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DYNAMIC RESPONSE OF LONG VALLEY DAM IN THE--- ------MAMMOTH LAKE EARTHQUAKE SERIES OF MAY 25-27, 1980

by
S.s. Lai l and H. Bolton Seed2

Introduction

In recent years much attention has been given to methods of analyzing the

response of earth dams and earth embankments to earthquake shaking. However

the applicability of these analytical procedures can only be evaluated when the

results are compared with the observed response of prototype structures during

actual earthquakes or carefully conducted experimental observations of the

response of small-scale structures. An excellent· opportunity to check the

accuracy of dynamic analysis procedures for determining the seismic response of

embankment dams has recently been provided by the excellent data recorded on

the Long Valley Dam during the Mammoth Lakes earthquake series of May 25 to 27,

1980. A study of response prediction procedures for this embankment provides a

unique opportunity to evaluate the suitability of analytical methods for future

applications.

Long Valley Dam, shown in Fig. 1, which retains Lake Crowley Reservoir, is

located in Mono County, California, about 22 miles northwest of the City of

Bishop and approximately 240 miles north of the City of Los Angeles.

Construction of the dam was started in the late 1930's and completed in

September 1941. The dam is supported on bedrock and has a maximum height of

126 feet above the original streambed elevation; it has a crest length of about

600 ft. The reservoir has a capacity of about 183,470 acre feet.

The dam is essentially a homogeneous section dam, with the main compacted

fill consisting of sand and gravel with sufficient fines to produce a

permeability somewhat less than 7xl0-
6

em/sec, and with outer shells consisting

lSenior Staff Engineer, Woodward-Clyde Consultants, Santa Ana, CA.
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FIG. 1 LONG VALLEY DAM
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of dumped-sluiced small rock and coarse fines, see Fig. 2. A 10 feet thick

layer of rock rip-rap was placed to protect the upstream face of the dam. A

subdrain system with longitudinal and transverse drains was provided in the

downstream shell to reduce the seepage and saturation problems at the toe of

the embankment.

As can be seen from the plan view of the dam (Fig. 3), the upstream

geometry of the dam shows a significant concavity from the surrounding

abutments and the crest to the bottom and center of the upstream face of the

embankment. The outer shells of the embankment have slopes of 3:1 on both

upstream and downstream faces; the central compacted earth fill has slopes of

2:1. A side-discharge type spillway structure, 94 feet in length, together

with a 10-1/2 feet diameter spillway channel, which served as the diversion

tunnel during the construction of the main embankment, are located in the left

abutment.

An excellent set of surveillance facilities was installed at the dam site,

consisting of seepage measurement devices, observation wells, deformation and

settlement indicators, and seismoscopes. The phreatic surface in the

embankment, as determined from the observation wells, is relatively high, as

shown in Fig. 1. Although the quantity of flow is as high as 5 cfs, little

dissolved or suspended solids were found in the observed seepage flow.

The geological profile of the dam along the crest shows that the dam ~s

founded on a rhyolite tuff overlying volcanic ash, which is a part of the

Bishop Tuff formation, and the depth of the tuff varies up to a maximum of 750

feet. The construction records show that the streambed alluvium material was

removed under the main body of the dam prior to the construction of the

embankment, and the dam rests on a firm tuff bedrock foundation.

In order to improve the watertightness of the foundation rock, a minimum
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of 2 inches of gunite was applied to the contact area between the compacted

core and the abutments. In addition, blanket grouting, with grout holes at

5 ft spacing and 50 ft deep, was used in the upper parts of the abutment walls

and some very deep grout holes were installed under the main body of the

embankment.

The material used for the compacted earthfill was a well-graded silty and

gravelly sand consisting of about 23% gravel sizes, 63% sand sizes, and 14%

fines. The fill was placed in layers 6-in thick using a sheepsfoot roller,

with a minimum of 16 passes. It was placed at a water content about 2% wet of

optimum, and it was compacted to a degree of compaction of about 93% based on

the Modified AASHO Compaction Test.

The pervious material in the outer shells of the embankment came from the

excavated streambed gravels and/or stripped rock material from the abutments.

The material was dumped in place in layers about 6 ft thick and then sluiced

thoroughly. Following placement, the pervious section was ponded to saturate

and densify the material.

Performance of Long Valley ~n the Mammoth Lakes Earthquake Series During the

Period May 25 E£ .ll..z. 1980

Long Valley Dam is situated ~n a very active seismic area. As can be seen

from the generalized geological map (Fig. 4), the dam site is bounded by

several major faults. The Sierra Frontal fault system (Sierra Front and Hilton

Creek Faults), about five miles from the dam, is believed to be capable of

generating a maximum credible earthquake of magnitude about 8.3, with a

duration of about 60 seconds and peak horizontal accelerations of about 0.6g at

the dam site. In addition, a maximum credible earthquake of magnitude 8.5 is
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also considered possible on the Owens Valley Fault, about 15 miles from the dam

(Lindvall-Richter, 1980).

Because of the high seismicity of the area, Long Valley Dam was selected

by the State of California Strong Motion Instrumentation Program for

comprehensive instrumentation to investigate the dynamic response of dams to

strong earthquake shaking. Accordingly 22 strong motion accelerographs were

installed on the dam and in adjacent areas by this program. The distribution

of these accelerographs is shown in Fig. 5. The locations were chosen to

investigate the spatial variations of motions across the valley as well as from

bedrock to the crest of the embankment, including the possible effects of

topographic irregularities and the different stiffness characteristics of the

materials comprising the embankment and the walls of the valley.

An excellent record of the seismic response and performance of the dam has

been provided through the acceleration data recorded during the Mammoth Lakes

earthquake series during the period May 25 to 27, 1980. The earthquakes in

this series were located on the Hilton Creek Fault in the Mammoth Lakes area,

which passes within a few miles west of the dam site. The focal depths of the

earthquakes ranged from 2 to 14 kms. The earthquake series had the following

magnitudes:

May 25:

May 26:

May 27:

M = 6.2 (09:34 a.m.); M = 5.9 (09:49 a.m.)

