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DYNAMIC RESPONSE OF LONG VALLEY DAM IN THE
MAMMOTH LAKE EARTHQUAKE SERIES OF MAY 25-27, 1980

by
S.S. Lail and H. Bolton Seed2

Introduction

In recent years much attention has been given to methods of analyzing the
response of earth dams and earth embankments to earthquake shaking. However
the applicability of these analytical procedures can only be evaluated when the
results are compared with the observed response of prototype structures during
actual earthquakes or carefully conducted experimental observations of the
response of small-scale structures. An excellent opportunity to check the
accuracy of dynamic analysis procedures for determining the seismic response of
embankment dams has recently been provided by the excellent data recorded on
the Long Valley Dam during the Mammoth Lakes earthquake series of May 25 to 27,
1980. A study of response prediction procedures for this embankment provides a
unique opportunity to evaluate the suitability of analytical methods for future
applications.

Long Valley Dam, shown in Fig. 1, which retains Lake'Crowley Reservoir, is
located in Mono County, California, about 22 miles northwest of the City of
Bishop and approximately 240 miles north of thé City of Los Angeles.
Construction of the dam was started in the late 1930's and completed in
September 1941. The dam is supported on bedrock and has a maximum height of
126 feet above the original streambed elevation; it has a crest length of about
60C ft., The reservoir has a capacity of about 183,470 acre feet.

The dam is essentially a homogeneous section dam, with the main compacted
fill consisting of sand and gravel with sufficient fines to produce a

R -6 . . .
permeability somewhat less than 7x10 cm/sec, and with outer shells consisting

1 .
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FIG. 1 LONG VALLEY DAM






of dumped-sluiced small rock and coarse fines, see Fig, 2. A 10 feet thick

layer of rock rip-rap was placed to protect the upstream face of the dam. A
subdrain system with longitudinal and transverse drains was provided in the

downstream shell to reduce the seepage and saturation problems at the toe of
the embankment.

As can be seen from the plan view of the dam (Fig. 3), the upstream
geometry of the dam shows a significant concavity from the surrounding
abutments and the crest to the bottom and center of the upstream face of the
embankment. The outer shells of the embankment have slopes of 3:1 on both
upstream and downstream faces; the central compacted earth fill has slopes of
2:1, A side-discharge type spillway structure, 94 feet in length, together
with a 10-1/2 feet diameter spillway channel, which served as the diversion
tunnel during the construction of the main embankment, are located in the left
abutment.

An excellent set of surveillance facilities was installed at the dam site,
consisting of seepage measurement devices, observation wells, deformation and
settlement indicators, and seismoscopes. The phreatic surface in the
embankment, as determined from the observation wells, is relatively high, as
shown in Fig., 1. Although the quantity of flow is as high as 5 cfs, little
dissclved or suspended solids were found in the observed seepage flow.

The geological profile of the dam along the crest shows that the dam is
founded on a rhyolite tuff overlying volcanic ash, which is a part of the
Bishop Tuff formation, and the depth of the tuff varies up to a maximum of 750
feet. The construction records show that the streambed alluvium material was
removed under the main body of the dam prior to the construction of the
embankment, and the dam rests on a firm tuff bedrock foundation.

In order to improve the watertightness of the foundation rock, a minimum
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of 2 inches of gunite was applied to the contact area between the compacted
core and the abutments. In addition, blanket grouting, with grout holes at

5 ft spacing and 50 ft deep, was used in the upper parts of the abutment walls
and some very deep grout holes were installed under the main body of the
embankment.

The material used for the compacted earthfill was a well-graded silty and
gravelly sand consisting of about 23% gravel sizes, 637% sand sizes, and 14%
fines. The fill was placed in layers 6-in thick using a sheepsfoot roller,
with a minimum of 16 passes. It was placed at a water content about 2% wet of
optimum, and it was compacted to a degree of compaction of about 93% based on
the Modified AASHO Compaction Test.

The pervious material in the outer shells of the embankment came from the
excavated streambed gravels and/or stripped rock material from the abutments.
The material was dumped in place in layers about 6 ft thick and then sluiced
thoroughly. Following placement, the pervious section was ponded to saturate

and densify the material,

Performance of Long Valley in the Mammoth Lakes Earthquake Series During the

Period May 25 to 27, 1980

Long Valley Dam is situated in a very active seismic area. As can be seen
from the generaliged geological map {Fig. 4), the dam site is bounded by
several major faults. The Sierra Frontal fault system (Sierra Front and Hilton
Creek Faults), about five miles from the dam, is believed to be capable of
generating a maximum credible earthquake of magnitude agbout 8.3, with a
duration of abo;t 60 seconds and peak horizontal accelerations of about 0.6g at

the dam site. In addition, a maximum credible earthquake of magnitude 8.5 is

3
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also considered possible §n the Owens Valley Fault, about 15 miles from the dam
(Lindvall-Richter, 1980).

Because of the high seismicity of the area, Long Valley Dam was selected
by the State of California Strong Motion Instrumentation Program for
comprehensive instrumentation to investigate the dynamic response of dams to
strong earthquake shaking. Accordingly 22 strong motion accelerographs were
installed on the dam and in adjacent areas by this program. The distribution
of these accelerographs is shown in Fig. 5. The locations were chosen to
investigate cﬁe spatial variations of motions across the valley as well as from
bedrock to the crest of the embankment, including the possible effects of
topographic irregularities and the different stiffness characteristics of the
materials comprising the embankment and the wallé of the valley.

An excellent record of the seismic response and performance of the dam has
been provided through the acceleration data recorded during the Mammoth Lakes
earthquake series during the period May 25 to 27, 1980, The earthquakes in
this series were located on the Hilton Creek Fault in the Mammoth Lakes area,
which passes within a few miles west of the dam site. The focal depths of the
earthquakes ranged from 2 to 14 kms. The earthquake series had the following

magnitudes:

May 25: M = 6,2 (09:34 a,m.); M = 5,9 (09:49 a.m.)

