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ABSTRACT

A theoretical analysis of the effect of duration on the damage of

structures subjected to earthquakes is presented. Earthquake excitation

is modeled as a nonstationary random process. Estimates of the first­

passage probability of a simple oscillator are employed to choose

modulated Gaussian random processes consistent with a prescribed

response spectrum. The response spectrum is assumed to be specified

independent of the duration. Expressions for the mean damage of a

structure are derived using an approach similar to the Miner-Palmgren

rule for failure caused by cyclic loada. The expected damage expres­

sions are then evaluated for a structure sUbjected.to modulated Gaussian

random processes of varying duration.

Two types of structures are examined: a steel structure and a

reinforced concrete structure. Results are presented for systems with

constant linear stiffness and a particular form of softening behavior.

The nonlinearity of the softening system is accounted for by statistical

linearization. The level of expected damage is found to be a strong

function of both the duration of the excitation and the ductility of the

response.
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CHAPTER I

INTRODUCTION

In many parts of the world, seismic considerations are the control­

ling factor in the ·design of structures. Building codes contain seismic

elements which have been adopted for the safety and welfare of the pub­

lic. For most structures, the building code recommends an equivalent

lateral force analysis. Seismically induced loads are accounted for by

equivalent static lateral loads. Although easy to implement and compu­

tationally efficient, such an approach may be inadequate for structures

such as schools, hospitals, nuclear power plants, and other important

structures where the integrity of the structure is of great importance.

Most important structures and special facilities are designed using

a more detailed dynamic analysis in order to ensure their safety during

a seismic event. Such a detailed analysis requires a specification of

the anticipated nature of the ground motion as well as a complete

description of the structure. If one or more characteristic earthquake

accelerograms are specified as input, the equations of motion may be

numerically integrated to give a detailed representation of the system

response. However, numerical integration may be costly and the statis­

tical nature of the seismic input makes specification of the input time

histories difficult.

Due to the many uncertainties in predicting the precise nature of

the time history of earthquake ground motion, the design response

spectrum has received wide acceptance as a measure of the design input.
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The design spectrum provides a direct measure of the anticipated peak

response of a structure or system under consideration as a function of

its natural frequency and damping. In some cases. it may be argued that

the peak response is the predominant factor affecting the safety and

reliability of the system. However. in most cases the performance of

the system will depend upon more than just the peak response of various

components. In particular. for sYstem components which fail due to

repeated cy~lic loading. performance will be a function of the entire

history of cyclic oscillations.

The failure of structures subjected to strong earthquake excitation

is often caused by a low-cycle material failure. In this case. the

structural components experience high strains and relativelY few

response cycles. For some materials. this type of failure is often

referred to as low-cycle fatigue.

Using numerical integration of the equations of motion of a simple

hysteretic steel structure. Kasiraj and Yao [35] showed that low-cycle

failure is not predictable by considering only the maximum response.

Using random vibration theory. Miles [34] derived an analytical expres­

sion for the mean damage of a structure sUbjected to a stationary random

process based upon the cumulative damage hypothesis of Miner [31] and

Palmgren [32]. Roberts [33] and Lin [1] generalized the mean damage

expression to the nonstationary case. but did not apply it to the low­

cycle failure of structures subjected to earthquakes. In order to

implement the expressions for expected damage to seismic structures.

empirical constants are required for the assumed cumulative damage
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hypothesis. Bertero and Popov [27] and Yamada [28] have performed

experimental tests on structural members to determine the necessary

constants for structures experiencing a number of cycles of oscillation

at large strains.

Design spectra may be defined either deterministically or

probabilistically. It is the objective of this thesis to examine the

effects of the duration of excitation on the reliability of a system

when the response spectrum is specified probabilistically. Three basic

elements are combined to achieve this goal. First, the first-passage

probability for a simple harmonic oscillator is used to define a nonsta­

tionary random process which corresponds statistically to a desired

response spectrum. Although the first-passage problem for the simple

oscillator has not been solved exactly, reasonably accurate approxima­

tions have been obtained by Vanmarcke [6] and Mason and Iwan [8].

Secondly, a model is postulated for the incremental damage of a system.

Damage to the structure is based on the simple cumulative damage

hypothesis proposed by Miner and Palmgren. Finally, random vibration

theory is used to compute the accumulated damage of a simple structure

and to determine the degree of total damage.

In Chapter II, the relevant concepts from random vibration theory

are reviewed. Analytical approaches to the first-passage problem and

the method of statistical linearization are also discussed.

In Chapter III, the accuracy of one approach to the first-passage

problem is assessed through simulation and then applied to define a

response spectrum consistent process. The probabilistic nonlinear
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response spectrum of a softening nonlinear elastic system is also

examined.

In Chapter IV, an incremental damage model is assumed based on the

Miner-Palmgren failure rule for damage due to repeated cyclic loads.

Through the further application of random vibration theory, a measure of

the damage to a system subjected to a deterministically modulated Gaus­

sian random process is derived.

Damage in a simple structure is calculated in Chapter V for the

response spectrum consistent random process defined in Chapter III. The

effects of variations in duration of the excitation and ductility ratio

of the response are discussed. Damage in a softening nonlinear elastic

system is also computed through the use of statistical linearization.
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CHAPTER II

RELEVANT CONCEPTS OF RANDOM VIBRATIONS,
THE FIRST PASSAGE PROBLEM, AND STATISTICAL LINEARIZATION

2.1 Random Response of a Linear SYstem to a Class of Nonstationary
Excitation

The system to be considered is described by its equation of motion

(2.1)

where ~ is the fraction of critical damping. roo is the undamped natural

frequency in radians per second, and e(t) is a deterministic modulating

function for w(t). a stationary Gaussian white-noise process with mean

zero.

The initial conditions for the system may be posed in one of two

ways. First, they can be specified deterministically. A special case

of this is the zero start where the system is assumed to be at rest when

the excitation is applied. Alternatively, a probability distribution

may be specified for the initial conditions. For the system described

by equation (2.1) with e(t) set to a constant, the stationary response

may be described by a stationary probability distribution. If this sta-

tionary probability distribution is used to specify initial conditions,

this situation is known as a stationary start. In light of the fact

that structural response to earthquake-like excitation is to be studied,

a zero start will be assumed.
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Equation (2.1) may be solved in tn-space by first considering a

system of n first-order ordinary differential equations written in

matrix form as

y(O) = y
~

where A(t) is a time-varying n by n matrix. ~(t) is a time-varying vec-

tor of order n. and wet) is a stationary Gaussian white-noise process

with mean zero. The fundamental matrix solution for this system is a

time-varying n by n matrix denoted by I(t) which satisfies

ret) = A(t)I(t)
(2.3)

l(O) = I

where tis an n by n identity matrix. The solution to equation (2.2)

may be expressed in terms of the fundamental matrix solution as

t

yet) = I(t)!o + r(t)S I-l(~)~(~)W(~)d~

o
(2.4)

The function w(t) is a stationary white-noise process with mean

zero which implies

E[w(t)] = 0
(2.5)

where So is a constant spectral density and &(.) is the dirac delta
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function. Furthermore. since wet) is Gaussian and yet) is related to

wet) through a linear operation. yet) is a Gaussian random vector

process. It is assumed that the process is specified at a given time by

its mean vector and its covariance matrix: however. the autocorrelation

matrix E[y(t+~)yT(t)] is also needed to completely define the process.

By taking expected values of both sides of equation (2.4) and using

equation (2.5). the mean vector ~(t) may be written as

~(t) = E[~(t)] = I(t)~o

The covariance matrix get) is defined as

get) =E{[y(t)-~ (t)][y(t)-~_(t)]T}
- y --y

(2.6)

(2.7)

Substituting equations (2.4) and (2.6) into equation (2.7) and taking

expected values yields

t t
get) = I(t){f f I-1(~')~(~')E[W(~')w(~)]eT(~)[I-1(~)]Td~'d~}IT(t). (2.8)

o 0

Using equation (2.5) and performing the integration on ~' gives the

covariance matrix as

t

get) = 2nSo~(t){f I-1(~)e(~)eT(~)[I-1(~)]Td~}IT(t)

o

An alternative to equation (2.9) for computing the covariance

(2.9)

matrix can be obtained [1] by first taking the expected value of equa-

tion (2.2)
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ddtE[:(t)] = A(t)E[y(t)]

Subtracting equation (2.10) from equation (2.2) and letting

~(t) = y(t)-E[y(t)] gives

d
dt~(t) = A(t)~(t) + i(t)w(t)

Post-multiplying equation (2.11) by ~T(t) leads to

(2.10)

(2.11)

(2.12)

Transposing equation (2.12) and adding the result to equation (2.12)

yields

(2.13)

Taking expected values or both sides of equation (2.13) and noting that

get) = E[~(t)~T(t)], one finds

d~g(t) = A(t)g(t) + [A(t)Q(t)]T

(2.14)

Using equations (2.4) and (2.5), the expected values in the th~rd and

fourth terms may be evaluated as

E[w(t)~(t)] = nSoi(t)

E[lT(t)w(t)] = nSoiT(t)
(2.15)
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Hence, equation (2.14) becomes

(2.16)

Since the initial conditions are specified deterministically, equation

(2.16) has zero initial conditions.