M 6.3 (12:45 p.m.); M 5.6 (13:36 p.m.)

M 5.0; M = 5.3 (11:58 a.m.); M = 6.0

M = 6.2 (07:51 a.m.)

Following the earthquakes, rockfalls and landslides were observed and several

surface cracks occurred in the embankment. Cracks were also found ~n the

roadway between the contact of the dam and its north abutment, but no
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significant damage to the dam was detected because of the shallow depths of the

cracks.

Although the dam suffered no significant damage during the earthquake

series, following the earthquake of May 27 water was observed to flow out of

the soil just downstream of the toe of the dam and continue to flow for several

minutes after the earthquake shaking stopped. In this region, the materials

were dumped and loosely compacted. It is interesting to note that even a

moderate earthquake (magnitude = 6.2) with peak accelerations of about 0.2g ~n

bedrock could cause the materials to decrease in volume and develop excess pore

pressures sufficient to cause liquefaction and expulsion of water.

It is also interesting to note that following the earthquakes the flow in

the toe drains increased from 200 to 460 gpm but the water remained clear; also

in the spillway channel drain, where water flows into the tunnel through the

weep holes and narrow cracks, the flow increased from 310 gpm to 790 gpm after

the earthquakes. The flows of these drainage systems have become stable and

they have remained at the higher level since the earthquakes occurred. The

increased flow indicates some slight loosening of the structures of pervious

materials and the abutments, but no significant settlement and movement were

recorded after the earthquakes.

Characteristics of Recorded Accelerograms of the 1980 Mammoth Lakes Earthquake

Series

Among the earthquake motions recorded at the dam site during the period

May 25 to 27, 1980, five sets of recorded accelerograms, with up to 22 channels

of recorded accelerations for each earthquake, have been processed. The

recorded peak accelerations at the 22 instrument locations are shown ~n

Table 1. In order to throw more light on the characteristics of the earthquake
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Location

Mid. Slope

Mid. Slope

Bedrock

(H)

(V)

Trace
No.

9

10

0.19

0.17

0.11

0.16

0.10

0.10

0.30

0.20

Location

865 'Dwn. Strm.(H)
L. Abutment (H)
L. Abutment (H)

865 'Dwu. Strm.(L)
L. Abutment (L)
L. Abutment (L)

865 'Dwu. Strm.(V)
L. Abutment (V)
L. Abutment (V)

Trace
No.

11 0.07 0.06 0.04
1 0.08 0.08 0.06

17 0.27 0.19 0.14

12 0.10 0.11 0.08
3 0.12 0.08 0.10

19 0.38 0.37 0.30

13 0.08 0.07 0.07
2 0.10 0.07 0.05

18 0.12 0.11 0.13

0.18
0.20

0.07 0.35

0.21
0.21

0.11 0.83

0.09
0.11

0.03 0.29

Note: H - Horizontal comp.; L - Longitudinal comp.; V - Vertical compo
All records were instrument-corrected and bandpass-filtered.
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motions recorded at the dam site for this earthquake series, the peak

horizontal and longitudinal accelerations recorded in bedrock, corresponding to

the stations at the toe, on the abutment at crest elevation, and at the station

above the crest of the embankment are also tabulated in Table 2. It may be

seen that in each earthquake the peak horizontal and longitudinal accelerations

at the stations located on rock at the toe and at the crest elevation of the

dam were generally similar but the peak accelerations recorded on rock at the

station above the crest were much higher. Thus, a complicated wave propagation

phenomenon in the upper rock formation at the dam site is clearly apparent.

As can be seen from Table 1, the earthquake of May 27 induced very high

accelerations in the embankment. In addition, it is interesting to note that

the earthquake of May 27 (magnitude = 6.2 and focal depth ~ 8.8 miles) produced

much higher recorded peak accelerations in bedrock than those recorded during

the earthquake of May 25, at 09:34 a.m. (magnitude = 6.2 and focal depth ~ 5.6

miles) although the two earthquakes had comparable magnitudes and epicentral

distances. The motions recorded at the stations on rock during these two

earthquakes are shown in Figs. 6(a) and 6(b). However the two earthquakes of

May 25, (at 09:34 a.m. and at 12:45 p.m.) showed quite similar peak

acceleration patterns for corresponding points on bedrock as shown in Figs.

7(a) and 7(b). It is clear from these records that earthquake motions in

bedrock are determined not only by the earthquake magnitude and the distance of

the energy source but also by other factors such as bedrock formations, local

site characteristics, wave types and travel paths, etc.

The event on May 27 caused the most severe motions at the dam site and

this event was considered especially significant because of the detailed

instrumentation of the project and the extremely high peak longitudinal





Table 2 Peak Accelerations in Rock

at the Toe of the Dam
Station on the Abutment
at the Crest Elevation

Station on the Abutment
above the Crest Elevation

Earthquakes

5/25/1980
(09:34 a.m.)

5/25/1980
(12:45 p.m.)

5/25/1980
(13:36 p.m.)

5/26/1980

5/27/1980

Long.

0.10 g

0.11 g

0.08 g

0.21 g

Trans.

0.07 g

0.06 g

0.04 g

0.18 g

Long.

0.12 g

0.08 g

0.10 g

0.21 g

Trans.

0.08 g

0.08 g

0.06 g

0.20 g

Long.

0.38 g

0.37 g

0.30 g

0.11 g

0.83 g

Trans.

0.27 g

0.19 g

0.14 g

0.07 g

0.35 g

Note: Long.

Trans.

Longitudinal Accelerations

Transverse Accelerations f-'
W
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FIG. 6(a) PEAK ACCELERATIONS (G) IN ROCK FOR THE EARTHQUAKE OF 5-27-1980
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FIG. 6(b) PEAK ACCELERATIONS (G) IN ROCK FOR THE EARTHQUAKE OF 5-25-1980
AT 09:34 A.M.
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acceleration of about O.83g which was recorded on a rock outcrop above the left

abutment (Fig. 6(a)).

