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ABSTRACT

A structural optimization algorithm based upon an
optimality criteria approach is presented for
three-dimensional statically and dynamically loaded steel
and/or reinforced concrete structures. The theoretical
work is presented in terms of scaling, sensitivity
analyses, optimality criteria, and Lagrange mu;tiplier
determinafion. The structures can be subjected to a
combination of static and/or dynamic displacement and
stress, and natural frequency constraints. The dynamic
analyses are based upon the ATC-03 provisions or
multi-component response spectra modal analyses. Using the
algorithm presented, a computer program called ODRESB-3D
was developed for both analysis and design of building
systems. About 75 design examples are provided in this
report to illustrate the rapid convergence and the
practicality of the presented method as well as the effects
of ATC-03 provisions and multicomponent seismic input on
the optimal structural parameters. Several interesting
results are: 1) the optimal solutions resulting from
multi- and single component excitation can be quite
different and are affected by the relative location of the
mass and stiffness centers at each floor of a system, 2)
ATC-03 modal and equivalent lateral force procedures

produce similar stiffness distributions but different

ii



magnitudes for both regular and irregular structural
configurations, 3) ATC-03 stability function values are
much less than the upper bound value of 0.1 in the
provisions, and 4) the fundamental natural periods
obtained at the optimum are always greater than the
approximate building period, T,r as well as 1.2Ta, which is
the upper bound that is recommended to be used in
determining the lateral seismic forces as indicated in
ATC~3. A verification of the requirements in ATC-3 is

recommended.
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I. INTRODUCTION

In the past decade, a considerable amount of litera-
ture has been published in the area of optimum structural
design. - The increasing number of publications correspond
closely to the rapid demand for economical and reliable
structural design in virtually all fields of endeavor.
Optimum design has been extensively used in aircraft
structural engineering (1,2).

Various optimization techniques of linear, nonlinear,
and dynamic programming have been developed for different
types of static and dynamic structures (3,4,5). In
general most of the techniques have some limitations and
are best suited for certain classes of problems. The
technique based on energy distribution as optimality
criteria has been proven to be effective for large
structures in aerospace engineering (6,7,8). Recently,
Venkayya and Cheng (9), Cheng and Srifuengfung (10,11,12),
and Cheng (13) extended the optimization algorithm for
structures subjected to earthguake motiéns.

Previous studies of optimum seismic structural
design were mostly based on the linearization technigue
and static equivalent seismic forces for simple structures
and shear buildings (14,15). Cheng and Botkin (16,17)
studied the feasible direction technigue for the design
of +all buildings and large frameworks. This included

the geometric nonlinearity of P-4 effect. The technique



was also studied by Ray et al (18), Walker and Pister
(19), and Pister et al (20) for various optimal design
céses. Cheng and his associates further studied the
modern optimization technigue of optimality criteria for
various cost functions and nondeterministic structural
systems (21,22). All the published references including
these cited above are mainly for two dimensional struc-
tures.

Current design for three-dimensicnal seismic
structures are mostly based on analysis computer programs
for which one horizontal component of ground motion can
be applied in any direction of the structural plane. The
building codes do not indicate how the interactive earth-
quake components influence design parameters but only
specify in general that‘the lateral seismic forces are
assumed to act nonconcurrently in the direction of each
of the main axes of a structure. Cheng, among others,
studied the coupiing effect of horizontal and vertical
ground acceleration on plane structures {(23,24,25), and
he further investigated the effect of £hree—dimensional
parametric earthquake motions on space frameworks and
building systems (26,27,28). It was found that the
response behavior of both plane and space structures can
be significantly influenced by multicomponent earthguake
motions.

A study of available information concerning seismic

research activities around the world which appears in the
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"Proceedings of the World Conferences on Earthguake
Engineering," "Earthquake Prediction and Hazard Mitigation
Options for USGS and NSF Programs," and others (29,30,31)
indicates that the optimum design of three-dimensional
building systems subjected to an interaction of earthquake
moticns 1s important but not available. Thus the work of
optimum design of three-dimensional seismic structures was
undertaken and an automated design computer program was

developed for which the results are reported here.



IT. SCOPE OF INVESTIGATIONS AND RELATED RESEARCH WORK

The emphasis of the research may be briefly summa-
rized in the following six categories: 1) optimality
criteria, 2} sensitivity analyses, 3) structural elements
and models, 4) response spectra seismic forces, 5) ATC-03
seismic forces, and 6) critical structural parameters and

recommendations.

A. QPTIMALITY CRITERIA

The development of optimality criteria methcods (1)
in the early 70's may be considered as a great contribu-
tion in the field of engineering optimization. It pro-
vides major improvements over other optimizaticn methods
currently in vogue. The significant advantage of the
method is that the number of iterations regquired for
convergence to an optimum {(or psuedo-optimum) design is
largely independent of the number of design variables
which is, in fact, the downfall of pure mathematical
programming techniques (4,16,i8¥. For many single con-
straint optimization problems, the optimization principle
may be simply stated as: the cptimum structure is one in
which the average strain energy density when combined
with the kinetic energy density is the same for all of
the constituent members. Most publicaticons define the
multiple constraint optimality criteria in simple terms
based on an approximation of the energy density
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calculations (8,10). The current project has extended
the state-of-the-art of the optimization algorithm for
multiple constraints.

Recursion relationships provide a means of using
numerical procedures to resize the structural members
based upon the aforementioned cptimality principile.

The early work indicated that the combined strain and
kinetic energy densities could become gquite inconsistent
for individual members (13). This inconsisténcy has been
eliminated, and the resizing procedures are now gulte

reliable.

B. SENSITIVITY ANALYSES

The optimality criteria approach to optimization is
heavily dependent upon the accurate calculation of the
constraint gradients. These Jgradients are determined
numerically using several different methods. Within
cptimality criteria methods the virtual load technique
is prevalent, whereas, the pseudo-load technigue is
used within most mathematical programming approaches
(32,33). Also, certalin types of constraint gradients
are best handled through direct equations developed from
differentiation of their structural response egquations.

The majority of computing effort is concentrated in
the determination of these gradients, therefore, these
techniques were studied and modified in order to make

the best use of the three-dimensional analysis package,



The work presented uses all three numerical procedures
in order to find the constraint gradients. Depending on
the type of constraint, an approcach was chesen which
would provide accurate gradients with the least compu-

tational effort.

C. STRUCTURAL ELEMENTS AND MODELS

The structural elements énd models used were based
upon the analysis package taken from INRESB-3D (34).

This computer program was initially developed as a three
dimensional, inelastic analysis program with time-step
dynamic capabilities. The static, elastic analysis
porticn of the program, as well as the element types
were used in the development of the presented work.

The structural elements can be dividéd into two
categories: steel elements and concrete elements. There
are three tvpes ¢f steel elements: the beam-~-column,
the beam, and the brace: and there are two types of
reinforced-concrete elements: the beam-column and the
flexural panel. Each element type has its own set of
allowable local degrees of freedom which are dictated
by the structural model used.

The structural model used within INRESB-3D was
developed with computational efficiency as its goal.

Each structure uses a rigid (in plane) slab system in
order to represent the planar response with thfee degrees

of freedom. The slab is assumed to be flexible in the
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out of pléne directions in order to allow vertical
deflections at each structural node. A reduced stiffness
matrix is found by condensing the rotational degrees of
freedom at each structural node, and this reduced stiff-
ness matrix is used in order to reduce the required
computer storage.

Therefore, each structure can be represented with
three degrees of freedom in the plane of each floor and
a vertical degree of freedom at each structural node.
This model provides a means of studying three-dimensional
structures subjected to a variety of loadings including

multi-component ground motions.

D. RESPONSE SPECTRA SEISMIC FORCES

The time-step dynamic analysis within INRESB-3D was
replaced with an elastic, modal response spectra algorithm.
Optimization of structural systems within the time domain
is not needed, since it becomes computationally inefficient
and expensive. The work presented is intended to provide
a means of producing preliminary designs -which do not
require the precision of the time step analysis.

The response spectra analysis was developed speci-
fically for multi-component excitations. The computer
algorithm allows the use of three different response
spectra for each seismic analysis which allows both
translational degrees of freedom and the vertical degrees
of freedom to be excited through the use of their own

7



response spectfa. Torsional ground motions were not

considered.

E. ATC-03 SEISMIC FORCES

The ATC-03 (35) provisions provide two approaches
for seismic analysis, the equivalent lateral force tech-
nique and the modal analysis approach. Both approaches
are based upon finding a value for the base shear and
distributing this total shear to the different levels.
These seismic forces are developed from a two-dimensional
representation of the structure for each of two orthogonal
directions, as implied by the provisions. The forces for
the two directions are then combined according to the
ATC-03 provisions with 100 percent of the principal
direction forces and 30 percent of the orthogonal direc-
tion forces. In addition a torsiocnal force must be
applied which is based upon a 5 percent (of the base
dimension) acciden@al eccentricity with respect to the
mass center. These forces are then applied as static
lcocads. The optimization is also treated as a static

optimization problem.

F. CRITICAL PARAMETERS AND RECOMMENDATIONS

Optimization provides a consistent means of studying
and comparing the effects of different structural-related
parameters. The results and recommendations presented in

Chapters IX and X are based upon studies performed for
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several of these structural-related parameters. In
addition the effects of several optimization-related
parameters are discussed.

The major objective of the work was to create a
three-dimensional structural optimization program which
could be used to study the effects of structural-related
parameters. In the broadest sense, the aigorithm includes
several analysis. capabilities including static, medal
analysis and the ATC-03 analysis procedures. Within each
type of analysis several parameters have been studied such
as: types of constraints, combinations of constraints,
objective functions, combinations of elements, structural
plans, and structural elevations. Specifically, the modal
ana%ysis was used to étudy multi-component excitations,
and the ATC-03 érovisions were used to study the effects
of ATC-03 parameters sucﬁ as: soil profile, geographic
lcoccation, plan and vertical irregularities, ATC-03 sta-
bility function, and ATC-03 analysis techniques. Each
example 1s discussed iIn detail with a brief summary of
the important observations within each example. These
Observaticns are then used to make recommendation based

upon the results and discussions presented.



III. STRUCTURAL ELEMENTS

ODRESB-3D (Optimum Design of 3-Dimensional Reinforced-
Concrete and Steel Buildings) 1is a computer program de-
veloped for this work. ODRESB-3D has‘the options of
either optimizing or simply analyzing three-dimensional
structures comprised of five different\types of eleﬁents.
These elements are based upon the analytical features of
INRESB-3D. Each type of element 1s characterized by its
local degrees of freedom, primary and seccndary design
variables, construction material, and orientation. The
five types of elements can be classified as steel beam-
columns, beams and braces as well as reinforced-concrete

beam-columns (shear walls) and flexural panels.

A, STEEL ELEMENTS

The- steel element cross-sections can be regular
shapes (rectangular, tubular, or circular) cor irregular
shapes such as I-sections. The wide-flange cross-sections
are the most useful in structural desién for beams and
beam columns, whereas the braces can be considered as
single or decuble angles or rods.

The beam-columns are allowed twelve local degrees
of freedom. Each element has three transiaticnal and
three rotational degrees of freedom at each node as
shown in Figure 1. Therefore, the analysis requires

each beam-column to be represented by six geometric,
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cross—-sectional properties: the major-axis, minor-axis,
and torsional moments cf inertia, major-axis and minor-
axis section modulii, and the cross-sectional area.

The beams are allowed six elemental degrees of
freedom. Each beam has one degree of translaticn and
two degrees of rotation at each node as shown in Figure
1. Therefore, the analysis requires each beam tc be
représénted by three geometric properties: the major-
axis moment of inertia, section modulus, and the
torsional moment of inertia.

The steel braces have two degrees of freedom.

Each element node 1s allowed to displace along the axis
of the member as shown in Figure 1. Therefore, the
cross—-secticnal area is the only geometric property

required to represent a brace.

B. REINFORCED-CONCRETE ELEMENTS

The concrete elements are based upon the following
assumptions. The elements must be rectangular (or sguare)
with a fixed depth, h. The stéel must pe equally distri-
buted along the major and minor axes with the amount of
steel based upon the chosen value of p, the percentage
of steel per the gross cross—sectioﬁal area. Also, the
cracking depth is based upon the theory of working stress
for bending about a single axis.

Both the concrete panels and beam-columns use the

same working stress theory in order tc determine their
12



cross-sectional properties (36). The panels have six
degrees of freedom while the beam-columns are allowed
twelve degrees of freedom as shown in Figure 2. Each
corner of the panel is allowed to translate in the verti-
cal direction, while the upper and lower faces of the
panel are allowed to rigidly displace in the horizontal
direction as sketched in the figure. This requires each
panel to be represented by three geometric properties:
the major-axis moment of inertia, the major;axis section
modulus, and the cross-sectional area. The reinforced-
concrete beam-columns have the same degrees of freedom
as the steel beam-columns and require the same six
geometric properties in order to represent the element.
The working stress mcodel is based upon the trans-
formed cross-sections shown in Figure 3. The transformed

cross-sectional properties can be derived as

_ L 3 _ Ay 2 _ 2.
IX = 3b(kd) + (n-1) As(kd da') + n As(d kd) {(3.1)
__;-_ T 3 - v, [1] 2 LI ] 2
Iy = 3h{kb Y7+ (n=-1) As(kb "y + n As(b kKb') (3.2)
At = b(kd}) + (n-1) AS + nAS (3.3)
wherea
AS = pbd (3.4)
d = Ph (3.5)
d' = (I-P)h (3.6)
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k = (p if ) (3.7)
C s
n = EJ/E, (3.8)

in which Es’ is Young's modulus for steel, Ec’ is Young's
modulus for concrete, fs’ is the working stress for steel

and, f is the working stress for concrete which pro-

o’
vides the follewing equaticn in terms of P, the percen-
tage of steel, P, the percentage of the depth to the

lumped steel, Kk, the percentage of the effective depth
for the cracked section based upon the position of the

lumped steel, n, the modular ratio, b, the variable

width, and h, the fixed depth as

I = bh* [%(kP)3 + (n=1)0P (P (k+1)=1)2 + npP> (1-k) 2]
(3.9)

I, = hb° [%(kp)3 + (n=1)pP (P (k+1)~1)2 + npP> (1-k) 2]
(3.10)

A_ = Pbh [k+2np-p] (3.11)

Note that the terms in the brackets are independent of
the dimensions of the cross-section, therefore greatly
simplifying the equations to a constant times the rela-
tionship between the depth and width. The assumptions

required by this formulation are: 1) uniform distribution
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of steel with respect to the major and mindr axes, 2) no
interaction with respect to the bending about both axes,
3) fixed depth with a variable width, and 4) no tensile
strength associated with the concrete. These assumptions
are somewhat restrictive, but do not hamper the use of

the elements within the optimization.

C. PRIMARY V5. SECONDARY DESIGN VARIABLES

Pure mathematical optimization of a structural
system would require each geometric property to be used
as a design variable. In other words, this procedure
would prefer to find the most efficient set of geocmetric
properties for each element which would optimize the
structural system while maintaining the structural
response within the given limits. Although this might
be the mest efficient system for the given objective
function, the set of gecmetric properties most likely
will not represent a cross-section which is realistic.
As an example, 1f the structure needed very little axial
strength in most of the columns vet neeaed considerable
bending resistance the optimization would produce columns
with a very small cross-sectional area and a very large
moment of inertia. As the optimization pushes these
properties to their extreme, it would be difficult to
find an appropriate wide-flange or reinforced-concrete

cross-section to satisfy both conditions. Also, in the

17



optimization process each design variable is an unknown
quantity, and just as in a structural problem a slight
increase in the number of unknowns (degrees of freedom)
can cause a much larger increase in computational efforts.
Because of these reasons, a model was developed for both
the steel and concrete elements which would allow each
element to be represented by one gecmetric property

called the primary design .variable., All other geometric
properties other than the primary design variable are
defined as secondary design variables. The model provides
a continucus relationship between the primary and secondary
design variables. Similar approcaches have been used for
regular shapes which produce an exact relationship between
the primary and secondary design variables (37), and for
irregular shapes using poiynomials as a psuedo-discrete
approximaticn (38).

The model developed produces an exact relationship
for regular shapes and the reinforced-concrete elements,
while providing an approximate relationship for steel
wide-flange sections. All eleﬁent typés except the braces
use the major-axis moment of inertia as their primary
design variables.. Whéreas, the brace uses its cross-—
sectional area. Each secondary design variable is

represented in this form

18



where Sij is the jth secondary design variable for the ith

element, Clj’ C2j’ and C3j are the appropriate constants,

and & is the ith element primary design variable, (i.e.,

the maijor-axis moment of inertia, etc.).

l. Regular Cross-sections. Several different

technigues can be used to determine the constants in
Egquation 3.12. For most regular cross=-sections such

as pipes, rectangular, and cilrcular shapes these constants
can be determined exactly. For example a rectangular
cross—section with a fixed ratio of depth to width of R
provides a set of equations for the minor-axis moment of

inertia and the cross—-sectional area as

_ 1
Iy = ;7 I, , | (3.13)
1/2 1/2
A = (L_ZR_) I, (3.14)
2. Steel Wide-flange Sections. The primary and

secondary design variables associated with steel wide-
flange sections are cf the psuedo—discréte variety. The
actual values are discrete but are approximated with a
continuocus spectrum of sizes.

The constants for the steel wide-flange elements were
determined in order to give an upper bound for each of the
secondary design variables. It is important to note that
these equations dc not provide a one to one correspondence

for the primary and secondary design variables with respect
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to a sPecificvwide-flange cross-section. In other words
the final values for these primary and‘secoﬁdary design
variables will not yield a specific wide-flange section
as found in the American Institute of Steel Construction
Manual (AISCM) (39). . Reasonable judgement cocupled with
the optimization information must be used in order to
select the appropriate wide-flange cross-section for
each element. The equations determined from the AISC

Manual for wide-flange shapes are

I, = 0.0389 r 0723 (3.15)
g = o0.0221 1 %8 | (3.16)
a = 0.5008 IXO'487 (3.17)
s, = 0.4s531 1 277" (3.18)
s, = 0.0423 p 0732 (3.19)
for IX < 1550 in4
I, = 0.0265 I_ + 20.47 (3.20)
3 = o0.0124 1 0997 (3.21)
A = 0.5008 1 °**87 (3.22)
sX = 0.0462 I_ + 78.46 (3.23)
SY = 0.0041 IX + 7.64 (3.24)
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for 1550 < IX < 12,100 in4

Iy = 0.0518 I_ + 159.1 {3.25)
g = o.0124 1070 (3.26)
A = o0.s5008 1 °%87 C(3.27)
S, = 0.0520 I_ + 56.00 | (3.28)
sy = 0.0076 I, + 0.566 | | (3.29)

for 12,100 in® < I

These equations were determined by plotting each
secondary design variable with respect to the primary
design variable on log-log paper where the slope of the
straight line representation becomes the constant C2j in
13 and C3j can -

be found from the coordinates of two points on the line

Equation 3.12 and the other twoc conhstants C

by solving two simultaneocus equations. The curves of

these equations are shown in Figures 4 to 8. If the

size of the elements 1s to correspond to a certain type

of wide-flange section, such as W36 or Wld, more exact

sets of equations can be derived for any subregion of the
avallable cross—-sections. These equations are best derived

using curve~fitting techniques.

3. Reinforced-concrete Sections. The reinforced-
concrete element egquaticons are based upon the working
stress model and should be considered as a means of

finding reasonable preliminary sizes. The form of the
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concrete equations is similar to that of Equation 3.12.
The equaticns are based upon the theoretical derivation

given in Equations 3.1 to 3.11 and are

IY = ;1—8'-157 IX (3.30)
_ 1 3
J = ;ggj IX + IX (3.31}
A = (P(k+2no-p)/b%D) I, (3.32)
1
- T {3.33)
AN hZD X

where IX is the major-axis mcment of inertia, AN, is‘the
gross concrete area, h, is the depth of the cross-section,
P, is the percentage of depth to the lumped tensile rein-
forcement, k, is the percentage of depth for the cracked
cross-section, n, is the modular ratioc, o, is the percen-
tage of steel, and D 1s a constant based on the given
properties. The equation for D 1is

D = (PK)>/3 + pP(n-1}(P(k+1)~1)2 + np p(l-k)°

(3.34)

Egquations 3.30 to 3.33 are derived by replacing the width
b with its eguivalent representation in terms of Ix as

derived from Equation 3.9.
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IV. STRUCTURAL MODEL AND ANALYSIS

A. ASSUMPTIONS AND MODELLING

Structural optimization is an iterative process
due to the nonlinear expréssions associated with the
structural response, the objective function, and the
design variables. It becomes important to generate a
structural model which will provide an efficient sclution
with a reasonable amount of computing time. Therefore,
using the elements as described previously and making
several appropriate assumptions, a structure can be
represented with a small number of global degrees of
freedom. |

1. ‘Global Degrees of Freedom. The characteristics

of the global degrees of freedom are consistent with the
local degrees of freedom for each of the elements pre-
viocusly described. For instance, each floor is assumed
to be rigid in its own plane, while being flexible in the
planes perpendicular tc the slab. This assumption is

why the beams are assumed not to deform axially or bend
about theilr minor axes. The rigid slab assumption (in
its cown plane) allows every floor toc be represented by
two translational and one rotational degree of freedom

in the norizontal plane. By allowing the floor to remain
flexible with respect to the vertical planes, each

structural node 1is allowed to displace vertically and
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to rotate about the two horizeontal axes as shown in
Figure 9. Eventually these rotational degrees of
freedom are eliminated through static condensation
.leaving each structure with a vertical degree of freedom
at each node along with two translational and one
rotational degree of freedom at each story as shown

in Figure 10. Therefore the total number of global

degrees of freedom is given by

D.O.F. = NC * NS + 3 * NS = N§ * (NC+3) {(4.1)

where NC, 1s the number of column lines, -and NS, is the
number of stories. These assumptions and the condensation
cause a large reduction in the amount of computer space
with respect to the analysis, but has some drawbacks with
respect teo the optimization procedures.

2. Second-order Effects. Second-order (P-delta)

effects are handled with two different approaches. The
static and response spectrum analyses use a separate
geometric stiffness matrix, while the ATC-03 analysis
uses a stability factor in order to adijust the structural
response. The ATC-03 stability factor and its general
approach will be discussed in Sectioh Iv.D.2.

The geometric stiffness is based upon the string
stiffness technique as shown in Figure 11. The string

stiffness technique assumes that the given column with
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Figure 9. Global Degrees of Freedom
per Floor Before Condensation

30



Figure 10. Global Degrees of Freedom per
Floor After Condensation
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Figure 11. String Stiffness Approach to
Second-order Effects
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axial force, P', creates a second-order moment equivalent
to the axial force multiplied by the drift, A. 1In order
to enforce equilibrium an additional shear of P'/L is
required, where L i1s the length of the flexible pcrtion
of the column. This term of P'/L is used to reduce the
lateral stiffness of structure, therefore increasing the
lateral deflections and increasing the internal moments.

The elemental geometric stiffness becomes

(4.2)

Note that Dy and DB are rigid zones at the.top and bottom
of the column respectively. These rigid zones are in-
cluded within the stiffness formulation although they
were not shown in the previous description of the columns.
This string stiffness is transformed and added directly
to the global stiffness which 1is used fér the static and
response spectrum analyses,

3., External Stiffness. The computer program also

has the option of adding external or nonstrﬁctural stiff-
ness to the structural stiffness. These externally
applied stiffnesses can be added to any one or combination
of the flcor degrees of freedom which act in the horizon-

tal planes of the floors as shown in Figure 12. Therefore,
33



Figure 12, Allowable External Stiffnesses
per Flcor
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the three-dimensional structures can be used to simulate
two-dimensional structures by eliminating any rotational
effects or by eliminating a translational component along
with the rotational component of the structural response.
These external stiffnesses are used when performing an
ATC~03 seismic analysis as explained in Section IV.D.2.

4. Structural Mass. When a dynamic analysis is

performed the structural mass matrix must be generated.

A lumped mass system is used where there is mass associated
with each of the global degrees of freedom. The analyses
use both structural and nonstructural mass. The non-
structural mass must be part of the input data, but the
structural mass is generated within the program. The
vertical masses are determined by summing the appropriate
amounts of the total mass.of each element connecting at
that node and the nedal nonstructural mass. In equation

form this becomes

m, + M&k ' (4.3)
where M, is the vertical nodal mass at node k, s is the
total mass of element‘j, n, is the total number of columns,
beams, and braces joining at node k, m;Z 1s the mass of
panel ¢ and p 1s the total number of panels joining at node
k, and Mék is the nonstructural vertical mass (input data)

at node k. Figure 13 shows how each type of element must
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be included in the vertical lumped mass. The translational
mass for each flcor is the sum of the vertical structural

masses and the total nonstructural mass which becomes

. = . . (4.
ka+MNl M + M (4.4)

Il 10

where MTi’ is the translational mass for level 1, g, is
the total number of structural nodés on level i, MSi’ is
the total structural mass for level i, and MNi' is the
total ncnstructural mass for level 1.

The rotational mass inertia is dependent upon the
distribution of the structural and nonstructural masses
on each ievel. The structural mass 1s assumed to be
lumped at each of the structural nodes as developed in
the first two terms of Equation 4.3, and the nonstructural
mass inertia is an input parameter. Therefore, the struc-

tural rotatory mass inertia is calculated within the

program with this formula

M = g M (x2 + Yz) = % M rz- {4.5)
SR1 k=1 vk Tk i k=1 vkTk
where MSRi i1s the structural, rotatory mass inertia for

level 1, X, and Yy r are the distances from the global
mass center along the x and vy axes for node k, and Xy is
the magnitude of the position vector between the global

mass center and node k. The rotatory inertia for the
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nonstructural mass can be found by classical techniques as

D%R=fr%m (4.6)

where MNR is the rotatory inertia, r, 1is the magnitude of
the position vector from the mass center to the differen-
tial mass dm. Generally, the nonstructural mass can be
assumed to be uniformly distributed over the floor which
makes Equation 4.6 easier to solve since dm can be con-
verted into a gecmetric property. Breaking each floor
plan into regular shapes the total nonstructural, rotatory
inertia can be found through a simple transformation which

is similar to the parallel axis theorem and is given by

e

] a2
“wri = I (Miretd My (4.7)

e

where 'Re is the rotatory inertia abcut element e's own
mass center (these elements are the divided shapes of a
floor plan), 4, is the distance between the global mass
center for level i and the masé center-for element e,
MNe’ is the total mass for element e, and ¢, 1s the total
number of shapes (elements) used to represent level i.
The derivation of Equation 4.7 is given in Appendix A.
For most structural plans the mass distribution can be

represented by rectangles and triangles. This non-

structural, rotatory inertia must be given as input data.
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Therefore, the total rotatory inertia about the global

mass center can be given as

Mpi = Mgri * Myri (4.8)

where MRi' represents the total rotatory inertia for level
i. There is no mass assoclated with the condensed rota-
tional degrees of freedom, therefore the mass matrix
becomes a diagonal matrix with an associated mass for

each glcbal degree of freedom.

B. STATIC ANALYSIS

The elastic, global stiffness is assembled through a
sequence of transformations. First the local degrees of
freedom are transformed to member-end deformations which
include the rigid zones effects. Secondly the member-end
deformations are transformed to frame displacements which
are located at a reference point which is a specific
column line. This column line and frame coordinate
system must be lccated such that the masg center 1s
located in the first guadrant of the reference coordinate
system. The last transformation 1s used to relocate the
frame coordinates to a global coordinate system located
at the mass center of each floor.

The transformations are handled at different stages

cf the analysis. The element stiffness is assembled
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and transformed from local deformations to member-end

deformations through this equation
K], = [TIZ[x_j[T] (4.9)
E E e E -

where [K]E is the member-end stiffness, [K_] is the
elastic-element stiffness, and [’I‘}E is the transformation
matrix which is element dependent. These element trans-
formations are given in Reference 40.
The transformation from member-end displacements
to reference coordinates 1s independent of the elements,.
This transformation converts all lcoccal degrees of freedom
into two translational and a rotational degrees of
freedom at the respective level. It has no effect on
the vertical displacements or rotations located in the
vertical planes as described earlier. This transformation
becomes
[K]

B T

E

where [K]Ef, is the element frame stiffness and {T]fE

is the transformation based on Figure 14 and given as
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- fg
(= =
s c a o0 0 0 UX
c s b 0 0 © Uf
E :
[T]fE<%:> = |0 0 1 0 0 0 <Ue? (4.11)
£
‘ 0 0 0 s =¢ O .BX
0 0 0 c¢ s 0 Sf
Y
0 o o0 0 o 1 Ug
|
— - J
where N~
a = -ys - XC
b = =yc + %8

c = cos @

s = gin 8

Once this transformation has been performed for each
element the stiffness for that level may be generated in

terms of the reference or frame coordinates as
o .
[K}f = i [K]Efi (4.12)

where [K]f represents the stiffness in terms of the
reference coordinates, and m signifies the total number
of elements at floor 1.

The last transformation required is to change the
reference coordinates to global coordinates located at
the mass center. This transformation is also element

independent and becomes

41



6,f
* MEMBER-
ny END Uy
f \9 m
\Je X
f UxF o Qxf
Uz
REFERENCE
Figure 1l4. Transformation from Local to

Reference Coordinates

42



_ T _ r O
[Klg = [TISIKIIT], = [Tlg (T [Kig..)IT],
i=1
o ™
- I IMglKlge ITlg (4.13)

where [T}G, is formed using the transformation, [A]n,

based upon Figure 15 and is given by

A, i
Tl = By (4.14)
A
n
where
) -
cosf sing {(-AycosB+AaxsinR)
[A]n = -sinp cosg (AxcosB+Aysing) (4.15)
0 0 1
L Jn

and n represents the number of levels. ﬁote that the
transformation, being element independent, can be applied
to each elemental reference stiffness or to the total
reference stiffness. This is important with respect to
the numerical techniques employed for gradient determina-

tions.
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The building systems considered are assumed to be
linear-elastic structures. This allows each structure

to be represented by the equation
{1 [Uu]l = [R] : (4.16)

where [K], represents the combined elastic stiffness and

geometric stiffness as
[K] = [KJG + {K]g (4.17)

{Ul, is the structural displacements, [R] is the matrix
of lcads, [K]G represents the global elastic stiffness,
and [K]g is the global geometric stiffness.

Within the analysis the rotational degrees of freedom
are eliminated prior to the solution of Egquation 4.16.

The static condensation can be performed prior to or

after the global transformation and can be derived as shown

f11 Koy |9 ol
(4.18)

far Fagf (%2 R

which forms the two equations
K, U, + K,,U, =R {(4.19)

45



and

211 2292 = Ry (4.20)

where Ul’ is the rotational degrees of freedom, U2, is

the vertical and lateral degrees of freedom, is the

Rl'
fixed end forces and R2, is the vertical and lateral
loads. Since Ul represents the rotational degrees of
freedom, they can be eliminated by solving Egquation

4.19 for Ul as

_ -l |
U = K ][Ry =K ,U,] (4.21)

1

and substituting Equation 4.21 into Equation 4.20 gives

K21 11[R “KyoUn) ¥ Ky,Uy = Ry (4.22)
Rearranging Equation 4.22 provides
-1 N
[Kyp=Ky Ky K ol U] = [Ry- KZlKllRl] (4.23)

-1 . )
where [K22 K21K11K12] represents the condensed stiffness
-1 ' .
and [R2—K22KllRl] are the condensed loads. Since each

level is only related to the levels above and below 1it,
the assembly and reduction of the stiffness is hanéled

story by story from the top to the bottom of the

46



structure {40). Back substitution is handled in the
same fashion story by story from the bottom to the tcp
of the structure.

