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ABSTRACT

DYNAMIC ANALYSIS OF MULTISTORY BUILDINGS

by COMPONENT MODE SYNTHESIS

Modal and transient analyses of a linearly elastic building subjected to
ground accelerations are core and time intensive computations. To save
computing time and to solve the problem at a lower core requirement, a unique
combination of reduetion procedures, with fixed-interface component mode
synthesis as the central theme augmented by static condensation and Guyan
reduction, is formulated. and implemented for the given structure and Jload

~case.

The method of fixed—-interface component synthesis reduces component
matrices by transforming them into a linear space spanned by boundary degrees
of freedom and a truncated set of normal mode shapes extracted from components
with fixed boundaries. Static condensation reduces the matrigces entering
component eigensolutions. Guyan reduction, a step employed after synthesis,
eliminates degrees of freedom on the boundary. The outcomes are substantially

reduced system matrices for eigensolution and transient analyses.

A six=story 3-D frame was solved for natural frequencies and mocde shapes.
The wvalidity of the procedures and program was established by comparing
results to that obtained from SUPERSAP, a general purpose finite element
program. The agreement 1s very, good. A ;welve-story three~dimensional

building with an L-shape floor plan was also analyzed. The results indicate
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that the combined procedures are advantageous in terms of convergence, the
structural characteristics preserved and the percentage of reduction achieved.
The results also confirm the importance of floor flexibility in the example
studied. Assuming inadequate diaphragm design, other casesg in which’the floor
flexibility can be a significant factor are: buildings with U, T or H—-shape
floor plan, buildings having setback or local irregularities, buildings
supporting heavy masses on floors. The procedures are suitable for the given
structure and load case because of the stiffness characteristics of a building
and the‘predcminance of lower component and system modes. The penalties
partially offsetting the advantages are the needs to solve component

eigensolutions and to perform many transformatioms.
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boundary coordinates of the system
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amplitude of the n-th decoupled system mode
transformation matrix between- two coordinate systems
n~th mode shape.of a component
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physical displacement relative to the ground
velocity in u=coordinates.

acceleration in u-coordinates

physical DOF to be retained

physical DOF to be eliminaced
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1.0 INTRODUCTION

The main theme of the research effort is the application of
fixed-interface component mode synthesis, augmented by static
condensation and Guyan reduction, in order to evaluate dynamie
characterigties énd. displacement response of = linearly. elastic

multistory building subjected to ground acceleratioms.

To date, application of the fixed-interface component node method
to buildings has been limited to a few highly idealized cases. BEfforts
are made here fo formulate and implement the method .as applied to
seismic analyses of large buildings, and also to test as well as
examine its feasibility, advantages and disadvantages. In formulating
the modal synthesis, several simplified transformations are derived to

upgrade computing efficiency.

The component mode method is a dymamic substructuring technique
within the genmeral domain of the finite element approach. By this
method, normai mode shapes are extracted from  components
(substructures) and thenm used to obtain a reduced mastsr model defined
aver ©physical coordinates (boqndary coordinates) and generalizéd
coordinates (component normal mode shapes). The master model is then
anslyzed at lower time and core requirements than that required of an
unreduced full scale model. The °'fired-interface componant mode
method’ is selected for its compatidility at the boundaries and its

clarity in implementation.



- To take advantage of the high stiffness in a floor plane, static
condensation is applied before modal synthesis and Guyan reduction is
applied afterward. The Guyan reduction serves to reduece the boundary
DOF, which are wholly retained after synthesis. This wunigue
combination of procedures resulted in a substantial reduction in the
model size at both component and system levels when applied to solve a

twelve-story 3-D building.

The preservation of the dynamic characteristics of components and
" part of the saving in core and computing time are achieved by the use
of a truncated set of component modes. A small truncated set may be
uéed for the given &ype of problem bYecause o¢f low input energy
imparting ontc higher modes agd low participation by higher modes.
Additional savings are achieve@ ﬁy‘sharing the same allocated core for
sequential computations of many components. Tﬁe penalties partially
offgsetting the above advanbtages are the needs to solve conponent

eigenvalue problems and to perform many additional transformations.



2.0 STATE-QF-THE-ART

2.1 Seismic Analysis

The typical configufation,of a building is a three-dimensional (3=
D) moment-resisiing frame, with or without bracing members and shear
walls. The tracing members and shear walls serve to enhance the
lateral stiffness. TFloor.diaphragms serve to couple shear walls and
frames together, forcing them %o respond as a sgystem. | During
earthquakes, the ground displacement and rocking motions experienced by
a building are approximately equivalent to time-varying horizontal and
vertica;_forces coﬁsisting of various f{requency components.'Théy are
random in both form and magnitudg.‘The response of a building depends
on the intensities and time history of ground motions and the dynaﬁic

properties of the building-foundation-soil syatem.

Given a set of earthquake load specifications, the goals of
seismic analysis are to ensure design adequacy in terms of :equirements
(such as allowable stresses and story drifts) and 4o improve
reliability and economy within these requirements. Currently, there
are three methods by which . earthquake loads are specified: (a)
equivalent static force, (b) design response spectra, and (c) time

history of ground accelerations. A brief discussior is as follws.

The equivalent atatic force 1is primarily an approximation to the

first mode effect. An example of equivalent static forces is that



specified by the Uniform Building Code(T),*l which consists of the
magnitude and distribution of lateral loads over the height of a
building. The required ‘minimum total lateral seismic force' is based
on factors such as the seismic zone coefficient, occupancy importance
factor, horizontal force factor (based on building frame type), geismic
coefficient (as function of the period of fundamental mode), local
geology and soil condition faétor, and total dead load. Somewhat
different but sgimilar forms of equivalent static forces are specified
by the Applied Technology Council(z). Regardiess of the details and
scale factors, this method provides an approximation. to the first mode
dynamic loads , with adjustment to partially account for the second
mode effect. Cne drawback is that all higher modes are neglected.
Another drawback is that stétic analysis alone-renders little igsight
into the dymamice characteristica of the syétem and hence it is less

effective in uncovering undesirable aspects of a design.

A design response spectrum counsists of a family of curves, where
every point represents the absolute value of the maximum (peak)
response of a single-degrese-of-freedom (SDOF) system to a given time
histoﬁy of ground accelerations. The maximum responses of a get of
SDOF aystems having the same dampiné value are plotted on the same
curve, where the abscissa is the natural frequency (or period) of the

SDOF system; and the ordinate is the maximum response. The response

Parenthetmcal references placed superlor to the line of text refer
to the bibliography.



may be either displacement, velocity, or acceleration; its values as
function of time are calculated from numerical integratiom. It should
be noted that the time at which a peask response occurs is not shown en
the curve. It should also be noted that it is an implicit way of
specifying the loads; i.e. it shows how a set of SDOF systems react to
a given time history of ground accelerations without indicating what
the history is. To design for such lcad specification, modal analysis
is first performed to calculate the natural frequencies and mode
shapes. The responses of individual modes are then calculated from the
curves and the SDOF system parameters, which are damping values and
natural frequencies (or periods). A popular meth§d tQ estimate the
maximum of a vresponse quantity, for example, the displacement at a
nodal point, is to calculate the square root of the sum of the squarés
(SRSS) of +the modal values of that response quantity. No numeriecal
integration is needed. Such estimate of maximum response is often
éatifactory, but its accur;cy may not be good if the systém hés closely

spaced frequencies.

The time history of ground accelerations explicitly describes the
amplitude, the frequency contents and dur#ticn of random pulses.
Although they are not likely to reoccur, the data do allow for accurate
simulation of building vibration in response to one possible sequence

of events.

To arrive at an economical design that satisfies requirements, the

following items may be considersd:



1. Adequate lateral stiffness and good load transfer among
different regions so that lateral displacements and
resulting stresses are below target limitfs.

2. Appropriate frequency characteristics of the building for
the local geclogical and soil conditions so that the dynamic
loads induced are lower.

3. Appropriate building configuration so that dynamic effects
and undesirable vibration modes are minimized.

4. Balanced deflection patterms and sufficient ductility so

that much energy can be safely absorbed or dissipated during
elastic or inelastic deformation.

¥odal analysis and fesponse history analysis using finite element
models are the best approaches %o provide information needed for
evaluating a design from the above viewpoints. But they are core zand
~ time intensive computations. There is always a need to save cost. In
addition, unreduced full scale models may be too bdbig to run on an

available faeility.

2.2 Model Reduction

One way to stretch hardware capacity so that the same amount of
available cors can bYe used to solve a larger problem and to save
computing cost is to reduce the size of a full scale model. This can

be accomplished by using reduction techniques discussed below.



2.2.1 Substructuring and Static Condensation

The key idea of static condensation in reducing the stiffness
matrix is to eliminate 'unwanted' interior degrees of freedom (DOF) by
expressing them in terms of a set of DOF to be retained. The operation
is equivalent to partially executed Gaussian eliminations. Static
condensation can be applied to reduce a global model. it can also be

applied fto substructures before they are assembled.

Many computer codes adopt the static condensation technique. For
example, ANSYS provides a "super-element' feature permitting the user
to apply static substructuring to reduce model size. Another example
is- the TAB program family, i.e. ETABS, TABS and TABS'?T, which was
specificaliy’developed for anralysis of large buildings. For a thrge-
dimensional building, the program autcmatically performs. statie
condensation floor by floor, retaining only three DOF per floor,
namely, two horizontal translation DOF and ome rotational DOF about the

vertical axis passing through the mass centroid of the floor.

When the method is applied to dymamic problems, the drawbacks are:
(a) the local mode shapes involving eliminated DOF are lost, and (b)
the lumping of masses to the retained DOF is done by judgement. In the
case of TAB ﬁrogram family, +the reduction scheme implies that, im all
vibration mode shapes extracted from the reduced model, every floor
collectively acts like a rigid body having only three out of aix
possible rigid body DOF. This is a good approximation for the type of

buildings in which flocor systems are very stiff and floor planrns are



convex shapes with low aspect ratios. In reality, many buildings do
not fall in this category. Incidentally, another problem with the TAB
programs is that they cannot accommodate bracing members that run in 2
vertical plane across several floors, a design feature ﬁhat is

incorporated in many high-rise buildings.

2.2.2 Buyan Reduction

To facilitate reduction in dynamic problems, Guyan (3) extended
static condensation. Ir his formulation, .the same transformation
relating the complete set and the reduced set of coordinates was used
to reduce the mass matrix s¢o that the kinetic eneréy is invariant fto
coordinate transformation. It is a significant improvement over static
condensation ‘in that +the mass lumping is ©based on stiffness
relationships rather than judgement. But, again, the local mode shapes

involving eliminated DOF are lost.

When local mode shapes reflecting floor flexibility are
significant, an appropriate way to economicéily include them in the

system model is the method of component mode synthesis.

2.2.3 Component Mode Synthesis

Since Hurty’s (4) first proposal in 1960, the method of component
mode synthesis (CMS) has been extensively applied in the aerospace
industry. The method was initially slow in spreading, but recently

there has been rapid proliferation in application to other fields.
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Excellent reviews of the subject were provided by Craig( ’ Noor( ’
Nelson(7) and Meirovitch(a). Their reports have served as a guide to

this short survey.

The procedures of component mode synthesis are as follows:

1. Form stiffness and mass maitrices and solve the eigenvalue
problem for all substructures.

2. Perform coordinate transformations to rsduce zll component
matrices. The new set of DOF consists of physical
coordinates and a ftruncated set of normal coordinates.

3. Assemble all respective component matrices to obtain system
stiffness and mass matrices.

4. Soclve the master model for static or dynamic responses.
Provide adjustment at the boundaries if necessary.

The key is the use of a trumcated get of component normal modes as
generalized coordinates. I% is really an extension of the Ritz method.
Without truncation, the process would simply be extra exercises.
Without the use of rormal mo&es, the convergence will most likely be

very poor.

Methoeds of component mode gynthesis differ in the way
compatibility at the boundaries {components interfaces) is enforced.
The first method is Hurty's 'fixed-interface normal mode’ method(4).
His method requires that all boundary DOF ars retained and that for the
purpose of calculating componenf normal modes the component boundaries
are fixed. The congequences are theser (a) Compatibility at the
boundary DOF is not impaired. After component matrices are assembled,

it is pot necessary to edjust the boundaries to acccunt for component
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interactions. (b) The reduction is carried out in the interior regions

only. The total number of boundary DOF remains the same.

The second approach was proposéd by Gladwe].l(g)a 4 component with
& fixed interface i1s attached to another component which iz free at the
same interface. The modes of a substructure are calculated with all
other connected substrucfures assumed %o be rigid. This approach is

called the 'branch component’ method. It is suitable for chain-like

structures. The third method, proposed by Goldman and Hou (10), is
called the 'free-interface normal mode' method. There are hybrid
versions of these three methods by MacNeal and Klosterman<11). Details
of these methods can be found in the li#erature cited; however, the

main focus here is.the'fixed-interface method.

Applications of the methods to different types of structures ars

summarized as follows:

(a). Idealized structures: cylindrical shell mounted to a flat
plate by Cromef(12), twoe flat plates joined at a right angle by

Jezequel(jj) and L-shaped bent cantilever beam by Hurty(4).

(b) Aerospace structures: launch vehicle by MbAleese(14), Saturn
¥V by Grimes(15),, general aerospace structure by Seaholm(16), space

shuttle by Fralich(17) and by Zalesak(is), spacecraft by Case(19),

spacecraft by Kuhar(zo), missile by Gubser(21), and Viking orbiter by
Wﬁdatzg). |
(c) Médhanical structurea: automobile components by

(11, 23, 24)

{
Kleosterman , railroad cars by Bronowicki‘ZS), turbine blades

by Srinivasan(ZSJ and by Perlman(27), and rotor bearing by Glasgow(zs).
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(4) Civil engineering structures: piping system by Singh(zg), rod
group supported by thick circular plate by Lee(3o), soil-structure
interaction by Gutierrez(31), building and machine foundation by
Warburton(jz), two-gtory plane frame by Hurty(4), multistory éhear

building by Kukreti(33), two-gstory plane frame by Gladwellcg).

2.3 Remarks and Objectives

After reviewing the works related to model reduction procedures,

the feollowing observations are apparent:

1. Applications of the fixed-interface component mode method to
buildings have to date been limited to a fTew highly
idealized cases such as 'shear building" or very small plane
frame. A procedure that works well in a two-dimensional
case may encounter difficulties when it is extended to a
thrse-dimensional case. ~ Whereas the component mode
synthésis method has been implemented in the MSC/NASTRAN, it
was not developed specifically for the case of a building
for which justifiable treatments can 1lead to Dbetter
computing efficiency.

2. No work haa ©been done to employ &ll three reduction
procedures, allowing each one %o complement the others,
whenever structure reaslity permits. As will be discussed in
the next chapter, some chracteristics of a building can be
utilized to achieve reduction in addition to what can be
accomplished by the method of component mode synthesis
alone.

3. Many computer codes developed for analyzing buildings are
based on the assumption that floor systems are rigid in
plane during vibration. It is a good approximation when the
floor plan is a convex shape with a low aspect ratio. For
puildings with other types of floor plans such as L, H, T
and U-shapes, or buildings having setbacks or .local
irregularities, or buildings supporting heavy equipment,
failure to account for floor flexibility in the model when



. the diaphragm design is inadequate can lead to detrimental

1s

errors.

The objectives of this work therefore are:

Formulate and implement the method of " fixed-interface
component mode synthesis as applied to the case of 2
building subjected tc ground accelerations.

Investigate the feasibility, advaniages ard disadvantages of
the method by examining its procedures and by making a case
atudy which will also demonstrate that a medium-sized
building can be solved by the program using a limited amount
of core.

Achieve a large percentage of reduction, so that the averags
retained DOF per floor is larger, but not much greater than
three DOF per floor; and that important dymamic properties
are preserved in the reduced system. An average retained
DOF per floor of value between 12 to 36 will be satisfying.

12
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3.0 FINITE ELEMENT MODEL, REDUCTION AKD SOLUTION

3.1 Model Reduction

Before the finite element model of a building is presented, it is
useful to discuss some structural realities that lead to a combination
of reduction procedures to be used in this work. First, a building
behaves laterally like a vertical cantilever beam. The axial (or in-
plane stretching) and berding stiffness of a floor are usually higher
than the overall lateral stiffness of & building. The loﬁer local
modes of a floor may be of some significance, but the higher local
modes would most likely he of little importance to the system. Second,
within a floor system, the axial stiffness is higher'than the flexural
bending stiffness. Several joints in a girder would have nearly equal
exial displacements along its axis. Thus along the same girder, ome
may condense cut some axial DOF while retaining a selected number of
DOF to preserve the most flexible local modes, which are in-plane and
out-of-plane flexural bending modes. This concept is illustrated in
Figures 1 and 2, where the numbers of retained boundary DOF are 24 and
9, respectively. The total number of translational DOF per boundary is
42. Since there is little kinetic energy associated with rotational
DOF, a well accepted fact underlying the use of i{ranalational lump

masses, all rotational DOF may be condensed out.

The reduction procedures to be employed are as follows:
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1. For 1interior nodes in each component, use static
condensation to condense out all rotationasl DOF and some
translational DOF that are connected by high stiffness to
other retained DOF on the same floor.

2. For each component, which includes several floors, apply the
CMS methed to reduce the remaining DOF in its interior
region., The component normsl modes extracted and included
are inter-floor loecal modes.

3. For the system after synthesis, use Guyan reduction to
eliminate all rotational DOF and some translational DOF that

are connected by high stiffness to cther retained DOF on the
same floor. This is done at all boundaries.

As stated previously, by the 'fixed-interface component meode
method, only interior DOF are reduced. All boundary DOF must be
retained. This works out nicely for small plane frames. For larger
building structures, fhe‘ model size after synthesis is still larée-
The Guyan reduction used here serves to reduce DOF at the boundaries.
The appl'ication of both étatic condensation and Guyan reduction
therefore enhances the merii of the component mode method when épplied
to building structures. The ccmbiﬁed érocedures are appropriéte-

becauge of favorable atructure reslities.

The TAB program family retains only three out of six possible
rigid body DOF of a floor. As discussed previocusly, it is a good
approximation when the floor plan is a convex shape with a low aspect
ratio. Por buildings in which the floor flexibility is a significant
factor, failure to account for it can lead to detrimental errors in
assessing design adequacy. The reduction procedures employed here
provide a good compromise between an unreduced model and oversimplified

ones.



16

- During the combined reduction processes, the stiffness and mass

matrices are defined over a ftotal of six coordinate systems.

They are:

1. Coordinates before static condensation at the component
level. With respect to the references, component matrices

and vectors are formed.

2. Coordinates after static condemsation at the component
level. With respect +to +the references, the reduced

component matrices and vectors are defined.

3. Mizxed coordinates for components. With respect to the
references, further reduced component matrices and vectors
are defined. The reduction is the outcome of discarding

higher component modes.

4, Mixed cooordinates for the aystem after asynthesis.
component matrices and vectors are transformed
asgembled.

The
and

5. Mixed coordinates for the system after Guyan reduction.
Based on the new references, the reduced system matrices and

vector are defined.

6. Normal coordinates of the system after decoupling. System
matrices and vector are redefined. A <{runcated set of

system normal modes i3 then taken.

The combined reduction in model size is substantial, but the

resulting increase in programming efforts for transformations and book-

keeping is enormous.
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3.2 Equation of Metion

For a component, the unreduced equation of motion subjected to

ground acceleration is
[ulfasas(e)} » [elae)} + [klfu(e)} = {7} (3-1)

where

[‘M] = component mass matrix

[ K] = component stiffness matrizx

[ C] = component damping matrix

{&'absft)} = gbsolute or total accelerations
{u(t)} = displacement relative to the ground

{F} = interaction forces at the common houndaries

In these terms, 2 subsript 'i’ indicating the component number is
implied, although not explicitly printed. These variables are defined
over global coordinates (X,Y,Z). A component mass matrix is formed by
directly lumping masses to the the boundary DOF and to the interior DOF
that are %o be retained. A component stiffness matrix is formed by
gssembling element stiffness matrices in global c¢oordinates. The
element stiffness matrices in local and global coordinates are given in

APPENDIX 4.

The total accsleration may be expressed as

{0-3P3(1)} = {a°(£)} + {a}a" () (3-2)

in which the scalar time series u'g(t) are groﬁnd acclerations,
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and {a} is a vector indicating the scale factors. It is comstructed as
follows: assign valus 'O’ to all rotational DOF and assign values Sy»
a.y, and a, tc translational DOF parallel to global axes X, Y and 7Z,

respectively. The horizontal direction of the earthquake is indicated

by the vector (ax,ay). Eq.(3-1) can now be rewritten as

Culfac ()} = [elfa(e)} + [K]{u(e)} (3-3)
= {1pgpe(t)} + (7}
= ["ulfa} (-av (1)) + {7}

= (Tpgpel® (ma°,(8)) + (7]

'where the supersceript to the left of a variable indicates the
coordinate system. The seismic Ioad vector is based on an unreduced
diagonal mass matrix. The scalar time function is factored out for

convenience in programming.

The initial finite element models of the components are
gubsequently reduced through static condemsation and component mode
synthesis at the component level, and through Guyan reductiocn and modai
decoupling at the system level befors solutionm for responses. Each of
these operations results in a new set of stiffness and mass matrices as
well as load vector. After synthesis,»the system equation of motion
remains the same in form as that of a component shcwu‘above; except
that.at all boundaries the respective sum of component interactions
vanishes. They are internal forces of the system, and they must cancel

(or be in equilibrium) themselves at every common boundary.
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 The damping matrix [C] is never formed. Instead, damping ratios
are assigned to the uncoupled modes of the synthesized system. This is
a matter of choice, because these two methods of assigning damping are

directly related.

3.3 Static Condensation and Guyan Reduction

Let the static force-displacement relation be

[k]{u} = {F}]

Qr

Kgp Kpr| \us Fy

where
[K] = stiffness matrix
{u} = displacement vector

{F} = load vector

The subseript 'B' indicates boundary or DOF that are to be
retained, while the subeript 'I' denotes interior or DOF that are to be
eliminated. There are no seismic loads or inertial forces a%t the
unwanted interior DCF, because no masses sre assigned to them. After

static condensation, the new static force-displacement relation becomes

[K*BB]{U'B} = {FB}

where
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[K*BB] = ([Kgg] - [KBI][KII]-1[KIB]) (3-5)
and the solution is,
{UB} = [K*BB]_1{FB} (3-6)

.Equations (3-6) and (3-5) can be derived by rewriting Eq.

