small Amplitude Lonaitudinal Frequency Several tests on bridges
have indicated that the small amplitude, longitudinal frequency of small
span bridges is within the range of 2 to 5H, (Ref. 36). Since, in this
model, structural elements of the bridge other than the piers are
neglected, it is reasonable to consider a small value for the frequency.
Thus, a representative value of 2H, was chosen. (This value corresponds
to wy = 8.89 rad/sec).

f. The Input Excitation It is expected that the character of the
excitation will affect the response of the model so that no general
conclusions about earthquake response can be drawn unless the response
to many ground motions is examined. However, since the purpose of this
chapter is essentially to illustrate the nature of the problem, in the
following paragraphs only the response of the model to one particular
excitation will be analyzed. The excitation consists of the 10 most
important seconds of the Imperial Valley earthquake of October 15, 1979

(Imperial County Services Building Free-Field Site N 02 E).

2.7 EXAMPLE QF RESPONSE

Assume that the following values are assigned to the parameters of

the model.

1 =4om 1; =12m, 6 =40°% a =0.025m, vy = 2,uw, = 8.89 rad/sec
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At the beginning of the response to the ground motion, the model
behaves like a simple degree of freedom oscillator excited along the X-
direction. The gaps at both ends of the rod remain open and no
rotational vibrations are triggered since the moments of all the
restoring forces which act on the deck cancel. So, since ¢ = 0, the
displacements of the center of mass and of points 3 and 4 are identical.

The first impact between the deck and the abutment springs takes
place at the left end (point 3) at about 4.2 seconds from the beginning
of the excitation (see Fig. 2.6b). Since the moment of the reaction
force of the left abutment spring is not counterbalanced by the moment
of any other force, rotational vibrations are induced and the deck
starts rotating in a positive direction (see Fig. 2.7a), which is in
agreement with the direction of the moment from the left abutment. The
impact between the deck and the left abutment spring ends when the
displacement X3 becomes larger than -0.025m. But, soon after that, ﬁhe
right gap closes; and an impact between the deck and the right abutment
springs occurs, which lasts until the displacement X, becomes smaller
than 0.025m (Fig. 2.6b). In this way, several impacts between the deck
and either the left or the right abutment occur. In the example, all
the impacts occur when the displacements X3 or X, exceed the
corresponding dotted lines (see Fig. 2.6b and Fig. 2.7a). Between two
consecutive impacts, no abutment force is acting on the rod since both
gaps are opened.

The consequences of the rotational vibrations induced by the
impacts are:

{i} Coupling between the longitudinal translation X and the

rotation ¢ occurs; and, as a result, the displacements X3 and X, start
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differing from each other and from the displacement X of the center of
mass. In fact, a positive rotation of the deck will result in
additional positive and negative displacements of the points 3 and 4,
respectively. This can be seen in Fig. 2.6b and Fig. 2.7a and can be
explained by the relation between X3, X, ¢ and X4, X, ¢ shown in
Fig. 2.3.

(ii) The ends of the deck move in the Y-direction after the first
closure of the gap. However, due to the symmetry of the model, the
center of mass of the rod does not move in the Y-direction even after

rotational vibrations are triggered.
2.8 EFFECTS QOF THE VARIATION OF THE PARAMETFRS

2.8.1 Rod With Restoring Springs Close to the Center of Mass

Assume that the total length of the bridge deck is 80m (1 = 40m)
and that the columns are located at a distance 1; = 8m from the center
of mass of the deck. This results in a ratio 1;/1 = 0.2, which is
thought to be a representative value for the case of columns located
close to the center of mass of the deck.
2.8.1.1. Effects of the Angle of Skewness

To investigate the effects of the variation of the angle of
skewness, the other parameters are fixed: v = 2, a = 0.025m,
Wy = 8.89 rad/sec. The range of skewness is taken to be between 6 =0
and 8 = 60; and the response of the model to values of © =0, 59,
109, 20°, 400, and 60° is investigated.

In Figs. 2.9 - 2.11, the rotational responses of the model to the
1979 E1 Centro excitation for several values of the initial angle of

skewness are shown. From these figures, the following conclusions can
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be drawn:

a. The response is more sensitive to initial changes in the angle
of skewness (from O to 10°) than to later ones (from 40° to 60°), This
can also be seen in Fig. 2.12.

b. The overall appearance of the response depends upon the
frequency‘ of the impacts between the deck and the abutment springs and
upon the rotational frequency of the deck. One can observe that the
deck rotates primarily in the positive direction. Particularly for & =
5° and 10°, no negative rotation occurs. This happens because the deck
hits the abutment springs before its rotation becomes negative.

¢. The maximum rotational response has a tendency to increase with
an increase in the angle of skewness.

d. As shown in Fig. 2.13, the response of the center of mass is
not substantially affected by variations of the angle of skewness.
2.8.1.2. Effects of the Abutment Stiffness

To investigate the effects of the abutment stiffness, the response
of the meodel for various values of the parameter Y has to be examined.
The values of Y considered are: v =1,y =2,y =5, ¥ =10. The

values of w, and a remain fixed at 8.89 rad/sec and 0.025m,

X
respectively; while, for purposes of further investigation of the
effects of the angle of skewness on the coupling between the X and
¢ motions, two values of 8 will be examined: 6 = 10° and & = 40°.

Thus, the cases under consideration are:

Case 1 Case 2
6 = 10° 8 = 40°
w, =889 Yy =1,2,5,0 w, = 8.89 Y =1,2,5,10

a = 0.025 a = 0,025
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Figs. 2.14 - 2.17 show the responses of the model in case 1, while
Figs. 2.18 - 2.21 show the responses of the model in case 2. From these
figures, as well as from Fig. 2.22 and 2.23, one can see that:

a. The maximum displacement along the X-axis of the center of mass
of the rod decreases with an increase in v;

b. The maximum rotation of the rod increases with v;

¢. The obviously different overall appearance of the responses in
the two cases reveals once more the effect of the initial angle of
skewness on the coupling between the translational and rotaticnal
motions.
2.8.1.3 Effects of the Abutment Gap

For the investigation of the effects of the gap on the response of
the model, the values of 6, v, and v, will remain fixed at 40°, 5 and
8.89 rad/sec, respectively. As was mentioned earlier, the typical range
of actual gaps is 0-2" (0-5¢m). But, for purposes of better
understanding of the role of the gap, wvalues outside of that range will
alsoc be examined.

In Fig. 2.24, the response of the deck when the gap is open (i.e.
the deck never hits the abutment springs) is shown. In this case, the
deck behaves like a single degree of freedom oscillator excited in the
X-direction; there is no rotational motion. The maximum displacement
of the rod in the X-direction when the gap is open is slightly over
0.09m. So, if the gap is 0.09m, the deck lightly hits the abutment
springs; and the induced rotational vibrations are not strong
(Fig. 2.27b). In Figs. 2.25 - 2.30, cne can see the rotational response
of the deck for several values of the gap. From these figures, as well

as from Figs. 2.31 and 2,32, the following conclusions can be drawn:
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a. The duration of the rotational motions increases as the gap
decreases because of earlier impact between the deck and the abutment
springs;

b. The maximum rotation decreases as the gap width, a, increases;

c. The maximum displacement in the X-direction of the center of
mass of the bridge increases as a increases. This was expected since
the bigger the gap, the smaller the reaction force of the abutment
spring.

2.8.2. Deck with Widely-Spaced Columms

Ih the preceding paragraphs, the effects of variations of the
initial angle of skewness, the abutment stiffness, and the gap were
examined for a case in which the columns were located relatively close
to the center of mass of the deck. Because the‘purpose of the chapter
is primarily to illustrate the general nature of the response of the
skew bridges, it was decided not to repeat the same calculations for the
case in which the columns were located relatively far away from the
center of mass.

It will be useful, however, to examine the effects of the location
of the restoring springs of the columns on the response of the model.
To do this, the values of 11/1 = 1 (restoring springs at the ends of
the deck) and 1;/1 = 0.6 (intermediate position of the restoring
springs) are examined with values of a, v and Wy fixed at 0,025, 5, and
8.89, respectively. The responses of the model for the two values of
the ratio 1j/1 are shown in Figs, 2.33 - 2,36. Comparing results for
these values of 17/1 with those for the initially examined value of
11/1 = 0.2, one can draw the following conclusions about the effects

of the location of the restoring springs.
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a. As expected, the period of the rotational vibrations of the
deck increases as the restoring springs approach the center of mass. On
the other hand, if 1;/1 = 1, the rotational response exhibits relatively
high frequencies. 1In a real bridge, these frequencies could cause
substantial flexural deformations (which are neglected in the present
analysis) in the plane of rotation.

b. The maximum rotation of the deck decreases as the restoring
springs approach the ends of the deck. Again, this change is
anticipated because of the increased rotational resistance.

¢. Changes in 1;/1 result in changes of the dynamic
characteristics of the system as reflected in changes in the degree of

coupling between the X-¢ motions and in the appearance of the responses.

2.9 GENERAL CONCLUSIONS AND REMARKS

In the preceding paragraphs, some special conclusions were drawn
concerning the kinematic mechanisms of the model and its response to an
accelerogram from the 1979 Imperial Valley earthquake. In this section,
some general conclusions concerning the behavior of the model are
presented.

a. The model which was examined in this chapter is capable of
illustrating the kinematics of planar, rigid body rotation of the decks
af skew bridges including the interaction between the deck and the
abutment. Therefore, it can be used as a basis for more detailed
modeling of the earthquake response of skew bridges.

b. The model, in the form in which it was developed in this
chapter, cannot capture the details of the rigid body response of skew

bridges since many simplifications were made (perfect symmetry was
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assumed; all the springs were considered linearly elastic; the
rotational resistance of the columns was ignored; and any pads were
completely neglected). Therefore, the results which were found are only
qualitative.

c. In spite of the simplifications that have been made, the model
exhibited a complicated behavior, particularly because of the coupling
between the X and ¢ motions which occur after impact between the deck
and the abutment springs.

d. Most of the parameters of the model seem to be easily
identifiable from the geometric and material properties of the bridge.,
A notable exception is the abutment stiffness. In this case, there is
no standard method for determining the required force-deflection
behavicr. Under these circumstances, it is important to know how
sensitive the results are to estimates of the abutment stiffness. Table
2.1 was made based on the results of section 8.1.2 in order to compare
the change in Y with the corresponding changes in the maximum rotation
and the maximum translation of the center of mass. From this table, one
can see that , in most cases, the percentage of change of the parameters
of response X and ¢ is substantially less than the corresponding
percentages of change of 7Y . Thus, taking into consideration the other
simplifications of the model, one can conclude that a reasonable,
simplified method will be accurate enough for the estimation of the

abutment stiffness.
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JARLE 2.1

Comparison of changes of relative abutment stiffness, ., with the

changes of maximum rotation, ¢, and

maximum translation, X.

Change of v
Change Change of Change of
3 From To of v Maximan Maximum
(%) Rotation, ¢ Translation, X
(%) (%)
10 1 2 100 3.8 14
10 1 5 400 138 14
10 1 10 800 137 25
10 2 5 150 72 0]
10 2 10 400 71 13
10 5 1o 100 0 13
40 1 2 100 80 0
40 1 5 400 79 3.5
40 1 10 900 140 24
40 2 5 150 0 3.5
40 2 10 400 38 24
40 5 1o 100 37 22
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CHAPTER 3

EIASTIC STIFFNESS OF BRIDGE COLUMNS WITH PARABOLIC FLARES

3.1 INTRODUCTION

As was shown in Chapter 2, one of the most important parameters of
the simple bridge model is the elastic column stiffness, defined as the
force required to deflect the top of the column by a unit displacement.
In that chapter, the analysis was elastic; and, therefore, the elastic
stiffness of the bridge columns alone was sufficient. However, for a
more complicated model in which the yielding of the columns will play an
important role, a complete force~deflection relation for the columns
will be reaquired including both elastic and postelastic stiffnesses. It
is believed to be important for the subsequent analysis to have
characterizations of the force-deflection relations in both directions
of bending.

In order to represent the nonlinear force—deflection relation in a
given direction, the following parameters are needed.

a. The initial elastic stiffness For the estimation of the
initial column stiffness three things are important:

{i) The types of deformations which are taken into account,

(ii) The conditions at the two ends of the columns (boundary
corditions), and

(iii) The geometry of the bridge colums.
In the case of a typical bridge column, the length to depth ratio is
large; and, therefore, the bending deformations are large compared to
those caused by shear. Consequently, the shearing deformations can be
neglected; and the columns can be modeled as beam-columns using

Bernoulli-Fuler beam theory. As far as the boundary conditions of the
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column beams are concerned, it is reasonable to assume that the column
is built into the bridge deck at the upper end and has rotational and
translational springs at the bottom which account for the effects of the
soil. If the foundation conditions are such that these springs can be
considered to be infinitely large, then the resulting model of the
bridge column is a bending beam built in at both ends. Finally, the
geometry depends on the particular column. Columns with uniform cress
sections simplify the solution of the problem; whereas, columns with
variable cross sections make it more difficult,

b. The yielding levels The ultimate capacity of a concrete column
at a given point depends primarily’on the cross sectional properties
(geometric and reinforcement) of the column at that point and can be
estimated by standard methods (Ref. 47).

c. The postelastic stiffness This is the stiffness of the column
after its first yielding at the bottom or top cross section. It can be
evaluated from the same beam model by properly readjusting the boundary
conditions.

The purpose of this chapter is to provide a method for calculating
the required force-deflection diagrams of a bridge column. The analysis
focuses on the case of columns with parabolic flares at their tops since
the bridge which will be used as an illustrative model (Nichols Road
Overcrossing - Riverside County, California) has this type of columns.
Although a reasonably accurate method would be enough for the purposes
of modeling followed in this research, it was found during the analysis
of the problem that an exact solution for the initial elastic stiffness
of the parabolically flared columns could be provided. Thus, the

presentation of this chapter was expanded in order to include this
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solution. The solution is presented in the second part of the chapter
following an introduction in which the basic points of Bernouilli-Euler
bending beam theory are presented. In the third part of the chapter, an
alternate solution of the same problem is érovided. This solution is
approximate, but it is more general in the sense that it can treat
columns with any type of flare. This solution is based on the represen-
tation of the flare by a sequence of beams of uniform cross section.
Finally, the application of the two methcds to the case of the columns
of the Nichols Road Overcrossing is presented. Also, in the last part
of the chapter, the yielding of the columns in the two directions is
examined.
3.2 EQUATIONS AND BOUNDARY CONDITIONS FOR A BERNQULLI-EULFR BEAM

Consider the beam shown in Fig. 3.1. The governing equations for

the static case are:

a2 a%q(z) )
———(EI(Z)———) =0 (3.1a)
az? az?
a%w(z)
M(Z) = EI(Z)=m—mm——mmr (3.1b) L (3.1)
az?
am(z)
0(2) = - =———r—— (3.1c)
az

where:

E is the modulus of elasticity of the material of the beam;

I(Z) is the moment of inertia of the cross section of the beam
which, for the general case, is a function of %;

W({Z), M(Z), and Q(Z) are the displacement, bending moment, and
shear force, respectively.

In the case of a beam of uniform cross section (I(Z) = constant), the
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above equations reduce to:

atw(z)
————— = () (3.2a)
azt
a4 (z)
M(Z) = EI - (3.2b) (3.2)
dz ‘
am(z)
Q(2) = - - (3.2¢)
az .

In addition to the governing differential equations, the specification
of boundary conditions is required. For the case of a bridge column,
the most common boundary conditions are shown in Table 3.1.

3.3 STIFFNESS QF A BRIDGE QOLUMN WITH QCTAGONAL CROSS SECTION AND

PARAROLIC FLARE AT THE TOP AND FOUNDATION SERINGS AT IHE BOTTOM
3.3.1 Eguations of a Tapered Column with Foundation Springs

Consider the tapered bridge column shown in Fig. 3.2. The ¢olumn
is fixed at the top; at the bottom, it has torsional foundation sérings
k%X and k%Y resisting rotation in the Z-X and Z-Y planes, respectively,
and translational foundation springs k{% and kIY1 resisting displacements
in the X and Y directions, respectively.

This column can be considered as consisting of two beams. Beam 1
with length h; has a uniform cross section and, consequently, a constant
moment of inertia while beam 2 with length h, has a variable cross
section; consequently, its moment of inertia is a function of the
position of the cross section. The system of the two beams along with
the coordinate systems used in the analysis is shown in Fig. 3.2.

