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ABSTRACT

This thesis investigates the rigid body motions of skew bridges,

concentrating on the in-plane translational and rotational displacements

of the bridge deck induced by impact between the deck and the abutments~

Experience in the San Fernando Earthquake of February 9, 1971

demonstrates that this feature is particularly important for skew

bridges.

A simple model, in which the bridge deck is represented by a rigid

rod restricted by column and abutment springs is examined first. This

model illustrates the mechanism by which in-plane rotational vibrations

is triggered after the closure of the gap between the bridge deck and

the abutment. It also shows that the force-deflection relations of the

columns and the abutments are particularly important features for the

response of the bridge. Methods for the exact and approximate estimation

of the elastic stiffness of elastically founded, tapered bridge columns

with octagonal cross section are presented next. The methods are applied

to a bridge used later as an example. In addition, the yielding of the

columns is examined and the force-deflection relations for bending about

two orthogonal axes are estimated.

The abutments are treated as rigid bodies and the soil embankments

as Winkler Foundations with elastic spring constants increasing

with depth. For the examination of the yielding of soil the Rankine

theory is used. Based on these assumptions an approximate force­

deflection relation for the abutments is constructed.

The response of a more complicated bridge model applied to a bridge

near Riverside, California is examined at the end of the thesis and

examples of the results are given. This model, in which the bridge deck
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is still represented as a rigid rod, has three in-plane degrees of

freedom: two orthogonal displacements and a rotation, and is capable of

capturing many of the more important features of the nonlinear, yielding

response of skew bridges during strong earthquake shaking.
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CHAPTER 1

INI'RODOCTION

1. ~ PAO<GRQUND ON THE SEISMIC REspoNSE OC HIGHWAY BRIDGES

The 1971 San Fernando Earthquake revealed the vulnerability of

highway bridges to earthquake loadings and, thus, presented a major

turning point in the development of research on the seismic response of

freeway structures. Actually, prior to the San Fernando Earthquake, very

little damage was observed worldwide to reinforced concrete bridges as a

direct result of earthquake shaking. According to Imbsen, Nutt and

Penzien (Ref. 2) the damage to bridges prior to the San Fernando

Earthquake had been caused by:

(i) Tilting, settlement and overturning of stbstructures,

(ii) Displacerrent of supports and ancoor bolt breakage, and

(iii) Settlement of approach fills and wingwall damage.

More specifically, in california from 1933 until 1971, eleven separate

earthquakes ranging in magnitude from 5.4 to 7.7 on the Richter scale

affected approximately 1,(X)O bridges. However, none of these bridges was

close to the area of intense shaking and the total amount of damage was

about $lOO,(X)O. In the case of the San Fernando Earthquake, many bridges

were located within the zone of the intense shaking and the resulting

damage was approximately $6,SOO,(XX) for this earthquake alone (Ref. 3).

As a result of the San Fernando Earthquake, there has been an

increased pUblic awarness of the seriousness of the earthquake hazard to

highway bridges. A reflection of this concern was the recognition of the

need for extensive research in order to provide engineers with

information about designing highway bridges that are more earthquake

resistant. Thus, immediately following the San Fernando Earthquake,
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research efforts were initiated to develop new seismic design criteria

taking into account the vibrational properties of the bridge elements

and the soil (Ref. 4). The result of these efforts was the formation of

the basis for a new national seismic bridge design code (Ref. 4). In

addition, ptblication of many research results provided explanations for

the observed behavior of individual bridges during earthquakes

(especially the San Fernando Earthquake) or predicted the seismic

response of particular bridges (Refs. 2 and 8).

These research efforts paved the way for significant advances

during the last decade in the design and construction of seismic

resistant bridges. However, in view of the complexity of the problem,

significant gaps still remain in the understanding of the vibrational

response of highway structures; and numerous aspects of the problem

remain still unexplored. The solution of these problems requires the

continuation of both analytical and experimental research.

1.2 STATEMENl' Of. THE PROBLEM

One of the observations from damage to freeway structures caused by

the San Fernando earthquake was that several moderate sPan bridges with

relatively large skew angles showed a tendency to rotate in a horizontal

plane in a direction that increased their skewness (Refs. 5, 6, and 7).

The same behavior was later observed during the recent Coalinga

Earthquake of May 1983. In the San Fernando Earthquake this

susceptibility of skewed bridges to rotational displacements caused, in

some cases, severe damage to columns and abutments. The damage to

bridges was relatively minor during the Coalinga Earthquake.

It has been concluded (Ref. 5) that this rotation was a direct

result of the interaction between the structure and the approach fill,
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and it was suggested that research on this phenomenon was required. This

is the subject of this thesis which has as its purpose the investigation

of the in-plane rotational vibrations of short span skew highway

bridges, including the effects of interaction with the abutments.

1.3 EXAMPLES Q£ SKEW BRIDGES WHICH SHOWED ROTATION Q£ THEIR DECKS

DURIt-N RECENT EARTH<XJAKES

Some of the bridges that were highly susceptible to in-plane,

rotational displacements and which suffered extensive damage during the

San Fernando Earthquake include the following.

a. The SQn Fernando RQgd Overhead (Refs. 5 and 6) The two San

Fernando Road Overhead bridges, part of the Golden State-Foothill

Freeway interchange, are seven-span skew structures that carry the

Golden State Freeway over the San Fernando Road and the Southern Pacific

Railroad. The central spans over the railroad were ronstructed of roth

steel and precast prestressed concrete girders. The other spans are of

reinforced concrete bcx ronstruction. The structure suffered collapse of

the simply-supported steel girder spans. It seems probable that the

steel girders fell from their steel bearings and then, with the onset of

large horizontal deformation, the girder span rotated in a horizontal

plane by the pounding at skew joints until some of the girders slipped

free from the piers. In Fig. lola one can see the permanent set of the

bridge in the directon of increasing skewness.

b. Northbound Truck Route Undercrossing (Refs. 5 and 6) This

bridge, which is also part of the Golden State-Foothill Freeway

interchange is a three-span continuous concrete box bridge approximately

225 feet long. It has large angles of skewness at each abutment. The

bridge rotated in a horizontal plane abcut the western end resulting in
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b

FIG. 1.1 ut'MAGE TO HIGHhAY 5RIUGES CUE TO Ra:'ATI0N
OF THEIR DECKS CURING THE SAl" fERNANDO
EARrHQjAKE
a. San Fernanco Road Overhead
b. Foothi 11 a1'!d. :;ndercrcss~:lc
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FIG. 1. 3 DNlAGE TO HIGh1iAY BRIDGE CUE TO ROri\TICN
OF !T'; DECK OC:li:\\; THE 1983 COAL=
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7

a large permanent displacement of the superstructure at the eastern

abutment and severe bending failures at the tops of the columns in the

eastern pier. Pictures of the damage to this bridge are shown in Fig.

1.2.

c. Foothill Bouleyard undercrossing (Refs. 5 and 6) This

structure, which is part of the Foothill Freeway Bridges, is a pair of

four-span continuous reinforced concrete box girder skewed bridges. The

bridge rotated in the horizontal plane, and a permanent offset of about

four inches in the direction of increasing skewness was observed at the

abutments. The damage to the columns of this bridge is shown in

Fig. l.lb. It appeared that the bridge rotated at about the third

column, which did not suffer extensive damage.

Damage of a similar nature, but much less intense, occurred during

the 1983 Coalinga, california earthquake. Fig 1.3 shows the rotation of

the skew bridge where Interstate 5 crosses the railroad near Coalinga

(The bridge is marked 5.FRE 8ll). The bridge experienced a rotational

deflection of about one inch, which was accomPanied by minor gpalling of

the reinforced concrete railing wall.

1.4 ORGANIZATION ~ ~THESIS

This thesis has been divided into six chapters. Chapter 1 is a

general introduction with a brief history of the research on the seismic

response of bridges and a statement of the problem to be studied in the

thesis. Chapter 2 presents the examination of a simple model for the

rigid body motions of skew bridges. The relatively stiff bridge deck is

modeled as a rigid body. The identification of the important parameters

and their effects on the response of the model are the principal

features of this chapter. Two of the most important elements in the
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nonlinear response of skew bridges are believed to be the bridge columns

and the abutments. Chapters 3 and 4 present methods for the estimation

of the yielding force-deflection relations for the bridge columns and

abutments, respectiVely. Examples of the applications of the methods are

included in both chapters. Chapter 5 introduces a more detailed model in

the dynamics of skew bridges. The model includes the nonlinear effect of

the abutments, expansion gaps, yielding of the columns, and elastometic

pads. This chapter also presents some examples of the earthquake

response of a mathematical model based on the Nichols Road Overcrossing

(Bridge #56-725 near Riverside, California). Chapter 6 includes a

summary of the thesis and some corx:lusions based on the research.

Mathematical notations have been defined where they first appear,

while some formulas and details of the solutions of some examples appear

in the appendices.
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CHAPTER 2

A SIMPLE MCDEL FOR THE RIGID a:DY ROI'ATIONS OF SKEW BRIDGES

2.1 INI'RODUCTION

The purpose of this chapter is to· develop and analyze a simple

model which captures the basic features of the complicated rigid body

motions of a skew bridge.

In the first part of the chapter, the possible distortions of a

bridge deck are described. Then a simple model of a skew bridge is

proposed and the simplified assumptions on which the model is based are

discussed. Following next is the derivation of the equations of motion

of the model along with the identification and discussion of the

important parameters. Finally, the kinematic mechanism of the model is

described, the effects of several parameters on the dynamic response of

the model are examined, and some conclusions are drawn concerning more

detailed modeling of skew bridges.

2.2 roTIONS ~ DIS'IPRTIONS Of: A BRIDGE QECK

Basically, there are six principal types of motion of a bridge deck

relative to the ground of concern here; these are shown in Fig. 2.1 and

include:

a. Rigid body lon;;ritudinal translation during which the deck

translates longitudinally as a rigid body,

b. Rigid body lateral translation where the deck translates

laterally as a rigid body,

c. Rigid body rotation about a vertical axis during which the deck

rotates in its own plane,
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LONGITUDINAL TRANSLATION
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FIG. 2.1 POSSIBLE TYPES OF DISI'ORTION OF A BRIDGE DOCK
REIATIVE TO THE GROUND
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d. Vertical flexure during which the deck bends in a vertical

plane,

e. Lateral flexure in which the deck bends in its plane, and

f. Torsional distortion during which the deck is twisted about an

axis parallel to the centerline of the roadway.

2.3 B. MODEL

The most basic assumption on which the model is based is the

rigidity of the bridge deck. Thus, the deck is represented as a one­

dimensional rigid bar having the mass and length of the real deck.

Consequently, the model is capable of capturing only rigid body motions

a, band c. Motions d, e and f will be neglected.

For simplicity, the model is assumed to be undamPed1 and the only

lateral resisting mechanisms taken into account are the bridge piers and

the abutments.

Each set of piers is idealized by two linearly elastic springs.

One spring is directed in the longitudinal direction and resists

distortions of type a and one spring is directed in the lateral

direction and resists distortions of type b. The two springs are

assumed to have equal stiffness, k, which can be estimated from the

properties of the piers.

It is also assumed that there are two sets of piers sYmmetrically

located with respect to the center of mass of the deck. Thus, the

resulting model is sYmmetric with respect to both the longitudinal axis,

X, and the lateral axis, Y. The inclusion of only two sets of piers in

the model restricts it to the case of moderate span bridges. The

rotational resistance of the model comes from the moments of the pier
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fric tion less
contact

of elastic
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X longitudinal direction a abutrrent gap

y lateral direction 8 angle of ske~vness

k pier springs m mass of the deck

kab .. abuurent springs I mass marent of
inertia of the deck

FIG. 2.2 SIMPLIFIED MCDEL OF A SKEW BRIDGE
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springs generated by rotation about the center of mass of the deck. No

other form of rotational resistance is included.

Each abutment is represented by a gap in the longitudinal

direction, which, in practice, is used to allow thermal expansion of the

bridge deck and a linearly elastic spring of stiffness kab also oriented

in the longitudinal direction. The values of the length of the gap and

the stiffness of the spring are the same for both abutments, so sYmmetry

is preserved. The contact between the deck and the abutments is assumed

to be frictionless. Finally, the bridge is assumed to be skew at angle

e with respect to the longitudinal direction. The model is illustrated

in Fig. 2.2.

SUmmarizing the above assumptions, we can see that, basically, the

model is a rigid bar supported by springs with a gap at each end where

springs modeling the abutment are located. The model has considerable

symmetry, but the skewness of the deck with respect to the abutments

means that longitudinal motion large enough to close the abutment gap;

will induce rotation.

2.4 EXCITATION - GFPMeI'RY !m. FORCES Of. m. MODEL

To simplify the equations of motion, we assume that the only

excitation is ground motion directed along the longitudinal X-axis.

This assumption, combined with the symmetry of the model, leads to

motion of the center of mass only along the X-axis. All the other

points of the deck can move in the Y direction only as a result of

rotation in the X, Y plane if such rotation occurs. Therefore, the model

has two degrees of freedom: longitudinal translation and rotation in

the X, Y plane.
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longitudinal Displacerrents

x = X + 11sin8¢1

X2 = X - 'lsin8<jl

X3 = X + , sin8<jl

X = X - , sin8¢
4

Lateral Displacerrents

Y1 = - 'lcos8¢

Y2 = 11cos8<jl

Y3 = _. lcos8<jl

Y4 = lcos8<jl

FIG. 2.3 GECMETRY OF THE MCDEL FOR EMALL DISPIACEMENI'S
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-I¢>

f y,1 -mX

tx,l

"f a b,3..
3'

f x ,1 = k(x + 'lsin8¢)

f = ~k , cosGA
y,l 1 'f'

f x ,2 = k(x - 'lsin8¢)

f y ,2 = k'lcos8<jl

f ab ,4= b4kab (x - 'sin8¢ - a)

f ab ,3 = b3kab (x + lsin8¢ + a)

{

I if x 4 > a
b =4 o otherwise

{

1 if x3 <-a

o otherwise

f a b,4

fx,2

FIG. 2.4 FORCES IMPOSED ON THE MOVI~ DECK
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The geometry needed for the model includes expressions for the

displacements of points 1, 2, 3, and 4 of the deck as functions of X and

<jl. These expressions are presented in detail in Fig. 2.3. The

equations were derived based on the assumption of small displacements

and small angles of rotation (sin ¢ .:: ¢, cos ¢.:: 1). The displacements

of every point are measured with respect to the initial position of the

point with positive displacements occurring in the positive direction of

the corresponding coordinate axis.

The forces which are exerted on the deck during its motion come

from the piers, the abutment, and the inertia of the deck itself. The

forces of the piers and the abutments are calculated as the reactions of

linearly elastic springs.. It should be pointed out that abutment forces

at points 3 and 4 of the deck occur only when the left or right gaps,

resPeCtively, are closed. To account for this, coefficients b3 and b4

are introduced into the equations.. These coefficients take the values of

1 or 0 depending on the closure of the gaps. The forces which act on

the deck are given in detail in Fig. 2.4.

2.5 EOUA'nONS OF. MQ1'ION

The equations of motion are derived using Newton's second law

written about the center of gravity.

L:F =mXx

L: M = I~

(2.1)

(2.2)

From (2.1) and the expression of the forces provided in Fig. 2.4, one

gets:
.. ..

-fx ,1 -fx ,2 -fab ,4 -fab ,3 -rrtX<; = mx or

-k(x + 11 sin 8¢) -k(x - 11 sin 8¢) -b4kab (x - 1sin e¢ - a)

-b3kab (x + lsin 8¢ + a) - ~ = mX (2.3)
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From equation (2.3), one can find the first equation of motion.

2k + (b3 + b4)kab b3 - b4
x + X + kab 1sin6¢

m m

b3 - b4
kab (2.4)+ a = - XG

m

Similarly, equation (2.2) gives:

-fx ,111sin(6 + ¢) + fy,l llcos(e + ¢) + f x ,2 1lsin(e + ¢) ­

f y ,2 llcOS(8 + ep) + f ab ,4 1since + ep) - f ab ,3 1since + </» = Iep

or

-k(x + llsine¢) ll(sine + </>cose)-kllcoseep1l(cose - </lsine) +

+k(x -llsineep)ll(sine + </lCOS8)-k1lCOS8</l(cos8 - </lsine) +

fb4kab (x - 1sine</>- a)l (sine + </lcos 8) -

-b3kab (x + 1 sineep + a)1(sine + <j>cos e) = I<j> (2.5)

From (2.5), after carrying out the algebra and neglecting the second

order terms, one finds the second equation of IIDtion:

1
ep + --- [2klfsin2 8 + kab12(b3 + b4)Sin26+(b3 +b4)kablcosea+

I

1
2k 1f cos2e] cp + -- (b3 - b4) kab 1sineX +

I

Let

1
+ ---(b4 + b3)kabalsin8 = 0

I

k
w 2 = --­x

m
(2.7)

(2.6)

(Note that the srrall anplitude frequerx:::y of the rod is

f x ~: I =V2'"X l
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Let y be the nondimensional ratio of the abutment stiffness kab to the

pier stiffness k:

kab = yk (2.8)

Note also that the mass moment of inertia, I, of the node modeling the

deck is given by:

m1 2

I=­
3

(2.9)

The combination of (2.4), (2.6), (2.7), (2.8), (2.9) gives:

x+ [2 + (b3 + b4)yJ ~ + (b3 - b4h sinew~¢ +

(b3 - b4)yawi = Xc; (2.10)

12
+ 6 --~- cos2eJw~¢ + 3(b3 - b4)y

1
a

+ 3(b3 + b4)y - sinew~ = 0
1

sine_w~

1

(2.11)

where b3 and b4 are defined in Fig. 2.4. In order to find the response

of the model to a given ground input acceleration XGI the system of

nonlinear coupled differential equation (2.10), (2.11) has to be solved.

For this purpose, a computer program was written using the method of

Runge-Kutta Gill for solving the equation.

2.6 PARAMm'ER$ Of IMFQR'l'AOCE

The IIOSt important pararreters involved in the rodel are:

a. ~ Angle Qf Skewness Since the primary purpose is to

investigate the response of skew br idges ,it is clearly important to
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understand how variations in e affect the response of the model. In

application, the values of e are usually between 100 and 6C:P.

b. ~ Abutment Stiffness~ As mentioned in the introouction of

the thesis, the behavior of skew bridges during strong earthquake

shaking is believed to be strongly controlled by the interaction between

the bridge deck and the approach fill. The abutment stiffness models

the reaction of the soil upon the bridge deck after the gap closes.

Consequently, it will be very important to understand its influence on

the response of the model.

There is no generally accepted method for calculating the value of

the abutment stiffness. However, the geometry of most bridges indicates

that the abutment stiffness is higher than the stiffness of an

individual bridge column. Tlus, the factor y which relates kab to the

pier stiffness is taken to be greater than one (values of y =1, y =2,

y = 5, y = 10 will be examined).

c. ~ Abutment~~ This is the other parameter of the model

which is related to the degree of interaction between the deck and the

soil. Larger gaps imply less contact between the deck and the abutment

springs. Consequently, the degree of interaction between the bridge

deck and the soil will decrease with an increase in the gap. The gap at

the abutment is intended to allow thermal expansion of the bridge deck.

