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ABSTRACT

Reliable analytical procedures to predict the carthquake response of arch dams are necessary to
design earthquake resistant dams and to evaluate the earthquake safety of existing dams. | .The objec-
tives of this investigation are to develop an effective and computationally efficient analytical pro-
cedure for computing the earthquake response of concrete arch dams, and to investigate how this
response is affected by dam-water interaction, foundation-rock flexibility, and the alluvium and sedi-

ments usually present at the reservoir boundary.

An earlier analytical procedure for computing the response of arch dams to harmonic ground
motion including dam-water interaction and reservoir boundary absorption effects has been extended
to consider the flexibility of the foundation rock and to include Fourier synthesis of harmonic
responses 10 obtaiﬁ earthquake responses. The computational efficiency of the extended analytical
procedure has been improved by an order of magnitude by developing more efficient analytical for-
mulations and computational procedures for evaluating the hydrodynamic terms, and by developing

procedures for interpolation of the frequency response functions.

Utilizing the resulting analytical procedure and computer program, the response of a selected
arch dam to harmonic and earthquake ground motion has been computed and studied for a -wide
range of the important parameters characterizing the properties of the dam, foundation rock,
impounded water and reservoir boundary materials. This investigation led to the following conclu-
sions:; (a) dam-water interaction generally increases the earthquake response of arch dams, especially
the response to vertical ground motion; (b) reservoir boundary absorption generally reduces the dam
response, most significantly that c_iue to vertical ground motion; however, increasing wave absorption
may in some cases increase the response to upstream or cross-stream ground motions; (c) foundation-
rock flexibility increases the response of the dam and has little influence on dam-water interaction
and reservoir boundary absorption effects; (d) an absorptive reservoir boundary gives a more realistic
estimate of the earthquake response of arch dams, especially of the response to the vertical com-
ponent of ground motion; and (e) water compressibility should be considered in the earthquake
analysis of arch dams because the effects of dam-water interaction and reservoir boundary absorption

are not properly represented by the assumption of incompressible water.
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1. INTRODUCTION

Reliable analytical procedures to evaluate the earthquake response of arch dams are necessary to
design earthquake resistant dams and to evaluate the earthquake safety of existing dams. ADAP [1]
was one of the earliest computer programs developed for analysis of arch dams by the finite element
method. While foundation ﬂexibilrity;eifects were included in this computer program, it was only
recently that an added mass appfoximation of hydrodynamic effects was inciuded [2]. In order to
develop better representations of hydrodynamic effects in the earthquake response of dams, consider-
able work has been reported on analysis of hydrodynamic pressures on arch dams [3,4,5,6]. While
the earthquake analysis qf arch dams has been implemented in the time domain including the hydro-
dynamic effects of the impounded water discretized by the finite difference method [7], the most
promising approach seems to be a substructure method implemented in the frequency domain. In
this method, the finite element equations of motion for the dam are modified by hydrodynamic terms
arising from dam-water interaction. These hydrodynamic terms, which are functions of the excitation
frequency, are determined from solutions of the wave equation over the fluid domain for .apprdpriate

boundary conditions.

For a simple geometry of the arch dam and fluid domain -- the dam assumed to be a segment of
a circular cylinder, bounded by vertical, radial banks of the river canyon enclosing a central angle of
90° - mathematical solutions of the wave equation were obtained to determine the hydrodynamic
terms [6]. For arch dam-reservoir systems of realistic geometry, the hydrodynamic terms were deter-

mined from analysis of finite element models of the fluid domain [5].

Utilizing these hydrodynamic solutions, the substructure method has been implemented to
analyze the response of arch dams supported on rigid foundation rock to harmonic ground motion,
including the dynamic effects of the impounded water and the wave absorptive effects of the alluvium
and sediments that may be present at the boundary (bottom and sides) of actual reservoirs [5,8].
Although only limited response results obtained by these analytical procedures were presented, they
were sufficient to indicate that the response of arch dams may be significantly influenced by dam-

water interaction, water compressibility, and absorption of hydrodynamic waves at the reservoir
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boundary [5,8].

In the above-mentioned analytical procedure [5], the hydrodynamic terms in the equations of
motion for the dam were determined from analysis of finite element models of the impounded water.
The finite element procedure was developed for fluid domains extending to infinity in the upstream
direction, consisting of an irregular 'region of finite size connected to a region of uniform cross-section
and infinite length in the upstream direction. For the latter region, a finite element discretization
within the cross-section combined with a continsum representation in the infinite direction provides
for the proper transmission of pressufe waves. However, as originally developed [5,9], considerable
computational effort is required in finite element analysis of reservoirs of complex geometry exiend-
ing to large distances in the upstream direction, especially when effects of water compressibility and

of sedimenis at the reservoir boundary are included.

The objectives of this investigation are: (a) to develop an effective and computationally efficient
analytical procedure for computing the earthquake response of concrete arch dams; and (b) to study
how dam-water inieraction, reservoir boundary absorption, and foundation-rock flexibility affect the

earthquake response of arch dams.

The earlier analytical procedure [9] is first summarized in Chapter 3, with an extension to
include Fourier synthesis of responses to harmonic ground motions and thus obtain dam response to
earthquakes. Furthermore, as a first step towards considering the effects of dam-foundation rock
interaction, the analysis procedure is extended to include a massless finite element model for the
foundation rock. Efficient analytical formulations and computational procedures are presented for
evaluation of the hydrodynamic terms and computation of dam response. The resulting response

analysis procedure and its implementation in a computer program are described.

Utilizing the analvtical procedure presented in Chapter 3, the responses of Morrow Point Dam
to harmonic ground motions in the upstream, vertical and cross-stream directions are determined and
presented in Chapter 4. The response results are presented in the form of complex-valued frequency
response functions, for a wide range of the important parameters characterizing the properties of the

dam, foundation rock, impounded water and reservoir boundary materials. Based on the frequency



response results, the effects of dam-water interaction, reservoir boundary absorption, and foundation-
rock flexibility on the response of the dam are investigated, and shown to influence significantly the

response of arch dams in many cases.

Presented in Chapter S is the response of Morrow Point Dam to the three components of Taft
ground motion, determined for a range of properties of the reservoir boundary materials and various
assumptions for the impounded water and foundation rock. Based on these response results, the
effects of dam-water interaction, reservoir boundary absorption, and foundation-rock flexibility on the
earthquake induced displacements and stresses in the dam, and the relative significance of the
response to thé three components of ground motion, are investigated. The results of practical earth-
quake analyses of the arch dam are also presented to demonstrate the effectiveness and efficiency of

the analytical procedure.

" Chapter 6 presents the principal conclusions regarding the analytical procedure developed and
the effects of dam-water interaction, reservoir boundary absorption, and foundation-rock flexibility on

the earthquake response of arch dams.



2. SYSTEM AND GROUND MOTION

_2.1 Arch Dam

The system considered consists of a concrete arch dam supported by flexible foundation rock in
a canyon and impounding a reservoir of water (Figure 2.1). The system is analyzed under the
assumption of linear behavior for the concrete dam, impounded water and foundation rock. Thus the
possibility of water cavitation, concrete cracking, or the construction joints of the dam opening during

vibration is not considered.

The dam is idealized as an assemblage of finite elements {Figure 2.2(a)}, with a major part of the
dam represented by thick shell finite elements [10], and the part of the dam near its‘ junetion with
foundation rock représented by transition elements [1,10], designed to connect thick shell elements in
the dam to three-dimenéional solid elements employed in idealizing the foundation rock. The proper-
ties of each finite element are characterized by the Young’s modulus E,, Poisson’s ratio‘ v,, and unit
weight w, of the concrete. The vibrational energy dissipation properties of the dam are characterized

by the constant hysteretic damping factor ;.

2.2 Foundation Rock

Required in the substructure method for analysis of earthquake response of dams is the
frequency-dependent stiffness (or impedance) matrix for the foundation rock, defined at the nodal
points on the dam-foundation rock interface. This matrix for a viscoelastic half plane was deter-
mined for two-dimensional analysis of concrete gravity dams supported on the horizontal surface of
foundation rock [11]. However, such a foundation model is inappropriate for analysis of arch dams
because they are usually built in narrow canyons with the dam boundary in contact with the founda-

tion rock extending over the height of the dam.

An alternative approach is to idealize a portion of the foundation rock as a finite element sys-
tem and to determine the impedance matrix for this idealization. The principal decision required in

defining this idealization is the three-dimensional extent and boundary conditions of the foundation
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rock to be included in the analysis. For arch dam sites where typically similar rocks extend to consid-
‘erable distances, wave-transmitting boundaries are necessary if the finite sized foundation-rock region
is to represent the unbounded extent in the field. Such transmitting boundaries have been developed
for two-dimensional analysis [12] with seemingly ad-hoc extensions proposed for three-dimensional
analyses. The latter, if developed properly, would be computationally expensive perhaps to the point

of being prohibitive for practical problems.

For these reasons and because it 1s virtually impossible to rationally specify the free-field earth-
quake motions at an arch dam-rock interface, an extremely simple idealization for the foundation
rock is used here [13]. Only the foundation rock flexibility is considered in this investigation; i.e. the
inertial and damping effects of the foundation rock are ignored in considering dam-foundation
interaction effects, As shown in Figure 2.2(b), an appropriate portion of the foundation-rock region is
idealized as an assemblage of three-dimensional solid finite elements, with the finite element meshes
of the dam and foundation rock matching at their interface. The properties of each finite clement are

characterized by the Young’s modulus £, and Poisson’s ratio »;.

2.3 Impounded Water

The reservoir behind a dam is of complicated shape, as dictated by the natural topography of
the site. Typically the.impounded water extends to great distances, up to a few tens of miles, in the
upstream direction. Finite element idealizations are necessary to properly represent the complicated
geometry of the impounded water. But such an idealization would be exorbitantly expensive, to the
point of becoming impractical, if the standard finite element idealization was employed to large dis-

tances in the upstream direction.

An effective approach is to idealize the fluid domain as shown in Figure 2.1, with a finite region
of irregular geometry adjacent to the dam connected to an infinite uniform channel -- a region that
extends to infinity along the upstream direction (x axis) with uniform y-z cross-section. This restric-
tion of a uniform cross-section for the fluid domain upstream of some cross-section is imposed

because it permits uncoupling of the three-dimensional boundary value problem for the infinite



channel into two problems: a one-dimensional problem in the upstream direction and a two-
dimensional problem over the cross-section. With this restriction, it is possible to efficiently recog-

nize the infinite extent of the reservoir in the upstream direction.

Thé finite region of irregular peometry is idealized as an assemblage of three-dimensional finite
elements as shown in Figure 2.2(c), with the finite element mesh compatible with that of the dam at
its upstream face. For the infinite channel, a finite element discretization of the cross-section, compa-
tible with the discretization of the irregular region over the common cross-section -- the transmitting
plane in Figure 2.2(c) -- combined with a continuum representation in the infinite direction provides
for the proper transmission of pressure waves. Physically this treatment can be interpreted as a
discretization of the fluid domain into sub-channels of infinite length [Figure 2.2(c)]. The properties
of the impounded water are characterized by the velocity of pressure waves C and the mass density p

or unit weight w,, .

2.4 Absorptive Reservoir Boundary

The boundary of a reservoir upstream from a dam would typically consist of altuvium, silt, and
other sedimentary material. This section on the modelling of these materials is taken from a recent

work on concrete gravity dams [14].

Over a long period of time, the sediments may deposit to a significant depth in some reservoirs.
The depth of sediments can be recognized in the analytical procedure presented in this paper by
correspondingly reducing the depth of the fluid domain. However, the influence of the sediments on
the static stresses in the dam or on the vibration properties of the dam are not considercd in the
analysis because it should be negligible as the sediments are very soft, highly saturated and exert .

lateral forces only on the lower part of the dam.

The effects of interaction between the impounded water and the foundation rock would be dom-
inated by the overlying alluvium and sediments, possibly deposited to a significant depth. These
reservoir boundary materials are highly saturated with a low shear modulus. A hydrodynamic pres-

sure wave impinging on such materials will partially reflect back into the water and partially refract,



primarily as a dilatational wave, into the layer of reservoir boundary materials. Because of the con-
siderable energy dissipation that results from hysteretic behavior and sediment particle turbulence,
the refracted wave is likely to be absorbed in the layer of soft, saturated sediments and essentially dis-

sipated before reaching the underlying foundation rock.

The absorption of hydrodynamic pressure waves at the reservoir boundary can be represented
approximately by a one-dimensional model, normal to the boundary and independent of the location
on the boundary, that does not explicitly consider the thickness of the sediment layer. For this
model, the boundary condition at the reservoir boundary is developed in references [9,14,15]. The
fundamental parameter characterizing the effects of absorption of hydrodynamic pressure waves at
the reservoir boundary is the admittance or damping coefficient ¢ = p/p,C, in which C, = VE,/p,
where E, is the Young’s modulus and p, is the mass density of the materials at the reservoir boun-
dary. The wave reflection coefficient «, which is the ratio of the amplitude of the reflected hydro-
dynamic pressure wave 1o the amplitude of a normally propagating pressure wave incident on the

reservoir boundary, is related to the damping coeflicient [5,15] by

_1-4C
1+ ¢qC

2.1

The wave reflection coefficient « is a more physically meaningful description than ¢ of the
behavior of the absorption of hydrodynamic pressure waves at the reservoir boundary. Although the
vlvave reflection coefficient depends on the angle of incidence of the pressure wave at the reservoir
boundary, the value o for normally incident waves, as given by equation {2.1) is used here for con-
venience, The wave reflection coeflicient &« may range within the limiting values of 1 and -[. For
rigid reservoir boundary materials, C,= oo and ¢g=0 resuniting in o= 1. For very soft feservoir boun- )
dary materials, C, approaches zero and g = oo, resulting in oo = — 1. It is believed that o values from 1

to 0 would cover the wide range of materials encountered at the boundary of actual reservoirs.
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2.5 Ground Motion

In earthquake response analysis of dams by the substructure method, the earthquake input is
specified as the free-field ground motion at the dam-foundation rock interface [9]. This free-ﬁeld
ground motion was assumed to be uniform across the base in two-dimensional analyses of concrete
gravity dams [14]. This approach of specifying the same motion over the entire dam-foundation rock
interface is not appropriate for arch dams because the dam boundary in contact with the foundation
rock extends through the height of the dam, and the free-field motion is expected to vary significantly
over the height. Non-uniform boundary motions can be included in finite element analysis of struc-
tures [16]. The principal difficulty, however, is in rationally defining the variations in motions over
height because no measurements have been obtained of actual ground motion variations in arch dam
locations. Another possible approach is to define the earthquake input as a rigid-body translation of
the basement rock on which the finite element model of the dam and foundation is supported. How-
ever, very little is known about earthquake motion at depth because most of the available strong

motion records are from accelerographs located at the ground surface or in basements of buildings.

From the preceding discussion it is clear that it is difficult to define a suitable earthquake input
mechanism for an arch dam. Neither of the two approaches can be justified rationally, thus a much
simpler approximation is empioyed in this investigation. Specifically, a sufficient portion of the foun-
dation rock is included to represent only the static foundation flexibility effects; the foundation rock
is assumed to be massless for the dynamic analysis, and the earthquake input is specified as spatially-
uniform motion of the basement rock [13]. Since there is no wave propagation mechanism in the
massless foundation rock, the specified basement rock motion is transmitted without modification to
the dam-foundation rock interface. In the context of the substructure method of anaiysis, the above ’
mentioned approximation is equivalent to specifying the same free-field ground motion throughout
the dam-foundation rock interface with the foundation rock assumed to be massless in computing the
foundation impedance matrix. The ground acceleration is defined by its three components: a; () in

the upstream direction, 4, () in the cross-stream direction, and aJ (¢) in the vertical direction.
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2.6 Morrow Point Dam-Water-Foundation Rock System

2.6.1 Morrow Point Dam

Numerical results are presented later to demonstrate the effectiveness of the various concepts
and procedures developed in Chapter 3 for efficient earthquake response analysis of arch dams. In
addition, results are presented later in Chapters 4 and 5 respectively for the harmonic response and
earthquake response of an arch dam. These response results are all for Morrow Point Dam, located
on the Gunnison River in Colorado. It is a 465 ft high, approximately symmetric, single centered
arch dam. A detailed description of the geometry of the dam is available in references [5] and [17].
For the purpose of dynamic analysis, the dam is assumed to be symmetric about the x-y plane with
the dimensions averaged from the two halves. The foundation and fluid domains are also assumed
symmetric about the x-y plane, with the fluid domain extending to infinity in the upstream djrection.
Since the dam, fluid domain, and the foundation rock are assumed symmetric about the x-y plane,
only one-half of the dam-fluid-foundation rock system will be analyzed. The response to upstream (x)
or vertical (y) components of ground motion, which is symmetric about the x-y plane, is determined
by analyzing one-half the system with symmetric boundary conditions on the x-y plane. The response
to cross-stream (z) ground motion, which is antisymmetric about the x-y plane, is determined by

analyzing one-half the system with antisymmetric boundary conditions on the x-y plane.

The finite element idealizations of one-half of the arch dam, foundation rock and the
impounded water are shown in Figure 2,3, The finite clement idealization of the dam, shown in Fig-
are 2.3(a), consists of 8 thick shell finite elements in the main part of the dam and § transition ele-
ments in the part of the dam near its junction with foundation rock, with a total of 61 nodal points.
When foundation-rock flexibility is considered, this idealization has 296 degrees of freedom for sym- -
metric (x and y components) ground motion and 284 degrees of freedom for antisymmetric (z com-
ponent) ground motion. The mass concrete in the dam is assumed to be homogeneous, isotropic and
linearly elastic with the following properties: Young’s modulus = 4.0 million psi, unit weight = 155
pef and Poisson’s ratio », = 0.2, except that the Young’s modulus is varied as discussed in Section

4.2.1 for the frequency response functions presented in Chapter 4. A constant hysteretic damping
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factor 5, = 0.10, which corresponds to five percent damping in all natural vibration modes of the

dam with empty reservoir on rigid foundation rock, is selected.

2.6.2 Impounded Water

The response analysis can handle any water level provided the finite element mesh for the dam
is defined to include nodal points at the water level. However, for computational convenience, if the
reservoir is not empty, the water level is assumed to be at the crest level in this investigation unless
stated otherwise. The finite clement idealization of the fluid region [Figure 2.3(c)] consists of 27
three-dimensional finite elements for the irregular fluid region with7189 nodal points; and has 157
pressure degrees of freedom for symmetric {x and y components) ground motion and 132 degrees of
freedom for antisymmetric (z component) ground motion. Special equilibrium and compatibﬂity
conditions are imposed on the transmitting plane e-f-g-h-¢ [Figure 2.3(c)] connecting the irregular
region with the infinite channel, to represent the upstream transmission of the hydrodynamic pressure
waves. The following properties are assumed for the impounded water: velocity of pressure waves C

= 4720 ft/sec and unit weight = 62.4 pcf.

There are no data available for the alluvium and sediments at the bottom and sides of the reser-
voir impounded by Morrow Point Dam, or for that matter at any other dam. The wave reflection

coeflicient « is varied between 0 and 1 in this investigation.

2.6.3 Shape of the Foundation-Rock Region

The flexibility effects of the foundation rock is included in the response analysis procedure to be
described in Section 3.1 by including a certain volume of the foundation rock under the dam in
modelling the complete dam-water-foundation rock system. Because the finite element method is
used to discretize the foundation rock, there is no restriction to the geometry of the foundation model
in the analysis procedure. In fact, the shape of the foundation can be selected to resemble, to a cer-

tain extent, the actual topography of the foundation rock at the dam site.

In analyzing Morrow Point Dam, the shape of the foundation rock is idealized using a pro-

cedure that has been adopted in the computer program ADAP [1]. Basically, this procedure assumes
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that the dam canyon is prismatic in the upstream direction (x direction), as shown in Figure 2.4, and
the volume of the foundation rock is described by a size parameter R;. The shape of this

foundation-rock region is further explained below.

First, let’s assume that the thickness of the dam at the abutment is so small compared to the
other dimensions that the dam-foundation rock interface can be represented by a line in space. The
shape of the foundation rock can then be visualized as the volume in space described by moving a
semicircular plane with its straight edge always parallel to the x axis (i.e. pointing in the upstream
direction) and its center always lying on and moving along the dam-foundation line, as shown in Fig-
ure 2.5 for one-half of the dam-foundation rock system. As the semicircular plane is moved, it is also
rotated simultaneously such that its plane is always perpendicular to the projection of the dam-
foundation line on the y-z plane (Figure 2.5). The radius of the semicircular plane is the parameter

R; which controls the size of the plane and thus the volume covered by the moving plane.

Because the dam-foundation rock interface is not the single line shown in Figure 2.5, but a sur-
face with finite width, the shape of the volume of foundation rock as described above is modified to
recognize this finite width of the dam at the abutment. Since the dam-foundation rock interface usu-
ally intersects the straight edge of the semicircular plane at an oblique angle, a connection surface
needs to be developed between the semicircular plane and the dam-foundation rock interface. The
construction of such a connection surface is illustrated in Figures 2.6 and 2.7. The projection of the
nodal points (in the finite element idealization of the dam) at its abutment on the y-z plane is shown
in Figure 2.6, where 4, B, - -, M, represent the nodal points on the downstream face; 4,, B,,

-, M» represent the corresponding nodal points on the upstream face, and 4, B, -, M
represent the mid-surface nodal points (midway between the corresponding surface nodal points). ,
The projection of the dam abutment on the y-z plane may be symmetric or non-symmetric about the
y axis, depending on the geometry of the dam. The mid-surface points 4, B, :--, M have been
joined together by the smooth curve shown as a dotted line, which can be regarded as the above-
described dam-foundation line (Figure 2.5). Lines normal to this curve are extended from each of

these mid-surface points with a length R;. Denoted by 44", BB", ---, MM" in Figure 2.6, these
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Figure 2.5 Illustrative sketch of the shape of the foundation-rock region. Only half of the region is
shown.
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Figure 2.6 Projection of the shape of the foundation-rock region on y-z plane.
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lines represent the projection on the y-z plane of the above-mentioned semicircular plane at the
different positions along the dam-foundation line. Figure 2.7(a) shows the semicircular plane at one
of the mid-surface nodes X and a connection surface connecting the plane to the dam—fdundation
interface. This connection surface, which is defined by points P, T, U, V, W, R, X, and X, in Fig-
ure 2.7(a), is further illustrated in Figure 2,7(b) which shows the semicircular plane and the vertical
(y) projection of the connection surface on the semicircular plane. This area of projection of the con-
nection surface is defined by points X;, X3, P, T, U, V, W, and R [Figure 2.7(b)]. Points X, and
X, are respectively the vertical projections of the downstream abutment nodal point X, and the
upstream abutment nodal point X,. Points P and R on the straight edge of the semicircular plane
are located such that the x coordinate difference of points R and X,, X; and X,, and X; and P are
the same and equal to a distance denoted by 1 [Figure 2.7(b)]. Points T, U, ¥V, W are located by
extending lines perpendicular to the straight edge of the semicircle from points P, X5, X|, and R,
respectively, for a distance along the plane that is again equal to u [Figure 2.7(b)). Thus the projec-
tion of the connection surface on the semicircular plane consists of three parallelograms [Figure
2.7(b), shown also in Figure 2.7(a)], whereas the connection surface itself consists of three separate

surfaces joined together in space [Figure 2.7(a)].

With the above procedure to define the shape of the foundation-rock region, the size of the
region depends entirely on Ry. This parameter should be chosen to be large enough to satisfactorily

represent foundation flexibility effects in analysis of the dam.

