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ABSTRACT

Reliable analytical procedures to predict the carthquake response of arch dams are necessary to
design earthquake resistant dams and to evaluate the earthquake safety of existing dams. | .The objec-
tives of this investigation are to develop an effective and computationally efficient analytical pro-
cedure for computing the earthquake response of concrete arch dams, and to investigate how this
response is affected by dam-water interaction, foundation-rock flexibility, and the alluvium and sedi-

ments usually present at the reservoir boundary.

An earlier analytical procedure for computing the response of arch dams to harmonic ground
motion including dam-water interaction and reservoir boundary absorption effects has been extended
to consider the flexibility of the foundation rock and to include Fourier synthesis of harmonic
responses 10 obtaiﬁ earthquake responses. The computational efficiency of the extended analytical
procedure has been improved by an order of magnitude by developing more efficient analytical for-
mulations and computational procedures for evaluating the hydrodynamic terms, and by developing

procedures for interpolation of the frequency response functions.

Utilizing the resulting analytical procedure and computer program, the response of a selected
arch dam to harmonic and earthquake ground motion has been computed and studied for a -wide
range of the important parameters characterizing the properties of the dam, foundation rock,
impounded water and reservoir boundary materials. This investigation led to the following conclu-
sions:; (a) dam-water interaction generally increases the earthquake response of arch dams, especially
the response to vertical ground motion; (b) reservoir boundary absorption generally reduces the dam
response, most significantly that c_iue to vertical ground motion; however, increasing wave absorption
may in some cases increase the response to upstream or cross-stream ground motions; (c) foundation-
rock flexibility increases the response of the dam and has little influence on dam-water interaction
and reservoir boundary absorption effects; (d) an absorptive reservoir boundary gives a more realistic
estimate of the earthquake response of arch dams, especially of the response to the vertical com-
ponent of ground motion; and (e) water compressibility should be considered in the earthquake
analysis of arch dams because the effects of dam-water interaction and reservoir boundary absorption

are not properly represented by the assumption of incompressible water.
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1. INTRODUCTION

Reliable analytical procedures to evaluate the earthquake response of arch dams are necessary to
design earthquake resistant dams and to evaluate the earthquake safety of existing dams. ADAP [1]
was one of the earliest computer programs developed for analysis of arch dams by the finite element
method. While foundation ﬂexibilrity;eifects were included in this computer program, it was only
recently that an added mass appfoximation of hydrodynamic effects was inciuded [2]. In order to
develop better representations of hydrodynamic effects in the earthquake response of dams, consider-
able work has been reported on analysis of hydrodynamic pressures on arch dams [3,4,5,6]. While
the earthquake analysis qf arch dams has been implemented in the time domain including the hydro-
dynamic effects of the impounded water discretized by the finite difference method [7], the most
promising approach seems to be a substructure method implemented in the frequency domain. In
this method, the finite element equations of motion for the dam are modified by hydrodynamic terms
arising from dam-water interaction. These hydrodynamic terms, which are functions of the excitation
frequency, are determined from solutions of the wave equation over the fluid domain for .apprdpriate

boundary conditions.

For a simple geometry of the arch dam and fluid domain -- the dam assumed to be a segment of
a circular cylinder, bounded by vertical, radial banks of the river canyon enclosing a central angle of
90° - mathematical solutions of the wave equation were obtained to determine the hydrodynamic
terms [6]. For arch dam-reservoir systems of realistic geometry, the hydrodynamic terms were deter-

mined from analysis of finite element models of the fluid domain [5].

Utilizing these hydrodynamic solutions, the substructure method has been implemented to
analyze the response of arch dams supported on rigid foundation rock to harmonic ground motion,
including the dynamic effects of the impounded water and the wave absorptive effects of the alluvium
and sediments that may be present at the boundary (bottom and sides) of actual reservoirs [5,8].
Although only limited response results obtained by these analytical procedures were presented, they
were sufficient to indicate that the response of arch dams may be significantly influenced by dam-

water interaction, water compressibility, and absorption of hydrodynamic waves at the reservoir
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boundary [5,8].

In the above-mentioned analytical procedure [5], the hydrodynamic terms in the equations of
motion for the dam were determined from analysis of finite element models of the impounded water.
The finite element procedure was developed for fluid domains extending to infinity in the upstream
direction, consisting of an irregular 'region of finite size connected to a region of uniform cross-section
and infinite length in the upstream direction. For the latter region, a finite element discretization
within the cross-section combined with a continsum representation in the infinite direction provides
for the proper transmission of pressufe waves. However, as originally developed [5,9], considerable
computational effort is required in finite element analysis of reservoirs of complex geometry exiend-
ing to large distances in the upstream direction, especially when effects of water compressibility and

of sedimenis at the reservoir boundary are included.

The objectives of this investigation are: (a) to develop an effective and computationally efficient
analytical procedure for computing the earthquake response of concrete arch dams; and (b) to study
how dam-water inieraction, reservoir boundary absorption, and foundation-rock flexibility affect the

earthquake response of arch dams.

The earlier analytical procedure [9] is first summarized in Chapter 3, with an extension to
include Fourier synthesis of responses to harmonic ground motions and thus obtain dam response to
earthquakes. Furthermore, as a first step towards considering the effects of dam-foundation rock
interaction, the analysis procedure is extended to include a massless finite element model for the
foundation rock. Efficient analytical formulations and computational procedures are presented for
evaluation of the hydrodynamic terms and computation of dam response. The resulting response

analysis procedure and its implementation in a computer program are described.

Utilizing the analvtical procedure presented in Chapter 3, the responses of Morrow Point Dam
to harmonic ground motions in the upstream, vertical and cross-stream directions are determined and
presented in Chapter 4. The response results are presented in the form of complex-valued frequency
response functions, for a wide range of the important parameters characterizing the properties of the

dam, foundation rock, impounded water and reservoir boundary materials. Based on the frequency



response results, the effects of dam-water interaction, reservoir boundary absorption, and foundation-
rock flexibility on the response of the dam are investigated, and shown to influence significantly the

response of arch dams in many cases.

Presented in Chapter S is the response of Morrow Point Dam to the three components of Taft
ground motion, determined for a range of properties of the reservoir boundary materials and various
assumptions for the impounded water and foundation rock. Based on these response results, the
effects of dam-water interaction, reservoir boundary absorption, and foundation-rock flexibility on the
earthquake induced displacements and stresses in the dam, and the relative significance of the
response to thé three components of ground motion, are investigated. The results of practical earth-
quake analyses of the arch dam are also presented to demonstrate the effectiveness and efficiency of

the analytical procedure.

" Chapter 6 presents the principal conclusions regarding the analytical procedure developed and
the effects of dam-water interaction, reservoir boundary absorption, and foundation-rock flexibility on

the earthquake response of arch dams.



2. SYSTEM AND GROUND MOTION

_2.1 Arch Dam

The system considered consists of a concrete arch dam supported by flexible foundation rock in
a canyon and impounding a reservoir of water (Figure 2.1). The system is analyzed under the
assumption of linear behavior for the concrete dam, impounded water and foundation rock. Thus the
possibility of water cavitation, concrete cracking, or the construction joints of the dam opening during

vibration is not considered.

The dam is idealized as an assemblage of finite elements {Figure 2.2(a)}, with a major part of the
dam represented by thick shell finite elements [10], and the part of the dam near its‘ junetion with
foundation rock représented by transition elements [1,10], designed to connect thick shell elements in
the dam to three-dimenéional solid elements employed in idealizing the foundation rock. The proper-
ties of each finite element are characterized by the Young’s modulus E,, Poisson’s ratio‘ v,, and unit
weight w, of the concrete. The vibrational energy dissipation properties of the dam are characterized

by the constant hysteretic damping factor ;.

2.2 Foundation Rock

Required in the substructure method for analysis of earthquake response of dams is the
frequency-dependent stiffness (or impedance) matrix for the foundation rock, defined at the nodal
points on the dam-foundation rock interface. This matrix for a viscoelastic half plane was deter-
mined for two-dimensional analysis of concrete gravity dams supported on the horizontal surface of
foundation rock [11]. However, such a foundation model is inappropriate for analysis of arch dams
because they are usually built in narrow canyons with the dam boundary in contact with the founda-

tion rock extending over the height of the dam.

An alternative approach is to idealize a portion of the foundation rock as a finite element sys-
tem and to determine the impedance matrix for this idealization. The principal decision required in

defining this idealization is the three-dimensional extent and boundary conditions of the foundation
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rock to be included in the analysis. For arch dam sites where typically similar rocks extend to consid-
‘erable distances, wave-transmitting boundaries are necessary if the finite sized foundation-rock region
is to represent the unbounded extent in the field. Such transmitting boundaries have been developed
for two-dimensional analysis [12] with seemingly ad-hoc extensions proposed for three-dimensional
analyses. The latter, if developed properly, would be computationally expensive perhaps to the point

of being prohibitive for practical problems.

For these reasons and because it 1s virtually impossible to rationally specify the free-field earth-
quake motions at an arch dam-rock interface, an extremely simple idealization for the foundation
rock is used here [13]. Only the foundation rock flexibility is considered in this investigation; i.e. the
inertial and damping effects of the foundation rock are ignored in considering dam-foundation
interaction effects, As shown in Figure 2.2(b), an appropriate portion of the foundation-rock region is
idealized as an assemblage of three-dimensional solid finite elements, with the finite element meshes
of the dam and foundation rock matching at their interface. The properties of each finite clement are

characterized by the Young’s modulus £, and Poisson’s ratio »;.

2.3 Impounded Water

The reservoir behind a dam is of complicated shape, as dictated by the natural topography of
the site. Typically the.impounded water extends to great distances, up to a few tens of miles, in the
upstream direction. Finite element idealizations are necessary to properly represent the complicated
geometry of the impounded water. But such an idealization would be exorbitantly expensive, to the
point of becoming impractical, if the standard finite element idealization was employed to large dis-

tances in the upstream direction.