M=6.3 (12:45 p.m.); M = 5.6 (13:36 p.m.)
May 26: M = 5.0; M = 5,3 (11:58 a.m.}; M = 6.0
May 27: M = 6.2 (07:51 a.m.)

Following the earthquakes, rockfalls and landslides were observed and several
surface cracks occurred in the embankment. Cracks were also found in the

roadway between the contact of the dam and its north abutment, but no

4
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significant damage to the dam was detected because of the shallow depths of the
cracks.

Although the dam suffered no significant damage during the earthquake
series, following the earthquake of May 27 water was observed to flow out of
the soil just downstream of the toe of the dam and continue to flow for several
minutes after the earthquake shaking stopped. In this region, the materials
were dumped and loosely compacted. It is interesting to note that even a
moderate earthquake {magnitude = 6.2) with peak accelerations of about 0.2g in
bedrock could cause the materials to decrease in volume and develop excess pore
pressures sufficient to cause liquefaction and expulsion of water.

It is also interesting to note that following the earthquakes the flow in
the toe drains increased from 200 to 460 gpm but the water remained clear; also
in the spillway channel drain, where water flows into the tunnel through the
weep holes and narrow cracks, the flow increased from 310 gpm to 790 gpm after
the earthquakes. The flows of these drainage systems have become stable and
they have remained at the higher level since the earthquakes occurred. The
increased flow indicates some slight loosening of the structures of pervious
materials and the abutments, but no significant settlement and movement were

recorded after the earthquakes.

Characteristics of Recorded Accelerograms of the 1980 Mammoth Lakes Earthquake

Series

Among the earthquake motions recorded at the dam site during the period
May 25 to 27, 1980, five sets of recorded accelerograms, with up to 22 channels
of recorded accelerations for each earthquake, have been processed. The
recorded peak accelerations at the 22 instrument locations are shown in

Table 1. In order to throw more light on the characteristics of the earthquake






Table 1 Recorded Peak Accelerations for 1980 Mammoth Lakes Earthquakes

11

Dam Crest
5/25 5/25 5/25 5/26 5/27
09:34 PDT  12:45 PDT  13:36 PDT
Location Trace Acc. Acc. Acc. Acc. Acc.
No. (G) (&) (G) (G) (G)
Sta. 3+32 (H) 14 0.15 ——— — 0.10 0.48
Sta. 5456 (H) 6 0.22 0.13 0.09 ——— 0.44
Armco Bldg (H) 20 0.23 0.12 0.09 0.12 0.26
Sta. 7+13 (H) 4 0.14 0.11 0.08 —_— 0.27
Sta. 3+32 (L) 16 0.20 —_— ———— D.08 0.40
Sta. 5+56 (L) 7 0.23 0.20 0.16 —— 0.31
Armco Bldg (L) 22 0.23 0.21 0.16 0.09 0.29
Sta. 3+32 an 15 0.11 —— ——— 0.02 0.25
Sta. 5+56 (V) 8 0.15 0.13 0.11 —— 0.15
Armco Bldg " 21 0.15 0.13 0.11 0.03 0.19
Sta. 7+13 (V) 5 0.17 0.14 0.10 —— 0.24
Downstream Slope
Location Trace
No.
Mid, Slope (H) 9 0.19 0.11 0.10 —_—— 0.30
Mid. Slope ) 10 0.17 0.16 0.10 ——— 0.20
Bedrock
Location Trace
No.
865" Dwn. Strm.(H) 11 0.07 0.06 0.04 —— 0.18
L. Abutment (H) 1 0.08 0.08 0.06 —_— 0.20
L. Abutment (H) 17 0.27 0.19 0.14 0.07 0.35
865'Dwn. Strm.(L) 12 0.10 0.11 0.08 —_—— 0.21
L. Abutment (L) 3 0.12 0.08 0.10 —_— 0.21
L. Abutment (L) 19 0.38 0.37 0.30 0.11 3.83
865 'Dwn. Strm.(V) 13 0.08 0.07 0.07 - 0.09
L. Abutment (V) 2 0.10 0.07 0.05 —-_— 0.11
18 0.12 0.11 0.13 0.03 0.29

L. Abutment (V)

Note:

H - Horizontal comp.; L - Longitudinal comp.; V - Vertical comp.

All records were instrument-corrected and bandpass—-filtered.
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motions recorded at the dam site for this earthquake series, the peak
horizontal and longitudinal accelerations recorded in bedrock, corresponding to
the stations at the toe, on the abutment at crest elevation, and at the station
above the crest of the embankment are also tabulated in Table 2. It may be
seen that in each earthquake the peak horizontal and longitudinal accelerations
at the stations located on rock at the toe and at the crest elevation of the
dam were generally similar but the peak accelerations recorded on rock at the
station above the crest were much higher, Thus, a complicated wave propagation
phenomenon in the upper rock formation at the dam site is clearly apparent.

As can be seen from Table 1, the earthquake of May 27 induced very high
accelerations in the embankment. In addition, it is interesting to note that
the earthquake of May 27 (magnitude = 6.2 and focal depth = 8.8 miles) produced
much higher recorded peak accelerations iﬁ bedrock than those recorded during
the earthquake of May 25, at 09:34 a.m. (magnitude = 6.2 and focal depth =~ 5.6
miles) although the two earthquakes had comparable magnitudes and epicentral
distances. The motions recorded at the statioms on rock during these two
earthquakes are shown in Flgs. 6(a) and 6(b). However the two earthquakes of
May 25, (at 09:34 a.m. and at 12:45 p.m.) showed quite similar peak
acceleration patterns for corresponding points on bedrock as shown in Figs.
7(a) and 7(b). It is clear from these records that earihquake motions 1in
bedrock are determined not only by the earthquake magnitude and the distance of
the energy socurce but also by other factors such as bedrock formatioms, local
site characteristics, wave types and travel paths, etc.