(3-4) into two equations, solving the second to get
{UI} = -[KII]-1 [KIB]{"‘B} (3-7)
-and then substituting {uI} back to the first equation.

.The static condensation can be readily applied to a dynamic

problem when the mass matrix has the form

Map O
o 0

o [n] =

If the mass matrix is sparse, namely,

] = Mgp M31
Hrp. 11
then a more genmeral pfocedure mown as Guyan reduction is needed. By
Guyan reduction (3), the reduced stiffness matrix is calculated in
exactly the same way as that indicated by Eq.(3-5). The reduced mass
matriz is,
(%g5] = [Mgpl - [Mp]{x7r]1-1{kpg]
- ([Rppd M kg ]) (ligp] = (Mo IR 1™ (kD) (3-8)

*
The reduction process to obtain [K BB] is equivalent to the

transformation



[K*gp] = [2]'[x]{1]

in which [T] is such that

fu} = %)= [2ltug)

I

where

1
(1] =¢

T

and

[2"] = ~[xpp] ' (kgp] -

Likewise, the reduction from [M] to [M*le is equivalent to the

transformation

[*5p] = (7] [n][T]

Both Eq.(3-5) and Eq.(3-8) can be deduced from the potential

energy

v = (0.5){u}'[k]{u} = (0.5){ug} (K {ug}

and the kinetic energy
X8 = (0.5) {a}'[u]{a] = (0.5){ag} (" Tfag}

respectively, the latter expression was proposed by Guyan.

21

(3-9)

(3-10)



22

3.4 Fixed-Interface Component Mcde Synthesis

-In order to focus attention to the required operations on
stiffnesa and mass matrices, the free vibration case is discussed

first, which is then followed by the forced vitration case.

3.4.1 Undamped Free Vibration

Let {u] be the nodal displacement vector. After the component
stiffness and mass matrices ars formed and condensed statically, the

component equation of motion under undamped free vibration is

[*Ital + (¥ fa+] = (o] (3-11)
in which
u
{u} = 5
ur

K18 K11
and
[_M*] - MBB O

where the subseripts ‘B’ and °‘I' denote boundary and interior DOF,
respectively. The diagonal mass matrix remains the same after static

condensation. As stated previocusly, damping values will be assigned to
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individual modes of the synthesized system. Henee, without loss of

generality, the damping matrix is dropped in this section.

The e¢igenvalue problem for a component with fixed-boundaries is

*
m

now solved ¢to obtain eigenvalues w, and eigenvectors {o n}’ whare
n=1,2...N; , and Ny is the number of interior DOF of the component.

o
The modal matrix is [T ) its 3-th column being the j-th eigenvector.

* »*
Henceforth, [T NN] will be written as [T IN]' where I denotes interior
DOF in u-coordinates and N denotes normal (natural) mode coordinates.

Its size is NIXNI‘

The coordinate transformation, as Hurty proposed, is

u Pnj
B |
- [T*1{ P (3-12)
Wwhere
mr 0
» “* BE
(71 =1 o | 3-13)
T Ty

‘The reason for such a transformation is apparent from the developments

to follow. The submatrices derived by Hurty are:

1. The submatrix [T*ﬁB] relates {uB} to {pB} to maintain

compatibility at the boundary.

*.
2. The submatrix [T IN] is the modal matrix of the component with

fixed-boundary.

3. The submatrix [T*EB] is defined by
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* -
(1] = [k 17 [Kpp] (3-14)
The derivation will be shown later.

4. The null submatrix is a consequence of the ‘fixed-interface’,

namely, the amplitudes {py} contribute mothing to {ugl.

In this work,

» ~

(r7gp] = [71] (3-15)

is selected to simplify further development. This requires an one to
one coordinate transformation between {up} and {pp}. There are a total
of Ni mutually orthogonal component normal modes. Less than NI modes
will be taken, so both [T*] and [T*IN] become rectangular matrices.
Note that if no component normal mode is retained, then [T*] = (T*BB*

T*IB’)', and hence {u;} = [T*IBJ{PB}f which is the same tranaformation

for static condensation.

To see that Eq.(3-14) is true, consider Bqs.(3~12) and (3-13) and

a dynamic equilibrium relation

Xgg 31| )u8( )78
K Kerjlug) (Fg
/
where the force wvector or the right hand side includes allrdynamic
forces. Now let the  normal mode displacement {py} = f{o}.

Correspendingly, both of the lozd vectors {PN} and [FI} vanish.

Therefore,
luII = [T*I'.B] {PB} ’l [T*IB] {‘JB}

and
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[KIB] {uB} * [KII] {“I} = {o}
Comparing the two expressions, we get Eq.(3-14).

After transformation, the component equation of free vibration

becomes

[kl{p} + [m]fp°} = {0} | (3-16)
where _

(k] = [?*]'[x*1[1"] - . (3-17)
and

(o] - [T (5-18)

The procedures. to perform the transformations efficiently are discusséd

in a later section..

Next the system generalized ccoordinates [q} are defined such that

Py T O | ag
= ' (3-19)
Py O Tyjlay

where N denotes ‘component normal modes'. Compatibility at the boudary
is maintained through transformation from !pB} to {qB} via [TB]. The
matrix [TK] is a Boolean matrix relating each DOF in {pN} to an

appropriate location in {qg}.

Now let the whole transformation matrix above be [T]. Upon
completion of transformation, the component equation of fres vibration
is

[X]{a} + (M1lq°} = fo} (3-20)
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where

(k] = [7]'[x]{r]

and
(] = [r]'[=][z]

In the above expressions, a subscript 'i’' indicating the component
number is implied. The same procedures can be aﬁplied to all
components. The stiffness and mass matrices for the region not
included in any component can be formed in {q} coordinates, or in other

coordinates and then transformed. The next step is to assemble the

component matrices to obtain system matrices.

Indeed, the fixed interfaces allow for relatively straightforward
implementation, Once component matrices are transformed to g-
coordinates, they may be assembled to form system matrices by the same

procedures as that used in static condemsation.

Up to this point the bouﬁdaries have never been reduced. Ir
further reduction of model size is needed, Guyan reduction may be
applied, beczuse the mass matrix is now sparse. When it is completed,

the system equation of motion for free vibration is,

(k1{q} + [ul{q-} = io | (3-21)
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3.4.2 Forced Vibration

For the case of forced vibration under ground =zccelerations, the
'appropriate forms' of the seismic load vector as described in section
(3.2) should be used to replace the null load vectors in the free
vibration equations. The procedures to obtain the 'appropriate fo;ms'

of the seismic load vector.are as follows:

The unreduced seismic load vector of a component is the fifst term
on the right hand side of 23.(3.3). | Bach one of the subsequent
reduction processes is equivalent to a specific coordinate
transformation. Consequently, the loading should be transformed

according to the following general equation
(21217 {Mpare(t)] = Pp e )} (3-22)

where [T’z]' denotes the %transpose of the transformation matrix
from coordinate system t to 2, i.e., [Tiz] is such that I*x} =

[Tjalizx]- Thus, the sequences of computations are:

1. For static condensation at the component level, simply
delete the zero terms assocciated with the unwanted interior
DOF. No computation is necessary, because no mass is
allocated to any unwanted interior DOF and hence no inertial
forece is generated there.

2. Parallel to the operations on each component, apply
Eq.(3=22) and the applicable rotation matrix in the form
described in Eq.(3-13) to +transform the component load
vector.

3. Assemble the component load vectors to form the system load
vector. This step is equivalent to the transformation
defined by Eq.(3-19).

4. Corresponding to Guyan reduction at the gystem level, apply
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Eq.{3-22) and the rotation matrix given in Eq.{(3-10) %o
reduce the system load vector.

3.5 Efficient Matrix Operations

* ~
By taking advantage of the choice of [T BB} = [ I], lump masses,

»*
the zerc submatrix, and the orthoncrmal propertiy of [T IH]9 expressions
can be derived to efficiently carry out the transformations given in

Eqs. (3-17) and (3-18).

Let tﬁe outcome of the matrix operations defined by Eq.{3-17) be

k k
BB “BN
(k] = (3-23)
kyp Kyy
Using the expressions given in Eqs.(3-13),(3-15) and (3-14) to evaluate

Eq.(3-17), we get

Liegn] = [™9,20,

if component mode shapes are normalized, and

[Kan] = [Kggl = [o],

as result of cancellations, and

* » *a. » -

[kpp] = [Xgg ] - [Xgr ] [KII I (Kig ] (3-24)

where the operation required to get [kBB] is precisely the same as that

required in Guyan reduction and static condensation as shown in

Eq.(3-5)-

Likewise, let the ocutcome of Eq.(3=18) be
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Mpp 0
EB BN
[a] = (3-25)
mNB ONN
Using the expressions given in Egs. (3-13),(3-15) and (3-14),
knowing that the component mass matrix remains diagonal after statice

condensation as a consequence of our method of assigning the unreduced

component mass matrix, we can evaluate Eq.(3-18) to obtain
- * L T * *
[mBB] = [ Opg 1+ [TIB 1L myg ] {TIB ]
» - » »
[TIB ]' [ mry ] [TIN ]

[mNB] = [mgn]f

[mBN]

ang

{mNN] =[] (3-26)
To reiterate, these equations are based on fixed interfaces, a diagonal

»*

maas matrix entering CMS, [TBB ] = [‘I] and normalized component
eigenvectors. They are substantially more simplifiéd than the
submatrices that can be derived otherwise. It should alsoc be noted
that EmBB] is essentially the same as the Guyan mass matrix defined in

Eq.(3-8), except that the required operation here is much simpler

because of the diagonal mass matrix entering CMS.

As stated previously, the operation defined by Eq.(3-5) is
equivalent to the partially executed Gaussian elimination. We can see

this by considering the following

K K u F
BB Kmr| |\ us B

= (3-27)
Kig Kzz| Lug o

After partial triangularization, we have
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Kan O a F

-} =BB B B
, { } = . (3-28}

Krp Ky (9 0

Rewriting the first equation, we get
{(Xgg]l {up! = {Fg} (3-29)

Comparing the expression to Eq.(3-5), Wwe see that indeed the matrix
[EBB] derived from partial trizngularization is the stiffness matrix
desired. The matrix inversion and multiplications are therefore

bypassed.

Finally, a novel process can be used to calculate the ubigquitous
transformation matrix given in Eq.(3410). Suppose we further reduce .

Eg.(3-28) to the following form,

=

»
K C u F
—~BB
{ B ? - {3-30)

w* -
Krg I] (up) (O
Rewriting the second equation, we get
. .
tur} = -[krp ] {ug}

Comparing this expression to Eq.(3-7), it is evident that

("] "'[EiB*] = -[KII]‘Q (Kygd
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3.6 System Response to Ground Accelerations

The response of a linear system to time varying ground
accelerations can be -determined by decoupling the equation into a

truncated set of SDOF systems, solving for individual modal responses,

and then adding them up. It is a standard procedure. DBecause of

truncation, this approach is much more economical than the direct

~integration method, by which the dynamic equilibrium relating several

whole matrices must be satisfied at all integration steps. Such 2

requirement is compounded by the need to use very small time increments

in order to maintain accuracy and t¢ minimize numerical damping.

- 3.6.1 Decoupling of System Equation of Motien

After the system matrices are formed and condensed, the system

equation of motion in {q} coordinstes is,

(ulfa-(e)} » [cHate)} + [klfa()} = {Fp pp(t)] | (3-31)
= {Opgpe}® (-87,(%) )
where

[M] = mags matrix
[C] = damping matrix
[K] = stiffness matrix

{dpgpe(t)} = effective seismic load

{ﬁ‘g(t)} = time series of ground accelerations
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The first step is to solve the eigenvalue proﬁlem

(ela- (o)} + [xklfa(t)} = {0}

~Alulla(0)} + [Kia(e)} = {o} (3-32)

to obtain the natural frequencies w, and the corresponding eigenvectors

n
or mode shapes {Tn}, nsi,Z...Nq. The modal matrix is [T], each of its
columns is an eigenvector. The solution is based on an undamped systenm,

because the effect of damping on natural frequencies is nil.

Due to symmetry in [K] and [M] or Betti's Law, the mode shapes

obtained from Eq.(3-32) satisfy orthogonal conditions as follows,
(g} [uliz ) = 0
for m not equal %o n, and

n = m) ()i}

K, = (T} [K]{T ) = w 0 (3-34)

n

for m*n. The damping matrix is assumed to satisfy the orthogonality

conditiona
{tat'LeliT ) =0 (3-35)

for m not equal %o n, and
c, = frilellr,} = 2a w (3-36)

for m=n. At this juncture, a damping value is assigned to each

individual mede in the form of the damping ratio d,.,.



33

.The orthogonality conditions permit decoupling as shown bdelow.

Premultiplying Eq.(3-31) vy [T]', applying 2 transformation
fa(£)} = [T]{e, ()} (3-37)

and using the orthogonality conditions, the system eguation of motion

is reduced to Nq-decoupled SDOF equations of metion in the form

M,Q o (8) + € (%) + Ko (¢) = P (%)
or

Q () + 2d,w,@p () + w %R, (t) = Po(8)/H, (3-38)

where the damping ratic of the n-th mede drn=Cn/2ann. The loading

imparting onto the n-th mode is,

P(8) = (T} (Togpe( )} = {T,) " {Tpg el OC-07 () (3-39)

- B, (-2 (+)

where E, is the 'modal earthquake excitation factor,' a term used by
Clough and Penzien. It is directly proportional to the scalar product
of the n-th mode shape and the'spatial distribution of the seismic load
vector. It partially accounts for the predeminance of lower modes for
the given {ype of problem. The 'modal participation factor,' a term
used by Biggs, is equal to En/Mn. The two factors are equivalent when

mode shapes are orthonormalized.

In Eq.(3-37), the whole modal matrix is used to maintain
generality. In application, a truncated transformation matrix may be

used to obtain the lowest N' modes that are significant.
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3.6.2 Solution of Modal and System Responses

Assuming a system initially at rest, the solution of Eq.(3-38) is

Qu(t) = (1/wy,) |
(1/m,) [fot P (x) e~drn*n(*%) ginw, (t-x)ax]
or
Qu(t) = (1/wg,) (B /M)
[y/‘ot (~0‘g(x)) e=dpn¥y(t-x) 3inwdn(t-x)dx] (3;40)

where.the damped natural frequency wi, = wn(1--dr2)1/2° Using the step-
wise explicit integration method discussed in APPENDIX C to evaluate.
Eq.(3-40), the N' modal résponses are calculated and then added
according to Eq.(3-37) to obtain the time history of system response

{q(t)}. Those modes that are higher than N' can be neglected.
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4.0 EXAMPLE

The wvalidity of the procedures and program was established by
solving a six-story 3-D frame discussed in APPENDIX D. This chapter
presents an example that was done to demonstrate that a fairly large 3-
D building can be analyzed by the procedures using a limited amount of
core., The results are quite interesting; they substantiate the
importance of the floor flexibility mentioned in chapter 3, among cther

things.

Figure 3 . shows a perspective view of the twelve story 3-D
building. Figure 4 shows a typical floor framing plan. Therfloor plan
and lump mass distribution are applicable to all floors. . The dead
weight is 940 kips per floor, which is equivalent to 133.2 psf. X-
bracing members are used in vertical planes 4-&, 7-8 and 13-14. The:
brgcing layout. is similar %o that of a floor plan. Table 1 shows thé

size of atructure members. In the table, I and.Is

e are component

D
number and section property number, respectively. Although the design

features and dimensions are assumed, they are realistic.

The ‘uilding was represented by four components numbered
sequentially upward. There were jthree common boundaries and an
optional roof boundary. The latter was included to enhance accuracy,

the former were needed to maintain compatibility.

- For both components No.2 and 3, the DOF number was reduced from

336 (or 4x14x6) to 252 {or 2x84+2x42) when all rotatiomal DOF of



'y 2 .
3 o
= m. qm
3 g 3

2]
m

e VA
STaAd] X00T - o = 3
Lr#

\D Wy T

f,/,/rr.rirrﬁ_m
ANo20020070722,

) ZNNNNNRNR RN

|7 AAARNNNNNNNS
\NAZZZZ222722Z 2"

@
&
B



Note:

Figure 4

1. The signs I & H indicate positioning of columns.

2. n = node number

3. Lamp masses :
m; = 0.101367 kip-SecZ/ in

B = 0.202733°
my = 0.304097

4, Heévy line indicates a vertical plane frame with
dtagonal bracing. '

Typical Floor and Roof Framing Plan

37
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Table 1. Section Properties
Isp A IY Iz J Remarks
1/2 117. 2170./6000. 6000./2170. 272. column
T/H
3 24.8 2850. 106. 2,79 floor
beam
4 5.5 0 Q. 0. floor
, bracing
5 7.5 0 0. 0. frame
bracing
6/7 68.5 1150./3010. 3010./1150. 62.6 column
I/H#
8 24,7 2370. 94.4 3.72 floor
beam
g 4,865 0. 0. 0. floor
' bracing
10 6.6 0. 0. 0. frame
_ , . — bracing
11/12 46.7 748./1900. 1900./748. 19.5 column
. 1/H
13 22.4 2100, 82.5 2.70 floor
' beam
14 4.22. 0. Q. 0. floor
' bracing
15 5.7 Q. 0. 0. frame
‘ bracing
16/17 42.7 677./1710. 1710./677. 14.2 column
1/8
18 20. 1830. 70.4 1.86 floor
beam
19 3.555 0. Q. floor
bracing
20 4,805 0. 0. frame

bracing




interior nodes were condensed out. (The program permits further
reduction of some translationzl DdF in the interior.) For the other
two componsnis, the DOF number was similarily reduced. On the roof
voundary, all rotational DOF were %treated as unwanted interior DCF and

were condenssad out at the component level.

There wWere two interior fleoors in each of the four components.
The dimension of all matrices entering the component eigensolution was
84 or 2X14%X3, The number of normal modes in a component was therefore

84,

To simplify presentatien, the following modeling parameters are
defined ¢ (&) Np = the number of retained DOF per boundary , (1) Ny =
the number of retained DOF on the roéf; (c)‘N' = the number of retained
giodes per component, and (d) Ko = the number of components taken. By

changing these parameters, the following cases were solved.

(a) Ng=24, Np=42, ¥'=12, and No=4. After assembling, the system

model had 342 DOF : 4x12 component modes, 42 DOF on the roof and

3x14x6 DOF on the common boundaries. The Guyan reduction cut the model

gize down to 162 DOF, which included 24 retained DOF per common
boundary as shewn in Figure 1. This ig an 84 % reduction from the
unreduced model having a total of 1008 DO¥. The operatioms required a

main array of 57K plus nominal common areas.

caculated natural frequencies of the first 13 modes. Evidently, when

2ll the other conditions remain the same, the calculated natural



Table 2.

Mode number

Wi W N

o ~ O

10
11
12
13

40

Calculated System Natural Frequencies, CPS
NR=42, NB=24, Nc=4

Nl N'=4 N'=6 N'=l2 N'=24  K'=36
0.3845 0.3841 0.3841 0.3841 0.3841 0.3841
0.5126 0.5111 0.5111 0.5111 0.5111 0.3111
0.7660 0.7624 0,7623 0.7621 0.7619 0.7619
1.1219 1.1117 1.1117 1.1115 1.1115 1.1115
1.4789 1.4582 1.4576 1.4573 1.4572 1.4572
2.,0486 1.9809 1.9809 1.9765 1.9762 1.9762
2.1434 2.0975 2.0959 2.0930  2.0914 2.0913
2,2070 2.1568 2.1524 2.1452 2.1407 2,1407
2.5917 2.5513 2.5446 2.3413 2.5400 2.5400
2.9629 2.9116 2,9115 2.8801 2.8787 2.8787
3.3481 3.2149 3.2079 3.1894 3.1803 3.1801
3.4132 3.3027 3.2837 3.2735 3.2729 3.2726
3.6196 3.5504 3.5012 3.4907 3.4872 3.4872
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frequencies become lower and lower to approach the 'true values' as
more and more component modes are included. These trenda are in
agreement with the known fact that the calculated natural frequengieér
are upper bounds. It is alsoc evident that it is not necessary to
inelude many component modes in this case. This is not surprising. We
imow that a cantilever beam modeled by four elements with consistent
mass. can produce good results. Ve may similarly expect Guyan reduction
to yield good results if there are four components or four beundaries,
and if there are enough retained DOF per boundary. When no compeonent
mode is taken, the method of CMS is egquivalent to Guygn reduction.

Therefore it can only do better when some component modes are included.

(e) Ng=9, Ng=9, N,=4, N'=1,4,6. TFigure 2 shows the retention
pattern. Table 3 shows the results. This case proves that it is not.
necessary to retain many DOF per boundary, a viewpoint suggested in
. chapter 3. '~ Note that if N'=6, the size of the redﬁced system is 42,

which is equivalent to 3.5 DOF per floor.

(d) Ng=9, Np=9, K'=12,21, and No*2. In the previous cases, the
use of four boundaries helped. Could the procedures do well if there
are only two boundaries? This case demonstrates tha?t they can. It is
remarkable that, after so much number crunching, the results are so
clcse to that of the previoué cases in which the sequences and domains
of formations and reductions were quite different. We can attribute
the succesas to the capability of the method of component mode synthesis

to preserve structure properties effectively. From this case, it is



Table 3. Calculated System Natural Frequencies, (PS

Mode number

LCLINEE ~ N VU - I

A¥e B s B )

10
11
12
13

Ng=9, Ng=9
No=4 | Ns=2
N'sl N'=4 N'=6 N'=12 N'=21

0.3854 0.3850 0.3850 0.3854 0.3854
0.5134 0.5119 0.5119 0.5121 0.5121
0.7664 0.7627 0.7626 0.7626 0.7624
1.1393 1.1289 1.1289 1.1374 1.1371
1.4952 1.4731 1.4725 1.4786 1.4782
2.1230 2.0539 2.0537 2.1005 2.0988
2.1483 2.1025 2.1010 2,1182 2.1175

. 2.2573 2.1993 2.1937 .2.1796 2.1767
2.6466 2.6088 2.6008 2.6398 2.6388
3.1806 3.1083 3.1083 2.7813 2.7759
3.4051 3.2829 3.2721 3.2667 3.2571
3.4348 3.3034 3.2899 3.2796 3.2720
3.6972 3.6165 3.5573 3.4204 3,4018
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judged that the model representing a twenty-story building with the
same floor plan can be reduced to 2 system model comsisting of (6 to
12)X4+9%4 = 60 to 84 DOF or 3 to 4.2 DOF per floor, and yields

comparable answers.