Theoretically, the shape of the foundation-rock region should be compatible with the geometry
of the dam and impounded water in the finite element system to be analyzed. However, this may
sometimes be difficult to achieve with the shape of the foundation-rock region described earlier.
Since foundation-rock flexibility is represented by the condensed stiffness matrix defined with refer-
ence to the degrees-of-freedom at the dam-foundation rock interface (see Chapter 3), compatibility
must be satisfied at this interface but minor violations at the foundation-water interface may be

acceptable.
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2.6.4 Size of the Foundation-Rock Region

In order to represent the flexibility effects of the foundation rock on the earthquake response of
the dam, an adequate volume of the foundation should be included in the dam-water-foundation rock
system to be analyzed. However, the larger the foundation and the more finite elements needed to
discretize the foundation, the greater is the required computational effort. Therefore, with the ideali-
zation of the shape of the foundation described in Section 2.6.3, the minimum value of Ry that can

adequately represent the foundation-rock flexibility effects should be selected.

The natural frequencies and mode shapes of vibration play a central role in analyzing the ¢arth-
quake response of the dam; in static analysis, the static displacements and stresses of the dam are the
responses of concern. Therefore, the foundation-rock flexibility effects are adequately represented if,
with the portion 6f the foundation rock included in the analysis, the static displacements and stresses,
and natural vibrati.on frequencies and mode shapes are accurately predicted. The minimum Ry
beyond which increasing R, has little influence on the computed results would be appropriate for

practical analysis.

The variation of the natural frequencies of the first three symmetric vibration modes and of the
first three antisymmetric vibration modes with the size parameter R, are respectively shown in Fig-
ures 2.8 and 2.9. The natural frequencies are normalized with respect to their values for a rigid foun-
dation (represented by R, = 0); and three values of E,/E; are considered: I, 1/2, and 1/4. The
natural frequencies decrease as the size of the flexible foundation increases, but they are essentially
independent of size beyond R,y = Hy, |.5H, and 2H; approximately for E;/E; = 1, 1/2, and 1/4,
respectively, where H, is the maximum height of the dam. Although this observation is based on the
first three natural frequencies, it is found to be true also for the higher natural frequencies. The first
three symmetric mode shapes along the crest arch and the crown cantilever (# = 0°) are plotied in
Figures 2.10, 2.11, and 2.12 for E/E; = [, 1/2, and 1/4, respectively. The corresponding antisym-
metric mode shapes along the crest arch and the ¢ = 13.25° cantilever are plotted in Figures 2.13,
2.14, and 2.15, As shown in these figures, both the symmetric and antisymmetric mode shapes

experience little or no changes as R, increases from H, to 3H, for E;/E, = 1, from |.5H; to 3H, for
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Figure 2.8 Variation of the natural frequencies of the first three symmetric vibration modes of the
dam-foundation rock system with the size parameter Ry of the foundation-rock region.
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Figure 2.9 Variation of the natural frequencies of the first three antisymmetric vibration modes of
the dam-foundation rock system with the size parameter Ry of the foundation-rock region.
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Er/E; = 1/2, and from 2H, to 3H, for E//E; = 1/4.

The static displacements along the crown cantilever and the arch stresses adjacent to the crown
cantilever section, both due to the dead weight of the dam, can be expressed as 8;w,H,Y/E, and
ww, H,, respectively. Similarly, these response quantities due to the hydrostatic pressure with a full
reservoir can be expressed as Sow,, H/E; and uyw, H,, respectively. The coefficients 8;, 83, x1, and u,
are presented in Figures 2.16, 2.17, and 2.18 for E,/E; = 1, 1/2 and 1/4, respectively. Tensile
stresses and displacements in the downstream direction are defined as positive. It is apparent that the
static displacements and stresses do not change much as R, increases from H; to 3H; for E//E; = 1,

from 1.5H, to 3H, for E;/E; = 1/2, and from 2H; to 3H, for E;/E; = 1/4,

Since the natural frequencies, mode shapes, and the static responses remain essentially constant
beyond R, = H,, 1.5H,, and 2H, for E;/E; = 1, 1/2, and 1/4, respectively, the foundation-rock flexi-
bility effects would be adequately represented if the above values of R, are used for the correspond-
ing E;/FE, ratios. Thus, it is recommended that the shape of the foundation-rock region included in
the analysis be selected as described above with its size defined by the following values of R/, the size
parameter: Ry = H, for E;/E; = 1; Ry = 1.5H, for E¢/E; = 1/2; and Ry = 2H, for E;/E; = 1/4;
with the value of R, appropriately interpolated between I, and 2H; for E,/E; between 1 and 1/4.
For E;/E; > 1, it is recommended that a conservative choice of the size of the foundation with R o=
H; be used. While these recommendations are based on analysis of Morrow Point Dam, they should

be useful in analysis of other arch dams.

Since the smallest value of E,/E; for which frequency response functions are presented in
Chapter 4 is 1/4, as suggested by the above guidelines, the foundation-rock region chosen to represent
its flexibility effects should have the size parameter R, equal to two times the height A, of the dam.
However, for additional conservatism in this research investigation, the size parameter R, is selected
as three times the height of the dam. The portion of the foundation rock included in the analysis to
represent its static flexibility effects, with its shape defined in Section 2.6.3 and the size parameter Ry
= 3H,, is shown in Figure 2.3(b) with its external boundaries assumed fixed. The three-dimensional

finite element idealization of the foundation rock region consists of 138 solid finite elements with 236
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Figure 2.16 Variation of static responses due to dead weight and hydrostatic pressure, separately,
with size parameter R, of the foundation-rock region; E;/E; = 1. Results presented are for static
displacements at crown cantilever and arch stresses near the crown cantilever (§ = 07).
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Figure 2.17 Variation of static responses due to dead weight and hydrostatic pressure, separately,
with size parameter R, of the foundation-rock region; E,/E; = 1/2. Results presented are for static
displacements at crown cantilever and arch stresses near the crown cantilever (8 = 0°),
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Figure 2.18 Variation of static responses due to dead weight and hydrostatic pressure, separately,
with size parameter R, of the foundation-rock region; E,/E; = 1/4. Results presented are for static
displacements at crown cantilever and arch stresses near the crown cantilever (8 = 0°).
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nodal points; and has 556 degrees of freedom for symmetric (x and y components) ground motion
and 530 degrees of freedom for antisymmetric (z component) ground motion. The foundation rock is
assumed to be homogeneous, isotropic, and linearly elastic with the following properties: Young’s
modulus = 4.0 million psi, and Poisson’s ratio », = 0.2, except that the Young’s modulus is varied as
discussed in Section 4.2.1 for the frequency response functions presented in Chapter 4. As mentioned

carlier, the inertial and damping effects of the foundation rock are neglected.



3. RESPONSE ANALYSIS PROCEDURE

3.1 Ouiline of Analysis Procedure

Based on the substructure method of analysis and frequency domain analysis concepts, a pro-
cedure is available [5,9] to evaluate the dynamic response of arch dams to barmonic ground motion,
including hydrodynamic interaction effects. Developed earlier under the assumption of rigid founda-
tion rock, this analysis procedure is extended in this investigation to include foundation rock flexibil-
ity; and to include Fourier synthesis of harmonic responses to obtain earthguake response., With this

extension the procedure is summarized here, without derivation [9], as a sequence of analytical steps:

[. {a) Formulate m, and k., the mass and stiffness matrices for the finite element idealization of
the arch dam, with reference to the degrees of freedom (DOF) of all the nodal poeints in the tdealiza-

tion, including those on the dam-foundation rock interface.

(b) Formulate k;, the stiffness matrix for the finite element idealization of the foundation
rock region, with reference to the DOF of nodal points on the dam-foundation rock interface. The
DOF not on this interface can be "condensed out” because the forces acting on the foundation rock

arise only from dam-foundation rock interaction, thus existing only at the interface.

2. Solve the eigenproblem
[kc + ]'Ef ] ¢j = wjz m, d’j (31)

to obtain the first J natural viBration frequencies w; and corresponding mode shapes ¢;, of the dam
supported on rigid or flexible foundation rock, consistent with the assumption made in the analysis;
and normalize the mode shapes with respect to m,. In eguation (3.1}, l;f is the expanded version of
k; described in step 1(b) with zero values corresponding to all DOF of the dam not on the dam-

foundation rock interface.

3. Evaluate the frequency response function ﬁé(s,r,m) for hydrodynamic pressures on the
upstream face of the dam due to the /-th component of ground (incindes reservoir boundary)
acceleration with a rigid dam [Figure 3.1(a)]. This function is obtained from the solution p(x.y,z,w)

34
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of the Helmholtz equation, governing the steady state harmonic motion of water:
p =0 (3.2)

subject to the radiation condition for x = oo and the following boundary conditions at the upstream

face of the dam, the reservoir boundary, and the free surface of water, respectively:

g—z_(svrvw) = _p61(37r)

pis'rw) = —pd (571 (3.3)

e id.

9 g
on
plx,Hzw)=0

In equations (3.2) and (3.3), H is the y- coordinate of the free surface of water measured from the
base of the dam; s, r are the spacial coordinates on the upstream face of the dam; s°, r’ are the spacial
coordinates on the reservoir boundary; » is the inward normal direction at the upstream dam face or
reservoir boundary (Figure 3.2); and p is the mass density of water; d(s,h)(s,r = 5,0 0r s'5) is a
function defined along accelerating boundaries which gives the length of the component of a unit vec-
tor along / in the direction of the inward normal n (Figure 3.2). Procedures for solving this boundary

value problem and evaluating ph(s,r,w) are presented in Section 3.2.

4. Evaluate thé frequency response function p;(s,7,») for hydrodynamic pressure due to normal
acceleration ¢;(s,r) of the upstream face of the dam corresponding to the jth natural vibration mode
shape, with no motion of the reservoir boundary [Figure 3.1(b)]. This function is obtained from the
solution F(x,y,z,w) of the Helmholtz equation (3.2) subject to the radiation condition for x = cc and
the following boundary conditions at the upstream face of the dam, the reservoir boundary, and the

free surface of water, respectively:
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Figure 3.2 Definition of various terms associated with the fluid domain substructure. (Adapted from
reference [9])
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L/ Ny
an (S,i’,w) - quj(S’r)

[5% ~ fwg ] (s’ rw) =0 (3.4)

pix,Hzwy=0

Procedures for solving this boundary value problem and evaluating p;(s,r,w) are presented in Section
3.2,

5. Evaluate the vectors of nodal forces 6({'(0:) and (_)Jf () statically equivalent to the negatives of
the corresponding pressure functions at the upstream face of the dam computed in steps 3 and 4:
Ph(s.r ) and Pj(s,r,w), respectively.

6. Formulate the J complex-valued equations in the unknown frequency response functions
iff(w), J=12 ..., J, for the generalized coordinates corresponding to the vibration modes included

in the analysis:
S(@) Y(w) = L'(w) 1=x,z (3.5)
where the elements of the matrix S and the vector L are
S,z,:(w) Sl |y - i 0Dk (8)) + (60T Q)
(3.6)

Li) = - ¢7m 1} + (6]} Qf(w)

where é,; is the Kronecker delta function; #, is the constant hysteretic damping factor for the dam;
¢; is a subvector of ¢, containing only the elements corresponding to the nodal points at the dam-
water interface; ¢! is a subvector of ¢, containing only the elements corresponding to the nodal
points at the dam-foundation rock interface; and vectors 17, 1), and 1} contain ones in positions
corresponding to the x,y, and z translational DOF, respectively, with zeros elsewhere. The matrix
S{w) and vector L/(w) are determined according to equation (3.6) for each excitation frequency o of

interest.
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7. Determine the frequency response functions ?}(w) for the generalized coordinates. Repeated
solution of equation (3.5) for excitation frequencies covering the range over which the earthquake
ground motion and structural response have significant components lead to the complete frequency

response functions ¥/(w).

8. Determine the response of the dam to arbitrary ground motion. The generalized coordinates
are given by the Fourier integral as a superposition of responses to individual harmonic components
of the ground motion

o

Vi) = 5 [ T ale) e de 3.7

where Aéf(w) is the Fourier transform of the /-component of the specified free-field ground acceleration
aie):
d
Alw) = [aé(t)e"”f dt (3.8)
in which 4 is the duration of the ground motion. The Fourier integrals in equations (3.7) and (3.8)
are computed in their discrete form using a recent version of the Fast Fourier Transform (FFT) algo-
rithm [18].

9. Determine the relative displacement response to the upstream (x), cross-stream (z), and verti-
cal (y) components of ground motion simultaneously by transforming the generalized coordinates to
the nodal coordinates:

J

v = 3 [ 10+ ¥+ Yo | 4, (3.9)

j=1

10. Determine the stresses in the dam as a function of time from the nodal displacements. At
any instant of time, the vector ¢,(z) of stress components in finite element p are related to the nodal

displacement vector v,(¢) for that element by
a,(t) = T, v,(1) (3.10)

where T, is the stress-displacement transformation matrix for element p.
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3.2 Evaluation of Hydrodynamic Terms

The frequency response functions fj(s,r,«) and pi{s,r,@) for hydrodynamic pressures on the
upstream face of the dam, required in step 5 of the analysis procedure summarized in Section 3.1, are
solutions of the Helmholtz equation (3.2) subjected to the boundary conditions of equations (3.3) and
(3.4), respectively. For practical broblems these solutions are implemented by finite element pro-
cedures with the nodal pressures as the unknowns, As described earlier [9], the fluid domain of Fig-
ure 3.3 is 1dealized as an irregular region adjacent to the dam, discretized as an assemblage of three-
dimensional finite elements, which is coupled at the planc e-f-g-h-e to a channel of uniform cross-
section and infinite length in the upstream direction, discretized as an assemblage of infinitely long
subchannels; with the two finite element meshes matched along e-f-g-h-e, Standard procedures are
employed to formulate the finite element matrices of the irregular region. The restrictions of a uni-
form cross-section for the infinite region and boundary accelerations that are spatially uniform in the
upstream direction permit a finite element treatment of the transmiiting plane e-f-g-h-e combined
with a continuum formulation in the upstream direction. This analysis procedure permits proper
transmission of hydrodynamic pressure waves in the upstream direction; thus the boundary common
to the two regions may be referred to as a transmitting plane. The procedure developed earlier [9] 1o

determine i)'f) and p; is summarized here, without derivation, as a sequence of analytical steps:

I. Formulate H', B’ and G', the symmetric matrices for the finite element idealization of the
infinitely long channel of constant cross-section [Figure 3.3(b)], with reference to the pressure degree
of freedom (DOF) at each nodal point on the transmitting plane below the free surface of water.
These matrices are analogous to the stiffness, damping, and mass matrices, respectively, that arise in
dynamic finite element analysis of solid continua. The matrix B?| which arises from the wave absorp-
tive effects of the reserveir boundary, contains non-zero terms associated only with the DOF of nodal

points on the boundary e-f-g-h of the transmitting plane.

2. Solve the eigenproblem for the infinitely long channel:

{Hwiquf]'p:xzcup (3.11)
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10 obtain the first ¥, eigenvalues A2 and eigenvectors ¢¥,. The eigenvectors are orthogonal with

respect to the two square matrices, [ H' + iwg B ] and G/, and they are normalized with respect to G'.

If energy absorption through the reservoir boundary is considered, i.e. ¢ #£0, equation (3.11)
must be solved repeatedly for each value of w because the complex-valued eigenvalues and eigenvec-
tors depend on the excitation frequency w; otherwise they are real-valued and independent of excita-

tion frequency and equation (3.11) need be solved only once.

3. Formulate the eigenvector matrix

and K, an Ny x N, diagonal matrix with nth diagonal term = x, which is complex-valued and com-

puted from «, =~/ A - —2’72—, selecting the root for which both the real and imaginary parts are posi-

tive.

4. Formulate H, B and G, the symmetric matrices for the finite element idealization of the
three-dimensional irregular region of the fluid domain [Figure 3.3(a)], with reference to the pressure
DOF at each nodal point below the free surface of water. These matrices are analogous to the
stiffness, damping and mass matrices, respectively, that arise in dynamic finite element analysis of
solid continua. The matrix B, which arises from the wave absorptive effects of the reservoir boun-
dary, contains non-zero terms associated only with the DOF of nodal points on the reservoir boun-
dary.

5. (a) Formulate D', the vector of normal accelerations at the nodal points on the transmitting
plane e-f-g-h-¢, from the prescribed accelerations along the boundary e-f-g-h in equations (3.3) and
(3.4). The vector {D'}} computed from € (s',r") in equation (3.3), which enters into the solution for
ﬁf), contains non-zero terms only for nodes along the boundary e-f-g-h. All terms in the vector {D'};,
which enters into the solution for p; and is computed from the zero boundary accelerations of equa-

tion (3.4), are zero.
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(b) Formulate D, the vector of normal accelerations at the nodal points in the finite element
idealization of irregular fluid region, from the prescribed boundary accelerations. The vector {D}4,
computed from prescribed accelerations ¢ (s,7) at the upstream face of the dam a-b-c-d-a and ¢ (s’,r")
at the reservoir boundary [equation (3.3)], which enters into the solution for 56, contains non-zero
terms only for nodes along these boundaries. The vector {D}; computed from prescribed accelera-
tions ¢;(s,r) at the upstream face of the dam a-b-c-d-a [equation (3.4)], which enters into the solution

for p;, contains non-zero terms only for nodes along this boundary.

6. Formulate the complex-valued equations in the unknown frequency response functions for

the pressures at the nodal points

. W’ : w?
H”quB“—FG“ Hpy + fwg an——c:g(}xz ¥ Bilw)
2 2 N
v’ [HZI +iwg By - %Gn } v’ [H22+ fwg By - ‘2).7022 Y+K || mw)
b,
, (3.12)

o
¥'Dy+x ¥ D

where the nodal points on the transmitting plane are identified by subscript 2 and the remaining
nodes by subscript 1, and the matrices H, B and G for the finite, irregular region (step 4) and the vec-
tor D (step 5b) have been partitioned accordingly; pi(«) is the vector of hydrodynamic pressures at all
subscript-1 nodal points, and wy(w) is related to py(w) the vector of hydrodynamic pressures at all

subscript-2 nodes by
paw) = ¥ qi(w) (3.13)

7. Determine the frequency response functions pi(w) and g,(w):
(a) Solution of equation (3.12), with D = {D}} from step 5b and D' = (D'} from step 5a, pro-
vides p;(w) and -(w). This solution is repeated for each ground motion component, / =x,y and 7z,
(b) Solution of equation (3.12), with D = {D}; from step 5b and IV = (D'}, from step Sa, pro-

vides pi{w) and J(w). This solution is repeated for each vibration mode j to be included in the
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analysis,

Repeated solution of equation (3.12) for excitation frequencies covering the range over which
the earthquake ground motion and structural response have significant components leads to the com-

plete frequency response functions py(w) and p»{w).

8. Assemble the vector of frequency response functions for the hydrodynamic pressures at the
nodal points on the upstream face of the dam: pf{(w) from P(w) determined in step 7a, / = x,y and z;
and ﬁ)f (w) from Pi(w) determined in step 7b. The hydrodynamic force vectors (_)éT(w) and (_)jf (w),
which are statically equivalent to the negatives of the pressure functions Ef)(s,r,w) and p;(s,r,w),

respectively (step 5 of Section 3.1), are computed from the corresponding discrete versions ﬁé’(w) and

p/{w).

3.3 Efficient Evaluation of Hydrodynamic Terms

3.3.1 Major Computational Steps

The complex-valued frequency response functions for the generalized coordinates of the dam are
determined by solving equations (3.12) and (3.5) for each excitation frequency in the range of
interest. The major computational effort in the solution process is the evaluation of the hydro-
dynamic terms in equations (3.5) and (3.6) involving the hydrodynamic force vectors 66’((0) and
6{ (w), which are obtained from the frequency response functions pf(w) and ﬁjf {w) (steps 6-8 of Sec-

tion 3.2) by using the principle of virtual displacements.

If compressibility of water is neglected, the hydrodynamic force vectors are independent of the
excitation frequency w, equal to the zero-frequency value; and their computation requires minimal

effort.

The consideration of water compressihility, a factor that is known to significantly influence the
earthquake response of concrete dams {9,19,20,21], leads to considerable increase in the computa-
tional effort. In particular the hydrodynamic force vectors are now frequency-dependent, requiring

repeated formulation and solution of equation (3.12) for the range of frequencies over which the
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ground motion and structural response have significant compenents. For each frequency, the number
of complex-valued algebraic equations to be solved in equation (3.12) is equal to the number of
subscript-1 nodal points in the finite element idealization of the irregular fluid region plus N, the
number of eigenvectors ¥; included to represent the pressures py(w) on the transmitting plane. Such
solutions need to be repeated for each ground motion component / =x,y and z and for each vibra-

tion mode of the dam ¢;,j = 1,2, .. ., J, included in the analysis.

The consideration of hydrodynamic wave absorption due to alluvium and sediments at the
reservoir boundary, which is also known to significantly influence the earthquake response of dams
[9,20] leads to further increase in computational effort. In this case, the eigenvalue problem for the
infinitely long channel, equation (3.11), must be solved repeatedly for each value of w (step 2 of Sec-
tion 3.2), because the complex-valued eigenvalues and eigenvectors depend on the excitation fre-
quency w;, otherwise they are real-valued and independent of the excitation frequency reqﬁiring only
one solution of equation (3.11). The computational effort required for repeated solution of the
frequency-dependent, complex-valued eigenproblem is a very large portion, in some cases as much as
half, of the total computational effort required to obtain the dam response. The computational effort
required for one solution of equation (3.11) depends on the problem size, as determined by the
number of nodal points in the finite element idealization of the transmitting plane plus N, the

number of eigenvectors to be included.

Two aspects of computing the hydrodynamic force vectors 6({7(0;) and (j,f («) which contribute a
major share of the computational effort are examined next with the objective of developing efficient

computational procedures.

3.3.2 Number of Eigenvectors of the Infinite Channel

In computing the frequency response functions 65(1(@) and Qf («) for the hydrodynamic force
vectors as described in Section 3.2, the pressures on the transmitting plane are sums of the contribu-
tions of an infinite number of natural vibraition modes of the infinite channel, which must be trun-
cated at a finite number N,. Because the computational effort involved in several of the computa-

tional steps increases with N,, only those eigenvectors that are necessary for accurate evaluation of
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the dam response should be included in the analysis.

The summations should obviously include the contributions of all the cigenvectors of the
infinite channel with eigenfrequencies w; less than the maximum excitation frequency wm,x considered
in the analysis. The eigenfrequencics of the infinite channel are functions of the wave reflection
coeflicient «, although their dependence on « is slight [20]. Consequently, the criterion for determin-
ing the number of eigenvectors to be included can be stated in terms of the eigenfrequencies of the

infinite channel with rigid reservoir boundary -- as the largest n that satisfies
W) < Wmax (3.14)

where w) for a rigid reservoir boundary is given by w} = \, C; and )\, is the square root of the eigen-
value from equation (3.11). A few additional eigenvectors should be included in the summations to
ensure convergence of the hydrodynamic terms for excitation frequencies close to wp,,. Several
numerical experiments indicated that three additional eigenvectors are sufficient. Thus from equation

(3.14) the number N, of included eigenvectors is given by
N, = max. n satisfying eq. (3.14) + 3 (3.15)

N, increases as the cross-sectional dimensions of the infinite channel increase and the maximum exci-

tation frequency wmax to be considered in the analysis increases.

If the dam, foundation, as well as the entire fluid domain, including the irregular region and the
infinite channel, are symmetric about the x-y plane, only one-half of the dam-fluid-foundation system
need be analyzed to determine the dam response. The response to upstream or vertical components
of ground motion is determined by analyzing one-half the system with symmetric‘boundary condi-
tions on the x-y plane, and only the symmetric eigenvectors of the infinite channel need to be
included. Similarly, the response to cross-stream ground motion is determined by analyzing one-half
of the system with antisymmetric boundary conditions on the x-y plane, and only the antisymmetric
eigenvectors of the infinite channel need to be included. In each case, the number ¥, of symmetric
or antisymmetric eigenvectors of the infinite channel included is determined from equation (3.15)

with ) = w* or i, which are respectively the eigenfrequencies of the symmetric and antisymmetric
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eigenvectors of the infinite channel.