The event on May 27 caused the most severe motions at the dam site and
this event was considered especially significant because of the detailed

instrumentation of the project and the extremely high peak longitudinal






Earthquakes
5/25/1980
(09:34 a.m.)

5/25/1980
(12:45 p.m.)

5/25/1980
(13:36 p.m.)

5/26/1980

5/27/1980

Note: Long.

Trans.

Table 2

Peak Accelerations in Rock

at the Toe of the Dam

Long Trans

0.10 g 0.07 g
0.11¢g 0.06 g
0.08¢g 0.04 g
0.21g 0.18 g

Longitudinal Acceleratio

Transverse Accelerations

Station on the Abutment Station on the Abutment

at the Crest Elevation above the Crest Elevation
Long. Trans. Long. Trans.
0.12 g 0.08 g 0.38¢g 0.27 g
0,08 g 0.08 g 0.37¢g 0,19 g
0.10 g 0,06 g 0.30 g 0.14 ¢
—_ _—_ 0.11 g 0.07 g
0.21¢g 0.20 g 0.83g 0.35 g

ns

€1
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0.18

FIG. 6(a) PEAK ACCELERATIONS (G) IN ROCK FOR THE EARTHQUAKE OF 5-27-1980
(MAGNITUDE = 6.2, FOCAL DEPTH = 8.8 MILES
EPICENTRAL DISTANCE = 5 MILES)

Downstreamhﬁlj

Rock Surface

0.07

FIG. 6(b) PEAK ACCELERATIONS (G) IN ROCK FOR THE EARTHQUAKE OF 5-25-1980
AT 09:34 AM.
(MAGNITUDE = 6.2, FOCAL DEPTH = 5.6 MILES
EPICENTRAL DISTANCE = 5 MILES)
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0.11

\/\Rock Surface
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FIG. 7(a) PEAK ACCELERATIONS (G) IN ROCK FOR THE EARTHQUAKE QF 5-25-1980
AT 12:45 P.M.
(MAGNITUDE = 6.3, FOCAL DEPTH = 10 MILES
EPICENTRAL DISTANCE = 5 MILES)

HRock Surface

FIG. 7(b) PEAK ACCELERATIONS (G) IN ROCK FOR THE EARTHQUAKE OF 5-25-1980
AT 13:36 P.M.
(MAGNITUDE = 5.6, FOCAL DEPTH = 1.3 MILES
EPICENTRAL DISTANCE ‘= 5 MILES)
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acceleration of about 0.83g which was recorded on a rock outcrop above the left
abutment (Fig. 6(a)).

Since only the transverse components of the recorded earthquake motions
are generally considered in a response analysis, it is interesting to examine
the distribution of the peak>horizontal accelerations, normal to the axis of
the dam, recorded at the dam site for all five earthquakes, Values of these
accelerations are shown in Fig. 8. An examination of the peak horizontal
accelerations recorded for channel 6, located near the center of the crest of
the embankment, and channel 11, situated on bedrock downstream, shows
amplification factors of about 2.2 to 3.1 for all the recorded earthquakes. It
may also be noted that there is almost no difference between the recorded peak
horizontal accelerations for channels 6 and 20 (both located near the center of
the crest) for all five earthquakes.

An important assumption of the analytical procedures generally used to
compute the seismic response of embankment dams is that the dam is constructed
on a rigid base, and all points on the rigid boundary have the same motion and
move in phase. To throw some light on the validity of this assumption a
-comparison was made of the time histories and acceleration respouse spectra (5%
damping) recorded om rock at the toe of the embankment, on rock on the abutment
at the crest elevation of the embankment and on a rock surface above the crest
of the embankment, for the earthquake of Ma& 27, 1980 (see Figs. 9 and 10). It
is clear that the recorded motions of channel 1, located on bedrock near the
downstream toe, have very similar characteristics to those of channel 11,
located on the left abutment. On the other hand, the recorded motions of
channel 17, located on a rock outcrop above the left abutment and not far away
from the location of channel 1, were much higher, both in terms of peak

acceleration and response spectral ordinates, than those of the motions
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FIG. 8 PEAK ACCELERATIONS (G) NORMAL TO THE AXIS OF THE EMBANKMENT
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recorded at channeis 1 and 11. The same phenomenon was observed in a
comparison of the recorded peak longitudinal accelerations for channels 3, 12
and 19 (Figs. 11 and 12) at the same locations for the same earthquake.

It would appear from these results and similar observations from the other
earthquakes (Figs. 6(b), 7(a) and 7(b))} that the motions in rock at elevations
below the crest of the embankment were generally similar but that important

amplifications occurred in the rock formations at higher elevations, possibly

due to topographic effects.

Finite Element Models

Since the coupling effects between the components of the recorded motions
are not likely to be significant, only the transverse components of the
recorded accelerations were considered in this study. Due to the very complex
geometry existing in the upstream part of the embankment (concave configuration
toward the bottom of the wvalley}, it was considered desirable to simplify the
model geometry to some extent in order to reduce the computational effort.
Thus, a modified maximum cross section (Fig. 13), which leveled off the
upstream face of the embankment and extended both the upstream and downstream
faces all the way down to bedrock, was adopted in the analyses; it was believed
that no significant errors would be introduced by this simplificationm,

| Because the crest length to height ratio, L/H, is about 3:1, it was
considered necessary to perform a 3-D dynamic analysis. For 3-D respounse
analyses with input motions in the transverse direction, it is also convenient
to choose a geometrical model which is symmetrical about the maximum section of
the dam; this selection makes it possible to use only half of the complete
embankment in the analyses. From previous experience it was considered

desirable to use 12 sections across the valley to simulate the variatiom of
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motions in the longitudinal direction. Based on these cousiderations, a 3-D
finite element model, which represents only half of the embankment, was used in
the dynamic response analyses. The model cousists of 512 eight-node
isoparametric solid elements, 582 nodal points (458 free nodal points with
three translational degrees of freedom at each node), and 6 discretized
sections across the valley (Fig. 14). Three materials were modeled in the
analyses; compacted earthfill {(gravelly sand with fines), shell material
(coarse fines and small rock), and streambed alluvium (sand and gravel).