2Note that using equation (2.9) requires solving n first-order

differential equations for the fundamental matrix solution and n(~+1)

integrals for the covariance matrix. On the other hand, using equation

(2.16), the covariance matrix is directly computed by solving n(n+1)
2

first-order differential equations. Except in the simplest cases where

one can express the covariance matrix explicitly through equation (2.9),

the use of equation (2.16) is probably numerically more efficient.

Having defined the mean vector ~(t) and the covariance matrix

Q(t), the joint probability density for the Gaussian vector process y(t)

may now be written as

p(y(t» 1 1 T -1
= ~J(27T)n exp{- 2[y(t)-~ (t)] Q (t)[y(t)-~(t)]}.(2.17)

~I det Q(t) - y -

The system described by equation (2.1) may be put in the form of

equation (2.2) by letting

1 1 and ~( t ) = { 0 }
-2;w

O
' e(t)

(2.18)

The fundamental matrix solution is given by
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I(t) =

-~wot ~ooo
e (cosoodt + w

d
sinoodt)

2
000 -~wot

- -e sinwdtoo
d

(2.19)

Since a zero start is assumed, equation (2.6)

implies that the mean vector ~y(t) is the zero vector. Using equation

(2.9) and the fundamental matrix solution, the covariance matrix Q(t)

may be calculated.

Choosing the alternative method, equation (2.16) and the defini-

tions in equation (2.18) require the elements of the covariance matrix

to satisfy

(2.20)

Equation (2.20) is a simple set of first-order differential equations

where qij is the element of Q(t) in the ith row and the jth column.

With the zero mean vector and the specified covariance matrix, the

joint probability density for x and x at a given time t may be derived

from equation (2.17) as

(2.21)

where
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-1
rJ. = (r$ij) = Q

Another important statistic of this system is the average number of

times per unit time the random process x(t) crosses a given positive

threshold level from below. Let the threshold level be x = b where b is .

a positive constant and denote this statistic by ~(b,t). The expected

frequency of up-crossing of a level b is related to the joint probabil-

ity of x and x through [2]

~(b,t) = J ~ p(b,x,t) dx

o
(2.22)

Substituting equation (2.21) into equation (2.22) and performing the

integration yields

~(b,t)

"Vdet Q(t)

27tqll (t)

• (2.23)

Letting b = 0 in equation (2.23) one arrives at the expected frequency

of zero crossings with positive slope as

Vdet Q.(t)
~(O,t) =

27tqll (t)
(2.24)

The steady-state solution for the situation where aCt) is unity may

be found by setting the left side of equation (2.20) to zero. This

specifies the covariance matrix as
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Q =

o

o

(2.25)

This reduces equations (2.23) and (2.24) to

~(b) = 00
0 exp [- ~]

27f 2qll
(2.26)

(2.27)

2.2 The First-Passage Problem for a Lightly Damped Simple Oscillator

The first-passage problem involves determining the probability that

a random process exceeds a specified threshold level during a given time

interval. Since first-passage probabilities are often associated with

failure probabilities, it is appropriate to use the terms "safe" or

"unsafe" to refer to the domain where the random process is respectively

below or above the threshold.

For a lightly damped simple oscillator subjected to stationary

Gaussian white noise described by equation (2.1) with &(t) set to unity,

the displacement response is the random process of interest. Because of

the relationship between the response spectrum and the response time

history, a symmetric double barrier is considered. Figure 2.1
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Figure 2.1 Phase Plane Representation of the First Passage Problem
with Symmetric Double Barrier.
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illustrates this configuration in the phase plane. The safe domain is

characterized by the region between two barriers at x b and x = -b.

The first-passage problem consists of determining the probability

distribution of the time when the trajectory of the response first

leaves the safe region and enters the unsafe region.

Let W(T) be the probability that the magnitude of x(t) does not

exceed a level b throughout the interval [O.TJ. Hence.

W(T) := Pr [ Ix ( t) I < bmax (2.28)

where Pr[A] denotes the probability that the expression A is true. WeT)

is called the reliability function and is related to the first-passage

probability density through

p(T) = _ dW
dT (2.29)

where p(T)dT is the probability that first passage occurs on the

interval [T,T+dTJ.

It has been observed [4J that for small values of T, the reliabil-

ity function depends highly on its initial conditions. However. for

large values of T, WeT) tends to a decaying exponential regardless of

the initial conditions. Mark [5J proposed a linear combination of n

decaying exponentials of the form

(2.30)

as an approximation for WeT), but this requires a substantial amount of
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numerical computation to use. When T is large. W(T) may be approximated

by the dominant term of equation (2.30). Therefore. W(T) is assumed to

be of the form

W(T) = e-aT (2.31)

where a is the smallest ai in equation (2.30). The parameter a is known

as the limiting decay rate of the first crossing density or the average

crossing rate. A great deal of effort has been directed toward finding

a good approximation for this decay rate.

The assumption of independent level crossings leads to the simplest

approximation for the limiting decay rate. The average rate of up­

crossing of a level b is ~(b). and is equal to the average rate of down­

crossing of the level -b. Hence. the average crossing rate is given by

a = 2~(b) (2.32)

where ~(b) is given by equation (2.26). The number of level crossings

that occur constitute a Poisson process with average crossing rate a.

The assumption of independent level crossings works well for high

barrier levels. However. for low barrier levels. this approximation

breaks down since the response is narrow-banded and the crossings are

not independent.

Other simple approximations for the limiting decay rate involve

assuming independent peaks. independent envelope crossings. or

independent envelope peaks. Each of these assumptions offers varied

degrees of success in apprOXimating the limiting decay rate. Those
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assumptions involving the envelope statistics are better approximations

since they take into account the narrow-bandedness of the system.

Reasonably good results have been obtained for the limiting decay

rate by considering the response as a two-state Markov process. Because

of the narrow-bandedness of the response, the peaks above the threshold

occur in clumps of duration Tl • The peaks are spaced at approximately

1
2~(O); therefore, the expected value of the duration of a clump is given

by

where No is the number of peaks in a clump. Between each clump there is

a period TO where the peaks remain below the threshold that is taken to

be an independent exponentially distributed random variable with parame-

ter a. Therefore,

(2.34)

Since there are Nc level crossings during the period TO+T1 , the expected

value of that period may be taken as

E[N ]

E[To+Tl ] = 2~(~) (2.35)

Vanmarcke [6] combines equations (2.33), (2.34), and (2.35) and

arrives at
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_~[ ~]-1
a - E[N ] 1 - ~(O)

c

He then estimates the expected number of peaks in the clump as

(2.36)

where a is the standard deviation of the response. The parameter r is a

measure of the bandwidth of the response and is defined by the spectral

moments of the response as

(2.38)

where

and G(w) is the -one-sided spectral density of the response. It has been

shown [7] that r varies between 0 and 1 and is small for narrow-banded

processes and relatively large for broad-banded processes. Substituting

equation (2.37) into equation (2.36) yields

a = (2.39)

An alternate approach is chosen by Mason and Iwan [8]. Using equa-

tions (2.33). (2.34). and (2.35). the average crossing rate is written
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as

__1_ 1Dll[ _ ll.Ql]-1
a - ErT!] ~(O) 1 ~(O)

Assuming a probability density for T1 as

1PT (t) = Ct exp(-pt)
1

(2.40)

(2.41)

where C is a normalizing constant and p is a parameter of the density.

the expected value of T
1

is given by

(2.42)

The limiting value as n-7m of the conditional probability that a clump

which already contains n crossings will continue for at least one more

crossing is found from the probability density of T
1

to be

p. = exp (- ffioT) (2.43 )

where p. denotes that limiting value. By considering the response of

the system for one-half cycle of oscillation after a peak greater than

the threshold b. an integral equation for the stationary probability

density for successive peaks greater than the threshold is obtained for

1which p* is the eigenvalue. The eigenvalue is approximated and the

limiting decay rate is given by

where

a = -~(b) [1 - 1Dll]-1 In(P.)
~(O)

(2.44)
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for which

c = exp(- n, )
'h-e2

It has been observed that the Mason and Iwan approach is somewhat less

conservative than Vanmarcke's approach and corresponds well with numeri-

cal simulations.