When the gap exists, its size is typically 1 to 2 inches.

d. ~ Location .Q.f~ ColUmnS The distance 11 defines the position of

the columns with respect to the center of the deck (see Fig. 2.2). It

will be useful to examine cases in which the columns are located near

the center of mass of the deck and cases in which the columns are close

to the ends of the deck. In actuality, there are bridges with columns
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located very close to the center of the bridge deck (11 approaches

zero). However, in the model under consideration, the only rotational

resistance of the deck results from the resisting moments of the pier

springs with respect to its center of mass. Therefore, it would be

unrealistic to examine values of 11 too' close to zero as the deck would

have almost zero torsional resistance.

e. ~ Small Amplitude Longitudinal Frequency several tests on bridges

have indicated that the small amplitude, longitudinal frequency of small

span bridges is within the range of 2 to 5Hz (Ref. 36). Since, in this

model, structural elements of the bridge other than the piers are

neglected, it is reasonable to consider a small value for the frequency.

T1'lls, a representative value of 2Hz was chosen. (This value correspooos

to Wx = 8.89 rad/sec).

~ ~ Input Excitation It is expected that the character of the

excitation will affect the response of the model so that no general

con=lusions about earthquake response can be drawn unless the response

to many ground motions is examined. However, since the purpose of this

chapter is essentially to illustrate the nature of the problem, in the

following paragraphs only the response of the model to one partiCUlar

excitation will be analyzed. The excitation consists of the 10 most

important seconds of the Imperial Valley earthquake of OCtober 15, 1979

(Inperial County services Building Free-Field Site N 02 E).

2.7 EXAMPLE Of. REsroNSE

Assume that the following values are assigned to the parameters of

the roodel.

1 = 4Om, 11 = 12m, e = 40°, a = 0.025m, y = 2, wx = 8.89 rad/sec
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At the beginning of the response to the ground motion, the model

behaves like a simple degree of freedom oscillator excited along the X­

direction. The gaps at both ends of the rod remain open and no

rotational vibrations are triggered since the moments of all the

restoring forces which act on the deck cancel. So, since <p =0, the

displacements of the center of mass and of points 3 and 4 are identical.

The first impact between the deck and the abutment springs takes

place at the left em (point 3) at about 4.2 seconds from the beginning

of the excitation (see Fig. 2.6b). Since the moment of the reaction

force of the left abutment spring is not counterbalanced by the moment

of any other force, rotational vibrations are induced and the deck

starts rotating in a positive direction (see Fig. 2.7a), which is in

agreement with the direction of the moment from the left abutment. The

impact between the deck and the left abutment spring ends when the

displacement X3 becomes larger than -o.o25m. But, soon after that, the

right gap closes; and an impact between the deck and the right abutment

spr ings occurs, which lasts until the displacement X4 becomes smaller

than 0.025m (Fig. 2.6b). In this way, several impacts between the deck

and either the left or the right abutment occur. In the example, all

the impacts occur when the displacements X3 or X4 exceed the

corresponding dotted lines (see Fig. 2.6b and Fig. 2.7a). Between two

consecutive impacts, no abutment force is acting on the rod since both

gaps are o~ned.

The consequences of the rotational vibrations induced by the

irrpacts are:

(i) Coupling between the longitudinal translation X and the

rotation <p occurs; and, as a result, the displacements X3 and X4 start
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differing from each other and from the displacement X of the center of

mass. In fact, a positive rotation of the deck will result in

additional positive and negative displacements of the points 3 and 4,

respectively. This can be seen in Fig. 2.6b and Fig. 2.7a and can be

explained by the relation between X3' X, ep and X4' X, ep shown in

Fig. 2.3.

(ii) The ends of the deck move in the Y-direction after the first

closure of the gap. However, due to the symmetry of the model, the

center of mass of the rod does not move in the Y-direction even after

rotational vibrations are triggered.

2.8 EFFEX;rS ~Q£. l'HE VARIATION Of:~ PARAMETERS

2.8.1 BQd Nitb Restoring S9rings Close m.tm. Center Q.f.~

Assume that the total length of the bridge deck is 80m (1 = 40m)

and that the columns are located at a distance 11 = 8m from the center

of mass of the deck. This results in a ratio 1l~ = 0.2, which is

thought to be a representative value for the case of columns located

close to the center of mass of the deck.

2.8.1.1. Effects Qf. .the. Angle Qf. Skewness

To investigate the effects of the variation of the angle of

skewness, the other parameters are fixed: y = 2, a = 0.025m,

wx =8.89 rad/sec. The range of skewness is taken to be between e = 0

and e = 60; and the response of the model to values of e = 0, 50,

100 , 2JJo, 4.()0, and 600 is investigated.

In Figs. 2.9 - 2.11, the rotational responses of the model to the

1979 El Centro excitation for several values of the initial angle of

skewness are shown. From these figures, the following conclusions can
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be drawn:

a. The response is more sensitive to initial changes in the angle

of skewness (from 0 to 100) than to later ones (from 400 to 600 ). This

can also be seen in Fig. 2.12.

b. The overall appearance of the response depends upon the

frequency of the impacts between the deck and the abutment spr ings and

upon the rotational frequency of the deck. One can observe that the

deck rotates primarily in the positive direction. particularly for e =

50 and 100 , no negative rotation occurs. This happens because the deck

hits the abutment springs before its rotation becomes negative.

c. The maximum rotational response has a tendency to increase with

an increase in the angle of skewness.

d. As shown in Fig. 2.13, the response of the center of mass is

not substantially affected by variations of the angle of skewness.

2.8.1.2. Effects Qf.~ Abutment Stiffness

To investigate the effects of the abutment stiffness, the response

of the model for various values of the parameter Y has to be examined.

The values of Y considered are: Y = 1, Y = 2, Y = 5, Y = 10. The

values of Wx and a remain fixed at 8.89 rad/sec and 0.025m,

resPectively; while, for purposes of further investigation of the

effects of the angle of skewness on the coupling between the X and

q, motions, two values of e will be examined: e = 100 and e = 400•

Thus, the cases under consideration are:

~l

e = 100

w x = 8.89

a = 0.025

'( == 1,2,5 ,10

~2.

e = 400

w x == 8.89

a =0.025

Y = 1,2,5,10
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FIG. 2.14 EFFECTS OF THE VARIATION OF ABUI'MENI' Sl'IFFNESS, Y ,
FOR e = 10°
a. Y = 1 b. Y = 2
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Figs. 2.14 - 2.17 show the responses of the model in case 1, while

Figs. 2.18 - 2.21 smw the responses of the model in case 2. From these

figures, as well as from Fig. 2.22 and 2.23, one can see that:

a. The maximum displacement along the X-axis of the center of mass

of the rod decreases with an increase in· y;

b. The naxirrurn rotation of the rod increases with y;

c. The obviously different overall appearance of the responses in

the two cases reveals once more the effect of the initial angle of

skewness on the coupling between the translational and rotational

IOOtions.

2.8.1.3 Effects ·Qftba Abutment~

For the investigation of the effects of the gap on the response of

the model, the values of e, y, and ~ will remain fixed at 40°,5 and

8.89 rad/sec, respectively. As was mentioned earlier, the typical range

of actual gaps is 0-2" (O-Scm). But, for purposes of better

understanding of the role of the gap, values outside of that rcnge will

also be examined.

In Fig. 2.24, the response of the deck when the gap is open (i.e.

the deck never hits the abutment springs) is shown. In this case, the

deck behaves like a single degree of freedom oscillator excited in the

X-direction; there is no rotational motion. The maximum displacement

of the rod in the X-direction when the gap is open is slightly over

0.09m. So, if the gap is 0.09m, the deck lightly hits the abutment

springs; and the induced rotational vibrations are not strong

(Fig. 2.27b). In Figs. 2.25 - 2.30, one can see the rotational response

of the deck for several values of the gap. From these figures, as well

as from Figs. 2.31 and 2.32, the following conclusions can be drawn:
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a. The duration of the rotational motions increases as the gap

decreases because of earlier impact between the deck and the abutment

springs;

b. The maxinum rotation decreases as the gap width, a, increases;

c. The maximum displacement in the X-direction of the center of

mass of the bridge increases as a increases. This was expected since

the bigger the gap, the smaller the reaction force of the abutment

spring.

2.8. 2. ~ nth Widely-Spaced Colunns

In the preceding paragraphs, the effects of variations of the

initial angle of skewness, the abutment stiffness, and the gap were

examined for a case in which the columns were located relatively close

to the center of mass of the deck. Because the purpose of the chapter

is primarily to illustrate the general nature of the response of the

skew bridges, it was decided not to repeat the same calculations for the

case in which the columns were located relatively far away from the

center of mass.

It will be usefUl, however, to examine the effects of the location

of the restoring springs of the columns on the response of the model.

To do this, the values of 11/1 = 1 (restoring springs at the ends of

the deck) and 11/1 = 0.6 (intermediate position of the restoring

springs) are examined with values of a,"y and Wx fixed at 0.025, 5, and

8.89, respectively. The responses of the model for the two values of

the ratio 11/1 are shown in Figs. 2.33 - 2.36. Comparing results for

these values of 11/1 with those for the initially examined value of

1 III = 0.2, one can draw the following conclusions about the effects

of the location of the restoring springs.
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a. As expected, the period of the rotational vibrations of the

deck increases as the restoring springs approach the center of mass. On

the other hand, if 11/1 = 1, the rotational resp:mse exhibits relatively

high frequencies. In a real bridge, these frequencies could cause

substantial flexural deformations (which are neglected in the present

analysis) in the plane of rotation.

b. The maximum rotation of the deck decreases as the restoring

springs approach the ends of the deck. Again, this change is

anticipated because of the increased rotational resistance.

c. Changes in 11/1 result in changes of the dynamic

characteristics of the system as reflected in changes in the degree of

coupling between the x-<jJ rrotions and in the appearance of the responses.

2.9 GENERAL COtnUSIONS MID. REMARKS

In the preceding paragraphs, some special conclusions were drawn

concerning the kinematic mechanisms of the model and its response to an

accelerogram from the 1979 Imperial Valley earthquake. In this section,

some general conclusions concerning the behavior of the model are

presented.

a. The model which was examined in this chapter is capable of

illustrating the kinematics of planar, rigid body rotation of th~ decks

of skew bridges including the interaction between the deck and the

abutment. Therefore, it can be used as a basis for more detailed

rrodeling of the earthquake response of skew bridges.

b. The model, in the form in which it was developed in this

chapter, cannot capture the details of the rigid body response of skew

bridges since many simplifications were made (perfect symmetry was
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assumed; all the springs were considered linearly elastic; the

rotational resistance of the columns was ignored; and any pads were

completely neglected). Therefore, the results which were found are only

qualitative.

c. In spite of the simplifications that have been made, the model

exhibited a complicated behavior, particularly because of the coupling

between the X and ¢ motions which occur after impact between the deck

and the abutment springs.

d. Most of the parameters of the model seem to be easily

identifiable from the geometric and material properties of the bridge.

A notable exception is the abutment stiffness. In this case, there is

no standard method for determining the required force-deflection

behavior. Under these circumstances, it is important to know how

sensitive the results are to estimates of the abutment stiffness. Table

2.1 was made based on the results of section 8.1.2 in order to compare

the change in y with the corresponding changes in the maximum rotation

and the maximum translation of the center of mass. From this table, one

can see that , in most cases,- the percentage of change of the parameters

of response X and ¢ is substantially less than the corresponding

percentages of change of Y. Thls, taking into consideration the other

simplifications of the model, one can conclude that a reasonable,

simplified method will be accurate enough for the estimation of the

abutment stiffness.
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Comparison of changes of relative abutment stiffness, y' with the

changes of rraxinum rotation, ep, and naxinum translation, X.

-----
Change of y

-- -- - .-
Change Change of Change of

e From To of y Maxinum Maxinum
(%) Rotation, ¢ Translation, X

(%) (%)
--

10 1 2 100 3.8 14

10 1 5 400 138 14

10 1 10 8CX) 137 25

10 2 5 ISO 72 0

10 2 10 400 71 13

10 5 10 100 0 13

40 1 2 100 ro 0

40 1 5 400 79 3.5

40 1 10 5KX) 140 24

40 2 5 ISO 0 3.5

40 2 10 400 38 24

40 5 10 100 37 22
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CHAPTER 3

EIASI'IC SI'IFFNESS OF BRIDGE COLUMNS WITH PA.RAroLIC FIARES

3 .1 INI'RCOOCTION

As was shown in Chapter 2, one of the most important parameters of

the simple bridge model is the elastic column stiffness, defined as the

force required to deflect the top of the column by a unit displacement.

In that chapter, the analysis was elastic; and, therefore, the elastic

stiffness of the bridge columns alone was sufficient. However, for a

more complicated model in which the yielding of the columns will play an

important role, a complete force-deflection relation for the columns

will be required including both elastic and postelastic stiffnesses. It

is believed to be important for the subsequent analysis to have

characterizations of the force-deflection relations in both directions

of bending.

In order to represent the nonlinear force-deflection relation in a

given direction, the following pararreters are needed.

a. ~ initial elastic stiffness For the estimation of the

initial column stiffness three things are important:

(i) The types of defomations which are taken into account,

(ii) The conditions at the two ends of the columns (boundary

corrlitions), and

(iii) The geometry of the bridge columns.

In the case of a typical bridge column, the length to depth ratio is

large; and, therefore, the bending deformations are large compared to

those caused by shear. Consequently, the shearing deformations can be

neglected; and the columns can be modeled as beam-columns using

Bernoulli-Euler beam theory. As far as the boundary conditions of the



62

column beams are concerned, it is reasonable to assume that the column

is built into the bridge deck at the upper end and has rotational and

translational springs at the bottom which account for the effects of the

soil. If the foundation conditions are such that these springs can be

considered to be infinitely large, then the resulting model of the

bridge column is a bending beam built in at both ends. Finally, the

geometry depends on the particular column. Columns with uniform cross

sections simplify the solution of the problem; whereas, columns with

variable cross sections make it more difficult.

b. k yielding levels The ultimate capacity of a concrete column

at a given point depends primarily on the cross sectional properties

(geometric and reinforcement) of the column at that point and can be

estimated by standard methods (Ref. 47).

c. !ba postelastic stiffnesS This is the stiffness of the column

after its first yielding at the bottom or top cross section. It can be

evaluated from the same beam model· by properly readjusting the boundary

conditions.

The purpose. of this chapter is to provide a method for calculating

the required force-deflection diagrams of a bridge column. The analysis

focuses on the case of columns with parabolic flares at their tops since

the bridge which will be used as an illustrative model (Nichols Road

Overcrossing - Riverside County, California) has this type of columns.

Although a reasonably accurate metOOd would be enough for the purposes

of modeling followed in this research, it was found during the analysis

of the problem that an exact solution for the initial elastic stiffness

of the parabolically flared columns could be provided. Thus, the

presentation of this chapter was expanded in order to include this
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solution. The solution is presented in the secorrl part of the chapter

following an introduction in which the basic points of Bernouilli-Euler

bending beam theory are presented. In the third part of the chapter, an

alternate solution of the same problem is provided. This solution is

approximate, but it is more general in the sense that it can treat

columns with any type of flare. This solution is based on the represen­

tation of the flare by a sequence of beams of uniform cross section.

Finally, the application of the two methods to the case of the columns

of the Nichols Road Overcrossing is presented. Also, in the last part

of the chapter, the yielding of the columns in the two directions is

examined.

3.2 EaJATIONS Am. rouNDARY CONDITIONS FOR A BERIDULLI-EULER~

Consider the beam shown in Fig. 3.1. The governing equations for

the static case are:

d2

~(EI(Z)

dZ
=0 (3.la)

d2w(z)
M(Z) = EI(Z)-------­

dZ2

dM(Z)
Q(Z) = - ---

dZ

where:

(3.lb)

(3.lc)

(3.1)

E is the IOOdulus of elasticity of the na.terial of the beam;

I(Z) is the moment of inertia of the cross section of the beam

which, for the general case, is a fuoction of Z;

W(Z), M(Z), and Q(Z) are the displacement, bending moment, and

shear force, resp:ctively.

In the case of a beam of uniform cross section (1 (Z) = constant), the
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FIG. 3.1 BERNOULLI-EULER BEIDIN; BEAM



=0

above equations reduce to:

d4w{Z)

dZ4

d2w(z)
M(Z) =EI 2

dZ

dM(Z)
Q(Z) = - -,-­

dZ
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(3.2a)

(3.2b)

(3.2c)

(3.2)

In addition to the governing differential equations, the srecification

of boundary conditions is required. For the case of a bridge column,

the mst co1TltOn boundary conclitions are shown in Table 3.1.

3.3 STIFFNESS or A BRIDGE COLUMN ta.m. QC'1'AG)NAL CROSS SECTION AW.

PAlWPLIC FLARE AT..~~ Am FOUNDATION SPRINJS p;g~ 00T1PM

3.3.1 Eg)Jations Qf g Tapered Colurm Ylith Foundation Springs

Consider the tapered bridge column shown in Fig. 3.2. The column

is fixed at the top; at the bottom, it has torsional foundation springs

kZX 'and kZY resisting rotation in the z-x and Z-Y planes, resrectively,

and translational foundation springs k£ and kfi resisting displacements

in the X and Y directions, respectively.

This column can be considered as consisting of two beams. Beam 1

with length hI has a uniform cross section and, consequently, a constant

moment of inertia while beam 2 with length h2 has a variable cross

section; consequently, its moment of inertia is a function of the

position of the cross section. The system of the two beams along with

the coordinate systems used in the analysis is shown in Fig. 3.2.

Estimation Qf. .the. stiffneSS f.Q.t. in-plane bending

Assume that a unit displacement X~ = 1 along the X-axis is imposed

at the top of the column. Then the equations of each of the two beams
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TABLE 3.1 CCMl'DN OOUIDARY CONDITIONS FOR BRIDGE COLGfNS

----,---
Type of
Boundary

Fixed

end

Sketch of
Boundary

IT
Boundary Conditions

[W (Z) lend = 0 (displacerrent = 0)

[W' (Z) lerrl = 0 (slope = 0)

[EI (Z) ---lend = kr[W' (Z) lend
dZ2

Pinned
Eottom
end with
oorizontal
and
torsional
springs

d
[-(EI(Z)

dZ

d2w(z)
2 - ) lend = -kh[W(Z) lerrl

dZ

----------,_._-------------------

Pinned

end

are the following:

[W(Z) lend = 0 (displacement = 0)

d2w(z)
[EI (Z) -J rrl = 0 (rorrent = 0)

dZ2 e

(3.3)

~~ (see formulas 3.2)

d4wl (Zl)
- =0

dzf
The solution of (3.3) has the general form:

WI (Zl) =AI + BIZI + cIZf + DIzI (3.4)

By using (3.4), (3.2b) and (3.2c) one gets:

*For an arbitrary Xt :f 1, the expressions for the displacement, shearing
forces, and bending rorrents soould be IIUlltiplied by Xt .
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FIG. 3.2 TAPERED BRIDGE COLUMN



68

MI(Zl) =EII(2CI + 6DIZ1) (3.6)

or (Zl) = -6EIIDI (3.7)

In the above equations, the superscript "Y" denotes bending about the Y-

axis.

