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ABSTRACT

This work on the development of simplified methods of analysis which are suitable for

application to earthquake resistant design of buildings is organized in three parts.

In Part I, the accuracy of the response spectrum analysis (RSA) for estimating the max-
imum response of a building directly from the earthquake design spectrum is evaluated with
the objective of developing better simplified analysis procedures suitable for preliminary design
of buildings and for inclusion in building codes. It is demonstrated that: (1) For a fixed funda-
mental period T, of the building, the response contributions of the higher vibration modes
increase, and consequently the errors in the RSA results increase, with decreasing beam-to-
column stiffness ratio p. {2) For a fixed p, the response contributions of the higher vibration
modes increase, and consequently the errors in the RSA results increase, with increasing 7', in
the medium- and long-period regions of the design spectrum. (3} The RSA results are accurate

enough for design applications.

In Part II, recognizing that the earthquake response of many buildings can be estimated‘
by considering only the first two vibration modes in the response spectrum analysis (RSA) pro-
cedﬁre, a simplified response spectrum analysis (SRSA) procedure is presented. The SRSA
method should be very useful in practical application because, although much simpler tha;n the
RSA method, it provides very similar estimates of design forces for many buildings. With the
development of the SRSA, a hierarchy of four analysis procedures to determine the earthquake
forces are available to the building designer: code-type procedure, SRSA, RSA, and RHA --
response history analysis. The criteria presented to evaluate the results from each of pro-
cedure, and to decide whether it is neccssary to improve results by proceeding to the next pro-

cedure in the hierarchy, utilize all the preceding computations and are therefore convenient.

In Part I, formulas for base shear, height-wise distribution of lateral forces, and compu-
tation of overturning moments specified in three design documents --Uniform Building Code,

Mexico's Federal District Building Code, and ATC-3 design provisions—- are evaluated in light
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of the results of dynamic analysis of buildings. It is demonstrated that these formulas do not
properly recognize the effects of important building parameters which control the significance
of higher mode contributions in the building response. An improved procedure, which recog-
nizes the influence of these paramcters, to compucé the earthquake forces for the initial, prel
iminary design of buildings is presented. Starting with the earthquake design spectrum for
elastic or inclastic design and the overall, general description of the proposed building, this
procedure provides an indirect approach to estimate the response in the first two vibrations
modes of the building. 'The procedure recognizes the important influence of those building
properties and parameters that significantly influence its earthquake response without requir-
ing the computations inherent in standard dynamic analysis by the response spectrum method.
The procedure represents a major conceptual improvement over present building codes with

very little increase in computational effort.
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PREFACE

This work on the development of simplified methods of analysis which are suitable for

application to earthquake resistant design of buildings is organized in three parts:
¢ Part I Elastic Earthguake Response of Building Frames
o Part II: Simplified Procedures for Elastic Analysis of Buildings

e Part III: An Improved Code-type Analysis Procedure for Preliminary Design
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PART I
ELASTIC EARTHQUAKE RESPONSE OF BUILDING FRAMES






1. INTROGDUCTION

The response spectrum method plays an important role in practical analysis of multistory
buildings for earthquake motions. The maximum response of the building is estimated directly
from the elastic or inelastic design spectrum characterizing the design earthquake for the site
and considering the performance criteria for the building. The resulting estimates of max-
imum forces and deformations provide a basis for preliminary design for buildings. These esti-
mates may be accurate for the final design of many buildings but could be refined for the
anusual or imporstant buildings by response history analysis. Furthermore, most building
codes specifications for earthquake forces are based on simplifications of the response spectrum

method of analysis.

In order to dcvelop better simplified analysis procedures suitable for preliminary design of
buildings and for inclusion in building codes, it is therefore necessary to evaluate the accuracy
of the response spectrum estimates of maximum building response. Because the errors in these
estimates are related to the significance of the contributions of the vibration modes highcr_
than the fundamental mode, it should be useful to investigate the contributions of the varicus

vibration modes to the response of buildings.

These issues are, of course, not new. They have been the subject of many investigations,
most of them restricted to idealized shear buildings. For example, the response of idealized 4-
story shear bLuildings with three different values of the fundamental vibration period due to
recorded and simulated ground motions was determined by response history analysis, response
spectrum anzlysis, and random vibration analysis and the results were comparcd [11). Modal
contributions in the response of 10-story shear buildings to simple ground motions, described
by a half-cycle displacement pulse, and to El Centro 1940 ground motion were investigated for
a wide range of fundamental vibration periods of the building [13]. One of the most
comprehensive investigations was due to Roehl [9], wherein the response of five-story moment-

resisting plane frames to a half-cycle displacement pulse was determined for a wide range of
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parameters. The beam-to-column stiffness ratioc was varied to cover the complete range of
frame behavior, from the vertical flexural beam at one extreme to the vertical shear beam at
the other end. The fundamental vibration period was also varied over a wide range. Among
other issues, the significance of the higher mode contributions in building response was investi-
gated and its dependence on the beam-to-column stiffness ratio and fundamental vibration

period was identified.

The work of Roehl is extended to study the response of the same class of moment-
resisting plane frames $to an ensemble of earthquake ground motions. The ensemble average of
the maximum response 'is determined by response history analysis and response spectrum
analysis for a wide range of values of the beam-to-column stiffness ratio and fundamental
vibration period. Based on these results, the response contributions of the various vibration
modes are studied and the accuracy of the response spectrum estimates of maximum response
is investigated, The results of this investigation provide a basis for developing improved

simplified analysis procedures for preliminary design of buildings in Part II of this report.



2. SYSTEMS AND GROUND MOTIONS

2.1 Systems analyzed

The systems analyzed are idealized as single-bay, five story moment resisting plane
frames with constant story height — k, and bay width = 24 (Figure 1). All members are
prismatic with constant cross-section. Only flexural deformations are considered in the
analysis of these frames. All the beams have the same flexural stiffness (EI; } and the column
stiffness (EI, ) does not vary with height. The structure is idealized as a lumped mass system
with the same mass m at all the floor levels. The rotational inertia of the sections is neglected
in all members. The damping ratio for all the natural modes of vibration is assumed to be 5

percent.

As shown by Roehl [9], only two additional parameters are needed to completely define
the system: the fundamental mode period T, and the stiffness ratio p. This ratio was origi-
nally defined by Blume [1], as a joint rotation index, based on the properties of beams and

columns in the story closest to the mid-height of the frame:

SYVEL /Ly

beams

3 B /L,

colamne

p= ¢ty

where I, is the moment of inertia of a beam, L, is the beam length, /. is the moment of iner-
tia of a column, and L, is the column length; and the summations include all the beams and
columns in the mid-height story. For the selected class of building frames defined in the

preceding paragraph, equation {1) reduces to

P:Ib /4Ic (2)

For this selected class of building frames with a particular p value, as noted by Roehl [9], the
natural vibration mode shapes ¢, and the ratios between the natural vibration frequencies
w, fw, are independent of the fundamental vibration period T, (Appendix B). By varying the

stiffness ratio p, the complete range of behavior of the frame can be covered, from the flexuratl
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beam with the beams imposing no restraint to joint rotation (p = 0) to the shear beam (p =
o0) in which the joint rotations are completely restrained and deformations occur only through
double-curvature bending of the columns. Intermediate values of p represent frames with both

beams and columns undergoing bending deformations with joint rotations.

The ratios of the natural frequencies for a wide range of p values are presented in Table 1
and plotted in Figure 2. The natural vibration mode shapes for six differents values of p are
presented in Table 2 and three of ﬁ.hese cases are plotted in Figure 3. It is readily apparent
from this data that the stiffness ratic p mus{ have great importance in determining the
dynamic (and static) behavior of the frame. The mode shapes for the two extreme cases p : 0
and p = oo are quite different, and the values of the frequency ratios show important changes
with p especially for the higher modes. The cffects of these differences in the mode shapes and

frequency ratios on earthquake response of frames will be discussed later.

2.2 Ground Motions

Eight simulated motions were generated to model the properties of ground motions‘
recorded on firmm ground in the region of strong shaking during magnitude 6.5 to 7.5 earth-
quakes in the Western United States [5[. The random process model, its parameter values,
and the simulation procedure used is identical to earlier studies [4,6,10]. The simulation pro-
cedure consisted of generating samples of stationary Gaussian white noise, multiplying the
white noise by an intensity function of time (Figure 4) to represent a segment of strong shak-
ing at constant intensity preceded by a quadratic build-up of intensity and followed by an
exponential decay in intensity; passing the resulting function through a second order linear
filter with frequency = 2.5 c¢ps and damping ratioc = 60 percent to impart the desired fre-
quency content, as indicated by the spectral density (Figure 4), and firally performing a base
line correction on the filvered function [3]. The resulting motions are shown in Figure 5 and
the maximum values of acceleration, integrated velocity, and displacement are listed in Table

3. They differ from the values presented in reference (5] by an intensity-scaling factor. As will



Table 1: Ratios of natural vibration frequencies of idealized frames.

Adapted from Roehl (1971),

Wy Wy Wa W Ws

’ -{_—L—I—]—W wr @ w wr

\ mh?

0 0.16563 6.3853 | 18.0023 | 34.9637 | 52.0702
0.00001 0.16574 6.3817 18.0806 | 34.9404 | 52.0348
0.0001 0.16679 6.3500 | 17.9768 | 34.7330 | 51.7215

0.001 0.17638 £.06569 | 17.0435 | 32.8660 ) 48.8987
0.0125 0.26284 4.5601 11.8654 2236809 | 32.9174
0.05 0.40661 3.7267 8.4281 14.9965 | 21.4433
0.1 0.51813 3.4755 7.2294 ‘ 12.2209 15.9598
0.125 0.56051 3.4119 6.9167 11.46909 15.7401
0.5 0.88165 3.1343 5.5716 8.1628 10.2844

1 1.05563 3.0507 5.1829 7.2279 8.7764

2 1.18110 2.9947 4.9269 6.64086 7.8534

5 1.29510 2.6526 4.7451 6.2254 7.2155

10 1.34184 2.9364 4.6757 6.0727 6.68441

50 1.38336 2.9226 4.6168 5.9443 6.7915

500 1.39328 2.9193 4.6030 5.9145 6.7470

o0 1.39439 2.9190 4.6015 5.6112 §.7421




Table 2: Natural vibration mode shapes of idealized frame.

Adapted from Roehl (1971).

Mode Number
el Story
1 2 3 4 5
1 0.0611 | -0.4403 | 1.4150 | -3.2749 | 6.4358
2 0.2221 | -1.0746 | 1.5795 [ 0.6731 | -7.0564
0 3 0.4508 | -1.1156 | -0.7380 | 2.3497 | 6.2089
4 0.7178 | -0.3224 | -1.538G6 | -2.7989 | -3.6567
5 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
1 0.1115 | -0.4579 | 1.2817 | -2.8617 | 5.3033
2 0.3439 | -1.0078 | 1.2578 | 0.7755 | -6.1182
0.05 3 0.5997 | -0.8006 | -0.8100 { 1.9148 | 5.5105
4 0.8250 | -0,0762 | -1.2002 | -2.5404 | -3.3954
5 1.0000 { 1.0000 { 1.0000 | 1.0000 | 1.0000
1 0.1419 | -0.5101 | 1.2314 | -2.5538 | 4.5184
2 0.4023 | -1.03390 | 1.0544 | 0.8755 | -5.3428
0.125 3 0.6608 | -0.8281 | -0.0240 | 1.5715 | 4.9384
0.8658 | 0.0410 | -1.1414 | -2.3426 | -3.1829
5 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
1 0.1953 | -0.6351 1.2434 | -2.1092 | 3.0055
2 0.4738 | -1.0897 | 0.7575 | 1.0995 | -4.1252
0.5 3 0.7201 | -0.7349 | -1.0726 | 1.0276 | 4.0680
4 0.9002 | 0.1881 | -0.9210 ) -2.0539 | -2.8654
5 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
1 0.2448 | -0.7499 | 1.2003 | -1.8411 | 2.2930
2 0.5176 -1.1010 0.5316 1.2873 ~-3.4903
2 3 0.7476 [ -0.6557 | -1.1643 | 0.6949 [ 3.8537
4 0.9129 | 0.2670 | -0.7806 | -1.9006 | -2.7232
5 1.0000 | 1.000¢ | 1.0000 | 1.0000 | 1.0000
1 0.2846 { -0.8308 | 1.3099 | -1.6825 | 1.9188
2 0.5462 | -1.0882 | 0.3728 | 1.3079 | -3.2984
o) 3 0.7634 | -0.5943 | -1.2036 | 0.5212 | 3.5132
4 0.9189 | 0.83098 | -0.7154 | -1.8310 | -2.6822
5 J 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000
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Table 3: Properties of simulated ground motions.

Ground Motion Maxima

Simulation
No. Acceleration Velocity Displacement
(g s) (in/sec) (in)
1 0.3145 23.199 10.006
2 0.2375 24.278 23.070
3 0.2765 20.536 11.866
4 0.3512 16.363 16.856
5 0.2807 17.528 12.381
6 0.3024 13.872 8.790
7 0.31562 22.001 21.930
8 0.3325 22,227 13.870
Average 0.3017 20.000 14.772

Values
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be seen later, the response of the building frames will be normalized so that they will be

independent of the ground motion intensity.

The elastic response spectrum f{or 5 percent damping for each of the eight ground
motions was computed using a modified version of the computer program SPECEQ [8]. The
average of the eight response spectra is presented in Figure 6 together with the ensemble aver-

ages of the maximum ground acceleration, velocity, and displacement.

The concept of frequency (or period) regions based on the shape of the pseudo-velocity
response spectrum plotted on log-log paper, which is useful in interpreting earthguake response
spectra and structural respense, is taken from [7]: When plotted in this form, the central por-
tion of the spectrum can be approximated by a horizontal line and two 45° diagonal lines as
shown by the dashed lines in Figure 7. The region to the left of the intersection point b is
defined as the "low-frequency” region of the spectrum, the region between points b and ¢ is
defined as the "medinm-{requency” region, and the portion to the right of point ¢ is defined as
the "high-frequency” region. It is sometimes desirable to subdivide the low-frequency region
into an "extremely low-frequency” sub-region for which the displacement response spectrum Sy
is equal to or less thah the maximum ground displacement i; and a “moderately low-
frequency” sub-region where 5; is greater than ¥,. "Fhe high-frequency region is similarly sub-
divided into a “"moderately high-frequency” sub-region for which the pseudo-acceleration
response spectrum S, is greater than the maximum‘ground acceleration a,, and an "extremely
high-frequency” sub-region for Which S, is for all practical purposes equal to @,. The boun-

daries of these sub-regions are identifled in Figure 7 by the points a and d.

For the average response spectrum of Figure 6 the trapezoidal approximation to the spec-
trum and the boundaries of the frequency regions are as shown. The relative positions of
points b, ¢, and d are reversed because the spectrum is plotted against period rather than fre-
quency. In the rest of this study the equivalent terms long-period region, medium-period
region, and short-period region will be used to refer to the different regions of the spectrum

because the response results are presented in terms of period rather than frequency.
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The shapes of the spectra in Figures 6 and 7 have the same general characteristics but
the boundaries between the different regions occur at rather different values of period (or fre-
quency). In particular, the period values at points b and a for the average spectrum of the
simulated earthquake motions (Ifigure 6) are much longer than for the El Centro spectrum
(Figure 7). 'This is due fo the different values of the spectrum amplification factors [7] for the
average and Il Centro response spectra. The amplification factor is the ratio of an ordinate of
the trapezoidal appro.ximation to the response spectrum to g ground motion parameter. In the
moderately short period region it is the ratio between the constant spectral pseudo-acceleration
and the maximum ground aecceleration. In the medium period region, it is the ratio between
the constant spectral pseudo-velocity and the maximum ground velocity. In the moderately
long period region, it is the ratio between the constant spectral displacement and the max-
imum ground displacement. For the average spectrum of Figure 6 these ratios are approxi-
mately: 2.5, 1.4, and 2.5 respectively which are much different than the values of: 3.1, 2.1, and
1.5, respectively, for the El Centro spectrum of Figure 7. Furthermore, the maximum ground
acceleration, velocity, and displacement are not in the same proportions for both spectra,
which is yet another reason for the observed differences in the period values for the two spec--

tra at the boundaries of the various period regions.



3. ANALYSIS PROCEDURES

The idealized building frame described in Section 2.1 is analyzed using standard methods
of dynamic structural analysis: response history analysis and response spectrum analysis. Only
a summary of these procedures is presented here but more details including their implementa-

tion are available in Appendices A and B.

3.1 Response History Analysis

The time-variation of respconse of the idealized building frame to earthguake ground

motion can be computed by the following procedure [2]:
1. Define the ground acceleration ¢,(f) by the numerical ordinates of the accelerogram.
2. Define structural proﬁerties
(a) Compute the mass matrix m as a diagonal matrix of masses lumped at the floor levels

(b) Compute the lateral stiffness matrix k of the building frame having one degree-of-
freedom, the lateral displacement, per floor. This matrix is computed by static con-
densation of the vertical apd rotational degrees of freedom from the complete stiffness

matrix determined from the stiffness matrices of structural elements.
{c) Estimate modal damping ratios &, .
3. Solve the eigen-problem
k¢ = «*mo (3)

to determine the natural frequencies w, (natural periods 7T, = 2m/w,) and modes ¢, of

vibration.

4. Compute the response in individual mades of vibration by repeating the following steps for

each mode:

19
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(a) Compute the modal response Y, (¢ ) by solving

. . L
Yn(t)+2§nwnYn(t)+W1?Yn(t)=_"ﬂ'_;’—ag(t) (4)

where L, = ¢ m1, M, = ¢ m¢,, and 1 is a vector of as many elements as the

number of stories, all equal to unity.

(b) Compute the lateral floor displacements from
u, (t}=Y,(t) ¢, (5)
(¢) Compute equivalent lateral forces from
f.(t) = wf Y, (t)m ¢, (6)

(d) Compute the forces in structural elements --beams and columns-- story shears and
story overturning moments by static analysis of the structure subjected to the

equivalent lateral forces. In particular the base shear and the base moment are calcu-

lated from
N N
Von (t) = 2 fjn(t) (73‘)
i=1
N
MOn(t)x ijn(t)hj (7b)

where f;, is the equivalent lateral force at the jth floor and h; is the height of this
floor above the base.
5. Determine the total value of the response quantity »(¢) from

N

r(t) = 33 (t) (®

n=1
by combining the modal contributions r», () to the response quantity.

Such response history analyses were carried outs for each of the eight simulated ground
motions described in the preceding section. The maximum of each of the response quantities

of interest during each simulated motion was determined. The ensemble average ol the



21

maximurn response was obtained by averaging the maximum value corresponding to each of

the eight simulated ground motions.

3.2 Response Spectrum Analysis

The maximum response of the idealized buildings frame during a specified earthquake

ground motion can be estimated by the following procedure [2]:

1. Determine the average of the response spectra for the eight simulated ground motions.

2. Define structural properties as ounilined in computational step 2 of Section 3.1.

3. Solve the eigen-problem of equation (3) as mentioned in computational step 3 of Section

3.1.

4. Compute the maximum response in individual modes of vibration by repeating the follow-

ing steps for each mode:

(a)

(b)

(c)

(d)

Corresponding to period 7T, and damping ratio £,, read the ordinate S5, of the

pseudo-acceleration response spectrum of the earthquake ground motion.

Compute maximum values of the lateral floor displacements from

e (9)

Compute the maximum values of the equivalent lateral forces from

1 L g
n T 'A_J‘_ an m'i’n (10)

n

Compute the maximum values of forces in structural elements, story shears and over-
turning moments by static analysis of the structure subjected to the equivalent lateral
forces of equation (10). In particular the base shear and base overturning moment are

calculated from

ch = Sxm == W,: (118.,)
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— L, N . =
My, = 17 Sen Y1 h; my ¢jn = hy Vi (11Db)
n §=1

where W," and h, are known as the effective weight and effective height for the nth

mode.

5. Determine an estimate of the maximum 7 of any response by combining the modal maxima

7, for the response quantity in accordance with
N i/e
F=|F (12)
n =1

The square-root-of-the-sum-of-the squares (SRSS) combination of the individual modal
maxima is adequate because the idealized frame analyzed here has well separated vibration fre-

quencies.

3.3 Computer Program Implementation

A special purpose computer program was developed to implement the analysis procedures
outlined on the preceding section. It takes advantage of some special features of the problem
to Improve computafgional efficiency. The details of the implementation of the analysis pro-
cedure, a flow chart of the program, and the necessary input data are presented in Appendix
B. Although the program can only analyze the idealized frame described in Section 2.1, it
allows the choice of performing only response-history analysis (RHA), only response spectrum
analysis (RSA), or both analyses for any number of earthquake ground motions and pseudo-
acceleration response spectra. The input to the program is the fundamental period, the value
of the stiffness ratio p, the modal damping ratio (assumed to be the same in all modes) for the
frame t¢ be analyzed; and the time variations of the ground accelerations for RHA and the

pseudo-acceleration response spectrum for RSA.



4. EFFECT OF FRAME ACTION

The ensemble average of the ma,ximuin response computed by response history analysis
(RHA) is plotted against the fundamental vibration period T, of the building in the form of
response spectra. Such plots are presented in Figures 8 and 9 for the values of p = 0, 0.125,
and oo and six response quantities: top floor displacement %, relative to the base, base .shear
170, base overturning moment Ho, the largest moment Hb among all the beams, the largest
moment M, among all the columns, and the largest axial force P, among all the columns. The
response quantities ¥, ‘70, and M o are selected as representative of the overall behavior of the

system, and M, , M,, and P. as indicative of its local behavior.

The response quantities are presented in dimensionless form as defined in the figures,
where %, and @, are the ensemble averages of the maximum ground displacement and ground
acceleration, respectively; W, and h; are the effective weight and effective height for the firsy
vibration mode of the building. The normalization factors for !70 and J\_{IO are the base shear
and moment for a rigid (i.e. zero vibration pericd) single-degree-of-freedom system with
lumped weight W) and height A;. They depend on the geometry of the frame and stiffness
ratio p, but not separately on m, I, or [, . Similarly the normalized responses depend on the

time variation of the ground motions but not on their intensity.

Over a wide range of fundamental periods T,, the top flocr displacement does not vary
appreciably with p, L.e. it is not sensitive to variations in the ratio of stiffness between beams
and columns (Figure 8). The base shear V, and base overturning moment M, vary
significantly with p for 7T, in the medium- and long-period regions of the earthquake response
spectrum (Figure 8), with the variation in M, not as great as in V,. In the short period
region, they do not vary appreciably with p (Pigure 8) and a significant part of the variation is
because the normalizing factors, W, and &, depend on p (Table 4). The variation of
responses with p is closely related to the significance of the highei mode contributions in

response, which as will be shown in Section 5, generally increase with decreasing p and also

23
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Table 4: Effective weight and height for fundamentzal vibration mode.

wy hy

’ Total Weight | Total Height
0 0.6787 0.7936
0.05 0.7642 0.7568
0.125 0.7063 0.7420
0.5 0.8350 0.7238
2 0.8615 0.7113
o 0.8785 0.7027
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depend on 7', and the response quantity considered.

‘The general trends in the variation of the three local response quantities --beam moment,
column moment, and column axial force-- with p are the same (Pigure 9). As p decreases, ﬂb
and 15c tend to zero and Mc decreases to the values for a cantilever bending beam. Actually
what decreases is the normalized value of M, , expressed in terms of the flexural stiffness of the
column which increases when p decreases. For a fixed value of T, the column stiffness
increases as p decreases, and therefore the actual M, may increase even though its normalized

value decreases.