The static load combinations are comprised of two
sets of independent lateral forces and four sets of
vertical forces. These six sets of forces can be com-
bined to form at most ten loadings. The lateral loads
consist of two orthogonal, concentrated loads for each
level., A specific point of application must be given
for each level and each set of lateral forces. The
four sets of vertical forces are composed of one set
of concentrated, vertical nodal loads and three sets
of uniformly distributed lcads. The vertical nodal
loads have independent magnitudes, but must be located
at a structural node producing axial loads on the columns.
Each uniformly distributed load has its own magnitude
and can be applied to any set of beams within a load
combination. These uniformly distributed loads are
considered to act along the length of the beams. Note
that these uniformly distributed loads a;e reduced to
their fixed-end forces which must be taken into account
during the condensation, (Rl in Eguation 4.21). A
variety of load combinations can be formed by applying
load factors to the varicus types of forces. The typical

formula woculd be
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Ly = ¥13Vy * YaiVa 7 ¥33Vs T gV F YsiRs T TeiRe

i

(4.24)
where Li' is the ith load combination, Yygr ecer Ygis
are the appropriate load factors, Vl’ ...,V4, are the

vertical forces, and, R5 and R6' are the lateral forces.

C. NATURAL FREQUENCIES AND MODE SHAPES

The natural frequencies and mode shapes are needed in
order to perform a modal analysis. Several points must be
considered when determining which technique to be used to
find the fregquencies and modes. The efficiency, the
flexibility, the accuracy, and programmability of the
technigue need to be considered when choosing an
eigenvalue solver.

The natural freguencies and mcdes of vibration are
the eigenvalues and eigenvectors associated with the
generalized eigenproblem. The standar@ eigenproblem

is cf the form
2
[K][e] = [o] [w”] (4.25)
whereas, the generalized eilgenproblem is of the form

(K1[e] = [M][e]lw] (4.26)
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or in modal form
2

o= - . 4.27

[K]{cb}J wj[M]{d)}j ( )

where [K] is the stiffness matrix, [¢] 1s the matrix of
columns which represent the eigenmodes, {¢}j the jth column
of [¢] or the jth eigenmode, [mzj, is the diagonal matrix
of the square of the natural fregquencies, m?; is the jth
row and jth column element of [m2] or the jth natural
frequency associated with the jth mode {¢}j, and [M] is
the mass matrix. The generalized eigenproblem becomes
the standard eigenproblem if the mass matrix 1s taken

as the identity matrix. Many methods for solving the
eigensystems have been developed and reported in the
literature.

Equations 4.25-4.27 suggest that the mode shape is
defined only as a direction in n-dimensional space. In
other words, the mode can be defined as having any mag-
nitude with that given direction. Within the analysis
presented the mode shapes are normalizedeith respect to

the mass giving the relaticnship

T | ) .
where éij is the Kronecker delta. Equation 4.28 is based
upon the orthecnormality of mode shapes which also provides

this relationship
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T 2
{¢}i[K]{¢}j = wiéij (4.29)

Equations 4.28 and 4.29 can be written as

[93T[M][0] = [I] (4.30)

and

2

li

(01T (K] 6] ] (4.31)

[w
These relationships are necessarily valid with respect to
eigenvalues and eigenvectors only if the [¢] matrix is of
dimension egqual to the total number of degrees of freedom,
It is important to note that the static condensation
shown in Eguation 4.23 has no effect on the eigenvalue
solutions as long as no mass 1s associated with the
condensed degrees of freedom. Partitioning Equation
4.27 provides

Kyo Kool f91 0 9 ¢

= W (4.32)

21 22 221 | 92

where {¢l} are the modal components associated with the

massless degrees of freedom and {¢,} are the modal
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components for the degrees of freedom with mass. Equation

4.32 provides the relationship

(91} = ~IK 17K ,1{8,] (4.33)

which can be substituted into Egquation 4.32 toc give

-1 B 2 .
[}KZZJ-IKZlJ[Kll] [Klzﬂ fo,) = wiMy51{0,) (4.34)

I3

oxr
[K]R{¢2} = wz[M22]{¢2} ' (4.35)

Unlike the static condensation, a further reduction is
impossible since the right-hand side of Egquation 4.35 is
not given explicitly. In the static condensation pre-
sented previously the effect of the explicitly given

lcads can be accounted for with respect to the uncondensed
degrees of freedom as shown in Equation %.23. As shown

in Equations 4.32-4.35, the accuracy of the natural fre-
quencies and modes 1is not affected by the condensation

but 1s dependent upon the distribution of the lumped

mass., The mass matrix used is a diagonal mass matrix
with the mass distributed as described in Section IV.A.4.
One problem asscciated with static condensation is related

tc the fact that, [K] the reduced stiffness matrix has

RI
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a larger bandwidth than the original stiffness. This
increases the computational effort required for the
solution of the natural frequencies and mode shapes.

Structural eigenvalue problems generally must be
solved through an iterative technique, since the solutiocn
involves finding the roots of a polynomial of ordexr
equivalent to the order of the stiffness and mass. The
iterative technigues can be grouped into £five categories:
1) poly-vector iteration methods, 2) transformatiQn
methods, 3) polynomial iteration methods, 4) Sturm segquence
property methods, and 5) combinations of the other four
categories. A transformation method called the general-
ized Jacobi method was used (41).

The transformation methods make use of the relation-
ships given in Eguations 4.30 and 4.31 which diagonalize
the stiffness and mass matrices. This diagonalization 1is
achieved by successively pre- and postmultiplying [K] and
[M] by transformation matrices [’l‘]n which are devised in
a manner to force [K] and [M] closer tc a diagonal form.

Therefore, the relationships become

T T T 2

(eIl o ITIGITITIRI OO [T], ..l D71, = [0%]  (4.36)
and

[TIL ... ITISITITIMIITIITI, ... 7] = [I] (4.37)
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where

[6] = {T]l[le “oo [T]n (4.38)
The expliéit.details of the generalized Jacobi method are
given in Appendix B. The advantages of this technigue

are 1) the eigenproblem need not be transformed to the
standard eigenproblem given in Equation 4.25 which is
advantageous when the matrices are ill-conditioned, that

is a possibility when considering the ATC-03 applied

loads, 2) all eigenvalues and eigenvectors are determined
(this can also be detrimental), and 3) it is simple in
theory and easily programmed. The ability to handle ill-
conditicned matrices was the primarvy reason for chcos-

ing this technique. A more effective technigque might be

to use one of the combination techniques such as the
subspace iteration methed (41) which uses the Jacobi
lteration as oﬁe step in its solution. This could possibly
be more effective due to the fact that it solves for any
number of the lowest natural frequencieé and mode shapes,
whereas Jacobl ilteration must solve for all eiligenvectors

and eigenvalues.

D. DYNAMIC ANALYSIS

1. Modal Analysis. The dynamic analysis is based

upon an elastic stiffness and lumped mass system. Both
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of these have been discussed in detail in Sections IV.B
and IV.A.4 respectively. The basic dynamic equation for

an earthgquake excited structure is
M]{U} + [C1{0} + [K1{0} = -DM){a} (4.39)

where [M], is the mass matrix, [C], is the damping matrix,
[K]l], is the stiffness matrix, {U}, 1is the relative dis-
placements vector, {é}, is the bhase acceleration vector,
and each * represents one differentiation with respect to
time. If the damping [C] is neglected and harmcnic
motion is assumed, Equaticn 4.39 produces the linear

eigenvalue problem
(K] [0] = [M] 18] [w°] (4.40)

which is used to find the natural frequencies and asso-
ciated mode shapes to be used within the following
dynamic analyses.

Response spectrum or spectral analyses have been
used with considerable success with respect to ecarthgquake
excitations of structures and structural components
(42,43,44). The advantage is clearly due ﬁo the removal
of the time dependence of Equation 4.39. The disadvantage

1s due to the conservative nature of the solution.
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Response spectrums are based upon the response of
a single degree of freedom system to a force which is
considered to be a series of impulse loadings. This
idea leads to Duhamel's integral with the form

t
Ult,w,B) = L‘/’ g(t)h(t-T1)drT (4.41)

W

where w, i1s the natural frequency, g, represents the base
acceleration (any one of the three components)}, U, 1s the
response of the structure, R, 1s the damping coefficient,

and

hit-t) = e Bol& T giny (-1 (4.,42)
The different response spectra are found by taking the
maximum value of the integral portion of Equation 4.41
and plotting that value with respect to u and 3. This
maximum value of the integral is called the pseudo-velocity
response which gives the maximum displacement as

S (4.43)

where

t
Sy 2{./; Q(T)h(t‘t)drjmax (4.44)
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the spectral displacement and spectral acceleration can be

given in terms of the spectral or psuedo-velocity as

_ 1
SD == SV (4.45)
and
Sa =-wSV : (4.46)

Since the response spectra are based on single degree of
freedom systems, the multi-degree of freedom structures
must be transformed into a series of single degree of
freedom structures.

This transformation is accomplished by using general-
ized coordinates. Generalized cecordinates make use of the

individual mode contributicons through this formula

{0} [o]1{P} - (4.47)

where

{P} = {pys Ppr +++ Py} (4.48)

are the generalized or normal coordinates. Substituting
Equation 4.47 into Equation 4.89 and premultiplying by the

transpose of mode shape j reduces Equation 4.39 to
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mj;j + cj;;j + kjpj = —{cb}jT[M] {é} (4.49)
which is a single degree of freedom system due to the fact
that pre- and postmultiplying [M], [€], and [K] by the mode
shape j provides diagonal matrices with only one element

at the (j,3) location. Therefore, a set of uncoupled
equations for single degree of freedom systems are formed
which represent the multi-degree of freedom system.

This transformation of the multi-degree of freedom
system to a set of single degree of freedom systems pro-
vides the means for using the response spectrum. Using
Equations 4.43 and 4.49 the maximum response in terms of

the generalized coordinates becomes

(o+T M) {q} (63T [M]
pj)max -7 jm. - —_E;GT__ {Svj}
j %35
£¢}’§ [M] :
e (4.50)
mM.wW .
3%

Note that Svj and Saj can have different components for
the two horizontal and vertical components. When the

mode shapes, {ﬁ}j, are normalized with respect to mass

Egquations 4.49 and 4.50 become
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. . 2 .m -
Py + ©4P5 + 3P {¢}j M1{q} (4.51)

and

Pi)max = " ——d {s_.} (4.52)

Referring to Equation 4.47 the actual displacements can be

written as
{u} = [@]{P}max (4.53)

which is considered to be conservative since these maxima
de not occur simultanecusly for all modes in the multi-
degree of freedom system. In order to reduce tﬁis con-
servative solution the sgquare roct of the sum of the
squares of the contributing modes can be used to find the
final displacements. The final dynamic displacements
take the form

n 5 1/2
{u} = o [Hel. (pj) ] (4.54)

j=1 3 max

where n is the number of contributing modes. These dis-
placements are then used to find the elastic member forces.
As mentioned previously three separate response

spectra can pbe used in the analysis; one for each
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direction of horizontal acceleration and one for the
vertical acceleration. The rotational degrees ofAfree&om
for each floor are assumed to be free of the dynamic
excitation.

The computer program regquires acceleration spectra
to be input as polynomials of the fourth degree or less.

These polynomials are of the form
s, (T)/a = ¢ (T-c) % + o (T-c)? + ¢
ay max 1 6 2 6

’ C4(T—C6) + C5 (4.55)

where Sy (T), 1s the acceleration response at pericd T in

k
the kth direction, CE. is the maximum ground accelera-
tion, and Cl,...,C6 are appropriate constants. The equa-

tions for the acceleration response spectrum shown in

Figure 16 are

2

(S /a ) = -26.14T° + 13.94T + 0.935 (4.56)
for T = 0.4 sec. and
(S /a__ ) = 0.1606(T-0.4)% - 1.141(T-0.4)° +
a’ "max ) ) * :

2.996 (T-0.4)° - 3.618(T=0.4) + 2.229

(4.57)
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for T > 0.4 sec. This form was chosen in order to provide
an adequate numerical representation of the spectrum and
to provide a simple technique for finding the slope of

the acceleration spectrum at a given period, which is
needed within the coptimization.

2. ATC-03 Analysis. The ATC-03 tentative provisions

(35) provide two options for determining the lateral
forces to be used for finding the seismic structural
response. The two approaches are called the equivalent
lateral force and modal analysis approaches. Both ap-
proaches assume the structures to be analyzed as two
dimensional structures. This requires two analyses for
each three-dimensional structure, one being in each of
the two orthogonal directions. In order to simulate a
two-dimensional system, a large external stiffness must
be applied with respect to the torsicnal and a transla-
tional degree of freedom at each level, while allowing
translation in one direction along with the vertical
displacements at each node. The ATC-03 also requires
that the principal direction of excitatian have a five
pefcent (of the base dimension) "accidental" eccentricity
from the mass center. The final design is based upon the
principal direction forces (including the eccentricity)
plus thirty percent of the orthogonal’direction forces.

The ATC-03 also requires these lcocad combinations
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l.2QD + l.OQL + l.OQS + l.OQE (4.58)
or
0.8Q, + 1.00, o (4.59)

where QD, is the dead load, QL’ is the live load, QS’ is
the snow load, and QE 1s the ATC-03 earthquake loads.

The equivalent lateral force technique is based upon
the weight distribution ccupled with the story height.

The base shear, V, and mth level lateral force, Fm’ are

given as

Vo= CgWn (4.60)
and

Fo = SV - (4.61)
where CS’ is the seismic desigﬁ coefficient which depends

on the soil conditions, bulilding site, fundamental period,
and response modification factors as given in the ATC-03
provisions, Wn, is the gravity load of the building, and
Cvm’ is the shear distribution factor ﬁor the mth level.

Com 1S given by this formula
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c = _ (4.62)

where w_ and w, are the portion of the weight assigned to
level m or i, hm and hi’ are the respective heights above
the base to level m or i, and k 1s an exponent related to
the building period (1 £ k < 2). The lateral forces given
in Equation 4.61 are used to find the displacements which
are used to determine the elastic member forces.

The ATC-03 modal analysis procedure is based upcon the
weilght distribution and mode shapes of the system being
considered. The base shear for mode 3, Vj, ;nd the mth

level lateral force for mode 73, ij, are given as
V. = C_.W, (4.63)
and

F . =C__ .V, (4.64)
mj vmj o J
where csj’ is the modal selismic design coefficient which
depends upon the soil conditions, building site,
fundamental period and response modification factor, W.,

J
is the effective modal gravity load determined as
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(4.65)

and Cvmj’ is the jth mode shear distribution factor for

the mth level which is given by

where ¢mj and ¢ij are the mth and ith level components of

the jth eigenvector, and Wm and W, are the portions of W

assigned to level m or i. The final design values for

base shear, story shears, and deflections are combined by

using the square root of the sum of the squares of each

modal wvalue.

The ATC-03 provisions have their own method for

including P-delta effects, called the stability coeffi-

cient, which is determined by using the formula

P.A
X

xhsxcd

where P is the total gravity load above level

the story drift, VX, is the seismic shear force

between levels x and x-1, hsx'

64

(4.67)

X, &, 1s

acting

is the story height below



level x, and, Cd’ is the deflection amplication factor.
If the stability coefficient is greater than one-tenth,
the story drift is to be multiplied by the factor (l+ad)

in order to take into account the second~-order effects.

The term aq is found by using the formula

ag = 8/(1-9) | (4.68)

which produces a P-delta factor for the drift of the form
fl = (1 + T:_) = 1/(1-9) (4.69)

The same factor is to be used for both ATC-03 analysis
procedures.

The lcad combinations for seismic excitations include
the static effects superimposed with the dynamic effects.
The superpcsition is allowed since the building systems
are assumed to remain in the elastic region. ATC-03
actually takes into account the inelastic effects through
their deflection amplification factors and their response
modificaticon factors, but the ATC-03 still allows direct
superposition as shown in Equations 4.58 and 4.59. The
possible lcad combinaticns are the same as those given in
Section IV.B for static analysis with the exception that
the lateral force responses are replaced with the seismic

responses. The only option this precludes is the case
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where wind or some other lateral force cannct be applied
simultaneously with a seismic load. This is a reasonable

assumption as evidenced by most seismic codes.
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V. STRUCTURAL OPTIMIZATION

Structural optimization can be defined as designing
and constructing a structure at the lowest cost, with the
objective of fulfilling a well-defined purpose. Research
termed as structural optimization must be defined in a
slightly different manner. In terms of structural
‘research, cptimization refers to the development and
applicafion of computer technigques for improving designs
with respect to a distinct objective while staving within
well-defined constraints. The objective can be the
weight, cost, reliability, or any combination of these
ideas. The constraints generally represent the struc-
tural response and member dimension limitations. No
matter what objective function or conséraints are bhosen,
the computer has become the means for finding a series of
feasible designs.

The intent of this chapter is to outline the dif-
ferent topics associated with structural optimization.
First, a general review of optimization theory will
include the mathematical statement, the Lagrangian func-
tion, and Ehe Kuhn-Tucker necessary conditions. These
concepts will then be applied to the structural system

previously described in order to develop an algorithm.
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A, MATHEMATICAL STATEMENT

The general form of every optimization problem, be
it structural or nonstructural, is the same. The mathe-

matical problem is stated as

minimize O(3§) (5.1)
subject to gj(ﬁ) <0 for 3 = 1,...,% (5.2)
éi < Gi < Si for i =1,...,n (5.3)

where 0(¢8), 1s the objective function, gj(é), are the

structural response constraints, éi and Ei, are the
minimum and maximum sizes for element i, %, 1s the number
of upper and lower bound constraints, n, is the total
number of structural elements, and éi’ is the primary

design variable for element 1i.

B. LAGRANGIAN

The Lagrangian incorporates the constraints and ob-
jective into a single function. The Lagrangian 1s written

as

L{&,A) = 0(8) +

Il 1=

SENG (5.4)

j=1

where Aj is the Lagrange multiplier associated with the

jth constraint. Mathematically, this formulation actually

requires the constraints to be converted into equality
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constraints. This does not require each constraint to
become active (reach its upper or lower limit) but it
removes the inequality associated with Equations 5.2 and

5.3.

C. KUHN-TUCKER CONDITIONS

The Lagrangian is used to derive the most important
theorem of structural optimization the Kuhn-Tucker

necessary conditions for an optimal scolution which are

given as
a%i (652" =0 i=1,...,n (5.5)
MR j = 1,...,2 (5.6)
gj(a*) 1’5:0 j o= 1,...,0 (5.7)

in which the * refers to a set of primary design'variables,
§, and Lagrange multipliers, A, which are associated with
an optimal sclution (33,45). These conditions are
necessary but not sufficlent conditions for a globally
optimal solution. The sufficient conditions of optimality
which are used in addition to the necessary conditions

can be found in Reference 45.
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D. OBJECTIVE FUNCTION

The objective function is the actual function to be
minimized such as cost or weight of the structures. The
objective function used in the computer program takes

the form
n
08y = L v. V. (5.8)

where Y is the appropriate constants of object value
per unit veolume for element i, Vi, is the volume cf ele-
ment i which is a function of the primary design variable,
and n, is the total number of structural elements. The
volume 1s related to the primary design variables through
Eéuation 3.12 giving the relationship

Caa

§ + Can) (5.9)

Vi(éi) = 2. A, = N T

i7i Qi(ClA

where ii, is the length of element i, C C and C

1a" T2a° 3a

are the appropriate constants for the area, Ai' of element
i. The constant s 1s most often used as the specific
welight or the cost per unit volume. The values for vy

used within the examples are given in each 0f the respective

examples. These values were determined from References 46

and 47.
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E. CONSTRAINTS

Constraints represent the restrictions that the
structural designer would like to impose while trying to
find the optimal structural system. These constraints
can be of several different types such as equality,
inequality, side or linkage constraints. The equality
constraints f£ind very little use in building systems
since they are generally used to enforce equilibrium and
compatibility which are already enforced due to the
stiffness formulation. The ilnequality constraints are
used to place limits on structural response such as
displacements, frequencies, stresses, and buckling loads.
Side constraints are also inequality constraints but are
generally not handled in the same mathematical manner as
the structural responses. These side constraints are
used to limit the size of the structural elements within
a practical range. The linkage constraints (called
linking) are used to force certain structural elements to
have primary design variables of the same size. Linking
is also handled in a different fashion than the inequality
constraints. In thecry any combination of these con-
straints can be applied to a structure, but numerically
this can be difficult. This is one area in which state-
of-art research is being applied. The work presented has
been performed with combinations of multiple constréints

with good results.
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F. OPTIMALITY CONDITIONS

The optimality criteria used in the optimization

algorithm is derived from the Kuhn-Tucker conditions.

Using Equations 5.4, 5.5, 5.6 and 5.7 the optimality
criteria becomes
5 ag.
aL _ 30 i o_ _ »
W—W+ _Z- A]n—'——‘o l-l,..-,n (5»10)
i i J=1 i
with
Aj >0 j=1,...,4 (5.11)
ljgj =0 jo=1,...,% (5.12)
Rearranging Eguation 5.10 gives
2 3q .
DDy 29 o i=1 n (5.13)
2 M ET LT rocy :
j=1 i i

which must be true along with Equations 5.11 and 5.12

when a locally or globally optimal solution is obtained.

Equations 5.8 and

AV
i

i 33,
1

3

O

O

3
b

5.9 provide

oA,

_ ER
=Yty wEo
1

2.C CL. 8

which allows Equation 5.13 to become
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i=1,.../n (5.15)

In the past structures composed of single design variable
elements, such as braces, have shown that the cptimality
criteria represents a condition where the virtual strain
energy densities become equi&alent for all members.
This idea cannot be supported by Equation 5.15 since the
stiffness matrix is not linear with respect to a single
type of design variable. This nonlinearity prochibits the
development of this concept for elements which must be
represented by primary and secon@ary design variables.
The optimality criteria shown in Equation 5.15 is
the basis used to derive a convergent algorithm. As an
optimal solution is approached the values of Ti’ for the
ith eleﬁent, will approach unity giving for an optimal

solution
T, =l izlr-~-/n (5.].6)

This value of Ti provides a measure of the solution at
that iteration. With this idea, 1t becomes logical to
use ’I'i as a measure to help resize the elements with the
use of recurrence relations. - The difficulty with using

the T, values 1s that they are dependent upon the Lagrange
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multipliers which are unknown, as well as, which con-
straints are to be considered active. If a reasonable
method for determining the Lagrange multipliers can be
found, they will help sort‘the active and nonactive
constraints by using Equation 5.11. Assuming the Lagrange
multipliers to be known, the resizing of the elements can
be handled through recursive relationships.

Side constraints, which limit the size of the struc-
tural elements, are handled in a different manner than
the constraints associated with the structural response.
Equation 5.10 requires only the optimality criteria for

those elements whose side constraints are non-active

providing
" ') ag .
agL = 3%9.+ T Aj 863 = 0 i=1, 1Dy (5.17)
i i i=1 i
and
Ti =1 i=1,.. 104 (5.18)

where ny represents the number of elements which are con-
sidered active (not at a maximum or minimum value) .

These passive elements (elements at a maximum or minimum
value) are forced to take the maximum or minimum value,
therefore the continuity required by the cptimality

criteria is no longer valid for these design variables.
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Linking of elements alsoc has an effect on Equation
5.10. Linking is used to force the primary design vari-
ables of several elements to have the same value which
implies that all of these elements can be represented by

one design variable. In matrix form this becomes

{6r = [a] {A} {5.19)

(nxl)

it

(nxm) (mx1)

in which {A} is the vector of m global design variables
required to represent the problem, [A], is the matrix of
zeros and ones which relates each éi for the ith element
to the appropriate global design variable, and {8} is the
vector of primary design variables for each element.
Equation 5.17 ig required for each active global design

variable and can be written as

2 3qg.
3L _ 30 j -
Er Y .E s =0 v = loee.ing (5.20)
v v j=1 v
but the b becomes
a3
S S
3L _ 3L 30 Lo 99y
s, - Eowe, T b teEst L ooey)
v i=1 i 1=1 1 =1 1
v o= l,...,n2 (5.21)
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where n, is the total number of active global design
variables, and s, is the number of elemental design
variables linked to Av. The total effect of the global
design variable is simply the sum of the effects of each
elemental design variable associated with that global
design variable. ©Note that a one to one correspondence
between the global'hnd elemental design variables (s=1)
causes Equation 5;21 to degenerate to Equation 5.10 for

the non-linking case.

G. RECURRENCE RELATIONS

Recurrence relations generally have been divided
into two categories. The first category regquires the use
of an exponential form {48). For any given design vari-
abple an exponential recurrence relation can be derived by
multiplying 61 to the rth power times Equation 5.16 and
taking the rth root to give

l/r

k+1) _ .k Co_
= Si(Ti)k i=1,...,n (5.22)

5

i
where k represents the values for tHe kth iteration.
Equation 5.22 can be rewritten as

K l/r

5 k1) 65 (Lr(T-1)) i=1,...,n (5.23)

1

The parameter r is a convergence control parameter or

step size which determines how large of a change will occur
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per element. The second category is to use a linear form
for recurrence. A linear form can be derived by multiply-

ing the optimality criteria in Equation 5.16 by éi(l—a) to

give
k+ :
s ) (1ew) = 6% (1-a T, i=1,...,n (5.24)
or
(k+1) _ :k .
) . . k+1 k . .
which ignores the change in Si and Si and' ¢ 1is called

a relaxation parameter. The value of o is used as the
convergence control parameter for these relationships
(32) . The most widely used approach for a linear form is
derived by writing the binomial expansion of Equation
5.23 and retaining only the linear terms giving

(1 + %(Ti-l)) i=1,...,n (5.26)

k

where the term (Tiﬂl) measures the error 1in the solution
at iteration k. Note that Egquation 5.25 and Equation

5.26 are related by

a = (1 - =) (5.27)
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The recurrence relationships given above need several
pieces of information prior to their use. The convergence
control parameters or relaxation parameters (r or o) must
be chosen, the constraint gradients must be found, and a
reasonable estimate of the Lagrange multipliers must be
determined. The convergence control parameter, r, can be
set equivalent to two for most applications. Certain
problems which are numerically sensitive might require a
larger value which in turn reduces the amount of change
in the element size per iteration. This increase is also
likely to increase the number of iterations for conver-
gence, but will produce a more stable history. The
gradients of the constraints and the determination of the
Lagrange multipliers will be discussed in the £ollowing

sections.

H. LAGRANGE MULTIPLIERS

Prior to using Equations 5.22 to 5.26 to resize the
primary design variables the Lagrange multipliers needed
for the optimal solution must be provided. Except for
the simplest of cases, the optimal Lagrange multipliers
can only be approximated. The recursive technigues
generally reguire an initial estimate which can be
difficult to assess, Other techniques can be devised in
order to find Lagrange multipliers which will satisfy the
optimality criteria as long as a set of probable active

constraints have been chosen. The Lagrange multiplier
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determination can be divided into two categories:
1) exponential recurrence relations or 2) linear equations
based upon linear recurrence relations. This process is
very important to the convergence, stability, and accuracy
of the solution.

The first category.of numerical techniques for
Lagrange multiplier determination is based upon the same
recurrence relationships in Equations .5.22 to 5.26,. If

the constraints are rewritten in two forms

. = L=
95 (uj j)

A
o
L.
il
l,__l
-
o

(5.28)

or

Q
Il

=
!
£

o
(]
i

1,...,2 (5.29)

where Equation 5.28 represents an upper limit constraint
with Ej being that upper limit and Eguation 5.29 repre-
sents a lower limit constraint with 4y being the lower
limit associated with structural response uj, and % is |
the number of constraints. These two relationships can be

written as
u._

D, = L <1 j=1,...,¢ (5.30)
u

or
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u.
D, = 51 <1 3= 1, 0.,0 (5.31)

If only active constraints are considered the inegualities
become strictly equalities. Only the active constraints
have non-zero Laérange multipliers as shown by Equations
5.11 and 5.12, Eqgquations 5.30 and 5.31 can be multiplied
by the Lagrange multiplier to the zth power and then

taking the zth root gives

A§k+l) - (Dj)l/z A? = 1,....0 (5.32)
Note that the first iteration requires an initial estimate
for K(l). Using the same approach as was used to find
Equations 5.23 and 5.26, the Lagrange multipliers can be
found using

x?*l = x? (1 + %(Dj_l)k Jo=1,...,8 (5.33)
which also requires an initial estimate for the Lagrange
multipliers.

The second category for finding the Lagrange multi-
pliers requires the use of the linear recurrence relation-
ships given in Equations 5.25 and 5.26. Using these
relationships provides a means for producing a set of
linear equations which can be solved for the Lagrange

multipliers. The change in the jth constraint can be
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written as

qj(5+A6)-qj(6) = (5.34)

[ =
L
[
(o2
i
]
l"""

»
[

~
o

If gj is assumed to be an active constraint, the change,

A§, should force gj(6+A6) to become zero giving
a i
~g, = I gpm 06, 3= 1,...,1% (5.35)

The change in the design wvariable, A6i, can be written in

two forms by using Equations 5.25 and 5.26 to give

= sk+l _ ko _ . k
i=1,...,n (5.36)
and
_ ock+l _ kL, . k
AS, = 6i Si = E(T l)k 61
i=1,...,n (5.37)

Substituting Egquations 5.13, 5.25. and 5.26 1nto Eguation

5.35 gives these equations

n 3g. 2 aqg
- P 30 kK
~g. = z - (l—OL) (““ z A (—',.—' / -——)_1)6
J i=1 8oi o=1 o) BOi 861 i
3j=1,...,% (5.38)
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n dg. % 3g
- J 1 D 30 k
-, = I Lo 5 a2/ 2291
3 4my 38T pap PRE T A 1
=1, ..,k (5.39)

where p represents a constraint which is within the set
of active constraints. Once again the relationship
between r and o as given in Equation 5.27 1is apparent.

Rearranging Equation 5.39 gives

j
335/ T 0k

1 1 1
Jo= 1, 008 (5.40)

Equation 5.38 provides the same quation if (1l-o) is sub-
stituted for r. These equations are desirable since an
initial estimate of the Lagrange multipliers is not needed,
but a fairly accurate set of active constraints is needed
in order to reduce the number of calculations. These
equations also take into account the dependence cf cne .
constraint upon another, where the exponential recurrence

relations do not. If only the diagonal terms associated

3g.. ag
with (ggl)(ggg) are considered, the recurrence and linear
] ,

i
equatlions can be proven to be the same as long as % is
equivalent to r.

The recurrence methods are not effected by linking

and side constraints, but the linear techniques are
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effected. The effect of side comstraints must be added to
the linear equations, since the Ti's (optimality criteria)
do not consider side constraints. Rewriting Equation 5.35

yvields the following form

1l 3g n g
g, = I L a3 L (8% - &)
] L. 08, i _ 34 . i
i=1 i l—nl+l 1
i=1,...,2% (5.41)

where 6? represents an element which becomes passive
during the kth iteration, and ny is the number of active
elements. Using Egquation 5.13 and the same formulation

as presented earlier Equation 5.41 becomes

91
1 3g n g
rg. - I L&+ 3 —L (¥ - sk =
3 - I _ LR i i
i=1 i l—nl+l i
n
'3 1 agj BgE 350. .k
LAy L w7 55= /57 95
p=1 ¥ i=1 i
j=1,...,2% (5.42)

These passive elements are generally not known until the
recursive relations for the design variables are used and
the new variables are checked for violation of the minimum
or maximum size. This creates an iterative procedure
within the kth iteration for determining the Lagrange

multipliers.
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Linking effects Equation 5.42 alsoc. The optimality

criteria from Equation 5.21 becomes

v = lp.-ipnz (5'43)

Using Equations 5.21, 5.34, and 5.43 the linear equations

become
n s
2 39 5 K
rg. - & ( Z )l/\i—
7 i=1 g=1 ‘°gq
n
2 2 S 3g. dg S
oI (I Do A
p=1 i=1 g=1 "¢ g gqg=1 g
i=1,...,0 (5.44)
oxr
2 agj K
rg, = 2 == 0, =
i %% 1
n
Pz o(n 3520, § 39,k
s tphl o - 35 398 2, 39
p=1 i=1 g=1 ""qg g g=1 g

j=1l,...,% (5.49%)

Combining the linking and side constraints Equation 5.34

becomes
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n
1 g, n 3g..
- &5 T 1 (sF - 5Ky =
rg. X +r (87 :)
3 i=1 361 i 1=nl+1 831 i
n
2 2 s ng dg s 50k
Eohp (I (I mytas / Ioge Ay
p=1 i=l g=1 "'g ""'q .g=1 g
I =1,...,2 (5.46)

Equation 5.46 provides equations corresponding to the

active constraints which have ncn-zeroc, positive Lagrange
multipliers. If the equaticns yield a negative Lagrange
multiplier, this constraint should be considered non-

active, according to the Kuhn-Tucker conditions. This

requires the solution of a new set of equatiéns which is
identical to the previous -set with all terms associated
with that Lagrange multiplier removed. (In terms cf a
matrix solution, the row and column of ccefficients
associated with this constréint would be removed.) It is

important to have a good estimate of active constraints in

order to avoid having negative Lagrange multipliers which

will cause a resolution of
poor choice of constraints
which do take into account
to eliminate

upon another,

considered active set.

reduced equation sets. Alsc a
can cause the linear eguations,
the dependence of one constraint

active constraints from the

Each category of methcds have their advantages and

their disadvantages.