~ 2. (see formulas 3.1)

d2 d2w2(Z2)
(EI~ (Z2) 2 -) = 0 (3.8)

dZ~ dZ 2

Equation (3.8) can be solved by using the method of variation of

paraneters (Ref. 45). The solution has the final form:

(3.9)

(3.10)

(3.11)

(3.12)

From equation (3.12) and the definition of the stiffness of the

column, it is obvious that the unknown stiffness is the coefficient -B~.

Boundary conditionS (see Table 3.1)

Beam 1:
I
I
Izr=o

I
= - k£Wl (Zl) I

IZ1=O
(3.13)
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From (3.13) and (3.4) to (3.7), one gets:

6EIInI = -k~Al (3.14)

(3.15)

= 1

Using (3.15) and (3.4) to (3.7) yields:

2EIIcI = k~BI

Beam 2: (i) W2(h2) = 1

Corrbining (3.17) and (3.9) gives:

h J
y y

y y 2 A2 B2Z2
n2 + C2h2 + ---[ (- y - + --y--)dZ2]

E I2(Z2) I2(Z2) Z2=h2

1 J Z~~ B~Z~[( + ----)dZ2]
E I~ (Z2) I~(Z2) Z2=h2

(3.16)

(3.17 )

(3.18)

=0 (3.19)

=0 (3. aJ)

Conditions Qf continuity .at.~ connection Qf.~ beams

At the connection between Beam 1 and Beam 2, the following

continuity conditions must be satisfied:

(i) Continuity of displacerrents:

I
=W2(Z2) I

. .I
Z2=O

and (3.21) prcrluces:

I
WI (ZI) I

I
Zl=h1

Applying (3.4), (3.9)

(3.21)



dW2 (Z2)
=----

dZ2
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Y Yh Yh2 Yh3-Al + B1 1 + C1 1 + D1 1 -

(ii) Continuity of slopes:

I
I
I
Zl=h1

Using (3.5) and (3.10), (3.23) becomes:

Bt + 2Cth1 + 30thf =

Y 1 J A~ B~Z2
C2 + -- [(-- + ----)dZ21

E I~ (Z2) • I~ (Z2) Z2=O

(iii) Continuity of roments:

y I y I
. M (Z ) I = M2 (Z2) I
III I

Zl=h1 Z2=O

Combining (3.25) with (3.6) and (3.11) gives:

EIt (2Ct + 6Othl) = A~ (3.26)

(iv) COntinuity of shears:

~ (Zl) I = Q~(Z2) I (3.27)
I . I
Zl=h1 Z2=O

Using (3.7) and (3.12), (3.27) reduces to

6EItOt = B~ (3.28)

(3.22)

(3.23)

(3.24)

(3.25)

Equations (3.14), (3.16), (3.18), (3.20), (3.22), (3.24), (3.26) and

(3.28) form a system of eight equations in the eight unknowns AI' ••• ,

Y Y Y01 and A2' ••• , 02. After making the necessary algebraic manipulations

and the stDstitutions defined by equation (3.29) below, the system takes

the final form (3.30) (see page 72).
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(3.29a)

(3.29b)

(3. 29c)

LY I

1-I;~;;)I = dZ 2]1
Ih Z2=h2 ,

2

LY I rJ 1
I = dZ2]1
1
0 I~ (Z2) Z2=O (3.29)

LY I 1 Z2I = [ ---- dZ2] ,2
Ih2 I~ (Z2) Z2=h2

LY I J Z2I = [ ---.- dZ2]2
10 I~(Z2) Z2=O

I 1 z2LY 2
I = [ ---- dZ2] ,3
Ih I~ (Z2) Z2=h2

2

LY I J Z~ .
I = [ ---- dZ 2]3

'0 I 2 (Z2) Z2=O



kX 0 0 6Elh 0 0 0 0 AI 1 10h 1

0 _kXZ 2EIY 0 0 0 0 0 BI I 11r 1

1 1

I ICI0 0 0 0 --(hj.I1h - L~lh ) ---(h2L~lh - Ljlh ) h2 1 I I 1
E 2 2 E 2 2

0 0 0 0
1 Y 1 Y

1 0 I I DI 1 10--- L1 1h - L21h =
E 2 E 2

1 hI h2 h3
-;- L~IO 1 Y

0 -1 I I A~ I 101 -..)
1 1 --- L3 JO N

E

0 1 2h1 3h2
- -=- LII

1 Y
-1 0 I I B~ 1 101 E 0 - -- L2 10 \

E

0 0 2EIY 6ElIh1 -1 0 0 0 I I C~ 1 101

o 0 o -6EIY1 o 1 o o DY
2 o

(3.30)
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It is obvious that, in order to solve the system (3.30), the

indefinite integrals LI, L~, and L~ have to be evaluated.

Estimation Qf. .the. stiffness fQ.r.: out-of-plane bending

Following a similar procedure, one finds that the problem is

reduced again to the evaluation of the integrals Lt, L~, and L~, which

are defined by the relations (3.31) and the solution of the system

(3.32) (Note that the superscript X denotes bending about the X-axis) •

Lt =J-~-dZ2
I2{Z2)

(3.3lb)

(3.31c)

(3.31)

3.3.2 General Expressions ~ tOe Geometric PrQpertiee Qf .the.

Parabolic Flare.Q.f the. COlunn~ Q;tagonal Croee section

Consider the parabolic flare of the bridge column of total length

h2 as shown in Fig. 3.3. From this figure, it is clear that the

dimension which varies parabolically as a function of the position of

the cross section is r1' T1lJs:

z~
. rl =-­

4k
(3.33)

where k is the constant in the equation of the parabolic flare, which

can be determined from the value of rl at the top of the cross section

(ry):

h~
k = - (3.34)

4rt
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kY a 0 6EIX 0h 1

o -kYZ 2EI! 0 0

o

o

o 0

a 0

AI

B1

o

o

1 1
0 0 0 0 ---(h2LI 1h - L~lh ) ---(h2L~lh - L~lh ) h2 1 I I et I 11

E 2 2 E 2 2

1 1
0 0 0 0 --- LIl h -- L~lh 1 0 oi I = 10

E 2 E 2

-...)

1
-~- L~lo

Ul

1 hI hy h3
-~- L~lo a -1 AX 01 2E

3h2 1 1
0 1 2h1 - -;- LIla - -- L~I -1 o II ~ I 101 E a

X Xo a 2EI1 6EI1h1 -1

a a 0 -6EII 0

a

1

o 0

o 0

~

~

o

a

(3.32)
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Also, the following geometric relations can be easily derived from Fig.

3.3:

z~
r =c + 2rl = c + 2 ---­

4k
(3.35)

Morrent of inertia for bending about the Y-axis:

Z2
(c + 2--3- + 2a)3b

4k
I~(Z2) = --------- ­

12

a4 a2 a c z2
4[-- + -- (-- + --- + -~)2J

36 2 3 2 4k
(3.36)

Morrent of inertia for bending about the X-axis:

Z2
b3 (c + 2-~ + 2a)

4k
I~(Z2) = ------­

12

a4 a 2 a b - 2a
4[--- + -- (-- + - -)2J

36 2 3 2
(3.37)

After carrying out all the necessary algebra, the general expressions

for the moments of inertia reduce to:

(3.38a)

(3.38b)

]



where:
b

aY - --- •1 - 96k3 I
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a~ = ~~~~~_ _ a
2
__

16k2 8k2

(c + 2a) 2b a2 a c
aj = ----- - --(- + --) ,

8k k 3 2

(c + 2a) 3b a4 2 a c 2aI = ------ - --- - 2a (-- + --)
12 9 3 2

b3
aX - --­
1 - 24k

cb3 ab3 a4 a b - 2a
a~ = --- + ---- - -- - 2a2 (_"_ + _ )2

12 6 9 3 2

(3.38c)

(3.38d)

(3.38)

3.3.3 Evaluation .Qf .the. Integrals 1.1..£ L~ .and LIm .the.~ .Qf g

Parabolic Flare ~octagonalCross section

Combining the relations (3.29a) to (3.29c) with (3.38a), the

integrals to be evaluated can be expressed by the following general

relations:

(3.39a)

(3.39b)

(3.39c)

(3.39)

To evaluate the integrals, the roots of the denominator must be

examined.

Consider the equation:
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aY aY aY
Y Y6 24 3 2 4I 2 (Z2) = 0,1 (Z2 + --Z2 + -- Z2 + ---) = 0 (3.40)

aY a Y a Y
1 1 1

By making the substitution Z~ = 5 in (3.40) and noting that 0,1 ft 0, one

gets:

(3.41)
aY aY aY

= 53 + ~52 + -~-5 + ~- = 0
0,1 0,1 0,1

The analytic expressions of the roots of (3.41) are given by the

P(5)

following relations (Ref. 47):

Roots

a Y
2

51 =A + B - --
3ar

52 =- 1/2 (A + B)

53 =- 1/2 (A + B)

ilj3
+ -(A - B)

2

il[;
- ---(A -B)

2

(3.42a)

(3.42b)

(3.42c)

(3.42)

where:

2 3
;\, fl--+--
4 27

2 3
;\, ;\,
- + ---

4 27

Y YY Y
1 0,2 3 0,20,3 0,4

;\, = -- [2(--) - 9---- + 27--]
27 aY (aY) 2 aY

111

(3.43)

1 aj aY
fl = -- [3--- - (_~_)2]

3 oJ 0,1

From relations (3.42) and (3.43), it follows that there are three cases



for the roots of (3.41):

2 2

~ill _~-+-L_>O,
4 27
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(3.41) has one real root and two

conjugate complex roots.

~ (iii)

2 3
A j1

---- + ---- = 0 ,
4 27

2 3
A j1---+---<0,
4 27

(3.41) has three real roots; two, at

least, equal.

(3.41) has three real, unequal roots.

It is important to note that, in all three cases, the real root(s)

of (3.41) have to be negative, because, if 5i is a positive real root

of (3.41), then Z i = 5i > 0 will be a positive real root of (3.40);

this, however, has no physical meaning since the moment of inertia must

be positive.

a~
Let 51 = A + B - -- be the real root of (3.41).

3:tI
Since Sl < 0, one can write:

aY
51 = A + B - _3.._ = - tf

JaY
1

where:

a~ y:::IA + B - --- I = 151 '3aI

(3.44)

Then, the moment of inertia I~(Z2) can be written as a product of a
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quatric and a quadratic polynomial in the following way:

I~ (Z2) = af (Z~ + tf) (LZ~ + KZ~ + M) (3.45)

The coefficients L, K, and M can be evaluated easily by equating the

coefficients of the same order terms in equations (3.38a) and (3.45):

L = 1

(3.46)

Consider now the polynomial R(Z2) = Z~ + Kz1 + M, which, by the

transformation z~ = S, can be written as: R(S) = s2 + KS + M. ret t:. =

K2 - 4M be the discriminant of R(S). Since Case (i) is being examined,

(3.47)

the polynomial R(S) has two complex conjugate roots; and, therefore,

t:. < o. The two roots of R(S) are given by the relations

S2 = a + is

S3 = a - is

K
a = - -- ,

2

-4
13= -­

2

Using polar coordinates, the roots can be expressed as follows:

p = 1S21 = IS31 =lfa2 + 13 2 '

cP = cjJ2 = - </>3 - 'IT < </> < 'IT (principal argument)

(3.48)
B

, sin </>3 =- -~
a B a

cos </>2 = p , sin </>2 = -p- , cos </>3 = -p-

82 = p(cos</>2 + i sin</>2) = p(coS</> + i sin</»

83 = p(cos</>3 + i sin</>3) = p (cos</> - i sin <p)

By using the polar representation of 82 and 83' one can find the four
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roots of R(Z2} from applicaton of the relation for the nth root of a

corrplex nunber.

Wn = r(cose + i sine}

where

.0/1 e+2k'IT e+2k'IT
Wn =V r (cos--- + i sin----) (k =0,1, ••• ,n-l)

n n

This gives:

<1>+ 2 'IT <1>+ 2 'IT

Z~ =sz~ Z2,2 = y;'rcos--- + i sin---] =
Z 2

<1> <P-y; [cos-- + i sin-]
2 2

<P ¢
Zz 3 = '~[cos--- - i sin--], V~ Z 2

(3.49)

(3.50)

-<P + 2 'IT -<1> + Z'IT
ZZ,4 = ~[cos --- + i s1o-------] =

2 2

-v; <1> ¢
[cos--- - i sin--]

Z 2

with this result, the polynomial R(ZZ} can be written as the product of

four first order polynomials as follows:



82

R(Z2) = (Z2 - Z2,1) (Z2 - Z2,3) (Z2 - Z2,2) (Z2 - Z2,4) or

¢ ¢
R(Z2) = [Z2 - ~(COs--- + i sin---)]

2 2

_r ¢ ¢ .. L'. ¢ ¢
[Z2 -Vp (cos--- - i sin-)] [Z2 +Vp (cos--- + i sin---)]

2 2 2 2

¢ ¢
[Z2 +......p (cos- - i sin---)]

2 2
(3.51)

After carrying out the algebra in (3.51), one can express the polynomial

R(Z2) as a product of two irreducible quadratic polynomials with real

coefficients:

(3.52)

Combining equations (3.45) and (3.52), the moment of inertia can be

factored into three irreducible quadratic factors with real

coefficients:

(3.53)
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COnsider now the fraction:

1
=---- =

= -
1

(3.54)

The above fraction can be broken into partial fractions as follows

(Ref. 48):

1 Xl Z2 + X2 X3Z2 + X4
= --- (- -- + ----------- +

0,1 z~ + tf z~ - 2Z2/ cos_-<P + p
2

(3.55)

--)

Z~ + 2Z2~COS~- + p
2

By combining (3.54) and (3.55) and equating coefficients, one produces

the system of equations shown in (3.56). The solution of this system

determines the coefficients Xl' X2' ..•, X6. Therefore, the expression

of F(Z2) as a sum of partial fractions [see (3.55)] is completely

defined by solving the system (3.56). Next, return to the integrals LI,
L~, and L~. By combining relations (3.39) and (3.55), the following



1

o

o

1

1

ep
2"';;cos--­

2

o

1

1

-"., [" ep
"VP cos---

2

o

1

Xl

X2

o

o

2 ep
p + t 2

ep

ty + P
ep

0 2yPcoS--- -2-';;cos--- X3 1 102 (1-2cos ---) 1
2 2 2

=

2 ep 2lf' ep P+ t 2
ep

0 2P(l-2cos ---) 2t1 p cos--- 1 -2trf'cos--- tr + p I /X4 I 10 1 ~
2 2 2

p2

o

o

p2

2pt1

o

ep
2t2.~cos---

IV~' 2

2pt1

2pt1

o

¢
- 2tyl/P COS-;-

2pt1

X5

X6

(3.56)

o

1
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expressions for the above integrals can be obtained.

where:

85 =J--- -- 1 ------dZ2

Z~ + 2Z2"fCOs-~- + P
2

(3.57)

(3.58)

----dZ2
2 ~I:' ct>

Z2 + 2Z2VP cos--- + P
2
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(3.58)
cant.

These integrals can all be evaluated using standard integral tables.

I Z2
HI = -- arctg --

t l t l

(3.59)

¢
Z2 - ';;cos--

I 2
H3 = --;:--==.==¢=;" arctg -" / - ¢ j

(l-cos2---) 'If (l-cos2--)
2 2
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1 2 f ¢H4 = --1 n(Z2 - 2Z2 Pcos- + p) +
2 2

¢
p(1-cos2-)

2

¢
cos­

2

_r ¢
Z2 - If cos-­

2
,----- arctg -,-----

yl-COS2
:- '

1

¢f' cos-- + Z2
2

1 2 y;: ¢
H6 = - 1n(Z2 + 2Z2 pCOS--- + p) -

2 2

¢
cos­

2
(3.59)

¢ , ¢

Ha = Z2 +~cos-- 1n (Z~ - 2Z2;;cos- + p) +
2 2

2 <P
2pcos -- - p

2

¢
-,;;'COS--- + Z2

2
~========::. arctg - -----

¢ ¢
p(1-cos2--) P(1-cos2---)

2 2

.... 1:' ¢ 2 .. e ¢
H9 = Z2 -yP cos-- 1n(Z2 + 2Z2 VP cos--- + p) +

2 2
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¢
20cos2-- - 0

2
------- arctg -;====:::;

¢ ¢
p (1-cos2--) p (1-cos2--)

2 2

2 ¢
40cos --- - p

2 ¢
1n(z~ - 2Z2f'COS--:; + p) +

- fcos'::' + Z2
2

arctg - --

~ (1-C08
2-;-)'

(3.59)
cont.

Z2 ¢

H12 = -~- - 2~COS---Z2 +
2 2

1>
4pcos2-- - p

2 ¢
------- -- In(Z~ + 2Z2f'COS--- + p)

2 2

¢ 2 ¢ 1
cos---(4pcos -- - 30)- - --- arctg

2 2 .~
V1-cos--;-

·fcos-~- + Z2
2

--------
0(1-<:082-: ) ,

Combination of relations (3.59), (3.58), (3.57) results in the

determination of the elements of the coefficient matrix in the system

(3.30).
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~ (iii)

Let 81 , 82' and 83 be the three unequal roots of (3.41). 8ince all

of the are negative, one can write:

81 = - ty
82 = - t~ (3.60) .

83 = - t~

Then, the moment of inertia I~ (Z2) can be factorized in the following

way:

(3.61)

The steps that have to be followed after the factorization of I~ (Z2) are

quite similar to the ones followed in Case (i). The fraction F(Z2) =

1
I~ (Z2)· has to be broken into partial fractions, which will result in

expressions for the integrals LI, L~, and L! in terms of integrals like

HI' H2' and H7 •

3.3.4 Evaluation .Qf. the. Integrals LI-L L!-L .and LI.in the.~ Qf. g

Parabolic Flare~ octagonal Cross section

Combining relations (3.3la) to (3.3lc) with (3.38b), one can see

that the integrals to be evaluated can be expressed by the following

general relations:

(3.62a)

(3.62b)

(3.62c)

(3.62)

The above integrals can be evaluated easily:
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I I

L~ =~X- ff-aX arctg

I 2
aX

I (3.63)

I I aX
L~ = --- -- In(Z~ + _2-)

a! 2 a!

I I I 2

aX
I

It should be clear from the above analysis that the method presented can

be used for any column with variable cross section provided that the

rooments of inertia can be expressed by equations (3. 38a) and (3. 38b) •

3.3.5 sumnary .Qf .tlle. Basic Steps ill~ Analytic Evaluation .Qf .tlle.

Stiffness

Because of the extent of the previous analysis, it seems

appropriate to summarize the steps needed to apply the results to a

particular case.

a. Bending about~ X-axis -~ ill.