Finally, the mode shapes obtained deserve some attention. TFigures
5 %o 8 show the shapes of two adjacent roof edges in the the first 11
modes for the case with NR*42, HB=24, Nc=4, and N'=12. In the first
three mbdes, the roof behaves almost like a rigid bedy, but starting
from the fourth mode, it deflects in the forms of in-plane bending in a
significant or predominant way. The measage is clear: for the assumed

case, the importance of the floor flexihility'cannot'be overemphasized.

In summary, the solution made of a twelve-story 3-D building using
the procedures proauced high percentage reductions and yet preserved

the most important characteristics of the building.
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5.0 CONCLUSICN

Modal and transient analyses needed for evaluation of dynamic
characteristics and responses of a building to ground accelerations are
time and core intensive écmputations. To save computing time and/or
solve the problem at a lower core requirement, reduction technigues
such as stétic condensation, Guyan reduction or component mode
synthesis can be applied to reduce a full scale finite element model %o

2 smaller size before these analyses are executed.

Literature review showed that a2 class of éomputer codes developed
specially for buildings are based on the assumption that floor systems
are rigid in plane. It is: an  oversimplification that éan lead to
seripus errors in some cases. Assuming- inadegquate diaphragm design,
examples are: buildings with an L,T, H or U-shape floor plan, buildings
having setback of local irregularites, building/space~frames suppdrtiﬁg

heavy equipment on floors.

The review also revealed that the applicationm cf’fixed-interface
component mode synthesis to buildings has been limited to a2 highly
idealized 'shear building' model or very small plane frame. As will be
discussed later, what works beautifully on small 2-D problems does not
necegsarily work well on larger 3-3 problema. The review alsc showed
that although the method has been incorporated in the MSC/NASTRAN, it
was not developed specifically for the given structure and load case

for which special treatments can lead to improved computing efficiency.
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The main objective of this work originally was to formulate and
implement the method as applied to the case of a building subjected to
ground accelerations, and to examine its feasibility, advantages and
disadvantages. It was hoped that the average number of LOF per floor
that must be retained would be somewhat larger, but not much greater,

than three DOF per floor; and <that the results would be fairly
accurate, with all the important dynamic'prcperties preserved in the

mode shapes of the reduced system.

That goal has been accomplished, as can be seen from the summaries

and conclusions toc be presented in the next paragraphs.

5.1 Summary and Conclusion

The fixed-interface component mode method was first applied to
determine the natural fréquencies and mode shapes of a twenty-story 2-D
frame. The accuracy of the results is satisfying. (See APPENDIX E).
As attempts were made to apnalyze a medium sized 3-D building, however,

the following difficulties were encountered: . (a) The component in

itself was big enough +to warrant treatment prior to component
eigensolution. (b) The system matrices assembled after synthesis were
still ©big, because the methed merely reduces interior DCOF while

retaining all boundary DOF.

A unique combination of reduction procedures, with fixed-interface

component mode synthesis as the central theme augmented by static
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condensation and Guyan reduction, was <therefore formulated and
implémented for the given étructure and load case. Of course, the
structure in gquestion must be linearly elastic-. The combined
procedures were conceived to ‘take advantage of the stiffness
characteristics of a building. Although they have been known for some
tim: no work has been done to date to combine them in order to let

them complement one another and become more powerful.

In this work, the applicability and consequences of each method as
well as the similarities and differences among them were examined. How
they may be justifiably applied in a specified Sequencé was explained.
In essence, static condensation reduces the matrices entering comﬁonent
eigensclution. The method of CMS +ransforms component matrices to
reduéed matrices. defined over boundary DOF and a truncated set of
normal mode shapes extracted from components with fixed boundaries.
Guyan reduction eliminates DOF on the boundary afiter synthesis. In
addition, by the choice of the mammer in which a few intermediate steps
can be treated, several siﬁplified transformations for c¢arrying out

modal syntheais were derived %o upgrade computing efficiency.

A program package was developed. The matrices former, reducers
and solvers as well as the package were validated. The paékage will
direct the computer to rea& data and form component matrices, acéept
specifications for retaining interior and boundary DOF that are
arbitrarily patterned, and then perform three stage reductions and

solve for natural frequencies, mode shapes and displacement responses
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on a much reduced system model. The prograzm uses dynamic core
allocation and out-of-core operaticons sc¢ that until reduced forms are
obtained, only one major matrix, whether it be stiffmess or mass,
component or assembled system, will occupy the CPU at a given time. In
developing the package, much attention was given to economizing
computing and core use. For example, several subroutines were written
to replace the gsubroutine 'NRCOT' in the IBM Scientific Subroutines

Package (SSP). Roughly one third of the core need is thus saved.

The combine@ reduction procedures were appl;ed to carry out
dynamic apalyses of a twelve-story 3-D building. Several solutions
were made of reduced models by changing parameters such as the number
of'components;thevnumher of retained component modes, and the number of
retainedlDOF per boundary. The results demonstrated the importance of
the floor fexibility in modes as low as the fourth for the case
studied. The resluts also coﬁsistently showed that good convergence
was achieved by mnuch-reduced models, a pleasant but not at all
surprising finding indeed. A rationale is offered in the next

paragraph.

Much credit should be attributed to the Ritz or component mode
method and to Guyan reduction. But perhaps the characteristics of the
given gtructure and load case deserve some attention. The given
structure and load cése can be characterized as follows: (a) The floor
systems are stiff compared to the whole building laterally. For a

typical floor, only its most flexible local medes need to be
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represented in the reduced model.» (v) The energy contents in the high
frequency components of ground accelerations are lower than that in the
low frequency components. (c) Due to the zigzagging of higher mode
shapes, their participation in the total response of a building is
lower than that of the lower medés. Therefore, during the three stage
reduction process, we have a choice to (a) retain a relatively small
number of interior DJF for component eigensolution, (b) retain a
relatively small number of component normal modes for transformation
and synthesis, (¢) retain a relatively small number of boundary DOF in
the synthesized matrices, and (d) retain a relafively small number of
decoupled normal medes of the reduced system, and still expect to

obtain system results without significant loss in accuracy.

Admittedly, the procedures are subjected %o the following
penalties: (2) Component eigensolutions are required. (b) Many
transformations are needed. But the payoffs are large savings in core
achieved by substructuring, and huge savings in computing time to be
gained by performing eigensolution and transient analyses on a much
smailer‘model- By comparing the alternatives, it is obvious that the

'gains far exceed the penalities.
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3.

5.2 Suggestions

Suggestions for future works are as fellows:

The program package as 1is can be 7readily applied +to
structures such as buildings, bridges, space frames, piping
and some plant equipment under seismic lcads if linearity is
satisfied. Minor changes can be made in the program for
application to other structures and load cases.

Consider aultilevel substructuring hierarchy, i.e.
substructures within a substructure. This will greatly
enhance the capaciiy of the program.

Establish a good criterion for retaining component medes.

Hurty suggested that the cut-off frequency of component

modes be 50 % higher than the highest frequency of interest.

Based on the chardcteristies of ©building and ground

ac¢elerations, it is suggested that this criterion be

relaxed; or altermatively, one may discard & component mode

if" the absolute value of the product of its participation

factor and dynamic factor falls below a2 certain number,

which is a fraction +times that of the most significant
component mode. )

Expand the program: Add elements such as a beam with rigid
ends, a beam with flexible joints, a plane stress element
for shear wall and a solid  element for soil strata
supporting the foundation.
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APPENDIX A
STIFFNESS MATRIX FOR 3-D FRISMATIC BEAM

This appendix describes a 3-D prismatic beam element which does
not require the third node tol define the direction of the major
principal axis of its section. (The concept was used in STRUDL and
ANSYS.) The stiffness matrix defines a force-displacement relationship

as follows,
("] {u®} = {p")

* *
where both §u } and {p } consist of 12 components: 3 translational and
3 rotational terms at each one of the +%two beam ends. The stiffness
*a : : * * A
matrix:[k ] defined in the local coordinate system (x ,y ,z ) is shown
. » ) , '
in Table A-2. The loecal x -axis extends from one end denoted by node
number 'i' to the other end 'j'. It coincides with the centroidal axis

of the beam. The local coordinates are parallel to the principal axes

of the section.

N ' *  *
If the local coordinates (x*,y ,2 ) are related to the global

coordinates (X,Y,2) by
» * ¥ *
(x ,y »z ) =[T] (%1,2)',

then the nodal displacements in local coordinates {u*} and the nodal

displacements in global coordinates {u} can be related by
*
fu'} = [TH{ul

The stiffness matrix in global coordinates is then
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k] = {21'{x"1[r]
This transformation can be derived from the potential energy

Ve (0.5)(u Ik TfuT) = (0.5){u} k] {u)

* * *
The local cocordinate system (x .,y ,z ) is shown in Figure A-1.
*
The transformation matrices [T ] and ['I.‘] are given in Table A~t. The
definitions of local coordinates for a beam in an arbitrary direction
*

* W
{x ,7 +Z ) and for a beam whose axis coincides with any one of the

three global axes are shown inm Figure A-1.



Table A-l. (Coordinate Transformation Matricas

[ 0 0 07
) T* 0 0
(T) =
0 0 T* 0
o' 0o -0 T*
Gy Cq | Sy Cg ' Sg
- |
¢, Sg Sg ¢, C5 Sy Cg
(T%) =
-8, Cq ' ~S, Sg Sg l
. ) _-"-. —?—- -
S, Sg ' Sy Sa Gy Cq Cg
-C, Sq Ca <, Sa
- J

¢ = cosa, CB = cosB, Cy = coshd

§$ = sina, SB = gin8, Se = 8inf



Table A-2. Stiffness Matrix for a 3-~d Uniform

‘beam’ in local coordinates

1® 2% 3% 4k Sk gk 7% 8% _ g% 10% 11* 12%

k*,] =
-a; Q 0 0 1] 0 ag 0 v} 3] 0 1} 7%
+ + + + + + + + + + -
0 --c1 0 v} ¢ -cz ‘ 0 c1 0 (4] Q -cz 8%
+ -+ + + + + + -+ + + +
0 0 -di- 4] ':l2 g Q 0 dl 0 dz 0 g
+ + + + + -+ + - + - -
0 0 ¢ -ty o] 0 o ¢ 0 5, O o 10%
+ + + + + o+ + - + + +
¢ 0 -dz v} d3 0 Q 9 dy (] 2d3 9 1i»
+ + + + + +* + -+ + + +
Q Cy a g 4] €, 0 -C2 Q 0 0 Zc3 12*
=
a = Gféi
g =
%*,.3 *,. 2 *
Cl = 12 (EIz %73, Cz = 6(EIZ‘/2 s _03 - 2(81; /%)
: * 3 *, 2 . *
dl = 12 (EIy /2 )7 d2_= 6(EIy /%), d3 Z(EIy /%)



node j
beam

* %
(2). Local Coordinates ( x*, v , 2 ) & DOFs @ Beam Ends

% %

(x ,y*,z ) = rotation of ( x,y,2) with respect to x by 6
C(x, y, z) = rotatioun of (x',y',2") with respect to y' by B
( x',y",z") = rotation of ( X,Y,2 } with respect to Z by &

(b). Global coordinates ( X,Y¥,Z) & Local Coordinates

Figure A-l Coordinate Systems for 3-D Beam
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APPENDIX B
STANDARDIZATION OF GENERAL EIGENVALUE PRCBLEM

The general eigenvalue problem
[k1(u] = [ul{u](~+2] (B-1)

where both [K] and [M] are symmetric, is to be reduced to 2 standard

form
(k1lu] = [C1l(uif~w?]

so that the subroutine 'EIGEN' in IBM Scientific Subroutine Package may

be applied. The dimension of the matrices and vector is n. The

solutions to be sought are eigenvalues r'wz] and eigenvectors EU}(34?.

-

The first step is to solve a standard eigenvalue problem
(allz] = (z][°r]

to obtain eigenvalues Ty j=1,2 ..n, and the corresponding modal matrix

[Z}, which is normalized such that
[z]'(z] =.['II and hence [Z]' = [21'1
By orthonormality, we have
- [u] = (2)e]2]
If {M]O‘S and [H]'O‘S are defined such that

[119°5 [w19-5 = [u]
(%105 [x]-0:5 = [~1]

then it can be verified that
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(u] 0% = [2]["r °-5][]"
[4]-C-5 = [2][*£=0-5][z]"

Hence Eq.{B-1) can be rewritten as

[%]-0-5[k ][u1-0-5[x]0-3[u] =
[11]70-3[]%-3[u]°-3 (v ][ ~w?]

By introducing

[x] = []-9-5{x][u]-0-3
[u] = [#]%5[u]

Eq.(B-1) is reduced to
(&1 = (][ w2]

which is in standard form with [H] and ["wz] as its solutions. The

solutions for Eg.(B-1) are [U] and [“w2], where

(v] = [¥1-9-3(g]
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APPENDIX C
SOLUTION OF LINEAR SDOF SYSTEM RESPONSE

This appendix describes a step-wise explicit integration method
for solving the response of a linear SIQF system subjected to piece=-
wise linear loads. The methcdlis accurate because the sclutions at the
end of each step are Eased on éxplicit expressions derived from
integration. The routine is highly efficient because, for a linear
systenm, the coefficients in the recurrent formulae need to be
calculated only once.if the time increment is constant and because the

angwers at the end of each step are simple algebraic expressions.
Let the equation of motion of a SDOF system be

oyt (t) + eg(t) + ky(t) = p(t) = por(t)

or
$*(t) + 2dwg(t) + wly(t) = (pg/m) £(t)

The numerical integration is %o be carried out gstep-wise at ﬁime
increments 4%, whicﬁ'may'be constant within a range. If the state
variables (y;, ¥;) at t=t; are lmown, and the loading between t; and

ti+1 is linear, namely,
p(x) = p; *+ (Pi+1‘Pi) (x/d%)

where x=t-t; is not larger than dt, then the state variables (yi+1, i

i+§) at t-ti+1 can be determined by the following recurrent formulae

Tivqg = A(Pi) * B(Pi.ﬂ) * C(Yi) * D(yi)



5’-5_4.1 = A'(Pi) + B'(Piﬂ) * C.(Yi) + D‘(Yi)

where

A = | By[(~2q-dgwdt)Syfug + (-2dp/w-at)Cq] +

2d,/% }/(kdt)

B = { By[(24)8/wg + (2dr/w)c1] ~ 2d /v +
at }/(kds)
C = E-] [01 + (er/Wd)S1]
D= (1/wy)EyS,
At = (1/xdt) (B [(dw + w2dt)Sq/wg + Cy] = 1]
B' =

C' = -(Wz/wd)E1S1

D’ “' E1[c1 - (drw/wd)51]

By = e~dp¥dt

Zy = 28,2 - 1

Cy = cos(wddt)

Sy = sin(wddt)

d. = o/(2m)

w (1 = dr2)1/2

Save for minor differences in form,

those in Craig's bookCES).

(1/%dt) {-B [(apw/wg)sy + ¢] + 1}

these equations are the same as

62
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APPENDIX D
DYNAMIC ANALYSES OF A SIX-STORY 3-D FRAME
This example was done to validate the procedures and program by
comparing results te that obtained from SUPERSAP, a general purpose
finite element program. The verification is in addition to many self-

sustained ftests which the program has passed.

Figures D-1 and D-2 show the perspective view ¢f the frame and the
floor plan, respectively. The frame is distinetively weaker in the Y-
direction. The floor plan and mass distribution are the same for all

*floors. Each floor weighs 48.7 kips, which is equivalent to about 150
psf. The floor systems are bréced for in-plane rigidity. The seciion

properties are given in Table D-1.

The. structure was divided into three ccmponents that are bounded
by two common interfaces and a roof boundary. There is one interior
floor in each cbmponent. Figuré_D-2 shows. the 8 interior DOF that wers
retained after sfaticvcondénsafion. The same fétention pattefn was
used for CGuyan reduction of the boundary DCF in a later step. BEach
component eigensclution resulted in 8 normal modes, all of which were

retained.

The assembled system model has 80 DOF : 8X3 normzl modes, B
bouﬁdary DOF on the roof and 4X6 DOF oﬁ each of <the two common
boundaries. After Guyan reduction, the size o¢f the system model was

cut down to 48 DOF.

The same frame was solved for system natural frequencies and mode
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shapes using SUPERSAP, a program which does not employ a reduction
techpique prior to eigensolution. Table D-2 shows a comparison of the
two sets of results. In the table, the frequencies calculated by FEM
are ranked in ascending or&er, while that obtained by CMS are not. The
intention is to compare modes based on mode types or characteristies.
The agreement is excellent for the first three bending modes in the ¥-
direction, the first three bending modes in the X-direction, the first
three torsional modes and the first three rocking modes. The agreement

for higher modes is less satisfying.

Table D-3 shows a comparison of the two sets of mode shapes. The
quality of agreement is similar ta that for the natural frequencies,
although the agreemmet for two higher modes is poor.' The mode shapes
cglculated by SUPERSAF indeed confirm that in this case every fl&or
behaves like a rigid body; hence the retention pattern used in the CMS

solution is proper.

The displacements in the Y-direction at nodes Nd.11, No;?9 an&l
Jo.27 in response to the Imperial Valley Earthquake, better known as
the E1 Centro earthquake, of May 18, 194C, scaled to 2 magnitude of
0.2G, are shown in Table D=5. The accelerations were applied in the Y-

direction. Although the responses of individual modes were computed

starting from at rest at =0, they were added to obtain system
responses starting from a later time step in order ftc save computation

and printing.

Because of low energy contents in high freguency excitations, and
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the low participation by higher modes (see Table D-4), the lack of good
agreement for higher modes should not be a problem of concerm. It is

therefore concluded that the accuracy of the results is satisfying.
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Figure D-1 A Perspective View of the 3-D Frame
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(a). Betained DOF on All Floors
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D-2 Floor Plan and Retention Pattern
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Table D-1 Section Properties, Example 1

IQ ISp A Iy Iz J Remarks

1 1 32.60 1240.0 447.00 7.12 columm

2 2 26.50 999.0 362.00 4.06 column
3 3 21.80 796.0 134.00 3.88 column
1 4 14.70 300.0 40.10 1.24 floor beam

2,3 S 11.80 518.0 28.90 0.79 floor beam

1,2,3 6 3.83 11.3 3.86 0.15 floor bracing

Ic = component number

Isp_ﬂ‘seccion-property aumber



Table D=2

Mode Number

Comparison of Calculated System Natural

Frequencies,

FEM

1.00305
1.1411
1.2164
2.7622
3.3812

3.8421
4,9048
6.1845
6.6624
7.253¢6

9.4737

9.5517
11.707
12.747
12.908

16.498
16.570
17.329
17.748
18.052

Qs

1.0030
1.1410
1.2164
2.7706
3.3930

3.8550
4.9324
6.1957
7.0121
7.2480

10.984
10.687

- 14.439

12.963
14.108

16.565
17.925
17.329
17.747
18.074

'CPS

6,

6,

Mode Type

(8,)
(553
¢33

F4

N

(8,)5
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Table D=3 Comparison of Mode Shapes - lst Mode

Node
number

10
i1
12

17
18
19
20

25
26
27
28

FEM

3
¥

0.4938
0.4938
0.4938
0.4938

1.173
1.173
1.173
1.173

1.774
1.774

. 1. 774

CMS

0.4941
0.4939

1.174

1.173

1.775
1.774



Table D-3

Node
number

10
11
12

17
18
19
20

25
26
27
28

T1

Comparison of Mode Shapes - 2nd Mode (Continued)
FEM CMS
5, ay S, ay
0.3513 -0.3516 - -
0.3513 0.3516 0.3515 -
-0.3513 -0.3516 - -0.3516
-0,3513 - 0.3516 -0.3516 0.3519
0.8678 -0.8651 - -
'0.8678 0.8651 0.8682 -
-0.8678 -0.8651 - -0.8652
-0.8678 0.8651 ~ -0.8684 '0.8659
1.2279 -1.2288 - -
1.2279 .1.2288 1.228 -
=1.2279 -1.22838 - -1.229
-1.2279 1.2288 -1.229 1.230
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Table D=3 Comparison of Mode Shapes -~ 3rd Mode (Continued)

Node

number

10
11
12

17
18
19
20

25
26
27
28

FEM

s
x

0.4832
0.4832
0.4832
0.4832

1.2351
1.2351
1.2351
1.2351

1.7400
1.7400
1.7400
1.7400



Table D-3

Comparison Mode Shapes - 4th Mode (Continued)
Node FEM cMS
number 8 3
¥y y
9 -1.2465 -
10 -1.2465 -
11 «1.2465 -1.254
12 -1.2465 =1.254
17 -1.1089 -
18 -1.1089 -
19 ~-1.1089 -1.118
20 -1.1089 ~1.118
25 1.5626 -
26 1.5626 -
27 1.5626 1.585
28 1.5626 1.585
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Table D=3

Node
number

10
11
12

17
18
19
20

25
26
27
28

74

Comparison of Mode Shapes - 5th Mode (Cpncinued)
FEM cMS
S s 8 §

X ¥y X b4
~0.9288 0.9358 - -
-0.9288 -0.9358 -0.9363 -

0.9288 0.9358 - : 0.9436
0.9288 -0.9358 0.9364 -0.9435
-0.6695 - 0.6906 - -
-0.6695 -0, 6506 -0.6760 -
0.6695 0.6906 - 0.6974
0.6695 -0.6906 0.6761 -0.6974
1.0963 ~-1.1094 - .
1.0963 1.1094 - 1.116 -
-1.0963 -1.1094 - -1.129

-1.0963 1,1094 -1.116 1.129



Table D-3
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Comparison of Mode Shapes - 6th Mode (Comntinued)