The advantages associated with the
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recurrence technigues are: 1) there is no need to predict
an active set of constraints since Equation 5.32 will
force the Lagrange multipliers associated with a passive
constraint to bécome small, 2) very little computational
effort is required for these techniques, and 3) these
techniques are unaffected by side constraints or linking.
The disadvantages of the recurrence relations are: 1) the
initial value for the Lagrange multipliefs must be

given, 2) convergence can be slow and unstable, and 3) no
dependence between active constraints are considered.

The advantages of the linear equations technigues are:

1} no initial values for the Lagrange multiplier are
needed, 2) convergence 1is "usually" more stable, 3) the
interdependence of the constraints are taken into account.
The disadvantages of the linear techniques are: 1) the
large computaticnal effort required to form and solve the
simultaneous equations, 2) an accurate estimate of the
active constraints is required, 3) an algorithm for
eliminating the equations and coefficients of negative
Lagrange multipliers is required, and 4) the equations
must be reformed when passive elements are encountered.
The linear eguation technique was chosen to be used‘since
it is more stable and provides a reasonable means for
checking the set of active constraints. Also, certain
three-dimensional structures can become sensitive to
design change which can cause unstable convergence if the

recurrence relations are used and a pocr choice for the
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initial set of Lagrange multipliers is made. The Lagrange
multipliers for the three-dimensional problems have been
elusive in the fact that they range in value from 107t

to lO5 within the examples studied. With this large

range it becomes difficult to choose the initial set of
Lagrange multipliers. A possible algorithm might be to

use the linear equations for the first two to three
iterations to find a reasonable set 6f Lagrange multipliers

and then revert to using the recurrence relations in

order to save computer time.

I. ACTIVE CONSTRAINTS

In order to save computational time, it is important
to cheoose a reasonably accurate set of active constraints.
The active constraints are considered to be any con-
straints which are "close" to the constraint surfaces.
This can be translated into a condition where Eguations
5.30 and 5.31 are nearly equal to unity. The algorithm
checks these values and compares them to a specific
acceptable range as designated by the user. The choice

of active constraints is based upon these equations

u.
(1-Py) < =L < (1+P,) (5.47)
u.
]
for upper bound constraints and
=]
(l-Pl) < Gg—i (l+P2) (5.48)
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for lower bound constraints. These equations allow the
user the flexibility of establishing a region along the
constraint surface which can be as large or as small as

desired. The value (1-P provides the thickness of the

l)
regicn on the feasible side of the constraint and the
value (1+P2) provides the acceptable region of constraint

violation, if any, for the nonfeasible side of the con-

straint surface.

J. ESCALING OF THE DESIGN

It has been established that there must be a set of
active constraints before the optimization algorithm can
be used. Generally, a preliminary design will be either
conservative (no active constraints) or nonconservative
{a violation of one or mofe constraints). Therefore,
some technique must be used to adjust these design vari-
ables such that a set of active constraints, as justified
by Egquations 5.47 and 5.48, will be satisfied. 1In the
past, structures which were linear with respect to their
design variables used a technique called scaling to
adjust the designs (32,48). Scaling uses a factor to
adjust the design variable which 1s the maximum value of

either of these two wvalues

(5.49)
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for upper limit constraints or

_U_. .
£, = El j=1,...,% (5.50)

2

for lower limit constrainﬁs where 21 and 22 are the
numbers of possible upper ahd 1owef limit constraints,
respectively. For a stiffness matrix which is linear
with respect to the design variable, the response 1is
adjusted by a simple factor, toco. For example, the

stiffness for a truss would provide this equation
fj[K]{u}S = {R} (5.51)

which in turn would produce {u}s = {u}/fj; which would
force a4y to become Ej or u. which is the criteria for an
active constraint. This is not the case for a stiffness
matrix which i1s nonlinear with respect to the primary
design variable.

The use of scaling for the nonlinear {in terms of
the primary design variable) stiffness and response
becomes an iteratlve procedure. Once the primary design
variable 1is scaled, the secondary design variables are
scaled according to Egquation 3.12 which gives

C

= 23 _
Sij = Clj (fﬁi) + C3j (5.52)
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Depending on which constraint is being scaled and the
effect of the secondary element on that constraint, the
scaling can take several cycles to reach an active value.
For instance, the concrete elements have a fixed depth
but variable width, the minor axis moment of inertia uses
the cube of the féctor as shown by using Equation 3.22 to

produce

I = —*t

Y p8p2

3
(fIx) (5.53)

Therefore, the crientation of these concrete elements
becomes critical with respect to scaling. The natural
frequencies are also affected in a strange manner sSince
both the stiffness and mass changes when scaling is
used. The s£ructural mass and stiffness are changed
according to Equations 4.8 and 4.13. When the concrete
elements are used the structural mass can become fairly
significant. Thinking of the freguency in terms of the

Rayleigh gquotient it can be written as

T
o _ Lok ki (o}
{o}

w

(5.54)

T
{1} [M]f

‘where [K],. and [M]f represent the nonlinear scaling of

£
the terms in the stiffness and mass. The effect of this

is highly problem dependent. Scaling can also became
divergent for steel structures if the system which provides

an active constraint approaches a point of discontinuity
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of the secondary design varilables with respect to thé
primary design variable as seen in Figures 4 to 8.
Despite this instability most problems can be adjusted to
eliminate this problem by reorienting of resizing certain
elements within the problem. Another alternative is to
open the range for active constraints in order to force
certain constraints to become active at an earlier

stage. Rarely does the instability occur after the first
cycle of optimization.

Scaling also has a problem with a combinaticn of
frequency and displacement constraints. This is due to
the fact that the factor becomes counterproductive. The
displacements are affected by Equation 5.49 or the in-
verse of the factor, whereas the fregquencies, in most
cases, are affected in a greater sense by the direct
multiplication of the factor f£. Therefore, an oscilla-
tion between potentially active constraints can take
place where the structural system forces the displace-
ments to become active while viclating the frequencies
and this resulting violation causes the frequency to
become active while violating the displacements in the
next cycle of scaling. Because of this oscillatory
effect, frequency and displacement constraint combina-
tions are handled differently. The scaling is only
allowed to affect the displacements, and the frequencies
are forced to their active values through the use of

Equation 5.46. The term rgj is a means of adjusting the
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Lagrange multipliers to force the conétraints to become
active. This term forces gj to become zero.

Scaling is important for two different operations
during the optimization algorithm. The first is to find
the initial set of active constraints by using the maxi-
mum factor to change the primary design variables, which
in turn changes the secondary design variables. The
second is to force the design béck within the region for
active constraints as defined by Equations 5.47 and 5.48,
It is also possible for constraints to be added to the
active set through this technigque. For example, an
optimization cycle has been performed and has resized the
elements; this new design could allow a new constraint to
be violated. This violation could be due to the numerical
process or the fact that the constraint was not in the
original set of active constraints. It then becomes
necessary to scale the new design to a value within the
acceptable region. Once a set of active constraints has
been determined a constraint will not be removed from the
active set unless it has a negative Lagrange multiplier.
This 1is true regardless if the addition of a new con-
straint causes the constraint value to leave the range
provided iﬁ Equations 5.47 and 5.48 but the scaling will
never let any constraint go beyond the upper limit of

(l+P2), which corresponds to a constraint violation.
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K. TERMINATION CRITERIA

Due to the iterative techniques used for the non-
linear, structural optimization problem, termination
criteria must be developed. The criteria have to be able
to handle several distinct conditions. The primary condi-
tion is to check for convergence or divergence of the
objective function. Secondary conditions are te limit the
amount of allowed computing time and to check for divergent
scaling. These criteria must be flexible yet easily
handled within the iterative algorithm.

The secondary criteria are important since these are
used to terminate an optimization sequence which is either
diverging or converging at a very slow réte. Limiting the
allowable number of optimization cycles and the allowable
number of analyses will stop the procedure from using
excessive computing resources due to a slowly converging or
slowly diverging solution. (The slowly diverging system
usually occurs near the optimal sclution where there might
be a slight constraint violation in the range of 1 to
(l+P2)). Divergent scaling can occur in two modes, the
first being an ever increasing or decreasing set of factors
or, most often, a generation of an oscillatory set of
factors. These divergent scalings are handled by limiting
the number of optimizations and analyses. These secondary
criteria are used to stop an excessive use of the computer

resources.
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The primary criteria are involved with the actual
optimization of the structure. The wvalidity of the
optimization 18 measured with respect to the 'I‘i values
given in Equation 5.18, but tend to be an unrealistic
measure to the structural designer. In the latter stages
of optimization there are very small changes made to the
structural elements which provide a Qery small change in
the value of the objective functicen. The pure mathema-
tician would be interested in the final system with the
Ti values as close to unity as possible, but the struc-
tural designer would be satisfied with the design if it
is within a certain range of the optimal solution.
Therefore, convergence is considered by comparing the
values for the objective function at successive optimiza-
tion cycles to a specified percentage of change, Py, in

these values which can be written as

k-1 _ k
|07 = - o7
- < Py (5.55)

0

If Equation 5.55 1is satisfied the algorithm is terminated.
Divergence of the algorithm must also be considered.

After several cycles of optimization it is possible that
a new set of constraints will be chosen which will cause
a divergent trend. The algorithm will allow only two
successive iterations in which the cobjective function
increases in value. The algorithm will terminate after

the second divergent cycle. 1In certain instances this
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new set of constraints could eventually optimize to a
smaller objective value, but in most cases it appears to
produce larger or nearly equivalent solutions. The primary
criteria must be carefully considered with respect to the '
condition of computing resources versus the closeness to an
optimal solution.r A good range for P3.seems to be 0.5% to
5%. A smaller percentade of change in the objective func-
tion reguires more computing time but provides a near
optimal solution, whereas a larger percentage saves com-

puting time at the expense of optimization.
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VI. SENSITIVITY ANALYSIS

As seen by Equations 5.10 to 5.15 an important part
of the optimization procedure is to determine the gradients
of the constraints with respect to the primary design
variables. This portion ¢of the optimization is generally
the most time consuming, yet it is very important. As
will be seen, these gradients must be found through the
use of numerical techniques. The most common techniques
include direct, virtual load, and psuedo-load techniques.
The direct technigues are developed from direct differen-
tiation of the equations related to the structural response,
while the psuedo-lcad and virtual load techniques are

developed numerically.

A. CONSTRAINT GRADIENTS

First the constraint gradients must be written in
terms of the structural responses. Equations 5.28 and

5.29 give the constraints in these two forms

g5 = (uj—ﬁj) < 0 (6.1)

for an upper bound constraint and

for a lower bound constraint where Ej and Ej are the upper

and lower bounds, respectively, and u. is the structural
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response {i.e. static displacement or stress, natural
frequency, or dynamic displacement or stress, etc.).
Therefore, the gradients of the jth constraint can be

written as

Q2
Q0

9. U
_._3._ = 3_8'_3.— i=1l,...,n (6.3)
i 3

Q)

for an upper bound constraint and

Q2

g. au
6 =——a-6——1- i=l,...,n (6-4)

i

-t

Q2
-

for a lower bound constraint, since Gj and Ej are con-
stants, where Si represents the ith primary design variable
and n is the total number of elements. Keep in mind that
the étructural problem generally has several load cases
associated with each response which would change u. to

ujl and gj to gjl where 1 represents the lth load case.

For clarity in the development of this section the equa-

tions will be derived for a single load case.

B. STIFFNESS AND MASS DERIVATIVES

All three approaches will make use of the fact that
the stiffness and mass are directly differentiable with
respect to the primary and secondary design variables.
Using the chain rule and Egquations 4.4, 4.8, and 4.13, the
stiffness and mass gradients with respect to the primary

design variables can be derived. Equation 3.12 is the key
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te an easy solution of the gradients for these stiffnesses
and masses which are nonlinear with respect to the primary
design wvariables.

1. Stiffness, The total stiffness can be broken

into the elemental stiffness matrices which can then be
broken into the contributions for the different geometric

properties. The total stiffness can be written as
n
[Klp = I [K], O (6.5)
where [K]T represents the total stiffness, and [K]i repre-
sents that portion of the total stiffness supplied by the

ith element. Each elemental stiffness can then be written

as
K], . | (6.6)

where [K]ij' represents the portion of the ith elemental
stiffness supplied by the jth geometric property, and t is
the total number of geometric properties required to
represent element i, as discussed in Section III.A. For
example a beam-column stiffness, which regquires the most

geometric properties, can be written as

[KI; = (K} , + [Kl;; + [Kl;; + [K]

% v 1J
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where A, IX, Iy' and J represent the area, major-axis,
minor-axis and torsional moments of inertia, respectively.
Note that the beam~-column uses the major-axis moment of
inertia as the primary design variables and the other
geometric properties are the secondary design variables
given by Equation 3.12. Using Eguation 6.5, the deriva-
tive of the stiffness can be written as

IRl 9IKly

T T T i=1l,...,n (6.8)
i i

since [K]i is the only portion of the total stiffness

which is dependent upon the ith primary design variable,

Gi. Equations 6.5, 6.6 and 6.8 give
o [K] t t 3[K]. .
T (DRl = D (—id (6.9)
58, 38, L ij - 38,
i i j=1 J=1 i
where
3 {K}. . 3[K].. 38,
1] _ 1] 17
94 . REER 3d. (6.10)
i i3 i
and
38. .
it & 1 (Cp5=1)
55y " C14Cpy8y 23 (6.11)

Note that [K]ij is linear in terms of the secondary

design variable Sij’ so that
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3[Kl,;  [Kl,.
et = - (6.12)
i3 ij

and the final form for the derivative of the total stiff-

ness becomes

3 (K] &
T _
55 - b
i j=

i (.. -1) ‘
- C13C5%; 23 (6.13)

For the beam-columns this would be written as

(K],
3 [K1, _ [K],, 33 . iT, . [Kl;; 8J;
3L A, o3I T _. T. 5T .
X1 1 x1 X1 1 X1
[K].
i1 o8I .
+ Y Y (6.14)
T . 5I..
Yi X1
or
_ [X].
3 [Klyp ) (K], , c o 1 (Cyp 1)) X it
3L . 1A~2Axi T_.
X1 1 X1l
[K]. (C,-1)
iJ 2J
+ 3, (C15%5 i )
[(Kl;1 <czzy'l)
+ ——T;IX (clI Czlnyi ) (6.15)

Now it is easily seen why the form of Equation 3.1l2 was
used to relate the primary and secondary design variables.

In the case where the stiffness i1s linear with respect to
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only the primary design variable the derivative of the
total stiffness is written in the form of Equation 6.12,
where Sij is the primary design variable. This form
greatly simplifies the optimization procedures, but unfor-
tunately it is not possible to represent a three-dimen-
sional system other than a truss in this form.

2. Mass. The derivative of the mass is simpler due
to the fact that the structural mass is strictly dependent
upon the cross-sectiocnal area, and the non-structural mass
is independent of the elemental geometric properties.

Writing the total mass as
n
M, = i [M]i + (M]Ns (6.16)

where [MIT, represents the total mass, [M]i, represents

the ith elemental mass, and [M] represents the ncn-

NS
structural mass. Using Equation 6.16, the derivative of
the mass becomes
o [M] J [M],
T .
sr— = T i=l,...,n (6.17)
i i

since [M]i is the only portion of the mass which is depen-
dent upon the ith primary design variable. The elemental
mass, {M]i, is related to the primary design variable

through the cross-sectional area which changes Eguation

6.17 to

101



31M] _ 3IM]; B8Ry (6.18)
3d. oA. 98, *
1 1. 1
oxr
3 [M] [M] . (C.,,=1)
T _ i 2A
Lyl (NN ) (6.19)

.

since the mass is linear in terms of the area, Ai, and the
cross-sectional area is related to the primary design
variable through Equation 3.12. Equation 6.19 is very
simple for the bracing elements as the term in the paran-
theses is eguivalent to unity. Once again the truss
problem or the problem where the mass and stiffness are
linear in terms of the primary design variables becomes a
much simpler problem. The interdependence of the geometric
properties causes a problem in terms of finding the

derivatives of the mass and stiffness.

'C. ETRUCTURAL RESPONSE GRADIENTS

L. Static Response Gradients. Static response

gradients are generally found using one of two numerical
techniques called the virtual load and psuedo-load tech-
ﬁiques. The psuedo-lcad apprcocach has been used primarily
within mathematical programming algorithms, whereas the
virtual load apyproach has been used for most of the opti-
mality criteria algorithms. The chosen algorithm uses the

virtual load technique for static response gradients, but
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it also uses the general idea associated with the psuedo-
load technique for determining the dynamic response
gradients.

The virtual load technique is based upon the premise
that the static displacements and stresses can be written
as a linear combination of the structural displacements.

This can be written as

ay = (03510} (6.20)
where, {b}jT, is the appropriate wvector to enforce this
relationship, uj, is the jth global displacement or stress,
and {U} is the vector of global displacements. The vector
{b}j will be examined in detail with respect to each type
of response in later sections. Using Equation 6.20, the
gradient for the jth displacement or stress can be written
.as

su.  3{bl?

1 - J T 3{U0}
1 1 1

The first term in Equation 6.21 is generally assumed to be
zero. In other words, the vector {b}j is assumed to be a
vector of constants. This is wvalid for the displacement
gradients, but it is not valid for the stress gradients
unless the stress is associated with a truss element.

This assumption generally does not cause a problem within

the algorithm after the first few cycles of optimization.
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Therefore, Equation 6.21 becomes

31.1- a{

J _ T
55 = (b
1

Ul

94,
i

(6.22)

which requires the term agg} . Taking the partial deri-

i
vatives of Equation 4.1l6 provides this equation

3 [K]

34,
i

T a{u} _ 3{R} _

T Bdi Béi

{u} + K] 0 (6.23)
since the static loads are independent of the design

variables. Rearranging Equation 6.23 gives

3{U} -1 [Klg

= - [K], 53] {u} (6.24)

3 [K]

where T
1

is given in Equation 6.13.

Defining {b}j as the virtual load

(b}, = [K]

3 T {V}j (6.25)

a virtual displacement vector, {v}j for the jth constraint

becomes

)
=

{v}j {brt. (6.26)

and using symmetry of the stiffness, Equation 6.26 becomes
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{V}g = {b}g [K]T‘l _ , (6.27)

Substituting Egquation 6.24 into Equation 6.22 gives

ou. . 3 [K]
i R it ik

and substituting Equation 6.27 into Equation 6.28 provides

(o9

u. 3 [K] 3 [K].
J T T — T i
T = - {V}j —“-S'T {ut = {V}] __—351 {u} {(6.29)

Q2
-

which is the component of the gradient for the jth static
displacement or stress constraint. Everything needed for
Equation 6.29 is known except the values of {v}g. In

order to find {v}g, it is necessary to find {b}g.

a. Displacement. The virtual loads, {b}j, as noted
are dependent upon the ith constraint, and if they are
stress constraints alsc become element dependent. The
virtual load vector for a displacement constraint is

{b}r;." - [0...,0,1,0,...,0] (6.30)

where there is a unit value at the jth location. The
virtual load vectors for the stresses must be developed
for each type of element.

b. Beam-column Stress. The beam-cclumn stress

constraint virtual load vectors are based upon a
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biaxial-bending and axial stress combination. The stresses

considered for the beam-column elements are

M _C M_d

=X 4+ XL
T = T (6.31)

»id
i

where P, 1is the axial lecad, Mx and My' are the moments
about the 2 and y axes respectively, ¢ and 4, are the
appropriate 'distances from the neutral axes to the outer
most fibers, and A, Ix’ and Iy are the geometric proper-
ties as previously defined. The signs are needed to
represent the stress in each quadrant of a cross section.
Torsional stresses were assumed to be negligible and were
not considered within the development of the stress con-
straints. Equaﬁion 6.31 is the basis for developing the
virtual load vector using the beam-column stiffness
coefficients along with Figure 17 gives P, MX, and MY at

end 1 in these forms

_EA , 1 1
P == (U} Uj) (6.32)
6EI 4ET1
_ X 2 _ .2 X 6 1l .6
M= 5— (U] ULy 4 U+ 3 Uj) (6.33)
1 L
6EI 4EI
_ 3 _ .3 5 1.5
Myl~ _27_ (Uj Uiy == (U] + 3 Uj) (6.34)

where E is Young's modulus and L is the length of the

elastic portion of the beam-column. Substituting
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Figure 17. Column Degrees of Freedom for
Determination of the Column
Stress Vector
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Equations 6.32, 6.33,

and 6.34 intc Eguation 6.31, the

stress in terms of the displacements can then be written

as
- E 1 1 6EcC 2 _ 4EcC & 1L .6
o=% (u; - U [—? (v - 5 + 2 (] + 3 Uj)]
oEd 3 4rd 5 1 .5
f
UZw
or i
ut U?L
5. = [B - By 1 7i{ | |6Ec 4Ec -6Ec 2Ec]* 5
u®
’U3} . JJ
i
| | 3
+ —ng 4Ed GEg’ 2§d]< U3 > (6.36)
L L J
;
. T J
therefore, {b}j for the stress at end i of the beam
column becomes
T _ E _E
{b}j = {L QO 0 0 0O 0 T 0 0 0 o 0]
+25 (0 6 0 0 0 4L 0 -6 0 0 0 2L]
L
+2 10 0 -6 0 42 0 0 0 6 0 2& 0]
L
(6.37)
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where the signs are chosen according tc the active stress
found by Equation 6.31 and j represents the jth active

constraint.

C. Beam Stress. The beam stress constraints are

based strictly upon the model given in Figure 18, consider-
ing pure bending stresses. These stresses at end i can be

written as

g, = i Il (6.38)

where Mx is the moment about the major axis, ¢, is the
distance from the major axis to the outer most fiber, and
Ix is the major axis moment of inertia. Using the beam

stiffness coefficients along with Figure 18 gives the

moment at end 1 as

U.
i
ET g.
X i
MX = —5 (6 4L -6 2L] (6.39)
i L U.
J
9.
]
and the moment at end j as
U,
i
EIX Bi
M = —= [6 2L -6 4L] (6.40)
X . 2
j L U.
J
8.
J

where E 1s Young's modulus and L is the length of the
elastic porticn of the beam. Substituting Egquation 6.39
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Figure 18. Beam Degrees of Freedom for
Determination of the Beam Stress
Vector
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into Equation 6.38 the stresses can be written in terms of

the displacements as

Ui
E 1
g, = + =S [6 4L -6 2L] (6.41)
i -2
L . .
i
g
3
and
.
1
. =+ E (¢ 2r -6 an]d%i (6.42)
] - _2
L u.
3
5,
3

which gives {b}k, the virtual load vector for the kth beam

stress constraint, as

_ Ec _
{b}ki = =5 [6 4L 6 2L] (6.43)
and
= Ec _
{b}kj = =T [6 2L 6 4L] (6.44)

where only the positive sense is chosen since the same
level of stress is used for tension and compression for
the beam model (infinite axial stiffness).

d. Brace Stress. The brace stress constraints are

based strictly upon the axial stress. The stress can be

wrltten as
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G = P/A (6.45)

where P, is the axial locad, and A is the cross-sectiocnal
area. Using the axial stiffness coefficients along with

Figure 19 gives the axial locad as
(6.46)
where E, A, and L have been previously defined. Substi-

tuting Equation 6.46 into Equation 6.45 the stresses can

be written as

1
- (E _E
g = {i' L} U2 (6.47})
which gives {b}j as
(b}] = {8/L  -8/L} (6.48)

where the tensile or compressive sense of the stress is
determined strictly by the elemental displacements. This
may be achieved since the stress is assumed to be uniform
over the cross-section and is based upon bnly one type of
elemental loading, the axial load.

e. Panel Stress. The panel stress constraint vir-

tual load vectors are based upon axial stress combined

with bending about one axis. The stresses considered are
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P X
X
and
MX C
= £ ]

where 1 and j represent ends i and j and the other terms
are previously defined. Using the panel stiffness coeffi-
cients along with Figure 20, the values for P and M, are

given as

l B
P= [E/L -E/L] |, (6.51)
2
- -
Us
g
M o= ES 16 4n -6 2079%.°%( (6.52)
X. 2 U
1 L 5
kU64
.
TU3
M. =2 (6 21 -6 4] f"al (6.53)
? Us
Ys )

where E is Young's modulus and L is the height of the
panel. Substituting Equations 6.51, 6.52, 6.53 intoc 6.49
and 6.50 gives the stresses in terms of the displacements

as
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Figure 19. Brace Degrees of Freedom for
Determination of the Brace
Stress Vector
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Figure 20. Panel Degrees of Freedom for
Determination of the Panel
Stress Vector
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Us
U U
- 1 Ec 4
o, = {E/L -E/L! U, + == [6 4L -6 2L] {4
L 5
Ye
(6.54)
and
U3
U , U
5. = {B/L  -B/L} { .Ml + € (6 21 -6 4L] 4
J U2 - L2 US
s
(6.55)

Therefore, the virtual load vectcrs can be given as

(b}i. = [E/L -E/L 0 0 0 0] + =5 (6 4L -6 2L]
L
(6.56)
and
T _ Ec
{b}kj = [E/L -E/L 0 0 0 0] £ = [6 2L -6 4L]

(6.57)

where the signs are chosen according to the active con-
straint being tensile or compressive.

£. Effects of Coordinate Transformations. The

virtual load vectors given in Eguations 6.30, 6.37, 6.44,
6.48, 6.56, and 6.57 are coordinate system dependent. The
displacement response, virtual load vector is given in the

-
global system, but the stress virtual load vectors are
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presented in the local or elemental system. The virtual
displacements are eventually calculated in the global
system. The stress virtual load vectors, however, should
be transformed from local to the global coordinates for
which the vectors {b}j must first be transformed into the

reference coordinate system as

(B} ppp = (r) 7T (b} p ~ (6.58)

and then be transferred to the global system as

{b}? = 37 (b}, pep = (rriTrr] T (b} g (6.59)

where [T] and [T'] are the appropriate transformations and

{b}?, {b} and {b}jE are the virtual load vectors in

JREF'
global, reference, and elemental forms respectively.
These transformations are the same transformations as
discussed in Section III.

Although the virtual displacements are found in the
global system, the static response gradients are best

found using the elemental or local coordinates. This is

due largely to the fact that the elemental force subrou-

. 5 [K],
tines can easily calculate the vector 35 = {u}. As long
i
as {U}, IK]i, and {U}j are all transformed to the local

system, the gradient calculated by Egquation 6.29 will be

identical in any reference system. This is due to the

fact that transformations are orthogonal or [TIT = {'I‘]—l
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Therefore, any coordinate system can be used, as long as,
each component of the calculation is consistent with that
frame of reference.

g. Reduction Effects. Also, prior to using Equation

6.29, the components of {b}j associated with the rota-
tional degrees of freedom must be condensed. This requires
the virtual load vector to be modified and reduced as

shown in Equation 4.23 giving the reduced virtual load as
.- (K, 1K, 1 b} (6.60)
JRED 2 21 11 173 )

where {bz}j, is the portion of the {b}j vectors which
correspond to vertical and translational global degrees of
freedom, and {bl}j is the portion of the {b}j vector
corresponding to the rotational, global degrees of free-

dom. Using Equation 6.26 and (b} the lv }j terms

JRED” 2
corresponding to the vertical and translational, global,
virtual displacements are found. Equation 4.21 can be

used to find {vl}j, the corresponding rotational, global,

virtual displacements as
= -1 - 1
{vl}j = [Ky,] [{bl}j [Klzl{b2:j} (6.61)

These values are needed since Equation 6.29 is evaluated
at the elemental level, as shown by Equation 6.8, which
needs the rotational degrees of freedom. Therefore, the
virtual displacements, including the rotational degrees of
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freedom, are transferred into local virtual displacements
and used to find the gradients. The local level is used
since the derivative of the stiffness requires only the
portion of the stiffness supplied by element i as seen in
Equations 6.8 and 6.13.

h. Effects of the Primary Assumption. Egquation

6.29 was derived by assuming the virtual lcad vector to be
independent of the primary design variable which is not |
true except for the brace elements. Each of the bending
elements have a term which is related to the depth and/or
width of the elements. The values for ¢ and 4, the depths,

are determined through Equation 3.12 and are given as

IX 25
c=g8=1/(C, I, + Cyg ) (6.62)
X pd
and
I, C2Iy Czsy
d=g==(C I t Cyp 1/ (Cyg I, *Cyp )
v "~y y y y
{(6.63)

The algorithm chosen uses the assumption based Equation
6.22 instead of 6,21 with very little effect after the
first one to two cycles of optimization for the stress
constraints. The values for 4 and ¢ can cause a violation
of the stress constraints after an optimization cycle, but

is corrected through iterative scaling. If this problem
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persists a larger convergence factor (smaller step size)
can be chosen to reduce this violation. Generally, this
assumpticn has proven to be reasonable, saving computing
time and space.

2. Frequency Constraint Gradients. Frequency con-

straint gradients are found by a direct differentiation of
the free-vibration equation used to find the natural
frequencies. Equation 4,27 for a single natural frequency

can be written as
2 —
[IRlp - wiMIgpl{od, =0 (6.64)

Differentiating Equation 6.64 with respect to the primary

design variable, di, yields

(S P

'_J

3 [K] dws 5 [M]
T 2 T
[ aél - 35 . [M]T - wj -_a-é_i_ } {(i}}]

atols
56 5

+ LKl = wf Mp]] =0 (6.65)

Since the stiffness and mass are symmetric, premultiplying
Eguation 6.65 by {¢}? eliminates the second bracketed term

and gives

2
3 [K] dws 3 [M]
T T _ ] _ 2 T
{p}: |: =3 : [M}T W :, {cb}j

|
(@]

T (6.66)
i
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~Rearranging this equation provides the gradient of the

natural frequency as

3 [K] 3 [M]
7 T2 T
3(»32. (9l [Tr” ar “?s‘%‘i"]{‘“j

1l

= — _ _ (6.67)
3d. T
or
2
Jw 3 [K] o [M]
4 - T T 2 T
1 1 1

when the eigenvector is normalized with respect to the

mass as in the presented algorithm. Using Egquations

' 6.13 and 6.19, a direct sclution to the gradient of the
squared, natural frequency can be obtained. 2 form very
similar to Equation 6.68 can be derived for liﬁear buckling
loads, but were not considered for this algorithm.