Since only the transverse components of the recorded earthquake motions

are generally considered in a response analysis, it is interesting to examine

the distribution of the peak horizontal accelerations, normal to the axis of

the dam, recorded at the dam site for all five earthquakes. Values of these

accelerations are shown in Fig. 8. An examination of the peak horizontal

accelerations recorded for channel 6, located near the center of the crest of

the embankment, and channel 11, situated on bedrock downstream, shows

amplification factors of about 2.2 to 3.1 for all the recorded earthquakes. It

may also be noted that there is· almost no difference between the recorded peak

horizontal accelerations for channels 6 and 20 (both located near the center of

the crest) for all five earthquakes.

An important assumption of the analytical procedures generally used to

compute the seismic response of embankment dams is that the dam is constructed

on a rigid base, and all points on the rigid boundary have the same motion and

move ~n phase. To throw some light on the validity of this assumption a

comparison was made of the time histories and acceleration response spectra (5%

damping) recorded on rock at the toe of the embankment, on rock on the abutment

at the crest elevation of the embankment and on a rock surface above the crest

of the embankment, for the earthquake of May 27, 1980 (see Figs. 9 and 10). It

is clear that the recorded motions of channell, located on bedrock near the

downstream toe, have very similar characteristics to those of channel 11,

located on the left abutment. On the other hand, the recorded motions of

channel 17, located on a rock outcrop above the left abutment and not far away

from the location of channel 1, were much higher, both in terms of peak

acceleration and response spectral ordinates, than those of the motions





5/25/1980 EQ. 0.15 0.23 0.22 0.14 0.08 0.27(09:34 a.m.)
5/25/1980 EQ. ---- 0.12 0.13 0.11 0.08 0.19(12:45 p.m.)
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recorded at channels 1 and 11. The same phenomenon was observed in a

comparison of the recorded peak longitudinal accelerations for channels 3, 12

and 19 (Figs. 11 and'12) at the same locations for the same earthquake.

It would appear from these results and similar observations from the other

earthquakes (Figs. 6(b), 7(a) and 7(b)) that the motions in rock at elevations

below the crest of the embankment were generally similar but that important

amplifications occurred in the rock formations at higher elevations, possibly

due to topographic effects.

Finite Element Models

Since the coupling effects between the components of the recorded motions

are not likely to be significant, only the transverse components of the

recorded accelerations were considered ~n this study. Due to the very complex

geometry existing ~n the upstream part of the embankment (concave configuration

toward the bottom of the valley), it was considered desirable to simplify the

model geometry to some extent in order to reduce the computational effort.

Thus, a modified maximum cross section (Fig. 13), which leveled off the

upstream face of the embankment and extended both the upstream and downstream

faces all the way down to bedrock, was adopted in the analyses; it was believed

that no significant errors would be introduced by this simplification.

Because the crest length to height ratio, L/H, is about 3:1, it was

considered necessary to perform a 3-D dynamic analysis. For 3-D response

analyses with input motions in the transverse direction, it is also convenient

to choose a geometrical model which is symmetrical about the maximum section of

the dam; this selection makes it possible to use only half of the complete

embankment in the analyses. From previous experience it was considered

desirable to use 12 sections across the valley to simulate the variation of
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motions ~n the longitudinal direction. Based on these considerations, a 3-D

finite element model, which represents only half of the embankment, was used ~n

the dynamic response analyses. The model consists of 512 eight-node

isoparametric solid elements, 582 nodal points (458 free nodal points with

three translational degrees of freedom at each node), and 6 discretized

sections across the valley (Fig. 14). Three materials were modeled in the

analyses; compacted earthfill (gravelly sand with fines), shell material

(coarse fines and small rock), and streambed alluvium (sand and gravel).

2-D response analyses were also performed. The finite element model for

the 2-D analyses was chosen to be the same as that for the main section of the

dam in the 3-D studies. Based on considerations with regard to mesh size

requirements, a model with 129 solid elements and 142 nodes (117 free nodes)

was constructed for use ~n the 2-D dynamic analyses (Fig. 15).

Initial Static Stress Analysis

A knowledge of the initial static stresses in the embankment is necessary

to assess the dynamic shear moduli of granular materials such as sands,

gravels, and rockfill for use in dynamic response analyses. To determine these

stresses a 2-D plane strain analysis was carried out, using the computer

program FEADAM, to determine the stress distribution throughout the main

section of the dam, and then the stresses in the main section were projected

horizontally to each cross-section along the dam axis. The static soil

parameters used ~n the analysis are presented in Table 3. The seepage forces

were considered ~n the analysis by using the computer program SEEP.

The contours of the computed effective major and minor principal stresses

~n the main section of the embankment are shown in Figs. 16(a) and 16(b). The

contours are generally parallel to the slopes of the embankment except in the

lower portion of the central region of the embankment; such distributions of
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Table 3 Soil Parameters for Initial Static Stress Analysis (Long Valley Dam)

Compacted Compacted Shell Shell Streambed
Parameter Symbol Fill Fill Material Material Gravels

(Dry) (Sat. ) (Dry) (Sat. ) (Sat.)

Unit Weight (pcf) r 130 144 124 140 147

Modulus Number K 600 600 600 600 600

Elastic Unloading K 1200 1200 1200 1200 1200
Modulus Number ur

Modulus Exponent n 0.25 0.25 0.40 0.40 0.41

Failure Ratio Rf
0.70 0.70 0.70 0.70 0.68

Bulk Modulus Number ~ 450 450 175 175 170

Bulk Modulus Exponent m 0.10 0.10 0.20 0.20 0.21

Friction Angle CPo 44 44 50 50 48

Decrease in Friction L'1¢ 8. 8. 7. 7. 9.
Angle

Earth Pressure K 0.36 0.36 0.31 0.31 0.30
Coefficient

0

N
........
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effective principal stresses are quite common 1n earth dams. It is convenient

to adopt an average value of the principal stress ratio, 03'/01' (ratio of

effective minor principal stress to effective major principal stress), which 1S

representative of the overall stress state within the embankment, in order to

avoid possible numerical difficulties 1n discretizations and mathematical

assumptions for the computational model. For Long Valley Dam a value of the

stress ratio, °
3
'/°

1
', of about 0.42 was obtained by averaging the individual

stress ratio in each element of the embankment.