In the case of nonstationary excitations, the modulating function

&(t) is allowed to vary in time. The approximations of the limiting

decay rate found for stationary excitation along with the instantaneous

response statistics are used to compute an instantaneous limiting decay

rate. aCt). Equation (2.31) is then replaced by

t d

W(t d) = exp (- f a ( t ) dt )

o

where t d is the duration of the excitation. The two-state Markov

process may be extended in this fashion.

(2.45)
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Using Vanmarcke's approximation [9], the spectral density is

allowed to vary in time. The moments may then be calculated based on

this evolving spectral density and used to calculate an instantaneous

y(t). The limiting decay rate is then given by

2\Hb,t)[1 - exp(-~(t)a(~»)]
a( t) = ----"-----''--.:...=.-~~-~-~

1 _ 'Hb,t)
V(O,t)

(2.46)

For modulated white noise, y(t) is a constant and the nonstationary

behavior is accounted for by the time dependence of a(t). V(b,t), and

\)(O,t).

Mason and Iwan [8] propose the use of an alternate probability den-

sity for T1 when using their method for nonstationary excitation. That

density is given by

~
a4(t)

PT (t) = ~ t s exp(-pt)
1

(2.47)

of the excitation,

where a2(t) is the instantaneous variance of the response and a;(t> is

the stationary response variance associated with the instantaneous value

4
The~ term reflects the nonstationarity by

a4(t)s

accounting for the greater independence of barrier level crossings when

the response is broad-banded. Note that for stationary response this

term is equal to unity, thus reducing the density to that for the sta-

tionary case, Using a derivation analogous to that for stationary exci-

tation yields
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-2~(b,t) In[P*(t)]a. ( t ) = _--""~O<..L.:""'-~~",,,",_U_U:_""'__

[
1 + a

4
(t)] [1 _ 'Hb,t)]

a4(t) ~(O,t)
s

(2.48)

where ~(O,t), ~(b,t), and P*(t) are implicitly time-varying, based on

the instantaneous covariance values.

2.3 Extension of the First-Passage Problem to a Nonlinear Simple
Oscillator

The foregoing analysis may be extended to a nonlinear simple oscil-

lator by using the method of statistical linearization to compute

approximate response statistics from which estimates may be made of the

first-passage probability. Independently introduced by Booton [11] and

Caughey [12] at about the same time, the method of statistical lineari-

zation is an extension of the equivalent linearization technique of

Kryloff and Bogoliuboff [13]. Since the simple oscillator is a special

case of an n-degree of freedom system, the n-degree of freedom system

will be discussed.

Caughey used modal decomposition to uncouple the linear part of a

nonlinear system of equations, and applied the linearization technique

to each of the resulting single-degree-of-freedom equations. Foster

[14] generalized the method by developing an approximate closed form

solution for the eqUivalent linear damping and stiffness matrices, but

this required inversion of a 2n by 2n matrix for an n-degree of freedom

system. Using a simple physical interpretation for the effective linear
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parameters. Iwan and Yang [15] determined the terms of the equivalent

linear damping and stiffness matrices as simple scalar equations.

Using 2n-space notation a nonlinear n-degree of freedom system may

be written as

y = h(Y) + t(t) (2.49)

where h(y) is a nonlinear vector function of y and t(t) is a random

excitation vector. Consider an auxiliary system of linear differential

equations of the form

y = A[S(t)]y + t(t) (2.50)

where A[S(t)] is an arbitrary matrix dependent on the time-varying

response statistic S(t) chosen such that the solution to equation (2.50)

approximates the solution to equation (2.49). The error in estimating

the nonlinear system by a linear system may be defined by the difference

between the equations involved. Hence from equations (2.49) and (2.50).

~ = h(y) - A[S(t)]y

where ~ is the vector of the equation differences.

(2.51)

The appropriate choices for the elements of A[S(t)] will be those

that minimize ~ in some sense. A criterion for minimizing ~ is to

Trequire the mean of the scalar product ~ ~ to be a minimum. i.e••

(2.52)

It is noted that minimization of the equation difference does not imply
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minimization of the solution difference. However. widespread usage of

the method in conjunction with experiment or numerical simulation sug­

gest that the technique approximates the nonlinear response well. The

necessary condition for equation (2.52) is

i.j=1.2 ••.•• n (2.53)

It has been shown [16J that for t(t) Gaussian this will be a true

minimum (as opposed to a maximum). Applying the definition of ~ leads

to

(2.54)

Atalik and Utku [17J showed that if y is a jointly Ga~ssian random

vector process with mean zero and hey) is sufficiently smooth so that

first partials with respect to Yi for i=1.2 ••..• 2n exist. the condition

in equation (2.54) reduces to the elements of A[S(t)J being given by

i.j=1.2 ••••• 2n (2.55)

A[S(t)J is an implicitly time-varying matrix. If we assume A[S(t)J

is actually continuous in time. a unique fundamental matrix solution

exists and equation (2.9) defines the approximate covariance matrix.

For Gaussian excitation the response statistic Set) may be taken as the

covariance matrix Q(t) and equation (2.16) becomes a system of nonlinear

differential equations easily implemented numerically.
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For a nonlinear simple oscillator. obtaining an approximation for

the covariance matrix allows one to arrive at approximations for the

response statistics necessary to compute a limiting decay rate and esti­

mate the first-passage probability.
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CHAPTER III

RESPONSE SPECTRUM CONSISTENT RANDOM PROCESSES

In the following applications of the first-passage problem for a

simple oscillator, the Mason and Iwan two-state Markov process approach

has been used to compute first-passage probabilities. Vanmarcke's two-

state Markov process approach or any other method of estimating first-

passage probabilities may have been chosen. The accuracy .of any appli-

cation of the first-passage problem will depend upon the accuracy of the

first-passage probability estimate.

3.1 Probabilistic Determination of the Maximum Response of a Simple
Oscillator Subjected to Modulated White Noise

The solution for the first-passage problem for a simple oscillator

may be used to give the probabilistic specification of the maximum

response of the oscillator subjected to modulated white-noise excita-

tion. Recall from equation (2.1.) that the equation of motion of the

oscillator is given by

(3.1)

where ~ is the fraction of critical damping, 000 is the undamped natural

frequency, and 9(t)w(t) is a modulated white noise. Zero initial condi-

tions will be assumed.
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The probability. W(td). that the maximum response of the oscillator

is less than or equal to a level b after a time t d is the reliability

function defined in equation (2.28). Hence.

(3.2)

where t d is the duration of the modulating envelope. &(t). The relia­

bility function is evaluated using the analytical approach of Mason and

Iwan.

To check the accuracy of the analytical approach used to determine

the reliability function. a Monte Carlo simulation study of equation

(3.1) was performed. An ensemble of sample functions was generated to

represent stationary Gaussian white noise. Each sample function was

constructed from a sequence of independent normally distributed numbers

with zero mean and unit variance. The numbers were used as ordinates of

the function at equally spaced time intervals. At. The function was

assumed to vary linearly over each interval. The time scale was chosen

such that the initial point was uniformly distributed on the interval

give a process with a power spectral density of

[-At.OJ. The numerically generated unit variance sample functions were

[2l'1'SOl~2by 'At tomUltiplied

[18J

S(oo) = S 6 - 8cOS(ooAt) + 2cos(2ooAt) (3.3)
o (ooAt) 4

S(oo) approaches a constant So as ooAt approaches zero. The expression

for S(oo) remains within S~ of So for ooAt < 0.57. and within 1~ for
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wAt < 0.76. Thus. the time interval may be chosen sufficiently small to

approximate a white-noise process to within a given tolerance out to any

desired frequency. TIn this study. At was set equal to 20 where T is the

undamped natural period of the oscillator.

Since the applied excitation is assumed to be a straight line seg-

ment on each time interval. the solution to equation (3.1) may be solved

by digital computer in a purely arithmetical way [19]. The exact

analytical expression for the response of a damped single-degree-of-

freedom system with arbitrary initial conditions was written for a

linearly varying excitation. The total response for a time interval was

then obtained by analytically matching the initial conditions of the

current interval to the final conditions of the previous interval. In

this way. no numerical approximations were introduced other than the

white-noise approximation and the round off due to the digital represen-

tation of the response.

