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ABSTRACT

DYNAMIC ANALYSIS OF MULTISTORY BUILDINGS

by COMPONENT MODE SYNTHESIS

Modal and transient analyses of a linearly elastic building subjected to

ground accelerations are core and time intensive computations. To save

computing time and to solve the problem at a lower core requirement, a unique

combination of reduction procedures, with fixed-interface component mode

synthesis as the central theme augmented by static condensation and Guyan

reduction, is formulated and implemented for the given structure and load

case •.

The method of fixed-interface component synthesis reduces component

matrices by transforming them into a linear space spanned by boundary degrees

of freedom and a truncated set of normal mode shapes extracted from components

with fixed boundaries. Static condensation reduces the matrices entering

component eigensolutions. Guyan reduction, a step employed after synthesis,

eliminates degrees of freedom on the boundary. The outcomes are substantially

reduced system matrices for eigensolution and transient analyses.

A six-story 3-D frame was solved for natural frequencies and mode shapes.

The validity of the procedures and program was established by comparing

results to that obtained from SUPERSAP, a general purpose finite element

program. The agreement is very. good. A twelve-story three-dimensional

building with an L-shape floor plan was also analyzed. The results indicate
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that the combined procedures are advantageous in terms of convergence, the

structural characteristics preserved and the percentage of reduction achieved.

The results also confirm the importance of floor flexibility in the example

studied. Assuming inadequate diaphragm design, other cases in which the floor

flexibility can be a significant factor are: buildings with U, T or H-shape

floor plan, buildings having setback or local irregularities, buildings

supporting heavy masses on floors. The procedures are suitable for the given

structure and load case because of the stiffness characteristics of a building

and the predominance of lower component and system. modes. The penalties

partially offsetting the advantages are the needs to solve component

eigensolutions and to perform many transformations.
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1.0 INTRODUCTION

The main theme of the research effort is the application of

fixed-interface component mode synthesis, augmented by static

condensation and Guyanreduction, in order to evaluate dynamic

characteristics and displacement response of a linear17 elastic

multistory building subjected to ground accelerations.

To date, application of th~ fixed-interface component mode method

to buildings has been. limited to a few highly idealized cases. Efforts

are made here to formulate and implement the method as applied to

seismic analyses of large bUildings, and also to test as well as

examine its· feasibility, advantages and disadvantages. In formulating

the modal synthesis, several simplified transformations are derived to

upgrade computing efficiency.

The component mode !I1ethod is a dynamic substructuring technique

within the general domain of the fini te e~ement approach. By this

method, normal mode shapes are extracted from components·

(substructures) and then used to obtain a reduced master model defined

over physical coordinates (boundary coordinates) and generalized

coordinates (component normal mode shapes). The master model is then

analyzed at lower time and core requirements than that req1tired of an

unreduced full scale model. The' fixed-interface component mode

method' is selected for its compatibility at the boundaries and its

clarity in implementation.
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To take advantage of the high stiffness in a floor plane, static

condensation is applied before modal synthesis and Guyan reduction is

applied afterward. The Guyan reduction serves to reduce the boundary

DOr, which are wholly retained after synthesis. This unique

combination of procedures resulted in a substantial reduction in the

model size at both component and system levels when applied to solve a

twelve-story 3-D building.

The preservation of the dynamic characteristics of components and

part of the saving in core and computing time are achieved by the use

of a truncated set of component modes. A small truncated set may be

used for the given type of problem because of low input energy'

imparting onto higher modes and low participation by higher modes.,

Additional savings are achieved by sharing the same allocated core for

sequential computations of many components. The penalties partially

offsetting the above advantages are the needs to solve component

eigenvalue problems and to perform many additional transformations.



2.0 STATE-OF-THE-ART

2.1 Seismic Analysis

The typical configuration of a building is a three-dimensional (3-

D) moment-resisting frame, with or without bracing members and shear

walls. The bracing members and shear walls serve to enhance the

lateral stiffness. Floor, diaphragms serve to couple shear walls and

frames together, forcing them to respond as a system. During

earthquakes, the ground displacement and rocking motions experienced by

a building are approximately equivalent to time-varYing horizontal and

vertical. forces consisting of v~rious frequency comIlonents. They are

random in both form and magnitude. The response of a building depends

on the intensities and time history of ground motions and the dynamic

properties of the building-foundation-soil system.

Given a set of earthquake load sIlecifications, the goals of

se~smic analysis are to ensure design adequacy in terms of requirements

(such as . allowable stresses and story drifts) and to improve

reliabili ty and economy within these requirements. Currently, there

are three methods by which. earthquake loads are sIlecified: (a)

eqUivalent static force, (b) design response spectra, and (c) time

history of ground accelerations. A brief discussion is as follws.

The equivalent static force is primarily an apprOXimation to the

first mode effect. An example of equivalent static forces is that
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specified by the Uniform Building Code (1 ) , *' which consists of the

magnitude and distribution of lateral loads over the height of a

building. The required 9 minimum total lateral seismic force' is based

on factors such as the seismic zone coefficient, occupancy importance

factor, horizontal force factor (based on building frame type), seismic

coefficient (as function of the period of fundamental mode), local

geology and soil condition factor, and total dead load. Somewhat

different but similar forms of equivalent static forces are specified

by, the Applied Technology Council (2) • Regardless of the details and

scale factors, this method prOVides an approximation to the first mode

dynamic loads , with adjustment to partially account for the second

mode effect ~ One drawback is that all higher modes are neglected.

Another drawback is that static analysis alone renders little insight

into the dynamic characteristics of the system and hence it is less

effective in uncovering undesirable aspects of a design.

A design response spectrum consists of a family of curves, where

every point represents the absolute value of the maximum (peak)

response of a single-degree-of-freedom (SDOF) system to a given time

history of ground accelerations. The maximum responses of a, set of

SDOF systems having the same damping value are plotted on the same

curve, where the abscissa is the natural frequency (or period) of the

SDOF system; and the ordinate is the maximum response. The response

*Parenthetical references placed superior-to the line of text refer
to the bibliography.



may be either displacement, velocity, or acceleration; its values as

function of time are calculated from numerical integration. It should

be noted that the time at which a peak response occurs is not shown on

the curve. It should also be noted that it is an implicit way of

specifying the loads; i.e. it shows how a set of SDOF systems react to

a given time history of ground accelerations without indicating what

the history is. To design for such load specification, modal analysis

is first pe~fOrmed to calculate the natural frequencies and mode

shapes. The responses of individual modes are then calculated from the

curves and the SDOF system parameters, which are damping values and

natural frequencies (or periods). A popular method to estimate the

maximum of a response quantity, for- example, the displacement at a

nodal point, is to calculate the square root of the sum of the squares

(SRSS) of the modal values of that response quantity. No numerical

integration is needed. Such estimate of maximum response is often

satifactory, but its accuracy may not be good if the system has closely

spaced frequencies.

The time history of ground accelerations explicitly describes the

amplitude, the frequency conten~s and duration of random pulses.

Although they are not likely to reoccur,the data do allow for accurate

simulation of building vibration in response to one possible sequence

of events.

To arrive at an economical design that satisfies requirements, the

following items may be considered:

5
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1. Adequate lateral stiffness and good load transfer among
different regions so that lateral displacements and
resulting stresses are below target limits.

2. Appropriate frequency characteristics of the building for
the local geological and soil conditions so that the dynamic
loads induced are lower.

3. Appropriate bUilding configuration so that dynamic effects
and undesirable vibration modes are minimized.

4. Balanced deflection patterns and sufficient ductility so
that much energy can be safely absorbed or dissipated during
elastic or inelastic deformation.

Modal analysis and response history analysis using finite element

models are the best approaches to provide information needed for

evaluating a design from the above viewpoints. But they are core and

time intensive computations. There is always a need to save cost. In

addition, unreduced full scale models may be too big to run on an

available facility.

2.2 Model Reduction

One way to stretch hardware capacity so that the same amount of

available core can be used to solve a larger problem and to save

computing cost is to reduce the size of a full scale modal. This can

be accomplished by using reduction techniques discussed below.



2.2.1 Substructuring and Static Condensation

The key idea of static condensation in reducing the stiffness

matrix is to eliminate 'unwanted' interior degrees of freedom (DOF) by

expressing them in terms of a set of DOF to be retained. The operation

is equivalent to partially executed Gaussian eliminations. Static

condensation can be applied to reduce a· global model. It can also be

applied to substructures before they are assembled.

Many computer codes adopt the static condensation technique. For

example, ANSYS provides a "super-element' feature permitting the user

to apply static substructuring to reduce model size. An0ther example

is the TAB program family, i.e. ETABS, TABS and TilS '77, which was

specifically developed for analysis of large buildings. For a three­

dim~nsional buildin~, the program automatically performs- static

condensation floor by floor, retaining only three DOF per floor,

namely, two horizontal translation DOF and one rotational DOF about the

vertical axis passing through the mass centroid of the floor.

When the method is applied to dynamic problems, the drawbacks are:

(a) the local mode shapes involVing eliminated DOF are lost, and (b)

the lumping of masses to the retained DOF is done by judgement. In the

case of TAB program family, the reduction scheme implies that, in all

vibration mode shapes extracted from the reduc-ed model, every floor

collectively acts like a rigid body having only three out of six

possible rigid body DOF. This is a good approximation for the type of

bUildings in which floor systems are very stiff and floor plans are

7



convex shapes with low aspect ratios. In reality, many buildings do
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not fall in this category. Incidentally, another problem with the TAB

programs is that they cannot accommodate bracing members that run in a

vertical plane across several floors, a design feature that is

incorporated in many high-rise buildings.

2.2.2 Guyan Reduction

To facilitate reduction in dynamic problems, Guyan c:~) extended

static condensation. In his formulation, .the same transformation

relating the complete set and the reduced set of coordinates was used

to reduce the mass matrix so that the kinetic energy is invariant to

coordinate transformation. It is a significant improvement over static

condensa.tion in that the mass lumping is based on stiffness

relationships rather than judgement. But, again, the local mode shapes

involving eliminated DOF are lost.

When local mode shapes reflecting floor flexibility are
..

significant, an appropriate way to economically include them in the

system model is the method of component mode synthesis.

2.2.3 Component Mode Synthesis

Since Hurty's (4) first proposal in 1960, the method of component

mode synthesis (eMS) has been extensively applied in the aerospace

industry. The method was initially slow in spreading, but recently

there has been rapid proliferation in application to other fields.
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Excellent reviews of the subject were provided by Craig(5), Noor(6),

Nelson(7) and Meirovitch(8). Their reports have served as a guide to

this short survey.

The procedures of component mode synthesis are as follows:

1. Fom stiffness and mass matrices and solve the eigenvalue
problem for all substructures.

2. Perform coordinate transformations to reduce all component
matrices. The new set of DOF consists of physical
coordinates and a truncated set of normal coordinates.

3. Assemble all respective component matrices to obtain system
stiffness and mass matrices.

4. Solve the master model for static or dynamic responses.
Provide adjustment at the boundaries if necessary.

The key is the use of a truncated set of component normal modes as

generalized coordinates. It is reallran extension of the Ritz method.

Without truncation, the process would simply be extra exercises.

Without the use of normal modes, the convergence will most likely be

very poor.

Methods of component mode synthesis differ in the way

compatibility at the boundaries (components interfaces) is enforced.

The first method is Hurty's 'fixed-interface normal mode' method(4).

His method requires that all boundary DOF are retained and that for the

purpose of calculating component normal modes the component boundaries

are fixed. The consequences are these:' (a) Compatibility at the

boundary DOF is not impai:t"ed. After component matrices are assembled,

it is not necessary to adjust the boundaries to account for component
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interactions. (b) The reduction is carried out in the interior regions

only. The total number of boundary DOF remains the same.

The second approach was proposed by Gladwell(9). A component with

a fixed interface is attached to another component which is free at the

same interface. The modes of a substructure are calculated with all

other connected substructures assumed to be rigid. This approach is

called the 'branch component' method. It is suitable for chain-like

structures. The third method t proposed by Go Idman and Hou ( 10), is

called the ' free-interface normal mode' method. There are hybrid

versions of these three methods by MacNeal and Klosterman(11). Details

of these methods can be found in the Iiterature cited; however, the

mai~ focus here is the' fixed-interface method.

Applications of the methods to different types of structures are

summarized as follows:

(a) •. Idealized structures: cylindrical shell mounted to a flat

plate by Cromer( 12), two flat plates joined at a right angle by

Jezequel(13) and L-shaped bent cantilever beam by Hurty(4).

(b) Aerospace structures: launch vehicle by McAleese(14), Saturn

V by GrimesC15),. general aerospace structure by Seaholm(16), space

shuttle by Fralich(17) and by Zalesak(18), spacecraft by Case(19),.

spacecraft by Kuhar(20), missile by Gubser(21), and Viking orbiter by

Wada (22) •

(c) Mechanical structures:

Klosterman(11, 2;, 24), railroad cars

by Srinivasan(26,) and by Perlman(27) ,

automobile components by

by Bronowicki(25), turbine blades

and rotor bearing by Glasgow(28).
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Cd) Civil engineering structures: piping system by Singh(29), rod

group supported by thick circular plate by Lee(30), soil-structure

interaction, by Gutierrez(31), building and machine foundation by

Warburton(32), two-story plane frame by Hurty(4), multistory shear

building by Kukreti(33), two-story plane frame by Gladwell(9).

2.3 Remarks and Objectives

After reviewing the works related, to model reduction procedures,

the following observations are apparent:

1. Applications of the fixed-in.terface component mbde method to
buildings have to date been' limited to a fe~ highly
idealized cases such as 'shear building" or very small plane
frame. A procedure that works well .in a two-dimensional
case may encounter difficulties when it is extended to a
three-dimensional case. Whereas the component mode
synthesis method has been implemented in the MSC/NASTRAN, it
was not developed specifically for the case of a building
for which justifiable treatments can lead to better
computing efficiency.

2. No work has been done to employ all three reduction
procedures, allowing each one to complement the others,
whenever structure reality permits. As will be discussed in
the next chapter, some chracteristics of a bUilding can be
utilized to achieve reduction in addition to what can be
accomplished by the method of component mode synthesis
alone.

3., Many computer codes developed for analyzing buildings are
based on the assumption that floor systems are rigid in
plane during vibration. It is a good approximation when the
floor plan is a convex shape with a low aspect ratio. For
buildings with other types of floor plans such as L, H, T
and U-shapes, or buildings having setbacks or ,local
irregularities, or buildings supporting heavy equipment,
failure to account for floor flexibility in the model when



the diaphragm design is inadequate can lead to detrimental
errors.

The objectives of this work therefore are:

12

1. Formulate and implement the method of
component mode synthesis as applied to
building subjected to ground accelerations.

fixed-interface
the case of a

2. Investigate the feasibility, advantages and disadvantages of
the method by examining its procedures and by making a case
study which will also demonstrate that a medium-sized
building can be solved by the program using a limited amount
of core.

;~ Achieve a large percentage of reduction, so that the average
retained DOF per floor is larger, but not much greater than
three DOF per floor; and that important dynamic properties
are preserved in the reduced system. An average retained
DOF per floor of value between 12 to 36" will be satisfying.
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3.0 FINITE ELEMENT MODEL, REDUCTION AND SOLUTION

3.1 Model Reduction

Before the finite element model of a building is presented, it is

-useful to discuss some structural realities that lead to a combination

of reduction procedures to be used in this work. First, a building

behaves laterally like a vertical cantilever beam. The axial (or in-

plane stretChing) and bending stiffness of a floor are usu&lly higher

than the overall lateral stiffness of a building. The lower local

modes of a floor may be of some significance, but the higher local

modes would most likely be of little importance to the system. Second,

within a floor sjstem, the arial stiffness is higher than the flexural

bending stiffness. Several joints in a girder would have nearly equal

axial displacements along its axis. Thus along the same girder, one

may condense out some axial DOr while retaining a selected number of

DOF to preserve the most flexible local modes, which are in-plane and

out-of-plane flexural bending modes. This concept is illustrated in

Figures 1 and 2, where the numbers of retained boundary DOF are 24 and

9, respectively. The total number of translational DOr per boundary is

42. Since there is little kinetic energy associated with rotational

DOF, a well accepted fact underlying the use of translational lump

masses, all rotational DOF may be condensed out.

The reduction procedures to be employed are as follows:



Figure 1

Figure 2

z Y

'Lx

~ 36' ... 32' I- 32' _I' 32'

Retained DOF on Boundary Floor-Pa.ttern A

A
~

z y

\L. X--
~

L f' ~ ~. ~.

B 36'- 32' 32' _' 32 ' .1 CJ..--::'..:::..._+I--..::.::._+,J....;:::.:.._-;.,.--..:=--..,

Retained. DOF on Bounda.ry Floor-Fa.~tern B

14



15

1. For interior nodes in each component, use static
condensation to condense out all rotational DOF· and some
translational DOF that are connected by high stiffness to
other retained DOF on the same floor.

2. For each component, which includes several floors, apply the
eMS method to reduce the remaining DOF in its interior
region. The component normal modes extracted and included
ar& inter-floor local modes.

3. For the sys!:em after synthesis, use Guyan reduction to
eliminate all rotational DOF and some translational DOF that
are connected by high stiffness to other retained Dar on the
same floor. This is done at all boundaries.

As stated previously, by the fixed-interface component mode

method, only interior DOF are reduced. All boundary DOF must be

retained. This works out nicely for small plane frames. For larger

building structures, the model size after synthesis is still large.

The Guyan reduction used here serves to reduce Dar at the boundaries.

The application of both. static condensation and Guyan reduction

therefore enhances the merit of the component mode method when applied

to building structures. The combined procedures are appropriate

because of favorable structure realities.

The TAB program family retains only three out of six possible

rigid bodY. DOF of> a floor .. As discussed previously, it is a good

approximation when the floor plan is a convex shape with a low aspect

ratio.. For bUildings in which the floor flexibility is a significant

factor, failure to account for it can lead to detrimental errors in

assessing design adequacy. The reduction procedures employed here

prOVide a good compromise between an unreduced model and oversimplified

ones.
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-During the combined reduction processes, the stiffness and mass

matrices are defined over a total of six coordinate systems. They are:

1. Coordinates before static condensation at the component
level. With respect to the references, component matrices
and vectors are formed.

2. Coordinates after static condensation at the component
level. With respect to the references, the reduced
component matrices and vectors are defined.

3. Mixed coordinates for components. With respect to the
references, further reduced component matrices and vectors
are defined. The reduction is the outcome of discarding
higher component modes.

4. Mixed cooordinates for the system after synthesis. The
component matrices and vectors are transformed and
assembled.

5. Mixed coordinates for the system after Guyan reduction.
Based on the new references, the reduced system matrices and
vector are defined.

6. Normal coordinates of the system after decoupling. System
matrices and vector are redefined. A truncated set of
system normal modes is then taken.

The combined reduction in model size is sUbstantial, but the

resulting increase in programming efforts for transformations and book-

keeping is enormous.
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;.2 Equation of Motion

For a component, the unreduced equation of motion subjected to

ground acceleration is

(;-1)

where

[~M] = component mass matrix

[ K] = component stiffness matrix

[ C] = component damping matrix

{~oabsSt)} = absolute or total accelerations

{u(t)}· displacement relative to the ground

{F} = interaction forces at the common boundaries

In these terms, a subsript 'i' indicating the component number is

implied, although not explicitly printed. These variables are defined

over global coordinates (X,I,Z). A component mass matrix is formed by

directly lumping masses to the the boundary DOF and to the interior DOF

that are to be retained. A component stiffness matrix is formed by

assembling element stiffness matrices in global coordinates. The

element stiffness matrices in local and global coordinates are- given in

APPENDIX A.

The total acceleration may be expressed as

(;-2)

in which the scalar time series d O

g ( t) are ground acclerations,
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and fa} is a vector indicating the scale factors. It is constructed as

follows: assign value '0' to all rotational DOF and assign values ax'

ay, and az to translational DOF parallel to global axes X, Y and Z,

respectively. The horizontal direction of the earthquake is indicated

by the vector (ax,ay). Eq.(3-1) can now be rewritten as

[-M](~·(t)} + [C](d(t)} + [K](u(t)}

~ ('Peff(t)} ~ {F}

... ("'M]{a} (-d·g(t)) + IF}

... {1 peff}O (-d·g(t)) + IF}

where the superscript to the left of a variable indicates. the

coordinate system. The seismic load vector is based on an unreduced

diagonal mass. matrix. The scalar time function is factored out for

convenience in programming.

The initial finite element models of the components are

subsequently reduced through static condensation and component mode

synthesis at the component level, and through Guyan reduction and modal

decoupling at the system level before solution: for responses. Each of

these operations re~ults in a new set of stiffness and mass matrices as

well as load vector. After synthesis, the system equation of motion

remains the same in form as that of a component shown above; except

that at all boundaries the respective sum of component interactions

vanishes. They are internal forces of the system, and they must cancel

(or be in equilibrium) themselves at every common boundary.
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The damping matrix [C] is never formed. Instead, damping ratios

are assigned to the uncoupled modes of the synthesized system. This is

a matter of choice, because these two methods of assigning damping are

directly related.

3.3 Static Condensation and Guyan Reduction

Let the static force-displacement relation be

[K]{u} = {F}

or

where

[K] = stiffness matrix

{u} = displacement vector

{F} = load vector

(3-4)

The subscript'B' indicates boundary or DOF that are to be

retained, while the subcript 'I' denotes interior or DOF that are to be

eliminated. There are no seismic loads or inertial forces at the

unwanted interior DOF, because no masses are assigned to them. After

static condensation, the new static force-displacement relation becomes

where
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(3-5)

and the solution is,

Equations (3-6) and (3-5) can be derived by rewriting Eq.