In Figure 9, ﬁb is the Jargest moment over all beams, and Mc and 13c are the largest
moment and axial force over all columns of the building frame. In order to examine the loca-
tions of the largest member forces, response spectra for the foreces in the beams and columns of
each story are presented in Figures 10-12. These resuits demonstrate that, over a wide range of
T, values, the maximum forces occur in the first or second story of the frame. The magni-
tudes of these forces decrease at higher stories with the rate of reduction tending to be greater

for the larger values of p.
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5. MODAL CONTRIBUTIONS

The ensemble average of the maximum response computed by response history analysis
(RHA) is plotted against the fundamental vibration period of the building in the form of a
response spectrum. Obtained by considering varying number of vibration modes in RHA, such
plots are presented in Figures 13-18 for three values of p = 0, 0.125, and oo and the six nor-

malized response quantities defined in Section 3.

IFor the subsequent interpretation of the response results it is useful to introduce the con-
cept of unit modal responses. It is the response of the structure in an individual mode of
vibration Wil‘,h unit value for the pseudo-acceleration. The unit response in the nth vibration
mode is given by equations (9) and (11) with §,, = 1 for the floor displacements, base shear
and base moment. Obvicusly, the maximum value of any response quantity due to an indivi-
dual vibration mode is the product of the unit response in that mode and the ordinate S5, of
the pseudo-acceleration response spectrum corresponding to that mode. In discussing the con-
tributions of various vibration modes to the response, it is useful to normalize the unit
response in the nth mode as a fraction of the corresponding value for the first mode. Such
normalized unit modal responses for the top floor displacement «,, base shear V, and base
moment M, presented in Table 5, vary with p bui not with vibration period or ground
motion. The period dependence of the relative modal contributions to a response quantity is

all represented by the spectral ordinates for the various modes.

The response contributions of the vibration modes higher than the fundamental mode
increase with increasing fundamental vibration period T, in the medium- and long-period
regions of the earthquake response spectrum. For a fixed p, the mode shapes, the normalized
unit modal responses, and the ratios of vibration frequencies do not change with 7T°,. Thus,
the increased contribution of the higher modes is due oniy to the relative values of the
response spectrum ordinates, which in turn depend on the spacing of vibration periods and on

the shape of the response spectrumn. For the selected spectrum, as the fundamental vibration
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Table 5: Normalized unit modal responses.

TOP DISPLACEMENT, u4

Mode p =0 p =005 | p=0.125 | p = 05 p = 2 p = <0
1 1.0 1.0 1.0 1.0 1.0 1.0
2 -0.0598 -0.0959 -0.0997 -0.1009 -0.1004 -(.0991
3 0.0082 0.0189 0.0235 0.0278 0.0284 0.0275
4 -0.0017 -0.0043 -0.0080 -0.0084 -0.0080 | -0.0085
5 0.0003 0.0008 0.0011 0.0017 0.0019 0.0018

BASE SHEAR, V,

Mode p =20 pF =005 | p = 0.125 | p = 05 p = 2 p =
1 1.0 1.0 1.0 1.0 1.0 1.0
2 0.3040 0.1789 0.1475 0.1223 0.1089 0.0991
3 0.1033 0.0775 0.0647 0.0475 0.0355 0.0275
4 0.0485 0.0385 0.0325 0.0215 0.0132 0.0085
5 0.0176 0.0137 00111 0.0083 0.0032 0.0018

BASE OVERTURNING MOMENT, M,

Mode p =0 p =005 | p =012 | p = 05 p = 2 p = 00
1 1.0 1.0 1.0 1.0 1.0 1.0
2 0.0873 0.0156 -0.0030 -0.0195 -0.0284 ~-0.0340
3 0.0182 0.0158 0.0143 0.0111 0.0081 0.0060
4 0.00864 0.0043 0.0028 0.0002 -0.0011 -0.0014
3 0.0020 3.0017 0.0014 0.0009 0.0005 0.0003
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period increases within the above-mentioned spectral regions, the ratio of the pseudo-
acceleration spectrum ordinate for a higher vibration mode to that of the fundamental mode
generally increases (Figure 19), resulting in increased response contributions of the higher

modes.

The increase in response contributions of the higher modes varies with the response quan-
tity. As suggested by the normalized unit modal responses (Table 5), for a fixed value of p,
Figures 13-15 demonstrate that among the overall response quantities the higher mode contri-
bhutions are much more significant for the hase shear -170 than for the top floor displacement T
or base overturning moment A?o. Similarly Figures 16-18 indicate that, among the local
response quantities, the higher mode contributions are more significant for the column moment
M, than for the beam moment M, and column axial force P,. Column moments are closely
related to the story shears which are affected more by higher mode contributions, whereas
beam moments and column axial forces are closely related to story overturning moments which

are affected less by higher modes.

In addition to the already discussed trends in the results, the base shear and to a lesser
degree the base overturning moment, display increasing contributions of higher modes as Tll
decreases in the short-period spectral region (Figures 14 and 15). While this trend can be
explained in part by the relative values of the spectral ordinates for the various vibration
modes, the more important reason is that the individual modal responses of very short-period
structures are essenti_ally all in phase or some are of opposite phase. This is displayed in Fig-
ure 20 where the contributions of individual moedes to the base shear, normalized to the max-
imum contribution of the first mode, are presented as a function of time; and the time instants
at which modal maxima occur are noted. As a result, almost the full maximum response in a
higher mode is directly added to the fundamental mode response, instead of some value less

than the maximum if the modal responses were not in phase,

Obviously the higher vibration modes also affect the shear and moments in all stories in

addition to the base shear and moment. These effects are summarized in Figures 21 and 22
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wherein the height-wise variation of story shears and moments, expressed as a ratio of the
respective values at the base, are presented for buildings with selected values of T,. The dis-
tribution of only the fundamental mode response, which is the same regardless of T,, is also
included. In a lumped mass system, such as the frame considered here, the shear remains con-
stant in each story with discontinuities at each floor. However, such a plot would not be con-
venient in displaying the differences among various cases and the alternative presentation with
shears varying linearly over story height is used. It is apparent that the higher mode contribu-
tions not only influence the magnitude of the story shears and moments but also their distri-
bution because the various vibration modes affect different portions of the building to varying
degree, The distribution but not necessarily the actual values of forces in the upper stories is

especially affected by the higher mode contributions.

We next examine how the higher mode contributions to earthquake response of the build-
ing frame are affected by the stiffness ratio p which varies from infinity for a shear beam (with
rotation of joints fully restrained) to zero for a bending beam {with no restraint to joint rota-
tion provided by the beams), with intermediate values of p representing frames with both
beams and columns undergoing flexural deformations. As p decreases, the normalized unit
modal responses, associated with the higher vibration modes, for the base shear (and base
moment) increase, especially for the second mode (Table 5). At the same time the ratios of the
modal vibration frequencies increase, spreading the frequencies over a wider portion of the
spectrum, thus increasing the effects of the spectrum shape, with these increases depending on
the location of T, (Fignre 19). Tror the selected spectrum and within the period range con-
sidered‘, the effects of the spectrum shape are especially significant if 7, is large, with the
effects decreasing as T, decreases within the moderately long-period region of the spectrum,

which explains the trends observed in Figure 14.
The effect of p on the contributions of the higher modes varies with the response quan-
tity. As suggested by the normalized unit modal responses (Table 5), Figures 13-15 demon-

strate that p affects the higher mode contributions in the base shear more than in the top fioor
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displacement or base overturning moment. ‘The top floor displacement displays trends oppo-
site to base shear and base moment, in the sense that the higher mode contributions decrease
with decreasing p, but this reverse trend is supported by the nermalized unit modal responses
{Table 5). However, these contributions are so small that they are of little consequence. The
stiffness ratio p affects the higher mode contributions in the column moments in the same
manner as base shear but to a lesser degree (Figure 17). Finally, the higher mode contribu-
tions in the beam moment and column ax.ial force, which are closely related to the story over-

turning moments, are smaller and affected little by p (Figures 16 and 18).



6. ACCURACY OF RESPONSE SPECTRUM ANALYSIS

The ensemble average of the maximum response computed by response history analysis
(RHA) and the response computed from the average response spectrum using reéponse spec-
trum analysis (RSA) procedures, is plotted against the fundamental vibration period of the
building in the form of response spectra. The contribution of all five vibration modes were
included in these analysces. Also presented in these plots is the maximum response due only to
the fundamental vibration mode, which is obviously identical whether computed by RHA or
RSA procedures. Response spectra for the six normalized response quantities described in Sec-

tion 4 are presented in Figures 23-28 for three values of p = 0, 0.125, and oco.

The errors in the responses computed by the RSA method, as reflected by the differences
in the RHA and RSA results, are closely related to the significance of the response contribu-
tions of the vibration modes higher than the fundamental mode. Thus, based on the analysis
of results presented in Section 5, the errors in the RSA results generally increase with increas-
ing fundamental vibration period T, in the medium- and long-period regions of the spectrum,
and with decreasing value of the stilfness ratio p. Similarly, these errors increase as T,
decreases in the shor-t period range of the spectrum but these errors are noticeable primarily in
the base shear (Iigure 24) and to a lesser degree in the base overturning moment (Figure 25).
As mentioned in the preceding section, the individual modal base shear responses of a very
short-period structure are essentially in phase, resulting in the combined response being close
to the sum of the absolute values of modal responses and larger than the SRSS estimate which

is close to the first-mode response.

The errors in the RSA results vary with the response guantity in the same manner as do
the significance of the higher mode contributions. Thus, based on the analysis of results
presented in Section 5, among the overall response quantities the largest errors occur in the
base shear values, with much smaller errors in the base overturning moment, and almost no

errors in the top floor displacement. Similarly, among the local response quantities the largest
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errors occur in the column moments, while the errors in the beam moments and column axial
forces are smaller and very similar, but these errors are all smaller than in base shear. These
errors are summarized in Figures 29 and 30 where they are presented as a function of T, for
the overall and local response duantities respectively. The errors in the RSA results are
expressed as the RSA value minus the RHA value, and presented as a percentage of the RHA
value. While the errors in the RSA results depend on the response quantity they are all below
15 percent for structures with fundamental vibration pericd less than the end of the medium
period region, which for the average spectrum of Figure 6 is 8 seconds. Furthermore, the com-
puted responses display some discrepancy between the RHA and the RSA results for very
short periods, with the errors tending to increase as T, decreases in this range --to around 3 to

20 percent depending on the value of the stiffness ratio p.

The story shears qnd overturning moments have a central role in the design procedures
for bulldings. The ensemble average of these guantities, computed by the RHA procedure is
compared in Figures 31 and 32 with the responses computed for the average response spectrum
by the RSA procedure. The percentage errors in the RSA results, although not large for 7T, in
the short period region of the spectrum, vary considerably from story to story, especially in
the story shears (T'able 6). As a result, the distribution of story shears and moments over the
height (Figures 33 and 34) estimated by RSA, which is close to the first mode distribution, is
different than that from the RHA results, which are close to the summation of the individual
modal maxima occurring at almost the same time instant (Figure 20}. As T, increases in the
short-period region, the correlation between the modal responses decreases, the maximum
response is essentially due to the fundamental vibration mode, and the distribution of the
RHA and RSA forces are almost identical, (Figures 33 and 34) leading to reduced errors (Table
8). As T, increases in the medium-period region, the response contributions of the higher
modes become increasingly significant and the errors in the story shears and moments com-
puted by RSA increase with a tendency for the larger errors to occur in the upper stories

(Table 3).
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Table 6; Errors in the RSA results for story shears and overturning moments

expressed as percentage of the RHA results.

STORY SHEARS

P Story { Ty =009 | Ty =902 | T, =05 | T, =22 | T, =8
1 -18.72 -9.87 -2.07 -11.03 -11.61
2 -8.96 -4.49 -0.68 -7.76 -14.48
0 3 0.16 ~-0.30 -0.04 ~7.75 -11.54
4 8.90 3.32 -0.85 ~12.23 . -15.28
5 18.44 B6.78 -1.36 -9.74 ~14.00
1 -11.91 -6.14 -2.20 -6.96 -11.62
2 -2.80 -1.86 -1.09 -4.98 -7.36
0.125 3 4.44 1.65 -0.42 -7.09 -17.68
4 9.66 4.70 0.65 -5.33 -13.02
5 14.32 B.84 D.52 -15.05 ~21.87
1 -6.74 -3.08 ~-0.43 -3.63 -5.50
2 0.34 -0.04 -0.44 -3.98 -4.27
fes! 3 5.79 1.79 -0.53 -3.48 -3.44
4 10.00 2.86 -0.46 -8.11 -4.95
5 13.11 4.05 0.06 -10.58 -7.08
STORY MOMENTS
i Story { T, =009 | T, =02 | T, =05 | T, =22 T, =28
1 -5.47 -2.85 -0.41 -5.98 -7.57
2 0.22 -0.26 -0.21 -0.58 -3.53
0 3 6.05 2.15 -0.63 -10.29 -14.18
4 11.81 4.42 -1.24 -12.45 -17.81
5 18,44 6.78 -1.36 -9.74 -14.09
1 -0.88 -0.45 -0.35 0.83 -0.90
2 3.90 1.51 0.04 -2.71 -4.78
0.125 3 7.84 3.67 0.51 -5.28 -0.99
4 10.88 5.29 0.94 -8.17 -15.68
5 14.24 6.83 0.53 -15.00 -21.89
1 1.47 0.15 -0.51 -1.47 -0.04
2 5.23 1.54 -0.71 -3.33 -2.82
co 3 8.42 2.48 -0.64 -5.14 -3.64
4 10.92 3.22 -0.31 ~-8.24 -5.38
5 13.11 4.05 0.06 -10.58 -7.08
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7. INFLUENCE OF NUMBER OF BAYS

This entire investigation has so far been based on the earthquake response éf one-bay,
five story frames with uniform properties. Strictly speaking all the observations presented so
far regarding the effect of the stiffness ratio g, modal contributions, and errors in results of
response spectrum analysis are restricted to this class of frames. IHowever, Roehl [9] has
demonstrated that, for a specified p, the natural frequencies and mode shapes of vibration
practically do not change with the number of bays. The fundamental frequency and mode
shape are especially insensitive to the changes in the number of bays. He showed that, conse-
quently, the overall dynamic response --top floor displacement, base shear, and base overturn-
ing moment-- of a system having a specified fundamental period and value of p is essentially
independent of the number of bays in the system. He also demonstrated that, with an
appropriate normalization factor which depends on the number of bays, even the local
response guantities --beam moment, column moment, and column axial force-- for single-bay
and multi-bay frames can be inter-related very well. However, it is generally not possible to
estimate the maximum forces in the interior columns of a multi-bay frame from the forces in
the columns of a single-bay structure. Based on these valuable results of Roehl's work (9], it
appears that the conclusions from this investigation regarding effects of p, modal contributions,

and errors in RSA results are also applicable to multi-bay frames.
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8. CONCLUSIONS

The principal conclusions of this investigation of the earthquake response of uniform

five-story frames may be summarized as follows:

1. For a fixed beam-to-column stiffness ratio p, the response contributions of the higher vibra-
tion modes increase, and consequently the errors in results of response spectrum analysis
increase, with increasing fundamental vibration period T, in the medium- and long-period

regions of the earthquake response spectrum.

2. In addition to the ahove-mentioned trend, the response contributions of the higher vibra-
tion modes increase, and consequently the errors in the results of response spectrum
analysis with SRSS combination of modal maxima increase, as T, decreases in the short-

period region of the earthquake response spectrurm.

3. For a fixed T,, the response contributions of the higher vibration modes increase, and con-
sequently the errors in the results of response spectrum analysis increase, with decreasing

value of p.

4. The contributions.of the higher vibration modes, the errors in the results of response spec-
trum analysis, and how these errors are affected by 7', and p vary with the response quan-
tity. Among the overall response quantities, the higher mode contributions ar¢ much more
significant for the base shear than for the top floor displacement or base overturning
moment. Among the local response quantities, the higher mode contributions are more

significant for the column moments than for the beam moments or column axial forces.

5. While the errors in the results of response spectrum analysis depend on the response quan-
tity they are all below 15 percent for building frames with fundamental vibration period
less than the end of the medium-period region of the spectrum. There is a tendency for the

errors to be larger in the upper story forces but the trend is not consistent or systematic.
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Based on the results presented in this part of the report, improved simplified analysis

procedures for preliminary design of buildings are developed in Part I1.
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APPENDIX A: ANALYSIS PROCEDURE DETAILS

A.1 Model Frame

The systems analyzed are idealized as single-bay, five story moment resisting plane
frames with constant story height = A, and bay width = 2i (Figure 1). All members are
prismatic with constant cross-section. Only flexural deformations are considered in the
analysis of these frames. All the beams have the same flexural stiffness (£7, } and the column

stiffness (EI, ) does not vary with height.

A.2 Formulation of Stiffness Matrices.
Element Stiffnesses

For the beams, only two degrees of freedom are considered. The equilibrium equation for

il b

where [, §; and f3;, §; are the forces (moments) and corresponding rotations at the ends of

each beam can be written as

the beam and k, is the beam stiffness matrix which, under the assumptions above and using

the definition for p given in Section 2 p = I, /41, = I, /4 I, can be written as

ElL 4 2 Eflt 2
ky = “oh [2 4} =20 [2 4] (A-2)

For the columns, four degrees of freedom are considered. The equilibrium equations for

each column ¢an be written as

f oo gi
i | (8-)
fu i

where [, 8; and f,;, 0; are the forces (moments) and corresponding rotations at the ends of
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the column; f., uw, and f;, v, are the forces and lateral displacements at the corresponding
floor levels; and k, is the column stiffness matrix which, under the assumptions above, c¢an be

written as

[ 6 6 |
4 2 T 'E
6 6
7 A R A Y
k, = R |-8 -8 12 -12 (A-4)
hh h® h®
-6 6 -12 12
R R R® h®

This matrix can be rewritten in partitioned form as

. koo K ga
i kc uf kc w (A“5)

and then the equilibrium equation above can be partitioned as

~f o —9{ -“k |

Fo | = k. g9 0, + k¢ g4 Y (A-62)
-fule _91' ] -uk ] ‘
fﬂl = k-c uf 0:’, + kc un uy (A-Gb)

Global Stiffness

The global equilibrium equations can also be written in partitioned form, separating the

lateral displacements u {from the joint rotations 4, then

o] - [ S ) -

where ky is the global stiffness matrix.

From the form of equation (A-7) it should be clear that the individual element stiffness
matrices (k, and k.) contribute only to some of the submatrices of k. The beam stiffness
matrices k, contribute only to kg and the column stiffness matrices contribute to all the sub-

matrices in ky but in a very special form: each of the submatrices of k., contributes only to
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the corresponding submatrix of kr, that is, k, 4 into kg, k.4, into ky, and so on.
Lateral Stiffness

Since there are no forces (moments) applied at the joints, f; = 0 and the second line of

the partitioned equilibrium equation yields

0==ky, u+ kgt (A-8a)
then
= kijky, u—Tu (A-8b)
and
f, =k, utk,ysgTu=(k, +tk,s,TDHu=ku (A-9)
thus
k=kuw +ky T {A-10)

A.3 Formulation of mass matrix

The structure is idealized as a lumped mass system with the same mass m at all the floor

levels. Therefore, the mass matrix is diagonal

m — m (A-11)

which only includes the lateral displacements degrees of freedom.
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A.4 Formulation of damping matrix

The damping in the structure is approximated by considering it as a fraction of the eriti-
cal damping for each natural vibration mode of the structure. Therefore, no dambing matrix

needs to be defined. For completeness,

e[ ] (A-12)

where only the lateral displacement degrees of freedom are included.

A.5 Equations of motion

The dynamic equilibrium condition for the frame, under a base excitation defined by

ground accelerations g, (¢) is:
mu(t)+cu(t) +ku(t)=-m1a/(t) (A-13)
where 1 is a vector with as many components as floor levels in the building, all equal to unity.

Defining a set of meodal coordinates, ¥, Y,, ..., ¥, such that

u(t) = 33¢, Ya.(t) (A-14)

2=1

where ¢, is the nth natural mode of vibration of the frame satisfying the eigen problem equa-

tion
(k-w2m)¢, =0 (A-15)
with w, = the nih mode natural frequency, and the orthogonality conditions
T 0 for m % n
$m M 9y = M, for m =n
0 for m % n
T . -
$m c fn = { 28, w, M, for m =n (A-16)
T 0 for m n
On ke by = { w2M, for m =n
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where €, is the damping ratio on the nth mode. Using the modal coordinates the equation of

motion can be reduced to a set of uncoupled equations of the form

. . L
Va(t) + 26,0, Yy (1) + wd Yo (t) = 570, (1) (A-17)

where L, — ¢ m1and M, = ¢ m 4,

The damping ratio for all the natural modes of vibration is assumed to be 5 percent so &,

is set to 0.05.

A.6 Response history analysis

The solution of the modal equations of motion can be written as:

n

t
1
Y, (¢) = A m{ag(m

€, 0, ()

sinw,p (¢t -nd r (A-18)

n

M,

where w,p = wy, \/1 ~ &2 By defining ¢, = and Y, (1) = C, u,(t) the expressions for the

response quantities, that are presented next, will be simplified considerably.
Modal Responses

The different response quantities, for each mode, can be computed from the following
expressions:

- Story displacements

u, () =Y, (t) ¢, = Cp ¢y u,(t) (A-19)
- Equivalent lateral forces
f.() =ku, (1) =Y, (Hk ¢, = C, k¢, u,(t) (A-20a)
or in terms of the mass matrix
£.(t) = Cows m g, v, (1) = C, m ¢, u,(t) (A-20b)

- Story shears: at the ith floor level



71

&
Vi (8) = 32 Fen (D) (A-21a)
k=i
or in matrix form
V. (t)=81,(¢) (A-21b)
where
11111
1111
S = LL1 (A-21¢)
11
1

is a summadtion matrix which is nondimensional. The base shear, in particular, can be com-

puted from

Voa(t) = Cy 17 m ¢, 4,(1) (A-22)

- Story overturning moments: at the ith floor level
5
My (@)= 33(h — hiy) f1a(2) (A-28a)
k=1

where h; is the height from the base to floor level i. In matrix form

M,(tYy=HT, (1) (A-23b)
where
128345
1 2 3 4
H=h 123 {A-23c)
1 2
1

is a summation matrix which has dimensions of length. The base overturning moment, in par-

ticular, can be computed from

Mon(t] = On hT m ¢'n iin*(t) (A"24)

- Joint rotations: from equation (A-8)



72

6, (1)=Tu,(t)= Yn(t)Tﬂbn = Cn T¢n '(.t,:(t) (A—ZS)

-Beam moments: for each beam, apply equation (A-1), then

Mbin (t) gs'ra (t)
[Mbjn (t )] - kb [ejn (t )] (A 26)
-Column moments: for each column, apply equation (A-6a), then
Mcfnm} B Bin () ()
[M ()] = Lf (1) THer [ (1) (a-27)

For the first story columns 0, (t) = u, (£} = 0.

- Column axijal forces

Using statics, compute P, (t) == axial force on the ith story c¢olumn from the moments on the
end of the beams on the stories ahove.