Assume that a unit displacement x; = 1 along the X-axis is imposed

at the top of the column. Then the equations of each of the two beams
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TABLE 3.1 COMMON BOUNDARY CONDITIONS FOR BRIDGE COLWMNS

Type of Sketch of Bourdary Conditions
Boundary Boundary

—— e e e e e e

W(Z) Jang = O (displacement = O)

Pixed

end
W' (2)]lang = O (slope = 0O)

Pinned a%i(z)

Bottom [EI(Z) ———o—me~] =k, [W'(Z)]

end with K dZ2 end t end

horizontal h

and -

torsional K, ' d d2W(Z)

springs [~——(EI(Z2)———5—)] = K, [W(2)]

az dz2 end h end

w(z)] = O (displacement = Q)

Pinned end

end a%w (z)
[EI(Z) —] = 0 (moment = O)

dZZ end
are the following:
Beam 1 (see formilas 3.2)
a%w, (z4)
--——%—l- =0 (3.3)
dzy ‘

The solution of (3.3) has the general form:

wp(z)) =¥ + B{z; +cfzf + 0¥z (3.4)

By ﬁsing (3.4), (3.2b) and (3.2c) one gets:

*Por an arbitrary X, # 1,the expressions for the displacement, shearing
forces, and bending moments should be multiplied by X..
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&) (29)
—=2 < B} + acfzy + 3z
dazy
wf(z;) = erf(aci + 6nfzy)
Q{(Zl) = —6EI¥D¥

(3.5)

(3.6)
(3.7)

In the above equations, the superscript ™" denotes bending about the Y-

axis.

Beam 2 (see formulas 3.1)

a2 v dez(Zz)
5 (EI3(Z7) 5= =0
d 3 de

(3.8)

Equation (3.8) can be solved by using the method of variation of

parameters (Ref. 45). The solution has the final form:

B}Z;

E
1 f ZoR% B2%
— o — ( +

E 15(z9)  13(2y)

v . .y Zy 2
Wz(Zz) = Dz + C2Z2 + { +

15(25)

15(2,)

)24

(3.9)

By combining (3.9), (3.1b) and (3.lc), one gets:

diy(zy) 1 a¥ BYZ,
———-=cjt— [(— +
dZo E 15(25) I5(25)
M5 (2,) = A% + BYz,
% (2y) = &3

a7, (3.10)

(3.11)

(3.12)

From equation (3.12) and the definition of the stiffness of the

column, it is obvious that the unknown stiffness is the coefficient -B%.

Boundary conditions (see Table 3.1)

Beam 1: (i) EIf—~——z—— | =
dzg  Iz=0

- ki (zp) | (3.13)

IZ]_=O
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From (3.13) and (3.4) to (3.7), one gets:

6EIiD] = -kfa (3.14)
a4 (z) | iy (27) |
g 1(% 121
(11) ET{-————— | = kKoo | (3.15)
a7 lzp=0 dz)  Iz=0

Using (3.15) and (3.4) to (3.7) yields:
2eTic = kZpt (3.16)
Beam 2: (i) W2 (hz) =1 (3.].7)

Conbining (3.17) and (3.9) gives:

hy A3 B3Z;
D3 + Cih, + [f( + )dz4] -

E 13(25)  15(2Z9) Zo=h,
1 Zoh% B%23
—- [f( Z + ===z, =1 (3.18)
aW, (29) |
(ii) -— I =0 (3.19)
az.
Z2=h2
From (3.19) and (3.10):
1 ad B2
cd + - {f( CHRP Y =0 (3.20)
E 13 (Z4) I3 (Z5) Zo=ho
Conditions of continuity at the connection of the beams

At the connection between Beam 1 and Beam 2, the following
continuity conditions must be satisfied:

(i) Continuity of displacements:

| I
Wy (Z1) i = Wy (Zo) : (3.21)
Zl=hl Z2=O
Applying (3.4), (3.9) and (3.21) produces:
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Y '4 Y2 Y13

Y Y2
1 Z5A5 B5Z
Db - — [“[} YzA 22 yan,] (3.22)
E 13 (25) 1% (25) Z5=0
(ii) Continuity of slopes:
dawy (Z4) | o (Z49) |
1491 2442
— P II = ———-d--———- ; (3.23)
21 %2

Using (3.5) and (3.10), (3.23) becomes:
V4 Y Y.2 _
By + 2C1h; + 3D7hi =

Y v

1 A3 B3Zq

G+ —— 1 (= + —g—=—)dzy] (3.24)
E I2(22) - Iz(Zz) Zz@

(iii) Continuity of moments:

l |

'M{(zl); = Mg(zz){ (3.25)
Zy=h; 25=0
Combining (3.25) with (3.6) and (3.11) gives:
exf (¥ + eo¥h;) = AL (3.26)
(iv) Continuity of shears:
of (zq) | = 0§ (24) | (3.27)
Izl=h1 | 'zz=o

Using (3.7) and (3.12), (3.27) reduces to
6EIIDY = BY (3.28)

Equations (3.14), (3.16), (3.18), (3.20), (3.22), (3.24), (3.26) and
(3.28) form a system of eight equations in the eight unknowns A{, veer
D}_{ and A%, ceer D%. After making the necessary algebraic manipulations
and the suwstitutions defined by equation (3.29) below, the system takes

the final form (3.30) (see page 72).
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Do

2
| = [ == az;]
lO Iz(Zz) Zz=0
| 72
o
|h2 15(25) Zy=ho
2
3
' =[] = d24]
lo T5(25) %9=0
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(3.2%a)

(3.2%)

(3.29¢c)

-

>

(3.29)
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It is obvious that, in order to solve the system (3.30), the

indefinite integrals L'{, L%, and L% have to be evaluated.

Following a similar procedure, one f£inds that the problem is
reduced again to the evaluation of the integrals [}, 1§, and 1%, which
are defined by the relations (3.31) and the soluticn of the system

{3.32) (Note that the superscript X denotes bending about the X-axis).

1
£ = f————-——~dz2 (3.31a) ’
12(22)
f (3.31b) b (3.31)
2(22)
3 f ———--dz | (3.31c)
15(22)

3.3.2 General Expressions for the Geometric Properties of the
Parabolic Flare of the Column with Octagonal Cross Section

Consider the parabolic flare of the bridge column of total length
ho as shown in Fig. 3.3. From this figure, it is clear that the
dimension which varies parabolically as a function of the position of
the cross section is rj. Thus:

25

= (3.33)

where k is the constant in the equation of the parabolic flare, which

can be determined from the value of r; at the top of the cross section

(rh):

(3.38)
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Also, the following geometric relations can be easily derived from Fig.
3.3:
72

rEc 42y =c 42— (3.39)
m

Moment of inertia for bending about the Y-axis:

(c + 2=~ + 22)%
v 4k
I5(Z;) = -
2142 12
a4 a‘?' a C Z2
Afomm 4 = (== 4 ——m ¢ =2} 2] (3.36)
36 2 3 2 4k

Moment of inertia for bending about the X-axis:

23
b3 (c + 2-—— + 2a)

% 4k
5(zy) = -
2142 12

a\4 .3.2 a b-2a 5
h[mmmm e (= ) 2] (3.37)

36 2 3 2

After carrying out all the necessary algebra, the general expressions

for the moments of inertia reduce to:

I%(Zz) = a%zg + azzg + Ot322 + dY {3.38a)
15(22) = a§z§ + a% {3.38b)
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b g (c+2a0b a2
where: O.‘.% =——-z= i 03 = 3 -
16k

8k 2

of = —— - (4 =) ,
gk k3 2
(c + 2a)3b ad a o
of = - - 232 (— + —)2
12 9 3 2
b3
X = ———
1
24k
b apd At ,a b-2
of = + - - 2a%(=— + ~ )
12 6 9 3 2

(3.38¢)

1(3.38d)

¢ (3.38)

3.3.3 Evaluation of the Integrals L. L3. and L} in the case of a

Combining the relations (3.29a) to (3.29¢) with (3.38a), the

integrals to be evaluated can be expressed by the following general

relations:
Y f .
¥ = - -z, (3.39a)
e R R TR
7
v 2
4 =f a1, (3.39)
o5+ 3
, 2
LY = i -dz (3.39¢)
= ) .
PR SRR

To evaluate the integrals,
examined.

Consider the equation:

(3.39)

-t

the roots of the denominator must be
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al 4 a¥
2

2 3 4
I%(Zz) = @{(Zg + ——-—z‘z? + = 25 + “§“) =0

Y Y
%y %1 %1

(3.40)

By making the substitution 222 = S in (3.40) and noting that o% 40, one

gets:
b4 Y Y
3 92 5 23 “4
P(S) = 87 + = 8¢ + Y S + v o
oy oy oy

(3.41)

The analytic expressions of the roots of (3.41) are given by the

following relations (Ref. 47):

Roots
Y
S =A+B - 2o
1 3

{Vgﬁ a%

52=-1/2(A+B)+-—---(A—B)—--—--
2 309{
i on%
S3=-1/2 (A +B) - ——(A -B) - ———
Y
2 30(1
Y
o
27 i:]
41
Y 4
N 2 2
n = ["Y-(Y)]
3 o7 o

(3.42a)

(3.42b)  (3.42)

(3.42¢)

(3.43)

From relations (3.42) and (3.43), it follows that there are three cases
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for the roots of (3.41):

2 2
Case (i) A + -k >0, (3.41) has one real root and two
4 27
conjugate complex roots.
AZ 3 ,
Case (ii) Ay B o, (3.41) has three real roots; two, at
4 27
least, equal.
>\2 3
Case (iii) -=-+-E—~ <0, (3.41) has three real, unequal roots.
4 27

It is important to note that, in all three cases, the real root(s)
of (3.41) have to be negative, because, if S; is a positive real root
of (3.41), then Z i = 834 >0 will be a positive real roct of (3.40);
this, however, has no physical meaning since the moment of inertia must

be positive.

Case (i)
o3
et 5y =A +B - N be the real root of (3.41).
3
1

Since Sy < 0, cne can write:

oY
- 2 __ .2
Sl =A + B 3OLY = tl
1
where: (3.44)
|

uY
— 2 —
tl' |A+B-—-§—|- 'Sll
3&1 V

Then, the moment of inertia I%(Zz) can be written as a product of a
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quatric and a quadratic polynomial in the following way:
13(2,) = of (22 + t§) (124 + k23 + W) (3.45)
The coefficients L, K, and M can be evaluated easily by equating the

coefficients of the same order terms in equations (3.38a) and (3.45):

L=1
L Y Y
K = -;i- ((12 + Otlsl) (3.46)
1
o}
M= - —
’ Y
S101

Consider now the polynomial R(Z5) = zg + KZ% + M, which, by the

transformation 2 = S, can be written as: R(S) = S% + RS + M. Let A =
K2 - 4M be the discriminant of R(S). Since Case (i) is being examined,
the polynomial R{S) has two complex conjugate roots; and, therefore,

A < Q0. The two roots of R(S) are giwven by the relations

82= o+ 18
Sq = o= 1R
3 (3.47)
K -4
A = - ——, B:—-———
2 2

Using polar coordinates, the roots can be expressed as follows:

IS21 = 1531 =\/u? + 82

o =
b =05 == 93 -7 < ¢ <r {principal argument)

o B a B
S ¢p = ~5= ; SiN ¢y = — , COS $3 =~ , sin ¢3 = - - (3.48)
S5 = p(cosdy + i sing,) = p(cosp + i sing)
Sy = plcos¢y + i sin¢3) = p(cos¢ = 1 sing)

By using the polar representation of S, and S3, one can find the four
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roots of R{Z,) from applicaton of the relation for the nth root of a
complex number.
W, = r(cos8 + 1 sin®)
where (3.49)
9+ 2k 8+ 2k
W, =\; r (cos— — + 1 sin —}(k = 0,1,...,n~1)
n n
This gives:
N
Zp 1 = P leos=2- + i sin-$-]
2 2
b+ 2T o+ 2T
2 ..
25 = So=I> 47 = VYo [cog—=—em= + i sin-~—————-] =
2=52 2,2 W ) )
) ¢
{ - v;[cos-—— + i sin=—1]
2 2
$(3.50)
¢ ¢
rZ2‘r3 = V;[cos—-- - 1 sin——-]
2 2
-¢ + 2T -p+ 2
Z% = S3_D ) Z2'4 = Yo [cos —w= + 1 gin==—m—e—=-] =
2 2
¢ ¢
-yp [cog=—- - 1 sin——]
\ 2 2

With this result, the polynomial R(Z,) can be written as the product of

four first order polynomials as follows:
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R(ZQ) = (Zz - 22'1) (Zz - 22'3) (Zz - 22'2) (Zz - 22'4) or

: :
R(25) = (25 - Vb (cos—= + i sin—)
2

¢ o) P ®
[22 —'\/;(cos—-w - 1 sin-—)1[%, +‘\/>-1(cos-- + i sin-—)]
2 2 _ 2 2

b ¢
(25 #|[p (cos—= - i sin-—)] (3.51)
2 2
After carrying out the algebra in (3.51), one can express the polynomial
R(Z,) as a product of two irreducible quadratic polynomials with real
coefficients:
2 ¢ 2 i
R(Zz) = (22 - 222V§3—‘COS—"’— + 0) (Zz + ZZZWCOS-”“ + 0} (3.52)
2 2
Combining equaticns (3.45) and (3.52), the moment of inertia can be
factored into three irreducible quadratic factors with real

coefficients:;

¢
I%(Zz) = a{(Z% + t%) (Z% - 2Z2v;cos-£- + )

b
(z% + 222'\/;cos-5— + 9 (3.53)
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Consider now the fraction:

1
F(Zg) = ——gm———= =
13 (23)
1
= (3.54)
¢ ¢
&.{(Z% + t%) (Z% - 2%\ cog—— + p)(Z% + 2Z2wcos——- + p)
2 2

The above fraction can be broken into partial fractions as follows

(Ref. 48):
- 1 X2, +X X325 + X
F(Zz) - ( 142 2 N 3 4 +
¢
uﬁl( Z% + t% z% - zzz'vé-l cos—— + p
2
(3.55)
2 ¢
25 + ZZZWcos—- + 0
2

By combining (3.54) and (3.55) and equating coefficients, one produces
the system of equations shown in (3.56). The solution of this system
determines the coefficients X1r Xr wer Xgo Therefore, the expression
of F(Z;) as a sum of partial fractions [see (3.55)] is completely
defined by solving the system (3.56). Next, return toc the integrals LY,

L3, and L. By combining relations (3.39) and (3.55), the following



1 0 1 0
$
0 1 2\/;3-Icos-——~ 1
2
2 ! 2 ¢
2 (1-2cos“-—-) O P+ tf ZWcos———
2 2
) %
(0] 20(1—20052-——) Zt%Wcos—-— o+ tf
2 2
02 0 2 2t i
pty 1Yo cos
2
o pz 0 pt%

¥e
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expressions for the above integrals can be obtained.

1
Lf = —5-(Kgi + Xoy + X3y + Xgi3 + Xgig + XgHs)
Y |
s 1
L2 =~ (yfly + Xoffy + XgHg + X4y + Xl + Xgflg)
1
¢ 1
13 = =5 (o + Xgfly + XgHy) + X4Hg + XsHy 5 + XghHo)
1
where:

H
1~ 2
zZ5 + t

Hy

‘—--dZ
22 + tf 2

- 2Z2v—lcos-—-— + P

L)

¢
- 2Z,\/p cos—— + P
2
2

Hy

—dz,

He -z,

2 + 222\/_‘ cos—-— + P

Z2

Hg -3z,

22 + ZZQ\/_.cos-—— + P

S

J 2
e[t

I

J

|

(3.57)

/ (3.58)
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23
H8 =f —de
¢

Z% - 222.;)c05—5— + p

72
2
Hg = "de
¢
22 + 222\/;cos—-- + 0

2

(3.58)
cont.

These integrals can all be evaluated using standard integral tables.