An effective approach is to idealize the fluid domain as shown in Figure 2.1, with a finite region
of irregular geometry adjacent to the dam connected to an infinite uniform channel -- a region that
extends to infinity along the upstream direction (x axis) with uniform y-z cross-section. This restric-
tion of a uniform cross-section for the fluid domain upstream of some cross-section is imposed

because it permits uncoupling of the three-dimensional boundary value problem for the infinite



channel into two problems: a one-dimensional problem in the upstream direction and a two-
dimensional problem over the cross-section. With this restriction, it is possible to efficiently recog-

nize the infinite extent of the reservoir in the upstream direction.

Thé finite region of irregular peometry is idealized as an assemblage of three-dimensional finite
elements as shown in Figure 2.2(c), with the finite element mesh compatible with that of the dam at
its upstream face. For the infinite channel, a finite element discretization of the cross-section, compa-
tible with the discretization of the irregular region over the common cross-section -- the transmitting
plane in Figure 2.2(c) -- combined with a continuum representation in the infinite direction provides
for the proper transmission of pressure waves. Physically this treatment can be interpreted as a
discretization of the fluid domain into sub-channels of infinite length [Figure 2.2(c)]. The properties
of the impounded water are characterized by the velocity of pressure waves C and the mass density p

or unit weight w,, .

2.4 Absorptive Reservoir Boundary

The boundary of a reservoir upstream from a dam would typically consist of altuvium, silt, and
other sedimentary material. This section on the modelling of these materials is taken from a recent

work on concrete gravity dams [14].

Over a long period of time, the sediments may deposit to a significant depth in some reservoirs.
The depth of sediments can be recognized in the analytical procedure presented in this paper by
correspondingly reducing the depth of the fluid domain. However, the influence of the sediments on
the static stresses in the dam or on the vibration properties of the dam are not considercd in the
analysis because it should be negligible as the sediments are very soft, highly saturated and exert .

lateral forces only on the lower part of the dam.

The effects of interaction between the impounded water and the foundation rock would be dom-
inated by the overlying alluvium and sediments, possibly deposited to a significant depth. These
reservoir boundary materials are highly saturated with a low shear modulus. A hydrodynamic pres-

sure wave impinging on such materials will partially reflect back into the water and partially refract,



primarily as a dilatational wave, into the layer of reservoir boundary materials. Because of the con-
siderable energy dissipation that results from hysteretic behavior and sediment particle turbulence,
the refracted wave is likely to be absorbed in the layer of soft, saturated sediments and essentially dis-

sipated before reaching the underlying foundation rock.

The absorption of hydrodynamic pressure waves at the reservoir boundary can be represented
approximately by a one-dimensional model, normal to the boundary and independent of the location
on the boundary, that does not explicitly consider the thickness of the sediment layer. For this
model, the boundary condition at the reservoir boundary is developed in references [9,14,15]. The
fundamental parameter characterizing the effects of absorption of hydrodynamic pressure waves at
the reservoir boundary is the admittance or damping coefficient ¢ = p/p,C, in which C, = VE,/p,
where E, is the Young’s modulus and p, is the mass density of the materials at the reservoir boun-
dary. The wave reflection coefficient «, which is the ratio of the amplitude of the reflected hydro-
dynamic pressure wave 1o the amplitude of a normally propagating pressure wave incident on the

reservoir boundary, is related to the damping coeflicient [5,15] by

_1-4C
1+ ¢qC

2.1

The wave reflection coefficient « is a more physically meaningful description than ¢ of the
behavior of the absorption of hydrodynamic pressure waves at the reservoir boundary. Although the
vlvave reflection coefficient depends on the angle of incidence of the pressure wave at the reservoir
boundary, the value o for normally incident waves, as given by equation {2.1) is used here for con-
venience, The wave reflection coeflicient &« may range within the limiting values of 1 and -[. For
rigid reservoir boundary materials, C,= oo and ¢g=0 resuniting in o= 1. For very soft feservoir boun- )
dary materials, C, approaches zero and g = oo, resulting in oo = — 1. It is believed that o values from 1

to 0 would cover the wide range of materials encountered at the boundary of actual reservoirs.
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2.5 Ground Motion

In earthquake response analysis of dams by the substructure method, the earthquake input is
specified as the free-field ground motion at the dam-foundation rock interface [9]. This free-ﬁeld
ground motion was assumed to be uniform across the base in two-dimensional analyses of concrete
gravity dams [14]. This approach of specifying the same motion over the entire dam-foundation rock
interface is not appropriate for arch dams because the dam boundary in contact with the foundation
rock extends through the height of the dam, and the free-field motion is expected to vary significantly
over the height. Non-uniform boundary motions can be included in finite element analysis of struc-
tures [16]. The principal difficulty, however, is in rationally defining the variations in motions over
height because no measurements have been obtained of actual ground motion variations in arch dam
locations. Another possible approach is to define the earthquake input as a rigid-body translation of
the basement rock on which the finite element model of the dam and foundation is supported. How-
ever, very little is known about earthquake motion at depth because most of the available strong

motion records are from accelerographs located at the ground surface or in basements of buildings.

From the preceding discussion it is clear that it is difficult to define a suitable earthquake input
mechanism for an arch dam. Neither of the two approaches can be justified rationally, thus a much
simpler approximation is empioyed in this investigation. Specifically, a sufficient portion of the foun-
dation rock is included to represent only the static foundation flexibility effects; the foundation rock
is assumed to be massless for the dynamic analysis, and the earthquake input is specified as spatially-
uniform motion of the basement rock [13]. Since there is no wave propagation mechanism in the
massless foundation rock, the specified basement rock motion is transmitted without modification to
the dam-foundation rock interface. In the context of the substructure method of anaiysis, the above ’
mentioned approximation is equivalent to specifying the same free-field ground motion throughout
the dam-foundation rock interface with the foundation rock assumed to be massless in computing the
foundation impedance matrix. The ground acceleration is defined by its three components: a; () in

the upstream direction, 4, () in the cross-stream direction, and aJ (¢) in the vertical direction.
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2.6 Morrow Point Dam-Water-Foundation Rock System

2.6.1 Morrow Point Dam

Numerical results are presented later to demonstrate the effectiveness of the various concepts
and procedures developed in Chapter 3 for efficient earthquake response analysis of arch dams. In
addition, results are presented later in Chapters 4 and 5 respectively for the harmonic response and
earthquake response of an arch dam. These response results are all for Morrow Point Dam, located
on the Gunnison River in Colorado. It is a 465 ft high, approximately symmetric, single centered
arch dam. A detailed description of the geometry of the dam is available in references [5] and [17].
For the purpose of dynamic analysis, the dam is assumed to be symmetric about the x-y plane with
the dimensions averaged from the two halves. The foundation and fluid domains are also assumed
symmetric about the x-y plane, with the fluid domain extending to infinity in the upstream djrection.
Since the dam, fluid domain, and the foundation rock are assumed symmetric about the x-y plane,
only one-half of the dam-fluid-foundation rock system will be analyzed. The response to upstream (x)
or vertical (y) components of ground motion, which is symmetric about the x-y plane, is determined
by analyzing one-half the system with symmetric boundary conditions on the x-y plane. The response
to cross-stream (z) ground motion, which is antisymmetric about the x-y plane, is determined by

analyzing one-half the system with antisymmetric boundary conditions on the x-y plane.

The finite element idealizations of one-half of the arch dam, foundation rock and the
impounded water are shown in Figure 2,3, The finite clement idealization of the dam, shown in Fig-
are 2.3(a), consists of 8 thick shell finite elements in the main part of the dam and § transition ele-
ments in the part of the dam near its junction with foundation rock, with a total of 61 nodal points.
When foundation-rock flexibility is considered, this idealization has 296 degrees of freedom for sym- -
metric (x and y components) ground motion and 284 degrees of freedom for antisymmetric (z com-
ponent) ground motion. The mass concrete in the dam is assumed to be homogeneous, isotropic and
linearly elastic with the following properties: Young’s modulus = 4.0 million psi, unit weight = 155
pef and Poisson’s ratio », = 0.2, except that the Young’s modulus is varied as discussed in Section

4.2.1 for the frequency response functions presented in Chapter 4. A constant hysteretic damping
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factor 5, = 0.10, which corresponds to five percent damping in all natural vibration modes of the

dam with empty reservoir on rigid foundation rock, is selected.

2.6.2 Impounded Water

The response analysis can handle any water level provided the finite element mesh for the dam
is defined to include nodal points at the water level. However, for computational convenience, if the
reservoir is not empty, the water level is assumed to be at the crest level in this investigation unless
stated otherwise. The finite clement idealization of the fluid region [Figure 2.3(c)] consists of 27
three-dimensional finite elements for the irregular fluid region with7189 nodal points; and has 157
pressure degrees of freedom for symmetric {x and y components) ground motion and 132 degrees of
freedom for antisymmetric (z component) ground motion. Special equilibrium and compatibﬂity
conditions are imposed on the transmitting plane e-f-g-h-¢ [Figure 2.3(c)] connecting the irregular
region with the infinite channel, to represent the upstream transmission of the hydrodynamic pressure
waves. The following properties are assumed for the impounded water: velocity of pressure waves C

= 4720 ft/sec and unit weight = 62.4 pcf.

There are no data available for the alluvium and sediments at the bottom and sides of the reser-
voir impounded by Morrow Point Dam, or for that matter at any other dam. The wave reflection

coeflicient « is varied between 0 and 1 in this investigation.

2.6.3 Shape of the Foundation-Rock Region

The flexibility effects of the foundation rock is included in the response analysis procedure to be
described in Section 3.1 by including a certain volume of the foundation rock under the dam in
modelling the complete dam-water-foundation rock system. Because the finite element method is
used to discretize the foundation rock, there is no restriction to the geometry of the foundation model
in the analysis procedure. In fact, the shape of the foundation can be selected to resemble, to a cer-

tain extent, the actual topography of the foundation rock at the dam site.