2-D response analyses were also performed. The finite element model for
the 2-D analyses was chosen to be the same as that for the main section of the
dam in the 3-D studies, Based onAconsiderations with regard to mesh size
requirements, a model with 129 solid elements and 142 nodes (117 free nodes)

was constructed for use in the 2~D dynamic analyses (Fig. 15).

Initial Static Stress Analysis

A knowledge of the initial static stresses in the embankment is necessary
to assess the dynamic shear moduli of granular materials such as sands,
gravels, and rockfill for use in dynamic response analyses. To determine these
stresses a 2-D plane strain analysis was carried out, using the computer
program FEADAM, to determine the stress distribution throughout the main
section of the dam, and then the stresses in the main section were projected
horizontally to each cross—section along the dam axis. The static soil
parameters used in the analysis are presented in Table 3., The seepage forces
were considered in the analysis by using the computer program SEEP.

The contours of the computed effective major and minor principal stresses
in the main section of the embankment are shown in Figs. 16(a) and 16(b). The
contours are generally parallel to the slopes of the embankment except in the

lower portion of the central region of the embankment; such distributions of
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Table 3 Soil Parameters for Initial Static Stress Analysis (Long Valley Dam)

Compacted Compacted Shell Shell Streambed
Parameter Symbol Fill Fill Material Material Gravels
(Dry) (Sat.) (Dry) (Sat.) (Sat.)
Unit Weight (pcf) T 130 144 124 140 147
Modulus Number K 600 600 600 600 600
Elastic Unloading K 1200 1200 1200 1200 1200
ur
Modulus Number
Modulus Exponent n 0.25 0.25 0.40 0.40 0.41
Failure Ratio Rf 0.70 0.70 0.70 0.70 0.68
Bulk Modulus Number Kb 450 450 175 175 170
Bulk Modulus Exponent m 0.10 0.10 0.20 0.20 0.21
Friction Angle bo 44 44 50 50 48
Decrease in Friction A 8. 8. 7. 7. a.
Angle
Earth Pressure K 0.36 0.36 0.31 0.31 0.30

Coefficient

LT
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effective principal stresses are quite common in earth dams. It is convenient

' (ratio of

to adopt an average value of the principal stress ratio, 03‘/01
effective minor principal stress to effective major principal stress), which is
representative of the overail stress state within the embankment, in order to
avoid possible numerical difficulties in discretizations and mathematical
assumptions for the computational model. For Long Valley Dam a value of the
stress ratio, (%'/01', of about 0.42 was obtained by averaging the individaal
stress ratio in each element of the embankment.

Due to the lack of information on the intermediate principal stresses,
q,'; a value of 0,,' = 0.60,' was assigned to this stress. Thus, values of the

2 2 1

effective mean principal stress, Gm', were determined to be 0.68 o The

L]
1 -
stresses throughout the embankment were obtained by projecting the stresses in

the main section of the dam horizomtally to the other sections across the

valley.

Dynamic Response Analysis

Because only the transverse accelerations were considered in the dynamic
analyses, and the recorded motions at channel 1!, located on bedrock near the
downstream toe, were very similar to those recorded at channel 1, located on
rock on the left abutment, the recorded motions at channel 11 were used as the
input motions for the dynamic response analyses. The equivalent-linear
complex-response method was employed to compute the response. The computed
motions in the analytical model were compared with the motions recorded at the
stations corresponding to channels 9, 6 and 14.

For the main study, the motions for the earthquake of 53-27-1980 were used
because this event caused the most severe response of the embankment, The

recorded peak accelerations in the embankment and abutment walls for this
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earthquake are shown in Fig. 17. Since 2-D dynamic response analyses can
provide useful information about the dynamic¢ response of an embankment prior to
perfo;ming 3-D dynamic analyses, 2-D analyses were carried out in addition to
the 3-D analyses.

Dynamic response analyses were made using the programs-FLUSH (Lysmer et
al., 1975) for the 2-D analyses and TLUSH (Kagawa et al., 1981) for the 3-D
analyses. Representative dynamic material properties for the embankment soils
were determined by determining the response which best matched the recorded
motions by varying the material properties used in the computations. The
dynamic soil properties used in the computations., The dynamic soil properties
obtained from the first 2-D analysis were used to compute the response of the
embankment to the earthquake of 5/25/1980, at 09:34 a.m. However, no further
attempt was made to check the applicability of the dynamic soil properties
obtained in the 3-D response analysis to other earthquakes because previous
studies (Lai, 1985) had indicated that the 3-D analytical technique is quite
capable of predicting the dynamic response of embankment dams with very
complicated 3-D configurations provided good selections of the dynamic

properties are made,

2-D Response Analysis for the Earthquake of May 27, 1980

Four accelerograms (channels 4, 6, 20, and 14) recorded at the crest of
the dam together with one record (channel 9) on the downstream face were
processed and used as the recorded motions to be compared with the computed
results from the analytical procedures described above. The recorded
accelerogram at channel 11, which is located on rock near the downstream toe of
the embankment, was used as the input motion at the base of the analytical

models.
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One way to check the quality of the recorded motions is to compare the
response spectra for the motions recorded at channels 6 and 20, which are
situated next tco each other on the crest of the dam. The spectra for ﬁhese two
motions are shown in Fig, 18, It is apparent that there is no significant
difference-in these response spectra. Thus, it seems reasonable to conclude
that the recorded accelerograms are quite consistent and the quality of the
instrumentation at the dam site is reliable. As a result, only the
accelerogram of channel 6 was used to represent the recorded motions at the
center of the crest of the dam in the comparative studies.