3. Dynamic Response Gradients. The dynamic gradients

are derived by direct differentiation of the generalized
displacement equation, and applying a technique similar to
the last step of a psuedo-load approach. The psuedo-load
approach uses Equation 6.22 to find the gradients. As
mentioned previously, the first term of Equation 6.21 is
assumed to be independent of the primary design variable
such that Equation 6.22 can be used directly. Once all of
the displacement derivatives are found the {b}j vector of

appropriate values as given in Section VI.C.l can be used
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to find the stress and displacement gradients. First
these displacement derivatives must be calculated.

a. Dynamic Displacement. The form shown in Equation

4.53 for the dynamic displacement is for a direct linear
superposition of the modal contributions. The square root
of the sum of the squares can be used in this algorithm

and can be written as

£ 2]1/2 I PYZ
0. =| I (é4.p.) =] I x (6.69)
I k= IED [k=l §

where k represents the kth eigenvector, represents the

kth modal component of Uj’ and t 1s the total number of
eigenvectors used in the modal analysis. Using the chain

rule, the gradient can be written as

SUj t BUj ax2
— = I —d (6.70)
Boi 0=1 aXQ, cOi
or
3U il ol -1/2 Ix
ggl = 7 % L xi 2(x,) gg& (6.71)
i £=1 k=1 i
This is the same as
;;l - ;ﬁ ??2 = 5 : %, g?g (6.72)
i =1 "9 91 j &=1 ‘i

where
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Bx2 _ 3¢ . Bpg

3l
35, 55 Pyt %5y 35, (6.73)
1 1 1

in which j% represents the jth component of the 2th eigen-
vector and < is the fth eigenvector generalized displace-
ment as given in Equation 4.52. Equation 6.72 states that
the gradient of the jth global displacement is the sum of
the change in the modal components times a weighting
factor of the modal component divided by the total dis-
placement.

The use of direct modal superposition calls for a
slightly different form for the dynamic displacement
gradients. These gradients are found directly from the

equations by using Equation 4.53 as

{ul

(¢] {P}max (6.74)

or

™
1 ¢t

X, (6.75)

The gradients can then be found as

U, t ad. ip
35, T 4oy e Po T %5 5E
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which is identical to Equation 6.71 with the exception of
the summation. In a sense the direct superposition becomes
a subset of the root sum of the sgquares procedure. Both
techniques require the gradients of the eigenvectors (¢},
and the gradients of the generalized displacement {pt.

The generalized displacement gradients can be derived

using Eguation 4.52 for the jth component which takes the

form

5. ) = ___17—— {sa}j (6.77)

where the negative sign has been removed. Taking the

partial derivative of Equation 6.77 gives

ip.  3(e)T {5 }.
] _ JjIM] T 3 [M] aj
55, © 38, 3 18,05 + 1035 =55 )
1 1 m.w. 1 m.Ww.
373 33
1
. 3 {(==)
3{s_1}. m
+ {937 M) aJ 4 qeo3T 1ML i (s}
m.w; 90 3w a(Sj. aJ
7173 3
1
8(35)
T [M] ]
RS2 ol Y on N (6.78)
] 1
where
m, = {w}T M]{o} (6.79)
J T ] :
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and {Sa}j is given by Eguation 4.55. Once again this equa-
tion requires the gradients of the eigenvectors, as well
as, the gradients for the reciprocal generalized mass, mj,
the spectral accelerations, {Sa}j, the.total mass, [M],
and the reciprocal squared natural frequencies, w?.

Using the chain rule the gradient for the reciprocal,

generalized mass can be defined as

ij
cr o o S BT (6.80)

and Equation 6.79 provides

dm. {6} T}
1 - J T 3[M]
851 851 [M] {¢j} + {¢}j {¢}j

55
1

3{e}.

T J

+ {¢}j[M] 86-
1
3{0}7T
= 2 a&i] M) (o35 + {¢}§ Q%%i (8], (6.81)

Equation 6.80 can then be written as

? ml 3{¢}T '
- 1 ‘ j T 5 [M]
TS T T % [2 35 IM]{Q)}j + {Cb}j -y {(b}j] (6.82)
1 mj 1 1

where once again the gradients of the eigenvectors are

required.
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The spectral acceleration gradients can be found from
Equation 4.55, and the chain rule. Since the spectral
acceleration is written in terms of the period the chain

rule must be applied as

: 2
3{s_}. 3{s_}. 9T, Sw. 3w;
18ay _ BlSyty Ty Puy duy (6.83)
96 . 5T. odw. 2 968, :
1 ] i Bwj 1

where the period can be written in terms of the natural

frequency as

T, = — (6.84)

The derivative of the spectral acceleration, with Arax =

C7, with respect to the period is
38 _ .
aj __ _ 3 _ 2 _
aTj = [4C1(Tj c6)‘ + 3c2('rj Co) o+ 2c3(Tj Co) + ¢y lc,
' (6.85)

The second term in Equation 6.83 is found by using Eguation

6.84 giving

w
()
=

ks
m = = (6.86)
j .

£
s pol

and the third term can be written as

21/

)

L
z T T (6.87)
Bwj J

B
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Sw?

The last term gg% is given in Equation 6.67. ' Equation
6.85 is the reasén a polynomial was chosen to represent
the spectral accelefation, although any technigue where
the slope of the spectral acceleration could be determined

could be used. Equation 6.83 can be rewritten as

33, 5 . Bw?
58, T tny 3 53,  (6.88)
]

where nj represents the slope of Equation 4.55, the spec-
tral acceleration or the value associated with Equation
6.85.

The gradient of the reciprocal, squaré of the natural
frequency can be developed similarly to that of the recip-

rocal generalized mass. The chain rule can be used to

produce
1 1
e B s A
wj wj Jw
3t = —3 3t (6.89)
i dws 1
J
which gives
~ 1
3 —
2 2
W 2 Jduws Jw
AJ=_(_L) =1 _3 (6.90)
38, - 2 8¢, 4 36,
i W i W i
J J
Swz.
where the 331 is given in Equation 6.67.
i .
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Using the infcrmation provided in Equations 6.82,

6.87, 6.88 and 6.90 the jth generalized displacement

gradient can be written as

T
35, 55, m.2 oali j 36, 2
33 J 7
{0}t
- (1T _[M] J
3]
T 3[M] T [ r
3¥3 LYy
2
{S_}. w’ :
a” ] i
* 3 } 35, (6.91)

3 [M]

where ¥ is given in Equation 6.19 and the gradients of
i

the eigenvectors will be discussed in the next Section. If
the eigenvectors are "always" orthogonalized with respect
to the mass, the generalized mass will always be unity.
Therefore the term asscciated with the 5 ,% /BcSi becomes
zero, in other words this will be unaffected bv a change

in the design variable. For the case of eigenvectors

normalized with respect te the mass, Equation 6.91 becomes

T
3P 3{o} {S_ 7.
J - 1M oes (61T 9[M] - a-]
36 5 38 ; 2 "Ta’] J 94, 2
1 1 W = 1 W
] 3
2
{S_1s | w5
T
{o1s [M%[ L inky =+ 323} aa? (6.92)
(,L)]‘ '\,.)j u_)j 1



where the mj terms are set to one and the third term of
Equation 6.91 becomes zero. The effects of this term,
when there is mass normalization, are absorbed iﬁto the
first term which provides the effect of the change in the
eigenvectors. If this normalization procedure 1is not
used, Eqﬁation 6.91, in its entirety, should be used.

The use of the previously derived equation to find
the gradient of the generalized displacement hinges on
finding a numerical technique to provide the gradients of
the eigenvectors. The most common technique is to write
the eigenvectors as a linear combination of all the eigen-
vectors (49,50,51). A more direct approach was chosen
based upon a direct differentiation of the free vibration
equation (51,52). This differentiation of Equation 4.27

gives

‘ 2
3 [K] dwy 3 [M..]
T _ 3 .2 T
[ 35 55, Mg = ey 570 ]{¢}j
1 1 1

+ [[K]T - wj[MlT} 5= = 0 (6.93)

T
: 2 3{o}]
LK]T - wj[M]T T
; 1
2
3 [K] s 3 [M]
T
-7 [ 56, a@? Mg - w? *yg%g] £@}j (6.94)
1 1 1



Since the matrix

2
[{K}T - wj[M]T] (6.95)

is singular, a simple inversion cannot be performed in
order to solve for 3{¢}§/86i, The rank of this matrix is
less than the number of degrees of freedom by the formu-
lation of Equation 4.27. This also states that the eigen-
vector is only valid within a multiple due to this singu-
larity, which provides the key to solving Equation 6.94.
Forcing the change of one component of the eigenvector to
be zero is the same aé always forcing that component to
take on a specific value such as unity. This provides a
boundary condition for the elimination of the row and
column associated with the component whose change or
gradient component i1s assumed to be zero, and provides a
matrix which is non-singular and can be inverted. There-

fore the eigenvector derivative will take this form

'LT ! t '
3{o - 3. . 3., . 36
L = 1] 27 nj

a0 . - 36 . 7 ST e Or “s . R (6.96)
1l 1 b3 i

where the zero term has been chosen as the component
associated with the degree of freedom defined by the jth
natural frequency. Therefore, the eigenvector gradients

can be written as
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2

3{¢ IT -1 [3[K] 32
i) _ 2 T _ 3
<—36_i"'> = -[[K]T ‘“j[M]] l: 75~ 55, Mo

R R 1

3 [M]
2 T !

where R stands for the reduced system and the prime stands
for the eigenvector which has the jth component removed.
There is a prgblem associated with the use of Equation
6.97. If the eigenvector is normalized with respect to
the mass or some other gquantity, the change in the jth
component will not be zero from one iteration to the next.
Therefore, a correction term must be applied. The correc-
tion is found by writing the eigenvector which is normal-
ized with respect to the mass in terms of the eigenvector

with the jth component equal to unity as

J (6.98)
where mj is the normalized mass given as

L] T t
m. = {o }j[M]{¢ }j (6.99)

J

The gradient of {¢}§ can be derived as

aw"}j 1 3{o }j Cop VA
— = - + {¢ }: —F— ]
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Using the chain rule and Eguation 6.82, Egquation 6.100

becomes

T tT
3{p" 13 1 /2 3{¢ I

J = J
ad . T . 50 .

i 3 i
3/2 8{¢’}? ' 1
1 T 1 J
3 i
' B[M] 1
e iy Sy b }j] (6.101)

where the prime stands for the reduced unnormalized eigen-
vector and the double prime represents the reduced normal-
ized eigenvéctor.

Solving for the gradients of the eigenvectors re-
gquires a large portion of the total computational time.
The inversion of the matrix shown in Equation 6.97 is
required for each mode used in the modal analysis. The
gradients of the eigenvectors should be in storage in
order to be accessible as they are needed in several
phases of the dynamic gradient approach presented. In
fact, these equations need be solved for only the eigen-
vectors required. The combination of this technique along
with a subspace iteration eigenvalue solver would be very
efficient.

b. Dynamic Stress. The dynamic stress gradients are

determined by using Equations 6.22 and 6.72. Making the

assumption that the {b}j vectors are independent ¢f the
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design variables and the fact that Equation 6.72 produces
all of the dynamic displacement gradients with respect to
both the. primary design variables and the displacements,

the stress gradients can be written as

s T 3{U}
75, {b}j 35y (6.102)

where the vectors {b}j have been defined for each element
type in Section VI.C. This is very similar to the psuedo-
load techniques as used for mathematical programming.

This calculation in Equation 6.102 can be performed since

all of the terms of agg} can be found from the equations
i

presented in the previcus section. Just as in the static
response gradients the transformations have no effect as
long as {b}§ and E%%; are in the same coordinate system,
One difficulty is due to the need for the gradients
of”the rotational degrees of freedom associated with {U}.
Since the {b}j vectors presented in Section III1.C are
dependent upon these rotational degrees of freedom in the
elemental level, they are also dependent upon the rota-
tional degrees of freedom in the global system. The first
inclination is to use a reduced vector for {b}j as given

in Equation 6.60, but this is not possible due to the

relaticonship presented in Equaticn 6.21 restated as

Suj S{b}g RED T 3{U}

132



CE8) S,
The term»———g%———— requires the derivative of Equation
i

5.60 stated as

3{b},
J RED _ ) _ -1 ]
35 = 3%, [{bz}j [Kle[Kll} by} (6.104)

Eventually this would require the partial derivative of

;=1

which is quite difficult to find. Therefore the
gradients for the eliminated rotational degrees of freedom
must be found.

These gradients can be found numerically using the

relationship
K11 %24 |91 0
= (6.105)
RKy1 Koz | U9 Ry

where Ul represents the rotational displacements prior to
reduction and RD represents the dynamic forces. Taking
the partial derivative with respect to the primary design

variable gives

- - (" h
BKll cKl2 - ‘ < « -l oUl .
S5, 3%, 1 11 Eia| |37,
1 1 1 L
+ 4 = (6.106)
Kyy  9Kyp 5 « « 39U, By
| 5e, Toe, | L2 21 “22] | 55 355

Rearranging the top line of Equation 6.106 gives
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a{Ul} B{Uz} B[Kll}
Kyl 75, o) =5 = 0 5 0
ALSPL.
- 'Tl {Uz} (6.107)
Qor 7
o{u,} 3 [K 3 [K, 4]
1 -1 11 12
3T ESER. [' 5 (Ug) 55— (Uy)
1 1
B{Uz}
- [Ky,] T (6.108)

This is very similar to Equation 6.61 if it is rewritten

as
a{uy} -1 3{u,}
ST LS DU AR BRSSP i v (6-109)
1 1
where
3 [K, 4] 3 (K, ,]
SR e 55 127
{r'}: = 851 {Ul} + 361 {Uz} (6.110)

The similarity of Equation 6.61 and Equaticn 6.109 allows
the use of the previcusly defined subroutines for expansion
of the reduced set of displacements to that of the total
set of displacements. Once the gradient terms associated
with the rotational degrees of freedom are found using
Egquation 6.109, and the appropriate transformations are

used to place the a%%i and {b}j inte a common reference
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system Equation 6.102 can be used to find the dynamic
stress gradients.

The gradient calculations are generally the most time
consuming portion of an optimization algorithm. The
developed algorithm is no exception. -~Each static con-
straint generates a virtual load vector which must be used
to find the virtual displacementé, requiring one inversion
of the stiffness matrix, and each response spectrum analysis
requires the inversion of "m" matrices of order one degree
smaller than the stiffness for the "m" modes required by
the modal analysis. The ATC-03 dynamic portion is treated
as a static problem using the virtual load technique

with very good results.
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VII. OPTIMIZATION ALGORITHM

Chapters III, IV, V, and VI have all of the needed

information to develop the algorithm used in finding the

results presented within Chapters VIII and IX. Any opti-

mization algorithm used has at least four major parts:

the analysis, constraint determination, optimization, and

termination. Within these four major areas there are a

range of technigques and procedure some of which were men-

tioned in the previous Chapters. This Chapter will break

the algorithm into each important operation while citing

the section or equations that are appropriate for that

operation.

1)

2)

11l)

The major steps within the algorithm are:
Inputing the initial data.
Determining the secondary designlvariables.
Analyzing the structures.
Determining the primary, active constraints.
Scaling of the primary design variables.
Checking of the termination criteria.
Calculating the gradients.
Determining the Lagrange multipliers.
Resizing of the primary design variables.
Checking for active and passive elements.

Finalizing output and plot infcrmation.

These topics have all been discussed in detail in the

preceding chapters, but need to be brought together in a

unified algorithm,.
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Inputing the data is the first step. The input
includes all of the dimensions pertaining to the struc-
tural layout, the element material properties, the element
primary design variables, the lcocad combinations, the upper
and lower constraint values, the termination criteria, and
the convergence control parameter, The input also includés
either the specific weights or costs per unit volume for
the objective function, as well as, the type of analyses
to be performed. There are several options for the type

of analyses coupled with optimization constraints:

1) Static stress constraints.

2) Static displacement constraints,

3) Static displacement and stress constraints.

4} Frequency constraints.

5) Static displacement and stress, freqﬁency, and

dynamic displacement and stress constraints.
The input structure is outlined in the computer manual
(53).

The second operation is to determine the secondary
design variables for each element. These are determined
by using Egquation 3.12. For a single analysis the option
to input the secondary design variables is available.

As mentioned in the input data there are several
options with respect to analysis. The static analysis is
performed as given in Eguation 4.16. The natural fre-
gquency analysis is performed by using the Jacobi iteration

approach given in Equation 4.26 and Appendix B. The
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dynamic analysis is performed by using medal analysis with
the root sum cf the squares for the modal contributions or
direct superposition as given in Equations 4.54 and 6.75,
or it is performed using the ATC-03 provisions. The
ATC-03 allows the use of two approaches: the equivalent
lateral force technigue presented in Equaticons 4.60 to
4.62 and the modal analysis procedure presented in Equa-
tions 4.63 to 4.66. Keep in mind that the dynamic re-
sponses replace the static lateral loads in the load
combination given in Equation 4.24. The static and dynamic
loads are linearly superimposed with no initial effects of
the static analysis taken into account for the dynamic
analysis.

After the analyses are performed, the constraints
must be separated into potentially active and passive
sets. These active constraints are chosen by using Equa-
tions 5.45 and 5.46 and are used in the development of the
equations for the Lagrange multipliers. If an incorrect
set of active constraints are chosen, the optimization
.alqorithm will have to adjust. This adjustment is made in
the scaling step or during the Lagrange multiplier deter-
mination. 7

Scaling is used in several instances during the opti-
mization., As defined in Section V.I, scaling is used to
force the most violated constraint within the active
region defined by Equations 5.45 and 5.46 by using the

factors given in Equations 5.47 and 5.48. After scaling
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is performed, steps 2-4 mus£ be performed again. Since
these three~dimensional problems are nonlinear with respect
tc the primary design variable, the scaling is an iterative
process. Any time there are no constraints in the active
region or whenever a constraint is violated a scaling will
take place.

At this point, if a scaling was not needed the termi—
nation criteria is checked. The algorithm will not termi-
nate if a scaling is required to bring a constraint into
the active region unless the total number of analyses
exceeds the input limit. Otherwise, the other termination
criteria are checked for percentage of weight change
and/or the total number of analyses. If the termination
criteria ére not satisfied another cycle of optimization
(steps 7-10) will occur.

The optimization phase begins by calculating the
gradients of the active constraints with respect to the
primary design variables. These gradient calculations
were discussed 1n great detail in Chapter VI. The virtual
load technique was used for the static and ATC-03 gradi-
ents, whereas direct differentiation provides the numerical
procedures for the frequency and modal analysis gradients.

These gradients are then used to create a set of
linear equations used for the determination of the Lagrange
multipliers. These linear equations are defined in
Equation 5.44, Once the equations have been solved, the
Lagrange multipliers must be checked with respect to the
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optimality criteria stated in Equations 5.5, 5.6 and 5.7.
If all of the Lagrange multipliers are positive a valid
set of active constraints were chosen in step 4. ;f one
or more of the Lagrange multipliers are negative, the con-
straints associated with those negative Lagrange multi-
pliers are removed from the active set and the reduced set
of equations are resolved until all Lagrange multipliers
are positive. If all of the Lagrange multipliers are
negative, all but the last added active constraint is kept
for the optimization procedure. This allows the algorithm
a chance to c¢ontinue and pick a new set of active con-
straints in step 4 during the next complete cycle starting
at step 2. This rarely occurs except when frequency
constraints are coupled with displacement and/or stress
constraints. Eguation 5.44 also takes into account the
effect of side constraints or passive elements (those
elements that have reached their maximum or minimum values).

Once the Lagrange multipliers have been determined as
all positive values, the optimization proceeds to the
resizing of the elements. This is accomplished by using
the linear recurrence relation in Equation 5.26. These
equations make use of only those active constraints which
were left after the determination of the Lagrange multi-
pliers. If Equation 5.26 forces any of the elements to
viclate the side constraints, the algorithm must go back
to step 8 and regenerate the equations for the Lagrange

multipliers. Once these are all positive the recursive
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relationships can be used again. Therefore, steps 8 and 9
are iterative in nature. Once there are no new passive
elements generated by Equation 5.26, the first cycle of
optimization is finished.

After this first cycle of optimization is finished
the algorithm begins with step 2 and continues in this
fashion until step 6 is satisfied. Once step 6 is satis-
fied, the algorithm jumps to step 11 for processing of the
output. The output provides the input data, the optimum
cycle data such as: elemental forces and stresses, the
displacements, the natural frequencies, final sizes, final
value for the objective function, number of cycles of
optimization, and active constraints. The option also

exists tc print all data for every cycle.
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VIII. ALGEBRAIC AND NUMERICAL ILLUSTRATION CF

THE OPTIMIZATION ALGORITHM

This chapter has been designed to provide a transition
from the thecoretical development to actual computer gene-~

rated solutions. Several topics presented within the pre-
vious sections are best developed and understood by illus-
tration. Therefore, selected topics, as well as, two

simple examples will be presented.

A. ALGEBRAIC EXAMPLE FOR MULTIPLE CONSTRAINTS

The equations and derivations in Chapters IV, V, and
VI were given in concise mathgmatical form. Therefore,
this section will be used to illustrate the specific use of
these eguations.

Each constraint must be written such that its value
will always be less than zero. The constraint eguations

for displacement, Uj’ become
g. = (U, - T.) <0 (8.1)
or

(8.2)

W
|
-
|
a
FaN
)

where ﬁj is the upper bound and Ej is the lower bound for

displacement Uj' The constraint gj can be used to represent
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any type of constraint by replacing Uj’ ﬁj’ and gj with the

appropriate response, upper bounds, and lower bound values

for the stress, 0., the sgquare of the natural frequency,

jl
w?, and the drift, Aj. Therefore, the Lagrangian, repre-

sented by Egquation 5.4, becomes

L
n C2A : 1 _
L= & y:0,(C 8.+ Co) + I Ar,(U.-T.) +

j=p 171 1AY 1 ;A j=1 373 73

¥ ts _ "4

L A, (UL=Us) + & AL(os=0.) + L A{o.-0.) +
j=1 3733 j=1 3373 5=1 373 73

25 , 26 27 _
oAz lwi=ws) + Z Aslwi=-wi) + T AL(AL=AL) +
5=1 37373 jop 17373 j=1 3

o

LA (A=Al (8.3)

Using the Kuhn-Tucker conditions in Equations 5.5 to 5.7,

the optimality criteria in Equation 5.15 becomes

Ty U, ATy Jo.  ksTle 42
Ti =1+ b2 Aj 3@1 + z As T & ) A —2 *
j=1 i j=1 3 983 j=1. 31 384
+
ALY SAj (CZA—l)
z Ay oS [y: 2; C c S ; ] =1
j=1 3 35i 1 ~i T1a T2a Y14
i=1,...,n (8.4)
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where the upper bound constraints use the positive sign and
the lower bound constraints use the negative sign.

In order to reduce the number of Lagrange multiplier
equations and the number of coupled terms, two equations
will be derived. The first will consider an upper bound
displacement constréint as éctive; énd the second will
consider an upper bound drift as active. The simultaneous
equations to be solved for the Lagrange multipliers are

derived from Eguation 5.42 as

n
1 n
r-0) - 1 s+ 1 LY sPosy =
. 1 _ 3 i i
i=1 i l—nl+l 1
n
1 2 (C,,-1)
30 22
AU(.E (537) /(kl Ql ClA C2A él ) +
i=1 i
n
1 (C,.=-1)
- 3y 9A 24
+ A ( (==— ==}/ (A, L. C C S )
A i=1 3 i 3 N i 71 Tla T22a V1
(8.5)
and
n
r . n
R R T T R Rt TR
i=1 993 i=n,+1 ° i
n
1 ‘ (CA,-1)
JA AU 2A
AL (T (== —==)/(v. 2. C C 3. )
g i=1 Gi 301 1 Y1 T1A T2A i
n
1 2 (C,. -1}
3A 24
+ Aﬂ(lil (aai) /(yl Ql ClA CZA 5i ) (8.6)



where all guantities on the left side of Equations 8.5 and
8.6 are known and all guantities on the right side of the

Equations are known except KU and X the Lagrange multi-

A
pliers assocliated with the displacement constraint and
drift constraints, respectively. Equations 8.5 and 8.6
show that the simultanecus equations to be solved are sym-
metric, and they do account for constraint interaction
through the cff-diagonal terms. These equations are rigo-
rous and time consuming to generate, but provide a reliable
means for finding the Lagrange multipliers. Many algorithms
use only the diagonal terms of these equaticns which ignore
the constraint interaction. Including this interaction
seems to provide an algoerithm which provides better con-
straint control between cycles of optimization.

From Equations 8.4, 8.5, and 8.6, it is imperative to
have the correct or good approximations of the constraint
gradients. The gradients are found by using the virtual
load technique for the static response gradients, Equation
6.20, an approach similar tc the psuedo-locad technique for
the dynamic response gradients, Equation 6.102, and a
direct numerical technigue for the square of the natural
frequency, Equation 6.68.

The drift constraint will be used to explain the
derivation of the virtual load technigue. First, the drift
between levels m and n can be written in terms of the dis-

placements as
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A= {b}in {(ul= [0...,0,1,0...,0,=1,0,...,01{0}

(8.7)

where the positive 1 is in the nth location and the negative
1l is in the mth location. The virtual load approach would

then find the component of the gradient of the drift as

LYY d [K]
mn 1T T
5o = - Wiy e (U (8.8)
1 1
where
(vl = (]2} (b} (8.9)
mn T mn

If a psuedo-load approach were used the gradient would be

written as

- T 3{u}
T = {b}mn S , (8.10)

i i

in which the gradient of the displacements would have to he
found.

Once the gradients and the Lagrange multipliers are
found, the optimality criteria can be used to resize the
primary design variables. Then the new secondary design
variables are determined from the new primary design vari-
able using Eguation 3.12. These new geometric gquantities
are then used to calculate the new response and to start

the optimization once again.
' 146



B. THE CHOICE FOR PRIMARY DESIGN VARIABLES

Classical optimization techniques are generally
developed for convex systems. If the convexity of the con-
straints can be relaxed to a near linear situation, the'
solution techniques become more efficient. Unfortunately,
structural coptimization problems are nonlinear and noncon-
vex. These effects can be minimized by using certain
geometric properties for the primary design variables.

Since the objective function is linear in terms of the
cross~-sectional areas, and the dominant stiffness parameters
for the bending elements are the major-axis moments of
inertia, these guantities were considered the best possi-
bilities for the primary design variables. In addition to
these guantities, the inverse cross-sectional area and the
inverse major-axis moment of inertia were considered. The
inverse of these gquantities can reduce the nonlinearity of
the constraints (this effect is most pronounced for mathe-
matical programming techniques which travel along the con-
straint boundaries). When referring to the use of the
major-axis moment of inertia as the primary design variable
this applies to only the bending elements and the concrete
panel. The brace was always represented by its cross-
sectional area and its inverse.

The comparison of primary design variables was made
using the two-dimensional structure shown in Figure 21.

The frame consists of two rectanqgular cross-sectional beam-

column elements and a brace. All elements were made of
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Figure 21. Two Dimensional Structure Consisting

of Two Beam=-columns and a Brace
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steel with a modulus of elasticity of 30,000 ksi (20,700

kN/cmz). The beam-column crossections were forced to have
a depth to width ratio of 2.0 which provides the major-axis
moment of inertia, I, in terms of the cross-secticnal area,

A’ as
I = %A (8.11)

1 and L2 were poth 15.0 ft. (4.58 m). Each
2 2

element started with an initial area of 30.0 in~ (194 cm™).

The lengths L

The analysis was considered similar to a steady state
problem such that the load vector was 50.0 kip (223 kN) in
the x-direction, -100 kip (445 kN) in the y-direction, and
1000 k-in (113 kN-m) in the S-direction. It was similar to
a steady state situation in that the solution was based

upon this equaticn
([X] - e [M]] (U} = (P} | (8.12)

where, [K], is the stiffness matrix, w, is the frequency of
the applied load, [M], is the mass matrix, {U} is the
displacement vector, and {P} is the constant load vector,
The fact that a constant load vector was used, creates a
situation which is not purely steady state. This procedure
was used in order to test the gradient calculations of the
stiffness and mass within a structural situation. The

value for w was 100 rad/sec. Each element was constrained
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to have its stress below 22 ksi (15 kN/cmz); while the

bending elements were t0 have cross-sectional areas above

2 {0.6 cmz) and the brace was toc have a cross-sec-

2

0.1 in
tional area above 2.0 in” (12.9 cmz). The x-displacement
was to remain below 0.020 in. (0.05 cm), and the y-displace-
ment was to remain below 0.026 in. (0.066 cm). Smali
displacement constraints were chosen in order to have the
displacements ¢lose to their active values condurrently

with the stress constraints.

The results are presented in Table I. All of the
results in Table I correspond to two cycles of optimization.
All four solutions provide similar sizes for the bending
elements, but the inverse geometric properties provide con-
siderably larger values for the brace element. Each design
was contrcolled by the stress in element B. Within the
first cycle of each problem the stress in each bending
element was within 95 percent of the active value, there-
fofe, both of these stresses were considered as active
constraints. In each case the Lagrange multipliers for the

stress in element A was negative (approximately -4.0 x 10-3

)

while the Lagrange multiplier for the stress in element B

was positive (approximately 4.2 lO—3

). Since the con-
straint for element A provided a negative Lagrange multi-
plier, it was dropped from the active set of constraints,
and the Lagrange multiplier equations were resolved pro-
viding a value for the remaining constraint of approximately

1.7 x 10_4. Note that there is considerable difference in
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TABLE I. Results for a Two Dimensional Frame with Different Primary
besign Variables after Two Cycles of Optimization
(1 in = 2.54 cm, 1 kip = 4.45 kN)

Design Variable

Moment of Inverse Inverse Moment
Area Inertia Area , of Inertia

. 2 .
AA {(in") 26.13 25.81 26.13 25.83
A, (in?) 26.28 26.07 26.28 26.71

. 2
AC {in ) 13.10 11.68 17.37 . 15.48
Wwt. (kip) 3,62 3.52 3.93 3. 80
No. Scalings 5 2 5 2

No. Analyses 7 4 7 4



the values for the Lagrange multipliers after one con-
straint is removed.

Optimality criteria approaches are sensitive to the
set.of constraints chosen to be active.' Making the correct
choices for this active set is still being studied by the
Structural optimization researchers. Using the major-axis
moment of inertia for the bending elements and the cross-
sectional area for the brace provides the lowest weight
with the least amount of computational effort, The cross-
sectional area produced similar results to those produced
by the major-axis moment of inertia problem except that the
analyses required was considerably larger. As seen from
Table I this is due to the number of scalings required to
reach a set of active constraints. (Reaching an active
constraints requires the response to be "close" to the
limiting value.) The large number of scalings is due to
the nonlinear factoring associated with the moment of
inertia when using the area as the primary design variable.
From Equation 8.11 it is seen that a linear scaling of the
area provides a moment of inertia factor which is one-sixth
of the square of the factor for the area. Therefore, it
was decided to use the major-axis moment of inertia as the
primary design variable for the bending elements and the
concrete panels and to use the cross-sectional area for the
brace elements. The use of these primary design variables
also enhances the control of the constraint values within

the optimization. In other words, the constraint responses
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tend to remain close to their limits after optimization
which reduces the need for scaling which requires a re=-
analysis.

The cases where the area of each element and the
moment of inertia of the bending elements coupled with the
area for the brace were takén one Eycle further. This was
to verify that the major-axis moment of inertia did provide
a better approach to the problem. The final results are
presented in Table II. The distribution is very similar
for each case, but the major-axis moment of inertia problem
provides the lesser final weight with fewer analyses re-
quired. As in the previous two cycles only the stress

constraint for element B was active.

C. THREE DIMENSIONAL DESIGN EXAMPLE

A cne-story, one-bay, three-dimensional frame, as
shown in Figure 22, was thoroughly examined with several
numerical techniques and constraint cases. One of these
cases will be presented here in order toc help the overall
understanding of the algorithm. An in depth look at the
first cycle will be presented along with the results of the
entire design. This example includes every element type,
and it will include static stress and displacement con-
straints.

The three-dimensional structure was used to test the
use of mixed element types as well as mixed constraints.

The frame consists of a square, rigid-slab which was
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Wt

No.

No.