In analyzing Morrow Point Dam, the shape of the foundation rock is idealized using a pro-

cedure that has been adopted in the computer program ADAP [1]. Basically, this procedure assumes
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that the dam canyon is prismatic in the upstream direction (x direction), as shown in Figure 2.4, and
the volume of the foundation rock is described by a size parameter R;. The shape of this

foundation-rock region is further explained below.

First, let’s assume that the thickness of the dam at the abutment is so small compared to the
other dimensions that the dam-foundation rock interface can be represented by a line in space. The
shape of the foundation rock can then be visualized as the volume in space described by moving a
semicircular plane with its straight edge always parallel to the x axis (i.e. pointing in the upstream
direction) and its center always lying on and moving along the dam-foundation line, as shown in Fig-
ure 2.5 for one-half of the dam-foundation rock system. As the semicircular plane is moved, it is also
rotated simultaneously such that its plane is always perpendicular to the projection of the dam-
foundation line on the y-z plane (Figure 2.5). The radius of the semicircular plane is the parameter

R; which controls the size of the plane and thus the volume covered by the moving plane.

Because the dam-foundation rock interface is not the single line shown in Figure 2.5, but a sur-
face with finite width, the shape of the volume of foundation rock as described above is modified to
recognize this finite width of the dam at the abutment. Since the dam-foundation rock interface usu-
ally intersects the straight edge of the semicircular plane at an oblique angle, a connection surface
needs to be developed between the semicircular plane and the dam-foundation rock interface. The
construction of such a connection surface is illustrated in Figures 2.6 and 2.7. The projection of the
nodal points (in the finite element idealization of the dam) at its abutment on the y-z plane is shown
in Figure 2.6, where 4, B, - -, M, represent the nodal points on the downstream face; 4,, B,,

-, M» represent the corresponding nodal points on the upstream face, and 4, B, -, M
represent the mid-surface nodal points (midway between the corresponding surface nodal points). ,
The projection of the dam abutment on the y-z plane may be symmetric or non-symmetric about the
y axis, depending on the geometry of the dam. The mid-surface points 4, B, :--, M have been
joined together by the smooth curve shown as a dotted line, which can be regarded as the above-
described dam-foundation line (Figure 2.5). Lines normal to this curve are extended from each of

these mid-surface points with a length R;. Denoted by 44", BB", ---, MM" in Figure 2.6, these
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Figure 2.5 Illustrative sketch of the shape of the foundation-rock region. Only half of the region is
shown.
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Figure 2.6 Projection of the shape of the foundation-rock region on y-z plane.
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lines represent the projection on the y-z plane of the above-mentioned semicircular plane at the
different positions along the dam-foundation line. Figure 2.7(a) shows the semicircular plane at one
of the mid-surface nodes X and a connection surface connecting the plane to the dam—fdundation
interface. This connection surface, which is defined by points P, T, U, V, W, R, X, and X, in Fig-
ure 2.7(a), is further illustrated in Figure 2,7(b) which shows the semicircular plane and the vertical
(y) projection of the connection surface on the semicircular plane. This area of projection of the con-
nection surface is defined by points X;, X3, P, T, U, V, W, and R [Figure 2.7(b)]. Points X, and
X, are respectively the vertical projections of the downstream abutment nodal point X, and the
upstream abutment nodal point X,. Points P and R on the straight edge of the semicircular plane
are located such that the x coordinate difference of points R and X,, X; and X,, and X; and P are
the same and equal to a distance denoted by 1 [Figure 2.7(b)]. Points T, U, ¥V, W are located by
extending lines perpendicular to the straight edge of the semicircle from points P, X5, X|, and R,
respectively, for a distance along the plane that is again equal to u [Figure 2.7(b)). Thus the projec-
tion of the connection surface on the semicircular plane consists of three parallelograms [Figure
2.7(b), shown also in Figure 2.7(a)], whereas the connection surface itself consists of three separate

surfaces joined together in space [Figure 2.7(a)].

With the above procedure to define the shape of the foundation-rock region, the size of the
region depends entirely on Ry. This parameter should be chosen to be large enough to satisfactorily

represent foundation flexibility effects in analysis of the dam.

Theoretically, the shape of the foundation-rock region should be compatible with the geometry
of the dam and impounded water in the finite element system to be analyzed. However, this may
sometimes be difficult to achieve with the shape of the foundation-rock region described earlier.
Since foundation-rock flexibility is represented by the condensed stiffness matrix defined with refer-
ence to the degrees-of-freedom at the dam-foundation rock interface (see Chapter 3), compatibility
must be satisfied at this interface but minor violations at the foundation-water interface may be

acceptable.
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2.6.4 Size of the Foundation-Rock Region

In order to represent the flexibility effects of the foundation rock on the earthquake response of
the dam, an adequate volume of the foundation should be included in the dam-water-foundation rock
system to be analyzed. However, the larger the foundation and the more finite elements needed to
discretize the foundation, the greater is the required computational effort. Therefore, with the ideali-
zation of the shape of the foundation described in Section 2.6.3, the minimum value of Ry that can

adequately represent the foundation-rock flexibility effects should be selected.

The natural frequencies and mode shapes of vibration play a central role in analyzing the ¢arth-
quake response of the dam; in static analysis, the static displacements and stresses of the dam are the
responses of concern. Therefore, the foundation-rock flexibility effects are adequately represented if,
with the portion 6f the foundation rock included in the analysis, the static displacements and stresses,
and natural vibrati.on frequencies and mode shapes are accurately predicted. The minimum Ry
beyond which increasing R, has little influence on the computed results would be appropriate for

practical analysis.

The variation of the natural frequencies of the first three symmetric vibration modes and of the
first three antisymmetric vibration modes with the size parameter R, are respectively shown in Fig-
ures 2.8 and 2.9. The natural frequencies are normalized with respect to their values for a rigid foun-
dation (represented by R, = 0); and three values of E,/E; are considered: I, 1/2, and 1/4. The
natural frequencies decrease as the size of the flexible foundation increases, but they are essentially
independent of size beyond R,y = Hy, |.5H, and 2H; approximately for E;/E; = 1, 1/2, and 1/4,
respectively, where H, is the maximum height of the dam. Although this observation is based on the
first three natural frequencies, it is found to be true also for the higher natural frequencies. The first
three symmetric mode shapes along the crest arch and the crown cantilever (# = 0°) are plotied in
Figures 2.10, 2.11, and 2.12 for E/E; = [, 1/2, and 1/4, respectively. The corresponding antisym-
metric mode shapes along the crest arch and the ¢ = 13.25° cantilever are plotted in Figures 2.13,
2.14, and 2.15, As shown in these figures, both the symmetric and antisymmetric mode shapes

experience little or no changes as R, increases from H, to 3H, for E;/E, = 1, from |.5H; to 3H, for
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Figure 2.8 Variation of the natural frequencies of the first three symmetric vibration modes of the
dam-foundation rock system with the size parameter Ry of the foundation-rock region.
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Figure 2.9 Variation of the natural frequencies of the first three antisymmetric vibration modes of
the dam-foundation rock system with the size parameter Ry of the foundation-rock region.



23

spou \;m

‘1 = *g//q ‘woi18s1 yooi-uoyepunoy ay} jo y

Jojowiesed ozIS Ylm SIpoOW UONBIQIA JUITWIWAS 921Y) 151y Y1 JO sodeys oy} Jo uoneuep (1'7 2Indig
spout ,, T

10§ adeys SpOW

weq pauiIojopu)

(0= I ATTILNVDS NMOUID

HOYVY 1S3¥D

opouwt |

——

.




24

¢1 = *q//5 ‘uoidax yoos-uonepuUnoy Ayl Jo Sy
Iojowieied 9ZIs YiIm SIPOW WONBIGIA JLIJOWIWAS 3211 381y 9yl jo sodeys oyt 1o noneuep 17 2msig

Ipour ¢ spowr ,,7 spouwr |
SHS e
\ SHST e —
| o T |
n 10 adeyg Spow :
__ we(] pIwIoJepU(} ——er /
| ,
!
]
/
[}
!
I/
/
|
/
/

/

HOYV L1LSHYD



‘b/1 = /77 ‘worda1 yooi-uonepunoj ay3 Jo Sy

Io1owrered 9zIs YHm SIPOW UONRIGIA JLIJQWILIAS 1Y) 181y 3 Jo sadeys oy} jo uoneuep g 2Indig

spow ¢ spow ,, g
s
i < ——
!
i 0 -= ==
i = f
¥ z
] ioj adeyg oW
/ | we( pauLIoepu)
i
/
& /
/
\w
\\
(0=00 A FTAFTTILNVYVDO NMOYD

~———

HOYdV L1LS3Y¥D

spowr ]

————




26

apow €

= S/ u0ido1 ¥00I-UONEPUNO] SY} JO /Yy 1939

[ =

~wered 9zIS Yilm SIPOW UOTIRIGIA OLJQWIWASIIUR 39143 3514 SY3 jo sodeys oy} Jo uoneue) ¢1'7 dImdig
spowt ,,7

SErE
s ———  —

) ~=—e——

=fy
Joj adeyg opoN

wed pIwIopepun

v 43 AdTILNVDO

oSTEL =0

HOYY L1LSHYD

spouwr |

———

/
/




27

opow ¢

-wered 9ZIs YHm SOPOW UOTIBIGIA JLIIQWWASHIUR

oSTEl =40

‘¢/1 = S7/49 ‘uotda1 yooi-uonepunoj ay; Jo Yy 1919
2213 181y Y4} JO sadeys oy Jo UOHBLIBA {7 2InSig
opouwr |

spowr ,,Z

HE
wmw.ﬂ — m—
0 —=—m—

10J adeys spo

we( PAULIOJIpu)

.
—— e

/
/

LV Y43 AdTILNVD

HOYVvV 1S4d9¥0D0



28

P/1 = /77 ‘wordai yoor-uonepunoy gl Jo Fy 1930
-wiered 9ZIS Y1 SIPOW GOTIRIGIA JLIQWWASIUR 931Y) 151y oY) Jo sodeys 9yl JO UONBLIBA G['7 dInSig
powt it opowr ,, T opou |

2 O —
wmm —

o —— s s

Joy adeyg apopN

we(] pauLIojapu

e e A it S et
o .