(3-4) into two equations, solving the second to get

(3-7)

and then substituting lUI} back to the first equation•

.The static condensation can be readily applied to a dynamic

problem when the mass matrix has the form

[
MBB 0][1(1 a

° 0

If the mass matrix is, s1'larse, namelY',

then'a more general 1'lrocedure known as Guyan reduction is needed. By

Guyan reduction (3), the reduced stiffness matrix is calculated in

exactly the same way as that indicated by Eq.(3-S). The reduced mass

matrix is,

[M*BB] • [M:sB] - [M:SI][KII]-1[KIB]

- ([KII]-1[Kr:s])' ([MIB] - [MII][KII]-1[KIB]) (3-8)

The reduction process to obtain [K*BB] is equivalent to the

transformation



21

in which [T] is such that

where

and

Likewise, the reduction from [M] to [M\\B] is equivalent to the

transformation

Both Eq.(3-5) and Eq.(3-8) can be deduced from the potential

energy

and the kinetic energy

respective17, the latter expression was proposed by GU7an.
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3.4 Fixed-Interface Component Mode Synthesis

In order to focus attention to the required operations on

stiffness and mass matrices, the free vibration case is discussed

first, which is then followed by the forced vibration case.

3.4.1 Undamped Free Vibration

Let Iu} be the nodal displacement vector. After the component

stiffness and mass' matrices are formed and condensed statically, the

component equation of motion under undamped free vibration is
..

[K*J{u} '., ["'M*J !d'} • to}

in which

luI • t:l

and

(3-11 )

where the subscripts •B' and •I' denote boundary and interior DOF,

respectively. The diagonal mass matrix remains the same after static

condensation. As stated previously, damping values will be assigned to



individual modes of the synthesized system.
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Hence, without loss of

generality, the damping matrix is dropped in this section.

The eigenvalue problem for a component with fixed-boundaries is

*now solved to obtain eigenvalues wn and eigenvectors {T n1, where

n"1 ,2•••Nr ' and Nr is the number of interior DOr of the component.

The modal matrix is [T*NIl]' its j-th column being the j-th eigenvector.

Henceforth, [T*NNJ will be written as [T*nr]' where I denotes interior

DOF in u-coordinates and N denotes normal (natural) mode coordinates.

The coordinate transformation, as Hurty proposed, is

(;-12)

where

The reason for such a transformation is apparent from the developments

to follow. The submatrices derived by Hurty are:

1. The submatrix [T*~B] relates tUB} to lPB} to maintain

compatibility at the boundary.

2 .. The submatrix [T*:rnJ is the modal matrix of the component with

fixed-boundary.

3. The submatrix [T*IBJ is defined by
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(3-14)

The derivation will be shown later.

4. The null submatrix is a consequence of the 'fixed-interface',

namely, the amplitudes {PM} contribute nothing to fUEl.

In this work,

is selected to simplify further development. This requires an one to

one coordinate transformation between !uB} and {PB}. There are a total

of Nr mutually orthogonal component normal modes. Less than Nr modes

* . *'will be taken, so both [T ] and [T IN] become rectangular matrices.

Note that if no component normal mode is retained, then [T*] • C'r*BB'

T*'IB •) t, and hence {urI ... [T*'IB] {PBI ,0 which is the same transformation

for static condensation.

To see that Eq.(3-14) is true, consider Eqs.(3-12) and (3-13) and

a dynamic equilibrium relation

where the force vector on the right hand side includes all dynamic

both of the load vectors {PN} and

forces. Now

Correspondingly,

Therefore,

let
~

the normal mode displacement ... fo 1.
vanish.

and
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Comparing the two expressions, we get Eq.(3-14).

After transformation, the component equation of free vibration

becomes

(3-16)

where

(3-17)

and

(3-18)

The procedures to perform the transformations efficiently are discussed

in a later section•.

Next the system generalized coordinates (q} are defined such that

where N denotes 'component normal modes'. Compatibility at the boudary

is maintained through transformation from !PBl to !qB} via [TB]. The

matrix [TN] is a Boolean matrix relating each DOF in tPN} to an

appropriate location in !qN}.

Now let the whole transformation matrix above be [T]. Upon

completion of transformation, the component equation of free vibration

is

(3-20)
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where

[K] ,. [T]' [k][T]

and

[M] ,. [TJ'[m][T]

In the above expressions, a subscript 'i' indicating the component

number is implied. The same procedures can be applied to all

components. The stiffness and mass matrices for the region not

included in any component can be formed in lq} coordinates, or in other

coordinates and then transformed. The next step is to assemble the

component matrices to obtain system matrices.

Indeed p the fixed interfaces allow for relatively straightforward

implementation, Once component matrices are transformed to q­

coordinates, they may be assembled to form system matrices by the same

procedures as that used in static condensation.

Up to this point the boundaries have never been reduced. If

further reduction of model size is needed, Guyan reduction may be

applied,. because the mass matrix is now sparse. When it is completed,

the system equation of motion for free vibration is,

[K]{q} + [M]I~'} ,. {OJ (;-21)
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3.4.2 Forced Vibration

For the case of forced vibration under ground accelerations, the

'appropriate forms' of the seismic load vector as described in section

(:;.2) should be used to replace the null load vectors in the free

vibration equations. The procedures to obtain the 'appropriate forms'

of the seismic load vector are as follows:

The unreduced seismic load vector of a component is the first term

on the right hand side of Eq.(:;.3). Each one of the subsequent

reduction processes is equivalent to a specific coordinate

transformatio~. Consequently, the loading should be transformed

according to the folloWing general equation

12 1 2'[T ]. { Peff(t)} .. { Peff(t)} (:;-22)

where [T12], denotes thfo transpose of the transformation matrix

from coordinate system 1 to 2, i.e., [T12] is such that !l x} •

[T12]{2x}. Thus" the seq.uences of computations are:

1. For static condensation at the component level, simply
delete the zero terms associated wi th the unwanted interior
DOF. No computation is necessary, because no mass is
allocated to any unwanted interior DOF and hence no inertial
force is generated there.

2. Parallel
Eq. (3-22)
described
vector.

to the operations on each component, apply
and the applicable rotation matrix in the form
in Eq..(3-13) to transform the component load

:;. Assemble the component load vectors to form the system load
vector. This step is eq.uivalent to the transformation
defined by Eq.(3-19).

4. Corresponding to Guyan reduction at the system level, apply
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Eq. (3-22) and the rotation matrix given in Eq. (3-1 0) to
reduce the system load vector.

3.5 Efficient Matrix Operations

By taking advantage of the choice of [T*BBJ = ['I], lump masses,

the zero submatrix, and the orthonormal property of [T*INJv expressions

can be derived to efficiently carry out the transformations given in

Eqs. (3-17) and (3-18) •

.
Let the outcome of the matrix operations defined by Eq.(3-17) be

Using the expressions given in Eqs.(3-13),(3-15) and (3-14) to evaluate

Eq.(3-17), we get

if component mode shapes are normalized, and

as result of cancellations, and

(3-24)

where the" operation required to get [kBBJ is precisely the same as that

required in Guyan reduction and static condensation as shown in

Eq.(3-5) •.

Likewise, let the outcome of Eq.(3-18) be
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(3-25)

Using the expressions given in Eqs. (3-13),(3-15) and (3-14),

knowing that the component mass matrix remains diagonal after static

condensation as a consequence of our method of assigning the unreduced

component mass matrix, we can evaluate Eq.(3-18) to obtain

[mBB] ['mBB*] + [TIB*], ['mII*] [TIB*]

[mBN] [TIB*], ['mII*] [TIN*J

[mNB] [mBN]'

and

(3-26)

To reiterate, these equations are based on fixed interfaces, a diagonal

mass matrix entering CMS, [TBB*] ... ['rJ and norm~lized compop.ent

eigenvectors. They are substantially more simplified than the

submatrices that can be derived otherwise. It should also be noted

that [mBB] is essentially the same as the Guyan mass matrix defined in

Eq. (3-8), except that the reqUired operation here is much simpler

because of the diagonal mass matrix entering CMS.

As stated previously, the operation defined by Eq.(3-S) is

equivalent to the partially executed Gaussian elimination. We can see

this by considering the following

(3-27)

After partial triangularization, we have
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(3-28)

Rewriting the first equation, we get

(3-29)

Comparing the expression to Eq.(3-S), we see that indeed the matrix

[!BB] derived from partial triangularization is the stiffness matrix

desired.

bypassed.

The matrix inversion and multiplications are therefore

Finally, a novel process can be used to calculate the ubiqui tous

transformation matrix given in Eq.(3':'10).. Suppose we further reduce.

Eq. (3-28) to the following form,

Rewriting the second equation, we get

Comparing this expression to Eq.(3-7), it is evident that
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3_6 System Response to Ground Accelerations

The response of a linear system to time varying ground

/ accelerations can be determined by decoupling the equation into a

truncated set of SDOF systems, solving for individual modal responses,

and then adding them up_ It is a standard procedure_ Because of

truncation, this approach is much more economical than the direct

integration method, by which the dynamic equilibrium relating several

whole matrices must be satisfied at all integration steps_ Such a

requirement is compounded by the need .to use very small time increments

in order to maintain accuracy and to minimize numerical damping_

3.6.1 Decoupling of System Equation of Motion

After the system matrices are formed and condensed, the system

equation 'of motion in {q} coordinates is,

[M]{<1.-(t)} ... [CJ{<1.(t)} ... [K]!q(t)} .. {qPeff(t)}

.. {qPeff}O (-d·g{t) )

where

[M] =mass matrix

[C] - damping matrix

[K] .. stiffness matrix

{qPeff(t)} .. effective seismic load

ld-g(t)} .. time series of ground accelerations

0-31 )
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The first step is to solve the eigenvalue problem

[M]{~·(t)} + [K]{q(t)} • to}

or

to obtain the natural frequencies wn and the corresponding eigenvectors

or mode shapes {Tn}' n=1,2••• Nq • The modal matrix is [T], each of its

columns is an eigenvector. The solution is based on an undamped system,

because the effect of damping on natural frequencies is nil.

Due to symmetry in [IC] and [M] or Betti's Law, the mode shapes

obtained from Eq.(3-32) satisfy orthogonal conditions as follows,

{Tm}'[M]{Tnl • 0

{Tml ,[ICJ{Tn} ,. 0 ..

for m not equal to n, and

Mn ,. ITn} '[M] {Tn}

Kn ,. {Tn}' [KJ{Tn} • Wn
2Mn (:;-34)

fo r m-n. The damping ma trix is assumed to satisfy the orthogonality

conditions

for m not equal to n, and

(3-35)

(3-36)

for man. At this juncture, a damping value is assigned to each

individual mode in the form of the damping ratio drn •
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. The orthogonality conditions permit decoupling as shown below_

Premultiplying Eq_(;-;1) by [T]', applying a transformation

(;-;7)

and using the orthogonali.ty conditions, the system equation of motion

is reduced to Nq-decoupled 5DOF equations of motion in the form

or

where the damping ratio of the n-th mode drn=Cn/2Mnwn • The loading

imparting onto the n-th mode is,

Pn(t) .. {T~},{qPeff(t)} .. {Tnl,{qPefflO(-tl-g(t))

.. ~ (-tl·g(t))

where En is the 'modal earthquake exc,-tation. factor,' a term used by

Clough and Penzien. It is directly proportional to the scalar product

of the n-th mode shape and the spatial distribution of the seismic load

vector. It partially accounts for the predominance of lower modes for

the given type of problem. The 'modal participation factor,' a term

used by Biggs, is equal to En/J.~.. The two factors are equivalent when

mode shapes are orthonormalized.

In . Eq.(;-;7), the whole modal matrix is used to maintain

generality. In application, a truncated transformation matrix may be

used to obtain the lowest N' modes that are significant.
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;4

;.6.2 Solution of Modal and System Responses

Assuming a system initially at rest, the solution of Eq.(;-;8) is

QnC t) .. (1 / Wdn)

(lIMn) [fo t Pn(x) .-drnwn( t-x) sinwdn( t-x)dx]

or

Qn(t) • (l/wdn) (En/Mn)

[Jot (-d·g(x» e-drnwn(t-x) ~inwdn(t-x)dX]

where. the damped natural frequency wdn '"' Wn(1-d r
2)1/2. Using the step-

wise explicit integration method discussed in APPENDIX C to evaluate

Eq.(;-40) , the N' modal responses are calculated and then added

according to Eq.(3-37) to obtain the time history of system response

{q( t) }o' Those modes that are higher than N' can be neglected.
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4.0 EXAMPLE

The validity of the procedures and program was established by

solving a six-story 3-D frame discussed in APPENDIX D. This chapter

presents an example that was done to demonstrate that a fairly large 3­

D building can be analyzed by the procedures using a limited amount of

core. The results are quite interesting; they substantiate the

importance of the floor flexibility mentioned in chapter 3, among other

things.

Figure 3· shows a perspective view of the twelve story 3-D

building.. Figure 4 shows a typical floor framing plan. The floor plan

and lump mass distribution are. applicable to all floors. The dead

weight is 940 kips per floor t which is eqUivalent to 133.2 psf. x­

bracing members are used in vertical planes 4-6, 7-8 and 13-14. The'

bracing layout. is similar- to that of a floor plan. Table shows the

size of structure members. In the table, Ie and I sp are component

number and section property number, respectively. Although the design

features and dimensions are assumed t they are realistic.

The building was represented by four components numbered

sequentially upward. There wera three common boundaries and an

optional roof boundary. The latter was included to enhance accuracy,

the former were needed to maintain compatibility.

For both components No.2 and 3, the DOF number was reduced from

336 (or 4x14x6) to 252 (or 2x84+2x42) when all. rotational DOF of
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Figure 3 A Perspective View of· the Building
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Note: 1. The signs I & H indicate positioning of columns.

2. tl :II node number

3. Lamp masses :

m1 .. 0.101367

mz 0.202733

m3 0.304097

2kip-Sec / in

4. Heavy line indicate:t a vertical plane frame with

diagonal bracing.

Figure 4 Typical m,oor and Roof Framing Plan
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(The program permits further

reduction of some translational DOP in the interior.) For the ot.her

two components ~ the DOr number· was similarily reduced. On the roof

boundary, all rotational DOr were treated as unwanted interior nor and

were condens~d out at the component level.

There were two interior noors in each of the four components.

The dimension of all matrices entering the component eigensolution was

84 or 2X14X3. The number of normal modes in a component was therefore

To simplify presentation, the following modeling parameters are

defined: (a) NB .. the number of retained DOr per boundary , (b) NR •

the' number at: retained DOl' on the roof, (0) N' = the-number of -retained

modes per cOtlIponent~ and (d) N'C • the number. of components taken. By

changing these parameters, the following cases were solved.

model had 342 Dor : 4x12 component modes, 42 DOr on the roof and

3X14x6 DOF on the common boundaries. The Guyan reduction cut the model

size down to 162 DOF, which included 24 retained DOl' per common

boundary as shown in Figure 1. This is an 84 % reduction from the

unreduced mOdel haVing a total of 1008 DOF. The operations required a

main array of 57K plus nominal common areas.

Table 2 shows the

oacula.ted natural frequencies of the first 13 modes. Evidently, when

all the other conditions rema.in the same, the calculated natural
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Table 2. Calculated System Natural Frequencies, CPS

MOde number
NR=42 , NB=24, NC=4

N'=! N'=4 N'=6 NW=12 N'=24 N'==36

1 0.3845 0.3841 0.3841 0.3841 0.3841 0.3841

2 0.5126 0.5111 0.5111 0.5111 0.5111 0.5111

3 0.7660 0.7624 0.7623 0.7621 0.7619 0.7619

4 1.1219 1.1117 1.1117 1.1115 1.1115 1.1115

5 1.4789 1.4582 1.4576 1.4573 1.4572 1.4572

6 2.0486 1.9809 1.9809 1.9765 1. 9762 1. 9762

7 2.1434 2.0975 2.0959 2.0930 2.0914 2.0913

8 2.2070 2.1568 2.1524 2.1452 2.1407 2.1407

9 2.5917 2.5513 2.5446 2.5413 2.5400 2.5400

10 2.9629 2.9116 2.9115 2.8801 2.8787 2.8787

11 ,3.3481 3.2149 3.2079 3.1894 3.1803 3.1801

12 '3'.4132 3.3027 3.2837 3.2755 3.2729 3.2726

13 3.6196 3.5504 3.5012 3.4907 3.4872 3,,4872
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frequencies become lower and lower to approach the 'true values' as

more and more component modes are included. These trends are in

agreement with the known fact that the calculated natural frequencies

are upper bounds. It is also evident that it is not necessary to

include many component modes in this case. This is not surprising. We

knoW' that a cantilever beam modeled by four elements with consistent

mass can produce good results. We may similarly expect Guyan reduction

to yield good results if there are four components or 'four boundaries,

and if there are enough retained DOF per boundary. When no component

mode is taken, the method of' eMS is equivalent to Guyan reduction.

Therefore it can only do better when some component modes are included.

Figure 2 shows the retention

pattern. Table 3 shows the results. This case proves that it is not

necessary to retain many DOF per boundary, a viewpoint suggested in

chap,ter 3. . Note that if' N~ ~6, the size of the reduced syst.em is 42,

which is equivalent to 3.5 DOF per floor.

(d) NB~9, NR-9, N'~12,21, and NC""2. In the previous cases, the

use of four boundaries helped. Could the procedures do well if there

are only two boundaries? This case demonstrates that they can. It is

remarkable that, after so much number crunching, the results are so

close to that of' the previous cases in which the sequences and domains

of formations and reductions were quite different. We can attribute

the success to the capability of the method of component mode synthesis

to preserve structure properties effectively. From this case, it is
/



Table 3. Calculated System Natural Frequencies, CPS

~=9, NB=9

Mode number Nc=-4 Nea2

Nf =-l N'=4 N'=6 N'=12 N' ...21

1 0.3854 0.3850 0.3850 0.3854 0.3854

2 0.5134 0.5119 0.5119 0.5121 0.5121

3 0.7664 0.7627 0.7626 0.7626 0.7624

4 1.1393 1.1289 1.1289 1.1374 1.1371

5 1.4952 1.4731 1.4725 1.4786 1.4782

6 2.1230 2.0539 2.0537 2.1005 2.0988

7 2.1483 2.1025 2.1010 2.1182 2.1175

8 2.2573 2.1993 2.1937 .2.1796 2.1767

9 2.6466 2.6088 2.6008 2.6398 2.6388

10 3.1806 3.1083 3.1083 2.7813 2.7759

11 3.4051 3.2829 3.2721 3.2667 3.25.71

12 3,,4348 3.3034 3.2899 3.2796 3.2720

13 3.6972 3.6165 3.5573 3.4204 3.4018

42
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judged that the model representing a twenty-story building with the

same floor plan can be reduced to a system model consisting of (6 to

12)X4+9X4 ~. 60 to 84 DOF or 3 to 4.2 DOF per floor, and yields

comparable answers.

Finally, the mode shapes obtained deserve some attention. Figures

5 to 8 show the shapes of two adjac.ent roof edges in the the first 11

modes for the case with NR~42, NB=24 , NC=4, and N'''12. In the first

three modes, the roof behaves almost like a rigid body, but starting

from the fourth mode, it deflects in the forms of in-plane bending in a

significant or predominant way. The message is clear: for the assumed

case, the importance of the floor flexibility cannot be overemphasized.

In summary, the solution made of a twelve-story 3-D building using

the .procedures produced high percentage reductions and yet preserved

the most important characteristics of the building.
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C

of points A, Band C

See Figure 2 for locations
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Figure 6 Plan View of Roof Edge Vibration Mode Shapes

- 4th and 5th modes
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Figure 7 Plan View of' Roof' Edge Vibration'Mode Shapes

- 6th to 8th. nmdes
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Figure 8 Plan .View of Roof Edge Vibration Mode Shapes

- 9th to 11th modes
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5.0 CONCLUSION

Modal and transient analyses needed for evaluation of dynamic

characteristics and responses of a building to ground accelerations are

time and core intensive computations. To save computing time and/or

solve the problem at a lower core requirement, reduction techniques

such as static condensation, Guyan reduction or component mode

synthesis can be applied to reduce a full scale finite element model to

a smaller size before these analyses are executed.

Literature review showed that a class of computer codes developed

specially for buildings are based on the assumption that floor systems

are rigid in plane•. It is an o.versimplification that can lead to

serious errors in some cases. Assuming" inadequate diaphragm design,

examples are: bUildings with an L,T, H or U-shape floor plan, buildings

having setback or local irregularites, building/space-frames supporting

heavy equipment on floors.

The review also revealed that the application of' fixed-interface

component mode synthesis to buildings has been limited to a highly

idealized 'shear building' model or very small plane frame. As will be

discussed later, what works beautifully on small 2-D problems does not

necessarily work well on larger 3-D problems. The review also showed

tha t although the method has been incorporated in the MSC/NASTRAN , it

was not developed specifically for the given structure and load case

for which special treatments can· lead to improved computing efficiency.
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The main objective of this work originally was to formulate and

implement the method as applied to the case of a building subjected to

ground accelerations, and to examine its feasibility, advantages and

disadvantages. It was hoped that the average number of DOF per floor

that must be retained would be somewhat larger, but not much greater,

than three DOF per floor; and that the results would be fairly

accurate, with all the important dynamic properties preserved in the

mode shapes of the reduced system.

That goal has been accomplished, as can be seen from the summaries

and conclusions to be presented in the next paragraphs.

5.1 Summary and Conclusion

The fixed-interface component mode method was first applied to

determine the natural frequencies and mode shapes of a twenty-story 2-D

frame. The accuracy of the results is satisfying. (See APPENDIX E).

As attempts were made to analyze a medium sized 3-D bUilding, however,

the following difficulties were encountered: (a) The component in

itself was big enough to warrant treatment prior to component

eigensolution. (b) The system matrices assembled after synthesis were

still big, because the method merely reduces interior DOF while

retaining all boundary DOP.