Fig. 19 shows the recorded time histories in the main section of the
embankment for channels 11, 9, and 6, corresponding to the stations on bedrock
at the downstream toe, on the downst;eam face, and at the center of the crest
respectively. The peak accelerations are (3.18g on the base rock, 0.3g at the
mid point of the downstream face, and 0.44g at the crest. The records show
that the peak accelerations of the recorded motions occurred at essentially the
same absolute time on all records (about 5.0 seconds after the start of the
recording). Futhermore the acceleration in bedrock was gradually amplified at
the upper elevations of the embankment (e.g. at the downstream face and the
crest of the dam). The corresponding 5% damped response spectra are shown in
Fig. 20. As can be seen from the response spectra, there was little response
for periods lower than about 0.15 secound (i.e., 6.6 Hz). Based on this
observation, it was concluded that the highest frequency used in the analyses
could be about 10.0 Hz without losing any significant accuracy in the results.

It is also interesting to note that the response spectra for all three
motions have very similar shapes. Unlike the case of El Infiernillo Dam, where
the predominant frequencies of the base motions were found to be significantly

lower than those of the crest motions, the predominant period of the base
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motion for Long Valley Dam was about 0.51 second while the motions at the
downstream face and on the crest both had a predominant period of about 0.58
second.

In order to provide a better understanding of the characteristics of the
accelerograms recorded at the dam site, the recorded time histories of the
motions for channels 1, 4, 6, and 14, corresponding to the stations along the
crest of the dam are showﬁ in Fig. 21. Again, the peak accelerations for all
four channels occurred at approximately 5.0 seconds. The trend for the
recorded accelerations to increase from the abubtments towards the center of the
dam can also be seen.

In the section on Finite Element Models it was noted that the gometrical
model was chosen in such a way that the model is symmetrical about the main
section of the embankment so that only half of the dam would need to be
considered in the response analyses. Based on this assumption, the recorded
motions at channels 4 and 14, which are located at similar locations in the
symmetrical model (Fig. 13) should have comparable accelerations with-reSpect
to overall frequency coﬁtent, predominant frequency, maximum acceleration, and
peak spectral accelerations. In Fig. 21 the accelerograms recorded at channels
4 and 14, are seen to exhibit duite similar patterns of acceleration—time
histories but the motion recorded at channel 14 had higher amplitudes of
overall acceleration than that recorded at channel 4. This phenomenon is also
clearly indicated by the response spectra for the recorded motions shown in
Fig. 22. The two spectra are quite similar in shape and differ only in the
magnitude of spectral accelerations. Although there is some difference in
these two recorded accelerograms, the use of a symmetrical model in the dynamic

analyses was still comsidered adequate for the present study. Therefore, the
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location of channel 14 was symmetrically projected to a position next to nodal

point 270 in the computational model (Fig. 14).

Dynamic Soil Properties

The dynamic properties of the soils in the embankment were characterized
in the present study by means of the shear modulus and damping values proposed
by Seed et al. (1984). Thus the shear modulus, G, of the cohesionless soil at

any point was determined by the expression:

¢ = 1000 (X,) (o ")!/2
2 m
where Gm’ = the effective mean principle stress at the point
and Kz = 3 s0il modulus coefficient whose value varies with the strain

level induced in the soil and the grain-size distribution of

the soil involved; thus the maximum value of K, for any soil,

2
designated (Kz)max, is developed at a low strain level of the
order of 107 Z.

For sands and many other cohesionless soils it has been found that the value of

Kz/(Kz)max varies with strain as shown in Fig. 23 and this relationship is

often referred to as the standard modulus attenuation curve for sands.

A corresponding average damping curve for cohesionless soils, expressing
the damping ratio as a function of shear strain has also been proposed by the
same authors and this curve has been widely used for dynamic response analyses
of many earth structures and deposits. This relationship is shown in Fig. 24,
together with upper bound and lower bound values,

The relationships shown in Figs. 23 and 24 were adopted for this study.

By this means the dynamic stiffness of any given soil could be completely
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characterized by its assigned value of (Kz)max. However in the dynamic
analyses the shear modulus varied with strain and with confining pressure
throughout the embankment in accordance with equation (1) above. Damping
ratios alsoc varied throughout the embankment depending. on the induced strain,
but relationships were varied to correspond either with the lower bound,

average or upper bound relationships shown in Fig. 24.

Analytical Studies

In thi; investigétion analyses were made to determine the values of
(Kz)max for the coﬁpacted fill (gravelly sand with fines), dumped shell
material (coarse sand and small rock) and streambed alluvium (sand and gravel)
which gave best agreement between the computed and observed response of the
embankment. The shear moduli for the embankment materials (mostly granular
materials) were determined from Equation 1 using values o% effective mean
principal stress, Oh" of about 0.68 Gl' for each element.

For the 2-D plane strain dynawmic analyses, it is only possible to.compare
the computed response with the recorded performance at channel stations 6 and
9. Thus, the computed responses at nodal points 57 and 68 in Fig. 15 were
compared with the recorded accelerogram at channel 6, while the computed
responses at nodal points 98 and 103 was compared with the recorded motions of
channel 9. Several combipatious of possible (Kz)max values for the embankment
materials were tried to determine the best agreement between these motions.

The equivalent-linear computer program FLUSH was used to compute the
response., A cut—off frequency of 10 Hz was imposed on the response
computations. Table 4 shows a summary of the dynamic soil properties used in
the response analyses providing best agreement between computed and recorded

motions,






Table 4 Dynamic Properties for Response Analysis of Long Valley Dam

Parameter Compacted Fill - Shell Alluvium
(Gravelly Sand) (Coarse Material) (Gravel & Sand)
(K2)max 60 (2D) 90 (2D) 120(2D)
50 {3D) 75 (3D) 100(3D)
Modulus Reduction#® Mean Value Mean Value Mean Value
Curve
Damping*# Mean Value Mean Value Mean Value
Curve
Poisson's Ratio 0.3 (Dxy) 0.3 (Dry) 0.3 (Dry)
0.4 (Sat.) 0.4 (8at.) 0.4 (Sat.)
Density (pef) 130 (Dry) 124 (Dry)
144 (Sat.) 140 (Sat.) 147 (Sat.)