,_ /
_//,
oSTET =10 LV dIAZITILNVDO

HOYV 1Sd93¥D



29

Er/E; = 1/2, and from 2H, to 3H, for E//E; = 1/4.

The static displacements along the crown cantilever and the arch stresses adjacent to the crown
cantilever section, both due to the dead weight of the dam, can be expressed as 8;w,H,Y/E, and
ww, H,, respectively. Similarly, these response quantities due to the hydrostatic pressure with a full
reservoir can be expressed as Sow,, H/E; and uyw, H,, respectively. The coefficients 8;, 83, x1, and u,
are presented in Figures 2.16, 2.17, and 2.18 for E,/E; = 1, 1/2 and 1/4, respectively. Tensile
stresses and displacements in the downstream direction are defined as positive. It is apparent that the
static displacements and stresses do not change much as R, increases from H; to 3H; for E//E; = 1,

from 1.5H, to 3H, for E;/E; = 1/2, and from 2H; to 3H, for E;/E; = 1/4,

Since the natural frequencies, mode shapes, and the static responses remain essentially constant
beyond R, = H,, 1.5H,, and 2H, for E;/E; = 1, 1/2, and 1/4, respectively, the foundation-rock flexi-
bility effects would be adequately represented if the above values of R, are used for the correspond-
ing E;/FE, ratios. Thus, it is recommended that the shape of the foundation-rock region included in
the analysis be selected as described above with its size defined by the following values of R/, the size
parameter: Ry = H, for E;/E; = 1; Ry = 1.5H, for E¢/E; = 1/2; and Ry = 2H, for E;/E; = 1/4;
with the value of R, appropriately interpolated between I, and 2H; for E,/E; between 1 and 1/4.
For E;/E; > 1, it is recommended that a conservative choice of the size of the foundation with R o=
H; be used. While these recommendations are based on analysis of Morrow Point Dam, they should

be useful in analysis of other arch dams.

Since the smallest value of E,/E; for which frequency response functions are presented in
Chapter 4 is 1/4, as suggested by the above guidelines, the foundation-rock region chosen to represent
its flexibility effects should have the size parameter R, equal to two times the height A, of the dam.
However, for additional conservatism in this research investigation, the size parameter R, is selected
as three times the height of the dam. The portion of the foundation rock included in the analysis to
represent its static flexibility effects, with its shape defined in Section 2.6.3 and the size parameter Ry
= 3H,, is shown in Figure 2.3(b) with its external boundaries assumed fixed. The three-dimensional

finite element idealization of the foundation rock region consists of 138 solid finite elements with 236
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Figure 2.16 Variation of static responses due to dead weight and hydrostatic pressure, separately,
with size parameter R, of the foundation-rock region; E;/E; = 1. Results presented are for static
displacements at crown cantilever and arch stresses near the crown cantilever (§ = 07).
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Figure 2.17 Variation of static responses due to dead weight and hydrostatic pressure, separately,
with size parameter R, of the foundation-rock region; E,/E; = 1/2. Results presented are for static
displacements at crown cantilever and arch stresses near the crown cantilever (8 = 0°),
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Figure 2.18 Variation of static responses due to dead weight and hydrostatic pressure, separately,
with size parameter R, of the foundation-rock region; E,/E; = 1/4. Results presented are for static
displacements at crown cantilever and arch stresses near the crown cantilever (8 = 0°).
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nodal points; and has 556 degrees of freedom for symmetric (x and y components) ground motion
and 530 degrees of freedom for antisymmetric (z component) ground motion. The foundation rock is
assumed to be homogeneous, isotropic, and linearly elastic with the following properties: Young’s
modulus = 4.0 million psi, and Poisson’s ratio », = 0.2, except that the Young’s modulus is varied as
discussed in Section 4.2.1 for the frequency response functions presented in Chapter 4. As mentioned

carlier, the inertial and damping effects of the foundation rock are neglected.



3. RESPONSE ANALYSIS PROCEDURE

3.1 Ouiline of Analysis Procedure

Based on the substructure method of analysis and frequency domain analysis concepts, a pro-
cedure is available [5,9] to evaluate the dynamic response of arch dams to barmonic ground motion,
including hydrodynamic interaction effects. Developed earlier under the assumption of rigid founda-
tion rock, this analysis procedure is extended in this investigation to include foundation rock flexibil-
ity; and to include Fourier synthesis of harmonic responses to obtain earthguake response., With this

extension the procedure is summarized here, without derivation [9], as a sequence of analytical steps:

[. {a) Formulate m, and k., the mass and stiffness matrices for the finite element idealization of
the arch dam, with reference to the degrees of freedom (DOF) of all the nodal poeints in the tdealiza-

tion, including those on the dam-foundation rock interface.

(b) Formulate k;, the stiffness matrix for the finite element idealization of the foundation
rock region, with reference to the DOF of nodal points on the dam-foundation rock interface. The
DOF not on this interface can be "condensed out” because the forces acting on the foundation rock

arise only from dam-foundation rock interaction, thus existing only at the interface.

2. Solve the eigenproblem
[kc + ]'Ef ] ¢j = wjz m, d’j (31)

to obtain the first J natural viBration frequencies w; and corresponding mode shapes ¢;, of the dam
supported on rigid or flexible foundation rock, consistent with the assumption made in the analysis;
and normalize the mode shapes with respect to m,. In eguation (3.1}, l;f is the expanded version of
k; described in step 1(b) with zero values corresponding to all DOF of the dam not on the dam-

foundation rock interface.

3. Evaluate the frequency response function ﬁé(s,r,m) for hydrodynamic pressures on the
upstream face of the dam due to the /-th component of ground (incindes reservoir boundary)
acceleration with a rigid dam [Figure 3.1(a)]. This function is obtained from the solution p(x.y,z,w)

34
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of the Helmholtz equation, governing the steady state harmonic motion of water:
p =0 (3.2)

subject to the radiation condition for x = oo and the following boundary conditions at the upstream

face of the dam, the reservoir boundary, and the free surface of water, respectively:

g—z_(svrvw) = _p61(37r)

pis'rw) = —pd (571 (3.3)

e id.

9 g
on
plx,Hzw)=0

In equations (3.2) and (3.3), H is the y- coordinate of the free surface of water measured from the
base of the dam; s, r are the spacial coordinates on the upstream face of the dam; s°, r’ are the spacial
coordinates on the reservoir boundary; » is the inward normal direction at the upstream dam face or
reservoir boundary (Figure 3.2); and p is the mass density of water; d(s,h)(s,r = 5,0 0r s'5) is a
function defined along accelerating boundaries which gives the length of the component of a unit vec-
tor along / in the direction of the inward normal n (Figure 3.2). Procedures for solving this boundary

value problem and evaluating ph(s,r,w) are presented in Section 3.2.

4. Evaluate thé frequency response function p;(s,7,») for hydrodynamic pressure due to normal
acceleration ¢;(s,r) of the upstream face of the dam corresponding to the jth natural vibration mode
shape, with no motion of the reservoir boundary [Figure 3.1(b)]. This function is obtained from the
solution F(x,y,z,w) of the Helmholtz equation (3.2) subject to the radiation condition for x = cc and
the following boundary conditions at the upstream face of the dam, the reservoir boundary, and the

free surface of water, respectively:
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Figure 3.2 Definition of various terms associated with the fluid domain substructure. (Adapted from
reference [9])



38

L/ Ny
an (S,i’,w) - quj(S’r)

[5% ~ fwg ] (s’ rw) =0 (3.4)

pix,Hzwy=0

Procedures for solving this boundary value problem and evaluating p;(s,r,w) are presented in Section
3.2,

5. Evaluate the vectors of nodal forces 6({'(0:) and (_)Jf () statically equivalent to the negatives of
the corresponding pressure functions at the upstream face of the dam computed in steps 3 and 4:
Ph(s.r ) and Pj(s,r,w), respectively.

6. Formulate the J complex-valued equations in the unknown frequency response functions
iff(w), J=12 ..., J, for the generalized coordinates corresponding to the vibration modes included

in the analysis:
S(@) Y(w) = L'(w) 1=x,z (3.5)
where the elements of the matrix S and the vector L are
S,z,:(w) Sl |y - i 0Dk (8)) + (60T Q)
(3.6)

Li) = - ¢7m 1} + (6]} Qf(w)

where é,; is the Kronecker delta function; #, is the constant hysteretic damping factor for the dam;
¢; is a subvector of ¢, containing only the elements corresponding to the nodal points at the dam-
water interface; ¢! is a subvector of ¢, containing only the elements corresponding to the nodal
points at the dam-foundation rock interface; and vectors 17, 1), and 1} contain ones in positions
corresponding to the x,y, and z translational DOF, respectively, with zeros elsewhere. The matrix
S{w) and vector L/(w) are determined according to equation (3.6) for each excitation frequency o of

interest.
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7. Determine the frequency response functions ?}(w) for the generalized coordinates. Repeated
solution of equation (3.5) for excitation frequencies covering the range over which the earthquake
ground motion and structural response have significant components lead to the complete frequency

response functions ¥/(w).

8. Determine the response of the dam to arbitrary ground motion. The generalized coordinates
are given by the Fourier integral as a superposition of responses to individual harmonic components
of the ground motion

o

Vi) = 5 [ T ale) e de 3.7

where Aéf(w) is the Fourier transform of the /-component of the specified free-field ground acceleration
aie):
d
Alw) = [aé(t)e"”f dt (3.8)
in which 4 is the duration of the ground motion. The Fourier integrals in equations (3.7) and (3.8)
are computed in their discrete form using a recent version of the Fast Fourier Transform (FFT) algo-
rithm [18].