A unique combination of reduction procedures, with fixed-interface

component mode synthesis as the central theme augmented by static



50

condensation and Guyan reduction, was therefore formulated and

implemented for the given structure and load case. Of course, the

structure in question must be linearly elastic. The combined

procedures were conceived to take advantage of the stiffness

characteristics of a building. Although they have been known for some

tim ~, no work has been done to date to combine them in order to let

them complement one another and become more powerful.

In this work, the applicability and oonsequences of each method as

well as the similarities and differences among them were examined. How

they may be justifiaQly applied in a specified sequenoe was explained.

In essence, statio condensation reduces the matrioes entering oomponent

eigensolution. The method of eMS transforms component matrices to

reduced matrices defined over boundary DOFand a truncated set of

normal mode shapes extracted from components with fixed boundaries.

Guyan reduction eliminates DOF on the boundary after synthesis. In

addition, by the choice of the manner in which a few intermediate' steps,

can be treated, several simplified transformations for oarrying out

modal synthesis were derived to upgrade computing effioiency.

A program package was developed. The matrioes former, reducers

and solvers as well as the package were validated. The package will

direct the oomputer to read data and form component matrices, accept

specifications for retaining interior and boundary Dor that are

arbi trarily patterned, and then perform three stage reductions and

solve for natural frequencies, mode shapes and displacement responses
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on a much reduced system model. The program uses dynamic core

allocation and out-of-core operations so that until reduced forms are

obtained, only one major matrix, whether it be stiffness or mass,

component or assembled system, will occupy the CPU at a given time. In

developing the package, much attention was given to economizing

computing and core use. For example, several subroutines were written

to replace the subroutine •NROOT' in the IBM Scientific Subroutines

Package (SSP). Roughly one third of the core need is thus saved.

The combined reduction procedures were applied to carry out

dynamic analyses of a. twelve-story 3-D building. Several solutions

were made of reduced models by changing parameters such as the number

of components, the number of retained component modes, and the number of

retained DOr per boundary. The results demonstrated the importance of

the floor fexibili ty in modes as low as the fourth for the case

studied. The resluts also consistently showed that good convergence

was achieved by much-reduced models, a pleasant but not at all

surprising finding indeed. A rationale is offered in the next

paragraph.

Much credit should be attributed to the Ritz or component mode

method and to Guyan reduction. But perhaps the characteristics of the

given structure a.nd load case deserve some attention. The given

structure and load case can be characterized as folloW's: (a) The floor

systems are stiff compared to the whole building laterally. For a

typical floor, only its most flexible local modes need to be
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represented in the reduced model. (b) The energy contents in the high

frequency components of ground accelerations are lower than that in the

loW' frequency components. (c) Due to the zigzagging of higher mode

shapes, their participation in the total response of a bUilding is

lower than that of the lower modes. Therefore, during the three stage

reduction process, we have a choice to (a) retain a relatively small

number of interior DOF for component eigensolution," (b) retain a

relatively small number of component normal modes for transformation

and synthesis, (c) retain a relatively small number of boundary DOF in

the synthesized matrices, and Cd) retain a relatively small number of

decoupled normal modes of the reduced system, and still expect to

obtain system results without significant loss in accuracy.

Admittedly, the procedures are subjected to the following

penalties: (a) Component eigensolutions are req,uired". (b) r·iany

transformations are needed. But the payoffs are large savings in core

achieved by substructuring, and huge savings in computing time to be

gained by performing eigensolution and transient analyses on a much

smaller model. By comparing the alternatives, it is obvious that the

gains far exceed the penalities.



5c2 Suggestions

Suggestions for future works are as follows:

1. The program package as is can be readily applied to
structures such as bUildings, bridges, space frames, piping
and some plant equipment under seismic loads if linearity is
satisfied. Minor changes can be made in the program for
application to other structures and load cases.
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2. Consider ~ultilevel substructuring
substructures wi thin a substructure.
enhance the capacity of the program.

hierarchy, i.e ..
This will greatly

3. Establish a good criterion for retaining component modes.
Hurty suggested that the cut-off frequency of component
modes be 50 %higher than the highest frequency of interest.
Based on the characteristics of building and ground
accelerations, it is suggested that this criterion be
relaxed; or alternatively, one may discard a component mode
if the absolute value of the product o:f its participation
factor and dynamic factor falls below a certain number,
which is a fraction ,times that of the most significant
component mode.

4. Expand the program: Add elements such as a beam with rigid
ends, a beam with flexible joints, a plane stress element
for shear wall and a solid element for soil strata
supporting the foundation.
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APPENDIX A

STIFFNESS MATRIX FOR 3-D PRISr{ATIC BEAM

This appendix describes a 3-D prismatic beam element which does

not require the third node to define the direction of the majot"

principal axis of its section. (The concept was used in STRUDL ,'3.nd

JU1SYS.) The stiffness matrix defines a force-displacement relationship

as follows,

where both lu*} and {p*} consist of 12 components: 3 translational and

:3 rotational terms at each one of the two beam ends. The stiffness

[ *] , ( * * *)matrix'_ k defined in the local coordinate system x,y,z is shown

in Table A-2.
*,

The local x -axis extends from one end denoted by node

number' 'i' to the other end 'j'. It coincides with the centroidal. axis

of the beam. The local coordinates are parallel to the principal axes

of the section.

* * *If the local cooninates (x ,y , z ) are related to the global

coordinates (X,Y,Z) by

* * * [ *]ex ,7,Z )' 2 T (X,Y,Z)',

then the nodal displacements in local coordinates {u*} and the nodal

displacements in global coordinates !u} can be related by

The stiffness matrix in global coordinates is then
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This transformation can be derived from the potential energy

'* ....The local coordinate system ex ,y, z ) is shown in Figure A-1.

The transformation matrices [T*] and [T] are given in Table A-l. The

defini tions of local coordinates for a beam in an arbitrary direction.. .. ..
(x ,y ,-z ) and for a beam whose axis coincides with anyone of the

three global axes are shown in Figure A-1.



Table A-l. Coordinate Transformation Matrices
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(T) a

T*

o

o

o

o

T*

o

o

o

o

T*

o

o

o

o

T*

Ca. Ca I Sa. Ca I
Sa

--1-- --f--
-Ca. Sa Se

I
Ca. Ce

I Sa Ca
(T*) a

-Sa. Ce -S S6 Sa
I a. I

-r- -+-
Sa. sa

I -5 S6 ca
I Ca C

aCi.

-co. Ss Ce -CCi. Sa

Ca. a COSCi., Cs a cosS, Ce a cosa

Sa. a sinCi., Sa a sinS, Sa a sine



Table A-2. Stiffness Matrix for a 3-d Uniform

'beam' in local coordinates
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1* 2* 3* 4* 5* 6* 7* 8* 9* 10* 11* 12*

a1 0 0 0 0 0 -a1 0 0 0 0 0 1*
... ... ... ... ... ... ... ... ... ... ...

0 C1 0 0 0 Cz 0 -C1 0 0 0 Cz 2*

+ + ... ... ... ... ... ... + ... +
0 0 d1 0 -dZ 0 0 o . -d1 0 -dZ 0 3*

+ ... ... ... + + ... ... + + +
0 0 0 1::1 0 0 0 0 0 -e1 0 0 4*

+ ... + ... + + + + + + +
0 0 -dz 0 2d3 0 0 0 dz 0 d3 0 5*

... + ... + + ... ... ... + + +
0 Cz 0 0 0 2C3 0 -Cz 0 0 0 C3 6*

(k* ] •e
-a1 0 0 0 0 0 a1 0 0 0 0 0 7*

... + ... ... + + ... ... ... ... ...
0 -C1 0 0 0 -C2 . 0 C1 0 0 0 -Cz 8*

... + + ... + ... + ... ... ... +
0 0 -d1 0 dZ 0 0 0 d1 0 dZ 0 9*

... + + + ... ... ... + ... ... ...
0 0 0 -e1 0 0 0 0 0 1::1 0 0 10*

... ... ... + ... ... ... ... + ... +
0 0 -dZ 0 d3 0 0 0 dZ 0 2d3 0 11'"

+ + + + ... + + + ... + ...
0 Cz 0 0 0 C3 0 -Cz 0 0 0 2C3 12*

a1 • (EA)
2-

1::
1

• (GJ)
j,

(!I//%h. '" 2 *
C1 • 12 Cz • 6(!Iz /9.. ). .C3 • 2(!Iz /9..)

(!I//9..3)~ dZ .. 6(!I//9..2). *
d1 • 12 d3 • 2(EIy /9..)
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*z

node j

9* a*
12:f.,/ ~1*7'*

2(* ~
10*

*y

*
3 * **tfj& 2

6~1*

node i

(a) • .* * *Local Coordinates ( ~ , y , z ) & DOFs @Beam Ends

z

x

.~:;...- y

I

Cf. , I

" Iz '
'~Y'

",

x

z

y

y

x'

*'* *(x ,y ,z ) 2 rotation of ( x,y,z) with respect to x by e
(: Je, y, Z ) .. rotation of (X' ,y' ,z') with respect to y' by S

(x',y',z') 2 rotation' of (X,Y,Z ) with respect. to Z by Cf.

(b). Global coordinates (X,Y,Z) & Local Coordinates

Figure A-I Coordinate Systems for' 3-D Beam
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APPENDIX B

STANDARDIZATION OF GENERAL EIGENVALUE PROBLEM

The general eigenvalue problem

[KJ[U] 2 [M][U]['W2J (B-1)

where both [K] and [M] are symmetric, is to be reduced to a standard

form

so that the subroutine 'EIGEN' in IEI'! Scientific Subroutine Package may

be applied. The dimension of the matrices and vector is n. The

solutions to be sought are eigenvalues ['w2J and eigenvectors [uJ(34).

The first step· is to solve a standard eigenvalue problem

[M][ZJ = [Z]['r]

to obtain eigenvalues r-j' j 2 1,2 •• n, and the cort"esponding modal matrix

[ZJ, which is normalized such that

[Z]'[zJ • ["'I] and hence [ZJ·· [ZJ-1

By orthonormality, we have

. [M] • [Z]['r][ZJ'

If [M]O.S and [MJ-0.5 are defined such that

[M]0.5 [K]0.5 2 [M]

[MJO.5 [MJ-O.S 2 ['IJ

then it can be verified that



60

[M] 0.; s [Z]['r 0.5][Z]'

[M]-O.5. [Z]['r-O.5][Z]'

Hence Eq.(B-1) can be rewritten as

[M]-O.S[K][MJ-O.S[MJO.S[U] s

[M]-O.5[MJO.5[M]O.5[U]['w2J

By introducing

E.~] • [M]-O.5[K][M]-O.S

L!!,J s [M]O.5[u]

Eq.(B-l) is reduced to

which is in standard form with [J!.] and [~~2] as its solutions. The

solutions for Eq.(B-1) are [U] and ['w2], where



APPENDIX C

SOLUTION OF LINEAR SDOF SYSTEM RESPONSE





51

APPENDIX C

SOLUTION OF LI1IEAR SnOF SYST~~ RESPONSE

This appendix describes a step-wise explicit integration method

for solving the response of a linear SnOF system subjected to piece­

wise linear loads. The method is accurate because the solutions at the

end of each step are based on explicit expressions derived from

integration. The routine is highly efficient because, for a linear

system, the coefficients in the recurrent formulae need to be

calculated only once if the time increment is constant and because the

answers at the end of each step are simple algebraic expressions.

Let the equation of motion of a SDOF system be

or

The numerical integration is to be carried 'out step-wise at time

increments dt, which may be constant within a range. If the state

variables (Yi' 1i) at tsti are known, and the loading between t i and

t i +1 is linear, namely,

where x-t-t i is not larger than dt, then the state variables (Yi+1' 1

i+1) at t-ti +1 can be determined by the following recurrent formulae

Yi+1 = A(Pi) +. B(Pi+i) + C(Yi) + D(ti)
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where

A .. { El[(-ZI-drwdt)SI/wd + (-2d r /w-dt)C1] +

2drlw }/(kdt)

B 2 ! E1[(Z1)S1/Wd + (2dr/W)C1] - 2drlw +

dt }/(kdt)

C .. E1 [C , + (dr w/wd)S1]

D .. (1/wd)E1S,

A'.'" (l/kdt) {E1[(dr W + w2dt)S1/Wd + C,] - 1 f

B' • (1!kdt) l-E,[(drW!wd)S, + c,] + I}

c' .. -(w2/wd)E,St

D' • E,[e, - (dr w/wd)SI]

in which

E1 '" e-drwdt

Z, OR 2d 2 _ 1
r

C1 '" cos(wddt)

SI ... sin(wddt)

dr '" c!(2m)

wd '" W (, - dr
2)1!2

Save for minor differences in form, these equations are the same as

those in Craig's book(3S).
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APPENDIX D

DYNAMIC ANALYSES OF A SIX-STORY 3-D FRA}IE

This example was done to validate the procedures and program by

comparing results, to that obtained from SUPERSAP, a general purpose

finite element program. The verification is in addition to ma.ny self­

sustained tests which the program has passed.

Figures D-1 and D-2 show the perspective view of the frame and the

floor plan, respectively. The frame is distinctively weaker in the Y­

direction. The floor plan and mass distribution are the same for all

"floors. Each fl~or weighs4S.7 kips, which is equivalent to about 150

psf. The floor systems are braced for in-plane rigidity" The section

properties are given in Table D-1.

The structure was divided into three components that are bounded

by two common interfaces and a roof boundary. There is one interior

floor in each component. Figure D-2 shows. the a interior DOr that were

retained after static condensation. The same retention pattern was

used for Guyan reduction of the boundary DOr in a later step. Each

component eigensolution resulted in 8 normal modes, all of which were

retained.

The assembled system model has SO DOr : aX] normal modes, a

boundary DOr on the roof and 4X6 DOF on each of the two common

boundaries. After Guyan reduction, the size of the system mod~l was

cut down to 48 Dor.

The same frame was solved for system natural frequencies and mode
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shapes using SUPERSAP, a program which does not employ a reduction

technique prior to eigensolution. Table D-2 shows a comparison of the

two sets of results. In the table, the frequencies calculated by FEM

are ranked in ascending order y while that obtained by eMS are not. The

intention is to compare modes based on mode types or characteristics ..

The agreement is excellent for the first three bending modes in the Y­

direction, the first three bending modes in the X-direction, the first

three torsional modes and the first three rocking modes. The agreement

for higher modes is less satisfying.

Table D-3 shows a comparison of the two sets of mode shapes. The

q'uali ty of agreement is similar- to that for the natural frequencies,

although the agreemnet for two higher modes is poor. The mode shapes

calculated by SUPERSAP indeed confirm that in this case every floor

behaves like a rigid body; hence the retention pattern used in the CMS

solution is proper.

The displacements in the I-direction at nodes No .11, No. 19 and

No.27 in response to the Imperial Valley Earthquake, better known as

the El Centro earthquake, of May 18, 1940, scaled to a magnitude of

0.2G, are shown in Table D-5. The accelerations were applied in the Y­

direction. Al though the responses of individual modes were computed

starting from at rest at t 2 0, they were added to obtain system

responses starting from a later time step in order to save computation

and printing.

Because of low energy contents in- high frequency excitations, and
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the low participation by higher modes (see Table D-4), the lack of good

agreement for higher modes should not be a problem of concern. It is

therefore concluded that the accuracy of the results is satisfying.
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Figure D-1 A Perspective View of the 3-D Frame
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Figure D-2. Floo~ Plan and Retention Pattern



Table D-1 Sec'tiou' Properties, Example 1

I I A I y I J Remarksc sp z

1 1 32.60 1240.0 447.00 7.12 column

2 2 26.50 999.0 362.00 4.06 column

3 3 21.80 796.0 134.00 3.88 column

1 4 14.70 800.0 40.10 1.24 floor beam

2,3 5 11.80 518.0 28.90 0.79 floor beam

1,2,3 6 3.83 11.3 3.86 0.15 floor bracing

r = component numberc

I = section property numbersp
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Table D-2 Comparison of Calculated System Natural

Frequencies, 'CPS

Mode Number FEH CMS Mode Type

1 1.00305 1.0030 (oY)1
2 1.1411 1.1410 (8z)1
3 1.2164 1.2164 (ox)l
4 2.7622 2.7706 (Oy)2
5 3.3812 3.3930 (8z) 2

6 3.8421 3.8550 (ox) 2
7 4.9048 4.9324 (Oy)3
8 6.1845 6.1957 (8z) 3
9 6.6624 7.0121 0y

10 7.2536 7.2480 (ox) 3

11 9.4737 10.984 8
12 9.5517 10.687 C z

13 11.707 . 14.439 a y

14 12.747 12.963 x
0

15 12.908 14.108 Y 8z

16 16.498 16.565 8
17 16.570 17.925 0 z'

18 17.329 17.329 x (0 )
19 17.748 17.747 (oz)l
20 18.052 18.074 (oz)2

z 3
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Table D-3 Comparison of Made Shapes - 1st Made

Node FEM CMS

number a 0yy

9 0.4938

10 0.4938

11 0.4938 0.4941

12 0.4938 0.4939

17 1.173

18 1.173

19 1.173 1.174

20 1.173 1.173

25 1. 774

26 1. 774

21 1. 774 1. 775

28 1. 774 1. 774

70



71

Table D-3 Comparison of Mode Shapes - 2nd Mode (Continued)

Node FEM CMS

number <5 <5 <5 <5x y x y

9 0.3513 -0.3516

10 0.3513 0.3516 0.3515

11 -0.3513 -0.3516 -0.3516

12 -0.3513 . 0.3516 -0.3516 0.3519

17 0.8678 -0.8651

18 0.8678 0.8651 0.8682

19 -0.8678 -0.86;1 -0.8652

20 -0.8678 0.8651 -0.8684 0.8659

25 1.2279 -1.2288

26 1.2279 ·1.2288 1.228

27 -1.2279 -1.2288 -1.229

28 -1.2279 1.2288 -1.229 1.230
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Table D-3 Comparison of Mode Shapes - 3rd Mode (Continued)

Node FEM CMS

number <5 15x x

9 0.4832

10 0.4832 0.4834

11 0.4832

12 0.4832 0.4834

17 1.2351

18 1.2351 1.236

19 1.2351

20 1.2351 1.236

25 1.7400

26 1. 7400 1.741

27 1.7400

28 1.7400 1. 741



Table D-3 Comparison Mode Shapes - 4th Mode (Continued)

Node FEM CMS

number <5 0
y y

9 -1.2465

10 -1. 2465

11 -1. 2465 -1.254

12 -1.2465 -1.254

17 -1.1089

18 -1.1089

19 -1.1089 -1.118

20 -1.1089 -1.118

25 1'.5626

26 1.5626

27 1.5626 1.585

28 1.5626 1.585
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Table D-3 Comparison of Mode Shapes - 5th Mode (Continued)

Node CMS

number 0 is 0 0x y :it Y

9 -0.9288 0.9358

10 -0.9288 -0.9358 -0.9363

11 0~9Z88 0.9358 0.9436

12 0.9288 -0.9358 0.9364 -0.9435

17 -0.6695 0.6906

18 -0.6695 -0.6906 -0.6760

19 0.6695 0.6906 0.6974

20 0.6695 -0.6906 0.6761 -0.6974

25 1.0963 -1.1094

26 1.0963 1.1094 1.116

27 -1.0963 -1.1094 -1.129

28 -1.0963 1.1094 -1.116 1.129
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Table D-3 Comp·arison of Mode Shapes - 6th Mode (Continued)

Node FEM CMS

D.1JID.ber Ox 0x

9 1.3540

10 1.3540 1.366.