The simplest modulating envelope is a rectangular pulse of unit

amplitude and duration. t d (Figure 3.1a). In Figures 3.2-3.4. the prob­

ability that the maximum response will be less than a given threshold

level is plotted versus duration of excitation for several threshold

levels and several values of damping based on analytical first-passage

estimates. The results are displayed in a dimensionless form. The

durations are expressed in multiples of the natural period. The thres-

hold levels are normalized by the stationary standard deviation of the

system described by equation (3.1) with 9(t) = 1. The stationary

standard deviation. a • may be written from equation (2.25) ass
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Figure 3.1 Modulating Envelopes for the Stationary Gaussian Random
Process
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(3.4)

where So is the constant power spectral density of the Gaussian white

noise. w(t). Also shown in Figures 3.2-3.4 are the results of the simu­

lation study for the same threshold levels and damping values using an

ensemble of 1000 sample functions.

It is observed that the probability that the maximum response is

less than a given threshold level decreases with inoreasing duration.

Therefore. the probability distribution of the maximum response varies

with duration. This suggests that duration is an important parameter

when probabilistically determining the maximum response. The analytical

method agrees reasonably well with simulation.

From Figures 3.2-3.4. it may appear that the response of a system

with more damping is more likely to surpass a given absolute level.

However. this is not the case. The stationary standard deviation of the

response is inversely proportional to the square root of the damping

ratio. Therefore. the normalized threshold levels which are constant

multiples of the stationary standard deviation of the response become

smaller as the damping ratio increases. In Figure 3.5 the probability

that the maximum response is less than a constant threshold level is

plotted versus the duration of the excitation for several damping

values. From this figure it is evident that the probability that the

response of a system will not exceed a given threshold increases as the

damping in the system increases.
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To represent earthquake-like excitation. it is appropriate to

choose a modulating envelope that models the nonstationary character of

actual accelerograms. Specific forms for such envelopes have been sug-

gested by a number of authors (e.g •• [20]. [21]). Real accelerograms

often consist of three phases: a phase where the excitation builds. a

strong motion phase where the shaking remains fairly constant. and a

phase where the motion dies out. Earthquakes of larger magnitude tend

to have envelopes of longer duration.

One form of modulating envelope which has been suggested [20] is

shown in Figure 3.1b. This envelope may be expressed as

S6.2S(tt)2 o i t 2
i lSt d

d

aCt) 2 < t 1 (3.5)= 1.0 15t d i 2t d

eXP[-2.976(~ - ~)] 1 < t i t d2t dd

where t d is defined as the duration of the excitation. When t d = 30

seconds. the modulating envelope. aCt). is similar to the Caltech B-type

earthquake envelope given in Reference [20] which was designed to

represent shaking close to the fault in a Richter Magnitude 7 or greater

earthquake.

Figures 3.6-3.8 show the probability that the maximum response of

the simple oscillator is below a specified level for several threshold

levels and several values of damping using the envelope of equation

(3.5). Results from Monte Carlo simulation are also shown. The analyti-

cal approach agrees wel.l with the simulation results. As in the case of
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the rectangular modulating envelope. the apparent variation in the prob­

ability distribution suggest that duration of excitation is an important

parameter when probabilistically specifying the maximum response of a

simple oscillator.

In Figure 3.9. the probability that the peak response does not

exceed a constant threshold level is plotted versus the duration of

excitation for several values of damping using the earthquake-like

envelope. Like the results for the rectangular envelope. the likelihood

that the threshold level will not be exceeded increases as the damping

in the system increases.

3.2 Determination of Response Spectrum Consistent Random Processes

The response spectrum has been widely accepted as a way of describ­

ing some of the aspects of earthquake ground motion that are of interest

to the engineer. The response spectrum is defined from the behavior of

a single-degree-of-freedom system. The given ground acceleration is

applied to the base of a simple oscillator and the maximum displacement

is measured or calculated. The maximum displacement depends on the

applied excitation. the value of damping in the system. and the natural

frequency of the system. The family of curves. for various values of

damping. of the maximum displacement plotted versus the natural

frequency make up the response spectrum for the ground motion.
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Studies of response spectra for actual accelerograms [22] have

shown that important features of the response spectra can be represented

by simplified smoothed curves for design purposes. These curves are

derived by computing the response spectra for a number of earthquakes

and then normalizing the spectra in such a way that the spectra may be

compared. The mean and the standard deviation of the normalized

response spectrum values are calculated over the entire frequency range

and used to compute parameters of a probability distribution. Smooth

curves are then chosen to describe the shape and normalized level of the

response spectrum for a given confidence level. The curves make up the

design response spectra. When scaled to reflect the maximum ground

motion. they are used to specify seismic input for structural design.

Design response spectra of the type discussed above have been

adopted by the U.S. Nuclear Regulatory Commission (NRC) for the seismic

design of nuclear power plants 123]. The NRC design response spectrum

is made up of straight line segments when plotted on logarithmic

tripartite graph paper. The vertices or control points of the straight

line segments for each value of damping are specified by the frequency

at which the points occur and the ratio of the response pseudo accelera­

tion to the maximum ground acceleration. Based on the work reported in

Reference [24], these design response spectra have a confidence level of

84.1%.

Analytically, it is convenient to model earthquake excitation as a

Gaussian random process defined by its power spectral density and a

deterministic modulating envelope. If the seismic input is specified in
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this way, it should correspond statistically to the design response

spectrum. This may be achieved by performing a first-passage prob-

ability analysis for a simple oscillator in order to select power

spectral density ordinates of the process from the design response

spectrum.

A linear oscillator subjected to the artificial earthquake process

may be described by

(3.6)

where a(t) is the deterministic modulating envelope and get) is a sta-

tionary Gaussian random process with spectral density S(~). Response

spectra are usually constructed only for lightly damped systems where

the response is narrow-banded about the natural frequency. Hence, for ~

sufficiently small, a good approximation for the response of the system

described by equation (3.6) may be obtained by replacing get) with a

stationary Gaussian white-noise process, w(t), with constant spectral

density So = S(~o) for each ~o'

Since the analytical approach of Mason and Iwan for calculating

first-passage probabilities of a simple oscillator was directed toward

modulated Gaussian white-noise processes, it may be used here to compute

the power spectral density ordinates. The design response spectrum may

be described by

pr[ Ix(t)1 < SD(~O'~)max
., = (3.7)

where SD(~O'~) is the target spectrum value for natural frequency ~O and
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fraction of critical damping, ~, and P is the confidence level of thes

spectrum. The confidence level, P , corresponds to the reliabilitys

function defined in equation (2.28), with the threshold level b replaced

by the value of the target response spectrum, SD(wO'~). Hence, equation

(2.45) may be written as

(3.8)

where t d is the duration of the excitation, a is the limiting decay

rate, and So is the constant power spectral density of the excitation.

An increase in So causes a decrease in W(td) and vice versa. Using a

simple iterative process, So may be varied in equation (3.8) until W(td)

is within some predetermined tolerance, for example, 0.5~, of Ps • The

value of So is then assigned to S(WO).

In Figure 3.10, the NRC design response spectra outlined in Regula-

tory Guide 1.60 are shown for a maximum ground acceleration of 50% g.

Power spectra were derived for several durations and are shown in Fig-

ures 3.11 and 3.12 for damping values of 2% and 10% of critical damping.

A confidence level of 84.1% was assumed.

The overall shape of the power spectrum is somewhat similar as

duration is varied. For a fixed response spectrum and fixed confidence

level, the level of the power spectrum increases as the duration

decreases. and vice versa. A shift in the distribution of the power

toward the lower frequencies as duration decreases is evident from the
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peak that occurs at 0.25 Hertz.

Since the response spectra for different values of damping are

derived from a single earthquake time history, one might expect that a

single process may be derived from the design response spectrum for

different values of damping. This is not the case for the power spectra

derived above. The design response spectra for different values of damp-

ing produce slightly different power spectra. This may be expected

since the design response spectra are constructed from a number of real

accelerograms each with its own duration. frequency content, etc. In

Figures 3.13-3.15. the power spectra are replotted for each duration to

compare their agreement for different values of damping. Better agree-

ment is found at the high frequencies for shorter durations and at the

low frequencies for longer durations. Figures 3.13-3.15 suggest a dura-

tion slightly longer than 20 seconds will give good agreement between

the power spectrum derived using 2% damping and the power spectrum

derived using 10% damping for the design spectra considered here. This

may be expected since the earthquakes upon which the design response

spectrum is based have durations primarily between 20 and 30 seconds.