9. Determine the relative displacement response to the upstream (x), cross-stream (z), and verti-
cal (y) components of ground motion simultaneously by transforming the generalized coordinates to
the nodal coordinates:

J

v = 3 [ 10+ ¥+ Yo | 4, (3.9)

j=1

10. Determine the stresses in the dam as a function of time from the nodal displacements. At
any instant of time, the vector ¢,(z) of stress components in finite element p are related to the nodal

displacement vector v,(¢) for that element by
a,(t) = T, v,(1) (3.10)

where T, is the stress-displacement transformation matrix for element p.
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3.2 Evaluation of Hydrodynamic Terms

The frequency response functions fj(s,r,«) and pi{s,r,@) for hydrodynamic pressures on the
upstream face of the dam, required in step 5 of the analysis procedure summarized in Section 3.1, are
solutions of the Helmholtz equation (3.2) subjected to the boundary conditions of equations (3.3) and
(3.4), respectively. For practical broblems these solutions are implemented by finite element pro-
cedures with the nodal pressures as the unknowns, As described earlier [9], the fluid domain of Fig-
ure 3.3 is 1dealized as an irregular region adjacent to the dam, discretized as an assemblage of three-
dimensional finite elements, which is coupled at the planc e-f-g-h-e to a channel of uniform cross-
section and infinite length in the upstream direction, discretized as an assemblage of infinitely long
subchannels; with the two finite element meshes matched along e-f-g-h-e, Standard procedures are
employed to formulate the finite element matrices of the irregular region. The restrictions of a uni-
form cross-section for the infinite region and boundary accelerations that are spatially uniform in the
upstream direction permit a finite element treatment of the transmiiting plane e-f-g-h-e combined
with a continuum formulation in the upstream direction. This analysis procedure permits proper
transmission of hydrodynamic pressure waves in the upstream direction; thus the boundary common
to the two regions may be referred to as a transmitting plane. The procedure developed earlier [9] 1o

determine i)'f) and p; is summarized here, without derivation, as a sequence of analytical steps:

I. Formulate H', B’ and G', the symmetric matrices for the finite element idealization of the
infinitely long channel of constant cross-section [Figure 3.3(b)], with reference to the pressure degree
of freedom (DOF) at each nodal point on the transmitting plane below the free surface of water.
These matrices are analogous to the stiffness, damping, and mass matrices, respectively, that arise in
dynamic finite element analysis of solid continua. The matrix B?| which arises from the wave absorp-
tive effects of the reserveir boundary, contains non-zero terms associated only with the DOF of nodal

points on the boundary e-f-g-h of the transmitting plane.

2. Solve the eigenproblem for the infinitely long channel:

{Hwiquf]'p:xzcup (3.11)
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10 obtain the first ¥, eigenvalues A2 and eigenvectors ¢¥,. The eigenvectors are orthogonal with

respect to the two square matrices, [ H' + iwg B ] and G/, and they are normalized with respect to G'.

If energy absorption through the reservoir boundary is considered, i.e. ¢ #£0, equation (3.11)
must be solved repeatedly for each value of w because the complex-valued eigenvalues and eigenvec-
tors depend on the excitation frequency w; otherwise they are real-valued and independent of excita-

tion frequency and equation (3.11) need be solved only once.

3. Formulate the eigenvector matrix

and K, an Ny x N, diagonal matrix with nth diagonal term = x, which is complex-valued and com-

puted from «, =~/ A - —2’72—, selecting the root for which both the real and imaginary parts are posi-

tive.

4. Formulate H, B and G, the symmetric matrices for the finite element idealization of the
three-dimensional irregular region of the fluid domain [Figure 3.3(a)], with reference to the pressure
DOF at each nodal point below the free surface of water. These matrices are analogous to the
stiffness, damping and mass matrices, respectively, that arise in dynamic finite element analysis of
solid continua. The matrix B, which arises from the wave absorptive effects of the reservoir boun-
dary, contains non-zero terms associated only with the DOF of nodal points on the reservoir boun-
dary.

5. (a) Formulate D', the vector of normal accelerations at the nodal points on the transmitting
plane e-f-g-h-¢, from the prescribed accelerations along the boundary e-f-g-h in equations (3.3) and
(3.4). The vector {D'}} computed from € (s',r") in equation (3.3), which enters into the solution for
ﬁf), contains non-zero terms only for nodes along the boundary e-f-g-h. All terms in the vector {D'};,
which enters into the solution for p; and is computed from the zero boundary accelerations of equa-

tion (3.4), are zero.
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(b) Formulate D, the vector of normal accelerations at the nodal points in the finite element
idealization of irregular fluid region, from the prescribed boundary accelerations. The vector {D}4,
computed from prescribed accelerations ¢ (s,7) at the upstream face of the dam a-b-c-d-a and ¢ (s’,r")
at the reservoir boundary [equation (3.3)], which enters into the solution for 56, contains non-zero
terms only for nodes along these boundaries. The vector {D}; computed from prescribed accelera-
tions ¢;(s,r) at the upstream face of the dam a-b-c-d-a [equation (3.4)], which enters into the solution

for p;, contains non-zero terms only for nodes along this boundary.

6. Formulate the complex-valued equations in the unknown frequency response functions for

the pressures at the nodal points

. W’ : w?
H”quB“—FG“ Hpy + fwg an——c:g(}xz ¥ Bilw)
2 2 N
v’ [HZI +iwg By - %Gn } v’ [H22+ fwg By - ‘2).7022 Y+K || mw)
b,
, (3.12)

o
¥'Dy+x ¥ D

where the nodal points on the transmitting plane are identified by subscript 2 and the remaining
nodes by subscript 1, and the matrices H, B and G for the finite, irregular region (step 4) and the vec-
tor D (step 5b) have been partitioned accordingly; pi(«) is the vector of hydrodynamic pressures at all
subscript-1 nodal points, and wy(w) is related to py(w) the vector of hydrodynamic pressures at all

subscript-2 nodes by
paw) = ¥ qi(w) (3.13)

7. Determine the frequency response functions pi(w) and g,(w):
(a) Solution of equation (3.12), with D = {D}} from step 5b and D' = (D'} from step 5a, pro-
vides p;(w) and -(w). This solution is repeated for each ground motion component, / =x,y and 7z,
(b) Solution of equation (3.12), with D = {D}; from step 5b and IV = (D'}, from step Sa, pro-

vides pi{w) and J(w). This solution is repeated for each vibration mode j to be included in the
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analysis,

Repeated solution of equation (3.12) for excitation frequencies covering the range over which
the earthquake ground motion and structural response have significant components leads to the com-

plete frequency response functions py(w) and p»{w).

8. Assemble the vector of frequency response functions for the hydrodynamic pressures at the
nodal points on the upstream face of the dam: pf{(w) from P(w) determined in step 7a, / = x,y and z;
and ﬁ)f (w) from Pi(w) determined in step 7b. The hydrodynamic force vectors (_)éT(w) and (_)jf (w),
which are statically equivalent to the negatives of the pressure functions Ef)(s,r,w) and p;(s,r,w),

respectively (step 5 of Section 3.1), are computed from the corresponding discrete versions ﬁé’(w) and

p/{w).

3.3 Efficient Evaluation of Hydrodynamic Terms

3.3.1 Major Computational Steps

The complex-valued frequency response functions for the generalized coordinates of the dam are
determined by solving equations (3.12) and (3.5) for each excitation frequency in the range of
interest. The major computational effort in the solution process is the evaluation of the hydro-
dynamic terms in equations (3.5) and (3.6) involving the hydrodynamic force vectors 66’((0) and
6{ (w), which are obtained from the frequency response functions pf(w) and ﬁjf {w) (steps 6-8 of Sec-

tion 3.2) by using the principle of virtual displacements.

If compressibility of water is neglected, the hydrodynamic force vectors are independent of the
excitation frequency w, equal to the zero-frequency value; and their computation requires minimal

effort.

The consideration of water compressihility, a factor that is known to significantly influence the
earthquake response of concrete dams {9,19,20,21], leads to considerable increase in the computa-
tional effort. In particular the hydrodynamic force vectors are now frequency-dependent, requiring

repeated formulation and solution of equation (3.12) for the range of frequencies over which the
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ground motion and structural response have significant compenents. For each frequency, the number
of complex-valued algebraic equations to be solved in equation (3.12) is equal to the number of
subscript-1 nodal points in the finite element idealization of the irregular fluid region plus N, the
number of eigenvectors ¥; included to represent the pressures py(w) on the transmitting plane. Such
solutions need to be repeated for each ground motion component / =x,y and z and for each vibra-

tion mode of the dam ¢;,j = 1,2, .. ., J, included in the analysis.

The consideration of hydrodynamic wave absorption due to alluvium and sediments at the
reservoir boundary, which is also known to significantly influence the earthquake response of dams
[9,20] leads to further increase in computational effort. In this case, the eigenvalue problem for the
infinitely long channel, equation (3.11), must be solved repeatedly for each value of w (step 2 of Sec-
tion 3.2), because the complex-valued eigenvalues and eigenvectors depend on the excitation fre-
quency w;, otherwise they are real-valued and independent of the excitation frequency reqﬁiring only
one solution of equation (3.11). The computational effort required for repeated solution of the
frequency-dependent, complex-valued eigenproblem is a very large portion, in some cases as much as
half, of the total computational effort required to obtain the dam response. The computational effort
required for one solution of equation (3.11) depends on the problem size, as determined by the
number of nodal points in the finite element idealization of the transmitting plane plus N, the

number of eigenvectors to be included.

Two aspects of computing the hydrodynamic force vectors 6({7(0;) and (j,f («) which contribute a
major share of the computational effort are examined next with the objective of developing efficient

computational procedures.