Note: A cut-off frequency of about 10 Hz was used in the analyses.
* : Seed and Idriss shear modulus reduction curve (1970) for 2-D
and 3-D analyses; new shear modulus reduction curve for gravels

{Seed Private Communication) for the 3-D reanalysis.

#% ; Seed and Tdriss damping curve (1970}.

[4
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The acceleration response spectra for the computed motions based on the
set of dynamic properties shown in Table 4 with values of (Kz)max of 60 for the
compacted earthfill, 90 for the shell material, and 120 for the streambed
alluvium, are compared with the spectra for the recorded motions in Fig. 25.
Although the computed peak accelerations at nodal points 68 and 57 have a value
of about 0.55g (25% higher than the value of 0.44g recorded at channel 6), the
overall agreement between the spectra for the computed and recordéd motions 1is
excellent with respect to predominant period (about 0.56 second), peak spectral
;cceleration, and overall frequency content. It may alsc be noted that there
was almost no difference between the computed motions at nodal points 68 and
57, 30 feet apart at the crest. The same excellent agreement between the
recorded and observed motions was found in comparing the spectra for the
computed motions at nodal points 98 and 103 with that for the motion recorded
at channel 9 on the downstream face, Based on these comparisons, it may be
concluded that the use of the dynamic properties indicated in Table 4 provides
excellent agreement with the observed motions in ﬁhe 2-D response analysis.
Thus, values of (Kz)max of 60 for the compacted fill (gravelly sand with
sufficient fines), 90 for the dumped shell material {coarse sand and small
rock), and 120 for the streambed alluvium {gravel and sand) obtained from the
above back-calculation procedure are considered to be representative of the
dynamic properties of Long Valley Dam embankﬁent materials for 2-D response
analyses. It may be noted that these values are in good accord with typical
values for such materials, as summarized by Seed et al. (1984).

The distribution of computed peak accelerations in the main section of the
embankment, as determined by the 2-D analysis is shown in Fig. 26. It can be
seen that peak accelerations in the main section of the embankment increase

from the base to the crest of the dam and that the computed peak accelerations
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for the upstream face are comparable to those for the downstream face of the
dam. There is good agreement between the computed and recorded peak

accelerations at the mid point of the downstream face of the dam.

3-D Response Analysis for the Earthquake of May 27, 1980

The detailed measurement of 22 channels of earthquake motions at the dam
site and the significant 3-D configuration of the embankment, provide an
excellent opportunity to study the applicability of the 3-D response analysis
procedure to predict the distribution of motions in an embankment and to
investigate the in-situ dynamic properties of the embankment materials in Long
Valley Dam.

Based on previous studies, it would be expected that the true in-situ
dynamic shear moduli which should be incorporated in a 3~D response analysis
would be somewhat lower than those used in the 2-D response analysis, as a
result of the stiffening effect resulting from the boundary constraint from the
steep canyon walls. However, as a preliminary trial, the same set of dynamic
properties for the embankment materials as those used for the 2-D response
analyses was used to compute the response of the embankment using the 3-D
response analysis program TLUSH.

The computed response spectra (SZ damping) determined in this analysis are
shown in Fig. 27. The response spectrum corresponding to nodal point 267
represents the computed response at the recording station for channel 6, which
is located near the mid-point of the crest of the dam (Fig. 14}. Similarly,
the recorded motion at channel 9, located on the downstream face, is
represented by the computed motion at nodal point 413. The computed response
at nodal point 270 was compared with the recorded accelerogram of channel 14,

which is symmetrically located just next to nedal point 270 in the model (Figs.
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13 and 14). The recorded motion of channel 4 was compared with the computed
motion at nodal point 271, which is close to the station of channel 4.

As can be seen from Fig., 27, there is generally good agreement between the
spectra for.the recorded and computed responses at channels 9, 14 and 4 with
respect to values of peak accelerations, predominant periods, and overall
frequency contents of the recorded motions. However the agreement between the
computed and recorded motions is not so good for channel 6. The somewhat
higher values of observed embankment response indicated by these computations
c¢an be attributed to the fact that the selected dynamic properties ((Kz)max =
60 for compacted earthfill, 90 for dumped shell material, and 120 for streambed
alluvium) are generally higher than would be expected to give good resultg in
3-D dynamié response analyses. |

Accordingly, a sét of slightly lower values of (Kz)max was adopted and the
3-D analysis was repeated. The response spectra for the computed motions in
this analysis are presented in Fig. 28, where they are again compared with the
spectra for the recorded motions. It may be seen that the use of these lower
values of dynamic moduli led to a significant improvement in the degree of
agreement between the computed and observed motions at channel 6, However no
significant improvement was achieved for the computed response of channel 9,
located on the downstream face of the dam. It is interesting to note that the
computed motions for nodal point 270 located near chanmel 14, had almost the
same peak accelerations as the recorded value. In addition, the computed peak
acceleration for nodal point 271 near channel 4 showed closer agreement with
the recorded motion than before. Generally speaking, the overall agreement
between the computed and recorded motions is quite good, although some

discrepancies still exist.
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It may be noted that a close examination of the computed acceleration
amplification functions (Fig. 29) in this analysis shows a very clear picture
of the distribution of natural frequencies of vibration of the embankment to
‘this earthquake shaking. For the three nodal points along the crest, the first
natural frequency of the embankment in this.earthquake is about 1.12 Hz; it may
also be seen that the higher modes of vibration of the dam are less important
for points near the center of the embankment whereas they contribute
significantly for points close to the abutments.

