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ABSTRACT

This report represents essentially the thesis submitted by Long-Cheng
Huang in partial fulfillment of the requirements for the degree of Doctor of
- Philosophy in Civil and Environmental Engineering at The University of Iowa.
Professor Allen T. Chwang was supervisor of the research project and thesis
advisor.

An accurate hydrodynamic pressure distribution on the vertical upstfeam
face of a flexible dam due to ground excitations is obtained, by analytical
and numerical methods, for a three-dimensional, arbitrarily shaped reservoir
with a rigid vertical side boundary.

The solution for the velocity potential is expressed analytically in
terms of a set of 1line integrals along the reservoir boundary. These
integrals are then converted into a matrix equation with the boundary being
divided into a sufficiently large number of segments and the average value of
the velocity potential along each segment is used to represent that segment.
'The matrix equation ‘is solved numerically and the hydrodynamic pressure
distribution on the dam-reservoir interface is determined in terms of the
velocity potential through the Bernoulli eguation. An integration of the
hydrodynamic pressure distribution yields the total earthquake loading on a
dam.

The effect of the surface waves and the compressibility effect of water
on seismic water pressures have been studied in detail. The present results

are in good agreement with the analytical solutions derived by Huang and



Chwang (1982} and Kadle and Chwang (1982) when the reservoir has a simple
geometric shépe such as a rectangle, a circle, or a semi-circle in the rigid
dam case. By expressing the deformation of a dam at the interface of the
coupled dam-reservoir system as a linear combination of the first four mode
shapes of the dam itself, the effect of the dam flexibility is briefiy
discussed. It is found that the compressibility of water and the flexibility
of a dam change significantly the hydrodynamic pressure forces acting on the

dam,
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CHAPTER 1

INTRODUCTION

1.1. Review of Pertinent Literature

During an earthquake, a dam accelerates into and away from the
reservoir, and as a result develops a hydrodynamic pressure in excess
of the hydrostatic pressure. Depending on the intensity of the
ground excitation, this pressure can be large enough to cause damage
to a dam. In view of the disastrous consequences of a dam failure
during an earthquake, it 1is necessary to develop an adequate
analytical method to study the earthquake effect on a dam-reservbir
system.

For an infinitely long reservoir, Westergaard (1933) first
derived an expression for the hydrodynamic pressure exerted on a
rigid dam with a vertical upstream face by an incompressible fluid in
the reservoir. The "added mass" theory was presented in his paper by.
ignoring the effect of surface waves.

Since the pioneering work of Westergaard, a series of
investigations have been conducted to study the seismi¢ response of
rigid dam-reservoir systems for incompressible and compressible
water,  Kotsubo (1959, 1961) obtained a general solution for both

transient and steady-state hydrodynamic pressures acting on a rigid



concrete dam. Chopra (1967) demonstrated that the hydrodynamic
response of a compressible fluid during an earthquake is different
from that of an incompressible fluid.

For a dam whose upstream face is not vertical, Zanger (1953) and
Zanger and Haefeli (1952) determined the hydrodynamic pressures
experimentally using an electrical analogue. They concluded that the
hydrodynamic pressure on a dam with the upstream face vertical for
more than half of the total height would practically be the same as
that of a fully vertical dam. Recently, Chwang and Housner (1978)
and Chwang {1978) found that the normal-force coefficient remains
practically constant at around 0.5 for all slopes.

The effect of a finite reservoir on the hydrodynamic pressure
was  investigated by Werner and Sundquist (1946) and by Chwang
(1979). Chwang (1979) found that for horizontal accelerations the
hydrodynamic pressure force decreases as the size of the reservoir
decreases. He also found that the effect of vertical acceleration on
the pressure force exerted on a dam is simply to adjust the
hydrostatic pressure by replacing the gravitational constant by an
effective gravitational acceleration if the fluid in the reservofr is
incompressible, and this is true for any arbitrarily shaped
reservoir., The possibility of cavitation at some point on the
upstream face of a dam has been discussed, and the effect of non-
horizontal bottom has also been studied.

The effect of Kf1uid stratification 1in the reservoir on
hydrodynamic pressure ‘was analyzed by Chwang (1981), who also

discussed the effect of surface waves,



A series of papers by Chopra (1968, 1970) and Chakrabarti and
Chopra (1973a, 1973b, 1974) revealed that the elasticity and flexi-
bility of a dam have also profound effects on the hydrodynamic pres-
sures, In these papers, the deforhation of the interface of the
coupled dam-reservoir system was expressed as a linear combination of
the normal modes of vibration of the dam itself,

A11 the aforementioned papérs treated the dam-reservoir system
as a two-dimensional prdblem, considering only the planar vibration
of a linearly elastic dam cross-section withbut taking into account
the abutment and the side confinement of the reservoir which, in
reality, can be expected to affect the hydrodynamic pressures con-
siderably. Therefore the two-dimensional analysis appears to be an
approach that is too over-simplified to predict accurately the dy-
namic behavior of a three-dimensional coupled dam-reservoir system.

Three-dimensional rectangular dam-reservoir systems with verti-
cal side-boundaries were analyzed by Huang and Chwang (1982). Both
lTongitudinal and lateral harmonic excitations were investigated, and
the effect of compressibility of water, seismic wave attenuation,
phase difference between two ends of a reservoir, and the possibility
of resonance were also discussed. The effects of the seismic atten-
uation and the phase difference were found to be small. Kadle and
Chwang {(1982) investigated the three-dimensional circular and semi-
éircu]ar dam-reservoir systems, the effects of surface waves were
discussed in detail and the resonances were found to occur when the

ratio of the fluid depth to the period of the ground motion was



greater than 360 m/sec. In both papers, the dam was assumed to be

rigid.

1.2. Outlines and Assumptions

The present work is concerned with the boundary irregularity
effect on seismic water pressures on dams during earthquakes,
including the compressibility and the surface wave effects of the
fiuid and the flexibility effect of the dam. The hydrodynamic
pressure is the real part of the complex pressure due to a horizontal
jwt

acceleration, ae , in the x or y direction.

The following assumptions are made in this study:

(1) The fluid is compressible and inviscid and the flow is
irrotational with the presence of éurface waves,

(2) The upstream face of a dam is vertical,

(3) The reservoir bottom is horizontal and the side boundary
is vertical and rigid.

(4) There is no density stratification of the fluid in the
reservoir.

(5) = The amplitude of the excitation is small.

By analytical and numerical methods, the velocity potential can
be expressed in terms of a set of line integrals along the boundary,
and so can the hydrodynamic pressure. The effects of surface waves

and the'compressibility of water are included in this study., The



results obtained are checked with the existing theoretical solutions
for reservoirs with simple shapes. By expressing the deformation of
a dam as a linear combination of the first four mode shapes of the

dam itself, the flexibility effect of the dam is also investigated.






CHAPTER II
THEORETICAL ANALYSIS

2.1, Governing Equations and Boundary Conditions

We shall analyze a dam-reservoir system in which the reservoir
is arbitrary in shape with a constant depth h and vertical side boun-
dary, and the vertical dam has a constant width b, and height H,

Let the coordinate origin be located at the center of the base
of the dam. The x-axis is in the direction perpendicular to the
upstream face of the dam and lies in the horizontal ground plane,
The y-axis is perpendicular to the x-axis in the horizontal plane,
and the z-qxis is pointing vertically upwards. The bottom of the
reservoir is at z = 0, The profile of free surface {s denoted
by z = h + n{x,y,t). The arbitrarily shaped reservoir 1is bounded
by 3D, and the upstream face of the dam which is located at x = 0,
extending from y = -b/2 to b/2 (see Fig. 1}.