To demonstrate the adequacy of equation (3.15), the response of Morrow Point Dam with a full
reservoir to harmonic ground motion was computed. The foundation rock was assumed rigid, wave
absorption at reservoir boundary was neglected (a=1), and twelve (J = 12) vibration modes of the
dam were included in the solution of equation (3.5) to analyze the dam response. Figure 3.4 shows
the absolute value of the complex-valued frequency response functions for radial acceleration at the
dam crest due to upstream, vertical, and cross-stream ground motion. The response functions are
plotted against the excitation frequency « normalized by the natural vibration frequencies w} or «f of
the fundamental symmetric and antisymmetric modes of the dam on rigid foundation rock with an
empty reservoir. For the dam-water system considered here: wy,, = 18.3 Hz; « = 3.02, 7.63, 10.09,
11.98, 14.17, 16.02, 17.29, 18.91, - - - Hz; and w/® = 6.21, 9.78, 13.3, 14.08, 17.24, 18.05, 20.58, - - -
Hz. According to equation (3.15), N, =10 and 9 for analysis of the symmetric and antisymmetric
problems, respectively. The response functions obtained by solving equations (3.12) and (3.3),
wherein the first N, eigenvectors of the infinite channel were included in equation (3.12) to evaluate
pi{w) and p(w) and hence the hydrodynamic force vectors (—)({I(w) and (—)jf (w), are presented in Figure
3.4. Also included are the response functions obtained with N, =15 and 30. The number of eigen-
vectors of the infinite channel, N,=10 or 9, given by equation (3.15) provides accurate response
results over the entire frequency range. In fact the response results are essentially independent of the
three values used for N, =10 or 9, 15 and 30. Although Figure 3.4 shows the response for a rigid
reservoir boundary (a=1), similar accuracy was obtained in the response of the dam with an absorp-
tive reservoir boundary (« <1). Thus accurate dam responses can be obtained with the hydrodynamic
terms in equation (3.6) evaluated from equation (3.12) using N, vibration modes of the impounded
water, where N, is given by equation (3.15). The resulting computational savings are significant, e.g.
the computational effort is reduced to slightly less than half compared to the effort required with N,
= 30 in the particular example considered here, and reduced even further if the reservoir boundary is

absorptive.
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Figure 3.4 Influence of N, the number of eigenvectors of the infinite channel included in the
analysis, on response of Morrow Point Dam, with full reservoir on rigid foundation rock, with rigid
reservoir boundary (« = 1), to harmonic ground motion. Dam crest locations are defined by § meas-
ured from plane of symmetry.
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3.3.3 Interpolation of Eigenproperties of the Infinite Channel

The hydrodynamic pressure functions ﬁél(w) and ﬁf {«), which enter into the hydrodynamic terms
in equation (3.6), need to be evaluated at each excitation frequency by solving equation (3.12).
Needed in this solution process are the eigenvalues AX(w) and eigenvectors ¢, (w) of the infinitely long
channel with uniform cross-section, governed by equation (3.11), which are frequency-dependent and
complex-valued when reservoir boundary absorption is included in the analysis. It would be very
expensive 1o solve equation (3.11) and compute the eigenproperties A\3(w) and ¥, (w) for each excita-
tion frequency [5,9]. But fortunately it is not necessary to do so. Accurate response results can be
efficiently obtained when the hydrodynamic pressures pf(w) and f)f (w) are evaluated from equation
(3.12) with the eigenproperties linearly interpolated from their exact values computed only al widely
separated values of w and the eigenvectors ¥, (w) renormalized with respect to G’ after linear interpo-

lation,

The largest permissible frequency interval o  over which the eigenproperties may be linearly
interpolated can be determined by considering how the eigenvalues A\ (w) vary with the excitation fre-
quency w. This variation is first studied for a channel with rectangular cross-section and subsequently
for an arbitrary cross-section. The objective is to determine the frequency " at which the funda-
mental eigenvalue, which varies most rapidly, reaches close to its limiting value at infinite frequency;

and then divide the frequency range 0 to «™ into sufficiently fine subintervals to determine w".

Rectangular Section. -- The two-dimensional, y-z, eigenvalue problem of equation (3.11) for an
infinitely long channel with rectangular section of depth I7 and width B=2D can be formulated in
continuum form, without discretization, and uncoupled into two, y and z, one-dimensional eigenvalue
problems (Appendix B). The eigenvalues )\jzk(w) and the eigenfunctions ¥, (v,z,w) of the channel are

related to the eigenproperties of the two one-dimensional problems by:
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AR() = vH) + 83(w) © (3.16a)
\bjk (y Z ’w) = Xj(ysw) g‘k (Z 9“"’) (316b)

Determined by solving the y-eigenvalue problem (Appendix B), the eigenvalues 7jz(w), which are
compiex-valued and depend on the excitation frequency, satisfy equation (3.17) and the correspond-

ing eigenfunctions x;(y,») are defined by equation (3.18):

iy (H v (@) - g
e = —~—-—-——7j(w) T od 3.17)
x;j(y,w) = ?/}I"(E {[yj(w) + wg ]eiv,-(w)y + [yj{w) - «g ]e*fv,-(w)y ] (3.18)

The eigenfunctions of the z-eigenvalue problem are either symmetric or antisymmetric about z = 0

axis (Appendix B). The symmetric eigenfunctions {{(z,w) are defined by equation (3.20), where the

2
associated frequency-dependent, complex-valued eigenvalues [6;§(w)] are solutions of equation (3.19):

sspp k(@) — wg

= — 3.19
5@ + wg G19)
§i(z.w) = cosdiz (3.20)

The antisymmetric eigenfunctions {f(z,w) are defined by eguation (3.22), where the associated

2
frequency-dependent, complex-valued eigenvalues [5;?((.))] are solutions of equation (3.21):

pAHE@D _ 0f(w) — wg

e (3.21)

elz,w) = sin bz (3.22)

If the reservoir bottom is rigid (¢ =0 and a=1), the eigenvalues }(w) and eigenfunctions x;(y,w)

are real valued and independent of the excitation frequency and given by equations (3.23) and (3.24):
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yi(w) = w?/C (3.23a)
where
wp = 2L L (3.23b)

x;(y.w) = cosvy,y (3.24)

w/” are the natural tfrequencies associated with the uniform height H of water of a rectangular section
channel with a free surface boundary condition at the top and a rigid boundary condition at the bot-
tom.

Similarly if the reservoir sides are rigid ( g=0 and a=1 ), the eigenvalues 57(w) are real-valued

and independent of the excitation frequency.. The square roots of the eigenvalues associated with

antisymmetric eigenfunctions are:
i (w) = wi*/C (3.25a)

where

7r % (3.25b)

wj? are the natural frequencies associated with the uniform width D of water of a rectangular section
channel with a free surface boundary condition at one end and a rigid boundary condition at the

other. The square roots of the eigenvalues associated with the symmetric eigenfunctions are:

B(w) = (f - w)/C = (k-1 5 (3.26)

Figure 3.5(a) shows the numerically-obtained real and imaginary components of y,(w) normal-
ized by the zero frequency value of equation (3.23a), which is also the frequency-independent value
when the reservoir boundary is rigid (g =0, « = 1), and then squared. The normalized eigenvalues are
plotted against the frequency parameter ¢C(w/w{®) so that the plots apply to any non-zero value of the

admittance coefficient g for the absorptive reservoir boundary. The plots of Figure 3.5(a) also apply

2
to the eigenvalucs [6;?(w)] associated with the antisymmetric eigenfunctions of the z-eigenvalue
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problem if wj* is replaced by w{” in the frequency parameter. Figure 3.5(b) shows the numerically-
obtained real and imaginary components of 45(w) normalized by the infinite frequency value of equa-

tion (3.29), and then squared, plotted against the frequency parameter gC(w/w{?).

It can be shown from equations (3.17), (3.19), and (3.21) that v;{w),0f(w) and éj(w) approach

real-valued limits as the excitation frequency becomes large:

I .
oo V/0) = Iy (3.27)
o 5f) =k . (3.28)
. 2%k - 1
o 3Hw) = of/C = FL T (3.29)

Multiplying equation (3.27) by C/w/”, equation (3.28) by C'/w;® and equation (3.29) by C/(w;” - w{?)

gives:
—a% wl_i,moow(w) =5 jzf i (3.30)
:J%wl_i,moo B0 = 5o (3.31)
wk_f: Jim ) - %}’z_:;_. (3.32)

Equations (3.30) to (3.32) give the ratios of the real-valued limits of the eigenvalues at infinite fre-

quency to the corresponding real-valued limits at zero frequency.

Figures 3.5 shows that the rate at which v;(w), 5f(w) and 8;(w) approach their infinite-frequency
limits given by equations (3.30) to (3.32), respectively, depends on the vibration mode j {or k) with a
slower rate for larger values of j (or k).The lowest eigenvalues approach their limiting values most

rapidly. In particular, v(w) has reached close to its limiting value when the frequency parameter
o 2 . . ag
gCle/e) =4 ,1.e. w =4dw¥/qC, [5{’(w)] has reached close to its limiting value when the frequency
1] 2 . . .o, .
parameter gC(w/w[®) =4, ie. o =4w{*/qC; and [5{(@)] has reached close to its limiting value when

the frequency parameter ¢C(w/w[?)=3, i.e. « =3w{?/qC. Therefore, from equation (3.16a), the
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symmefric A1 (w) will reach close to its limiting value at a frequency

" 4o’ 3] (3.33)
= m —— .
w ax iC oC
and the antisymmetric Af;(w) will reach close to its limiting value at a frequency
. 4ol 4pt?
@ = max [ ;Cl’ \ ;2, (3.34)

For a rectangular channel section with its half-width D equal to depth H, «? =«{” and from equa-

R 4 i 4 iz . . . .
tions (3.33) and (3.34), 0 = ch = :Cl for both the symmetric and antisymmetric A (w). At this

value of o™, A j(w) reaches close to its limiting value as shown in Figure 3.6.

Arbitrary Channel Section. - As indicated earlier in this section, the frequency interval «" necessary
to accurately interpolate the lowest eigenvalue Af{w) will be satisfactory for the higher eigenvalues, It
is necessary, therefore, to study how the eigenvalue A(w) varies with the excitation frequency, in
order to appropriately select this frequency interval. Unlike a rectangular section, this frequency vari-
ation cannot be analytically determined for a channel of arbitrary section. However, it can be
estimated from the frequency variation of eigenvalues for two rectangles such that the actual section
is completely contained by the larger rectangle while it completely contains the smaller rectangle [Fig-

ure 3.7(a)].

This estimation is made possible, in part, by a result from the boundedness property of eigen-
values {22] that, under certain conditions, relates the eigenvalues of the actual section to those of the
two rectangular sections. As the excitation frequency w tends to infinity the absorptive reservoir
boundary behaves like a free surface (Appendix B), 1.e. p =(}; a boundary condition that then applies
to the entire boundary of the channel section [Figure 3.7(a)]. For this limiting frequency, the eigen-
values are real-valued and for this particular free-surface boundary condition on the entire boundary,

the boundedness property of eigenvalues provides the following inequality:

NISMNSN, atw=o00, j=12, - (3.35)
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Thus )\f, the jth eigenvalue of the actual section, is bounded on the lower side by )\,»2;, the jth eigen-
value of the larger rectangular section, and on the upper side by A }u, the jth eigenvalue of the smaller

rectangular section.

Inequality (3.35) holds, in general, for a symmetric, real, positive-definite eigenvalue problem
over certain domains with boundary conditions independent of the eigenvalue. The relative sizes of
the two domains should be such that the smaller domain (with larger eigenvalues) is completely con-
tained in the larger domain (with corresponding smaller eigenvalues) and the field variable {pressure
7 in this case) must vanish at the portion of the boundary of the smaller domain which does not
belong to the boundary of the larger domain. The eigenvalue problem of the infinite channel with the

domains depicted in Figure 3.7(a) is a special case of the above condition.

As mentioned in Section 3.3.2, if the dam, foundation, as well as the entire fluid domain are
symmetric about the x-y plane, only one-half of the dam-fluid-foundation system need be analyzed to
determine the dam response. The response to upstream or vertical components of ground motion is
determined by analyzing one-half the system with symmetric boundary conditions on the x-y plane,
and only the symmetric eigenvectors (discretized representation of eigenfunctions) of the inﬁnite
channel need to be included. Similarly, the response to cross-stream ground motion is determined by
analyzing one-half of the system with antisymmetric boundary conditions on the x-y plane, and only
the antisymmetric eigenvectors of the infinite channel need to be included. In bounding the eigen-
values associated with the symmetric eigenvectors, the corresponding eigenvalues of the two rectan-
gles should be used in equation (3.35). Similarly, in bounding the eigenvalues associated with the
antisymmetric eigenvectors, the corresponding etgenvalues of the two rectangles should be used in
equation {3.35).

The frequency variation of A% and A?,, the first eigenvalues of the larger and smaller rectangular
sections, can be determined by the procedures described earlier in this section. Although the inequal-
ity of equation (3.35) does not apply at excitation frequency values other than infinity, the functions
A}(w) and Af,(w) would provide some guidance to the variation of Af{(w), the first eigenvalue of the

actual section, with excitation frequency.
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These concepts are next applied to the idealized scction of the infinite channel used in the
analysis of Morrow Point Dam {[Figure 3.7(b)]. As shown, the smallest possible rectangular section
that can contain the actual section has been chosen to maximize the lower bound value A%, Each of
the several rectangular sections that can be contained within the actual section provides a different
value of A\7,. Obviously it would be desirablle to choose the rectangular section that minimizes the
upper bound value A{,. The associated minimization problem can be solved analytically for actual
cross-sections with boundaries defined by simple functions. It was on this basis that the smaller rec-
tangular section was chosen. Because the same rectangle, in general, does not minimize the upper
bound value A, for symmetric and antisymmetric eigenvectors, {wo rectangular sections contained

within the actual section are chosen as shown in Figure 3.7(b).

The variation of A and Af, with the normalized excitation frequency, obtained by the pro-
cedures described earlicr, is shown in Figures 3.8(a) and 3.8(b) for the symmetric and antisymmetric
eigenvectors, respectively. Also shown are the eigenvalues A(w) for the actual section obtained
numerically by solving the eigenvalue problem of equation (3.11). The high-frequency limiting values
of the plotted functions are consistent with the inequality of equation (3.35). For this section, the
real and imaginary components of Af(w) are bounded by the corresponding components of Af(w) and
A, (w) at all values of w. Such may not be the case for every cross-section shape, but whether it is or
not does not influence determination of the frequencies ™ at which the first eigenvalues reach their
limiting values. The fundamental, symmetric eigenvalues Afi(w) and AZ,(w) of the larger and smaller
rectangle sections reach close to their respective limiting values at frequencies given by equation
(3.33) = 4w{?/qC and 6.98w{”/qC [Figure 3.8(a)]. The fundamental symmetric eigenvatue A¥w) of
the actual section is observed to reach close to its limiting value at an intermediate frequency of
about w" = 50{?/gC, where »/” is the value given by equation (3.23b) for the larger rectangular sec-
tion. The fundamental antisymmetric eigenvalues Af(w) and A{,(w) reach close to their respective
limiting values at frequencies given by equation (3.34): " =4.650{?/qC and 7.72w{*/gC [Figure
3.8(b)]. The fundamental antisymmetric eigenvalue Af(w) of the actual section is observed to reach

close to its limiting value at an intermediate frequency of about ™ = 6w{*/gC. Thus, a conservative
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choice for «" would be to select the smaller of the two values corresponding to the two rectangles,

which is always the value for the larger rectangle.

Interpolating Frequency Interval. -- As noted earlier, the frequency interval @’ necessary to accurately
interpolate the lowest eigenvalue Af(w) will be satisfactory for the higher eigenvalues. In the preced-
ing part in this section, we have presented a procedure to determine, for an infinite channel of arbi-
trary cross-section, the excitation frequency o™ at which A%w) reaches close 1o its high-frequency lim-
iting value. Several response computations have demonstrated that the response of an arch dam is
computed to sufficient accuracy when the hydrodynamic terms are evaluated using eigenproperties
linearly interpolated over an excitation frequency interval 0" =w" /8. Using this criterion, ™ based

on the larger rectangle, and equations (2.1), (3.33) and (3.34), the excitation frequency interval is

given by:
w 1 1 +a
—_———— = 3.36a
max (w{¥,w{* 21 -« ( )
for symmetric dam-fluid-foundation systems subjected to z ground motion; and
@ 1 1+o
== 3.36b
max(w’,0.75«]?) 2 1 -« ( )

for all other cases, where w{’ and w* refer to the larger rectangular section. Equation (3.36a) is
derived from equation (3.34) for the antisymmetric A7 which should be used for the lower bound of
the fundamental eigenvalue for z ground motion of a symmetric dam-fluid-foundation system. Equa-
tion (3.36b) is derived from equation (3.33) for the symmetric A{; which should be used for the lower
bound of the fundamental eigenvalue for all other cases, because : (1) it should be used for x and y
ground motions of a symmetric dam-fluid-foundation system, (2) the symmetric A} is always smaller
than the antisymmetric Af, thus it should be used to bound the fundamental eigenvalue for x, y, and
z ground motion of a non-symmetric dam-fluid-foundation system. Equation (3.36) shows that the
frequency interval " decreases as o decreases, i.c. as the reservoir boundary becomes more absorp-

tive.
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The effectiveness of linearly interpolating the frequency-dependent eigenproperties of the infinite
channel over the excitation frequency interval ', given by equation {3.36), is demonstrated in Figure
3.9. The absolute values of the frequency response functions for radial acceleration at the crest of
Morrow Point Dam with full reservoir to harmonic ground motion are plotted against the normalized
excitation frequency w/wi or w/wf, as appropriate. Reservoir boundary absorption is included with a
wave reflection coefficient « =0 to provide the most severe test for the interpolation procedure. The
response functions are computed for two cases: A2(w) and ¥,(w) in equations (3.11) and (3.12)
evaluated for every excitation frequency; or by linear interpolation over the frequency interval
@ /wP =0.5 for x and y ground motion and o' /w{*=0.5 for z ground motion as given by equation
(3.36). There is no observable difference between the response functions computed for the two cases.
However, the total computational effort required in the second case using linear interpolation of the
eigenproperties of the infinite channel, requires only 60 - 65 % of the computational effort in the first
case. Thus the hydrodynamic terms in equation (3.6) may be efficiently evaluated by linearly interpo-
lating the eigenproperties of the infinite channel over the frequency interval  given by equation

(3.36).

3.4 Interpolation of Frequency Response Functions

3.4.1 Basic Concepi

At the heart of the earthquake response analysis procedure for dams is the formulation and solu-
tion of equation €3.5) governing the frequency response functions Y;(w) for the generalized coordi-
nates. Efficient methods were presented in Section 3.3 to minimize the major computational effort
required in evaluating the hydrodynamic terms that enter into these equations. In this section, a pro-
cedure for efficient interpolation of the frequency response functions ff(w) is developed to further
reduce the computational effort [23]. Then the frequency response functions need to be obtained
exactly by solving equation (3.5) at fewer selected frequencies; and their values at other frequencies

are obtained by interpolation.
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Figure 3.9 Influence of linear interpolation of eigenproperties of the infinite channel on response of
Morrow Point Dam to harmonic ground motion. Results presented for full reservoir, rigid founda-
tion rock and wave reflection coefficient, « = 0; were obtained with J = 12 and N, = [0 or 9.
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The frequency response function for acceleration at the crest of the dam due to each of the three
components of ground motion is presented in Figure 3.10 along with the contributions of the various
modes of vibration. Within certain ranges of frequencies (such as between a and b in Figure 3.10), no
more than two peaks exist, only two modes contribute significantly, and the contributions of other
modes are negligible. Thus it may be possible to approximate the response by subdividing the fre-
quency range into subranges where the above conditions are met, and by using the response function

for two modes within each range.

3.4.2 Two Mode Approximation

Including only two modes in equation (3.5) and neglecting water compressibility, which leads to
hydrodynamic terms independent of excitation frequency, the frequency response functions for the
generalized coordinates }—’jlv(w) can be expressed (Appendix C) as:

2
Cljw + CZ_]

w4 + C3j w2 + C4j

Yi(w) = (3.37)

where the constant C,; is real-valued, and the constants C5;,C3; and C,; are complex-valued because
of hysteretic damping in the dam. Just like )_’}(w), these constants would also depend on the ground

motion component, / =X,y or z, but this superscript is dropped for convenience.

Four frequencies Q;,i = 1,2,3,and 4, are selected within each frequency range n, and the jth gen-
eralized coordinate response I_’j,v = )71-(9,-) is determined at these frequencies by solving the set of equa-
tions (3.5) including all the vibration modes having significant contributions. The four constants in

equation (3.37) can be evaluated by solving the system of linear equations:

af 1 -Y;,0f _?jl 1 Cy; W 1_’;&9?
RF 1 Y Y, || Cy }7,'297?

r = (3.38)
Qf b -Y;308 -Y;5 || Gy Y303
] 942 1 - 1_714Q42, —)7"‘4 ] C‘U ?‘,494?

Once the constants C,;,Cy;,C3; and Cy4; have been determined for the frequency range n, the
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response at all other frequencies within this frequency range is then computed from the interpolation
equation (3.39):

’fj w2 + ng

¥ () =
j(w) w4 + C"3’j-w2 + ng

{3.39)

Since the frequency response functions for all the J vibration modes are solved simultaneously from
equation (3.5), each selected frequency range and the four frequencies chosen within a range should

be the same for all the modes.

3.4.3 Selection of Frequencies for Exact Computation

The frequency response functions are computed exactly by solving equation (3.5) at selected fre-
quencies and their values at other frequencies are obtained by interpolation. The selection of the fre-
guencies at which response is exactly computed should obviously depend on the rapidity with which
the response varies with excitation frequency; i.e., these frequencies should be closely spaced in the
frequency range where the response varies rapidly and widely spaced if the response varies slowly,
This may be achieved by imposing the objective that, over any frequency interval, the fractional
change in the absolute value of response:

2|5
Y
should be kept fairly constant and close to a prescribed value b. Based on this objective, the ith fre-
quency interval {Aw); =;,; -, can be determined from the preceding frequency interval

(Aw),-_l = Q,’ - Q,‘_; as follows:

(3.40)

Thus the selection of the next frequency interval is based on the current interval and the largest frac-
tional change in modal response over the current interval. If the maximum variation in modal
response over the current interval is larger than b, then the next frequency interval will be smaller

than the current interval and vice versa, Because the frequency interval from equation (3.40) may be
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impractically smali or large depending on the values of AE,[_I and }7ﬂ each of which can vary over a
very wide range, It 15 necessary to impose (Aw)m,.y, the maximum value permitted for Aw, and (Aw)nin,

the minimum value permitted for Aw.

Starting with (Aw)y, for the first frequency interval, all the subsequent frequency intervals can
be conveniently determined from equation (3.40) once the parameters &, (Aw)yax and (Aw)y;, have
been selected. After several numerical experiments it was concluded that the following parameter

values would provide accurate results:
b =05 (3.41a3)

(Aw)fnax

T _ 02 3.41
min{w”, w;) (3.410)

(A@)min

—_— = (.01 3.41c
min(el’, o) (3.41¢)

where w; is the fundamental frequency of the dam-foundation rock system with an empty reservoir,
and w{” is the fundamental frequency of an inﬁnite reservoir of uniform depth computed by equation
(3.23b) in which the maximum depth of the impounded water in the entire reservoir domain is used

instead of H.