11 1.3540

12 1.3540 1.366

17 0.9131

18 0.9131 0.9226

19 0.9131

20 0.9131 0.9225

25 -1.5328

26 -1.5328 -1.560

27 -1.5389

28 -1.5389 -1.560



Table D-3 Comparison of Mode Shapes- 7th Mode (Continued)

Node FEM CMS

number C 0yy

"'-

9 1.4430

10 1.4430

11 1.4430 1.524

12 .1.4430 1.524

17 -L2203

18 -1.2203

19 -1.2203 -1. 257

20 -1.2203 -1.258

25 1.2692

26 1.2692

27 1.2692 1.210

28 1.2692 1.210
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Table D-3 Comparison of Mode Shapes - 8th Mode (Continued)

Node FEM CMS

number 0 0 0 0x y x y

9 1.0530 -1.0925

10 1.0530 1.0925 1.097

11 -1.0530 -1.0925 -1.139

12 -1.0530 1.0925 -1.097 1.139

17 -0.9835 1.0229

18 -0.9835 -1.0229 -1.005

19 0.9835 1.0229 1.048

20 0.9835 -1.0229 1.006 -1.048

25 0.8516 -0.9033

26 0.8516 0.9033 0.8125

27 -0.8516 -0.9033 -0.8629

28 -0.8516 0.9033 -0.8127 0.8629
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Table D-3 Comparison of Mode Shapes - 9th Mode (Continued)

Node FEM: CMS

number Q 0yy

9 0.9293

10 0.9293

11 0.9293 0.7592

12 0.9293 0.7591

17 -1.1421

18 -1.1421

19 -1.1421 -1.354

20 -1.1421 -1.354

25 -0.8419

26 -'0.8419

27 -0.8419 -0.8963

28 -0.8419 -0.8963
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Table D-3 Comparison of 1'10 de Shapes - 10th Mode (Continued)

Node FEM CMS

number 0 0x x

9 1.5263

10 1.5263 1.581

11 1.5263

12 1.5263 1.581

17 -1.4586,

18 -1.4586 -1.487

19 -1.4586

20 -1.4586 -1.487

25 1.2518

26 1.2518 1.205

27 1.2518

28 1.2518 1.205
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Table D-3 Comparison of Mode Shapes - 11th Mode (Continued)

Node FEM CMS

number <5 a a <5x y x y

9 -0.5095 0.5708

10 -0.5095 -0.5708 -0.3493

11 0.5095 0.5708 0.4153

12 0.5095 -0.5708 0.3493 -0.41.52

17 0.3274 -0.4326

18 0.3274 0.4326 0.6005

19 -0.3274 -0.4326 -0.8419

20 -0.3274 0.4326 -0.6005 0.8417

25 0.5749 -0.6878

26 0.5749 0.6878 0.5958 ~

27 -0.5749 -0.6878 -0.7852

28 -0.5749 0.6878 -0.5959 0.7851
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Table D-3 Comparison of Mode Shapes - 12th Mode (Continued)

Node FEM CMS

number 0 0y y

9 -0.1213

10 -0.1213

11 -0.1213 -0.1736

12 -0.1213 -0.1736

17 1.4817

18 1.4817

19 1.4817 1.210

20 1.4817 1.210

25 0.1507

26 0.1507

27 0.1507 0.1215

28 0.1507 0.1229
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Table D-3 Compar~son of Mode Shapes - 13th Mode (Continued)

Node ]'EM CMS

number a 0
x x

9 -0.7240

10 -0.7240 -0.4946

11 -0.7240

12 -0.7240 -0.4946

17 0.2737

18 0.2737 0.8239

19 0.2737

20 0.2737 0.8239

2S 008611

26 0.8611 0.9606

27 0.8611

28 0.8611 0.9609



Table D-3 Comparison of Mode Shapas - 14th Mode (Continued)

Node FEM CMS

number 0y 0y

9 1. 7828

10 1.7828

11 1.7828 1. 786

12 1.7828 1. 786

17 0.5834

18 0.5834

19 0.5834 0.6569

20 0.5834 0.6569

25 0.0227

26 0.0227

27 0.0227 -0.0289

28 0.0227 -0.0289
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Table D-3 Comparison of Mode Shapes - 15th Mode (Continued)

Node FEM CMS

number a 0 a ax y x y

9 -0.2298 0.2805

10_ -0.2298 -0.2805 -0.1674

11 0.2298 '0.2805 0.2112"

12 0.2298 -0.2805 0.1676 -0.2110

17 0.9469 -1.3211

18 0.9469 1.3211 0.7169

19 -0.9469 -1. 3211 -1.109

20 -0.9469 1.3211 -0.7173 1.109

25 0.0201 -0.3048

26 0.0201 0.3048 0 •. 0481

27 -0.0201 -0.3048 -0.0952

28 -0.0201 0.3048 -0.0485 . 0.0951
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Table 3-D C~mp~rison ·ofMode Shapas - 16th Mode (Co~tinued)

Node FEM CMS

number 0 0 Q Q
x y x y

9 0.9322 -1. 4336

10 0.9322 1.4336 0.8968

11 -0.9322 -1.4336 -1. 493

12 -0.9322 1.4336 I -0.8968 1.493

17 0.3638 -0.6544

-18 0.3638 0.6544 0.3497

19 -0.3638 -0.6544 -0.6671

20 -0.3638 0.6544 -0.3498 0.6671

·2S 0.0278 -0;0715

26 0.0278 0.0715 -0.0153

27 -0.0278 -0.0715 0.0317

28 -0.0278 0.0715 0.0153 -0.0317



86

Table D-3 Comparison of Mode Shapes - 17th Mode (Continued)

Node FEM CMS

number 8 0
x x

9 0.5500

10 0.5500 0.3948

11 0.5500

12 0.5500 0.3948

17 -1.5985

18 -1.5985 -1. 395

19 -1.5985

20 -1.5985 . -1.395

25 -0.4420

26 -0.4420 -0.2146

27 -0.4420

28 -0.4420 -0.2146



87

Table D-3 Compar~son of Mode Shayes - 18th Mode (Continued)

Node FEM eMS

number 0 0z z

9 0.6440 0.6440

10 0.6440 0.6440

11 0.6440 0.6440

12 0.6440 0.6440

17 1.2577 1.258

18 1.2577 1.258

19 1.2577 1.258

20 1.2577 1.258

25 1.6208 1.621

26 1.6208 1.621.

27 1.6208 1.621

28 1.6208 1.621
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Table D-3 Comparison of Mode Shapes - 19th Mode (Continued)

Node FEM CMS

number 0
,

<5z z

9 0.6396 0.6390

10 0.6396 0.6402

11 -0.6396 -0.6402

12 -0.6396 -0.6391

17 1.2549 1.254.
18 1.2549 1.256

19 -1.2549 -1.256

20 -1.2549 -1.254

25 1.6242 1.623

26 1.6242 1.623

27 -1.6242 -1.625

28 -1.6242 -1.623
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Table D-3 Comparison of Mode Shapes - ZGth Mode (Continued)

Node FEM CMS

number 0 0z z

9 -0.6381 -0.6365

10 0.6381 0.6355

11 -0.6381 -0.6356

12 0.6381 0.6366

17 -1.2488 -1.250

18 1.2488 1.248

19 -1.2488 -1.248

20 1.2488 1.250

25 -1.6101 -1.609

26 1.6101 1.607

27 ~1.6101 -1.607

28 1.6101 1.610
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Table D-4 Modal Earthquake Excitation Factor

Mode Frequency Modal Earthquake Excitation
Number CPS Factor

1 ° 1.0030 58.7828
l'

2 1.1410 - 0.0177

3 1.2164 0.0057

4 01' 2.7706 -24.8687

5 3.3930 - 0.0007

6 3.8550 0.0131

7 a 4.9324 -15.3648
l'

8 6.1957 0.0008

9 01' 7.0121 - 7 . 2553

10 7.2480 0.0466

11 01' 10.6872 11.0114

12 10.9842 0.0006

13 01' 12.9672 5.3799

1'4 14.108Z 0.0000

15 14.4391 0.0223

16 16.5652 0.0001

17 17.3292 0.0000

18 17.7474 0.0377

19 17 .. 9,250 0.0402

20 18.0735 - 0.0018

Note: Modes are ranked in ascending order of natural
frequencies.



Table D-S· Displacement Responses

taO. -0.004 -0.032 -0.030 -0.026 -0.028
-0.035 -0.042 -0.037 -0.032 -0.025
-0.025 -0.038 -0.052 -0.057 -0.047
-0.042 -0.032 -0.024- -0.012 -0.019
-0.036 -0.056 -0.057 -0.019 0.009

0.041 -0.014 -0.037 -0.042 -0.059
-0.076 -0.095 -0.090 -0.050 -0.056
-0.046 -0.046 -0.020 0.007 0.044
0.069 0.074 0.096 0.135 0.144
0.123 0.105 0.079 0.069 0.099

t-l. 0.121 0.155 0.167 0.214 0.191
. 0.175 0.117 0.117 0.016 -0.151
-0.230 -0.176 -0.142 -0.073 -0.017
0.039 0.090 0.146 0.206 0.291
0.357 0.447 0.424 o. :;:;6 0.274

0.261 0.271 0.246 0.264 0.291
0.354 0.096 -0.432 -0.605 -0.562

-0.595 -0.531 -0.505 -0.513 -0.513
-0.528 -o.4TI -0.394· -0.316 -0.229
-0.126 -0.005 0.105 0.230 0.341

t-2. 0.466 0.574 0.706 0.799 0.868
0.936 1.000 0.826 0.680 -0.351

-0';694 -0.480 -0.546 -0.320 -0.220
-0.051 0.033 0.156 0.262 0.347
0.514- 0~169 -o.no -0.453 -0.506

-0.296 -0.169 0.069 -0.196 -0.579
-0.480 -0.493 -0.43; -0.360 -0.293
-0.220 -0.153 -0.079 -0.013 0.055
-0.028 -0.127 -0.245 -0.278 -0.210
-0.175 . -0.096 -0.032 0.054 0.123

t-3. 0.197 -0.028 -o.10g -0.012 0.003
0.101 0.165 0.258 0.;;1 0.399
0.064 0.071 0.200 0.202 0.;86
0.396 0.597 -0.272 -0.;63 -0.203

-0.160 . 0.021 0.196 -0.312 -0.435

-0.31; -0.340 -0.223 -0.164 -0.063
-0.037 -0.197 -0.095 -0.099 -0.032
0.005 o.oea 0.143 0.176 0.065

-0.009 -0.072 0.023 0.062 0.166
0.242 0.353 0.433 0.506 0.123

91
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Table D-5 Displacement Responses (Continued)

..
i t i ug(t) (OY)11 (OY)19 (OY}27

51 1.00 0.,121 0.096 0.187 0.,233 .
52 1.02 0.155 0.101 0 .. 21; 0.289
53 1.04 0 .. 187 0.108 0.,240 0.346
54 1.06 0.214 0.118 0.. 268 0.404
55 1.08 0.191 0.132 0.,299 0.463

56 1.10 0.175 0.149" 0.332 0.519
57 1.. 12 0.117 0.166 0,,368 0·572
58 1.14 0.117 0.182 0.405 - 0 .. 617
59 1.16 0.018 0.195 0.441 0.655
60 1.18 -0.151 " 0.204 0.469 0.. 682

61 1.20 -0.230 0.205 0.484 0.695
62 1.22 -0.176 0.195 0.483 0.692
°63 1.24 -0.142 0.178 0.466 0.676
64 1.26 -0.073 0.. 159 0 .. 434 0.648
65 1..28 -0.017 0.141 0 .. 385 0.61 1

66 1.. 30 ' 0.039 0.125 0.333 0·563
67 1.32 0.090 0.111 0.277 0.,505
68 1.34- O.t~ 0.098 0.226 0.,437
69 1 .. 36 0.208 0.086 0.,182 0·~;9

70 L38 0.. 291 0.076 00146 0.276

71 1.40 0 .. 357 0.070 C.122 0.192
72. 1.42 0.447 0.071 0.. 111 0.114-
73 1.44 0.424 o.oao 00t12 0.051
74 1.46 0.338 0.096 0.,119 0.,007
75 1.. 48 0.274 0.114 0 .. 128 -0.017

76 1.50 0.261 0.128 0.139 -0.022
77 1.52 0.271 0.137 0.150 -0.006
78 1.54 0.246 0.1;8 0.161 0.027
79 1.56 0.264 0.134 C.169 0.076
80 1.58 0.291 0.t25 0.177 0.140

81 1.60 0.354 o. t 1:5 0 .. 192 .0.217
82 1.62 0.096 o. t03 0.214 0.304
8'3 1.64- -0.432 0.091 0.234 0.389
84 1..66 -<:1.605 0.066 0.239 0.454
85 1.68 -0.582 0.026 0.224- 0.490



Table 0-5 Displacement Responses (Continued)

93

i

S6
87
88
8Q..
90

91
92
93
94
95

96
97
98
99

100

101
102
103

, 104
105

106
107
108
109
110

111
112
113
114­
115

116
117
118
119
120

1.70
1.72
1.74
1.76
1.78

Lao
1.82
1.84­
1.86
1.88

1 • go
1.92
1.94­
1.96
1.98

2.00
2.02
2.04
2.06
2.08

2.10
2.12
2.14
2.16
2.18

2.20
2.22
2.24
4.26
2.28

2.30
2.32
2.34
2.36
2.38

·u (c)
g

-0.595
-C.531
-0.505
-0.513
-0.513

-0.52·8
-0.477
-0.394
-0.318
-0.229

-0.126
-0.005
0.105
0.230
0.341

0.468
0.574
0.706
0.799
0.S88

0.936
1.000
0.826
0.680

-0.351

-0.694
-0.480
-0.546
-0.320
-0.220

-0.051
0.033
0.156
0.262
0.347

(oy)ll

-0.020
-0.063
-0.097
-C.125
-0.147

-0.166
-0.187
-0.212
-0.239
-C.265

-0.292
-0.320
-0.342
-0.350
-0.368

-C.375
-0.375
-0.367
-0.354-
-0.328

-0.281
-0.205
-0.103
0.018
0.144

0.244
0.302
0.329
0.;47
0.371

0.402
0.444
0.498
0.558
0.614

0.192
0.139
0.063

-0.026
-0.121

-0.210
-0.302
-0.400

-0.6GO

-0.695
-0.790
-0.884
-0.968
-1 .036

-1.C86
-1 .111
-1.101
-1.043

-0.780
-0·592
-0.373
-0. i 23
0.147

0.406
0.639
0.842
1.C08
1.128

1.207
1.269
1.335
1.410
1.487

(oy) 27

0.492
0.459
0.392
0.293
0.162

-0.002
-0.198
-0.424-
-0.668
-0·918

-1 .158
-1.373
-1.552
-1.689
-1.782

-1.828
-1 .827
-1.776
-1.671
-1 .511

-1.025
-0.705
-0.342
0.050

0.442
0.816
1 .167
1.486
1.778

2.035
2.256
2.433
2.558
2.622



94

Table D-5 Displacement Responses (Continued)

i t. ~ (t) (Oy)11 (OY)19 (Oy)271. g

121 2.40 0.514 0.671 1.566 2.624
122 2.42 0.169 0.. 730 1.650 2.573
123 2.44 -0.770 0.770 1.721 2.474
124 2.46 -0.453 00767 1.747 2.326
125 2.48 -0.506 0.728 1.715 2.151

126 2.50 -0.296 0.671 1.618 1.961
127 2.52 -0.169 0.607 1.454 1.763
128 2.54 0.069 0.534 1.227 1.558
129 2.. 56 -0.196 0.454 0.955 1.343
130 2.58 -0.579 0.353 0.. 661 1.102

131 2.60 -0.480 0.209 00365 0.820
132 2.62 -0,,493 0.,020 0.079 0.490
133 2.64 -0.433 -0.189 -0.199 00112
134 2.. 66 -0.360 -0.,385 -0.478 -0.,308
135 2.,68 -0,,293 -0,,548 -0.766 -0.756

136 2.70 -0.220 -0.671 -1.056 -1.214
137 2.1'2. -0.153 -0.742 -1·333 -1.665
138 2..74 -0.079 -0.765 -1.586 -2.095
139 2.76 -0.0'13 -0.765 -1.806 -2.501
140 2.78 0.055 -0.761 -1.986 -2.883

141 2.80 -0.028 -0.761 -2.115 -3.237
142 2.82 -0.. 127 -0.773 -2 .. 200 -3.559
143 2.84 -0 .. 245 -0,,812 -2.259 -3.831
144 2.86 -0 .. 278 -00876 -2.304 -4.033
145 2.. 88 -0.210 -0 .. 946 -2·336 -4.142

146 2.90 -0 .. 175 -1.005 -2.361 -4.144
147 2.92 -0 .. 098 -1.045 -2.391 -4.041
148 2.94 -0.032 -1.058 -2.427 -3.845
149 2.96 0.054 -1.038 -2.447 -3.581
150 2.98 0.123 -0.995 -2.420 -3.271

151 3.00 0.197 -0.950 -2·321 -2.935
152 3.02 -0.028 -0.905 -2.138 -2.587
153 3.. 04 -0.109 -0.852 -1.876 -2.239
154 :;.06 -0.012 -0.782 -1·553 -1.892
155 3.08 0.003 -0.684 -1 .192 -1.540
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Table D-5 Displacement Responses (Continued)

i t. u (t) (Oy)ll (Oy) 19 (Oy)27J. g

156 3.10 0.101 -0.535 -0.821 -1 .173
157 3.12 0.165 -0.322 -0.460 -0.777
158 3.14 0.258 -0.065 -0.111 -0.346
159 3.16 0.331 0.200 0.237 0.121
160 3.18 0.399 0.452 0.602 0.613

161 3.20 0.064 0.671 0·978 1.114-
162 3.22 0.071 0.828 1.343 1.600
163 3.24 0.200 0.914 1.682 2.063
164 3.26 0.202 0.954 1·993 2.507
165 3.28 0.386 0.976 2.266 2.942

166 3.30 0.396 0.993 2.484 3.351
167 3.32 0.597 1.020 2.644- 3.820
168 3.34 -0.272 1.072 2.759 4.242
169 3.36 -0.383 1.129 2.829 4.598
170 3.38 -0.203 1.162 2.853 4.847

171 3.40 -0.160 1.164 2.841 4.967
172 3.42 0.021 1.147 2.812 4.9.19
1TJ 3.44' 0.198 1.116 2.783 4.3C6
174 3.46 -0.312 1.064 2.751' 4.560
175- 3.48 -0.435 0.995 2.690 4.224

176 3.50 -0.313 0.933 2.572 3·814
177 3.52 -0.340 0.887 2.377 3.348
178 3.54 -0.223 0.843 -2.094 2.836
179 3.56 -0.164 0.791 1.737 2.291
180 3.58 -0.063 0.721 1.334 1.721

181 3.60 -0.037 0.605 0·914 1.136
182 3.62 -0.197 0.418 0.494 0.540
183 3.64 -0.095 0.170 0.082 ~ -0.068
184 3.66 -0.099 -o.lC6 -0·329 -0.681
185 3.68 -0.032 -0.384 -0.757 -1.288

186 3.70 0.C05 -0.644 -1.206 -1.869
187 3.72 0.088 -0.859 -1.656 -2.407
188 3.74- 0.143 -1.015 -2.078 -2.887
189 3.76 0.178 -1.126 -2.454 -3.309
190 3.78 0.065 -1.207 -2.769 -3·686
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96

APPENDIX E

MODAL ANALYSES OF A TnENTY-STORY PLANE FRAME

This appendix records the data and results of modal analyses made

of a twenty-story plane frame. The plane frame is shown in Figure E-1;

the section properties are given in Table E-1. The two sets of system

natural frequencies calculated by C~.J:S and FEM programs, respectively,

are compared in Table E-2. The agreement is good for lower modes.
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Table E-1 Section Properties

A Aw I x

1 8.83 3.21 290.

2 10.0 3.45 340.

3 10.6 4.13 447 ..
0 4 11.8 4.28 ;17.z
IS!as 5 13.3 4.83 584.Q)= 6 14.7 5.24 657.

7 14.7 5.72 802.

8 16.2 6.16 891.

1 9.12 1.77 37.

2 17.7 3.28 116.

. 3 25.0 4.75 _235.
0z 4 31.2 5.89 30l.
l:
§ 5 37.3 6.89 528.,..;.
0

C.J 6 41.8 7.68 660.

7 46.5 8.25 745.

8 51. 7 9.27 838.

E ~ 29000. ksi

: 98



Table E-2 Calculated Natural Frequencies, CPS

99

Mode Number

1

2

3

4

5

Finite Element Method
(ETABS79)

0.202

0.489

0.801

1.135

1.490

CMS

0.206

0.501

0.822

1.161

1.528

-6 1.760 1.807

7 2.148 2.209

8 2,,407 2.484

9 2.711 2.796

10 3.155 3.252

11 3.685 3.803

U 4.166 3.972

13 4.614 4.297

14 5.267 4.315

15 5.927 4.392

16 6.651 4.785

17 7.297 4.861

18 8.483 5.016

19 9.889 5.• 463

20 11.295 5.780
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APPENDIX F

COMPUTER PROGRAM "SUPERDYNE"

C SFEALL.FOR 83-02-24
C
C
C
C MAIN.FOR 83-02-7
C
C * MAIN.FOR, *SMPROP. FOR ,
C *COMSTF.FOR, * GUY4.FOR,
C * EPCCC. FOR , * SYSK.FOR,
C * EPAAA.FOR, *DISPL1.FOR,
C
C
C

J. T. HUANG
DEPT. OF CIVIL ENGR
UNIV. OF PITTSBURGH

(OK, 83-01-01) JTH

.:t SClfiD. FOR, *CRDMAS. FOR
* CMS;.FOR, * ELU.FOR
* SYSM.FOR, * SYSP.FOR
*FRESP2.FOR, * EPOST.FOR

*=OK

C

C

C0M110N/FEIDS/NCRl·!0(4) ,NDC1 (7,4) ,NDC2(7 ,4) ,NDC3(7 ,4),
ICBS (168,4), ICNS(36 ,4),~rSYs( 4)

COMI10N/FEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),
NDCP(4),IFB(4),IFT(4),NCXS(7)

COMMON/FEIDX!NDOF ,NDD,NDT ,11FL,~,UDICPF , NCDMX , NCXO(7) ,~ICQI.!P

COMMO~/EGV1/IA2(600)

COMMON/SPROP/SP(20,5)
CO~n{oN/MPROP/MP(4,3)

COMMON/COORD/X(182),Y(182),Z(182)
COMI~ON/CESTM/SK(144)

COMMON/IDO/IDO(600)
COMMON/GARB/C(600)

Dlr~ISION AA(57000)

RUN RESULTS IF IPa6
DATA FILES
RUN RESULTS IF IP=4

C
C CORE a38K+AA

c~------------------~--------------------------------- -----------------C DEVICES FOR MY JOB
C CDR 1
C 1FT 6
C DSK 2,3, 8-63
C DSK 4
c-----------------------------------------------------------------------
C

C

OPEN (UNIT:r4,FILEa' RUN.DAT, ,ACCESS='SEQOUT')

READ (5,2000) ICHK,IPX,IPM,IP,ITRAN
READ (5.2000) NDOF, NCOMP , MCllODX
READ (5,2000) NMOD,NO,N02
READ (5,2010) SK(1),SK(2),SK(3)



C

C

c

C

WRITE (IP,2000) ICHK,IPX,IPM,IP,ITRAN
WRITE (IP,2000) NDOF,NCOMP,NCNODX
WRITE (IP,2000) NMOD,NO,N02
WRITE (IP,2010) SK(1),SK(2),SK(3)
IF (IP~NE.4) IP=-6
KX=1
NCPO-NCOMP
NCDMX=NDOF*NCNODX
IDO(1)=0
DO 10 J=-2,600