On the kth story:

Pckn(t)z'g};( Mign (8) + My (8) ) + P gy (1) {A-28)

where My, (£) and M,;, (¢) are the end moments of the beam on the kth story.
Total response

The total response r ({) for any response quantity r is obtained by adding the individual

mode responses r, (£)

N
r{t) = 33va(t) (A-29)

n==1
where N is the total number of modes considered.
Mazxima of the responges

For each response quantity of interest » (¢) the maximum throughout the complete time-

history 7 is determined by monitoring the response as it is being computed.
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A.7 Response spectrum analysis

Modal coordinates mazima

The maximum ?,L of the modal coordinates Y, (¢) can be obtained directly from the dis-

placement response spectrum as

n

M,

Vo —max | Yo (t)| = -7 | S (Wi 6) (A-30)

where Sy, (w, ,£, ) is the ordinate of the displacement response spectrum for damping £, = 0.05

at frequency w, corresponding to the ground acceleration a,(¢).
Modal response mazima

After the values for Y, are known, the maxima of the modal responses can be obtained
from equations (A-19) through (A-28) by substituting ¥, for Y,(t) to obtain 7, rather than
ra (8.
Total response mazrima

An estimate of the total response maxima is obtained using the square-root-of-the-sum-

of-the-squares (SRSS) combination rule. Then,

1/2
F = [ f}ﬁf ] (A-31)

=1

Although more sophisticated modal combination formulas are available they are not
needed in this case because the vibration frequencies are well separated and the estimates from

SRSS will be almost identical to the estimates of the other combination rules.



APPENDEX B: IMPLEMENTATION OF ANALYSIS PROCEDURE

Based on the deflnjticn of the problem in Section 2.1 and the details of the analysis pro-
vided in Appendix A it is possible to formulate the problem in terms of nondimensional
response quantities taking advantage of the particular characteristics of the model frame used.
Furthermore, using this new formulation it will be shown that the natural vibration mode
shapes and the ratios of the natural vibration frequencies depend only on the geometric

characteristics of the frame and the value of the stiffness parameter rho.

B.1 Formulation of stiffness matrices
Element stiffness

For the beams,

EI {12 EI
ky = 2p—= [2 4]=—h'kf (B-1)
For the columns,
EI El
I 1{45D ) kro %
kc 1] kc B h o h2 i
ke = lkews kewe |~ | BL,o EI (B-2)

[}
chnﬂ chuu

Note that among the above matrices only k2 depends on the stiffness ratio p.

Global stiffness

Since the individual element stiffness matrices contribute only to parts of the global

stiffness matrix ky, we can write:

EI £l

e ko o ko
k=B ., EI,, (B-3)
el Ky == Kk
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Note that only kg depends on p, through the contributions of the beam stiffness matrices k.
Lateral Stiffness
From equation (A-8) in Appendix A,

- h a4 EBI
0 = kg kg, “:Tu=-E7ka%1Fkﬂ“ (B-4)

iﬁ—%kg%ilkgouui%Tou

Then equation (A-9) changes to

fuz%k&Jr%{k;’a—lgT%:—f—fk"u (B-52)
and
K — k& + k% T° (B-5b)
Note that T° and therefore k° depend on p.
B.2 Formulation of mass matrix
Clearly, the mass matrix can be written as
m=mI=m m° (B-8)

where I is a diagonal matrix with all its elements equal to 1.

B.3 Formulation of damping matrix

Although it is not needed since damping is being included at the modal equations level it

can be presented for the sake of completeness as

c=c¢ ¢ (B-7)
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B.4 Equations of motion

The equation of motion in Appendix A [equation {A-13)] can be written

m mlU(f) + ¢ coﬁ(t)-i-%k”u(t)swm m’1 a, (1) (B-8)
using the definition of modal coordinates, ¥y, ¥,, ..., ¥4
ut) = >34, Y, (i) (B-9)

n =]

the eigen problem equation can be written as

El
{—i;-s— k- wim mD} $, =0 (B-10)
which is equivalent to
(k° - a7 m®) ¢, =0 (B-11}
where
ET
wﬁz - anz m h3 a'nd ¢n = 1’!)71

Clearly, the eigen vectors of the new problem ., satisfy the orthogonality conditions

0 for m #F#n
] —
Ym { M2 for m ==1
r ooy z{ for m s n (B-12)
™ n 28, o, M,° for m ==n
T o [ 0 for m #n
¥m Kt — g M,° for m =n

where €, is the damping ratio on the nth mode.
From the eguations above it should be clear that the mode shapes (¢, or #,) and the

ratios between the natural frequencies of vibration (e, /¢y Or w, /w;) do not change as the fun-

damenta} period T, = 2r/w, changes. In fact, the fundamental period can be computed {rom
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o ar mh

T, ==L 2

—_ -13
Wi &y ET (B )

therefore, any value of T, can be obtained by adequately adjusting the values of £, I, &, and
m.

The modal equations of motion [equation (A-17)] will still be different for each fundamen-
tal period case, but all the terms in them can be directly computed from the invariant quanti-

ties {under 7', changes).
L, =¢fmi=v, mm1=m ¢ m®1=m L,° (B-14a)
Mn == ¢11Tm ¢, = m ¢nT m° qj’rz = m Mno (B'14b)

but L, and M, always occur together as C, = L, /M, thus

C, = —— = —— = (0 (B-15)

B.5 Response history analysis
Solution of modal equations

Rather than evaluating the Duhamel integral in equation (A-18), the solution of the
modal equations can he obtained through direct numerical integration using the Newmark f-
method with § = 1/8, which corresponds to assuming linearly varying acceleration within each
integration step [B.1]. The basic equations of the integration scheme, written for time ¢, are:

7, + 28w, + 1, = 4, (B-16)

which corresponds to the equation of motion, and
. . 1 . .
Tppar =% + y (% + Ziia0 ) At (B-173)

Atz Atl
+ Ty at ~

Tysar =T + % AL+ (B-17b)

Writing these expressions in incremental form
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AF + 28wAr + WPAz = AY (B-18)
and
Ar — 1, At + AT %ﬁ (B-19a)
At? .. At?

Az == & Al + %,

+ AZ (B-19h)

where Az, Az, AT, and Ay are the changes in the quantities =, #, ¥, and ¥ geing from time

¢ to time ¢ + At (one integration step of duration Af).

The third equation necessary to compute the change AZ in the accelerations ¥ after one
integration time step can be obtained by substitution of equations (B-19) in equation (B-18),

then

2
AY - 28wr, AL - WP T, A - X, al

AL = N - (B-20)
1+ 26w— + SR
2 6

Equations (B-19) and (B-20) allow to compute the increments in the state variables z, «, and
# if the increments in the excitation ¥ are known. The integration algorithm can be summar- '
ized as:
1. Initialization
To==0, Zo=0, Zy= ¥,
2. Tort =0, At, 2At, 3A1, ..., until satisfied
{a) Compute increments in excitation ¥ and in state variables z, #, and ¥
AY = Ypar ~ U
Az from equation (B-20)
Az from equation (B-192a)
Az {rom equation (B-16b)
(b) Compute new state variables at time ¢ 4 At

Tyanr = & + AT
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fyyar = & + AZ

Tpiar = T T AT
The integration was carried out using a constant value of the time step Af. The same
value was used for all the modal equations and it was selected as the smallest of T,/50, T /5,
and 0.01 but rounded so that an exact number of steps occur between two consecutive data
p'oints in the input ground motions (digitized at 0.02 secs.). The actual expression for the

computation of the time step is

Al = : (B-21)

T, and T, are the periods of the first and last mode respectively. This time-step guarantees
the convergence and stability of the integration scheme for all the modes while providing
enough accuracy even for the highest mode. The integration was carried along after the end
of the excitation for a duration of 1.5 T, to include the possibility of maxima occurring during

that time.
Modal responses

Taking advantage of the invariance of the mode shapes and the Irequency ratios, the
responses on each mode can be computed in terms of the unit modal responses defined in Sec-
tion 5. Then the response quantities of interest can be computed from equations (A-19)
through (A-28) as

- Floor displacements
w, (8) = Y,(t) ¢, = Y, (t)u, (B-22)
-Equivalent lateral forces
f, = Y, (wimg, —m Y, ()mh, —wim Y,(t)f; (B-23)
- Story shears

V,()=wim Y, () V7 (B-24)
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-Story overturning moments

M, (t) = ws mh Y, (1) Mg (B-25)
- Joint rotations
0,(t) = & Ya(0)0 (B-26)
- Beam moments
0] - e 0] = Zae o [ o
~ Eno |4

-Column moments
Mct’n(t) . _E_{ o 91‘91(’:) I a Upy (t)
{Mc,-n(t)} = p Kew {e,-n(t)} TR )

_ El. o 1 9-‘?: El | 4 ”kg
= _h_kc g0 Yo (t) - {ajpn + ¥l ke, Y, (8) 0? (B-28)

El cin
= Y, (¢
pe O [Mc?u
For the first story columns ¢, {¢) = w, (¢) = 0.
- Column axial forces
Using statics, compute P, (¢) == axial force on the ith story column from the moments on the
end of the beams on the stories above.

On the kth story:

Pon () = ;—h[ Myin () + My (1) ) + P pyralt)

1 ET

?h_ "'1—2 Yn(t) ( Mb?n ¥ Mb?n ] + Pc0k+1ﬂ (B~29)

Er
= F Yn(t) (Pc;c)n + Pcok+1n}
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where M;{, and M.}, are the end moments of the beam on the kth story.

Equations (B-22) through (B-29) define each of the unit modal responses r° in terms of
the original nondimensional stiffness and mass matrices and the invariant mode shapes. The
values of Y, (t) were computed as described before (Section B.5) and since the structure
characteristics {E, I, h, m) were not included in the formulation the actual responses com-
puted were just Y, (¢)r° which automatically includes part of the normalization used for the

response guanbities.

Taking advantage of the invariance of the unit modal responses r,” when the fundamen-
tal period T, changes, they were computed in advance for each p case and then used for each
of the different fundamental period cases ccnsidered, avoiding in this form a considerable
amount of numerical computations. To include the rather special normalization used for story
shears and overturning moments the values of the first mode effective weight and height W,
and hf were also compute --only once for each p case-- and included in the corresponding unit

modal responses. From the definitions of Wy and h{

=m g W/° (B-30) .

h"m¢, & mhb°T my,

h': f===3
' M, 7"1‘410

=h h° (B-31)

These quantities are incorporated in the definitions of V.2 and M so that the only extra nor-
malization needed to arrive at the response gquantities presented in the results is to divide by

a, or %, , the maximum of the ground acceleration or the ground displacement, respectively.
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Total response

"The total response r {t) for any response gquantity » is obtained by adding the individual
mode responses r, (t), then

P(E) = 3] rl0) (B-32)

n=1

where N is the total number of modes considered. The values of r (¢) were computed at each
step of te integration of the modal coordinates ¥, (¢).

Mazima of the responses

After each step in the numerical integration the values of the responses were checked
against the previous maximum for the corresponding response and if necessary the maximum

was updated.

B.6 Response spectrum analysis
Modal coordinates mazima
The maximum of the modal coordinates are computed directly from the accelerations

response spectrum. 'The ordinates of which are considered known for the adequate values of

period (frequency) and damping (5 percent in all cases). Then,

- L,
Ty = |- S a &) = 10y | =5 Sn (e &) (B-33)

7

Modal response maxima

After the values for Y’u are known, the maxima of the modal responses can be obtained
using the unit modal responses as deflned in equations (B-22) through (B-29) in the

corresponding expressions of the form
Fn = Yn rno

for each of the response quantities of interest.
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Total response maxima

An estimate of the total response maxima can be obtained using the square-root-of-the-

sum-of-the-squares (SRSS) combination rule. Then,

1/2
F o= [ f; 72 ] (B-34)

B.7 Computer program outline

A complete, aithough not very detailed, flow chart of the computer program developed to
carry out the computations desecribed before is given in the following paragraphs. The pro-
gram is written in FORTRAN (1966 standard) and is actually implemented on the CDC 7600

computer at the Lawrence Berkeley Laboratory Computer Center.

PROGRAM SPRPSTN
Read p parameter value

Torm total stiffness matrix kg

Compute lateral stiffness matrix k°

Form mass matrix m°

Compute frequencies o? and mode shapes 1,
Compute unit modal responses +°

Perform response history analysis (details follow)
Perform response spectrum analysis (details follow)

Go back for a new p case

RESPONSE HISTORY ANALYSIS PROCEDURE

Read number of ground motions to use

For each ground moticn
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Read ground acceleration time-history a, (¢)
Read number of fundamental period cases
Read array with fundamental period values 7',

For each fundamental period case

Compute actual mode frequencies w, = w, {o, /o)
Select integration time step At
Perform numerical integration procedure {details follow)

Print results

NUMERICAL INTEGRATION PROCEDURE

Initialize state variables Y, (0), Y, (0), ¥, (0), n = 1,..5
Compute number of steps during the excitation

For each integration step

Compute increments AY, , AY,, s Ai"n
Compute new state variables (at time ¢t + At)
Compute modal responses r, (i)

Compute total responses r(t)

Check for maxima of total responses 7

Compute number of steps after excitation ends

For each integration step

Compute increments (with zero excitation) AY,, AY,,, AY",L
Compute new state variables (at time ¢ + At)

Compute modal responses r, {t)

Compute total responses r(t)

Check for maxima of total responses ¥
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RESPONSE SPECTRUM ANALYSIS PROCEDURE

Read number of response spectra to use

For each response spectrum

Read number of fundamental period cases
Read array with fundamental period values T,

For each fundamental period case

Compute actual mode frequencies w, — w, {a, /o)
Read spectral acceleration ordinates S,,

Compute modal maxima of responses F,

Estimate maxima of total response ¥ by SRSS

Print results

REFERENCES

B.1 Newmark, N.M., "A Method of Computation for Structural Dynamics,” Journal of the

Engineering Mechanics Division, ASCE, Vol 85, No EMS, July, 1959, pp 67-94.
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APPENDIX C: NOTATION

maximum ground acceleration due to earthquake ground motion
time-history of ground acceleration due to earthquake ground motion
modulus of elasticity

equivalent lateral force at jth floor level in nth natural vibration mode
time-history of vector of equivalent lateral forces f, (¢)

vectbr of maximum equivalent lateral forces in the nth vibration mode
acceleration of gravity

story height

height from base to floor level j

effective height in the nth natural vibration mode

moment of inertia of beams

moment of inertia of columns

stiffness matrix

length of beam

length of column

participation factor for the nth natural vibration mode

lnmped mass at jth floor level

mass matrix

modal mass in the nth natural vibration mode

base overturning moment

maximum base overturning moment

86
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M, () time-history of base overturning moment in nth mode

=

maximum base overturning moment in nth mode

maximum moment among all beams

X

|

maximum moment among all columns

maximum overturning moment at story i

N total number of stories in the structure

P, maximum axial force among all columns

r(t) time-history of response quantity r

T maximum of response quantity r

T, () time-history of nth vibration mode contribution to response guantity r
T maximum of nth vibration mode component of response quantity r
S, pseudo-acceleration response spectrum

Son spectral pseudo-acceleration ordinate for nth natural vibration mode
Sy displacement response spectrum

Sy pseudo-velocity response spectrum

¢ time variable

T, fundamental vibration period of a multi-degree of freedom system
T, natural vibration period in the nth mode

U, maximum ground displacement due to earthquake ground motion
g lateral displacement at fifth {top) floor level

Uy maximum lateral displacement at fifth (top) floor level

u, (t) time-history of lateral displacements vector in nth vibration mode

w, vector of maximum lateral displacements in nth vibration mode
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7, maximum ground velocity due to earthquake ground motion
Ve base shear

Vo maximum of base shear

Vou (1) time-history of base shear in nth mode

Vou maximum of base shear in nth mode

V,- maximum of story shear at story i

W, effective weight associated with the nth natural vibration mode

Y, (1), ?n(t ), i}n (¢) time-history of nth modal coordinate and its time derivatives

1 vector with all components equal to 1

£, damping ratio in the nth natural vibration mode
p beam-to-column stiffness ratio

¢ natural vibration mode shape

D nth natural vibration mode shape

W natural vibration {requency in radians per second

Wy nth natural vibration frequency
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PART 11

SIMPLIFIED PROCEDURES FOR ELASTIC ANALYSIS OF BUILDINGS

Preceding page blank






1. INTRODUCTION

While dynamic analysis procedures have been available for many years, the earthquake
forces considered in the design of most buildings are computed by the Equivalent Lateral
Force Method specified in the governing building code. However, the codes rccommend
dynamic analysis for unusual buildings, but generally do not provide enough guidance on when
the code formulas should be abandoned in favor of dynamic analysis, whether the dynamic
response should be determined by response history or response spectrum analysis, and how
such analyses should be implemented. This is perhaps one of the major reasons why many
building designers refrain from dynamic analyses, making them increasingly dependent on code

formulas, thus perpetuating them further.

Another reason why dynamic analyses find only limited use in building design is that
such analyses are much complicated in concept as well as implementation compared to the
simple and readily usable code formulas. It should therefore be useful to develop simplified
versions of dynamic analyses which are easier to implement than standard methods and pro-
vide results that are sufficiently accurate for the design of many buildings. With the availabil-‘
ity of such a method, dynamic analysis could be conveniently used in the design of many
buildings.

The objectives of Part Tt of this investigation are: {1} to review briefly the accuracy of
response spectrum analysis (RSA) in comparison to response history analysis (RHA); (2) to
present a simplified response spectrum analysis (SRSA) method and evaluate its accuracy; (3)
to identify & hierarchy of four analysis methods: code-type formulas, SRSA, RSA, and RHA
methods; and (4) to present criteria to decide the least complicated of these methods which

would provide sufficiently accurate results for a particular design application.

This investigation is restricted to elastie analysis of planar vibration of buildings without
any torsional effects. The SRSA method may however be applied to approximate, inelastic

analyses in which the design forces and deformations are obtained by response spectrum
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analysis of the structure based on an inelastic design spectrum instead of the elastic spectrum.



2. EVALUATION OF RESPONSE SPECTRUM ANALYSIS

In order $to examine the contributions of various vibration modes of a building to its
response and to evaluate the accuracy of the response spectrum analysis method, the max-
imum earthquake response of a class of multistory buildings is presented. The buildings
analyzed are idealized as single-bay, five-story moment-resisting plane frames with mass and
stiffness properties uniform over the height. The response of these idealized frames to eight
simulated ground motions, for which the average response spectrum is presented in Figure 1, is
determined. Standard procedures were employed for both the response history analysis (RHA)
and the response spectrum analysis (RSA) of the dynamic response of the idealized frame to
the simulated ground motions. The RHA was carried out by the mode superposition method,
and the maximum of each of the response quantities of interest during each simulated motion
was determined. The ensemble average of the maximum response was obtained by averaging
the maximum values corresponding to each of the eight simulated motions. In the RSA the
maximum value of each of the response quantities of interest was estimated as the square-
root-of-the-sum-of-the squares (SRSS8) combination of individual modal maxima, comput;ed-

directly from the response spectrum of Figure 1.

The ensemble average of the maximum base shear, computed by the RHA method is
plotted against the fundamental vibration period of the building in the form of response spec-
tra. Four sets of plots obtained by considering 1,2,3 and all 5 modes, respectively, are
presented in Figure 2. Response results are presented for three values of the beam-to-column
stiffness ratio parameter p, representing a bending beam (p = 0), shear beam (p = oo0) and a
frame. It iIs apparent that the significance of the responses contributions of the vibration
modes higher than the fundamental mode increase with increasing fundamental vibration
period T,, and with decreasing value of the parameter p. However, over a useful range of fun-
damental vibration period 7", and the stiffness ratio p, two vibration modes are sufficient to

prediet the earthquake response of the frame; over a restricted but still useful range of

g3
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parameters even one mode is adequate. These observations, based here on the response resulis
for the base shear in the building, are alsc supported by the results for the other response

quantities presented in Part I of this report.

The ensemble average of the maximum base shear, computed by including the contribu-
tion of all five vibration modes in the response history analysis (RHA) and in the response
spectrum analysis (RSA) procedures is plotted against the fundamental vibration period of the
building in the form of response spectra in Figure 3; also included in these plots is the max-
imum response due only to the fundamental vibration mode, which is obviously identical
whether computed by RHA or RSA procedures. It is apparent that the differences between
the RSA and the RHA results are closely related to the contributions of the higher vibration

]

modes. These differences increase with increasing fundamental vibration period T, and with

decreasing value of p.

The response spectrum for the base shear in the uniform five-story building frame com-
puted by RHA and RSA methods was presented in Figure 2. The error response spectra show-
ing the percentage error in the RSA results as a function of the vibration period for the six
response quantities considered are presented in Figure 4. As indicated by these results and.
discussed in Part I, the response contributions of the vibration modes higher than the funda-
mental mode increase, and consequently the differences between the RHA and RSA results
increase, with increasing fundamental period T, and with decreasing value of the stiffness ratio
p. While the errors in the RSA results depend on the response quantity they are all below 15
percent for structures with vibration period less than the end of the velocity controlled region,
which for the average spectrum of Figure 1 is eight seconds. TFurthermore, the computed
responses display some discrepancy between the RHA and the RSA results for very short
periods, with the errors tending to increase as T, decreases in this range --to around 5 to 20

percent depending on the value of the p parameter.
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3. SIMPLIFIED RESPONSE SPECTRUM ANALYSIS

3.1 Response Spectrum Analysis

It is apparent from the preceding discussion that, over a useful range of fundamental
vibration periods, the earthquake response of building frames may be satisTactorily estimated
from the earthquake response spectrum by considering the contributions of only the first two
mades of vibration; even the first mode alone is sufficient in many cases. The response spec-
trum analysis (RSA) procedure to estimate the maximum response is well known [5]. It is
summarized here from {4] for convenient reference and to provide a basis for presenting the

simplified version of the procedure:
1. Define the smooth elastic design spectrum for the structure at the particular site.
2. Define structural properties:

(a) Compute mass matrix m for the building with its mass appropriately lumped at floor

levels,

(h) Compute the lateral stiffness matrix k of the building frame from the complete
stiffness matrix by condensing out the vertical and rotational degrees of freedom at the
joints,

{¢) Estimate modal damping ratios £, .

3. Determine the first one or two, as necessary, natural frequencies w, (natural pericds

T, = 2n/w, ) and the modes ¢, of vibration.

4, Compute the maximum response in individual modes of vibration by repeating the follow-

ing steps for the first one or two, as necessary, modes of vibration:

{a) Corresponding to period T, and damping ratio &,, read the pseudo-acceleration ordi-

nate 5,, of the elastic design spectrum of the earthquake ground motion,

(b} Compute the effective weight W,’ (or portion of the weight} of the building that parti

cipates in the nth mode of vibration from

09



(c)

(d)

(e)
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N 2
o]
Wnar — =1

N 2
Yiwp 4

J=1

(1}

where w; = m; ¢ is the weight at the jth floor level, ¢, is the modal displacement of
the jth floor, and N is the total number of floor levels. Also compute the effective
height k,” from

N

2 hy wi b

hn’ =2 i‘;v“"_‘ (2)
DI i
i=1
where h; is the height from the base to the jth floor level.

Compute the maximum values 70,, and Ho,, of the base shear Vg, (¢) and base over-

turning moment Af,, (f) from

— Sen R
VDn - Wn (3)
g
and
Mon = hn’ I--/_.on (4)

Compute the maximum value of the equivalent 1ateral force at the jth floor level from

—_— — w . ¢) -
fjn — Vun .T:.’i_ (5)
E Wy ¢in
i=1
and repeat this computation for all floors,
Compute the floor displacements, or deflections, due to the lateral forces 175,, from
—_ 1 -
Tjn = —5 —= [ (6)

2
Wy 'lUJ-

and repeat this computation for all floors.
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() Compute the maximum deformation (or drift) in the jth story from the floor displace-

ments using
Ajn == Ujn~ Y5 _1,a . (7)
and repeat this computation for all stories.

{g) Compute internal forces {story shears, story overturning moments and member forces)

by static analysis of the structure subjected to equivalent lateral forces TJ-,,.

Determine an estimate of the maximum ¥ of any response quantity {(displacement of a
floor, deformation in a story, shear or moment in a story, etc) by combining the modal
maxima ¥, for the response quantity in accordance with the square-root-of-the-sum-of-the-
squares (SRSS) formula:

N 1/2
F = { gr,ﬁ] (8)

n=1

in which only the lower modes that contribute significantly to the total response need to be

included in the summation.