-jwt

It is assumed that the ground acceleration is ae along the

positive x (longitudinal) or the positive y (lateral) direction.



2.1.1. Dam

The motion of the flexible dam is governed by

M1z +[C1Z +[Klg =F, (2.1)

where g (x,y,2z,t) is the displacement vector, [M] the mass matrix, {C]
the damping matrix, [K] the stiffness matrix and F the applied
external force vector which includes the normal hydrodynamic pressure
force and the ground acceleration force at the base and on the side
boundaries due to an earthquake.

The displacement of the upstream face of the dam in the x
direction, relative to the base, can be expressed as a linear
combination of its normal-mode shapes

oly,z,t) = & Y.(t) f. (v,2), (2.2)
where Yj(t) is the generalized coordinate and fj(y,z) is the normal-
mode shape for the jth mode of the dam, In reality, only the first
few modes {(say, J modes) of the dam are important.

The boundary conditions on ¢ (y,z,t) for a flexible dam are as

follows:

(i) The dam is clamped at the bottom {z = 0) and at two sides
(y = £ b/2), Therefore, the displacement ¢ and its

normal derivative must vanish at the clamped boundary.



(ii) The dam is free at the top (z = H), Hence, the shear

stress and the moment must vanish at z = H.

The total acceleration in the x direction on the dam-reservoir
interface due to a ground acceleration ae".“’t at the base of the dam

is

. . J .
t(y,z,t) =aae” ™t + 3 ¥ (t) f.(y,2), (2.3)
1 3 j -
J
where dot denotes differentiation with respect to the time t, A = 1
when the acceleration is in the x direction and A = 0 when the
acceleration 1is in the y direction. For a harmonic ground
excitation, the generalized acceleration résponse for the dam is of

the form

t) = Vi) e ™%, (2.4)

where &;(w) is the complex frequency response of §j(t), Substituting

(2.8) into (2.3), we have

[«

tly,z,t) = [ba + & Vi) f.(y,z)le"®t, (2.5)
jop j



2.1,2, Reservoir
For inviscid, irrotational motions of compressible water in a
reservoir, the velocity vector has a scalar potential ¢. If the
motion of the water is assumed to be small in amplitude, the equation

of motion for the water is the wave equation

=% ]
N

2 2 2
;_dz,+_¢;+.;_.¢_ _Lz (2.6)

3y o

Qs
ct

where ¢ (x,y,z,t) is the velocity potential and ¢, is the speed of
sound in water. The hydrodynamic pressure P(x,y,z,t) is related

to ¢ by
3% :

where P is the undisturbed density of water.
The boundary conditions for ¢ subjected to an acceleration of
ae” ™% are as follows:
{i) Norma) Ve!ocity at the bottom of the reservoir must

vanish:
3 (x,y,0,t) = 0. (2.8)
(ii) Normal velocities of the fiuid on the upstream face of

the dam (x = 0) and on reservoir boundary 3D must be the

same as those of the solid:
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. J .. .
2 (0y,z,t) = Ll laa+ 1 Vi) fly,2)2e7, (2.9)
w =

Ix je1 3 J
%%-(x,y,z,t) = 3 %—A(x,y) e.Tmt on 3D, (2.10)

where A{x,y) is an attenuation function, and 3/9n denotes

the normal derivative.

(i1i) The linearized kinematic boundary condition at. the free

surface is

Q>

2L (x,y5t) = 3% (x,y,h,t) = 0 at z = h, (2.11)

(iv) The linearized dynamic boundary condition at the free

surface is

g%»(x,y,h,t) + gn(x,y,t}) =0 at z = h, (2.12)

where g is the gravitational constant.

Combining (2.11) and (2.12), we obtain the free-surface boundary

condition

Q2
-

+
[fe]
o
1]
o

at z = h. (2.13)

Q
ct
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Y. {w)
Let 0 (x,y,2,t) = 4g(x,¥22,8) + 2 —h— 0 (x.y,2,t), where ¢,

satisfies the governing equation

3% . 3%. 3%, 132¢.

——%+—Z~l+—7—l= —%—(j =0,1,2,...d). (2.14)

Y y az c at

<

¢o satisfies the boundary conditions (2.8), (2.10), (2.13) and

3¢

0 i -jut
Ix (O,y,z,t) = [},‘Aae ®

on the dam. (2.15)

¢j satisfies the boundary conditions (2.8), (2.13) and

3¢ ., : . .

ggl-(ﬂ,y,z,t) = £~a fj(y,z) e Ot o5 the dam, (2.16)
ad .
gL (%¥,2,8) =0 on 3D, (2.17)

2.2. Velocity Potential

The solution of (2.14), subject to the boundary conditions
(2.15) to (2.17), can be obtained by the method of separation of
variables as

i -jet

b (x,¥52,t) = a e ijo(x,y) cosh (k z)

+ I . . cos (k z
I () cos (2)]



(j = 031529-00‘:})’
where ko, satisfies the dispersion relation
2 .
w® = gk tanh (k,h),
or
1 - Ckhtanh (k h) =0,
and kp satisfies

1+Ckhtan (k h) =0,
m m

and the wave-effect parameter C (Chwang, 1981) is given by

In equation (2.18), wjo (x,y) satisfies

2

where v° is the two-dimensional Laplacian operator in the

and

12

(2.18)

(2.19)

(2.20}

(2.21)

(2.22)

(2.23a)

X~y Sspace

{2.23b)
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An alternate form of equation (2.23b) is

where

B = wh/c, (2.23¢)

is a dimensionless parameter, which measures the compressibility
effect of water. B = 0 means the water is treated as incompres-

sible. The boundary conditions for woo are

By Q
exoo = %Qﬁ- 2 5 on the dam, (2.23d)
x=0 0 1+C00
ay Q
5720 = 2 A(x,y) —2  on 30, (2.23)
o 1+COo

and for wjo(3=1,2,...d) are

3 . h
0] et [

—_— = .(y,z) cosh (k.z) dz on the dam, (2.23f)
% lx=0 n(1+cq,) 0 ’ 0

awjo

-571-'—-= 0 on 30, (2.23@)
where

Q, = sinh (kgh). (2.23h)

Let M be the largest integer such that km j_m/co. Then for m<M, wjm

{x,y) satisfies



b, =0 (m<M), (2.24a)

where

=/ @97 -kl (2.24b)

14

When kyn = w/co, resonance occurs (see Kadle and Chwang, 1982). For

m>M, wjm(x,y) is a solution of

vy, -8 2y, =0  (m>M), (2.25a)

where

g =f k.- ()7 (2.25b)

The boundary conditions to be satisfied by wjm's are

~on -2 Om on the dam (2,26a)
% o *a 100 7 :
ayp Q
T 1?21; A(x,y) — on 3D, (2.26b)
m 1-CQm
and
a¢jm 2 h °
= s~ | f.{y,2z) cos (k,z) dz on the dam, {2.26¢)
ax x=0 h(l-(‘,Qm ) % J m
v,
e = 0 on 3D, (2.26d)
where

Qm = sin (kmh). (2.26e)
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Hence ¢ (x,y,Zz,t) can be obtained in terms of the functions wim

(x,¥) (§ = 0,1,2,..,.d and m = 0,1,2,3,...) which can be determined

numerically for an arbitrarily shaped reservoir, as is discussed in

the next chapter.