Node

number

10
11
12

17
18
19
20

26
27
28

FEM

Sx
1.3540
1.3540
1.3540

1.3540

20,9131
0.9131
0.9131
0.9131

-1.5328
-1.5328
-1.5389
-1.5389



Table D=3 Comparisén of Mode Shapes - 7th Mode (Continued)

Node

number

10
11
12

17
18
19
20

25
26
.27
28

FEM
%
1.4430
1.4430
1.4430
.1.4430

-1,2203
-1.2203
-1.2203
~1.2203

1.2692
11.2692
1.2692
1.2692

1.524
1.524

=1.,257
-1.258

1.210
1.210

T6



Table D=3

Node
number

10
11
12

i7
18
19
20

25
26
27
28

77

Comparison of Mode Shapes - 8th Mode (Continued)
FEM oS
§ ) § §

x ¥ X ¥y
1.0530 -1.0925 - -
1.0530 1.09825 1.097 ‘ -

-1.0530 -1.0925 - -1.139
-1.0530 1.0925 -1.097 1.139
-0.9835  1.0229 - -
-(.9835 -1.0229 -1.005 -
0.9835 1.0229 - 1.048
0.%835 - =1.0229 1.006 =-1.048
0.8516 ~(.9033 - -
0.8516 0.9033 0.8125 -
-0.8516 -0,9033 - -0.8629

-0.8516 ©0.9033 -0.8127 0.8629



Table D-3

Comparison of

Node )

number

10
i1
12

17
18
19
20

25
26
27
28

Mode Shapes

FEM

8
y

0.9293
0.9293
0.9293
0.9293

-1.1421
-1.1421
-1.1421
-1.1421

-0.8419
-0.8419
-0.8419
-0.8419

9th Modé

~1.354

-0.8963

78

(Continued)
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Table D=3 Comparison of Mode Shapes - 10th Mode (Continued)

Node FEM cMS
number Sx Gx
9 1.5263 -
10 1.5263 . 1.581
11 1.5263 -
12 1.5263 1.581
17 —104586y -
13 -1.4586 -1 .,487
19 -1,4586 -
20 -1,45886 =1.487
25 1.2518 -
26 1.2518 1.205
27 1.2518 -

28 1.2518 1.205



Table D=3

Node

number

10
11
12

17
18
19
20

25
26
27
28

80

Comparison of Mode Shapes = 1llth Mode (Continued)

FEM cMs
5, 5, 5, 5,
~0.5095 0.5708 - -
-0.5095 _  ~0.5708 -0.3493 -
0.5095 0.5708 - 0.4153
0.5095 -0.5708 0.3493 -0.4152
0.3274 -0.4326 - -

. 0.3274 0.4326 0.6005 -
-0.3274 ~0.4326 - -0.8419
-0.3274 0.4326 ~0.6005 0.8417

0.5749 ~0.6878 - -
0.5749 0.6878 0.5958 -
-0.5749 ~0.6878 - -0.7852

~0.5749 0.6878  -0.5959 0.7851
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Table D-3 Comparison of Mode Shapes - 12th Mode (Continued)

Node

number

10
11
12

17
18
19
20

25
26
27
28

FEM

§
¥

-0.1213
-0.1213
-0.1213
-0.1213

1.4817
1.4817
1.4817

1.4817

0.1507

0.1507

0.15307
0.1507

1.210
1.210

0.1215
0.1229



Table D-3

Comparison of

Node

number

10
11
12

17
18
18
20

25
26
27
28

82

Mode Shapes - 13th Mode (Continued)

FEM cMS
sx GX
-0.7240 -
-0,7240 -0.4946
-0.7240 ‘ -
~0,7240 ~0.4946
0.2737 -
0.2737 0.8239
0,2737 -
0.2737 0.8239
0.8611 -
0.8611 0.9606
0.8611 -

0.8611 0.9609



&3

Table D~3 Comparison of Mode Shapes ~ l4th Mode (Continued)

Node FEM CMS
number SY SY
9 1.7828 -
10 1.7828 -
11 1.7828 1.786
12 1.7828 1.786
17 0.5834 -
18 0.5834 -
19 0.5834 0.6569
20 0.5834. 0.6569
25 0.0227 -
26 10.0227 -
27 0.0227 -0.0289

28 0.0227 ~0.0289



Table D=3

Node

number

10_
11
12

17
18
19
20

25
26
27 -
28

84

Comparison of Mode Shapes = 15th Mode (Continued)

FEM

8
x

-0.2298
-0.2298
0.2298
0.2298

0.9469
0.9469
-0.9469
~0.9469

0.0201
0.0201
-0.0201
-0.0201

8
y

0.2805
-0.2805
'0.2805
-0.2805

-1,3211
1.3211
-1.3211
1.3211

-0.3048
0.3048
-0.3048
0.3048

-0.1674

0.1676

o

0.7169

«0.7173 .

0.0481

=-0.0485

8
y

0.2112
-0 Y 2110

£

-1.109
1.109

0.0951



85

Table 3-D Comparison of Mode Shapes - 1l6th Mode (Continued)

Node FEM cMS
number Sx GY SX Sy
9 0.9322 -1.4336 - -
10 0.9322 1.4336 0.8968 -
11 -0.9322 -1.4336 - ~1.493
12 - -0.9322 1.4336 ' =0,8963 1.493
17 0.3638 -0.6544 - -
.18 0.3638 0.6544 0.3497 -
19 -0.3638 ~0.6544 - -0.6671
20 -0.3638 0.6544 -0.3498 0.6671
© 25 0.0278 -0.0715 - -
26 0.0278 0.0715 -0.0153 -
27 -0.0278 -0,0715 - 0.0317

28 - -0.0278  0.0715 0.0153 -0.0317



86

Table D-3 Comparison of Mode Shapes - 17th Mode (Continued)

Node | FEM CMS

pumber ) 8
x .4
9 0.5500 -
10 0.5500 0.3948
11 0.5500 -
12 0.5500 0.3948
17 =1.5985 -
18 -1.5985 -1.395
19 ~1.5985 -
20 -1.5985  ~=1.395
25 -0,4420 -
26 -0.4420 -0.2146
27 -0.4420

28 -0,4420  =0.2146
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Table D=3 Comparison of_Mode Shapes - 18th Mode (Continued)

Node FEM CMS

number Gz Gz
9 0.6440 0.6440
10 ~ 0.6440 0.6440
11 : 0.6440 0.6440
12 0.6440 0.6440
17 1.2577 1.258
18 1.2577 1.258
19 1.2577 1.258
20 1.2577 1.258
25 1.6208 1.621
26 1.6208 1.621
27 1.6208 1.621

28 1.6208 1.621



88

Table D=3 Comparison of Mode Shapasgs - 19th Mode (Continued)

Node FEM cMs
number 8, l g,

9 0.6396 0.6390
10 0.6396 0.6402
11 -0.6396 ~0.6402
12 ~0.6396 -0.6391
;7 1.2549 1.234
18 1.2349 1.256
19 =1.2549 «1,.256
20 ~1.2549  ~1.254
25 1.6242 1.623
26 1.6242 1.623
27 =1.6242 ~1.625

28 =1.6242 -1.623



Table D-3

89

Comparison of Mode Shapes - 20th Mode (Continued)

Node
number

10
11
12

17
18
19
20

25
26
27
28

FEM
8

z

-0.6381
0.6381
-0.6381
0.6381

~1.2488
1.2488
-1.2488
1.2488

-1.6101

1.6101
-L.6101
1.6101

-0.6365
0.6355
-0.6356
0.6366

=-1.250
1.248
-1.248
1.250

-1.60%
1.607
~-1.607
1.610
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Table D=4 Modal Earthquake Excitation Factor

Mode Frequency Modal Earthquake Excitation
Number CPS Factor
1 Gy 1.0030 58.7828
2 1.1410 - 0.0177
3 1.2164 . 0.0057
4 SY 2.7706 =24 .8687
5 3.3930 - 0.0007
6 3.8550 0.0131
7 GY 4.9324 -15.3648
8 6.1957 0.0008
9 dy 7.0121 - 7.2533
10 _ 7.2480 0.0466
11 GY . 10.6872 11.0114
12 . 10.9842 0.0006
13 SY 12.9672 5.5799
14 14,1082 0.000Q0
15 14,4391 0.0223
16 16.5652 0.0001
17 17.3292 0.0000
18 17.7474 ‘ 0.0377
19 17.9250 ' 0.0402
20 18.0735 ‘ - 0.0018

Note: Modes are ranked in ascending order of natural
frequencias.



Table D=5~

t'o.

t=1.

t-z -

t=3.

Displacement Respoanses

-0.004
-Q.035
-0.025
-0.042
-3.038

0.041
-01075
~0.048

0.069

0,123

0.12!
T Q175
=0.230
0.039
G.357

0.261
Q.354
~0.595

~0.528.

«Q.126

C.93%6
-0.594
-0.051

0.514

~-0.296
-0.480
-0.220
-0.028
~0.179

Q.197
.10
0.064
Q.396
~0.160

~3.313

~0.037

Q.005
~0.009
Q0.242

=0.032
~Q.042
-0.038
-Q.032

=0,056

-0.014
«0.095
-0.048
0.074
0.105

0.155
Q117
Q.176
Q0.0%0
C.447

0.27¢
0.096
~0.531
0477
-Q.Q05

Q.574
1.000
-00480
0.053
0.169

-0.169-
-0.493
-Q.153

=Q.127.

=0.028
C.165
c.oM
0‘ 597

, Q.021

-0.340
-Q.197
Q.088
=0.072
0.353

-0.030
-0.037
-0.052
-0.024
~0.057

=0.037
=0.0%0
-0.020
0.0%8
0.079

00187
Q.117
0,142
0.146
C.424

0.246
“Q.432
-2.394

0.105

0.706
0.826

=0.546
0.156
-0.T7Q

0.069

=Q.473
4‘079
=0.245
-0.032

«J.109

0.2%8

C.2C0

-0.272

0.198

=0.223
-Q0.095
Q143
Q.023
Q.43

~0.026
-0.032
-0.057
-0.012
-0.019

-0.042
-0.050
0.007
0.135
0.069

0.214
c.Q18
-0.07%
0.208
0.3%8

0.264
-0.605
-0:513
=Q.318

Q.23C

0.799
0.680
-0.320
0.262
~0.453

~0.196
-0.360
-Q.013
-0.278

0.054

-0.012
G331
0.202

-0.583

-Q.312

-0.164
-0.099
C.178
0.062
0.508

~0.028
-0.025
~0.047
-0.019

0.009

-0.059
=J.058
C.C44
00144
0.Q99

Q.19
=Q0.151
“0.017

Q.29

0.274

Q.29
-0.582
-0.513
-0.229

0.341

0.888
=0.351
-Q.220

0.347
~3.506

~0.579

-J.29%
C.Q55
=0.210
0.123

0.003 |

Q.399
0.386
-Q.20%
-01435

-0.063
-0.032
o. 065
0.166
0.123

M



Table D~3

51
52
53
34
25

56
57
58
59
60

&1
&2
€3
64
&5

C1
&7

a8

&g

TG

71

72
73

75
76
78
79
&0

81

82

83

85

Displacement Responses (Continued)

i

1.G0
1.02
1.04

1.06
1.08

1.10
1.12
1.14
1.16
1.18

1.20
1.22
1.24
1.26
1.28

1.3Q
1.32

1.34

1.36
1.28

1.4Q
1.42
104’4
1.46
1048

1.50 .

1.52
1.54
1.56
1.58

1.60Q
1062
1.64
7966
1.88

ug(t)

o121
0.155

Q.187

Q.214
Q1N

0.175
Q. 117
0.117
G.C18

"00151 .

=G.2350

-0.176
=0.142
-Q.Q73
-Q.017

. 0.039
0.09C
0.146
0-208

. G.291

Q0.357
0944-7
0.424
0.326
C.274

0.261
0.271%
Q.248
Q.264
C.291

G.354
0.096
-Q.432
-Q.605
-3.584

(8,013
C.096
C.101
0.108
C.118
C.132

0.149
g.166
C.182
0,195

0.204

C.2C5
C.195
0.178
Q.159
C. 141

Q.125

g.111

Q.398
0.08¢
0.C76

Q8.C70
0.071
0.080
0.096
G4

0.128
C.137
Q.138
Q.134
G.125

Q.113
C.103
0.091
0.066
Q.Q2¢

(ay)lS
0.187
C.213
Q.240
0.268
Q.299

C.332
C.368

0.405

Q.441
0469

o

[ RV X))
0 = O B

a

a

COoCOoOo
a s
e e B

L]

QOO0
e © s 8
~ B RO
m!\)j\ﬂ
N, R

0.146

Q.122
111
C.112
Q.11¢
Q.128

Q.139
0.150
C.161
C.169
Q177

Q.92
C.214
Q0.234
C.239
Q.224

Q.233 -
0.289
C.346
Q.40Q4
Q.483

U319
Q.572
Q.617
0.655
C.682

0.695
C.8692
0.878
Q.43
Q.611

~G.022
-0.0086
Q.027
C.C78
Q.14Q

Q.217
<304
0.389
G.454
Q.490Q

92



Table D=5 Displacement Responses (Continued)

&6
87
88
a9

- e,

9y

91

93

94
35

o6
97
a8

Q

166G

101
102
103

. 1G4

105

106
107

108.

109
11C

R
112
113

114

115

116 .

117
118
119
120

1.70
1.72
1.74
1.76
1.78

1.80
1.62

— . a
L
o o o
w oy &~

—r i e b b
- - [ 3 [ ] L ]
3O B N O

L] »
&\O\D\U\O

L]

[N AP RN AN AV I V]
. L)
OO 00

[H¥
(@]

2.12
2.14
2.18
2.18

2.20
2.22
2.24
2.26
2.28

2.3
2.3

2.36
2.38

0 oFEKO

2.32

ﬁg(c)

=0.595
=C.551
-0.505
~0.513
-0.513

-G.528
~C. 477
-G.354
~g.318
=0.229

-0.128
-0.Q0%
Q.105
C.230
CeZ41

G.468
0.574
C.706
C.799
0.&38

(ay)ll

-0.020
=0.063
=-Q.097
-C.125
-C. 147

-U.1586
=0.137
-0.212
-0.239
-C.265

‘O » 292

~0.320

=0.342
-0.358

-8.375
-Q.375
-C.367
=Q.754
-0.328

-0.281
-0.205
-0.103
G.018
0.144

C.244
0.3C2
C.329
Q.7247
C.3M

Q.402
C.444
Q.4%98
0.558

0.614

(éy)l9

0.1392
0.139
C.C63
-C.C28
-J.121

‘0-21@
-C.ZU2
-00400

=G.5G2

"O OSOO

0. &S5
=0.75C
-C. 884
~0.368
-1.036

-1.C86
-1ttt
-1.1C1
«1.043
-0.933

"O . 780

=0.592

-G.273
‘00 'l 23
Q.147

0.406
¢.583¢
Q.842
1.008
1.128

1.207
1.269
1.335
1.410
1.487

(ay)27

C.492
0.459
C.392
C.297
G.102

~G-0G2
-0. 188
~0.424
-0. 568
~(.918

-1.372
-1 0552
-1.782

-1.828
-1.827
-1.778
-1.€T1
-1.511
-1.25%
-1.025
-C. 705
-3.342
9.C50

0.442
0.816
1.167
1.488
1778

2.035
2.256
2.433
2.558
2.622

93



Table D-5

121
122
123
124
125

126
127
128
129
130

131
132
133
134
135

136
137
138
139
140

141

142
143
144
145

146
147
148
149
150

151
152
133
154
155

Displacement Responses (Continued)

£.
i

2.40
2.42
2.44
2.46
2.48

2.50

2.56

S 2.78

s ¢ = @

»

o R
(YeRVa RN o Ve N v ] Mo m
SRELE BREEY

80000

SN NO

L]

(C RV AV AV AV
L)

[

cht>

00514
0-%69
=-C.T70
=0.453
-0. 506

=0.286
~0.169

0.069
C.196
"O! 579

"O - 480
"‘Oo 493
‘Oo 433
-0.36Q
«(}.293

-00 220
=0.153
"'O '079

-000‘1 3

0.055

-0.028
-0.127
«0.245
"O - 278
=0.210

=0.175
=0.098
-0.032
0.054
C.123

C.197
-0.028
-0.109
=-C.012

0.003

(ay)ll

C.871
0.730
Q.770
C.767
0.728

C.671
0.607
C.534
0.454
0.353

0.209
C.Q20
“‘Oo 189
-0, 385
=0.548

-0.6T1
-0.742
'00765

‘00765 '

=0.761

-0.761
Q. TT3
-0.812
=0.876
-0.946

-1.005
«1.045
-1.058
-1.038
-Q.995

-0.950
«0.905
-Q.852
~0.782
-C.684

(Sy)lg

- 1.566

1.65C
1.721
1.747
1.71%

1.618
1.454
1.227
0.955
C.661

C.365
0.079
=0.199
-3.478
"O ° 766

-1.056
=1.333
~-1.586
-1.806
-1.986

-2.115
«2.200
-2.259
=2.304
=2.336

-2.3%61
"'2 & 391
‘2 9427
-2.447
“2 L) 420

=2.3521
-1.876
-1.553
-1.192

94

(8,2,

2.624
2.573
2.474
2.326
2,151

1.961
1.763
1.558
1.343
1.102

0.820
0.490
Q.112
"Oe 308
-0.756

-1.214
-1.665
-2.095
~2.501
-2,88%

-3.237
"3- 559
-%.831
-4.0%3
-4.142

~4.144
=4,041
-3.845
"34 581
«3.271

-2.935
-2.587
“'20 239
-1.892
-1.540



Table D=5 Displacement Respconses {(Continued)

156 3,10 0.101 =0.535 <0.821 -1.173
157  3.12 0.165  «0.322 <0.460 «0.777
1588 3.14 0.258 =0.065 <0.111  <0.346
189 3,18 Q.33 0.200 0.237 0.121
160 3.18 0.3%9 0.452 Q.602 C.613
161 3.20 C.C64 0.6T1 0.a78 1.114
162 %.,22 9.071 0.828 1.343 1.6Q0
163 3.24 0.200 C.G14 1.682 2.063
164 3,26 0.202 0.954 1.993 2.507
165 3,28 0.386 0.976 2.266 2.942
166  3.30 0.3%6 - 0,993 2.484 3,351
167  3.32 Q.5397 1.020 2.644 3.820
168 3.34 -0.272 1.072 2.759 4.242
169  3.36 -0.383 1.129 2.829 4.398
170 3.328 -0.203 1.162 2.853 4.847
171 3.40 -0.160 1.164 2.841 4.567
172 3.42 0.021 1.147 2.812 4.549
173 3.44- c.198 1.116 2.783 4.3C8
174 3,46 -0.312 1.0684 2.75¢ 4.56Q
175 3.48 -0.435  Q.995  2.89C  4.224
176  3.50 -0.313  0.933  2.572  3.814
177 3.52 =0.340 0.887 2.377 2,348
178 3.54 0,223 0.843  2.0%4 2.8%8

179 3.56 -G.164 C.791 1.737 2.291
180 3.58 -G.063 0.721 1.334 1.721

181 3.60 -Q.037 0.5805 C.c14 1.136
182 3.62 -0.197 Q.418 C.494 C.54C

183 2.64 -C.095 0.170 .82 -0.068
184 3,86 -C.099 -0.1C6 -0.329 -0.681
185  3.68 -0.032 <-0.384 <0.757 -1.288
186 3.70 0.C05 -0.644 -1.206 -1.869
187  3.72 0.088 <0.85¢ =1.656 =2.407
188 3.74 0.143 1,015 =2.078 =2.887
189 3.7% 0.178 =1.126 =2.454 =3.309
190 3.78 0.065 . -1.207 -2.769 =3.686
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APPENDIX E
MODAL ANALYSES QOF A TWENTY-STORY PLANE FRAME
This appendix records the data and results of modal analyses made
of a twenty-story plane frame. The plane framé is shown in Figure E~1;
the section properties are given in Table E-1. The two sets of system
natural frequencies calculated by CUS and FEM programs, respectively,

are comparsd in Table E-2. The agreement'is good for lower modes.



o o 3 @ 247072

Figure BE-i

e}

:?loar Levels
~ftoof -
Y 2n i e EIom <
19
Comp.No.5
18
{ T ~to
16
Comp.¥o.4
15
14t Soundaryt.
13
Comp.No.1
12
a ! Boundary
-
&
] =
a 10
@
< 9
o Comp.¥a.3d
8 -+
7
64 Boundary—
5
4
3 |Comp.No.t
2 -+
1
—m an mn = 4

Beanm #1

Columa #1

Bean #2

Column #2

Bsas #3'

Column #3

Besz #¢

Column #4

ﬁo:m #5
Coluan #§

Beam #6

Column #6

Hean #7

Coluan #7

Bean #8

Coluan #8

Front View of A 2-D Frame

37



Table E-1 Section Properties

W X

1 8.83 3,21 290.

2 10.0 3.45 340.

3 10.6 4.13 447,

S 4 11.8 4.28 517.
§ 5 13.3 4,83 584, |
= 6 16.7 5.24 657.
7 14.7 5.72 802.

8 16.2 6.16 891.

1 9.12 1.77 37.

2 117 3.28 116.

) 3 25.0 4.75 235,
z:' 4 31.2 5.89 301.

ER 37.3  6.89 528.
g 6 41.8 . 7.68 660.
7 46,5 8.25 745.

8 51.7 9.27 838.

E = 29000. xsi



Table E~-2 Calculated Natural Frequencies, CES

Mode Number

v w N

8 o - O

10

11

13
14
15

16
17
18
19
20

Finite Element Method
(ETABS79)
0.202
0.489
0.801
1.135
1.490

1.760
2.148
2.407
2.711
3.155

3.685
4.166
4,614
5.267
5,927

6.651
7.297
8.483
9.889
11.295

CMS

0.206
0.501
0.822
1.161
1.528

1.807
2.209

2,484
2.796

3.252

3.803

" 30972 .