1. Find t l , K, and M from fornulas (3.44) and (3.46), resPeCtively.

2. Find a, 13, P, and <p by using relations (3.47) and (3.48).

3. calculate the elerrents of the natrix in system (3.56); solve the

system and find the coefficients Xl' X2' ••• , X6•

4. By using equation (3.59), evaluate the integrals HI' ••• , H9 at the

required points (Z2 = 0, Z2 = h2).
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5. Use formula (3.57) to evaluate LI, L~, and Lj' at the required points

(Z2 =0, Z2 = h2)·

6. Calculate the elements of the matrix in system (3.30) and solve it.

The value of -B~ is the desired stiffness.

b. Bending about .the X-axis

1. By using equation (3.63), evaluate the integrals Lt, L~, and L~ at

the required points (Z2 = 0, Z2 = h2).

2. Calculate the elements of the matrix in the system (3.32) and solve

it. The value of -~ is the required stiffness.

3.4 . APPROXIMATE ESTIMATION Q£ .mE STIFFNESS Of. A TAPERED COLUMN

The analysis in this section is intended to proVIde an alternative

approach to the problem of finding the elastic stiffness of a tapered

column. The approach is less accurate but more general than that

developed in the previous section.

Consider again the column shown in Fig. 3.2. This column can be

approximated by a sequence of bending beams, each one having a constant

moment of inertia equal to the average moment of the corresponding

section of the column. This representation of the column is shown in

Fig. 3.4.

3.4.1 Estimation.Qf. the. Stiffness ill Bending About .the Y-Direction

Assume that a unit displacement Xt = 1 along the X-axis is imposed

at the top of the column. The deflection of the kth beam is governed by

the equation:

=0 (3.64)

The solution of (3.64) has the general form:
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Wk (Zk) = ~ + ~Zk + C~Z~ + ~Z~ (3.65 )

By using (3.4), (3.2b), and (3.2c), one gets:

(3.66)

(3.67)

(3.68)

The response of each beam is fully described by four coefficients.

Considering all the n beams, the total number of the unknown

coefficients is 4n. The equations required to estimate the 4n unknowns

arise from the boundary conditions and the conditions of continuity at

the connections between the beams.

Boundary conditions

Beam 1:

or

Y
d3wl (Zl)

(i) Er1 3
dZ1

(3.69)

I
Beam n: (i) Wn (Zn) I = 1 or

IZn =hn

(3.71)



(ii)
I
I = 0
IZn = hn

or
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(3.72)

Equations Q.f continuity 9&~ connection between~ k.th grui k.t.h ± 1

beams

I
= Wk+l (Zk+l) I

IZk+l=O
or

(3.73)

(ii) =
I
I
1Zk+l=O

or

(3.74 )

I
= Ml+l (Zk+l) I

1Zk+l=O
or

(3.75)

or

(3.76)

By writing equations similar to equations (3.73) to (3.76) for the

n-l connections between two consecutive beams, one can find a set of

4(n-l) equations which, combined with the four boundary conditions,

leads to a system of 4n equations with 4n unknown coefficients. This

system has the following general form:



k£ 0 0 6EIY 0 0 0 0 ·.. o 0 ·.. o 0 0 0 All 101

0 -kZX 2ErY 0 0 0 0 0 ·.. o 0 ·.. o 0 0 0 BYI 10r 1 1

0 0 0 0 0 0 0 0 ·.. o 0 ·.. 1 in ~ ~ Cfl I 1

0 0 0 0 0 0 0 0 ·.. o 0 ·.. 0 1 2hn 3~ 011 10

1 hI h2 h3 -1 0 0 0 ·.. o 0 ·.. o 0 0 0 A~I 101 1

0 1 2h1 3h2 0 -1 0 0 ·.. o 0 ·.. o 0 0 0 B~I 101
:::

\D

C~ , 10
I U1

0 0 2EIY 6Ellh1 0 0 -2EI~ 0 ·.. o 0 ·.. o 0 0 01

0 0 0 ElY 0 0 0 -EI~ ·" o 0 ·.. o 0 0 0 o~ I 101 ..
·.................................................................... -1 0 0 0 II~I 10

• .......................................... •••••• e ............ 0 -1 0 0 ~I 10

·..................................... " .......................................... 0 0 -2ElY 0 CY I 10n n
............................................................................. 0 0 0 -ElY D~J ton

(3.77)
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By solving the above system, the unknown coefficients can be determinede

The unknown stiffness will be given by the product 6EI~D~ (see equation

3.68).

3.4.2 Estimation Qf.~ Stiffness .fQ.t. Bending About .the X-Direction

The procedure which has to be followed in this case is exactly like

that just described with superscript Y replaced by superscript X.

3.5 EXAMPLE

Consider the concrete column shown in Fig. 3.5. The dimensions

are those of the columns of the Nichols Road Overcrossing (bridge No.

56-725) located in Riverside County, California. This column has a

uniform cross section up to a height of 4.85m followed by a parabolic

flare which has a total length of 3.66m. Based on the drawings of Fig.

3.5, the following values can be assigned to the geometric parameters of

the problem:

hI = 4.85m,

a = 0.36m,

ry = O.605m,

h2 = 3.66m

c =O.5m,
. 4
II = O.147m

b = 1.22

k = 5.5

... ,

The value of E = 2.4 X 106 t/m2 will be used for the modulus of

elasticity of the concrete. The soil is considered to be stiff and with

properties taken from Table B.2 of Appendix B. The values of the soil­

springs can be estimated by the formulas provided in Table B.l of

ApPendix B. Using the footings of the example, the following values of

the soil springs are obtained:

k£ = kfi = 4.85 X 105 tim

k~ = kr- = 5.87 X 106 trn/rad

From formulas (3.38c) and (3.38d), the coefficients C:l.l,
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FIG. 3.5 DIMENSIONS OF THE EXAMPLE COLUMN (NICfOIB ROAD OVER­
CROSSING, RIVERSIDE COUN.rY, CALIFORNI:A)



a~ can be found:*

0.1 = 7.638 X 10-5

aj = 3.255 X 10-2

a! = 1.376 X 10-2

98

a~ = 2.540 X 10-3

aa =1.473 X 10-1

a~ = 1.473 X 10-1

So, the moments of inertia of the parabolic flare have the following

forms:

I~(Z2) =7.638xlO-5z~ + 2.54OxlO-3Z~ + 3.255xlO-2z~ + 1.473xlO-l

I~(Z2) =1.376XlO-2Z~ + 1.473xlO-l for 0 ~ Z2 ~ 3.66

3.5.1 Analytical Solution Qfthe Problem

(i) Stiffness.f2.t: bending @Out the Y~irection

From fornu1a (3.41), one finds:

\ = -74.0 ~ = 58.2

\2 ~3
Note that - + -- = 8688 > 0; therefore, case (i) applies.

4 27

Following the steps outlined in part a of section 3.3.5 yields:

1. Sl =-9.9, t 1 =3.1, K = 23.4, M=195.6

2. a =-11.7, B =7.7

p =14.0, <I> = 146.8

3. The system (3.56) becomes:

1 0 1 0 1 0 Xl 0

0 1 2.1 1 -2.1 1 X2 0

24.4 0 23.4 2.1 23.4 -2.1 X3 0
=

0 23.4 21 23.4 -21.1 23.4 X4 0

195.5 0 137.9 21.1 137.9 -21.1 X5 0

0 195.5 0 137.9 0 137.9 X6 1

*Intermediate results presented in this example are given to four
significant figures while final results are rounded to three
significant figures.
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Solving the above system produces the following values for the

coefficients Xl' X2'

Xl = 0

X2 = 0.01735

X3 = 0.ClCXX012

•.• , X6:

X4 = ~.OO8677

X5 = ~.CX:XXX)12

X6 = ~.OO8677

4. TABLE 3.2: VALUES OF INrEGRAIS AT Z2 = 0, Z2 = 3.66m
----- ----

Integral At Z2 = 0 At Z2 = 3.66------
HI 0 0.27

H2 1.14 1.57

H3 ~.08 0.17

H4 1.23 1.67

H5 0.08 0.26

H6 1.23 1.50

H7 0 0.95

H8 3.77 4.8

H9 -3.77 -3.16

HIO -11.28 -8.81

Hll -9.17 -6.44

H12 -9.17 -7.59
----- ----------

5.
LY I I

I =0 LY I = 13.251
IZ2 = 0

1
1Z2 = 3.66

LY I
L~

I
I = -19.97 I = -3.602
]Z2 = 0 IZ2 = 3.66

LY I
= -5.38xlO-7 Lj

I
I I = 30.823
IZ2 = 0 1Z2 = 3.60



6. The system (3.30) becomes:

'4.85x105 0 0 2.116x106 0 0 0 0 I IAI I 10

0 -5.87x106 7.05x105 0 0 0 0 0 BY I 101

0 0 0 0 21.7xlO-6 -18. 33x10-6 3.66 1 cY , 111

0 0 0 0 5.52x10-6 -1.5Ox10-6 1 0 01 I 0

A~ I = 0 1
~
0

1 4.85 23.52 114.084 -8.31x10-6 0 0 -1 0

0 1 9.7 70.56 0 8.31x10-6 -1 0 B~ I 10

0 0 7.05x105 10.25x106 -1 0 0 0 I 1c~1 10

0 0 0 -2.116x106 0 1 0 0 I lo~ I 10
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Solution of the above system of equations gives the unknown

coefficients:

AI = 0.023

BI =0.007

CI = 0.006

D1 = -0.005

A~ = -15934.8

B; = -11344.94

C~ = 0.071

D; = 0.878

The stiffness of the column is equal to the absolute value of B;,

kY = 11340 tim

Stiffness ill bending~ .the X-direction

(3.78)

LX
I

LX
I

1- I =0 I = 18.71
'0

1
'3.66

L~
I

L~

,
I = 86.17 I = 115.7
'0 '3.66

I Ir1 1 = 0 ~ , = 65.95
10 '3.66



2. The system (3.32) becoJreS:

4.85xl05 0 0 2.119x106 0 0 0 0 AI I 10

0 -5.87xl06 7.05xl05 0 0 0 0 0 all 10

0 0 0 0 -19. 68x10-6 148.9xl0-6 3.66 1 ql 11

0 0 0 0 7.78x10-6 48.19x10-6 1 0 n!1 10

1 4.85 23.5225 114.1 35.9x10-6 0 0 -1 A~ I 1° I-'
a
N

0 1 9.7 70.57 0 -35.9xl0-6 -1 0 ~I 10

0 0 7.05xl05 10. 27xl06 -1 0 0 0 <-11 11

0 0 0 -2.11xl06 0 1 0 0 ~I 10
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Solution of the above system gives:

A~ = 0.0173

B! = 0.0055

dl = 0.0457

o! = -0.004

The stiffness in this case is:

kX = 8360 tim

3.5.2 ~proximate solution Qf~ Problem

A~ = -8497.361

~ =-8360.965

~ = 0.47

~ = 0.3611

(3.78)

To illustrate the use of the approximate method for determination

of the stiffness, the simple case in which the parabolic flare is

represented by a simple beam of uniform cross section is chosen. Thus,

the total number of beams involved is n = 2. The geometric parameters

of each beam are shown in Fig. 3.6.

Bending about Y-axis

For n = 2, the system (3.77) takes the following general form:

kX 0 0 6EIY 0 0 0 0 AY 0h 1 1

0 -kZX 2EIY 0 0 0 0 0 BY 01 1

0 0 0 0 1 h2 h2 h3 CY 12 1

0 0 0 0 0 1 2h2 3h2 OY = 02 1

1 hI h2 h3 -1 0 0 0 AY 01 2

0 1 2h1 3h2 0 -1 0 0 BY 01 2

0 0 2EIY y
0 0 -2EI~ 0 CY 01 6EIl h1 2

0 0 0 EIY 0 0 0 -EI~ OY 01 2

Substituting the numerical values of the parameters,



4.85x105 0 0 21.19x105 0 0 0 0 AI I 10

0 -5.87x106 7.05x105 0 0 0 0 0 B1 I 10

0 0 0 0 1 3.66 13.4 49.003 CI I I 1

0 0 0 0 0 1 7.32 40.18 D1 I 10

1 4.85 23.52 114.08 -1 0 0 0 A~ I 10

0 1 9.7 70.57 0 -1 0 0 BY
01

I--'2 0
A

0 0 7.05x105 102.7x105 0 0 -1.88x106 0 CY 02

0 0 0 3. 53x105 0 0 0 -a. 943x106
D~J 10

(3.77a)
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SOlution of the above system gives:

Ai =0.023

Bf = 0.006

CI = 0.052

D1 =-0.00524

A~ =0.687

B~ =0.1447

C~ = -0.009

D~ =-0.002

From equation (3.65), it is seen that the stiffness for bending about

the Y-axis is:

kY = 6EI~ I D~ I = 11124 tim

Bending about X-axis

In this case the system to be solved is given by system (3.77b)

which has the solution:

(3.79)

At = 0.0167

B1 = 0.005

c! = 0.044

or = -0.0038

A~ = 0.64

~ = 0.1620

~ =-0.008

~ = -0.0026

The stiffness of the colurm for berrling about the X-axis is:

I I
kX = 6EI~ I ~ I = 8124 tim (3.80)

I I

Comparison of the results obtained from the analytical method with those

found from the approximate analysis shows very good agreement. This is

despite the fact that in the approximate method the flare was

represented by just one uniform beam. This close agreement is

encouraging for applications of the more general approximate method. It

is realized, of course, that in other cases more individual beams may be

required to approximate the flare satisfactorily.

3.5.3 Yielding.Qf.the. Column along .the.~ Directions Qf Bending

In order to characterize the force-deflection relations of the

columns for the nonlinear analysis, it is necessary to approximate the



4.85x105 0 0 21.19x105 0 0 0 0 At I 10

0 -5. 87x106 7.05x105 0 0 0 0 0 at l 10

0 0 0 0 1 3.66 13.4 49.001 ct l I 1

0 0 0 0 0 1 7.32 40.18 nt 10

=
1 4.85 23.52 114.084 -1 0 0 0 I I AX 02

~.
I-'0 1 9.7 70.5675 0 -1 0 0 0 a
-.-J

0 0 7.05x105 102.7x105 0 0 -10. 47x105 0 ~I 10

0 0 0 3. 53x105 0 0 0 -5. 23x105
~J LO

(3.77b)
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yielding and failure of the columns in both the X and Y directions. To

make the analysis of the yielding as simple as possible, the following

assumptions are adopted:

(l) The ultimate shear strength and the ultimate torsional

strength are so large that they can be considered infinite;

(2) The column is under a constant axial force from the weight of

the br idge deck; and

(3) The ultimate bending moments of a cross section are determined

from the axial stress distribution present on the cross section under

ultinate conditions and are indeperXlent of the shear stresses.

The method by which the ultimate bending moments are determined is

outlined in ApperXlix A.

The steel reinforcement and the axial load acting on the column are

shown in Fig. 3.7. The properties of steel and concrete used are shown

in Table 3.3.

TABLE 3.3: PROPERrIES OF CON:RETE & STEEL REINFOBCEMENl',-----------t'---------------
Description

Concrete Modulus of Elasticity

Concrete Yielding Stress

Concrete Yielding Deformation

Steel Mooulus of Elasticity

Steel Yielding Stress

Steel Yielding Deformation

Value--------_.----
EC = 3,390,000 psi = 2.4xl06 t/m2

f~ = 3,5CXJ psi = 2460 t/m2

Ec = 0.003

f s = 50,000 psi = 3.5153.5 t/m2

Es = 0.00172

----------------,---
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#11 total 24
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8 x II - total 4
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c. Compressive force due to the
weight of the dec k

FIG. 3.7 CROSS SOCTIONS OF THE REINFORCED COLlMN
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3.5.3.1 Estimation Qf. .the ultimate bending IIDments

The ultimate bending moments in the two directions of bending for

the bottom and the top cross section are given in Table 3.4. The method

by which they were found is briefly described in Appendix Ac

TABLE 3.4: ULTIMATE lOtENl' CAPllCI'lY

Cross section Bending about Y-axis Bending about X-axis

Bottom 1315 tIn 1315 tm

Top 1699 tIn 3029 tIn

3.5.3.2· Construction Qf. .the. force-deflection diagrams lli bending

From equations (3.6) and (3.11) and the analogous ones governing

bending about the X direction, the solutions of the systems (3.30) and

(3.32) and the values of the ultimate moment capacities, the force­

deflection relations for loading at the top of the columns can be

constructed. The force-deflection relations include an elastic portion

and changes in slope corresponding to yielding at the bottom and at the

top cross sections. An analysis of the deflection needed to cause

yielding at the top and the bottom cross section indicates that the

column first yields at the bottom. Furthermore, considering the fact

that after yielding at the bottom no extra moments can be assumed by the

bottom cross section, the stiffness of the columns after the yielding at

the bottom was found to be: kX = 2269.65 tim. This stiffness remains

in effect until· the top of the column yields producing a mechanism.
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FIG. 3.8 FORCE-DEFLECTION DIAGRAMS FOR WADING AT THE TOP OF
THE COLll<1N
a. Bending about Y-axis
b. Bending about X-axis
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Based on this analysis, the force-deflection diagram for bending about

the X and Y axes were found to be as shown in Figs. 3.9a and 3.9b,

respectively.
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CHAPTER 4

ESI'IMATION OF THE ECUIVAIENr ABUJJ'o1ENr STIFFNESS

4.1 INI'RODUCTION

As was shown in chapter 2, one of the most important parameters for

the development of a model which will capture the basic features of the

rigid body motions of a skew bridge is the abutment stiffness, kab• The

calculation of a precise value of the abutment stiffness would involve

very difficult calculations since an accurate representation of the

abutment-soil system would be very complicated involving complex three­

dimensional geometry, many degrees of freedom, and the nonlinear

constitutive relations for the properties of the soil. But, as was

discussed in chapter 2, a reasonable estimate of the abutment stiffness

is sufficient for constructing a simple model for the rigid body motions

of a skew bridge. Thus, the purpose of this chapter is the development

of a simplified method by which one can find an approximate value of the

abutment stiffness,kab'

The presentation is divided into three sections. In the first

section, some fundamental concepts of soil mechanics and abutment design

are presented briefly; in the second, the simplifying assumptions are

given; and, in the third, the statement of the simplified problem and

its solution are provided.

The solution is divided into two parts. In the first part, the

soil is modelled as a Winkler foundation with springs that are either

constant or which vary linearly with depth. In the second part, the

soil is represented by n discrete springs with independently determined

constants. The soil springs are considered to be linearly elastic, but

the soils on the left and right sides of the abutment are allowed to
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yield. The yielding criterion used for the soils is given in the

section containing the basic assumptions of the analysis. The final

result for each case treated is an approximate elasto-plastic force­

deflection relation for the abutment-soil system.