If there are no surface gravity waves (i.é. ¢ = 0), (2.18)
reduces to
U R "X T
¢j(x,y,z,t) =a=—e [nilem(x,y) cos (kpz)]
(i =0,1,2,...9), (2.27)
where km =.L§%%lﬁL.

2,3. Hydrodynamic Pressure Distribution

Since the governing equations and the boundary conditions are

linear, the principle of superposition applies. The hydrodynamic

pressure P(x,y,2z,t) due to harmonic ground motion can be expressed as
x-*

J Y.w)

r P.(x,y,z,t). (2.27)

=1 @ J

P{x,y,Z,t) = P (x,y,z,t) +
° j

We note that Pgy(x,y,z,t) is the hydrodynamic pressure for a
rigid dam, and Pj(x,y,z,t) corresponds to the pressure for the jth

mode of vibration with the base of the dam being fixed.



The hydrodynamic pressure at the dam face can be obtained as the

real part of (2.7) at x = 0. Therefore, by (2.7) and {2.18),

Pj(O’y,Z’t) (-j = 0!132,.00‘]) 'iS

—iwt
Pj(O,y,z,t) = Re {-p jae w [ij(O,y) cosh (kbz)

+ mz=1 wjm(ﬂ,y) cos (k z) 1}, (2.28)

where Re denotes the real part.

The hydrodynamic-pressure distribution on the dam, normalized

with respect to poah, is

P(0,y,z,t)

> ah = Cpi cos wt + Cpo sin wt, (2.29a)

where the in-phase pressure coefficient Cpi is given by (2.27) and
(2.28) as

'.*

J Y.(w) |
= ¢° A
Coi = Cpi * I —7— Ghis (2.29b)
j=1
in which
1 «©
Cf)'i =-% Re {WJO(Osy) cosh (kOZ) + mil IPJm(O,_Y) cos (ka)}

(j = 0,1,2,...0), (2.29¢)

16
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and the out-of-phase pressure coefficient Cpo 1S given by

-t*
J Vi) .
=0 J
Cpo Coo * jil ~l5~n Chis (2.29d)
in which
- 1 00
Cgo = - g Ip{v50(0.y) cosh (kz) + mil ¥ ip(0sy) cos (kp2)}
(j =0,1,2,...9), (2.29)

where Im denotes the imaginary part. Alternatively, the dimension-

less pressure distribution on the dam may be expressed as

C.coswt +C sinwt =C_ cos (wt -8 ),\ (2.29f)
p1 Po P p
where
_ 2 2,1/2 _ -1
Cp = (Cpi + Cpo) . ep = tan (Cpo/cpi)‘ {2.299)

2.4. Force and Moment Coefficients

The hydrodynamic pressure force acting on the dam, normalized
with respect to poahz, is obtained by integrating (2.29) with respect
to z from z = 0 to z = h., Hence, we have the dimensionless force

coefficients as

Cfi cos wt + Cfo sin wt = Cf cos (wt - ef), (2.30a)
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where
2. 2.1/2 )
Cf = (Cf'l + CfO ) , ef = (CfO/CfT)’ (Z.SOb)
3 Vi)
. (W .
- 0 J
Cej = Cpi® 3 —lo—yyd, (2.30c)
j=0 :
3 Yiw)
. .
= 0 J J
Cép = Cpp * 2 7 Cfo™ - (2.30d)
3=0
: Q © 0
1
Cel = - K Re (5 ¥50(0y) + T TR ¥ (03, (2.30e)
m m=1 m
J 1 Q0 > Qm .
Cep = = h IME R ¥j0 (O0y) + T TR V(0¥ (§ = 0,1,2,...9).
0 m=l m
(2.30f)

In general, Cg¢ is a function of y. The total force coefficient

can be obtained by integrating (2.30) with respect to y fromy = -

b b
‘Z‘tOyF-z-.

The hydrodynamic moment acting on the dam, normalized with
respect to poah3, is obtained by integrating (2.29) multiplied by z

with respect to z from z = 0 to z = h., This yields

| Cmi cos wt + Cmo sinwt = Cmcos {wt - em), (2.31a)
where
~ 2 2.1/2 -1
Cp = (Cpy” + Coo) /%0 = tan™ (Cn/Cry)s  (2.31D)
J Viw)

PR’ ;

= 0 R J
Coi = Cpi * i = Cri” s (2.31c)
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. Y (w) ;
Coo = Cpo * jz::1 —l——a Cro” s {2.31d)
Coni --%Re{——zso Vig(0,y) + ; -——76’“ v, (0,y)} {2.31e)
i (k)" 3¢ m=l (k)" "
G, ® G
Coy = -~ Im { Y:n(0 + v, (0,¥)} (i =0,1,2,...9),
mo i (koh Z *jo el z;;;"z jm
(2.31F)
and
8, = k,h 0, (1-C) + 1, (2.31q)
& =khQ (1-C) - 1. (2.31n)

The total moment coefficient can be obhtained by integrating

(2.31) with respect to y fromy = - stoy = ?;'

2.5, Complex Frequency Response

It is to be ﬁoted that the hydrodynamic pressure P{x,y,z,t) on
the dam has been expressed in terms of the unknown complex frequency
response for the generalized acceleration ¥§(“)’ which is determined
as follows,

Equation (2.1) corresponding to the jth-mode vibration of the
~iwt

dam, due to a ground acceleration ae at the base, can be written

as



sz{m) . Y 2
My + 25— Y(t) + & o M.¥(t) tuy MJYJ(t)
~iwt
= - . X .3
[AaEJ + Foj(m)]e , {2.32)
where
b
H 7 )
M= [ m{y,z) fi¢ (y,2) dy dz, (2.33a)
0 b
-7
b
H 7
E.=f [ my,z) f (y,z) dy dz, - (2.33b)
J 0 b J
-7
b
h 2,
Foj(w) ={) Ib P (yszim) fj(.y,z) dy dz, -~ (2.33¢)
-2
b
h 2,
Foiw) = [ [ Pily.zw) fily,z) dy dz, (2.33d)
J 0_b ] -
-7

in which m(y,z) is the mass distribution for the dam, £, is the
damping ratio, wj is the natural frequency correspondihg to the jth-
made of the dam, P;(y,z;m) is the complex fréquency response of
Pj(O,y,z,t), and a is defined in (2.3).

Substituting (2.4) into (2.32), the complex frequency response

for a generalized acceleration is obtained as

20
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% AaEJ + FOJ(‘“)
YJ(m) = w ., w . FZ.(w) . (2.34)
MiLGY - 2i 550 - 11 - =L

The generalized coordinates are obtained by integrating

2o

X "'. - . N Iy
Yj(t) = Yj(w) e T twice with respect to time:

1 -iwt
vi(t) = "5 Y (W) e v, (2.35)

Thus, the displacement of the dam can be determined from (2.2) and
(2.35).