The effectiveness of the interpolation scheme for the frequency response functions, using the
above mentioned parameters, is demonstrated in Figure 3.11. The absolute values of the frequency
response functions for radial acceleration at the crest of Morrow Point Dam with full reservoir to har-
monic ground motion are plotted against the normalized excitatién frequency w/wj or w/wf, as
appropriate. Reservoir boundary absorption is neglected, i.e. the wave reflection coefficient a =1,
which leads to the most rapid variations in the frequency response functions, to provide the most
severe test for the interpolation procedure. The response functions are computed using the interpola-
tion procedure described earlier with the above mentioned parameters and compared with the exact
values computed at selected frequencies. There is no observable difference between the response
functions computed by the two procedures. Using interpolation of the frequency response functions,

however, the required computational effort is only 50 to 60 % of that necessary without
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Figure 3.11 Accuracy of the response of Morrow Point Dam to harmonic ground motion computed
by the interpolation procedure. Results presented for full reservoir, rigid foundation and wave
reflection coefficient, & = 1; were obtained with J = 12 and Ny, = 10 or 9.
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interpolation.

The interpolation parameters of equation (3.41) were derived from numerical experiments on
response of dams supported: on rigid foundation rock with no absorption of hydrodynamic pressure
waves at the reservoir boundary. These assumptions lead to the most sharply peaked and rapidly
varying response functions. These functions become much smoother if reservoir boundary absorption
is considered (Chapter 4 and reference [19]), in which case the interpolation parameters of equation
(3.41) would be conservative; in particular, the normalized (Aw)y,, can be increased to 0.02 [equation

(3.41¢)].

Compared to the earlier application of the above described interpolation procedure to soil-
structure interaction problems [23], the exact response is computed in the present application at 3 to
5 times the number éf frequencies, because structure-fluid interaction leads to complicated response
functions with sharp peaks and rapidly variation, if reservoir boundary absorption is not considered
[9,20]. Because of these complications and because arch dams are complex structures having vibra-
tion modes with closely spaced frequencies, the conservative parameters of equation {3.41) are recom-
mended. The computational cost can be further reduced by choosing larger Aw, tailored specifically

for specific arch dams and assumptions used in the analysis.

An interpolation procedure such as the one described in this work should always be used with
caution. Using the parameters of equation (3.41), the response function should be computed exactly
at selected frequencies and then the response function at other frequencies obtained from the interpo-
lation equation (3.39). The entire interpolated response should be plotted, and evaluated in light of
the known characteristics (Chapter 4 and reference [9]) of frequency response functiqns of arch dams,
including their behavior at or near characteristic frequencies -- the natural vibration frequencies of
the dam, natural frequencies of the infinite channel of the fluid domain, and resonant frequencies of
the dam including hydrodynamic effects -- to see if the initial choice of frequencies was adequate.
The user can then select additional frequencies deemed necessary to compute additional values to
deseribe the frequency response functions. The new results can then be combined with the initial

results and new interpolations can be carried out.



69

3.4.4 Summary of Interpolation Procedure

The procedure for computing the frequency response functions ?}(w) for the entire frequency

range 0 10 wy,,y, is summarized below as a sequence of steps [23]:

1. Determine the values for parameters b, (Aw)pin and (Aw)pyg, from equation (3.41), with the
normalized (Aw)mi, in equation (3.41c) increased to 0.02 if reservoir boundary absorption is con-

sidered.

2. Starting with zero frequency and the initial frequency interval as (Aw)y;,, solve equation (3.5)
to compute Y f(w) at w = 0 and @ = (Aw)y,. From equation (3.40) determine the next frequency
value, and solve equation (3.5) to exactly determine I_’J’-(w) at that frequency. This process of utilizing
equation (3.40) to determine the next « value and solving equation (3.5) at that frequency is repeated

until f’}(m) are computed for the frequency range 0 to wpay.

3. Subdivide the computed results into frequency ranges containing 4 computed values of the
response function per range.

4. For each vibration mode j of the dam included in the response analysis, compute the con-
stants CY;, C3;, C3; and C7; for frequency range n from equation (3.38).

5. Compute the response for all other frequencies in the range n from equation (3.39).

6. Repeat steps 4 and 5 for all the frequency ranges defined in step 3.

7. If the last frequency range is not complete, i.e., does not contain values of the response func-
tion at four frequencies, it is necessary to include enough frequency points from the previous range in

order to determine the constants in step 4 and to compute the responses in step 5 for this last range.

3.5 Efficient Response Analysis Procedure

Efficient methods were presented in Section 3.3 to minimize the computational effort required
in evaluating the hydrodynamic terms that entered into the equations governing the frequency
response functions for the generalized coordinates of the dam. In Section 3.4, a procedure for

efficient interpotation of the frequency response functions was developed, in which these functions
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were obtained exactly at fewer selected frequencies and their values at other frequencies were
obtained by interpolation, thus further reducing the computational effort. Both of these concepis
have been implemented in a computer program (Section 3.6) to obtain an efficient procedure for the
earthquake analysis of arch dams. The effectiveness of this procedure is evaluated next to demon-

strate its accuracy and the computational savings achieved.

The accuracy of the eflicient procedure is demonstrated by analyzing the response of Morrow
Point Dam supported on rigid foundation rock with full reservoir considering the hydrodynamic
effects and reservoir boundary absorption effects with the wave reflection coefficient «=0.5.
Presented in Figure 3.12 arc the absolute values of frequency response functions fdr the radial
acceleration at the crest of the dam due to the upsiream, cross-stream, and vertical components of
ground motion, plotfed against the normalized excitation frequency, as appropriate. The frequency
response functions are.computed for two cases: (1) Standard Procedure: Number of eigenvectors of
the infinite channel included in evaluation of hydrodynamic forces, Ny = 30; equation (3.11) is solved
at each frequency to determine the eigenproperties of the infinite channel; and equation (3.3) is
solved at each frequency to obtain the exact solution for the modal coordinates ?f(w); (2) Efficient
Procedure: Ny = 10 or 9, determined from equation (3.15), for analysis of symmetric (x and y ground
motion) and antisymmetric (z ground motion) problems, respectively; the eigenproperties of the
infinite channel are determined by solving equation (3.11) at the frequency spacing " given by equa-
tion (3.36), i.e. w' /@’ = 1.5 and @' /w{® = 1.5, combined with lincar interpolation to obtain their values
at intermediate frequencies; and }_’J’-(w) are obtained by the interpolation procedures developed in Sec-
tion 3.4 using the recommended interpolation parameters {equation (3.41)]. It is apparent from Fig-
ure 3.12 that there is no observable difference between the response functions compﬁted by the stan-

dard and eflicient procedures.

The computational efforts required in the standard and eflicient analysis procedures are com-
pared in Table 3.1. When the effects of hydrodynamic wave absorption at the reservoir boundary,
due to the alluvium or sediments inevitably present in actual reservoirs, are included we note that the

efficient analysis procedure is very effective compared to the standard analysis procedure. The
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eficient procedure requires much fewer, 5 % or less, solutions of the eigenproblem of the infinite
channel; similarly solutions of equation (3.5) for the frequency response functions need to be com-
puted at much fewer, half or less, excitation frequencies compared to the standard procedure. As a
result the computation time required to obtain the response functions over the frequency range 0 to
18.3 Hz by the efficient procedure is a small fraction, 11 to 14 %, of that required in the standard

procedure.

The computational savings are not as dramatic, but are still very significant, if the wave absorp-
tive effects at the reservoir boundary are not considered, i.¢. « = 1. In this case, the eigenproperties of
the infinite channel are independent of excitation frequency and need to be computed once in either,
standard or efficient, procedure. Furthermore, because the response functions are sharply peaked and
vary more rapidly with frequency, they need to be computed exactly at more frequencies (Table 3.1),
requiring greater computational effort. The net result is that the computation time required to obtain
the response functions by the efficient procedure is about one quarter, 23 to 27 %, of that required in

the standard procedure.

In order to account for the wave absorption effects at the reservoir boundary, the computational
time is increased by about 55 to 75 % in the standard procedure, but is decreased by about 10 to 25
% in the efficient procedure. Further reductions in the computation time should be possible in the
efficient analysis procedure because, in many cases, the number of frequency values at which the
response functions need to be exactly computed can be reduced below the number obtained using the
parameters of equation (3.41) without any significant loss in accuracy. However, even with the
present recommendations, which in many cases are overly conservative but reduce the risk of error in
other cases, the efficient procedure is successful in eliminating the computational penalty to include

wave absorption effects of the reservoir boundary.
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3.6 Computer Program

The response analysis procedure described in Sections 3.1 and 3.2 is implemented in a computer
program to numerically evaluate the earthquake responses of arch dam systems of the type described
in Chapter 2. Various effects in the analysis procedure are included in the program: dam-water
interaction, foundation-rock flexibility, water compressibility and reservoir boundary absorption.
Efficient computational procedures described in Sections 3.3 and 3.4 have been incorporated into this

computer program resulting in an effective tool to compute the earthquake responses of arch dams.

The computer program has different three-dimensional elements as described in Chapter 2 to
model the dam, reservoir, and foundation rock. The FFT algorithm [18] used to evaluate the Fourier
integrals in equations (3.7) and (3.8) takes advantage of the fact that the ground acceleration and dis-
placement response a.re real-valued functions, thus reducing the computational and storage require-
ments. The computer program also evaluates the static displacements and stresses of the dam due to
the gravity lbads of the dam and the hydrostatic pressure; these static responses, which are evaluated

in a separate run, can be combined with the earthquake responses if desired,

Input to the computer program consists of various control parameters, the finite element ideali-
zations and properties of the arch dam, the foundation rock and the impounded water. In the
dynamic run of the program, the following parameters are also input: the wave reflection coefficient
for the absorptive reservoir boundary, the number of generalized coordinates of the dam included, the
FFT parameters, and the upstream, vertical, and cross-stream components of the free-field ground
acceleration. The output in the static run of the program consists of the static displacements at all
nodal points and stresses in all elements of the dam. In the dynamic run, the output consists of the
complex-valued frequency response functions for the generalized coordinates and the complete time-
history of displacements and stresses at specified locations within the dam as well as the extreme
values of stresses at all stress points. The computer program can also be run in several separate

stages; the output from one stage is stored and subsequently used as input to the other stages.



4. FREQUENCY RESPONSE FUNCTIONS

4.1 Introduction

Presented in this chapter is the response of a selected arch dam to harmonic ground motion in
the form of complex-valued frequency response functions. Response results, computed by the analyti-
cal procedure presented in Chapter 3, are presented for the upstream, vertical and cross-stream com-
ponents of ground motion, and for a wide range of the important parameters characterizing the pro-
perties of the dam, foundation rock, impounded water and reservoir boundary materials. Based on
the frequency response results, the effects of dam-water interaction, reservoir boundary absorption,

and foundation-rock flexibility on the dynamic response of the dam are investigated.

4.2 System, Ground Motion, Cases Analyzed and Response Quantities

4.2.1 Dam-Waier-Foundation Rock System

The dam selected for this study is Morrow Point Dam. The finite element idealizations selected
for the dam and foundation-rock region, the idealization for the impounded water consisting of a
finite element region combined with an infinite, uniform channel, and the properties of the dam-
water-foundation rock system are the same as described in Section 2.6; except that in this study the
Young’s modulus of the dam is varied: E; = 2, 4 or 5 million psi, and the Young’s modulus of the
foundation is also varied so that E,/E; = %0, 2, 1 or 1/4. One of the objectives of this study is to
investigate the effects of reservoir boundary absorption (Section 2.4) on the earthquake response of
arch dams; therefore, the wave reflection coefficient « is varied over a wide range. The values con-

sidered are: « = 1.0 (rigid reservoir boundary), 0.75, 0.50 and 0.

4.2.2 Ground Motion

The excitation for the dam-water-foundation rock system is defined by three components of
free-field ground motion: the upstream (x) component ag (), the vertical (y) component aJ(¢), and the

cross-stream (z) component af(¢). Each component of ground acceleration is assumed to be

75
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harmonic, i.e. = e'“!, with the excitation frequency « to be varied over a wide range.
q Y

4.2.3 Cuses Analyzed

The responses of the several dam-water-foundation rock systems shown in Table 4.1 are
presented. These systems are defined by the chosen values for the important system parameters,
E,Er/E,H/H, and a. The complex frequency response functions for each case were determined.
The responses of the various systems and their interpretation are organized to facilitate study of the
effects of reservoir boundary absorptign, dam-water interaction, and foundation-rock flexibility on the

response of the dam.

4.2.4 Response Quantities

The complex-valued frequency response functions presented here are dimensionless response
factors that represent the acceleration components in selected directions at a few locations in the dam
due to unit, harmonic, free-field ground acceleration. For analysis cases assuming rigid foundation
rock, the complex frequency response function for radial acceleration at one location at the dam crest
is presented; the location is defined by an angle value § measured from the crown (plane of symmetry)
along the dam crest, which is selected as: 8 = 0° [nodal point 60 in Figure 2.3(a)] for x and y ground
motion and 4 = 13.25° [nodal point 54 in Figure 2.3(a)] for z ground motion, When foundation flexi-
bility is included, in addition to the radial accelerations at these crest locations, the vertical accelera-
tion at the crest and the radial and vertical accelerations at the base for the same # values are also
presented for some cases. The frequency response functions are for acceleration relative to the free-

field ground motion; they are not direct measures of deformation.

These functions, describing the response to harmonic upstream, vertical or cross-stream ground
motion, were determined using the analytical procedure described in Chapter 3 with the excitation
frequency w varied over a relevant range of interest. In computing the response for the different cases
in Table 4.1, different number of generalized coordinates [see equation (3.9)] were included. In
analyzes assuming rigid foundation rock (E;/E; =co), 12 generalized coordinates were included for

dams with E; = 4 or 5 million psi and 15 generalized coordinates if E;, = 2 million psi. In analyzés
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Table 4.1 -- Cases of Dam-Water-Foundation Rock System Analyzed

Foundation Rock Impounded Water Reservoir Boundary
Case &
(million psi) ; Condition | E,/E Condition H/H, | Condition a
1 any" rigid ) empty 0 - .
2 4 rigid @0 full 1 rigid 1.0
3 4 rigid oo full 1 absorptive | 0.75
4 4 rigid Q0 full I absorptive | 0.50
5 4 rigid o full i absorptive 0
6 5 rigid 0 full 1 rigid 1.0
7 5 rigid co fufl 1 absorptive 0.5
8 2 rigid %0 full 1 rigid 1.0
9 2 rigid [} fuli 1 absorptive | 0.5
10 any’ rigid oo full, incompressible 1 rigid any!
i1 any’ flexible 2 empty 0 - -
12 any" flexible 1 empty 0 - -
13 any flexible 1/4 empty 0 - -
14 4 flexible 1 full 1 rigid 1.0
15 4 flexible 1 ful 1 absorptive 0.75
16 4 flexible 1 full 1 absorptive | 0.50
17 4 flexible 1 full 1 absorptive | 0
I8 4 flexible 2 full 1 rigid 1.0
19 4 flexible 2 full 1 absorptive { (.50
20 4 flexible 1/4 full 1 rigid 1.0
21 4 flexible 1/4 full 1 ahsorptive 0.50

* Response results for these cases, when presented in normalized form, are valid for all E;.

t Response results for the case neglecting water compressibility are independent of a.
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considering foundation rock flexibility, with E,/E; = 2, 1 and 1/4, 16, 18 and 20 generalized coordi-
nates were included, respectively. The resulting frequency response functions shouid be accurate for
excitation frequencies up to approximately four times the fundamental natural frequency w, of the

dam on rigid foundation rock with an empty reservoir.

For each casé in Table 4.1 the absolute value of the complex-valued frequency response function
for acceleration is plotted against the normalized excitation frequency parameter w/w;, where w; is the
fundamental resonant frequency of the dam without water on a rigid foundation rock; w{ is used as
the normalizing factor for symmetric (upstream or vertical) ground motion, and «f is used for
antisymmetric (cross-stream) ground motion. If compressibility of the impounded water is neglected,
or the reservoir is empty, these response results plotted in this nmanner are independent of E, and «

[21].

4.3 Hydrodynamic Forces on Rigid Dam

Before studying the response of the dam, it is useful to examine the hydrodynamic force due to
a full reservoir (H/H; = 1) on a rigid dam, with the foundation rock also assumed as rigid. The x-
component of the total “hydrodynamic force acting on half of the dam due to upstream, vertical and
cross-stream ground motion, F 6 (v}, I =x,vy and z, are shown as frequency response functions in Fig-
ures 4.1, 4.2 and 4.3, respectively. The hydrodynamic force is presented considering water compressi-
bility for five values of o: 1.0, 0.75, 0.50, 0.25, 0; and also for incompressible water in which case the
force is independent of «. These frequency response functions for the hydrodynamic force are com-
puted as the integral of the corresponding functions for the hydrodynamic pressures acting on the
upstream face of the dam. The préssure functions are determined by solving the wave equation over
the reservoir domain with appropriate boundary conditions at the free surface, upstream dam face
and the reservoir boundary using the analytical procedure described in Chapter 3. The hydrodynamic
force 1*:6 (w) is normalized with respect to the hydrostatic force on half of the dam F,, = 0.208 pgH?
and the excitation frequency is normalized with respect to w{¥ = #(C'/2H, the first natural vibration

frequency of an infinite reservoir of uniform depth H with rigid reservoir bottom. When presented
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in this form, the results apply to reservoir domains of any depth with the geometry shown in Figure
2.3. The real and imaginary components as well as the absolute value of the complex-valued fre-
quency response functions are presented for each case. The real and imaginary components represent
the in-phase and 90°-out-of-phase hydrodynamic forces relative to the harmonic ground acceleration,

respectively.

If the reservoir boundary is rigid, i.e. a= [, the hydrodynamic force due to upstream ground
motion is bounded for all excitation frequencies, while the hydrodynamic forces due to vertical and
cross-stream ground motion are unbounded at the natural frequencies of the infinite uniform channel.
Symmetric ground motion (vertical component) causes unbounded resonance at the natural frequen-
cies w.® of the symmetric modes; and antisymmetric ground motion (cross-stream component) at the
natural frequencies c;;,’;“ of the antisymmetric modes (Figures 4.1, 4.2 and 4.3). The hydrodynamic
force due to upstream or vertical ground motion is opposite-phase relative to the ground acceleration
for excitation frequencies less than the first natural frequency of the infinite channel ¥, but a 90°-
out-of-phase component exists for higher excitation frequencies indicating energy radiation due to
propagation of hydrodynamic pressure wave in the upstrcam direction. For cross-stream ground
motion, the hydrodynamic force on one-half of the dam is in-phase with the ground acceleration for
excitation frequencies less than %, of opposite-phase between wi* and w{% but a 90°-out-of-phase
component exists for higher frequencies; «[? is the fundamental natural frequency of the complete
reservoir domain (infinite channel and irregular region) that exists just below «j®. Because the
response to cross-stream ground motion is antisymmetric, at each excitation frequency the hydro-
dynamic force on onc-half of the dam is of opposite-phase relative to the force on the other half,
When reservoir boundary absorption is considered, i.e. a«# 1, the hydrodynamic forces are bounded,

and a 90”-out-of-phase component exists for all excitation frequencies for all three components of

ground motion.

The hydrodynamic pressure and hence force on rigid dam are determined by the hydrodynamic
pressure responses in the reservoir domain which includes both the finite irregular region next to the

dam and the infinite channel of uniform cross-section connected to the irregular region through the
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transmitting plane. As indicated in the analytical procedure in Chapter 3, the hydrodynamic pressure
in the infinite channel can be described as the sum of the contribution of N, natural vibration modes
of the infinite channel, with N ¢ chosen appropriately to accurately represent the hydrodynamic pres-

sure over the desired frequency range.

The hydrodynamic pressures in the infinite channel due to upstream ground motion may be
interpreted as the response to normal accelerations of the fluid at the fictitious transmitting plane. If
the reservoir boundary is rigid, i.¢, @ = 1, the contribution of the nth mode to the hydrodynamic pres-
sures due to upstream ground motion is real-valued for excitation frequencies lower than w; but is
imaginary-valued, i.e. 90° out-of-phase relative to the ground acceleration, for excitation frequencies
higher than /. If the excitation frequency is w5, the nth mode resonates in the infinite channel, but
because of the existence of the irregular fluid region between the infinite channel and the dam, its
contribution to the hydrodynamic pressure in the irregular region and hence to the force on a rigid

dam has a bounded limit; though the response may be very large [Figure 4.1(a)]. In contrast, infinite

hydrodynamic pressures would result at w’

if the upstream face of dam is a vertical plane and the
fluid domain is the infinite channel without any irregular region [9]). For excitation frequencies higher
than w?, the pressure wave associated with the nth mode propagates in the upstream direction of the
inﬁnité channel resulting in radiation of energy and hence the imaginary component of the pressure
response. With increasing excitation frequency, a larger number of modes are associated with the
propagating pressure waves, leading to increased energy radiation and hence smaller hydrodynamic
force [Figure 4.1(a)] -- except for the local resonance behavior near the natural vibration frequencies
of the infinite channel. Because upstream radiation of energy does not occur for excitation frequen-

cies below «{’, the imaginary component is zero at these frequencies [Figure 4.1(c)].

If the reservoir boundary is absorptive, the natural vibration modes of the infinite channel are
complex-valued and frequency-dependent. Consequently, the contribuiion of the nth mode to the
hydrodynamic pressure and force due to upstream ground motion is complex-valued for all excitation

frequencies. For excitation frequencies below w{, the imaginary component arises from the radiation
a

of energy due to the refraction of pressure waves into the absorptive reservoir boundary; whereas for
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excitation frequencies higher than w{, the imaginary component arises from the radiation of energy
due to both the propagation of pressure waves in the upstream direction and their refraction into the
absorptive reservoir boundary [Figure 4.1(c)]. Because of the additional energy radiation resulting
from reservoir boundary absorption, the fundamental resonant peak is reduced and the response
curve is smoothened [Figure 4.1(a)-(c)]. However, the additional energy radiation has little influence

on the resonant frequencies of the impounded water.

The hydrodynamic pressures in the infinite channel due to vertical ground motion may be inter-
preted as the simultaneous response to normal accelerations of the fluid at the fictitious transmitting
plane and to normal accelerations of the reservoir boundary due to the ground motion. If the reser-
voir boundary is rigid, i.e. « = 1, the contribution of the nth natural vibration mode of the infinite
channel to the hydrodynamic pressure due to the normal accelerations of the fluid across the
transmitting plane behaves similarly as in the case of upstream ground motion, being real-valued
below w’ and imaginary-valued above ) because of enmergy radiation in the upstream direction.
However, the modal contribution to the hydrodynamic pressures caused by normal accelerations of
the reservoir boundary is always real-valued, behaving like a truly undamped system as the pressure
waves do not propagate in the upstream direction [9]. At excitation frequency «, the nth mode in
the infinite channel has unbounded resonance due to the accelerations at the reservoir boundary like a
truly undamped system, resulting in infinite values for the real and imaginary components and total
hydrodynamic pressures in the irregular region and hence on the dam (Figure 4.2). Again, there is no
upstream radiation of energy at excitation frequencies below w”, and so the imaginary component is
zero at these frequencies [Figure 4.2(c)]. With increasing excitation frequency, there is increased
energy radiation upstream and hence the hydrodynamic force is smaller [Figure 4.2(a)]; however,
since the upstream radiation of energy arises only from the normal accelerations of the fluid across
the transmitting plane, it does not prevent the unbounded resonances of the nth mode at w’ due to
the accelerations at the reservoir boundary. Reservoir boundary absorption leads to an imaginary
component of hydrodynamic force associated with radiation of energy because pressure waves refract

at the reservoir boundary for all excitation frequencies. This radiation damping reduces the response
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for almost all frequencies and the resonant responses are now bounded.