4.2 PRELIMINARY COOCEPTS

4.2.1 Abutments

The abutments of a bridge support the ends of the span and retain

the earth behind them. For highway bridges, there are several types of

abutments depending on the material of construction (plain concrete,

reinforced concrete, stone) and on their function (full height abutment,

stub or semi-stub abutment, open abutment). The metbJd which follows

deals with abutments whose profile can be approximated by the two­

dimensional configuration srown in Fig. 4.1-

4.2.2 Geostatic Stresses in~ SQil

Generally, the pattern of stresses in soil, even those caused by

its own weight, is very complicated. However, there is a common

situation in which the weight of the soil gives rise to a simple state

of stress: when the ground surface is horizontal and the soil is

laterally homogeneoos. In this case, the stresses are called geostatic

stresses: and the vertical and rorizontal planes are principal planes

since no shear stresses act on them. The vertical geostatic stresses at

any depth are given by:

(4.1)

where y is the unit weight of the soil (assumed to be constant with

depth and Z is the depth. The ratio of horizontal to vertical stress is

expressed by a factor, called the coefficient Qf lateral stress and
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denoted by K:

O' h
K =---

0'
V

(4.2)

In the special case where there is no lateral strain in the ground, soil

mechanicians employ the term coefficient Qf lateral stress gt~ and

use the symbol Ko• Depending on the soil, Ko can be greater or less

than one. For typical sand deposits Ko varies between 0.4 and 0.5. The

geostatic stresses are shown in Fig. 4.2.

4.2.3 Rankine Theory

The Rankine theory is one of two classical theories of earth

pressure (the other one is due to Coulomb). Rankine theory is based on

the Mohr-Coulomb yielding criterion which is summarized in Fig. 4.3. In

this figure, 0'1 and 0'2 = 0'3 are the principal stresses; and the

cohesion of the soil is denoted by c.

Consider a semi-infinite mass of soil with a horizontal surface and

having a vertical boundary formed by a frictionless wall extending to a

semi-infinite depth (see Fig. 4.4a). The soil is assumed to be

isotropic and homogeneous. Let O'vand O'h be vertical and horizontal

stresses, respectively, upon a soil element at depth Z. If there is now

a movement of the wall away from the soil, the value of 0' h decreases as

the soil expands outwards. If the expansion is large enough, O'h

decreases to a minimum value O'a such that a state of plastic equilibrium

develops. The stress O'a is called the active stress and is the minor

prinicipal stress in the Mohr's circle. The state of the soil when O'h =

O'a is called the Actiye Rankine State (see Fig. 4.4). If, on the other

hand, the wall is moved against the soil, there will be a lateral
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compression of the soil and the value of 0h will increase until another

state of plastic equilibrium is reached. The maximum value of 0h' in

this case, denoted by 0p' is called passive stress and is the maximum

principal stress in the Mohr's circle. The corresponding state is

called the Passive Rankine State. Relative to the Rankine states in

Fig. 4.4, the following relations can be derived:

(4.3)

(4.4 )

where KA and Kp , the active· and passive pressure coefficients,

respectively, are

1 - sin <p

K = -------A .
1 + sm <P

1 + sin <P

~ = -----­
1 - sin <P

4.2.4 Actiye Thrust snd Passive Resistance

(4.5 )

(4.6)

Equations (4.3) and (4.4) show that the active and passive stresses

increase linearly with depth as indicated in Fig. 4.4b. When the

cohesion c is zero, triangular distributions are obtained in each case.

When c is greater than zero, the value of 0a is zero at a particular

depth Zoo From equation (4.3) with 0a = 0:

(4.7)

This implies that, in the active case, the soil is in a state of tension
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between the surface and depth Zoo But, in soils, cracks are likely to

develop within the tension zones; and the tensile stresses acting on

the wall are commonly neglected. The force per unit width of the wall

due to the active stress distribution is referred to as total active

thrust (PA) 0 For a \ertical wall of height

1

PA 10 adz = 1/2 KA Y n2 - z~) - 2cYKA I n
Zo

- Z )o (4.8)

The force due to the passive stress distribution is called the total

passive resistance (Pp). For a \ertical wall of height 1, the passive

resistance per unit width is:

1

Pp =f opdZ = 1/2 I),y 12 + 2c-.f;rl (4.9)

o

The active and passive stress distributions are srown in Fig. 4.5a.

403 PASIC ASSUMPI'IONS

The approach presented below is based on the following simplifying

assunptions:

(a) The problems to be solved are static; consequently, no

inertia forces are included in the analysis;

(b) The abutment is assumed to behave as a uniform, rigid plate,

Le., deformations due to bending and shear are neglected;

(c) When elastic, the soil is assumed to behave as a Winkler

foundation.

Thus, the pressure, p, exerted by the ground at a point, is assumed to

depend only on the displacement, W, of that point through a proportion-
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ality factor kw•

(4.10)

The factor kw is called the horizontal subgrade reaction coefficient.

In the first part of the analysis, kw is assumed to vary linearly with

depth according to the relation:

(4.11)

where 1 is the total height of the soil deposit (which for the deposit

on the right of the abutment is equal to the height of the abutment), Z

is the depth and nw and ko are constants. Equation (4.11) includes both

a uniform sti:>grade coefficient (Ow = 0) and triangular distribution of

resistaoce with depth (ko = 0), which are the two most frequently used

expressions for the factor kw• The resistance of the soil at the bottom

of the abutment is modelled by a torsional spring which resists the

rigid body rotation of the abutment.

The contact between the abutment and the soil is assumed to be

frictionless.

(d) When no force or displacement is imposed on the soil by the

bridge, the system of the soil and the abutment is in equilibrium under

the initially applied forces (weight and geostatic forces). Thus, in

the analysis, only the equilibrium of the forces applied beyond the

initial equilibrium state will be examined.

(e) A soil deposit is considered to yield if the total compressive

force imposed on that deposit equals either its active thrust or its

passive resistaoce. It will be assumed that when the total compressive

force is between these two values, the soil deposit will behave
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elastically. The above "yielding criterion" is global in nature and

does not take into account that the state of stress at yielding of each

soil element will, in actuality, depend on its depth. But, for the

purpose of the analysis, it is considered to be an acceptable

assunption.

(f) A soil deposit cannot assume tensile stresses. The deposit is

said to be "tensioned" only in the sense that its initial compressive

stresses are decreased. The maximum level of the decrease is sp;cified

by (e).

4.4 ESl'IMATION OC THE EaJIVALOO' ABUlMENl' STIFFNESS

4.4.1 Statement Qf .the. Problem

The problem to be solved can be briefly summarized as follows: Let

Wa be the deflection imposed by the bridge d~k on the soil through the

abutment and let Pt equal the reaction of the soil on the bridge. The

problem is to find an equivalent nonlinear stiffness kab such that

Pt = kab a

4.4.2 Solution Qf .tm Problem .ID .the.~ Qt Winkler Foundation

Consider a strip of the abutment of unit width loaded by load P per

uni t width applied at a distance a from the top (see Fig. 4.6a). Let

the displaced position of the abutment be that shown in Fig. 4.6b, and

let Wo and WI be the displacements of the top and bottom of the

abutment, respectively. If W(Zl) is the displacement at a depth Zl'

then:

Wo - WI
W(ZI) =Wo - ------ Zl

1
(4.13)
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FIG. 4.6 a. Initial Position of the Abutment with the Soil
Deposits and the Load Applied by the Bridge Deck

b. Displaced Position of the Abutmmt
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The stress between the soil and the abutment can be expressed as a

function of depth as follows:

o ~ Zl ~ 1 (on the right side
of the abutnent)

(4.14 )

(on the left side
of the abutment)

By substituting W(Zl) from (4.13) and kw(Z) from Fig. 4.6a, one gets

from equation (4.14):

Zl
+ W1kol -- + k W1 0 0

(4.15)

ko nw
[W (- -- + --- +

o 1 1 - d

¥
1(l - d)

) +

ko ¥ ¥
W1 (--- - -----) lZl + W (k -----

1 1 (1 - d) 0 0 1 - d

The equation of force equilibrium requires that:

1 1

P =J Pr(ZlldZl +JP1(ZlldZl

o d

From the equation of rrorrents about Zl =1 :

(4.16)

1

P(l - a) =JPr(Zl) (

o

1

- Zl)dZl +JP
1

(Zl) ( - ZlldZl + ""¢
d

(4.17)
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From (4.16), (4.17) and (4.15), one gets:

where:

P = ROWO + R1W1

P(l - a) = ToWo + T1W1

} (4.18)

Ilw1 (Ilw-ko)l I1w(l3- d3)
Rc = - ---- + --------- + k 1 - ------ +

3 2 0 31 (1 - d)

12 - d2
ko Ilw nJI

+ ------ (- --- + ---- + ------) +
2 1 1 - d 1(1 - d)

n.ji
(k - ---) (1 - d)

o 1 - d

rlw 1 1 rlw (13 - d3)
R1 =--- + k --- + ------- +

3 0 2 31 (1 ... d)

ko ¥ 12 - d2

(--- - ----) ------
1 1(1 - d) 2

Ilw12 12 ko 12

To = - -~;-- + (Ilw - ko) -~- + --;- +

I'lw 14 - d4 13 - d3

----(-_. . - -----) +
1 - d 4 3

ko Ilw n.ji 1 2 - d2 1 3 - d3

(- ---- + -- + ----) (1 ------- - -------) +
1 1 - d 1 ( 1 - d) 2 3

¥ 1 2 - d2 k¢
(k - - ) (1(1 - d) - -------) +--

o 1-d 2 1

rlw 12 ko 12 Ilw 13 - d3 1 4 - d4

T1 = ---- + ----- + ---- (------- - --------) +
12 6 1 -d 3 4

ko ¥ 1 2 - d2 1 3 - d3 k
+ (--- - ------) ( ------ - -------) - -~-

1 1 (1 - d) 2 3 1

(4.19)
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Solving equation (4.18) for the displacements gives:

Wo =PAo

WI = PAl

Rl ( 1 - a) - Tl
Ao = --- ---

RITo - ReTl

R (1 - a) - To 0
Al = ---------

ReTl - RITo

From equations (4.20) and (4.13)

For Zl = a, equation 4.21 gives:

Wa
p=- ---

Ac - Al
Ao - - a

1

(4.20)

(4.21)

(4.22)

The total force Pt is found by IWltiplying by the foundation width, b.

b
Pt = ----- ---Wa

Ac - Al
- a

1

So, the desired stiffness coefficient is

b
kab =---------

Ac - Al
A - ------ a

o 1

(4.23)

Equation (4.23) provides an expression for the equivalent abutment

stiffness when the soil behaves elastically. It should be noted that

the expression for kab also applies for the special cases when

kw = ~Z/l or kw = k, by setting ko = 0 or nw = 0, respectively.



128

4.4.3 Yielding Qf regions Qf.~ .00. .QQiJ.. deposits

As shown in Fig. 4.6, in the general case each soil deposit is

divided into two regions: region 1, which in both deposits is

compressed by the abutment, and region 2, which in both deposits is in

tension as defined earlier. The distance 5, which defines the point of

zero displacerrent, can be found from equations 4.13 and 4.20:

s = (4.24)

Based on the yielding criterion (e) which was stated in section 4.3, the

displacement Wa , which causes yielding of each of the four reg ions, can

be estimated as follows.

4.4.3.1 Yielding Qf.~ regions Qf deposit ~

(i) Region 1. (in conpression)

a. Initial force (due to geostatic stresses only) :

s

Po,ll =KoJOvlZ1ldZ1 =1/2 KoYS
2

o

or from equation (4.24)

(4.25)

b. Force irrposed by the notion of the abutrrent:

s

P'll ~ Pr (Zl)dZ1

o



kab Ao
a 1 = ---- ----- 1 {l1w

b Aa - Al
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and from equations 4.15 and 4.17

where:

3(Al - Aa)

Aa
------ + kaAo}

2(Aa - AI)

c. 'Ibtal Passive Resistance:

Pp,ll = 1/2 Kp ys2 + 2c Kp s =

(4.26)

(4.27)

According to the yielding criterion followed in this analysis, this

region will yield when:

Po,ll + P,ll = Pp,ll (4.28)

From (4.28), the displacement Wa , required to cause yielding of this

region, is found to be:

~ 1 Aa Ao ... r:.-'
Wa,ll =-- [1---(1/2 Kpy 1----- + 2cV~) -

a I Aa - Al Aa - Al

(ii) Region 1 ( in tension)

(4.29)
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a. Initial force (due to geostatic stresses only)

1

Po ,12 =Kof 0v(Z1)dZ1 =1/2 Ko (12 - 52)

's

and from equation 4.24

b. Force inposed by the rrotion of the abutnent:

(4.30)

1

P'12 ~ Pr (Z1)dZ1

s

or

where:

2

1 -
~

(Ac - A1 }2 Ao
---- -- + koAc (l - ------)

2 Ao - Al

c. Active Thrust:

From equation (4.7):

2c
z~ = ----­'if;

(4.31)

Depending on the value of z£, the active thrust can be estimated as
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follows:

1. If Z~ >1 (4.32)

2. If s < Z~ <1

(4.33)

3. If Z~ < s
1

PA,12 = ~ °a(Zl)dZ1

s

or

This region will yield when:

(4.34)

(4.35)

From (4.35), the displacement Wa required to cause yielding of this

region is found to be:

If z~ >1 :

If s < z~ <1

2C-v;;.(1 - Z~)

If z~ < s:

1 2
= ---[1/2 KA (12 - z~ ) ­

Ci.2

(4.36)
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4.3.3.2 Yielding Qf the regions Qf deposit 1

(i) Region 1 (in corrpression)

a. Initial force (due to geostatic stresses only):

1

Po ,21 =Ko fy {Zl - dldZ1

s

= 1/2 KoY [(1- d) 2 - (s - d) 2J =

1/2 Koy [(l - d) 2 - (l - Ae - d) 2J
Ae - Al

b. Force irrposed by the rrotion of the abutnent:

1

P,21 =-J P1(Zl)dZ1

s

(4.37)

= -{ (WI -Wo)
I1w

lC1 - d)

ko ¥
+ W1(- - ----)J

1 1(l - d)

13 - s3 ko I1w ¥
----- + [W (- -- + - + ---

3 0 1 1 - d 1(l - d)

12 - s2 ¥
--- + W (k - _.. ) (1 - s) } or

2 0 0 1 - d

where:

~ I1w1 ~
131 = - --- {(AI - Ae) --(1 - -- --)

b 3(1 - d) (Ae - A1)3

ko I1w ¥
+ [Ae(- -- - ---- + ----) +

1 1 - d 1(1 - d)

ko ¥ 1 ~
+ A1(- - -----)]-(1 - -----2)

1 1(1 - d) 2 (Ae - AI)

¥ Ae
+ Ae(ko ---) (1 - ---)

1 - d Ae - Al

(4.38)
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c. Total Passive Resistarx::e:

Pp ,2l = 1/2 I),Y[ (1 - d)2 - (s - d)2] + 2C~ (1 -s) =

/
2 Ac 2·.~ Ac1 2 I),y[(l - d) - (1 ----- - d) J + 2cvI), 1 (l - ----)

Ac - Al . Ac - Al

This region will yield when:

(4.39)

Po ,2l + P,2l = Pp ,2l (4.40)

From (4.40), one can find the displacement Wa required to cause yielding

of this region:

+ 2d/K:., 1(1 - --~----)}p
Ac - Al

Region 2. (in tension)

a. Initial force (due to geostatic stresses only)

s

Po,22 - Ko Jy(Zl - dldZ1 •

d

Ac 21/2 Ko (1 ------- - d)
Ac - Al

b. Force inposed by the rrotion of the abutment:

(4.41)

(4.42)
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5

P ,22 =-J l'J {Zl)dZ1 =

d

I1w 53 - d3 . kO I1w ¥
- {(WI - WO) ------ ------ + [WO (- --- + ---- + ------) +

1 (l - d) 3 1 1 - d 1 (l - d)

ko ¥ 52 - d2 ¥
WI (-- - ----)] ---- + W (k - ----)(s - d) }

1 1 n - d) 2 0 0 1 - d

where:

kab I1w
(32 = - --{(AI - Ae) ---- -

b 1 <l - d)

ko I1w ¥
+ [A (- -- + ---- + -----) +o

1 1 - d 1 (1 - d)

12 ~ -- - d2

ko ¥ (Ae - AI) 2
Al (-- - - ... -)] ---_. ._- +

1 1(1 - d) 2

A (k - ¥-) (l Ae -- - d)
·00 0 1 - d Ae - Al

c. Active Thrust

or

(4.43)

Following the same procedure as followed for the estimation of the

active thrust of region 2 of deposit 1, one finds:

2c
Z~=---+d

Y~KAj
(4.44)
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If Z~ > s PA,22 = 0 (4.45)

Region 2 of deposit 2 will yield when:

(4.46)

(4.47)

From (4.47) the displacement required to cause yielding of this region

is found to be:

If Z~ > s
1

WY 22 = - -- 1/2 Ka, 0
62

If d < z~ < s: w~,22 =

-2C~ (1 ~--- - Z~) - 1/2 Ko y( 1 - Ac - d)2
Ac - Al Ac - Al

(4.48)

It is obvious that the region which requires the smallest

displacement Wa in order to yield will yield first. After a region has

yielded, it stops contributing additional force to the resistance to the
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abutment motion. Consequently, after the yielding of a region, a

redistribution of stresses and displacements will take place and a new

problem has to be solved in order to find the new expression for the

equivalent abutment stiffness. Therefore, the whole problem can be

divided into phases. The end of one phase and the beginning of the next

one are marked by the yielding of a soil region. The stress and

displacement conditions at the beginning of a phase can be found from

the stress and displacement conditions at the end of the previous phase.

The general picture of the problem during any phase is shown in

Fig. 4.7. By varying the lengths 11 , 12, 13 , 14 , one can achieve the

situtation in any phase (e.g., the combination 11 = 0, 12 = 0, 13 = d,

14 = 1 results in phase 1, which has been already examined). So by

finding the expression for the abutment stiffness in this general case,

one can estimate the abutment stiffness during any phase.