The SRSS formula generally provides a good estimate of the maximum response for
systems with well separated natural periods of vibration, a property typically valid for
planar motion of a building. For structures with this property, the SRSS method provides
results essentially identical to the CQC method [7]. However for very short fundamental
periods --periods in the first third of the acceleration controlled region of the spectrum--
the maximum value of a response quantity is better estimated by the absolute sum combi-

nation of the modal maxima:

Fenin (9)

since in that range of periods the modal responses are in phase and their maxima occur

almost simultaneously (see Part ).
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3.2 Computation of Natural Frequencies and Modes of Vibration

Among all the computational steps in the response spectrum analysis (RSA) procedure,
the evaluation of the natural frequencies and modes of vibration of the structure is one of the
most, if aot the most, time consuming steps; analytically and conceptually it is the most com-
plicated step. Computation of the vibration properties requires a solution of the matrix equa-

tion
ké=umg (10)

which in mathematical terminology defines an eigen-problem. For a N-DOF system, such as
the idealized N-story building with mass lumped at floor levels, the mass and stiffness matrices
are of order N. Solution of the sigen-problem leads to the N natural frequencies and modes of

vibration: w,, ¢,, n = 1,2, - - N.

Many methods have been developed for computer anslysis of the eigen-problem for com-
plex structures such as multistory buildings. For many applications these procedures are
overly complicated in the early stages of the structural design process. Furthermore computer
programs may not be readily available, or the structural designer may not be experienced in -
their proper use. Thus there is a need for simplified procedures which are conceptually simple
and can be implemented by the non-specialist in dynamics of structures on a pockef caleula-

tor. The Stodola and Rayleigh methods [2,5) are especially convenient for this purpose.

3.2.1 Fundamental Mode

The fundamental frequency and mode of vibration may be determined by the Stodola
method, which is presented here in a form especially suited for multi-story buildings with

masses lumped at the ficor levels:
1. Compute the earthquake forces specified by the governing building code, e.g. the Uniform
Building Code [9], or by appropriate design recommendations, e.g. the equivalent lateral

force procedure in the ATC-3 design provisions [t]. The earthquake force at the jth floor
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level is £;.

Develop a preliminary design of the building to resist the forces computed in step 1, along

with dead and live loads specified by the code.

Fal
By static structural analysis, compute lateral displacements U; at all floors due to the code
earthquake forces F; acting simultanecusly at all the floor levels. This requires solution of

the static equilibrium equations
kU=<F (1)

Normalize the computed displacements by dividing them by the top (Nth) floor displace-

ment:
A A
Uy = U; /Uy (12)
The displacement at any other ficor or any convenient reference value, such as the largest
of all floor displacements, may be used to normalize the computed displacements.

Compute the distribution of inertia forces associated with the deflected shape from step 3.

Compute lateral displacements fr\;]- at all floors by static analysis of the building subjected
to forces f; applied simultanecusly at all floor levels. Normalize the computed displace-

ments by dividing them by the top (Nth) floor displacement
uy = uy /Uy (14)

Compare displacement vectors U {consisting of floor displacements Uf) used in step 4 and
u (consisting of floor displacements u,;) computed in step 5. If they do not agree to a
desired degree of accuracy, repeat steps 4 and 5 with previous values of U; replaced by u;
computed in step 5. After a few such iterative repetitions, the two vectors will agree to a

sufficient degree of accuracy. Then proceed to the next step.

The fundamental mode shape ¢, is given by the displacement vector u computed in the

final iteration cycle.



104

8. Compute the fundamental frequency w; from
P A
wi = 1/uy (15)
or preferably from the Rayleigh quotient for ¢,

. Tk

w1 - T
6 m ¢,

(16)

At the expense of additional computational effort, the latter equation is more accurate and

is consistent with the usage for the second mode to be described later.

8.2.2 Second Mode

As is well known and described in text books [2,5] the Stodola method can be modified to
include a sweeping matrix to climinate the first mode contribution in the deflected shape.
With this modification introduced in each iteration cycle, the iterative process will converge to
the second mode, leading to its vibration properties in a manner analogous to that described
above for the fundamental mode. However, the contributions of the second vibration mode to
building response are relatively small compared to those of the fundamental mode. Thus, it~
seems unnecessary to compute the vibration properties of the second mode to a high degree of
accuracy. Therefore we avoid the Stodola method with iteration in computing the vibration
properties of the second mode., Instead we develop a simple procedure which directly --

without iteration-- provides a good approximation to the second vibration mode.

The deformation response u(¢{) of a multistory building with mass lumped at the floor
levels subjected to ground motion will be identical to the response of the structure on fixed
base subjected to external forces at each foor level equal to floor mass times the ground
acceleration, acting opposite to the sense of ground acceleration (|4], page 61). The ground
motion can therefore be replaced by effective forces —m;a,(f), j = 1,2, ... N. Expressed in vec-

tor form these effective forces are:

pit) = -m 1 a;(t) 17
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where 1 is a vector with as many components as floor levels in the building, all equal to unity.
The vector —m 1 defines the spatial variation of the forces and the ground acceleration g, (¢)

defines their time variation. The effective forces can be expressed in terms of their modal com-

ponents:
N Ln
P(t)=-mia,(t)=—a,(t) 3} m ¢, (18)
n==1 n
where
N
Ln = ¢nT m1l-—= E my qun (19)
i=1
and the nth modal mass
T N :
Mn - ¢n m ¢n - E m; ¢j211 (20)

i=1
Because of orthogonality properties of the modes, dynamic forces defined by the nth term in
the series of equation (18) cause response only in the nth mode and no other modes are
excited. In particular, having determined the exact frequency and shape of the fundamental

vibration mode, the responsc due to the fundamental mode accounts for the first term in the

gseries. The spatial variation of remainder of the effective forces

L,
p, = -m{ I-E #1) (21)

then provide an eflfective means tc determine an approximation to w, and ¢, the frequency
and shape of the second natural mode of vibration of the structure.
These approximate results 52 and ’q’\); can be determined by the following procedure:

1. By static structural analysis, compute lateral displacements u.; at all floors due to the
forces p,; defined by equation (21) acting simultaneously at all the floor levels. This

requires solution of the static equilibrium equations

ku, =p, (22)
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2. Determine the approximate second mode shape IE,, by normalizing the computed displace-
ments by dividing them by a convenient reference value, say the top floor displacement

w,y ° Thus the modal displacement at the jth fioor is given by
¢j2 = Upy /'urN (23)
3. Compute the second mode frequency from the mode shape using the Rayleigh quotient

~, 9K,
WE = (24)

¢-2 m 452
Two useful properties of the approximate frequency ag and mode $2 can be demonstrated
(Appendix A}): Firstly, the approximate frequency &72 is always larger than the exact value w,.
Secondly, the approximate second mode shape q?z is orthogonal to the exact fundamental mode

shape ¢,; and is a linear combination of the higher vibration modes ¢,, ¢, ... ¢y with this

combination dominated by the second mode.

The simplified procedure presented to determine an approximation to the second natural
frequency and mode of vibration is closely related to the well known Rayleigh and Stodola
methods. Traditionally, the Rayleizh method is applied to determine the fundamental vibra-
tion f‘reduency from an assumed shape which is an approximation to the fundamental natural
mode of vibration. In contrast, the Rayleigh method has been utilized here to determine the
second natural frequency from an approximation $2 to the second mode shape determined as
described above, an idea that has been mentioned earlier [2]. Alternatively, the simplified pro-
cedure may be viewed as a single iteration in the Stodola method to determine the second
mode with the starting vector equal to unit value at all ficors [2]. Both of these observations

are further discussed in Appendix A.

The simplified procedure described above to determine $2 is similar (see Appendix A) to
the recent procedure to develop a series of Ritz vectors for dynamic analysis [15]. However,
the two procedures differ in the selection of the first vector. In this work it is selected as the

exact first mode shape but as the static deflected shape due to lateral forces equal to the floor
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masses in the Ritz method [15]. As a result, orthogonalization of the subsequent vectors
through the stiffness matrix, which requires solution of a reduced eigen-problem, necessary in

the Ritz Method is avoided in this work.

3.3 Simplified Response Spectrum Analysis

Procedures, which are conceptually simple and can be conveniently implemented on a
pocket calculator, to determine the first two natural frequencies and modes of vibration of a
building have been presented. Furthermore, as noted earlier the earthquake response of build-
ing frames over a useful range of periods can be estimated from the response spectrum for the
ground motion by considering only the first two modes of vibration; even the first mode alone
is sufficient in many cases., Combining these two ideas provides the basis for a simplified
response spectrum analysis (SRSA) method. This method is the same as the RSA method for
one or two modes presented in Section 3.1; wherein the vibration frequencies and modes are

computed by procedures presented in Section 3.2.

Because the second mode shape is not computed exactly, equation (6) provides only an
approximate relationship between lateral forces ?’1-2 and displacements ?"1'2‘ Thus the displace-
ments computed centain the approximations inherent in the mode shape. In fact,?i and EQ do
not satisfy the equilibrium equation

ku, =1, (25)
but instead they satisfy the quadratic form

vl ku, = uft, (26)

a result of computing &, from equation (24).



4. EVALUATION OF THE SRSA METHOD

4.1 Systems Considered

The rectangular plane frames analyzed in this study are idealized as single-bay, moment-
resisting plane frames with constant story height = £, and bay width = 24 (Figure 5). Only
flexural deformations are considered in the members which are assumed to be prismatic. The
modulus of ¢lasticity F is the same for all members but the moments of inertia of beams I,
and columns I, --same for both columns in any story-- may vary over the height, as in cases 3
to 5 of Figure 5, with the ratic of the two same in all stories. The mass of the structure is
assumed to be concentrated at the floor levels and the rotational inertia is neglected. The

damping ratio for all the natural modes of vibration is assumed to be 5 percent.

BEach building frame shown in Figure 5 is completely characterized by two additional
parameters: the period of the fundamental mode of vibration T, and a stiffness ratio p. The
latter was originally {3] defined as the ratio of the sum of the stiffness of all the beams at the
mid-height story of the frame to the summation of the stiffnesses of all the columns at the

same story, i.e.

SYEL /L,

beams

3y EL /L,

columna

p= (27)

For the one-bay frames considered in this study, this parameter reduces to
p=1, /11, (28)
and it has the same value for all stories.

This parameter is a measure of the relative beam-to-column stifiness and hence indicafes
the degree of frame action. The extreme values of p, 0 and oo, represent the following limiting
cases of a frame respectively: flexural beam with the beams imposing no restraint to joint rota-
tions; and a shear beam in which the joint rotations are completely restrained and deforma-
tions occur only through double curvature bending of columns. An intermediate value of p
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represents a {rame in which beams and columns undergo bending deformations with joint rota-

tion.

The effective weights W, and W, for the first two vibration modes ([4], page 84),
expressed as fraction of the total weight of the building are presented in Table 1. Both exact

and approximate valies, W, and W., for the second mode are included.

4.2 Earthquake Design Spectrum

All the building frames are analyzed for the earthquake input characterized by the
smooth design spectrum of Figure 6. This spectrum is developed by well established pro-

cedures [10] for excitations with maximum ground acceleration ,, velocity 7,, and displace-

ment ¥, of 1g, 48 in/sec, and 36 in, respectively. With this data and from the shape of the
design spectrum it is apparent that the maximum response of short period structures is con-
trolled by the ground acceleration, that of long-period structures by the ground displacement,
and that of medium period structures by the ground velocity [13,14]. Thus the spectrum can
be subdivided into acceleration-controlled or short-period, velocity-controlled or medium-.
period, and displacement-controlied or long-period regions as shown in TFigure 6 [14].
Amplification factors for the acceleration-, velocity- and displacement-controlied regions were
taken from {10] for 84.1 percentile response and 5 percent damping ratio to construct the spec-
trum shown in Figure 8. 1t will be shown in later sections of this part of the study that the
quality of the results from the approximate methods bf analysis can be correlated to the rela-

tive position of the fundamental period of the structure with respect to the different regions of

the spectrum just defined.

4.3 Vibration Frequencies and Mode Shapes

In the SRSA method, the natural frequency and shape of the fundamental mode of vibra-
tion are compuied by the Stodola method. By performing a sufficient number of iterations,

these vibration properties can be computed almost exactly. On the other hand, no attempt is
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Table 1: Modal effective weights for different frame models.

Frame p Wy W, w3 Wi+ W,
Case w W W; W
0 0.6787 0.2063 1.09036 0.9043
1 0.125 0.7983 0.1175 1.2409 0.9422
oo 0.8785 0.0872 1.2282 0.9866
0 0.6287 | 0.1930 1.0990 0.8408
2 0.125 | 0.7998 0.0018 1.3366 0.9225
00 0.8300 | 0.0915 1.3311 0.9518
0 0.6557 0.2034 1.1160 0.8827
3 0.125 | 0.7405 0.1420 1.2500 0.9180
oG 0.8043 | 0.1213 1.3347 0.9665
0 0.5786 0.2468 1.1410 0.8602
4 0.125 0.7005 0.1654 1.2910 0.9141
oo 0.8056 0.1343 1.2800 0.9775
0 0.4568% 0.3621 1.0665 0.8430
5 0.125 0.5600 | 0.3122 1.0980 0.9028
o0 0.6583 | 0.2983 1.0609 0.9728
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made in the SRSA method to exaectly compute the natural vibration frequency and shape of
the second vibration mode. The approximate results obtained by this procedure are compared
in Figure 7 with the exact frequency and shape of the second vibration mode obtained by com-
puter analysis of the eigen-problem. Considering the simplicity of the SRSA procedure, the
quality of the approximate results is surprisingly good, which indicates that the SRSA pro-

cedure should be very useful in practical application

4.4 Earthquake Responses
4.4.1 Overall and Local Response Quantities

The maximum response, computed by the RSA procedure --wherein the contribution of
all the natural vibration modes of the frame are included-- and by the SRSA procedure, is
plotted against the fundamental vibration period of the frame in the form of response spectra.
Such plots are presented in Figures 8 to 13 for the uniform five-story frame (Case 1) for three
values of p == 0, 0.125, and co and six response quantities: top floor displacement uy, basc
shear 1_’0, base overturning moment A—JO, the largest moment H,, among all the beams, the larg-
est moment Mc among all the columns, and the largest axial force ]3C among all the columns.
The response quantities are presented in dimensionless form as defined in Figures 8 to 13,
where %, and @, are the maximum ground displacement and acceleration, respectively; W
and %, are the effective weight and height, respectively, for the first vibration mode of the
building (Section 3.1, see also [4]). The values chosen to non-dimensionalize V, and M, are the
base shear and moment for a rigid single-degree-of-freedom system with lumped weight W{

and height 4.

It is obvious from Figures 8 to 13 that the responses of the uniform five-story frame
(Case 1) computed by the SRSA method are very close to those from the RSA method. For
purposes of evaluating the SRSA method, the response results obtained by the RSA are
treated as exact, because that is the best that can be expected from the SRSA method. As

discussed later the RSA results themselves contain errors in the sense that they are not
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identical to the exact, respense history analysis results. The percentage error, defined as the
difference in the responses computed by the two methods and divided by the RSA response
value, is presented in Figures 14 to 19, along with similar results for the other cases presented
in Figure 5. Positive error indicates that the response computed by the SRSA method exceeds

that computed by the RSA method.

Figures 14 to 19 lead to the following observations: The errors in the SRSA results tend
to increase with increasing fundamental vibration period T,, and with decreasing stiffness ratio
p. This increase in error is closely related to the contributions of the vibration modes higher
than the fundamental mode, which as shown in Part I and in [11)], increase with increase in T,
and decrease in p. The errors in the SRSA results tend to be larger in buildings with nonuni-
form variation of mass or stiffness or both over height (Cases 3, 4, and 5) compared to uniform
buildings (Cases L and 2}). As indicated by comparison of Cases 1 and 2, the errors in the
SRSA results tend to be larger for the taller buildings. While the errors in the SRSA results
depend on the response guantity and on the height-wise distribution of the mass and stifiness
and on the height of the frame, the errors are all below about 5 percent for frames with funda-
mental vibration period T, shorter t.h;'m about 4 seconds, the value corresponding to the end
of the velocity-controlled region on the response spectrum {Figure 6). However, the errors can
increase to more than 20 percent for T, around 10 seconds (Fig;_ure 15) but for most cases and
response quantities they are less than 5 percent even at this very long period. Among the
overall response quantities, the largest errors occur in the base shear values, with much smaller
errors in the base overturning moment, and almost no errors in the top floor displaceraent.
Among the local response guantities, the errors in the column axial forces are very small; the
larger errors in column moments and beam moments are similar in magnitude but are smaller

than in base shear.

The SRSA method may lead to responses smaller or larger than those from the RSA
method, depending on T',, p, and the response quantity. This behavior is related to the rela-

tive importance of the modes higher than the second mode which are not considered in the
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SRSA method and to the nature of the approximation introduced in the computation of
second mode response by the SRSA method. For example, if the stiffness ratio p is small, the
SRSA method overestimates the base shear value for frames with shorter vibration beriods but
underestimates it for frames with long vibrgtion periods. As seen in Figure 2, the response of
the uniform 5-story frame computed by response history analysis including the contribution of
the first two vibration modes is essentially equal to the response considering all the five modes
if the fundamental vibration period T, is within the acceleration-controlled region of the spec-
trum, because the contributions of the 3rd, 4th and 5th modes are very small. On the other
hand, as T, increases the contributions of these higher modes become increasingly significant
and the two-mode response is smaller than the five-mode response. Because the SRSA method
overestimates the effective weight W, of the second mode (Table 1) and underestimates the
vibration peried 7T, (because it overestimates the frequency w,, Figure 7), which for the
selected response spectrum leads to a larger spectral ordinate, the contribution of the second
mode as computed by the SRSA method tends to be larger than in the RSA method. Thus
the SRSA method will overestimate the response if it is essentially given by the combination of
the first two modes, which is the case for shorter T,; but will tend to underestimate the
response at longer periods where it ignores the significant higher mode contributions although

this is partially compensated by overestimation of the second mode response.

Thus, the SRSA method, considering the contributions of the first two vibration modes,
provides overall and local response values that are within five percent of the RSA values for all
the frame cases studied (Figure 5), over the entire range of p, provided the fundamental period
T, is below the end of the velocity-controlled region of the spectrum. If T, is within the
acceleration-controlled region of the spectrum, only the fundamental vibration mode needs to

he considered in the SRSA method.
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4.4.2 Height-wise Distribution of Story Shears and Overturning Moments

The height-wise variation of story shears and story moments computed by the RSA and
SRSA methods is presented in Figures 20 to 23 for the uniform 5-story frame (Case 1). In a
lumped mass system, such as the frames considered here, the shear remains constant in each
story with discontinuities at each floor. However, such a plot would not be convenient in
displaying the differences among various cases and the alternative presentation with shears
varying linearly over story height is used. Results are presented for four values of T',, chosen
to be representative of the different period regions of the response spectrum. The height-wise
variation is presented in two forms: actual values, (Figures 20 and 22) and the ratio of story
shears (and moments) to base shear (and moment)} (Figures 21 and 23). The percentage error
in the results computed by the SRSA method, defined in the same manner as for the overall
and local response quantities is presented in Tables 2 to 7 for all the frame cases (Figure 5).
Consistent with the earlier observations from errors in overall and local response quantities
computed by the SRSA method, the errors in the story shears and moments also tend to
increase with increasing fundamental vibration period T, and with decreasing p; and are larger
for the taller frames and for frames with non-uniform distribution of mass, stiffiness, or both,
over height. The magnitudes of errors vary over the height of the frame, being larger in the
upper stories where the contributions of the higher vibration modes are shown to be more

significant (see Part 1, also {6,8,11]).

However, even for the frame with highly-irregular mass and stiffness distributions over
the height (Case 5) and for the taller frame (Case 2), the errors are within 10 percent provided
the fundamental vibration period T, is below the midpoint of the velocity controlled region of
the spectrum (on a logarithmic scale), which is 1.6 sec. for the spectrum of Figure 6. The
response of the 5-story frame with uniform distributions of mass and stiffness (Case 1) is accu-
rate over a wider range of T,, up to the end of the velocity controlled region of the spectrum
(Tables 2 to 7). Therefore, the errors in the height-wise distribution of story shears and

moments impose a stricter limit on the range of fundamental periods in which the SRSA
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Table 2: Percentage error in story shears
computed by the simplified response spectrum analysis (SRSA) method,

with respect to response spectrum analysis (RSA) results. p=0

Frame | siory | T, =022 | T,=127 | T, =411 | T, = 100
1 0.03 1.6 2.24 -15.63
2 0.03 0.78 2.65 -0.47
1 3 -0.07 -0.54 -11.71 -59.05
4 -0.02 0.36 -0.98 -28.20
5 -0.18 -0.77 -6.44 -26.20
1 0. 2.10 2.30 -18.20
0. 1.70 3.40 -7.40
2 10 -0.10 -0.50 -10.80 -58.20
15 0. 0.50 1.30 -11.30
20 -1.00 -3.40 -15.40 -48.30
1 0.03 2.35 3.16 -25.13
2 0.04 1.29 5.20 -5.99
3 3 -0.07 -0.65 -9.82 -53.68
4 -0.05 0.21 -5.64 -48.86
5 -0.15 -0.69 -4.29 -27.97
1 0.10 3.94 0.84 -26.90
2 0.07 1.78 4.86 -7.55
4 3 -0.17 -1.05 -24.14 -73.05
4 -0.03 1.04 -3.69 -36.91
5 -0.51 -2.66 -11.43 -36.85
1 0.11 3.38 -3.06 -27.44
2 0.03 1.64 0.36 -14.69
3 3 -0.20 -2.59 -28.43 -78.35
4 -0.06 0.39 -8.42 -44.13
5 -0.46 -2.78 -14.00 -38.14
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Table 3: Percentage error in story shears

computed by the SRSA method, with respect to RSA results. p = 0.125

Féis“;e Story | T,—022 | T,—=127 | T,=— 411 | T, = 10.0

1 0.06 1.12 -0.74 -12.82

2 0. : 013 -0.36 -14.94

1 3 -0.02 -0.56 -7.01 -35.76
4 0.02 0.89 0.77 -15.35

5 -0.33 -3.77 -16.47 -31.77

0.10 1.30 1.30 -5.80

5 0. 0.10 0. -7.60

2 10 0. 0.30 -1.70 -13.70
15 -0.10 -0.10 -1.40 -10.40

20 -1.00 -10.70 -39.90 -67.10

1 0.14 1.82 -3.52 -20.03

2 0.03 0.76 0.36 -17.40

3 3 -0.06 -1.13 -10.76 -48.13
4 0.03 0.58 -5.03 -26.83

5 -0.28 -2.59 -12.98 -21.48

1 0.32 3.03 -3.32 -12.66

2 0. 0.25 -1.94 -18.78

4 3 -0.03 -1.41 -13.49 -43.41
4 -0.10 1.70 -1.85 -16.28

5 -1.01 -1.74 -24.75 -33.73

1 0.73 3.50 -4.47 -14.27

2 -0.04 -0.16 -6.80 -20.89

5 3 0.03 -0.72 -10.12 -32.80
4 0.04 0.46 -4.98 -18.18

5 -0.78 -5.75 -20.74 -31.47
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T'able 4: Percentage error in story shears

computed by the SRSA Method, with respect to RSA results. p = oo.