Due to the lack of information on the intermediate principal stresses,

°2', a value of 02' = 0.6°1' was assigned to this stress. Thus, values of the

effective mean principal stress, om', were determined to be 0.68 °
1
'. The

stresses throughout the embankment were obtained by projecting the stresses 1n

the main section of the dam horizontally to the other sections across the

valley.

Dynamic Response Analysis

Because only the transverse accelerations were considered in the dynamic

analyses, and the recorded motions at channel 11, located on bedrock near the

downstream toe, were very similar to those recorded at channel 1, located on

rock on the left abutment, the recorded motions at channel 11 were used as the

input motions for the dynamic response analyses. The equivalent-linear

complex-response method was employed to compute the response. The computed

motions in the analytical model were compared with the motions recorded at the

stations corresponding to channels 9, 6 and 14.

For the ma1n study, the motions for the earthquake of 5-27-1980 were used

because this event caused the most severe response of the embankment. The

recorded peak accelerations in the embankment and abutment walls for this
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earthquake are shown in Fig. 17. Since 2-D dynamic response analyses can

provide useful information about the dynamic response of an embankment prior to

performing 3-D dynamic analyses, 2-D analyses were carried out in addition to

the 3-D analyses.

Dynamic response analyses were made using the programs FLUSH (Lysmer et

al., 1975) for the 2-D analyses and TLUSH (Kagawa et al., 1981) for the 3-D

analyses. Representative dynamic material properties for the embankment soils

were determined by determining the response which best matched the recorded

motions by varying the material properties used in the computations. The

dynamic soil properties used in the computations. The dynamic soil properties

obtained from the first 2-D analysis were used to compute the response of the

embankment to the earthquake of 5/25/1980, at 09:34 a.m. However, no further

attempt was made to check the applicability of the dynamic soil properties

obtained in the 3-D response analysis to other earthquakes because previous

studies (Lai, 1985) had indicated that the 3-D analytical technique is quite

capable of predicting the dynamic response of embankment dams with very

complicated 3-D configurations provided good selections of the dynamic

properties are made.

2-D Response Analysis for the Earthquake of May ~ 1980

Four accelerograms (channels 4, 6, 20, and 14) recorded at the crest of

the dam together with one record (channel 9) on the downstream face were

processed and used as the recorded motions to be compared with the computed

results from the analytical procedures described above. The recorded

accelerogram at channel 11, which is located on rock near the downstream toe of

the embankment, was used as the input motion at the base of the analytical

models.
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One way to check the quality of the recorded motions ~s to compare the

response spectra for the motions recorded at channels 6 and 20, which are

situated next to each other on the crest of the dam. The spectra for these two

motions are shown in Fig. 18. It is apparent that there is no significant

difference in these response spectra. Thus, it seems reasonable to conclude

that the recorded accelerograms are quite consistent and the quality of the

instrumentation at the dam site is reliable. As a result, only the

accelerogram of channel 6 was used to represent the recorded motions at the

center of the crest of the dam in the comparative studies.

Fig. 19 shows the recorded time histories in the main section of the

embankment for channels 11, 9, and 6, corresponding to the stations on bedrock

at the downstream toe, on the downstream face, and at the center of the crest

respectively. The peak accelerations are 0.18g on the base rock, 0.3g at the

mid point of the downstream face, and 0.44g at the crest. The records show

that the peak accelerations of the recorded motions occurred at essentially the

same absolute time on all records (about 5.0 seconds after the start of the

recording). Futhermore the acceleration in bedrock was gradually amplified at

the upper elevations of the embankment (e.g. at the downstream face and the

crest of the dam). The corresponding 5% damped response spectra are shown in

Fig. 20. As can be seen from the response spectra, there was little response

for periods lower than about 0.15 second (i.e. 6.6 Hz). Based on this

observation, it was concluded that the highest frequency used in the analyses

could be about 10.0 Hz without losing any significant accuracy in the results.

It is also interesting to note that the response spectra for all three

motions have very similar shapes. Unlike the case of El Infiernillo Dam, where

the predominant frequencies of the base motions were found to be significantly

lower than those of the crest motions, the predominant period of the base
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motion for Long Valley Dam was about 0.51 second while the motions at the

downstream face and on the crest both had a predominant period of about 0.58

second.

In order to provide a better understanding of the characteristics of the

accelerograms recorded at the dam site, the recorded time histories of the

motions for channels 1, 4, 6, and 14, corresponding to the stations along the

crest of the dam are shown ~n Fig. 21. Again, the peak accelerations for all

four channels occurred at approximately 5.0 seconds. The trend for the

recorded accelerations to increase from the abutments towards the center of the

dam can also be seen.

In the section on Finite Element Models it was noted that the gometrical

model was chosen in such a way that the model is symmetrical about the main

section of the embankment so that only half of the dam would need to be

considered in the response analyses. Based on this assumption, the recorded

motions at channels 4 and 14, which are located at similar locations in the

symmetrical model (Fig. 13) should have comparable accelerations with respect

to overall frequency content, predominant frequency, maximum acceleration, and

peak spectral accelerations. In Fig. 21 the accelerograms recorded at channels

4 and 14, are seen to exhibit quite similar patterns of acceleration-time

histories but the motion recorded at channel 14 had higher amplitudes of

overall acceleration than that recorded at channel 4. This phenomenon is also

clearly indicated by the response spectra for the recorded motions shown in

Fig. 22. The two spectra are quite similar in shape and differ only in the

magnitude of spectral accelerations. Although there is some difference ~n

these two recorded accelerograms, the use of a symmetrical model in the dynamic

analyses was still considered adequate for the present study. Therefore, the
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location of channel 14 was symmetrically projected to a position next to nodal

point 270 in the computational model (Fig. 14).