3.3.2 Number of Eigenvectors of the Infinite Channel

In computing the frequency response functions 65(1(@) and Qf («) for the hydrodynamic force
vectors as described in Section 3.2, the pressures on the transmitting plane are sums of the contribu-
tions of an infinite number of natural vibraition modes of the infinite channel, which must be trun-
cated at a finite number N,. Because the computational effort involved in several of the computa-

tional steps increases with N,, only those eigenvectors that are necessary for accurate evaluation of
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the dam response should be included in the analysis.

The summations should obviously include the contributions of all the cigenvectors of the
infinite channel with eigenfrequencies w; less than the maximum excitation frequency wm,x considered
in the analysis. The eigenfrequencics of the infinite channel are functions of the wave reflection
coeflicient «, although their dependence on « is slight [20]. Consequently, the criterion for determin-
ing the number of eigenvectors to be included can be stated in terms of the eigenfrequencies of the

infinite channel with rigid reservoir boundary -- as the largest n that satisfies
W) < Wmax (3.14)

where w) for a rigid reservoir boundary is given by w} = \, C; and )\, is the square root of the eigen-
value from equation (3.11). A few additional eigenvectors should be included in the summations to
ensure convergence of the hydrodynamic terms for excitation frequencies close to wp,,. Several
numerical experiments indicated that three additional eigenvectors are sufficient. Thus from equation

(3.14) the number N, of included eigenvectors is given by
N, = max. n satisfying eq. (3.14) + 3 (3.15)

N, increases as the cross-sectional dimensions of the infinite channel increase and the maximum exci-

tation frequency wmax to be considered in the analysis increases.

If the dam, foundation, as well as the entire fluid domain, including the irregular region and the
infinite channel, are symmetric about the x-y plane, only one-half of the dam-fluid-foundation system
need be analyzed to determine the dam response. The response to upstream or vertical components
of ground motion is determined by analyzing one-half the system with symmetric‘boundary condi-
tions on the x-y plane, and only the symmetric eigenvectors of the infinite channel need to be
included. Similarly, the response to cross-stream ground motion is determined by analyzing one-half
of the system with antisymmetric boundary conditions on the x-y plane, and only the antisymmetric
eigenvectors of the infinite channel need to be included. In each case, the number ¥, of symmetric
or antisymmetric eigenvectors of the infinite channel included is determined from equation (3.15)

with ) = w* or i, which are respectively the eigenfrequencies of the symmetric and antisymmetric



47

eigenvectors of the infinite channel.

To demonstrate the adequacy of equation (3.15), the response of Morrow Point Dam with a full
reservoir to harmonic ground motion was computed. The foundation rock was assumed rigid, wave
absorption at reservoir boundary was neglected (a=1), and twelve (J = 12) vibration modes of the
dam were included in the solution of equation (3.5) to analyze the dam response. Figure 3.4 shows
the absolute value of the complex-valued frequency response functions for radial acceleration at the
dam crest due to upstream, vertical, and cross-stream ground motion. The response functions are
plotted against the excitation frequency « normalized by the natural vibration frequencies w} or «f of
the fundamental symmetric and antisymmetric modes of the dam on rigid foundation rock with an
empty reservoir. For the dam-water system considered here: wy,, = 18.3 Hz; « = 3.02, 7.63, 10.09,
11.98, 14.17, 16.02, 17.29, 18.91, - - - Hz; and w/® = 6.21, 9.78, 13.3, 14.08, 17.24, 18.05, 20.58, - - -
Hz. According to equation (3.15), N, =10 and 9 for analysis of the symmetric and antisymmetric
problems, respectively. The response functions obtained by solving equations (3.12) and (3.3),
wherein the first N, eigenvectors of the infinite channel were included in equation (3.12) to evaluate
pi{w) and p(w) and hence the hydrodynamic force vectors (—)({I(w) and (—)jf (w), are presented in Figure
3.4. Also included are the response functions obtained with N, =15 and 30. The number of eigen-
vectors of the infinite channel, N,=10 or 9, given by equation (3.15) provides accurate response
results over the entire frequency range. In fact the response results are essentially independent of the
three values used for N, =10 or 9, 15 and 30. Although Figure 3.4 shows the response for a rigid
reservoir boundary (a=1), similar accuracy was obtained in the response of the dam with an absorp-
tive reservoir boundary (« <1). Thus accurate dam responses can be obtained with the hydrodynamic
terms in equation (3.6) evaluated from equation (3.12) using N, vibration modes of the impounded
water, where N, is given by equation (3.15). The resulting computational savings are significant, e.g.
the computational effort is reduced to slightly less than half compared to the effort required with N,
= 30 in the particular example considered here, and reduced even further if the reservoir boundary is

absorptive.
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Figure 3.4 Influence of N, the number of eigenvectors of the infinite channel included in the
analysis, on response of Morrow Point Dam, with full reservoir on rigid foundation rock, with rigid
reservoir boundary (« = 1), to harmonic ground motion. Dam crest locations are defined by § meas-
ured from plane of symmetry.
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3.3.3 Interpolation of Eigenproperties of the Infinite Channel

The hydrodynamic pressure functions ﬁél(w) and ﬁf {«), which enter into the hydrodynamic terms
in equation (3.6), need to be evaluated at each excitation frequency by solving equation (3.12).
Needed in this solution process are the eigenvalues AX(w) and eigenvectors ¢, (w) of the infinitely long
channel with uniform cross-section, governed by equation (3.11), which are frequency-dependent and
complex-valued when reservoir boundary absorption is included in the analysis. It would be very
expensive 1o solve equation (3.11) and compute the eigenproperties A\3(w) and ¥, (w) for each excita-
tion frequency [5,9]. But fortunately it is not necessary to do so. Accurate response results can be
efficiently obtained when the hydrodynamic pressures pf(w) and f)f (w) are evaluated from equation
(3.12) with the eigenproperties linearly interpolated from their exact values computed only al widely
separated values of w and the eigenvectors ¥, (w) renormalized with respect to G’ after linear interpo-

lation,

The largest permissible frequency interval o  over which the eigenproperties may be linearly
interpolated can be determined by considering how the eigenvalues A\ (w) vary with the excitation fre-
quency w. This variation is first studied for a channel with rectangular cross-section and subsequently
for an arbitrary cross-section. The objective is to determine the frequency " at which the funda-
mental eigenvalue, which varies most rapidly, reaches close to its limiting value at infinite frequency;

and then divide the frequency range 0 to «™ into sufficiently fine subintervals to determine w".

Rectangular Section. -- The two-dimensional, y-z, eigenvalue problem of equation (3.11) for an
infinitely long channel with rectangular section of depth I7 and width B=2D can be formulated in
continuum form, without discretization, and uncoupled into two, y and z, one-dimensional eigenvalue
problems (Appendix B). The eigenvalues )\jzk(w) and the eigenfunctions ¥, (v,z,w) of the channel are

related to the eigenproperties of the two one-dimensional problems by:
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AR() = vH) + 83(w) © (3.16a)
\bjk (y Z ’w) = Xj(ysw) g‘k (Z 9“"’) (316b)

Determined by solving the y-eigenvalue problem (Appendix B), the eigenvalues 7jz(w), which are
compiex-valued and depend on the excitation frequency, satisfy equation (3.17) and the correspond-

ing eigenfunctions x;(y,») are defined by equation (3.18):

iy (H v (@) - g
e = —~—-—-——7j(w) T od 3.17)
x;j(y,w) = ?/}I"(E {[yj(w) + wg ]eiv,-(w)y + [yj{w) - «g ]e*fv,-(w)y ] (3.18)

The eigenfunctions of the z-eigenvalue problem are either symmetric or antisymmetric about z = 0

axis (Appendix B). The symmetric eigenfunctions {{(z,w) are defined by equation (3.20), where the

2
associated frequency-dependent, complex-valued eigenvalues [6;§(w)] are solutions of equation (3.19):

sspp k(@) — wg

= — 3.19
5@ + wg G19)
§i(z.w) = cosdiz (3.20)

The antisymmetric eigenfunctions {f(z,w) are defined by eguation (3.22), where the associated

2
frequency-dependent, complex-valued eigenvalues [5;?((.))] are solutions of equation (3.21):

pAHE@D _ 0f(w) — wg

e (3.21)

elz,w) = sin bz (3.22)

If the reservoir bottom is rigid (¢ =0 and a=1), the eigenvalues }(w) and eigenfunctions x;(y,w)

are real valued and independent of the excitation frequency and given by equations (3.23) and (3.24):
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yi(w) = w?/C (3.23a)
where
wp = 2L L (3.23b)

x;(y.w) = cosvy,y (3.24)

w/” are the natural tfrequencies associated with the uniform height H of water of a rectangular section
channel with a free surface boundary condition at the top and a rigid boundary condition at the bot-
tom.

Similarly if the reservoir sides are rigid ( g=0 and a=1 ), the eigenvalues 57(w) are real-valued

and independent of the excitation frequency.. The square roots of the eigenvalues associated with

antisymmetric eigenfunctions are:
i (w) = wi*/C (3.25a)

where

7r % (3.25b)

wj? are the natural frequencies associated with the uniform width D of water of a rectangular section
channel with a free surface boundary condition at one end and a rigid boundary condition at the

other. The square roots of the eigenvalues associated with the symmetric eigenfunctions are:

B(w) = (f - w)/C = (k-1 5 (3.26)

Figure 3.5(a) shows the numerically-obtained real and imaginary components of y,(w) normal-
ized by the zero frequency value of equation (3.23a), which is also the frequency-independent value
when the reservoir boundary is rigid (g =0, « = 1), and then squared. The normalized eigenvalues are
plotted against the frequency parameter ¢C(w/w{®) so that the plots apply to any non-zero value of the

admittance coefficient g for the absorptive reservoir boundary. The plots of Figure 3.5(a) also apply

2
to the eigenvalucs [6;?(w)] associated with the antisymmetric eigenfunctions of the z-eigenvalue
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problem if wj* is replaced by w{” in the frequency parameter. Figure 3.5(b) shows the numerically-
obtained real and imaginary components of 45(w) normalized by the infinite frequency value of equa-

tion (3.29), and then squared, plotted against the frequency parameter gC(w/w{?).