1 Z9

Hy = = arctg -——-
ty Y
1

H2 = --2—- 1n(Z% + t%)

¢
Zs = /o cOog——m
! 2~ Poos;

Hy = arctg

o}
2—-—--) (1—c052

2 2

¢

-—)

{1-cos

(3.59)
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1 2 $
Hy = —5—?n(22 - ZZzwﬁ;Eos—E— + p) +

o : ¢

CcoS——— Z2 COS-—

arctg

/ 2 ¢ / '
l—cos4—- p{l—cos ——-)
2

\éﬁcos—-— + 3z
1 2 2

HS = arCtg
29 2% )
p (1-cog®-——) P (l-cog“——-)
2 2
1 5 b
He = -— In(25 + 2zzv5cos—-— +0) -
2 2
) ®
COS=~— \ﬁ?cos-—— + ZZ
2
arctg
5 o}
1 - cos®~— (1—cos -——)
2
Z
H7 = Z2 - tl arctg —
£
b 5 )
Hg = Z, +‘v61cos——— 1n(22 = 2%5\/0 cos—— + Q) +
2 2
o ¢
2pc0s2-— - o 4V6ﬂcos——- + 2o
2 2

— arctg
2 ¥ 2 v
p {1-cog-~=) b (L-cos“——-)
2 2

Hg = 25 -\ﬁrcos—g- 1n(Z% + 2Z2\@ﬂcos—5— + p) +

?(3.59)
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5 ¢ ¢
20pCos“=~~ = p 29 + \/;? cos=—~
2 2
arctg
2.8 \/ 2
o (1-cog“=—) o (1-cog“——)
2 2
2 2
3 £y
Hy = === = —=== 1n(z3 + t3)
10 2 2 2 1
H z% + 21/nCOS ? 2y +
11 2 o 5 2
$
4pcosz—-- - P
2 ¢
1ln(Z% = 2Zyyfocos=— + p) +
2 2
b
"JQ—COS"- + Zz
] ¢ 1 2
cos-——{4 pcos2—— - 3p) arctg (3.59)
2 2 o) o cont.
l-cosz--— D (l—cosz—-—)
2 2
23 , ¢
H = w— - vgcos—-—z +
12 5 5 2
o}
4oc052—-- -p
2 )
]n(z% + ZZZﬁcos——- + 0} -
2 2
®
'\/; cos—— + Zp
o) ¢ 1 2
cos---(4pcosz—-- - 3p)=———————— arctg
2 2 ) o
_ 1-cog2—- \/p (l*-coszm--—)
2 2 7

Combination of relations (3.59), (3.58), (3.57) results in the
determination of the elements of the coefficient matrix in the system

(3.30).



89
Case (iii)
Let Sy, S5, and 55 be the three unequal roots of (3.41). Since all

of the are negative, one can write:

= - 12

5p == t]

Sy = - t3 (3.60) -
.2

S5y =-1t3

Then, the moment of inertia I%(Zz) can be factorized in the following
way:
13y = @2 + thed + tHEd + D) (3.61)
The steps that have to be followed after the factorization of I%(Zz) are
quite similar to the ones followed in Case (i). The fraction F(Z5) =

1
w=~=———— has to be broken into partial fractions, which will result in
13(Z5)
expressions for the integrals L{, L%, and L% in terms of integrals like
Hy, Hy, and Hy.
3.3.4 Evaluation of the Integrals L{. LS. and L} in the Case of a

Parabolic Flare with Octagonal Cross Section
Combining relations (3.31la) to (3.31lc) with (3.38b), one can see

that the integrals to be evaluated can be expressed by the following
general relations: ‘

1
X = | ——=—p——dz, (3.62a)
ofz5 + o}

2
X _ 2
i3 faxzzwi-dzz (3.620) (3.62)

2 %%

% = [ ~————x=az (3.62c)
> faxzz*‘“x :

The above integrals can be evaluated easily:
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1 1 Z,

L)l( = === ———— arctg -———
X
)
2
of (3.63)
11 o¥
14 =~~~ In(z3 + 2
X X
ay 2 oy
% 1 1 oc)z(
1§ = ~=—2y -~ —=_|—=— arctg ————-
o« o Yo

It should be clear from the above analysis that the method presented can
be used for any column with variable cross section provided that the
moments of inertia can be expressed by equations (3.38a) and (3.38b).
3.3.5 Summary of the Basic Steps for the Anglytic Evaluation of the
Stiffness

Because of the extent of the previous analysis, it seems
appropriate to summarize the steps needed to apply the results to a
particular case.

a. Bending about the Y-axis - Case (i)
1. Find ty, K, and M from formulas (3.44) and (3.46), respectively.
2, Find o, 8, p, and ¢ by using relations (3.47) and (3.48).
3. Calculate the elements of the matrix in system (3.56); solve the
system and f£ind the coefficients X1r Xy eeey Xg-
4. By using equation (3.59), evaluate the integrals Hj, ..., Hg at the

required points (2, =0, Z; = hy).
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5. Use formula (3.57) to evaluate LY, LY, and L at the required points
1r L3 3

(25 =0, 25 = ho).
6. Calculate the elements of the matrix in system (3.30) and solwve it.
The value of —B% is the desired stiffness.

b. Bending about Lbﬁ X-axig
1. By using equation (3.63}, evaluate the integrals Lf, L%, and L§ at
the required points (Z, = 0, Z; = hy).
2. Calculate the elements of the matrix in the system (3.32) and solve

it. The value of —Bé is the required stiffness.

3.4 APPROXIMATE ESTIMATION OF THE STIFENESS OF A TAPERED COLUMN

The analysis in this section is intended to provide an alternative
approach to the problem of finding the elastic stiffness of a tapered
column. The approach is less accurate but more general than that
developed in the previous section.

Consider again the column shown in Fig. 3.2. This c¢olumn can be
approximated by a sequence of bending beams, each one having a constant
moment c¢f inertia equal to the average moment of the corresponding
section of the column. This representation of the column is shown in
Fig. 3.4.

3.4.1 Estimation of the Stiffness for Bending About the Y-Direction

Assume that a unit displacement xt =1 along the X-axis is imposed
at the top of the column. The deflection of the kth beam is governed by
the equatiocn:

ahw, (z,)

=0 (3.64)
dzg

The solution of (3.64) has the general form:
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b
-

FIG. 3.4 APPROXIMATE REPRESENIATION OF A TAPERED COLUMN
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W (%) = AL + Bz, + cfa? + Dlzd (3.65)
By using (3.4), (3.2b), and (3.2c), one gets:

M (Zy)

““E—’E-— = BE + 2C¥Zk + 3D.]£Z|% (3.66)
de

ME (z,) = EIf (L + 6Dfz) (3.67)

Of (z,) = - GEI{Df (3.68)

The response of each beam is fully described by four coefficients.
Considering all the n beams, the total number of the unknown
coefficients is 4n. The equations required to estimate the 4n unknowns
arise from the boundary conditions and the conditions of continuity at
the connections between the beams.,

Boundary conditions
Beam 1: (i) EI}

or 6EI1D] = —k§A; (3.69)

or 2E1,C; = k&g, (3.70)

|
Beam n: (i) W,(2y,) ; =1 or

AL + Bihy + CihZ + Dib3 = 1 (3.71)
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AW, (Zn) |
(1i) ——Damfem | =0  or
dz, [2q = by
B, + 2phy + 3DghZ = 0 . (3.72)
Mﬂmuﬂmmmmmmgﬂm&m:;
beams
] !
(1) W (Zg) | = W (Zg41) | or
12y = [Zk41=0
Bf + Bty + Cihg + Dfnd = Ay (3.73)
o Ie(ze) | W41 (Zre1) |
(ii) -———— | = I or
Az IZg=hy dZy41 lZk+1=0
B + 2y + Dfnf = By 3.7
| |
(iii) M}E(zk) I = M¥+1 (Zk+l) | or
|2y =hy |2k 410
2ETECY + 6EIfm D = 2ETE,1CEy (3.75)
) Gz } o ) {
(iv (2 = Q41 (k41 or
| 2y =hy 12k 41-0
ETIfDL = ETIY . Df ) (3.76)

By writing equations similar to equations (3.73) to (3.76) for the
n-1 connections between two consecutive beams, one can find a set of
4{n-]l) equations which, combined with the four boundary conditions,
leads to a system of 4n equations with 4n unknown coefficients. This

system has the following general form:



Kk o o e o o0 o O .. 00 ...00

o =X omrf o 0 0 o 0O «. 00 ..00

2 3 -
1 hl hl hl l O O 0 LY O 0 LI O O
o 1 2 3 o 4o 0 +.. 00 ... 00
Y Y y '
0 0 221y 6EI3hy 0 O 2213 0 ... 00 ... 0 O

o 0o o ©Ef¥ o o o BT} ... 0 0 ... 00O

.b‘--oo.-...n!-.ll.-l-o.o--vcuOoonnolbob---toqnniolllt.t- _1 0 O
o.!l-.lall.o..t...-.v--o-otan.n-.oc.--o.-..!o.bcalccovoooq

0
-a--oo-.o-...clt.hl.bt--.vnﬂ!.s.-'b~---o‘-.ouc‘oocc.u.---. O 0 MZEIY
0 O

L..l.o..-0..n'o‘oo'-avnll..l.-.q-ooocvlv...t.oi.t.-.o!ccion

G6

©c o o o
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By solving the above system, the unknown coefficients can be determined.
The unknown stiffness will be given by the product 6EI§D¥1 (see equaticn
3.68). |
3\.4.2 Estimation of the Stiffness for Bending About the X-Direction
The procedure which has to be followed in this case is exactly like
that just described with superscript Y replaced by superscript X.
3.5 EXAMPLE
Consider the concrete column shewn in Fig. 3.5. The dimensions
are those of the columns of the Nichols Road Overcrossing (bridge No,
56-725) located in Riverside County, California. This column has a
uniform cross section up to a height of 4.85m followed by a parabolic
flare which has a ‘total length of 3.66m. Based on the drawings of Fig.
3.5, the following values can be assigned to the geometric parameters of

the problem:

hl = 4.85m, h2 = 3.66m
a = Q.36m, c = 0.5m, b=1.22
r{ = 0.605m, I; = 0.147n? k = 5.5

The value of E = 2.4 X 1057 t/m? will be used for the modulus of
elasticity of the concrete. The soil is considered to be stiff and with
properties taken from Table B.2 of Appendix B. The values of the soil-
springs can be estimated by the formulas provided in Table B.l of
Appendix B. Using the footings of the example, the following values of
the soil springs are obtained:

kX = k¥ = 4.85 X 10° t/m

k2 = k¥ = 5,87 x 100 tmyrad

From formulas {3.38c) and (3.38d), the coefficients cx{, esy u}f and oa)](_,
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FIG. 3.5 DIMENSIONS OF THE EXAMPIE COLUMN (NICHOLS ROAD OVER-
CROSSING, RIVERSIDE COUNTY, CALIFORNIA)
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O% can be found:*

of = 7.638 % 107> of = 2.540 x 1073
of = 3,255 X 1072 of =1.473 x 1071
of = 1.376 x 1072 of = 1.473 x 1071

So, the moments of inertia of the parabolic flare have the following

forms:
1$(25) = 7.638x107°23 + 2.540x1073274 + 3.255x107%2% + 1.473x1071
15(2) = 1.376x107%23 + 1.473x10"1  for O < 2, < 3.66

3.5.1 Analytical Sclution of the Problem
(i) Stiffness for bending about the Y-direction

From formula (3.41), one finds:

X = =740 u = 58,2
)\2 u3
Note that —— + —— = 8688 > 0; therefore, case (i) applies.
4 27

Following the steps outlined in part a of section 3.3.5 yields:
lo Sl = -909’ tl = 3.1' K = 23.4' M = 195-6 )
2. o

-]..1.7; B = 7.7

o = 14.0, ¢ = 146.8

3. The system (3,56) becomes:

B 0 1 0 1 o 1 x] 0]
0 1 2.1 1 -21 1 X, 0
2.4 0 23.4 2.1 234 -21 X 0
0 23.4 2 2.4 -21.1 23.4 x,| |0
195.5 0 137.9 2.1 137.9 -2L.1 Xs 0

o 195.5 O 137.9 © 137.9 | |xg 1]

*Intermediate results presented in this example are given to four
significant figures while final results are rounded to three
significant figures.
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Solving the above system produces the following values for the

coefficients X1r Xgr evey Zgt

X; =0 X, = -0.008677
X5 = 0,01735 X5 = -0.0000012
X3 = 0.0000012 Xg = -0.008677
4. TABLE 3.2: VALUES OF INTEGRALS AT Z2 = Q, Z2 = 3.66m
Integral At Z, =0 At Z, = 3.66
Hy 0 0.27
Hy 1.14 1.57
H3 ~0.08 0.17
Hy 1.23 1.67
H6 1023 1.%
Hg 3.77 4.8
Hg -3.77 -3.16
10 -11.28 -8.81
Byy -9.17 ~6.44
By ~9.17 -7.59
5. | !
Ly | =0 Ly | = 13.25
12, =0 1z, = 3.66
¢ | ¢!
]Z2=O IZ2=3.66
Y l -7 Y |
L3 | = -5,38x10 L3 | = 30.82
125 = 0 125 = 3.60



6. The system (3.30) becomes:

[4.85x105 0

0 -5.87x10°
0 0

0 0

1 . 4.85

0 1

0 0

(8] 0]

0O

7.05x10°

23.52
5.7

7.05x10°

2.116x10%

114.084
70.56
10.25x10%

~2.116x10%

0

21.7x1076

'5.52x1076

-8.31x10~%

0
~18.33x1076
-1.50x10®
o)

8.31x10~6

3.66

00T
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Solution of the above system of equations gives the unknown

coefficients:
A =0.023 A3 = -15934.8
B{ = 0.007 BY = -11344.94
Y _ Y _
cf = 0.006 c3 = 0.071
DY = -0.005 D§ = 0.878

The stiffness of the column is equal to the absolute value of B%,
kY = 11340 t/m (3.78)

1. ¥ =o0 1 =187
lo 13,66
X ! X |
¥ | =86.17 iy =1157
lo '3.66
l !
] =0 ¥ =659
o 13,66



The system (3.32) becomes:

-
4.85x10°

o

-5.87x10%

4.85

0

7.05%10°

23.5225
9.7

7.05x10°

2.119x10°

0

0

114.1
70.57

10. 27x10%

-2.11x10%

O

0

~19.68x10~°

7.78x1076

35.9x1076

0
148.9x10~6

48.19x1076

~35,9x10"6

3.66

1

-1

[4e)8
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Solution of the above system gives:

2% = 0.0173 2% = -8497.361
B = 0.0055 BS = -8360.965
c¥ = 0.0457 & =0.47
of = -0.004 0§ = 0.3611
The stiffness in this case is:
k% = 8360 t/m (3.78)
3.5.2 Approximate Solution of the Problem

To illustrate the use of the approximate method for determination
of the stiffness, the simple case in which the parabolic flare is
represented by a simple beam of uniform cross section is chosen. Thus,
the total number of beams involved is n = 2. The geometric parameters
of each beam are shown in Fig. 3.6.

Bending sbout Y-axis
For n = 2, the system (3.77) takes the following general form:

[ k¥ o 0 6e1f o0 o o0 o rzsPlﬂ X
o «& = o o 0 o 0 BY 0
o o 0 0 1 hy B2 h3 c¥ 1
o o o 0 0O 1 2n,  3n3 B |=]|o
N -1 0o o -0 a3 0
o 1 2h; 3¢ o -1 o0 0 B} 0
o o 2e1¥  eEIfhy o o -1 O c3 0
Lo o e ETY o 0 o0 -£13 ] LD‘—z’ | Lo

Substituting the numerical values of the parameters,
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Solution ¢of the above system gives:

al = 0.023 A% = 0.687
B{ = o0.006 BS = 0.1447
¥ =o0.052 c¥ = -0.009
DY = -0.00524 © D§ = -0.002

From equation (3.65), it is seen that the stiffness for bending about
the Y-axis is: .

k¥ = 6E15 | D3 | = 11124 t/m (3.79)
Bending about X-agis
In this case the system to be solwed is given by system (3.77b)

which has the solution:

a¥ = 0.0167 2% = 0.64

B = 0.005 B5 = 0.1620
cf = 0.044 c% = -0.008
of = -0.0038 D% = -0.0026

The stiffness of the column for bending about the X-axig is:
| |
kX = 618 | D§ | = 8124 t/m (3.80)
I |

Comparison of the results obtained from the analytical methed with those
found from the approximate analysis shows very good agreement. This is
despite the fact that in the approximate method the flare was
represented by Jjust one uniform beam. This close agreement is
encouraging for applications of the more general approximate method. It
is realized, of course, that in other cases more individual beams may be
required to approximate the flare satisfactorily.
3.5.3 Yielding of the Colum along the Two Directions of Bending

In order to characterize the force-deflection relations of the

columns for the nonlinear analysis, it is necessary to approximate the
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yvielding and failure of the c¢olumns in both the X and Y directions. To

make the analysis of the yielding as simple as possible, the following
assumptions are adopted:

(1) The ultimate shear strength and the ultimate torsional
strength are so large that they can be considered infinite;

(2} The column is under a constant axial force from the weight of
the bridge deck; and

(3} The ultimate bending moments of a cross section are determined
from the axial stress distribution present on the cross section under
ultimate conditions and are independent of the shear stresses.
The method by which the ultimate bending moments are determined is
outlined in Apperdix A.

The steel reinforcement and the axial load acting on the column are
shown in Fig. 3.7. The properties of steel and concrete used are shown

in Table 3.3.

TABLE 3.3: PRCPERTIES OF CONCRETE & STEEL REINFORCEMENT

Description Value

Concrete Modulus of Elasticity E 3,390,000 psi = 2.4x108 t/m2

]

= 3,500 psi = 2460 t/m?