10 IDO(J)=IDO(J-1)+J-1
IF (ICHK.EQ.1) WRITE (IF,2000) (J,IDO(J),J=1,5)

CALL St-IPROP (IF)
N4=NCDMX
N1=NC01{P*NCDMX+1
CALL SCMIDX (IP, IPX,N4,NCPO,AA(1) ,AA(N1))
N3·NCXS(4) .
N2=N1+NCOMP*NCD1([
CALL CRDMAS (IP, IPM,Il4,NCPO,N3,AA(1) ,AA(N1) ,AA(N2))

N5-IDO(N4)+N4
WRITE. (IP, 2050) N4, N5
CALL GSTIF6 (IP,ICHK,N5,AA)
WRITE (IP,2020) N5

N1"'NSYS(4)
N2-IDO(N1)+N1
N4=NSYS(2)
WRITE (IP,2020) N2

·WRITE (IP,2040) N4,N1,N2
IF (ICHK.EQ.1) GO TO 20
CALL SYSP (AA,N1,NCPO,IP)
CALL SYSK (AA,N2,NCPO,IP)
ISOLa,
ICOI-IP-O
ISCON=O
CALL STCOND (AA,N5,N4,N1,N2,ISCON,ISOL,ICO!{P,IP)
CAL1SYSM (AA,N2,NCPO,IP)
CALL GUYRED (AA,N4,N1,N2,IP)

20 N5"'IDO(N4)+N4
N2-1+N5
N3"'N2+N5
N44"N4*N4
N6-N3+N44
N7-N6+N4
rrCPO-N7-N3
N30"N3-1
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50 COrlTINUE
STOP

2000 Fom~T ( 6IS)
2010 FORMAT (6F10.5)
2020 FORMAT C/,SOX,'*** NEED !AC' ,I6,') OR LARGER ***',/)
2030 FORMAT (S3X,6I7)
2040 FOID{AT (SOX,'### SYS ',317)
2050 FORMAT (SOX,' ### COMP t, 317)

END

c

C

C

WRITE (IP,2020) N7
WRITE (6,2030) NS ,N2,N3
WRITE (6,2030) NS ,KX,N2
WRITE (6,2030) N44,N3,N6
WRITE (6,2030) N4 ,N6,N7
IF (ICHK.EQ.1) GO TO 30
CALL GEVPS2 (AA(N2),AA(1),AA(N3),AA(N6),N4,Ns,ln~OD,ICOMP,IP)

30 U2=1+N44
N3=N2+N4
U40=N3+N4
US=N40+NO
N6=N5+NO
N7=~16+NO

N8=N7+N02
N88-N02*Nl'!OD
N9"N8+N88
N10-N9+NMOD+12
WRITE (IP,2020) N10
WRITE (6,2030) N44 ,KX ,N2
WRITE (6,2030) N4 ,N2 ,N3
WRITE (6,2030) N4 ,N3 ,N40
liRITE (6,2030) NO ,N40,N5
WRITE (6,2030) NO ,NS ,N6
WRITE (6,2030) NO ,~16 ,N7
WRITE (6,2030) N02 ,N7 ,NS
liRITE (6,2030) N8S ,N8 ,N9
WRITE (6,2030) NMOD,N9 ,N10
IF (ICHK.EQ.l .OR. ITRAN.EQ.O) GO TO 50
DO 40 I-1,NCPO

40 AA(I)=AA(N30+I)
CALL DISPL1 (AA( 1),AA(N2),AA(N3),AA(N40),AA(NS),AA(N6),

1 AA(N7),AA(N8),AA(N9), N4,NO,I12,N02,
2 DT,ID40D,FMAX,EMIN, IP, ICHK)

SUBROUTINE P~aTE(A,M1,N1,M2,N2)

DIMENSION A(M2,N2)
WRITE (6,2020)
KO-(N2-Nl)/12+1

102



DO 20 K=l,KO
I1-(K-1)*12+N1
12-11+11
IF (I2.GT.N2) I2-M2
WRITE (6,2000) (J,J-I1,I2)
DO 10 I=Mt,M2

10 WRITE (6,2010) 1,(A(I,J),J=I1,I2)
20 CONTINUE

WRITE (6,2020)
RETURN .

2000 FORMAT (//8X,12I10//)
2010 FOm~AT (SX,13,12E10.4)
2020 FORMAT (J)

END
C
C S~~ROP.FOR 83-01-03 (OK,82-12-07,82-10-21) 82-o9-14,JTH
C

SUBROUTINE SMPROP (IP)
COMMON/SPROP/sP(20,5)
COMMON/MPROp/p(4,3)

C
C OK I~SECTION TYPE NO.
C OK J-(1,2,3,4,5) SP(I,J)-(A,IY,IZ,XJ,TH)
C OK J-(1,2) SP(I,J)"(A,I'ZZ)
C

WRITE (IP,2010)
READ (5 ,2000) !U
WRITE (IP,2000) NA
CALL ZERO (SP(1,1),SP(NA,S))

DO 10 r-l,NA
READ ( 5,2000 VISP,. (SP( ISP, J) , J"l, 5)

10 WRITE (IP,2000) ISF, (SP(1SP,J),J=1,5)
c
C OK I"MAT TYPE NO.
C OK J"(1,2,3), P(I,J)-(E,EG,PR)
C

WRITE (IP,2020)
READ (5,2000) NA
iflUTE (IP, 2000) NA
CALL ZERO (P(1,1),P(NA,3))

DO 20 I"1,NA
READ (5,2000) IM, (P(IM,J),J"1,3)

20 WRITE (IP,2000) IM, (P(IM,J),J-1,3)
C

RETURN
2000 FORMAT (I5,5F15.7)
2010 FORMAT (!,/,5X,'SEC-PROP •••• ,I)
2020 FORMAT (J,SX,·~.AT-PROP •••• ,1)

END .
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C SCMID.FOR 83-01-27 (OK,11-30,82-09-22) JTH 82-09-10

C
SUBROUTINE SCMIDX (IP, ICHK, NCDl.fXO, NCOMPO, ICD2, IXDSB)
COMMON!FEIDS/NCRMO(4) ,NDC1 (7,4) ,NDC2(7 ,4) ,NDC3(7 ,4),

ICBS(168,4),ICNS(36,4),NSYS(4)
COMMON/FEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),

NDCP(4),IFB(4),IFT(4),NCXS(7)
COMMON!FEIDX!NDOF,NDD,NDT,NFL,NPT,NDICPF,NCDMX,NCXO(7),NCOMP
COMMON!GARB!IDOF(6),ICT(8),ICP2(8),AAO(560),NDXX(9),IITXX(9)
DI~mNSION ICD2(NCD}crO,NCOI1P0), IXDSB(NCDI1XO,NCOMPO)

C
C
C

C

C
C
C
C

FLOOR & SYS DATA

WRITE (IP,2000)
READ (5,2040) NFL,~rnICPF

ifRITE (IP, 2040) NFL, NDICPF

DO 10 I=1,NFL
READ' (5,2040) IFL, l:DL(IFL, 1) ,NDL(IFL, 2) ,!'IDL( IFL, 3)

10 WRITE (IP ,2040) IFL,!1DL( IPL, 1) ,1'DL( IFL, 2) ,MDL( IFL, 3)
DO' 20 I=l,NFL
NDL( I, 4)=NDL(I, 2)-!:DL( 1,1 )+1

20 NDL(I,2)=NDL(I,4)
NAO-NDL(1,2)
.NDL( 1 ,2)=1
DO 30 I-1,NFL-1
NBO=-NDL(I+1,2)
NDL(I+1,2)=NDL(I,2)+NAO

30 NAO=UBO
!JDD=3
NDT=3
IF (UDCF. EQ • 6.) GO TO 40
lInD=-2
NDT=1

40 DO 50 I=l,NCOMP
DO 50 J=-1,3
DO 50 K=1,2

50 NCB(I,J,K)=O
NCDMX=0

READ & GD COl-IP INDICIES
COMP NO. =( 1, NCQr.1P)" (LOWEST , HIGHEST) .

NCNDF=O
NCBDF=-O
DO 360 IOO-1,NCOMP

READ (5,2040) ICOMP,IFLB,IFLT,NCRMO(ICOMP)
WRITE (IP,2200) ICO~~



WRITE (IP,2040) ICOMP,IFLB,IFLT,NCRMO(ICO~P)

IF ( NCRMO(ICOMP).GT.NCNDF) NCNDF=NCRMO(ICOl1P)
IFB(ICOMP)""IFLB
IFT( rCOMP) "" IFtT
NPT=O
DO 60 I=IFLB,IFLT

60 NPT=NPT+NDL(I,4)
~~DOF""NDOF*NPT

lfDCP(ICOMP)""ND~(IFLB,2)-1

DO 90 I=1,NPT
NO""(I-1)*NDOF
DO 70 J=1,NDD

70 IC(NO+J,ICOI{P)""-5
DO 80 J·"1,NDT

80 IC(UO+NDD+J,ICOMP)......6
90 C0l1TINUE

C
C READ RETAINED DOF; IDOF(I)"4
C

WRITE (IP,2110)
100 READ (5,2050) NDO, lFL, 1G1,IC1, (lDOF(1),1=1 9 NDD)

WRITE (IP,2050) NnO, IFL, IG1,IC1, (IDOF(I),I"1 9 NDD)
IF (NDOeEQ.O) GO TO 130

ICO=NDt(IFL,2)-NDL(IFL,1)-NDCP(ICOMP)
DO 120 I"1, IG1
NA""(I-1)*IC1
NDA=NDO+NA
NDLC"NDA+ICO
NO=(NDLC-1)*NDOF
DO 110 K""1,NDD

IF (IDOF(K).£TE~4) GO TO 110
IC(NO+K,1CO~~)"-IDOF(K)

110 CONTINUE
120 CONTINUE

GO TO 100
C
C READ FIXED DOF; IDOF(r)""9
C

130 WRITE (IP,2120)
140 READ (5,2060) NDO, IFt, lG1,lC1, (IDOF(I),l""1,NDOF)

WRITE (lP,2060) NDe, IFL, IG1 ,lC1, (IDOF(I) ,I""1 ,NDOF)
IF (NDO.EQ.O) GO TO 170

ICO""NDL(IFL,2)-NDL(IFL,1)-NDCP(Icor~)

DO 160 1=1, rG1
NA=(I-1)*IC1
NDA=NDO+NA
NDLC""rmA+ICO
NO=(NDLC-1)*NDOF
DO 150 K""1,NDOF
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106

IF (IDOF(K).NE.9) GO TO 150
IC(NO+K,ICOMP)=-IDOF(K)

150 CONTDiUE
160 CONTINUE ,

GO TO 140
C
C READ BOUND PTS
C IBOT=(1,2)=(BOT,TOP)
C

170 WRITE (IP,2130)
180 READ (5,2070) NDO, IFL,IG1,IC1, IBOT,IROOF

WRITE (IP,2070) NDO, IFL,IG1,IC1, IBOT,IROOF
IF (NDO.EQ.O) GO TO 220

I03=-3
102=·2
IF (IROOF.EQ.l) I03=-6
IF (IROOF.EQ.1) I02=-5
1CO-NDL(IFL,2)-NDL(IFL,1)-NDCP(ICO~~)

DO 210 I=1,IG1
NA-(I-1 )*1C1
NDA-NDO+NA
!mLC=NDA+ICO
NO=(NDLC-1)*NDOF
DO 190 K=1,NDT
IF (IROOF.EQ.l) GO TO 190
NCB( 1COMP, 3, mOT) -NCB( IC01-1P,3, IBOT) +1

190 IC(NO+NDDtK,ICOMP)=I03
DO 200 K=f,NDD
IF (IROOF.EQ.1) GO TO 200
NCB(1COMP,2, IBOT)=NCB(ICOMP,2, I:BOT) +1

200 IC(NO+K,ICOMP)=I02
210 CONTINUE

GO TO 180
C
C READ RETAINED BOUNDARY DOF; IDOF(I)-l
C

220 WRITE (IP,2140)
230 READ (5,2050) NDO,. IFL, IG1,IC1, (1DOF(I),I=1,NDD), IBOT,IROOF

WRITE (IP,2050) NnO, IFL, IG1,IC1, (IDOF(I),I-l,NDD), IBOT,IROOF
IF (NDO •.EQ.9993) GO TO 260

ICO=NDL(1FL,2)-NDL(IFL,1)-NDCP(ICOMP)
DO 250 I=1,1G1
NA-(I-1)*IC1
NDA-NDO+NA
NDLC=NDA+ICO
NO-(NDLC-1)*NDOF
DO 240 K=1 ,NDD
ICCC=IDOF(K)
IF(ICCC.NE.1) GO TO 240



NCB(ICOMP,ICCC,IBOT)sNCB(ICOMP,ICCC,IBOT)+1
IC(NO+K,ICOMP)--ICCC
IF (IROOF.EQ.1) GO TO 240
NCB(ICOMP,2,IBOT)=NCB(ICOMP,2,IBOT)-1

240 CONTINUE
250 CONTINUE

GO TO 230
C
C ASSIGN DOF SEQ
C

260 ICT(1)--1
ICT(2)--2
ICT(3)--3
ICT(4)=-4
ICT(S)·-S
ICT(6) ..-6
ICT(7)"-9
NNN=O
DO 270 J=1,3
DO 270 K=1,2

270 NNN=NNN+NCB(ICOMP,J,K)
IF (NNN.GT.NCBDF) NCBDF=NNN

C
C ~1O. OF DOF FOR EACH DOF TYPE
C

KOO=O
DO 280 J-1,7
JOO-rCT( J)
NDC1(J,ICOMP)=0
DO 280 I-1,MDOF
I01 a !C(I,ICOMP)
IF (I01. ME.-JOO) GO TO 280
NDC1 (J,ICOMP)-NDC1 (J,ICOMP)+1
KOO-Koo+1
ICD2(I,ICOMP)=-IC(I,ICOMP)
IC(I,ICOMP)-KOO

280 C01ITINUE
IF (ICHK.~~.1) GO TO 330
WRITE (IP,2100)
DO 320 I=IFLB,IFLT
NEA-NDL(I,l)
NEB=NDL(I,4)+NEA-1
ICO-NDL(I,2)-NDL(I, 1)-NDCP( ICOMP)
DO 320 JsNEA,NEB
NDLC-J+ICO
NO=(NDLC-1)*NDOF
DO 290 K-1,NDOF

290 ICP2(K)=NO+K
IF (I.NE.IFLB •MiD. l.NE.IFLT) GO TO 310
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JXY-J*10
DO 300 K=1,NDOF
KCX-ICP2(K)
KCY=IC(KCX,ICO~fl?)

300 IXDSB(KCY,ICOMP)=JXY+K
310 U"ICP2(1)

KBaICP2(NDOF)
WRITE (IP,2090) I,J, (ICP2(K),K=1 ,NDOF) ,(ICD2(K, ICOMP),

1 K=KA,KB),(IC(K,ICO~~),K=KA,KB)

320 CONTINUE
C
C STATISTICS FOR EACH DOF TYPE
C

330 NDC2(1,ICO~~)=1

NDC3(1 ,ICOMP)=NDC1(1 ,ICO}~)

DO 340 1=2,7
NDC3(I,ICOMP)=NDC3(I-1,ICOMP)+NDC1(I,ICOMP)
NDC2(I,ICOMP)-NDC3(I,ICOMP)-NDC1(I,ICOMP)+1
IF (NDC2(I,ICOMP).GT.NDC3(I,ICOMP)) NDC2(I,ICOMP)=NDC3(I,ICOMP)

340 CONTINUE
N~m=NDC3(7~ICOMP)

IF (NNN.GT.NCDMX) NCDIa=NO
IF (NNN~EQ.MDOF ). GO TO 350
WRITE (IP, 2030) NIDI, zrnOF
STOP

350 CONTINUE
360 CONTINUE

C
C STATISTICS FOR COMP INDICES·
C

iiRITE (IP, 221 0 )
WRITE (IP,2220) NCDMX,NCBDF,NCNDF
DO 380 1-1,7
NCXO(I)=0
NCXS(I)=O
DO 370 J=1,NCOMP
IF (NCXO(I).LT.NDC1(I,J)) NCXO(I)=NDC1(I,J)
IF (NCXS(I).LT.NDC3(I,J)) NCXS(I)=NDC3(I,J)

370 CONTINUE .
380 CONTINUE

C
C SYS INDICES
C

KOO-O
DO 410 IOO=1,NCOMP
DO 390 K"1,NCBDF

390 ICBS(K,I90)-O
DO 400K=1 ,NCNDF

400 ICNS(K,IOO)=O
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NCCC=NCRI-10(IOO)
ICP2(IOO)=0
DO 410 J=1,NCCC
KOO-KOO+1

410 ICNS(J,IOO)=KOO
KOOO=KOO

C
DO 4;0 J=1,3
NSYS(J)=KOO
DO 4;0 IOO=1,NCOMP
NNN=NCB(IOO,J,2)
ICP2(IOO)=ICP2(IOO)+NCB(IOO,J,1)
IF (NNN.EQ.O) GO TO 430
DO 420 K=1 ,liNN
rCp2(IOO)=rCp2(rOO)+1
~lCCC=ICP2 (roo)
KOO=KOO+1
ICBS(NCCC,IOO)"KOO

420 CONTINUE
430 cmrTINUE

NSYS(4)=KOO
DO 440 I=1,NCOMP

440 ICP2(I)=0
KOO"KOOO

DO 470 J=1,3
DO 470 IOO=1,NCOMP
NNN"NCB(IOO,J,1)
IF OHm. EQ .0) GO TO 460

. DO 450 K=1 ,m~N

KOO"KOO+1
ICP2(Ioo) ..rcp2(IOO)+1
NCCC=ICP2(IOO)
ICBS(NCCC,IOO)=KOO

450 CONTINUE
IF (IOO.NE.NCOMP) GO TO 460
KOO=KOO+NCB(IOO,J,2)

460 rCP2(IOO)=ICP2(IOO)+NCB(IOO,J,2)
470 CONTINUE

C
IF(ICHK.1TE.1) GO TO 530
IF (NCNDF.EQ.O) GO TO 490
WRITE (IP,2160)
DO 480 I=1,NCNDF

480 TiRITE (IP,2180) I,(IOO,ICNS(I,100) ,100"1 , NCOMP)
490 CONTINUE

IF (NC~DF.EQ.O) GO TO 530
WRITE (IP,2170)
DO 520 I=1,NCBDF
DO 510 1COMP=1,NCOMP
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NBBB=NDC3(3,ICO}~)

IF (I.GT.NBBB) GO TO 500
KKK=IXDSB(I,ICOMP)
NDXX(ICO~~)=KKK/10

NFXX(ICO~~)=KKK-KKK/10*10

GO TO 510
500 NDXX(ICOMP)=O

NFXX ( ICm-1P )=0
51 0 CONTDlUE
520 WRITE (IP,2190) I,(IO,ICBS(I,IO),NDXX(IO),NFXX(IO),IO=1 ,NcO~m)

530 WRITE (IP,2010)
RETURN

2000 FORr{AT (1H1 ,5X, 'ETR SCMID' ,II)
2010 FOffi{AT ( 5X, 'END SCMID' ,II)
2020 FORMAT (II)
2030 FORMAT (SOX,'DOF COUNT MAY BE WRONG' ,2I3,/)
2040 FORMAT (10I5)
2050 FORMAT (4I5,4X,3I1,3X,2I5)
2060 FORMAT (4I5,4X,6I1,2I5)
2070 FORMAT (4I5,4X,6X,2I5)
2080 FORMAT (11,20X, , ICOMP=' ,5IS)
2090 FORMAT (2X,I3,1X,I4,1X,1X,6('(',3I4,')'))
2100 FORMAT (I I " I-FL, EXT'-NODE NO., DOF-SEQ

1BY NODE, DOF-TYPE BY NODE~ DOF-SEQ FOR COMP ',I)
2110 FORMAT (j I ,2X, 'RETAINED INTERIOR DOF ••• ' ,I)
2120 FORMAT (j I ,2X, 'FIXED - DOF ••• ',f)
2130 FOID1AT (I I ,2X, 'BOUNDARY DOF ••• ' ,I)
2140 FOIDI.AT (I I ,2X, ,RETAINED BOUNDARY DOF ••• ', I)
2150 FORMAT (j /,2X, , COMPo DOF SEQ ••• ' ,f)
2160 FORMAT (II ,2X, 'COMP NORMAL MODE DOF' VS. SYS DOF',f)
2170 FORMAT (I ,2X, 'M=(ICOMP,J) ••• THE M-TH VAR OF ICOMP-TH COr-!P

1 IS ASSEMBLED TO THE J-TH VAR OF THE SYSTm1' ,I)
2180 FOm1AT (2X,14,2X,12('(' ,12,',' ,14,')' ,1X))
2190 FORMAT (2X,I4,2X,6( '(',I2,',',I4,';',I4,'-',I1,')',1X ))
2200 FOmUT (j I ,80X, 'COMPo NO.' ,I3,' ••• ',f)
2210 FORMAT (I I ,80X, 'SYS DATA ••• ',f)
2220 FOIDYAT (5l,'MAX NO. OF DOF IN ANY cor{p.