Dynamic Soil Properties

The dynamic properties of the soils in the embankment were characterized

~n the present study by means of the shear modulus and damping values proposed

by Seed et al. (1984). Thus the shear modulus, G, of the cohesionless soil at

any point was determined by the expression:

where

and

a' = the effective mean principle stress at the point
m

K2 = a soil modulus coefficient whose value varies with the strain

level induced in the soil and the grain-size distribution of

the soil involved; thus the maximum value of K2 for any soil,

designated (K2)max, is developed at a low strain level of the

-4
order of 10 %.

For sands and many other cohesionless soils it has been found that the value of

K2/(K2)max varies with strain as shown in Fig. 23 and this relationship ~s

often referred to as the standard modulus attenuation curve for sands.

A corresponding average damping curve for cohesionless soils, expressing

the damping ratio as a function of shear strain has also been proposed by the

same authors and this curve has been widely used for dynamic response analyses

of many earth structures and deposits. This relationship ~s shown in Fig. 24,

together with upper bound and lower bound values.

The relationships shown in Figs. 23 and 24 were adopted for this study.

By this means the dynamic stiffness of any given soil could be completely
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characterized by its assigned value of (K2)max. However in the dynamic

analyses the shear modulus varied with strain and with confining pressure

throughout the embankment in accordance with equation (1) above. Damping

ratios also varied throughout the embankment depending on the induced strain,

but relationships were varied to correspond either with the lower bound,

average or upper bound relationships shown in Fig. 24.

Analytical Studies

In this investigation analyses were made to determine the values of

(K
2

)max for the compacted fill (gravelly sand with fines), dumped shell

material (coarse sand and small rock) and streambed alluvium (sand and gravel)

which gave best agreement between the computed and observed response of the

embankment. The shear moduli for the embankment materials (mostly granular

materials) were determined from Equation 1 using values of effective mean

principal stress, am', of about 0.68 01' for each element.

For the 2-D plane strain dynamic analyses, it is only possible to compare

the computed response with the recorded performance at channel stations 6 and

9. Thus, the computed responses at nodal points 57 and 68 in Fig. 15 were

compared with the recorded accelerogram at channel 6, while the computed

responses at nodal points 98 and 103 was compared with the recorded motions of

channel 9. Several combinations of possible (K
2

)max values for the embankment

materials were tried to determine the best agreement between these motions.

The equivalent-linear computer program FLUSH was used to compute the

response. A cut-off frequency of 10 Hz was imposed on the response

computations. Table 4 shows a summary of the dynamic soil properties used in

the response analyses providing best agreement between computed and recorded

motions.





Table 4 Dynamic Properties for Response Analysis of Long Valley Dam

Parameter Compacted Fill
(Gravelly Sand)

Shell
(Coarse Material)

Alluvium
(Gravel & Sand)

(K2)max 60 (2D) 90 (2D) l20(2D)
50 (3D) 75 (3D) 100(3D)

Modulus Reduction* Mean Value Mean Value Mean Value
Curve

Damping** Mean Value Mean Value Mean Value
Curve

Poisson's Ratio 0.3 (Dry) 0.3 (Dry) 0.3 (Dry)
0.4 (Sat.) 0.4 (Sat.) 0.4 (Sat.)

Density (pef) 130 (Dry) 124 (Dry)
144 (Sat.) 140 (Sat.) 147 (Sat.)

Note: A cut-off frequency of about 10 Hz was used in the analyses.

* . Seed and Idriss shear modulus reduction curve (1970) for 2-D
and 3-D analyses; new shear modulus reduction curve for gravels
(Seed Private Communication) for the 3-D reanalysis.

** . Seed and Idriss damping curve (1970).
.p.
N
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The acceleration response spectra for the computed motions based on the

set of dynamic properties shown in Table 4 with values of (K2)max of 60 for the

compacted earthfill, 90 for the shell material, and 120 for the streambed

alluvium, are compared with the spectra for the recorded motions in Fig. 25.

Although the computed peak accelerations at nodal points 68 and 57 have a value

of about 0.5Sg (25% higher than the value of 0.44g recorded at channel 6), the

overall agreement between the spectra for the computed and recorded motions is

excellent with respect to predominant period (about 0.56 second), peak spectral

acceleration, and overall frequency content. It may also be noted that there

was almost no difference between the computed motions at nodal points 68 and

57, 30 feet apart at the crest. The same excellent agreement between the

recorded and observed motions was found in comparing the spectra for the

computed motions at nodal points 98 and 103 with that for the motion recorded

at channel 9 on the downstream face. Based on these comparisons, it may be

concluded that the use of the dynamic properties indicated in Table 4 provides

excellent agreement with the observed motions in the 2-D response analysis.

Thus, values of (K2)max of 60 for the compacted fill (gravelly sand with

sufficient fines), 90 for the dumped shell material (coarse sand and small

rock), and 120 for the streambed alluvium (gravel and sand) obtained from the

above back-calculation procedure are considered to be representative of the

dynamic properties of Long Valley Dam embankment materials for 2-D response

analyses. It may be noted that these values are ~n good accord with typical

values for such materials, as summarized by Seed et al. (1984).

The distribution of computed peak accelerations in the main section of the

embankment, as determined by the 2-D analysis is shown in Fig. 26. It can be

seen that peak accelerations in the main section of the embankment ~ncrease

from the base to the crest of the dam and that the computed peak accelerations
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for the upstream face are comparable to those for the downstream face of the

dam. There is good agreement between the computed and recorded peak

accelerations at the mid point of the. downstream face of the dam.