Concrete Yielding Stress fo =

Concrete Yielding Deformation E, = 0.003

Steel Modulus of Elasticity Eg = 29x108 psi = 20x108 i:,/m2
Steel Yielding Stress £, = 50,000 psi = 3.5153.5 t/m?

Steel Yielding Deformation Eg = 0.00172
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3.5.3.1 Estimation of the ultimate bending moments

The ultimate bending moments in the two directions of bending for
the bottom and the top cross section are given in Table 3.4. The method

by which they were found is briefly described in Appendix A.

TABLE 3.4: ULTIMATE MOMENT CAPACITY

Cross Section Bending about Y-axis Bending about X-axis
Bottom 1315 tm 1315 tm
Top 1699 tm 3029 tm

3.5.3.2° Construction of the force-deflection diagrams for bending

From equations (3.6) and (3,11) and the analogous ones governing
bending about the X direction, the solutions of the systems (3.30) and
{3.32) and the values of the ultimate moment capacities, the force-
deflection relations for loading at the top of the columns can be
constructed. The force-deflection relations include an elastic portion
and changes in slope corresporkiing to yielding at the bottom and at the
top cross sections. An analysis of the deflection needed to cause
yielding at the top and the bottom cross secticon indicates that the
column first yields at the bottom. Furthermore, considering the fact
that after yielding at the bottom no extra moments can be assumed by the
bottom cross section, the stiffness of the columns after the yielding at
the bottom was found to be: kX = 2269.65 t/m. This stiffness remains

in effect until.the top of the column yields producing a mechanism.



111

force at the top
along x (1)
- 1 2 S S
| yielding at the top
i
382 —————— kY= 3140 /m |
| yietding ot :
| the bottom |
I |
I I
ky: | |
1134 Y | |
! |
1 . .
0.0337 - 0.074 o
Displacement at top
along x (m)
Y
[
Force at thetop Lx’
afong Y- (t)
353 e e
MBiF—-————-———— !
(I
|
|
Lo
P
L
P =
0.0408 0.046 -

Displacement at the
top along () m

FIG. 3.8 FORCE-DEFLECTION DIAGRAMS FOR LOADING AT THE TOP CF
THE COLUMN
a. Berding about Y-axis
b. Bending about X-axis



112
Based on this analysis, the force-deflection diagram for bending about

the X and Y axes were found to be as shown in Figs. 3.%9a and 3.9b,

respectively.
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CHAPTER 4

ESTIMATION OF THE EQUIVALENT ABUIMENT STIFFNESS

4.1 INTRODUCTION

As was shown in chapter 2, one of the most important parameters for
the development of a model which will c:-;pture the basic features of the
rigid body motions of a skew bridge is the abutment stiffness, ky,. The
calculation of a precise value of the abutment stiffness would involve
very difficult calculations since an accurate representation of the
abutment-soil system would be very complicated involving complex three—
dimensional geometry, many degrees of freedom, and the nonlinear
constitutive relations for the properties of the soil. But, as was
discussed in chapter 2, a reasonable estimate of the abutment stiffness
is sufficient for constructing a simple model for the rigid body motions
of a skew bridge. Thus, the purpose of this chapter is the development
of a simplified method by which one can find an approximate value of the
abutment stiffness, kab'

The presentation is divided into three sections. In the first
section, some fundamental concepts of soil mechanics and abutment design
are presented briefly; in the second, the simplifying assumptions are
given; and, in the third, the statement of the simplified problem and
its solution are provided.

The solution is divided into two parts. 1In the first part, the
soil is modelled as a Winkler foundation with springs that are either
constant or which vary linearly with depth. In the second part, the
soil is represented by n discrete springs with independently determined
constants. The soil springs are considered to be linearly elastic, but

the soils on the left and right sides of the abutment are allowed to
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yield. The yielding criterion used for the soils is given in the
section containing the basic assumptions of the analysis. The final
result for each case treated is an approximate elasto-plastic force-
deflection relation for the abutment-soil system.
4.2 PRELIMINARY CONCEPTS
4.2.1 abutnents

The abutments of a bridge support the ends of the span and retain
the earth behind them. For highway bridges, there are sewveral types of
abutments depending on the material of construction (plain concrete,
reinforced concrete, stone) and on their function (full height abutment,
stub or semi-stub abutment, open abutment). The method which follows
deals with abutments whose profile can be approximated by the two-
dimensional configuration shown in Fig. 4.1.
4.2.2 Geogtatic Stresses in the Soil

Generaliy, the pattern of stresses in soil, even those caused by
its own weight, is very complicated. However, there is a common
gsituation in which the weight of the soil gives rise to a simple state
of stress: when the ground surface is horizontal and the soil is
laterally homecgeneaus. 1In this case, the stresses are called geostatic
stresses: and the wertical and horizontal planes are principal planes
since no shear stresses act on them. The vertical geostatic stresses at

any depth are given by:
0y (2) =v2 (4.1)

where y is the unit weight of the soil (assumed to be constant with
depth and Z is the depth. The ratio of horizontal to vertical stress is
expressed by a factor, called the coeffjcient of lateral stress and
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denoted by K:

K= - (4.2)

In the special case where there is no lateral strain in the ground, soil
mechanicians employ the term goefficient of lateral stress at rest and
use the symbol K,. Depending on the soil, K, can be greater or less
than one. For typical sand deposits K, varies between 0.4 and 0.5. The
geostatic stresses are shown in Fig. 4.2.

4.2.3 Rapnkine Theory

The Rankine theory is one of two classical theories of earth
pressure (the other one is due to Coulomb). Rankine theory is based on
the Mohr-Coulomb yielding criterion which is summarized in Fig. 4.3. In
this figure, 9 and 9, = 95 are the principal stresses; and the
cohesion of the soil is denoted by c.

Consider a semi-infinite mass of soil with a horizontal surface and
having a vertical boundary formed by a frictionless wall extending to a
gsemi-infinite depth (see Fig. 4.4a). The scil is assumed to be
isotropic and hémogeneous. Let O, and O}, be vertical and horizontal
stresses, respectively, upon a soil element at depth Z. If there is now
a movement of the wall away from the soil, the value of 7 h decreases as
the soil expands outwards. If the expansion is large enough, 0y
decreases to a minimum value o, such that a state of plastic equilibrium
develops. The stress Oy is called the active stress and is the minor
prinicipal stress in the Mohr's circle. The state of the soil when oy =
0y 1s called the Active Rankine State (see Fig. 4.4). If, on the other

hand, the wall is moved against the soil, there will be a lateral
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compression of the soil and the value of oy will increase until another

state of plastic equilibrium is reached. The maximum value of e in

this case, denoted by OP’ is called passive stress and is the maximum
principal stress in the Mohr's circle. The corresponding state is
called the Passive Rankine State. Relative to the Rankine states in

Fig. 4.4, the following relations can be derived:

L =Ky v5 - 200k, (4.3)
p =KV + 2c\/-1<; (4.4)

a
il

g

[1}

where Kp and Kp, the active and passive pressure coefficients,

respectively, are

1l -sin¢
Kp = ———————n- (4.5)
1 + sind
1+ sin ¢
= —— - (4.6)
Kp 1l -sin¢
4,2.4 Active Thrust and Passive Regjistapce

Equations (4.3} and (4.4) show that the active and passive stresses
increase linearly with depth as indicated in Fig. 4.4b, When the
cohesion ¢ is zero, triangular distributions are obtained in each case.
When c is greater than zero, the value of 0, is zero at a particular

depth Zye From equation (4.3} with 0y = Ot

S 4.7

This implies that, in the active case, the soil is in a state of tension
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between the surface and depth Z,. But, in soils, cracks are likely to
develop within the tension zones; and the tensile stresses acting on
the wall are commonly neglected. The force per unit width of the wall
due to the active stress distribution is referred to as total active

thrust (Pp). For a wertical wall of height :

1
Py =f o.dg = 1/2 Ry v (12 - 22) - 2K, 0 - 2,) (4.8)

%o

The force due to the passive stress distribution is called the total
passive resistance (Pp). For a vertical wall of height 1, the passive

resistance per unit width is:

1
_ -~ 2
Pp —f Gde =1/2 pr1 + 2¢ ] (4.9)

9]

The active and passive stress distributions are shown in Fig. 4.5a.
4.3 BASIC ASSUMPTIONS

The approach presented below is based on the following simplifying
assumptions:

(2a) The problems to be solved are static; consequently, no
inertia forces are included in the analysis;

{(b) The abutment is assumed to behave as a uniform, rigid plate,
i.e., deformations due to bending and shear are neglected;

{c) When elastic, the soil is assumed to behave as a Winkler
foundation. |
Thus, the pressure, p, exerted by the ground at a point, is assumed to

depend only on the displacement, W, of that point through a proportion-
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ality factor k.
P = kW (4.10)

The factor k,, is called the horizontal subgrade reaction coefficient.

In the first part of the analysis, k., is assumed to vary linearly with

W
depth according to the relation:
A
ky, = nw—]- + kg (4.11)

where 1 is the total height of the soil depesit (which for the deposit
on the right of the abutment is equal to the height of the abutment), Z
is the depth and n, and k, are constants. Equation (4.11) includes both
a uniform subgrade coefficient (n, = O) and triangular distribution of
resistance with depth (kg = 0)y which are the two most frequently used
expreséions for the factor ki The resistance of the scil at the bottom
of the abutment is modelled by a torsional spring which resists the
rigid body rotation of the abutment.

The contact between the abutment and the soil is assumed to be
frictionless.

(@) When no force or displacement is imposed on the soil by the
bridge, the system of the soil and the abutment is in equilibrium under
the initially applied forces (weight and geostatic forces). Thus, in
the analysis, only the equilibrium of the forces applied beyond the
initial equilibrium state will be examined.

(e) A soil deposit is considered to yield if the total compressive
force imposed on that deposit equals either its active thrust or its

passive resistance. It will be assumed that when the total compressive

force is between these two values, the socil deposit will behave
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elastically. The above "yielding criterion” is global in nature and
does not take into account that the state of stress at yielding of each
soil element will, in actwality, depend on its depth. But, for the
purpose of the analysis, it is considered to be an acc'eptable
assumption,

(f) A soil deposit cannot assume tensile stresses. The deposit is
said to be "tensioned” only in the sense that its initial compressive
stresses are decreased. The maximum level of the decrease is specified
by (e).

4.4 ESTIMATION OF THE EQUIVALENT ABUIMENT STIFFNESS
4.4.1 Statement of the Problem

The problem to be solved can be briefly summarized as follows: Let
Wa be the deflection imposed by the bridge deck on the soil through the
abutment and let P, equal the reaction of the soil on the bridge. The
problem is to f£ind an equivalent nonlinear stiffness kg, such that

Py = kyy @
4.4.2 Solution of the Problem in the Case of Winkler Foundation

Consider a strip of the abutment of unit width loaded by load P per
unit width applied at a distance a from the top (see Fig. 4.6a). Let
the displaced position of the abutment be that shown in Fig. 4.6b, and
let W, and Wy be the displacements of the top and bottom of the
abutment, respectively. If W(Z;) is the displacement at a depth Z1r

then:

(4.13)
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The stress between the soil and the abutment can be expressed as a

function of depth as follows:

of the abutment)
y (4.14)
P1(21) = W(Zq1)k,(Zq) d £ Zy £1 (on the left side
rel V(i ! of the abutment) )

By substituting W(Zl) from (4.13) and kw(z) from Fig. 4.6a, one gets

from equation (4.14);:

N, .
21
+ Wikl == + kgl 0< 2y <1
Ty 2
P, (Z]) = (W - W) ————— 722 4 (4.15)
’ “ Ju-a *
K
[, (- ——— + oy ) +
1 1-4d 100 - Q)
k nA
Wy (=—m - 112y + W, (kg = ———) d<zy <]

1 101 -a 1-4d ]

The equation of force equilibrium requires that:
1 1

o} d

From the equation of moments about z; =1:

1 1
P(I - a) =fpr(Zl)( - 27)dz; +[pI (Z1) (= 27327 + keo (4.17)

o} d
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From (4.16), (4.17) and (4.15), one gets:

P=RW. + RyW
oo T AL }(4.18)

P(1 - a) = TOWO + lel

r (4.19)

where:
-
n,€l  (n, - k) n, (13 - &
R, = - + + kol - +
3 2 311 - &)
12 - &2 ko Dy nd
+ (- + + ) +
2 1 1-4  101-4a
(kg = ~———=—) (1 = 4)
° 1-q
n,1 1 n,(®-d%
Rl="""‘—"+ko + +
3 2 31(1 - Q)
Ko n,4 12 - a
(= - )
1 101 - @) 2
n, 12 P kg1?
T, = — =—==——+ {n_ ~k.) + +
© 12 TRl T 2
( - )+
1-d4 4 3
Ko n, nd 12-¢2 13-4
(- —2= + * (1 - ) +
1 1-d 1(1-4 2 3
2 _ 42
nd 12 -4 k
(kg - ———) (1(1 - @) - )+
1-4d 2 1
n,® k1 M, B-a 4.4
T, = + + ( - ) +
i2 1 ~-4d 3 4
2 _ 32 3 _ 43
k 12 -4 13-4 K /
M Sy - ) - =2
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Solving equation (4.18) for the displacements gives:

-

WO=PAO
Ri(1~-a) -T
where: Ay = 1 1 }(4 20)
RiTy = RoTy ' :
R(l1=-a) -T
A = o} 0

RoT1 = BT,

From equations (4.20) and (4.13)

- Al
W(Zl) = P(AO - —_‘I_—-— Zl) (4.21)
For 21 = a, equation 4.2l gives:
W
P = 2 (4.22)
By = Ry
Ay — a

1
The total force P, is found by multiplying by the foundation width, b.

b
Pt = —{'v’a
- A
Ao - _l_\.i__—l_ a
]
So, the desired stiffness coefficient is
b
Kap = (4.23)
Bo = &
A, -~ -—————a

° 1

Equation (4.23) provides an expression for the equivalent abutment
stiffness when the soil behaves elastically. It should be noted that
the expression for k,, also applies for the special cases when

Ky = N,2/1 or ky =k, by setting ky = 0 or ny = O, respectively.
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4.4.3 Yielding of regions of the two soil deposits
As shown in Fig. 4.6, in the general case each soil deposit is
divided into two regions: region 1, which in both depcsits is
compressed by the abutment, and region 2, which in both deposits is in
tension as defined earlier. The distance s, which defines the point of
zero displacement, can be found from equations 4,13 and 4.20:

s = ] o (4.24)

Bo = A1
Based on the yielding criterion (e) which was stated in section 4.3, the
displacement W,, which causes yielding of each of the four regions, can
be estimated as follows.
4.4.3.1 Yielding of the regions of deposit 1
(i) Region 1 (in compression)

a. Initial force (due to geostatic stresses only):

S
P 11 = Kofsv{zl)dzl = 1/2 Ryys?

o}

or from equation (4.24)

a2
P = 1/2 Ky12 — _— (4.25)
11
o, o) (A - A1)2

b, Force imposed by the motion of the abutment:

3

P “f Py (21)dZ;

0
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and from equatiohs 4.15 and 4.17

n, s3 52
Pyyy = (Wy = W) —5= ——~ + Wplny, = Kg) + Wikl ~——=
111 1 o 12 T, o\hy o) 1Mo 21
+ kowos = WaOf.l
where:
ko Ag A2
al = 1 {nw — ——
b A= 30y - A
Ay (4.26)
+ [Ao(nw -kg) + Alko] ———— -+ kOAO}
c. Total Passive Registance:
Po,11 = /2 Kp s + 20 Kp 5 =
By Bg
] ————— (1/2 pr ] ——————— + ZC‘}KP ) (4.27)
Bo =B Bo = Ay

According to the yielding criterion followed in this analysis, this

region will yield when:

Po,11 * P,11 = Fp,12 (4.28)
From (4.28), the displacement War required to cause yielding of this

region, is found to be:

i
W= =1 e Koy | o, 23fk) -
31 Ao~ Bo " B
2
1/2 Koy1% - —=-] (4.29)
T (ag - ap?