1 1,5X,
2' ALL-DOF=' ,I4,' B-DOF:oo' ,I4,' N-DOF""' ,I4,/)

END
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c
C DFLOC1•FOR
C

OK,82-05-26 JTH

SUBROUTINE DFLOC1 (NDA,IDIR,IDF2,1COMP)
COMl~ON/FEIDC/NDL(14,4),1C(336,4),NCB(4,3~2),

1 NDCP( 4), IFB( 4) , IFT(4) ,NCXS(7)
CCMMON/FEIDX/NDOF,NDD,NDT,NFL,NPT,NDICPF,NCDMX,NCXO(7),NCOMP

IFL""NDA/NDICPF+1
NDS=NDA-NDL(1FL,1)+NDL(1FL,2)-NDCP(ICOMP)



IDFLC-(NDS-1)*NDOF+IDIR
IDF2-rC(IDFLC,ICOMP)

RETURN
a~D

SUBROUTINE NDLOC1 (NDA,NDS,ICOMP)
COMMON/FEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),

NDCP(4),IFB(4),IFT(4),NCXS(7)
COMMON/FEIDX/NDOF ,NDD,NDT ,NFL,NPT ,NDICPF, NCD!'!X, NCX:0(7) ,NCOMP

IFL=NDA/NDICPF+1
NDS=NDA-NDL(IFL,1)+NDL(IFL,2)-NDCP(ICOMP)

RETURN
END
SUBROUTINE NDLOS (NDA,NDS)
COMMON/FEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),

NDCP(4) , IFB( 4), IFT(4) ,~TCXS(7)

COMMON/FEIDX/NDOF,NDD,NDT,NFL,NPT,NDICPF,NCDMX,NCXO(7),NCOMP
IFL=NDA/NDICPF+1
NDS=NDA-NDL(IFL,1)+NDL(IFL,2)

RETUR~I

END
SUBROUTINE DFLOC2 (NDS,IDIR,IDF2,ICOMP)
COMMON/FEIDC/1TDL( 14,4), IC(336, 4) ,NCB(4, 3.2) ,

NDCP(4) ,IFB(4) ,IFT(4) ,HCXS(7)
COMMON/FEIDX/NDOF ,NDD,NDT,NFL,NPT, NDICPF, NCDMX, NCIO(7) ,l-TCOMP

IDFLC-(NDS-1)*NDOF+IDIR
IDF2-IC(IDFLC,ICOMP)

RETURN
END

C
C CRDNAS.FOR 83-02-6 ( OK, 82-J1-30,10-21) JTH 82-09-14
C

SUBROUTlIiE CRDMAS (IF, ICHK, NCDMXO, NCOMPO ,NC4X, ICD2, XMS ,PEO)
DOUBLE PRECISION DMI,DMB,PE1
COMMON/COORD/X(182),Y(182),Z(182)
COMMON/CESTM/AO(144)
COMMON/FEIDS/NCRMO(4),NDC1(7,4),NDC2(7,4),NDC3(7,4),

ICBS(168,4),ICNS(36,4);NSYS(4)
COMMON/FEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),

NDCF(4),IFB(4),IFT(4),NCXS(7)
COMMON/FEIDX/NDOF,NDD,lr.oT,NF1,NPT,NDICPF,NCm~x,NCXO(7),NCOMP

COl{MON/GARB/XO(16),YO(16),ZO(28),SMX(3,4),XM3(3),ICP2(3),
ICP1(4),XM(200),XM4(4),P13(3),AAAO(311)

DIMENSION ICD2(NCTIMXO,NCOMPO),XMS(NCDMXO,NCOMPO),
PEO(NC4X,NCOMPO)

C
C READ & GEN COORD
C

vlRITE (IF, 2180 )
READ (5,2070). NX,NY,NZ
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WRITE (IP,2070) NX,NY,NZ
DO 10 I=1,NX

READ (5,2080) J,XO(J)
10 WRITE (IP,2080) J,XO(J)

DO 20 I=1,NY
READ (5,2080) J,YO(J)

20 WRITE (IP,2080) J,YO(J)
DO 30 I=1,NZ

READ (5,2080) J,ZO(J)
30 WRITE (IP,2080) J,ZO(J)

'"RITE (IP, 21 20 )
40 READ (5,2070) NDO, IGZ, IDZ, IXO,IYO,IZO

WRITE (IP,2070) NDO, IGZ, IDZ, IXO, IYO, IZO
IF (NDO .EQ. 9994) GO TO 60

IO=IZO-1
DO 50 K=1,IGZ
ND=NDO+(K-1)*IDZ
CALL NDLOS (ND,NDS)
IO-IO+1
X(NDS)"XO(IXO)
Y(NDS)=YO(IYO)
Z(NDS)=ZO(IO)
IF (ICHK.NE.1) GO TO 50
WRITE (IP~2090) ND,IXO,IYO,IO,X(NDS),Y(NDS),Z(NDS)

50 CONTINUE .
GO TO 40

C
C READ & GEN MASS
C

60 WRITE (IP,2170)
IW1"0
Iii2"0
ro"O
DO 70 J-1,NCOMP
SMX(1,J)=0.
SMX(2,J)=0.
SMX(3,J)=O.
NMX=NCXS(4)
CALL ZERO (PEO(1,J),PEO(NMX,J»
CALL ZERO (XMS(1,J),XMS(NMX,J)

70 CONTINUE
80 READ (5 ,2070) NXM

WRITE (IP,2070) NX11
DO 90 I-1 ,NX!~

READ (5,2080) J,XM(J)
90 WRITE (IP,2080) J,XM(J)

WRITE (IP,2120)
C READ FOR ALL DOF, ALL COMP TILL TERMINATION

100 READ (5,2070) ICOMP,NDO,IDIR,IM, IG, ID
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WRITE (IP,2070) ICOMP,~rnO,ID!R,IM, IG, ID
IF (ICOMP.EQ.9995) GO TO 120
TM=XM(IM)

DO 110 K=1,IG
ND=NDO+(K-1)*ID

CALL DFLOC1 (ND,IDIR,IDF,ICOMP)
r~=NDC3(4,ICOMP)

n1S(IDF,ICOMP)=n~S(IDF,ICOMP)+TM

SMX(IDIR,ICOr{p)=Sr~(IDIR,ICOMP)+TM

IF (IDF.LE.~mx) GO TO 110
IW1 a IW1 +1
WRITE (6,2060) ICOMP,NDO,IDIR,IM,K,ND,IDF,~mX

110 CONTUm
GO TO 100

C
C MASS AND SEISMIC LOAD VECTORS
C

120 DO 140 Ja 1,NCOMP
NB=NDC3(7,J)
DO 140 I=1,NB
KO=ICD2(I,J)
IF (KO.GT.4) GO TO 140
JO=I-I/NDOF*NDOF
IF (JO.GT.~mD .OR. JO.EQ.O) GO TO 140
rO=IeCr,J) .
IF (IO•.LE.NDC3(4,J» GO TO 130
WRITE (IP,20;O) J,I,KO,JO,IO

130 PEO(IO,J)=XMS(IO,J)*AO(JO)
140 CONTINUE

C
C CHECK MASS
C

IF (ICRK.NE.1) GO TO 190
WRITE (IP,2110)
DO 160 J=1,NCOMP
WRITE(IP,2130) J, (IO,SMX(IO,J),IO=1,NDD)

K-;
NA-NDC2(K,J)
NB-NDC3(K,J)
IF (NA.EQ.O) GO TO 160
DO 150 KO-NA,NB
IF (XMS(KO,J).EQ.O.) GO TO 150
IW3=IW3+1
WRITE (6,2060) J,KO,NA,NB

150 cmrTINUE
160 CONTINUE

WRITE (IP,2070) Di1,IW3
c
C MAS· 'fABLE
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C

C
WRITE (IP,2140)
DO 180 J=1,NCOMP
DO 180 [a1,4
IF, ([. EQ. 3) GO TO 180
ltlRITE (IP, 2120)
NA=NDC2(K,J)
NB=NDC3(K,J)
IF (NDC1(2,J).EQ.0.) GO TO 180
DO 170 I=NA, MB

170 WRITE (IP,2150) J,K,I, ~~S(I,J),PEO(I,J)

180 CONTINUE
IF (r,n. 1T. 1 •AND. IW3 •LT •1) GO TO 190
STOP

C
C WRITE ON DISK
C

190 I50L=2
DO 200 ICOMPa1,NCOMP
ENCODE (10,2000,DMI) ISOL,ICCMP

. EnICODE (10,2010,DMB) ISOL,ICOMP
ENCODE (10,2020,PE1) ISOL,ICOi!P

OPEN (UNITa2,FILEaDMI,ACCES5='SEQOUT')
NA-NDC2( 4, ICO~fi')
NB=NDC3(4,ICOMP)
WRITE (2,2160) (XMS(K,ICOMP),K=NA,NB)

CLOSE (UNIT=2,FILE=DMI)
C

OPEN (UNIT=2,FILE=PE1,ACCESS='SEQOUT')
toflUTE (2,2160) (PEO( K, ICOMP) ,K=1 , NB)

CLOSE (UNIT-2,FILE=PE1)

OPEN· (UNIT=2,FILE=DMB,ACCESS-'SEQOUT')
NA=NDC2(1,ICOMP) .
NBaNDC3(2,ICOMP)
tf.RITE (2,2160) (XMS(K,ICOMP),K=NA,~m)

CLOSE (UNIT=2,FILE=DMB)
200 CONTINUE

C
WRITE (IP,2190)

RETURN
2000 FORMAT ('DMI' ,11,11, '.DAT' ,1X)
2010 FORMAT ('DMB',I1,I1,'.DAT',1X)
2020 FORMAT ('PE1' ,I1,I1,'.DAT',1X)
2030 FORMAT (5X,5IS,F15.7)
2040 FORMAT (30X,4I;)
2050 FORMAT (70X,4IS)
2060 FOR!1AT (SOX, 'BAD ••• ' ,815)

114
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2070 FORMAT (8IS)
2080 FO~1AT (IS,F1,.7)
2090 FO~UT (,X,4IS,3F1,.4)
2100 FO~1AT (2X,5I5,2F11.7)
2110 FORMAT (/,5X,'TOTAL MASS FOR EACH D-DIR OF EACH COMP'g/)
2120 FORMAT (/)
2130 FORMAT (20X,I3"X,3(I3,F12.7»
2140 FORMAT (1I,5X,'MASS & FORCE TABLE',/)
2150 FORMAT (2X,3I5,2X,F10.6,2X,F12.3)
2160 FO~~AT (,X,SE15.8)
2170 FORMAT (1/,5X,' MASS •••• ,II)
2180 FORrUT (// ,SX, 'ETR CRDMAS',I ,5X, •COORD. • •• ' ,f)
2190 FO~~T (1/,5X, •END CRDMAS' ,I)

END.
C COr-!STF.FOR 83-02-06 ( OK,82-12..23) JTH 82-05-12
C

SUBROUTINE GSTIF6 (IP,ICHK,NSDMX,S)
cOm~ON/IDO/IDO(600)

cO~J!ON/CESTM/SKEG(144)

COMl'ION/COORD/X( 182) ,I( 182) ,Z( 182)
COMMON/FEIDS/NCRMO(4) ,NDC1 (7,4) ,NDC2(7,4) ,NDC3(7 ,4),

ICBS(168,4),ICNS(36,4),NSIS(4)
COMlolON/FEIDX/NDOF ,NDDO ,NDT ,NFL, NPT ,ND ICPF , NCDMX, HCXO (7) , NC 0l-tP

c

C

DIMENSION NDD(2),NDC(2),IE(12)
DIMENSION S(NSDMX)

WRITE (IP,2060)
NE=NDOF*2
IELMS=O

NBX=O
DO 10 r=l,NCOMP
IF (NBX.LT.~TDC3(3,!» NBX=NDC3(3,I)

10 CONTINUE
NIX-NCXO(4)
NX-NBX+NIX
NCOMPO-NCOMP

20 READ (5,2000) ICO~~,IPSE,IPSK1,ISCON,N400

IF (ICOMP.EQ.8888) GO TO 130
IF (ICHK.EQ.O) ISCON=O

WRITE (IP,2020) ICOMP,IPSE,IPSK1,ISCON,N400
IELMC-o
NSDMXO-NDC3(7,ICOMP)
NSDMXS-NSD~.xO+IDO(NSDMXO)

IF (IPSE.EQ.O .AND. IPSK1.EQ.0 .AND. ISCON.EQ.O .AND.
1 ICHK.EQ.1) GO TO 30

CALL ZERO (S(1),S(NSDMXS»
C
C· READ ELMS & CAL STF FOR EACH COMP



C

C

1 1 6

30 RE.tO (5,2000) NI,NJ, IMP,ISP,IG,ID,IPS
WRITE (IP,2000) NI,NJ, IMP, ISP,IG,ID,IPS
IF (NI.EQ.9996) GO TO 100

ICHKG=IPS*ICHK
ICHKS=ICHKG*IPSE
DO 90 K-1,IG
IF (K.GT.1) ICHKG=O
IF (K.GT.l) ICHKS=O
IELMC-IELi.~C +1
IELMS-IELMS +1
KK-(K-1)*ID
NDD(1)-KI(+NI
NDD (2 )=KIC+NJ
CALL NDLOS (NDD(l),NAS)
CALL NDLOS (NDD(2),NBS)
IF (ICHK.EQ.1) ·\tRITE (IP,2040) NDD(1) ,.~rnD(2) ,NAS,NBS,IEL1~C, IELMS
IF (ICRK.NE.1 .OR. ICHKS.EQ.l .OR. ISCON .EQ.1) GO TO 40
GO TO go

40 DX=X(NBS)-X(NAS)
DY-Y(NBS)-Y(NAS)
IF (NDOF.NE.6) GO TO 50
DZ=Z(NBS)-Z(NAS)
CALL BiUYZ (ICHKS, Dfi' , ISP ,DX, DY ,DZ , IP, IPS)
GO TO 60

50 CALL KE2D6 (ICHKS,nIP,ISP,DX,DY,IP,IPS)
60 IOO=O

DO 70 I=1,2
CALL NDLOC1 (NDD(I),NDC(I),ICOMP)
DO 70 J=1,NDOF
1oo=-IOO+1
JOO""J
CALL DFLOC2 (NDC(I),JOO,IDF2,ICOMP)
IE(IOO)-IDF2

70 CONTINUE
DO 80 J""l,NE
JO-IE(J)
KO-IDO(JO)
IJO-(J-1)*NE
DO .80 I""1,NE
IO-IE(I)
IF (IO.GT. JO) GO TO 80
IJ""1JO+I
KOO-KO+IO
S(KOO)-S(KOO)+SKEG(1J)

80 CONTINUE
90 CmITlmJE

GO TO 30



IEIJ.1C , N1 , NZ , N2S
GO TO 110

(s(ro), rO-1,N2S)
GO TO 110

c

C

C

100 N2=NDC;(6,ICOMP)
N1=NDC;(4,ICOMP)
N2S-IDO(N2)+N2
N4-NDC;(;,ICO~~)

ISOL-1
WRITE (IP,20S0)
IF (IPSK1.NE.1)
WRITE (IP,20;0)
IF (ISCON.NE.1)
N4=N400
GO TO 120

110 IF (ICHK.EQ.1) GO TO 20
120 CALL STCOND (S,N4,N1,N2,N2S,ISCON,ISOL,ICOMP,IP)

N4·t~CRMO( ICOltlP)
N1 =NDC1 (4, ICO~!P)
N2-IDO(N1)+N1
N;aN2+1
N6aN;+N1*N1

CALL STDEGC (S( 1) , s(~i;) ,S(N6) ,N1 , NZ, N4, ICQIwIP, IP)
GO TO 20

1;0 IF (ICHK.EQ.1) GO TO 140
N1-N13X+1
N2-N1 +NIX*~tBX

N;-N2+NIX*NBX.
N4=N;+NBX
NS-N4+N'X

CALL C~!SM1 (S(1) ,S(N1) ,S(N2) ,SeN;) ,S(N4) ,S(N5),
NX,NBX,NIX, NCOMPO,IP)

117

140 WRITE (IP,2070)
RETURU

2000 FORMAT (815)
2010 FORMAT (20X,'''' ',;IS,5X,2I5,5X,I5,;X,E10.4)
2020 FOmu.T (/ ,50X, 'COrK.P. liO.', SI4, f)
20;0 FORMAT (;X,12E10.4)
2040 FORMAT (50X,'*' ,;(2IS,5X))
2050 FomUT (sox, '** ',817)
2060 FOm-tAT (ff,sx, 'ETR GSTIF6' ,If)
2070 FORMAT UI ,SX, 'END GSTIF6' ,If)
2080 FORMAT U)

END
C GUY4.FOR 8;-02-07 (OK,82-o8-10) JTH (82-0;-12)
C

SUBROUTI1TE STCOND (S,rmZ,lm,N,NS,ISCON,ISOL,ICOiU',IP)
DOUBLE PRECISION KJ3B,PIB,KII,PE;
COMMON/IDO/IDO(600)
COMr~ON/GARB/C(600)



C

C

C

C

C

DINENSION S(11S)

WRITE (IP,2070)
10 ENCODE (10,2010,PIE) ISOL,ICOMP

WRITE (IP,2050) ICOMP,ISOL,NB2,NE,N,NS

M=N
20 J1=oIDO(M)

DO 30 J=o1 ,~1

30 C(J)=S(Jl+J)/S(J1+M)
DO 40 I=ol ,~~-1

DO 40 J=I,M
KO=oIDO(J)+I

40 S(KO)=S(KO)-C(J)*S(J1+I)

DO .50 J=ol,M
50 S(J1+J)=C(J)

H=M-1
IF (M-NE) 60,60,20

60 M=NB+l
70 KO-IDOO!)

DO 80 I-1,MB
80 C(I)-S(KO+I)

DO 90 JO-M+1,N
KO-IDO(JO)
CC=oS(KO+M)
DO 90 I:l1,lT13

9OS(KO+I)-S(KO+I)-C(I)*CC
M=oM+1
IF (M-N) 70,100,100

100 CON.TINUE

IF (ISCON.~IE.1) GO TO 120
WRITE (IF, 2060 ) ..
DO 110J=1,NB
IO-OO(J)

110 WRITE (IP,2040) (S(IO+KO) ,KO-1 ,J)

120 IF (ISOL.EQ.1 .AND. ISCON.EQ.O) GO TO 140
ENCODE (10,2000,KEB) ISOL,ICOl{P
OPEN (UNIT=3,FlLE=KEB,ACCESS- t SEQOUT t

)

DO 130 Ja 1,ME
IO-IDO(J)

130 WRITE (3,2040) (S(IO+KO),KO-1,J)
CLOSE (UNITa 3,FILE=KEB)

140 CONTINUE
IF (ISOL.NE.3) GO TO 150

ENCODE(10,2030,PE3) ISOL,ICOr{p
OPEN (UNITa 3,FILE=PE3,ACCESS='SEQIN t

)

118



IF· (ISOL.NE.t) GO TO 210
ISOL-2
N=NB
.NB=NB2.
NS-IDO(N)+N

ENCODE (10;2020,KII) ISOL,ICOMP
OPEN (UNIT=3,FILE=KII,ACCESS·'SEQOUT')

NBO-NB+1
DO 200 JaNBO,N
KO-IDO(J)

200 WRITE (3,2040) (S(KO+IO),IO=NBO,J)
CLOSE (UNIT=3,FILE=KII)
GO TO 10

210 WRITE (IP,2080)
RETURN

2000 FORMAT ('KEB' ,I1 ,I1 ,'.DAT' ,1X)
2010 FORMAT ('PIJ3',I1,I1,'.DAT',1X)
2020 FORMAT ('KII' ,I1,I1,'.DAT' ,1X)
2030 FORMAT ('PE3',I1,I1,'.DAT',1X)
2040 FORMAT (5X,5E15.8)
2050 FO~-AT (/,sOX,'!!! • ,6I7,/)
2060 FORMAT (I)
2070 FORMAT (//,1X,'ETR STeOND',/)
2080 FORMAT ( 1,1 X, 'END STCOND' , / /)

C

c

READ (3,2040) (S(I),I=1,N)
CLOSE (UNIT=3,FILE=PE3)

150 CONTINUE

OPEN (UNIT=3,FILE-PIB,ACCESS='SEQOUT')
JO-IDO(NB+1)
NI-N-NB
DO 180 I:t1,MB
IK=JO+I
DO 160 J:t1 ,~TI

C(J)=-S(IK)
160 IK=IK+(NB+J)

IF (ISOL.NE.3) GO TO 180
CC=O.
DO 170 J=1,NI

170 CC-CC+C(J)*S(NB+J)
S( I) =S( I) +CC .

180 WRITE (3,2040) (C(KO), KO=1,MI)
'CLOSE (UNIT=3,FILE=PIE)

IF (ISOL.NE. 3) GO TO 190
OPEN (UNIT=3,FILE=PE3,ACCESS='SEQOUT')
WRITE (3,2040) (S(I),I=1,NB)
CLOSE (UNIT=3,FILE=PE3)

1"90 CONTINUE
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C
C
C

C

C

END

82-8-12

SUBROUTINE GUYRED (Y,NB,N,NS,IP)
COMMON/IDO/IDO(600)
COMMON/GARE/Ct(600)
DIMENSION yeNS)

OPEN (UNIT~3,FILE='PIE30.DAT' ,ACCESS='SEQIN')
Ii!UTE (IP, 201 0)
NI·N-~m

JO=IDO(NB+1 )
DO 50 I-1,NE
READ (3,2000) (C1(K),K=1,NI)
DO 50 J~l,NE

IK=JO+J
CC=O.
DO 10 K~l,NI

CC=CC+C1(K)*Y(IK)
10 IKaIK+(NB+K)

KO-IDO(J)+I
IF (J-I) 40,;0,20

20 Y(KO}-Y(KO)+CC
GO TO 50

30Y(KO)=Y(KO)+CC'*2.
GO TO 50

40 KO-IDO(I)+J
Y(KO)-Y(KO)+CC

50 CONTINUE
CLOSE (UN~T=3,FILE""'PIE30.DAT·)

OPEN (UNIT~3,FILE~·PIE30.DAT·,ACCESS=·SEQIN·)
IOO=IDO(NE+1) ~

DO 100 J=1,NB
IO-lOO+J
READ (;,2000) (C1 (K) ,K=l ,NI)
DO 90 I a 1,NI
Y(lO)aO.
IK=IDO( NB+I) +Nl3
DO 60 KO=1,l
I1(O=I1(+KO