3-D Response Analysis for the Earthquake of May ~ 1980

The detailed measurement of 22 channels of earthquake motions at the dam

site and the significant 3-D configuration of the embankment, provide an

excellent opportunity to study the applicability of the 3-D response analysis

procedure to predict the distribution of motions ~n an embankment and to

investigate the in-situ dynamic properties of the embankment materials in Long

Valley Dam.

Based on previous studies, it would be expected that the true in-situ

dynamic shear moduli which should be incorporated in a 3-D response analysis

would be somewhat lower than those used in the 2-D response analysis, as a

result of the stiffening effect resulting from the boundary constraint from the

steep canyon walls. However, as a preliminary trial, the same set of dynamic

properties for the embankment materials as those used for the 2-D response

analyses was used to compute the response of the embankment using the 3-D

response analysis program TLUSH.

The computed response spectra (5% damping) determined in this analysis are

shown in Fig. 27. The response spectrum corresponding to nodal point 267

represents the computed response at the recording station for channel 6, which

is located near the mid-point of the crest of the dam (Fig. 14). Similarly,

the recorded motion at channel 9, located on the downstream face, ~s

represented by the computed motion at nodal point 413. The computed response

at nodal poi?t 270 was compared with the recorded accelerogram of channel 14,

which is symmetrically located just next to nodal point 270 in the model (Figs.





4.0
5% Damping Nodn1 Point H 267

4.e
5% Damping ____ Nodal Point # 413

A
C
C
E
L
E
R
A
T
I
o
N

,/

G

3.8

2.&

1.&

0.&

-- - -- CII: 6 A
e
c
E
L
E
R
A
T
:r
o
N

/

G

s.e

2.0

1.0

0.0

------ CII: 9

• I , i J
0.& e.s 1.9 1.6 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.S

A
C
C
E
L
E
R
A
T
I
o
N

,/

G

4.e

3.0

2.&

1.&

e.0

5% Damping

PERIOD - SEC

------ Nodal Point H 270

- - - - - - CII: 14

--- .... - ... -

A
e
c
E
L
E
R
A
T
1:
o
N

/

G

4.0

3.0

2.0

1.0

0.0

5% Damping

"ERIOD - SEC

Nodal Point N 271

------ CH:4

.- ... --

e.0 0.S 1.9 1.6 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

PERIOD - SEC PERIOD - SEC

FIG. 27 COMPUTED 3-D RESPONSE SPECTRA WITH (K2)max (FILL) = 60
(K2)max (SHELL) = 90
(K2)max (ALLUVIUM) = 120

~

'-J





48

13 and 14). The recorded motion of channel 4 was compared with the computed

motion at nodal point 271, which ~s close to the station of channel 4.

As can be seen from Fig. 27, there ~s generally good agreement between the

spectra for the recorded and computed responses at channels 9, 14 and 4 with

respect to values of peak accelerations, predominant periods,and overall

frequency contents of the recorded motions. However the agreement between the

computed and recorded motions is not so good for channel 6. The somewhat

higher values of observed embankment response indicated by these computations

can be attributed to the fact that the selected dynamic properties ((K
2

)max =

60 for compacted earthfill, 90 for dumped shell material, and 120 for streambed

alluvium) are generally higher than would be expected to give good results in

3-D dynamic response analyses.

Accordingly, a set of slightly lower values of (KZ)max was adopted and the

3-D analysis was repeated. The response spectra for the computed motions in

this analysis are presented in Fig. 28, where they are again compared with the

spectra for the recorded motions. It may be seen that the use of these lower

values of dynamic moduli led to a significant improvement in the degree of

agreement between the computed and observed motions at channel 6. However no

significant improvement was achieved for the computed response of channel 9,

located on the downstream face of the dam. It is interesting to note that the

computed motions for nodal point 270 located near channel 14, had almost the

same peak accelerations as the recorded value. In addition, the computed peak

acceleration for nodal point 271 near channel 4 showed closer agreement with

the recorded motion than before. Generally speaking, the overall agreement

between the computed and recorded motions is quite good, although some

discrepancies still exist.
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It may be noted that a close examination of the computed acceleration

amplification functions (Fig. 29) in this analysis shows a very clear picture

of the distribution of natural frequencies of vibration of the embankment to

"this earthquake shaking. For the three nodal points along the crest, the first

natural frequency of the embankment in this earthquake is about 1.12 Hz; it may

also be seen that the higher modes of vibration of the dam are less important

for points near the center of the embankment whereas they contribute

significantly for points close to the abutments.

Since the embankment consists primarily of the compacted gravelly sand,

the computed response is only slightly affected by the properties of the shell

material and the foundation soils used in the dynamic response analyses. Thus

the critical properties are those of the compacted gravelly sand at the induced

strain levels; for the motions developed by the earthquake of May 27, the

induced shear strains were about lxlO-1 percent on the average. The corres­

ponding values of the modulus stiffness coefficient K
2

for the 3-D analysis

with (K2)max = 50 for this material are shown in Fig. 30(a). Also shown Ln

this figure are the values of the modulus stiffness coefficient for this soil

determined by cyclic loading triaxial compression tests in the LADWP

laboratories during the seismic evaluation studies before the earthquake

occurred. It may be seen that the laboratory-determined values of modulus

coefficient are in excellent agreement with those deduced from the embankment

response, indicating that meaningful values of soil moduli for use in dynamic

analyses can be determined from laboratory tests.

A similar comparison for values of damping for the gravelly sand is shown

Ln Fig. 30(b). It may be seen that in this case the agreement between

laboratory-determined values of damping ratio and those determined from

observations of response is not so good, with the laboratory values being
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somewhat lower than those indicated by the dynamic response analyses.

A comparison between computed and recorded values of peak accelerations at

different points in the embankment is shown in Fig. 31. It may be seen that

the agreement is good but it seemed likely that it would be improved by a

further reduction in the values of the stiffness for the different soils.