(ii) Region 2 ( in tension)
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a. Initial force (due to geostatic stresses only)
1

- 8
and from equation 4.24
2

Po,12 = 1/2 Kgr12(1 - —— ) (4.30)

(B, - Ap)?

b. Force imposed by the motion cof the abutment:
1

P,12 =f PL' (Zl)le or
s
] n, 13 -8l 2 _ g2
Prip = () - W) 2 3 + W (ny = Kg) + Wike] -

+ k(1 = 5) =Wy

where:
3
1- 5 _
K @A, - ap?3
ab o} 1
% = —===1{(a - A)n, +
b 3
2
Ag
l- -—-—5—
(Ao - &) Ay
[A5(ny = ko) + Arkgl +t KAl = —————)
2 AO - Al
c. Active Thrust:
From equation (4.7):
2c
29 = = (4.31)
Y A

Depending on the value of Z‘f, the active thrust can be estimated as
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follows:

1. IE29>1 Pp,12 = O (4.32)

2. If s < Z‘]? <1 3 PA,12 =f ca(Zl)dZ]_ or

1
2
Pp,12 = L2 Ky (12 =28 - 2d[ky (1-29) (4.33)
1
o . =
3. If Zl <8: PA,].Z = f Oa(Zl)le or
s
Az Ao
PA,lZ = 1/2 KAy12(l - - _E_) - 2c KA 11 - —————-) (4.34)
This region will yield when:
Po,12 ¥ P,12 = Pa,12 (4.35)

From (4.35), the displacement Wa required to cause yielding of this

region is found to be:

2
L Bo
o . Y = e 207 _
£ 2§ >1 = W3,12 = /&R y14(1 Y )
Q
Y ! 2 2
Ifs <29 <1 Wa12 = ———Il/2K, (1“-12§) -
%2
2
2&@(1 - 29) - 1/2 Ry11%(1 - . )] (4.36)
2
(Ao = A]_)
2
! Ao
Y 2(1m a— O -
If 29 < s: Wy, 12 = ——=I1/2ZKav14(1 3
%2 (B - A1)
2
Bo Ao
20Wky 101 = ——2eemm = 1/2 Ky (L = mmmm2eeme) ]

AO - Al (AO - Al)z
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4.3.3.2 Yielding of the regions of deposit 2
(1) Region 1 (in compression)

a. Initial force (due to geostatic stresses only):
1

P0,21 = KOfY (Zl - d)le

S

=12 Ky [(1- @2 - (s - D?] =

1/2 Ky (1 - @)% - ( SRS (4.37)
Bg =By
b. Force imposed by the motion of the abutment:
1
P2 = ‘f Py (21)d%
S
3.3
Vs K ny, n,4
- 1w W) —2 W (= —== + +
1001 - 4d) 3 1 1 -4 100 = 4)
2 _ 2
ko ng 1" -8
+ Wy ( - )] + Wy (ky = =———==}(1 - 8)} or
1 1(1 - d) 2 ore -
P3,1 = B,
. where
5 1
k nwl A3
Bl = - ""‘EE" {(Al - AO) "’"“““""‘"“‘"(l - "‘“"--"‘-""“"""‘3'"')
b 3(1 - @) (Ay = A7)
k
+ Ay (- o v B nd -
1 1-4 (1 - &)
, y (4.38)
k 1
A - ~---f°—~—-5—)
1 11 -4 2 (B, - A7)
A,
+ A (Kg S .
1 had d AO - Al
i}
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¢. Total Passive Resistance:
Byo1 = 2Ky -2 - s - @2 + 2k (1-9) =

1/2 Ryy[(1 = @2 = (1 I T a2+ 2c»/7x;‘1 a- -——A-E-—--~) (4.39)

Bo =8 B~ R
This region will yield when:

PO,Z]. + P,Zl = pp,Zl (4.40)

From (4.40), one can find the displacement W, required to cause yielding

of this region:

1 A
W§,21= ‘-"‘{1/2Y[(T-d)2" (1 o———-d)z](Kp_Ko)
Bl Ay = By
+ 2l 10 - ”'i?“‘“’} (4.41)
Ao =&

Region 2 (in tension)

a. Initial force (due to geostatic stresses only)
S
Po,22 = Ko '[Y(Zl - d)dzy =

d

Ay

1/2 Ky (1 ===="——— = )2 (4.42)
Bo = &1

b. Force imposed by the motion of the abutment:



a
3 _ 3
n, s” -d k
~ { (W - W) I R A A
1(1 = 4) 3 1 1 -4d 1(1 - 4d)
2 _ a2
k nyd s*-d nd
Wy (> - )] W (kg = —memm (s ~d)}  or
1 10 -4 2 1 -d
P 23 = B0,
where: A3 R
.3 g
3
K Dy (Bo ~ A1)
By = = ——{(a) - Ay
175 T 3
k
+ [Ag (- > 4 T + i )y +
] 1-4d 1(1 - 4) > (4.43)
2
12 AO——————d2
Ko nd (g - A2
A]_( - 3| +
1 11 - Q) 2
nd

I"'d A’O—Al

¢. Active Thrust
Feollowing the same procedure as followed for the estimation of the
active thrust of region 2 of deposit 1, cne finds:

2
2§ = ~—=zr +d (4.44)



135

o . -
I£2§>8: Py gp=0 (4.45)
=]

o . =
If 4 < Zl 8§ : PA,ZZ = Ua(Zl)dzl

2

S 12 Ry L1 2 - 2 - (29 - a?) -

0
Kp (1= =128 ) (4.46)
Region 2 of deposit 2 will yield when:

90’22 + P’22 = PA,ZZ (4.47)

From (4.47) the displacement required to cause yielding of this region

is found to be:

1
R Wy - - 12 Ry (ot - )2
I£d <z <s: W oy =
! A (4.48)

——{1/2 Ky [(1 = = )% = (2§ - @2

32 Bo =By

2k, (1 B 29) - 1/2 Ky (1 _ g2

Bo = A Bo = A1

It is obvious that the region which requires the smallest
displacement W, in order to yield will yield first. After a region has

yielded, it stops contributing additional force to the resistance to the
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abutment motion. Consequently, after the yielding of a region, a
redistribution of stresses and displacements will take place and a new
problem has to be solved in order to find the new expression for the
equivalent abutment stiffness. Therefore, the whole problem can be
divided into phases. The end of one phase and the beginning of the next
one are marked by the yielding of a soil region. The stress and
displacement conditions at the beginning of a phase can be found from
the stress and displacement conditions at the end of the previous phase.
The general picture of the problem during any phase is shown in
Fig. 4.7. By varying the lengths 1;, 15, 13, 14, one can achieve the
situtation in any phase (e.g., the combination 11 = Q, 12 =0, 13 =4d,
14 =1 results in phase 1, which has been already examined). So by
finding the expression for the abutment.stiffness in this general case,

one can estimate the abutment stiffness during any phase.
4.4.4 Estimation of the Equivalent Abutment Stiffness in the General

Case

a. Displacement equation:

-W W, - W
W(Z) = W, - ——— 1, b= (4.49)
1 1
where W, and Wy are the displacements at the top and the bottom of the
abutment, respectively.

b. Distribution of pressure

pp(2) W(z2) kg (2) 11 £2 <15 (on the right side of the abutment)

p (Z) W(Z)k;(Z) 13 €2 <1, (on the left side of the abutment)

1
or
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DEPOSIT 1

CEPOSIT 2 Winkier Ispnngs

Winkler springs 2-1,

| ST T
k= kgt

Foel |
“w ko T w T i3

FIG. 4.7 GENERAL CASE
a. Initial Position of the Abutment with the Scil
Deposits and the Load Applied by the Bridge Deck
b. Displaced Position of the Abutment
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' Ty
p(2) = (W - W,) —5- 22 +
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2
kL nf nil kX I
o 1 o Nell
W (— n + ) + Wl - )1Z +
o 1 12 1 TRER
nEly . _
Wo(kg—-] ) 17 £% <15 (on the right side)
Ny,
Py (8) = (W) = Wy) ——==—mmmmmm 22 4
101 = 1g)
] 1 R K l
[ (- o, Ny . ngl3 )+ wy( o Nyi3
1 1-13 10 -13) 1 10 - 13)
1
1 Nyla
+ Wolky = = ) 13£2 <14 f{(on the left side)
1 =15
c¢. Equation of force equilibrium
2 T4
P=f pr(Z)dz{p.] (2)dz =
X I3
3 3
Wy - W) n& ]2—]1 +
1= Tm 2 3
' 2
—_ ko, “511)+W(k5_“511” 1511
ot 1 12 Iy 12 2
r 1 3 3
ng Ny 13 - 13
W (kI - Y5 =17) + Wy - W,)
oo 1 2 1 1 o 1¢1 - 13) 3
k ! 1y
) Ny i
+ Wy (- + ) +
1 =13 10 -13)
k] njl 3 13 =13
Wy (==m - )] +

)1z

L(4.50)




139

or

1
Ny 13 14 -13
Al - 13) 2

1 1- 15
ngly

13
(kg™ =

Y (g = 17) + (k) = =——==mn) (14 = 13) W, +
1 -1,

3.3 1 3_ .3
ng 13-1 Ny 12-13
2

+ +
3 (1 = 13) 3

2 _ ;2 1 1
ko mgly  15-11 kg ny 13
(-—== - =) ¥ (== - ) Wy
1 1 2 1 = 13)

d. Equation of moment equilibrium:

12 , 1,

P(1 ~ a) =f p (2) (1 - 2)dz +fp.|(Z)('l - DAz + ks

y (4.51)

1
+ WO] (kg“ :l‘y]-}—’)(lz - ]l) - (Wl - WO) nW -
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3 .13
R T .. 1 BN . L B Tl
o 1 12 1 12 3
2 _ .2 1 3_,3
r Dylp 13- 01 My 13 -13
Wolkg = ) + W - W)
1 2 1 -1 3
1 1 1
kKo Ny Ny 3
[wo(- + )+
1 1 - 13 1~ 13)
1 1 2
k Ny 13 14~ 13
Wy (——- - )] +
1 11~ 13) 2
1
ny 13
Wl (k) = =) (14 = 13)
1- 1,
ny -1
-y - W) -
T - 1q) 4
1 ] 1
Ko Ny nyl3
Wy (- + ) +
1 1-13 1{1 - 13)
1 1 3_.3
Ko N, 13 2-13
Wl( - ] =
1 H1 = 13) 3
Ny '3 4~ 13
Wy (kg = )
1 =13 2
or
r 3 3 4 4
13 -1 -1
B(] - a) = [ (- 2 l+ 2 l)+
1 3 41



’(4.52)

- ko, M, Nl J2Thmo 1301
1 1 2 2 3
r 2 2
Ny 12 =17
(kg -"“““‘")(1(]2—]1) - ———mse———) 4
1 2
1 3_.3 4 _ .4
Ny 13- 13 14~ 13
(- + ) +
1~ 1 3 4
1 1 1 2 _ .2 3 _,3
ko Ny Ny 13 13 =13 13 - 13
(~ + + ) ( - ) +
T 1-13  1(1- 1) 2 3
1 2 2
nw]3 14‘13 k
(kg = =——=—)(1 (14 = 13) - ) + =g +
1 -1 2 1
3_ .3 4 _q4
ng B-1 12-171
[ ( - ) +
1 3 41
k5 nfy o B-1% 13-13
( - > )( - ) +
1 1 2 3
1 3 .3 4
Ny 13 ~ 13 13‘13
( - ) +
1 -13 3 4
1 2 _ .2 3_,3
k nw]3 14‘]3 14“‘13 k
(~~2- - ) (1 - ) = —L-1wy
1 T(1-13) 2 3 1 -
e. Expressions for Wor Wy
ﬁ
W, = PA, ,
Rl(l—a)-Tl Ro(]—a) _TO
AO= ’ Alz
BTy = RyTy RoTy = RiT,
3 _ 4.3 1 3 _ .3
ng  13-1% Ny 11-13 k§ ng
Ry = = - - - + .
1 3 14 - 13) 3 1 1 ’

(4.53)
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Ly Kl 1 T] ‘ .
. nwzl o, Ty N Ty '3 N :
1 1 1-13 1(1-13)
ny Ny 13
(kg - - YA =17) + (kg - - (14 = 13)
1 1 =13
3_.3 1 3_.3
ng 13 -1 Ny 11-13 kg ogn
Rl-— > + + - 3
3 10 = 1) 3 1 1
1 1
ko Ny, 13
.i. -
1 10 - B
g 13-11  18-d
T, = (- + ) +
1 3 41
3 _ 43
kE  nL  nily 13-1¢  13-1%
(- ——+ 5 - ) +
1 1 1 2 3 Y
(4.5
. nglq 12 - 12  cont.
(K = ===} (1 (15 = Ty) = ==mmmmm
0 1 2 1 5
1 3.3 4 _
1 14 = 1
L S T ol %>+
1 =13 3 41
2 _.2 3_ .3
k ) n13 14-15 13- 13
(- + + Y - )
1 1-13 100 - 13) 2 3
1 2 _ .2
Ny13 14 ~13 k
(k) - ey (10 - 13) - ) + -2
1—13 2 1
g 13- 13-
Tl‘- ( - )+
1 3 41
k§  onfy o 13-1f 13-13
( - 5 )y (1 - )+
1 1 2 3
1 3_ .3 4 _ .4 ‘
Dy 13 - 13 14 — 13




k] E 13-13  13-13 & i
° - ) (1 - i J (4.53)
1 1 = 1,) 2 3 1 cont.
f. Expression for the equivalent abutment stiffness:
b
k = : (4.54)
ab
Bo =2
A, - ———=a

1

Equations (4.54) and 4.53) provide expressions for the equivalent
abutment stiffness in the general case. In order to estimate the
progressive yielding of the soil, one should follow a procedure similar
to that followed in the case of phase 1 paying special attention to the
identification of the proper initial conditions at each phase change.
Since the initial conditions change from phase to phase, no general
formulas can be provided as far as the general case is concerned.

4.5 EXAMPLE

Consider the abutment shown in Fig. 3.8a. This is a section of one
of the abutments of the Nichols Road Overcrossing. The model to find
the stiffness of this abutment is shown in Fig. 3.8b. The height of
deposit 2 in the model is the awerage height of the deposit on the left
hand side of the abutment. The wvalues of the soil springs were
estimated based on the properties of stiff soil (Appendix B).

The solution of the probiem can be divided into five phases. The
intermediate and final results required for the estimation ¢f the
abutment stiffness in each phase are shown in Table 4.7. This table
also shows the soil region that yields at the end of each phase and the
displacement which is required for its yielding. More specifically,
examination of the yielding in the first phase produced the following

values of vielding displacements.



144

=== T 77 NS 77 'y
: =
TN
498 !
| -
|
|
T
| 3.96
N\
N\
~
N
B
Ll//
7R\ ZARN 7R\ |
A,
T A
0.9
P
323 Deposit 1
396
J
Deposit 2
@ \
=
B.

FIG. 4.8 NUMERICAL EXAMPLE OF MODELING OF ABUIMENT STIFFNESS
a. Abutment of Nichols Road Overcrossing
b. Model



TABLE 4,7: RESULTS OF EXAMPIE 4.5
Phase Soil Properties Height of Deposits Estimation of Examination of
Abutment Stiffness Yielding
. : " 1 Required |[Critical
ko ko n, n, 1| 2 3 4 A, A Kab S [Yielding | Region
2 2 2 Displace-|-~~-=——
(t/m?) | (&/m?) | (t/m?) | (t/m m | m | m |m (t/m) | (m) |ment R* D
Wy  (m)
1 135 135 |1412.5|1412.5{3110] 0 |3.96]3.23|3.96|9.1x1074 | 4.6x1073| 21676 3.76} Q.005 2 2
2 135 |1175 |1412.5|1412.5|3110f O |3.96]3.76|3.96 '9x10_4 -3.7x107°| 21636 |3.8 G.0052 2 2
3 135 |1240.7}1412.5{1412.5]3110{ O [3.96]/3.80|3.96 9x10_4 3.77x1072| 21636 [3.8 | 0.073 2 1
4 135 |1240.7|1412.5[1412.5]|3110{ 0 [3.80}3.8 |3.96| 9x107% 4x1070 (21632 3.8 0.013 11
5 O |1240.7 0 }1412.5|3110) —{-—-|3.8 |3.96 6.66x1073| 3x1073 [2526.4|-——| o0.52
R* Region

D* Deposit

SPT
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FIG. 4.9 THE FIVE PHASES OF THE EXAMPLE
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Region 1, Deposit 1: Wa,ll = 0.092m
Region 2, Deposit 1: WZ,lZ = 0,0658m
Region 1, Deposit 2: W2,2l = 0.53m

Region 2, Deposit 2: Wy, 22 = 0.0051m

From these values, it is clear that Region 2 of Deposit 2 will yield
first. The examination of yielding in the other phases is similar.

From the results shown in Table 4.1, it is obvious that, during
Phase 5, there is active soil only on the left side of the abutment
(Region 1 - Deposit 2). The yielding of the soil in this phase is of no
practical importance since a total displacement of about 0.53m is
required to cause yielding. The pictures of the soil deposits during
the five phases are shown in Fig. 4.9.

The force deflection diagram is shown in Fig. 4.10. It ié this
diagram that would be used in calculating the earthquake response of the
bridge.