3.3 Maximum Response of a Nonlinear Simple Oscillator Subjected to
Earthquake-like Excitation

If a structure behaves nonlinearly. the customary linear response

spectrum may not characterize the response of the structure. In Section

3.2. a Gaussian random process was· constructed to agree statistically
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with a specified design response spectrum. Using that process, statis-

tical linearization, and the analytical approach to the first-passage

problem for a simple oscillator, the maximum response of a nonlinear

simple oscillator may be obtained statistically for excitation defined

by a design response spectrum.

As an example of a nonlinear simple oscillator, consider a soften-

ing elastic restoring force that has a force-deflection relationship

described by

f = 1 f _l(nkoX)
7t u tan '2f

u
(3.9)

where f u is the ultimate force and kO is the small displacement stiff­

ness. The nature of this restoring force characteristic is shown in

Figure 3.16.

f
Let the quantity kU be denoted by x and the ratio of the maximumo y

response, x , to x be denoted by~. Then, the value of ~ is amax y

measure of the nonlinearity of the system and may vary from 0 to = with

~ = 0 corresponding to a linear system. xy represents the displacement

corresponding to a restoring force f u for a linear system with stiffness

kO' and is similar to the elastic limit displacement of a yielding

system (see Figure 3.16). Equation (3.9) may be expressed in terms of ~

and xmax as

_2 kOxmax -1(7t X)
f = tan 2~;C-

7t ~ max
(3.10)
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The nonlinear force-deflection relationship described above is

similar to the backbone curve of a yielding system in that the stiffness

softens as the displacement increases. However. when a yielding system

is loaded beyond some point. the unloading path differs from the loading

path. This inelastic behavior is not modeled by the nonlinear relation-

ship described by equation (3.10). However. the nonlinear relationship

is a better approximation to a yielding system than a linear relation-

ship and is useful to assess the effects of softening on system

response. The response of the yielding system is often described by the

ductility ratio; i.e•• the ratio of the maximum response to the maximum

elastic response. The nonlinearity parameter ~. defined herein. is

similar to the ductility ratio of the yielding system.

The equation of motion for a simple oscillator with the particular

softening behavior discussed above may be written as

(3.11)

where ~ and Wo are the fraction of critical damping and undamped natural

frequency. respectively. associated with small displacements. Writing

the equation of motion in 2n-space notation yields

y = b(y) + i(t)w(t)

where

(3.12)
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-1(11 Y1)}tan 2~-x-
max

Assuming that Y is a jointly Gaussian random vector process with....
mean zero, equation (2.55) leads to the equivalent linear system given

by

where

and

MQ(t)]

y = A£Q(t)]y + ~(t)w(t) (3.13)

Hence, the instantaneous equivalent linear natural frequency wand
e

damping ratio ~ aree
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(3.14)

Substituting A[Q(t)] into equation (2.16), it is seen that the

covariance matrix approximation for the nonlinear system satisfies

(3.15)

with 'zero initial conditions.

Using the equivalent linear system and the analytical approach to

the first-passage problem outlined in Section 2.2. a statistical design

response spectrum may be calculated for the nonlinear system excited by

a Gaussian random process defined by its power spectral density SC~) and

modulating envelope &Ct). An equation analogous to equation (3.8) may

be written for the equivalent linear system as

(3.16)

where t d is the duration of the excitation, a is the limiting decay

rate, xmax is the unknown maximum response, and S(~e) is the spectral

density of the excitation evaluated at the equivalent natural frequency.

An increase in x causes an increase in W(td). It is a simple mattermax
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to vary xmax in equation (3.16) until W(td)is within some tolerance of

the confidence level, P •s

Statistical design response spectra have been calculated for

softening nonlinear elastic systems with ~ equal to 0, 2, 5, and 10 for

the Gaussian random process generated with the linear system from the

NRC design response spectrum of Section 3.2 with a duration of 30

seconds., In Figures 3.17 and 3.18, the statistical maximimum response

of the softening nonlinear elastic system is plotted against the small

displacement frequency. The curve for ~ = 0 is the NRC design response

spectrum from which the excitation process was derived since ~ = 0

corresponds to a linear system.

The instantaneous equivalent linear natural frequency, w , of thee

softening nonlinear elastic system described in equation (3.14) is

always less than or equal to the small displacement natural frequency,

WOo A frequency shift occurs in the statistical maximum response

spectrum for the softening nonlinear elastic oscillator due to the down-

ward shift in the natural frequency. This frequency shift is most

noticeable in Figures 3.17 and 3.18 at the control points in the

response spectrum.

The maximum response of the nonlinear simple oscillator is affected

by two factors. First, an overall increase in the maximum response

occurs due to the assumed level of softening, ~, in the system.

Secondly, the frequency shift can cause a variation in the maximum

response by increasing or decreasing the value of the power spectral

density of the excitation corresponding the instantaneous effective
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natural frequency. This variation depends on the shape of the power

spectral density of the excitation process. In Figures 3.17 and 3.18.

variation in the maximum response are most evident for frequencies less

than 0.25 Hertz where the frequency shift causes a sharp decrease in the

power spectral density and for frequencies greater than 9 Hertz where

the frequency shift causes a sharp increase in the power spectral den­

sity. An increase in the structural damping decreases the response for

the nonlinear system in the same manner as for the linear system.

The net effect of the softening nonlinear elastic restoring force

is that the statistical maximum response spectrum resembles a linear

response spectrum which has been translated along an axis of constant

spectral displacement (a line with a slope of one on the log-log pseudo­

velocity diagram). These results are similar to the inelastic response

spectra for the hysteretic system described by Iwan and Gates [25] and

Iwan [26].
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CHAPTER IV

AN ANALYTICAL METHOD FOR COMPUTATION OF CUMULATIVE DAMAGE

4.1 Failure of Structural Members under Cyclic Loading

When a structure is subjected to strong earthquake ground motion,

large displacements can occur. The displacements may be associated with

large strains in the structural members. The repeated application of

large strains may cause failure in the structural members.

Experimental tests to determine the behavior of structural members

under large cyclic strains have been performed by Bertero and Popov [27]

and Yamada [28,29]. The structural members were subjected to cyclic

bending deflections of constant amplitude until fracture occurred. The

relationship between the number of cycles to failure, N, and the deflec­

tion amplitude may be expressed as

(4.1)

where ~ is the ductility factor of the deformation, defined as the ratio

of the maximum deflection to the maximum elastic deflection, and sand

C~ are the empirical constants determined from the experimental tests.

Yamada [29] defines the failure constants for steel structural

members from tests on wide-flange steel columns. The columns were

axially loaded in compression to t of the ultimate strength of the

centrally loaded column and cycled in bending to failure. Failure was

described as local flange buckling followed by local buckling of the web

leading to torsion about the member axis and loss of axial resistance.
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The damage law may be expressed approximately as

Nb1•8S = 81.93 (4.2)

where b is the amplitude of the cycling in terms of the displacement of

the actual test specimen. The yield displacement-may be found using

simple beam theory. Normalizing the displacement in equation (4.2) by

the yield displacement, the damage law may be written in terms of the

ductility factor as

(4.3)

The exponent in equations (4.2) and (4.3) is approximately equal to 2, a

widely accepted value for steel.

It has been observed that failure of reinforced concrete members

may also be described by equation (4.1). Data from bending tests

performed on rectangular reinforced concrete columns axially loaded in

compression to t of the yield load are given in Reference [28]. Using

the method of least squares to fit the data, the relationship between

the constant deflection amplitude of the test specimen and the number of

cycles to failure may be written as

NbS•88 = 239.1 (4.4)

Here. failure was described as when the concrete fell down due to the

buckling of the longitudinal reinforcement. By considering a reinforced

concrete column as a beam of two materials, namely concrete and steel,

the yield displacement in bending may be computed. Hence. in terms of
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the ductility ratio. the damage law becomes

N~S.88 = 416.3 (4.5)

The damage laws discussed for steel and reinforced concrete are

shown in Figure 4.1. Note that the steel requires more cycles to fail

than the reinforced concrete for the same level of ductility. The value

of the ductility for N = 1 provides an upper limit to the allowable

ductility factor of the structure. The damage laws are similar to some

of those that are used to describe low-cycle fatigue failure of

materials.

4.2 Damage Accumulation for Narrow-banded Random Response

Cyclic failure in a material may be of two basic types. High-cycle

failure occurs from repeated application of stresses below the yield

stress of the material. The number of cycles to failure for high-cycle

failure is of the order 104• Low-cycle failure occurs when the material

is strained repeatedly beyond the yield point. Less than 103 cycles are

typically reqUired for a low-cycle failure. When low-cycle failure is

of concern. it is more meaningful to relate the number of cycles to

failure to the strain amplitude rather than the stress amplitude.