TABLE II. Results for a Two Dimensional Frame with Different
Primary Design Variables after Three Cycles of
Optimization (1 in = 2.54 cm, 1 kip = 4.45 kN)

Design Variable

Area . Moment of Inertia
.2 .
(in™) 25.5 25.2
(in2) 27.8 27.4
(in’) 6.7 5.9
(kip) 3.21 3.11
Scalings 6 2

Analyses 9 5
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Figure 22. Three Dimensicnal, Multi-element
Structure
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10.0 ft. by 10.0 ft. (3.05 m by 3.05 m) which was supported
by three 10 ft. (3.03 m) rectangular, steel columns (A, B,
and C). The rectangular cross sections are assumed to have
a depth to width ratio of 1.5, and the concrete panel is
assumed to have a fixed depth which spans between columns. B
and C. The column depths are parallel to the y-direction.
Steel X~-bracing (D and E) are in one vertical plane with a
concrete flexural panel (F) in anothef plane as shown in
Figure 22. The concrete panel does not include steel. The
loading consists of 300 kips (1335 kN) in the x-direction,
100 kips (445 kN} in the y-direction, and 3000 kip-in

{339 kN-m) in the 8-direction.

The constraints consist of static displacement and
stress constraints. The maximum allowable deflection is
0.5 in. (1.27 cm) for both the x- and y—directions. The
maximum allowable stresses are 30 ksi (20.7 kN/cmz) for the
steel elements, and 3.0 ksi (2.1 kN/cmz) for the concrete
panel. Three side constraints are used; 864,000 in4
(0.359 m4) is the lower limit for the concrete panel's
moment of inertia, 35.0 in4 (1451 cm4) is the lower limit
for the steel columns, and 5.0 in2 (32.3 cmz) 1s the lower
limit for the steel braces. Moduli of elasticity of
30,000 ksi (20,700 kN/cmz) and 3,000 ksi (2,070 kN/cmZ)
were used for the steel and concrete elements, respectively.
The final results of each iteration are shown in Table III.

This example has two excepticns with respect to the

algorithm presented in Chapter VII. A psuedo-scaling was
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used. When this solution was generated a scaling based
upon the c¢ross sections and constraints was developed which
used the largest ratio of the actual response to the con-
straint limit to the 4/3 power. This type of scaling could
not be justified within later examples, therefore the
standaxrd scalin§ using a power of 1.0 was used. Secondly a
scaling was performed at the end of each optimization
cycle. Later this was not found to be necessary, therefore,
a scaling only occurs when the constraints viclate the
upper limit or when there is no violation, but all con-
straints are below the lower active limit of (l—Pl).

A step by step procedure of how the first cycle was
generated will be given:

Step 1 - The initial values for the element sizes were

4

chosen as 1500 in (62,400 cm4) for elements A, B and C,

2 4

100 in® (e45 sz) for elements D and E, and 2,000,000 in

(0.832 m4) for the concrete panel.
Step 2 - The static displacements were determined as
¥ = 0.19 in (0.49 cm}, yv = 0.17 in (0143 cm), and ¢ = =0.003

rad.

Step 3 - The maximum normal stress was determined for

each element as 7, = 28.8 ksi (19.9 KN/cm?) , 75 = 0.76 ksi
(0.52 kN/cm?), . = 19.4 ksi (13.4 XN/cm?) o5 g = 1.74 ksi
!

o)
(1.20 kN/cm“), and Ip = -0.02 ksi (-0.014 kN/cmz).

Step 4 - The largest ratio of structural response to

constraint wvalue was determined and used to find the

scaling factor as
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4/3
£= 28 7 = 0,047 (8.13)

Step 5 - The initial sizes were adjusted by the factor
given in Equation 8,13. A lower limit of 95% of the con-
straint limit was set as the acceptable limit.- Within the
current algorithm the ratio within the parenthesis of
Equation 8.13 would have provided an acceptable factor
(above 0.95) and a scaling would not have taken place. The

4 (59,000 cm4) for elements A, B, and

4

new values are 1418 in

C, 94.7 in®

(610 cm?) for elements D and E, 1,891,180 in
(0.787 m") for element F. Then all secondary design vari-
ables were determined from the new primary design variable.

Step 6 - Solve the new problem for the new displace-
ments. None of the displacements are close to the active
value.

Step 7 - Solve the new problem for the new stresses,
Only the stress for element A has a stress which is near
the active value. Element A was a maximum stress of
30.0 ksi (20.7 kN/cm?).

Step 8 - All constraints were checked for violation
(was the scaling factor above (l+P2)).. None of the con-
straints were violated. All constraints were then checked
to see if any constraints were active (was the scaling

factor between (l1-P and (1+P2)). The stress for element

1)
A was chosen as an active constraint.

Step 9 - The gradient of the stress for element A was

determined using this equation
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30

A _ _ T 5 [X] I '
Er {vij ——aéi {U} 1=2,.0,F (8.14)

where §; represents the primary design variable for each
element, {U} is the vector of displacements, and {v}g is a

vector of virtual displacements determined from
vi, = (K17 n) (8.15)
A A A . .

where op = {b}g {U}.

Step 10 - The linear egquations for the determination
of the Lagrange multiplier was developed. Since there 1is
only one active constraint, there is only one Lagrange.
multiplier to be found and one egquation to be formed. This
equation was determined using Equation 5.42. The Lagrange
multiplier was 0.118. If there were more than one active
constraint providing a set of Lagrange multipliers which
were not all positive, the constraints associated with the
negative Lagrange multipliers would be removed from the
active set. The new set of equations would be resolved,
and this process would continue until all of the Lagrange
multipliers were positive.

Step 11 - The optimality criteria would be determined
for each element as shown in Equation 5.15. The optimality
criteria for this cycle were TA = 1,25, T, = 0.06, T, = 0.61,

B C

TD E = 0.006, and TF was a negative quantity which was
H

nearly zero. An optimal solution is obtained when all

actlive elements (elements not at their upper or lower
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limits) have optimality criteria near unity. From the
optimality criteria it is seen that elements D, E, and F
are trying to rapidly reduce their size.
Step 12 - The optimality criteria are used within the

linear recurrence relationship given as

RN SR e S S i = a 7 (8.16

1 = f i i 1 = F ey . )
with a convergence control parameter, r, of 2.0 to produce

the second cycle element sizes. The new sizes are

.4 4 .4 4
IXA = 1598 in (66500 cm ), IxB = 748.4 in~ (31,100 cm’),
_ . 4 4 B . 2 2
IxC = 1143 in~ (47,600 cm ), ID,E = 47,535 in"~ (307 cm™),
and pr = 864,000 in4 (G.360 m4). Since the optimality

criteria for element F was negative, 1t was reduced to its
lower limit (passive value) without the use of Equation
8.16.

Step L3 - The new structural responses are determined
and checked for constraint violation. If violation occurs
the design is scaled. If there is no violation the termi-
nation criteria of percentage weight change, number of
optimization cycles and number of analyses are checked.
The percentage weight change for this cycle Was approxi-
mately 37.5 percent. This is largely due toc the large
decrease 1n size associated with the concrete panel. If
none of the termination criteria are satisfied the problem
is shifted back to step 4 for this problem, but generally

it goes to step 6.
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The final results are shown in Table III. This prob-
lem was terminated due to the number of cycles of optimi-
zation which had a maximum of ten cycles. Realistically,
this problem could have been terminated earlier due to the
small change in weight after the sixth or seventh cycle.
Note that elements B and F reached these passive values and
the braces étabilized at a value of 10.5 in2 (67.7 cmz).
Since only the stress for element A remained an active
constraint throughout this problem, the global optimum

result would most likely force all elements except A to

become passive.

D. ILLUSTRATION OF EIGENVECTOR GRADIENTS WITHIN A DYNAMIC

RESPONSE CONSTRAINT PROBLEM

A dynamically constrained structure is optimized with
exactly the same steps as the previous static problem with
the exception of the gradient determination. The dynamic
displacement gradients are found by using Equation 6.76 and
the dynamic stress gradients are determined in a manner
similar to a psuedo-load technique as shown in Eguation
6.102. From Egquation 6.102 it is apparent that the dynamic
displacement gradients must be found. Eguation 6.76, to
find the dynamic displacement gradients, reguires the
natural freguency and eigenvector gradients.

An illustration of these calculaticons will be pre-
sented for a structure with the same configuration as the

static problem presented in Section VIII.C. The calculations
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TABLE TIITI. Results for
Cycle A (in.4) B (in.4
0 1500.0 1500.0
O* 1418. 4 1418.4
11t 1683.9 788.5
2 2009.7 436.6
3 2492.2 233.4
4 2988.7 128.0
5 3343.8 67.4
6 3553, 4 35.8
Vi 3688.0 35.4
8 3770.5 35.2
9 3810.6

35.0

)

a Three Dimensional Static Constraint Problem

4

C (in.

1500.0
1418.4
1205.0
987.5
722.3
603.0
438.0
295.4
187.8
113.4
65.3

)

2

4

D,E (in.") F (in.") Weight (k)
100.0 2,000,000 -—
94.5 1,891,180 36.39
50.1 910,334 22.72
27.4 921,852 19.99
15.7 958,700 18.79
11.6 926,560 17.87
10.5 893,500 17.14
10.4 877,810 16.59
10.4 872,890 16.32
10.5 868,810 l6.06
10.5 864,000 15.80

* The 0* values are found by scaling the initial values given in 0.
T Element I' has become passive in this step but takes the value 910,334 due to a
This example uses scaling after each iteration.

scaling factor of 1.053.



are performed for I =. 157

(30,900 cm4), I. = 1121 in

C

(304 cmz), and I_ = 955,13

F

natural frequency is 92.14

is x 1.0, v = 0.951, and
tions will then be compare
gradients found by making

Several quantities ar

4

743 in
2 .

6 int (65,600 cm?), I
4

B

D,E = 47.1 in

The first

(46,700 ecm¥), 2

4 4

0 in® (0.398 m").

'rad/sec, and the first elgenmode

9 -0.016. The actual calcula-
d to the numerically generated
a small change in the variable.

e needed to find both the gradi-

ents for the natural frequency and the eigenvectors with

respect to element A. Fro

important guantities are:

—== {¢}

and

= {¢}

and

7.08 x

[M]{g}

6.73 x

-4.3 x 10

m Equations 6.94 and 6.97, the
1073

107t (8.17)
10+

107°

107° (8.18)
1074

-2

-2 (8.19)
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From Equation 6.68

2 -1 -6
gg _ 7.90x10 - 8490 (5.84%x10 ") _ 3.647 (8.20)
A

0.203

and the numerically calculated value for a 0.01 change in
the moment of inertia for element A gives Amz/AIA = 3,648

which is very close to the actual value. From Equation

6.94
4.32 x 10772 1.57 x 1078
(K] - wZ[MU iﬁ%l = -4 3.96 x 107t} + 8490 { 1.49 x 107°
a
-2.57 x 10t ~1.79 x 10°¢
7.08 % 10”4 2.67 x 10°*%
+ 3.647 6.73 x 10°° = -1.39 x 10°% (8.21)
-4.31 x 10V 8.51 x 10°

Once the right side of the equation is generated a boundary
condition is applied in order to generate a solution. Since
the matrix [[K] - mz[M]] is singular, the eigenvector
provides only a direction. As seen in the eigenvector, the
first term can always be set to one with the other terms
taking the appropriately scaled quantities. Therefore, 1if
this term can always be unity there will never be a change
in this term. The boundary condition becomes 8¢l/BIA =0
similar to a constrained direction with respect to é stiff-

ness formulaticn. This allows the reduction cof [[K] - m2

[(m7]
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to a nonsingular matrix. For this problem the solution is

found from this equation

0 0
2 _ -1
[[K] - w”[M]] 43¢,/3T, ¢= 4-1.39 x 10 (8.22)
. 0
995/3 T, 8.51 x 10
and gives
6. /8T -3.85 x 107°
2772 .
= (8.23)
-7
304/81, 5.28 x 10

The numerically generated quantities for AIA = 0.01 were

86,/AT, = =3.85 x 107°

and 0¢,/AT, = 5.32 x 1077 which show
that the equation evaluated gradients are correct. As
explained in Section V.C.3.a a correction term can be
applied to these gradients if the eigenvectors are normal-
ized with respect to the mass. This term must be included
since none of the eigenvectors will be constants any longer.
These -quantities would be used, in the previously presented
equations, to generate the gradient of the dynamic displace-
ments with respect to element A. This type of calculation
must be performed for each element, therefore it is easily

seen why the gradient calculations are one of the most time

consuming processes.
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E, EFFECTS OF A UNIFORM LOAD ON STRESS GRADIENTS

The stress gradients for elements with uniformly
distributed loads as calcﬁlated using Equation 6.29 must be
combined with an additional term. Equation 6.29 finds the
stress for the element with the applied local displace-
ments, but it does not include the fixed-end forée terms.
The actual stress for a uniformly loaded beam is calculated

as

M_c
_ Mc F
Jj ——I'i“_—]:— (8.24)
where M 1s the elastically calculated moment, M is the

FI

fixed—-end moment, ¢, is the distance from the neutral axis
to the farthest fiber of the cross section, and, I, is the
major-axis moment of inertia. Therefore, the stress gradi-

ents for a uniformly loaded beam must include an additional

term as
o)e el (5.25)
I2
where (oj)F, represents the fixed-end moment stress, and

the stress gradients for a statilc, uniformly lcaded beam

becomes
30 M_.C
J - T 3[R] | _ F
=T {V}j T {Ul + ( _;7) (8.26)
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This additional term can be a large or small pércentaqe of
the total gradient depending on the effect of the fixed-end
moment and the size of the moment of inertia.

In addition to this correction, it 1s important to
note that the first term of Equation 8.26 is developed with
an assumption which prevents it from representing the

complete stress gradient. The assumption is to neglect the

3{bl. 3{b’.
effects of the term —ggzl {u} (assuming —ggzl = Q). This

in effect assumes that the depth of the element is fixed or
independent of the moment of inertia. In reality this is
not true and Equation 3.12 is used to provide the distance,

c, as

c =1/8 (8.27)
for a symmetric section where S is calculated using the
secondary design variable relationships for the section

modulii,

F. EFFECTS OF CONDENSATION ON GRADIENT CALCULATIONS

When using the psuedo-lcad approach to calculate the

gradients, as with the dynamic stress constraints, the

3{b}.
first term of Equation 6.21, "3 J , cannot be assumed to
i
be zero., This term cannot be assumed to be zero because

{b}j is a reduced or condensed vector which is dependent
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upon the stiffness matrix through the condensation process.
Two approaches were attempted to solve this problem.

The first attempt was to find the dependence of
{b}j zpp (Reduced {b}j) with respect to the primary design
variable. The direct differentiation of Equation 6.104

provides an equation which is quite complicated as

a{b}j RED _ B{bz}j ) B[Kzl] X }_l{b }
30, 34, 3¢, 11 1.
i 1 i j
-1
9 [K, .1 3{b,}.
- R - -1 13
[Ryy ] —55— byt = [Kppl 1K ] 53,
i 3 i
(8.28)
21Ky, 17
The preoblem with this equaticn is the need for =

which is quite difficult to obtain.

The second approach is the same as that used in
Equations 6.105 to 6.109. These eguations provide a means
of finding the gradients of the previously condensed dis-

placements as

3{u, } 3Ky 4] 3 [K, 4]
1’ _ -1 11 12 .
55 T [Kqpgl [‘ 55— Ut - T Uy
1 1 1
30}
- K] < —r } (8.29)
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and allows the use of the full psuedo-load vector {b}g
multiplied with the full displacement gradient vector. This
alsoc uses the assumption that the gradient of the full {b}g
vector is zero. This second approach has produced results
within a few percent of the values calculated by the gradi-
ent approximation using a small change in the design vari-

able as seen in the previous examples.

G. REMARKS

This 1s a sample of the type of calculations and
concepts which had to ke explored in detail prior to and
during the development of the computational algorithm. The
gradient calculations are very time consuming and they were
studied very closely with respect to ways of efficiently
computing exact and approximate gradients. The displacement
and fregquency constraints are exact numerical solutions,
whereas, the stress gradients have the assumption that the
gradient of the psuedo-load vector is zero which provides a
very good approximation. It is important to the algorithm
to have good approximations to the gradients. Without
reasconable values the optimization algorithm cannot maintain
the constraint values. If these are not maintained,
scalings must be performed between cycle, which rapidly

increases the total number of analyses.
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IX. DESIGN RESULTS FOR ASSESSMENT OF CODE
PROVISION, COST, AND MULTIPLE-
CCMPONENT SEISMIC INPUT

A. COMMON STRUCTURAL AND OPTIMIZATION PARAMETERS

Several structures, loadings, analyses, and constraints
will be used to explore and verify the use and results of
the proposed algorithm and computer program. A majority of
the examples will be structural systems subjected to dynamic
loads with static and dynamic displacement constraints. A
few examples will be presented for the static response,
frequency, and dynamic stress constraint problems, but most
of the examples will be concerned with dynamic displacement
constraints. This set of constraints was used in order to
interp;et the effect of seismic loading on the structural
systems, and the oétimal St;ffness distribution for drift
control with respect to seismic loads.

Many of the structural examples use common parameters
during the optimization. In order to prevent repetition,
common parameters or default parameters will be given and

can be assumed for each problem unless stated otherwise

within that specific example. The convergence control
parameter, r, used 1is 2. This value is acceptable for
most structural problems. The range for chocsing an active

constraint is to have, Pl’ the lower bound active constraint
limit te be 10% and, P2, the upper bound active constraint
limit to be 5%. These limits are slightly restrictive and

could be expanded for the lower limit. The chances of
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numerical instability can be reduced by increasing the
acceptable region for active constraints. This increase
in the active region will also reduce the number of scalings
required within the optimization problem. The objective
function of weight is based upon the specific weights of
steel and concrete as 0.490 k/ft3 (7;82 Mg/m3) and 0.150
k/ft3 (2.39 Mg/m3), respectively. The equations relating
the secondary design variables with respect to the primary
design variables are given by Equations 3.15 to 3.29 for
the wide-flange cross-secticns, and by Equations 3.30 to
3.34 for the concrete elements. The most common response
spectrum used is given by Equaticns 4.56 and 4.57 which
simulates the actual response spectrum given bYVSeed (54)

as a stiff-soil site response spectrum. The modulus of

elésticity for the steel and concrete elements were 30,000
2

k/in® (20,700 kN/cm®) and 3,000 k/in® (2,070 kN/cm?),
respectively. The story or level numbers increase from
base (0) to the top of the structure (n = number of stories).
Note that the column lines and bays will generally be
designated by letters or numbers as shown in each of the
respective figures. All other pertinent details or changes
from these default parameters will be given for each
individual of set of problems which are discussed. During

the course of this research a number of examples have been

examined, this chapter provides a few typical examples.
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B. STEEL STRUCTURE SUBJECT TO STATIC CONSTRAINTS

A two story all steel, sefback structure will be
used to illustrate a problem with active static displace-
ment constraints. This structure is shown in Figure 23.
The displacement constraints are chosen as 0.25 in.
(0.64 cm) for the first level and 0.50 in. (1.27 cm) for
the second level displacements. These values are used
with respect to both the x and y directions as shown in
Figure 24. Stress constraints of 36 ksi (25 kN/cmz) were
applied for all elements, columns, beams, and braces.
The termination cfiteria were 15 cycles of optimization,
20 cycles of analysis or less than a 2 percent change in
weight. A set of lateral lcads of 400 kips (1780 kN) and
450 kips (2003 kN) were applied at the upper and lower
mass centers, respectively. These lateral loads were
applied in both the x and y directions. Along with the
lateral loads, a set of 5 kips (22 kN) nodal forces were
applied at each column node. The initial sizes used for

4

the column were 56.6 in~ (2356 cm4), for the beams were

146.0 in4 (6077 cm4), and for the braces were 3.63 in2

(23.4 cmz). No linking was assumed for the design vari-
ables. After the first cycle of aznalysis, a scaling factor
of approximately 121 was obtained for which the initial

sizes of 6849 in4 (285,100 cm4) for the ceoclumns, 17,667 in4

4 2

(735,400 em®) for the beams, and 439 in? (2832 cm®) for

the braces was reguired in order to satisfy the constraints.
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The actual optimization requires 10 cycles of optimi-
zation, 12 analyses, and was terminated due to a 1.8 percent
change in weight between the last two cycles. The initial
welght after the scéling was 588.5 kips (266.6 Mg) and the
final weight was 321.7 kips (1457. Mg) a reduction of
approximately 45 percent based on the initial weight. As
shown in Figuré 25. Of course this weight is based upon
the relationship between the area and the major-axis moment
of inertia for the beams and columns and the initial assump-
ticn of all columns and all beams starting with the same
relative stiffness, respectively. The initial set of
active constraints chosen included only the x-displacement
on the second level (x2 = 0.461 in.)(1l.17 cm). The next
cycle included the x-displacements on both levels with
X, = 0.228 in. (0.579 cm) and X, = 0.507 in. (1.29 cm), but
X, was eliminated from the active set since its Lagrange
multiplier was -375.2 (a negative Lagrahge multiplier
viclates the Kuhn-Tucker Conditions). After three cycles
the active set of constraints stabilized and consisted of
the x and y displacement con the second level. The final
values for the displacements are given in Table IV. The
final size for each member along with the value for, Ti’
the optimality criteria are given in Tables V and VI,
respectively. The optimality criteria have quite a large
range of values. The wvalues which are less than 0.5
generally indicate that eventually those elements would

reach their minimum wvalues while those wvalues above 0.5
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TABLE IV. Final Displacement for the All Steel,
Twe Story Setback Structure (1 in = 2.54 cm)

Level, i 2 1

x; (in) 0.501 0.12

y; (in) 0.499 0.200
9. (rad) 3.8 x 1074 3.9 x 1074

1
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TABLE V. Optimal Sizes for the All Steel Two Story Setback Structure
Subject to Static Displacement and Stress Constraints
(1l in = 2.54 cm) '

Column Major-Axis Moments of Inertia (in4)

Line 1 2 3 4 5 6 7 8 9
Level '
2 - - - - 11,789 7624 8708 6235 6202
1 45,079 702 555 1270 27,284 689 893 4755 2195
Beam Major-Axis Moments of Inertia (in4)
Bay 1 2 3 4 5 6 7 8 9 10
Level
2 - 2060 1809 - - 2081 1734 - - 6814
1 894 2383 2986 758 919 2212 2096 21,257 2447 5446

Brace Cross-sectional Areas (inz)
Upper Column ‘ Lower Column Area
2 47.2
2 3 48.2

10

6lel
1205

11

6155
3636
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TABLE VI.

Line
Level

Bay
Level

2
1

Optimality Criteria for the All Steel Two Story Setback
Structure Subject to Static Displacement and Stress Constraints

Columns
1 2 3 4 5 6 7 8 9 10
- - - - 1.225 1.438 0.835 0.932 1.094 0.887
1.410 0.2i2 0.196 0.166 1.146 06.224 0.363 0.732 1.035 0.703
Beams
1 2 3 4 5 6 7 8 9 10 11
- 0.942 0.678 - - 0.904 0.644 - - 10.910 0.854
.100 1.023 0.963 0.006 0.053 0.852 0.686

1.223 0.363 0.519 0.644

Braces
Upper Column Lower Coalumn Ti
3 2 0.865
2 3 0.887



are members which will eventually converge to an optimality
criterion of unity. Once a large portion of the dominating
elements have optimality criteria close to unity, the
objective function shows little change and the design is
terminated.

This solution illustrates the tendency for the optimi-
zation to produce strong bays or frames in order to provide
the most efficient stiffness with the smallest amount of
material. On the lower level columns 1 and 5 along with
beam 8 provide most of the stiffness required to limit the
lower level x-displacement, which also helps reduce the
effect of the first level displacement and ultimately the
total displacement at the second level. This is the reason
for column sizes on the second level which are considerably
smaller than the first floor columns of 1 and 5. In other
words, this large lower level stiffness creates a situation
where the drift of the second level can be larger than 0.25
in (0.64 cm} (difference between the second level constraint
and the first level constraint). The second level y-
displacements are mostly controlled by columns 5, 6 and 7
and beams 2 and 6 on the second level,.

This example shows the need for several different types
of constraints in order to provide realistic results. Side
constraints in order to place minimum and maximum allowable
sizes on elements are needed. Ccoupled with this is the need

for linking of elements. Most designs will force certain
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elements to maintain the same sizes and in this case most

likely all columns would be forced to have the same size

and all beams would be forced to have the same size. Both

of these types of constraints will be considered in later

examples. Drift control would be .another desirable

constraint.

Observations:

L.

The proposed algorithm and computer program provide

a means of controlling structural response. Every
applied constraint is satisfied when the algorithm

is terminated. A set of final active constraints
consist of the displacements Xy Xpy and Yoo

The algorithm produces a series of ten designs; all

of which are feasible solutions. In other words, each
design satisfies the constraints. Each design alsc
decreases 1n weight as expected due to the minimization
of the objective function which was the structural
weight function.

The optimality criteria can vary significantly from
the optimal value of unity while still providing a
small change in the objective function. Therefore,
the optimization can terminate prior to reaching a
globally optimal solution.

The optimization of a structure tends to produce sets
of strong bents. These are determined as the most

efficient means of resisting lateral loads.
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5. The distribution of large amounts of stiffness in
several bents is generally an unrealistic situation.
These results show the need for linking of the ele-

ments, as well as, side constraints.

C. STEEL AND CONCRETE STRUCTURE SUBJECT TO

STATIC CONSTRAINTS

A two story setback structure similar to Figure 23
comprised of every element type will be used to i1llustrate
a statically constrained response problem. The structure
is shown in Figure 26. Due to the large amount of stiffness
supplied by the panels and the shear walls, the deflection
co;straints were considered to be small. The upper level
displacement constraints were 0,20 in. (0.51 cm) and the
lower level displacement constraints were 0.60 in. (1.52 cm}.
These values apply to both the x and y directions. The
maximum allowable stresses for the steel columns were

20.0 k/in2 (13.3 kN/cmz), for the steel beams were 16.5

k/in® (11.4 kN/cm®), for the steel braces were 15.0 k/in’

(lO.4kN/cm2), for the concrete cclumns were 3.0 k/in2

(2.10 kN/cmZ) 1n compression and 50.0 k/in2 (34.5 kN/cm2)
2

in tension, and for the concrete panels were 3.0 k/in
(2.10 kN/cmz) in compression and 3.0 k/in2 (2,10 kN/cmz)
in tension. The concrete elements were assumed to have
a steel ratioc of 0.025 and a modular ratic of 10.0 for the

columns and 1.0 for the panels. The steel columns were
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constrained to be within a range of 7.0 in~ (291 cm’) to
50.0 in (2080 cm?), the beams were to be within 5.0 in®
(208 cm4) to 50.0 in4 (2080 cm4), the braces were con-

2 2 2

strained to be within 1.0 in”~ (6.5 cm™} to 15.0 in

(96.8 cmz), the concrete columns were to have widths within
the range of 5.0 in. (12.5 cm) to 20.0 in. (50.8 cm}, and
the panels were to have widths in the range of 4.0 in.
{10.2 cm) to 10.0 in. (25.4 cm). The loading consisted of
400 kips (1780 kN)} concentrated, lateral loads on the top
level applied in both the x and y directions at the mass
center, 450 kips (2003 kN) concentrated, lateral loads on
the lower level in both the x and y directions at the mass
center, and 5 kips (22 kN) concentrated load per column
wnode in the downward direction. The convergence control
parameter was set at 4.0, and the termination criteria was
15 cycles of coptimization, 20 cycles of analysis, or a 2
percent change in weight. The convergence control para-
meter was changed from the usual value of 2 due to.the
many different types of elements and stress constraints.
No linking was applied to this structure.

The actual optimization.of this structure requires six
cycles bf optimization and nine cycles of analysis. The
initial weight was 391 kips (177 Mg) and the final weight
was 131 kips (59.3 Mg) as shown in Figure 27. 1Initial and
final design sizes are given in Table VII. The final

solution produces optimality criteria which range in value
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TABLE VII. Initial and Final Sizes and Maximum
Stresses for the Twe Story Setback
(1 in = 2.54 cm, 1 k = 4.45 kN)

Columns

Level Line Initial (in41 Final (in4) Max. Stress (ksi)

2 5 56.6 15.1 14.9
3 8.0 in. 5.0 in. 28.3 (=1.7)
7 56.6 29.0 14.2
8 56.6 15.3 -18.5
9 8.0 in. 5.0 in. 27.2 (-1.6)
10 56.6 19.7 ~13.6
1 1 56.6 12.9 5.2
2 56.6 28.1 12.6
3 56.6 27.4 -12.0
4 56.6 12.9 4.5
5 56.6 7.3 17.0
6 8.0 in. 8.8 in. 39.0 (-2.3)
7 56.6 49.2 8.4
8 56.6 7.0" -17.1
9 8.0 in. 7.8 in. 42.8 (-2.5)
10 56.6 25.2 -8.9
Beams
Level Bay Initial (in4) Final (in4) Max. Stress (ksi)
2 2 146.0 24.5 13.4
146.0 25.3 17,477
* % *
146.0  34.8 16. 4
7 146.0 22.9 15.8"""
10 146.0 12.6 0.0
11 146.0 12.6 0.1
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TABLE VII. Initial and Final Sizes and Maximum
(cont.) Stresses for the Two Story Setback
(L in = 2.54 cm, 1 k = 4.45 kN)

Beams
Level Bay Initial (in4) Final (in4) Max. Stress (ksi)
1 1 146.0 12.8 4.9
2 146.0 - 17.9 10.6
3 146.0 18.5 15.0
4 146.0 12.56 1.4
5 146.0 12.8 4.9
6 146.0 21.7 14.0
7 146.0 17.5 13.4
8 146.0 12.5 1.0
9 146.0 12.6 0.5
10 146.0 12.6 0.3
11 146.0 12.6 0.0
Panels
Level Bay Initial {(in} Final (in) Max. Stress (ksi)
2 10 12.0 4.0" 0.9
2 11 12.0 s.0" 0.6
10 12.0 4.0" 3.0
11 12.0 4.0" -0.9
Braces
Initial Final Max. Stress
Top Line Bot. Line (in?) (in?) (ksi)
2 3.63 15.07" 12.7
2 3 3.63 15.0°" -12.5

*
Minimum Allowable Sizes
* * :
Maximum Allowable Sizes

* % %
Active Stress Constzaints
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from 0.4 to 1.4. These values should be equivalent to one
for all active members when an optimal solution is reached.
The reason these values are not closer to cne is due to the
fact that the concrete elements have stabilized close to
their minimum wvalues providing little change in the weight
which in turn terminated the process. If a true optimal
solution was to be obtained, a smaller percentage weight
change for termination would be required. The trend for
this optimization is to reduce columns 5 (possibly to a
passive value) and 8 to a small value and use the concrete
columns 6 and 9 along with steel columns 8 and 10 and beams
6 and 7 for the y-displacement resisting system. Along with
these frames, columns 2 and 3 on the first level coupled
with the x-bracing provide a system which helps resist the
torsion of the first level which in effect reduces the
y*displacemént on the second level due to the offset of

the first and second level mass centers.

The final set of active constraints include stresses,
displacements, and side constraints. The second level y-
displacement 1is active with a value cf 0.58 in. (1.47 cm).
The stresses for the beams on level 2, bays 3, 6, and 7
are active, as well as, the stress in the panel on the
lower level between column 5 and 8. The stresses are
shown in Table VII. The stresses in the parenthesis are
the maximum compressive stresses for the concrete columns.

Note that there is a slight overstress of approximately 5%
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for the beam on level 2, bay 3, which was allowed by the
feasible range for an active constraint as discussed pre-
viously. All stresses, displacements, and sizes are within
the acceptable regions and do produce a feasible design
although a wide range of member sizes was obtained because
no linking was assumed. The panels are so rigid that the
x-displacements are approximately 10% of the constraint
values, but it is interesting to note that the coptimal
solution tries to reduce the original structure to a set
of one bay frames parallel to the direction of the active
displacement in order to stop this displacement. This is
a common trend for the pure optimization where every
element is free to reach its own specific value at the
optimal solution. For the simplest cases of one loading
condition where there are no side constraints, the problems

will reach a statically determinate system.