The hydrodynamic pressures in the infinite channel due to cross-stream ground motion rﬁay be
interpreted as the simultaneous response of the channel to normal accelerations of the fluid at the
fictitious transmitting plane and to normal accelerations of the reservoir boundary due to the ground
motion. The hydrodynamic force is unbounded at wj@ if the reservoir boundary is rigid, i.e. a = 1
because the nth vibration mode of the infinite channel has unbounded resonance [Figure 4.3(a)).
Again, there is no upstream radiation of energy below wi% and so the imaginary component of the
hydrodynamic force is zero at these frequencies [Figure 4.3(c)]. As in the response to vertical ground
motion, both the real and imaginary components of the hydrodynamic force resonate to infinity at w,*
[Figure 4.3(b)<(c)]. However, as mentioned earlier in this section, for this particular reservoir
geometry, an eigenfrequency wi® of the complete reservoir domain (irregular region and infinite chan-
nel) exists just below w{? resulting in an unbounded peak in the force at this frequency [Figure
4.3(a)]. Reservoir boundary absorption reduces the responses at «/® and «/® to finite values,

smoothens the entire response curve, and gives complex-valued forces at all excitation frequencies

[Figure 4.3(a)-(c)].

If water compressibility is neglected, the hydrodynamic forces are real-valued and independent
of the excitation frequency (Figures 4.1, 4.2, 4.3}. The hydrodynamic force due to upstream ground
motion is slightly smaller than the hydrostatic force and of opposite phase relative to the ground
acceleration {Figure 4.1); that due to vertical ground motion is equal to the hydrostatic force and also
of opposite phase relative to the ground acceleration (Figure 4.2); and that due to cross-stream ground
motion is much less than the hydrostatic force and in phase with the ground acceleration (Figure 4.3).
The hydrodynamic effects are now equivalent to an added mass and, depending on the ground

motion component, an added or reduced force.
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4.4 Dam-Water Interaction Effects

4.4.1 Hydrodynamic Effects

The effects of interaction between the dam and the water on the dam response to upstream,
vertical, and cross-stream ground motion are shown in Figure 4.4; where the results from the analyses
of Cases 1, 2 and 10 (Table 4.1) are plétted. The response of the dam with an empty reservoir (Case
1) is characteristic of a multi-degree of freedom system with frequency-independent mass, stiffness,
and damping properties. The response of the dam with a full reservoir {Cases 2 and 10) is affected by
the hydrodynamic terms in the equations of motion for the dam. The hydrodynamic terms can be
interpreted as modifying the properties of the dam by introducing an added mass, an added or sub-
tracted hydrodynamic force, and an added damping. In the case of upstream and vertical ground
motions, the hydrodynamic force is real-valued and additive for excitation frequencies « less than w/’
because it has the same phase as the effective earthquake inertial force at these frequencies; whereas
in the case of cross-stream ground motion, the hydrodynamic force is real-valued and subtractive for
excitation frequencies  less than «{? because it has opposite phase compared to the effective earth-
quake inertial force at these frequencies. At higher excitation frequencies, the hydrodynamic force is
complex-valued. These hydrodynamic terms depend on the excitation frequency and wave reflection
coefficient « if water compressibility is considered, and on the ground motion component [9,20] with
one exception: the added mass and added damping are the same for upstream and vertical ground

motions.

Because of the strong frequency dependence of the hydrodynamic terms if the reservoir boun-
dary is rigid and water compressibility effects are included, the response of the dam is quite compli-
cated as seen in Figure 4.4. The response behavior is especially complicated at excitation frequencies
in the neighborhood of the natural frequencies of the infinite reservoir channel. In particular, the
response curve due to upstream or vertical ground motion has a double resonant peak at frequencies
near «{ and ¥, the fundamental natural frequencies of the symmetric modes of dam and infinite
channel, respectively [Figure 4.4(a)-(b)]; whereas the response curve due to cross-stream ground

motion has a double resonant peak near «f, the natural frequency of the second antisymmetric
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vibration mode of the dam, and «{? the natural frequency of the fundamental antisymmetric mode of
the infinite channel. The double resonant peak is especially pronounced when the excitation is verti-
cal or cross-stream ground motion and the response is unbounded at w{ as well as at higher w’. The
superscripts s and a are dropped in this and subsequent staiecments if they are valid for both sym-

metric and antisymmetric modes.

As seen in Figure 4.4, the fundamental resonant frequency ®, of the dam is reduced below both
w; and ! by the added mass of the water. The ratio f",/ T, of the resonant period f’, of the dam
with reservoir filled to depth H to that period T'; with empty reservoir is plotted in Figure 4.5 against
normalized water depth H/H, where H is the dam height. Results are presented for the resonant
period of the fundamental symmetrical and antisymmetrical modes of vibration. Also presented is
the period ratio for é concrete gravity dam from reference [24] which is comparable to the symmetric
case for arch dams. These results are applicable to dams of any height with the specified geometry,
and chosen values for Poisson’s ratio, £, and H/H,; and they are presented for a rigid reservoir
boundary (¢ = 1). As noted previously for gravity dams [24], dam-water interaction lengthens the
vibration period also of arch dams, with the effect being very small for H/H, less than 0.5, but
increasing rapidly with water depth for H /H, greater than (.5. Dam-water interaction lengthens the
vibration peried of the symmetrical mode of arch dams more than that of gravity dams because the
added hydrodynamic mass has more effect on the mass of a slender arch dam than of a massive grav-
ity dam. Dam-water interaction lengthens the pertod of the fundamental antisymmetrical vibration
mode of an arch dam to a lesser degree than the symmetric vibration mode of the arch dam or a

gravity dam.

As shown in Table 4.2, dam-water interaction lengthens the periods of the higher vibration
modes of the dam with the effect decreasing with mode number for symmetric vibration modes but is
about the same for the first four antisymmetric vibration modes. The higher resonant periods of the
symmetric vibration modes of the dam are affected not as much as the fundamental period by dam-
water interaction because, just like the real part of the hydrodynamic force on rigid dam due to

upstream ground motion [Figure 4.1(b)], the added mass decreases with increasing excitation
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Table 4.2 -- Ratio of the Resonant Period 7, of Dam on Rigid Foundation
with Water (H/H, = 1, « = 1.0) to T,, Without Water

for the First Five Symmetric and Antisymmetric Modes

Ratio f",,,/ T,

Mode number n

Symmetric Modes | Antisymmetric Modes

1 [.48 1.27
2 1.24 1.33
3 1.16 1.21
4 1.09 1.26

5 1.10 1.06
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frequency and is thus less effective in the higher vibration modes. However, the resonant periods of
the first few antisymmetric modes of the dam are lengihened by about the same percentage because,
unlike the symmetric vibration modes, the added mass associated with the higher antisymmetric
vibration modes of the dam is as significant as that of the fundamental mode, as some of the higher
resonant frequencies of the dam are quite close to the resonant frequencies of the impounded water in

the infinite channel.

The fundamental resonant response due to upstream and vertical ground motions is increased
due to dam-water interaction because of the added force at the resonant frequency. Furthermore, the
bandwidth of the fundamental resonant response decreases [Figure 4.4(a)-(b)]. This apparent decrease
in the effective damping ratio is due to the interaction of the dam and water and the rapid variation
of the added force near the fundamental resonant frequency resulting in a double resonant peak in
the response curve. This apparent decrease in damping occurs although propagation of hydro-
dynamic pressure waves in the upstream direction does not occur at the fundamental resonant fre-
quency because the resonant frequency is smaller than w{’, and in spite of the fact that the damping
ratio associated with a constant hysteretic damping model for the dam is not affccted by the hydro-
dynamic added mass [25]. The fundamental response to cross-stream ground motion is reduced by
dam-water interaction because of the subtracted hydrodynamic force at this frequency; while the
bandwidth is essentially unaffected. Dam-water interaction effects in the response to cross-stream
ground motion differ from those in the response to upstream or vertical ground motions because of
the relative values of the natural frequencies of the dam and impounded water. The double resonant
peak due to dam-water interaction occurs because of interaction between the neighboring natural fre-
guencies of the dam and infinite channel; in case of the upstream or vertical ground motion these are
the fundamental frequencies, w{ and wfs,_ of the two systems; but in case of the cross-stream ground
motion these are the second frequency «§ of the dam and the fundamental frequency w!® of the
infinite channel. The resonant response at higher resonant frequencies to upstream or vertical ground
motion is much smaller than that for the dam with an empty reservoir [Figure 4.4(a)-(b)} because, for

excitation frequencies greater than «{, the energy radiation due to propagation of hydrodynamic
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pressure waves in the upstream direction leads to added damping, The resonant response at higher-
than-the-second resonant frequencies to cross-stream ground motion is also smaller than that for the

dam with an empty reservoir [Figure 4.4(c)] for the same reason.

When water compressibility is neglected, the hydrodynamic terms are independent of excitation
frequency and the response of th¢ dam is much less complicated. It is like that of a standard multi-
degree of freedom system with modified natural frequencies and effective earthquake force. When the
excitation is upstream or vertical ground motion, the decrease in the resonant frequency of the dam
and the increase in earthquake force is apparent from the dam response [Figure 4.4(a)-(b)]. When the
excitation is cross-stream ground motion, the decrease in the resonant frequency and in the earth-

quake force is apparent from the dam response [Figure 4.4(c)].

4.4.2 Effects of Reservoir Boundary Absorption

The effects of hydrodynamic pressure wave absorption at the reservoir boundary on the dynamic
response of the dam with full reservoir (Cases 1 to 5) are shown in Figure 4.6. As in the case of grav-
ity dams {19}, with increasing wave absorption at the reservoir boundary, i.e. decreasing wave
reflection coeflicient «, the amplitude of the fundamental resonant peak due to upstream ground
motion decreases whereas the second, smaller peak increases, resulting in a single fundamental
resonant peak at an intermediate frequency value. Because of reservoir boundary absorption, the fre-
quency response functions become smoother near the fundamental resonant peak with reduced
resonant amplitude and wider frequency bandwidth in the case of upstream or vertical ground
motions. But lwith increasing wave absorption (decreasing « from 0.75 to 0), the resonant peak in
upstream ground motion increases -- contrary to intuition -- because the added damping decreases at
this frequency. This decrease in added damping with increasing wave absorption is dependent on the
particular problem analyzed and has also been observed in response of a gravity dam [24]. For
cross-stream ground motion, however, the fundamental resonant amplitude slightly increases with
reservoir boundary absorption; because the "added” hydrodynamic force, being of opposite phase rela-
tive to the effective earthquake inertia force, is reduced by wave absorption. The fundamental

resonant frequency is, in general, not much affected by reservoir boundary absorption for all three
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components of ground motion,

Reservoir boundary absorption reduces the added mass and added or subtracted force for all
three ground motion components (Figures 4.1 to 4.3) at all excitation frequencies; in particular these
hydrodynamic quantities associated with vertical and cross-stream ground motions are reduced to
finite values at excitation frequencies «!® and !, respectively. Consequently, at these excitation fre-
quencies the unbounded response to vertical or cross-stream ground motions is eliminated. The
effects of reservoir boundary absorption are relatively less significant for excitation frequencies greater
than o] -- except locally near w). This is because, at these higher frequencies, the energy radiation
due to refraction of hydrodynamic pressure waves into the reservoir boundary is small compared to
the energy radiation due to pressure waves propagating in the upstream direction. Reservoir boun-

dary absorption eliminates the unbounded responses at excitation frequencies equal to w} due to vert-

ical or cross-stream ground motion,

4.4.3 Influence of Young's Modulus E,

The response of the dam with water when presented in the form of Figures 4.7 to 4.9 is
independent of the Young’s modulus E, of the dam concrete if water compressibility is neglected
[21]. However, the results from analysis of Cases 2, 6 and 8 (Table 4.1) presented in Figures 4.7(a),
4.8(a) and 4.9(a) demonstrate that the E, value affects the response functions when water compressi-
bility is considered. This effect is most pronounced on the fundamental resonant frequency w, associ-
ated with the symmetric vibration mode and on the response to upstream and vertical ground
motions in the neighborhood of this frequency. For the larger values of E;, when the reservoir boun-
dary is rigid, the fundamental resonant frequency of the dam decreases due to hydrodynamic effects
to a greater degree and the response is amplified more but over a narrower frequency band. The
amplitude of resonant response to upstream ground motion is affected little by variations in E; but is
influenced substantially for vertical ground motion. At higher excitation frequencies the response
functions are less affected by E, except for the location of the sharp unbounded spikes at w’ in the
response to vertical ground motion. The E; value has little effect on the fundamental resonant fre-

quency w, associated with the antisymmetric vibration mode and on the resonant response to cross-
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stream ground motion [Figure 4.9(a)]. At higher excitation frequencies, the effect of E; on response is

dominated by its influence on the location of the unbounded peaks.

Reservoir boundary absorption affects in an especially significant way how the amplitude and
frequency bandwidth of the fundamental resonant peak varies with E;. As discussed and interpreted
for gravity dams [19], increasing E, now causes smaller resonant peak over a wider bandwidth in the
response to upstream or vertical ground motions [Figures 4.7(b) and 4.8(b)], with comparatively little
influence on the amplitude of resonant response to vertical ground motion {Figure 4.8(b)]. Just as for
rigid reservoir boundary, the fundamental resonant frequency and amplitude of response to cross-
stream ground motion are essentially unaffected by E,. However, at higher excitation frequencies,
reservoir boundary absorption eliminates the unbounded spikes in the response to cross-stream or

vertical ground motions and the responses to all three ground motions are less affected by E,.

With decreasing E,, the effects of water compressibility on the fundamental resonant response
due to upstream, vertical, or cross-stream ground motion become smaller, and the response
approaches the incompressible case. This trend is readily apparent in Figures 4.7 - 4.9 except in the
response to vertical or cross-stream ground motions with rigid reservoir boundary in which case the

trend is masked by the unbounded response peaks at excitation frequencies equal to ) or w/?.

As noted in a study on gravity dams [19], the effects of wave absorption on dam response are
not properly represented by analyses neglecting water compressibility [Figures 4.7(b}, 4.8(b) and
4.9(b)]. Although such an analysis provides a good approximation to the fundamental resonant fre-
quency «,, the fundamental resonant response to upstream ground motion is overestimated because
there is no radiation of energy upstream or through the reservoir boundary if water is incompressible;
the amplitude of higher resonant peaks due to upstream or vertical ground motion are overestimated
by even a greater margin. However, the higher resonant peaks due to cross-stream ground motion are
underestimated because the "added” hydrodynamic force is really a subtracted force as it is of
opposite-phase compared to the effective earthquake force associated with the ground acceleration at
all excitation frequencies if water is incompressible, whereas the added force has an in-phase com-

ponent at some higher frequencies if water compressibility and wave absorption are considered.
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4.4.4 Comparison of Responses to Three Ground Motion Components

Comparing the responses of the dam with an empty reservoir to the three components of ground
motion, it is apparent that the fundamental resonant response to vertical or cross-stream ground
motion is relatively small. However, with a full reservoir, the response to vertical ground motion is
much larger, even exceeding the response to horizontal ground motion for the larger values of a. For
the smaller values of «, the resonant response to vertical ground motion, although smaller than that
due to upstream ground motion, is relatively significant because of hydrodynamic effects. The funda-
mental resonant response to cross-stream ground motion remains small even for a full reservoir

irrespective of the « value.

4.5 Foundation Flexibility Effects

The frequency resbonse functions for the dam on flexible foundation rock are presented in Fig-
ures 4.10, 4.11 and 4.12 for varying foundation modulus E; (Cases 1, 11, 12 and 13 in Table 4.1).
When presented in this form, these functions do not depend separately on E; or E, but only on the
ratio E;/E;. Results are presented for four values of Ef/E; = o, 2, 1, 1/4, The first represents ﬁgid
foundation rock, whereas in the last case the elastic modulus for the foundation rock is a fraction of
the modulus for dam concrete, an assumption appropriate in many practical situations because of

joints in the foundation rock.

Unlike impounded water, the foundation rock does not have any resonant frequencies because it
is assumed to be massless. As a result, foundation flexibility affects the response of the dam in a
simpler manner than does dam-water interaction. As the E;/E; ratio decreases, which for a fixed
concrete modulus E; implies decrease of foundation modulus E, the fundamental resonant frequency
of the dam decreases because of foundation flexibility; the response at the crest of the dam at this fre-
quency increases and the frequency bandwidth at resonance decreases, implying a decrease in the
apparent damping of the structure resulting, in part, from the undamped foundation rock region. The
increase in response is, in part, due to the increase in the effective earthquake forces in individual

vibration modes arising from modifications in the mode shape due to foundation flexibility.
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Accompanying this change in the resonant response at the crest of the dam is an increasing response
at the base of the dam -- which is however, a small fraction of the response at the crest -- with
increasingly flexible rock (Figures 4.10 - 4.12). Similar but somewhat smaller effects of decreasing
E;/E; are observed at higher resonant frequencies; in particular, the higher resonant frequencies are
decreased to a lesser degree by foundation rock flexibility. The zabove memioned effects of
foundation-rock flexibility are qualitatively similar in the response to the three components of ground

motion.

The effect of foundation-rock flexibility on the fundamental vibration period of the dam is
displayed in Figure 4.13 wherein the ratio ’f'f/ T, of the resonant period f"f of the dam on flexible
foundation rock to that on rigid foundation rock is plotted as a function of E;/E;. Also presented is
the period ratio for a gravity dam [24]. These results are applicable to dams of any height with the
specified geometry and chosen values for Poisson’s ratio and density of materials. As expected, the
period ratio f‘f /T, increases, i.¢. the fundamental period lengthens, as the foundation-rock becomes
increasingly flexible. The increase in vibration period can be significant and it is about the same for
the symmetric and antisymmetric modes, but much less than the period increase for gravity danﬂs.
Dam-foundation rock interaction effects are more significant for gravity dams because they are mas-
sive compared to arch dams. Part of the differences in the interaction effects are, however, due to the
use of different foundation idealizations, half-plane in the case of gravity dams and a massless, finite

element system for arch dams.

4.6 Dam-Water Interaction and Foundation Flexibility Effects

4.6.1 Hydrodynamic and Reservoir Boundary Absorption Effects

The simultaneous effects of interaction between the dam and impounded water and of founda-
tion flexibility on the dynamic response of arch dams can be examined from Figures 4.14 - 4.16,
wherein response results are presented for four systems: dam on rigid foundation rock with no water
(Case 1); dam on flexible foundation rock with no water (Case 12); dam on rigid foundation rock with

full reservoir (Cases 2 and 4); and dam on flexible foundation rock with full reservoir (Cases 14 and
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Morrow Point Arch Pam _ 7 Tf / TI
— — — A Gravity Dam 7

Te / T,

Figure 4.13 Variation of the fundamental period ratios, f"f /T, f}/ T5 and Tf/ T, with the moduli
ratio Ey/E,, for dam with an empty reservoir. Results for the gravity dam are from Fenves and
Chopra (1984),
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Figure 4.14 Response of dams to harmonic upstream ground motion for four conditions: dam on ri-
gid foundation rock with no water (Case 1 of Table 4.1); dam on flexible foundation rock with no wa-
ter (Case 12); dam on rigid foundation rock with full reservoir (Cases 2 and 4); and dam on flexible
foundation rock with full reservoir (Cases 14 and 16).
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Figure 4.15 Response of dams to harmonic vertical ground motion for four conditions: dam on rigid
foundation rock with no water (Case | of Table 4.1); dam on flexible foundation rock with no water
(Case 12); dam on rigid foundation rock with full reservoir (Cases 2 and 4); and dam on flexible foun-
dation rock with full reservoir (Cases 14 and 16).
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Figure 4.16 Response of dams to harmonic cross-stream ground motion for four conditions: dam on
rigid foundation rock with no water (Case 1 of Table 4.1); dam on flexible foundation rock with no
water {Case 12); dam on rigid foundation rock with full reservoir (Cases 2 and 4); and dam on flexi-
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16). The effects of dam-water interaction on the dam response to any of the three ground motion
components are qualitatively similar for rigid rock (Section 4.4) and flexible foundation rock, whether
the reservoir boundary is rigid [Figures 4.14(a), 4.15(a) and 4.16(a)] or absorptive [Figures 4.14(b),
4.15(b) and 4.16(b)]. It is apparent from Figures 4.14 - 4.16 that the fundamental natural or resonant
frequency wlT of the dam alone (without water, supported on rigid foundation rock) is reduced to @,
due to dam-water interaction, to (:)f.f. due to foundation flexibility, and to « due to both effects simul-
taneously. The vibration periods correspbnding to these frequencies are denoted as T, f"r, f"f and
f", respectively. To examine how the increase in penod due to dam-water interaction is affected by
foundation rock flexibility, the ratio 7'/ f"f is plotted in Figure 4.17(a) against normalized water depth
H/H; where H, is the dam height. Results are presented for the resonant period of the fundamental
symmeirical and antisymmetrical modes of vibration for four values of E;/E;, with a rigid reservoir
boundary (« = ). It is apparent that the E,/E; value has relatively small influence on the period
ratio, especially if the reservoir is close to full. The data of Figure 4.17(a) is replotted in Figure
4.17(b) where the period ratio T/ ff is plotted against the E,/E; ratio for different values of 11 /H;.
For a fixed H/H,, this plot would have been a horizontal line if the increase in period due to dam-
water interaction was completely independent of foundation flexibility. It is apparent that the effects
of foundation flexibility on the period ratio are small. This observation was made earlier for gravity

dams, suggesting the following equation [19]:

&, @

T

W) @

This approximate relationship is valid for arch dams with rigid reservoir boundary (Figure 4.17) as

well as absorptive reservoir boundary (Figure not presented here).

The trends in the amplitude of the fundamental resonant peak depend on the modification of
the effective damping ratio and effective modal earthquake force due to foundation rock flexibility

and dam-water interaction, on the contribution of damping from reservoir boundary absorption, and

+ In equation (3.1) the symbol w; was used for vibration frequency of the dam, whether the foundation
rock is rigid or flexible. However, different symbols ) and w 7 are used for the fundamental frequen-
¢y to cmphasize the effects of foundation-rock flexibility on this frequency.
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on the added hydrodynamic forces. The effects of the various damping changes in the response of the
dam to upstream ground motion can be identified in Figure 4.14. When the reservoir boundary is
rigid [Figure 4.14(a)], dam-water interaction reduces the effective damping as a result of the double
resonant peak and increases the added force at the fundamental resonant frequency, resulting in
increased fundamental resonant response whether the foundation rock is rigid or flexible. This
decrease in the effective damping and the added hydrodynamic force dominate the corresponding
effects of foundation flexibility and therefore have about the same influence on the dam response
whether the foundation rock is rigid or flexible. When the effects of reservoir boundary absorption
are included [Figure 4.14(b)], the opposite trend occurs: dam-water interaction increases the effective
damping at the fundamental resonant frequency resulting in reduced resonant response whether the
foundation rock is rigid or flexible. This increase in effective damping dominates the total damping

resulting in approximately the same resonant amplitude irrespective of the foundation rock condition.

The amplitude of the fundamental resonant peak due to vertical ground motion (Figure 4.15) is
mainly affected by the added hydrodynamic force, and less by the previousty discussed trends in
damping. When the reservoir boundary is rigid [Figure 4.15(a)], dam-water interaction increases the
added force and reduces the effective damping ratio at the fundamental resonant frequency, leading
to increased resonant response and a double resonant peak, of which one peak is unbounded, whether
foundation rock is rigid or flexible. When the reservoir boundary is absorptive [Figure 4.15(b)],
dam-water interaction still increases the fundamental resonant response because of the large added
force for vertical ground motion, whether the foundation rock is flexible or rigid. However, the
increase in resonant response is less pronounced for flexible foundation rock than for rigid foundation
rock (compare the change from curve 2 to 4 with the change from curve [ to 3), because the
"significance of the added hydrodynamic force relative to the inertia force of the dam is less for flexi-
ble compared to rigid foundation rock, resulting in approximately the same resonant amplitude

irrespective of the foundation rock condition.