Since the embankment consists primarily of the compacted gravelly sand,
the computed response is only slightly affected by the properties of the shell
material and the foundation soils used in the dynamic response analyses. Thus
the critical properties are those of thercompacted gravelly sand at the induced
strain levels; for the motions developed by the earthquake of May 27, the
induced shear strains were about 1x10_1 percent on the average. The corres-
ponding values of the modulus stiffness coefficient K2 for the 3-D analysis
with (Kz)max = 50 for this material are shown in Fig. 30(a). Also shown in
this figure are the values of the modulus stiffness coefficient for this soil
determined by cyclic loading triaxial compression tests in the LADWP
laboratories during the seismic evaluation studiés before the earthquake
occurred. It may be seen that the laboratory-determined values of moduius
coefficient are in excellent agreement with those deduced from the embankment
response, indicating that meaningful values of soil moduli for use in dynamic
analyses can be determined from laboratory tests,

A similar comparison for values of damping for the gravelly sand is shown
in Fig. 30(b). It may be seen that in this case the agreement between
laboratory-determined values of damping ratio and those determined from

observations of response is not so good, with the laboratory values being
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soméwhat lower than those indicated by the dynamic response analyses.

A comparison between computed and recorded values of peak accelerations at
different points in the embankment is shown in Fig. 31, It may be seen that
the agreement is good but it seemed likely that it would be improved by a
further reduction in the values of the stiffness for the different soils.
Recently a new shear modulus attenuation curve for gravels has been suggested
by Seed et al. (1984). Therefore, the possible applicability of this new curve
for improving the results of the &ynamic response analysis of this dam to the

same earthquake will be investigated in the following section.

Reanalysis of 3-D Response for the Earthquake of May 27, 1980

Since the material comprising the main body of compacted fill for the
embankment contained about 23%Z of gravel sizes, 637 of sand sizes and 14%
fines, while the shell material varied from coarse sand to small rock, it is of
interest to investigate the computed response of the embankment to the same
earthquake with the different attenuation curve recently proposed by Seed et
al. for gravels.

The shear modulus attenuation curve for sands (Seed & Idriss, 1970)
has been widely used for granular materials in response calculations. In
engineering practice, this attenuation curve has alsc been coansidered
appropriate for most gravels, Mejia (1981) studied the dynamic response
of Oroville Dam, which was constructed mainly of gravelly material, and
he concluded that good results were obtained using this curve and the same
3-D analytical procedure as that described in the previous chapter. The
shear modulus reductionm curve for gravels recently published by Seed et al.
(1984) is shown in Fig. 32. 1t may be noted that the curve falls below the

curve for sands proposed by Seed and Idriss (1970). This suggests that
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the computed response might be lower if this curve was used to represent the
properties of the gravelly sand rather than the curve for sands.

Following the same 3-D analytical procedure and using the same set of
values gf (Kz)max, (100 for the foundation alluvium, 75 for the shell material
and 50 for the compacted fill) as before, the computed 3-D response spectra (5%
damping) at various points in the embankment are shown in Fig. 33, 1t may be
noted that the degree of agreement between the response spectra for the
computed and recorded motions was not improved significantly over that obtained
in the previous 3-D analysis using the‘shéar modulus attenuation curve for
sands. The computed peak acceleration and the peak spectral acceleration at
nodal point 267 were reduced to some extent, but the predominant period was
unchanged. There was no discernible change in the computed response at nodal
point 413, corresponding to the recording statiom at the mid-downstream face,
and surprisingly the computed responses at nodal points 270 and 271 were
somewhat higher than those obtained in the previous analysis,

The computed peak acceleration distribution in the embankment is shown in
Fig. 34. The overall values of the computed peak accelerations are lower than
those shown in Fig. 31 as a result of the use of the lower shear modulus
reduction curve. A comparison of the computed accelerations from the two
analyses, performed using different modulus attenuation curves, with the
recorded motions is shown in Table 5. A significant reduction in peak
acceleration was achieved by using the modulus attenuation curve for gravels
and the computed values were much closer to the recorded values, especially at
the midpoint of the crest,

Generally speaking, the agreement between computed and recorded motion
characteristics obtained in this analysis was not significantly better than

that obtained in the previous 3-D response analysis, possibly because the
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Table 5 Comparisons of the Computed and Recorded Peak Accelerations
with Different Modulus Attenuation Curves (5-27-1980 Eg.)

Locations Recorded Computed (1)%* Computed (2)**
(G) (G) (G)

Crest Center ' 0,44 0.63 0.51
(Channel 6) ' :

Crest (Right) 0.48 0.44 0.44
(Channel 14)

Crest (Left) 0.27 0.45 Q.44
(Channel 4)

Downstream (Mid.) 0.30 0.40 0.38
(Channel 9)

(1)* : Computed results using standard modulus attenuation curve for
sands (Seed and Idriss, 1970).

(2)** : Computed results using new modulus attenuation curve for gravels
(Seed et al., 1984),
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sand-size material is dominant in the determination of the dynamic shear modulil
for the Long Valley embankment material. However the results of this analysis
do show that a small change in the form of the modulus attenuation curve used
in the analysis can significantly affect the computed values of peak
accelerations.

On the basis of these results, it may be concluded that the set of values
of (Kz)max: 50 for the compacted fill, 75 for the shell material and 100 for
the foundation alluvium, together with the shear modulus attenuation curve for
sands best represent the in-situ dynamic properties of Long Valley embankment
materials under earthquake loading conditions and these values are in good

agreement with values determined by laboratory tests on representative samples,

2-D Response Analysis to the Earthquake of May 25, 1980 (09:34 a.m.)

Previous studies (Lai, 1985) have showm that the applicability of the 2-D
response analysis procedure for the prediction of dynamic response of
embankment dams with complex geometries and 3-D configuratiénms is uncertain,
and accordingly, the corresponding dynamic properties to be used in such
analyses may be significantly different from the actual properties, Thus, it
is interesting to check if the dynamic properties obtained from the previous
2-D dynamic analysis are able to predict the dynamic response of the embankment
to other earthquakes.

Examination of the other available accelercgrams recorded at the
Long Valley damsite (Table 1) indicates that the recorded data for the
earthquake of May 25, 1980 at 09:34 a.m. are probably the best with regard
to the integrity of the recording channels (22 channels) and the comparison
of acceleration amplifiration functions with those for the earthquake

motions recorded on May 27. Thus, this set of recorded data was used to
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check the applicability of the modulus values determined by the 2-D analysis
procedure. The corresponding peak transverse and longitudinal accelerations
recorded in the embankment for the earthquake of May 25, at 09:34 a.m, are
shown in Fig. 35.