4.4.4 Estimation Qf. .the. Eguiyglent Abutment Stiffness.in.the. General

a. Displacerrent equation:

<P = (4.49)

where Wo and WI are the displacements at the top and the bottom of the

abutnent, respectively.

b. Distribution of pressure

Pr(Z) = W(Z)~(Z)

P (Z) = W(Z)~(Z)
1

or

11 .s. Z .s. 12 (on the right side of the abutment)

13 .s. Z .s. 14 (on the left side of the abutrrent)
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FIG. 4.7 GENERAL CASE
a. Initial Position of the Abutment with the Soil

Deposits and the Load Applied by the Br idge Deck
b. Displaced Position of the Abutment
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k~ ~ ~11 k6 ~ll
[W (- -- + -- + ---) + WI (--- - --)]Z +

o 1 1 12 1 12

~11
W (k r - --)

o 0 1

_l1w Z2 +

13 s. Z s.14

c. Equation of force equilibrium

(on the left side)

(4.50 )

~ 1~ - 11
(WI - W )-- - +

0,2 3

k~ ~ ~11
rw. (- -- + -- + --)

o 1 1 12

k~ ~ 11 1~ - 1r
+ WI (-- - ---) ] ----- +

1 12 2

~ '~-lj
3

ko ~
+W (- -- + - --

o , 1 -1
3

1
l1w 13
,---) +

1(1 -1 3)

kb ~13 1~ - 11
Wl (-- - ----)] --- +

1 1 (l - '3) 2
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nJ 13
+ W (k 1 - ----) (14 - 13)

o 0 1 - 13

or

(4.51)

~ 1~-11 {1i-1j
p = [- --- ----- - -- -- ----- +

1 2 3 1 (l - 13) 3

1 ~ - 1f
----- +

2

~ 13 1 ~ - 1 ~
) - -- +

1(1-13) 2

1
1 Ilw13

11) + (k - -------) (14 - 13)]W +
o 1 _ 13 0

~ 1i - 1j
+ ---- ------ +

1(1 - 13) 3

1~ - 1f k~ ~13
----- + (---- - -----) ]W1

2 1 1(1 - 13)

k~ ~ ~11
(- --- + --- + ----)

1 1 12

k~ nJ
(- ---- + ---- +

1 1 - 13

~11
(kr - ---) (12 ­

o 1

n.-~ 13 - 13
[~_ 2 1

12 3

d. Equation of norcent equilibrium:

12 14

P(J - a) =J Pr(Z) (l - Z)dZ +J Pj (Z) (1 - Z)dZ + k~ ~
11 13

~ 1~ - 11
= (WI - Wo) --- ----- +

1 3

k~ ~ ~11 k~ ~1I
[W (- ---- + ---- + ----) + WI (--- - ----) J

o 1 1 12 1 12

2 212 - 11------
2
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k~ ni ~1I k~ n&11
(W (- -- + --- + ---) + WI (-- - ---)]

o 1 1 12 1 12

13 ~ 13
2 1

------ -"

3

1 ~ - 1 ~
-...:---- +

3

kJ nJ nJ13
(Wo (- --- + ---- + -----) +

1 1 - 13 1(1 - 13)

2 2
14 - 13
----+

2

3 3
14 - 13

)]---- -
3

or

P(l - a)
~ 1~ - 1y 1~ - 1t

= [----(- ----- + --------) +
1 3 41

1
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k~ ~ ~'1 , ~ - 1f , ~ - ,I
(- -- + -- + ---)( ----- - -----) +

, , ,2 2 3

~'1 ,~ -,f
(k r - --)(1('2 - '1) - ----) +0, 2

~ ,3-,3 ':-'3___(__ 4 3 + ) +

- '3 3 4

k~ nJ nJ '3 , t -,j ,l - ,~
(- --- + + - ) ( -- - ----) +

1 , - 13 , (, - '3) 2 3

, 2 2
1 nw'3 '4-'3 k (4.52)

(ko - ----) (1 (14 - '3) - -----) + -L]wo +
, - '3 2,

~ ,~ -'I ' ~ - ,t
[---(- ) +

, 3 4'

k~ ~ '1 ,~ -'f ,~ - ,I
(-- - ---) ( ----- - ----) +

, ,2 2 3

~ ,l-,~ ,:-'3
-----( -- - ----) +
, -'3 3 4

k~ nw '3 , t - ,j ,l - ,~ k
(--- - ) (l ----- - -----) - __rt_]W

1
, , (, - '3) 2 3 ,

e. Expressions for Wo' WI

Re (, - a) - To
Al =------­

ReTl - R1To
(4.53)

~ ,~ - ,I ~ ,l - ,~ k~ ~
R = - -- - - - ------ ----- - --- + ---

o , 2 3 1 (l - '3) 3 , 1
•··



n..r.:: 1 k1
--w 1 0

+ ------ - ---- +
12 1
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~ 13
+----+

1(1-13)

I'lw 11 I'lw 13
._-) (l 2 - 11) + (ko - - ) (l 4 - 13)

1 1 - 13

ni 1~-1I {
R1 = - --- + -,----

2 3 1 (l - 13)

k~ ~ 13+------
1 1 (1 - 13)

k~ ~1I
+ --- - ----

1 1
2

(4.53)
cont.

1~ - 1I
,--~) +

3

k~ n& ~1( + __ + 1 ) (

1 1 12

2

nJ, ,l-,j 11-,1
+ - (- ----- + --------) +

, -'3 3 4'

kh ~ ~'3 ,~ - ,~
(- -- + ---- + - -) (l ----- -

1 1 - 13 , (, - '3) 2

nJ,13 ,~ -,~ k
+ (kh - ----) (1 (14 - '3) ,----) + -~

1 - 13 2 1

ni 1~-11
T1 =--(---

, 3

k~ ~'1
(-- - ---)(,

1 ,2

~ 13 - 13
. ( .4 3

1 - 13 3

4 4
12 - '1

-) +
41

2 2 3 312 - 11 12 - 11
-------- - ----) +

2 3

4 4
14 - 13

- -----) +
4

•
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k1 1\113 1~ - 1j 1~ - 1j
(-~- - --. --)( 1---- - -----)

1 1 (l - 13) 2 3

k
- --~­

1 J (4.53)
cont.

f. Expression for the equivalent abutnent stiffness:

b
kab =---

Ac - Al
A - - a

o 1

(4.54)

Equations (4.54) and 4.53) provide expressions for the equivalent

abutment stiffness in the general case. In order to estimate the

progressive yielding of the soil, one should follow a procedure similar

to that followed in the case of phase I paYing special attention to the

identification of the proper initial conditions at each phase change.

Since the initial conditions change from phase to phase, no general

forrrulas can be provided as far as the general case is concerned.

4.5 EXAMPLE

Consider the abutment shown in Fig. 3.8a. This is a section of one

of the abutments of the Nichols Road Overcrossing. The model to find

the stiffness of this abutment is shown in Fig. 3.8b. The height of

deposit 2 in the model is the average height of the deposit on the left

hand side of the abutment. The values of the soil springs were

estinated based on the properties of stiff soil (Appendix B).

The solution of the problem can be divided into five phases. The

intermediate and final results required for the estimation of the

abutment stiffness in each phase are shown in Table 4.7. This table

also shows the soil region that yields at the end of each phase and the

displacement which is required for its yielding. More specifically,

examination of the yielding in the first phase proouced the following

values of yielding displacements.



144
---I /

I ~
I
I \'

4.98
I
I
I
I
I
I
I
I 3.96

-'

// \\. // ~ // \\

A.

t
0.99

• p

3.23

Deposit 2

8.

3.96

Deposit
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a. Abutment of Nichols Road Overcrossing
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TABLE 4.7: RESULTS OF EXAMPLE 4.5

Estirra.tion of I Examination of
Abutment Stiffness Yielding

Phase1 SOil Properties Height of Deposits

-~~t~)L~]~FJ-r-l-1 2 3 4

(m) (m) (m) (m)

Aa Al kab

(tim)

Required Critical
S IYielding Region

Displace- --------
(m) Irrent R* D*

Wa (m)

1 135 135 11412.511412.5131101 0 13.9613.2313.9619.1xl0-4 I 4.6xl0-5121676 13.761 0.005 2 2

2

3

135 11175 11412.511412.5131101 0 13.9613.7613.9619xl0-4 1-3.7x10-5121636 13.8

135 11240.711412.511412.5131101 0 13.9613.8013.961 9xl0-4 13.77xl0-5121636 13.8

0.0052

0.073

2 2

2 1

/-'
~

U1

4 135 11240.711412.511412.5131101 0 13.8013.8 13.961 9x10-4 4x10-5 121632 13.8 0.013 1 1

5 o 11240.7 o '11412.5131101---1----13.8 13.9616.66x10-31 3x10-3 12526.41----1 0.52
____~ ~ ~ • + _4___4

R* Region
D* Deposit
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Region 1, Deposit 1:

Region 2, Deposit 1:

Region 1, Deposit 2:
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Wa,ll = 0.092m

W2,12 = 0.0658m

W2,21 = 0.53rn

W2,22 = 0.OO5lm

From these values, it is clear that Region 2 of Deposit 2 will yield

first. The examination of yielding in the other phases is similar.

From the results shown in Table 4.1, it is obvious that, during

Phase 5, there is active soil only on the left side of the abutment

(Region 1 - Deposit 2). The yielding of the soil in this phase is of no

practical importance since a total displacement of about 0.53m is

required to cause yielding. The pictures of the soil deposits during

the five phases are shown in Fig. 4.9.

The force deflection diagram is shown in Fig. 4.10. It is this

diagram that would be used in calculating the earthquake response of the

bridge.

4.6 SOLUTION Qf. .m. PROBLEM .IN THE~ or. DISCRETE SPRUGS

Assume that the deposit on the right side of the abutment is

divided in nr segments, while the deposit on the left side is divided in

n 1 segments. The depths of the segments on either side can be arbitrary

and unequal. In the analysis, a soil spring is placed at the middle of

each segment of every deposit; the spr ings represent the resistance of

the segments to lateral movement of the abutment. The value; of the

spring stiffnesses can be assigned arbitrarily or estimated from soil

properties.

Consider now the i th segment of the right deposit. Let the middle

point of this segment be located at a distance Z~ from the top of the
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abutment, and let the length of the segment be 8zt (see Fig. 4.11).

Suppose that the spring constant of this segment is k~,r' then the

resisting force of the segment will be:

(4.55)

The rorrent of the force f~ about the bottom of the abutrrent will be:

(4.56)

In the above relations, W~ is the displacement of the abutment at depth

Zi .
r ' it can be expressed as a function of the displacements Wo and WI

(4.57)

from the relation (4.49). Thus:

. Wo - WI .
wl. = W - - -Zl.

r 0 1 r

Similarly, for the jth segrrent of the left deposit, one gets:

fj = kj 8zjwj
1 ''W, 1 1 1

mj = k j 8Z jWj (1 - zj)1 w,1 1 1 1

Wo - WI .
W~ = Wo - -l--Zl

(4.58)

(4.59)

(4.60)

Next, application of the force equilibrium gives:

p = ~r fi + ~ fj
i=l r j=l 1

(4.61)

Combination of (4.55), (4.57), (4.58), (4.60), and (4.61) produces

nr " Wo - WI' n1. , Wo- WI '
P = .z= ~ 8Zl. (W - --- Zl.) + z= kJ 8Z] (W - -------ZJ)

i=I ,r r 0 1 r j=l''W,l 1 0 1 1

or
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nr · . 1 nr n 1p = (I: kW
l rO Z~ - --- I: kwi,ro Z~Z~ + I: k j 10 ZJ1'. I ' l' I . I w,1= 1= J=

(4.62)

Similarly, the equation of rrorrent equilibrium gives:

P(l - a) = ~r mi + ~1 mj
i=1 r j=1 1

From (4.58), one gets:

. 2
nr . . (Z~) .

P(1 - a) = [L: Itl [1 -2Z1 + ----J8Z1

i=l ''W,r r 1 r

(4.63 )

(4.64)
nr .., z~ n 1 '" z~ k,j,

[L: 8 Zllt l Zl (1 - --) + I: 8 ZJkJ ZJ (1 - _._) - ~-JWl
i=l r''W,r r 1 j=l 1 W,l 1 1 1

Solution of the system of equations (4.57) and (4.59) provides the

following expressions for Wo ' WI:

RI (1 - a) - TIAc = -------
RITo - %Tl

%(1 - a) - To
Al = --------

%Tl - RITo
(4.65 )

1 nr . .. n 1 . ..
-- [L: 1e1 0 ZlZl + I: ItJ 0 ZJzJ J

. 1 ''W,r r r . 1 ''W,1 1 1
1 1= J=



nr .
T = L: 1t1 no . 1 "w,r1=
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1 nr . . . n 1 . . .
R = --[L: 1t1 ZloZl + L: ItJ zJ¥zJ]1 . 1 "w,r r r . 1 "w,l 1

1 1= J=

. (Z~) 2
- 2Z~ + - ]8Z~ +

1
. 2

n 1 . (z?) . ktJ\
z.: kJ n -2Z J +------- ]8Z J + 'I:..

j=l w,1 1 1 1 1

nr ... z~
Tl = L: oZl lt1 Zl(l - ---) +

i=l r~,r r 1

nl' . Z~ ktJ\
L: 0z)kw 1 ZJ (1 - ---) - _'t:._
j=l -I , 1 1 1

(4.65)
cont.

Finally, the equivalent abutment stiffness is given by the relation

(4.54) •

The discrete formulation is particularly convenient for evaluation

by snaIl conputers and programmable calculations.
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CHAPTER 5

A DETAILED MODEL FOR THE INVESI'IGATION OF THE RIGID OCOY MOTIONS OF
SKEW BRIDGES

5.1 INl'RODUCTION

In chapter 2, a model was proposed to illustrate some of the

dynamic features shown by skew bridges. The model was kept as simple as

possible qonsistent with its purpose to explain the kinematic

mechanisms, which induce planar vibrations of skew bridges subjected to

strong earthquake shaking. The model was used also to investigate the

effects of some para.rreters on the rigid body motions of a skew bridge.

The model was successful for these purposes, but the approximations

which were made did not allow a clear representation of the rigid body

motions of skew bridges. For this purpose, a more accurate and complex

model is required.

In this chapter, a more detailed model for the representation of

skew bridges is presented and examined. The principles on which the

model is based are similar to the ones for the model of chapter 2.

However, in the new model the resistance of the pads is taken into

consideration alon:J with translational and rotational damping. Also, the

restoring elements of the bridge are allowed to yield and the model is

not restricted to the sYmmetric case. Finally, the new model has three

degrees of freedom which permits excitation along the Y direction to be

considered. Lateral excitation is not of major concern if the bridge is

symmetric or nearly so, but it may be important in other applications of

the model.

In the first part of the chapter, the model is presented and

explained and the equations of motions are derived. In the second part,
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a part icular bridge is modeled to illustrate the use of the procedure.

The parameters of the model are estimated and several cases of input

excitation are examined. Earthquake motions of different strengths are

used to illustrate different features of the model.

5.2 TIm. feDDEL

Since the purpose of the model is to capture the most important

features of the rigid body motion of a skew bridge, the deck of the

bridge is represented as a one dimensional rigid bar having the inertial

and geometric properties of the real bridge deck. The resisting

mechanisms of the model are the following (see Fig. 5.1).

a. ~ bridge piers. located at points L. 2L at distances 'l.and

~ respectively• .frQm .the. center .Qf~ .Qf .the. .Q.eQk

Each pier is represented by:

(i) Two elastic bilinear hysteretic springs oriented along the X

and Y directions,

(ii) Two viscous dampers oriented along the X and Y direction,

and

(iii) One rotational spring resisting the planar rigid body

rotations of the bridge deck.

be ~ elastomeric pads. located .a..t.~~~ Qf tM bridge

~ (POints Ml.

Similar to the modeling of the bridge piers, each pad is represented by

translational elastic-linearly plastic springs, viscous dampers and one

rotational spring.

c. ~ bridge abutments located gt ~~~ Qf~~

(points .ld.l.

Each abutment is represented by:
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(i) Three elastic-bilinear hysteretic springs (One of these is

directed along the X direction and is used to model the resistance of

the abutment itself and two are directed along the Y direction to model

the resistance of the wing walls.) and

(ii) Three gaps, each one corresponding to an abutment spring.

(Therefore, each spring gets activated when the corresponding gap

closes, i.e., when impact occurs between the bridge deck and the

spring) •

The resisting mechanisms of the model are shown in Fig. 5.1. The

geometry of the model (which is similar to the geometry of the model

developed in chapter 2) and the forces which act on it, are shown in

Figs. 5.2 and 5.3, respectively. One can easily see that the model has

three degrees of freedom: X, Y, and~. The displacements of all the

points of the deck are expressible as functions of these degrees of

freedom (see Fig. 5.2).

5.3 FORCES

The forces acting on the model and their moments about the center

of mass of the deck are given by the following expressions.

5.3.1 Column Forces

(i) Column.st. point ~

1. ftx = klXXl = klXX + klX '1s~ e~

Morrent: m1f,x = (klXX + klX'lsine~)ll(sine +¢cose) =

klXhsin8X + klX 1fsin2e¢*

c·· . ·2. fl,X = clXXl = clXX + clX 11sme~

M e.' 2·2'arrent: m1,X = clX 11sm8X + clX 11sm e~

(5.1)

(5.2)

(5.3)

(5.4)

* In the final expressions of the moments the second order terms are
neglected.
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3. fty = k1YYl = k1yY - k1y 1l cos8tj>

Morrent: n1,y = kly lcos8Y - k1y1fCOS 28tjJ

4. il,y = CIYYl = CIYY- CIy11COS8~
C • 2 2'

Morrent: Illl,Y = clY11cos 8Y - clY11cos 8tj>

(ii) Colwm gt. J?Oint 1

1. ftx = k2Xx 2 = k2XX - k2X12sin 8tj>

Morrent: ~x = k2X12sin8X - k2X1~Sin2 8tj>

2. ~,X = c2XX2 = c2XX- C2X12sin 8~
C .' 2 . 2 •

Morrent: Ill2,X = c2X12s1118X - c2X12sm 8ep

3. fty = k2YY2 = k2YY + k2Y1 2cos8tjJ

Morrent: ~,Y = k2,y12COS8Y + k2,y1~cos28ep

4. ~,Y = C2YY2 = C2YY+ c2Y12coS8~

• 2 2'Morrent: Ill~,y = c2Y12cos8Y + c2Y12cos 8ep

5.3.2 Pad Forces

(i) ~ gt. J?Oint .J.

1. f~ ,pX = k~xX + k~x sin 8ep

Morrent: ~,pX = k~x1sin8X + k~x12sin2 8ep

c'· .
2. f 3 ,px = c~XX + c~x1S111 e<j>

Morrent: Ill~,pX = c~x1sin8X + c~x12sin 8¢

3. f~,pY =k~yY - k~y1cose<j>

Morrent: ~,pY = k~y1cOS8Y - k~y12cos28ep

4. f~,pY = c~yY - c~y1COS8¢

Morrent: Ill~ ,pY = c~y1COs8Y - c~y12cos2 8¢

(ii) Pads gt. J?Oint i
k . •

1. f 4 ,px = k~xX - k~x sm 8tj>

Morrent: ~,pX = k~1sin8X - k~12Sin2eep

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23 )

(5.24)

(5.25)

(5.26)
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2. ~ ,pX = C~X - C~ lsine¢

Morrent: mtpX = c~ lsin8X - c~ 12sin2e~

3. ftpy = k~yy + k~y1coseep

Moment: ~'Py = k~y1cos8Y + k~y12cos2 eep

4. ~ ,Py = C~yY + C~y1cos e¢

Morrent: mtpy = C~y1cos8Y + C~y12cos2e;

5.3.3 Abutment Forces

(i) Abutment.at.i

1. f~,x = b~ k~,4 - t4 k~,4 lsin8ep - t4 k~,4 a~

where:

{

0 if X4 < a~

~=

I if X4 > a~

Moment: ~l.. = h.t!kX lsineX - h.t!kX 12sin2 8ep ---ao,X -x ab,4 -x ab,4

h.t! kX a4 lsin8 - h.t! kX · a 4 1cos8ep-x ab,4 X -x ab,4 X

2. f~,y = t4 k~,4 Y + t4 k~,4 lcOS8ep- sign4 t4 k~,4 ay

where:

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34 )

t4=
{I if Y4 > ay or Y4 < 0 and

o in all other cases

(5.35)

Moment:

sign4 =
1 if Y4 > ay

{ -1 if Y4 < 0 and 1Y4' > ay

~l.. = h.t! kY 1cosey + h.t! kY 12 cos2 eep---ao ,Y -Y ab ,4 -Y ab , 4

sign4 t4 k~b,4 ay 1cose + sign4 lsine r4 k~b,4 ay ¢

(ii) AbUtment.at.l

1. f1"x =~ k~,3 X + ~ k~,3 sineep + ~ k~,3 a~

(5.36)
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where:

{

I if X3 < 0 and IX3' >~ (5.37)

~=

o in all other cases

Morrent: rr2.... = h.~ kX 1sinex + h.~ kX l2sin2e¢ +--aD,X ~x ab,3 ~x ab,3

h.~ kX a3 lsine + h.~ kX a3 lcose¢ (5.38)
~x ab ,3 X ~x ab ,3 X

f 3 - h.~ Y 3 Y . 3 Y2. ab,Y - ~y kab ,3 Y - bY kab ,3 lcose¢ - slgn3 bY kab ,3 ay

where:

{
0

1 if Y3 > ay or Y3 < 0 and /Y3 /

in all other cases

I if Y3 > ay

sign 3 = {
-1 if Y3 < 0 and /Y3' > ay

Morrent: ~,Y =~ k~,3 lcoseY - ~ k1,,3 l2cos2e¢ ­

sign3 t4 k1,,3 ay lcose + sign3 t4 k1,,3 ay lsine¢

5.4 EQUATIONS ~ oorrON

(5.39)

(5.40)

Writing Newton's second law for each one of the three degrees of

freedom, one gets:
..