Since the displacement of the dam relative to the base is
expressed as a linear combination of the first J normal-mode shapes

of the dam itself, the hydrodynamic pressure on the dam can be

determined from (2.29) and (2.34),
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CHAPTER 111
NUMERICAL METHODS

In Chapter II, the velocity potential is expressed analytically
in terms of the function wjm(x,y). In order to complete the solution
for the velocity potential ¢, it 1is necessary to determine the
function wjm(x,y) which satisfies the Helmholtz equation and the
appropriate boundary conditions. The solution of Helmholtz equation

can be expressed in integral forms as a function of the values of

¥, and 3¥, /3n on the boundary 3D.
Jm Jm

3.1. Boundary-Integrai-Equation Method

By applying Green's identity formula and choosing the Hankel

function of the first kind and zeroth order, Hél)(umr) as the

fundamental solution of the Helmholtz equation (2.24), the function
¢jm at any position % inside the reservoir can be expressed as (see
(A.9) in Appendix A.1)
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where ik is the position vector of a boundary point, r is the
distance [& - &k[, and n is in the outward normal direction. The
integration is performed along the boundary 3D of the reservoir
travelling in the counter-clockwise direction. If the point X(x,y)
approaches a boundary point from the iﬁterior of the reservoir, then
the factor i/4 in (3.1) should be replaced by i/2 for a smooth
boundary or ir/2x for a pointed boundary with an interior angle a.
Equation (3.1) leads directly to a solution of wjm(i) anywhere
in the resetvqir if both wjm and Bwjm/an are known averywhere on the
poundary. Although ayjm/an is known from the boundary condition,
¢jm is not known on the boundary. In order to determine the values
of wjm on the boundary, the field point % is allowed tovapproach a

boundary point &1. - If the boundary 1is sectionally smooth, {3.1)

reduces to (see A,10))

.

Vi) = =7 L Dgnli) = s e - HEt ) B e 07 ast).

(3.2)

Therefore the values of wjm on the boundary can be obtained by
solving (3.2). Consequentily, the function wjm(i) can be determined
anywhere inside the reservoir from (3.1).

Solutions of (2.25) can be obtained by the. same method, Let
Ko (Smr) be the modified Bessel function of the second kind and
zeroth order. The function wjm at any point % inside the reservoir

can be expressed as (see (A.15))
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P = - L Wl 57 KoEar) - KoBar) 7 ¢ guee)]
ds(%) (m > M), (3.3)

where the notation is defined as before. If the'point % approaches a
boundahy point from the finterior of the reservoir, then the factor
1/2n in (3.3} should be replaced by 1/x for a smooth boundary
or l/o for a pointed boundary with an interior angle o.
Allowing the field point X to approach a smooth boundary

. +>
point xi, we have

ds (X, ). (3.4)

Therefore, by (3.3) and (3.4), {2.25) can be solved everywhere inside

the reservoir,

3.2, Matrix Representation of the Solution

In order to solve (3.2) for values of wjm on the boundary for an
arbitrarily shaped reservoir, the integral equation will be
approximated by a matrix equation. The _entire boundary of the
reservoir is divided into a sufficientTy 1arge3humber of segments, N,

where along each segment the average values of
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L (1

+ i 1 5
bim(xe) s i Gids B Gegrds 3 BEY Ge)

on that segment are used. Then the integral in (3.2) can be replaced

by a finite summation,

. N

1
wjm(;'i) =-7 .zg
(3.5)

where

. Tik Ts the distance between the points ;i and ik and is defined as
rig = |xi - xk[ = Pess

is the position vector for the field point on the boundary,

¥

is the position vector for the source point on the boundary, and

13 4
=~

As, is the Tength of the kth segment of the boundary.

The segments of. the boundary are numbered counter-clockwise. It
should be noted that because of this approximate presentation of the
boundary, the original curved boundary is replaced by a boundary
composed of straight-line segments.
Equation {3.5) can be written in a matrix form as
i

GG+ D A=36  (mem, (3.6)

where
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X =9 mx) Ck=1,2,,,.N, - (3.73)
aw.m '

Y= Jn_ (%) k = 1,2,...N, (3.7b)
1 ifi-=k i=1,2,...\, 5 7e)
1., =6, ¢ 3.7¢

LS L S Kk =1,2,...N,
(6.)., = (utD) A K= 1.2,...N (3.7d)

n)ik = 3n (Ho “Gugrig)) Asg = 1,2,...N, -

(G)1k = HO (umr‘ik) ASk k = 1,2,...N. ( . e)

Evaluation of these matrix elements will be discussed in the
next section. It should be noted that special care must be taken in
evaluating the matrices, especially for the element i=k.

To solve (3.4), the same approximate method is used in which the
entire boundary of the reservoir is divided into N segmenfs. Thus,

(3.4) can be written in a finite summation form

N _ .
> 1 + 3 3 h
Pint) = - w2 Dyt 3w RoBalik) - KoBari) 3w ¥ gm(i) sy
(3.8)
or written in a matrix form as
(lu +I)Z=-1-UN (m > M) (3.9)
T n = 7 - ’ ’



where

Z= Tij(Xk) k =1,2,...0,

1if i =k i= 1,2...00,
I =8, {
Tk ik g ae ik kK =1,2,...N,
_ 9 .

(Uﬂ)ﬂ( = In (KO(erik)) Ask k = 1,2, N

(V)5 = KB s sy k= 1,2,...N

3.3. Evaluation of Matrices

(3.10a)

(3.100)

(3.10c)

(3.10d)

{3.10e)

27

In Section 3.2 the formulation of an approximate solution to the

integral equation is discussed. In this section the method for

evaluating the matrices defined in (3.6) and (3.9) will be discussed.

3.3.1, Matrix Elements Defined in (3.6)

(i) Off-diagonal elements of matrix G

As defined in (3.5), the notation x;(xi,y;) (i =

refers to the field points, and ¥, (x.,y,) (k = 1,2,...N)

15230-0

N)

refers to
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the source points, The elements (G,)jx for i # k can be evaluated as

follows:

Gk = o D) Ggry)) a5y

ar,
= - ualdn i)+ Y G0 ] T ik s, (3.11)

where J1 and Yp are Bessel functions of the first and second kind of

order 1, and ryj, = %(xi - xk)2 + (yi - yk)2 is the distance between

 the mid—poinfs of the 1ith segment  and the kth segment of the

boundary,
Br.k
The term an1 in (3.11) can be written as
ar, ar, ar.
ik ik 38X ik ;3
) ax, (’ﬁqk * 35, (75 k- (3.12)

In (3.12), the differentiation with respect to the outward normal
direction on the boundary can be changed into that in the tangential

direction along the boundary by the relations

Ix _dy 3y _ _3ax
3n 35 3n - T 3se (3.13)
L L
Performing the differentiation of - 1X and ' in  (3.12) and
xk Byk ‘

incorporating the definition of rjg yield

(arik) _ %
an 'k Pik

Y-y

] ik ax

(ai)k t )
ik

K (3.14)
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Writing (3.14) in a difference form, we have

i YKo A

i
( an ) = - r. (As)k + o _E)k‘

(3.15)

Therefore, the off-diagonal elements of the matrix G, can be

evaluated by substituting (3.15) into (3.11).