4.297
4,315
4.392

4.785
4.861
5.016
5.463
5.780
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APPENDIX F

COMPUTER PROGRAM "SUPERDYNE"

aagaoaaaaaoaaaoaaQagQa

SFEALL.FOR 83-02-24 J. 7. HUANG
DEPT. OF CIVIL ENGCR
UNIV. OF PITTSBURGH
MAIN.FOR 83-02-7 (0K, 83-01-01) JTH
# MAIN.FOR, *SMPROP.FOR, * SCMID.FCR, *CRDMAS.FOR
*COMSTF.FOR, * GUY4.FOR, * CMSZ.FOR, * ELM.FOR
#* BPCCC.FOR, * SYSK.FOR, * SYSM.FOR, ¥ SYSP.FCR
* TPAAA.FOR, *DISPL1.FOR, *FRESP2.FOR, * EPOST.FOR
' *=0K’
COMMON/FEIDS/NCRMO(4),NDC1(7,4),NDC2(7,4),8DC3(7,4),
1 ICBS(168,4),ICNS(36,4),HSYS(4)
COMMON/FEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),
1 NDCP(4),IFB(4),IFT(4),NCXS(T)
COMMON/FEIDX/NDOF, NDD,NDT, NFL, NPT, NDICPF, NCDMX, NCXO(7) ,RCOXP
c
COMMON/ECYV1/TA2(600)
COMMON/SPROP/SP(20,5)
COMMON/MPROP/MP(4,3)
COMMON/COORD/X(182),Y(182),2(182)
COMMON/CESTM/SK(144)
COMMON/IDO/IDO(EQC)
COMMON/GARB/C(600)
o
DIMENSION AA(S7000)
c
C CORE =38K+AA
c-—-----
C DEVICES FOR MY JOB
C CIR 1
CLPT 6 RUN RESULTS IF IP=6
¢ DSK 2,3, 8-63 DATA FILES
C DSk 4 RUN RESULTS IF IP=4
c —e————
OPEN (UNIT=4,FRILE='RUN.DAT',ACCESS="'SEQOUT*)
c

" READ ( 5,2000) ICHK,IPX,IPM,IP,ITRAN
READ { 5,2000) NDOF,NCOMP,NCNODX
READ { %,2000) NMOD,NO,NO2

READ ( 5,2010) sKk(1),sK(2),sK(3)



10

20
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WRITE (IP,2000) ICHK,IPX,IPM,IP,ITRAN
WRITE (IP,2000) NDOF,NCOMP,NCNODX
WRITE (IP,2000) NMOD,NO,NO2

WRITE (IP,2010) SK(1),3K(2),sK(3)

IF (IP.NE.4) IP=6 :

KX=1

KCPO=HCOMP

NCDMX=NDOF*NCNODX

IDO(1)=0

DO 10 J=2,600

IDO{J)=IDO(J=1)+J=1

IF (ICHK.EQ.1) WRITE (I®,2000) (J,1D0(J),J=1,5)

CALL SMPROP (IP)

N4=NCDMX

N1=NCOMP*NCDMX +1

CALL SCMIDX (IP, IPX,N4,NCPO,AA(1),aA(W1))
N3=NCXS(4) -

N2=N1+NCOMP*NCDMX

CALL CRDMAS (IP, IPM,N4,NCPO,N3,A4(1),4A(N1),24(N2))

NS=IDO(N4)+N4

WRITE (IP,2050) N4,N5

CALL GSTIFé (IP,ICHK,NS,AA)
WRITE (IP,2020) NS

¥1=NSYS(4)
N2=IDO(N1)+N1
N4=NSYS(2)

WRITE (IP,2020) N2

"WRITE (IP,2040) N4,N1,N2

IF (ICHK.EQ.1) GO TO 20

CALL SYSP  (AA,N1,NCPO,IP)

CALL SYSK  (4A,N2,NCPO,IP)

IS0L=3 ‘

ICOMP=0

ISCON=0

CALL STCOND (A4,N5,N4,N1,N2,ISCON,ISOL,ICOMP,IP)
CALL 3YSM  (AA,N2,NCPC,IP)

CALL GUYRED (AA,N4,X1,N2,IP)

N5=IDO(N4)+N4
¥2=1+N5
N3=N2+N5
N44=Na*N4
N6=NZ+N44
NT=N6+N4
HCPQ=R7-N3
N30=¥3 -1



~ WRITE

3G

40

50

2000
2010
2020

2040 FORMAT (80X, '### sYS

WRITE
WRITE
WRITE
WRITE

CALL GEVPS2 (aA(N2),Aa(1),AA(N3),AA(N6),N4,N5,NMOD, ICOMP, IP)

(IP,2020) N7

(6,2030) N5 ,N2,N3
(6,2030) N5 ,KX,N2
(6,2030) N44,N3,36
(6,203%0) N4 ,N6,N7
IF (ICHK.EQ.1) GO TO 30

N2=1+1l44
N3=N2+N4
H40=N3+04
N5=N40+NO
Ne=N5+NC
NT7=U6+H0
N8=NT7+N0Q2
NE8=NO2*NMOD
N9=N8+N88
10=N9+NMOD+12

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

(IP,2020) XN10O
(6,2030) N44
(6,2030) N4
(6,2030) N4
(6,203%0) X0
(6,20%0) XNO
(6,2030) ¥O

(6,2030) NG2

(6,2030Q) N88

JRX 12
,N2 N3
N3, N4O
,840,%5
,N5 ,N6
N6 N7
,m ,NS
,N8 ,No
(6,203G) NMOD,

Ng ,N10

I? (ICHK.EQ.! .OR. ITRAN.EQ.O) GO TO S0
DO 40 I=1,NCPO
AA(T)=A4(N30+I)
CALL DISPL1 (AA( 1),AA(N2), AA(N3) AA(IM.O) AA(NS),AA(NS),
AA(NT),AA(N8) AA(N9), N4,N0,I12,N02,
DT,NMOD,FMAX,EMIN,IP,ICHK)

2

CONTINUE

STOP

FORMAT ( 6I5)
FORMAT (6F10.5)
FORMAT (/,80X,'*%** YEED AA(',I6,') OR LARGER ¥#*' /)
2030 FORMAT (83X,6I7) '

", 317)

2050 FORMAT (80X, '### COMP ',3I7)

END

SUBRQUTINE PMATE(A,M1,N1,M2,NH2)
DIMENSION A(M2,N2)

WRITE

(6,2020)

KO=(N2-N1)/12+1

102
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D0 20 K=1,X0
Tts(K-1)%12+i1
I2=I1+11
IF (I2.GT.N2) I2=N2
WRITE (6,2000) (J,J=I1,I2)
DO 10 I=M1,H2
10 WRIT2 (6,2010) I,(A(I,J),J=11,I2)
20 CONTINUE
WRITE {(6,2020)
RETURN -
2C00 FORMAT (//8%,12I10//)
2010 FORMAT (5X,I3,12E10.4)
2020 FORMAT (/)

END
c
C SMPROP.FOR 83-01-03 ( 0K,82-12-07,82«10-21) 82-09-14  JTH
c
SUBROUTINE SMPROP (IP)
COMMON/SFROP/SP(20,5)
COMMON/MPROP/P(4,3)
c ‘
C oK I=SECTION TYFE NO.
c oK J=(1,2,3,4,5) 8pP(1,J)=(4A,IY,IZ2,XJ,TH)
¢ 0K J=(1,2) SP(1,J)=(A,IZZ)
o
WRITE (IP,2010)
READ ( 5,2000) WA
WRITE (IP,2000) NA
CALL ZERO (sSB(1,1),5P(N4,5))
DO 10 I=1,NA
READ ( 5,2000) ISP, (SP(ISP,J),J=1,5)
10  WRITE (IP,2000) ISP, (Sp(IsP,J),Jd=1,5)
C
C 0K I=MAT TYPE NO.
¢ oK J=(1!293)7 P(Ii'j)a(EiEG’PR)
C
WRITE (IP,202Q)
READ ( 5,2000) NA
WRITE (IP,2000) NA
CALL 2ERO (P(1,1),P(NA,3))
DO 20 I=1,NA
READ ( s5,2C00) 1M, (P(IM,J),J=1,3)
20 WRITE (IP,2000) IM, (P(IM,J),J=1,3)
c

RETURN

2000 FORMAT (I5,5F15.7)

2010 FORMAT (/,/,5X,"SEC-PROP ...',/)

2020 FORMAT (/,SX,'MAT-PROP ...',/)
END :
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C SCMID.FOR 83-01-27 (0K,11-30,82-09-22) JTH 82-09-10

c

QQa

QO Q

10

20

30

40

5C

SUBROUTINE SCMIDX (IP,ICHK,NCIMXO,NCOMPO,ICD2,IXDSE)
COMMON/FEIDS/NCRMO(4),NDC1(7,4),8DC2(7,4),NDC3(7,4),.
ICBS(168,4),ICNS(36,4),NSYS(4)
COMMON/FEIDC/NDL(14,4),1C(336,4),NCB(4,3,2),
NDCP(4),IFB(4),IFT{4),NCXS(T7)
COMMON/FEIDX/NDOF,NDD,NDT,NFL, NPT, NDICPF, NCTMX, NCXO(7), NCOMP
COMMON/GARB/IDOF(5s),ICT(8),ICP2(8),AA0(550),NDXX(9),NFXX(3)
DIMENSION ICDZ2{NCDMXQ,HNCOMPO), IXDSB(NCIDMXO,NCOMPO)

FLOCR & SYS DATA

WRITE (IP,2000)
READ ( 5,2040) NFL,NDICPF
WRITE (IP,2040) NFL,NDICPF

D0 10 I=%,NFL _
READ { 5,2040) IFL,KDL(IFL,1),NDL(IFL,2),NDL(IFL,3
WRITE (IP,2040) IFL,NDL(IFL,1),¥DL(IFL,2),KDL(IFL,3
DO 20 I=1,NFL
NDL(I,4)=NDL(I,2)=-NDL(I,1)+1
¥DL{I,2)=¥DL(I,4)
JAO=NDL(1,2)

)
)

NDL{1,2)=t

DO 30 I=1,NFL-1
¥BO=NDL(ZI+1,2)
NDL{I+1,2)=NDL(I,2)+NAO
NAQ=HRO '
HDD=3

NDT=3

IF (NDCF.EG.6) GO TO 40
NDD=2

NDT=1

DO 50 I=1,NCOMP

DO 50 J=1,3

D0 50 ¥=1,2
NCB(I,J,K)=0

NCIMX=Q

READ & GEN COMP INDICIES
COMP NO. ={1,NCOMP)=(LOWEST,HIGHEST) -

NCNDF=0

NCBDF=0

DO 360 I100=1,NCOMP
READ (5,2040) ICOMP,IFLE,IFLT,NCRMO(ICOMP)
WRITE (IP,2200) ICOMP



Qana

60

70

a0
20

100

110
120

130
140

105

WRITE (IF,2040) ICCMP,IFLB,IFLT,NCRMC(ICONP)
IF ( NCRMO({ICCMP).GT.NCNDF) NCNDF=NCRMO(ICOMP)

IFB(ICOMP)=IFLB

IFT( ICOMP )=IFLT

NPT=0 ~

DO 60 I=IFLB,IFLT
NPT=NPT+NDL(I,4)
MDOF=NDOF*NPT
NDCP(ICOMP)=NDL{IFLB,2)-1
DO 90 I=1,NFT
NO=(I-1)*NDOF

DO 70 J=1,NDD
IC(NO+J, ICOMP ) ==5

DO 80 J=1,NDT
IC(NO+NDD+J, ICOMP )=-6
CONTINUE

READ RETAINED DOF; IDOF(I)=4

WRITE (IP,2110)
READ ( 5,2050) DO, IFL, 1IGi,ICt,
WRITE (IP,20%0) NDG, IFL, 1IG1,IC1,
IF (NDOC.EQ.0) GO TO 130
ICO=NDL(IFL,2)-NDL(IFL, 1 )~NDCP(ICOMP)
DO 120 I=1,IGH
Na=(I-1)*IC1
NDA=NDO+NA
NDLC=NDA+ICO
NO=(NDLC=1)#*NDOF
DO 110 K=1,NDD
IF (IDOF(K).NE.4) GO TO 110
IC(NQ+K, ICOMP )=-IDCF(K)
CONTINUE
CONTINUE
GO TO 100

READ FIXED DOF; IDOF(I)=9

WRITE (IP,2120)

(IDOF(I),I=1,NDD)
(IDOF(I),I=1,NDD)

READ ( 5,2060) ¥DO, IFL, IG1,ICY, (IDOF(I),I=1,NDOF)
WRITE (IP,2060) NDC, IFL, IG1,ICt1, (IDOF(I),I=t,NDOF)

IF (NDO.EQ.Q) GO T0 170
ICO=NDL(IFL,2)-NDL(IFL,1)-NDCP{ICOMP)
DO 160 I=1,IG1
Na=(I-1)*IC1
NDA=NDO+NA
NDLC=NDA+ICO
NO={NDLC-1 ) *NDOF
DO 150 K=1,¥DOF
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~ IF (IDOF(K).NE.9) GO TO 150

150
160

170
180

190

200
210

220
230

IC(NO+K, ICOMP )=-IDOF(K)
CONTINUE
CONTINUE

GO TO 140

READ BOUND PTS
IBOT=(1,2)=(B0T,TOP)

WRITE (IP,2130)
READ ( 5,2070) ¥DO, IFL,IG1,ICt1, IBOT,IROQF
WRITE (IP,207C) NDO, IFL,IG1,ICt, IBOT,IRQOF
IP (NDO.EQ.Q) GO TO 220
103=-3
102==2
IF (IROOF.EQ.1) 103=-4
IF (IROOF.EQ.1) I02=-5
ICQ=NDL(IFL,2)-NDL(IFL,1)-NDCP(ICONMP)
DO 210 I=1,IG1
NA={T-1)*IC1
NDA=NDO+NA
NDLC=NDA+ICO
NO=(NDLC =1 ) *NDOF
D0 190 K=1,NDT
IF (IROOF.EQ.1) GO TQ 190
NGB{ICOMP, 3, IBOT)=NCB( ICOMP, 3, IBOT)+1
IC(NO+NDD+K, ICOMP)=I03
D0 200 X=1,NDD
IF (IROCF.EQ.1) GO TO 200
NCB(ICOMP, 2, IBOT)=NCB( ICOMP,2, IBOT)+1
IC(NO+K, ICOMP) =102 :
CONTINUE
GO0 TQ 180

READ RETAINED BOUNDARY DOF; IDOF(I)=1

WRITE (IP,2140)
READ { 5,2050) NDQ, IFL, IG1,ICt, (IDOF(I),I=1,NDD), IBOT,IROOF
WRITE (IP,205Q) NDO, IFL, IGt ICt, (IDOF(1),I=1,NDD), IROT,IROOF
IF (NDO.EQ.9993) GO TO 260

I1C0=NDL(IFL,2)-NDL{IFL,1)-NDCP(ICOMP)

DO 250 I=1,IGY

NA=(I-1)*IC1

NDA=NDO+NA

NDLC=NDA+ICO

NO=(NDLC-1 ) *NDOF

DO 240 K=1,NDD

ICCC=IDOF(K)

IF(ICCC.NE.1) GO TO 240
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- NCB{ICOMP,ICCC,IBOT)=NCB(ICOMP,ICCC,IBOT)+1

240
250

260

27G

280

290

IC(NO+K, ICOMP)=-ICCC

IF (IRCOF.EQ.1) GO TO 240
NCB(ICOMP,2,IBOT)=NCB(ICOMP,2,IBOT)~1
CONTINUE

CONTINUE

GO TO 23Q

ASSIGN DOF SEQ

ICT(1 )==1

ICT(2)=-2

ICT(3)=-3

ICT(4)==4

ICT(5)=-5 °

ICT(6)=6

ICT(7)==9

NNN=0

DO 270 J=1,3

DO 270 K=1,2
NNN=NNN+NCB(ICOMP,J,K)
IF (NNN.GT.NCBDF) NCBDFP=HNNN

NO. OF DOF FCR EACH DOF TYPE

KOQ=0

DO 280 J=1,7

JOO=ICT(J)

¥DC1(J,ICOoMP)=0

DO 280 I={,MDOF
101=IC(L,ICOMP)

IF (I01.¥E.JC0) GO TO 280
NDC1(J,ICOMP)=NDC1{J, ICOMP)+1
KCO=K00+1
ICD2(I,IC0MP)=-IC(I,ICOME)
IC(I,ICOMP)}=KO0

CONTINUE

IF (ICHK.NE.1) GO TO 330
WRITE (IP,2100)

DO 320 I=IFLE,IFLT
NEA=NDL(IL, V)
NEB=NDL(I,4)+NEA~1
ICO=NDL(I,2)-NDL(I,!)-NDCP(ICOME)
D0 320 J=NEA,NEB

NDLC=J+ICO

NO=(NDLC~1)*NDOF

DO 290 K=1,NDOF

ICP2(K)=NO+K

IF (I.NE.IFLB .AND. I.NE.IFLT) GO T0 310

107



JXY=J*10

DO 300 K=1,NDOF

3C0
310

1
320

oW ¢ W]

330

340

35C
360

0 aQ

370
38C

oo WP

39C

400

KCX=ICP2(K)
KCY=IC(KCX, ICCMP)
IXDSB(KCY, ICOMP)=JXY+K
KA=ICP2(1)
KB=ICP2(NDOF)

WRITE (IP,2090) I,J,(ICP2(K),K=1,NDCF),(ICD2(K,ICOMP),

K=KA,KB), (IC(X, ICOMP),K=KA, KB}
CONTINUE :

STATISTICS FOR EACH DOF TYPE
NDC2(1,ICOMP)=1

¥DC3(1,ICOMP)=NDC1(1,ICOMP)
DO 340 I=2,7

NDC3(I,ICOMP)=NDC3(I-1,ICOMP)+NDC1(I,ICCMP)
¥DC2( I, ICOMP)=NDC3(I, ICOMP)-¥DC1 (I, ICOMP)+1

IF (¥DC2(I,ICOMP).GT.NDC3(I,ICOMP)) NDC2(I, ICOMP)=NDC3(I,ICOMP)}

CONTINUE
NNN=NDC3(7, ICOMP)
IF (NNN.GT.NCIMX) NCDMX=NNN
IF (NNN.EQ.MDOF ). GO TO 350
WRITE (IP,2030) NNN,MDOF
STOP .
CONTINUE ‘
CONTINUE

STATISTICS FOR CCMP INDICES-

WRITE (IP,2210)

WRITE (IP,2220) NCDMX,NCBDF,NCNDF
DO 380 I=1,7

Nexo(I)=0

¥cxs(I)=0

DO 370 J=1,NCOMP

IF (NCXO(I).LT.NDC1(I,J)) NCXO(I)=NDC1(I,
IF (NCXS(1).LT.NDC3(I,J)) NCXS(I)=NDC3(I,
CONTINUE ‘
CONTINUE

SYS INDICES

KOC=0

DO 410 IOO=1,NCOMP
DO 39Q K=1,NCBIF
ICES(K,IQ0)=C

DO 400 K=1,NCNDF
ICNS(K,I00)=0

J)
J)
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. NCCC=NCRMO(ICO)
 ICP2(100)=0
DO 41Q J=1,NCCC
KOQ=K0Q+1 _
410 ICNS(J,I00)=K00
X000=K00

DO 43Q J=1,3
¥SYS{J)=K0O
DO 430 I00=%,NCOMP
NNN=NCB(I00,J,2)
ICP2(I00)=ICP2(IC0)+NCB(I00,J,1)
IF (NNN.EQ.Q) GO TO 430
DO 420 X=1,HNN
ICP2(I00)=ICP2(I00)+1
NCCC=ICP2(ICO)
K0O=X00+1
ICBS(NCCC,I00)=K0C
420 CONTINUE
430 CONTINUE
NSYS(4)=X00
DO 44C I=1,NCOMP
440 ICP2(I)=0
KQo=X000
DO 470 J=1,3
DO 470 ICO=1,NCOMP
NNN=NCB(IC0,J,1)
IF (NNN.EQ.Q) GO T0 460
DO 450 X=1,NHN
KOO=K00+1
ICP2(I00)=ICP2(I00)+1
Ncce=Icp2(100)
ICBS(NCCC, I00)=K0Q
450 CONTINUE
IF (I00.NE.NCOMP) GO TO 460
KOO=KO0+NCB(100,J,2)
460 ICP2(I00)=ICP2(I00)+NCB(I00,J,2)
470 CONDINUE

TF(ICHK.¥E.1) GO TO 530

IF (NCNDF.EQ.Q) GO TO 490

WRITE (IP,2160)

DO 48C I=1,NCNIF .
480 WRITE (IP,2180) I,(I00,ICNS(I,IC0),I00=1,NCCMP)
49C CONTINUE

IF (NCBDF.EQ.0) GO TO 530

WRITE (IP,2170)

DO 52C I=1,NCEBIF

DO 510 ICOMP=1,HCOMP



c

| NBBB=NDC3(3, ICOMP)

500

51C
520
530

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

2110
2120
2130
2140
2150
2160
2170

2180
2190
2200
2210
2220

IF (I.GT.NBBB) GO TO 500

KKX=IXDSE(I,ICOMP)

NDXX( ICOMP)=KKK/10

NFXX(ICOMP)=KKK-KKK/10%*10

GO TO 510

NDXX(ICOMP)=0

NFXX(ICOMP)=C

CONTINUE

WRITE (IP,2190) I,(I10,ICBS(I,I0),NDXX(I0),NFXX(I0),I0=1,NCOMP)

WRITE (IP,2010)

RETURN -

FORMAT (1H1t,5X, 'ETR SCMID',//)

FORMAT ( 5X, 'END ScMID',//)}

FCRMAT (//)

FORMAT (50X,'DOF COUNT MAY BE WRONG',2I3,/)

FORMAT (10I5) :

FORMAT (415,4X,311,3X,215)

FORMAT (41I5,4X,6I1,2I5)

FORMAT (4I5,4X,6X%,21I5)

FORMAT (//,20X, 'ICOMP=',5I5)

FORMAT (2X,I3,1X,I4,1X,1X,6('(",314,")"))

FORMAT (//,' I-FL, EXT-NODE NO., DOF-SEQ

{ BY NODE, DOF-TYPE BY NODE, DOF-SEQ FOR COMP ',/)

PORMAT (//,2X,'RETAINED INTERIOR DOF ...',/)

FORMAT (//,2X,'FIXED DOF ...',/)

FORMAT (//,2X, 'BOUNDARY DOF ...',/)

FORMAT (//,2X, 'RETAINED BOUNDARY DOF ...',/)

FORMAT (//,2X,'COMP. DOF SEQ ...',/)

FORMAT (//,2X,'COMP NORMAL MODE DOF VS. SYS DOF',/)

FORMAT (/,2X, 'M=(ICOMP,J) ... THE M-TH VAR OF ICOMP-TH COMP

1 IS ASSEMBLED T0 THE J-TH VAR OF THE SYSTEM*,/)

FORMAT (2X%,I4,2%,12('(',12,',',I4,")',1X))

FORMAT (2X,I4,2%,6( '(',12,',',14,';',14,'="',11,")' 1% ))

FORMAT (//,80X,'COMP. NO.',I3,' ...',/)

FORMAT (//,80X,'SYS DATA ...',/)

F?RMAT (5%, "MAX NO. OF DOF IN ANY COMP. eee %,

1 /,5%,

2 ' ALL-DOF=',I4,' B-DOF= ',I4,' XN-DCOF= ',I4,/)
END :

¢ DFLOCt.FOR  0K,82-05-26 JTH

c

SUBROUTINE DFLOC1 (NDA,IDIR,IDF2,ICOMP)
COMMON/FEIDC/NDL(14,4),IC(3%6,4),NCB(4,3,2),

1 NDCP(4),IFB(4),IFPP(4),NCXS(T)
CCMMON/FEIDX/NDOF,NDD, NDT, NFL, NPT, ¥DICPF, NCIMX, NCX0(7) , NCOMP

IFL=NDA/NDICPF+1

NDS=NDA-NDL(IFL,!)+NDL(IFL,2)-NDCP(ICOMP)



C

¢

QO Q0

- IDFLC={NDS=-1 ) *NDOF+IDIR

1

IDF2=IC(IDFLC, ICOMP)

RETURN

END

SUBROUTINE NDLOCt (NDA,NDS, ICOMP)

COMMON/FPEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),
NDCP(4),I7B(4),IFPT(4),NCXS(7)

COMMON/FEIDX/NDOF,NDD,NDT,NFL, NPT, NDICPF, NCD¥X, NCX0(7) , NCOMP

IFL=NDA/NDICFF+1
NDS=NDA-NDL({IFL,?)+NDL{IFL,2)=-NDCP{ICOMP)

RETURN

END

SUBROUTINE NDLOS (NDA,NDS)

COMMON/FEIDC/NDL(14,4),1C(3%6,4),NCB(4,3,2),
NDCP(4),IFB(4),IFT(4),8CXs5(7)

COMMON/FEIDX/NDOF,NDD,NIT, NFL, NPT, NDICPF, NCDMX, NCX0(7), NCOMP

IFL=NDA/NDICPF+1
NDS=NDA-NDL(IFL,1}+NDL(IFL,2)

RETURN

END .