Fézs“;e Story | T,=022 | T,=127 | T,=—411 | T, = 10.0
1 0.05 0.70 1.54 6.05
2 -0.01 -0.25 -1.28 -6.76
1 3 0.03 0.32 -0.17 -0.82
4 -0.02 0.12 0.53 1.25
5 -0.34 -4.00 -11.96 -20.41
1 0.10 1.20 2.00 3.60
5 0. -0.10 -0.80 -7.20
2 10 0. 0.40 -0.50 -5.30
15 -0.10 -0.40 -1.80 -7.00
20 -0.80 -9.40 -34.10 -57.80
1 0.22 2.27 3.08 9.18
2 -0.01 -0.02 -1.03 -5.23
3 3 -0.01 -0.55 -3.86 -17.38
4 0.12 1.18 -0.20 0.50
5 -0.43 -2.81 -5.52 -9.32
1 0.26 2.31 3.26 12.03
2 -0.06 -0.73 -2.19 -10.25
4 3 0.12 0.75 -0.57 -1.35
4 -0.03 0.50 0.93 4.59
5 -1.40 -8.69 -16.20 -21.77
1 0.43 2.38 2.24 3.86
2 -0.26 -2.10 -6.18 -17.59
5 3 0.14 0.82 0.33 0.08
4 -0.11 -0.35 -0.54 -0.87
5 -0.73 -4.06 -8.56 -16.70
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Table 5: Percentage error in story overturning moments

computed by the SRSA method, with respect to RSA results. p = O.

Frame | Story | 7,=022 [ T,=1.27 | T, =411 | T, = 10.0
1 0.01 0.18 1.12 .77
2 0. -0.01 -0.32 -9.59
1 3 0.01 0.22 1.09 -4.69
4 0.01 0.42 1.33 0.18
5 -0.18 077 -6.41 -26.20
1 0. 0.20 1.20 -2.00
5 0. 0. -0.20 -7.70
2 10 0. 0.40 2.10 3.20
15 0. a. -2.30 -14.00
20 -1.00 -3.40 -15.40 -48.30
1 0.01 0.30 2.12 -5.01
2 0. 0. -0.10 -7.13
3 3 0. 0.17 0.57 -17.66
4 0.03 0.66 4.04 1.93
5 -0.15 -0.69 -4.29 -97.97
1 0.02 0.54 2.75 -5.86
2 -0.01 -0.08 -1.14 -20.97
4 3 0.02 0.58 1.70 -12.84
4 0.05 1.14 1.04 -1.75
5 -0.51 -2.66 -11.43 -36.89
1 0.04 1.04 2.20 -3.78
2 -0.01 -0.08 -2.19 -27.54
5 3 0.01 0.47 -0.22 -12.79
4 -0.01 0.40 0.78 -4.85
5 -0.46 -2.78 ~14.00 -38.14
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Table 8: Percentage Error in story overturning moments

computed by the SRSA Method, with respect to RSA results. p = 0.125.

Fézz‘ee Story | T,=—=o022 | T,=127 | T,—411 | T, — 100
1 0. -0.04 -0.40 -3.15
2 0.01 0.16 0.63 1.30
1 3 0.03 0.75 3.17 0.03
4 -0.01 0.40 1.20 0.03
5 -0.33 -3.77 -16.47 -31.77
1 0. 0. -0.10 -0.80
5 0. 0.40 1.40 5.50
2 10 0. 0.80 3.00 7.30
15 -0.20 -2.30 -7 .80 -16.60
20 -1.00 -10.70 -34.20 -67.10
1 0. 0.05 -0.22 -2.34
2 0. 0.04 -0.00 -3.46
3 3 0.04 0.66 1.57 3.45
4 0.04 1.19 3.62 1.62
5 -0.28 -2.50 -12.98 -21.68
1 0.01 0.03 -0.53 -3.44
2 0.02 0.24 0.20 -1.45
4 3 0.11 1.76 4.39 10.21
4 -0.01 1.06 1.68 1.22
5 -1.01 -7.74 -24.75 -33.73
1 0.05 0.54 0.54 1.50
2 -0.01 -0.15 -2.20 -19.12
5 3 0.09 1.00 1.95 5.03
4 -0.10 -0.34 -1.78 -2.80
5 -0.78 -5.75 -20.74 -31.47
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Table 7: Percentage error in story overturning moments

computed by the SRSA method, with respect to RSA results, p = oc.

Frame | Story | T,==022 | T, =127 | T,= 401 | T, = 100
{ 0. 0. 0.01 0.07
2 0.02 0.30 0.95 4.22
1 3 0.01 0,42 1.62 5.06
4 -0.09 -0.75 -1.60 -3.58
5 -0.34 -4.00 -11.96 -20.41
1 0. 0. 0. 0.20
5 0. 0.40 1.60 6.40
2 10 0. 0.60 2.40 6.00
15 -0.20 -2.50 -9.00 -16.30
20 -0.80 -9.40 -34.10 -57.80
1 0. 0. -0.01 -0.04
2 0.02 0.26 0.42 2.16
3 3 0.00 1.12 2.46 9.11
4 0.06 1.26 3.38 8.34
5 0.43 -2.81 -5.52 -9.32
1 0. -0.02 -0.03 -0.14
2 0.07 0.71 1.36 5.98
4 3 0.10 1.38 3.10 1111
4 -0.29 117 -1.07 0.65
5 -1.40 -8.69 ~16.20 21.77
1 0.01 0.06 0.02 0.02
2 0.03 0.10 -0.58 -3.27
5 3 -0.01 0.21 0.54 1.88
4 -0.28 127 -1.89 -3.74
5 -0.73 -4.06 -8.59 -16.70
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method considering the first two modes contributions will provide satisfactory results than the

limit obtained from the errors in the overall and local response quantities.

4.4.8 Ezxtrapolation of Observations on SRSA Method

The simplified response spectrum analysis (SRSA) procedure includes the contributions of
only the first two vibration modes of the structure, whereas all the modes can be recognized in
response spectrum analysis (RSA). In particular, the effective weight of the building frame
inchided in computing the base shear by the SRSA method is only a portion of the total
weight of the building, whereas the entire weight is accounted for when all the vibration
modes are included in the RSA method. The effective weights W, and 171}5 for the first two
modles and the combined value computed in the SRSA method depend on the vibration mode
shapes and therefore on p. On the other hand, the significance of the contributions of the
higher vibration modes vary with the fundamental vibration period 7', in addition to their
dependence on p. Thus it would seem that the effective weight included in the SRSA method
would provide an indication of the accuracy of the responses computed by the method, but
only a partial indication because the additional dependence of higher mode contributions oni
T, is not recognized in the effective weight values. This expectation is confirmed by compar-
ing the effective weight values presented in Table 1 with the errors in responses computed by
the SRSA procedure presented in Figures 14 to 19 and Tables 2 to 7. In general, the larger
the portion of the effective weight considered, the smaller the errors in the SRSA results. The
aforementioned observations regarding the accuracy of the SRSA results, which were based on
results for the five frame cases of FFigure 5, may therefore be extrapolated to other frames with
different number of stories or dissimilar variation of mass and stiffness over height. This seems
reasonable provided the total effective weight included in the SRSA method exceeds 85 percent

of the total weight, a value exceeded in all the cases and p values considered in this study.
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4.4.4 Fundamental Mode Analysis

As shown in Figure 3, for buildings with fundamental vibration period T, within the
acceleration-controlled region of the earthquake response spectrum, the fundamental mode
alone provides essentially the same results as those obtained by including all the modes in the
RSA method. Thus, in this range of vibration periods, only the first mode needs to be con-
sidered in the SRSA method. In order to ensure that the errors in the results from one-mode
analysis are within reasonable limits it is recommended that this simplification may bhe
employed only if the effective weight in the fundamental vibration mode of the building

exceeds 75 percent of the total weight (Appendix B).



5. HIERARCHY OF ANALYSIS PROCEDURES

5.1 Analysis Procedures

With the development of the simplified response spectrum analysis (SRSA), four analysis
procedures to determine the earthquake forces are available to the building designer. Listed in

order of increasing comptlexity these procedures are:

e Code-type Procedure, such as the lateral forces specified in the building codes [9,12], the
equivalent lateral force procedure developed in the ATC-3 design provisions [1], or the

improved code-type analysis procedure developed in Part IIT of this Report.
e SRSA --Simplified Response Spectrum Analysis.
s TNSA --Response Spectrum Analysis [4].
s RHA --Response History Analysis [4].

With the increasing complexity in these analysis procedures comes improved accuracy in
the analysis of the structure. The computation of base shear in the Uniform Building Code
(UB(C) uses a fundamental vibration period obtained from an empirical formula based on
overall building dimensions. Except Tor the additional force F, assigned to the top of the
building the UBC lateral forces are distributed over the height of the building under the
assumption of linearly varying floor displacements in the fundamental mode shape [4]. Assign-
ment of an additional force F; at the top of the building is‘intended by the code to roughly
and implicitly account for the contributions of the higher vibration modes to building
response. The SRSA method will obviously lead to better values of base shear, lateral forces
and member forces because it is based on exact analysis of the fundamental mode period and
shape, and the contribution of the second vibration mode to building response is explicitly
computed from a very good approximation to the frequency and shape of this mode. The RSA
method will obviously lead to even improved accuracy in the computed earthquake forces

because the period, shape, and earthquake response in each of the modes are analyzed exactly.
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As demonstrated in the preceding section, this improvement over the SRSA method is of little
consequence if only two vibration modes provide a sufficiently accurate description of the
response, but becomes substantial if the higher modes contribute significantly to building
response. Finally, response history analysis (RHA) provides exact response of the idealized
building because ii avoids the errors in the RSA method arising from combining the modal
maxima without the benefit of knowing the time-variation of the modal responses. These
errors, which were examined in Section 2, would exist no matter which of the available combi-
nation rules, SRS8S (equation (8) with all modal terms), or CQC [7] are used; because for the
frames with well-separated vibration periods considered herein the two combinations rules lead

to essentially identical results.

Because the four analysis procedures listed earlier in increasing order of complexity pro-
vide increasingly accurate results for the structure, they should be considered in sequence,
proceeding no farther than the least complex method that leads to sufficiently accurate results.

What remains to be developed are the criteria for transition from one procedure to the next,

5.2 Transition from Code Analysis to SRSA Method

Initially, before the building has been designed only the code-type analysis procedures can
be used to compute the earthguake forces, because the other three analysis procedures men-
tioned above reguire building properties that are not available at this stage of design. Because
the code-type analysis procedures are based on an assumed shape for the fundamental mode
and implicit, indirect recognition of the higher vibration mode contributions, they may not
always provide sufficiently accurate results. Thus, a procedure should be developed to evalu-
ate the quality of the results from a code analysis and, if necessary, to improve the results by

proceeding to the SREA method, which is next in the hierarchy of analysis procedures.

One such procedure, which was included in the seismic provisions prepared by ATC-3,

the Applied Technology Council [1], is quoted with minor editorial changes:
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1. Compute lateral forces and story shears using the code procedure.
2. Approximately dimension structural members.

3. Compute lateral displacements of the structure, as designed in step 2, due to lateral forces

from step 1.

4. Compute a new set of lateral forces, with the basc shear from step 1 distributed in accor-
dance with the displacements computed in step 3; in computing the lateral force at any
floor this involves replacing the story height in the UBC or story height to the power k in
the ATC-3 equivalent lateral forces formulas by the displacement at the particular floor

computed in step 3. Compute the story shears from this new set of lateral forces.

5. If at any story the shear computed in step 4 differs from that computed in step 1 by more
than 30 percent the structure should be reanalyzed using response spectrum analysis (RSA)
procedure. If the difference is less than this value the RSA procedure is unnecessary, and
the structure should be designed using the story shears obtained in step 4; they represent

a0 improvement over the results of step 1.

In evaluating the effectiveness of this method, we will focus our attention on the underly-.
ing concepts; whether the 30 percent limit in step 4 is appropriate is of secondary concern
because it can be modified if necessary, provided the basic procedure is conceptually correct.
Steps 3 and 4 of this method are equivalent to one cycle in an iterative procedure, based on
the Stodola method, for calculating the fundamental mode of vibration. Thus, the lateral dis-
placements computed in step 3 represent an improved shape for the fundamental vibration
mode compared to that implied in the code formula for lateral forces, e.g. the linear shape
implied in the UBC formula. Thus, the method described above will provide an improved
approximation to the lateral forces associated with the fundamental mode of vibration, but it

does not consider the contribution of the higher modes of vibration.

This expectation is confirmed by the resulis presented in Tables 8 to 10, wherein for each
selected structure the percentage difference in story shear values computed in steps 1 and 4 of

the procedure described above --starting from the equivalent lateral forces distribution



145

provided by the ATC-3 design provisions-- are presented, along with the percentage error in
the story shear from step 4 relative to the value computed from the response spectrum
analysis (RSA) method. BEach table, corresponding to a particular value of p contains results
for four fundamental periods selected to be representative of different regions of the response
spectra for all the five stories of buildings of cases 1, 3, 4, and 5 and for five selected stories of

the 20-story building of case 2 (IPigure 3).

These results lead to the following observations: For short-period buildings (T, = 0.15 or
0.48 secs., i.e. within the acceleration-controlled region of the spectrum), whose response is
almost entirely due to the fundamental mode of vibration, the equivalent lateral force (ELF)
procedure of ATC-3 provisions {1] or UBC [9] provides very accurate results il the implied
linear shape of the fundamental vibration mode is an excellent approximation to the actual
shape of the fundamental mode {e.g. Case 1, p = 0.125, Table 9); the results are in consider-
able error if the fundamental mode shape is much different (e.g. Case 5, p == 0, Table 8) but in
these cases the results from step 4 of the above-described procedure are very c¢lose to the RSA
values. For long-period buildings (7, = 1.5 or 5.0 sec., i.e. within the velocity- or
displacement-controlled regions of the response spectrum) whose response contains significant.
contributions from the higher modes of vibration, the results from step 4 of the above-
described procedure may be only slightly different than those from the ELF procedure {e.g.
Case 5, p = 0, T, = 5.0 sec., Table 8) indicating that the latter provided a good approxima~
tion to the fundamental mode response; but because the higher-mode contributions are not
reflected in the step 4 results, they may contain large errors, exceeding 100 percent in the

selected example.

It is therefore concluded that the preceding procedure from ATC-3 provisions is effective
in identifying the errors in the ELF procedure and providing an improved set of design forces
only if the building response is almost entirely due to the fundamental mode of vibration. For
such cases, any large differences in the story shears computed in steps 1 and 4 simply indicate

that the first mode response was not well represented by the code formulas, but they provide



Tahle B: Percentage difference in story shears values computed in steps 1 and 4 of the ATC-3 procedire
and percentage error in the step 4 value; p = 0.
T, == 0.15 T, == 048 T, =1.55 T, =50
Frame | oy - - - N . g -
Case Step 4 - Step 1 Step 4 - RSA Step 4 - Step 1 Step 4 -- RSA Step 4 — Step 1 Step 4 -~ ISA Step 4 - Step 1 Step 4 - RSA

- Step 1 RSA Step 1 Rsa Step t RSA Seep 1 RSA

1 0. 0. 0. 0. 0. 0. 0. a.
2 1.4 0.3 4.4 05 1.0 7.3 -0.7 o8 2
1 3 10.4 0.6 10.4 1.0 2.0 19.0 -2.6 94.5
4 16.4 03 16.4 07 2.5 185 -5.9 65.0
5 21.8 -1.0 218 -13 2.1 -8.7 -100 -10.4

1 0. 0. 0. 0. 0. 0. 0 0.
5 3.4 03 3.4 0.4 0.7 4.5 -0.4 17.5
2 10 11.2 0.6 11.2 1.1 2.1 20.5 -2.8 99.5
15 19.1 0.1 19.1 03 2.5 9.3 -7.3 35.3
20 95.7 29 25.7 -3.6 1.5 227 -13.3 -44.5

o. o 0. 0. 0. 0. 0. 0.
2 4.7 03 4.7 0.5 1.3 6.5 -0.4 26.2
3 3 1i.6 0.6 11.6 1.3 3.2 19.2 -1.5 75.2
4 19.1 0.3 19.1 1.0 5.0 18.3 -3.5 B4.5
5 26.3 -12 26.3 1.6 6.1 -8.5 -6.5 -15.8

1 0. 0. 0. D, 0. Q. o. 0.
2 8.3 0.8 8.3 1.7 2.2 14.0 -0.8 447
4 18.7 1.1 18.7 3.3 4.9 36.8 -2.9 88.7
289 0.2 28 9 18 6.8 24.0 -6.2 56.8
37.6 -2.7 37.6 -1.1 7.5 -15.0 -10.2 -2

1 0. 0. 0. 0, 0. 0. 0. 0.
2 11.0 1.0 11.0 5.5 3.4 20.2 -0.5 36.6
5 3 34.8 3.6 34.8 15.4 12.5 98.3 -0.1 151.6
1 462 2.5 462 127 16.5 79.2 -0.2 138.5
56.9 -0.3 56.9 5.3 19.4 28.2 -1.8 34.4

9FI



Table 0: Percentage difference in story shears values computed in steps I and 4 of the ATC-3 procedure

and percentage error in the step 4 value; p == 0.125.

T, =015 T, =048 T, == 135 T, =50
Frame | ooy . . i B ; 3 ; ; 3 5 S
Case Step 4 — Step L Step 4 - RSA Step 4 - Step ! Step 4 - RSA | Step 4 - Step L Step 4 - REA Step 4 - Step 1 Step 4 - RSA

Step 1 RSA Step L AR%/} o Step 1 RSA Seep 1 RSA

1 0. 0. Q. 0. 0. 0. 0. 0.
2 2.2 0.1 2.2 05 -1.1 1.3 -286 19.9
1 3 2.8 0.2 2.8 0.8 -4.5 5.8 -8.6 14.0
1.3 -0.1 1.3 -0.5 -10.1 -1.4 -16.9 -0.8
-2.2 -0.9 -2.2 -3.5 -17.0 ~18.1 -26.3 -40.3

1 0. 0. 0. 0. 0. 0. 0. 0.
5 0.4 0.2 04 0.5 -21 2.7 ~3.0 10.2

2 10 -1.8 0.5 -1.8 0.8 9.1 33 -13.0 7.1
15 -7.0 0.5 -7.0 -1.1 -18.8 -7.4 -25.9 -16.2
20 -15.0 11 -15.0 -4.2 -30.2 -25.5 -39.6 -61.0

1 0. 0. 43 0. 0. 0. 0. 0.
2 3.2 0.1 3.2 0.7 -0.1 5.3 -1.6 21.8
3 3 8.3 0. 6.3 1.3 -1.3 9.6 -5.4 22.6
4 8.3 -0.7 8.3 -0.1 -3.7 3.7 -11.0 8.0
5 8.4 -19 8.4 -5.1 -7.8 -17.0 -17.8 -27.9

1 a. 0. 0. 0. 0. 0. 0. 0.
2 4.9 0.2 4.9 1.6 -0.6 10.3 -3.3 28.6
4 3 8.2 -0.1 82 2.1 -3.5 13.8 ~10.1 24.3
4 8.7 -1.1 87 -2.0 -8.4 -2 -18.5 0.1
5 6.4 -3.8 6.4 -10.8 -14.9 -20.1 -27.7 -42.8

1 0. 0. 0. 0. 0. 0. 0. 0.
2 7.8 11 7.3 5.7 0.5 21.2 -2.9 28.9
5 3 20.9 0.3 20.9 10.1 2.9 56.1 -7.3 83.9
4 24.7 -1.8 247 4.3 2.0 30.6 -11.0 49.5
5 2.5 -4.6 24.5 -3.7 -2.3 1.6 -17.9 -0.7

LV



Table 10: Percentage difference in story shears values computed in steps 1 and 4 of the ATC-3 procedure
and percentage error in the step 4 value; p = oo,
T, = 0.15 T, = 0.48 T, == 1.55 T, == 5.0
F‘r‘ame Story = i . - _—y : 5 5
Case Sten + - Step 1 Step 4 - RRSA Step 4 - Step 1 Step 4 - RSA Step 4 - Step L Step 4 ~ RSA Step 4~ Step | Step 4 - RSA

Step 1 RSA Step i RsA Step 1 RSA Step 1 RSA

1 0. 0. 0. 0. 0. a. D. 0.
2 1.3 03 -1.3 4 -1.3 2.8 -5.6 57
1 3 -3.0 0.7 -3.9 0.8 -10.5 2.3 -14.1 2.7
7.0 09 79 -0.2 -17.8 -3.9 -23.8 -9.7
-13.2 08 -13.2 21 -25.9 -13.7 -33.8 -30.7

0. 0. 0. 0. 0. 0. 0. 0.
5 -1.0 0.3 -1.0 0.6 -3.3 3.0 -4.3 83
2 10 -4.3 07 -4.3 0.9 -11.3 2.7 -15.1 4.4
15 -10.0 0.9 -10.0 -0.9 -21.4 -7.6 -28.2 -17.5
20 -18.1 0.3 -18.1 -3.4 -32.7 -22.9 -41.7 -55.5

1 0. 0. c. 0. 0. 0. 0. 0.
2 0.8 0.1 08 0.7 -2.4 4.0 -3.8 7.2
3 3 1.3 0.1 1.3 1.0 -5.5 8.2 -9.3 8.8
4 1.5 -0.3 1.5 -0.5 -9.1 0.1 -15.5 -0.9
3 05 -1.4 05 -5.3 -13.6 -17.5 -22.5 -25.3

1 0. 0. 0. 0. o 0. 0. 0.
2 -0.1 0.5 -0.1 1.4 -5.0 7.1 -7.3 10.3
4 3 -1.2 07 -1.2 1.2 111 58 -16.7 71
4 -3.8 0.2 -3.8 -2.0 -17.9 -7.8 -26.3 -9.7
5 8.1 -1.2 8.1 -81 -25.3 -26.4 -35.7 -36.3

1 0. 0. 0. 0. 0. 0. 0. 0.
2 15 1.4 15 55 -4.2 203 -7.0 22.1
5 3 10.7 -05 10.7 4.1 4.1 25.0 -12.8 378
4 10.3 -2.3 10.3 -0.3 -8.1 12.1 -18.8 10.7
5 6.2 -3.7 6.2 -4.2 -15.0 0.3 -27.6 0.3

SF1
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no insight into the significance of higher mode contributions. Thus, it is inappropriate to use
the differences between results of steps 1 and 4 as a basis for deciding whether the structure
should be reanalyzed by the RSA method, which better accounts for higher mode contribu-

tions.

In light of these comments, the preceding procedure from ATC-3 provisions should be
modified as foliows to evaluate the quality of results from a code-type analysis and to identify

the need to employ the SRSA method, which is next in the hierarchy of analysis procedures:

1. Estimate the fundamental vibration period T, of the building. If T, is within the
acceleration-controlied region of the earthquake design spectrum, proceed to the next step:
otherwise the higher mode effects may be significant and analyze the structure by the

SRSA method.

2. Compute the effective weight W, for the approximation to the fundamental mode of vibra-
tion of the hullding implicit in the lateral force distribution specified by the building code.
If W, exceeds 75 percent of the total weight of the building (Section 4.4.4), proceed to the
next step; otherwise the higher mode efiects may be significant and analyze the structure

by the SRSA method

3. If T, is within the acceleration-controlled region of the earthquake design spectrum and the
effective weight W] exceeds 75 percent of the total weight, use the preceding ATC-3 pro-
cedure, with one change: The 30 percent limit in step 4 should be deleted as a condition for
requiring reanalysis by the RSA method, but an appropriate practical limis may be intro-
duced to decide if the changes in the story shears from steps 1 and 4 make it necessary to

re-dimension the structural members.

5.3 Transition from SRSA to RSA Method

Based on the preceding results and their interpretation, the SRSA method would provide
a sufficiently accurate estimate of building response for purposes of its design provided two

conditions are satisfied: Firstly, the fundamental vibration period T, of the building is below
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the midpoint of the velocity-controlled region of the spectrum. This acceptable region may be
extended to the end of the velocity-controlled region of the spectrum for buildings with a large
p value, resulting in close to shear beam behavior. Secondly, the effective weights W and W,
for the first two vibration modes combine to account for more than. 85 percent of the total
weight of the building. Thus, if either of these two requirements are not satisfied, a response

spectrum analysis (RSA) of the building should be performed before its design is finalized.