4.6 SOLUTTION OF THE PROBLFM IN THE CASE OF DISCRETE SPRINGS

Assume that the deposit on the right side of the abutment is
divided in n, segments, while the deposit on the left side is divided in
n, segments, The depths of the segments on either side can be arbitrary
and unequal. In the analysis, a soil spring is placed at the middle of
each segment of every deposit; the springs represent the resistance of
the segments to lateral movement of the abutment. The values of the
spring stiffnesses can be assigned arbitrarily or estimated from soil
properties.

Consider now the ith segment of the right deposit. Let the middle

point of this segment be located at a distance Zri: from the top of the
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FIG. 4.11 MCDELING OF THE ABUTMENT SOIL WITH DISCRETE SPRINGS
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abutment, and let the length of the segment be ézi: (see Fig. 4.11).

Suppose that the spring constant of this segment is kvj;'r, then the

resisting force of the segment will be:
i_ i i |
£7= Ky, S4pWr (4.55)
The moment of the force f% about the bottom of the abutment will be:

ispd sgiwher - gd
my = kg SZpWE (1 = Z7) (4.56)

In the above relations, W% is the displacement of the abutment at depth

Z% ; it can be expressed as a function of the displacements W, and W;

from the relation (4.49). Thus:

. W, - Wy, .
Wwi=w. - ~-9-—-—l—z§ (4.57)
1

h

Similarly, for the jt segment of the left deposit, cone gets:

J =] Jwd

£ kw”az]w] (4.58)

=] Jwier - 73

md = kg, . 624 (1 z) | (4.59)
W. - W

j = - -—O——l J

Wl =, z3 (4.60)

Next, application of the force equilibrium gives:

n. . n .
P= I fL+1I f3] _ (4.61)
i=1 j=1

Combination of (4.55), (4.57), (4.58), (4.60), and (4.61) produces

or
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P AR ST RPN S S I
P—(Z Koy csz—--—z k: szizl +: ' kJ .52
i=1 " 1 4= WETE =1 Wit ol
(4.62)
1 n, 3 1 n,
-1 k.w azlzl)w + = (I kw ziszl + B kw] zlszj)wl
1 =1 1 j=1 j=1
Similarly, the equation of moment equilibrium gives:
nr . n1 .
P(1-a) = o m+I m (4.63)
i=1 j=1
From (4.58), one gets:
n, . (@h?
P(1-a)=1[73% Ky, [1-22;+ -5 2t
i=1 1
n . (zh? k
1 1 j ol
+ [1- 224 ~16 24 + —+~]W. +
j=1 Wil 1 1 1 1 o
n Zl n ZJ
[z sziki i - —-) + 7 5Z:.Jlk 231 - —-) - -—Q—lwl (4.64)
i=1 1 1 1

Solution of the system of equatiocns (4.57) and (4.59) provides the

following expressions for W,, Wj:

Wy = PR, ' )

Wy = PRy
Ao_Rln-a)-Tl A_Ro”‘a)'To

= 1=
RTo = RoTy BTy ~ Rl
(4.65)

e iLo1
Ro =1 _ ki, SZr +1 Kk 623 -

i=] j=1
ln

S kw (szlzl+z1 k&,]azlzl] :
1 i=l j=1



152

L% i igd o™ 0 gdegd
s bk oDl
1 i= J=]_
iy2
n . : (Z1) :
T = £ e - 2k ¢ et
n, o oeh? ok ' (4.65)
7! kg, 1 =224+ .‘ bz +--% >cont.
=1 1 1
i
po = 5T spled gl o
1 =L O%pKy, pipd =) 4
i=1 1
n 73 Kk
R P PO
L8 291 =~ =) = e J
j=1 Zlkwﬂ ] 1 1

Finally, the equivalent abutment stiffness is given by the relation

(4.54).

The discrete formulation is particularly convenient for evaluation

by small computers and programmable calculations.
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CHAPTER 5

A DETAILED MODEL FOR THE INVESTIGATION OF THE RIGID BODY MOTIONS OF
SKEW BRIDGES
5.1 INTRODUCTION

In chapter 2, a model was proposed to illustrate some of the
dynamic features shown by skew bridges. The model was kept as simple as
possible consistent with its purpose to explain the kinematic
mechanisms, which induce planar vibrations of skew bridges subjected to
strong earthquake shaking. The model was used also to investigate the
effects of some parameters on the rigid body motions of a skew bridge.
The model was successful for these purposes, but the approximations
which were made did not allow a clear representation of the rigid body
motions of skew bridges. For this purpose, a more accurate and complex
model is required.

In this chapter, a more detailed model for the representation of
skew bridges is presented and examined. The principles on which the
model is based are similar to the ones for the model of chapter 2.
However, in the new model the resistance of the pads is taken into
consideration along with translational and rotational damping. Alsc, the
restoring elements of the bridge are allowed to yield and the model is
not restricted to the symmetric case. Finally, the new model has three
degrees of freedom which permits excitation along the ¥ direction to be
considered. Lateral excitation is not of major comcern if the bridge is
symmetric or nearly so, but it may be important in other applications of
the model.

In the first part of the chapter, the model is presented and

explained and the equations of motions are derived. In the second part,
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a particular bridge is modeled to illustrate the use of the procedure.
The parameters of the model are estimated and several cases of input
excitation are examined. Earthquake motions of different strengths are
used to illustrate different features of the model.
5.2 THE MODEL

Since the purpose of the model is to capture the most important
features of the rigid body motion of a skew bridge, the deck of the
bridge is represented as a one dimensional rigid bar having the inertial
and geometric properties ¢of the real bridge deck. The resisting
mechanisms of the model are the following (see Fig. 5.1).

a. The bridge piers. located at points 1. 2, at distances 1l§nsi
15, respectively, from the center of mass of the deck

Each pier is represented by:

(i) Two elastic bilinear hysteretic springs oriented along the X
and ¥ directions,
(ii) Two viscous dampers oriented along the X and Y direction,

and

(iii) One rotational spring resisting the planar rigid body
rotations of the bridge deck.

b. The elastomeric pads. located at the two ends of the bridge
deck (points 3.4)
Similar to the modeling of the bridge piers, each pad is represented by
translational elastic-linearly plastic springs, viscous dampers and one
rotational spring.

¢. The bridge abutments located at the two ends of the deck
{points 3.4) '

Each abutment is represented by:
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K

FIG. 5.1 RESISTING MECHANISMS OF THE MCDEL
a. Piers
b. Elastomeric Pads
c. Abutments
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(1) Three elastic-bilinear hysteretic springs (One of these is
directed along the X direction and is used to model the resistance of
the abutment itself and two are directed along the Y direction to model
the resistance of the wing walls.) and

(ii) Three gaps, each one corresponding to an abutment spring.
(Therefore, each spring gets activated when the corresponding gap
closes, i.e., when impact occurs between the bridge deck and the
spring).
The resisting mechanisms of the model are shown in Fig. 5.1. The
geometry of the model (which is similar to the geometry of the model
developed in chapter 2) and the forces which act on it, are shown in
Figs. 5.2 and 5.3, respectively. One can easily see that the model has
three degrees of freedom: X, Y, and ¢. The displacements of all thé
points of the deck are expressible as functions of these degrees of
freedom (see Fig. 5.2).
5.3 FQRCES

The forces acting on the model and their moments about the center

of mass of the deck are given by the following expressions.
5.3.1 Column Forces

(1) Column at point 1

1. £ x = kyeXy = kX + kyy 1ysingo (5.1)
Moment: mﬁ’x = (klxx + klxllsineq))] l(sine + dcoso) =

Rqx 175106X + kqy 195in%50* (5.2)
2. £5 y = cpk) = cyqX + c1y hysimeg (5.3)
Moment: mﬁlx = clx]lsine}‘( + ch]%sinzec;: (5.4)

* In the final expressions of the moments the second order terms are
neglected.
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3. f&,Y = kyy¥] = Kyy¥ - Kyy ljcosoe
Moment: m§'y = kyy jcos6Y - le1%cosze¢
4. £,y = cpy¥y = opy¥ - epyljcosey
Moment: m§ y = cyylicos oY = Cpyl ‘Jz_coszeq;

(11) Colum at point 2
1. fE,X = KogXo = koyX = Koylosingg
Moment: My = Koyl,SindX - koy12sin6¢
2. 5y = cppky = Cok - Coylpsinés
Moment: m%'x = clezsinei - c2X1%sin26$
3. £5 y = koy¥y = koy¥ + Koyl 500869
Moment: mlﬁ'y = Ky, ylocostY + ky vl %cos2 B¢
4. f5y = CZY§2 = CZYé + Coy15C0S 86
Moment: mS'Y = czy12cose§.’ + CZYI%cosZ eqS
5.3.2 Pad Forces

(i) Pads at point 3
1. £ g = kByX + KBy siny
Moment: m§ . = kBylsinex + kBy1%sin®eo
2. f£§,x = Bek + Bylsingd
Moment: mg'px = chlsine)'( + cBy1 Zsin eqS
3. f%pr = kEyY - kB lcos 8¢

Moment: n% kBy1cosey - k§Y12c0528¢

Py =
4, fgle = CEYY - c§Y1cose¢

Moment: m%le = cBylcosey - c§Y12c0526¢
(ii} Pads at pcint 4

koo .,
Moment: mf o = KBylsinex - kBy1%sin?eg

(5.5)
(5.6)
(5.7)
{(5.8)

(5.9)

(5.10)
(5.11)
(5.12)
(5.13)
(5.14)
(5.15)
(5.16)

(5.17)
(5.18)
(5.19)
(5.20)
(5.21)
(5.22)
(5.23)
(5.24)

(5.25)
(5.26)
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2. £5 % = Bk - cBylsings (5.27)
Moment: mf o = cBy1sinéX - cBy1%sin®es (5.28)
3. £f,pv = KRyY + KBylcosos (5.29)
Moment: mﬁ,pY = kBy lcosoY + kgylzcoszeqa (5.30)
4. £5 oy = By¥ + cByleosos - (5.31)
Moment: m§ oy = cBylcose¥ + cBy12cos2es (5.32)

5.3.3 Abutment Forces

(i) Abutment at 4

4 _ 4 X _ w4 X . 4 .X 4
1. fap,x = by kap,s4 ~ by kap,4 18indd - by ki, 4 ag
where:

0 if X, < ay - (5.33)
4_
bx_.
1 if Xy > ag
. b W4 X : _ 4 X 204020,
Moment: myp y = bxkab'4lsmﬁx bxkab,4] sin“g¢
by kip,4 ag 1sine - b§ k%, 4 ag lcoseg (5.34)

4 _ 4 LY 4 .Y ; 4 .Y
2. fab,Y = bY kab,4 Y 4+ bY kab,4 -lcose(b‘ Slgn4 bY kab,4 aY
where:
1 if Yy > ay or Yy <0 and [Yy] > ay
b§= (5.35)

O in all other cases

1if Yy > ay
sign4 =
-1 if ¥4 <O and |yl > ay
Moment: ml, y = b§ kY 4 1c0s9 Y + by ki 4 1
sign4 b% kgb,4 ay lcose + signd 1sing bg‘v kgb,él ay ¢ (5.36)
(ii) Abutment at 3

3 _ 13 .X 3 .X : 3. X 3
1. fab,X‘bxkab,3X+kaab,3 sm8¢+bxkab,3 ag

2 coszecb -
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where: _
1if X3 < 0 and %3] > a3 (5.37)
3 -
by =
O in all other cases
Moment: mgb'x = b):’; k% ,3 1sindX + b)3( kéb,B ]zsinzeq; +
bg k§b,3 a}% 1sing + b}% k}a(b,S a% 1cosf¢ {5.38)
3 JE .4 3 .Y ; 3,Y
2. fab,Y = by Kab,3 ¥ — by k3p,3 Tcostd ~ sign3 by k3 3 ay
where:
lifY3>aYorY3<Oand IY3l>aY
3
b=
(5.39)
O in all other cases
1 if Y3 > ay
sign 3 =
~1 ifY3<Oand IY3‘ >aY
Moment: mgb'Y = b% kgb,B lcosgY - b% kgb,B 12cosze¢ -
: 3 Y : . 3 .Y .
sign3 by k3, 3 ay Icose + sign3 by k3, 3 ay Isingg (5.40)
5.4 EQUATTIONS QF MOTION
Writing Newton's second law for each one of the three degrees of

freedom, one gets:

IFy = mX (5.41)
tFy = m¥ (5.42)
IM = I§ (5.43)

where: LFy is the sum of all the forces along the X direction; IFy is
the sum of all the forces along the Y direction; and Z M is the sum of
all the moments about the center of mass of the bridge deck. Combining
the above relations with the expressions for the forces of the model

(Equations 5.1 through 5.40), the following expressions for the
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equations of motion are obtained:

X+ AgX + AgX + Ag¥ + AgY + Rgo + Agp + Ay = Xg

Y + Blf{ + BoY + B3>'( + BgX + Bsq; + Bgp + By = ”'iG (5.44)
§+C0+Cy0 +C3X +CX +Ce¥ + C¥ +Cq =0

where X, Yo are the translational components of ground accelerations
(rotational accelerations are not considered in the analysis). The

coefficients in the above equations are defined by the following

relations:

c + C + C + C
o o om Bt Ry -

m

4 3,.X
klx“‘zx*k?x+k§x+bxkxab,4+bxkab,3

m
A3 =0 (5.47)
Cyy 118in8 = Coy 19sing + cf 1sing -~ ¢ ¢1sing
A = X1 X 12 ? X g X (5.49)
m

(klx] 1~ kzx] 2)Sin6 .

A6=
m
(5.50)
(KBy - kBy - b§ kX, 4 + b3 kX 3)1sine
m
4 X 4, .3 .% 3
k av+ k a
A, - Dx Kap,4 3t % kap,3 3% (5.51)
m

c + C +C + C

1Y 2Y g‘.{ gY

By= (5.52)
m
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4 .Y 3.
kiy + Koy + kBy + kBy + by Kap,4 *+ b7 kK3p,3

B2 = (5.53)
m
By =0 (5.54)
(Coypln = Cpyly)cost + (cBy - cBy)icost
L e b y - Sy 5.56)
m

(sz]z - le]l)cose

B6 = +
m
(5.57)
(kBy - KBy + by Ky 4 = bF ki, 3)Icose
m
_ sign4 bé kgb,4 ay + sign3 b33{ k§b'3 ay
By = - (5.58)
(el %+ Coyl %)sinze + (clp]%*‘ cﬂI%)cosze

Cl = I +

(By + cBy) 1%sin?0 + (cBy + cBy) 12cose <4 5.59)

+ .
I I
(kyx) &+ koy18)sin26 + (kqy12 + koy14)cos?s

C2 = N +

(kBy + kBy)1%5in%0 + (kBy + kBy)1°%cos?e

+
I
4 . X 3.X 2.
(bg k& 4 + b3 KZp,3)1 sta+
I
(5.60)
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(b Kip 4 * BF KEp 3)1%c0s%
+
I
4 5 (5.60)
(signd by kI 4 - sign3 by kp 3)ay Isino cont.
I
(Ciyl7 = Covls)sin + (cBy = 5. ) 1sineg
c, = oy ” ez 5 - Bk 5.6
I
(klxll - km‘lz) s1ingy
C =
4 I
4 x {(5.62)
(kSy - Kix - by k3,4 + Dy Kap,3) Isins
I
(Coyly = cyyly)coss + (cBy - cBy) lcoss
Cg = - : (5.63)
I
(kZY]Z - le]l)COSG
Cs = +
I
(5.64)
4 .Y 3 .Y
(kBy - KBy + by kg 4 - by k3 3)]cose
I
(of k%, 4 2% + 53 KX 3 ax)1sing
C7 = - +
I )
(5.65)

(signd b% k§b,4 - sign3 b% k§b,3)aY lcos 6
T

5.5 EXAMPLE QF REPSONSE

The model presented in the preceding section is used to investigate
the rigid body motions of Nichols Road Overcrossing, Bridge #56-725,
located at Riverside, California. In Fig. 5.4, simplified drawings of

the bridge deck and its cross section are shown. The bridge has a total
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48,
457
a.
1 ]
b.
9.8m
—»)
_O.l?m
=5
W 0.2m | 4m 1.98m
O0.14m

FIG. 5.4 SIMPLIFIED DRAWINGS OF NICHOLS ROAD OVERCROSSING
a. Top View
b. Side View
¢. Deck Secticn
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length of 91.4m, is skew at an angle of 20°, and has a set of two
columns located 0.63m left of the center of mass of the deck. Simplified
drawings of the bridge columns and abutments are shown in Figs.3.5 and
4.8, respectively.
5.5.1 Estimation of the Parameters
The values of the ‘parameters of the model used in this example were

estimated as follows.

a. Translatjonal stiffness of the c¢olumns The method for
estimating the elastic stiffness of the columns was presented in detail
in chapter 2. In that chapter, the method was applied to the columns of
the Nichols Road Overcrossing and the results, in:::luding the complete
force-deflection diagrams for bending of each column in the X and Y
directions, were presented in Fig. 3.8. It should be mentioned that in
the construction of the force—deflection diagrams of each column it was
assumed that bending in the X and Y direction was independent. This
assumption is acceptable for the longitudinal excitation of bridges with
columns located closely to the center of mass of the bridge since, in
this case, there is no significant movement of the columns in the Y
direction. Consequently, the bending of the columns is dominated by
their movement in the X direction.

b. Torsional stiffness of each column In view of the complicated
cross section of the columns, the exact estimation of the torsional
stiffness of each column (which is small compared to the torsional
resistance arising from the bending of the columns during the rotation
of the deck) would involve the sclution of a very difficult elasticity
problem. So, the torsional stiffness of each column was estimated

approximately. For this purpose, the column was first approximated by a
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e—20 —

FIG. 5.5 TORSIONAL STIFFNESS OF THE COLWMNS
a. Stiffness of an Individual Column (of equivalent
rectangular cross section)
b, stiffness of the System of Two Columns
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column of a uniform, rectangular cross section. To do this, first the
average octagonal cross section was found by averaging each dimension of
the cross section over the column height; then an equivalent cross
section was estimated based on equivalency of areas and in equivalerncy
of the depth to width ratio. The equivalent rectangular cross section
was found to have dimensions 2a x 2b where a = 0.65m and b = 0.56m.