It can be shown from equations (3.17), (3.19), and (3.21) that v;{w),0f(w) and éj(w) approach

real-valued limits as the excitation frequency becomes large:

I .
oo V/0) = Iy (3.27)
o 5f) =k . (3.28)
. 2%k - 1
o 3Hw) = of/C = FL T (3.29)

Multiplying equation (3.27) by C/w/”, equation (3.28) by C'/w;® and equation (3.29) by C/(w;” - w{?)

gives:
—a% wl_i,moow(w) =5 jzf i (3.30)
:J%wl_i,moo B0 = 5o (3.31)
wk_f: Jim ) - %}’z_:;_. (3.32)

Equations (3.30) to (3.32) give the ratios of the real-valued limits of the eigenvalues at infinite fre-

quency to the corresponding real-valued limits at zero frequency.

Figures 3.5 shows that the rate at which v;(w), 5f(w) and 8;(w) approach their infinite-frequency
limits given by equations (3.30) to (3.32), respectively, depends on the vibration mode j {or k) with a
slower rate for larger values of j (or k).The lowest eigenvalues approach their limiting values most

rapidly. In particular, v(w) has reached close to its limiting value when the frequency parameter
o 2 . . ag
gCle/e) =4 ,1.e. w =4dw¥/qC, [5{’(w)] has reached close to its limiting value when the frequency
1] 2 . . .o, .
parameter gC(w/w[®) =4, ie. o =4w{*/qC; and [5{(@)] has reached close to its limiting value when

the frequency parameter ¢C(w/w[?)=3, i.e. « =3w{?/qC. Therefore, from equation (3.16a), the
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symmefric A1 (w) will reach close to its limiting value at a frequency

" 4o’ 3] (3.33)
= m —— .
w ax iC oC
and the antisymmetric Af;(w) will reach close to its limiting value at a frequency
. 4ol 4pt?
@ = max [ ;Cl’ \ ;2, (3.34)

For a rectangular channel section with its half-width D equal to depth H, «? =«{” and from equa-

R 4 i 4 iz . . . .
tions (3.33) and (3.34), 0 = ch = :Cl for both the symmetric and antisymmetric A (w). At this

value of o™, A j(w) reaches close to its limiting value as shown in Figure 3.6.

Arbitrary Channel Section. - As indicated earlier in this section, the frequency interval «" necessary
to accurately interpolate the lowest eigenvalue Af{w) will be satisfactory for the higher eigenvalues, It
is necessary, therefore, to study how the eigenvalue A(w) varies with the excitation frequency, in
order to appropriately select this frequency interval. Unlike a rectangular section, this frequency vari-
ation cannot be analytically determined for a channel of arbitrary section. However, it can be
estimated from the frequency variation of eigenvalues for two rectangles such that the actual section
is completely contained by the larger rectangle while it completely contains the smaller rectangle [Fig-

ure 3.7(a)].

This estimation is made possible, in part, by a result from the boundedness property of eigen-
values {22] that, under certain conditions, relates the eigenvalues of the actual section to those of the
two rectangular sections. As the excitation frequency w tends to infinity the absorptive reservoir
boundary behaves like a free surface (Appendix B), 1.e. p =(}; a boundary condition that then applies
to the entire boundary of the channel section [Figure 3.7(a)]. For this limiting frequency, the eigen-
values are real-valued and for this particular free-surface boundary condition on the entire boundary,

the boundedness property of eigenvalues provides the following inequality:

NISMNSN, atw=o00, j=12, - (3.35)
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Thus )\f, the jth eigenvalue of the actual section, is bounded on the lower side by )\,»2;, the jth eigen-
value of the larger rectangular section, and on the upper side by A }u, the jth eigenvalue of the smaller

rectangular section.

Inequality (3.35) holds, in general, for a symmetric, real, positive-definite eigenvalue problem
over certain domains with boundary conditions independent of the eigenvalue. The relative sizes of
the two domains should be such that the smaller domain (with larger eigenvalues) is completely con-
tained in the larger domain (with corresponding smaller eigenvalues) and the field variable {pressure
7 in this case) must vanish at the portion of the boundary of the smaller domain which does not
belong to the boundary of the larger domain. The eigenvalue problem of the infinite channel with the

domains depicted in Figure 3.7(a) is a special case of the above condition.

As mentioned in Section 3.3.2, if the dam, foundation, as well as the entire fluid domain are
symmetric about the x-y plane, only one-half of the dam-fluid-foundation system need be analyzed to
determine the dam response. The response to upstream or vertical components of ground motion is
determined by analyzing one-half the system with symmetric boundary conditions on the x-y plane,
and only the symmetric eigenvectors (discretized representation of eigenfunctions) of the inﬁnite
channel need to be included. Similarly, the response to cross-stream ground motion is determined by
analyzing one-half of the system with antisymmetric boundary conditions on the x-y plane, and only
the antisymmetric eigenvectors of the infinite channel need to be included. In bounding the eigen-
values associated with the symmetric eigenvectors, the corresponding eigenvalues of the two rectan-
gles should be used in equation (3.35). Similarly, in bounding the eigenvalues associated with the
antisymmetric eigenvectors, the corresponding etgenvalues of the two rectangles should be used in
equation {3.35).

The frequency variation of A% and A?,, the first eigenvalues of the larger and smaller rectangular
sections, can be determined by the procedures described earlier in this section. Although the inequal-
ity of equation (3.35) does not apply at excitation frequency values other than infinity, the functions
A}(w) and Af,(w) would provide some guidance to the variation of Af{(w), the first eigenvalue of the

actual section, with excitation frequency.
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These concepts are next applied to the idealized scction of the infinite channel used in the
analysis of Morrow Point Dam {[Figure 3.7(b)]. As shown, the smallest possible rectangular section
that can contain the actual section has been chosen to maximize the lower bound value A%, Each of
the several rectangular sections that can be contained within the actual section provides a different
value of A\7,. Obviously it would be desirablle to choose the rectangular section that minimizes the
upper bound value A{,. The associated minimization problem can be solved analytically for actual
cross-sections with boundaries defined by simple functions. It was on this basis that the smaller rec-
tangular section was chosen. Because the same rectangle, in general, does not minimize the upper
bound value A, for symmetric and antisymmetric eigenvectors, {wo rectangular sections contained

within the actual section are chosen as shown in Figure 3.7(b).

The variation of A and Af, with the normalized excitation frequency, obtained by the pro-
cedures described earlicr, is shown in Figures 3.8(a) and 3.8(b) for the symmetric and antisymmetric
eigenvectors, respectively. Also shown are the eigenvalues A(w) for the actual section obtained
numerically by solving the eigenvalue problem of equation (3.11). The high-frequency limiting values
of the plotted functions are consistent with the inequality of equation (3.35). For this section, the
real and imaginary components of Af(w) are bounded by the corresponding components of Af(w) and
A, (w) at all values of w. Such may not be the case for every cross-section shape, but whether it is or
not does not influence determination of the frequencies ™ at which the first eigenvalues reach their
limiting values. The fundamental, symmetric eigenvalues Afi(w) and AZ,(w) of the larger and smaller
rectangle sections reach close to their respective limiting values at frequencies given by equation
(3.33) = 4w{?/qC and 6.98w{”/qC [Figure 3.8(a)]. The fundamental symmetric eigenvatue A¥w) of
the actual section is observed to reach close to its limiting value at an intermediate frequency of
about w" = 50{?/gC, where »/” is the value given by equation (3.23b) for the larger rectangular sec-
tion. The fundamental antisymmetric eigenvalues Af(w) and A{,(w) reach close to their respective
limiting values at frequencies given by equation (3.34): " =4.650{?/qC and 7.72w{*/gC [Figure
3.8(b)]. The fundamental antisymmetric eigenvalue Af(w) of the actual section is observed to reach

close to its limiting value at an intermediate frequency of about ™ = 6w{*/gC. Thus, a conservative
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choice for «" would be to select the smaller of the two values corresponding to the two rectangles,

which is always the value for the larger rectangle.

Interpolating Frequency Interval. -- As noted earlier, the frequency interval @’ necessary to accurately
interpolate the lowest eigenvalue Af(w) will be satisfactory for the higher eigenvalues. In the preced-
ing part in this section, we have presented a procedure to determine, for an infinite channel of arbi-
trary cross-section, the excitation frequency o™ at which A%w) reaches close 1o its high-frequency lim-
iting value. Several response computations have demonstrated that the response of an arch dam is
computed to sufficient accuracy when the hydrodynamic terms are evaluated using eigenproperties
linearly interpolated over an excitation frequency interval 0" =w" /8. Using this criterion, ™ based

on the larger rectangle, and equations (2.1), (3.33) and (3.34), the excitation frequency interval is

given by:
w 1 1 +a
—_———— = 3.36a
max (w{¥,w{* 21 -« ( )
for symmetric dam-fluid-foundation systems subjected to z ground motion; and
@ 1 1+o
== 3.36b
max(w’,0.75«]?) 2 1 -« ( )

for all other cases, where w{’ and w* refer to the larger rectangular section. Equation (3.36a) is
derived from equation (3.34) for the antisymmetric A7 which should be used for the lower bound of
the fundamental eigenvalue for z ground motion of a symmetric dam-fluid-foundation system. Equa-
tion (3.36b) is derived from equation (3.33) for the symmetric A{; which should be used for the lower
bound of the fundamental eigenvalue for all other cases, because : (1) it should be used for x and y
ground motions of a symmetric dam-fluid-foundation system, (2) the symmetric A} is always smaller
than the antisymmetric Af, thus it should be used to bound the fundamental eigenvalue for x, y, and
z ground motion of a non-symmetric dam-fluid-foundation system. Equation (3.36) shows that the
frequency interval " decreases as o decreases, i.c. as the reservoir boundary becomes more absorp-

tive.
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The effectiveness of linearly interpolating the frequency-dependent eigenproperties of the infinite
channel over the excitation frequency interval ', given by equation {3.36), is demonstrated in Figure
3.9. The absolute values of the frequency response functions for radial acceleration at the crest of
Morrow Point Dam with full reservoir to harmonic ground motion are plotted against the normalized
excitation frequency w/wi or w/wf, as appropriate. Reservoir boundary absorption is included with a
wave reflection coefficient « =0 to provide the most severe test for the interpolation procedure. The
response functions are computed for two cases: A2(w) and ¥,(w) in equations (3.11) and (3.12)
evaluated for every excitation frequency; or by linear interpolation over the frequency interval
@ /wP =0.5 for x and y ground motion and o' /w{*=0.5 for z ground motion as given by equation
(3.36). There is no observable difference between the response functions computed for the two cases.
However, the total computational effort required in the second case using linear interpolation of the
eigenproperties of the infinite channel, requires only 60 - 65 % of the computational effort in the first
case. Thus the hydrodynamic terms in equation (3.6) may be efficiently evaluated by linearly interpo-
lating the eigenproperties of the infinite channel over the frequency interval  given by equation

(3.36).