5.4 Transition from RSA to RHA Method

As seen earlier the errors in results of a response spectrum analysis (RSA) tend to
increase with the fundamental vibration period T, of the building, reaching as much as 15 per-
cent for uniform 5-story buildings with 7', at the end of the velocity controlled region cf the
selected spectrum. Thus, it may be necessary to go beyond the RSA method to response his-
tory analysis of earthquake forces for tall buildings with fundamental period in the
displacement-controlled region of the spectrum, 7T, exceeding 4 seconds for the earthquakes
considered here, and for buildings with unusual distributions of mass and stiffness over height,
for which sufficient experience or rational basis is not readily available to predict the accuracy‘
of the RSA method. In some cases, such as a soft-first story building, although the stiffness of
the soft story is much less than bhe stiffnesses of the other stories, the RSA method may still
be good enough because the response of such building is dominated by the first natural vibra-

tion mode.

If the response history analysis is considered necessary in a particular situation, it should
be carried out not for only one ground motion but several design ground motions and the
statistics of the response should be examined. This is necessary for two reasons: Firstly, the
response spectrum of a single ground motion with all its irregularities is not compatible with
the smooth design spectrum specified in design criteria for actual projects. Secondly, the way
in which individual modal responses of some buildings combine may be sensitive to the details

of the ground motion and it would obviously be inappropriate to base the design decisions on

a single ground motion.



6. CONCLUSIONS

Recognizing that the earthquake response of many buildings can be estimated by consid-
ering only the first two modes of vibration in the response spectrum analysis (RSA) procedure,
a simplified response spectrum analysis (SRSA) procedure has been developed. The
simplification is achieved mainly in evaluating the natural frequencies and modes of vibration
of the structure, which is one of the most time consuming steps in the RSA procedure; analyti-
cally and conceptually it is the most complicated step. Procedures based on the Rayleigh and
Stodola methods, which are conceptually simple and can be conveniently implemented on a
pocket calculator, have been presented to determine the flrst two natural frequencies and
modes of vibration of a building. Over a wide range of values for the fundamental vibration
period T, and the stiffness ratio p, the SRSA method is shown to provide responses that are
accurate enough for purposes of design. If T, is within the acceleration-controlled region of
the spectrum, only the fundamental vibration mode response needs to be considered in the

SRSA method.

With the development of the simplified response spectrum analysis (SRSA), a hierarchy of
four analysis procedures to determine the earthquake forces are available to the building
designer. Listed in order of increasing complexity and improving accuracy these procedures
are: code-type procedure, SRSA --simplified response spectrum analysis, RSA --response spec-
trum analysis, and RHA --response history analysis. These four procedures should be con-
sidered in sequence proceeding no farther than the least complex method that leads to
sufliciently accurate results. The criteria presented to evaluate the accuracy of the response
results from each procedure, and to decide whether it is necessary to improve results by using

the next procedure, utilize all the preceding computations and are therefore convenient.

In particular, a procedure is developed to evaluate the quality of results from a code-type
analysis and, if necessary, to improve the results by proceeding to the SRSA method. It is

shown that one such procedure, which was included in the ATC-3 seismic provisions, is
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conceptually deficient. A rational procedure is presented, which recognizes all the important
parameters; the shape of the design spectrum, the fundamental vibration period T,, the

stiffness ratio p, and the effective weights for the first two vibration modes.

It is believed that the simplified response spectrum analysis {(SRSA) will provide results
for earthquake-induced forces and deformations that are sufficiently accurate for the final
design of many buildings. In all cases, it will provide the basis for a very good preliminary
design. Thus the SRSA method should be very useful in practical design applications because,
although much simpler than the RSA method, it provides very similar estimates of design

forces for many buildings.

Buildings are usually designed to deform beyond the yield limit during moderate to
intense ground shaking. In many cases, the effects of inelastic behavior on the design forces
and deformations can be considered by response spectrum analysis based on the design spec-
trum for inelastic systems associated with an allowable ductility factor instead of the elastic
design spectrum. The SRSA method presented herein would also be convenient for such

simplified inelastic analyses.
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APPENDIX A:

APPROXIMATE SECOND VIBRATION MODE SHAPE AND FREQUENCY

Several useful properties of the approximate second mode shape ;;, and the approximate
second mode frequency 55; can be easily shown by expressing &; and &72 in terms of the exact
mode shapes ¢, and frequencies w, of the structure using the orthogonality conditions
satisfled by the exact vibration modes of the structure

¢nTm¢m =0

6Tk b, =0 for n % m (A1)

and

¢nTm ¢m - Mn

6Tk b — w?M, for n = m (A.2)

From equations (21) to (23) in Section 3.2.2

1

L
b=k’ m (1-— ) (A.3)

1

where 1 is a vector with all components equal to unity. But, since the mode shapes ¢, are

orthogonal through m

N L,
I = » A4
Ean ¢ (A.4)
then
~ et N L, B L 5 As
¢2_ m [ nggMn ¢n ] - n§2Mn W,f n ( . )

Therefore, the approximate second mode shape ¢, is orthogonal, through the mass and the

stiffness matrices m and k to the exact first mode shape ¢,, because

pfm g = 3 s gl mg =0 (A.6)

n =2 n Wy

and
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~ N
T s 1
¢2 k ¢i = E M wg

n =2 K n

$i kg, =0 (A7)

That ¢, is in fact an approximation to the exact second vibration mode shape can be shown by

considering the following expression

~ N Ln 1 1 N Ln Wy ’
R R Y PR >
? nE M, w? sz ngz M,

) n wﬂ

and recognizing that the frequency ratios (wo/w, ), by deflnition, are always less or equal to 1
and decrease as n increases. For example, for a uniform cantilever shear beam (w,/w,) ==
3/(2n -1) and for a uniform cantilever bending beam (w,/w, ) = 6.27, 1.0, 0.36, 0.18, 0.11, 0.07,
.y 2.23/(n-1/2). Also, the values of the participation factors (L, /M, )} for the type of structures
considered in this study {(plane frames) normally decrease as the mode number n increases, but

this is not necessarily so for other types of structures, especially three dimensional structures.

From equation (24) in Section 3.2.2 the approximate second vibration mode frequency is

computed from

~ Tk,

Wy = o (Ag)
° ¢2Tm b
but, using equation (A.5)
e N (L, Y1 r
¢2k¢2=z[M }——m;qs,;kqsu (A.10)
n=2 " Wy
and
NT ~ N Ln 2 l T .
Hmb= % || L sFma (A1)
n==2 n Wy
then
2 2
87 K &, %[I’] Low2 M, ﬁL” 1 (A.12)
p—r] —— wn n el .
’ : n=2 Mﬂ w: nzzMﬂ wr?

and



~p e ML N LS 4
¢2Tm¢2=2[ n ]___M =E (A~13)
n =g M, w,f " n =2 M, Wy
Therefore,
N Wn' 1
w? = .1‘_=__..._.L_ (A.14)
% Wn i
n==2 g wr?
From the equation above, by re-arranging the terms can write
NoOW,) [ W ]2
~ =z 9§ W
A RS S LA (A.15)
55 )
n=2 9 Wa

then, clearly w, is an approximation to the second mode frequency because the frequency ratios
(wy/w,) are always less or equal to 1 and the effective weights W,” normally decrease as the
mode number n increases making the ratio of the two sums above close to 1.0, but always
larger. For example, for the uniform cantilever shear beam (&};/wg) = 1.0816, and for the uni-
form cantilever bending beam (w,/w;) == 1.0226. In Figure 6 the exact and approximate second |
vibration mode shapes (¢, and 3;) and frequencics (w, and @,) for the five frame cases con-

sidered in this part of the study are compared.

From a strictly mathematical perspective :f; is the vector that results from making the
initial vector x," == k' m 1 orthogonal (through the mass matrix m) to the exact first mode
shape ¢, using the Gram-Schmidt orthogonalization procedure [2], which can be summarized
ass:

Given two vectors x, and x,”, want to obtain a third vector x, such that x,¥ m x, — 0, that is
X, and x, are orthogonal through the matrix m. Consider x, = x, - o x;, to satisfy the ortho-

gonality condition o must be

x mx,’
X, mx,
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For our case x, = ¢,, and x," = k™ m 1 so that, using equation (A.4),

d Ln. 1 A1T
= 55T b (A.17)
Therefore,
1 X Le o1 g L, 3
— N I A18
o= N e = o o (A18)
and
Xy == EN) L L b, - “il"}" $,=k'm (1‘}_1 ) = 8-:2 {A.19)
=1 Mﬂ wn2 Ml w12 Ml

The procedure to compute 32, as presented in Section 3.2.2, is also equivalent to perform-
ing one iteration of the Rayleigh Method for the computation of higher modes frequencies and
mode shapes [2] starting from the vector 1. The Rayleigh Method can be summarized as:

Given a starting vector x,"* and the known first mode shape ¢,, take

T *e
mx
XQ‘ == x;* — fl—FJ—"—"‘Z—-— ¢1 and Xy == k'm x; (A.20)
1

The resulting vector x, will be orthogonal to the first mode shape ¢, through m and k and also
a better approximation to the second mode shape ¢, than the starting vector x,""

For our case, x,”* = 1 therefore ¢,7 m x,'* = L, 50 that, from equation (A.20)

L o
X, = k7 m(1 - 'M‘ ¢) = ¢, (A.21)

This sequence of steps corresponds exactly to using one iteration of the Stodola Iteration
procedure for computing the second mode shape described in [2):
Given a starting vector x, and the known first mode shape ¢, compute the approximation x,”

to the exact second mode shape ¢, from
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x1‘ =D, %, (A,‘ZQ)
where
D=k'm (A.24)
= (I - . ¢T A 25
S= (1= - d: 4 m) (A.25)

For our casc ¥,=1 then

x =Dy 1=DS1—k'm(I-——¢ ¢ m)
1

=k m 1-~i—(¢Tm1)¢ -—k“m(l——{l—l—zﬁ):g (A .26)
M 1 1 - Ml 1 2 -

1

The approximate second mode shape 2&; corresponds to the first of the set of Ritz vectors
proposed by Wilson el al. [15] to represent the loading p, () = p(¢) - pi(¢) (Section 3.2.2),
This approximate second mode shape $2 together with the exact first mode shape ¢, form an
alternative basis to solve the problem to the one produced by the procedure proposed by Wil-
son ef ¢l using only the first two Ritz vectors. Because the two bases span different subspaces
(of the N-dimensional vector space spanned by the N exact vibration mode shapes) the solu-
tions obtained by the two procedures are in general different. For very special cases, when the
static spatial distribution of the loading is proportional to a linear combination of two of the
exact vibration mode shapes, both procedures produce exactly the two natural vibration modes
of the system represented in the loading. It can be easily shown that the final Ritz vectors in
the procedure proposed by Wilson et al. {15] correspond to the approximation to the exact
vibration mode shapes computed after one iteration of the Subspace Iteration algorithm for
the computation of vibration frequencies and mode shapes for the system with mass and
stiffness matrices m and k (starting the iteration with a very special set of vectors, orthogonal
through the mass matrix m) [Al], and since it is known that the convergence of this algorithm

is good only for the first half of the vectors considered it can be expected that the seconc
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mode shape approximation obtained by the Ritz vectors from Wilson’s approach using only

two vectors will be poor and can introduce rather large errors in the computed response.
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APPENDIX B:
ERRORS IN BASE SHEAR FROM ONE MODE ANALYSIS

BY SRSA METHGOD

In the response specirum analysis (RSA) method the maximum of the base shear V, is

computed from equations 3 and 8 in Section 3.1 as

N g a 1/2

Vo= | 3 (—— W) (B.1)
n=1 g

If the fundamental vibration period of the structure T, is within the acceleration-controlled

region of the spectrum, then the acceleration response spectrum ordinates for the higher modes

S., are always smaller, or at best equal, than that of the first mode 5,,, that I8 §,, < 5,, forn

=— 2,3, ... N, and the maximumn of the base shear can be written as

J La=1

s S XL L Sa L R
Vo < W, < Wi+ STw® (B.2)

# =2

1A

S | NS B
w;2+<gw;)}

g n—2

For the type of structures considered in this study the effective weights of the individual vibra-
N

tion modes W, add up to the total weight of the structure W, that is W=} W, and there-
=1

fore the maximum base shear ¢an be expressed as
— Sa1 o v ] V2
Vo < =t (Wit owowiy | (B.3)

The maximum base shear computed considering only the first mode contribution is given

directly by

Vo = wy (B.4)

161
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To estimate the error in the single mode approximation value for the base shear V,, com-
puted by SRSA we can compare it to the base shear 170 computed from RSA considering the
contributions of all the vibration modes to the response using the ratio 1_/01 /V,. For structures
with fundamental vibration period within the acceleration-controlled region can use the bound

for ¥V, computed above {Equation B.3), then

Vo w
v 2 i . N 172 (B'5)
o [wireorowry ]

Defining n= W /W, the ratio of the first mode eflective weight to the total weight of the

structure, the equation above can be written as

Vox
— > B.6
7, = 72 (B.8)

L]
l 7 + (1) ]
where 0 < n < 1. The variation with » of this lower bound for the ratio V,,/V, is shown in
Figure B1. For values of 5 larger than about 0.60, that is when the first mode effective weight
W Is larger than 60 percent of the total weight of the structure W, the bound for the ratio
Voi/ Vo is not sensitive to changes in n and is always larger than about 0.85. For n below 0.6 .
the variation of V,,/V, is almost linear with n so the quality of the approximation to ¥,

obtained from V,, deteriorates rapidly.

If the errors in the single mode approximation to the maximum base shear V,, are to be
kept within 5 percent of the maximum base shear values computed by RSA V,, the lower

bound for the ratio !701/70 should be 0.95. Therefore need to solve for n from

n
[ n® + (1) ]

= 0.95 (B.7)

with 0 < 5 <1 which gives n > 0.753. Thus if W, /W > 0.75, that is the first mode effective
weight is larger than 75 percent of the total weight of the structure, then Vg /V, will always
be larger than 0.95, that is the error in the approximation for the maximum base shear

obtained by considering only the first mode contribution is less than 5 percent, provided the
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fundamental vibration period of the structure 7', is within the acceleration-controlled region of

the spectrum.
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APPENDIX C: NOTATION

time-history of ground acceleration due to earthquake ground motion
maximum ground acceleration due to earthquake ground motion
modulus of elasticity

inertia force at floor level j due to displacements Uy

approximate equivalent lateral force at jth floor level in second natural vibration

mode

maximum equivalent lateral force at jth floor level in nth natural vibration mode
vector of approximate equivalent lateral forces in the second vibration mode 'f,-g
Iateral fort;e at jth floor level specified by the code formuia

added latera) force at top foor leve) specified by the code formula

vector of code Jateral forces £

aeceleration of gravity

story height

height from base to floor level j

effective height in the nth natural vibration mode

moment of inertia of beams

moment of inertia of columns

stifiness matrix

lengih of beam

length of column

participation factor for the nth natural vibration mode
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lumped mass at jth floor levet

mass matrix

modal mass in the nth natural vibration mode
time-history of base overturning moment in nth mode
maximum base overturning moment in nth mode
maximum base overturning moment

maximum bending moment among all beams
maximum bending moment amoeng ail columns
maximum overturning moment at story ¢

total number of floor levels in frame

spatial distribution of lateral effsctive forces in higher modes, jth floor level, used

to compute 3’2

time-history of lateral effective forces due to earthquake excitation
vector of lateral effective forces p,;

maximum axial force among all columns

maximum of response quantity r

maximum of nth vibration mode component of response quantity r
pseudo-acceleration response (design) spectrum

spectral pseudo-acceeleration ordinate for nth natural vibration mode
displacement response {design) spectrum

pseudo-velocity response {design) spectrum

time variable

fundamental vibration period of a multi-degree of freedom system
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natural vibration period in the nth mode
normalized lateral displacement at jth floor level
lateral displacement at jth floor level due to lateral forces f;
maximum ground displacement due to earthquake ground motion
maximum top floor displacement
lateral displacement at jth floor level due to lateral forces p,;
approximate displacement at jth floor level in second mode
maximum lateral displacement at jth floor level on the nth vibration mode
vector of lateral displacements «,
vector of lateral displacements u,;
vector of approximate lateral displacements in second mode 'ﬁ;g
time-history of lateral displacements vector
normalized iateral displacement at jth floor level
lateral displacement at jth floor level due to lateral forces F;
vector ot; normalized lateral displacements U/}

A
vector of lateral displacements U;
maximum of ground velocity due to earthquake ground motion
maximum of base shear
maxXimum of story shear at story i
time-history of base shear in nth mode
maximum of base shear in nth mode
weight lumped at the jth foor level

total weight of the structure
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effective weight in the approximate first mode of vibration
effective weight in the approximate second mode of vibration
effective weight in the nth natural] vibration mode

vector with all components equal to 1

maximum inter-story drift at jth story in the nth natural vibration mode
damping ratio in the nth natural vibration mode
beam-to-column stiffness ratio

jth component of the nth natural vibration mode

jth component of the approximate second vibration mode
natural vibration mode shape

nth natural vibration mode shape

approximate second vibration mode shape

natural vibration frequency

nth natural vibration frequency

approximate second vibration frequency
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PART III
AN IMPROVED CODE-TYPE ANALYSIS PROCEDURE
FOR PRELIMINARY DESIGN

Préceding page biank






1. INTRODUCTION

Since the early 1960°s, the earthquake response of multistory buildings has been one of
the most extensively researched subjects in earthguake engineering. Analytical procedures and
computer programs have been develc')ped to determine the earthquake response of structures;
static, cyclic tests have been conducted on building components; dynamic tests on full-scale
models of small buildings and medium-scale models of larger buildings have been conducted on
shaking tables; experimental data has been correlated with analytical results and advanced
analytical techniques have been applied to investigate the performance of buildings affected by
past earthquakes. Hundreds of publications reporting the results of such research have

appeared.

However very few of the advances inﬁanalytical structural dynamics have found their way
inte building codes in Ehe United States or many other countries. Although the code formulas
for base sheér and lateral forces have gone through changes every few years, the underlying
concepts in the Uniform Building Code are still based on the 1959 recommendations of the
Structural Engineers Association of California {13]. Several years ago it became apparent that
the analysis and design provisions should be comprehensively reviewed, the current state of
knowledge should be evaluated, and a coordinate set of provisions should be developed. In
response to this need the ATC-3 design provisions were published in 1978 [1], but so far they
have not been incorporated in building codes. However, at about the same time a new version

of Mexico's I"ederal District Building Code, which incorporated many recent research resulis,

was developed [6,11].

The principal procedure specified in most building codes to estimate earthquake forces is
an Equivalent Lateral Force Procedure. Formulas for base shear, height-wise distribution of
lateral forces, and computation of overturning moments are the key elements of this pro-
cedure. Such formulas contained in the three design documents mentioned above are

evaluated here in light of the resulis of dynamic analysis of buildings. It is demonstrated that
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these formulas do not properly recognize the effects of some of the most significant huilding
parameters., An improved procedure to compute the earthguake forces for the initial, prelim-

inary design of buildings is presented.

Buildings designed for code forces are expected to deform beyond the yield limit during
moderate to intense ground shaking. However, inelastic response history analysis, especially
three-dimensional analysis, is an impractical requirement in the design of most buildings. It is
believed that for many buildings satisfactory approximations to the design forces and deforma-
tions can be obtained by response spectrum analysis based on the design spectrum for inelastic
systems associated with an allowable ductility factor instead of the elastic design Spectrmﬁ.
This is the concept underlying simplified, inelastic analysis procedures in building codes, e.g.
the ATC-3 seismic design provisions or Mexico’s Federal District Building Code [6,11]. 1t is
therefore appropriate to base this study on elastic analysis and response of buildings. Further-
more, at this stage, this investigation is restricted to planar vibration of buildings without any

torsional effects.



2. ANALYSIS PROCEDURES

2.1 Response Spectrum Analysis Procedure

The maximum response of a multistory building to horizontal earthquake ground motion

can be estimated from the earthquake design spectrum by the following procedure [4]:
1. Define the smooth, elastic design spectrum for the structure at the particular site.
2. Define structural properties:

(a) Compute the mass matrix m of the building with its mass appropriately lumped at

floor levels,

(b) Compute the lateral stiffness matrix k of the building from the complete stiffness

matrix by condensing out the vertical and rotational degrees of freedom at the joints.
(¢} Estimate modal damping ratios &,.

3. Solve the eigen problem

kéd —w’mé (1)

to determine the natural frequencies w, (natural periods T, = 2 w/w,) and the modes 48;1

of vibration.

4. Compute the maximum response in individual modes of vibration by repeating the follow-

ing steps for each mode of vibration:

{a) Corresponding to period T, and damping ratio £,, read the ordinate S,, of the

pseudo-acceleration design spectrum

(b) Compute the effective weight W, (or portion of the weight) of the building that parti-

cipates in the nth mode of vibration from
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(c)

(d)

(e)
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N 2
[ 'E wj ¢jn }
A L (2)

N
25 w; ¢:2n

i=1

where w; = m; ¢ is the weight at the jth floor level, ¢;, is the modal displacement of
the jth floor, and N is the total number of floor levels. Also compute the effective
height 4, from

N

Yo hi wi 65

=1

by = —_—y (3)
Z) wy ¢J’n
=1

where h; is the height from the base to the jth floor level.

Compute the maximum values V., and M,, of the base shear V,,(t) and base over-

turning moment My, (¢) from

— S
Von == Wn‘ (4)
g
and
Hon = hn' Von (5)

)Tjn = Vc)n T\fw“ (6)
Z’wi ¢m

and repeat this computation for all floors.

Compute the floor displacements, or deflections, due to the lateral forces }'_J-n from

g —
Ujp == w,? E" fjn (7)

and repeat this computation for all floors.
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(f) Compute the maximum deformation (or drift) in the jth story from the floor displace-

ments using
A;’n - —jn - -"Zj—l,n (8)
and repeat this computation for all stories.

(g) Compute internal forces (story shears, story overturning moments and member forces)

by static analysis of the structure subjected to equivalent lateral forces f—jn .

Determine an estimate of the maximum 7 of any response quantity (displacement of a
fioor, deformation in a story, shear or moment in a story, etc) by combining the modal
maxima 7, for the response quantity in accordance with the square-root-of-the-sum-of-the-
squares (SRSS) formula:

L/2
F o= [ g)ﬁ?} (9)

o =1

The SRSS formula generally provides a good estimate of the maximum response for
systems with well separated natural periods of vibration, a property typically valid for
pianar motion of a building. For structures with this property, the SRSS method provides>
results essentially identical to the CQC method [5]. However for very short fundamental
periods --periods in the first third of the acceleration-controlled region of the spectrum (see
Section 3.2)-- the maximum value of a response quantity is better estimated by the abso-

lute sum combination of the modal maxima:
F=Y |7 | (10)

since in that range of periods the modal responses are in phase and their maxima occur

almost simultaneously (see Pars I).
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2.2 Building Code Analysis

The principal procedure to estimate earthquake forces, specified in the Uniform Building
Code [7], ATC-3 design recommendations [1], and Mexico’s Federal District Code {6,11) is an
Equivalent Lateral Force procedure. Based on an estimate of the fundamental vibration
period, formulas are specified in these building codes (for convenience in writing, at times, we
refer to ATC-3 recommendations as a building code although they have not been adopted in a
code) for the base shear and distribution of lateral forces over the height of the building. The
design shears and moments for the various stories of the building are determined from sta,l;ié
analysis of the building subjected to the lateral forces, with some codes permitting reductions
in the resulting story moments. The formulas for base shear and equivalent lateral forces are
presented in this section along with some observations on their relation to corresponding for-

mulas in the response spectrum analysis procedure.