60 Y(IO)=Y(IO)+Y(IKO)*C1(KO)
IF (I.EQ.NI) GO TO 80
KO=IK+1
DO 70 K=I+1,NI
KO-KO+K-1+NB

70 Y(lO)=Y(IO)+Y(KO)*C1(K)
80 CONTINUE

120



2000
2010
2020

C

C

90 IO=rIO+(NB+I)
100 CONTINUE

CLOSE (UNIT=3,FlLE='PIB30.DAT')

OPEN (UNIT=3,FILE=r'PIB30.DAT',ACCESSa'SEQIN')
JOaIDO(NB+1)
DO 120 I a 1,NB

READ (3,2000) (C1(K),K=1,NI)
DO 120 J=I,NB
IK=JO+J
rO=IDO(J)+I
CCaa-.
DO 110 KO--1 ,N'I
CC=CC+Y(IK)*C1(KO)

110 IK=IK+(NB+KO)
120 Y(IO)=Y(IO)+CC

CLOSE (UNIT--3,FlLE='PIB30.DAT')

OPEN (UNIT=3,FILE='MBB30.DAT' ,ACCESS=r'SEQOUT')
DO 130 J=1,NB
KO-IDO(J)

130 WRITE (3,2000) (Y(KO+IO),IO=r1,J)
CLOSE (UNIT--3,FlLE='MBB30.DAT')
WRITE (IP,2020)
RETUlL.1
FORMAT (5X,5E15.8)
FORMAT Uf, 1X, 'ETR GUYAN' ,f)
FORMAT ( 1,1X,'END GUYAN' ,II)
END

121

c
C
C CMS3.FOR (OK,83-01-31,01-0,) 83-01-11 82-08-15 JTH
C

C

-'SUBROUTINE C}tsM1 (YBB,PH,YBI,YBN,n~,PE, NX,NEX,NIX,NCOMFO,IP)
DOUBLE PRECISION PIB,PIN,DMB,DMI,MBB,MEN,PE1,PE2
cOr~ON/FEIDS/NCRMO(4),NDC1(7,4),NDC2(7,4),NDC3(7,4),

ICBS(168,4),ICNS(36,4),NSYS(4)
COMMON/GARBfC1(600)
DIMENSION YBB(NEX),PH(NIX,NBX),YBI(NIX,NBX),X}f(NX),YBN(NBX),

PE(NX)

WRITE (IP,2090)
I50L--2
DO 130 ICO~~-1,NCOMPO

NB:IINDC3(3,ICO~~)

NI =NDC1(4, ICOMP)
N--NDC., (4, ICOl'fP)

NNP-NCRMO(ICOMP)
N2=NB+NNP



ENCODE (10,2000,PIB) 1SOL,ICOMP
ENCODE (10,20l0,P1N) 1SOL,ICO~~

ENCODE (10,2020,DMB) ISOL,ICOMP
ENCODE (10,2030,MBB) ISOL,ICOMP
ENCODE (10,2040,MBN) ISOL,ICOMP
ENCODE (10,2050,DM1) ISOL,ICOMP
ENCODE (10,2060,PE1) ISOL,ICO!!P
ENCODE (10,2070,PE2) ISOL,ICOMP

c
C GET CaMP MASS IN P-COORD
C

122

C

C

C

OPEN (UN1T""3,FILE=DMI,ACCESS='SEQIU')
NA=NDC2(4,1COMP)
NC=NDC1(4,ICOMP)
READ (3,2080) (Cl(K) ,K"1 ,UC)
DO 20 1"1,NC
10aNA+I-1

20 XM(IO)aXIo1(10)+C1 (I)
CLOSE (UN1Ta 3,F1LE=DMI)

. OPEN . (UNIT=3, FILE=PE1 , ACCESS= 'SEQIN' )
READ (3,2080) (PE(1),I"l,N)
CLOSE (UNITa 3,FILE=PE1)

OPEN (UN1Ts 3,FILE=P1B,ACCESSa'SEQIN')
DO 40 J a l ,~m
READ (3,2080) (FliCK,J), K=1,NI)
CC=O.
DO 30 r a l,NI
CC=CC+PH(1,J)*PE(NB+I)

30 YBI(I,J)aPH(I,J)*XM(NB+I)
40 PE(J)apE(J)+CC

CLOSE (UNIT=3,FILE"PIB)

OPEN (U?lIT"2, FILE=l~BB, ACCESS-' SEQOUT ' )
DO 70 J a l, ~TB
CALL ZERO (YBB( 1),YBB( J))
YBB(J)aXM(J)
DO 60 I-1,J



C

CC=O.
DO 50 K=1,NI

50 CC=CC+YBI(K,I)*PH(K,J)
60 YBB(I)=YBB(I)+CC
70 WRITE (2,2080) (YBB(JO),JO=1,J)

CLOSE (UNIT=2,FILE=MBB)

OPEN (UNIT=3,FILE=PIN,ACCESS='SEQIN')
OPEN (UNIT=2,FILE=MBN,ACCESS='SEQOUT')

DO 110 J=1,NNP
READ (3,2080) (PH(K,J), Ie=1,NI)
DO go !=1,NB
CC=O.
DO 80 K=l,NI

80 CC=CC+YBI(K,I)*PH(K,J)
90 YBN(I)=CC

CC=O.
DO 100 K=1 ,HI

100 CC=CC+PE(~m+K)*PH(K, J)'
n~(J}=CC

110 WRITE (2,2080) (YBN(IO),IO=1,NB)
CLOSE (UNIT=3,FI1E=PIN)
CLOSE (UNIT=2,FlLE=MBN)

, DO 120 J=1,NNP'
120 PE(NB+J)=XM(J)

OPEN (UNIT=3,FILE-PE2,ACCESS='SEQOUT')
TiRI-~E (3,2080) (PE(I) ,1=1 ,N2)
CLOSE (UNIT=;,FILE=PE2)

'1;0 CONTINUE
C

WRITE (IP,2100)
RETURN

2000 FORMAT ('PIB' ,I1,I1,'.DAT',1X)
2010 FORMAT ('PINt ,I1,I1,'.DAT' ,1X)
2020 FORMAT ('DMB' ,I1,I1,'.DAT' ,1X)
20;0 FORMAT ('MBB' ,I1 ,I1',' .DAT', 1X)
2040 FORMAT ('MEN', I1 ,It , , .DAT' ,1 X)
2050 FORMAT ('DMI' ,I1 ,I1,' .DAT', 1X)
2060 FOlU'1AT ('PE1 ' , I1 , I1 , , .DAT' ,1 X)
2070 FORMAT ('PE2',I1,I1,'.DAT',1X)
2080 FORMAT (SX,SE15.8)
2090 FORMAT (//,1X,'ETR CMSM1',/)
2100 FORMAT ( /, 1X, 'END CMSM1 ' ,//)

END
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c
c
C SYSM.FOR 83..Q2-07
C

(OK,8;-01-o5) 82-08-19 JTH

SUBROUTINE SYSM (SM,NS,NCOMP,IP)



DOUBLE PRECISION MBB,MBN
COMMON/GARB/C1(600)
COI~ON/FEIDS/NCRMO(4),NDC1(7,4),NDC2(7,4),NDC3(7,4),

ICBS(168,4), ICNS(36,4) ,NSYS(4) .
DI~.IDISImr SM(NS)

C
C GET SYS MASS IN Q-COORD
C

WRITE (IP,2040)
JO=NSYS(1)
CALL ZERO (SM(1),SM(NS))
DO 10 I-1,JO
IO-(I*I+I)/2

10 SIc1( IO) - 1•
ISOL=2

C
DO 50 ICOMP-1 ,NCOMP
NB-NDC3(3,ICOMP)
NNP=NCfu'10 (ICQI'IP)
ENCODE (10,2000,MBB) ISOL,ICOMP
ENCODE (10,2010,MBN) ISOL,ICOMP
WRITE (IP,2030) ICOMP,NB,NNP

C

124



CLOSE (UNIT-3,FILE-MBN)
50 CONTINUE

C
RETURN

2000 FORMAT ('MBB',I1,I1,'cDAT',1X)
2010 FOm[AT ('MBN·,I1,I1,'.DAT',1X)
2020 FORMAT (5X,5E15.8)
2030 FORMAT (5X,7IS)
2040 FORMAT (11,1X,'ETR SYSM' ,I)

END

125

C
C
C SYSK.FOR 83-02-07 (OK,83-01-o5)
C

82-08-19 JTH

SUBROUTnIE SYSK (SK, NS , NCm-IF , IP)
DOUBLE PRECISION KBB,EVA
CO~!ON/GARB/cl(600)

CO![MON/FEIDS/NCRMO(4),NDC1(7,4),NDC2(7,4),NDC3(7,4),
ICBS(168,4),ICNS(36,4),NSYS(4)

DTI1ENSION SK(NS)
C
C GET SYS STIFF IN Q-COORD
C

WRITE (IP,2040)
CALL ZERO (SK(1),SK(NS»
DIO-o
1SOL-2

C

C

C

DO 40 ICOlf.P-1,NCOMP
NB-NDC3(3,ICOMP)
Nln?-NC.RMO(ICOMP)
ENCODE (10,2000,KBB) ISOL,ICOMP
ENCODE (10,2010,EVA) ISOL,ICOMP
WRITE (IP,2030) ICOMP,NB,NNP

OP~T (UNIT-3,FILE-EVA,ACCESS-'SEQIN')
READ (3,2020) (C1(I),I-l,NNP)
DO 10 I-1,NNP
INO-I~O+l

IO-(INO*INO+INO) 12
10 SK(IO)-C1(I)

CLOSE (UNIT-3,FILE-EVA)

OPEN (UNIT-3,FILE=KBB,ACCESS-'SEQIN')
DO 30 J-1,MB
JS-rCBS (J, rcm·iF)
READ (3,2020) (Cl (JO) ,JO-1 ,J)
JO-JS-1
KO-(JO*JO+Jo)/2



DO 30 I-1,J
IS-ICBS(I, ICor~)
KS-KO+IS
IF (IS.GT.JS) GO TO 20
SK(KS)-SK(KS)+C1(I)
GO TO 30

20 WRITE (IP,2030) J,I,JS,IS,KS,ICOMP
STOP

30 CONTINUE
CLOSE (UNIT=3,FILE=KBB)

40 CONTINUE
C

RETURU
2000 FO~1AT ('KEB' ,I1,I1,'.DAT',1X)
2010 FORlo!AT ('EVA' ,.I1 ,I1 " •DAT' ,'X)
2020 FORIolAT (SX, SEtS. 8)
2030 FORMAT (SX,7IS)
2040 FOm~AT (//,1X,'ETR SYSK',/)

END
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C
C
C SYSP.FOR 83-02-07
C

82-11-14 J. T.HUA1TG

SUBROUTINE SYSP (SP,N,NCO!{P,IP)
DOUBLE PRECISION PE2
COMMON!GARB/PE(600)
COMMON!FEIDS/NCRMO(4),NDC1(7,4),NDC2(7,4),NDC3(7,4),

1 ICBS(168,4),ICNS(36,4),NSYS(4) .
DIMENSION SP(N)

C
C GET SYS LOAD IN Q-COORD
C

WRITE (IP,2070)
CALL ZERO (SP(1),SP(N»
ISOLs 2
DO 30 ICOMP-' , NCOMP
WRITE (IP,2060)
rm=NDC3(3,ICO~rP)

NNP-NCR.~O(ICO~fP)
N2-N]3+NNP
WRITE (IP,2010) ICOI{P,NB,NNP,N2
ENCODE (10,2000,PE2) ISOL,ICOMP

OPEN (UNIT-3,FILE-PE2,ACCESS:e'SEQIN')
READ (3,2040) (PE(I),I-1,N2)
CLOSE (UNIT=3,FlLE-PE2)

WRITE (IP,2020)
DO 10 J-1,NB
JS-ICBS(J,ICOMP)
Sp(JS)-Sp(JS)+PE(J)



RETURN
2000 FORMAT ('PE2',I1,I1,'.DAT',1X)
2010 FORMAT (25X,I5,3X,316,1)
2020 FORMAT (25X,'BOUNDARY DOF~)
2030 FORMAT (25X,' NORMAL DOF' )
2040 FO~~T (SX,SE15.8)
2050 FORMAT (2X,2I5,F12.6)
2060 FORMAT (/)
2070 FORMAT (//,1X,'ETR SYSP',/)

END

C

C

C

1-0 WRITE- (IP, 2050) J, JS, SP( JS)
WRITE (IP,2030)
DO 20 J-1,NNP
JS-ICNS(J,ICOMP)
Sp(JS)=Sp(JS)+PE(NB+J)

20 WRITE (IP,2050) J,JS,Sp(Js)
30 CONTINUE

OPEN (UNIT-3,FlLE='PE330oDAT' ,ACCESS='SEOOUT')
WRITE (3,2040) (Sp(r),I=1,N)
CLOSE (UNIT=3,FlLE='PE330oDAT')
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JTH



CALL EPOST1 (EA,XK(1),XK(N1),N,ISOL,ICOMP,IP)
CALL SYMFL (XM,EC,N,NS,IP)
CALL EPOST2 (EC,N,1TMOD,ISOL,ICO!{P,IP)

WRITE (IP,2010)
RETURN

2000 FORMAT (11,5X, '*** ETR GEVPS2 ***' ,I)
2010 FORMAT (/,SX, '*** END GEVPS2 ***',11)
2020 FO~1AT (5X,5E15.8)

END
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C
C
C

c

C

82-06-12 JTH .

SUBROUTINE STDEGC (K,EC,EA,N,US ,mmD, ICOMP, IP)
DOUBLE PRECISION PIN,EVA,KII,DMI
REAL K,M2
COW~ON/IDO/IDO(600)

COMl10N/EGV1/IA2(600)
COMMON/GARB/I~(600)

DIMENSION EC(N,N),K(NS),EA(N)

1SOL=2
ENCODE (10,2000,KII) ISOL,ICOI{P
ENCODE (10,2010, DMI) ISOL,IC018.P

WRITE (1P,2030)
OPEN (UNIT-;,FILE=DMI,ACCESS-'SEQIN')
READ (;,2020) (M2(I),I-l,N)
CLOSE (UNIT-3,FlLE-DMI)

N22"N*N
DO 10 I:'1,N

10 .M2(I)=1 ./SQRT(r.I2(I»
OPEN (UNIT=3,FILE=KII,ACCESS='SEQIN')

DO 20 J=l,N
KO-IDO(J}
READ (3,2020) (K(KO+IO) ,10"1 ,J)
DO 20 I-l,J

20 K(KO+I)=K(KO+I)*M2(I)*M2(J)
CLOSE (UNIT";,FILE=KII)
CALL EIGEN (K,EC,N,NS,N22)

DO 30.I=1,N
IO-Ioo(I)+!,0 EA(I)-K(IO)
N1:oN+1

CALL EPOSTl (~A,K( 1) ,K(N1 ) ,!Y , ISOL, ICOl~P, IP)
DO 40 J-l,N
JO-IA2(J)
DO 40 I a l,N

40 EC(I,JO)-EC(I,JO)*M2(I)
CALL EPOST2 (EC,N,NMOD,ISOL,ICOMP,IP)



TiRITE (IP, 2040 )
RETUIDT

2000 FORMAT ('KII',I1,I1,'.DAT',1X)
2010 FORMAT ('DMI',Il,Il,'.DAT',1X)
2020 FORMAT (SX,SE15.8)
2030 FORMAT (11,40X,'ETR STDEGC',/)
2040 FORMAT (I, 40X,'END STDEGC' ,1/)

END
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c
C DISPL1.FOR OK,83-D1-27 JTH 10-18
C

(OK, 82-12-27)

C

C

SUBROUTINE DISPL1 .(EC,EA,F, Y,F,T, Q,QN,EN, H,NO,I1 ,N2,DT,
NMD,FX,~~,IP,ICHK)

DOUBLE PRECISION ACR
COMMON/EGV1/IA2(600)
COMMON/GARBI AA(SOO) ,ZOe 100)
DIMENSION EC(N,N),EA(N),P(N),T(NO),F(NO),Y(NO),Q(N2),

EN(NMD),QN(N2,NMD)

WRITE (IP,2100)
OPEN (UNITa 2,FlLEa'TRS30.DAT',ACCESSa'SEQIN')
READ (2,20S0) FX,EM
WRITE (6,2050) FI,EM

-IF (FX.EQ.O.) n"40.
IF (EM.EQ.O.) EMaQ.001-
1a:-FX*2.*3.14159265 -
m-1.
R1 a1 e

R2:a1.
R3:a1.
R4-1.

OPEN (UNITa3,FILE~'DAr<r.DAT' ,ACCESS"·SEQIN')
READ (3, 2050) (zo(I ) ,.I-1 ,NMD )
CLOSE (UNIT:a3,FlLE"'DM~.DAT')

O~T (UNIT-3,FlLE='PE330.DAT',ACCESSa'SEQIN')
READ (3,2030) (p(r),Ia 1,N)
CLOSE (UNITa 3,FlLE='PE330.DAT')

READ (2,2070) NTS
WRITE (6,2070) NTS
DO 100 ITS=1,NTS
WRITE (IP,2000) ITS
p~ (2,2010) NO,I1,N2,DT
WRITE (IP,2010) NO,I1,N2,DT
WRITE (IP,2060)
IO-I1-1
NOO-IO+N2
IF ( NO.GT.NOO) NO=NOO

·IF (NOO.GT.NO ) N2"NO-IO



C

C

C

T(1)-rO*DT
DO 10 I-2 ,~t2

10 T(I)-T(I-1)+DT

ENCODE (10,2020,ACR) ITS
OPEN (UNIT-3,FILE=ACR,ACCESS='SEQIN')
READ (3,2030) (F( JO),JO-1,NO)
WRITE (6,2040) (F(JO), JO=1,NO)
CLOSE (UNIT-3,FILE=ACR)

IF (ITS.GT.1) GO TO 50
DO 3C K-1,NMD
JO=IA2(K)
W-SQRT(EA(JO) )

IF (\'1.• GT. WI) GO TO 40
EY=O.
DO 20 I=1,N
EY-EY+P(I)*EC(I,JO)

20 CONTINUE
IF (K.EQ.1) E1-ABS(EY)
EYO-ABS(EY)
IF (EYC.GT.El) El-EYO
R4=R;
R3-R2
R2-Rl
Rl-EY/El
R1-ABS(Rl)

WRITE (IP,2080) K,W,EY,E1,Rl
IF (Rl.LT.E}! .AND. R2.LT.EM .AJ.'iJD.· R3.LT.EM .AND.

1· R4.LT.EM ) GO TO 40
EN(K)=EY

30 CONTINUE
40 mm-K-1

WRITE (IP,2080) NMD

50 DO 70 K-t,NMD
EY-EN(K)
Z:aZO(K)
JO-IA2(K)
W-SQRT(EA(JO»
CPS:aW/ (2.*3.1415926)
CALL SDFEXP (EY,F,Y, XM,Z,W, DT,NO)

Rl-EY/El
Rl:l1ABS(Rl)
IF (K. GT. 20 •OR. CPS. GT •15• •OR. R1•LT .0 .05) GO TO 60
WRITE (6,2060)
WRITE (6,2040) (Y(I), I-1,NO)
WRITE (6,2060)

60 DO 70 IT:a1,N2
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C

C

70 QN(IT,K)2Y(IT+IO)

WRITE (IP,2060)
DO 90 IT-' ,N2
\f.RITE (IP,2080) IT,T(IT)
DO 80 IR"1,N
Q(IR)-O.
DO 80 D!-1,NMD
J02IA2(n!)
Q(IR)=Q(IR)+EC(IR,JO)*QN(IT,1M)

80 COUTnIUE
WRITE(IP,2040) (Q(IR),IR21,N)

90 CONTINUE
10e CONTINUE

CLOSE (UNIT=2,FILE-'TRS30.DAT')
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~iRITE (IP ,2110)
RETURN

2000 FORMAT (////,80X,12, '-TH TIME HISTORY' ,//)
2010 FORMAT (315"X,F10~3)
2020 FORMAT ('ACR';I1,'.DAT',2X)
2030 FORMAT (5X"E15.8)
2040 FORMAT (15I,10E11.,)
2050 FORMAT (8F10.5)
2060 FORMAT (j)
2070 FORP.AT (815)
2080 FORMAT (1X,I4,F9.4,4F9.3)
2090 FORMAT (40X,3I4,3F11.4)
2100 FORMAT (/"X,'ETR DISPL',/)

. 2110 FORMAT (j ,51, 'END DISPL' ,I)
END·

C FRESP2.FOR 83-01-27 (OK,82-12-20) (OK, 82-02-11)
C

JTH 82-11-28

SUBROUTn~E SDFEXP (PO,F,Y, XM,Z,W, DT,NP)
COMMON/GARB/WD,ZW, iiW ,1K, TZit[, W1 ,~iW, W2D,AA, TIC, TiDT ~ ~YDT, SWDT ,EO,

BO,AO,A,B,C,D,A1,B1,C1 ,D1,YO,Y1,NP1, AAAO(573)
DIMENSION Y(NP),F(NP)

c
WRITE (6,2000) PC,XM,Z,W,DT,NP
Y1 20.*PO*F(1)*DT
wn-W*SQRT(1.-Z*Z)
Z'i:rZ*W
WW-W*W
Tzr.v=2.*z/w
W1-1./WD
ZW-ZW*W1
~i2D-WW*W1

AA=(2.*Z*Z-1.)*W1
TK='./(DT*!M*i{w)



iiDT"'WD*DT
C1I1DT"'COS (iofDT)
SWDT"'SIN(WDT)
EO-EXP(-ZW*DT)

C
BO"'AA*~NDT+TZW*CWDT

AO=-BO-ZW*DT*W1~NDT-DT*C1I1DT

A=(EO*AO+TZW)*TK
B=(EO*BO-TZW+DT)*TK
C=EO*(~~DT+ZVIW*~~DT)

D=y/1 *EO*~lDT
BO=~I1*~,DT+~iDT

AO"'BO+W2D*DT*SWDT
A1=( EO*AO-1.)*TK
B1=(-EO*BO+1.)*TK
C1 =-W2D*EO*miDT
D1=EO*(~iDT-VNW*~~DT)

Y(1)"'O.
DO 10 1=1 ,NP-1
YCI+1)- PO*(A *r(I)+B *r(I+1)) +C *Y(I)+D *Y1

10 Y1'" PO*(A1*F(I) +B1 *F(1+1) ) +C1 "Y(I) +D1 *Y1
RETURN

2000 FORMAT( 20X,_' *** ETR SDFEXP ••• ',2F12.6,3F7.3,I4,1)
END

C
C
C EPOST.FOR 83-01-02 (OK,82-12-19 82-10-21) JTH 81-03-24
C .