(i1) Diagonal elements of matrix Gy

Since the source and field points are located at the mid-point
of straight-line segments which have been used to approximate the
boundary, a diagonal element of matrix G, corresponds to the
condition of coincidence of a particular field point and source
point. Due to the singular behavior of the  Hankel
function Hgl)(umr) as umn+0, special attention must be given in
evaluating these diagonal elements, |

The asymptotic behavior of H§1)(umr) as umr+0 is

Tim H§1)(pmr) ~ u__zmi - niu_lr_ | (3.16)

umNO m

Therefore, the diagonal elements of matrix Gn can be evaluated as the .

timiting value as r approaches zero,
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Q>
-

L (3.17)

-3 |2
=

. 2 ,
= i =As: lim
T r+0

The definition of r is

2 2
ro=d(x=x;) 4 {y=y,),

where (Xi, yi) are the coordinates of the mid-point of the ith

segment on the boundary. Thus the term %ﬁ-can be expressed as

-1y 213Xy
3 3 .
The terms (x-xj), (y=yj)s §§3 and 3%-can be expressed in Taylor
series in the neighborhood of (xi,yi!s

2 3
AS AS
pm xges + (xgg)y B30 (e 83y o, (3a9)

x
1
=
il

2
g%z (XS)‘i + (xss)i AS + (xsss)-i %‘?l+ ers I (3.19b)
as = x=x; s | (3.20)

where the subscript s refers to the differentiation with respect to

s, the index i means that the values of interest are evaluated at the
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mid-point of the ith segment, The expressions for y - y; and %% can

be obtained in exactly the same way.
Thus the term 1im ggfr in (3.17) can be evaluated by using the
r»-0
definition of r, (3.19) and (3.20). Neglecting the higher-order

terms in these relations reduces them to

ar ar (X Ve %ccYe)
Tim 30 = yyp A0, 5788 598 1 (3.21)
r+0 As+D

Therefore, the diagonal elements of the matrix G can be found from

{3.17) as

i
(6n)i5 =7 (Xg¥gs = Xgg¥s)y B5¢- (3.22)

In (3.22}, the firét and second derivatives are evaluated at the mid-
point of the ith segment of the boundary.

For a boundary which is originally composed of straight lines,
the value of xg¥gs and ygoxg in (3.22) are both equal to zero,
Hence, the diagonal elements of matrix Gn are equaT to zerc, For a
curved boundary which has been 'approximated by straight-iline
segments, the expression of the first and second derivatives, x¢ and

Xgg» Can be written in a difference form as

X5 4 %— - XL %
Xs = Bs. ; (3.23a)
i
= 8 *1417% i~ %1
Xss T 2s +2A5f + As [As 5 - 33 ﬂsi]’ (3.23b)
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where xj 1s the x coordinate at the mid-point of the ith segment of

the boundary, X5 1 is the x coordinate at the beginning of the ith
-2z

segment and Xi+% is the x coordinate at the end of the ith segment of

the boundary; AS'-l’ Asi, and A51+ are the Tlengths of the (f—l)th,

i 1

ith, and (i+l)th segments of the boundary. The derivatives yg and

Y¥sg can be evaluated in a similar way by changing x to y in (3.23).

(ii1) Off-diagonal elements of matrix G

The elements (G)ik for i # k can be evaluated directly from the

expression:
(6):, = e (W ro ) as, = [0 (u ro ) + Y (u_ri )] As (3.24)
ik = "o Wl k = LolHmMik oMmlik K .

(iv) Diagonal elements of matrix G
The diagonal elements of matrix G correspond to the case of i=k

in (3.24), As before, due to the singular behavior of the function

L)

o (umP), special attention must be given in evaluating the

diagonal elements of matrix G. Using the asymptotic formula
of Hél)(umr) as the argument iy approaches zero,
2 Ml

:110 Y wor e 141 2 n B ey, (3.25)
m

we have the average value of (G)jy as
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1
. T , wr
(@) = {— [ [141 = (an 5=+ v)] dr} s,
78Sy 0
2, tmt
={1+7% (an—"pT -1 +y)} asy, (3.26)

where i = 1,2,,..N, and vy = 0,577216 is Euler's constant,

3.3.2. Matrix Elements Defined in (3.9)

The elements of the matrices defined in (3.9) can be evaluated

by the same method as .described in Section (3.3.1).

(i) Off-diagonal elements of Up

X, =X y.-y
= i "k /A i Yk Ax
Wndik = Bnky Curid b= (68 - = aa)d os (3:27)

where K1 (8,r) is modified Bessel function of the second kind and

first order,

(ii) Diagonal elements of U,
Special care s given to evaluate the diagonal elements of Up.

By using the asymptotic behavior of Ky (8,r) as 8,r+0,
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; 1
Tim K, (B _r) = =~ (3.28)
Bmmﬂ 1V°m er

the diagonal elements of Un can be evaluated as

_ 1
(Un)ii =% (YsXss - Xs¥ss)i ASys (3.29)
where X, y¢, Xgg and ygg are given by (3.23).

(iii) Off-diagonal elements of U

(v),

ik B Ko(smri

k) Ask. | (3.30)

(iv) Diagonal elements of U

Using the asymptotic formula of K, (Byr) as Bpr+0,

B r
. m '
1im KO(er) % - (1n——2—+‘{), (3.31)
8 a0 ‘

and performing the integration to determine the average value of this

function over the length of the segment interested, we obtain

BmAsi
(U)ii = - {an ) -1 +9] As; (3.32)

where v is Euler's constant.

After the matrices are evaluated, the only terms left to be
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determined to solve the matrix equation are the elements which
invotve the normal derivatives on the boundary. However, the normal
derivatives are given by the boundary conditions, Dividing the
boundary 1into N segments and assuming no attenuation of ground
excitations between the dam and the far end of the reservoir, we can

replace A(x,y) at the dith segment by (%%}1 for longitudinal
Ax
As
the integral é f5(y,2) cos (kpz) dz can be evaluated by employing the

trapezoidal rule. [t should be noted that %ﬁ'= - %; at x = 0.

excitations or (- ); for lateral excitations. For a flexible dam,
h
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CHAPTER IV
RESULTS AND DISCUSSION

A theory for an arbitrarily shaped reservoir has been presented
in Chapters II and III. The numerical method will be tested by
checking the results with existing analytical solutions for a system
which consists of a rigid dam and reservoir with a simple geometric
shape. A rectangular-plate dam will be used to investigate the
flexibility effect on the response of a three-dimensional dam-

reservoir system.

4.1, Response of a Rigid Dam

A rectangle, a circle, and a semi-circle are chosen as the
representative plan-form shapes of a simple reservoir (see Fig. 2) to
test the present numerical method. These three shapes are chosen for
several reasons: (1) existence of the corresponding theoretical,
closed-form solutions; {2) the boundary of a rectangle represents an
extreme case that it is composed of four straight lines, along each
of which the direction of the tangent to the boundary remains
constant; (3) the boundary of a circle is another extreme case for

which the tangent to the boundary changes its direction continuously;
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and {(4) the boundary of a semi-circle contains one straight line and
a circular arc, |

The dimensionless pressure, force, and moment coefficients are
given by (2.29), (2.30) and (2.31) respectively. The terms with j =
0 are the only terms for tﬁe response of a rigid dam. The Tocal
pressure coefficient is dependent on the dimensionless groups z/h,
y/h, € (defined in (2.22)), B (defined in (2.23¢c)), and the size of
the reservoir, The force and moment coefficients are, however,
independent of z/h, but depend on all other parameters. B is a
measure of the compressibility of water., B = 0 means the water fis
treated as incompressible. C is a ratio of the gravity effect to the
inertial effect due to harmonic ground motion; C = 0 indicates no
surface waves. | |

The period of the ground acceleration, T, during & typical
earthquake may range from 0.1 to 10 seconds, If the reservoir height
h, is assumed to be 300 ft, then the maximum value of B is approxi-
mately 4 and that of C is 0.27. Since C is inversely proportional to
h and B is directly proportional to h, the value of B increases as C

decreases.

4,1,1. Rectangular Reservoir
A theoretical solution for the earthquake response of a three-
dimensional rectangular dam-reservoir system has been obtained by

Huang and Chwang {1982). The hydrodynamic pressure is not a function
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of y/h for a longitudinal excitation. By dividing the boundary into
N segments, the numerical results will be obtained and compared with
the theoretical ones.