The amplitude of the fundamental resonant peak due to cross-stream ground motion (Figure

4.16) is also mainly affected by the "added” hydrodynamic force, and less by the previously discussed
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trends in damping. In this case the total earthquake force decreases at the fundamental resonant fre-
quency because the hydrodynamic force is of opposite-phase relative to the inertia force of the dam.
When the reservoir boundary is rigid [Figure 4.16(a)}, dam-water interaction reduces the earthquake
force at the fundamental resonant frequency, leading to reduced resonant peak whether the founda-
tion rock is rigid or flexible, because the reduction in force dominates the effects of foundation flexi-
bility. However, the unbounded hydrodynamic force dominates the dam response at excitation fre-
quencies near w,’f, leading to increased response, and a double resonant peak near w(® of which one
peak is unbounded, whether the foundation rock is rigid or flexible. When the reservoir boundary is
absorptive [Figure 4.16(b)], the fundamental resonant peak is essentially unaffected but the higher

resonant peaks, those associated with w/?, are reduced to bounded values.

The effects of reservoir boundary absorption on the response of the dam, supported on flexible
foundation rock, due to the three components of ground motion, are shown in Figure 4.18. The
response of systems with moduli ratio E;/E; = 1 is presented for four values of the wave reflection
coefficient: « = 1.0 (rigid reservoir boundary), 0.75, 0.5, and 0 (Cases 14, 15, 16 and 17 in Table 4.1).
Comparison of Figurc 4.18 with Figure 4.6, which shows the corresponding results for rigid founda-
tion rock, indicates that the effects of reservoir boundary absorption on dam response are about the

same whether the foundation rock is rigid or flexible.

4.6.2 Influence of Moduli Ratio E;/E;

The responsc of the dam with full reservoir and rigid or absorptive reservoir boundary to
upstream, vertical, and cross-stream ground motions is presented in Figures 4.19 - 4.21 for four
values of £y /E; = o, 2, 1 and 1/4. The response results for the rigid reservoir boundary, presented
in Figures 4.19(a) - 4.21(a), were obtained by analyzing Cases 2, 14, 18 and 20 of Table 4.1; and
those for absorptive reservoir boundary, presented in Figures 4.19(b) - 4.21(b), were obtained by

analyzing Cases 4, 16, 19 and 21 of Table 4.1.

As E;/E, decreases, which for a fixed £; means an increasingly flexible foundation rock, the
fundamental resonant frequency decreases, irrespective of whether the reservoir boundary is rigid or

absorptive; the dam response to upstream ground motion at this frequency increases slightly if the
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Figure 4.18 Influence of wave reflection coefficient « on response of dams on flexible foundation rock
with full reservoir to harmonic ground motion (Cases 14, 15, 16 and 17 of Table 4.1).
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Figure 4.19 Influence of moduli ratio E,/E, on response of dams with full reservoir to harmonic
upstream ground motion. Results presented for rigid reservoir boundary (Cases 2, 14, 18 and 20 of
Table 4.1), and absorptive reservoir boundary (Cases 4, 16, 19 and 21),
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Figure 4.20 Influence of moduli ratio E,/E; on response of dams with full reservoir to harmonic
_vertical ground motion. Results presented for rigid reservoir boundary (Cases 2, 14, 18 and 20 of
Table 4.1), and absorptive reservoir boundary {Cases 4, 16, 19 and 21).
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Figure 4.21 Influence of moduli ratio E;/E; on response of dams with full reservoir to harmonic
cross-stream ground motion. Results presented for rigid reservoir boundary (Cases 2, 14, 18 and 20
of Table 4.1), and absorptive reservoir boundary (Cases 4, 16, 19 and 21).
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reservoir boundary is rigid [Figure 4.19(a)] and stays about the same if the reservoir boundary is
absorptive [Figure 4.19(b})]; the dam response to vertical ground motion at this frequency decreases if
the reservoir boundary is rigid [Figure 4.20(a)] and stays about the same if the reservoir boundary is
absorptive [Figure 4.20(b)]; and the dam response to cross-stream ground motion at this frequency
increases slightly irrespective of whether the reservoir boundary is rigid [Figure 4.21(a)] or absorptive

[Figure 4.21(b)1.

As the moduli ratio E£,/E; decreases, the higher resonant peaks due to upstream ground motion
usually increase, especially if the reservoir boundary is rigid (Figure 4.19). The response to vertical
ground motion, is dominated by the unbounded peaks at freduencies w5 irrespective of the E r1Eq
value if the reservoir boundary is rigid; but the resonant peaks are affected little by the foundation
flexibility if the reservoir boundary is absorptive. The response to cross-stream ground motion is
dominated by the unbounded peaks at frequencies w/ irrespective of the E;/E; value if the reservoir
boundary is rigid; but the resonant peaks are affected little by the E/E; value if the reservoir boun-

dary is absorptive.



5. EARTHQUAKE RESPONSE OF MORROW POINT DAM

5.1 Introduction

Presented in this chapter ‘is the response of a selected arch dam to Taft ground motion,
Response results, computed by the analytical procedure presented in Chapter 3, are presented for a
wide range of the important parameters characterizing the properties of the dam, foundation rock,
impounded water and reservoir boundafy materials. Based on these response results, the effects of
dam-water interaction, reservoir boundary absorption, and foundation-rock flexibility on the earth-
quake induced displacements and stresses in the dam, and the relative significance of the response to

the three components of ground motion, are investigated.

5.2 System and Ground Motion

5.2.1 Dam-Water-Foundation Rock System

The dam selected for this investigation 1s Morrow Point Dam, the same as in Chapter 4 for the
study based on frequency response functions. The finite element idealizations selected for the dam
and foundation-rock region, the special finite-element cum continuum idealization for the impounded
water, and the properties of the dam-water-foundation rock system are the same as described in Sec-
tion 2.6. As in the frequency response function study presented in Chapter 4, the wave reflection
coeflicient « is varied over a wide range in this study; the values considcred are: o = 1.0 (rigid reser-

voir boundary), 0.50 and 0.

5.2.2 Ground Motion

The ground motion recorded at Taft Lincoln School Tunnel during the Kern County, California,
earthquake of 21 July 1952 is selected as the free-field ground acceleration for the analysis of Morrow
Point Dam. The ground motion acting in the upstream (x), vertical (y), and cross-stream (z) direc-
tions is defined as the S69E, vertical, and S21W components of the recofded ground motion, respec-

tively. These three components of ground motion and their maximum accelerations are shown in

117
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Figure 5.1.

5.3 Response Results

The response of Morrow Point Dam was analyzed for the eight sets of assumptions and condi-
tions listed in Table 5.1 for the ciam, foundation rock, impounded water and reservoir boundary
materials, with the objective of studying the effects of dam-water interaction, reservoir boundary
absorption, and foundation-rock flexibility on the earthquake responses. For each of these eight
cases, the response of the dam was éomputed for four excitations: upstream ground meotion, only;
vertical ground motion, only; cross-stream ground motion, only; and all three ground motion com-

ponents, simultaneously, of Taft ground motion.

The earthquake response of the dam was computed under the assumption of linear behavior of
the dam-water-foundation rock system, using the analytical procedure developed in Chaptef 3, where
the displacement history was obtained by Fourier synthesis of the complex-valued frequency response
functions for the generalized coordinates. These response functions were computed for the excitation
frequency range 0 to approximately 20 Hz, which had been tested to be adequate for the recorded
Taft ground motion. To accurately represent the response of the dam in this frequency range, the
first 12 gencralized coordinates were included in the analyses for Cases 1 to 4 with rigid foundation
rock, and the first 18 generalized coordinates were included in the analyses for Cases 5 to 8 with flexi-

ble foundation rock.

The fundamental resonant period and effective damping ratio at that period, determined by the
half-power bandwidth method from the frequency response function for crest acceleration due to each
of the three ground motion components, are presented in Table 5.1. Strictly speaking, the half-power
bandwidth method does not apply to dams because dam-water interaction introduces frequency-
dependent added mass, damping and force. However, the method is employed here to obtain a rough
measure of damping to assist in the interpretation of response results. As seen in Table 5.1, the fun-
damental resonant period obtained from the responses to upstream (x) or vertical (y) ground motions

is the same; it is the period of the fundamental, symmetric mode of vibration, modified by the added
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mass from dam-water interaction and the flexibility of the foundation rock. The frequency-dependent
hydrodynamic load which is not the same for the two ground motions slightly influences the resonant
period in some cases. The damping ratios £ and &} corresponding to the upstream and vertical
ground motions have the same value if the reservoir is empty, as it represents the damping property
of the dam-foundation system in its fundamental, symmetric mode of vibration, which is the same for
upstream and vertical ground motions. However, the damping values £ and £/ obtained from the
two response functions are slightly diﬁ'erént if the reservoir is not empty (Table 5.1), because they are
affected more by the fact that the frequency-dependent added hvdrodynamic load is not the same for
the two ground motions. The fundamental resonant period and damping ratio £f, obtained from the
response to cross-stream ground motion, are the period and damping ratio of the fundamental,
antisymmetric mode of vibration, modified by dam-water interaction and foundation flexibility. For
each of the eight cases, the pseudo-acceleration corresponding to the vibration period and damping
ratio, determined from the response to each ground motion component, is obtained from the response

spectrum for that particular ground motion and is listed in Table 5.1.

The response results selected to illustrate the different effects in this study consist of displace-
ment time histories and contours of maximum stresses. The radial component of the displacement at
the dam crest nodal point defined by # = 13.259 {nodal point 54 in Figure 2.3(a)], where # is an angle
measured from the x-y plane along the dam crest arch, is presented in Figures 5.2, 5.10, 5.17, 5.18,
5.27, and 5.28. The distributions of envelope values of the maximum tensile stresses in the arch and
cantilever directions are presented for both the upstream and downstream dam faces in Figures 5.3 to
5.8, 5.11 to 5.16, 5.19 to 5.26 and 5.29 to 5.36. Except for the maximum tensile stresses due to the
three components of Taft ground motion acting simultaneously, the envelope values of maximum ten-
sile stresses are shown in these figures for the right half of the dam when looking from the down-
stream side in the upstream direction. The maximum radial displacement at the dam crest nodal
point 54 (¢ = 13.25%) [Figure 2.3(a)], and maximum tensile values of arch and cantilever stresses over
the upstream and downstream faces, are summarized in Table 5.2 for the dam supported on rigid

foundation rock (Cases 1 to 4), and in Table 5.3 for the dam supported on flexible foundation rock
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Table 5.2 -- Summary of Responscs* of Morrow Point Dam,

on Rigid Foundation Rock, to Taft Ground Motion

Maximum Maximum Tensile Stress {psi)
Radial
Crest Upstream Face Downstream Face
Case | Water | o
Displacement
(inches) Arch | Cantilever | Arch | Cantilever
\ Stress Stress Stress Stress
{(a) Response to Upstream (S69E Component of Taft) Ground Motion
1 | None | - 0.38 268 101 247 62
2 Full 1.0 0.81 735 268 641 189
3 Full 0.5 0.63 525 165 443 118
4 Full 0 0.64 517 154 431 106
(b) Response to Vertical Component of Taft Ground Motion
I None - T 0.068 57 48 43 41
2 Full 1.0 1.98 1572 571 1412 361
3 Full 0.5 0.33 263 130 229 39
4 Full 0 0.14 113 60 86 43
(c) Response to Cross-stream {821W Comtponent of Taft) Ground Motion
1 None - 0.37 177 104 194 88
2 Full 1.0 0.68 410 303 382 212
3 Full 0.5 0.38 200 106 201 93
4 Full ¢ 0.45 245 120 227 105
{d) Response to Upstream, Vertical, and Cross-stream Components,
Simultaneously, of Ground Motion
1 None - 0.50 325 116 275 123
2 Full 1.0 2.45 1976 712 1751 521
3 Full 0.5 0.67 556 193 480 163
4 Ful | © 0.73 540 184 474 163

* Effects of static loads are excluded.
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(Cases 5 to 8).

A point worth mentioning here concerns the stress contour presentation in this chapter.
Because the Morrow Point Dam system is assumed to be symmetric about the x-y plane (Figure 2.3),
the displacement and stress responses due to the upstream (x) or vertical (y) ground motions are sym-
metric about the x-y plane, while the responses due to the cross-stream (z) ground motion are
antisymmetric about this plane. As a result, the envelope of maximum tensile stresses on both faces
of the dam due to upstream or vertical ground motion are symmetric about this plane. However, the
maximum tensile stresses due to cross-stream ground motion are not symmetric about this plane,
because the maximum tensile stresses on one-half of the dam are actually the minimum tensile
stresses or maximum compressive stresses on the other half. However, the maximum tensile stress
distribution was determined to be approximately the same for the two halves of the selected dam sub-
jected to the selected ground motion. Because of this approximate symmetry and in order to simplify
the presentation, the maximum stresses due to cross-stream ground motion are also shown for only
one-half of the dam, as it is for upstream and vertical ground motions, However, the maximum ten-
sile stresses due to the three components of Taft ground meotion acting simultaneously, which are not

symmetric about the x-y plane, are shown for the whole dam,

In a practical earthquake analysis of a dam, the displacements and stresses due to static loads
(weight of the dam and hydrostatic pressure) would be included in the total responses. However, the
static effects are not included in most of the results presented here because they complicate the
interpretation of the effects of dam-water interaction, reservoir boundary absorption, and foundation-
rock flexibility on the dynamic response of the dam. However, an example of a practical earthquake

analysis, including the effects of the static loads, is presented towards the end of this chapter.

5.4 Dam-Water Interaction Effects

5.4.1 Hydrodynamic Effects

Hydrodynamic effects on the earthquake responses of dams can be visualized as arising partly

from the change in the complex-valued frequency response functions of the dam (Chapter 4) and,
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partly from the change in the response spectrum ordinates corresponding to the resonant peaks, espe-
cially the fundamental resonant peak, corresponding to the change in the resonant period and damp-
ing. These changes are due to the frequency-dependent hydrodynamic terms that result from dam-
water interaction with compressible water. The hydrodynamic terms can be interpreted as an added
mass, an added damping (both are different for symmetric and antisymmetric ground lmotions), and

an added force (different for the three components of ground motion).

The displacement history of Morrow Point Dam supported on rigid foundation rock with an
empty reservoir is shown in Figure 5.2(a), and that with a full reservoir and rigid reservoir boundary
is shown in Figure 5.2(b), for the three components of ground motion. The maximum crest displace-
ment due to upstream ground motion increases from .38 in. to 0.81 in. [Table 5.2(a}] due to hydro-
dynamic effects because of the increase in fundamental resonant peak of the frequency response fﬁnc-
tion [Figure 4.4(a)}, and because the fundamental period lengthens from 0.235 sec. to 0.347 sec.
(Table 5.1), the damping ratio decreases resulting in the pseudo-acceleration S, (T',£{) increasing
from 0.43g to 0.60g. The increase in the fundamental period can also be observed from the displace-
ment histories [compare the responses to upstream ground motion in Figures 5.2(a) and 5.2(b)]. The
effects of dam-water interaction with rigid reservoir boundary on the maximum arch and cantilever
stresses can be seen by comparison of Figures 5.3(a) with 5.3(b) and 5.4(a) with 5.4(b). The max-
imum arch stress increases from 268 psi to 735 psi on the upstream face, and from 247 psi to 641 psi
on the downstream face; the maximum cantilever stress increases from 101 psi to 268 psi on the
upstream face, and from 62 psi to 189 psi on the downstream face {Table 5.2(a)]. The area enclosed
by a particular stress contour increases, indicating that tensile stresses exceed the value corresponding
to that contour over a larger portion of the dam face because of hydrodynamic effects. The distribu-
tion pattern for the arch stress does not change substantially. Dam-water interaction especially
increases the cantilever stresses at the base of the dam and along the abutment, with these areas

becoming the most-stressed areas instead of the upper, central portion of the dam.

If the reservoir boundary is rigid, the added hydrodynamic force for vertical ground motion at

the fundamental resonant period is especially large compared to the small effective earthquake force
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associated with the mass of the dam, and it is unbounded at the natural frequencies v/ of the infinite
uniform channel of the reservoir. Therefore, the frequency response function has a greatly amplified
fundamental resonant peak and unbounded peaks at w® due to hydrodynamic effects (Chapter 4).
Consequently, the response of the dam increases greatly because of dam-water interaction when the
reservoir boundary is rigid, with the maximum displacement increasing from 0.068 in. to 1.98 in., the
maximum arch stress from 57 psi to 1572 psi on the upstream face, and from 43 psi to 1412 psi on
the downstream face; the maximum cantilever stress from 48 psi to 571 psi on the upstream face, and
from 41 psi to 361 psi on the downstream face [Table 5.2(b)]. Only a very small part of these large
increases in responses is due to the increase in pseudo—acceleration ordinate associated with lengthen-
ing of the vibration period and reduction in effective damping due to dam-water interaction. The
generall distribution pattern of the maximum arch and cantilever stresses due to vertical ground
motion is affected by dam-water interaction in a manner similar to the case of upstream ground

motion [Figures 3,5(a) and 35.5(b), 5.6(a) and 5.6(b)].

In contrast to upstream and vertical ground motions, the amplitude of the fundamental resonant
peak in the frequency response function for the dam subjected to cross-stream ground motion is
reduced by dam-water interaction, because the "added” hydrodynamic force is of opposite-phase com-
pared to the effective earthquake force associated with the mass of the dam (Chapter 4). However,
the response of the dam to cross-stream ground motion increases due to dam-water interaction, in
part, because the added hydrodynamic force is infinite at the natural frequencies w/® of the antisym-
metric modes of infinite uniform channel of the reservoir, causing unbounded peaks in the frequency
response function for the dam at these frequencies (Chapter 4). Moreover, comparing the displace-
ment histories of Figures 5.2(a) and 5.2(b) due to cross-stream ground motion, it is apparent that
dam-water interaction has the effect of increasing the relative significance of the contributions of the
second mode to the response; because the second resonant frequency is quite close to i, the funda-
mental resonant frequency of the infinite uniform channel, resulting in dam-water interaction causing
a large increase in the resonant peak in the frequency response function (Figure 4.6)._ In addition,

dam-water interaction lengthens the fundamental period and the corresponding pseudo-acceleration
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S, (T, £7) increases (Table 5.1). The response of the dam with full reservoir and rigid reservoir boun-
dary due to cross-stream ground motion clearly shows the resulting increase in response, where the
maximum radial crest displacement increases from 0.37 in. to 0.68 in. [Figure 5.2(a)-(b)]; the max-
imum arch stress increases from 177 psi to 410 psi on the upstream face [Figure 5.7(a)-(b)], and from
194 psi to 382 psi on the downstream face [Figure 5.8(a)-(b)]; and the maximum cantilever stress
increases from 104 psi to 313 psi on the upstream face [Figure 5.7(a)-(b}], and from 88 psi to 212 psi
on the downstream face [Figure 5.8(a)-(b)l[see also Table 5.2(c)]. Comparing these figures also shows
how the pattern of stresses is affected by dam-water interaction. The locations of the larger arch
stress at 1/4 span points from the abutments at or near the dam crest and along the abutment in the
upper half of the dam when there is no impounded water shift lower toward the mid-height of the
dam due to dam-water interaction. Similarly the locations of the larger cantilever stress along the
abutments in the upper half of the dam with an empty reservoir are shifted to 1/4 span points from

the abutments in the upper portion of the dam.

The arch action in the response of the dam to each of the three ground motion components is
quite pronounced, whether the reservoir is full or empty, as illustrated by the much larger values of
arch stresses compared to the cantilever stresses over both faces of the dam (Table 5.2). The only
exception is in the relatively small response of the dam with an empty reservoir to vertical ground
motion in which case the arch stresses are only slightly iarger than the cantilever stresses. The rela- |

tive significance of arch and cantilever actions varies, of course, with the geometry of the dam.

It is useful to examine how dam-water interaction affects the response of arch dams compared
to that of gravity dams. For this purpose, the displacement response of Pine Flat gravity dam on
rigid foundation rock to S69E {upstream) and vertical components of Taft ground motion is repro-
duced in Figure 5.9 from reference [24]. Comparison with Figure 5.2 indicates that dam-water
interaction has greater influgnce on the response of the arch dam compared to the gravity dam, With
a rigid reservoir boundary (« = 1), dam-water interaction increases the maximum displacement of the
arch dam due to upstream ground motion by 113% and that due to cross-stream ground motion by

849%; whereas the displacement of a gravity dam due to upstream ground motion is increased only by
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37%. Dam-water interaction has an especially strong influence in the response of dams to vertical
ground motion with the maximum response of the arch dam magnified 30 times and of the gravity
dam 6 times. Dam-water interaction effects are more significant in the response of arch dams than
that of gravity dams because the added hydrodynamic mass, damping, and force have more effect on

the response of a slender arch dam than on a massive gravity dam.

5.4.2 Effects of Reservoir Boundary Absorption

The alluvium and sediments usually present at the boundary of a reservoir are approximately
modelled by a boundary that partially absorbs the incident hydrodynamic pressure waves. As shown
in Chapter 4, reservoir boundary absorption affects all the hydrodynamic terms in the equations of
mﬁtion for dams and hence their earthquake responses. The fundamental resonant period of the dam
with a full reservoir is reduced due to reservoir boundary absorption but it is still longer than the
period of the dam without water. As the reservoir boundary becomes more absorptive,v Le. as o
decreases, the added damping at the fundamental resonant period increases because of increasing
refraction of hydrodynamic pressure waves into the reservoir boundary materials and propagation of
hydrodynamic pressure waves in the upstream direction, resulting in the tendency for the effective
damping ratio to increase (Table 5.1). However, in contrast to gravity dams [24], the effective damp-
ing does not increase monotonically with decreasing «, because the added damping at the fundamen-
tal resonant period actually decreases -- contrary to intuition -- as « decreasés from 0.5 to 0 (Chapter
4).

As shown in Chapter 4, reservoir boundary absorption primarily affects the fundamental
resonant response to upsiream or vertical ground motions, and has little effect on the response at
higher excitation frequencies. On the other hand, the fundamental resonant response to cross-stream
ground motion is essentially unaffected but the second resonant response is affected most as it occurs

at a frequency close to the fundamental resonant frequency of the infinite channel (Figure 4.6).

The displacement response of the dam with full reservoir due to upsiream ground motion is
shown in Figures 5.2(c) and 5.2(d) for « = 0.5 and @ = 0. These results demonstrate that the main

effect of reservoir boundary absorption is to reduce the larger displacement peaks without
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significantly changing the frequency content of the response [compare Figure 5.2(cj<(d) to Figure
5.2(b)]. Primarily because of added hydrodynamic damping due to reservoir boundary absorption
and the resulting decrease in the pseudo-acceleration ordinate, the maximum crest displacement of
the dam with full reservoir decreases from 0.81 in. (for rigid reservoir boundary) to 0.63 in. for « =
0.5; the maximum arch stress decreases from 735 psi to 525 psi on the upstream face and from 641
psi to 443 psi on the downstream face; the maximum cantilever stress decreases from 268 psi to 165
psi on the upstream face and from 189 psi to 118 psi on the downstream face. However, the general
pattern of maximum stresses is not substantially altered. As the wave reflection coefficient o
decreases from 0.5 to 0, the maximum responses are ess¢ntia11§ unaffected. Hydrodynamic pressure
wave absofption, while decreasing the maximum stresses over the face of the dam, also ¢liminates the
redistribution of cantilever stresses due to hydrodynamic effects mentioned in Section 5.4.1 [compare

Figures 5.3(a), 5.3(b) and 5.3(d); 5.4(a), 5.4(b) and 5.4(d)].