IFX = mx

IFy = rrfi

IM = r;p'

(5.41)

(5.42)

(5.43)

where: L: FX is the sum of all the forces along the X direction; L: Fy is

the sum of all the forces along the y direction; and L: M is the sum of

all the moments about the center of mass of the bridge deck. Combining

the above relations with the expressions for the forces of the model

(Equations 5.1 through 5.40), the following expressions for the
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equations of rrotion are obtained:
-",' ..
X + AlX + A')}< + A3Y + A4Y + AS<p + A6 <P + A7 = -XG

Y + BlY + B2Y + B3X+ B4X + BS¢ + B6<P + ~ = -YG

~. + Cl ¢ + C2<p + C3X+ C4X + CsY + C6Y + C7 = 0

where ~, YG are the translational components of grourrl accelerations

(rotational accelerations are not considered in the analysis). The

coefficients in the above equations are defined by the following

relations:

clX + c2X + c~X + c~
Al = ---------------

m

m

clX 11sine - c2X 12sine + c~ Xl sine - ci Xl sine
AS = -------------------------

m

(klXl l - k2Xl 2) sine
A6= ----------------- +

m

(k~X - kix - t4 k~,4 + ~ k~,3)l sine

m

-h..4 kX a4+ h..~ kX a3
-x ab,4 X -x ab,3 X

A7 = ----------------------
m

m

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(S.Sl)

(5.52)
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p p 4 Y 3 Yk1y + kzy + k3y + k1ly + by kab ,4 + bY kab ,3
B2 =----------------------------

rn

(Czy'2 - C1y'1)cose + (ciy - C~y)'cose
B5 = ----------------

rn

(kZY'2 - k1Y'1)cose
B6 = -- - +

rn

p p 4Y 3Y,(k1ly - k3y + bY kab ,4 - bY kab ,3) cose

rn

sign4 t4 k~,4 ay + sign3 ~ k~,3 ay
~ =----------------------

rn

(clX' f+ c2X' ~)sin2e + (CIP '1+ czy' ~)COs2e
C1 = -------------------------- +

I

(c~X + cix) ,2sin2 e + (C~Y + c~Y) ,2cos2e c rh_________ _ + _--:r_

I I

(klX'r+ k2Xl~)sin2e + (k1yl r + k2Yl~) cos2 e
C2 =--------------- . -------- +

I

(k~x + kixn2sin2e + (k~y + k~yn2cos2e
------------------------------- +

I

(h.~ kX + h.~ kX )l2sin2e-x ab,4 -x ab,3
--------------------- +

I

(h.4. kX a4+ h.~ kX a3 )1 cose-x ab,4 X -X ab,3 X
---------------------------- +

I

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)
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(~1 kY + ~~ kY ),2cos2e
~y ab,4 ~y ab,3

------------------- +
I

(sign4 t4 k~,4 - sign3 ~ k~,3)ay ,sine
----------------------------

I

(clX'l - c2X'2)sin + (c~x - cix) lsine

I

(klX'l - k2X'2)sine
C4 = ------------- +

I

(k~X - kix - t4 k~,4 + ~ k~,3) 'sine
-------------------------

I

(c2Y12 - CIy'l)cose + (Ciy - C~y) 'COSe
C5 = -----------------------

I

(k2Y '2 - kly'l)cose
C6 = -------------- +

I

(k~y - k~y + t4 k~,4 - ~ k~,3)1cose------------------------
I

(~1 kX a4 + ~~ kX a3)'sine-x ab,4 X -x ab,3 X
C7 = --~---- . ----- +

I

(sign4 t4 k~,4 - sign3 ~ k~,3)ay 1cos e
------------------------------------

I

5.5 EXAMPLE Qf. REPOONSE

(5.60)
cont.

(5.61)

(5.62)

(5.63)

(5.64 )

(5.65)

The model presented in the preceding section is used to investigate

the rigid body motions of Nichols Road Overcrossing, Bridge :/1:56-725,

located at Riverside, California. In Fig. 5.4, simplified drawings of

the bridge deck and its cross section are shown. The bridge has a total
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FIG. 5.4 SIMPLIFIED DRAWIOCS OF NICOOIS ROAD OVERCROSSING
a. Top View
b. Side View
c. Deck Section
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length of 91.4m, is skew at an angle of 200 , and has a set of two

columns located 0.63m left of the center of mass of the deck. Simplified

drawings of the bridge columns and abutments are shown in Figs.3.5 and

4.8, respectively.

5.5.1 Estimation Qftha Parameters

The values of the parameters of the model used in this example were

estimated as follows.

a. Translational stiffness .Qf. ~ columns The method for

estimating the elastic stiffness of the columns was presented in detail

in chapter 2. In that chapter, the method was applied to the columns of
~

the Nichols Road Overcrossing and the results, including the complete

force-deflection diagrams for bending of each column in the X and Y

directions, were presented in Fig. 3.8. It should be mentioned that in

the construction of the force-deflection diagrams of each column it was

assumed that bending in the X and Y direction was independent. This

assumption is acceptable for the longitudinal excitation of bridges with

columns located closely to the center of mass of the bridge since, in

this case, there is no significant movement of the columns in the Y

direction. Consequently, the bending of the columns is dominated by

their movement in the X direction.

b. Torsional stiffness Qf.~ colUmn In view of the complicated

cross section of the columns, the exact estimation of the torsional

stiffness of each column (which is small compared to the torsional

resistance arising from the bending of the columns during the rotation

of the deck) would involve the solution of a very difficult elasticity

problem. So, the torsional stiffness of each column was estimated

approximately. For this purpose, the column was first approximated by a
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FIG. 5.5 'IDRSIONAL srIFFNESS OF THE COLlMNS
a. Stiffness of an Individual ColllIlU'l (of equivalent

rectangular cross section)
b. Stiffness of the System of Two Colunns
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column of a uniform, rectangular cross section. To do this, first the

average octagonal cross section was fourrl by averaging each dimension of

the cross section over the column height: then an equivalent cross

section was estimated based on equivalency of areas and in equivalency

of the depth to width ratio. The equivalent rectangular cross section

was fourrl to have dimensions 2a x 2b where a = O.65m and b = O.56m.

The torsional stiffness of each column was then found by applying

the well-known fo rmulas (Ref. 44)

KG
k = ---

L
(5.66)

16 b b4

K = ab3[-- - 3.36--(1 - ---)]
3 a 12a4

These two equations describe the torsional stiffness of a beam of length

L, rectangular cross section 2a x 2b and shear modulus G (see

Fig. 5.5a). The torsional stiffness of each column was fourrl to be:

k = 3.525xlO trn/rad (5.67)

c. Torsional stiffness Qf~~ .Qf column Consider the system

of two bridge columns shown in Fig. 5.5b. Suppose that the bridge deck

rotates rigidly by a small angle cp. Then, the total restoring moment of

the system of the two columns is:

M¢ = 2(kcp + r 2kx)cp (5.68)

Hence, the total torsional stiffness of the system of two colunns is:

(5.69)

For this particUlar bridge, the distan:::e r is equal to 3.2m.

d. Abutment stiffness-ggg The method for the estima tion of the

force-deflection diagram for the abutments was presented in detail in
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Chapter 4. In the example presented in that chapter, the abutments of

the bridge under consideration were used. The nonlinear force-deflection

diagram (after closure of the gap) is shown in Fig. 4.10. The value of

the abutment gap for this particular bridge is 0.025m.

e. Viscous damping coefficients ~ inertial prqperties Since the

columns are located very near the middle of the bridge deck, it was

assumed that, before impact between the deck and the abutments occurs,

the vibrations of the bridge in the X, Y and q, directions are uncoupled.

Damping coefficients were determined by estimates of the modal damping

in the three uncoupled modes and were then used throughout the seismic

excitation of the model. For most of the numerical examples, values of

five percent were used for the modal damping (Refs. 15 and 17). The

formulas used for the estimation of the translational and rotational

damping coefficients are:

Cx 2sx~k~M\

cY =2l,~
c = 2 sq,V k~I'

where yx' sy and C:q, are the damping ratios in the three directions of

motions, k~, kj, k~ are the values of the total stiffness in the

direction of motion, and M and I are the mass and the moment of

inertia of the bridge deck, respectively. Using YC = 2.4 t/m3 for the

unit weight of reinforced concrete and the basic geometry of the bridge

(see Fig. 5.4) the mass and the moment of inertia were found to be:

tsec2 tsec2m
M= 157.7 ------, I = 110,000 ---------

m rad

Finally, the translational damping coefficients were distributed to the

columns and the pads according to their relative stiffnesses. The values
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of the damping coefficients are given in Table 5.1.

Table 5.1 Translational daITping coefficient (tsec/m)

Direction Colunns Pads

-
X 165.1 25.8 per pad

-
y 136.07 28.8 per pad

The total rotational damping coefficient was found to be =

128100 tmsec/rad.

f. .Ead stiffness For the estimation of the pad stiffness, each

pad was assumed to be under a condition of pure shear (Ref.l9). The

model of each pad, on which the estimation of its stiffness was based,

is shown in Fig. 5.6a. From this figure one can see that

U
'T = Gy = G--­

h

ab
from which k = G---­

h
(5.71)

where u is the displacement of the pad in a given direction and k is the

pad stiffness in this direction. The bridge under consideration has

five elastomeric pads at each em. Each pad measures O.71m x 0.36m. The

shear modulus G was given a representative value of G = ISO psi = 105.4

tim. From this value and equation 5.71, the elastic stiffness of each

pad was found to be equal to 708.9 tim. So, the total elastic pad

stiffness in both directions X and Y is:

~ = 3545 tim (5.72)
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Each pad was assumed to behave as an elastic-perfectly plastic element.

The yielding levels were approximated by assuming a friction coefficient

of 0.3 (values between 0.3 - 0.5 are usually used) (Ref. 19). The dead

load of the bridge deck exerted on the five pads at each end was found

to be equal to 472.6t. (To find this the deck was assumed to be a

continuous two span beam with supports at the end and the middle.) T1l.ls,

the force-deflection diagram for the pad system at each end in both the

X and Y directions is that shown in Fig. 5.6c. When the force exerted by

the bridge deck on the pads in either the X or Y directions becomes

greater than 141.8t, the deck is assumed to start sliding on the paJs.

5.5.2 cases Examined

The response of the model was examined for several different input

excitations and for different values of key parameters in order to

illustrate the features of the model and to obtain a picture of how the

response is affected by these changes. There were three principal goals

of this part of the study:

(i) To examine cases in which the response of the bridge was

elastic,

(ii) To show the ability of the model to handle cases in which

structural elements of the bridge (columns, paJs, abutments) yield, and

(iii) To explore the conditions under which the abutments may show

significant yielding, under the yielding criter ion which were adopted in

chapter 4 (Section 4.3e).

In what follows in this section, some representative cases are shown.

For each case, the input excitation and the structural parameters used

(if different from the ones estimated in 5.5.1) are described; and the

response is presented with figures and a brief description. Only a few
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calculations were performed, and the limi ted conclusions that can be

made are included in the general conclusions and remarks presented in

chapter 6.

~ 1: The model was excited along the X direction by the ten

most important secorrls of the record from the Imperial Valley Earthquake

of OCtober 15, 1979 (Imperial County Services Building, Free-Field Site

N 020 E). The accelerogram is shown in Fig. 2.5. In the rest of this

chapter, it is called Excitation 1. The parameters of the bridge are

those presented in 5.5.1. As it can be seen in Figs. 5.7-5.11, the

bridge responds completely in the elastic range. The weak rotational

vibrations which are triggered before the impact between the deck and

the abutment are a result of the slight asymmetry of the bridge. The

columns are located slightly to the left of the center of mass of the

deck. From Fig. 5.8a, one can see that the first impact between the

deck and the abutment takes place at the left end (point 3) at about 4.7

secorrls from the beginning of the excitation. The moment of the reaction

force of the abutment about the center of mass of the rod irrluces strong

rotational vibrations, the magnitude of which is substantially stronger

than the magnitude of the rotational vibrations irrluced by the asymmetry

of the bridge (see Fig. 5.7b). In Fig. 5.9 the movements of the ends of

the deck in the Y direction are shown. These movements are·a direct

effect of the rotational vibration of the deck since no excitation in

the Y direction is considered. In Figs. 5.10a and 5.10b, respectively,

the force-deflection responses of the bridge columns and the elastomeric

pads at the left end of the br idge are shown; while Figs. 5.lla and

5.11b show the force-deflection responses of the two abutments. These

figures reveal that all the structural components of the bridge respond
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within the elastic range and that the level of the magnitude of the

abutment reaction forces is very low due to the fact that the contact

between the deck and the abutments is weak.

~ .2.: In this second example, the model was excited along the X

direction by the twenty most important secorrls of the E - Wcomponent of

the Imperial Valley earthquake of May 18, 1940. The accelerogram of

this motion (Excitation 2) is shown in Fig. 5.12. The response of the

model is shown in Figs. 5.13-5.17. From Figs. 5.l4a and 5.l4b, one can

see that, in this case, the first impact between the deck and the

abutments occurs at the right abutment about 2.0 seconds after the

beginning of the excitation. At that point, significant rotational

vibrations are induced. Although the gaps are closed more often than in

Case 1, the results shown in Figs. 5.13-5.17 are similar to those of

Case 1. In particular, the response of the bridge remains elastic.

ca.s.e..3.: Next, the model was excited along the X direction by the

accelerogram of Excitation 1 scaled by a factor of 4. Scaling the

record by this amount produces an extremely strong motion with peak

accelerations of over 2g. Such intense shaking is not necessarily

realistic but is required to excite the model into the fully nonlinear

yielding range of response. The parameters of the model are those

presented in 5.5.1. The response is shown in Figs. 5.18-5.21. One can

see that, as expected, the vibrations of the bridge were much stronger

than in Cases 1 and 2. The bridge columns significantly exceed their

yield level, while significant sliding at the pads also occurs (see Fig.

5.21). Actually, yielding of the columns and the pads occurred in the

cases of Excitation 1 scaled by factors of 2 and 3; but the case of

scaling by 4 is presented since the yielding was more intense. The
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abutment force has increased significantly but still remains in the

elastic range (see Fig. 5.22).

~ 1: The model was excited along the X direction by the same

excitation as in Case 3. However, in this case, it was assumed that the

bridge was not skew (6 = 0) and that the stiffness of the columns was

equal to half of the stiffness estimated in 5.5.1. The primary reason

for these assumptions was to create conditions which would favor the

occurrence of yielding in the soil deposits behind the abutments. By

reducing the stiffness of the deck by half, its longitudinal vibrations

under the same earthquake excitation become significantly larger. Also,

making the initial angle of skewness equal to zero eliminates rotational

vibrations which tend to reduce the movements in the longitudinal

direction. Under these conditions, the impacts between the deck and the

abutments will be much more intense. The response of the bridge in this

case is shown in Figs.· 5.23 and 5.24. The displacements along the X

direction and the yielding of the columns are larger than in the

previous cases, and it can be observed that the soil deposit behind the

right abutment yields slightly. It should be noted that the yielding of

the soil deposit at the right abutment increases the gap between the

deck and the abutment. The new gap will be equal to the original gap

plus the permanent set of the soil deposit.

~~: The only difference between Cases 4 and 5 is that in

Case 5 the bridge is assumed to be wi thout pads. (It is possible that

at such a high excitation level the pads will not playa significant

role.) The response is shown in Figs. 5.25 and 5.26. One can see that

both abutments yield, while the displacement in the X direction becomes

even greater. Yielding of the abutments also occurred at a lower
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excitation level (Excitation 1 scaled by 3) when the bridge was assumed

straight and the pads were not present.

Finally, to check the capability of the model to handle

simultaneous excitations along the X and Y directions, cases of

concurrent earthquake excitations were examined. From the results, it

was concluded that the computer programs were found to be working

effectively in this case. However, the response is not presented and

discussed because excitation along the Y direction induces significant

displacements of the bridge columns in the Y direction making the

assumption of indeperrlence between the beIX1ing of the columns about the

X and Y-axes unrealistic.
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CHAPI'ER 6

StJ.1MARY AND COK:LUSIONS

This study investigates the effects of the rigid body motions of

the deck of short-span skew bridges focusing on the mechanism that

causes in-plane rotational vibrations of the deck during strong

earthquake motion. A study of the damage to bridges during

earthquakes, particularly the San Fernando event of February 9, 1971,

reveals the triggering of rigid body rotations of the bridge deck as a

result of the interaction between the deck and the abutments. In many

cases, this kind of behavior caused permanent rotation with attendant

damage to the bridge columns and abutments. Some examples of bridges

which experienced this type of damage are described in Chapter 1

following a brief description of the history of the seismic response of

highway bridges.

As a first approach to the problem, a simple bridge model is

proposed in Chapter 2. In this model, the deck is represented as a

rigid rod skewed at an angle e with- respect to the horizontal direction

and restricted by linearly elastic columns and abutment springs. The

abutments are located at a distance a from the ends of the rod, which

represents the gap usually present for thermal expansion of the deck.

The basic corx::lusion of Chapter 2 is that the simple model examined is

capable of illustrating the basic features of the kinematics of planar

rigid body rotation of the decks of skew bridges, including the

interaction between the deck and the abutment, and can, therefore, be

used as a basis for more detailed modeling of the response of skew

bridges. The examination of the effects of the parameters on the

response of the simple model presented in Chapter 2 reveals that a
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reasonably accurate estimation of the abutment and the column

stiffnesses will be important for a more realistic, and necessarily more

conplicated, rrodel.