3.4 Interpolation of Frequency Response Functions

3.4.1 Basic Concepi

At the heart of the earthquake response analysis procedure for dams is the formulation and solu-
tion of equation €3.5) governing the frequency response functions Y;(w) for the generalized coordi-
nates. Efficient methods were presented in Section 3.3 to minimize the major computational effort
required in evaluating the hydrodynamic terms that enter into these equations. In this section, a pro-
cedure for efficient interpolation of the frequency response functions ff(w) is developed to further
reduce the computational effort [23]. Then the frequency response functions need to be obtained
exactly by solving equation (3.5) at fewer selected frequencies; and their values at other frequencies

are obtained by interpolation.
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Figure 3.9 Influence of linear interpolation of eigenproperties of the infinite channel on response of
Morrow Point Dam to harmonic ground motion. Results presented for full reservoir, rigid founda-
tion rock and wave reflection coefficient, « = 0; were obtained with J = 12 and N, = [0 or 9.



63

The frequency response function for acceleration at the crest of the dam due to each of the three
components of ground motion is presented in Figure 3.10 along with the contributions of the various
modes of vibration. Within certain ranges of frequencies (such as between a and b in Figure 3.10), no
more than two peaks exist, only two modes contribute significantly, and the contributions of other
modes are negligible. Thus it may be possible to approximate the response by subdividing the fre-
quency range into subranges where the above conditions are met, and by using the response function

for two modes within each range.

3.4.2 Two Mode Approximation

Including only two modes in equation (3.5) and neglecting water compressibility, which leads to
hydrodynamic terms independent of excitation frequency, the frequency response functions for the
generalized coordinates }—’jlv(w) can be expressed (Appendix C) as:

2
Cljw + CZ_]

w4 + C3j w2 + C4j

Yi(w) = (3.37)

where the constant C,; is real-valued, and the constants C5;,C3; and C,; are complex-valued because
of hysteretic damping in the dam. Just like )_’}(w), these constants would also depend on the ground

motion component, / =X,y or z, but this superscript is dropped for convenience.

Four frequencies Q;,i = 1,2,3,and 4, are selected within each frequency range n, and the jth gen-
eralized coordinate response I_’j,v = )71-(9,-) is determined at these frequencies by solving the set of equa-
tions (3.5) including all the vibration modes having significant contributions. The four constants in

equation (3.37) can be evaluated by solving the system of linear equations:

af 1 -Y;,0f _?jl 1 Cy; W 1_’;&9?
RF 1 Y Y, || Cy }7,'297?

r = (3.38)
Qf b -Y;308 -Y;5 || Gy Y303
] 942 1 - 1_714Q42, —)7"‘4 ] C‘U ?‘,494?

Once the constants C,;,Cy;,C3; and Cy4; have been determined for the frequency range n, the
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response at all other frequencies within this frequency range is then computed from the interpolation
equation (3.39):

’fj w2 + ng

¥ () =
j(w) w4 + C"3’j-w2 + ng

{3.39)

Since the frequency response functions for all the J vibration modes are solved simultaneously from
equation (3.5), each selected frequency range and the four frequencies chosen within a range should

be the same for all the modes.

3.4.3 Selection of Frequencies for Exact Computation

The frequency response functions are computed exactly by solving equation (3.5) at selected fre-
quencies and their values at other frequencies are obtained by interpolation. The selection of the fre-
guencies at which response is exactly computed should obviously depend on the rapidity with which
the response varies with excitation frequency; i.e., these frequencies should be closely spaced in the
frequency range where the response varies rapidly and widely spaced if the response varies slowly,
This may be achieved by imposing the objective that, over any frequency interval, the fractional
change in the absolute value of response:

2|5
Y
should be kept fairly constant and close to a prescribed value b. Based on this objective, the ith fre-
quency interval {Aw); =;,; -, can be determined from the preceding frequency interval

(Aw),-_l = Q,’ - Q,‘_; as follows:

(3.40)

Thus the selection of the next frequency interval is based on the current interval and the largest frac-
tional change in modal response over the current interval. If the maximum variation in modal
response over the current interval is larger than b, then the next frequency interval will be smaller

than the current interval and vice versa, Because the frequency interval from equation (3.40) may be
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impractically smali or large depending on the values of AE,[_I and }7ﬂ each of which can vary over a
very wide range, It 15 necessary to impose (Aw)m,.y, the maximum value permitted for Aw, and (Aw)nin,

the minimum value permitted for Aw.

Starting with (Aw)y, for the first frequency interval, all the subsequent frequency intervals can
be conveniently determined from equation (3.40) once the parameters &, (Aw)yax and (Aw)y;, have
been selected. After several numerical experiments it was concluded that the following parameter

values would provide accurate results:
b =05 (3.41a3)

(Aw)fnax

T _ 02 3.41
min{w”, w;) (3.410)

(A@)min

—_— = (.01 3.41c
min(el’, o) (3.41¢)

where w; is the fundamental frequency of the dam-foundation rock system with an empty reservoir,
and w{” is the fundamental frequency of an inﬁnite reservoir of uniform depth computed by equation
(3.23b) in which the maximum depth of the impounded water in the entire reservoir domain is used

instead of H.

The effectiveness of the interpolation scheme for the frequency response functions, using the
above mentioned parameters, is demonstrated in Figure 3.11. The absolute values of the frequency
response functions for radial acceleration at the crest of Morrow Point Dam with full reservoir to har-
monic ground motion are plotted against the normalized excitatién frequency w/wj or w/wf, as
appropriate. Reservoir boundary absorption is neglected, i.e. the wave reflection coefficient a =1,
which leads to the most rapid variations in the frequency response functions, to provide the most
severe test for the interpolation procedure. The response functions are computed using the interpola-
tion procedure described earlier with the above mentioned parameters and compared with the exact
values computed at selected frequencies. There is no observable difference between the response
functions computed by the two procedures. Using interpolation of the frequency response functions,

however, the required computational effort is only 50 to 60 % of that necessary without
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Figure 3.11 Accuracy of the response of Morrow Point Dam to harmonic ground motion computed
by the interpolation procedure. Results presented for full reservoir, rigid foundation and wave
reflection coefficient, & = 1; were obtained with J = 12 and Ny, = 10 or 9.
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interpolation.

The interpolation parameters of equation (3.41) were derived from numerical experiments on
response of dams supported: on rigid foundation rock with no absorption of hydrodynamic pressure
waves at the reservoir boundary. These assumptions lead to the most sharply peaked and rapidly
varying response functions. These functions become much smoother if reservoir boundary absorption
is considered (Chapter 4 and reference [19]), in which case the interpolation parameters of equation
(3.41) would be conservative; in particular, the normalized (Aw)y,, can be increased to 0.02 [equation

(3.41¢)].

Compared to the earlier application of the above described interpolation procedure to soil-
structure interaction problems [23], the exact response is computed in the present application at 3 to
5 times the number éf frequencies, because structure-fluid interaction leads to complicated response
functions with sharp peaks and rapidly variation, if reservoir boundary absorption is not considered
[9,20]. Because of these complications and because arch dams are complex structures having vibra-
tion modes with closely spaced frequencies, the conservative parameters of equation {3.41) are recom-
mended. The computational cost can be further reduced by choosing larger Aw, tailored specifically

for specific arch dams and assumptions used in the analysis.

An interpolation procedure such as the one described in this work should always be used with
caution. Using the parameters of equation (3.41), the response function should be computed exactly
at selected frequencies and then the response function at other frequencies obtained from the interpo-
lation equation (3.39). The entire interpolated response should be plotted, and evaluated in light of
the known characteristics (Chapter 4 and reference [9]) of frequency response functiqns of arch dams,
including their behavior at or near characteristic frequencies -- the natural vibration frequencies of
the dam, natural frequencies of the infinite channel of the fluid domain, and resonant frequencies of
the dam including hydrodynamic effects -- to see if the initial choice of frequencies was adequate.
The user can then select additional frequencies deemed necessary to compute additional values to
deseribe the frequency response functions. The new results can then be combined with the initial

results and new interpolations can be carried out.
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3.4.4 Summary of Interpolation Procedure

The procedure for computing the frequency response functions ?}(w) for the entire frequency

range 0 10 wy,,y, is summarized below as a sequence of steps [23]:

1. Determine the values for parameters b, (Aw)pin and (Aw)pyg, from equation (3.41), with the
normalized (Aw)mi, in equation (3.41c) increased to 0.02 if reservoir boundary absorption is con-

sidered.

2. Starting with zero frequency and the initial frequency interval as (Aw)y;,, solve equation (3.5)
to compute Y f(w) at w = 0 and @ = (Aw)y,. From equation (3.40) determine the next frequency
value, and solve equation (3.5) to exactly determine I_’J’-(w) at that frequency. This process of utilizing
equation (3.40) to determine the next « value and solving equatio