Reservoir boundary absorption eliminates the unbounded peaks in the added hydrodynamic
force, and in the dam response, due to vertical ground motion for excitation frequencies equal to the
natural vibration frequencies w” of the infinite channel. Also the fundamental resonant peak in the
dam response which is bounded is greatly reduced [Figure 4.6(b}]. The resultihg effect on the
response of the dam with full reservoir to vertical ground motion is apparent from Figures 5.2(b)-(d),
5.5(b)-(d), and 5.6(b)-(d) and Table 5.2(b). Reservoir boundary absorption drastically reduces the
maximum displacement from 1.98 in. (for rigid reservoir boundary) te 0.33 in. for « = 0.5, and to
0.14 in. for & = 0 [Table 5.2(b)], similarly reduces the maximum arch stress from 1572 psi to 263 psi,
and to 113 psi on the upstream face [Figure 5.5(b)~(d)]; and from 1412 psi to 229 psi, and to 86 psi
on the downstream face [Figure 5.6(b)-(d)]; and also the maximum cantilever stress from 571 psi to
130 psi, and to 60 psi on the upstream face [Figure 5.5(b)-(d)]; and from 361 psi to 59 psi, and to 43
psi on the downstream face [Figure 5.6(b)-(d)){see also Table 5.2(b)]. These drastic decreases in the
responses are, in part, due to the decrease in S, (7, £)) as o decreases from 1.0 to 0.5 (Table 5.1).
Although the apparent damping ratio £} decreases as « decreases from 0.5 to 0 (Table 5.1), the dam

response decreases because of the decrease in the added hydrodynamic force due to reservoir
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boundary absorption. As in the case of upstream ground motion, wave absorption eliminates the
redistribution of cantilever stresses caused by hydrodynamic effects [compare Figures 5.5(a), 5.5(b)

and 5.5(d); 5.6(a), 5.6(b) and 5.6(d)].

As mentioned in Section 5.4.1, dam-water interaction has the effect of increasing the relative
significance of the contributions of the second mode to the response to cross-stream ground motion,
because it greatly increases the response amplitude at the second resonant frequency which is close to
w{®, the fundamental resonant frequency of the infinite uniform channel. Reservoir boundary absorp-
tion reduces the second resonani peak, thus decreasing the relative significance of the second mode
response, and also reduces the unbounded peaks at « in the frequency response function. This can
be observed from the change in frequency content of the displacement history due to the cross-stream
component of Taft ground motion as « changes from 1.0 to 0.5 [Figures 5.2(b) and 5.2(c)]. As a
result of this decrease in the second mode response, and the decrease in the pseudoc-acceleration ordi-
nate for the fundamental mode (Table 5.1), the displacement and stress responses are reduced as o
decreases from 1.0 to 0.5 [compare Figures 5.2(b) and 5.2(c), 5.7(b) and 5.7(c), 5.8(b) and 5.8(c)]. As
a decreases from 1.0 to 0.5, the maximum displacement decreases from 0.68 in. to 0.38‘ in.; the max-
imum arch stress decreases from 410 psi to 200 psi on the upstream face, and from 382 psi to 201 psi
on the downstream face; the maximum cantilever stress decreases from 313 psi to 106 psi on the
upstream face, and from 212 psi to 93 psi on the downstream face [Table 5.2{c)]. As in the case of
upstream and vertical ground motion, absorption of hydrodynamic pressure waves also eliminates the
changes, due to hydrodynamic effects, in the patierns of maximum arch and cantilever stresses over
the dam face [compare Figures 5.7(a), 5.7(b) and 5.7(c); 5.8(a), 5.8(b) and 5.8(c)]. With increasing
absorptiveness of the reservoir boundary materials from o = 0.5 to 0, however, the displacement and
stress responses increase slightly with little change in the stress patterns [compare Figures 5.2(c) and
5.2(d), 5.7(c) and 5.7(d), 5.8(c) and 5.8(d)]. As « decreases from 0.5 to 0, the maximum displacement
increases from 0.38 in. to 0.45 in.; the maximum arch stress increases from 200 psi to 245 psi on the
upstream face, and from 201 psi to 227 psi on the downstream face; the maximum cantilever stress

increases from 106 psi to 120 psi on the upstream face, and from 93 psi to 105 psi on the
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downstream face [Table 5.2(c)]. As mentioned in Section 5.4.1, the added hydrodynamic force is
opposite in phase compared to the effective earthquake force associated with the mass of the dam at
the fundamental resonant frequency. Reservoir boundary absorption decreases somewhat the added
hydrodynamic force and thus increases slightly the fundamental resonant peak in the frequency
response function (Chapter 4); and therefore the earthquake responses increase slightly when «

decreases from-0.5 to 0.

It is apparent from the preceding results and discussion that the effects of reservoir boundary
absorption are least pronounced in the response to upstream ground motion, they have a dominant
effect in the response to vertical ground motion and somewhat less in the case of cross-stream ground
motion. In general, assuming a rigid reservoir boundary leads to an unrealistically large response for
dams with impounded wéter, particularly due to vertical and cross-stream ground motions. Reservoir
boundary absorption does not alter the earlier observation that the arch stresses are greater than the

cantilever stresses over both faces of the dam (Table 5.2).

The effects of reservoir boundary absorption on the earthquake response of arch dams identified
in the preceding discussion are generally similar to those presented ecarlier [24] for gravity dams.
However, as the wave reflection coefficient o decreases from 1.0 to 0.5, the reduction in response of
the arch dam is greater compared to the gravity dam. As « decreases from 0.5 to 0, the response of
arch as well as gravity dams to horizontal ground motion is affected little whereas the response to
vertical ground motion is significantly affected for both types of dams, with the reduction being

greater in the response of arch dams.

5.5 Foundation Flexibility Effects

The response of Morrow Point Dam supported on flexible foundation rock with an empty reser-
voir to threc components of ground motion is presented in Figures 5.10(a) to 5.16(a) and summarized
as Case 5 in Table 5.3. A comparison of these results with those for the dam on rigid foundation
with an empty reservoir, presented in Figures 5.2(a} to 5.8(a) and summarized as Case 1 in Table 5.2,

provides an indication of effects of foundation flexibility on dam response.
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*
Table 5.3 -- Summary of Responses of Morrow Point Dam,

on Flexible Foundation Rock, to Taft Ground Motion

Maximum Maximum Tensile Stress (psi)
Radial
Crest Upstream Facc Downstrcam Face

Case | Water @

Displacement
(inches) Arch | Cantilever | Arch | Cantilever

Stress Stress Stress Stress

(a) Response to Upstream (S69E Component of Taft) Ground Motion

5 None - 0.49 308 117 273 I15
6 Full 1.0 1.11 760 275 721 188
7 Full 0.5 0.79 555 171 519 176
8- Full 0 0.91 618 173 561 178
(b) Response to Vertical Component of Taft Ground Motion
5 None - 011 92 62 67 4%
6 Full [.0 2.10 1435 427 1332 182
7 Full 0.5 0.54 380 123 333 69
8 Full 0 0.27 180 79 147 61

(¢) Response to Cross-stream {821W Component of Taft) Ground Motion

5 None - 0.46 211 106 205 106
6 Full 1.0 0.60 340 212 237 164
7 Full 0.5 0.49 257 107 216 109
§ | Fal | 0 0.68 345 143 290 149
{d) Response to Upstream, Vertical, and Cross-stream Components,
Simultaneously, of Ground Motion
5 None - 0.71 337 143 281 151
6 Full 1.0 2,61 1821 522 1684 377
7 Full 0.5 0.85 624 214 558 212
8 Full 0 0.90 652 228 537 237

¥ Effects of static loads are excluded.
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As mentioned in Section 4.5, foundation flexibility affects the response of the dam in a simpler
manner than does dam-water interaction because, unlike impounded water, the foundation rock does
not have any resonant frequencies as it is assumed to be massless. As seen by comparing Cases 1 and
5 in Table 5.1, the fundamental period is slightly lengthened and the effective damping is reduced, in
part, because the foundation region is undamped. In this particular case the combined change in the

_vibration period and damping ratio results in a slight reduction of the pseudo-acceleration response

spectrum ordinate for each of the three components of ground motion.

In spite of this reduction of the spectrum ordinate, the response of the dam increases slightly
because of foundation flexibility. Most of the responses are increased, primarily because of the
increase in effective earthquake forces in individual vibration modes arising from modification in the
mode shapes due to foundation flexibility. However, foundation flexibility does not significantly alter
the general pattern of maximum stresses, presumably because the relative values of the various modal
contributions are not significantly affected by foundation flexibility. The arch stresses are greater than
the cantilever stresses over both faces of the dam (Table 5.3), another observation that is not affected

by foundation flexibility.

5.6 Dam-Water Interaction Effects with Flexible Foundation Rock

5.6.1 Hydrodynamic Effects

As demonstrated in Chapter 4, the effects of dam-water interaction on the response of dam to
harmonic ground motion in the upstream, vertical or cross-stream directions are qualitatively similar
for rigid and flexible foundation rock. In particular, the percentage increase in the fundamental
period due to hydrodynamic effects is approximately the same whether the foundation rock is rigid or
flexible. This is further demonstrated for the symmetric vibration period and antisymmetric vibra-

tion period by comparing the results for Cases 1 and 2 with § and 6 in Table 5.1.

The displacement and stress responses of Morrow Point Dam on a flexible foundation to the
three components of Taft ground motion are presented in Figures 5.10 to 5.16. As seen by compar-

ing part (a) with (b) in each of these figures and the summarized results in Cases 5 and 6 of Table 5.3,
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hydrodynamic effects generally increase the displacement and stress responses to all three components
of ground motion. For example, the maximum crest displacement of the dam due to the upstream
component of ground motion increases from 0.49 in. to 1.11 in.; the maximum arch stress increases
from 308 psi to 760 psi on the upstream face, and from 273 psi to 721 psi on the downstream face;
the maximum cantilever stress increases from [17 psi to 275 psi on the upstream face, and from 115
psi to 188 psi on the downstream face [Table 5.3(a)]. In general, hydrodynamic effects influence the
distribution pattern of the maximum stresses for the dam similarly whether the foundation rock is
flexible or rigid, except for some differences. For example, the distribution of the arch stress over
both the upstream and downstream faces of the dam due to the cross-stream component of ground
motion is not much affected by hydrodynamic effects, unlike the case of rigid foundation [compare
Figures 5.15(a), (b) and 5.16(a), (b) with Figures 5.7(a), (b) and 5.8(a), (b)]. However, as in the case
of a rigid foundation rock, the arch stresses are generally much larger than the cantilever stresses over

both faces of the dam on flexible foundation rock, irrespective of the reservoir condition (Table 5.3).

The earthquake response results presented here confirm the conclusions of Chapter 4 based on
frequency response functions that foundation flexibility does not have much influence on the hydro-
dyn4amic effects in the dam response. The hydrodynamic effects influence the dam response similarly
whether the foundation rock is rigid or flexible [compare parts (a) and (b) of Figures 5.10 to 5.16 with
parts (a) and (b) of Figures 5.2 to 5.8, and Cases 5 and 6 in Table 5.3 with Cases | and 2 in Table

5.2].

5.6.2 Effects of Reservoir Boundary Absorption

The effects of absorption of hydrodynamic pressure waves at the reservoir boundary on the
response of the dam supported on flexible foundation to the three components of Taft ground motion
can be seen from the results shown in parts (b), {c), and (d) of Figures 5.10 to 5.16, and from Cases 6,
7, and 8 in Table 5.3. From these results, it is apparent that with increasing wave absorption, with «
decreasing from 1.0 to 0.5, reduces the response of the dam to all three components of ground
motion, similar to the case of rigid foundation rock discussed earlier [compare parts (b) and (c) of

Figures 5.10 - 5.16 with Figures 5.2 - 5.8]. As discussed in Section 5.4.2, the reduction in response
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arises in part from the reduction in the ordinate of the pseudo-acceleration spectrum due to increased

effective damping arising from reservoir boundary absorption (Table 5.1).

However, with further increase in the absorptiveness of the reservoir boundary materials, with «
decreasing from 0.5 to 0, the response of the dam to upstream and cross-stream ground motions gen-
erally increases contrary to intuition, while the responses to vertical ground motion decrease as
expected [compare parts (¢} and (d) of Figures 5.10 to 5.16 and Cases 7 and 8 in Table 5.3]. This
increase in responses to cross-stream ground motion is similar to what was observed earlier with a
rigid foundation rock [compare parts (c) and (d) of Figures 5,10, 5.15, 5.16 with Figures 5.2, 5.7, 5.8;
and Cases 7 and 8 in Table 5.3(c) with Cases 3 and 4 in Table 5.2(c)]. As mentioned in Section 5.4.2,
reservoir boundary absorption reduces the second resonant peak, thus decreasing the relative
significance of the second mode response in case of cross-stream ground motion. However, as also
mentioned in Section 5.4.2, reservoir boundary absorption decreases somewhat the "added” hydro-
dynamic force, which is opposite in phase compared to the effective earthquake force associated with
the mass of the dam at the fundamental resonant frequency, thus increasing the fundamental resonant
peak. This increase in the fundamental mode contribution becomes more significant with increase in
the absorptiveness of the reservoir boundary materials so that the respons¢ increases as « decreases
from 0.5 to 0. For the selected dam-foundation system and ground motion, this increase in the fun-
damental mode contribution with increase in the absorptiveness of the reservoir boundary materials
may completely offset the above-mentioned decrease in the second mode contribution so that some of
the responses with « = 0 are greater than the corresponding responses with « = 1.0 [compare Figures

5.10(b) and 5.10{d), 5.15(b) and 5.15(d), 5.16(b) and 5.16(d), and Cases 6 and 8 in Table 5.3(¢)].

The slight increases in the response to upstream ground motion as « decreases from 0.5 to 0 are,
for the most part, in contrast to the trend with a rigid foundation [compare parts (¢) and (d) of Fig-
ures 5.10, 5.11, 5.12 with Figures 5.2, 5.3, 5.4; and Cases 7 and 8 in Table 5.3(a) with Cases 3 and 4
in Table 5.2(a)). The added damping decreases, contrary to intuition, with increasing wave absorp-
tion at the fundamental resonant frequency (Chapter 4), resulting in a decrease in the effective damp-

ing ratio (Table 5.1) and a corresponding increase in S, (7, £f) (Table 5.1), and thus slight increases
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in the responses.

As in the case of rigid foundation rock, the response to vertical ground motion is greatly
decreased by wave absorption even if the foundation rock is flexible; and reservoir boundary absorp-
tion eliminates somewhat the cantilever stress redistribution due to hydrodynamic effects for all three
components of ground motion, However, as in the case of a rigid foundation rock, reservoir boun-
dary absorption does not alter the observation that the arch stresses are greater than the cantilever

stresses over both faces of the dam (Table 5.3).

5.7 Relative Significance of Response to Ground Motion Components

As seen in the preceding sections of this chapter, the earthquake response of Morrow Point Dam
is increased by dam-\;vater interaction and generally decreased by reservoir boundary absorption with
the magnitude of these effects depending little on the condition of foundation rock, rigid or flexible,
but significantly on the component of ground motion. In particular, both dam-water interaction and
reservoir boundary absorption profoundly affect the response of the dam to vertical ground motion,
but have relatively less - although significant -- effect on the response to upstream or cross-stream
ground motion. Siated differently, the response of the dam with an empty reservoir due to vertical
ground motion expressed as a percentage of the response to one of the horizontal ground motion
components is small; the percentage greatly increases because of dam-water interaction with a rigid
reservoir boundary; and from this increased value it decreases significantly because of reservoir boun-

dary absorption.

The response of the dam to the three components, separately and simultaneously, of Taft
ground motion is presented in Figures 5.17 to 5.36 to evaluate the significance of the various ground
motion components in the total dynamic response of the dam. All the conclusions stated in the
preceding paragraph would be fully applicable to the total response if the individual responses to the
three components of ground motion were exactly in phase and the maximum responses were directly
additive. But this is not the case as is apparent from the response history of crest displacement in

Figures 5.17 and 5.18 for rigid foundation rock and Figures 5.27 and 5.28 for flexible foundation
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Figure 5.17 Displacement response of Morrow Point Dam on rigid foundation rock due to upstream,
vertical and cross-stream components, separately and simultaneously, of Taft ground motion: (i) emp-
ty reservoit, and (ii) full reservoir with rigid reservoir boundary {(« = 1).
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Figure 5.18 Displacement response of Morrow Point Dam on rigid foundation rock with full reser-
voir and absorptive reservoir boundary due to upstream, vertical and cross-stream components,
separately and simultaneously, of Taft ground motien: (1) & = 0.5, and (ii) « = 0.
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rock. If the reservoir is empty, the contribution of the response to the vertical component is very
small whether the foundation rock is rigid [Figure 5.17(a) for crest displacement and Figures 5.19 and
5.20 for stresses] or flexible [Figure 5.27(a) for crest displacement and Figures 5.29 and 5.30 for
stresses]; and the contribution of the response to cross-stream ground motion is generally smaller than
that due to upstream ground motion whether the foundation rock is rigid [Figure 5.17(a) for crest dis-
placement and Figures 5.19 and 5.20 for stresses] or flexible [Figure 5.27(a) for crest displacement

and Figures 5.29 and 5.30 for stresses].

For dams with impounded water, however, the main implication of the phase difference
between the responses to the three components of ground motion is that the contribution to the max-
imum response from the vertical component may not be as significant as noted earlier from the dam
responses to the individual ground motion components. For example, if the reservoir boundary is
absorptive with o = 0.5, the increase of the maximum stresses in thé dam with full reservoir is not as
large (Figures 5.23 and 5.24 for rigid foundation rock and Figures 5.33 and 5.34 for flexible founda-
tion rock) as would be expected from the significant stresses due to vertical component alone. How-
ever, when the reservoir boundary is rigid, the response to the vertical component is so large that it
dominates the total response irrespective of the phase differences among responses to the individual
components [Figures 5.17(b), 5.21 and 5.22 for rigid foundation rock and Figures 5.27(b), 5.31 and

5.32 for flexible foundation rock].

The most important implication of these response results and their interpretation is that the
assumption of a rigid reservoir boundary overestimates the significance of the response of the dam to
vertical ground motion. The large amplification of response to vertical ground motion for excitation
frequencies equal to the natural vibration frequencies of the infinite uniform channel of the reservoir
predicted by the assumption of a rigid reservoir boundary are unlikely because of the alluvium and
sediments invariably present at the reservoir boundary. An absorptive reservoir boundary that
models the alluvium and sediments gives a more realistic estimate of the earthquake response of con-
crete arch dams, especially of the response to vertical ground motion and its contribution to the total

dynamic response.
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Figure 5.27 Displacement response of Morrow Point Dam on flexible foundation rock due to
upstream, vertical and cross-stream components, separately and simultancously, of Taft ground mo-
tion: {i) empty reservoir, and (ii) full reservoir with rigid reservoir boundary (@ = 1).
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Figure 5.28 Displacement response of Morrow Point Dam on flexible foundation rock with full reser-
voir and absorptive reservoir boundary due to upstream, vertical and cross-stream components,
separately and simultaneously, of Taft ground motion: (i) « = 0.5, and (ii) « = 0.
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5.8 Practical Earthquake Analysis of Arch Dams

The analytical procedure and computer program is very efficient in obtaining the earthquake
response results presented in the preceding sections. Therefore, it is an effective tool in the design of
new arch dams and in the evaluation of the safety of existing arch dams. However, in such practical
application, the effects of the static loads should be included into the earthquake response of the dam
to the three components of ground motion considering dam-water interaction, reservoir boundary

absorption, and foundation rock flexibility.

A complete analysis of the response of Morrow Point Dam due to its weight, the hydrostatic
pressure and the simultaneous action of the S69E, vertical, and S21W components of Taft ground
motion was performed. A wave reflection coefficient « = 0.5 at the reservoir boundary was selected.
Figure 5.37 shows 1h.e time history of radial, vertical, and tangential displacements at nodal points 44
and 60 located at the dam crest, and at nodal points 1 and 13 located at the dam-foundation rock
interface [Figure 2.3(a)]. Figure 5.38 shows the time history of arch and cantilever stresses on the
upstream face at stress points 1 and 10 and on the downstream face at stress points 31 and 53 [Figure
2.3(a)]. Figure 5.39 shows the distribution of envelope values of the maximum arch and cantilever
stresses on the upstream and downstream faces of the dam. Such stress results, which include the
stresses due to the static loads, aid in identifying areas in the dam that may crack during an earth-

gquake,

The computation time required for a complete earthquake analysis of this selected dam is shown
as Case 7 in Table 5.4. Also included in Table 5.4 are the computation times required for response
analyses of the dam under alternative assumptions for the effects of impounded water, foundation
rock and the reservoir boundary materials. The additional computation time required to consider
dam-water interaction is significant because of the complications associated with the evaluation of
hydrodynamic terms for three-dimensional fluid domains. Also consideration of foundation rock
flexibility in the analysis increases the computational time because of the additional effort required
for computing the foundation-rock stiffness matrix, the additional DOF at the dam-foundation rock

interface, and the larger number of generalized coordinates required. In earlier analyses [9], the
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UPSTREAM FACE
Cantilever Stress Arch Stress

\ !oo//o/ \o/} 100

DOWNSTREAM FACE

Cantilever Stress Arch Stress

Figure 5.39 Envelope values of maximum arch and cantilever stresses (in psi) in Morrow Point Dam
on flexible foundation rock with full reservoir and absorptive reservoir boundary (a = 0.5) due to
upstream, vertical, and cross-stream components, simultancously, of Taft ground motion. Initial stat-
ic stresses are included.
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Table 5.4 -- Computation Times for Complete Analysis of

Morrow Point Dam to Upstream, Vertical and Cross-stream Components,

Simultaneously, of Taft Ground Motion

Foundation Reservoir No. of Central Processor
Time" (sec)
Case Rock Water | Boundary | Generalized

Coordinates | Efficient | Standard | Ratio

1 rigid empty - 12 47 47 100%
2 rigid full rigid 12 152 544 28%
3-4 rigid full absorptive 12 113 §92 13%
5 flexiblef empty - 18 113 113 100%

6 flexiblet full rigid 18 249 652 38%
7-8 flexible? full absorptive 18 204 993 21%

* CDC 7600 Computer

T Foundation rock region shown in Figure 2.3(b) with R, = I7;
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computational effort increased by a factor of 7 to 8 to include wave absorption at reservoir boundary.
However, the efficient evaluation of hydrodynamic terms developed in this work, the interpolation of
the frequency response functions, and more efficient computer programming make it possible to
include this effect without any increasé in the computational effort. For Cases 2, 3, 4, 6, 7, and 8 of
Table 5.4 wherein dam-water interaction effects are considered, the total computational time required
by the efficient procedure presented in Section 3.5 varies between 13 % and 38 %, approximately, of

that required in the standard procedure (see also Section 3.5).



6. CONCLUSIONS

The earlier analytical procedure [5,9] to evaluate the steady-state response of arch dams to har-
monic ground motion, including the effects of impounded water and of alluvium and sediments usu-
ally found at the bottom and sides of the reservoir, has been extended to consider the flexibility of the
foundation rock and to include Fourier synthesis of harmonic responses to obtain earthquake
responses. In addition, this earlier analytical procedure has been improved by incorporating more
efficient analytical formulations and computational procedures for evaluating the hydrodynamic
terms. Moreover, rational expressions are used as interpolating functions for the frequency response
functions for the generalized coordinates of the dam-foundation system, thus reducing the number of
frequency points at which a response function must be computed exactly. As a result of these
improvements, the (;omputational costs for analyzing arch dams have been reduced by an order of
magnitude. Thus, the resulting analytical procedure and computer program described in Chapter 3 is
an ¢ffective tool for computing the earthquake response of proposed designs for new arch dams and

in evaluating the seismic safety of existing dams.