2.2.1 Base Shear

For the present purposes the formula for the design base shear in the above mentioned

building codes and design recommendations can be expressed as
Vo=0C W (11)

where W is the total weight and the seismic coeflicient ¢ depends on the lundamental vibra-
vion period T. The seismic coefficient specified in three codes are displayed in Figure 1 and

may be expressed as follows:

Uniform Building Code (UBC):

0.12 T < 0.31 sec.
C = (12)
T > 0.31 sec.

wherein the seismic zone coefficient Z, and the structural-type coefficient K have been selected

as 1.
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FIGURE 1 Seismic coeflicient in building codes.
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ATC-8 Recommendations:

2.5 A
= - T < 0.38 sec.
“- 124, T > 033 1)
. Sec. ’
R T2/8 —

for rock site. In equation (13), A, and A, are the seismic coefficients representing effective
peak velocity-related acceleration and the effective peak acceleration, respectively, and R is

the reduction factor to account for effects of inelastic behavior.

Mezico’s Federal District Code (MFDC):

S,
- T £ T,
g
¢=i . (14)
- 0.5 R gy > T
p { 14057 [1=(=5) ] } T 2T,
where the pseudo-acceleration design spectrum S, is given by
T
ao+ (A — ag) T T £ T,
S ¢ :
=1 A T, < T < T, (15)
g T *
- >
A (=) T 2T,

For Zone I, firm ground: ao = 0.03, A = 016, T, = 0.8 sec., T, = 0.8 sec., r = 1/2. To
evaluate the base shear, the seismic coefficient is divided by the factor ' which is related to

the allowable duetility factor i as follows

T
E“(H*U T

vo=1, T > T, (16)

I+

IA

(p

The seismic coeflicients displayed in Figure 1 are for Uniformm Building Code, ATC-3
recommendations with A, = A, == 0.4 and B = 1, and Mexico's Federal District Code with u
== 1. Because the seismic coefficient is determined after reduction by R or u' in ATC-3

recommendations and Mexico's Federal District Code respectively, the ordinates of the seismic
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coefficient spectrum for these two codes are not directly comparable to the Uniform Building
Code. However the comparison of the spectral shapes, especially for T greater than 7, will be
useful. Each of the above design codes include variations in the above formulas to account for
soil conditions, importance of the structure, but these factors are not considered in the present

evaluabion.

Among the three building codes considered, only the MEFDC explicitly specifies the
pseudo-acceleration design speectrum and recognizes that the base shear in buildings with fun-
damental vibration period larger than 7,, especially in "flexural” structures, exceeds the pro-
duct of (5, / g) and the total weight. The ATC-3 recommendations start with a design spec-

trum and raise its descending branch in the velocity- and displacement-controlled regions to

decay at a slower rate with increasing T.

2.2.2 Distribution of Lateral Forces

The distribution of lateral forces over the height of the building is to be determined from

the base shear in accordance with the formulas for the lateral force at the jth floor:

Uniform Building Code (UBC):

wj h;,
Fy = (Vo Fy) ~5—— (17)
53w by

=1

with the exception that the force at the top floor computed from equation (17) is increased by

an add'ition al force

0 T < 0.7 secs.
Fy =}l o071 T V, 07 < T < 3.8 secs. (18)
0.25 V, T > 3.6 secs.

where w; is the weight at the ith floor and h; is the height of the ith floor above the base,
Except for the additional force F, assigned to the top of the building the UBC latcral forces

are distributed over the height of the building under the assumption of linearly varying floor
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displacement in the fundamental mode shape. Assignment of an addisional force F; at the top
of the building is intended by the code to roughly and implicitly account for the contributions

of the higher vibration modes to building response.

AT(C-8 Recommendations:

w; h¥
Fy =V, ....N_J.._.’_,_ (19)
3w hfk
§=1
in which & is a coeflicient related to the vibration period T as follows:
1 . T < 0.5 sees.
k=35 (T +15)/2 0.5 < T < 2.5secs. (20)
2 T > 2.5secs.

The height-wise distribution of lateral forces is based on the assumption that the horizontal
accelerations of floor masses are proportional to the elevation above ground for buildings with
T, < 0.5 sec., to the square of this elevation for T, > 2.5 sec.; and to an intermediate power
of this elevation for intermediate values of T,. These force distributions are intended to recog-
nize the changing fundamental mode shape and increasing higher mode contributions to.

response with increasing 7', [3].

Mezico’s Federal District Code (MFDC):

w; h; w; h?
F, = v _N_J__i__ + V@ ._N_L_f_._ (21)
Sy we by S w h®

=1 =1
where the base shear V, of equation (11) has been separated into two parts: VY and Ve,
distributed over the height assuming that the accelerations of floor masses are proportional to

their elevation above ground, and to square of this elevation, respectively. These base shear

components are
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The height-wise distribution of lateral forces is approximated by specifying horizontal accelera-
tions proportional to elevation above ground, to the square of this elevation, or intermediate
between these. The acceleration distribution implied in equation {21) passes smoothly from a
straight line when 77 = T, to a parabola as T tends to infinity. This variation in acceleration
distribution with fundamental vibration period T is intended to recognize the changing funda-
mental mode shape and increasing higher mode contributions to response with increasing T,

(11].

2.2.8 Story Shears and Moments

The design shears for the various stories of the building are determined from static

analysis of the huilding subjected to the lateral forces computed from the above equations.

The story moments can be similarly determined from the lateral forces hy methods of
statics. However, as will be seen in Section 4.3, there is a rationale for reducing the statically
computed overturning moments to obtain the design values. The design value of moment in
any story may then be expressed as a reduction factor multiplied by the statically computed
moment$. This reduction factor is specified in ATC-3 recommendations as 1.0 for the top 10'
stories; between 1.0 énd 0.8 for the pext 10 stories from the top, linearly varying with height;
0.8 for the remaining stories. In Mexico’s Federal District Code it is specified as varying
linearly from 1.0 for the top story to 0.8 for the bostom story, with the additional requir_ement
that even after modifying the computed moments at any story by the reduction factor, it
should not be less than the product of the story shear at that elevation and the distance to the
center of gravity of the portion of the building above the elevation being considered. This
reduction factor is specified as 1.0 in the UBC, implying no reduction in the statically com-

puted moments.



3. SYSTEMS AND DESIGN SPECTRUM"

3.1 Systems Considered

The rectangular plane frames analyzed in this study are idealized as single-bay, moment-
_resisting plane frames with constant story height = A, and bay width = 2& (Figure 2). Only
flexural deformations are considered in the members which are assumed to be prismatic. The
modulus of elasticity E is the same for all members but the moments of inertie of beams [;
and columns I, --same for both columns in any story-- may vary over the height, as in cases 3
to 5 of Figure 2, with the ratic of the two same in all stories. The mass of the structure is
assumed to be concentrated at the floor levels and the rotational inertia is neglected. The

damping ratio for all the natural modes of vibration is assumed to be 5 percent.

Each building frame shown in Figure 2 is completely characterized by two additional
parameters: the period of the fundamental mode of vibration 7', and a stiffness ratio p. The
latter was originally [2] defined as the ratio of the sum of the stiffness of all the beams at the
mid-height story of the frame to the summation of the stiffnesses of all the columns at the

same story, i.e.

SYEL /Ly

beams

~ T EL /L,

columne

(24)

For the one-bay frames considered in this study, this parameter reduces to
p = Ib / 4 Ic (25)
and it has the same value for all stories.

This parameter is a measure of the relative beam-to-column stiffness and hence indicates
the degree of frame action. The extreme values of p, O and oo, represent the following limiting
cases of a frame respectively: vertical cantilever with the beams imposing no restraint to joint
rotations; and a shear building in which the joint rotations are completely restrained and

deformations occur only through double curvature bending of columns. An intermediate value
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FIGURE 2 Idealized building frames.
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of p represents a frame in which beams and columns undergo bending deformations with joint

rotation.

3.2 Earthquake Design Spectrum

The earthquake excitation is characterized by the smooth design spectrum of Figure 3
which is constructed by the well known procedures proposed by Newmark and Hall. This
spectrum is for ground motions with maximum acceleration 7, velocity v, , and displacement
w, equal to 1g, 48 in/sec, and 36 in, respectively. With this data and from the shape of the
design spectrum, it is apparent that the maximum response of short period structures is con-
trolied by the ground acceleration, that of long period structures by the ground displacement,
and that of intermediate period structures by the ground velocity. The spectrum can thus be
divided , as shown, into acceleration-controlled, velocity-controlled, and displacement-
controlled regions. Amplification factors for these regions were selected from (8] for 84.1 per-

centijle response and 5 percent damping ratio to construct the spectrum.

The design spectrum of Figure 3 is replotted in Figure 4 as a normalized pseudo-
acceleration spectrum to emphasize that the spectral acceleration is constant in part of the
acceleration-controlled region, varies as 1/7 in the velocity-controlled region, and as 1/7?% in

the displacement-controlied region.
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4. EVALUATION OF BUILDING CODE ANALYSIS PROCEDURES

4.1 Base Shear

The maximum response associated with thé selected design spectrum, computed by the
RSA procedure --wherein the contribution of all the natural vibration modes of the frame are
included-- is plotted against the fundamental vibration period T, in the form of response spec-
bra. Such a plot is presented in Figure 5 for the base shear in the uniform five-story frame
{Case 1) for three values of p = 0, 0.125, and oco. The bage shear is presented in dimensionless
form, having been normalized with respect to the effective weight W, participating in the first
vibration mode of the building. Alsc presented is the base shear considering the contribution
of only the fundamental mode of vibration, which in the normalized form of Figure 5 is the

same for all p values and is identical to the design spectrum of Figure 4.

It is apparent from Figure 5 that the normalized base shear for buildings with fundamen-
tal vibration period T, within the acceleration-controlled region of the spectrum is essentially
identical to the contribution of only the fundamental vibration mode. However, for buildings
with T, in the velocity- or the displacement-controlled regions of the spectrum, the response
contributions of the vibration modes higher than the fundamental mode can be signilicant.
They increase with increasing T, and decreasing p for reasons discussed elsewhere (see Roehl

(10] and Part I of this report).

If the seismic coeflicient ¢ in building codes was deflned as S,,/¢, the pseudo-
acceleration ordinate at T, normalized with fespecc to the acceleration of gravity, the code for-
mulas -- equation (11}~ would aeccurately predict the base shear for buildings with T, within
the acceleration-controlled region of the spectrum provided the effective weight W, was used
instead of the total weight W in computing the code shear. However, the base shear formula
in building codes is based on the total weight W, which obviously is always larger than W/,
resulting in a larger base shear. This is confirmed by replotting the results of Figure 5 in the

form of a seismic coefficient spectrum as shown in Figure 6 wherein the base shear is
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normalized with respect to the total weight. Within the acceleration-controlled region of the
spectrum, for buildings with the same total weight the base shear decreases with decreasing p
because W, decreases with p (Table 1); and the code value for base shear exceeds the RSA
value for all p values. However in the velocity- or displacement-controlled regions the higher
mode contributions can be significant enough for the RSA value of base shear to exceed the
code value. The code formula is inadequate for longer period buildings because it does not
properly recognize the contributions of higher vibration modes and their dependence on the

building parameters T, and p.

In order to further evaluate the response Behavior in this period range, the curve aT 7 is
fitted to the normalized hase shear response spectrum of Figure 5. The parameters « and f5,
for each of the velocity- and displacement-controlled regions of the spectrum are evaluated by
a least-squared error fit --that minimizes the error defined as the sum, over the range of
periods considered, of the squares of the differences between the ordinates of the "exact” and
the fitted curve on a logarithmic scale-- to the computed response with the following con-
straints: Firstly, the ordinate of the fitted curve at T = T, is equal to the "exact” value
computed by RSA procedure, which for all values of p can be replaced by the ordinate of the
flat part of the normalized pseudo-acceleration spectrum. Secondly, the curves ftted to the
velocity- and displacement-controlled spectral regions have the same ordinates at T = T},
the period value at the junction between the two regions. Comparison of the "exact” response
spectra of Figure 5 with the fitted curves (Figure 7) indicates that the selected functions pro-
vide a satisfactory approximation to the computed response. The correlation coefficient
presented in Table 2 indicates how closely the “exact” response can be approximated by the
function a7 in each of the two spectral regions considered; a correlation coefficient = 1
represents a perfect fit, decreasing as the fit becomes poorer. This process of fitting curves
aT* to the normalized base shear spectrum computed by the RSA procedure was repeated for

all the frame cases of Figure 2, and the resulting values of g are presented in Table 3.
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Table 1: Ratio of first mode effective weight W, to total weight W

for different frame models.

FC‘";“;G p =0 | p=1005|p=o0125 — 05 | p = 2 — oo
1 0.679 0.764 0.798 0.835 0.862 0.880
2 0.629 0.785 0.800 0.814 0.824 0.830
3 0.656 0.714 0.741 0.773 0.792 0.804
4 0.579 0.662 0.701 0.750 0.784 0.806
5 0.457 0.531 0.560 0.601 0.634 0.658
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Table 2: Correlation coefficients for least-squared error fit of functions a T

to the exact normalized base shear in uniform 5-story frames.

Spectral Regions

’ Acceleration— Velocity— Displacement—
controlled controlled controlled
0 1. 0.971 0.999
0.125 1. 0.987 0.999
'] 1. 0.972 0.084
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Recalling that the difference between lthe norinalized pseudo-acceleration response spec-
trum and the normalized base shear represents the contributions of the vibration modes higher
than the fundamental mode, it is apparent from Figure 7 that these contributions can be
approximately represented by raising the spectrum curve by changing the exponent -3 for 7.
The degree to which the spectrum needs to be raised for the velocity- and displacement-
controlled spectral regions depends on the stiffness ratio p; the spectrum need be raised very
little for shear buildings (p = oo), but t¢ an increasing degree with increasing frame action,
i.e. decreasing p {(Figure 7). The spectral modifications also depend on the number of stories,

and mass and stiffness distributions of the building (Table 3).

Presented in Figure 8 are the fitted curves for normalized base shear from Figure 7 along
with the seismic coefficients specified by UBC and MEDC codes and ATC-3 design recommen-
dations [equations (12)-(16)]. All the curves presented in Figure 8 have been normalized to a
unit maximum value. It is apparent that the seismic coefficient in building codes decreases
with increase in period at a rate slower than demonstrated by dynamic analyses; but this does
not necessarily imply that the codes are actually conservative. Furthermore none of the codes
recognize that the normalized base shear, as predicted by dynamic analysis, in the long-period‘
range depends significantly on the stiffness ratio p. However Mexico’s Federal District code
recognizes that, for long-period buildings, the base shear computed from V= (5,/¢) W
should be inereased to recognize that, in general, the longer the fundamental period of vibra-
tion the more important will flexural deformations tend to be relative to shear deformations
and the more significant will the contributions of higher modes tend to be relative to the fun-
damental. But, even the MFDC code does not explicitly recognize that this increase in base

shear depends not only on the fundamental period T, but also on the stiffness ratio p.

In summary, building codes attempt $o account for the contributions of the higher modes
of vibration to the base shear in a simple, empirical manner by increasing each of the two fac-
tors that are multiplied. The total weight W is used instead of the first mode effective weight

W, ; and, for long-period buildings, the seismic coefficient used is increased above the design
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Table 3: Exponents #, and 8, in T

for the decaying portion of the base shear response spectrum.

I el e
Velocity -0.641 -0.921 -0.982
' Displacement -0.682 -1.296 -1.779
Velocity -0.600 -0.957 -0.964
: Displacement -0.710 -1.570 -1.692
Velocity ~0.618 -0.866 -0.951
’ Displacement -0.702 ~-1.220 -1.688
Velocity -0.487 -0.823 -(0.954
! Displacement | -0.690 -1.258 -1.722
Velocity -0.242 -0.613 -0.801

5
Displacement | -0.875 -1.148 -1.525
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FIGURE 8 Comparison of seismic coefficient spectrum shapes in building codes with base shear

spectrum shape computed by RSA for uniform five-story frame.
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spectrum by raising its descending branch. Both of these concepts lead to the desired result of
increasing the design base shear bhut the increases are not handled rationally because their

dependence on building parameters T, and p is not recognized,

The above investigation has been concerned with the velocity- and displacement-
controlled regions of the spectrum. In defining the seismic coefficient in the very-short period
range, the MFDC recognizes the decrease in pseudo-accelerations as the period decreases, but
the UBC or ATC-3 do not. In the later two, the fiat part of the spectrum extends to zero
period. The periods T, and T, at which the fiat part of the specirum begins and ends, respec-

tively, vary from code to code.

4.2 Story Shears

Having examined the base shear computed by response spectrum analysis (RSA) pro-
cedure and compared it with code formulas, we next extend our investigation to story shears.
The distribution of story shears over the height of the uniform 5-story frame (Case 1), com-
puted by the RSA procedure including the contribution of all five modes of vibration, is .
presented in Figure 9 for three values of p, and four values of the fundamental period chosen
to be representative of different period regions of the spectrum. Also presented are RSA resulis
considering only the fundamental mode of vibration. The distribution of lateral forces, com-
puted from the story shears of Figure 9 as the differences between the shears in consecutive
stories, is presented in Figure 10. In a lumped mass system, such as the frames considered
here, the lateral forces are concentrated at the floor levels and the shear remains constant in
each story with discontinuities at each ﬂoof, However, such plots of lateral forces and story
shears would not be convenient in displaying the differences among various cases and the alter-

native presentation with lateral forces and shears varying linearly over story height is used.

It is apparent from both these figures that, for the entire range of p, the contributions of
the vibration modes higher than the fundamental mode are negligible in the response of build-

ings with short fundamental vibration period. Results generated for many more T, values
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than the four presented in Figures 9 and 10 indicated that the above observation is valid for
T, within the acceleration-controlled region of the spectrum. The higher mode contributions
become increasingly significant as T, increases in the velocity- or displacement-controlled
regions of the spectrum. For a particular 7', value, they are more pronounced as p decreases

implying increasing frame action.

Figures 11 and 12 display the data presented in Figures 8 and 10 in reorganized form
along with the distribution of lateral forces prescribed by the three building codes and the
resulting story shears. As indicated by this comparison and other results not included here,
for buildings within the acceleration-controlled region of the spectrum, the distribution of
lateral forces and story shears specifled by the three building codes are essentially identical and
between the extremes predicted by RSA for p — 0 and co. With increasing fundamental
vibration period T,, the code distributions for lateral forces and story shears increasingly differ
from the RSA results, especially for the smaller valueslof p, because under these conditions the

higher modes contributions become more significant.

For long-period buildings, with T, in the velocity- or displacement-controlled regions, the
higher mode contributions are pronounced enough to cause reversal of the curvature in the dis- |
tribution of lateral forces, which the code formulas do not recognize. To account for this effect
it has been suggested that the lateral forces be represented by a third-degree polynomial with
its coefficients determined by a least-squared error fit to the RSA results [12], but this pro-

cedure appears impractical for « ode applications.

The RSA results and code forces presented in Figures 9-12 were all for uniform 5-story
frames (Case 1). Whereas most of the plots are indicative of what to expect even for taller
buildings, the lateral I"orc‘es specified by UBC are an exception. In this case, the only part of
the lateral force distribution that changes with vibration period T, is the additional force F,
concentrated at the top of the building. Therefore, as shown in Figure 13, the distribution of
story shears near the top of the building is affected by the total number of stories in the build-

ing. Thus the seemingly good quality of results from UBC in Figures 11 and 12 for 5-story
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buildings may not be valid for much taller buildings.

4.3 Overturning Moments

The maximum overturning moments due to earthquake ground motion, characterized by
the design spectrum of Figure 3, were computed by including the contribution of all five modes
of vibration in the response spectrum analysis (RSA) procedure. The base overturning
moment is plotted in Figure 14 against the fundamental vibration period 7', in the form of
response spectra for three values of p = 0, 0.125, and co. The base overturning moment has
been presented in dimensionless form, having been normalized with respect to W{ h{, the pro-
duct of the effective weight W, and effective height %,, both for the first vibration mode of
the building. Also presented is the base overturning moment considering the contribution of
only the fundamental mode of vibration, which when presented in the normalized form of Fig-
ure 14 is the same for all p values and is identical to the design spectrum of Figure 4. "The dis-
tribution of story overturning moments over building height is presented in Figure lslby plot-
ting the ratio of the story moments to base moment for the same four values of T, selected

earlier.

These figures demonstrate, similar to what was observed in the preceding sections, that
the contributions of the higher modes of vibration increase with increasing 7, and with
deéreasing p; . but, as is well known, these contributions are less significant to the overturning
moments compared to what they were for story shears. In particular, the higher modes contri-
butions are negligible for huildings with 7, within the acceleration-controlled region of the

spectrum, irrespective of the p value; and for shear beams (p = oco) irrespective of the T, value.

The RSA resuits of Figure 15 are displayed in Figure 16 in reorganized form along with
the distributions of story overturning moments deterrhined from the three building codes. For
buildings with period 7', within the acceleration-controlled region of the spectipum and even
extending into a part of the velocity-controlled region of the spectruin, the code distributions

are quite accurate. Their discrepancy relative to the RSA results increases with increasing T,
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especially for buildings with smaller values of p, because the higher mode contributions, which
become increasingly significant, are not properly recognized in the code formulas. However,
the discrepancy in overturning moments computed by codes is much smaller than it was for

shears, because the higher mode contributions to the moments are less significant.

A static analysis of a building with a particular T, and p subjected to the corresponding
lateral forces presented in Figure 10 would provide the correct story shears, because the lateral
forces were determined by statics from the story shears, but not the correct story overturning
moments. This is demonstrated by presenting the ratio of overturning moments in a story
computed by two procedures: (a) response spectrum analysis considering all vibration modes,
presénted in Figures 14 and 15; and (b) static analysis of the building subjected to the lateral
forces of Figure 10. This ratio is akin to the reduction factor J specified in building ;odes. It
is presented in Figure 17 for the base overturning moment as a function of the fund_amental
vibration period T, for three values of p; and in Figuré 18 over the height of the building.
The reduction factors never exceed unity, implying that the approximate value of overturning
moment obtained from the lateral forces always exceeds the “exact” value obtained by the
RSA procedure. The two values are identical for all values of T, if only the contribution of
the fundamental vibration mode is considered. Thus, the discrepancy between the two values
is directly associated with the fact that higher vibration modes contribute differently to shears

and moments.

Because the lateral forces specified in building codes from which the story shears are com-
puted by static analysis, are intended to provide estimates of story shears, the preceding obsger-
vations from results of RSA procedure demonstrate that the overturning moments will be
overestimated if they were also computed from the lateral forces by statics. ‘Thus building
codes usually specify reduction factors by which the statically-computed moments should be
multiplied. These reduction factors defined earlier for the three codes being considered are
presented in Figures 17 and 18. The reduction factors specified by UBC and MFDC are

independent of the fundamental period T,, except for the slight variation arising in the latter
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to satisfy an equilibrium requirement. However, the ATC-3 procedur;’: specifies a reduction
factor which depends on the total number of stories in the building. In order to include that
feature the ATC-3 values are presented in Figure 17 as a function of N, the total number of
stories, using the rough empirical relationship that T == 0.1 N; and in Figure 18 for three

different values of N.

It is apparent that some reduction in the story moments relative tc the statically com-
puted values is justified in light of the results of dynamic analysis. Thus no reduction at all as
in UBC is inappropriate. However, even the other two codes considered do not recognize that

the reduction factor depends significantly on the building parameters T, and p.