Recently a new shear modulus attenuation curve for gravels has been suggested

by Seed et ale (1984). Therefore, the possible applicability of this new curve

for improving the results of the dynamic response analysis of this dam to the

same earthquake will be investigated in the following section.

Reanalysis of 3-D Response for the Earthquake of May ~ 1980

Since the material comprising the main body of compacted fill for the

embankment contained about 23% of gravel sizes, 63% of sand sizes and 14%

fines, while the shell material varied from coarse sand to small rock, it is of

interest to investigate the computed response of the embankment to the same

earthquake with the different attenuation curve recently proposed by Seed et

ale for gravels.

The shear modulus attenuation curve for sands (Seed & Idriss, 1970)

has been widely used for granular materials in response calculations. In

engineering practice, this attenuation curve has also been considered

appropriate for most gravels. Mejia (1981) studied the dynamic response

of Oroville Dam, which was constructed ~ainly of gravelly material, and

he concluded that good results were obtained using this curve and the same

3-D analytical procedure as that described in the previous chapter. The

shear modulus reduction curve for gravels recently published by Seed et ale

(1984) is shown in Fig. 32. It may be noted that the curve falls below the

curve for sands proposed by Seed and Idriss (1970). This suggests that
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the computed response might be lower if this curve was used to represent the

properties of the gravelly sand rather than the curve for sands.

Following the same 3-D analytical procedure and using the same set of

values of (K
2

)max, (100 for the foundation alluvium, 75 for the shell material

and 50 for the compacted fill) as before, the computed 3-D response spectra (5%

damping) at various points in the embankment are shown in Fig. 33. It may be

noted that the degree of agreement between the response spectra for the

computed and recorded motions was not improved significantly over that obtained

in the previous 3-D analysis using the shear modulus attenuation curve for

sands. The computed peak acceleration and the peak spectral acceleration at

nodal point 267 were reduced to some extent, but the predominant period was

unchanged. There was no discernible change in the computed response at nodal

point 413, corresponding to the recording station at the mid-downstream face,

and surprisingly the computed responses at nodal points 270 and 271 were

somewhat higher than those obtained in the previous analysis.

The computed peak acceleration distribution in the embankment ~s shown in

Fig. 34. The overall values of the computed peak accelerations are lower than

those shown in Fig. 31 as a result of the use of the lower shear modulus

reduction curve. A comparison of the computed accelerations from the two

analyses, performed using different modulus attenuation curves, with the

recorded motions is shown ~n Table 5. A significant reduction in peak

acceleration was achieved by using the modulus attenuation curve for gravels

and the computed values were much closer to the recorded values, especially at

the midpoint of the crest.

Generally speaking, the agreement between computed and recorded motion

characteristics obtained in this analysis was not significantly better than

that obtained in the previous 3-D response analysis, possibly because the
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Table 5 Comparisons of the Computed and Recorded Peak Accelerations
with Different Modulus Attenuation Curves (5-27-1980 Eg.)

59

Locations Recorded
(G)

Computed (1)*
(G)

Computed (2)**
(G)

Crest Center 0.44 0.63 0.51
(Channel 6)

Crest (Right) 0.48 0.44 0.44
(Channel 14)

Crest (Left) 0.27 0.45 0.44
(Channel 4)

Downstream (Mid.) 0.30 0.40 0.38
(Channel 9)

(1)* Computed results using standard modulus attenuation curve for
sands (Seed and Idriss, 1970).

(2)** Computed results using new modulus attenuation curve for gravels
(Seed et al., 1984).
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sand-size material is dominant 1n the determination of the dynamic shear moduli

for the Long Valley embankment material. However the results of this analysis

do show that a small change in the form of the modulus attenuation curve used

in the analysis can significantly affect the computed values of peak

accelerations.

On the basis of these results, it may be concluded that the set of values

of (K
2

)max: 50 for the compacted fill, 75 for the shell material and 100 for

the fo~ndation alluvium, together with the shear modulus attenuation curve for

sands best represent the in-situ dynamic properties of Long Valley embankment

materials under earthquake loading conditions and these values are in good

agreement with values determined by laboratory tests on representative samples.

2-D Response Analysis to the Earthquake of May ~ 1980 (09:34 a.m.)

Previous studies (Lai, 1985) have shown that the applicability of the 2-D

response analysis procedure for the prediction of dynamic response of

embankment dams with complex geometries and 3-D configurations is uncertain,

and accordingly, the corresponding dynamic properties to be used in such

analyses may be significantly different from the actual properties. Thus, it

1S interesting to check if the dynamic properties obtained from the previous

2-D dynamic analysis are able to predict the dynamic response of the embankment

to other earthquakes.

Examination of the other available accelerograms recorded at the

Long Valley damsite (Table 1) indicates that the recorded data for the

earthquake of May 25, 1980 at 09:34 a.m. are probably the best with regard

to the integrity of the recording channels (22 channels) and the comparison

of acceleration amplifiration functions with those for the earthquake

motions recorded on May 27. Thus, this set of recorded data was used to
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check the applicability of the modulus values determined by the 2-D analysis

procedure. The corresponding peak transverse and longitudinal accelerations

recorded ln the embankment for the earthquake of May 25, at 09:34 a.m. are

shown in Fig. 35.

The response spectra (5% damping) for the motions recorded at channels 11,

6, and 9, corresponding to stations on bedrock at the downstream toe, on the

downstream face, and on the crest near the center of the dam are shown in Fig.

36. The recorded motions in bedrock show significant high frequency components

but the spectra for channel stations 6 and 9 show a predominant period of about

0.55 second, which presumably indicates the fundamental period of the dam.