Observations:

1. The proposed algorithm and computer program are capable

of optimizing a structure composed of a mixture of
elements. This example includes every type of element
allowed within the program.

2. The propcsed algorithm is also capable of mixed con-
straint problems. The solutieon includes beam stress,
displacements, and side constraints within the final

set of active constraints.
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3. The concrete elements tend to dominate the design
since the structure is only two stories tall., Even
the smallest concrete panel size provides enough
stiffness to control the x-displacements, while the
concrete columns along with the steel elements resist
the y-displacements.

4, The optimization is smooth and rapid. It requires

six cycles of optimization to reach the final solution.

D. FIVE STORY STRUCTURE SUBJECT TO FREQUENCY CONSTRAINTS

A five story L-shaped structure, shown in Figure 28,
with seven column lines and seven beams all made of steel
wide-£flange sections will be used to provide an example
of frequency (period) constraints. This structure does
not include linking of elements but dcoces use side coﬂ;
straints along with the frequency constraints. Each level
has a translational mass of 0.31 k—sz/in (54.3 Mg) and a
rotational mass of 16,403 k—sz—in (1854 Mg-mz). Initially
the columns have a moment of inertia of 9,500 in4 (395,400
cm4) while the beams have a moment of inertia of 9,000 in4
(374,600 cm4). This produces an initial weight of 206 kips
(93.3 Mg). The optimization was to be terminated within
20 cycles cf optimization, 20 cycles of analysis or less
than a 5% reduction in weight between cycles. The con-

straints consist of keeping the first period between the

values of 0.75 and 1.0 sec., the second period below 0.50
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sec. and the third period below 0.4¢ sec. while keeping
each element size between 10.0 in4 (416 cm4) and 20,000.0
int (832,400 em®).

The optimization was terminated due to less than a 3%
change in weight between cycles. The final weight was
given as 104 kips (47.1 Mg) or nearly é 50% reduction of
the initial weight, as shown in Figure 29. All three of
the periocd constraints became active with 'I'l = 1.02 sec.,
T2 = 0.50 sec., and T3 = 0.41 sec., as shown in Figure 30,
while none of the side constraints became active. The
final element sizes are given in Table VIII. Note that the
beams increase in size from top to bottom except at the
lowest level. This is a direct reflection of the added
resistance provided to the bottom columns by having a fixed
base and is common in most of the optimization problems
which do not have stress constraints. This will also
generally occur with stress constraints unless these beams
are locaded with a uniformly distributed load in order to
generate an active stress in these beams. Note that the
modes are coupled since the rigidity center and mass center
de not cecincide. The mode shapes are shown in Figures 31,
32, and 33. Each mode must be represented with the x, vy,
and ¢ components since the modes are coupled. Certain
components can be considered dominate in each mode, but

the coupling precludes the use of stating whether the mcdes

are x, Yy or rotatiocnal modes. The large value of the first
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TABLE VIIL.

1158
2710
4492
5420
5370

661
1932
3608
4888
4061

Results for the Five Story L-shaped Building

Subjected to Frequency Constraints (1 in

944
1898
2873
3591
4493

543
1139
1939
2488
1702

Column (in4)

1235
2036
3009
4324
18127

1161
2576
4298
5625
6309

Beams (in4)

3
348
506
699
813
737

4
592
1246
2041
2588
1805

1261
3147
5459
7262
7274

338
571
904
1115
982

= 2.54 cm)

1471
3075
4790
5342
9522

857
2821
5898
8364
5747

1251
2656
3889
4508
9092

846
2212
3896
4613
2649
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level, third column line is most likely due to the need to
increase the stiffness in the x-~direction in order to keep
the first mode frequency under one second. Since column

3 is the only column oriented with the major-axis moment.
of inertia in the x-direction, the optimization can provide
the most stiffness with the least area (weight) with this
element. It also appears that the y-direction modes
(frequencies) are resisted or increased by producing a
strong frame with columns 4 and 5 and beam 6. This is not
as easily seen as the reason for a large column 3. The
ability to maintain certain frequencies or periods is

in order that structures can be forced into specific regions

‘'of the response spectrums during a modal analysis.

Cbhbservations:

1. The prcposed algerithm and computer program was able
to control the first three natural freguencies of
the five-sotry structure. This can be guite bene-
ficial when designing for dynamic lcads.

2. The optimization produces a series of designs which
satisfy the freguency constraints. Each design
reduced in weight while redistributing the stiffness
in order to control the constraints.

3. The interpretaticn of the final distribution is
hampered by the coupled nature of the vibration

problem.
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4, As in the previous example, dominant members and
frames are generated which provide the optimal means
for maintaining the constraints. Column 3 along with
the bent formed by columns 4 and 5 and beam 6 are the

primary members.

E. ATC-03 PARAMETER STUDY FOR A SYMMETRIC STRUCTURE

USING THE EQUIVALENT LATERAL FORCE PROCEDURE

A ten story symmetric structure was used to perform
a parameter study for the ATC-03 Equivalent Lateral Force
method (35) for seismic analysis and design. The para-
meters which were varied consist of the effective peak
acceleration, Aa’ the effective peak velocity-related
acceleration, AV, and the soil type, $. The commentary
in the ATC-03 provision provides this discussion relating
to Aa and AV (35):

To best understand the meaning of EPA
[Aa] and EPV[AV], they should be considered as
normalizing factors for construction of smoothed
elastic response spectra for ground motions of
normal duration. The EPA is proportional to
spectral ordinates for periods in the range
of 0.1 to 0.5 seconds, while EPV is proportiocnal
to spectral ordinates at a period of 1.0 seccnd.
... The constant of proportiocnality (for a S
percent damping spectrum) is set at a standard

value of 2.5 in both cases.
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This statement reflects the fact that structures farther
from the epicenter of the earthquake could very well be
more sensitive to the effective peak velocity-related
acceleration due to the fact that groﬁnd motions tend to
have an increase in duration and-become-mere-periodic with
this distance. Therefore, the two terms were incorporated
to take into account the resonance and distance effects
assocliated with the seismic activity for any given
structure. The map areas for Aa and Av range from zero
to seven which correspond to different areas within the
United States. Area seven is the worst situation with
respect to seismic activity (this corresponds roughly to
a maximum ground acceleration of 0.4g). There are three
soil types: Soil 1, rock or stiff soil conditions where
the soil depth is less than 200 feet (61 m}; Soil 2, deep
cohesionless or stiff clay where the soil depth exceeds
200 feet (61l m); and Soil 3, soft to medium-stiff clays
and sand. A recommendation 1is given to use soil type 2
if the soil properties are unknown. When performing these
parameter studies actual situations were explored as
shown in Table IX or a total of twenty-one combinations.
These are the basic parameters which can be varied with
respect to a given structure which is designed by the
ATC-03 provisions.

Other than these ATC-03 parameters all other initial

data and geometry as given here and in Figure 34 were held
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TABLE IX. Combinations of Aa’ Av' and S Used for
the ATC-03 Parameter Studies

x * .
Aa AV Soil
7 7 1, 2, 3
6 6 1, 2, 3
6 1, 2, 3
5
5 l, 2, 3
6 1, 2, 3
4 5 L, 2, 3
4 l, 2, 3

*
Map Area Numbers
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constant. The convergence control parameter was 2, while
the termination criteria was 25 cycles of optimization,

30 cycles of analysis, or a 0.5 percent weight change.
This small percentage was chosen in order to insure a near
optimal solution for each case. Only displacement con-
straints were considered and are given in Table X. These
displacements are given with respect to an elastic analysis
and have been based upon the drift criteria given within
the ATC-03 provisions which states that the drift for this
building cannot exceed 0.01l5 times the story height of

156 in (396 ¢m). This includes the ductility and non-
linear effects, therefore this ATC drift wvalue is reduced.
It is reduced in accordance with the deflection amplifi-
cation ﬁactor, Cqe This is the applied ATC-03 factor
which converts the linear elastic analysis to a pseudo-
nonlinear analysis. A deflection amplification factor of
4,0, a response modification factor of 4.5, a seismic
hazard exposure group of 2, and a location away from an
active fault were used for the ATC-03 analysis (These
factors are frame and material dependent). Note that the
first level allowable deflection is less than the value
just described. This is to force the first level
deflection to become active as well as the other nine

stories which will force the ATC-03 drift regquirements to

be satisfied.
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TABLE X. Maximum Allowable Displacements (1 in = 2.54 cm)

Level Max. Displ. (in)
10 5.520
9 4.940
8 4,360
7 3.780
6 3.200
5 2.620
4 2.040
3 1.460
2 0.880
i 0.300
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The entire structure used steel, wide-flange sectiocns
and Equations 3.15 to 3.29 to represent the relaticonship
between the secondary and primary design variables.
Linking was used for both the columns and the beams.

Every level was forced to maintain one size of columns and
cne size of beams. This provides a more realistic design
and allows a reasonable approach to comparing relative
stiffnesses of the different structures. Each level
height was chosen to be 156 in. (396 cm) with each level
having a translational mass of 0.647 k—sz/in (113 Mg) and
a rotational mass of 24,263 k—sz—in (2742 Mg—mz). The
structure was subjected to only the lateral forces
required by ATC-03 in order to see the effects of these
loads. This does require two lcad cases. The first
requires a five percent eccentricity in the positive
v-direction and the second requires a five percent eccen-
tricity in the negative y-direction fqr the x-direction
lateral force. The primary direction of excitation is in
the x-direction. Each load combination consists of 30
percent of the y-direction lateral force superimpcsed with
100 percent of the x-direction, eccentric lateral loads.

4 (395,400 Cm4) for

The initial design sizes were 9500 in
all columns and all beams, but could be changed by scaling
prior to the first optimization cvcle. Therefore, each

structure starts with equivalent column and beam sizes but

nct necessarily 9500 in4 (395,400 cm4).
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The results of these analyses provide several
interesting observations. The major quantities associated
with these results are given in Table XI. These results
can be further reduced into twelve categories which produce
Table XII. From Table XII, the final design seems to be
most heavily related to the value of peak velocity-related
acceleration and soll conditions. Categories III, VI, VII,
and X show that identical results will be obtained for a
range of effective peak accelerations as long as the
effective peak velocity=~related acceleraticons and soil
conditions are held constant. This holds true because of
two reasons. First, the base shear for this sitructure is
based upon Equation 4.60 which is dependent upon the
values Av’ S, R, and T. R, the response modification
factor is a constant, the value of AV and S ére constants
within their appropriate categories which leaves the
period, T, which is also constant for this problem. The
value c¢f the period used in the calculations i1s not the
value calculated and given in Table XII, but 1s the value

found by
Ta = 0.035 (h )"~ (9.1)
where hn is the total height of the structure. The ATC-03

provisions states:
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TABLE XI. Hffects of Aa, Av, and 5 on a Symmetric Structure Subjected
to ATC~03 Equivalent Lateral Forces (1 kip

50il S Y
7 7

6 6

5 6

1 5 5
’4 6

4 5

\ 4 4

(7 7

6 6

' 5 6

2 5 5
’4 6

‘4 5
Ny

( 7 i

6 6

. .

3 5 5
P

1 5

\ g 4

*
Map Area Numbers

Init. Wt. (kip) Final Wt. {kip)
310.5 228.0
269.9 196.7
269.9 196.7
221.5 159.0
269.9 196.7
221.5 159.0
181.4 135.7
336.7 250.8
295.0 216.9
295.0 216.9
242.1 174.0
295.0 216.9
242.1 174.0
199.7 147.2
395,2 277.3
336.17 243.0
336.7 243.0
269.9 196.7
316.8 237.13
269.9 196.7
234.6 168.4

4.45 kN)

Period (sec}

No.

of Cycles

1.890
2.153
2.153
2.614
2.153 .
2.614
2.984
1.739
1.974
1.974
2.402
1.974
2.402
2.735
1.538%
1.789
1.789
2.153
1.826
2.153
2.475
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TABLE XIT. Condensed Results for a Symmetric Structure Subjected to
ATC-03 Equivalent Lateral Forces (1 kip = 4.45 kN)

Cateyory wt. (kip) Period (sec.} Ag, Ag, S
T 277.3 1.535 1, 7, 3
11 250.8 1.739 7, 1, 2
I1I 242.9 1.789 6, 6, 3
5, &, 3
v 237.1 1.826 4, 6, 3
v 228.0 1.890 7, 1,1
VI 216.9 1.974 6, 6, 2
5 6, 2
4, 6, 2
VII 196.7 2.153 6, 6, 1
' 5, 6, 1
4, 6, 1
5, 5, 3
VITI 174.0 2.402 5, 5, 2
4, 5, 2
IX 168.4 2.475 4, 4, 3
X 159.0 2.614 5, 5,1
4, 5, 1
XI 147.2 2.735 4, 4, 2
XTI 135.7 2,984 4, 4, 1

*
Map Area Numbers



The fundamental period of the building,
T, ... shall not exceed 1.2 Ta‘ Alternatively,
the value of, T, may be taken equal to the
approximate fundamental period of the building,

Ta’ . s 0 @

For the given structure Ta = 1.347 seconds and 1.2 Ta =
1.617 seconds. This statement and Equation 9.1 controls
in every case except Categery I, as seen in Table XIT.
Even in this case the actual period is greater than Ta.
Categery VII provides a similar trend except the same
final design is valid for two different combinations of A,
and soil type. This is due to the fact that the product
of Av and S are equivalent for these two cases. The coef-
ficient Cs in Equation 4.60 uses the product of AV and S
in its determination. A map area number of 6, provides

AV = 0.30 and a map area number of 5 provides AV = 0.20.
Scil type 1 gives a factor S of 1.0 and soil type 3
provides a factor S of 1.5. These terms then provide the
same value for CS’ which in turn provides the same results
with respect to the optimization.

The convergence properties of the twelve different
categories 1s shown in Figure 35. Eleven of the twelve
categories optimized within eight cycles with most
finishing within five cycles. One case took nineteen
cycles to finish. This eleventh case (Category XI) had a
period of fluctuation begin after approximately six cyclés.

These fluctuaticons were strictly due to the small
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percentage of weight change required for termination.
This is a common occurence near an optimal solution. All
of the structures had a final active constraint set which
consisted of the x~displacements for each level. The
maximum y-displacements ranged from approximately 1.6-1in.
(4.1 cm) to 2.0 in. (5.1 cm). The level versus column
and beam major axis moments of inertia for the twelve
categories are shown in Figures 36 and 37. The trends
for all of the examples are similar as would be expected.
All of the beams and columns tend to increase in stiffness
in a regular fashion from the top level down tc the first
or second level. At the first level the beams change
dramatically from the previocusly established pattern and
at the second and first levels, respectively, the columns
are slightly decreased then greatly increased. There are
two reasons why this occurs. First the reduced displace-
ment constraint at the first level requires a large
stiffness for the first level columns. Secondly, the
fixity at the base coupled with the strong first level
column causes the coptimization to place a relatively
small beam at the first level. 1In other words, this set
of beams has little effect on the first level or any
‘subsequent displacements since the fixed base helps limit
the first level rctations at the column nodes and the
relative displacement between the column ends. The small

reduction in the column stiffness at level two is most
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likely due to the numerical procedure. With the first
column being relatively large, the numerical solution
sees a lesser need for stiffness at the level above it.
This set of examples provides some information with
respect to the ATC-03 provisions which should be explored

further.

Observations:

1. The optimal structure is dependent upon AV, the
effective peak velocityv-related acceleration and, S,
the soil condition. Since the effective peak accel-
eration was noncontrolling, the original 21 categories
could be reduced to 12 separate solutions. This
result is due to the ATC-03 provisions for deter-
mining the base shear.

2. Each structure was designed using the ATC-03 period
Ta’ except Category I. Every other category produced
periods which were above the ATC-03 limit of 1.2 Ta.

3. All categories except Category XI converged to an
cptimal soluticon within 8 cycles, and each category
cenverged smocthly. Category XI had a fluctuating
constraint due to the small percentage of weight
change required for termination. This fluctuation
could also be avoided by enlarging the width of the

active constraint region.
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10.

Most categories optimized quickly and smcothly within
5 cycles. The optimal weights ranged from 135 kips
(60 kN)} to 277 kips (1233 kN).

The proposed algorithm and computer program can use
linking to provide reasonable stiffness distribution.
The x-~displacements on all levels formed the set of
active constraints.

A large change in columﬁ stiffness occurs between

the first and second levels. This large increase in
stiffness is due to the £fixity at the base and the
small allowable displacement at the first level.

As long as all displacements become active the

drift can be controlled through the displacement
constraints.

With the exception of the first level, the columns and
beams have a regular pattern with respect to stiffness
distribution. Each category produces a system with

increasing stiffness from top toc bottom with nearly

identical patterns.
Softer soil conditions coupled with large effective
peak-velocity related accelerations produce larger

variations in the stiffness.
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F. ATC~03 PARAMETER STUDY FOR AN UNSYMMETRIC

STRUCTURE USING THE MODAL ANALYSIS PROCEDURE

This ten story structure, shown in Figures 38 and 39,
was used for several different parameter studies. The
first study varies the values of the effeCtive‘peak accel-
eration and the effective peak velocity-related accelera-
tion while holding the soil type constant (soil type 1).
These combinations were considered through the ATC-03
modal analysis procedure. Second, the soil type was
varied while using map areas for the effective peak
acceleration and effective peak velocity-related accelera-
tion of seven. Third, the soil type, the effective peak
acceleration and the effective peak velocity-related
acceleration were held constant and the type @f ATC-03
analysis was varied. The map areas were considered to be
7, the soil type was chosen as 1, and the analyses were
the equivalent lateral force and the modal analysis
procedures. Fourth and last, a different linking scheme
was used. The first three examples consider each level
to have all of its columns linked and all of its beams
linked, respectively. The fourth case uses a more re;lis—
tic approach of linking all of the columns on the levels
cne to three, all of the columns on levels four to six,
all of the columns on levels seven and eight, and finally
all of the columns on the levels nine and ten with a

similar arrangement for the beams. These examples
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provide a means of exploring the ATC-03 provisions with
respect to a vertically irregular structure while also
exploring the optimization procedures.

There are several common parameters for these cases.
All columns and beams are considered to be wide-flange
elements controlled by Equations 3.15 to 3.29. These
studies considered the structure to be within seismic
hazard exposure group 2, to be near an active fault, to
have a response modification factor of 4.5 and, to have
a deflection amplification factor of 4.0. The trans-
lational and rotational masses for levels 8-10 were
0.839 k-s2/in (147 Mg) and 45,280 k-s°-in (5116 Mg-m<)
for levels 5-7, 1.678 k—sz/in (294 Mg) and
144,895 k-s°-in (16,373 Mg-m®), for levels 1-4
2.516 k~32/in (441 Mg) and 353,180 k—sz/in {39,910 Mg—mz).
All beams and columns had egquivalent, initial values for
the major axis moments of inertia for each problem. Each
structure started with moments of inertia of 5500 in4
(228,939 )cm4, but were then scaled within the program to
a value which would produce an active constraint so the
optimization could begin. The lower range contrcl for
active constraints was slightly relaxed tc values of ten
percent to fifteen percent while the upper range was
maintained at five percent. This was done in order to
control a slight fluctuation in scaling that was occurring

due to the discontinuous nature of the secondary to
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primary design variable relationships. Dynamic displace-
ment constraints were considered and the two loadings
consisted of the ATC-03 forces, determined by one of the
two analysis technigues. The two loadings are required
to check the effects of the five percent ecceptricity
with respect tc the major-axis loading. This structures
primary excitation was directed in the x-direction at
each level's mass center plus or minus the five percent
eccentricity while the y-direction loading was considered
to be thirty percent of the lateral loads determined for
that direction. The dynamic displacement'constraints were
chosen as 0.45 in. (l.l1l4 cm) per f£loor level. This was
based on the ATC-03 drift limit of 2.16 in. (5.49 cm) per
£floor, after inelastic effects are considered, or

2;16/4 = (0.54 in. (l1.37 cm) for an elastic analysis. This
was further reduced for all levels by a factor of 1.2 in
order to insure that the first level drifts would remain
less than 2.16 in. (5.49 cm). (This has been discussed in
detail in Section IX.B). The other parameters are consis-
tent with the common parameters given in Section IX.A or
will be discussed with respect to each individual study.

1l. Variation in Map Areas for Effective Peak Accelera-

tion and Effective Peak Velocity-related Acceleration. This

parameter study was used to explore the effects that the
different combinations of effective peak accelerations and

effective peak velocity-related accelerations have on the
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optimal solutions. This is similar to the study performed
on the ten story regular structure and provides similar
results. Seven combinations were considered with map areas
ranging from 4 to 7. These seven combinations provide
actual allowed qombinations of these map areas. The
results are given in Figures 40 to 43. Within the legend
the three digit numbers provide the map area for the
~effective peak acceleration, Aa, then the map area for

the effective peak velocity-related acceleration, AV,

and the soil type, S. Each of these structures was
analyzed using the ATC-03 modal analysis procedure using
the first four modes. Each structure was analyzed using
the period of 1.777 seconds for the first mode which is
1'4'Ta where Ta was defined by Equation 9.1. This portion
of the ATC-03 states that no base shear will be less than
that caiculated for a pericd of 1.4 Ta and it need not
exceed the value based upon the equivalent lateral force
which is generally dominated by 1.2 Ta' Key values are
also given in Table XIII.

Tables XIII and Figure 40 show similar results to
those seen in the ten story regular structures. The effec-
tive peak velocity-related acceleration appears to be the
dominate parameter. A map area of six for AV provides
optimal weights of 476.4 kips (215.8 Mg), 454.9 kips
(206.1 Mg) and 473.6 kips (214.5 Mg) and a map area of

five for A, gives 387.3 kips (175.4 Mg) and 387.4 kips
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ATC-03 Map Areas

Init. Wt.
(kip)

594.2
516.5
516.6
423.9
515.9
424.1

368.5

Final Wt.
(kip)

515.8
476.4
454.9
387.3
473.6
387.4

314.4

Period
{sec)

1.477
1.717
1.71¢6
2.206
1.725
2.116

2.489

%10

X

10

%10~

Ten Story Setback Results with Respect to
(1 kip = 4.45 kN)

Active Constraints

Load 1
*107%8

“Xgr XgT¥g

*107%3

—XB, XG‘XS
X8, X6—X5;

%107 %5

These numbers represent the map area numbers for Aa and AV.

Load 2**

* kK

X

10

* %
Load 1 refers to a positive 5% eccentricity and Load 2 refers to a negative
5% eccentricity in the y~direction.

Kk Kk

X10”
10th

X

8

floors are active.

indicates the the displacements in the x-direction at the 8th through
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(175.5 Mg). Since these values are similar, Figure 39
can be broken inteo four regions which represent the
effects of AV. The difference in weights for the 561
case versus the 661 and 461 is due to a slight difference
in mode shapes which produces slightly different displace~-
ments. These differences affect the optimal sclution in
terms of gradients and Lagrange multiplier calculations
thch allows this structure to generate slightly lower
results. Looking at Figures 41 and 42 the 561 case pro-
vides larger columns but smaller beams than either of the
two cases 661 and 461. These latter two cases are nearly
identical. If case 561 were terminated at optimization
cycle 2, it would have had beams and columns of
similar size to those of 661 and 461. This indicates
that there are several local minima in this region. Note
that cases 551 and 451 lie exactly on top of each other
in Figure 40, but they do differ with respect to column
and beam stiffness.

When using wide—-flange sections 1t 1s pessible to have
a significant difference in stiffness with little difference
in weight or cost due to the relationship between the area
and the major-axis moment of inertia, but in the same sense
the final stiffness values are generally not as important
as the stiffness trends from level to level. For all of
these cases the general trend is for the cclumns to be

larger than the beams and to be substantially larger near
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the lower levels. None of these distributions are smooth
which is due to the irregularities in the vertical stiff-
ness and mass center location for this structure. The
general trend for these structures is to have increasing
column sizes from the top of the setback to the bottom of

a setback, then to reduce the column size at the top of

the next lower setback. Looking at levels eight and

five shows this trend quite well. This is due to the need
to recoup a portion of the stiffness which is lost at

that lower level of each setback. KXeep in mind that

the displacement constraints form a straight line from the
base to the top, and the optimization is going to provide a
structure which at least reaches several of these constraint
values. Therefore, each setback reduces in stiffness from
the bottom of the discontinued level to the top and the
next setback has to compensate for the lost stiffness of
the missing elements. The lower two levels have a slightly
different trend due to the fixity at the base. This

fixed base forces the lower column to become very stiff
(making use of this stiffness and the fixity reduces the
total displacement of nine upper levels which is very
efficient with respect to the optimization). In the same
sense, the optimization sees this as overkill and sometimes
reduces the second column to a value smaller than the

third level. This trend is seen in all of the columns
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where the first column is much larger than the third
level columns. |

This base fixity is also responsible for providing
smaller beams at the first level. Since the first level
columns are generally very stiff, little resistance 1is
required by the beams (If stress constraints were applied
quite often the lower beams are controlled by stress con-
straints). Overall, the general trend for three of the
seven cases is similar to that for the columns, large beams
are required for the lower levels of each setback portion
with a decrease in beam size at each level directly below
the setback. All of the cases fulfill this general state-
ment at level five, but do not satisfy this trend at level
eight. The four cases are 661, 461, 551, and 451. Three
of these cases can be attributed to the fact that Xy is
not ccnsidered an active constraint, and the fourth case
551 considers Xq active until the Lagrange multipliers is
found to be negative and it is removed. By not considering
this constraint as active and the fact that these four
cases used only two optimization cycles, these structures
did not have a chance to try and reduce these beams. As
seen with 561, the additional cycles causes this system
to reach a solution similar to that of 771 and 441. It

is also important to see that the beams are generally

much smaller than columns. Most examples with displacement
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constraints only will produce a system with’strong
columns and weak beams.

The ATC-03 provisions also provide stability and
drift requirements. As mentioned previously the drifts
are controlled by forcing the displacement gqpstr;ints
to be approximately eighty percent of tﬁe allowable
drift. Since the drift at the level below the active
constraints is generally the only controlling drift in an
optimal solution, the other floors are forced to have
approximately eighty percent of the allowable drift which
allows the design to be somewhat stiffer than the ATC-03
provisions require. The largest drift for these seven
cases was 2.157 in. (5.479 cm) which is slightly below the
allowable value of 2.16. (5.486 cm), and it occurs at the
top level of caée 451. Only five levels within three
cases had drifts above 2.00 in. (5.08 cm), therefore many
of the cases could possibly be reevaluated with a displace-
ment constraint slightly larger than the one used if a
final design was regquired.

The stability factors are shown in Figure 43 for
each of the seven cases and are found by using Equation
4.67. All seven of the curves tend to show a similar
smooth transition from small theta values at the top to
large values at the bottom. Several cof the structures

have a slight break in this trend at the second level.
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Once again this is due to the very large columns at the
base which allow small deflections and very little
P-delta effects. The P-delta effect need not be considered
if the stability factor, theta, is less than 0.1 which is
the case for all seven structures. The largest factors
are just below the value of 0.05. Note that as the
structures become lighter (lower map numbers) the stabil-
ity factor tends to increase. It is interesting that the
structures are optimized into a stiffness distribution
such that the theta factors do not reflect the setbacks.
This is due to the fact that the drift was maintained
tﬂrough the disp;acement constraints which were used to

distribute the stiffness.

Observations:

1. The effective peak velocity-related acceleration is
the dominant factor. As seen in Figure 40, the
cptimal solutions can be grouped according to A .
Due to the period of these structures, the effective
peak acceleration has no effect on the ATC-03
analysis.

2. The stiffness distributions are no longer smooth.
This i1s due to the vertical irregularities associated
with each setback.

3. The general trend is for the stiffness, of the

columns and beams, to decrease from bottom to top
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between each set of discontinuities, and to have.a
large increase in stiffness within the first‘level

of the next discontinuous section.

The ATC-03 stability factors are less than 0.05 which
is well below the limit of 0.l. The larger stability
factors occﬁr within the lighter structures (lower
effective peak acceleration values) as expected.

fhe stability factor curves do not reflect the
vertical discontinuities. Their distribution is
quite smooth. This is due to the linear variation of
the constraint values.

The x-displacements form the final sets of active
constraints as shown in Table XIII. Load case 2
which represents a positive five percent eccentricity
in the y-direction provides the critical set of active
constraints.

The maximum drift occurred at the top level within
case 451. The drift was 2.157 in. (5.479 cm) which
is slightly below the allowable value of 2.160 in.

(5.486 cm).

2. Variation of Scoil Type. The ten story setback

structure was then subjected to ATC-03 modal analysis

with a variation in soil type. The map areas for the

effective peak acceleration and effective peak velocity-

related accelerations were held constant at 7. All
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other parameters were consistent with those presented in
the proceeding section. The different soil types vary
the optimal designs by the factors used in determining
the base shear. Equation 4.60 has a term, CS, which
includes a term, s, that represents the soil condition
and takes on the wvalues of 1.0 fo? soil 1, l;zrfor soil
2, and 1.5 for scil 3. This is reflected by the response
spectrum shown in Figure 44 which is the response spec-
trum used by the ATC-03 to produce the Equation for CS as

2/3
c_ = 1.2 A, S/RT (9.2)

S

This is not the only equation used to find the base
shear, it is the most predominant. There are three other
equations to be used 1f certain criteria are satisfied
(per mode basis). Therefore, it is not reasonable to
assume the designs to be related strictly to these factors.
Although it is not a direct factorization by S, the
results were expected.

The results are shown in Table XIV and Figures 45 to
47. Soil condition 3 provides the largest weight of
598.4 kips {271.1 Mg) while scil condition 1 gives the
lowest weight of 515.8 kips (233.7 Mg). Scoil conditicn 2
provides a structure with a weight of 538.8 kips (244.1
Mg). Each structure required four cycles of optimization

to have a weight change of less than one percent. Due to
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TABLE XIV. Results for Variation in Soil Conditions
for the Ten Story Setback Structure

Soil Init. Wt. Final wt. Period Activg Constraints
(kip) (kip) (sec) Load 1 Load 2°
* Kk
1 594.2 515.8 1.477 - XlO_XS
2 666.6 538.8 1.415 Xlo—x4 XlO—X4
3 723.5 598.4 1.242 X4 0"%5 X107 %5

*
Load 1 and Load 2 refer to the positive and negative 5% eccentricity
in the y-direction respectively.

* %
X 0" %g indicates that the x-displacements are active from the 8th floor

to the 10th floor.



scaling they all start a different weights which represent
a structure with beams and columns of the same size
initially.

The final stiffness distribution has essentially the
same characteristics as those presented in the previous
section. Levels eight and five require larger columns and
beams than the preceeding levels due to the setback. Each
system also needs large columns at the base with small beams
at the first level. Soil condition 3 requires the maximum
allowable column size at levels eight and one and nearly
the maximum column at level five. Alsc, soil condition 3
reguires larger beams and columns at every level of the
structure. ©Soil condition 2 requires larger beams than
soil condition 1, but the column sizes for soil condition
1 tend to be slightly larger than soil condition 2 for
most levels. There is no apparent reason why this might
occur other than the different initial designs might have
provided a different path of optimization. This would
be a numerical situation not related to the ATC-03 provi-
sions other than through the four mode shapes used in the
modal analysis. As seen from Figure 46 the beams are
smaller than the columns provid;ng a strong column - weak
beam situation which helps in reducing the drift and in
controlling the P-delta cffect.

The drift and stability factor results are similar in

characteristics to those of the previous secticon. The
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maximum value of drift was 1.775 in (4.509 cm) for the
top level of so0il condition 2 and the largest value for
the stability factor, that was 0.019 for soil condition
1. Both values are far below the allowable values.