SUBROUTINE DFLOC2 (NDS,IDIR,IDF2,ICOMP)

COMMON/FEIDC/NDL(14,4),IC(336,4),NCB(4,3,2),
NDCP(4),IFB(4),IFT(4),NCXS(T)

COMMON/FEIDX/NDCF, NDD, NDT, NFL, NPT, NDICPF, NCDMX, NCXO(7) , NCOMP

IDFLC=(NDS-1 Y *NDOF+IDIR
IDFZ=IC(IDFLC, ICOMP)

RETURN
END

C CRDMAS.FOR  83-02-6 ( 0K, 82-}1-30,10—21) JTH 82-09-14

SUBROUTINE CRDMAS (IP,ICHK,NCDMXO,NCOMPQ,NC4X,ICD2,XMS,PEO)
DOUBLE PRECISION DMI,DMB,PE1
COMMON/CQOORD/X(182),¥(182),2(182)
COMMON/CESTM/A0(144)
COMMON/FEIDS/NCRMO(4),¥0C1(7,4),8DC2(7,4),NDC3(7,4),
ICBS(168,4),ICNS(36,4),NS¥S(4)
COMMON/FEIDC/NDL(14,4),IC(3%6,4),HCB(4,3,2),
NDCP(4),IFB(4),IFT(4},NCXS(7)
CCMMON/FEIDX/NDOF,NDD,XDT,NFL, NPT, NDICPF, NCIMX, NCXO(7), NCOMP
COMMON/GARE/X0(16),Y0(16),20(28),5¥X(3,4),xM3(3),ICP2(3),
ICP1(4),XM(200),XM4(4),P13(3),AA40(311)
DIMENSION ICD2(NCIMXOQ,NCOMPO),XMS(NCDMXO,NCOMPO),
PEO(NC4X,NCOMPO)

READ & GEN COORD

WRITE (IP,2180)

READ ( 5,2070) NX,NY,NZ



C

10

20

30
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50

60

WRITE (IP,2070) NX,NY,NZ
DO 10 Is=1,NX
READ ( 5,2080) J,Xc(J)
WRITE (IP,2080) J,X0(J)
DO 20 I=1,NY
READ ( 5,2080) J,Y0(J)
WRITE (IP,2080) J,Y0(J)
DO 30 I=1,NZ
READ ( 5,2080) J,20(J)
WRITE (IP,2080) J,Z0(J)
WRITE (IP,2120)
rEaDp ( 5,2070) §¥DO, IGZ, 1IDZ, IXO,IY0,IZO
WRITE (IP,2070) ¥pO, 1I6Z, 1IDZ, 1IX0,IY0,IZO
IF (NDO .EQ. 9994) GO T0 60
I10=1Z0-1
DO 50 K=1,IGZ
ND=NDO+{X-1)*IDZ
CALL NDLOS (X¥D,NDS)
I0=IQ+1
X{ND3)=X0{1X0)
Y(NDS)=Y0(IY0)
Z{NDs)=20(I0)
IF (ICHK.NE.1) GO T0 50
WRITE (IP,2090) ¥D,IX0,IY0,IO, x(wns) Y(¥DS), z(uns)
CONTINUE
GO TO 40

READ & GEN MASS
WRITE (IP 2170)

IWt=C:
Iw2=0

- TW3=0

70
80

S0

100

DO 70 J=1,NCOMP
sMx(1,J)=0.
sMx(z,J)=0.
SMX(3,J)=0.
NMX=NCXS(4)
CALL ZERO (PEC(1,J),PEO(NMX,J))
CALL ZERO (xMs{1,J), xms(m )
CONTINUE
READ ( 5,2070) NXM
WRITE (IP,2070) NXM
DO 90 I={,NXM ,
READ ( 5,2080) J,xM(J)
WRITE (IP,2080) J,XM{(J)
WRITE (IP,2120)
READ FOR ALL DOF, ALL COMP TILL TERMINATION
READ ( 5,2070) ICOMP,NDO,IDIR,IM, 1IG, ID



€00

110

120

130
140

WRITE (IP,2070) ICOMP,NDO,IDIR,IM, 1IG, ID
IF (ICCMP.EQR.GS995) GO TO 120
TH=X¥(IM)
DO 110 K=1,1IG
ND=NDO+(K-1)*ID
CALL DFLOCY (ND,IDIR,IDF,ICOMP)
NMX=NDC3(4,ICOMP)
XMS(IDF, ICOMP)=XMS{IDF, ICOMP)+TH
SMX(IDIR, ICOMP)=SMX(IDIR, ICOMB)+TH
IF¥ (IDF.LE.NMX) GO TO 110
IWT=TW1+1
WRITE (6,2060) ICCMP,NDO,IDIR,IM,K,ND,IDF,HNMX
CONTINUE
GO T0 100

MASS AND SEISMIC LOAD VECTORS

DO 140 J=1,NCOMP
NB=NDC3(7,J)

DO 140 I=1,NB

KOo=ICD2(I,J)

IF (X0.GT.4) GO TO 140
JO=I-I/NDOF*NDOF

IF (JO.GT.NDD .OR. JO.EQ.Q) GO TO 140
I0=IC(I,J) '

7 (10.1E.NDC3(4,2)) GO TO 130

WRITE (IP,2050) J,I,KO,JO,IO0
PEO(I0,J)=XMs(10,J)*a0(J0)

CONTINUE :

CHECK MASS

IF (ICHK.NE.1) GO T0 190

WRITE (IF,2110)

DO 160 J=1,NCOMP
WRITE(IP,2130) J, (I0,SMX(10,J),I0=1,NDD)
K=3

NA=NDC2(K,J)

NB=NDC3(X,J)

IF (NA.EQ.Q) GO T0 160

DO 150 KO=NA,NB

IF (XM4sS(X0,J).EQ.0.) GO TO 150
TW3=IW3+1

. WRITE (6,2060) J,KO,NA,NB

150
160

CONTINUE
CONTINUE
WRITE (IP,2070) IW1,IW3

MAS . TABLE

1173
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Le]

170
180

114

WRITE {1IP,2140)

D0 180 J=1,NCOMP

DO 180 K=1,4

IF. (X.EQ.3) GO TO 180

WRITE (IP,2120)

NA=NDC2(K,J)

NB=NDC3(K,J)

IF (wpc1(2,J).8Q.0.) GO TO 180
DO 170 I=NA,NB

WRITE (IP,21%0) J,x,I, xms(r,J),PROo(I,Jd)
CCNTINUE

IF {IW1.LT.1 JAND. IW3.LT.1) GO TO 190
STOP '

WRITE ON DISK

ISOL=2
DO 200 ICQMP=1,NCOMP
ENCODE (10,2000,DMI) ISOL,ICCMP

- ENCODE (10,201Q,DMB) ISOL,ICOMP

200

ENCODE (10,2020,PE1) ISOL,ICOMP

QPEN (UNIT=2,FILE=DMI,ACCESS='SEQQUT')
NA=NDC2(4,ICOMP)
NB=NDC3(4,ICOMP)
WRITE (2,2160) (XMS(K,ICOMP),K=NA,NB)
CLOSE (UNIT=2,FILE=DMI)

OPEN (UNIT=2,FILE=PE1,ACCESS='SEGOUT')
WRITE (2,2160) (PEO(K,ICOMP),K=1,NB)
CLOSE (UNIT=2,FILE=PE?)

OPEN (UNIT=2,FILE=DMB,ACCESS='SEQOUT')
NA=NDC2{1, ICOMP) |
NB=NDC3(2,ICOMP)
WRITE (2,2160) (xMS(K,ICOMP),K=NA,NB)
CLOSE (UNIT=2,FILE=DMB)
CONTINUE

-~ WRITE (IP,2190)

2000
2010
2020
2030
2040
2050
2060

RETURN
FORMAT (°'DMI',It,It,'.DAT',1X)
FORMAT (°'DMB’,I1,I1,'.DAT’,1X)
FORMAT ('PE1’,I1,It,'.DAT',1X)
FORMAT (5%,515,F15.7)
FORMAT (30X,4I5)
FORMAT (70X,4I5)
FORMAT (50X, 'BAD ... ',8I5)



2070
208C
2090
21Q0
2110
2120
2130
2140
2150
2160
2170
2180
2190

115

FORMAT (8I5)
FORMAT (I5,F15.7)
FORMAT (5X,4I5,3F15.4)
FORMAT (2X,5I5,2F11.7)
FORMAT (/,5X, 'TOTAL MASS FOR EACH D-DIR OF EACH COMP',/)
FORMAT (/)
FORMAT (20X,13,5%,3(13,F12.7))
FORMAT (//,5X,'MASS & FORCE TARLE',/)
PORMAT (2X,3I5,2X,F10.6,2X,F12.3)
FORMAT (5X,5E15.8)
FORMAT (//,5X,' MASS ...',//)
FORMAT (//,5X, 'ETR CRDMAS',/,5%, COORD. «..',/)
FORMAT (//,5X, 'END CRDMAS',/)
END

C COMSTF.FCR 83-02-06 ( 0K,82~12~23)'JTH 82-05-12

C

10

20

1

SUBROUTINE GSTIF6 (IP,ICHK,NSDMX,S)

COMMON/IDC/IDQ(6C0)

COMMON/CESTM/SKEG( 144 )

COMMON/COCRD/X(182),Y(182),2(182)

COMMON/FEIDS/NCRMO(4),NDC1(7,4),80¢2(7,4),8DC3(7,4),
ICBS(168,4),ICNS(36,4),N5Y5(4)

_ COMMON/FEIDX/NDOF,NDDO,ND?, NFL, NPT, NDICPF, NCDMX, NCXQ(7) , NCOMP

DIMENSION NDD(2),N¥DC{(2),IE(12)
DIMENSION S(NSIMX)

WRITE (IP,2060)
NE=NDOF*2
IFLMS=0
NBX=0
DO 10 I=1,NCOMP
IF (NBX.LT.NDC3(3,I)) NBX=NDC3(3,I)
CONTINUE
NIX=NCX0(4)
NX=NBX+NIX
NCOMPC=NCOMP
READ ( 5,2000) ICOMP,IPSE,IPSK?,ISCON,¥4Q0
IF (ICOMP.EQ.8888) GO TO 130
I¥ (ICHK.EQ.C) ISCON=Q
WRITE (1P,2020) ICOMP,IPSE,IPSK!,ISCON,N400
IELMC=0
NSIMXO=XDC3 (7, ICOME)
NSDMXS=NSDMXO+IDO(NSDMXO)
IF (IPSE.EQ.O .AND. IPSK1.EQ.Q .AND. ISCON.EQ.OQ .AND.
ICHK.EQ.1) GO TO 30
CALL ZERO (S(1),S(NSDMXS))

READ ZILMS & CAL STF POR EACH CCMP



30

40

50
60

T0

80
90

READ ( 5,2000) NI,NJ, IMP,ISP,IG,ID,IPS
WRITE (IP,2000) NI,NJ, IMP,ISP,IG,ID,IPS

IF (NI.EQ.9996) GO TO.100

ICHKG=IPS*ICHK
ICHKS=ICHKG*IPSE

DO 9C K=1,IG

IF (K.GT.1) ICHKG=Q

IF (K.GT.1) ICHKS=0
IELMC=TELMC +1
IELMS=IELNS+}
KK=(K=1)*ID
NDD(1)=KK+NI
WDD(2)=KK+NJ

CALL NDLOS (NDD(1),NAS)
CALL ¥DLOS (NDD(2),NBS)

1186

IF (ICHK.EQ.1) WRITE (IP,2040) NDD{!),NDD(2),NAS,NBS,IELMC, IELMS

IF (ICHK.¥E.! .OR. ICHXS.EQ.! .OR. ISCON .EQ.1) GO TO 40

G0 TO 90
DX=X{NBS)-X(NAS)
DY=Y(NBS)-Y(NAS)

IF (NDOF.NE.&) GO TC 50
DZ=Z(NBS)~Z{NAS)

CALL BMXYZ (ICHKS,INP, ISP DX,DY,DZ,IP,IPS)

GO TO &0

CALL XE2D6 (ICHKS,IMP,ISP,DX,DY, IP,LPS)

I00=0C
Lo 70 I=t,2

CALL NDLOC1 (xDD(1),8DC(I), ICOMP)

DO 70 J=1,NDCOF
I00=I0C+1
JOC=J

CALL DFLOC2 (NDC(I),JOO,IDF2, ICOMP)

IE(I00)=IDF2
CONTINUE
DO 80 J=1,NE
Jo=IE(J)
K0=ID0(J0)
1JO=(J-1)*NE
DO 80 I=1,NE
I0=IE(T)
IF (I0.GT. JO) GO TO 80
1J=1J0+I
KOO=KQ+I0
S(X00)=3(K00)+SKEG(IJ)
CONTINUE
CONTINUE
G0 TO 30
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N2aNDC3(6, ICOMP)
N1=NDC3{4, ICOMP)
N2S=IDO(N2)+N2
N4=NDC3(3, ICOMP)
ISOL=1
WRITE (IP,20%50) IELMC,N1,N2,N25
IF (IPSK1.¥E.!1) GO TO 110
WRITE (IP,20%0) (S{I0), IO=1,X2S)
IF (ISCON.NE.1) GO TO 110
N4=N400
G0 TO 120
IF (ICHK.EQ.1) GO TO 20 |
CALL STCOND (s,N4,N1,N2,N2S,ISCON,ISOL,ICOMP,IP)
N4=NCRMO( ICOMP) ,
N1=NDC1(4,ICOMP)
N2=IDO(N1 ) +N1
N3=§2+1
NE=sN3+N1*N1 _
CALL STDEGC (sS(1),s(¥3),s(N6),N1,N2, N4, ICOKE, IP)
G0 TO 20

IF (ICHK.EQ.1) GO T0 140
N1 =NBX+1
N2=N1+NIX*NBX
N3=N2+HIX*NBX
N4=N3+NBX
NS=N4+4X
CALL cmsMt (s(1),s(m1),s(n2),s(n3),s(n4),s(us),
NX,NBX,NIX, NCOMPO,IP) '

WRITE (IP,2070)

RETURN
FORMAT (8I5)
FORMAT (20K, '*#* ' 375 5%,215,5%,15,3%,E10.4)
FORMAT (/,50X,'COMP. X0.',5I4,/)
FORMAT (3X,12E10.4)
FORMAT (50X, '*',3(2I5,5X))
FORMAT (50X, '** ' 8I7)
FORMAT (//,S5X,'ETR GSTIF6',//)
FORMAT (//,5%, END GSTIFS',//)
FORMAT (/)

END

C GUY4.FOR 83-02-07 (0K,82-08-10) JTH (82-03-12)
Cc

SUBROUTINE STCOND (S,NB2,NB,XN,NS,ISCON,ISOL,ICOMP,IP)
DOUBLE PRECISION XBB,PIB,KII,PE3

COMMON/IDO/ID0O(6C0)

COMMON/GARB/C(6C0)



DIMENSION S(HS)

WRITE (IP,2070) '
10  ENCCDE (10,2C10,PIB) ISOL,ICCMP
WRITE (IP,2050) ICCMP,ISCL,NB2,XE,H,NS

M=Y
20 J1=IDO({M)
DO 30 J=1,M
20 C{J)=S(J1+J}/sS{J1+M)
DO 40 I=1,4~-1
DO 40 J=I,M
X0=IDO(J)+I
40 S(X0)=5{K0)-C(J)*s(J1+I)

DC .50 J=1,M
50 S{J1+J)=C(J)
M=M-1
I» (M-NB) 60,60,20
50 M=NB+1 :
70 KO=IDO(H)
DO 80 I={,NB
30 C(I)=S(X0+I)
DO 90 JO=M+1,N
KO0=ID0(JO)
CC=S(X0+M)
DO 90 I=1,NB
g0 S(XC+I)=S(KO+I)-C({I)*CC
M=p+1
IF (M-N) 70,100,100
100 CONTINUE

IF (ISCON.NE.1) GO TO 120
WRITE (IP,2060)
Do 110 J=1,NB
I0=ID0(J)
11C WRITE (IP,2040) (S(I0+KC),K0=1,J)

120 IF (ISOL.EQ.1 .AND. ISCON.EQ.Q)} GO TO 140
ENCODE (10,2000,KBB) ISOL,ICOMP
OPEN  (UNIT=3,FILE=KBB,ACCESS='SEQOUT")
DO 130 J=1,NB
I0=ID0(J)
130 WRITE (3,2040) (S(I0+X0),K0=1,J)
CLOSE (UNIT=3,FILE=KBR)
140 CONTINUE
IF (ISOL.NE.3) GO T0 150
ENCODE(10,203%0,PE3) ISOL,ICOMP
OPEN (UNIT=2,FILE=PE3,ACCESS="SEQIN')
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READ (3,2040) (S(I),I=1,I)
CLOSE (UNIT=3,FILE=PE3)
CONTINUE

OPEN (UNIT=3,?ILE=PIB,ACCESS='SEQOUT')
JO=IDO(NB+1)
NI=N-NB
DO 180 I=1,NB
IK=JO+I
DC 160 J=1,NI
C{J)=-S(IK)
IK=1K+(¥B+J)
IF (ISOL.NE.3) GO TC 180
€C=0. "
DO 170 J=1,NT
CC=CC+C{J)*S(NB+J)
S(I)=s(1)+CcC
WRITE (3,2040) (C(XQ), XO=1,NI)
"CLOSE (UNIT=3,PILE=PIB)
IF (ISOL.NE.3) GO TC 190
" OPEN (UNIT=3,FILE=PE3,ACCESS='SEQOUT')
WRITE (3,2040) (S{I),I=t,NB)
CLOSE (UNIT=3,FILE=PE3)
CONTINUE

IF (ISOL.NE.1) GO TO 210
ISQL=2
N=NB

NB=NB2

NS=IDO(N)+N
ENCODE (1C,2020,KII) ISOL ICOMP
QPEN (UNIm=3 FILE=XII ACCESSs‘SEQOUT')
NBO=NB+1
DO 200 J=NBO,N
KO=IDO(J)
WRITE (3,2040) (s(Ko+zo) 10=NBO, J)
CLOSE (UNIT=3, FILE=KII)
G0 TO 10
WRITE (IP,2080)
RETURN
FORMAT ('XBB',I1,I1,".DAT',1X)
FCRMAT ('PIB',It,I1,".DAT’,1X)
PORMAT ('KIZI*,I1,I1,’.DAT',1X)
FORMAT ('PE3',I1,I1,".DAT',1X)
FORMAT (5X,5E15.8)
FORMAT (/,50%,"!!! *,61I7,/)
FORMAT (/)
FORMAT {(//,1X,’ETR STCOND',/)
FORMAT ( /,1X,'END STCOND',//)
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END

SUBROUTINE GUYRED (Y,¥B,N,NS,IP)

COMMON/IDO/IDO
COMMON/GARB/CH
DIMENSION Y(NS

OPEN (UNIT=3;FILE='PIB§O.DAT',ACCESS='SEQIN')

WRITE (IP,2010)
NI=N-NB
JO=IDO(NB+1)

DO 50 I=1,NB
READ (3,20C0} (c
DO 50 J=1,NB
IK=J0+J

CC=0.

DO 10 K=1,NI
Ce=CC+C1 (X)*Y(IX)
IK=IK+{ NB+K)
KO=IDO(J)+1

82+8-12

(600)
gGOO)

1(K),K=1,81)

IF (J-I) 40,30,20

Y(XQ)=Y{X0)+CC
GO TO SC

‘Y(X0)=Y(KO)+CC*2.