One approach. used to predict fatigue failure. is to model the

relationship between the number of cycles to failure and the cyclic

strain amplitude for a material under constant strain amplitude loading.
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A widely accepted formula. proposed by Travernelli. Coffin and Manson

[30] is given by

a
8 =-f (2N)~ + 8 (2N)YE f (4.6)

where N is the number of cycles to failure at the constant principal

strain amplitude 8. E is the modulus of elasticity. and the other vari-

abIes are empirical constants determined from experimental test data.

The first term on the right-hand side of equation (4.6) dominates when 8

is in the elastic range and reflects the classical S-N curve known as

the Basquin equation for high-cycle fatigue. The second term is equal

to the amount of strain beyond the elastic strain range at which the

material must be cycled to fail in N cycles. The second term dominates

for high-strain low-cycle fatigue.

During an earthquake. a lightly damped structure may be subjected

to severe random forces causing cyclic nonstationary response. High

strains may develop within members of the structure such that the second

term of equation (4.6) governs the failure. In such a situation. the

first term of the right-hand side of equation (4.6) may be neglected.

and the failure relationship may be written as

(4.7)

where N is the number of cycles to failure at the constant strain

amplitUde 8. and sand C
8

are positive empirical constants. By

normalizing the strain by the elastic limit strain. equation (4.7) is
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equivalent to equation (4.1).

A cumulative damage hypothesis may be used to relate the failure of

a system with varying response amplitude to a system with constant

response amplitude. The simple rule proposed independently. by Miner

[31] and Palmgren [32] assumes damage accumulation to be a linear func-

tion of the number of cycles of constant strain amplitude cyclic

loading. Hence, the incremental damage due to the application of ni

cycles at a strain level 8 i is

(4.8)

Furthermore, it is assumed that the order of application of different

strain levels has no effect on the total damage.. Thus, the total

damage for varying strain levels is

(4.9)

Failure occurs when D reaches unity. Substituting equation (4.7) in

equation (4.9) yields

(4.10)

The concept of total damage may easily be extended to random strain

response by assuming the number of peaks occurring in the strain

response is synonymous with the number of cycles in the strain response.

* There is evidence that this assumption may not be valid for all
systems. However, it is employed herein because it allows the
Palmgren-Miner theory to be used in the case of random strains.
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This assumption is reasonable for lightly damped structures where the

response is a narrow-banded nonstationary cyclic process.

Let m be the total number of peaks per unit time and p(sitlm) be

the conditional probability density for the strain amplitude of the

response given the number of peaks per unit time. The quantity

m p(sitlm) represents the number of peaks at a level S given m peaks

per unit time. Hence, the expected number of peaks per unit time at a

level & is given by

E[ne(t)] = f m p(sitlm) p(mit) dm

o
(4.11)

where p(mit) is the time-varying probability density for the total

number of peaks per unit time.

Based on equation (4.8) with equation (4.7) substituted and using

equation (4.11) the expected rate of damage accumulation due to peaks of

strain amplitude e may be written as

=s
=~ f m p(eitlm)

S 0
p(mit) dm (4.12)

Integrating equation (4.12) over all levels of strain yields the

expected rate of damage as

= =

E[~~(t)] = c1 f sS f m p(sitlm) p(mit) dm de
S 0 0

(4.13)
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. If the total number of peaks per unit time is assumed independent

of the amplitude of the peaks. the following relationship holds

CD CD

f m p(sitlm) p(mit) dm = P(8it) f m p(m;t) dm = P(sit) E[M(t)]

o 0

(4.14)

where E[M(t)] is the expected number of peaks per unit time. Substi-

tuting equation (4.14) into equation (4.13) yields

CD

o
= E[~(t)] f

S

sS P(si t ) ds (4.15)

which may be integrated over the duration of the excitation to gj.ve the

expected value of the total damage as

E[!d~~( tldt]
t d CD

E[D(td)] = _...!.. f E[M(t)] f SS P(sit) ds dt (4.16)- C
S

0 0

4.3 Damage Accumulation Applied to a Simple Oscillator

A lightly damped system is classified as a narrow-banded system.

The predominant frequency components of the response are contained in a

narrow band near the natural frequency of the system. The response

appears to be a slightly distorted sine function with slowly varying

amplitude and phase. The cumulative damage of a lightly damped system
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may be computed by considering the cyclic nonstationary response of a

simple oscillator.

Assuming strain is proportional to displacement. equation (4.15)

may be written in terms of displacement as

ex>

o
E[M(t)] J bS p(b;t) db

Cb

The damage model may be expressed in terms of displacement as

(4.17)

(4.18)

For the cyclic nonstationary res~onse of a lightly damped simple oscil-

lator. the number of peaks per unit time is approximately equal to the

number of zero crossings per unit time. Hence.

E[M(t)] = ~(O.t) (4.19)

where ~(O.t) is the frequency of zero crossings defined by equation

(2.24) •

The probability density P(bit) may be found by considering the

frequency of up-crossing of a simple oscillator at a level b at time t.

~(b.t). which is given by equation (2.23). Since the number of up-

crossings at a level b is approximately equal to the number of peaks

above the level b. ~(b.t) is approximately equal to the expected number

of peaks above b per unit time. The expected total number of peaks per

unit time is equal to the frequency of zero crossings. ~(O.t). Hence.

the expected fraction of peaks above the level b is approximately
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~(b,t)/~(o,t), and the probability distribution of the peak magnitudes

at time t may be approximated as

Pr[peaks < bi tl 1 _ 'Hb,t)
~(O,t)

(4.20)

The average probability density of the peak magnitudes at time t may be

obtained by differentiating equation (4.20) with respect to b. This

yields

(4.21)

Substituting equation (4.19) and (4.21) into equation (4.17), the

expected rate of damage accumulation is given by

...
E[dD(t>] = _ JL J bS a~(b,t) db

dt Cb ab
o

a~ ~~' t)· is found by differentiating equat.ion (2.23) to be

(4.22)

-Vdet Q.(t)a\)(b,t) =
ab 2nq11 (t) {

-b ( 011 (t)b
2

)
q (t) exp - 2
11

• (4.23)
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4.4 A Closed Form Expression for a Special Case of the Damage Law

The expected rate of damage accumulation given by equation (4.22)

may be easily evaluated numerically for any appropriate value of s. For

integer values of s, equation (4.22) may be evaluated in closed form.

This was shown by Roberts [33] for odd ~ntegers and can be extended to

even integers by the evaluation of a single integral.

It is convenient to introduce the correlation coefficient pet)

defined as

(4.24)

where qij(t) are the elements of the covariance matrix Q(t). It is also

helpful to normalize the displacement by the root mean square value of

the response and denote this new dimensionless variable by ~ where

(4.25)

Substituting equation (4.23) into equation (4.22) then yields

s-l
2 o/s 2)o/s CD

[dD ]
_qll._q...::2:1:-(_1__p__ J ..,s

E dt(t) = 2nC
b

".
o

(
2 2 )- Q nexp

2(1 _ p2)

(4.26)

where the functional dependence of p and qij on t has been omitted for
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brevity.

Integrating equation (4.26) by parts gives

+ fil sp [2S;1 r(S+I) +J(p s)]}'
"2 ~1 _ p2 2 '

where

(4.27)

J(p,s)

co

=f ~s exp(-~)
o (

pn )erf.~ . 2 d'll
2(1 - P )

(4.28)

and the gamma function rea) 1s defined as

co

.r(a) = f xa- 1 exp(-x) dx

o

The function J(p,s) cannot easily be expressed in a simple manner as a

function of p and s. However, it does satisfy a reduction formula

obtained by integrating equation (4.28) by parts to give

s-1
J(p,s) = (s-1)J(p,s-2) + ~[2(1 - p2») 2 r(i) (4.29)

Hence. to define the expected damage rate for all integral values of s.

one needs only to evaluate equation (4.28) for s = 0 and s = 1.

Performing this operation yields
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CD

J(p,O) = f exp (- ~) erf( en ) d'll
o 2 ;.;20 _ p2)

and

p

(4.30)

(4.31)

The expected rate of damage accumulation may now be expressed as

where

(4.32)

K(p(t),s) = (1 - [
S+l]r(S;l) + (t) 2 J(p,s) • (4.33)

K(p(t),s) is shown in Figure 4.2. K(p(t),s) is positive for all values

of p. Hence, the expected damage rate is positive. Note that K(O,s) is

equal to unity for all values of s.