It is expected that as the number of segments, into which the
boundary of the reservoir is divided, is increased, the numerical
results will agree better with the theoretical solutions., A compari-
son of the theoretical and numerical results for three different
values of N with ¢ = 0 and C = 0.2 are shown in Figs. 3 and 4
respectively. For the case with € = 0 (no surface waves), it is seen
that as N increases, the numerical results of the approximate method
agree better with the theoretical predictions. However, with € =
0.2, there 1is a large difference between the theoretical and
numerical results near free surface {(z/h = 1) for N = 40, and the
effect of N is siénificant. With the presence of surface waves, a
sufficiently large N should be taken that the maximum segment length
is much less than the wave length. Based on the numerical results,
Lee (1969) suggested that the ratio of the length of the largest
segment to the smallest wave length should be less than 0.1, N =78
is used in the following study for a rectangular reservoir.

The influence of the reservoir length, £/h, on the pressure,
force and moment coefficients are shown in Figs. 5 and 6. These
coefficients increase monotonically as £/h increases, and remain
almost constant when 2 /h is greater than 5. The limiting value of Cp
at z/h = 0, and Cy and Cq as &/h+ = are 0,742, 0.543 and 0.218

respectively (Huang and Chwang (1982)).



39

The effect of C on the hydrodynamic pressure is shown in Fig.
7. It should be noted that the pressure at the undisturbed water
surface (z/h =‘1) is no longer zero when surface waves are present,
In fact, the surface wave can play an important role as seen in Fig.
7 for C = 0.15 and C = 0.25. The pressure at the bottom of the dam
decreases as U increases, but it is oscillatory near water surface,

The effect of B on the hydrodynamic pressure for € = 0 is shown
in Fig. 8. It is found that when B = kqih, first resonance occurs.
Resonance also occurs at frequencies w = Cokm m = 2,3,...).
Therefore, when B is greater than k,h (n fixed), there are n modes of
standing waves (see (2.18) and (2.24b)), As a result, the
hydrodynamic pressure becomes oscillatory. This can clearly be seen
in Fig.b9, which shows the corresponding force coefficient for C = 0
and C = 0.05. We note that the force coefficient with C = 0,05 is
less than that with ¢ = 0 when B is small, and the resonance
frequencies are slightly higher when the wave is present.

A1l the results presented so far are due to a longitudinal
excitation. For a lateral excitation, the results are shown in Figq.
10 and Fig. 11.

The hydrodynamic pressure coefficient Cp at various values of
y/h is shown in Fig. 10. We note that the magnitude of Cp increases
as y/h increases and Cp is zero at the plane y = 0 (i.e. center of
dam). The value of Cp due to the. compressibility effect is also

found to be oscillatory for large values of B, as shown in Fig. 11.
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4.1.2. Circular Reservair

Theoretical analysis for the response of a circular dam-
reservoir system was made by Kadle and. Chwang (1982)., The TJocal
pressure coefficient Cp depends on the dimensionless parameters R/h,
z/h, C and B, where R is the radius of the circular reservoir, The
force and moment coefficients, however, are independent of z/h, but
depend on all other parameters. Only excitations in the x direction
are considered in circular and semi-circular reservoirs.

The pressure distribution at the dam face is shown in Fig., 12
for an incompressible fluid withaut surface waves (B = 0, C = 0), for
N = 72 and varying values of R/h, The pressure at any height .
increases with increasing R/h, until it reaches a maximum for 2
certain value of R/h.,  Then, with further increase in R/h, the
pressure diminishes and attains a finite value as R/h + =, Similar
behavior is also found for the force and moment coefficients, C¢ and
Chs as seen in Fig. 13. The theoretical values of Cp at z/h = 0, Cf
and Cy as R/h » = are 0,742, 0.543 and 0.218 respectively, which are
precisely the values obtained for a rectangular reservoir
as 2/h » =,

The behavior of the pressure distribution with an increase in
R/h can be explained. Initially, the pressure increases as the
amount of the fluid in the reservoir increases, as long as the total
mass 1in the reservoir is less than the "added mass". It keeps
increasing until the total mass exceeds the "added mass"., There is

another factor affecting the pressure at the dam face., This is the
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curvature of the side walls near the dam, When the reservoir is
small, there is a component of the hydrodynamic pressure at the dam
face, due to the side walls. However, when the reservoir is large
enough, this effect is negligible, Hence, the pressure falls and
stabilizes as R/h + =,

The wvariation of the pressure coefficient Cp with the
compressibility parameter B is shown in Fig, 14 for R/h = 5 and C =
0. The pressure increases with small B, However, it becomes
oscillatory when B is large. The force_ coefficient Ce¢ versus the
compressibility parameter B is shown in Fig. 15 with C = 0 and C =
0.05,. Again, resonance occurs when B > %; With a small wave-effect
parameter C, the force coefficient 1is decreased and the resonance
frequencies are slightly higher.

The hydrodynamic pressure distribution on a dam for various
wave-effect parameter C is shown in Fig. 16. The curves are similar
to the ones for a rectangular reservoir, Cp is oscillatory near.the

water surface,

4,1.3, Semi-Circular Reservoir
Theoretical results for the response of a semi-circutar dam-
reservoir was obtained by Kadle and Chwang (1982). The pressure
coefficient depends on the dimensionless parameters R/h, r/R, C and
.B. The force and moment coefficients, however, are independent of

z/h but depend on all other parameters.
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The pressure coefficient C, at the dam face is shown in Fig. 17
for a reservoir of size R/h = 5, for N = 68 and various r/R.  The
fluid is considered to be incompressible with no surface waves (B =
0, € =0). The maximum value for any fixed location r/R is attained
at the bottom of the dam (z/h=0). Also, the maximum Cp at any height
occurs at the central plane of the dam (r/R = 0), and decreases
slightly as r/R increases to 1,

The overall behavior of a semi-circular reservoir is similar to
that of a rectangular reservoir, The influence of R/h on the force
and moment coefficients are shown 1in Fig. 18. The hydrodynamic
pressure distribution -at the center of a dam for various values of
the wave-effect parameter C is shown in Fig. 19. The compressibility

effect on the force coefficient Cg¢ is shown in Fig. 20 for € = 0 and

€ = 0.05,

4.2. Response of a Flexible-Plate Dam

A rectangular plate dam in a rectangular reservoir or in a semj-
circular reservoir is used to illustrate the flexjbility effect on
the seismic response of dams. Rectangular plates with width to
height ratios of 2 and 10 are chosen as examples. The plate is fixed
(clamped) at the bottom (z = 0) and at two vertical side boundaries
(y = % %ﬁ, and is free at the top (z = H). For simplicity, the plate
height {s assumed to be equal to the reserveoir depth (H = h) in the

following study.
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The natural frequencies wj and normal-mode shapes fily,z) (J =

1,2,3,...) for a rectanquliar plate with width b, height h and
thickness d, can be obtained by solving the classical equation for a

free vibrational plate (Gorman, 1982)

4 4 4 2
- 2 f. 3 . m .
J_’_z g32+ J-——D)]-—f.=0, (4.13)
3y ay dz 9z J
where
E d3
D = — (4.1b)
12(1~» ")

is the flexural rigidity of the plate, m is mass of the plate per
unit area, E is Young's modulus and v is the Poisson ratio for the
plate material,

At fixed (t]amped) boundaries, the boundary conditions for

fj(y,z) are

af {#b/2,2)