GO T0 50
KO=IDO(I)+J
T(KO)=¥(X0)+CC
CONTINUE

CLOSE (UNIT=3,

OQPEN {(UNITa3,
ICO=IDO(NB+1)
DO 100 J=1,NB
10=I00+J
READ (3,2000) (C
DO 90 I=1,NI
¥(10)=0.
IX=IDO(NB+I)+NB
DO 60 KO=1,I
IXK0=IK+KOQ
Y(10)=Y(10)+Y(IKO
IF (I.EQ.NI) GO T
KO=IK+I
DO 70 K=I+1,NI
KO=KO+K-1+NB

FILE="PIB30.DAT')

FILE#'?IB;P.DAT',ACCESS='SEQIN')

1{K),K=1,NI)

y*C1(K0)
0 80

70 Y(I0)=Y{I0)+Y(KO)*C1(K)

a0

CORNTINUE

120
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10=I10+(NB+I)
CONTINUE
CLOSE (UNIT=3,FILE='PIB30.DAT')

OPEN (UNIT=3,FILE='PIB30.DAT',ACCESS='SEQIN')
JO=IDO(NB+1) :
DO 120 I=1,NB
READ (3,2000) {Ci{K),K=1,8I)
DO 120 J=I,NB
IK=JO+J
I0=IDO(J)+I
CC=0
DO 110 KO=1,NI
CC=CC+Y{IK)*C1(X0)
IK=IK+{NB+K0)
¥(10)=Y(10)+CC
CLOSE (UNIT=3,FILE='PIB30.DAT')
OPEN (UNIT=3,FILE='MBB30.DAT',ACCESS='SEQOUT")
DO 130 J=1,NB
X0=IDC(J)
WRITE (3,2000) (Y(x0+IO},I0=1,J)
CLOSE (UNIT=3,FILE='MBB30.DAT')
WRITE (IP,2020)
RETURN ,
FORMAT (S5X,5E15.8)
FORMAT (//,1X,'ETR GUYAN',/)
FORMAT ( /,1X,'END GUYAN',//)
END ‘ .

CM33.FOR (OK,83-01-31,01;05) 83=01=11 B82-08-15 JTH

'SUBROUTINE CMSM1 (YBB,PH,YBI,YBN,XM,PE, §X,NBX,XIX,NCOMPO,IP)
DOUBLE PRECISION PIB,PIN,DMB,DMI,MBE,MBN,PE1,PE2
COMMON/FEIDS/NCRMO(4),NDC1(7,4),8DC2(7,4),NDC3(7,4),

ICBS(168,4),ICNS{36,4),N8Y5(4)
COMMON/GARB/C1(600)
DIMENSION YB?(NBX),PH(NIX,HBX),YBI(HIX,NBX),XM(HX),IBN(NBX),
PE(NX)

WRITE (IP,2090)
ISOL=2
DO 130 ICOMP=1,NCOMPO
NB=NDC3(3, ICOMP)
NI=NDC1(4,ICOMP)
N=NDC3(4,ICOMP)
NNP=NCRMO( ICOMP)
N2=NB+NNP



OO0

ENCODE (10,2000,PIB) ISOL,ICOMP
ENCODE (10,2010,PIN) ISOL,ICOMP
ENCODE (10,2020,D¥B) ISOL,ICOMP
ENCODE (10,20%0,MBE) ISOL, ICOMP
ENCCDE (10,2040,XBN) ISOL,ICONP
ENCODE (10,2050,DMI) ISOL,ICOMP
ENCODE (10,2060,PE1) ISOL,ICOMP
ENCODE (1C,2070,PE2) ISOL,ICCMP

GET COMP MASS IN P-COORD

QPEN {(UNIT=3,FILE=DMB, ACCESS='SEQIN')
CALL ZERO (xM(1),xe(N))

~ NA=NDC2(1,ICOME)

10

20

30

40

NC=NTC3(2,ICOMP)
READ (3,2080) (C¢1(¥),K=1,NC)
DO 10 I=1,NC
I0=RA+I=1
IM{I0)=XM(I0)+C1(I)

CLOSE (UNIT73,FILE=DHB)

OPEN (UNIT=3,FILE=DMI, ACCESS='SEQIH"
NA=NDC2(4,ICOMP)
NC=NDC1 (4, ICOMP)
READ (3,2080) (C1(X),K=1,uC)
DO 20 I=1,NC
I0=NA+I=1
M(T0)=xM(I0)+C1(I)
CLOSE (UNIT=3,FILE=DMI)

" OPEN (UNIT=3,FILE=PE1,ACCESS='SEQIN')
READ (3,2080) (PE(I),I=1,N)
CLOSE (UNIT=3,FILE=PE1)

QPEN (UNIT=3,FILE=PIB,ACCESS='SEQIN')
DO 40 J=1,NB
READ (3,2080) (PFH({X,J), X=1,NI)
CC=0.
D0 30 I=1,XNI
CC=CC+PH(T,J)*PE(NB+I)
YBI(I,J)=PH{I,J)*IM(NB+I)
PE(J)=PE(J)+CC

CLOSE (UNIT=3,FILE=PIB)

OPEN (UNIT=2,FILE=MBB, ACCESS='SEQOUT')
DO 70 J=1,NB
CALL ZERO (YBB(1),YBB(J))
YBB(J)=xM(J)
DO 60 I=1,J

122
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DO 50 X=1,NI

CC=CC+YBI(K,I)*PH(K,J)

YBB(I)=YBB(I)+CC

WRITE (2,2080) (YBB(JO),JO=1,J)
CLOSE (UNIT=2,FILE=MBB)

OPEN (UNIT=3,FILE=PIN,ACCESS='SEQIXN’')
OPEN (UNIT=2,FLLE=MBN,ACCESS='SEQQUT’)
DO 110 J=1,NNP
READ (3,2080) (PH(K,J), K=1,NI)
D0 90 I=1,NB
CC=0.
DO 80 K=1,K¥I
CC=CC+YBI(X,I)*PH(X,J)
YBR(I)=CC
CC=0.
DO 100 K=1,NI :
CC=CC+PE(NB+K)*PH(K,J) -
M(J)=cc
WRITE (2,2080) (YBN(IO),IO=1,NB)
CLOSE (UNIT=3%,FILE=PIN)
CLOSE (UNIT=2,FILE=MBN)
DO 120 J=1,NNP
PE(NB+J)=x1(J)
OPEN (UNIT=3,FILE=PE2,ACCESS='SEQOUT")
WRITE (3,2080) (PE(I),I={,N2)
CLOSE (UNIT=3,FILE=PEZ)
CONTINUE

WRITE (IF,2100)
RETURN
FORMAT ('PIB’',I1,It1,'.DAT',1X)
FORMAT ('PIN',It,It,".DAT',1X)
FORMAT ('DMB',I1,It,'.DAT',1X)
FORMAT ('MBB',I1,I1,'.DAT',1X)
PORMAT ('MBN',I1,If,".DAT',1X)
FORMAT ('DMI‘,I1,It,'.DAT’,1X)
FORMAT ('PE1',IY,It,'.DAT',1X)
PORMAT ('PE2',I1,I1,".DAT',1X)
FORMAT (5X,5E15.8)
FORMAT (//,1X,'ETR CMSM1',/)
FORMAT ( /,1X,'END CMSM1',//)
END

SYSM.FOR 83-02-07 (0K,8%-01+05) 82-08«19

' SUBRCUTINE SYSW (sSM,NS,NCOMP,IP)

JTH
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DOUBLE PRECISION MEB,MEN
COMMON/GARB/C1 (600)
COMMON/FEIDS/NCRMO(4), NDC1(7 4),80c2(7,4),NDC3(7,4),
1 IcBS(168,4), ICNS(36 4), NSYS(4)
DIMENSICN SM(XNS)

GET SYS MASS IN Q-COORD

WRITE (IP,2040)
JO=NSYS(1)
CALL ZERO {(sM(1),sm(NS))
DO 10 I=1,J0
IO=(I*I+1)/2

10 sK(I0)=1.
IS0L=2

DO 5C ICCMP=1,NCOMP

NB=NDC3(3, ICOMP)

NNP=NCRMO( ICOMP)

ENCODE (10,2000,MBB) ISCL,ICOMP
ENCODE (10,201C,MEN) ISOL,ICOMP
WRITE (IP,2030) ICOMP,NB,NNP

OPEN (UNIT=3,FILE=MBR,ACCESS='SEQIN')
DO 30 J=1,NB ‘
JS=ICBS(J, ICOMP)
READ (3,2020) (¢1(J0),J0=1,J)
JO=JS-1
X0=(JO*J0+JO)/2
DO 30 I=1,J
1S=ICBS(I,ICOoMP)
KS=KO+IS
IF (IS.GT.JS) GO TC 20
SM(KS)=sM(KS)+C1(I)
G0 TO 30
20 WRITE (IP,2030) J, I Js,18,KS, ICOMP
STOP
30 CONTINUE
CLOSE (UNIT=3,FILE=MBB)

OPEN (UNIT=3,FILE=MBN,ACCESS='SEQIN')
DO 40 J=1,NNP
READ (3,2020) (C1(1),I=1,3B)
1S=ICNS(J, ICCMP)
DO 40 I=1,NB
Js=1ICBs(I, ICOMP)
JO=JS-1
KS=(JO*J0+JO)/2+1S

40 SM(XS)=SM(XS)+C1(I)
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CLCSE (UNIT=3,FILE=MBN)
50 CONTINUE

RETURN
2000 FORMAT ('MBB',It,I1,°.DAT',1X)
2010 FORMAT ('MBN®,I?1,I1,'.DAT',1X)
2020 FORMAT (5X%,5E15.8)
2030 FORMAT (5X,7I5)
2040 FORMAT (//,1X,'ETR sysm',/)
END

SYSK.FOR 83-02-07 (0OK,8%-01-05) 82-08-1¢ JTH .

SUBROUTINE SYSK (SK,NS,NCOMP,IP)

DOUBLE. PRECISION KRBE,EVA

COMMON/GARB/C1(600C)

COMMON/FEIDS/NCRMO(4) ,NDC1(7,4),N0C2(7,4),0DC3(7,4),
1 ICBS(168,4),ICNS(36,4),85Ys(4)

DIMENSION SK(NS)

GET SYS STIFF IN Q-COCRD

WRITE (IP,2040)

CALL. ZERO (SK(1),SKk(¥S))
INC=0

IS0L=2

DO 40 ICOMP=1,NCOMP

NB=NDC3(3, ICOMP)

NNP=NCRMO( ICOMP)

ENCODE (10,2000,KBB) ISOL,ICOMP
ENCODE (10,2010,EVA) ISOL,ICOMP
WRITE (IP,2030) ICOMP,NB,NNP

OPEX (UNIT=3,FILE=EVA,ACCESS='SEQIN')
READ (3,2020) (C1(I),I=1,NNP)
DC 10 I=1,NNP
INO=INO+1
TO={ INO*INO+INO)/2
10 SK(I0)=C1(I)
CLOSE (UNIT=3,FILE=EVA)

OPEN (UNIT=3,FILE=KBB,ACCESS='SEQIN')
DO 30 J=t,NB
JS=ICBS(J, ICOMP)
READ (3,2020) (c1(JO),J0=1,J)
JO=JS-1
X0=(JO*J0+J0)/2
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D0 30 I=1,J
1S=ICBS(I,ICCMP)
KS=KQ+IS
IF (IS.GT.JS) GO TO 2¢
SK{KS)=SK(KS)+C1(I)
GO T0 30
wRITE (I®P,203C) J,I,J5,IS,KS,ICOMP
3TOP
CONTINUE
CLOSE (UNIT=3,FILE=KBE)
CONTINUE

RETURN
FORMAT ('KBB’,It,I?,'.DAT',iX)
FORMAT ('EVA',I1,I1,'.DAT',1X)
FORMAT (5X,5E15.8)
FORMAT (5X,7IS)
FORMAT (//,1X,'ETR S¥YSK',/)
END .

SISP.FOR 83-02-07 82-11-14  J.T.HUANG

SUBROUTINE SYSP (SP,N,NCOHMP,IP)

DOUBLE PRECISION PE2

COMMON/GARB/PE(600)

COMMON/FEIDS/NCRMO(4),NDC1(7,4),NDC2(7,4),NDC3(7,4),
1CBS(168,4), ICWS(36 4), ntxs(4) :

DIMENSION SP(M)

GET SYS LOAD IN Q-COORD

WRITE (IP,2070)

CALL ZERO (SP(1),sP(W))

ISOL=2

DO 30 ICOMP=1,NCOMP

WRITE (IP,2060)

NB=NDC3(3, ICOMP)

NNP=NCRMO( ICOMP)

NZ2=NB+NNP

WRITE (IP,2010) ICOMP,NB,NNP,N2

ENCODE (10,2000,PE2) ISOL,ICOMP
OPEN (UNIT=3,FILE=PE2,ACCESS="SEQIN’)
READ (3,2040) (PE(I),I=t,N2)
CLOSE (UN;T=3,FILE=PE2)

WRITE (IP,2020)

O 10 J=1,NB

JS=ICBS(J,ICOMP)

3P(JS)=SP(JIS)+PE(J)
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WRITE (IP,20%50) J,Js,SP(JS)
WRITE (IP,203C)

DO 20 J=1,NNP

JS=ICNS(J, ICOMP)
SP(J3)=3P(JS)+PE(NB+J)

20 WRITE (IP,2050) J,J8,SP(J8)
30 CONTINUE
OPEN (UNIT=3,FILE='PE330.DAT',ACCESS='SECOUT’)
WRITE (3,2040) (SP(I),I=t1,N)
CLOSE (UNIT=3,FILE='PE330.DAT')
RETURN
2000 FORMAT ('PE2',I1,I%,'.DAT',1X)
2010 FORMAT (25X%,1%,3X,316,/)
2020 FORMAT (25X, 'BOUNDARY DOF®)
203C FORMAT (25X, 'NORMAL ©DOF‘)
2040 FORMAT (5X,5E15.8)
2050 FORMAT (2X,2I5,Fi12.6)
2060 FORMAT (/)
2070 FORMAT (//,1X,'ETR SYSP',/)
END
EPAAA.FOR 83-01-27 (0K,12-19) ( 0K,82-06-14) 82-06«12 JTH
SUBROUTINE GEVPS2 (XX,XM,EC,ZA,N,NS,NMOD,ICOMP,IP)
COMMON/IDO/IDO(600)
DIMENSION XK(NS),XM(NS)},EC(N,N),EA(N)

10

20

30

CPEN (UNIT=3,FILE='KBB30.DAT',ACCESS='SEQIN’)
WRITE (IP,2000C) '
ISOL=3
N22=N*N
DO 10 J=1,X
KO=ID0(J)
READ (3,2020) (XK(X0+I),I=1,J)
CLOSE (UNIT=3,FILE='KER30.DAT')
CALL EIGEN (XM,EC,N,NS,N22)
D0 20 I=1,XN
I0=IDC(I)+I
EA(I)=xM(I0)
CALL NZGMZ (XM,EC,EA,N,XS,IP)
CALL KBMKM (EC,XK,X“,N,NS,IP)
CALL EIGEN (XX,EC,N,NS,H22)
DO 30 I=1,N
I0=IDO(I)+I"
EA(I)»XK(I0)
N1=N+1
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CALL EPOST1 (EA,XX(1),XX(¥1),N,ISOL,ICCMP,IP)
CALL sYmFL (XM,EC,N,NS,IP)
CALL EPOST2 (EC,N,NMOD,ISOL,ICOMP,IP)
WRITE (IP,2010)
RETURN _
FORMAT (//,5%, '*%*% ETR GEVPS2 %***' /3
FORMAT {(/,5X, '*%* END GEVPS2 #**+' //)
FORMAT (5X,5E15.8)
END

82-06~12 JTH -

SUBROUTINE STDEGC (K,EC,EA,N,NS,NMOD, ICOMP IP)
DOUBLE PRECISION PIN,EVA,KII,DMI

REAL X,M2

COMHON/IDO/IDO(GOO)

COMMON/EGV1/TIA2(600)

COMMON /GARB/M2(600)

DIMENSION EC(N,N),K(¥S),EA(X)

130L=2
ENCODE (10,2000,KII) ISOL,ICOMP
- ENCODE (10,2010,DMI)} ISOL,ICOMP

WRITE (IP,2030)
OPEN. (UNIT=3,FILE=DMI,ACCESS="SEQIN")
READ (3%,2020) (M2(I),I=1,N)
CLOSE (UNIT=3,FILE=DMI)

N22=N*N

DO 10 I=1,N

M2(I)=1./SQRT(M2(T))

OPEN (UNIT=%,6FILE=KII,ACCESS='SEQIN')
D0 20 J=1,¥
KO=IDO(J)
READ (3,2020) (K(KO+IO),I0=t,J)
DO 20 I=1,J
K{KO+I)=K(X0+I)*M2(1)*m2(J)
CLOSE (UNIT=%,FILE=KII)
CALL BIGEN (K,EC,N,NS,N22)
DO 30 I=1,N
I0=IDO(I)+I
EA{I)=K(I0)
N1=N+1
CALL EPOST{ **A LK(1),k(n1), 1, ISCL, ICOMP, IF)

- DO 40 J=1,¥N

40

JO=TIA2(J)
DO 40 I=1,X
BC(I,J0)=EC(I,J0)*M2(I)
CALL EPOST2 (EC,N,NMOD,ISOL,ICOMP,IP)
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WRITE (IP,2040)
RETURN -
2C00 FORMAT ('KII',It,It,’'.DAT',1X)
2010 FORMAT ('DMI®,I1,I1,'.DAT',iX)
2020 FORMAT (5X,5E15.8)
2030 FORMAT (//,40X,'ETR STDEGC',/)
2040 FORMAT (/, 40X,'ESND STDEGC',//)
END

DISPL1.FOR OK,83-01-27 JTH 10-18 ( 0K, 82-12-27)

Qaan

SUBROUTINE DISPL! (EC,Es,P, Y,F,T, Q,QN,EN, N,NO,It1,N2,DT,
1 NMD,FX,EM,IP,ICHK)

DOUBLE PRECISICN ACR

COMMON/EGV1 /TA2(600)

COMMON/GARR/AA(500),20(100)}

DIMENSION EC(N,N),EA(N),P(N),T(30),F(NO),v(NO),Q(N2),
1 . EN(NMD),QN(¥2,NMD)

WRITE (IP,2100)
OPEN (UNIT=2,FILE="TRS320.DAT',ACCESS='SEQIN')
READ (2,2050) FX,EM

~ WRITE (6,2050) FX,EM

IF (FX.EQ.Q.) FX=40.

IF (EM.EQ.O.) EM=0.001

WX=FX*2,.%3,14159265

=1,

Ri=1,

R2=1.

R3=1. A

‘Ra=1, . : .

OPEN (UNIT=3,PILE='DAM.DAT',ACCESS='SEQIN®)

READ (3,2050) (20(I),I=1,NMD)

CLOSE (UNIT=3,FILE="DAM.DAT')

OPEN (UNIT=3,FILE="PE330.DAT',ACCESS='SEQIN")

READ (3,2030) (P(I),I=1,N)

CLOSE (UNIT=3,FILE="PE330.DAT')

READ (2,2070) NTS

WRITE (6,2070) NTS

DO 100 ITS=1,NTS

WRITE (IP,2000) ITS

READ ( 2,2010) NO,It,N2,DT
WRITE (IP,2010) NC,I1,N2,DT
WRITE (IP,2060)

I0=I1=1

NOQ=I0+N2

IF {( NO.GT.HOQ) NO=NOO

‘IF (NOQ.GT.NO ) N2=KC-IO
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(1 )=10*DT
DO 10 I=2,N2
T(I)=T(I=1)+DT

ENCODE (10,2020,ACR) ITS
OPEN (UNIT=3,FILE=ACR,ACCESS="SEQIN')
READ (3,2030) (F( JO),J0=1,X50)
WRITE (6,2040) (F(JO), JO=1,N0)
CLOSE (UNIT=3,FILE=ACR)

IF (ITS.GT.1) GO TO 50
DC 3C K=1,NMD
JO=TA2/X)
W=SGQRT(EA{JO))
IF (W.CGT.WX) GO TC 40
EY=Q.
DO 20 I=1,N
EY=EY+P(I)*BC(I,J0)
CONTINUE
IF (K.EQ.1) E1=ABS(EY)
EYO=ABS{EY)
IF (EYC.GT.E1) E1=EYO
R4=R3
R3=R2
R2=R1
R1=EY/E1
R1=ABS(R4Y)
WRITE (IP,2080) X,W,EY,E1,R1
IF (R1.LT.EM .AND. R2.LT. EM .AND. R3 LT.EM .AND.
. R4.LT.EM ) GO TO 40
EN(K)=RBY ‘
CONTINUE
NMD=K =1
WRITE (IP,2080) NMD

D0 70 K=t,NMD
EY=EN(X)
Z=Z0(K)
JO=TA2(K)
w=SQRT(EA(JO))
CPS=4%/(2.%3.1415926)
CALL SDFEXP (EY,F,Y, XM,Z,W, DT,NO)
R1=EY/E1
R1=ABS(R1)
7 (X.GT.20 .OR. CPS.CGT.15. .OR. R1.LT.0.05) GO TO 6Q
YRITE {(6,2060C)
WRITE (6,2040) (Y(I), I=1,M0)
WRITE (6,2060)

60 DO 70 IT=1,N2
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QN(IT,K)=Y(IT+IC)

WRITE (1P,2060)
DO 90 IT=1,N2
WRITE (IP,2080) IT,T(IT)
DO 80 IR=1,N¥
Q(IR)=0.
DO 80 IM=1,NMD
JO=TA2(IM)
Q(IR)=Q(IR)+EC(IR,JO)*QN(IT,IN)
CONTINUE
WRITE(IP,2040) (Q{IR),IR=1,N)
CONTINUE
CONTINUE
CLOSE (UNIT=2,FILE="TRS30.DAT’)

WRITE (IP,2110)

RETURN .
ForMaT (////,80%,12,'-TH TIME HISTORY',//)
FORMAT (3I5,5X,F10.3)

FORMAT (°ACR',It,'.DAT',2X)

FORMAT (5X,5E15.8)

FORMAT (15X,1CE11.5)

FORMAT (8F10.5)

FORMAT (/)

FORMAT (81I5)

FORMAT (1X,I4,F9.4,4F9.3)

FORMAT (40%,314,3F11.4)

FORMAT (/,5X,'ETR DISPL',/)

FORMAT (/,5X,'END DISPL',/)
END

¢ FRES?E.FOR 83-01=-27 (OK,82¥12320) (0K, 82-02-11) JTH 82-11~28‘

C

SUBROUTINE SDFEXP (PQ,F,Y, IXM,Z,¥, DT,NP)

COMMON/GARB/WD, ZW,WW , XK, TZW, W1, ZWW,W2D, A4, TK, WDT , CWDT, SWDT, EO,
BO,40,A,B,C,D,A1,B1,C1,D1,Y0,Y1,NP1, A44A0(573)

DIMENSION Y(NP),F(NP)

WRITE (6,2000) PC,XM,Z,W,DT,NP
Y1=0.*PO*F(1)*DT
WD=W*SQRT(1.-2%2)
ZW=Z%W

WW Wy
TZW=2.%Z/W
Wi=1./WD
ZWW=ZWHW1
W2D=WH*Y1
AA=(2.%Z%2_1, )41
TK=1./(DT*XN*WW)
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WDT=WD*DT
CWDT=COS(WDT)
SWDT=SIN(WDT)
EQ=EXP{-ZW*DT)

BO=AA*SWDT+TZW*CHDT
AO==BO=ZW*DT*W1 *SWDT-DT*CWDT
A=(EQ*AQ+DZW)*TK
B=(EO*BO-TZW+DT ) *TK
C=EQ* (CWDT+ZWW*SWIT)
D=1 *EQ*SWDT
BO=ZWW*SWDT+CHDT
AQ=BO+W2D*DT*SWDT
At={ EO*40-1.)*TK
B1=(-E0*BO+1.)*TX
C1==W2D*EO*SWDT
D1 =EQ*( CHDT-ZWW*SWIT)

1(1)=0.