A characteristic of the stationary response of a simple oscillator

is that the displacement response and the velocity response are

uncorrelated (i.e., p = 0). Thus the expected damage rate for station-

ary response is given by
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(4.34)

which is consistent with the results given by Miles [34].

4.5 Normalization of the Expected Total Damage for a Linear SYstem
Subjected to Modulated White Noise

Integrating equation (4.22) with respect to time. the expected

total damage may be written as

(4.35)

Consider the special case where a simple linear oscillator with natural

period T is subjected to modulated white-noise excitation. If the

modulating envelope is a function of only the normalized time. ~ = ~.

given the duration t d of the excitation. a convenient normalization of

the expected total damage problem exists.

In the situation described above. the covariance matrix Q(~) may be

expressed as

(4.36)

where the fij(~)'s are dimensionless functions and So is the power
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spectral density of the white-noise excitation. Using this form of the

covariance matrix. the derivative of the frequency of up-crossings with

respect to the crossing level may be written as

(4.37)

where

~ =_b_

VS
O

T3

Performing a change of variables on equation (4.35) yields

(4.38)

It may be shown that the first-passage problem defining the power

spectral density from the response spectrum given in equation (3.8) may

be written as

t d
T

P = exp -s a(r.~.'t) d't (4.39)s
0

where Ps is the confidence level of the response spectrum. a is the

limiting decay rate. and r is the response spectrum normalized by the

excitation level given by
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The expected total damage may be expressed in terms of r as

(4.40)

Recall from equation (4.7) that for low-cycle failure the damage

law is given by

where 8 is a strain which is greater than the elastic limit strain 8 y of

the material. If the strain is normalized by the elastic limit strain.

the damage law may be written as

(4.41)

where ~ is known as the ductility factor given by

and

Since strains are assumed proportional to displacements. it follows that
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~
SDs/Ss

s
= y = ~ (4.42)Cb C Iss C

b y ~

where Sy is the displacement corresponding to the elastic limit strain,

By' Using this relationship in equation (4.40) yields

s 1
-~­

C s
~ r

t d
T ~

J J
o 0

(4.43)

where r is implicitly defined by equation (4.39).

The expected total damage may be computed given the duration of the

excitation in natural periods of the system, the ductility factor of the

system, and the confidence level associated with the ductility and the

damage model. Note that the overall shape of the response spectrum is

not important. Only the value of the response spectrum at the natural

frequency of the system matters in its relationship to the ductility

factor, ~, of the response.

For the softening nonlinear elastic system of section 3.3, the

power spectral density of the excitation is not a constant with respect

to the time because of the time-varying frequency shift. The expected

total damage of the nonlinear system depends on the shape of the power

spectral density. In this case, it is better to use equation (4.35)

directly to compute the expected total damage.
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CHAPTER V

ASSESSMENT OF THE EFFECTS OF DURATION
ON THE DAMAGE OF A SIMPLE SYSTEM

5.1 Introduction

In order to assess the effects of various system parameters on the

expected total damage of a structure, consider the simple frame shown in

Figure 5.1. When the frame is subjected to strong earthquake ground

motion, large displacements can occur. Large bending moments develop at

the top and the bottom of the columns of the frame. The large bending

moments cause large strains which may be associated with low-cycle

failure.

A simple analytical model for earthquake excitation is a modulated

stationary Gaussian random process. The equation of motion for the

simple frame SUbjected to such a process is that of a simple oscillator

and given by

(5.1)

where ~ is the fraction of critical damping, 000 is the natural frequency

of the system, 9(t) is the deterministic modulating envelope, and g(t)

is a stationary Gaussian random process with spectral density S(oo).

Zero initial conditions are assumed.

The modulating envelope will be taken to be the earthquake-like

modulating envelope used in Section 3.2. The envelope may be written in

terms of the dimensionless time, ~, as
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56,25 't'2 o ~ 't'
2td

(td/T)2
~ 1ST

EH't') = 1.0
2td < 't'

t d (5,2)1ST .{ 2T

eXP[-2,976(t;/T _·t)1 t d < 't'
t d<-2T - T

where

't'=!
T

and T is the natural period of the system.

Response statistics of the system, in particular the covariance

matrix, are needed to evaluate the expected total damage, If the system

is lightly damped, the response will be narrow-banded about the natural

frequency, Hence, the same approximation used in Section 3,2 for ~

sufficiently small may be used here. The process g(t) may be replaced

with a stationary Gaussian white-noise process, w(t), with constant

spectral density So = S(ooO)'

The methods discussed in Section 2,1 may be used to compute the

response statistics of the system. The response statistics may then be

applied to equations (4.39) and (4.43) to compute the expected total

damage,
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5.2 Expected Total Damage - Linear Model

Equation (4.22) may be evaluated numerically for any value of the

damage law exponent. s. However. to study the effects of duration on

the expected total damage, it is computationally more efficient to use

integer values of s. In that case the closed form solution described in

Section 4.4 may be applied to evaluate the expected rate of damage

accumulation. Numerical integration in time may then be used to compute

the total expected damage. For steel, the damage law exponent wi.ll be

taken to be 2 and equation (4.3) becomes

2Nil = 167.1 (5.3)

For reinforced concrete. s is approximately 6 in equation (4.5) so the

damage law will be taken as

(5.4)

The normalization discussed in Section 4.5 for the linear elastic

system will be applied here. Time variables will be normalized by the

natural period of the system. The earthquake-like modulating envelope

described by equation (5.2) will be used. The duration of excitation

t dwill be expressed a 1f natural periods; hence. varying the natural

period is equivalent to varying the duration.

The expected total damage is given in equation (4.43) as
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s 1_ JI..- _

CIl r S

o 0

t d
T

Ps = exp - S a(r,~ ..d dor

0

(s.S)

(5.6)

The integration over ~ is performed by applying equation (4.32) and the

integration over or is performed numerically.

Since large amounts of yielding are assumed, the system will behave

in a nonlinear manner. However. the effects of a system nonlinearity

can often be accounted for approximately by a simple shift in the

damping factor and natural frequency of a linear structure. Therefore,

by studying a linear system. a fundamental understanding of the effects

of duration and ductility ratio on damage may be obtained even for a

nonlinear system.

In Figures 5.2 and 5.3, the expected total damage is shown for a

linearly elastic system. Curves are shown for several levels of

ductility and two values of damping. Figure 5.2 represents a damage

behavior close to that of a steel structure and Figure 5.3 approximates

the behavior of a reinforced concrete structure.

For a fixed ductility level, the expected total damage is primarily

a function which initially increases rapidly with increasing duration,
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then approaches a nearly constant positive slope corresponding to the

stationary damage rate. For a steel structure the expected damage is a

somewhat uniformly increasing function of duration. However, for a

reinforced concrete structure, there is a region below SO periods where

the expected damage is rather insensitive to duration.

As the ductility level increases, the material is cycled further

into its plastic range, and the expected total damage increases. From

equation .(5.5), it is apparent that E[D] is proportional to ~s for a

linear system. Therefore, the damage is a stronger function of the

ductility ratio for the reinforced concrete structure than for the steel

structure. The steel structure is capable of sustaining much greater

levels of ductility than .the reinforced concrete structure without

failure.

In Figures 5.2 and 5.3, structural damping is treated independently

of the ductility factor. Realistically, however, an increase in damping

reduces the system response~ thereby also reducing the ductility factor.

Hence, the net reduction in the damage due to an increase in damping is

greater than the reduction implied in the figures.

5.3 Expected Total Damage - Softening Nonlinear Model

The effect of system softening may be included to better approxi­

mate a yielding system by considering a simple oscillator with a soften­

ing nonlinear elastic spring. Using the same system as in Section 3.3,
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the equation of motion for such a simple oscillator is given by

(5.7)

where ~ and 000 are the fraction of critical damping and the undamped

natural frequency, respectively, associated with small displacements,

xmax is the maximum response of the system, and ~ is the nonlinearity

parameter. -

Statistical linearization techniques may be used to define an

equivalent linear system for which response statistics and expected

total damage are computed. Equation (4.35) is used directly to compute

the expected total damage due to the variation in the power spectral

density caused by the time-varying frequency shift.

In Figures 5.4-5.7, the expected total damage for the softening

nonlinear elastic system subjected to the processes derived in Section

3.2 from the NRC design response spectrum is shown for several values of

the nonlinearity parameter~. Recall that ~ may vary from 0 to any

finite. value with ~ = 0 corresponding to a linear system, and that ~ is

similar to the ductility ratio of a yielding system for values greater

than unity.