- =
fs (£b/2,2) = ——3-53;—-—— 0, (4.2a)
3f (y.0)
£5 (v,0) = —dh— = 0. (4.2b)
At the free boundary z = h, we require
2%, 8%,
L+ v 21-= 0 at z = h, {4.2c)
2z Iy
3 3¢ 33f,
— + (22v) — = 0 at z = h. (4.2d)
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The solution of equation (4.1) satisfying the boundary
conditions (4.2) was obtained by Gorman (1982, pp. 204-219) in terms
of six sets of infinite Fourier series, three for symmetric modes and
three for antisymmetric modes. The dimensionless eigenvalues A?

defined by
(4.3)

are functions of the Poisson ratiov and the aspect ratio b/h.
Therefore, the jth eigenvalue x? can be determined numerically by
substituting the six sets of truncated Fourier series into equation
(4,1), then applying the boundary conditions (4.2), and finally
equating the determinant of thé finite-dimensional characteristic
matrix to zero,

The first four mode shapes and the corresponding dimensioniess
frequencies A§ for a rectangular plate with v = 0,17 and aspect ratio
of 2 and 10 are shown in Fig. 21, We note that, for a plate with an
aspect ratio of 2, the first, third, and fourth mode are symmetric
with respect to the center of the plate and the second mode is
antisymmetric. For a plate with an aspect ratio of 10, the first and
the third modes are symmetric and the second and the fourth modes are
antisymmetric,

The complex frequency response for a generalized acceleration

?;(m) for jth-mode is determined from (2.34). In addition to the

dimensionless parameters of the fluids, ?;(m) also depends on the
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ratio of the natural frequency of the dam to the exciting frequency,

mjﬁu, the rigidity of the dam, and the mass ratio of water to the
p h

dam, S, where S is defined as _%;_ (Mei, 1979). The following

parameters are used in this study:
b/h = 2 and 10, H/h =1, d/h = 0,3,

c, = 4720 ft/sec,

E=7.2 x 102 1b/ftZ,

v = 0,17,
S = 1,34,

The material constants E, v and S correspond tb the concrete. An
artificial damping batio of 0.05 for concrete is introduced,

A rectangutar reservoir with b/h = 2 and L/h = 10, and a semi-
circular reservoir with R/h = 5, which cofresponds to a dam with b/h
= 10, are considered here as representative shapes of a reservoir.

The pressure distribution on one half of a dam for each mode are
shown in Fig. 22. MWe note that the pressure distribution at the
center of the dam is zero for antisymmetric modes. Figure 23 shows a
comparison between the pressure distributions on a dam when different
numbers of modes are considered., It is seen that only the first mode

has a significant effect. 1In the following study, 4 modes are used.
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The hydrodynamic force response is shown in Figs. 24 and 25 for
a rectangular reservoir (b/h = 2) and a semi-circular reservoir (b/h
= 10), respectively,

The first four natural frequencies normalized by cy/h are 1.83,
4,08, 5.94, and 7.44 for a dam with b/h = 2, and are 0,83, 0,91, 1.04
and 1.21 for a dam with b/h = 10. They are shown on the abscissas in
Fig. 24 and Fig. 25 by open circles.

Resonance occurs at the natural frequencies of the coupled
system., The natural frequency of the dam plays an important role in
the hydrodynamic response. In the case of b/h = 10 (Fig. 25), the
natural frequencies of the dam alone are Jess than the resonance
frequencies of the coupled system for a semi-circular reservoir. The
hydrodynamic force is reduced when the exciting frequency is smaller
than the natural frequency of the dam alcne. However, it increases
considerably when the exciting frequency gets larger. The first two
natural frequenéies for the coupled system are smaller than the first
resonance frequency of a rigid dam-reservoir system., In the case of
b/h = 2 (Fig. 24), the first natural frequency of the dam alone is
greater than the first one of the rigid dam-reserveir system. On the
other hand, the first fundamental frequency of the coupled system is
very close to that of the reservoir, The second natural frequency of
the coupled system isr between the first two frequencies of the
reservoir and is less than that of the dam alone,

The flexibility effect on the response of a coupled system

depends on the natural frequencies of the dam and of the reservoir,
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It becomes important when the exciting frequency is Targer than the
natural frequency of the dam alone,

It should be noted that the pressure P;(x,y;m) (j = 1,2,...4)
and the complex frequency response of general acceleration '\’{;(m) are
coupled, By assuming the exciting amplitude to be small, matrix

elements for rigid dam case 1is adopted to solve the pressure
b4

Pj(x,y;w) .
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Tﬁe hydrodynamic effect of an earthquake on a three-dimensional,
arbitrarily shaped dam-reservoir system was analyzed and described.
For a ground motion ae_imt, a hybrid analytical-numerical method was
developed and found to accurately predict the hydrodynamic
response. The effect of surface waves and compressibility of the
fluid in the reservoir was discussed in detail, with the effect of
flexibility of the dam also included. The present results are in
good agreement with the analytical solutions derived by Huang and
Chwang (1982) and Kadle and Chwang (1982) for rigid dams and
reservoirs with simple geometric shapes, such as a rectangle, a
circle, or a semi-circle. |

In the presence of surface waves, a large segment number N into
which the entire boundary is divided should be taken, such that the
largest segment length is much less than the smallest wave length, A
ratio of one-tenth was suggested. With the presence of surface
waves, the pressure is oscillatory and plays an important role near
the free surface.

The resonance of the fluid in the reservoir occurs when the

compressibility effect parameter B 1is greater than »/2 (h/T > 1180
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ft/sec). The present method predicts the resonance accurately for an
arbitrarily shaped reservoir, The pressure distribution on a dam is
affected by the shape of a reservoir, Therefore, three-dimensional
dam-reservoir analysis is necessary to calculate the hydrodynamic
response {pressure, force and moment),

The flexibility effect is also included in this study. Only the
first few normal-modes are important, The flexibility of a dam
changes significantly the hydrodynamic pressure force acting on the
dam.

For any horizontal excitation, the hydrodynamimc response can be
cbtained by decomposing it into a longitudinal and a Tlateral
component, The responses obtained here are due to a harmonic ground
acceleration. For any arbitrary ground motion, the response can be
obtained by integration in the frequency domain.

A Tinear motion was assumed in this study, In a large variety
of practical systems, this assumption may not be valid and the non-

tinearity effect should be studied.
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APPENDIX A

SOLUTION OF THE HELMHOLTZ EQUATION
The derivation of a solution to the two dimensional Helmholtz

equation in a bounded domain will be presented in this appendix. For

tonvenience, the subscripts jm and m will be dropped.

A.1. Derivation of Equation (3,1)

Lat 3D be a closed curve bounding a domain D in the x-y plane.
Green's second %dentity'gives
3 3 2 2

[ 3k -0 ab)ds = [f (W0 - e9V) dA, (8.1)

3D 0
where 3/on denotes differentiation along the outward normal direction
on the bhoundary 3D,¢ and ¢ are regular, twice continuously differen-
tiable functions within the domain D and on the boundary 3D. Llet ¢

be a regular solution of the Helmholtz equation

vztp + uzw = 0, (R.2)
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and ¢ be the fundamental solution of (A.2), Hél)(u,r), where Hél) is
the Hankel function of the first kind and zeroth order, which is
singular at the origin. Now, let the singularity be located at an
interior point X. To avoid the singularity, Green's second identity
will be applied to the domain Dy, bounded by 3D and by a circle S,

of radius ¢ with 1its center at % (see Fig. A.1). Thus, G&reen's

second identity becomes

[ 02 fh)ds +f wik-0 5% a5 =[] (w5 - ev'y) da.
Se g (A.3)