DO 10 I=1,NP-1

Y(I+1)= PO*(A *F(I)+B *P(I+1))
Ti= PO*(A1*F(I)+B1%#F(I+1))

RETURN

END

EPOST.FOR 83-01-02 ( 0K,82-12-19 82-10-21) JTH 81-03-24

'SUBROUTINE EPOST! (EA,EA2,IA,N,ISOL,ICOMP,IP)

DOUBLE PRECISION EVA
COMMON/EGV1/IA2(600)
DIMENSION EA(N),EA2(N),IAa(2)

CALL ZERO (IA(1),IA(N))
DO 20 I=1,N

X=1.E+12

DO 10 J=1,N

IF (1a(J).NE.Q) GO TO 10
IF (X.LT.EA(J)) GO TO 10
X=EA(J)

IM=J

CONTINUE

TA(IM)=I

CONTINUE

DO 30 J=t,N

I=IA(J)

IA2(I)=J

+C *Y(I)+D *Y1
+C1¥Y (1) +D1%Y1

FORMAT( 20X,' *** ETR SDFEXP ... ',2F12.6,3F7.3,14,/)
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C=2.%3.14159265
WRITE (IP,2020)
DO 40 I=1,N
JO=TA2(1)
EA2(I)=EA{JO)}
¥=SQRT (EA(JO))
CPS=W/C
T=1,/CPS
WRITE (IP,20t0) I,JC,EA(JO),W,CFS,T
IF (ISOL.NE.2) GO T0O SO
ENCODE (10,2030,EVA) ISOL,ICO¥P
OPEN (UNIT=3,FILE=EVA,ACCESS='SEQOUT')
WRITE (3,2000) (BA2(I),I=1,N)
CLOSE (UNIT=3,FILE=EVA)
CONTINUE
RETURN
FORMAT (5X,5E15.8)
FORMAT (2(2x,14),2(2X,E15.8),2F12.4)
FORMAT (/,5X,' I-TH LOWEST, JO-LOC, W2 W CPS T ... ',/)
FORMAT™ ('EVA',It1,I1,'.DAT',1X)
END

SUBROUTINE EPOSTZ (EC,N,NMOD,ISOL,ICOMP,IP)
DOUBLE PRECISION PIN

COMMON/EGV1/LA2(600)

DIMENSION EC(N,N)

ENCODE (10,2050,PIN) ISOL,ICOMP
0FEN (UNIT=3,FILE=PIN,ACCESS='SEQOUT")
WRITE (IP,2010)
NMOD1{ «NMOD¥3/2+3
HMOD2=N*2 /3+1 _
IF (NMOD?.GT.NMOD2) NMOD1=NMCD2
iF (N.EQ.NMOD) NMOD1=N
PMOD=4C
IF (PMOD.GT.NMOD1) PMOD=NMOD1
DO 20 I=1,FMOD
WRITE (IP,2020) I
JO=TA2(I)
KO=N/10+1
DO 10 ¥X=1,KO0
Ki=(K=1)*0+1
X2=K1+9
IF (XK2.GT.N) X2=N
WRITE (IP,2040) X1,k2, (EC(IDCF,JO), IDOF=X1,K2)
IF (ISOL.NE.2) GO TO 20
WRITE ( 3,2000) (EC(KOQ,JO),KO=1,N)
CONTINUE
CLOSE (UNIT=%,FILE=PIN)
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WRITE (IP,2030)

RETURN
2000 FORMAT (5X,5E15.8) .
2010 FORMAT (////, 10X,' MODE SHAPE ... (I)=I-TH LOWEST °',/)
2020 FORMAT (/,2X,'N0.',I3,' LOWEST MODE',/)
2030 FORMAT (/,10X, 'END OF MODE SHAPES',/)
2040 FORMAT (2X,I4,1X,'T0',I4,2X,10E11.4)
2050 FORMAT ('PIN',T¢,It,°.DAT',IX)
END
¢
C EPCCC.FOR 8%3-01-27 0K,82«12-19,11-10 80-9-5 JTHUANG
C 80-0%-05 FROM IBM SSP -
¢ REVISED
c .
SUBROUTINE EIGEN (A,R,N,NS,N22)
DIMENSION A(NS),R(N22)
MV=0
S2=SQRT(2.)
10 RG=1.0E-6
IF (Mv-1) 20,50,20
20 IQ=-N
DO 40 J=1,N
IQaIQ-)-N.
DO 40 I=1,N
IJ=IQ+I
R(IJ)=0.
IP (I-J) 40,30,40
30 R(1J)=1.
_ 4AQ CONTINUE .
¢ . INITIAL AND FINAL NORMS (AM & AX)
50 AM=0.
DO 70 I=1,N
DO 70 J=I,XN
IF (I-J) 60,70,60
EQ IA=I+(J*J-J)/2
AM=AM+A(TA)*A(IA)
70 CONTINUE

IF (AM) 360,360,80
80 AM=S2*SQRT{AM)
AX=AM*RG/FLOAT(N)
¢ INITIALIZE INDICATORS & GET THRESHOLD THR
IND=0
THR=AM
90 THR=THR/FLOAT(N)
100 L=t
110 M=L+4
¢ . SIN & COS
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180
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21C

220
2320

240
250
26C
270

280

MQ=(M*M-M)/2
LQ={L*L-L)/2
LM=L+MQ
IF (ABS{A(LM))-THR)290,140,140
IND=1
LL=0L+1Q
MM=M+MQ ,
X=0.5%( A(LL)-A(MM))
Y=-A(LM)/SQRT(A(LM)*A{ LK) +T*X)
IF (X) 160,170,170
==Y
SX=Y/SQRT(2.*(1.+{SQRT{1.-Y*Y))))
SX2=3%*sX
CX=SQRT(1.-8X2)
CX2=CX*CX
SCS=SX*CX
ROTATE L &M COLUMNS
ILQ=N*(L-1)
IMQ=N*(M=~1)
DO 280 I=1,N
IQ=(I%*1.I}/2
IF (I-L) 190,260,190
IF (I-M) 200,260,210
IM=T+MQ
GO TO 220
IM=M+1Q

IF (I-L) 230,240,240
IL=I+LQ
G0 TO 250
IL=1+IQ .
X=A(IL)*CX-A(IM)%*3X
A(IM)=A{IL)*sX+A(IM)*CX
A(IL)=X
IF (Mv-1) 270,280,270
ILR=ILQ+I
IMR=IMQ+I
X=R{IIR)*CX-R(IMR)*SX
R(IMR)=R(ILR)*SX+R(IMR)*CX
R(ILR)=X
CONTINUE
X=2.*A{1M)*SCS
Y=A(LL)*CX2+A{MM)*SX2-X
X=A(LL)*SX2+A(MM)*CX2+X
A(LM)=(A(LL)-A(MM) ) *SCS+A(ILM)*(CX2-5X2)
A(LL)=Y
A(MM) =X
TEST FOR COMPLETION
TEST FOR M=LAST CCL.
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290 IF (M-N) 200,310,300
300 M=M+1
GO TO 120
c TEST FOR L=SECOND FROM LAST COL
310 IF (L-(N-1)) 320,330,320
320 LaL+1
GO TO 110
330 IF (IND-1) 350,340,350
340 IND=0
GO TO 1GO
c COMPARE THRESHOLD WITH FINAL NORM
350 IF (THR-AX) 360,360,90
¢ SORT EIGVA & EIGVEC
360 IQ=-N§
DO 400 I=1,N
IQ=IQ+N
LL=I+{I*I-I)/2
JQ=N*(I-2)
DO 400 J=I,N
JG=JQ+N
Mi=J+(J*1-3)/2
IF (A(LL)-A(MM)) 370,400,400
370 X=A(LL)
A(LL)=A(MM)
A(MM)=X
IF (Mv-1) 380,400,380
380 DO 390 K=1,N
" IIR=IQ+K
IMR=JQ+K
I=R(IIR)
R{ILR)=R({IMR)
390 R{IMR)=X
4GO CONTINUE

RETURN

END
C :
¢ 82-06-08 JTH 82~-11=10
C

SUBROUTINE SYMFL (a,B,H,NS,IP)
DIMENSION A(NS),B(N,N)
COMMON/GARB/X0(600)
- WRITE (IP,2000)
DO 40 J=1,N
DO 10 X=1,N
10 X0(K)=B(X,J)

I1S=0

DO 40 I=1,N

B(1,J)=0.

DQ 20 KO=1,I
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I1S0=IS+K0
B(I,J)=B(I,J)+A(IS0)*X0(X0)
IF (I.BEQ.N) GO TO 40
KO=IS+I
It1al+1
DO 30 K=It,N
KO=KO+K-1
B(I,J)=B(I,J)+A(XK0)*x0(K)
IS=15+1
CONTINUE
RETURN ,
FORNMAT (/,60X,"'#*** ETR SYMFL *%*' /)
END

SUBRQUTINE KZCMZ (C,A,G, N,NS,IP)
DIMENSION C(NS),G(N),A(N,N)
COMMON/GARB/X0(600)

WRITE (IP,2000)

INK=0

IF (INM.EQ.O) GO TO 40

DO 30 I=1,N

SM=0.

DO 10 K=1,N

SH=SM+A(K,I)*A(K,I)

DO 20 K=1,N

A(K,I)=4(K,L)/sM

CONTINUE

DO 50 I=1,N

G(I)=1./8QRT(a(I))

10=0 .

DO 70 J=i,N

DO 60 K=1,8

XO(K)=G(X)*A(J,K)

DO 70 I=1,J

I0=I0+1

c(10)=0.

DO 70 K=1,N

C(I0)=C(I0)+A(I,K)*X0(X)

CONTINUE
RETURN

FORMAT (/,60X, '#*% ETR NZGMZ *%*' /)
END

C 82-06-09 JTH 82-11=10

C

SUBROUTINE KBMKM (PH,XK,XM, N,NS,IP)

COMMON/GARB/XC(600)

DIMENSION PH(N,N),XK(NS),XM(NS)
WRITE (IP,2000)
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IS=0

DO 70 J=1,N
DO 10 KO=1,J
IS0=IS+K0
XO(K0)=xM(IS0)
IF (J.EQ.N) GO TO 30
KO=IS+J

DO 20 K=J+1,N
KO=KO+K=1
XO(K)=XM(KO)
IK=0

DO 60 L=1,N
PH(L,J)=0.

DO 40 XO=1,L
IKO=IK+KO

PH(L,J)=PH(L, J)+XX(IKO)*X0(XO)

IF {L.EQ.N) GO T0 60
KO=TK+L '
DO 50 K=L+1,N
K0=KO+K~1
PH(L,J)=PH(L, J)+XK(X0)*X0(K)
IK=IK+L
IS=IS+J
10=0.
DO 110 J=1,N
IK=0
DO 100 I=1,J
I0=10+1
XK(I0)=0."
DO 80 KO=1,I
IXKO=IK+KO : : '
XK(I0)=XK(IQ)+XM(IKO)*PH(K0,J)
IF (I.EQ.N) GO TO 100
KO=IK+I ‘
DO 90 K=I+1,N
KO=KO+K=1
XK(I10)=XK(I0)+XM(KQ)*PH(K,J)
IK=IK+I
CONTINUE
RETURN
FORMAT (/,60X,'#** DTR KBMKM #e*' /)
END

FOR 82-12-05 (0K, 12-04) 82-09-14,20 OK,

JTH

SUBROUTINE KE2D6 (ICHK,IMP,ISP,DX,DY,IP,IPS)

COMMON/SPROP/SP(20,5)
COMMON/MPROP/XP(4,3)
COMMON/CESTM/XC(6,6),X00(108)
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COMMON/GARB/XE(6,€6),8%(3,3),17(3,3),C1,02,C3,C4,
DXpY,C,S,E,XL,4,XT,AAA0(535) '

IF (ICHK.EQ.!1 .AND. IPS.EQ.1) WRITE (IP,2000) DX,DY
XL=SQRT(DX*DX+DY*DY)
IF (XL.2Q.C.) STOP

E=XP(IMP,1)
A=SP(ISP,1)

XI=SP(ISF,2)

C1=E*4/XL

C2=E*XT/(XL*XL)
C35=12.%02/XL

C4=4 ,*C2*IL
C2=C2%*q.

C=DX/XL
S=DY /XL
T(1,1)= C
7(1,2)= S
7{1,3)= O.
7{2,1)==5
7(2,2)= C
w(2,3)= 0.
7(3,1)= 0.
T(3,2)= 0.
(3,3)= 1.
XB(1,2)=0.

- XB(1,3)=0.
XE(1,5)=0.
XE(1,6)=0.
XE(2,4)=0.
XB(3,4)=0.
XB(4,5)=0.
XE(4,6)=0.
XE(1,1)=Ct
XB(2,2)=C3
XB(3,3)=C4
XE(4,4)=C1
XE(5,5)=C3
XE(6,6)=C4
XE(1,4)==C1
XE(2,3)= C2
XE(2,5)'—C3
XE(2,6)= C2
XE(3,5)==C2

XE(3,6)= C4*0.5

XE(S,S)’—CZ
DO 10 J=1,5

DO 10 I=J+1,6
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10 XE(I,J)=XE(J,I)
IF (ICHK.NE.1 .OR. IPS.NE.%1) GO TC 20
CALL PMATE ( T,1,1,3,3)
CALL PMATE (XE,1,1,6,6)
20 DO 80 M=1,2
DO 80 N=1,M
K=(M-1)%3
L=(N-1)*3
DO 30 K121,3
DO 30 K2=1,3
I=K+K1
sST(X1,X2)=0.
DO 30 K3=1,3
J=L+K3 )
30 ST(K1,K2)=ST(K1,K2)+XE({I,J)*T(K3,K2)
DO 70 K1=1,3
DO 70 K2=1,3
I=K+X1 '
JalL+¥2
IF (J‘I) 40140970
40 %6(1,J3)=0.
DO 5C K3=1,3
50 XG{I,J)=XG(I,J)+T(K3,K1)*ST(X3,K2)
IF (J-1) 60,70,70
60 X6(J,1)=xc(r,J)
70 CONTINUE
80 CONTINUE

IF (ICHK.NE.! .OR.IPS.NE.1) GO TO 90
, CALL PMATE (XG,1,1,6,6) -
-390 CONTINUE
RETURN
2000 FORMAT (20X, 'ETR KE2D6',4X,2F12.32
END

SUBROUTINE BMXYZ (ICHK,IMP,ISP,DX,DY,DZ,IP,IES)
COMMON/MPROP/XP(4,3)
COMMON/SPROP/SP(20,5)
COMMON/CESTM/XG(12,12)
COMMON/GARB/S(12,12),87(3,3),7(3,3), BE,EG,PR,A,XIYY,XIZZ,XJJ,
1 T™4,s%,0XY,DL,CT, CB,C1,CA,SA,SB, CTH,STH,
2 Y0,¥4,Y2,Y3,Y4, 20,21,22,Z3,Z4,AAAC(409)

IF (ICHK.EQ.?! .AND. IPS.EQ.! )} WRITE (IP,2000) DX,DY,DZ
B=XP(IMP,1)

EG=XP(IMP,2)

PR=XP(INP,3)

A=SP(ISP,!)

XIYY=sp(IsP,2)



141

XI2Z=SP(I3P,3)
XJJ=SP(ISP,4)
TH=SP(ISP,5)*3.14159265/180.
IF (EG.EQ.0.) EG=0.5*E/(1.+FR)
IF (XJ3.8Q.0.) XJJ=XIYY+XIZZ
XP(IMP,2)=EG
SP(ISP,4)=XJJ
S1=DX*DX+DY*DY
DXY=SQRT(S1)
DL=51+DZ*DZ
DL=SQRT(DL)
IF (DL.NE.C.) GO TO 10
WRITE (IP,2010)
- STOP
CA»E*A/DL
CT=EG*XJJ/DL
CB=E/(DL*DL)
YO=XIYY*CR
Y1=12.%Y0/DL
2= 6.%Y0
3= 2.%Y0*DL
Y4= 2,%Y3
ZQ=XIZZ*CR
Z1=12.%*20/DL
Z2= 6.*70
Z%= 2,%70%DL
Z4= 2.%73
IF (ICHK.NE.1 .OR. IPS.NE.1) GO TO 20
WRITE (IP,2020) (SP(IsSP,I),I=1,5)
WRITE (IP,2020) (XP(IMP,I),I=1,3)
WRITE (IP,2020) DX,DY,DZ,DXY,DL
WRITE (IP,2020) YO,¥1,Y¥2,Y3,Y4
WRITE (IP,2020) 20,21,22,23,Z4
WRITE (IP,2020) CA,CT
D0 30 J=t,11
DO 30 I=J+1,12
s(1,J)=0.
S{1,1)= CA
S(7,1)=-CA
S(7,7)= CA
S(4,4)= CT
S(10,4)==CT
s$(10,10)= CT
s( 2, 2)= 21
s( 8, 2)=-21
s{ g8, 8)= 21
s{ 6, 2)= Z2
(12, 2)= 22
S{ 8, 6)=-22
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8(1z, 8)==22

s{ 6, 6)= Z4
s(12,12)= 24

s{12, 6)= 23

s( 3, 3)= Y1

S( 9, 3)‘“‘[1

s( 9, 9)= ¥1

s(11, 9)= Y2

S( 9, 5)= Y2

S( 5, 3)==Y2

S{11, 3)=a¥2

S{ 5, 5)= Y14
S(11,11)= Y4

s{(11, 5)= ¥3

DO 40 J=2,12

DO 40 I=1,J=1
8(1,3)=8(J,1)

CALL ZERO (T(1,1),7(3,5))
IF (TH.NE.C.) GO 70 &0

IF (DY.EQ.O. .AND. DZ.EQ.C.) GO TO 50
IF (DX.EQ.0. .AND. DZ.EG.0.) GO TOQ 40
I* (DX.EQ.O. .AND. DY.EQ.0.) GO TO 70

GO TO 80
C1=DX/DL
T(1,1)=Ct
7{(2,2)=C1
P(3,3)= 1.
GO 70 100.
C1=DY/DL
T(1,2)= C1

(2,1 )==C1

T(3,5)= 1.

GO T0 10C

Ct=DZ/DL

7(1,3)= C1

T(2,2)= 1.

T(3,1)2-C1

GO TO 100

SB= DZ/DL

CTH=COS(TH)

STH=SIN(TH)

IF (DXY.EQ.0.) GO T0O SO
CB=DXY/DL

CA=DX/DXY

SA=DY/DXY

T(1,1)=CA*CB
T(1,2)=3A*CB

7(1,3)=SB
T(2,1)=-3A*CTH-CA*SE*STH
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E10)

100

110

T(2,2)= CA*CTH-SA*SB*STH
7(2,3)=+STH*CE

T(3,1)= SA*STH-CA*SB*CTH
T(3,2)2=-CA*STH-SA*SE¥CTH
T(3,3)= CB*CTH

GO T0 100

T(1,3)= SB
T(2,1)=-STH*SB

7{2,2)= CTH

(3,1 )=-CTH*SB
T(3,2)=<STH

DO 160 M=1,4

DO 160 N=1,M

K=(M=1)%3

L=(N-1)%*3

DO 110 K1=1,3

DO 110 K2=1,3

I=X+K1

ST(K1,K2)=C.

DO 110 K3=1,3

J= L+¥3

ST({K1t,K2)=8T(X1,K2)+s(I, J)*T(K3 K2)

DO 150 Ki1=1,3

- DO 150 K2=1,3

120
130

140
150
160

170

2000
2010
2020
2030

I=K+K1

J=L+K2 _

IF (J-I) 120,120,150
x¢(1,J)=0.

DO 130 K3=1,3

x6(Ir,J)=XG(I,J)+T{K3,K1)*sT(K3,K2)

IF (J-I) 140,150,150
XG(J,I)=Xxc(I,J)
CONTINUE '
CONTINUE

IF (ICHK.BE.1 .OR. IPS.NE.1) GO T0O 170

WRITE (IP,2030)
CALL PMATE (S,1,1,12,12)
CALL PMATE (T, 1,1,3,3)
CALL PMATE (XG,1,1,12,12)
CONTINUE

RETURN

FORMAT(/,3X, 'ETR BMXYZ',4X,3F12.3/)

FORMAT (5X,'DL=C.’)
FORMAT (12F14.5)

FORMAT (/,5X,'S,T AND %G ...")

END
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