Chapter 3 presents methods for the estimation of the elastic

stiffness of a bridge column with a parabolic flare including the

effects of translational and rotational compliance of the base. This

type of column is frequently used in the design of bridges. Although

such accuracy is not required for the princiPal purposes of the present

study, an exact method (according to the Euler-Bernoulli beam theory) is

presented for the determination of the column stiffness. This result

could be useful in other problems in which a more accurate estimation of

the stiffness of this type of column is necessary. Additionally, an

approximate method for the estimation of the stiffness is presented; it

can be used with columns of any type of geometry. The chapter corcludes

with an example in which the stiffnesses of the columns of the Nichols

Road Overcrossing (Bridge No. 56-725 near Riverside, California) in the

two directions of bending is estimated by both methods. Also, the

complete force-deflection diagram is constructed for each direction.

In Chapter 4, a method for the estimation of the force-deflection

relation of the abutments is presented. The abutments are represented

as rigid blocks bearing against linearly elastic, Winkler-type soil

springs with moduli varying linearly with depth. For the examination of

the yielding of the soil, a global yielding criterion based on the

Rankine Theory of active thrust and PaSsive resistance is adopted. The

problem is also solved for the case of discrete foundation springs;

this approach is more general in the sense that it can handle arbitrary

variations of the effective modulus of the soil. Finally, at the end of
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the chapter, an example is solved in which the abutments of the Nichols

Road Overcrossing are examined.

In Chapter 5, a more detailed model for the rigid body motions of

the deck of skew bridges is proposed. This model has three degrees of

freedom (displacements in the X and Y directions, rigid body in-plane

rotation, and other resisting mech~nisms are taken into account) in

addition to the translational resistance of the columns and abutments.

These mechanisms include the rotational resistance of columns, the

effects of the elastomeric pads, and viscous damping. Furthermore, the

model is capable of approximating the nonlinear yielding behavior of the

columns, pads, and abutments. It should be noted that the model itself

and the computer program which solves the three second order coupled

differential equations of motion are presented in a general form so that

they can accormndate any fom of the force-deflection' relationship of the

columns, pads, and abutments. To achieve this, the resisting force of

each of the above mechanisms in the direction of a displacement r is

represented by the general formula:

F(r) =k(r)r

where k(r) is the generalized stiffness. In this particular study,

simple bilinear hysteretic or elasto-plastic force-deflection relations

are enployed for the colunns, pads, and abutments.

At the end of Chapter 5, an example of response is given in which

the values of the model parameters are assigned based on the properties

of the Nichols Road Overcrossing. Different input excitations and

different values of key parameters are examined in order to show the

capabilities of the model and gain insight into the response of this

particular bridge. From the response of the model in these cases,
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presented in section 5.5.2, one can draw the following conclusions and

general remarks.

a. As expected, the planar rigid body rotations of the deck are

induced prinarily as a result of the skewness of the deck and the irrpact

between the deck and the abutment. Thus, after the closure of either of

the gaps between the ends of the deck and the abutrrents, inpact forces

are created; the nornent of these forces about the center of nass of the

deck induces rotational vibrations and couples the equations of IIDtion.

Minor rotational vibrations can also be induced by the non-synuretric

position of the colwms with respect to the center of mass of the deck.

b. The inpact between the deck and the abutments is dominated by

the excitations and response in the X direction. The nodel, though, can

handle the general case in which each abutment is represented by gaps

and springs in two directions (see Fig. 5.l.c) so that the irrpact

between the deck and the wing walls resulting from the notion of the

ems in the Y direction could also be investigated. However, it is

believed that this type of interaction between the deck and the wing

walls will not be very inportant for the rotational IIDtion of the bridge

deck for two reasons.

(i) The gap in the Y direction is usually large and so it is less

likely to close.

(ii) Even if it does close, the reaction of the wing wall appears,

from in-field observations, to be snaIl compared to rotational forces in

the X direction. So, altoough the inpact can result in wing wall danage

(see below), it will not contribute significantly to restraining the

deck notion.

c. Due to the rotation of the deck, significant displacements of
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its eros in the Y direction occur, which explains some of the damage to

skew bridges after the San Fernando earthquake (displacement of

superstructures at the abutnents in the transverse direction, falling of

superstructure from elastomeric pads, and damaged wing walls). These

displacerrents are, of course, magnified by excitation in the transverse

direction, which indicates that mechanisms resisting ~he rroverrent of the

deck in the transverse direction are necessary.

d. All the structural conponents of the bridge examined seem to

behave in the elastic range in cases I and 2 (see section 5.5.2).

However, under the intense ground rrotions of case 3, the colunns and the

pads show significant yielding caused prinarily by the longitudinal

rrotion. It should also be mentioned that, although in this study the

torsional resistance of the colunns was assumed to be elastic, extensive

rotation of the deck could cause significant shear failures to the

colunns. This problem needs further investigation.

e. The contribution of the abutments to the response of the deck

seems to be very inportant for the following reasons.

(i) It is the inpact between the deck and the abutments that

causes the rotation of the deck.

(ii) The approxinate method of the estimation of the abutment

stiffness presented in Chapter 4 reveals that the abutrrents contribute

significantly to resisting the longitudinal rrotions of the bridge. For

the exarrple studied, the corrparatively stiff soil prcduced estinated

abutment stiffness twice that of the individual columns. SO, one can

easily see that the abutrrent restraint is predominant for the

longitudinal vibrations of the deck especially in the case of stiff

soils. This point deserves special attention because a rrore detailed
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investigation could lead to an appropriate lowering of the seismic

design loading for small bridges where structural restraint is dominated

by the abutments.

As items of further research on this topic, it is recommended that

the contribution of the abutment mass, which is neglected in this

investigation, be considered along with more detailed examination of the

resistance of abutments. Specifically, it is suggested that research be

undertaken to determine accurate force-deflection and energy dissipation

characteristics under cyclic loading for various representative abutment

types. An understanding of this complicated problem will contribute

significantly to the general understanding of the seismic response of

bridges.

It is also suggested that further investigation be made to model

more accurately the impact between the bridge deck and the abutments.

In this thesis, it was assumed that the contact is concentrated at one

point (the middle of the bridge deck); however, this approximation

might not be sufficient for a detailed modeling of skew bridges since,

in actuality, the point of contact between the deck and the abutment is

changing, which indicates that the width of the deck might be a factor

for its in-plane rotational Vibration.

f. Yielding of the abutments, as examined in this study, is based

on a global yielding criterion and only occurred when the deck pushed

sufficiently hard against the abutment. In the example, yielding of the

abutments required not only a very strong excitation in the X direction

but also simultaneous reduction of the values of the column or pad

stiffness. Only then, did the deck move enough to push the abutment to

the yielding point (see cases 4 and 5 in section 5.5.2).
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Therefore, under realistic assumptions about the strength of

shaking and the strength of the various elements, it is not expected

that the abutment soils will yield for this type of bridge. It should

also be noted that the yielding criterion used prevents this model from

explaining the local yielding (cracks at the soil) which is commonly

observed after earthquakes. It is believed that modeling t:-his

phenomenon would require a more detailed model of the soil-abutment

system.

Finally, based on the conclusions and remarks of this

investigation, a detailed instrumentation of small skew bridges is

suggested in order to acquire the experimental data required for a more

detailed investigation of the rigid body rotational vibrations which are

induced by the impact of the deck with the abutments. Bridges with

simple geometry, like the one examined in Chapter 5, are particularly

recommended for an appropriate instrumentation. For this particular

bridge, such an instrumentation should include the installation of at

least three pairs of accelerometers: one at the middle of the bridge

and one at each end. This location of accelerometers could provide

recordings of the motions of the bridge deck at the middle and the two

ems along the two directions, X and Y. Based on these recordings, the

rotation of the bridge deck would be confirmed and investigated

experinentally•
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APPENDIX A

ESl'IMATION OF ULTIMATE BENDIN; Ma.mNI'S

1. ESTIMATION or. m. ULTIMATE BENPIW QtOOS .IN~ Y-DIRECTION

The balanced condition (Ref. 46) is examined first. The forces

taken by the reinforcement bars in this condition are shown in Table

Aol. The total force taken by the reinforcement steel is equal to: Cs

= 402.01t. The force taken by the concrete is Cc = l339.3t. Adding,

the ultimate capacity of the cross section in the balanced condition is

1741.35. This is bigger than the compressive force which acts on the

cross section (Pc = 965t). Therefore, the capacity of the cross section

is controlled by the tension in the reinforcement steel. By using the

trial and error method, the width of the compression zone, which

corresponds to a total compressive force clos to Pc = 965t, is found to

be Xb=0.59lm. In fact, the above value of Xb corresponds to an

ultimate capacity in compression of Pu = Cs + Cc =-51.33 + 1010.18 =
959.46 =965t. The forces taken by the reinforcement bars when Xb =

0.591 are shown in Table A.2 while the value of the compressive force

taken by the concrete, along with its point of application, are shown in

Fig. A.la. For this distribution of forces, the ultimate moment

capacity can be found:

Mu,l = 1315 trn.

(The sli:>script 1 denotes the bottom cross section.)

~ Cross Section

Examination of the balanced corrlition smws again that the capacity

of the cross section is controlled by tension in the reinforcement

steel. Following the same procedure used in the case of the bottom

cross section, one finds that a value of Xb =0.922 gives an ultimate
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capacity in compression of Pu = Cs + Cc = -784.762 + 1730.92 = 946t

which is close to the compressive force of 965t. Table A.3 and Fig.

A.lb show the forces taken by the reinforcement bars and the con:rete,

respectively, when Xb = 0.922. The. ultimate moment capacity in this

case is found to be:

Mu,2 = 3029.30 tm.

2. EVALUATION or .THE. ULTIMATE BENDIN:; QENT .IN~ X-DIROCTION

Bottom Cross section

Due to the symmetry of the bottom cross section, its ultimate

moment capacity for bending about the X-direction will be the same as

the Y-direction, i.e.,

Mu,l = 1315 tm.

~ Cross Section

Clx>osing Xb = 0.43 gives and ultimate capacity in compression of Pu

= Cs + Cc =-623.85 + 1586.63 = 962.78 ::. 965t. Table A.4 and Fig. A.lc

show the forces of the reinforcement bars and the concrete,

resPectively. The u1tinate IIOrrent capacity in this case is:

Mu,2 = 1699 tm.
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Ec=0.003
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1.98m

b. Top cross-section, bending about X axis
Ec=O.003

1.22m

0.954m 0.85 fc

Cc= 1586.63t

c. Top cross section, bending about X axis

FIG. A.l MAGNITUDE AND POSITION OF CONCREI'E FORCES
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TABLE A.I: srRESSES OF REINFORCEMENl' EARS IN EAIAOCED CONDITION
-

Position of bar Area stress Force
(Distance from the

(m2)
Defornation

t/m2top of the cross (t)
section

-
0.0508 2,013xIO-3 2.79xl0-3 35153.5 70.764

0.1438 4,026x10-3 2.7xl0-3 35153.5 141.53

0.2368 4,026xl0-3 2.043xl0-3 35153.5 141.53

0.3298 4,026xl0-3 1,667xl0-3 33340 134.22

0.4228 4,026xl0-3 1,291xlO-3 25820 103.95

0.5158 4,026xlO-3 0.9lxlo-3 Ian> 73.27

0.6088 4,026xl0-3 0.54xlO-3 10800 43.48

0.7018 4,026xl0-3 0.1644xl0-3 3288 13.23

0.7948 4,026xlO-3 -o.21xl0-3 -4200 -16.90

0.8878 4,026xlO-3 -0.587xlO-3 11740 -47.26

0.9808 4,026xl0-3 -0.96xl0-3 19200 -77.3

1.0738 4,026xlO-3 -1.338xlO-3 26760 -107.73

1.1668 2.013xl0-3 -1.714xl0-3 35153.5 -70.764

...---
'IOTAL FORCE 402.01t
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TABLE A.2: BENDING AOOtJr Y-AXIS--a::>TI'CX-1 CROSS SOCTION

srRESSES OF THE REINFORCEMENl' BARS WHEN Xb = 0.59lm
--

Position of bar Area Stress Force
I (Distance from the

(m2)
Defornation

t/m2I top of the cross (t)
I section
....
I

:
2,013x10-3 2. 74x10-30.0508 35153.5 70.764

0.1438 4,026x10~3 2,27x10-3 35153.5 141.53

: 0.2368 4,026x10-3 1.79xl0-3 35153.5 141.53
;

I 0.3298 4,026xl0-3 1.325xl0-3 26517.76 107.61
,

4,026xl0-3 0.85xl0-3I 004228 17076.14 69.3

0.5158 4,026xl0-3 0.38xlO-3 7634.51 30.98

0.6088 4,026x10-3 -o.09xl0-3 -1807.1 -7.33

I 0.7018 4,026x10-3 -o.502x10-3 -11248.73 -45.647

0.7948 4,026xl0-3 -1.034xl0-3 -~690035 -83.96

0.8878 4,026x10-3 -1.5xl0-3 -30131.97 -122.275

0.9808 4,026xl0-3 -1. 97xlO-3 -35153.5 -141.53

1.0738 4,026x10-3 -2. 45xl0-3 -35153.5 -141.53

1.1668 2.013xl0-3 -1.714xl0-3 -35153.5 -70.765
_.

'IDl'AL FORCE -51.33
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---- --
TABLE A.3: BENDING AIDUI' Y-AXIS---'IDP CROSS SOCTION

Sl'RFSSES OF REINFOOCENENr BARS WHEN Xb = 0.922
- --~---

position of bar Area Stress Force
(Distance from the

(m2)
Deforrration

t/m2top of the cross (t)
section

0.0508 0.001019 2.836x10-3 35153.5 35.82

0.2522 0.001019 2.18x10-3 35153.5 35.82

0.4536 0.001019 1.53x10-3 30735.48 31.3194

0.655 0.00302 0.887x10-3 17741.93 53.58

0.748 0.004058 0.587x10-3 11741.93 47.64

0.841 0.004058 0.287x10-3 5741.93 23.30

0.934 0.004058 -o.0129x10-3 -258.064 -1.047

1.027 0.004058 -0.313x10-3 -6258.064 -25.4

1.1248 0.004058 -0.613x10-3 12258.064 -49.74

1.2178 0.004058 -o.~xI0-3 18064.51 -73.3058

1.306 0.004058 -1. 213xl0-3 24258.064 -98.44

1.399 0.004058 -1.513x10-3 30258.064 -122.78

1.4928 0.004058 -1. 81x10-3 35153.5 -142.65

1.585 0.004058 -2.113x10-3 35153.5 -142.65

1.678 0.004058 -2. 41x10-3 35153.5 -142.65

1.777 0.00302 -2.73xI0-3 35153.5 -106.12

1.9744 0.001019 -3.37xl0-3 35153.5 -35.82

2.1758 0.001019 -4.018x10-3 35153.5 -35.82

2.3772 0.001019 -4.67x10-3 35153.5 -35.82

- .- ...._-
'IOTAL FORCE -784.761
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._- . --------
TABLE A.4: BENDING AIDUl' X-AXIS--TOP CROSS SOCTION

SI'RESSES OF REINFORCEMENl' BARS WHEN Xb = 0.43
- -- --

Position of bar Area Stress Force
(Distance from the

(m2)
Defornation

t/m2top of the cross (t)
section

~. --
0.0508 0.00303224 2. 64xl0-3 35153.5 106.59

0.144 0.004058 1. 99xl0-3 35153.5 142.653

0.2372 0.004058 1.345xl0-3 26902.32 109.17

0.3304 0.004058 0.7xl0-3 13897.67 56.4

0.4236 0.004058 0.0446xl0-3 893.023 3.623

0.5168 0.004058 -o.60xl0-3 12111.62 -49.149

0.61 0.004058 -1.255xl0-3 25116.28 -101.92

0.7032 0.004058 -1.90xl0-3 35153.5 -142.90

0.7964 0.004058 -2.5xl0-3 35153.5 -142.65

0.8896 0.004058 -3.2xl0-3 35153.5 -142.65

0.9828 0.004058 -3.8xl0-3 35153.5 -142.65

1.076 0.004058 . -4.5x10-3 35153.5 -142.65

1.1692 0.00303224 -5.15xl0-3 35153.5 -106.59

0.1903 0.001019 1.67xl0-3 33446.51 34.093

0.3298 0.001019 0.7xl0-3 13981.4 14.25

0.5158 0.001019 -o.6xl0-3 11972.09 -12.2

0.7018 0.001019 -1.89xl0-3 35153.5 -35.83

0.8878 0.001019 -3.19xl0-3 35153.5 -35.83

1.0273 0.001019 -4.16xl0-3 35153.5 -35.83

...----
'IDTAL FORCE -623.85
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APPENDIX B

EVALUATION OF FOUNDATION SPRING roNSl'ANrS AND SOIL PROPERTIES

1. EVALUATION Qf. FOUNDATION SPRINJ CQNsrAm'S

The values of the foundation springs can be estimated by the

formulas shown in Table B.l (Ref. 41). These formulas are applicable to

rectangular foundations, and values of the coefficients appearing in

these formulas are given in Fig. B.l (Ref. 41).

2. ImL PEOPERrIES

The properties of stiff soil, which were used in the example of

Chapter 4, are shown in Table B.2 (personal communication with Professor

R.F. SCott and Ref. 42).

----------_._.--_.-----------------,
TABLE B.l SPRING CQNSl'ANrS FOR RIGID REX:l'ANGtJIAR BASE RESl'ING

ON EIASl'IC HALF-SPPCE

Motion Spring Constant

-------------~--------------~

Vertical

Horizontal

Rocking

G 1/2kz =------- Sz(BL)
1 - )J

G
k =----- S BL2

<P l-)J <P

----_.--------_._------------------
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Fig. B.l SPRI~ CONSl'ANr COEFFICIENrS FOR RECTANGJIAR
FOUNDATIONS (Ref. 42)

,--------,----
TABLE B.2 PROPERl'IES OF Sl'IFF SOIL

-------,-----
Poisson Ratio (\l)

Shear Wave Velocity (Vs )

Unit Weight (Ys)

Friction Angle (<t»

Cohesion (c)

Ilw (Ref. 43, pg. 259)
Subgrade
Constants

ko (Ref. 43, pg. 251)

----------------

0.45

1500 f/sec = 457 m/sec

125 p/f3 = 2 t/m3

400

o - 1000 p/f2 =0 - 4.88 t/m2

40 t/f3 = 1412 t/m3

3.8 t/f3 =135 t/m3
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3. EVALUATION Of.~ 'IDRSIONAL mIL SPRIN; AT .m. 00TI0M

Of. .m. ABU'lMEm'S

The torsional soil spring at the bottom of the abutments, k¢, can

be approximately evaluated as follows. Let c be the total width of the

abutment base. Suppose that the base rotates as shown in Fig. B.2.

Then, the total m:ment about point A will be:

where

M = fe p(XlXi!X

o

p(X} = kX

(B.l)

(B.2)

The value of k is assumed to be equal to the value of the horizontal

subgrade reaction coefficient of the bottom of the abutment. Thus,

Z I
k = kw + 11w-1

1 Il=Z

or

Corrbining (B.l), (B.2), and (B.3) yields

c3
M = (kw + l'lw)­

3

(B.3)

(B.4)
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From (B.4), one gets:

c3
k = (kw + l1w)--­

3

X.--I

~I

c

A

FIG. B.2 EVALUATION OF THE IDRSIONAL SOIL SPRI~

AT THE BJ'I"l.'Gt OF THE ABUIMENI'S
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