Fig. 37 shows the response spectra for the recorded motions at channel

stations 1, 11, and 17 (transverse components)", which are all located on rock

on the left abutment. It may be noted again that the recorded motions at

channel 1 (bedrock near the toe) and 11 (bedrock on the left abutment at the

elevation of the crest) are quite similar and can be considered identical from

an analytical point of view. The recorded motion for channel 17 (rock outcrop

above the crest elevation) shows significantly different frequency contents and

a much higher amplitude of motions. Good agreement is also observed in the

recorded response spectra for channels 3 and 12 (longitudinal components) at

the stations on rock at the toe of the dam and at crest elevation.

A 2-D dynamic analysis was performed using the same dynamic shear moduli

and damping characteristics for the embankment materials, as those determined

from the previous 2-D analysis: «KZmax = 60 for compacted fill, 90 for dumped

rockfill, and 120 for streambed alluvium). The response spectra for the

computed motions in this study are presented in Fig. 38. Fairly good agreement

was obtained between the characteristics of the computed and recorded motions
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at stations for channel 6 on the crest and channel 9 on the downstream face of

the embankment.

The computed peak accelerations at nodal points 57 and 68 at the crest of

the dam are very close to the recorded peak acceleration for channel 6, located

on the crest of the dam. A significant spectral peak at a period of 0.8 second

is found in the computed response and the recorded motion has very little

frequency content at this period. However the overall frequency content seems

to be in reasonably good agreement with that for the recorded motions.

For the selected dynamic soil properties, the computed peak acceleration

distribution in the embankment determined by the 2-D response analysis is shown

in Fig. 39. The results are in good agreement with the observed peak

accelerations.

Conclusions

A comprehensive set of data on the se~sm~c performance of the Long Valley

Dam has been provided by the California Strong Motion Instrumentation Program

during the Mammoth Lakes earthquake series from May 25 to 27, 1980. In this

investigation, 2-D and 3-D dynamic analysis procedures were used to check the

applicability of the equivalent-linear complex-response method to predict the

seismic response of the dam which has a complicated 3-D configuration. 2-D

dynamic analyses were performed to study the dynamic response during the

earthquakes of May 27 and May 25 (at 09:34 a.m.). However because of the good

results obtained only the seismic event of May 27 was used in the 3-D response

analysis.

In order to investigate the suitability of a new shear modulus attenuation

curve for the Long Valley embankment materials, another 3-D response analysis

was also carried out to determine the dynamic response' of the embankment using





(K2)max (Fill) a 60
(K2)max (Shell) m 90
(K2)max (Alluvium)= 120

*: Recorded Peak Acceleration

Accelerograph

Upstream Downstream

(0.19)·

0.~~0.15
.~. .......

0.07 '-Q.l1
.......

.......
........ .....

•0.07

•0.17
•0.12

(0.22)*

0~0~0.15
...... ,,,­

./,,-
",,"

./"" 0.12
~./---------..... .

0.08 0.07

(Maximum Base Acceleration a 0.07g)

FIG. 39 PEAK ACCELERATIONS IN MAXIMUM SECTION FROM 2-D ANALYSIS
TO THE EARTHQUAKE OF MAY 25. 1980 AT 09:34 A.M.

C]'I

"-J





68

the new shear modulus attenuation curve and the same values of (K
2

)max as in

the previous 3-D analysis~

The dynamic properties of the embankment materials which provide the best

agreement between the computed and recorded motions in the various analyses

were determined; the results of these determinations are summarized in Table 6.

The values determined are in good agreement with values determined by

laboratory tests (report of LADWP) on the soil before the earthquakes.

Other important conclusions drawn from the above investigations are listed

below:

(1) The recorded seismic performance of Long Valley Dam to the earthquake

of May 27, 1980 has been successfully simulated by 2-D and 3-D

response analyses using appropriate combinations of the values of

dynamic shear modulus coefficient (K2)max in the analyses.

(2) A set of dynamic soil properties, (K
2

)max = 50 for the compacted

earthfill (gravelly sand with fines), (KZ)max = 75 for the dumped

shell material (sluiced coarse sand, gravel and small rock), and

(Kz)max = 100 for the streambed alluvium (gravels and sands), were

determined from the 3-D dynamic analysis and considered to be best

representative of the in-situ dynamic soil properties of Long Valley

Dam embankment materials to earthquake shaking.

(3) Good agreement between computed and observed response was obtained

using slightly higher values of dynamic moduli in a 2-D dyn~mic

analysis of the dam, as follows: (K
2

)max = 60 for compacted

earthfill, (K
2

)max = 90 for dumped shell material, and (K2)max = 120

for streambed alluvium. The same property values which gave good

results for the earthquake of 5-27-1980 also gave fairly good





Table 6 Summary of Results of Analytical Studies for Long Valley Dam

2-D Analysis

Values of (K2)max

Earthquake

May 27, 1980

May 25, 1980
(09:34 a.m.)

Compacted
Fill

60

60

Dumped
Rockfill

90

90

Streambed
Alluvium

120

120

Comments

Excellent agreement with
recorded motions at two recording
stations in the main section.

Fairly good agreement with
recorded motions at two recording
stations in the main section.

3-D Analysis

Values of (K2)max

Earthquake

May 27, 1980

May 27, 1980

Compacted
Fill

50

50*

Dumped
Ro ckfi11

75

75*

Streambed
Alluvium

100

100*

Comments

Very good agreement with recorded
motions at four recording stations
throughout the entire embankment.

Fair agreement with the recorded
motions at four recording stations,
but excellent agreement with peak
acceleration values at four
recording stations.

*: Using the new shear modulus reduction curve for gravels (Seed et al., 1984). (J'I

~
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agreement between computed and recorded motions for the earthquake of

May 25, 1980 at 09:34 a.m.

(4) The new shear modulus attenuation curve, proposed for gravel material

by Seed et al. (1984), leads to better estimates of peak accelera­

tions for Long Valley Dam but poorer overall motion characteristics

compared with those obtained using a modulus attenuation curve

developed from tests on sands. This may be so because the main

embankment material for Long Valley Dam consists mainly of sand

containing only a little gravel.
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