The response spectra (5% damping) for the motions recorded at chanmels lI,
6, and 9, corresponding to stations on bedrock at the downstream toe, on the
downstream face, and on the crest near the center of the dam are shown in Fig.
36. The recorded motions in bedrock show significant high frequency components
but the spectra for channel stations 6 and 9 show a predominant period of about
0.55 secon&, which presumably indicates the fundamental period of the dam.

Fig. 37 shows the response spectra for the recorded motions at channel
stations 1, 11, and 17 (transverse components), which are all located on rock
on the left abutment. It may be noted again that the recorded motions at
channel 1 (bedrock near the toe) and 11 (bedrock on the left abutment at the
elevation of the crest) are quite similar and can be considered identical from
an analytical point of view. The recorded motion for channel 17 (rock outcrop
above the crest elevation) shows significantly different frequency contents and
a much higher amplitude of motions, Good agreement is also observed in the
recorded response spectra for channels 3 and 12 (longitudinal components) at
-the stations on rock at the toe of the dam and at crest elevation.

A 2-D dynamic analysis was performed using the same dynamic shear moduli
and damping characteriétics for the embankment materials, as those determined
from the previous 2-D analysis: ((szax = 60 for compacted fill, 90 for dumped
rockfill, and 120 for streambed alluvium)., The response spectra for the
computed motions in this study are presented in Fig. 38. Fairly good agreement

was obtained between the characteristics of the computed and recorded motions
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at stations for channel 6 on the c¢rest and channel 9 én the downstream face of
the embankment.

The computed peak accelerations at nodal points 57 and 68 at the erest of
the dam are very close to the recorded peak acceleration for channel 6, located
on the crest of the dam. A significant spectral peak at a period of 0.8 second
is found in the computed response and the recorded motion has very little
frequency content at this periodl However the overall frequency content seems
to be in reasonably good agreement with that for the recorded motions.

For the selected dynamic soil properties, the computed peak acceleration
distribution in the embankment determined by the 2-D response analysis is shown
in Fig. 39. The results are in good agreement with the observed peak

accelerations.

Conclusions

A comprehensive set of data on the seismic performance of the Lomng Valley
Dam has been provided by the California Strong Motion Instrumentation Program
during the Mammoth Lakes earthquake series from May 25 to 27, 1980. In this
investigation, 2-D and 3-D dynamic analysis procedures were used to check the
applicability of the equivalent-linear complex-response method to predict the
seismiﬁ response of the dam which has a complicated 3-D configuration. 2-D
dynamic analyses were performed to study the dynamic respounse during the
earthquakes of May 27 and May 25 (at 09:34 a.m.). However because of the good
results obtained only the seismic event of May 27 was used in the 3-D response
analysis,

In order to investigate the suitability of a new shear modulus attenuation
curve for the Loung Valley embankment materials, another 3-D response analysis

was also carried out to determine the dynamic response of the embankment using
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the new shear modulus attenuation.curve and the same values of (Kz)max as in
the previous 3-D analysis,

The dynamic properties of the embankment materials which provide the best
agreemenf between the computed and recorded motions in the variocus analyses
were determined; the results of these determinations are summarized in Table 6,
The values determined are in good agreement with values determined by
laboratory fests (report of LADWP) on the soil before the earthquakes.

Other important conclusions drawn from the above investigafions are listed
below:

(1) The recorded seismic performance of Long Valley Dam to the earthquake

of May 27, 1980 has been successfully simulated by 2-D and 3-D
response analyses using appropriate combinations of the values of
dynamic shear modulus coefficient (Kz)max in the analyses.

(2) A set of dynamic soil properties, (Kz)max = 50 for the compacted
earthfill (gravelly sand with fines), (Kz)max = 75 for the dumped
shell material (sluiced coarse sand, gravel and small rock), and
(Kz)max = 100 for the streambed alluvium (gravels and sands), were
determined from the 3-D dynamic analysis and considered to be best
representative of the in-situ dynamic soil properties of Long Valley
Dam embankment materials to earthquake shaking.

(3) Good agreement between computed and observed response was obtained
using slightly higher values of dynamic moduli in a 2-D dynamic
analysis of the dam, as follows: (Kz)max = 60 for compacted
earthfill, (Kz)max = 90 for dumped shell material, and (Kz)max = 120
for streambed alluyviym. The same property values which gave good

results for the earthquake of 5-27-1980 also gave fairly good






Table 6 Summary of Results of Analytical Studies for Long Valley Dam

2-D Analysis

Values of (K2)max
Earthquake Compacted Dumped Streambed
Fill Rockfill Alluvium
May 27, 1980 60 90 120
May 25, 1980 60 90 120
(09:34 a.m.)
3-D Analysis
Values of (K2)max
Earthquake Compacted Dumped Streambed
Fill Rockfill Alluvium
May 27, 1980 50 75 100
May 27, 1980 50% 75% 100%*

*

Comments

Excellent agreement with
recorded motions at two recording
stations in the main section.

Fairly good agreement with

recorded motions at two recording
stations in the main section,

Comments

Very good agreement with recorded
motlons at four recording stations
throughout the entire embankment,

Fair agreement with the recorded
motions at four recording stationms,
but excellent agreement with peak
acceleration values at four
recording stations.

Using the new shear modulus reduction curve for gravels (Seed et al., 1984),
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agfeement between computed and recorded moti;ns for the earthquake of
May 25, 1980 at 09:34 a.m.

(4) The new shear modulus attenuation curve, proposed for gravel material
by Seed et al. (1984), leads to better estimates of peak accelera-
tions for Long Valley Dam but poorer overall motion characteristies
compared with those obtained using a modulus attenuation curve
developed from tests on sands. This may be so because the main
embankment material for Long Valiey Dam consists mainly of sand

containing only a little gravel.
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