Utilizing this analytical procedure, the effects of dam-water interaction, reservoir boundary
absorption, and foundation-rock flexibility on the response of a selected arch dam to harmonic
ground motion have been investigated. The results for the frequency response functions presented for

a wide range of system parameters lead to the following conclusions:

I.  The hydrodynamic pressures and hence forces on a rigid dam are significantly influenced
by water compressibility and reservoir boundary absorption. With a rigid (non-absorptive)
reservoir boundary, the hydrodynamic force is unbounded due to harmonic vertical or
cross-stream ground motions with excitation frequency equal to one of the natural frequen-
cies, w’ of the symmetric modes, or w'? of the antisymmetric modes, of the infinite uni-
form channel, respectively; however, the force due to upstream ground motion is finite at
w?. Reservoir boundary absorption eliminates the unbounded peaks of the frequency

response function at «.* or /%, and generally smoothens the frequency response curve.
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2. Dam-water interaction reduces the fundamental resonant frequency of the dam to «,, a
value below both w; and «f, the fundamental natural frequencies of the dam (on rigid
foundation rock without water) and of the infinite uniform channel. These are the fre-
quencies associated with the symmetric vibration modes in the case of upstream or vertical
ground motion, or with the antisymmetric modes in case of cross-stream grpund motion.*
Dam-water interaction increases the fundamental resonant peak due to upstream or verti-
cal ground motion because of an added hydrodynamic force which is in-phase with the
effective earthquake inertial force, but decreases that due to cross-stream ground motion
because of a subtracted hydrodynamic force which is opposite-phase with the effective
earthquake inertial force. At higher excitation frequencies, energy radiation due to propa-
gation of hydrodynamic pressure waves in the upstream direction reduces the response of
the dam to below that for the dam with an empty reservoir, for all three components of

ground motion.

3. Reservoir boundary absorption generally reduces the fundamental resonant response due
to upstream or vertical ground motion, because it reduces the added hydrodynamic force
and introduces an added damping; but it slightly increases the fundamental resonant
response to cross-stream ground motion because it reduces the subtracted hydrodynamic
force. It also reduces the unbounded peaks in the frequency response function at excita-
tion frequencies equal to w) for vertical and cross-stream ground motion, and generally
smoothens the response curve. At excitation frequencies greater than w{, the radiation of
energy through upstream propagation of hydrodynamic pressure waves dominates the
energy radiation into the absorptive reservoir boundary materials, thus reducing their

effect.

4, The effects of water compressibility on the fundamental resonant response of the dam

become smaller with increasing flexibility of the dam. However, the effects of reservoir

The superscripts § and @ arc dropped in this and subsequent statements if they are valid for both
symmeiric and antisymmetric modes.
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boundary absorption on dam response are not properly represented by analyses neglecting
water compressibility, although such an analysis provides 4 goed approximation to the fun-

damental resonant frequency ,.

Foundation-rock flexibility affects the frequency response functions for the dam in a
simpler manner than does dam-water interaction. It reduces the resonant frequencies of

the dam, and increases the fundamental resonant peak with narrower bandwidth.

Dam-water interaction lengthens the vibration periods of the dam, especially for the vibra-
tion period associated with the fundamental symmetrical mode. Its effect is very small
when the reservoir is less than half full, but increases rapidly with water depth thereafter.
Foundation-rock flexibility has litile effect on the percentage increase in vibration period

due to dam-water interaction, especially if the reservoir is close to full.

The effects of dam-water interaction on the dam response to any of the three ground
motion components are qualitatively similar for rigid and flexible foundation rock,
whether the reservoir boundary is absorptive or not, because dam-water interaction effects
generally dominate those of foundation-rock flexibility. In particular, the effects of reser-
voir boundary absorption on dam response are about the same whether the foundation

rock is rigid or flexible.

Dam-water interaction lengthens the vibration period of the fundamental symmetrical
mode of the arch dam more than that of a gravity dam because the added hydrodynamic
mass has more effect on the mass of the slender arch dam than of the massive gravity dam.
Dam-water interaction lengthens the period of the fundamental antisymmetrical vibration
mode of an arch dam to a lesser degree than the symmetrical vibration mode of the arch
dam or a gravity dam. Foundation-rock flexibility, on the other hand, lengthens the vibra-
tion period of the fundamental symmetrical or antisymmetrical mode of the arch dam less
than that of the gravity dam, because dam-foundation rock interaction effects are less

significant for arch dams because they are less massive compared to gravity dams.
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Utilizing the analytical procedure of Chapter 3, the earthquake response of Morrow Peint Dam
to Taft ground motion was presented in Chapter 5 for a wide range of properties of the reservoir
boundary materials and various assumptions for the impounded water and foundation rock. These

results lead to the following conclusions:

1. The earthquake response of the dam is increased by dam-water interaction and decreased
by reservoir boundary absorption with the magnitude of these effects depending little on
the condition of the foundation rock, rigid or flexible, but significantly on the component

of ground motion,

2.  Both dam-water interaction and reservoir boundary absorption have profound effect on the
response of the dam to vertical ground motion, somewhat less in the case of cross-stream
ground motion, and least -- although significant -- in the response to upstream ground
motion. In general, assuming a rigid (non-absorptive) reservoir boundary leads to unreal-
istically large response for dams with impounded water, particularly due to vertical ground

motion.

3. Dam-water interaction and reservoir boundary absorption have more significant effect on
the response of the arch dam than on the response of a gravity dam to both horizontal and
vertical components of ground motion. This is because the added hydrodynamic mass,
damping, and force have more effect on the response of a slender arch dam than for a mas-

sive gravity dam.

Since the effects of dam-water interaction, reservoir boundary absorption, and foundation-rock
flexibility depend, in part, on the particular dam and earthquake ground motion, the above conclu-
sions deduced from the computed responses of Morrow Point Dam to Taft ground motion may not
apply in their entirety to all arch dams and ground motions. Whereas the detailed observations may

be problem dependent, the broad conclusions should apply to many cases.

The response of the selected arch dam to harmonic and earthquake ground motion demonstrates
that dam-water interaction, water compressibility, reservoir boundary absorption, and foundation-

rock flexibility may significantly affect the earthquake response of arch dams. The earthquake
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analysis of arch dams including these effects can be effectively accomplished by the analytical pro-

cedure and computer program described in Chapter 3.
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APPENDIX A: NOTATION

[ =x,y,z [-component of free-field ground acceleration
Fourier transform of asf (t)

parameter used in equation (3.40) to determine the frequency increment for interpo-
lation of Yj(w)

= 2D, horizontal width of a rectangular cross-section of the infinite fluid channel
fluid "damping" matrix for the irregular finite element region, with submatrices
B,;, B3, B;;, and B,»; where subscripts 1 and 2 refer to subscript-1 and subscript-2
nodal points, respectively

fluid “damping” matrix for the finite element idealization of the infinite channel
cross-section

velocity of pressure waves in water

velocity of compression waves in the materials at reservoir boundary

i=1,2,3,4 the four complex constants used in the interpolation equation (3.37) to
determine the generalized coordinate Y;(w)

i =1,2,3,4 the four constants C;; used in equation (3.39) to determine the general-
ized coordinate Y;(w) in frequency range n

duration of free-field ground motion

half-width of a rectangular cross-section of the infinite fluid channel

vector of normal accelerations for the irregular fluid finite element region, with sub-
vectors I and D, corresponding to subscript-1 and subscript-2 nodal points, respec-

tively

vector D computed from the rigid-body motion ¢ (s.r) at the upstream face of the
dam and €(s’,r) at the reservoir boundary

vector D computed from the modal acceleration ¢;(s,r) at the upstream face of the
dam
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H,
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vector of normal accelerations for the finite element idealization of the infinite chan-
nel cross-section

vector D' computed from € (s',7) at the reservoir boundary

vector D' computed from zero boundary accelerations due to the modal acceleration
¢;(s,r) at the dam-water interface, i.c. a zero vector

Young’s modulus of the foundation rock
Young’s modulus of the materials at reservoir boundary
Young’s modulus of the dam

x component of the total hydrodynamic force acting on half of the dam assumed
rigid due to unit harmonic free-field ground motion in the / direction, / = x, y, z

x component of the total hydrostatic force acting on half of the dam

the acceleration due to gravity

fluid "mass” matrix for the irregular finite element region, with submatrices
G, G2, G2, and G,;; where subscripts 1 and 2 refer to subscript-1 and subscript-2

nodal points, respectively

fluid "mass” matrix for the finite element idealization of the infinite channel cross-
section

= vy coordinate of the free surface of water measured from the base of the dam; also
the maximum depth of the water in the infinite channel

Height of the dam
fluid “stiffness” matrix for the irregular finite element region, with submatrices
H,,, H;5, Hy;, and H,,; where subscripts t and 2 refer to subscript-1 and subscript-2

nodal points, respectively

fluid “stiffness” matrix for the finite clement idealization of the infinite channel
cross-section

_ VT

number of vibration modes of the dam included in the analysis
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p(x,y,z,w)

Ph(s.r.w)
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Ry
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stiffness matrix of the finite element idealization of the dam

stiffness matrix of the finite element idealization of the foundation rock condensed to
the dam-foundation interface degrees of freedom

expanded matrix of k; containing k, as the only non-zero submatrix
=Xx,y,z, direction of the free-field ground motion

forcing vector of the dam-water-foundation rock system containing terms L.{(w)
defined in equation (3.6)

mass matrix of the finite element idealization of the dam

inward normal direction at the free surface, upstream dam face or reservoir boundary
as illustrated in Figure 3.2

number of eigenvectors of the infinite channel included in the analysis in matrix ¥
frequency response function for the hydrodynamic pressure distribution

p{x,y,z,w) at the upstream face of the dam due to boundary condition of equation
3.3)

p(x,y,z,w) at the upstream face of the dam due to boundary condition of equation
(3.4)

vectors of the hydrodynamic pressures p{x,y,z,»)} at subscript-1 and subscript-2
nodal points

vector of the hydrodynamic pressures py (5,7 ,w)

vector of the hydrodynamic pressures p;(s,r,w)

damping coecfficient of the reservoir boundary materials
hydrodynamic force vector of pressure pii(w)
hydrodynamic force vector of pressure ﬁf (w)

radius parameter describing the size of the foundation rock

spacial coordinates on the upstream dam face boundary of the fluid domain as illus-
trated in Figure 3.2
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spacial coordinates on the reservoir boundary as illustrated in Figure 3.2

pseudo-acceleration value of a component of ground motion at period T and damp-
ing ratio &;; T is the fundamental vibration period, associated with the symmetric
mode for x or y ground motion, or associated with the antisymmetric mode for z

ground motion; £, = £f, &1, or &f respectively for x, y, or z ground motions

matrix of the dam-water-foundation rock system containing terms S,;(w) defined in
equation (3.6)

time

fundamental vibration period of the dam on rigid foundation rock with no water; T3
and 7% denote periods associated with symmetric and antisymmetric modes, respec-
tively

nth vibration period of the dam on rigid foundation rock with no water

fundamental vibration period of the dam on flexible foundation rock including dam-
water interaction; 7° and 7% denote periods associated with symmetric and antisym-
metric modes, respectively

fundamental vibration period of the dam on flexible foundation rock with no water;
T7 and T denote periods associated with symmetric and antisymmetric modes,
respectively

fundamental vibration period of the dam on rigid foundation rock including dam-
water interaction; 77 and T? denote periods associated with the symmetric and

antisymmetric modes, respectively

nth vibration period of the dam on rigid foundation rock including dam-water
interaction

stress-displacement transformation matrix for finite element p of the dam

distance used in defining the connection surface [Figure 2.7(b)] in the modelling of
the foundation-rock region

nodal relative displacement vector for finite ¢lement p of the dam
nodal relative displacement vector for the dam

unit weight of the dam
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unit weight of water
jth generalized coordinate response time function to ag/. (t)
= ﬁ(ﬂi) = T’f(ﬂt }; the superscript / is dropped for convenience

vector of frequency response of generalized coordinates ?f-(w) of the dam-foundation
rock system

wave reflection coefficient of the reservoir boundary materials as computed in equa-
tion (2.1)

coefficient describing the static displacement along the crown cantilever due to the
dead weight of the dam

coefficient describing the static displacement along the crown cantilever due to the
hydrostatic pressure with a full reservoir

square root of the jth eigenvalue of the y-eigenvalue problem of a rectangular section
Kronecker delta function

square root of the kth eigenvalue of the z-eigenvalue problem of a rectangular sec-
tion; §f(w} and d{w) denote &, (w) corresponding to symmetric and antisymmetric

eigenfunctions, respectively

function illustrated in Figure 3.2; when represented by ¢ (s',7), it refers to 5,7 coordi-
nates

kth eigenfunction of the z-cigenvalue problem of a rectangular section given by equa-
tions (3.20) or (3.22); {i(z,w) and {{(z,w) denote symmetric and antisymmetric eigen-
functions, respectively

constant hysteretic damping factor of the dam

vector related to p.(w) by equation (3.13)

angle describing the position along the dam crest measured from the x-y plane

=1/ A - %, nth diagonal term in matrix K

fluid infinite channel diagonal matrix containing diagonal terms «,,n = 1,2, - - - N,
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jth eigenvalue of an infinite fluid channel of an arbitrary section as determined in
equation (3.11)

the eigenvalue of a rectangular section infinite channel given by equation {3.16a)

jth eigenvalues of the lower and upper bound rectangular sections for an arbitrary
section

coeflicient describing the static arch stress adjacent to the crown cantilever due to the
dead weight of the dam

coefficient describing the static arch stress adjacent to the crown cantilever due to the
hydrostatic pressure with a full reservotr

Poisson’s ratio for the dam
Poisson’s ratio for the foundation rock
damping ratio at the fundamental period estimated using the half-power bandwidth

method; £, £}, and £f denote respectively the fundamental damping ratio associated
with the x, y, and z ground motions

 mass density of water

mass density of the materials at reservoir boundary
stress vector for finite element p of the dam

function representing the normal component of the jth mode shape ¢; at the dam-
water interface

jth natural mode shape vector of the dam-foundation rock system

subvector of ¢, corresponding to the degrees of freedom on the dam-foundation
interface

subvector of ¢, corresponding to the degrees of freedom on the dam-water interface

jth eigenfunction of the y-eigenvalue problem of a rectangular section given by equa-
tion (3.18)

the eigenfunction of a rectangular section infinite channel given by equation (3.16b)

nth eigenvector of an infinite fluid channel of an arbitrary section as determined in
equation (3.11)
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matrix containing the N, eigenvectors ¢, of an infinite fluid channel
frequency

frequency interval given by equations (3.36a) or (3.36b) over which the eigenproper-
ties of the infinite channel are linearly interpolated

frequency at which the fundamental eigenvalue A\}(w) has reached close to its limiting
value at infinite w

nth natural frequency of the infinite fluid channel; » and w/® denote frequencies
associated with symmetric and antisymmetric eigenfunctions, respectively

maximum frequency in the frequency range of analysis
jth natural frequency of the dam on rigid or flexible foundation rock; wj and wf
denote natural frequencies associated with symmetric and antisymmetric modes ,

respectively

fundamental natural frequency of the dam on flexible foundation rock including
dam-water interaction

fundamental natural frequency of the dam on flexible foundation rock with no water

fundamental natural frequency of the dam on rigid foundation rock including dam-
water interaction

fundamental natural frequency of the complete reservoir domain (irregular region
and infinite channel) associated with the antisymmetric modes

jth natural frequency of the vertical height H of water of a rectangular section
kth natural frequency of the horizontal width D of water of a rectangular section

frequency interval for interpolation of ?l(w); {Ac)pmin and (Aw)pa, denote its
minimum and maximum values, respectively

ith frequency at which equation (3.5) is solved exactly for subsequent interpolation

! = x,y,z vector containing ones in the positions corresponding to the / translational
DOF of the dam, and zeros elsewhere



APPENDIX B: FLUID EIGENVALUE PROBLEM

The two-dimensional, y-z, eigenvalue problem of equation (3.11) for an infinitely long channet

cross-section can be represented in continuum form by the following equation [9]:

3* 8
E“g+a—z‘-§+>\%p=0 (B.1)

where Y(y,z,«) is the eigenfunction (related to the hydrodynamic pressure) and A*(w) is the eigen-

value, subjected to the following boundary conditions:

I’/(H,Z ’w) =0 (B.Za)
9 . .
[51; - {wg ]z[/(r awy=0 (B.2b)

where y = H represents the free surface of the water inside the infinitely long channel and r’ is the

spacial coordinate along the reservoir boundary of the channel cross-section (see Figure 3.2).

B.1 Fluid Eigenvalue Problem of a Rectangular Section Channel

For a rectangular section channel of depth H and width B =2D, the eigenvalue problem
represented by equations (B.1) and (B.2) can be uncoupled into two, y and z, one-dimensional eigen-

value problems by the separation of variables:
\!’(y 'z ’w) = X(y aw) f(z ,U)) (B.3)

Substituting equation (B.3) into equations (B.1) and (B.2) results in the following two sets of

equations governing x(v,«) and {(z ,w):
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(a)
2
% fylx =0 (B.42)
X(H ) = 0 (B.4b)
X (0,0) = i g x(0 B4
d_y( w) = iwg x(0,w) (B.4¢)
(b)
ng- 52
—(—12_2 + 6“0 = 0 (BSa)
%(—D,w) - iwg {-Dw) (B.5b)
- %(D,w) = [wg {(D,w) (B.5¢)

with the following equation relating the separation constants > and §° to the eigenvalue A%

A(w) = yHw) + 8%w) (B.6)

Equation (B.4) represents a one-dimensional eigenvalue problem in y with eigenvalue v*(w) and
eigenfunction x{(y,w), and equation (B.5) represents a one-dimensional eigenvalue problem in z with

eigenvalue 6%(w) and eigenfunction {(z,w).

For the y-eigenvalue problem, the jth eigenfunction, x;(y,w), that satisfies equation (B.4a) is of

the form:
'X] (y ’w) - Aj' (w)e —iv;(w)y + Bj (w)ef')’](id)y (B‘7)
where v f(w) is the jth eigenvalue. Substituting equation (B.7) into equation (B.4c) requires that

vilw) +wg

i) = A1) () ey

(B.8)

With A;(w) chosen as [v;(w) - wgl/2v;(w) and substituting equation (B.8) into equation (B.7), the

eigenfunction x;(y,w) is then given by:

X () = 5%175 [v; (@) + wgle™™ + [y (@) - wgle " (B.9)
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which is the same as equation (3.18). Boundary condition of equation (B.4b) then yields the follow-

ing transcendental equation governing the eigenvalue v jz (w):

g _ i) = wq (B.10)
v (w) + wg
which is the same as equation (3.17).

For the z-eigenvalue problem, the kth eigenfunction, {}.(z,w), that satisfies equation {B.5a) is of

the form similar to equation (B.7):
G(z,0) = A(w)e "7 1 By (@) (B.11)
where 6%(w) is the kth eigenvalue. Substituting equation (B.11) into equation (B.5b) requires that:
A (@)e™* P L8 (w) + wq] = Bilwle ™7 [5(w) - wg] (B.12)
Substituting equation (B.11) into equation (B.5¢) requires that:
Ag(@)e ™7 [ () - wg] = Bi(@e” " [ (w) + wa] (B.13)
Comparing equations (B.12) and (B.13) reveals that 4;(w) and By (w) are related by:
Ap(w) = By (w) (B.14)
which means that {;(z,w) in equation (B.11) is:
iz w) = cos[dg(w)z]  whendy(w) = By (w) = 1/2 (B.15a)
(Hz,@) = sin[ff(w)z] whend;(w)=-Bi{w)=-1/2 (B.15b)

which are the same as equations (3.20) and (3.22). Equation (B.15) shows that the eigenfunctions of
the z-eigenvalue problem are either symmetric or antisymmetric about the z = 0 axis. The super-

scripts s and a denote respectively the symmetric and antisymmetric eigenfunction and the associ-

2
ated eigenvalue. For the kth symmetric eigenfunction {f(z,w), the associated eigenvalue [5,§(w)] is

governed by equation (B.12) for 4;{(w) = B, (), resulting in:

G G | (8.16)
S (w) + wg )
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2
which is the same as equation (3.19). The kth eigenvalue, [6;‘3((»)] , associated with the antisym-

metric eigenfunction {f(z ,w), is governed by equation (B.12) for 4, (w) = - B (w), resulting in:

2sfwD _ _ of(w) - wg

3f(w) + wg (®.17)

which is the same as equation (3,21).
Therefore, the eigenfunctions ¢ and eigenvalues A” of the rectangular section channel are related
to the eigenfunctions and eigenvalues of the two one-dimensional eigenvalue problems by rewriting

. equations (B.3) and (B.6) as:
Vic(V.2,0) = x;(v,w)i(z,w) (B.18a)
Milw) = yH(w) + (w) (B.18b)
where the subscript jk for ¢ and A\? refer to the particular eigenfunction and eigenvalue corr;esponding
to the jth eigenfunction of the y-eigenvalue problem and the kth eigenfunction of the z-eigenvalue
problem. Because of the symmetry or antisymmetry of {i(z,w), ¥;x(¥,z,w) is either symmetric or

antisymmetric about the z = 0 axis; superscripts s or a can be added 1o {}, 8% ¥ and A}k in equation

(B.18).

B.2 Boundary Condition at the Absorptive Reservoir Boundary of the Fluid Eigenvalue Problem As the

Excitation Frequency Tends to Infinity

The boundary condition at the reservoir boundary of the eigenvalue problem with wave absorp-

tion included as given in equation (B.2b) can be rewritten as:
(4 ) = g Y07’ ) (B.19)

As w —» oo, for non-zero g (absorptive reservoir boundary), wg = co. In order to maintain the normal
gradient of  to a finitc value on the left hand side of equation (B.19), the value of ¥ must vanish at

the reservoir boundary so that the product of wg and v is a finite value. That is,

linolo Wrw =0 (B.20)
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Since the hydrodynamic pressure p in the infinite channel is a linear combination of the eigenfunc-

tions ¥ [9] {see equation (3.13) at the transmitting plane], equation (B.20) leads to:

lim p(s,r\w) =0 (B.21)

W0

in the infinite channel, Therefore, as the excitation frequency approaches infinity, the absorptive

reservoir boundary behaves like a free surface in this fluid eigenvalue problem.



APPENDIX C: TWO MODE FREQUENCY RESPONSE FUNCTION FOR

THE DAM-FOUNDATION SYSTEM WITH INCOMPRESSIBLE WATER

Including only two generalized coordinates of the dam-foundation system in equation (3.5) and
neglecting water compressibility, which leads to hydrodynamic terms independent of excitation fre-

quency; equation (3.5) can be written as:

- @M+ (1+in)K, —inKpy, W?Q —in Ky Yi(w)
*Q ~inKppy - ~ @M+ (1 +in)Ky—ingKra || Yh(w)
L
= (C.1)
Lh

where A—jl,Hz,Kl,Kz,Kf”, Kr13 . Ko, Q.L%, and L} are real constants independent of the excitation

frequency and they are defined as:
M; = 1-(6/Y7Qf
K; = wjz
Ky = {#/Y ke (8]} = {8/ ks {8 (C2)
Q = (¢()70Qf = (#§}7Qf
L= -¢Jm L+ (e/Y7Qf  i=12, j=1,2
Subscripts 1 and 2 in equations (C.1) and (C.2) refer to the two generalized coordinates included.
Comparing with equation (3.6), it can be seen that the frequency dependency of the hydrodynamic
terms is neglected here.
Equation (C.1) can be solved using Cramer’s rule, resulting in the following expressions for

Y} (0) and Y5 (w):
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WHLAQ = MoLY) + (1L +ing)K LY +ing(KriaLh ~ KpppLt)
A

Yi(w) = (C.3a)

WHLAQ — MLLY) + (L + in)K LY +ing (KoL - KpyLb)
A

Yh(w) = (C.3b)

where
A = MMMy - Q%) - (1 +in )M Ky + MyK\) - ing(M Kpaz + M>Ks1y - 20K;12)]
+ (1 +in, YK Ky — ing(1 + in XK Koo + KoK 1)) + 02 (KA - Kr1iKrp)

An observation of equation (C.3) indicates that )—’f( w), ] = 1, 2, can be expressed in the following

form:

CUO)2+ CEj

4 2
W’ + C3}'w + Cq,]

Yiw) = j=12 (C.4)

which is the same as equation (3.37). The constant 'y, is real-valued; and the constants C,;, C5;,
and C; are complex-valued, in which the imaginary parts come from the constant hysteretic damp-
ing in the dam represented by the factor %,. Just like }_’}(w), these constants also depend on the

ground moticn component, / = x,y orz, but this superscript is dropped for convenience.
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