SUBROUTINE EPOST1 (EA,EA2,IA,N,ISOL,ICO!{P,IP)
DOUBLE PRECISION EVA
COMMON/EGV1 / IA2 (600 )
DIMENSION EA(H) ,EA2(N) ,IACN)

C
C

CALL ZERO (IA(1),IA(N))
DO 20 I=1,N
X=1.E+12
DO 10 J-1,N
IF (IA(J).NE.O) GO TO 10
IF (X.LT.EA(J)) GO TO 10
X=EA(J)
m-J

10 CONTINUE
IA(IM)=I

20 CONTINUE
DO 30 J·1,N
I ...1A(J)

30 IA2(I)-J
C
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C=2.*:;.14159265
WRITE (IP,2020)
DO 40 I-l,N
JO-IA2(I)
EA2(I)=-EA(JO)
W-SQRT (EA(JO))
Cps-W/C
T=l./CPS

40 WRITE (IP,2010) I,JO,EA(JO),W,CPS,T
IF (ISOL.NE.2) GO TO 50

ENCODE (10,2030,EVA) ISOL,ICOMP
OPEN (mtIT=:;,FILE=EVA,ACCESS='SEQOUT')
WRITE (3,2000) (EA2(I),r=1,N)
CLOSE (UliIT=3,FILE=EVA)

50 CONTINUE
RETURN

2000 FORMAT (5X,5E15.8)
2010 FOR1~AT (2(2X,I4),2(2X,E15.8),2F12.4)
2020 FORMAT U ,51,' I-TH LOWEST, JO-LOC, W2 itT CPS T ••• • ,I)
2030 FORMAT ('EVA',I1,I1,'.DAT',11)

E!!D

1 )3

C

C

SUBROUTINE EPOST2 (EC,N,l1MOD,ISOL,ICOMP,IP)
DOUBLE PRECISION PIN
COMMON/EGV1/IA2(600)
DIMENSION EC(N ,~t)

ENCODE (10,2050,PIN) ISOL,ICOMP
OPEN (UNIT=:;,FILE"PIN,ACCESS-'SEQOUT')

i{RITE (IP, 201 0 )
~ThIOD1=NMOD*3/2+3

t~OD2-N*2/3+1 0

IF (NMOD1.GT.NMOD2) NMOD1=NMOD2
IF (N.EQ.NMOD) NMOD1"N
PMOD-40
IF (PHOD.GT.HMOD1) PMOD=NMODl
DO 20 I=-l,PMOD

WRITE (IP,2020) r
JO-IA2(I)
KO=N!10+1
DO 10 K-l,KO
1<:1-(1<:-1)*10+1
1(2=Kl+9

IF (K2.GT.N) K2=N .
10 WRITE (IP,2040) K1,K2, (EC(IDOF,JO), IDOF=Kl,K2)

IF (ISOL.NE.2) GO TO 20
WRITE ( 3,2000) (EC(KO,JO) ,KO=l ,N)

20 CONTINUE
CLOSE (UNIT"3,FILE=PIN)



"RITE (IP,2030)
C

RETURN
2000 FORMAT (SX,SE15.8)
2010 FORMAT (jI I I, 10X,' MODE SHAPE... (I)""I-TH LOWEST ',1)
2020 FORMAT (/,2X,'NO.',I3,' LOWEST MODE' ,I)
2030 FORY~T (/,10X, '~~D OF MODE SHAPES',/)
2040 FOF~AT (2X,I4,1X,'TO' ,I4,2X,10E11.4)
2050 FORMAT ('PIN' ,I1,I1,' .DAT' ,1X)

END
C
C EPCCC.FOR 83-01-27 OK,82-12-19,11-10 80-9-5 JTHUANG
C 80-09-05 FROM IBM SSP
C REVISED
C

SUBROUTINE EIGEN (A,R,!T,NS,U22)
DIMENSION A(NS),R(N22)

!!V""0
S2-SQRT(2.)

10 RG""1.0E-6
IF (MV-1) 20,50,20

20 1Q--N
DO 40 J-1,N
IQ-IQ+N
DO 40 I=1,N
IJ=IQ+I
R(IJ)aO.
IF (1-J) 40,30,40

30 R(IJ)-1.
40 CONTINUE

C INITIAL AND FINAL NORMS (AM & AX)
50 AM=O.

DO 70 I:a1,N
DO 70 J-I,N
IF (I-J) 60,70,60

60 IAaI+(J*J-J)/2
AMaAM+A(IA)*A(IA)

70 CONTINUE
C

IF (AM) 360,360,80
80 AMaS2*SQRT(AM)

AXaAM*RG/FLOAT(N)
C INITIALIZE INDICATORS & GET THRESHOLD THR

IND"O
THR"AM

90 THR=THR/FLOAT(N)
100 L=1
11 0 ~taL+1

C SIN & COS
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120 !~Q=O~*M-Iw!)/2
LQ=(L*L-1)/2
LM=L+MQ

130 IF (ABS(A(LM»-THR)290,140,140
140 IND=1

LL=1+1Q
I-ll\1=M+MQ
X=0.5*(A(L1)-A(MM»

150 Y=-A(Ll·1)/SQRT(A(L!1)*A(LM)+X*X)
IF (X) 160,170,170

160 y=-y
170 SX=Y/SQRT(2.*(1 .+(SQRT(1.-Y*Y»»

SX2=SX*SX
180 CX-SQRT(1.-SX2)

CX2=CX*CX
SCS=SX*CX

C ROTATE 1 &M COLu~!NS

ILQ-N*(1-1)
IlifQ=N*( !tr-l )
DO 280 I-1,N
IQ-(I*1-I)/2
IF (1-1) 190,260,190

190 IF (1-M) 200,260,210
200 IM-1+MQ

GO TO 220
210 IM=-M+IQ

C
220 IF (1-1) 230,240,240
2;0 IL=I+LQ

CO TO 250
240 IL=L+IQ
250 X=A(IL)*CX-A(IM)*SX

A(IM)-A(IL)*SX+A(IM)*CX
A(IL)-X

260 IF (MV-1) 270,280,270
270 ILR=ILQ+I

IMR-IMQ+I
X=R(ILR)*CX-R(Il~)*SX
R(IMR)-R(ILR)*SX+R(I~m)*CX

R(lLR)-X
280 CONTINUE

X-2.*A(LM)*SCS
Y=A(LL)*CX2+A(~m)*SX2-X
X=A(1L)*SX2+A(MM)*CX2+X
A(LM)=-(A(1L)-A(MM»*SCS+A(LM)*(CX2-SX2)
A(1L)=Y
A(MM)-X

C TEST FOR COMPLETION
C TEST FOR M-LAST COL.
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290 IF (M-N) 300,310,300
300 MaM+1

GO TO 120
C TEST FOR LaSECOND FROM LAST COL

310 IF (L-(N-1») 320,330,320
320 L=L+1

GO TO 110
330 IF (IND-1) 350,340,350
340 IND""O

GO TO 100
C COMPARE THRESHOLD WITH FINAL NORM

350 IF (THR-AX) 360,360,90
C SORT EIGVA & EIGVEC

360 IQa-N
DO 400 I=1,N
IQ=IQ+N
U=!+(I*I-I)/2
JQaN*(I-2)
DO 400 J=I,N
JQ=JQ+N
z,!M:IIJ+ (J*J-J) /2
IF (A(LL)-A(m~)) 370,400,400

370 XaA(LL)
A(LL)-A(MM)
A(MM)-X
IF (I4V~t) 380,400,380

380 DO 390 Ie-1,N
ILR-IQ+Ie
nm-JQ+Ie
X-R(ILR)
R(ILR ):IIR (nm")

390 R(IMR)"'X
400 CONTINUE

RETURN
EJ.'fn
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C
C 82-06-08 JTH
C

82-11-10

SUBROUTINE Sy}~L (A,B,N,NS,IP)
D]}1ENSION A(NS),B(N,N)
COMMON/GARB/XO(600)

. WRITE (IP ,2000)
DO 40 J:II1,N
DO 10 K-1,M

10 XO(K)-B(K,J)
rSmo
DO 40 r-1,H
B(I,J)aO.
DO 20 KO-1,I



ISO-1S+KO
20 B(I,J)-B(I,J)+A(ISO)*XO(KO)

IF (I.EQ.N) GO TO 40
ICO-IS+I
I1-I+1
DO 30 K-11,N
KO=KO+K-1

30 B(I,J)-B(I,J)+A(KO)*XO(K)
IS·1S+I

40 CONTINUE
RETURli

2000 FORMAT (/,60X,'**+ ETR SYMFL ***' ,I)
END

C
SUBROUTI~m NZGMZ (C,A,G, N,NS,IP)
DIMENSION C(NS),G(N),A(N,N)
COMMON!GARB/xo(600)

WRITE (IP,2000)
IO""O
IF (INM.EQ.O) GO TO 40
DO 30 I""1,N
SM-O.
DO 10 rc·1,N

10 SM-SM+A(K,I)*A(K,I)
DO 20 Ie·1,N

20 A(K,I)-A(K,I)!SM
30 CONTINUE
40 DO 50 1-1,N
50 G(1)-1.!SQRT(G(I»

IO-o
DO- 70 J"1 ,.N
DO 60 K"1,N

60 XO(K)-G(K)*A(J,K)
DO 70 1-1,J
IO-IO+1
C(10)-O.
DO 70 K-1,N
C(IO)=C(10)+A(I,K)*XO(K)

70 cONTnruE
RETURN

2000 FOlUl.AT (I, 60X , '*** ETR NZGMZ ***', I)
END

C
C 82-06-09 3TH 82-11-1.0
C

SUBROUTIn ICBm1 (PH,XK,XM, N,NS,IP)
COMMON/GARB/xo(600)
DIMENSION PH(N,N),XK(NS),X}1(NS)

WRITE (IP,2000)
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IS=O
DO 70 J=1,N
DO 10 KO-1,J
ISO=I5+KO

10 XO(KO)-XM(ISO)
IF (J.EQ.N) GO TO 30
KO=I5+J
DO 20 K=J+1,N
KO=KO+K-1

20 XO(K)=XM(KO)
30 IK:aO

DO 60 L:o:1,N
PH(L,J)=O.
DO 40 KO=l,L
IKOsIK+KO

40PH(L,J)=PH(L,J)+XK(IKO)*XO(KO)
IF (t.EQ.N) GO TO 60
KO=IK+L
DO 50 K:aL+1,N
KO=KO+K-1

50 PH(L,J)=PH(L,J)+XK(KO)*XO(K)
60 IK=IK+1
70 I5"'IS+J

IO-o
DO 110 J=1,N
IK-O
DO 100· I -1 , J
IO=IO+1
XK(IO)-O.­
DO 80 KO';'l,r
IXO=I1C+KO

80 XK(IO)=XK(IO)+X}1(IKO)*PH(KO,J)
IF (I.EQ.N) GO TO 100
KOsIK+I
DO 90 l(=I+1,N
KO=KO+K-1

90 XK(IO)=XK(IO)+n~(KO)*PH(K,J)

100 IK=tK+!
11 0 CONTINUE

RETURN
2000 FORY1AT (J ,60X ...'*** ETR KBMKl-! *'!t+',f)

&~

C
C ELM.FOR 82-12-05 (OK, 12-04) 82-09-14,20 OK, JTH
C

SUBROUTI1lE KE2D6 (ICHK, IMP, ISP, DX, DY , IP, IPS)
COMMON/SPROP/SP(20,5)
COMMON/MPROP/XP(4,3)
COMMON/CESTM/XG(6,6),XOO(108)
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C

C

COMMON/GARB/XE(6,6),ST(3,:;),T(:;,:;),C1,C2,C3,C4,
DXDY,C,S,E,XL,A,XI,AAAO(5:;5)

IF (ICHK.EQ.1 .AND. IPS.EQ.1) WRITE (IP,2000) DX,DY
XL-SQRT(DX*DX+DY*DY) .
IF (XL.EQ.O.) STOP
E=oXP(IMP,1)
A-SP(ISP,1)
XI=SP(ISP,2)
C1 aE*A/XL .
C2-E*XI/(XL*XL)
C:;-12.*C2/XL
C4-4.*C2*XL
C2=C2*6.

C=DX/XL
S-DY/XL
T(1,1)-C
T(1,2)" S
T(1,:;)" O.
T(2,1)"-S
T(2,2)" C
T(2,:;)- o.
T(:;,1)- O.
T(:;,2)- O.
T(3,·:;)- 1.
XE(1,2)-O.
XE(1,:;)-0.
XE(1,5)-0.
XE(1,6)-O.
XE(2,4)-O.
XE(3,4)-O.
XE(4,5)=O.
XE(4,6)=O.
XE(1,1)=C1
XE(2,2)=C3
XE(:;,3)-C4
XE(4,4)-C1
XE(5,5)=C3
XE(6,6)-C4
IE( 1,4)--C1
XE(2,3)- C2
XE(2,5)--C3
XE(2,6)- C2
XE(3,5)--C2
XE(3,6)- C4*O.5
XE(5,6)=--C2
DO 10 J=o1,5
DO 10 r:aJ+1,6
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C

140

10 XE(I,J)""XE(J,I)
. IF (ICHK.NE.1 .OR. IPS.NE.1) GO TO 20

CALL PMATE ( T,1,1,3,3)
CALL ~~TE (XE,1,1,6,6)

20 DO 80 M"1,2
DO 80 N-1,!.f
Ks(M-1)*3
Ls(N-1)*3
DO 30 K1:a1,3
DO 30 K2=1 ,3
I=K+K1
ST(K1,K2)-0.
DO 30 K3""1,3
J:ooL+K3

30 ST(K1,K2)=ST(K1,K2)+XE(I,J)*T(K3,K2)
DO 70 K1""1 ,3
DO 70 K2-1,3
I:ooK+K1
JsL+K2
IF (J-I) 40,40,70

40 XG(I,J)=O.
DO 50 K3-1,3

50 XG(I,J)-XG(I,J)+T(K3,K1)*ST(K3,K2)
IF (J-1) 60,,70,70 .

60 XG(J,I)-XG(1,J)
70 CONTINUE
80 CONTINUE

IF (ICHK.NE.1 .OR~IPS.NE.1) GO TO 90
CALL PMATE (XG,1,1,6,6)

90 CONTDlUE
RETURN

2000 FORMAT (20X, 'ETR KE2D6' ,4X,2F12.3)
END

C

c

SUBROUTINE BMXYZ (ICHK,IMP,ISP,DX,DY,DZ,IP,IPS)
COMMON!MPROP!XP(4,3)
COMMON/SPROP/SP(20,5)
COMMON/CESTM!XG(12,12)
COM1<ION!GARB/S( 12,12) ,sT(3, 3) ,T(3, 3) , E, EG,PR,A,XIIY,XIZZ,XJJ,

1 TH,S1,DXY,DL,CT, CB,C1,CA,SA,SB, CTH,STH,
2 YO,Y1,Y2;Y3,Y4, ZO,Z1,Z2,Z3,Z4,AAAO(409)

IF (ICHK.EQ.1 ~A~m. IPS.EQ.1 ) WRITE (1P,2000) DX,DY,DZ
m-XP(IMP,1)

EG-XP(IMP,2)
PR-XP(DIP,3)
A-SP(ISP,1)

XIIY=SP(ISP,2)



XIZZ=5P(I5P,3)
XJJ-SP(IS1',4)
TH-5P(IS1',5)*3.14159265/180.
IF (EG.EQ.O.) EG-O.S*E/(1.+PR)
IF (XJJ.EQ.O.) XJJ-Xr!Y+XIZZ
XP( UIP,2)-EG
51'(ISP,4)=XJJ
S1:aDX*DX+DY*DY
DXY:a5QRT(S1)
DL=51 +DZ*DZ
DL:aSQRT(DL)

IF (DL.~TE.O.) GO TO 10
WRITE (IP,2010)
STOP

10 CA:aE*A/DL
CT:aEG*XJJ/DL
CB-E/(DL*DL)
YO-XIYY*CB
Y1=12.*'YO/DL
Y2= 6.*YO
Y3= 2.*YO*DL
Y4- 2.*Y3
ZO-XIZZ*CB
Z1-12.*ZO/DL
Z2= 6.*ZO.
Z3- 2.*ZO*DL
Z4- 2..*Z3
IF (ICHK.NE.1 .OR. IPS.NE.1) GO TO 20
WRITE (II', 2020 ) (Sp ( ISP , I ) , I =1 , 5 )
WRITE (IP,2020) (XP(UIP,I),I=1,3)
WRITE· (IP, 2020) DX ,DY ,DZ ,DXY ,DL
WRITE (I1',2020) YO,Yi,Y2,Y3,Y4
WRITE (I1',2020) ZO,Z1,Z2,Z3,Z4
WRITE (I1',2020) CA,CT

20 DO 30 J=1,11
DO 30 I-J+1,12

30 S(I,J)"'O•.
5(1,1)- CA
5(7,1 )--CA
5(7,7)= CA
S(4,4)-· CT
S(10,4)--CT
S(10,10)- CT
S( 2, 2)'" Z1
S( 8, 2)--Z1
S( 8, 8)- Z1
S( 6, 2)= Z2
5(12, 2)= Z2
5( 8, 6)--Z2
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S(12, 8)"-Z2
S( 6, 6)- Z4
S(12, 12)- Z4
S(12, 6)" Z3
S( 3, 3)- 11
S( 9, 3)"-Y1
s( 9, 9)- 11
S(11, 9)- Y2
s( 9, 5)" 12
S( " 3)"-Y2
S(11,3)--12
S( 5, 5)" Y4­
S(11,11). Y4
S(11, 5)= X3
DO 40 J=2,12
DO 40 r-1,J-l

40 S(I,J)=S(J,I)
CALL ZERO (T( 1,1), TO,:;»
IF (TH.NE.. O.. ) GO TO 80
IF (DY.EQ.O••Alto .. DZ .. EQ.~.) GO TO 50
IF (DX.EQ.O••AND .. DZ.EQ.O.) GO TO 60
IF (DX.. EQ.O••AND. DY.EQ.O .. ) GO TO 70~
GO TO 80

50 C1-DX!DL
T(l,l)-Cl
T(2,2)-C1
T(3,3)- 1 ..
GO TO lOG.

60 Cl-DY/DL.
T( 1,2)- Cl

. T(2, 1 )--Cl
T(3,3)= 1.
GO TO 100

70 Cl=DZ/DL
T(1,3)- C1
T(2,2):i 1.
T(3,1 )"-C1
GO TO 100

80 SBa DZ/DL
CTH-COS(TH)
STH-SIN(TH)
IF (DXY.EQ.O .. ) GO TO 90
CB-DXY/DL
CA-DX/DXY
SA-DY/DXY
T(1,1)-CA*CB
T(1,2)-SA*CB
T(1,3):aSB
T(2,1)"-SA*CTH-CA*SB*STH
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T(2,2)- CA*CTH-SA*SB*STH
T(2,3)-+STH*CB
TO,l)" SA*STH-CA*SB*CTH
T(3,2)--CA*STH-SA*SB*CTH
T(:;,3)- CB*CTH
GO TO 100

90 T(1,3)- SB
T(2,1)--STH*SB
T(2,2):o CTH
T(3,1)=-CTH*SB
T(3,2):o-STH

100 DO 160 M=1,4
DO 160 N:01,M
K-(M-1)*3
L=(lt-l )*3
DO 110 IC1-1 ,3
DO 110 K2:o1,3
I-K+Kl
ST(K1,K2)-0.
DO tl0 K3-1,3
J.. L+K3

110 ST(Kl ,K2)-ST(K1 ,K2)+S(I,J)*T'(K3,K2)
DO 150 Kl a 1,:;
DO 150 K2a l,3
I-K+Kl
JaL+K2
IF (J-1) 120,120,150

120 XG(I,J)-O.
DO 130 K3-1,3

130 XG(r,J)-XG(I,J)+T(K3,K1)*ST(K3,K2)
IF (J,..I) 140, 150, 1;0

140 XG(J,I)-XG(I,J)
150 CONTINUE '
160 CONTINUE

IF (ICHK.llE.1 .OR. IPS.NE.l) GO TO 170
WRITE (IP,2030)
CALL PMATE (S,1,1,12,12)
CALL PMATE (T, 1,1,3,3)
CALL PMATE (XG,l, 1,12,12)

170 CONTINUE
RETURN

2000 FORMAT(/ ,3X, IETR BMXYZ' ,4X,3F12.3f)
2010 FORMAT (5X,'DL-O.')
2020 FORMAT (12F14.5)
2030 FORMAT (J,5X,'S,T AND XG ••• ')

END

1 4- '3
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