Since the singularity is outside the domain Dy, both ¢ and ¢ are
reguTar solutions of the Helmholtz equation {(A,2), Therefore, the

right-hand side of (A.3) equals to zero. Thus, {A.3) reduces to

O TS DY) CL VAP L. I N o S S L OYSD

ab S€

- Hél)(u r) 3—%] ds,

where r is measured from the point %. Note that on the boundary

Se, 3/an = - 3/3r, (A.4) can be written as

105 ey - ity 2 (o ey - 1) 22 s,
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We now let & tend to zero. The right-hand side of (A.5) can be

written as

tin [ W 37 s ) - wgH @y s, (A.6)
€+
-

By using the asymptotic behavior of the Hankel function for smali

argument (ur>0)

1 ey ~ 1 2an@r), (A.72)
iy~ 1 2L (A.Tb)

the 1limit of (A.6) can be evaluated. The first and second terms in

(A.6) reduce to

Vo
. 5 (1) . 21
Tim [ v = (H "/ {ur)) ds = lim [ ¢ (i & 2) ede
e+ 0 Se: or »0 e+0 0 Te
= 41 v (%), (A.8a)
(1) 3 (L 2 '
Tim [ M3 (ur) 2% ds = 1im [ % (i Sen(ue)) e do = 0. (A.8b)
e+ S5 e+0 O
Substitute {(A.8) into (A.%), we obtain
> j 3 1 1 3
p(x) = - %fj Ly gﬁ’(Hé )(ur)) - Hé )(ur) g%ﬂ ds. (A.9)
aD
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In order to determine the function v on the houndary., we let the
field point % be on the boundary. The circle 5. in Fig. A.,l reduces
to a semi-circle (see Fig. A.2), In the limit as ¢ tends to zero,
the contribution to the integral in (A.8a) from the semi-circle is

only half of that due to a complete circle, i.e., 21¢(§). Therefore,

we have
> i > 3 1 1 3 *
o) = - 7] W 57 WM e - 1S ey 07 sk,
: 3
(A.10)
where r = ‘;k';ii’ and  both ii and ;k are on the boundary 30.

Simﬁlar]y, if the point ?1 is a corner point on the boundary (see
Fig. A.3), (A.9) reduces to

(1)

b (%) = - %ént“’-‘;k) a5 g ey - ¢

ur‘) g_n \P(;k)] d.s(;k)’
(A.11)

where the interior angle a is defined in Fig. A.3. For a smooth

curve, a is equal to m, thus (A,11) is identical to (A,10).

A.2. Derivation of Equation (3.3)

Following the same approach described in the previocus section,
we let ¢ and ¢ be regular, twice continuously differentiable
functions within the domain D and on the boundary 3D, we further

assume that ¢ be a solution of Helmholtz equaticn
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voy - 8% =0, (A.12)

and ¢ = K (Br), where Ko is the modified Besse1. function of the

o
second kind and zeroth order. Then, Green's second identity becomes

R Sk (Br) - Ky(8r) 2¥] ds = [ [b s= K (8r) - K (8r) 3] ds.

S&-’.’
(A.13)
Usjng the asymptotic behavior of the Bessel function for small

argument (8 r+0)

KO(Br) ~ ~2n(Rr), (A.l4a)
L 1 (A.14b)
5r Ko (Br) ~ - .

and letting the radius € of the small circle approach zero, we have

A

Q2

v = - %’73{) [ (%) = K (Br) - Ky(8r) = v (k)] ds(R).  (A.15)

If the field point X is a boundary point X;, (A.15) reduces to

v(x;) = -;}—aé [ (ki) 37 Ko (B7) = Ko (87) 5w (k)1 ds(X,).  (A.16)

If the point ?1 is a corner point on the boundary (A.19) becomes



lb(?(,e} _&l~ [ D (xy) §;{ Ko(8r) - Ky(8r) gﬁw(;k)]ds(;k)s (A.17)

where the interior angle a is defined in Fig. A.3. For a smooth

curve, o is equal tom,
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Figure 1. Schematic diagram of an arbitrarily shaped dam-
reservoir system,
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(1)

(ii) Second mode (A

(ii1) Third mode (X° = 104.41)

TR i \\\/’f‘fﬁ ],',,\..
I
AN/l

S

(1v) Fourth mode (1% = 130.52)
(a) b/h = 2

Figure 21. Normal mode shapes of a rectangular plate with
(a) b/h = 2, (b) b/h = 10,
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(i) First mode (Az = 363.62)
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(i1) Second mode (Az = 398.88)
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(ii1) Third mode (A% = 455.52)
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(iv) Fourth mode (1% = 532.11)

(b} b/h =10

Figure 21. {(Continued)
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Second mode

First mode

Fourth mode

0 and B = 1

Pressure distributions on a dam for each mode .

Third mode

10, C

1

2, &/h

A rectangular reservoir with b/h

(a)

Figure 22.
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Fourth mode
5,C=0and B8 = 1

Third mode

10, R/h =
nued)

(Conti

with b/h =

Figure 22.

(b) A semi-circu]ar'reservoir

84



T L=9gpue 0 =03 °0lL =u/v ‘¢ =u/qylm

SOpOl 4O SJ4BQUNU JUSASLLLP 0 NP SUOLINGLUAISLP 3J4nSSaUd dY3 u2amMIdQ uosisedwo) g7 sunblyg

d
o)
0°1 8°0 9°0 %°0 z'0 ‘0
| 0°0
— -12'0
ﬁl - #°0
4
z
» - 9°0
SAAOR § -
SAAOW € ----
SHAOW T ~— - —
— AAOW [ — - — 80
arniy
(1=9°0=0°01=4/¥‘2=U/9)
YI0AYISHY ¥YTINONVLOAY
1 — i 0°1




86

(A uo wep
8yl 4o Aduanbauy [eunjeu dy3 SII0UBP BSSLISqR BYJ UO 319410 uado ay]) 0 = J pue
OL = U/¥ 2 = U/Q YILlM JLOAUDSU UR|NBURIODU B U0 BSUOdSBA 82404 D LURUAPOUPAY ‘$Z 24nBry
€
0°C S 1 0'1 S0 "0
© _ _ _ 0°0
S~
[
I ATdIXATd
R T e e e e e e e e e ¢
: 1
I ainiy
|
- I . — o1
A L
! J | |
7\ ] ! __
.nw Yy 1 /! | ol deot
| |y u !
| Uy _
|| | ! .
- | 1 I =102
iy b 1
b 1y {
_ b ] | -1¢¢
I ' I (0=0°01=4/7"2=4/q)
] 'y | YI0AYISEY YVINONV.LOIY
I i
g_ “ ) | | ] 0°¢

3



87

"(ALuo uwep 3yz jo saiduanbaUy [euanjeu 930UBp BSSLISQR Y} UO SI[DUALD Uado ayl)

0°¢

"0 =0 PUR G = Y/Y YILM ALOAUISSL UR[NOALD-LWAS B JU0J 3SUOASDU 82404 DLWeUAPOUPAY Gz duanbiy
m.
G°1 0°1 S0 0
I 0°0
,/"
—— €0
— T
/ 0'1
1<
—t0°¢
-16°¢
(0=0°6=u/¥)
YIOAYISHY AVINOYID-IWAS
1

0'¢t



Figure A.1.

direction of \
integration

Definition sketch for a bounded domain,

=]
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direction of
integraticon

aD

Figure A.2. Definition sketch for an interior point approaching
a boundary point on a smooth boundary .

aD
direction of '
integration \

Figure A.3. Definition sketch for an interior point approaching
a corner point on the boundary.

8%