5. IMPROVED CODE-TYPE ANALYSIS

The equivalent lateral force (ELF) analysis procedure specified in building codes is
intended to provide an initial estimate of the earthquake forces without a preliminary design
of the huilding. It was demonstrated in Sections 3 and 4 that the earthquake forces are espe-
cially affected by two overall buvilding parameters, fundamental vibration period T, and
beam-to-column stiffness ratio p; but the effects of these parameters are not properly recog-
nized in bulilding codes. Based on the preceding results, a procedure to estimate the earth-
quake forces for the initial preliminary design of buildings, which recognizes the important

influence of these parameters on building response to earthquakes, is presented next.

5.1 Base Shear

Based on the results of Figure 5 and their analysis presented in Section 4.1, it is recom-

mended that the base shear be computed from
V, = ¢ w; (26)

where ( is a seismic coefficient and W, the effective weight of the bullding that participates

in the fundamental vibration mode, both to be determined by the procedures to follow.

The seismic coefficient spectrum, showing ¢ as a function of vibration pericd T,, should
be constructed by modifying the normalized pseudo—acceieration design spectrum for the site
obtained by well established procedures [8]. The modifications to this spectrum are intended
to directly account for the contributions of the modes of vibration higher than the fundamen-
tal mode to the base shear. These higher-mode contributions depend on building properties,
the most significant of which are fundamental vibration period 7', and stiffness ratio p. Based
on the results of response spectrum analysis and their interpretati;)n presented earlier the
design spectrum a-b-c-d-e is modified as shown in Figure 19. The spectrum is left unchanged

in the acceleration-controlled region a-b-c¢ of the spectrum, but is modified in the velocity- and
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displacement-controlled regions as follows: Through point ¢ draw curve cd’ proportional to

_‘@v

T and extending to T' = Ty; on the log-log plot of Figure 1¢ this will be a straight line as

shown. Through point d’ draw curve d’e¢’ proportional to T_ﬂd, which in the log-log plot of
Figure 19 is another straight line. The exponents 8, and f; depend on building properties,
the most significant of which is the stiffness ratio p. Values for exponents §8, and g; for the
velocity- and the displacement-controiled rergions of the spectrum were presented earlier in
Table 3 for the five frame cases of Figure 2. These exponents were determined from a least-
squared error fit, as described in Section 4.1, to the response spectrum for the normalized base
shear computed by response spectruin analysis of each building frame [see Part II of this

report].

The effective weight W, in the fundamental vibration mode can be computed from equa-
tion (2) based on estimates of the height-wise distribution of building weight and of tl}e funda-
mental mode shape. A procedure to determine an approximation to the mode shape, depend-
ing on the stiffness ratio p, will be described later. Alternatively, the data presented in T“able

1 may be used to estimate W, /W and hence W /.

5.2 Modal Responases

Once the total base shear has been determined from equation (26), thé next question is
how should the total earthquake force given by the base shear be distributed over the height
of the building. It has been demonstrated [see Parts I and I of this report] that, over a useful
range of fundamental vibration periods, the earthquake response of building frames can be
satisfactorily estimated by response spectrum analysis considering the contributions of only the
first two modes of vibration; even the first mode alone is usually sufficient in the acceleration-
controlled region of the spectrum. Thus if we could separate the total base shear into the first
mode contribution and ascribe the remainder to the second mode it would be possible to distri-
bute each modal base shear over the building height in accordance with the corresponding

mode shape. This is an indirect, approximate way to determine the response in the



215

fundamental and second modes of vibration. The tofal response can then be obtained by

appropriately combining the modal responses.

The base shear can be separated into two parts as follows: The base shear due to the fun-

damental mode of vibration is given by [4]
S
Vy = .ii W (27

An approximate value of this base shear can be obtained from equation (27) where the
effective weight W, for the fundamental mode is estimated as discussed above and §,, is the
ordinate of. the pseudo-acceleration design spectrum. The remainder of the base shear,
obtained under the assumption that the total ‘base shear is best given by a SRSS combination

of modal values,

Vog =\ Vo2 - Vﬂl (28)

is treated as an estimate of the base shear due to the second vibration mode. Recall that if
the fundamental vibration period of the building is within the acceleration-controlled region of
the spectrum, the base shear is almost entirely due to the fandamental vibration mode (Figure .

5) and ¥, would be almost zero.

Having estimated the base shears due to the first two modes of vibration, the equivalent
lateral forces in each mode can be determined from equation (6), provided the mode shapes
can be estimated. The remainder of the analysis is the same as the standard response spec-

trum analysis described in Section 2.1.

5.3 Vibration Period and Mode Shapes

All that remains to be determined is the fundamental vibration period and the shapes of
the first two modes of vibration; note that the second vibration period is not required in this
analysis. These vibration properties can not be computed exactly without the building having

been designed. In particular, the eigen-problem of equation {1} can not be formulated because
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the stiffness matrix is unknown and the height-wise distribution of the building mass is known
only approximately. Thus, in computing the initial estimate of earthquake forces to start the
process of designing a building, the fundamental vibration period and the two mode shapes

should be estimated based on overall properties of the building and its structural system,

An estimate of the fundamental vibration period is required in most of the existing build-
ing codes. For this purpose, empirical formulas have been developed [1]; these are based on
only a general description of the building type --e.g. steel moment frame, concrete moment
frame, shear wall system, braced frame, etc.-- and overall dimensions such as height and pIan
size. Such formulas may be employed in this improved code-type analysis, but it should be

recognized that they often lead to significantly inaccurate values.

After considering three possible functions to deseribe the fundamental mode shape

[Appendix A], it is recommended that the fundamental mode shape be approximated by
ry’ ) |
b= —g-} , J =12..N .(29)

where k; = height of the jth fioor above the base and H == total height of the building. The
approximate mode shape of equation (29), with the exponent § estima,r,ed from a least-sguared
error fit to the exact fundamental mode shape, is compared with the exact mode shape in Fig-
ure 20 for three of the building frame cases of Figure 2 and three values of stiffness ratio p.
Although the apprbximate shape is not always excellent, it is obviously better than the mode
shapes indépendent. of p implied in building codes. As shown in Figure 21 and Table 4, the
exponent & depends on the building properties including the number of stories, height-wise
variation of mass ahd stiffness, but perhaps most significantly on the beam-to-column stiffness
ratic p. Because the exponent é varies gradually with p, it can be estimated to a useful degree

of accuracy from the data presentéd.

The recommended approximation to the second mode shape is

=l

¢j2 = l—hio'! 1 1 - —h-j—) 7 =12.N ‘ (30)
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Table 4: Exponent § in approximation ¢;, = (h; /H)°

to the fundamental mode shape.

Fézs“;e p—=—0 | p=2005|p=20125 | p=05]p=2]|p=00
1 1.745 1.379 ) 1.232 1.034 0.892 0.798
2 1.814 1.188 1.092 0.982 0.911 0.864
3 1.848 1.585 ‘ 1.455 1.277 1.155 1.078
.4 1.815 1.507 1.360 1.162 1.028 0.942
b 1.950 1.699 1.590 1.425 1.2909 1.215
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where h, is the height of the node (point of zero displacement) above the base. The approxi-
mate mode shape of equation (30), with k, estimated from a least-squared error fit to the
exact second mode shape, is compared with the exact mode shape in Figure 22 for three of the
building frame cases of Figure 2 and three values of p. Although the approximate shape errs
significantly in some cases, for purposes of preliminary design it should be satisfactory in
estimating the response due to the second mode of vibration. High degree of accuracy is not
important in estimating this response because it is usually much smaller than the first mode
response. As shown in Figure 23 and Table 5 the parameter A, is relatively insensitive to the

stiffness ratio p, the number of stofies, and other building parameters. It can therefore be

estimated to a useful degree of accuracy from the data presented.

5.4 Computational Steps

The earthquake forces to be considered in the initial, preliminary design of a multistory

building can be estimated from the earthquake design spectrum by the following procedure:

1. Determine the earthquake design spectrum for the building at the particular site. A spec-
trum for elastic design can be determined from estimates of the maximum ground accelera-
tion, velocity and displacement and appropriate amplification factors for the various spec-
tral regions [8)]. Procedures have also been developed for constructing an inelastic design
spectrum from the elastic design spectrum for the ductility factor considered allowable in

the design of the building [9,14,15,16].

2. Plan the overall dimensions of the building, the number of stories and their height, height-
wise distribution of building weight, and select the structural materials and structural sys-
tem --moment frame, shear walls system, braced frame ete-- and estimate the stiffness ratio
p-

3. Construct the seismic coefficient spectrum, showing ¢ as a function of vibration period T,
by modifying the earthquake design spectrum, from step 1, showing the pseudo-

acceleration S, as a function of T. The design spectrum is left unchanged in the
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Table 5: Parameter h,/H in approximation ¢;, = (h; /ho) (1 — h;/hy)

to the second mode shape.

Fézg;e p=10|p=0056 ]| p=o0125 =05 |p=2 = co
1 0.852 0.826 0.817 0.807 0.800 0.795
2 0.801 0.755 0.751 0.749 0.747 0.746
3 0.858 0.841 0.833 0.826 0.822 0.820
4 0.792 0.768 0.758 0.746 0.739 0.734
5 0.831 0.802 0.700 0.774 0.760 0.750




222

P=0 LP=0.125
I — —
CASE | / P
P 4
7
// rd
! / f
/
[\ hj/H / ‘/
\ \
\\\ \\\ \\
\\\ A \\
l e
CASE 2 /
7
//
/ f4
/ hj/H / /
l E f
\ \ \
\ \ \
N \
N \
| —
CASE 4 / /
//
7’
// //
/i i
hj/H / )
‘ |
\ \
\ \ \
N \
\\ N
AN A\

EXACT —— APPROXIMATE

FIGURE 22 Exact second modc shapes of three frame cases for three p values compared with

approximation ¢ ;= (h,/ho) (1= h;/ho).



Parameter hyH

FRAME CASE 3
_—E~‘““‘““‘-—-::::::_Hﬁ_¥ /
}

08

*-—EL—'.__:_ 7
2’ 7
0.7 - 4
0.6 |-
0.5 L s 4 IIIIII 1 J. lJlllll ] i 1 i lllll| 1 A 1 llllll ¥ |} F] 3 B LRA
0.00I 00l 0.1 | 10 100

Stiffness Ratio, p

FIGURE 23 Variation of parameter #Aq --in approximation ¢, = ti;/hg) (1= hi/hg to the

second mode shape-- with stiffness ratio p for five frame cascs.

€38



224

acceleration-controlled region but is raised for longer periods. The variation of §, with T
is changed from T to T in the velocity-controlled region and from T2 to 7% in the
displacement-controlled region to obtain the seismic coefficient spectrum; see Section 5.1 for
further details. The coefficients 4, and f; are determined from data such as presented in

Table 3 corresponding to p and other building properties from step 2.

4. Estimate the fundamental vibration period T,. Empirical formulas included in most codes,
based on a general description of the structural system and overall dimension, may be used
for this estimate. However it should be recognized that these formulas often lead to

significantly inaccurate values.

5. Describe the first two vibration mode shape approximately by equations (29) and (30) with
the parameters é and h, estimated from data of the type presented in Figures 21 and 23

and Tables 4 and 5 corresponding to p and other building properties from step 2.

6. Estimate the base shear V, from equation (26) with ¢ and W, determined, corresponding

to the building properties from step 2, as follows:

(&) C is read from the seismic coefficient spectrum (from step 3) as the ordinate

corresponding to T, and p (from steps 2 and 4).

(b) W is estimated either from equation (2), based on estimates of height-wise distribu-
tion of building weight from step 2 and of the fundamental mode shape from step 5, or

from data such as that presented in Table 1.
7. Separate the base shear 170 into two parts:

(a) Fundamental vibration mode contribution V., determined from equation (27), with S,
read as the ordinate of the pseudo-acceleration design spectrum from step 1

corresponding to the T, from step 4.

(b) Second mode contribution V,, determined from equation (28), with V, and V,, known

from steps 6 and 7(a), respectively.
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8. Estimate the maximum response in individual modes of vibration by repeating the follow-

ing steps for the first two modes:

{(a) Compute equivalent lateral forces f,-,, at all floors from equation (6) with the base

shear V,, and mode shape value ¢,, available from steps 7 and 5, respectively.

(b) Compute story shear and moments by static analysis of the structure subjected to the
equivalent lateral forces. Forces in individual structural members can not be deter-

mined until their preliminary sizes are estimated.
(¢} Compute floor displacements from equation (7).
(d) Compute story deformations from the floor displacements using equation (8).

9. Determine an estimate of the maximum 7 of any response (displacement of a floor, defor-
mation in a story, shear or moment in a story, etc.} by combining the first two modal max-

ima 7, and 7, for the response quantity in accordance with equation (9).

5.5 Data Base Required

Several parameters must be estimated to implement the improved code-type analysis pro-
cedure just summarized: beam to column stiffness ratio p in step 2; mode shape parameters 6
and ho.in step 5, and effective weight W, in step 6 all of which depend on p and other struc-
tural properties; and exponents g, and 4, in establishing the seismic coefficient spectrum in
step 3, which depend on the shape of the design spectrum, p and structural properties. Obvi-
ously data must be developed to provide a basis to estimate these parameters in practical
design application. The data presented in Tables 1, 8, 4, and 5 is a sub-set of the required
data base. The computations necessary to develop a sufficient data base are outlined in this

section.

All the aforementioned parameters depend, in part, on the stiffness ratio p which can not
be computed formally from eguation (24) without a preliminary design of the building., In the

initial phase of design, therefore, p should be estimated from limited information: type of
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structural system --moment frame, shear walls, or hybrid systems, etc.-- bay widths and story
heights. The stiffness ratio can be readily estimated for limiting cases; e.g. p should be close to
zero if a single cantilever shear wall provides the lateral resistance of the building; and it
should be very large if the joint rotations are effectively restrained by stiff beams framing into
flexible columns. In order to estimate p for a typical building somewhere between these two

limiting cases, it is necessary to develop an appropiate data base.

To this end, the stiffness ratio p should be computed from equation (24) for actual build-
ings representative of each of the major types of structural systems used for buildings. Once
such a data base is developed, it should be possible to estimate p corresponding to the struc-
tural system proposed for a building to be designed. Such a rough estimate should bé satisfac-
tory to obtain an initial estimate of the earthquake forces by the improved code-type analysis
procedure presented in the preceding section. Once a preliminary design of the building is
developed the p value can be determined from equation (24) and the computation of earth-

quake forces refined if necessary.

The effective weight W, and mode shape parameters § and h, depend only on the struc-
tural properties and these parameters have been computed (Tables 1, 4, and 5) for the ﬁve‘
frame cases described in Figure 2 for several values of p. Using procedures outlined earlier,
similar data should be generated for additional building cases covering the practical range of
height-wise distribution of mass and stiffness, number of stories, and other important proper-

ties.

The exponents 4, and B, for the velocity- and displacement-controlled regions of the
seismic coeflicient spectrum depend on the shape of the earthquake design spectrum, p and
other structural properties. These exponents have been presented (Table 3) for the design
spectrum of Figure 3, five frame cases described in Figure 2 and three p values. Additional
data should be generated for these five frame cases to at least include all the p values selected
in Tables 1, 4, and 5). Using procedures outlined earlier, similar data should be generated for

additional building cases covering the practical range. Finally, such complete data base should
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be developed for shapes of the various design spectra depending on epicentral distance, local
soil conditions, ete. specified in a particular building code.

Once such a data base is developed, the improved code-type analysis procedure presented

here can he conveniently implemented and included in building ccdes.



6. SUMMARY AND CONCLUSIONS

The Equivalent Lateral Force procedure in most building codes does not satisfactorily
recognize the fact that vibration modes higher than the fundamental mode may contribute
significantly to the earthquake-induced forees and deformations in a building. These higher
mode response contributions increase with increasing fundamental vibration period T, of the
building and decreasing beam-to-column stiffness ratio p. As a result, the code formulas for
base shear, height-wise distribution of lateral forces, and reduction factor for overfturning
moment lead to design forces that do not satisfacterily recognize the effects of these important

building parameters.

Based on the limitations of present building codes formulas identified, an improved pro-
cedure to estimate the earthquake forces for the initial, preliminary design of buildings has
been presented. Starting with the earthquake design spectrum for elastic or inelastic design
and the overall, general description of the proposed building, this procedure provides an
indirect approach to estimate the response in the first two vibrations modes of the building.
The procedure recognizes the important influence of those building properties and parameteré
that significantly influence its earthquake response without requiring the computations
inherent in standard dynamic analysis by the response spectrum method. The procedure
represents a major conceptual improvement over present building codes with very little

increase in computational efforc.

Several parameters must be estimated to implement this improved code-type analysis
procedure. The data necessary to provide a basis for estimating these parameters in practical
design application have been identified and a sub-set of the required data base has been

presented.
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APPENDIX A:

EVALUATION OF APPROXIMATE FIRST MODE SHAPE ALTERNATIVES

A.1 Definition of Approximate First Mode Shapes

Three alternative shapes --x;, x,, and xz;—- are considered as possible approximations to

the fundamental mode shape. Their components at the jth floor level are given by:

i) Ty = (hj/H)ﬁ

if) To; = (h;/ho) (1 — hj/hy)

i) z4; = (hy /JHY? + ~ (h; /H)?
Each of the three approximate shapes is expressed in terms of one parameter which will be
determined --as function of p and the frame characteristics— by a least-squared error fit to the

exact fundamental mode shapes for the five frame cases considered in this part of the study

(Section 2).

The variation with p of the parameters 6, &, and ~ for the five frame cases is presented
in Figures A-1, A-2, and A-3 respectively. From a comparison of the curves in these figures .
it is apparent that the less sensitive of the three approximations to the fundamental mode
shape to changes in the value of p is x,. This is a very important quality because p can not be
estimated with a high degree of accuracy at the initial stages of the design process, precisely at
the time when the approximation to the fundamental mode shape is going to be used. Further-
more, since the distributions of mass and stiffness over the height are only known in a very
approximate manner it is also desirable that the parameter defining the approximate funda-
mental mode shape should not be very sensitive to them. Under these criteria, the most reli-
able approximation to the fundamental mode shape will be obtained from x,. For x,, precisely
in the range of g typical of moment resisting frames (see Part I) the value of the parameter ki,
is very sensitive to changes in p showing a discontinuity, whose location depends on the frame
characteristics (number of stories and stiffness and mass distribution over height). For x,

althoungh there is no discontinuity, the dependence on the frame characteristics is somewhat
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larger and the changes in the value of ~ for small changes in p are quite large, especially for

rather small p values.

A.2 Errors in Approximations

An estimate of the magnitude of the errors for each of the three approximate fundamen-
tal mode shapes can be obtained from:

1/2

N
S - 5
B = ——— o k=12 3

g‘ bA ]

=1

This expression corresponds to the ratio of the Euclidean norms of the error vector (¢, — x;)
and the exact fundamental mode vector ¢,. The variation with p of this error quantity for
each of the three approximate fundamental mode shapes considered is shown in Figures A-4 to
A-6. They display the same general trends, the errors are largest for values of p about 0.1 and
decrease towards both extremes. The magnitude of the error quantity £, for a given p value,
ig in general smallest for x,, but for x, its largest value does not exceed 0.168. Therefore, it can -
be expected that the error in the individual components, at each floor level, of the approxima-
tions to the fundamental mode shape will be even smaller. In Figure A-7 the three approxi-
mate fundamental mode shapes are compared to the exact fundamental vibration mode shapes
for three of the frames cases considered in this study and three values of p. Although there
are some differences between the three approximations their overall quality is about the same.

Perhaps being x, the best of the three,

Although the errors for x, are somewhat larger than for the other two approximations, it
is still considered the most viable of the three approximate fundamental mode shapes because
the differences in the errors are not large enough to offset the advantage of having a much
smoother variation of the paraméter that defines the shape with frame characteristics, espe-
cially p. Even though the errors can be rather large in some cases they can be considered

acceptable given the overall level of uncertainty inherent in the preliminary design procedure.
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APPENDIX B: NOTATION

ordinate at zero period of the pseudo-acceleration design spectrum, Mexico’s

Federal District Code (MFDC)
maximum ground acceleration due to earthquake ground motion
maximum value of the pseudo-acceleration design spectrum ordinate, MFDC

seismic coeflicient representing effective peak acceleration, ATC-3 recommenda-

tions

seismic coefficient representing effective peak velocity-related acceleration, ATC-3
seismic coefficient in building codes

modulus of elasticity

maximum equivalent lateral force at jth floor level in nth natural vibration mode
lateral force at jth floor level specified by building codes

addeitional force at top floor level specified by UBC

acceleration of gravity

story height

parameter in second mode approximation, height from base to node, equation

(30)

height from bhase to floor level j

effective height in the nth natural vibration mode
total height of building

moment of inertia of beams

moment of inertia of columns

exponent used to define lateral force variation with height, ATC-3
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stiffness matrix

structural-type coefficient, UBC

length of heam

length of column

mass lumped at jth floor lével

time-history of base overturning moment in nth mode

maximum value of base overturning moment in nth mode M, (1)
maximum base overturning moment

maximum overturning moment at story j

total number of floor levels in the structure

exponent of 1/7 in decaying branch of pseudo-acceleration design spectrum,

MFDC

maximum of response guantity r

maximum of nth vibration mode component of response quantity »
reduction factor to account for effects of inelastic behavior, ATC-3
pseudo-acceleration design spectrum

spectral pseudo-acceleration ordinate for nth natural vibration mode
displacement design spectrum

pseudo-velocity design spectrum

time variable

natural vibration period

fundamental vibration period of a multi-degree of freedom system

lower limit of natural period for constant pseudo-acceleration part of the design

spectrum
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Ty lower limit of natural period for constant displacement part of the design spec-
frum

T, natural vibration period in the nth mode

T, lower limit of natural period for the constant pseudo-velocity part of the design
spectrum

, maximum ground displacement due to earthquake ground motion

Wy maximum floor displacement at jth floor level on the nth vibration mode

maximum of ground velocity due to earthquake ground motion

Vo base shear in building code formulas

V(,(l) part of base shear distributed over the height proportional to h, MFDC
Ve part of base shear distributed over the height proportional to k2 MFDC
Vo maximum value of hase shear

V; maximum of story shear at story j

Von (1) time-history of base shear in nth mode

Veon maximum value of base shear in nth mode

Wy weight lumped at the jth foor level

w- total weight of the structure

Wn' effective weight that participates in the nth natural vibration mode

Z seismic zone coefficient, UBC

a scale factor in a7 least-squared error fit to normalized base shear spectrum
8 exponent in oT™? least-squared error fit to normalized base shear spectrum
B4 value of exponent B in the displacement-controlled region of the spectrum

A, value of exponent £ in the velocity-controlled region of the spectrum
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parameter in the fundamental mode approximation, exponent, equation (29)
maximum inter-story drift at jth story in the nth natural vibration mode
damping ratio in the nth natural vibration mode

allowable ductility factor, MFDC

reduction factor, related to u, to account for effects of inelastic behavior, MFDC
beam-to-column stiffness ratio

displacement at the jth floor in the nth natural vibration mode

eigen vector or natural vibration mode shape

nth natural vibration mode shape

natural vibration frequency

nth natural vibration frequency
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and K.5. Pister - July 1979(pPB 301 166)A05

"Hysteretic Behavior of Reinforced Concrete Structural Walls," by J.M. Vallenas, V.V. Berters and
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G.H. Powell and D.P. Mondkar - Deec. 1979(pPB 89 167 216)203

"On Response of Structures te Stationary Excitation,® by A. Der Kiureghian - Dec. 1979(PB 80166 929) AU3
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"Evaluation of Seismic Design Provisions for Masonry in the United States,” by B.IL. Sveinsson, R.L.
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