The torsional stiffness of each column was then found by applying

the well-known formulas (Ref. 44)

e
K = ——
L
(5.66)
16 b p4
K = ab®[-— - 3.36—(1 - ——~=-)]
3 a l2a4

‘These two equations describe the torsional stiffness of a beam of length
L, rectangular cross section 2a x 2b and shear modulus G (see
Fig. 5.5a). The torsional stiffness of each column was found to be:

k = 3,525x10 tm/rad (5.67)

c. Torsional stiffness of the pair of column Consider the system
of two bridge columns shown in Fig. 5.5b. Suppose that the bridge deck
rotates rigidly by a small angle ¢. Then, the total restoring moment of
the system of the two columns is:

My = 2(ky + roky) ¢ (5.68)
Hence, the total torsional stiffness of the system of two colums is:
kE = 2(ky + rky) (5.69)
For this particular bridge, the distance r is equal to 3.2m.
d. Abutment stiffness-gap The method for the estimation of the

force—deflection diagram for the abutments was presented in detail in
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Chapter 4. In the example presented in that chapter, the abutments of

the bridge under consideration were used. The nonlinear force—deflection
diagram (after closure of the gap) is shown in Fig. 4.10. The value of
the abutment gap for this particular bridge is 0.025m.

e. Viscous damping coefficients and inertial propertijes Since the
columns are located very near the middle of the bridge deck, it was
assumed that, before impact between the deck and the abutments occurs,
the vibrations of the bridge in the X, ¥ and ¢ directions are uncoupled.
Damping coefficients were determined by estimates of the modal damping
in the three uncoupled modes and were then used throughout the seismic
excitation of the model. For most of the numerical examples, values of
five percent were used for the modal damping (Refs. 15 and 17). The
formulas used for the estimation of the translational and rotaticnal
damping coefficients are:
ox 2l

204 Kb (5.70)
2e\/kfx

where Iy, {y and c¢ are the damping ratios in the three directions of

Cy

c

1}

motions, k)%' k%, kt(:15 are the wvalues of the total stiffness in the

direction of motion, and M and I are the mass and the moment of

inertia of the bridge deck, respectively. Using yc = 2.4 t:/rn3 for the
unit weight of reinforced concrete and the basic geometry of the bridge

(see Fig. 5.4) the mass and the moment of inertia were found to be:

tsec2 tseczm
M=157.7 —, I = 110,000 - —_—
n rad

Finally, the translational damping coefficients were distributed to the

columns and the pads according to their relative stiffnesses. The values
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of the damping coefficients are given in Table 5.1.

Table 5.1 Translational damping coefficient (tsec/m)
Direction Colums Pads

X 165.1 25.8 per pad

Y 136.07 28.8 per pad

The total rotational damping coefficient was found to be =
128100 tmsec/rad.

f. Pad stiffness For the estimation of the pad stiffness, each
pad was assumed to be under a condition of pure shear (Ref.19). The
model of each pad, on which the estimation of its stiffness was based,

is shown in Fig. 5.6a. From this figure one can see that

u
= Gy = G—
h
ab
from which k = G—~— (5.71)
h

where u is the displacement of the pad in a given direction and k is the
pad stiffness in this direction. The bridge under consideration has
five elastomeric pads at each end. Each pad measures 0.71lm x 0.36m. The
shear modulus G was given a representative value of G = 150 psi = 105.4
t/m. From this value and equation 5.71, the elastic stiffness of each
pad was found to be equal to 708.9 t/m. So, the total elastic pad
stiffness in both directions X and Y is:

Kf, = 3545 t/m (5.72)
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FIG. 5.6 ELASTOMERIC PAD STIFFNESS
: a. Geometry of a Single Pad
b. Shearing Deformation of a Pad
c. Elasto-Plastic Spring Representing Each Pad

System
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Each pad was assumed to behave as an elastic-perfectly plastic element.

The yielding levels were approximated by assuming a friction ccefficient
of 0.3 (values between 0.3 - 0.5 are usually used) (Ref. 19). The dead
load of the bridge deck exerted on the five pads at each end was found
£t0 be equal to 472.6t, (To find this ‘the deck was assumed to be a
continuous two span beam with supports at the end and the middle.) Thus,
the force—deflection diagram for the pad system at each end in both the
X and Y directions is that shown in Fig. 5.6c. When the force exerted by
the bridge deck on the pads in either the X or Y directions becomes

greater than 141.8t, the deck is assumed to start sliding on the pads.

5.5.2 Cases Examined
The response of the model was examined for several different input
excitations and for different values of key parameters in order to
illustrate the features of the model and to obtain a picture of how the
response is affected by these changes. There were three principal goals
of this part of the study:
(i) To examine cases in which the response of the bridge was
elastic,
(ii} To show the ability of the model to handle cases in which
structural elements of the bridge (columns, pads, abutments) yield, and
(1ii) To explore the conditions under which the abutments may show
significant yielding, under the yielding criterion which were adopted in
chapter 4 (Section 4.3e).
In what follows in this section, some representative cases are shown.
For each case, the input excitation and the structural parameters used
(if different from the ones estimated in 5.5.1) are described; and the

response is presented with figures and a brief description. Only a few
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calculations were performed, and the limited conclusions that can be
made are included in the general cornclusions and remarks presented in
chapter 6.

Case 1: The model was excited along the X direction by the ten
most important secords of the record from the Imperial Valley Earthquake
of October 15, 1979 (Imperial County Services Building, Free-Field Site
N 02° E). The accelerogram is shown in Fig. 2.5. In the rest of this
chapter, it is called Excitation 1. The parameters of the bridge are
those presented in 5.5.1. As it can be seen in Figs. 5.7-5.11, the
bridge responds completely in the elastic range. The weak rotational
vibrations which are triggered before the impact between the deck and
the abutment are a result of the slight asymmetry of the bridge. The
columns are located slightly to the left of the center of mass of the
deck. From Fig. 5.8a, one can see that the first impact between the
deck and the abutment takes place at the left end {(point 3) at about 4.7
secords from the beginning of the excitation. The moment of the reacticn
force of the abutment about the center of mass of the rod imduces strong
rotational vibrations, the magnitude of which is substantially stronger
than the magnitude of the rotational vibrations induced by the asymmetry
of the bridge (see Fig. 5.7b). In Fig. 5.9 the movements of the ends of
the deck in the Y direction are shown. These movements are-a direct
effect of the rotational vibration of the deck since no excitation in
the ¥ direction is considered. In Figs. 5.10a and 5.10b, respectively,
the force-deflection responses of the bridge columns and the elastomeric
pads at the left end of the bridge are shown; while Figs. 5.1la and
5.11b show the force-deflection responses of the two abutments. These

figures reveal that all the structural components of the bridge respond
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within the elastic range and that the level of the magnitude of the
abutment reaction forces is very low due to the fact that the contact
between the deck and the abutments is weak.

Case 2: 1In this second example, the model was excited along the X
direction by the twenty most important secords of the E - W component of
the Imperial Valley earthquake of May 18, 1940. The accelerogram of
this motion (Excitation 2) is shown in Fig. 5.12. The response of the
model is shown in Figs. 5.13-5.17. From Figs. 5.14a and 5.14b, one can
see that, in this case, the first impact between the deck and the
abutments occurs at the right abutment about 2.0 seconds after the
beginning of the excitation. At that point, significant rotational
vibrations are induced. Although the gaps are closed more often than in
Case 1, the results shown in Figs. 5.13-5.17 are similar to those of
Case 1. In particular, the response of the bridge remains elastic.

Case 3: Next, the model was excited along the X direction by the
accelerogram of Excitation 1 scaled by a factor of 4. Scaling the
record by this amount produces an extremely strong motion with peak
accelerations of over 2g. Such intense shaking is not necessarily
realistic but is required to excite the model into the fully nonlinear
yielding range of response. The parameters of the model are those
presented in 5.5.1. The response is shown in Figs. 5.18-5.21. One can
see that, as expected, the vibrations of the bridge were much stronger
than in Cases 1 and 2. The bridge columns significantly exceed their
yield level, while significant sliding at the pads also occurs (see Fig.
5.21). Actually, yielding of the columns and the pads occurred in the
cases of Excitation 1 scaled by factors of 2 and 3; but the case of

scaling by 4 is presented since the yielding was more intense. The
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abutment force has increased significantly but still remains in the
elastic range (see Fig, 5.22).

Case 4: The model was excited along the X direction by the same
excitation as in Case 3. Howewver, in this case, it was assumed that the
bridge was not skew (6 = 0) and that the stiffness of the columns was
equal to half of the stiffness estimated in 5.5.1. The primary reason
for these assumptions was to create conditions which would favor the
occurrence of yielding in the soil deposits behind the abutments. By
reducing the stiffness of the deck by half, its longitudinal vibrations
under the same earthquake excitation become significantly larger. Also,
making the initial angle of skewness equal to zero eliminates rotational
vibrations which tend to reduce the movements in the longitudinal
direction. Under these conditions, the impacts between the deck and the
abutments will be much more intense. The response of the bridge in this
case is shown in Figs.;5.23 and 5.24. The displacements along the X
direction and the yielding of the columns are larger than in the
previous cases, and it can be observed that the soil deposit behind the
right abutment yields slightly. It should be noted that the yielding of
the soil depoéit at the right abutment increases the gap between the
deck and the abutment. The new gap will be equal to the original gap
plus the permanent set of the soil deposit.

Case 5: The only difference between Casés 4 and 5 is that in
Case 5 the bridge is assumed to be without pads. (It is possible that
at such a high excitation level the pads will not play a significant
role.) The response is shown in Figs. 5.25 and 5.26. One can see that
both abutments yield, while the displacement in the X direction becomes

even greater., Yielding of the abutments also occurred at a lower
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excitation level (Excitation 1 scaled by 3) when the bridge was assumed
straight and the pads were not present.

Finally, to check the capability of the model to handle
simultaneous excitations along the X and Y directions, cases of
concurrent earthquake excitations were examined. From the results; it
was concluded that the computer programs were found to be working
effectively in this case. However, the résponse is not presented and
discussed because excitation along the Y direction induces significant
displacements of the bridge columns in the Y direction making the
assumption of independence between the bending of the columns about the

X and Y-axes unrealistic.



197

CHAPTER 6

SIMMARY AND CONCLUSIONS

This study investigates the effects of the rigid body motions of
the deck of short-span skew bridges focusing on the mechanism that
causes in-plane rotational vibrations of the deck during strong
earthquake motion. A study of the damage to bridges during
earthquakes, particularly the San Fernando eventvof February 9, 1971,
reveals the triggering of rigid body rotations of the bridge deck as a
result of the interaction between the deck and the abutments. In many
cases, this kind of behavior caused permanent rotation with attendant
damage to the bridge columns and abutments. Some examples of bridges
which experienced this type of damage are described in Chapter 1
following a brief description of the history of the seismic response of
highway bridges.

As a first approach to the problem, a simple bridge model is
proposed in Chapter 2. In this model, the deck is represented as a
rigid rod skewed at an angle g with respect to the horizontal direction
and restricted by linearly elastic columns and abutment springs. The
abutments are located at a distance a from the ends of the rod, which
represents the gap usually present for _thermal expansion of the deck.
The basic conclusion of Chapter 2 is that the simple model examined is
capable of illustrating the basic features of the kinematics of planar_
rigid body rotatioﬁ of.tﬁe decké of skew bridges, including the
interaction between the deck and the abutment, and can, therefore, be
used as a basis for more detailed modeling of the response of skew
bridges. The examination of the effects of the parameters on the

response of the simple model presented in Chapter 2 reveals that a
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reasonably accurate estimation of the abutment and the column
stiffnesses will be important for a more realistic, and necessarily more
complicated, model.

Chapter 3 presents methods for the estimation of the elastic
stiffness of a bridge column with a parabolic flare including the
effects of translational and rotational compliance of the base. This
type of column is frequently used in the design of bridges. Although
such accuracy is not required for the principal purposes ¢of the present
study, an exact method (according to the Euler-Bernoulli beam theory) is
presented for the determination of the column stiffness. This result
could be useful in other problems in which a more accurate estimation of
the stiffness of this type of column is necessary. Additionally, an
approximate method for the estimation of the stiffness is presented; it
can be used with columns of any type of geometry. The chapter concludes
with an example in which the stiffnesses of the columns of the Nichols
Road Overcrossing (Bridge No. 56-725 near Riverside, California) in the
two directions of bending is estimated by both methods. Also, the
complete force-deflection diagram is constructed for each direction.

In Chapter 4, a method for the estimation of the force-deflection
relation of the abutments is presented. The abutments are represented
as rigid blocks bearing against linearly elastic, Winkler~type soil
springs with moduli varying linearly with depth. For the examination of
the yielding of the soil, a global yielding criterion based on the
Rankine Theory of active thrust and passive resistance is adopted. The
problem is also solved for the case of discrete foundation springs;
this approach is more general in the sense that it can handle arbitrary

variations of the effective modulus of the soil. Finally, at the end of
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the chapter, an example is solved in which the abutments of the Nichols
Road Qvercrossing are examined.

In Chapter 5, a more detailed model for the rigid body motions of
the deck of skew bridges is proposed. This model has three degrees of
freedom (displacements in the X and Y directions, rigid body in-plane
rotation, and other resisting mechanisms are taken into account) in
addition to the translational resistance of the columns and abutments.
These mechanisms include the rotational resistance of columns, the
effects of the elastomeric pads, and viscous damping. Furthermore, the
model is capable of approximating the nonlinear yielding behavior of the
columns, pads, and abutments. It should be noted that the model itself
and the computer program which solves the three second order coupled
differential equations of motion are presented in a general form so that
they can accommodate any form of the force-deflection relationship of the
columns, pads, and abutments. To achieve this, the resisting force of
each of the above mechanisms in the direction of a displacement r is
represented by the general formula:

F(r) = k(n)r
where k(r) is the generalized stiffness. In this particular study,
simple bilinear hysteretic or elasto-plastic force-deflection relations
are employed for the colums, pads, and abutments.

At the end of Chapter 5, an example of response is given in which
the values of the model parameters are assigned based on the properties
of the Nichols Reoad Overcrossing. Different input excitations and
different values of key parameters are examined in order to show the
capabilities of the model and gain insight into the response of this

particular bridge. From the response of the model in these cases,
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presented in section 5.5.2, one can draw the following conclusions and
general remarks.

a. As expected, the planar rigid body rotaticns of the deck are
induced primarily as a result of the skewness of the deck and the impact
between the deck and the abutment. Thus, after the closure of either of
the gaps between the ends of the deck and the abutments, impact forces
are created; the moment of these forces about the center of mass of the
deck imduces rotational vibrations and couples the equations of motion.
Minor rotational vibrations can also be induced by the non-symmetric
position of the colums with respect to the center of mass of the deck.

b. The impact between the deck and the abutments is dominated by
the excitations and response in the X direction. The model, though, can
handle the general case in which each abutment is represented by gaps
and springs in two directions (see Fig. 5.l.c) so that the impact
between the deck and the wing walls resulting from the motion of the
ends in the Y direction could also be investigated. However, it is
believed that this type of interaction between the deck and the wing
walls will not be very important for the rotational motion of the bridge
deck for two reasons.

(i) The gap in the Y direction is usually large and so it is less
likely to close.