Figures 5.4 and 5.5 represent damage behavior based on the damage

law for steel [equation (5.3)], and Figures 5.6 and 5.7 represent damage

behavior based on the damage law for reinforced concrete [equation

(5.4)]. The results are shown for various combinations of duration,

ductility ratio, and damping ratio and plotted against the undamped



- 86 -

l[)

N

5

]J = 2

]J

------------

I

I
I

I
I

/
I

/
/

I
/

/
/

/
/

/
/

/
/'

/'
/'

/'...
/'

]J = 10

I
I

I
I

/
/

/
/

/
/

/
/

/
/

/
I

I
/

/

/
/

/
/

/

= 30
= 10

; = 21.

o
o

o

c
o

d
·..-f 0

tl) .......

C)

d
E
d
O~

.......

I- o
"O~
tl)o

..j.J

o
tl)

Q.
Xl[)

W('Il·o

• -'- .L-._--l._--1._..l.-....l-...l-....l-.L.l ...l-__.l...-_.L--L--.I.--.I.-l.-L..J

o 10 -I lO" 10 I

F requenchJ (H z)

Figure 5.4 Expected Total Damage versus Natural Frequency for a
Softening Steel Structure, ; = 2%. (NRC Design Response
Spectrum)



- 87 -

\1)

N

10 1

5

)1 = 2

)1

---

10

I
/

/
I

I
I

I
I

I
/

/
./

./
,;

,;
./

./
,;

,;

)1

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

/
I

I
I

I
,;

,;
,;

,;
,;

secs

secs

---

10°

Frequenc~ (H z)

t d = 30
----- td = 10
~ = 10%

010-1

o
o

o
o

......

~ ......
(J)

d
E
d

ot:C.
....... 0

d
+'
o

r- o
-oLJ1
~D

..j..I

o
~

Q
XLJ1

We--:
o

Figure 5.5 Expected Total Damage versus Natural Frequency for a
Softening Steel Structure, ~ = 10%. (NRC Design Response
Spectrum)



- 88 -

LD
N

a
a

ll}-'

rn
d
E
d
O~

d

~ = 2%

= 30
= 10

secs

secs

.,,--"- _...

........
o
f- a
1JLD
ll}O

..I-J

Q
ll}

Q.
XLD

W~
a

o
a

010-1

-----=_:-:-=---..;::-:..:-=...=-:...-=-:;-=-=----=-=-=- - - - - - - - - ----

Jl = 1.5

10°
F requencIJ (H z)

10 1

Figure 5.6 Expected Total Damage versus Natural Frequency for a
Softening Reinforced Concrete Structure, ~ = 2%. (NRC
Design Response Spectrum)



- 89 -

jJ = 2.0 _--­

~--~-~-~-~---~--~-~-~-~--------------
~l .....L_=:t=::=:;j:=:!:::::t:::t::C:::E::=-:::-::::::::-:::-:::::=:-::E::::::::ijJ~=::il~.~5~CU:J
010-1 lOll

Frequenc~ (H z)

Figure 5.7 Expected Total Damage versus Natural Frequency for a
Softening Reinforced Concrete Structure, ~ = 10%. (NRC
Design Response Spectrum)



- 90 -

natural frequency associated with small displacements.

The expected total damage of the softening nonlinear elastic system

is qualitatively the same as that of the linear system. The

nonlinearity affects the expected total damage in three ways. First, an

increase in the response amplitude occurs because of the assumed level

of softening in the system resulting in an increase in the amount of

damage per cycle of response. Secondly. the downward frequency shift

reduces the number of response cycles executed for a fixed duration of

excitation. Finally, the frequency shift also changes the effective

power spectral density of the input excitation. The power input to the

system may increase or decrease depending on the slope of the power

spectrum near the small displacement natural frequency of the system.

This, in turn, modifies the response amplitude accordingly.

5.4 Expected Damage Contours

A useful way to display expected damage information is shown in

Figure 5.8. Based on the system which behaves linearly, contours for

expected total damage equal to unity may be presented as a relationship

between the ductility factor of the response and the duration of excita­

tion. In this way, combinations of dUration and ductility factor for

which the expected total damage is greater than or less than unity may

readily be identified.

From Figure 5.8 it is evident that the range of the allowable
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ductility factor is much smaller for the reinforced concrete structure

than for the steel structure. The rapid increase in damage associated

with short durations, along with the strong dependence upon the

ductility ratio, leads to the existence of a sharp threshold for failure

in the reinforced concrete structure.

The expected total damage reflects a mean value of the damage of a

structure. Hence, the allowable ductility factor for a given duration

shown in Figure 5.8 may be taken to be an upper bound of the design

ductility factor of the structure. The value of the damage is, of

course, a function of the failure model employed in the analysis and may

not be applicable to all structures. However, the functional dependence

of the expected damage on the ductility factor and duration is thought

to be representative.

A considerable amount of computation is required to compute

expected damage contours for a nonlinear system. Since the expected

total damage of the softening nonlinear system is less than that for the

linear system, the contours for the linear system may be conservatively

used in place of the contours for the nonlinear system.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In Chapter I. it was proposed that three basic elements be combined

in order to study the effects of duration on the damage of structures.

The first element was to define a nonstationary random process which

models earthquake excitation and corresponds statistically to a desired

response spectrum. The second element was to postulate a model for the

incremental damage of a system. The last element was to compute a

measure of the damage in a simple structure.

In Chapter II the necessary tools to accomplish these tasks were

reviewed. In the first section, random vibration theory was discussed

including methods to compute the response statistics needed to implement

the first-passage probability estimates and cumulative damage expres­

sions. The second section dealt with analytical approaches to the first­

passage probability of a simple oscillator and defined the equations

which would later be used to synthesize the response spectrum consistent

processes. The last section recalled the method of statistical lineari­

zation in order that a nonlinear system could be considered by the first­

passage probability and accumulated damage estimates.

In Chapter III, modulated Gaussian random processes were assumed to

model earthquake-like excitation. The modulating envelope was assumed

fully defined by its duration. Analytical estimates of the first­

passage probability of a simple oscillator were calculated for several

threshold levels. The result were found to be reasonably accurate when
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compared to Monte Carlo simulation. Using the analytical first-passage

probability estimates. power spectrum ordinates were chosen such that

the maximum response exceeded the design spectrum with a predetermined

probability. Actual random processes were computed consistent to the

NRC design response spectrum. The magnitude of the power spectrum found

in this manner varied significantly with duration.

The maximum response of a nonlinear softening system to excitation

specified by a response spectrum was discussed. The role of the first­

passage problem was reversed to find the maximum response of a statisti­

cally linearized nonlinear system. The maximum response of the soften­

ing nonlinear system as function of frequency was found to be similar to

a linear response spectrum which had been translated along an axis of

constant displacement on a log-log pseudo-velocity diagram.

In Chapter IV. the behavior of structural members under cyclic

loads was discussed. A rule analogous to the Miner-Palmgren rule

approach to fatigue was postulated. The rule was used to compute the

mean damage of a system with narrow-banded random response. In partiCU­

lar. it was applied to a simple harmonic oscillator subjected to CL

modulated Gaussian random process. For a special case of the damage

law. a closed form expression was formulated for the expected damage

rate.

In Chapter V. the degree of damage in a simple structure subjected

to excitation specified by a response spectrum was determined. Two

types of structure were considered: a steel structure and a reinforced

concrete structure. The damage law was defined from cyclic bending tests
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performed on steel and reinforced concrete structural members. The

response spectrum consistent random processes computed earlier were used

as input to the system.

It was observed that the damage of a linear structure initially

increases rapidly with increasing duration. and then approaches a

constant positive slope corresponding to the steady-state damage rate.

A steel structure is capable of sustaining much greater levels of

ductility without failure than a reinforced concrete structure. Damage

for a reinforced concrete structure displays a much stronger dependence

on the ductility level of the response than the damage for a steel

structure. When system softening is accounted for through statistical

linearization. results are found similar to the linear system. but with

lesser degrees of damage.

A relatively straightforward analytical procedure has been

presented to estimate the effect of earthquake duration on the damage of

a structure. Based on the results presented herein. it is found that

the duration of excitation and the design ductility level of the

response can have a strong effect on the expected damage of the

structure. Use of the response spectrum alone to specify a design input

ground motion accounts for the dependence of the damage on the ductility

factor of the response. but ignores the effects of the duration of the

excitation. Therefore. it is recommended that some measure of duration

be provided more often in earthquake design specifications and utilized

in the analysis of structural reliability.
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