. Table XIV shows the active constraints which are quite
different for soil condition 1 as compared to the other
two soil conditions. This is due to the smaller lateral
forces being applied to the structure f&r soii condition 1.
These active constraints are also reflected by the fact
that the column stiffness for soil condition 1 is greater
than that for soil 2 which provides more lateral restraint,
Most likely if the termination criteria were identical,
these columns would reduce to values below that for soil
condition 2 and would allow more of the x-displacements
to become active. These results provide the insight into
the different soil conditions and their these effects

. with respect to the ATC-03 provisions.

Observations:

1. Soil condition 1 (rock) provides the smallest optimal
weight with soil condition 3 (soft) providing the
largest optimal welght.

2. The maximum stability factor is 0.019 fcor soil condi~
tion 1. As in the previous sectilion this value 1is
well below the maximum of 0.1. Also, the stability

factors do not reflect the vertical irregularities.
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3. The stiffness distributions are similar to those of
the previous section.

4, The x-displacements form the set of active constraints
as shown in Table XIV. |

5. The maximum drift is 1.775 in (4.509 cm) at. the top
lead for soil condition 2. This is well below the

maximum value of 2.160 in (5.486 cm).

3. Equivalent Lateral Force Versus Modal Analysis.

This section is used to provide some insight intoc the use
of the ATC-03 egquivalent lateral force procedure and. the
ATC-03 modal analysis procedure, For this purpose one
case was studied. This case is for soil condition 1 and
map areas 7 for the effective peak acceleration, Aa, and
the effective peak velocity-related acceleration, Av' All
other parameters are as described in Section IX.F. The
ATC-03 provisions say that a building will be classified
as irregular if:

"The building does not have an approximately symmetri-
cal geometric configuration about the vertical axes
or has horizontal cffsets with significant

dimensions."
and it says that buildings with only vertical irregulari-
ties should be analyzed with the ATC-03 modal analysis
procedure. Therefore, an analysis by'equivalent lateral
force techniques would be considered inappropriate. This

setback structure which has significant offsets was
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analyzed with both technigues tc see what differences would
occur.

The results do not necessarily substantiate the need
for the more detailed analysis for this structure. The
results are given in Table XV and Figures 48 to 50. The
modal analysis provides a lesser weight of 515.8 kips
(233.7 Mg) as compared‘éo the equivalent lateral force
weight of 552.9 kips (250.5 Mg). With respect to the
actual cptimization it required four cycles for the modal
analysis and seven cycles for the equivalent lateral
force, although the last three cycles essentially provided
ne decrease in weight. The increase in weight for the
fifth cycle is due to the addition of several new con-
straints during this cycle. Looking at Table XV, the
set of active constraints is considerably different. The
equivalent lateral force has active displacement at levels
five to seven for both loading conditions whereas the modal
analysis dces not have any active constraints for loading
condition cone. These active constraints are dependent
upon the rotational displacements 5t each level. A posi-
tive rotational displacement helps reduce the upper level
x-displacement, whereas a negative rotation increases the
x—-displacement. Therefore, the locad case with less posi—‘
tive rotational displacements will provide the £first sets
of active constraints. These constraints are difficult to

predict due to the fact that both the translation and
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TABLE XV. Results for Comparison of ATC-03 Analysis Techniques
for the Ten Story Setback Structures (1 kip = 4.45 kN)

Analysis Init. Wt. Final Wt. Period Active Constraints
(kip) . (kip) {sec) Load 1* Load 2*
: ' - . KK
ELF 686.7 552.9 1.343 Xg=Xg X10"Xsg
MODAL 594.2 515.8 1.477 - X1 0 ¥g

N _
Load 1 and Load 2 refer to the positive and negative 5% eccentricity
in the y-direction.

&k N . .
X0 %5 indicates the x-displacements are active for the 5th through

the 10th floors,.
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rotational displacement play a part in deciding the active
constraints. Depending on the stiffness distribution
these rotational effects can be large or small and inde-
pendent of overall strength or weight.

Once again the stiffness distribution for the columns
and beams has similar characteristics as the first two
sets of results. Levels five and eight has increased
sizes with the next levels below being smaller. They both
have large first level columns and small lower level
beams. In fact due to a scaling the eguivalent lateral
force analysis is asking for two columns which are above
the maximum value. The stiffness required for the equiva-
lent lateral force procedure is larger than that reguired
by the modal analysis in all cases except for the beams on
levels one and ten. Also, the general distribution is
similar, except for some relatively large changes in the
column stiffness within the top levels for the equivalent
lateral force method.

The most prominent differences in the optimal solution
is seen in the drift and stability criteria. The equivalent
lateral force methdd has two drift values which violate the
allowable drift of 2.16 in. (5.49 cm). Level eight has a
drift of 2.39 in. (6.07 cm) and level five has a drift of
2.42 in. (6.15 cm) with the rest of the drifts being below
1.75 in. (4.45 cm). This violation is due te the fact that

the level above these levels have an active displacement

247



while the level with the violated drift did not. The
modal analysis has a maximum drift of 1.69 in. (4.29 cm)
at the second level. These drifts in turn affect the
Stability factor,:theta, as seen in Figure 50. There is

a larger (relatively) change in the theta factors between
levels nine and eight and between levels six and five
which is due to these large drifts. The modal stability
fgctors tend to provide a smooth transition from the tenth
level to the second level. Neither design viclates the
0.1 maximum value for the stability criteria. The drift
and theta values would tend to substantiate the use of the
modal analysis procedure for design along with the fact
that it provides a lighter design. The unexpected result
was that both analysis procedures provided similar stiff-

ness distributions.

Observations:

1. Both analysis procedures provide similar stiffness
distributions. This was not expected and contradicts
the requirement of the ATC-03 provisions to use the
modal analysis procedure for any vertically irregular
structure.

2. The modal analysis procedure produces a lighter

structure with less cycles.
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The final sets of active constraints are guite dif-
ferent. The modal anlaysis produces a smaller set of

active constraints as seen in Table XV.

The equivalent lateral force method has two drift

yiclations. These both cccur at levels where the
displacement was not active but'the next level
displacement was active. The modal analysis pro-
cedure provides a maximum drift of 22% less than the
maximum allowable drift.

These large drifts cause an irregularity in the
stability factor distributions. Both analysis pro-
cedures provide stability factors below 0.02 which

is 20% of the maximum allowable value, but the modal
procedure provides a smooth distribution. Whereas,
the equivalent lateral force procedure has a dis-
continuity at the levels of excessive drift.

The lesser weight (smaller sizes), the lower drifts,
and the smooth stability factor curve tend to support
the use of the modal analysis procedure. The use of
less computational effort and the similarity in the
final stiffness distributions tend to support the use
of the equivalent lateral force technique even for

vertically irregular structures.
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4. Linking of Multiple Levels Versus Linking of One

Level. The effects of multiple story linking is to be
discussed within this section. In order to provide con-
tinuity at the offset junctures linking of the columns and
beam for several levels was considered. -All of the
columns on levels one to three were linked, all of the
columns on levels four to six were linked, all of the
columns on levels seven and eight were linked, and all of
the columns on levels nine and ten were linked. A similar
arrangement was used for the beams. Two extreme cases
were considered. First map area 7 and then map area 4

for both the effective peak acceleration and effective
peak velocity-related acéeleraﬁion were used with soil
condition 1. The ATC-03 modal analysis procedure was
used. All other parameters are identical to those given
in Section IX.F.l. Note this structure is subjected to
lateral forces only.

The results for the multiple story linking and the
single story linking structures are given in Table XVI and
Figures 51 to 54. Within the legend, nolink refers to the
single story linked case while link refers to the multi-
story linking. From Table XVI, the percentage change in
welght ranges from a 2.6 to 5.7 percent increase for the
multi-story linked case which is relatively small; The
gase Of erection and detailing associated with the multi-

story linking in a realistic situation could easily absorb
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TABLE XVI. Results for Multiple Story Linking Versus Single Story
Linking for the Setback Structure (1 kip = 4.45 kN)

A A Init. Wt. Final Wt. ¢ pDifference Period Active Constraints

a v (kip) (kip) (sec) .4 o
‘11 Load 1 Load 2

. X &Kk

Link 7 7 594.2 545.3 . - 1.457 - xlO—XBIXS
No Link 7 7 594.2 515.8 1.477 - xlO—XB
Link 4 4 368.5 322.5 - 2.254 xlO x5 xlO x5
No Link 4 4 368.5 314.4 2.489 X10" %5 xlO—XS

* .
Map Area Numbers

* &
Lead 1 and Load 2 refer to the positive and negative 5% eccentricity in the

y-direction, respectively.

n * &
xlo—xa, x5 indicates that the x-displacements are active on the Bth through the 10th
floors and on the 5th floor.



the cost of six percent of the total weight of steel. 1In
addition to achieviﬁg a better distributicn of stiffness
as seen in Figure 52 and 53. The final weight comparisons
are 545,3 kips (247.0 Mg) £for the multi-story linkinq to
515.8 kips (233.7 Mg) for the single story linking for map
area seven and 322.5 kips(146.1 Mg) for the multi-story
linking compared to 314.4 kips(l142.4 Mg) for the single
story linking. 1In both cases the optimization of the
multi-steory linked case terminated with less optimization
cycles than the single story linked case. This 1is to be
expected due to the decrease in the number of design
variables used to provide the same constrained response,
and in the same vain this is the reason for larger weighfs.
The active constraints for both sets of cases remain
nearly the same except for the additional displacement
constraint at the fifth level for map area 7. It would be
reasonable to assume that the other five cases explored in
Section IX.F.l woculd provide solutions which would fit
between the curves in Figure 51, and would have percentage
changes within the range ¢f 2.6 to 5.7 percent as long as
several additional constraints did not become active.
Using multi-story linking improves the design con-
siderably. The multi-story linking cases tend to average
the single story linking results. For map area 7 it
appears that the beams are on the high side of the average

stiffness while the columns are slightly on the low side
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except at the top two levels as compared to the single
story linking. The results for map area 4 seem to be of
similar nature. One of the main objectives was to elim-
inate the large changes in stiffness at the lower level of
each setback which was accomplished as seen in Figures 52 -
and 53. Looking at these two figures, it appears that a
possible linking would be tc link the middle five levels
(levels four to eight) with one design variable for the
columns and one for the beams with little loss in terms of
the optimal weight; and for map area 7 it appears that the
first eight levels (one to eight) could have their columns
linked without much loss. The upper levels still have a
large reduction in stiffness which is due to the smaller
total mass at the top and the fact that the optimization
is forcing those upper level displacements to become
active. 1t is important to notice the large reduction in
the lowest level column moment of inertia. For map area
7 there is approximately a one third reduction in size,
and for map area 4 there is approximately a one-half
reduction in size. Both cases provide beam to cclumn
stiffness ratio's of approximately forty percent for all
levels. This type of information would be useful for
designers if an entire series of frames and possibilities
were explored.

The drift and stability factors are slightly different.

The maximum drifts for the multi-story linked cases are 1.77
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in. (4.50 cm) and 1.47 in. (3.73 cm) for map areas 4 and
7, respectively, and the maximum drifts for the single
story linked case are 1.79 in. (4.55 cm) and 1.69% in.
(4.29 cm) for map areas 4 and 7, respectively. All values
are well within the 2.16 in. (5.49 cm) allowable value.
The maximum values decreased for each case when multiple
story linking was used. This was not true for all levels.
Map area 4 had some drifts smaller and some larger while
map area 7 had nearly all drifts smaller for the multi-
story linking case. The theta values (stability factors)
for map area 4 tend to be similar but slightly larger for
the multi-story linking, as seen in Figure 54. The maximum
values are 0.058 and 0.049 for the multi-and single stoxry
cases, respectively. . Most all of the theta values for map
area 7 are smaller for the multi-story linking as seen in
Figure 54. All theta values are well below the value of
0.1 specified by the ATC-03 provisicns. Generally, this
multi-story linking does not provide better response or
enhance the resistance to drift or the stability factors,
but it does provide a more realistic design. This type of
optional design does not appear to cause any significant
change in the optimal weight and generally leads to other
design options. This might be a sequence used tc develop
a design. Use a single story linking or partial single
story linking (only a few columns per floor instead of all

columns) in order to find a preliminary design for the
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applied constraints and then to refine or try several

linking combinations to provide a reasonable design.

Observations:

1. The effect of multi-story linking has little effect
on the final optimal weight. The worst case produced
a -6% increase over the single level linking case.

2. The multi-story linking case used less cycles in
crder to reach its optimal configuration. This is
due to the reduction in design variables associated
with the linking.

3. The multi-story linking produées an averaging effect
with regpect to the stiffness distributions as seen
in Figures 51 and 52. It eliminates the large changes
in stiffness associated with vertical irregularities.

4, Both cases have significant changes in stiffness
at the two upper levels, but onl& moderate changes
in the previous eight levels, This is due to the
small amount of mass associated with the upper levels
and the fact that the optimization i1s making these
displacements active.

5, The multi-story linking also provides a much smaller
column size at the base. This provides a more realis-
tic base column size.

6. All drifts in both cases are well below the maximum

value of 2.16 in. (5.49 cm). The multi-story linking
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case provides smaller maximum drifts, but not
necessarily smaller drifts at each level.

7. All stability factors are below 0.06 and the multi-
story linking provides very similar stability factors
to those produced by single story linking.

8. Multi-story linking does not create better sclutions
in terms of the objective, but it does provide a
more fealistic design in terms of stiffness distri-
bution. The maximum increase of 6% due to multi-
story linking could easily be absorbed into erection

and fabrication cost reductions.

G. A COMPARISON OF ATC-03 ANALYSIS PROCEDURES FOR

IRREGULAR STRUCTURES

1. Vertical Irregularities. A ten story regular

plan structure, Figures 34 and 55, was used to test

the effects of a stiffness irregularity with respect to
the ATC-03 analysis procedures. As stated in Section IX.F,
the ATC-03 prefers the use cf the modal analysis procedure
when the structure has plan or vertical irregularities.

The vertical irreqularities were introduced as taller
stories within the structure in two sStory ilncrements as
shown 1n Figure 55. When discussing these different
combinations and in the figure legends, the structures
will be termed 12 modal or 12 ELF where (12 signifies

the first and second levels) the numbers designate which
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levels, and modal or ELF represent the ATC-03 mcdal or
equivalent lateral force approach, respectively. Normal
story height consists of 13 feet (3.97 m), whereas, the
tall story heights are 18 feet (5.49 m). Each level has
a translaticnal mass of 0.647 k-sz/in. (113 Mg) and a
rotational mass of 24,263 kwsz-in. (2742 Mg-mz). This mass
was kept constant in order to eliminate any effects of an
irregular mass distribution. Every element was considered
to be a steel wide-flange section using Egquations 3.15 to
3.29 representing the secondary to primary design variable
relationships. Each level was linked such that all of the
columns on a specific level were forced to have the same
size and all of the beams on a specific level were forced
to have the same size. The initial moment of ine;tia for
all elements was 9500 in4 {395,420 cm4). Several of the
structures required scaling during the initial optimiza-
tion cycle which causes the structures to have different
initial starting weights with respect to the optimization.
The cptimization was performed using the two ATC-03
analysis provisions. Each structure was assumed to be
within map area 6 for the effective peak acceleration
and the effective peak velocity-related acceleration.
They were also assumed to be within seismic performance
category, C, with a response modification factor, R,
of 4.50 and a deflection amplification factor, Cd' of

4.00. The soil condition was assumed tc be stiff or soil
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condition 1. The allowable drift for each level as
determined from the ATC-03 provisions was 2.34 in. (5.94 cm)
for the normal stories and 3.24 in. (8.23 cm) for the

tall stories. Within the modal analysis procedure, four
modes were used., The primary direction for the loads are
in thé X-direction with the required 30 percent of the
total y-direction load applied in the y-direction. The
ATC-03 requires two load cases, the first load case has a
5 percent eccentricity in the negative y-direction and the
second has a 5 percent eccentricity in the positive
y—-direction. Only the lateral forces were considered.
Since the building is forced to be plan symmetric these

5 percent eccentricities actually répresent a symmetric
loading with respect tc the optimization and could have
been represented with one loading case. This weculd save
computer space and effort. This would nct be true if the
plan geometry was not symmetric and the linking scheme was
not symmetric.

The optimization was controlled by a set of constant
parameters. Termination of the optimization was to take
place at the end of 25 optimization cycles, 30 analyses,
or less than a 0.5 percent change in weight between
optimization cycles. A convergence control parameter of
2 was used. Displacement constraints were 0.300 in.
(0.762 cm) for the first level and 0.580 in. (l1.47 cm) per

floor above the first level with a lower range cof ten

264



percent and an upper range of five percent for active
constraint determination. This could be considered incon-
gsistent with the drift reguirements set by the ATC-03 which
allowed the taller stories to have a larger relative
displacement with respect to itsrupper and lower nodes.
This linear relationship was used sinée a drift constraint
was not a viable option. If these tall stories were
allowed a larger displacement constraint the story above
these would likely violate their ATC~03 drifts. It would
be similar to the reasoning presented for decreasing the
allowable first level displacement constraint. The story
directly above the taller stories would stiffen in order
to prevent a large rigid body deflection of the upper
floors, and the next stories above that would become quite
flexible with a good possibility of wvioclating their ATC-03
drifts. fherefore, the linear displacement constraints
(above the first level) were used, but were the same for
all of the problems. | |

The results are presented in Table XVII and Figures 56
to 67. Figure 57 shows that for the equivalent lateral
force method the solutions are converging to ﬁearly identi-
cal weights. The weights are within a range of approxi-
mately 8.0 kips (3.6 Mg) or 3.5% difference from the
lowest to highest weight. Even though the weights are
nearly identical, the sets of active constraints are not.

The table is socmewhat of a misnomer in that the missing
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TABLE XVII. Results for Vertical Irregularities within

the Stiffness of a Ten Story Structure
(L in = 2.54 cm, 1 kip = 4.45 kN)

I.D. Initial Weight Final Weight Active Constraints
(kips) (kips) (in)
12E 406.0 220.2 x10*X4*
34E 318.9 226.2 XlO_XB
56F 291.2 226.06 X 07 %5
78E 271.6 224.6 %10 %5
910E 275.1 218.3 X507 %1
12M 384.5 206.5 %) 0=¥p
34M 295.3 209.6 X107 %y
56M 2063.9 206.8 X190 %g
78M 254.2 205.4 Xy0 Xqr Xg=X,
910M 254.2 198.5 X107 %1
*xlo—x4 indicates that the x-displacements on the 4th

through the 10th floors are active.
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constraint possibilities are very close to the active
values (Most are within f£ifteen percent of the constraint
value). A similar trend for the modal analysis is seen

in Figure 58, The final solutions have a range of approx-
imately 11.0 kips (4.98 Mg) or approximately 5.0 percent
of the largest weight. The lowest weight for both types
of analysis occur when the taller stories are located at
levels 9 and 10. The largest weights occur when the
taller storiés are located within the middle floors;
levels 3 and 4 for the modal analysis and levels 5 and 6
for the equivalent lateral force approach. Note that the
weight for the equivalent lateral force with the taller
stories at 3 and 4 is only slightly lower than the largest
weight for levels 5 and 6. This trend was expected due to
the fixed bhase. The fixed base helps to provide rigidity
to level 1 when the taller stories are at levels 1l and 2,
therefore allowing the weight to decrease below that when
the taller stories are within the middle levels. In
theory, levels 3 and 4 should produce the largest welight,
but numerically it is not so. In the same fashiocn, it was
expected that when the taller stories were located at
levels 9 and 10 the lowest weight would be found. This is
due to the fact that the tall stories would not affect any
displacements except those at levels 9 and 10, allowing
the lower levels to use their shorter story heights to

resist their displacements. If the two extreme cases were
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excluded, the range of resulting weights would be 2.0 kips
(0.91 Mg) for the equivalent lateral force analysis and

4.2 kips (1.90 Mg) for the modal analysis showing the trend
to converge to a specific weight to be even stronger than
originally expected. Figure 56 éhows the weights £for both
types of analysis superimposed. Note the two distinct
regions of convergence with modal analysis providing the
smaller weights. These ideas can be seen with respect to
the stiffness distributions.

The distribution of stiffness is not radically dif-
ferent as the ATC-03 provisions would lead one to believe.
From Figures 59 to 64, the stiffness distributions for the
columns and beams based on equivalent lateral force and
modal analysis are nearly identical with the exception of
the maximum values for the moments of inertia. Every case
requires a large increase in column moments of inertia at
the two levels where the taller stories are located, as
shown in Figures 60 and 61, which was expected. The
first being the reduction in stiffness due to the addi-
ticnal height, and secondly, the linear constraint dis-
tribution ignores the fact that the ATC-03 allows a
slightly larger drift for these taller stories. Both cases
tend to form an envelope of column sizes if the case where
levels 1 and 2 have the taller columns 1s not considered.
The levels above the irregularities all tend to follow

similar paths along a lower boundary of column size from
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the top to the irregularity at which time a large increase
in column size is required. This increase becoﬁes larger
as the irregularity moves down the structure. These
moments of inertia at the stories appear to form an upper
limit or envelope as long as the first level columns are
not included. It is also interesting to ncte that below
the vertical irregularity the column sizes seem to
parallel the minimum size envelope. In fact, when the
vertical irregularity is at levels 9 and 10, the lower
level sizes lie along that lower limit. Figures 63 and

64 provide similar results for the beams in that two
enveloping curves could be generated as an uprper and léwer
limit for beam sizes. Above the irregularities the beam
sizes lie along a relatively fixed curve, and below the
irreqularities they tend to have similar distributions.
This trend is more regular for the equivalent lateral
force approach than for the modal analysis. The change in
beam size 1is nearly linear over the two irregularities,
whereas the columns jumped to a large value for the upper
level of the irfegular stories and had only a slight
change for the lower level of the irregularity. This
shows the importance of the columns to the resistance of
the prescribed displacements. As seen in most all of the
examples, a strong cclumn-weak beam design is found
through the optimization, and the first level beam is

smaller than the second level beam except for the case
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where the taller stories are at the base. Due to the
fixity, the beams for this case do not reach a value which
would be along the envelope described previously. Figures
59 and 62 superimpose the equivalent lateral force and
modal analysis results. By choosing the-two curves repre-
senting the same irregularity with different analyses,
these figures show that the results are nearly identical
in distribution. The major differences occurs only in
magnitude.

The last comparison to be made is shown in Figures
66 and 67 which represent the stability factors from
the ATC-03 provisions. Both figures are very similar.
The stability factors increase at the levelg of irregu-
larities and follow similar paths above the irregularities
and have the same general shapes after the irregularities.
This is a very general statement which must be considered
most appropriate for those cases where the irregqularities
are in the middle levels. The major difference comes in
numerical values again. The equivalent lateral force
method produced stiffer, heavier structures which in
effect caused a reduction in the P-delta effect, there-
fore, the stability factors are lower. Both sets of
results provide theta values well below the 0.1 limit set
by the ATC-03 provisions.

The curves presented all show similar trends for

both sets of analyses. Above the irregularities the
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curves tend to lump together, at the irregularity an
increase in sizes takes place, and below the irregularity
parallel curves are generated. This points to the fact
that the irregularity tends to affect only that local
area of the optimal structure. The irregularity has very
little effect on the distribution of the stiffness above
it as long as those constraints are active. With these
constraints active the optimization is essentially
controlling the drift which is almost totally element
(column) dependent. A similar statement could be made
for the sizes below the irregularity as the increase or
decrease in stiffness for a specific level is nearly
identical for each case. Showing the need for only
enough stiffness to stop its own drift with a small
amount of stiffness added due to the additional height of
the forces from the taller stories. These types of obser-
vations could possibly lead to the use of optimization in
a piecewise fashion. 1In crder to achieve this goal, it
would regquire many additional cases to preovide more con-
clusive evidence coupled with a more theoretical explora-
tion. If this structure were taller or the twe level
irregularity were placed at the missed sequence of levels
{(i1.e. six and seven, etc), 1t would be expected that the
results would fill the gaps on the curves and form the

maximum envelope of the stiffness as described.
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Observations:

ll

The stiffness distributions for the equivalent
lateral force procedure are nearly identical to those
of the modal analysis procedure. Although the
magnitudes are different the trends are the same.

As witﬁ the previocus example, the equivalent lateral

force produces heavier but similar structures with

less computational effort. The similar stiffness

distributicns for the two analysis technigques contra-
dicts the ATC-(03 statement to use the modal analvsis
technique for this structure with vertical irregular-
ities. This area could be studied in'greater detail.
The beam and column stiffnesses are bounded by an
envelope which consists of a lower bound determined
by the stiffness distribution generated with the
vertical irregularities at levels 1 and 2 and an
upper limit which can be formed by connecting the
stiffness of the taller stories as they progress
through the buiilding. This can be seen in Figures

58 to 63.

Each case requires a relatively large increase in
stiffness within the taller stories. The beams

tend to increase linearly to a large beam stiffness
at the lowest story of the irregularities, whereas,
the cclumns tend to have a large change in stiffness
at both levels of discontinuity with relatively

small change between these levels.
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4, It is important to note that this type of vertical
irregularity affects only‘that iocal area within
the structure. Above and below the tall stories
the stiffness distributions continue along nearly
parallel paths. _

5. Regardless of where the vertical irregularities are
located the optimal solutions provide nearly identi-
cal optimal weights. The equivalent lateral force
procedure has a range of 3.5 percent while the modal
analysis procedure has a range of 5.0 percent.

6. The stability factors are all below 0.04 and have
very similar distributions for the two analysis pro-
cedures. The stability factors are discontinuous
at the levels which have the taller stories. This
discontinuity is very mild.

7. The lightest structures are found when the vertical
irregularities occur at levels 9 and 10 in both
cases. Whereas, the heaviest structures are found
when the irregular heights are located at levels 3
and 4 for the modal analvsis and levels 5 and 6 for
the equivalent lateral force procedure.

2. Plan Irregularities. A five story, irregular

plan steel structure, as shown in Figure 68, was used
to test the effects of a planar irregularity with respect
to the ATC-03 analysis procedures. The ATC-03 provisions

prefer the use of the modal procedure when the structure
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has plan or vertical irregularities. Each story is 12
feet (3.7 m) tall, and each level has a translational
mass of 0.349 k-sz/in (61.1 Mg) and a rotational mass of
19,985 k—sz-in (2258 Mg—mz). Every element was con-
sidered to be a steel wide-flange section represented by
Equations 3.15 to 3.29. The initial major-axis moments

4 4

of inertia for the celumns were 9500 in~ (395,420 cm™)

4 (374,600 cm®). Each

and for the beams were 2000 in
example required scaling during the initial optimization
cycle causing the structures to have different initial
starting weights.

The optimization was performed using the two ATC-03
analysis procedures. Each structure was assumed toc be
within map area 7 for the effective peak acceleration and
the effective peag velocityfrelated acceleration. They
were also assumed to be within seismic performance cate-
gory, C, with a response modification factor of 4.50, and
a deflecticn amplification factor of 4.00. The soil con-
tition was assumed to be medium to soft or soil condition
2. The structure had no linking in effect, but it was
required to have displacements below 0.45 in. (1.14 cm)
per level. This is approximately 80 percent of the
allowable elastic drift determined from the ATC-03 pro-
visions. The modal anlaysis procedure used three modes,

and both analysis techniques used the x-direction as the

primary direction for the seismic lcading alcong with the
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required 30 percent of the total y-direction load. The
5 percent eccentricity was included within the two locad
cases.

The optimization algorithm was controlled by a set
of constant parameters. Termination was to take place at
the end of 30 coptimization cycles, 30 analyses, or less
than a 5 percent change in the weight between optimiza-
ticn cycles. A convergence coﬁtrol parameter of 2 was
used. The active constraints had a lower bound of 10
percent and an upper bound of 5 percent.

The results are presented in Figures 69 to 71.

Figure 69 shows the modal analysis procedure converging

to a weight of 38.7 kips (26.6 Mg) in 8 cycles and the
equivalent lateral force methed converging to a weight

of 62.6 kips (28.4 Mg) in 7 cycles. This is approximately

a 6 percent difference in optimal weights. Both pro-
cedures terminate due to a smaller than a 5 percent change
in weight between cycles. Both analyses produced a set of
active constraints consisting of the x~- and y-displacements
on levels 3 through 5, as well as, the y-displacement on
level 2.

The distribution of stiffness 1s not radically dif-
ferent as the ATC-(03 provisions tend to infer. Since
linking was not used, typical beams and columns were
chosen in order to compare the analysis techniques in

Figures 70 and 71. The columns can be grouped into three
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categories. Columns 1, 6, and 8 provide the greatest
amount of stiffness for levels 3 and 4 while providing
little stiffness to levels 1L and 2. Columns 3 and 5
provide large stiffness for levels 1 and 2 while providing
less stiffness for levels 3 and 4. Columns 2, 4, énd 7
provide almost n¢ stiffness for any level. These values
are approximately 150 in4 (6240 cm4) for all levels.
Therefore, the typical columns chosen to represent this
structure were columns 3 and 8. The beams can be grouped
into two categories. Beams 1, 3, 6, 7, and 8 provide very
little stiffness to any level. Their maximum value 1is
approximately 300 in4 (12,480 cm4), whereas, beams 2, 4,
and 5 maximums range in values between 1800 int
(74,920 cm4) and 3500 in4 (145,700 cm4). All of the beams
are small at levels 1 and 5 with beams 2, 4, and 5
becoming stiffer in levels 2, 3 and 4. Therefore, two
typical beams were chosen, beams 2 and 5, As seen from
Figures 69 and 70, there is little difference in the
stiffness distribution for each column or beam. The only
major difference is in the magnitude, the general shage
of the distribution for both techniques are‘similar.

‘The ATC-03 stability factors did not influence either
analysis. Both approaches had maximum theta values of
0.01 or 10 percent of the maximum allowable wvalue. This

maximum occurred on level 4 for both analysis techniques.
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As seen in the previous cases with vertical irregu-
larities, the results for the equivalent lateral force
method and the modal analysis approach provide similar
results. The reiative stiffness distributions are very
similar. = The largest dissimiliarity is the structural
weight. In every case the modal analysis has provided
a lighter structure. Although the modal analysis provides
a lighter system, it requires an increase in computing
effort over the equivalent lateral force technique.
Therefore, these examples do noct show a need for the extra
computing since the final results generally are within

6 to 7 percent for the two analysis techniques.

Observations:

1. The plan irregularity (aspect ratio of 0.5) has little
effect on the results produced by the eguivalent
lateral force procedure.

2, The relative distribution of stiffness of the two
analysis methods is nearly identical, only the
magnitudes are different.

3. The modal analysis procedure produces a lighter
structure than the equivalent lateral force procedure.

4., Several ccolumns and beams become important members
while several become small with little effect on the
total stiffness of the structure. <Columns 1, 3, 5, 6,

and 8 are important along with beams 2, 4, and 5.
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5. The stability factors are all below 10 perxcent of the

maximum value of 0.1.

H. STRUCTURAL CPTIMIZATION BASED ON RESIZING REINFORCED-

CONCRETE MEMBERS

This example will be used to ého&mbﬁé‘poséible use
of this algorithm and program with respect to design. The
structure in Figure 72 will be designed to resist the
lateral forces provided by the ATC-03 equivalent lateral
force method. Only displacement constraints will be con-
sidered. Most likely the displacement constraints will
control if the analysis is performed within a high risk
seismic zone (map areas seven or six). The inclusion of
stress constraints and additional lcad cases would require
large amounts of both computer space and time. An initial
design will be assumed which will be optimized and used to
provide an initial design for the next design phase. In
theory each design phase should brovide better results than
the previously optimized systems. Three phases will be
presented, and they will be called "Design 1", "Design 2",
and "Design 3" as they are produced.