(ii) Even if it does close, the reaction of the wing wall appears,
from in-field observations, to be small compared to rotational forces in
the X direction. So, although the impact can result in wing wall damage
(see below), it will not contribute significantly to restraining the
deck motion.

c. Due to the rotation of the deck, significant displacements of
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its ends in the Y direction occur, which explains some of the damage to
skew bridges after the San Fernando earthquake (displacement of
superstructures at the abutments in the transverse direction, falling of
superstructure from elastomeric pads, and damaged wing walls). These
displacements are, of course, magnified by excitation in the transverse
direction, which indicates that mechanisms resisting the movement of the
deck in the transwverse direction are necessary.

d. All the structural components of the bridge examined seem to
behave in the elastic range incases 1 and 2 (see section 5.5.2).
However, under the intense ground motions of case 3, the columns and the
pads show significant yielding caused primarily by the longitudinal
motion. It should also be mentioned that, although in this study the
torsional resistance of the colums was assumed to be elastic, extensive
rotation of the deck could cause significant shear failures to the
colums. This problem needs further investigation.

e. The contribution of the abutments to the response of the deck
seems to be very important for the following reasons.

(i) It is the impact between the deck and the abutments that
causes the rotation of the deck.

(ii) The approximate method of the estimation of the abutment
stiffness presented in Chapter 4 reveals that the abutments contribute
significantly to resisting the longitudinal motions of the bridge. For
the example studied, the comparatively stiff soil produced estimated
abutment stiffness twice that of the individual colums. So, one can
easily see that the abutment restraint is predominant for the
longitudinal vibrations of the deck especially in the case of stiff

soils. This point deserves special attention because a more detailed
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investigation could lead to an appropriate lowering of the seismic
design loading for small bridges where structural restraint is dominated
by the abutments.

As items of further research on this topic, it is recommended that
the contribution of the abutment mass, which is neglected in this
investigation, be considered along with more detailed examination of the
resistance of abutments. Specifically, it is suggested that research be
undertaken to determine accurate force—deflecticn and energy dissipation
characteristics under cyclic loading for various representative abutment
types. An understanding of this complicated problem will contribute
significantly to the general understanding of the seismic response of
bridges.

It is also suggested that further investigation be made to model
more accurately the impact between the bridge deck and the abutments.
In this thesis, it was assumed that the contact is concentrated at one
point (the middle of the bridge deck); however, this approximation
might not be sufficient for a detailed modeling of skew bridges since,
in actuality, the point of contact between the deck and the abutment is
changing, which indicates that the width of the deck might be a factor
for its in-plane rotational vibration.

f. Yielding of the abutments, as examined in this study, is based
on a global yielding criterion and only occurred when the deck pushed
sufficiently hard against the abutment. In the example, yielding of the
abutments required not only a very strong excitation in the X direction
but also simultanecus reduction of the values of the column or pad
stiffness. Only then, did the deck move enough to push the abutment to

the yielding point (see cases 4 and 5 in section 5.5.2).
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Therefore, under realistic assumptions about the strength of
shaking and the strength of the various elements, it is not expected
that the abutment soils will vield for this type of bridge. It should
also be noted that the yielding criterion used prevents this model from
explaining the local yielding (cracks at the soil) which is commonly
observed after earthquakes. It is believed that modeling this
phenomenon would require a more detailed model of the soil=-abutment
system,

Finally, based on the conclusions and remarks of this
investigation, a detailed instrumentation of small skew bridges is
suggested in order to acquire the experimental data required for a more
detailed investigation of the rigid body rotational vibrations which are
induced by the impact of the deck with the abutments. Bridges with
simple geometry, like the one examined in Chapter 5, are particularly
recommended for an appropriate instrumentation. For this particular
bridge, such an instrumentation should include the installation of at
least three pairs of accelerometers: one at the middle of the bridge
and one at each end. This location of accelerometers c¢ould provide
recordings of the motions of the bridge deck at the middie and the two
ends along the two directions, X and ¥, Based on these recordings, the
rotation of the bridge deck would be confirmed and investigated

experimentally.
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AFPENDIX A

ESTIMATION COF ULTIMATE EENDING MCMENTS

1. ESTIMATION OF THE ULTIMATE BENDING MOMENTS IN THE Y-DIRECTION

The balanced condition (Ref. 46) is examined first. The forces
taken by the reinforcement bars in this condition are shown in Table
Al. The total force taken by the reinforcement steel is equal to: Cg
= 402.01t. The force taken by the concrete is C, = 1339.3t. Adding,
the ultimate capacity of the cross section in the balanced condition is
1741.35. This is bigger than the compressive force which acts on the
cross section (PC = 965t). Therefore, the capacity of the cross section
is controlled by the tension in the reinforcement steel. By using the
trial and error method, the width of the compression zone, which

corresponds to & total compressive force clos to P, = 965t, is found to

be Xp,= 0.591m. In fact, the above value of X, corresponds to an

ultimate capacity in compression of P, = C5 + C, = ~51.33 + 1010.18

959.46 = 965t. The forces taken by the reinforcement bars when Xy
0.591 are shown in Table‘ A.2 while the value of the compressive force
taken by the concrete, along with its point of application, are shown in
Fig, A.la. For this distribution of forces, the ultimate moment
capacity can be found:

Mg,1 = 1315 tm.
(The subscript 1 denotes the bottom cross section.)
Top Cross Section

Examination of the balanced condition shows again that the capacity
of the cross section is controlled by tension in the reinforcement
steel. Following the same procedure used in the case of the bottom

cross section, one finds that a value of X, = 0.922 gives an ultimate
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capacity in compression of P, = Cs +Co = ~784.762 + 1730.92 = 946t

which is close to the compressive force of 965t. Table A.3 and Fig.
A.lb show the forces taken by the reinforcement bars and the corcrete,
respectively, when Xp = 0.922. The ultimate moment capacity in this
case is found to be:
M,,2 = 3029.30 tm.
2., EVALUATION OF THE ULTIMATE BENDING MOMENT IN THE X-DIRECTION
Bottom Cross Section

Due to the symmetry of the bottom cross section, its ultimate
moment capacity for bending about the X-direction will be the same as
the Y-direction, i.e.,

M,,1 = 1315 tm,

Top Cross Section

Choosing X, = 0.43 gives and ultimate capacity in compression of P,
=Cg + C, = ~623.85 + 1586.63 = 962,78 = 965t. Table A.4 and Fig. A.lc
show the forces of the reinforcement bars and the concrete,
respectively. The ultimate moment capacity in this case is:

M, 2 = 1699 tm.
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TABLE A.l: STRESSES OF REINFORCEMENT BARS IN BALANCED CONDITION

Position of bar Area Stress Force

(Distance from the Deformation

top of the cross (mz) t/m2 )
section
0.0508 2,013x1073 2.79x1073 35153.5 70.764
0.1438 4,026x1073 2.7x1073 35153.5 141.53
0.2368 4,026x1073 | 2.043x1073 35153.5 | 141.53
0.3298 4,026x1073 |  1,667x1073 33340 134.22
0.4228 4,026x1073 | 1,291x1073 25820 103.95
0.5158 4,026x1073 |  0.91x1073 18200 73.27
0.6088 4,026x1073 |  0.54x1073 10800 43.48
0.7018 4,026x1073 | 0.1644x1073 3288 13.23
0.7948 4,026x1073 | -0.21x1073 ~4200 -16.90
0.8878 4,026x1073 | ~0,587x1073 11740 -47.26
0.9808 4,026x1073 | -0.96x1073 19200 -77.3
1.0738 4,026x1073 | -1.338x1073 26760 -107.73
1.1668 2.013x1073 | -1.714x1073 35153.5 | -70.764

TOTAL FORCE 402.01t
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TABLE A.2:

BENDING ABOUT Y-AXIS~--BOTTOM CROSS SECTION
STRESSES OF THE RETNFORCEMENT BARS WHEN X, = 0.591m

Position of bar Area Stress Force

{(Distance from the 9 Deformation 2

top of the cross (m*) t/m (t)
section
0.0508 2,013x1073 2.74x1073 35153.5 70.764
0.1438 4,026x10°3 | 2,27x10°3 35153.5 | 141.53
0.2368 4,026x103 1.79x10~3 35153.5 141.53
0.3298 4,026x1073 | 1.325x1073 26517.76 | 107.61
0.4228 4,026%1073 0.85%1073 17076.14 69.3
0.5158 4,026x1073 0.38x1073 7634.51 30.98
0.6088 4,026x1073 | -0.09x1073 -1807.1 -7.33
0.7018 4,026x10°3 | -0.502x1073 -11248.73 | -45.647
0.7948 4,026x1073 |  -1.034x1073 -20690.35 | -83.96
0.8878 4,026x1073 |  -1.5x1073 ~30131.97 | -122.275
0.9808 4,026x1073 | -1.97x1073 -35153.5 | -141.53
1.0738 4,026x1073 | -2.45x1073 -35153.5 | -141.53
1.1668 2.013x1073 | -1.714x1073 -35153.5 | -70.765

TOTAL PORCE -51.33
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TARLE A.3:

BENDING ABOUT Y-AXIS---~TOP CROSS SECTION

STRESSES OF REINFORCEMENT BARS WHEN Xy, = 0.922

Position of bar Area Stress Force

(Distance from the Deformation ‘

top of tl:}e Cross (mz) f:/m2 (t)
section
0.0508 0.001019 | 2.836x1073 35153.5 35.82
0.2522 0.001019 2.18x1073 35153.5 35.82
0.4536 0.001019 1.53x1073 30735.48 | 31.3194
0.655 0.00302 0.887x1072 17741.93 | 53.58
0.748 0.004058 | 0.587x1073 11741.93 47.64
0.841 0.004058 | 0.287x1073 5741.93 23.30
0.934 0.004058 | -0.0129x1073 -258.064 | ~-1.047
1.027 0.004058 -0.313x1073 ~6258.064 | -25.4
1.1248 0.004058 | -0.613x1073 | 12258.064 | -49.74
1.2178 0.004058 | -0.90x1072 18064.51 |~73.3058
1.306 0.004058 -1.213x1073 24258.064 | -98.44
1.399 0.004058 | -1.513x1073 30258.064 | -122.78
1.4928 0.004058 | -1.81x1073 35153.5 | -142.65
1.585 0.004058 | -2.113x1073 35153.5 | -142.65
1.678 0.004058 | -2.41x1073 35153.5 | -142.65
1.777 0.00302 -2.73x1073 35153.5 | -106.12
1.9744 0.001019 | -3.37x1073 35153.5 35,82
2.1758 0.001019 | -4.018x1073 35153.5 -35.82
2.3772 0.001019 | -4.67x1073 35153.5 -35.82

TOTAL FORCE -784.761




214

TABLE A.4:

BENDING ABOUT X-AXIS-~-TOP CROSS SECTION

STRESSES CF REINFORCEMENT BARS WHEN Xp, = 0.43

Position of bar Area Stress Force

(Distance from the Deformation

top of the cross (mz) l:/m2 (t)
section
0.0508 0.00303224 2.64x1073 35153.5 106.59
0.144 0.004058 1.99x1073 35153.5 | 142.653
0.2372 0.004058 1.345x1073 26902.32 | 109.17
0.3304 0.004058 0.7x1073 13897.67 | 56.4
0.4236 0.004058 | 0.0446x1073 893.023 | 3.623
0.5168 0.004058 ~0.60x1073 12111.62 | -49.149
0.61 0.004058 -1.255x1073 25116.28 | -101.92
0.7032 0.004058 ~1.90x1073 35153.5 | -142.90
0.7964 0.004058 ~2,5x1073 35153.5 -142.65
0.8896 0.004058 -3.2x1073 35153.5 | -142.65
0.9828 0.004058 -3.8x1073 35153.5 -142.65
1.076 0.004058 - ~4,5x1073 35153.5 ~142.65
1.1692 0.00303224 | -5.15x1073 35153.5 -106.59
0.1903 0.001019 1.67x1073 33446.51 | 34.093
0.3298 0.001019 0.7x10™3 13981.4 14.25
0.5158 0.001019 -0.6x1073 11972.09 | -12.2
0.7018 0.001019 ~1.89x1073 35153.5 -35.83
0.8878 0.001019 -3.19x1073 35153.5 -35.83
1.0273 0.001019 ~4.16x1073 35153.5 ~35.83

TOTAL FORCE ~623.85
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APPENDIX B

EVALUATION OF FOUNDATION SPRING CONSTANTS AND SOIL PROPERTIES

1. EVALUATION QOF FOUNDATION SERING CONSTANTS
The values of the foundation springs can be estimated by the
formulas shown in Table B.l (Ref. 41). These formulas are applicable to
rectangular foundations, and values of the coefficients appearing in
these formulas are given in Fig. B.l (Ref. 41). |
2, S0IL PROPERTIES
The properties of stiff soil, which were used in the example of
Chapter 4, are shown in Table B.2 (personal communication with Professor

R.F. Scott and Ref. 42).

TABLE B.l SPRING CONSTANIS FOR RIGID RECTANGULAR BASE RESTING
ON ELASTIC HALF-SPACE

Motion Spring Constant
G 1/2
Vertical kg = =====~~ 2, (BL) /
1~u
Horizontal kg = 2(1 + 1)GBy (BL) /2
G 2
Rocking k(p = — 0 q)BL

l1-nu
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Fig. B,1 SPRING CONSTANT COEFFICIENTS FOR RECTANGULAR
FOUNDATIONS (Ref. 42}

TAELE B.2 PROPERTIES OF STIFF SOIL

Poisson Ratio {v) 0.45

Shear Wave Velocity (Vg) 1500 f/sec = 457 m/sec

Unit Weight (vg) 125 p/£3 = 2 t/m°

Friction Angle (4) 40°

Cohesion (c) 0 - 1000 p/£2 = O - 4.88 t/m?
n, (Ref. 43, pg. 259) 40 t/£3 = 1412 t/m

Subgrade

Constants
ko (Ref. 43, pg. 251) 3.8 t/£5 = 135 t/m’
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3. EVALUATION QF THE TORSIONAL SQIL SPRING AT THE BOTTOM
QOF THE ABUTMENTS

The torsional soil spring at the bottom of the abutments, kcb' can
be approximately evaluated as follows. Let c be the total width of the
abutment base. Suppose that the base rotates as shown in Fig. B.Z.

Then, the total moment about point A will be:

c
M=I p X)X (B.1)
0

where
pX) = kx (B.2)

The value of k is assumed to be equal to the value of the horizontal

subgrade reaction coefficient of the bottom of the abutment. Thus,

z |
k=kw+nw—]‘§
1=3

or
k =k, +ny (B.3)
Combining (B.1l), (B.2), and (B.3) yields

C3
M= (k, + nw)—;— (B.4)
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From (B.4), one gets:

C3
k = (kw + nw)-:;—-

FIG. B.2 EVALUATION OF THE TORSIONAL SOIL SPRING
AT THE BOTTOM OF THE ABUTMENTS
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Corrected Accelerograms and Integrated
Ground Velocity and Displacement Curves
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Analyses of Strong-Motion Earthquake Accelerograms
Response Spectra

Yolume IIT

NTIS
Part Report No, Accession No.
A EERL 72-80 PB 212 602
B EERL 73-80 PB 221 256
C EERL 73-81 PR 223 025
D EERL 73~-82 PB 227 469/AS
E EERL 73-83 PB 227 470/AS
F EERL 73-84 PB 227 471/As
G EERL 73-85 PB 231 223/AS
:4 EERL 74-80 PB 231 319/AS
1 EERL 74~-81 PR 232 326/AS
J,K,L EERL 74~-82 PB 236 110/AS
M,N EERL 74~83 PB 236 400/AS
0,P EERL 74~-84 PB 238 102/AS
Q,R EERL 74-85 PB 240 68B/AS
s EERL 74~86 PB 241 553/A8
T EERL 75-80 PR 243 698/AS
i EERL 75-81 PB 242 950/4AS8
v EERL 75-82 PB 242 951/AS
w,Y EERL 75-83 PB 243 492/As
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Analyses of Strong-Motion Farthquake Accelerograms
Fourier Amplitude Spectra

Yolume IV
NTIS

Part Report No, Accession No.

A EERL 72-100 PE 212 603

B EERL 73-100 PB 220 837

c EERL 73-101 PB 222 514
D EERL 73-102 PB 222 969/AS
E EERL 73-103 PB 229 240/AS
F EERL 73-104 PB 229 241/As
G EERL 73-105 PB 231 224/AS
H EER]L 74-100 PB 232 327/AS
1 EERL 74~101 PB 232 328/A8
J,K,L,M EERL 74~102 PB 236 111/AS
¥,0,P EERL 74~103 PB 238 447/AS
Q,R,S EERL 74-104 PB 241 554/AS
T,U EERL 75-100 PB 243 493/ASs
v,W,Y EERL 75-101 PB 243 494/AS
Index Volume EERL 76~02 PB 260 929/AS
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