Several element properties were held constant for each
design phase. The eight perimeter columns are rectangular,
concrete columns which are linked two stories at a time,
i.e. all columns onilevels 9 and 10, levels 7 and 8, etc.,
are forced to have the same cross section. The inner core,

concrete shear walls, can be grouped into two sets, the
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shear walls parallel to the x-direction and the shear walls
parallel to the y-direction. Each of these sets are linked
in the same manner as the columns. The steel beams are
linked on a per floor basis. Xeep in mind that the con-
crete elements have one fixed dimension with respect to.
the rectangular cross section while the other dimension is
allowed to vary and represent the design parameter. All
concrete elements were assumed to have a Young's modulus

of 3,000 kips/in2 (20.70 kN/mz), a modular ratio of 10, a
steel percentage of 0.015, and a shear modulus of 1150
kips/in2 {(7.935 kN/mz). The steel beams have a Young's
modulus of 30,000 kips/in2 {207.0 kN/mz).

The optimization was based on a set of fixed param-
eters. Termination of the algorithm was to take place if
ten cycles of optimization were completed, fifteen analyses
were completed, or less than a 5 percent weilght change
was achieved. A higher than normal weight change was
used to decrease the redesign time. Since the previous
optimization was to be used only as a guideline for the
next phase an absolute optimal solution was not required.
The convergence control parameter used was 2. The dis-
placement constraints consisted of an allowable deflection
of 0.45 in. (1.14 cm) per floor. Design 1 had a constraint
range of 10 percent below and 5 percent above the con-
straint value, while Designs 2 and 3 had a range of 20

percent below and 5 percent above the constraint limits.
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The ATC-03 equivalent lateral force analysis was
based upon a constant set of ATC-03 and structural para-
meters. A non-structural translational mass of
3.26 kips-sz/in. (570 Mg), and a non-structural rotétional
mass of 704,354 kip—sz/in. (795927Mg—m2) were used for
each level. Each level was assumed to be 13.0 feet (3.97m)
tall. Each channel and I section in the core is composed
of three elements. They are assumed as independent
elements with respect to the x and y directions. Map
area 7 was used for pboth the effective peak acceleration
and the effective peak velocity-related acceleration.

The structure was assumed to be in seismic hazard exposure
group 2 with soil condition 3. The response modification
factor was considered to be 5.5, and the deflection
amplification factor was assumed to be 5.0. The two

load cases consisted of ATC-03 x-direction loads with

the plus and minus S percent eccentricity and 30 percent
of the y-direction load. This structure was used to find
the stiffness distribution that would best resist the
lateral loads.

The results are presented in Tables XVIII to XXII
along with the appropriate initial data which was not
held constant for each design phase and in Figures 73 and
74. Obviously, the initial sizes for Design 1 are not
within reason. These sizes were required in order to

satisfy the constraints and were determined by scaling.
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The initial sizes for the second and third designs were
progressively changed based upon the previcus optimal
results and are certainly more reasonable. Yet these
parameters are set with the flexibiiity to optimize.

Design 1 was used to find a first set of reasonable
relative sizes which would satisfy the constraints. These
sizes were then modified slightly to form the initial set
for Design 2. From the final sizes for Design 1, it was
apparentbthat the shear wall results were unrealistic.
Therefore, the primary design variable for shear walls
parallel to the x-direction was changed for the second
and third design phases. In Design 1, b, as shown. in
Figure 72 was used as the design variable which caused
the shear walls parallel to the x-direction to'be small
while increasing the shear walls parallel to the y-direc-
tion to an excessively, unrealistically large size. 1In
other words, the optimization was making use of the
y-direction orientation which has a fixed width, h, and a
variabie depth, b, for the x-direction stiffness (moment
of inertia). Between the second and third design phases,
a new initial design is chosen along with new side con-
straints.

Design 1 produces a set of results which are unrealis-
tic, as shown in Table XVIII. As discussed pre-
viously, the shear walls parallel to the v-direction are

excessively large. In addition the columns have strange
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Table XVIII. Initial and Final Design Sizes for the

Vertical Members of Design 1
{1 in = 2.54 cm)

Columns

Levels Initial Final bmin bmax

{hxb) (in) (hxb) (in) (in) {(in)
9-10 12 % 65 12 x 42.1 5 240
7-8 14 x 75 14 x  26.9 5 240
5-6 16 x 90 16 x 16.6 5 240
3-4 18 x 100 18 x 12.1 5 2490
1-2 20 % 110 20 x  12.7 5 2490

Shear Walls (Parallel to y-direction)

Levels Initial Final bmin bmax

(hxb) (in) (hxb) (in) (in) (in)
8-10 72 x 130 72 % 18.0 5 240
7-8 72 x 130 72 x 58.9 5 249
5-6 72 x 130 72 «  93.1 5 240
3-4 72 x 130 72 x 137.3 5 240
1-2 72 x 130 72 x 149.8 5 240

Shear Walls (Parallel to x~direction)

Levels Initial Final bmin bmax

(hxb) (in) (hxb) (in) (in) {in)
9-10 60 x 130 60 x 8.8 5 240
7-~8 60 x 130 60 x 10.4 5 240
5-6 60 x 130 60 x 12.7 5 240
3-4 60 x 130 60 x 13.7 5 240
1-2 60 x 130 60 x 12,9 5 240
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cross-sectional sizes. The upper level columns are large
while the lower level columns are small and they tend
to have their major axes oriented in different directions.
This is due to the shear walls. The optimization coupled
with the dynamic analysis wants to eliminate the large
structural mass at the upper levels and use the columns
and beams to constrain the displacement, while at the
lower level the shear walls are more efficient constrain-
ing the displacements. The shear walls parallel the
x-direction are reasonably sized but provide little stiff-
ness in comparison to the unreasonable y-direction shear
walls.,
The final results for Design 2 are shown in Table

XIX. The columns were increased with respect to their,

h, dimensions in an effort to reduce the aspect ratio of
cross-sectional dimensions for the upper level columns.
Since the primary design variable for the x-direction
shear walls was changed from b to h, the side constraints
were not changed 1n hopes that the lower level columns
would achieve reasonable sizes (i.e. decrease the size

cf the lower level shear walls). The columns were assumed
to have a width, b, of 28.5 in. (72.4 cm) which was based
primarily on the average size of the upper three column
widths from Design 1. The beams were chosen to be 8510 j.n4
(354,210 cm4) which 1is slightly larger than the average

size of the top six levels. The new values for the shear
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Vertical Members of Design 2

Table XIX.
Levels Initial
(hxb) (in)
9-19 16 x 28.5
7-8 18 x 28.5
5-6 20 x 28.5
3~-4 22 x 28.5
1-2 24 x 28.5

Levels

9-10
7-8
3-4
1-2

Levels

3-10
7-8
5-6
3-4
1-2

Columns

Final bmin
(hxb) (in) (in)
16 x 19.9 5
18 x 20.1 5
20 =% 12.4 5
22 x B.5 5
24 x 7.5 5

Shear Walls (Parallel to y-direction)

. Initial
(hxb) (in)
72 x 34.1
72 x 34.1
72 x 34.1
72 x 34.1
72 x 34.1

Shear Walls

Initial

(hxk) (in)
123 x 36
123 x 36
123 x 36
123 x 36
123 x 38

Final b .

min

(hxb) (in) {in)
72 x 5
72 x 5
72 x . 5
72 x . 5
72 x . 5

{Parallel to x-directicn)

Final h . _*

min

(hxb) (in) (in)
28.8 x 36 5
45,1 x 306 5
8l.4 x 36 5
134.3 x 36 5
191.1 x 36 5

Initial and Final Design Sizes for the

(1 in = 2.54 cm)

* .
h is the primary design variable for these elements.
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walls were determined to provide nearly equivalent stiff-
ness, as Design 1, using 36 in. (91.4 cm) as the fixed
width, b, for the shear walls parallel to the x-direction,
and 72 in. (182.8 cm) as the fixed height, h, for the shear
walls parallel to the y-direction. The results for Design
2 are considerably better than those for Design 1. The
upper level column sizes are of reasonable sizes, but the
lower columns still have unrealistic aspect ratios. Both
sets of shear walls appear to have reasonable sizes with
the shear walls parallel to the x-direction providing

most of the lateral resistance. The upper levels x-direc-
tion shear walls are considerably smaller in size than

the lower level due to the need to reduce the inertia
effects. This reduction causes the upper and middle

level displaceménts to be constrained primafily by the
frame.

The initial sizes were of Design 3 determined from
Design 2 in subjective manner with more emphasis placed on
distribution and side constraints. In order to have a
realistic distribution for the columns the maximum and
minimum sizes for the columns and shear walls were adjusted
in order to have more control over the final design.

As seen in Equation 5.46, the side constraints are con-
trolled through a discrete process. Generally, as the
number of active side constrailnts increases, the potential
for fluctuating Lagrange multipliers increases causing a

nonmonotonic convergence.
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The lower level column's fixed dimensions were reduced
slightly and the variable dimension was forced to have a
minimum value equivalent to the fixed wvalue, see Table XX.
The upper level column's fixed dimension was held constant
for levels 9 and 10, but was slightly reduced for
levels 7 and 8. These levels had a maximum value equiva-
lent to the fixed dimension in order to control the cross-
sectional dimensions. These side constraints were chosen
based upon the two previous design histories. The shear
walls parallel to the y-direction were given the same ini-
tial values as Design 2, but had the upper limit on the
width reduced to a value which could be considered more .
realistic than the previous 240 in. (610 cm). The shear
walls parallel to the x-direction were reduced in width
with the intention of forcing the lower leﬁel columns to
become more involved and to increase the depth of the
shear wall cross section on the upper levels. Most of
these objectives were realized és shown in Table XX. The
columns all have reasonable aspect ratics and a reasonable
distribution with the excepticn of levels 7 and 8 which
might require a slightly larger width. Note that levels
9 and 10 have a column size which i1s approximately 25
percent larger than the allowable size. This occurs
since the feasible design occured after a scaling which

boosted the elements bevond their maximum values. The
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Table XX. 1Initial and Final Design Sizes for the
Vertical Members of Design 3 (1 in = 2.54 cm)

Columns:
Levels Initial Final bmin bmax
(hxb) (in) {hxb) (in) (in) (in)
9-10 16 x 16 le x 20 5 16
7~8 16 x 16 le x 14 5 16
5-6 20 x 20 20 x 25 20 36
3-4 20 x 20 20 x 25 20 36
1-2 20 x 20 20 x 25 20 36
Shear Walls (Parallel to y-direction)
Levels Initial Final b_. b
min max
(hxb) (in) (hxb) (in) (in) {in)
9-10 72 x 34 72 x 10 8 24
7-8 72 x 34 72 x 10 8 24
5-6 72 x 34 72 % 10 8 24
3-4 72 x 34 72 x 10 8 24
1-2 72 x 34 72 x 10 3 24
Shear Walls (Parallel to x—-direction)
lLevels Initial Final h . * h *
min max
{hxb} (in) (hxb) (in) (in) (in)
9-10 123 = 24 60 x 24 483 192
7-8 123 < 24 60 x 24 48 182
5~6 123 x 30 60 x 30 48 192
3-4 123 x 30 194 « 30 48 192
1-2 123 x 30 240 x 30 48 192

*
h is the primary design variable for these elements.
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shear walls all have reasonable sizes although the shear
walls parallel to the x-direction violate the maximum
allowable value due to the scaling. All of the beams
except levels 1, 2, and 10 reach their passive value plus
25 percent for the scaling. The results are tabulated
in Table XXI. If another redesign were performed, a
reasonable limit should be applied to the beams. The large
number of passive elements is the primary reason for the
large scaling which causéd the side constraint violation.
The global results for the optimization are given
in Table XXII. Each design began with an initial weight
which was smaller than the previous design showing the
ability to use the optimal results with small adjustments
to provide a reasonable structure for a final result.
The final weights are all within 4,000 to 4,700 kips
(1812 to 2129 Mg) which is a reduction in weight for all
designs. The lightest design is achieved with the final
results of Design 2, whereas, the heaviest design is for
Design 3 which 1s in theory the best design. As more
constraints are placed on the Design, the weights will
generally increase. Termination of each optimization was
different. Design 1 was terminated prematurely by the
designer since it was a preliminary svstem. Within the
last cycle it started to have oscillatory scalings.
Design 2 was terminated as a result of the change in

welght criteria between cycles. The large number of
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Level

N W sy o O

TABLE XXI.

Initial and Final Beam Sizes for

Designs 1, 2,

.
Initial (in. ")

Design 1

S,500
5,500
5,500
5,300
5,504
35,5049
53,300
5,500
5,540
5,500

Design 2&3

8,510
8,510
8,510
8,510
8,510
8,510
8,510
8,510
8,510
8,510
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and 3
’ Final (in.?d
Design 1 Design 2
5,285 5,163
11,198 11,266
11,324 13,792
12,138 14,614
9,180 12,037
7,137 9,231
4,077 6,380
1,958 4,455
848 3,082
474 2,281

)

Design 3

15,475
25,056
25,056
25,056
25,0356
25,036
25,056
25,056
15,892

9,058
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TABLE XXI1.

Design Initial Wt.

(kip)
1 12,910
2 6,025
3 5,622

Optimization Results for Designs 1, 2, and 3 (1 kip = 4.45 kN)

Active
Final Wt. % Steel ¢ Concrete No. Cycles No. Analyses Constraints
(kip)

4,174 9.6 30.4 4 6 %10 %6

4,011 11.9 88.1 3 11 X10%g

4,625 17.0 83.0 3 12 %10 %9



analyses is due to convergent, oscillatory scalings.
Design 3 was terminated by default. All elements tried
to become passive. This is a numerical problem which can
occur when a large number of passive constraints with a

relatively small range between -upper and lower values

. are used.

The periods for the three final designs are 1l.21 sec.,
1.12 sec., and 1.17 sec. for Designs 1, 2, and 3, respec-
tively. The values for T, and 1.2 Ta are 0.96 sec. and
1.16 sec., respectively. According to the ATC-03,
Designs 1 and 3 use l.2’Ta as the design value while
Design 2 which is less than 1.2 Ta was based upon the
true period. As seen by the period values all three
designs are very close to the value of 1.2 Ta"

The theta or stability factors are all well under
the 0.1 maximum allowable value. As shown in Figure 74,
Design 1 has the largest value of theta of 0.0032 with
Design 2 and 3 having maximum thetas of 0.0024 and 0.0031,
respectively. The shear walls are so rigid that the
P-delta effect is negligible. The ATC-03 drifts on the
other hand are exceeded for the upper floors of each
design. The maximum drifts were between 3.53 and 3.99 in.
(8.97 and 10.13 cm) for all three designs with the allowa-
ble value being 2.34 in. (5.9%4 cm).

The final sets of active constraints are very similar

for all three designs. Each design has an active
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x-displacement constraint at level 10 with one additional
active constraints at either level 9 or‘levell8. all
three designs have displacements in the top 4 levels
which are close to the actiwve values.

This is just one possible means of -using this algo-
rithm to reach a final design. It is best suited to
provide a preliminary design such as Design 1, but is
capable with the correct interprétation of results and
application of its resources to proceed in the direction
of a finalized design. In a similar manner the stress
constraints and more involved loadings can be applied,

but the interpretation of results become increasingly

involved.

Observations:

1. This algorithm can be used to provide a series of
optimal designs. Each previous solution can be

adjusted and used as a "better" initial design
for the next optimization.

2. This type of sequential design produces a series
of feasible designs within each optimization solu-
tion, as well as, providing a series of feasible,
optimal designs.

3. These types of results cannot be obtained by strictly
analysis procedures. Each change in the design using

intuition and reanalysis cannot guarantee a feasible
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structure (one which will satisfy all of the
constraints).

The algorithm presented guarantees that each design
will be a feasible structure with respect to the
constraints. Using_this algorithm, successively
better designs can be created by manipulation of the
constraints and initial design's after each complete
optimization.

Design 3 begins to fluctuate during the last cycle

of optimization because of two reasons. First, the
side constraints are very constrictive, and secondly,
the discorntinuity in the design period caused oscilla-
tory scaling. The ATC~-03 provisions allow the use
of the calculated period as long as it is below 1.2 T,
and the analysis provides a period which fluctuates
above and below this value.

The ATC-03 stability factors were well below 0.1.

The maximum value was 0.0032.

The maximum drifts were as high as 3.99 in. (10.13 cm)
which is above the allowable value of 2.34 in.

(5.94 cm). This maximum drift occurs at the level
where the transition from non-active tc active dis-
placements occur. Although the ATC-03 drift is
violated the set of displacement constraints are not.

This shows the need to implement a drift constraint.
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I. STRUCTURAL OPTIMIZATION USING COST AS AN

OBJECTIVE FUNCTION

The objective function given in Equation 5.8 provides
an optimal solution based upon a weighted minimum volume.
This same objective function was used to minimize the
cost of structures. This is a very simplified approach
to representing the cost of a structure. Using Equation
5.8 as a cost gives an approximate cost and cculd not be
the sole judgement of which design is most cost effective.
The computer program accepts one cost per unit volume per
material. It would be of great use if each element could
have its own cost per unit volume. This would allow each
element to be judged on an individual Easis as to its
cost which could include erection, forming, end connec-
tions, fireproofing, and any cother incidental costs as
well as material costs. Cheng and Juang (55) are using a
more comprehensive cost function for the two-dimensional
case, but it was considered too complex to extend te the
three-dimensional case at this time.

The cost per unit weight for the steel and concrete
elements were obtained from two socurces. Dr. Arthur Monsey
(retired vice-president from the consulting firm of Horner
and Shifrin in St. Louils, Mo.} provided approximate figures
of 750 dollars per kip (1655 dollars per Mg) for erected
steel and 350 dollars per kip (773 dollars per Mg) for

concrete columns (46). The second source was the Means
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Construction Cost Data where the approximate average cost
for steel buildings (apartments, offices, hospitals,

etc.) was 600 dollars per kip (1,325 dbllars per Mg) and
for concrete buildings was 520 dollars per kip (1148
dollars per Mg) (47). The concrete costs were the average
cost of columns, beams, and panels. Due to the moreu
detailed nature of the Means Cost Data, its figures were
chosen to be used andlwere converted to a cost per volume

of 294 dollars per cubic foot (10,360 dollars per m3

) of
steel and 78 dollars per cubic foot (2750 dollars per m3)
of concrete. This provides a ratio of steel to concrete
cost facteors of 3.77, wheréas, the weights of 490 pounds
per cubic foot (7323 kg/m3) for steel and 150 pounds per
cublc foot (2394 kg/m3) of concrete provide a ratio of
3.27. These ratios are fairly close, therefore, little
difference in the results would be expected between the
results obtained using the cost over the weight objective
functions. These costs are only rough estimates and at
pest could be used as a preliminary tool for selecting
deslgns or structural layouts.

A five story, rectangular structure as shown in
Figure 75, will be used to illustrate the effects of
using the cost and weight factors in the cbjective function.
This structure does not consider linking and has dynamic

displacement constraints. The displacement constraints

consist of 0.45 in (1.14 cm) per story and are for both
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the x and y-directions. The active constraint range 1is
between 10 percent for a lower-bound and 5 percent for

an upper bound. The termination criteria was twenty
cycles of optimization, twenty cycles of analysis, or a
1.9 percent change in weight, dand the convergence control
parameter was 2. The cbjective function used the factors
of 294 dollars per cubic foot (10,360 dollars per m3) of
steel and 78 dollars per cubic foot (2750 dollars per m3)
of concrete for the cost objective and factors of 490
pounds per cubic foot (7823‘kg/m3) for steel and 150
pounds per cubic foot (2394 kg/m3) for concrete for the
wéight objective.

The structu#e is 6omposed of six steel columns, two
concrete columns, and all steel beams. Each level has a
translational mass of 0.47 k~sz/in (82.3 Mg) and a
rotational mass of 29,068 k-s°-in (3284 Mg-m%). Each
steel column started with an initial size of 1000 in4
(41,623 cm4), each beam started with an initial size of
1100 in4 (47,785 cm4) and sach concrete cclumn had a
gross secticn of 8 in. (20.3 cm) by 24 in. {61.0 cm) with a
0.02 percent steel ratio. The steel elements were

4 (416.2 em?) ana

constrained to be within 10.0 in
20,000 in4 (832,460 cm4) while the concrete column width
was forced to be between 5.0 in. (12.7 cm) and 24.0 in.

(61.0 cm). The analysis was performed using ATC-03 equiva-

lent lateral forces. The structure was assumed to be
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within map area 7 for both the effective peak acceleration
and the effective peak-velocity related acceleratiouns,
the deflection amplification factor was chosen as 4.0, and
the response modification factor was chosen as 4.5. (The
ATC-03 does not provide the values for these mixed-
material structure;.) It was assumed to be in seismic
group 2, and was iocated in soil condition 2. The ATC-03
primary direction of loading was in the x-direction with
the required thirty percent in the y-direction. The
two load cases consisted of the x and y loadings coupled
with the plus and minus five percent eccentricity of the
x-direction load: With both load cases and the geometric
symmetry with respect to both elevation and plan, symmetric
results were'obtained which allows the results to be pre-
sented for the first four beams and three columns as
shown in Figures 78 and 79.

The results are presented in Table XXIII and Figures 76
to 80, The initial design was scaled by a factor of
2.32 to give a cost of 89,402 dollars with six active
constraints which were the x-displacements for load cases
one and two at levels 2 through 4. This scaling was due
to the small initial size of the concrete columns which
are the primary x-direction load resisting elements. The
final cost after six optimization cycles was 52,673 dollars
with an optimizaticon history as shown in Figure 77. 1In

terms of weight the cost objective function problem had
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an initial weight of 156.5 kip (70.89 Mg) and a final
weight of 90.3 kip (40.9 Mg) with 71.8 kip (32.5 Mg) being
steel and 18.5 kip (8.38 Mg) being concrete. . These
results are shown in Figure 76. The steel provides
approximately eighty percent of the cost. The final set
of active constraints consisted of sixteen displacements.
Both the x and y-displacements for lcad cases one and two
were active for levels 2 through 5. The weight objec-
tive function produced similar results with respect to the
values given for the cost objective. The initial weight
was the same since it is only analysis dependent. The
final weight was 89.0 kips (40.3 Mg) or 1.3 kips (0.59 Mg)
less than using the cost objective with 71.8 kips (32.5 Mg)
of steel and 17.2 kips (7.79 Mg) of concrete. The entire
amount of difference is within the concrete's weight,

The final set of active constraints for this objective
consisted of fourteen displacements. The x and y-displace-
ments for both load cases were active on levels 3 through
5 while only the x-displacements for both load cases on
level 2 were active, This minimum weight was found in

8 cycles. 1If the cost per kip values were applied to

the minimum weight solution, it would provide a lower

cost than when uéing the cost objective. This substan-
tiates the fact that the path of optimization is important,
and that there is no way to be certain that a global

optimum has been obtained.
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The major differences are in the stiffness distribu-
tions. The cost objective function requires larger beams
and smaller steel columns than the weight objective func-
tion for the major elements, as shown in Figures 78 and
79 while the weight objective function regquires smaller
concrete columns. As seen in Table XXIII, the steel
welghts are the same even though the beams are much
smaller in size, since they are considerably smaller than
the columns. In both cases the concrete columns are at
or near the minimum width for all but the first level.
Their values are given in Table XXIII. This signifies
that a redesign is in order since the minimum size 5.0
in. (12.7 cm) is small and provides a less than desirable
aspect ratio of 4.8 for cross-—-sectional height to width.
Once again both cases provide beams which are smaller than
the columns by nearly a factor of 2, and both cases try to
form rigid systems which are parallel to the x-direction.
The beams and the intermediate column parallel to the
y-direction are small. This 1s due to the added rigidity
in y-direction provided by the concrete columns and the
fact that only thirty percent of the y-load was applied in
that direction. The concrete columns reacted in a typical
fashion of trving to reduce themselves to a small size for
the upper levels while providing large amounts of stiff-
ness tc the lower floors. This occurs for two reasons, the

first is that the small width concrete columns with the
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TABLE XXIII. Concrete Column Sizes for Different
Objective Functions (1 in = 2.54 cm)

ObjectivelFunction

Level | Cost (in) Weight (in)
5 5.0 x 24,0 5.0 x 24,0
4 5.0 x.24.0 5.0 x 24,0
3 5.0 x 24.0 5.4 x 24,0
2 5.2 x 24.0 5.1 x 24.0
1 8.5 x 24.0 10.4 x 24.0
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prescribed percentage of steel still provide adequate stiff-
ness, and secondly the reduction in column size considerably
reduces the structural mass at those levels which in effect
reduces the inertia loading from the ATC-03 code. From
Figure 78, the steel columns are very large ét the second
level and this occurs because the concrete columns reduce
significantly between the first and second levels as

shown in Table XXIII, while the steel columns at level 1

are small using the converse reasoning. The beams, on the
other hand, are less variable, but considerably smaller

than the columns. The upper level has small beams and
columns since they must only providé enough stiffness to
stop excessive intrastory drift. These results suggest

that a new model be developed for the concrete elements,

in order to provide an aspect ratio which could be main-
tained during the optimization of the three-dimensicnal
structure.

The ATC-03 stability factors for this structure and
both objective functions are well below the maximum
allowable value of 0.1l. Both maximum factors are near
0.018 with very little difference for the two objective
functions over all five stories, as seen in Figure 80.

This example provides several ilmportant results. The
objective functions both provide nearly the same weight and
cost which is due to the similarity in the ratios of the

factors applied in the objective function. Although the
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weights and cost are nearly identical they provide dif-
ferent sizes for the moments of inertia. These diffe;ences
" might be larger if the concrete column sizes were reduced
to provide more nearly sgquare columns which would change
the objective value showing a larger difference. From

this example, it is seen that different sizes can be

found with a small change in the steel to concrete ratio

of objective factors. Althouéh these sizes are different
the distribution of stiffness is similar for both cases.,.
Therefore, the use of weight or cost is somewhat irrelevant.
If the general distribution can be maintained this is
reasonable for a preliminary design; A user must ke
cautious though, since the relative sizes of beams and
columns do change. A slight change in the factors will
generally produce similar distributions for the column and
for the beams, but the relative size of beams and columns
can be different. Since these distributions were similar
and the final weights were nearly identical, the use of
the cost function was limited to a few examples with the

majerity being handled with the weight objective.

Observations:
1. The cost and weight objective functions provide nearly
identical optimal weights. The only difference being

a 1.3 kips change in the total amount of concrete.
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2. Although the final weights were close, the paths of
optimization were different and they produced dif-
ferent magnitudes of beam and column stiffness. The
cost function generated lighter steel columns and
larger beamns.

3. The stiffness distributions are similar for both
cases even though the magnitudes are quite different.

4. The minimum weight solution provides a lesser cost
than the cost function generated. This is due to the
path dependent nature of cptimization and the location

of local minima.

J. STRUCTURAL SYSTEMS SUBJECTED TO MULTI-COMPONENT

EXCITATION

1. Common Parameters. A five-story, L-shaped

structure was used to study the effects of multi-component
seismic excitation. The building system was considered

as an all steel structure with seven column lines and
seven beams. Each level was 12.0 £t. (3.66 m) tall. Each
level has a ncn-structureal, translational mass of (0.311
k-sz/in (54.4 Mg) and a nonstructural, rotational mass of
16,400 k-sz-in (1,853 Mg—mz). The modulus of elasticity
is 30,000 k/in2 (20,700 kN/cmz), and the shear modulus 1is

2 {7935 kN/cmz). Each load case used the

11,500 k/in
response spectrum shown in Figure 16 and defined by

Equations 3.56 and 4.57 with the modal analysis. This
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structure was subjected to a variety of combinations of
maximum ground accelerations coupled with a variety of
external stiffness arrangements. The effects of linking
were also considered.

2. Linked, Rectangular Element System. A five-

story L-shaped structure, as shown in Figure 81, was
optimally designed for various seismic inputs and external
stiffness arrangements. Rectangular, steel cross-sections
with a depth to width ratio of 1.5 was used for all ele-
ments. Therefore, Equations 3.13 and 3.14 are used to
relate the secondary to the primary design variables.,
External stiffnesses were applied at the mass centers

in order to prevent the structure from deflecting in that
respective direction without preventing rotation.

This structure was subjected to six different load
cases. The lcad cases consist of five cases with various
applied lateral loading conditions and external stiffness
arrangements and one case which has a different mass
center than the previous five cases. Load cases 1 through
5 used a mass center located at point A, while loaa case
6 used a mass center located at point B which was 35 in.
{88.9 cm) to the right and 15 in. (38.1 cm) above column 1
in Figure 81l. The sixth load case was used to show the
effect of the mass center location with respect to the
rigidity center. Each modal analysis used three modes

with direct modal superposition.
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The optimization was based upon a set of fixed
parameters. The optimization process was to be ter-
minated within 20 cycles of optimization, 25 analyses,
or a weight change of léss than 5 percent. The
constraints were considered active if the response was
within the 10 percent below or 5 percent above the limit
for the response. Dynamic displacement constraints were
chosen according to the ATC-03 recommendation as 0.00625h
where h 1is the height of each level above the base.
Linking of all columns per level and all beams per level
was used.

The results of the coptimization are given in Table
XXIV and Figures 82 to 84. Figure 82 shows the rapid rate
of convergence with all cases terminating within four
cycles. Each termination was due to a small weight
change. Table XXIV shows the final weights and active
displacement constraints for each case. From Table XXIV
and Figure 82, the load cases form two groups of optimal
systems which are based upon the sets of active con-
straints. Load cases 1 and 2 have y-displacement active
constraints, whereas, load cases 3 through 6 have
x-displacement active constraints.

The results are heavily dependent upon the dominant
components of loading. Load cases 1 and 2 were expected
. to produce lighter structural systems since the y-direc-

tion excitation was the dominate loading coupled with the
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TABLE XXTIV. Loads, External Stiffness, and Final Results for an L-shaped
Structure Subjected to .lulti-component Excitations (1 kip = 4.45 kN)

Load (g) Final
Case X y Ext. Stiff Final Wt. (kip) Act. Const.
1 0 . 225 - 251.5 i Yg
2 .300 . 225 x—-dir 265.3 ' Y3
3 . 300 . 225 - 348.7 Xgo X4
4 .300 0 - 349.3 Xgo Xy
5 .300 .225 y-dir 357.0 Xpr X5

6 .300 . 225 - 334.0 Xge Xy
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fact that six of the columns are oriented with their major
stiffness in that direction. Load cases 1 and 2 produce
final solutions with similar weights. With an external
stiffness applied in the x-direction load cases 1 and 2
were expected to produce similar résults. Although the
weights are similar the stiffness distributions afe
slightly different as seen in Figures 83 and 84. This 1is
due to the fact that load cases 1 and 2 have different
active constraints. By applying the x-direction external
stiffness, it suppresses the x-modal components and adds
additional vy and ¢ dominant modes within the modal analysis.
The difference in mode shapes produces a different set of
responses pbetween the two load cases. Due to the coupling
of modes, it is not possible to state whether a mode 1is
an x, y or ¢ mode. 'Note in Figures 83 and 84 that the
stiffness distributions are similar above the third level
where load case 2 has an active constraint. The increase
in stiffness below the third level for load case 2 is
used to contrecl the third level displacement. Even though
the external stiffness causes a change in the response,
the final weights and stiffness distributions are similar.
Due to the rigid floor assumption the rotations can
significantly affect the final solutions. Since the mass
center and the center of rigidity do not coincide, the
loads can cause significant rotations which can be helpful

or detrimental in controlling the displacements at the
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mass center. (The center of rigidity is 33.1 feet (10.1 m)
to the right and 14.5 feet (4.42 m) above cclumn 1 in
Figure 81.) This example has a rigidity center which is
within the third quadrant of the reference system located
at the mass center in Figure 8l1. Therefore, additional
y—-lcading will help reduce the x«displacements. Since
the x-displacements are active, a lighter structure is
found for load case 3 compared to load case 4. The dif-
ference is very small since the rigidity center is close
to the mass center, but in certain cases this can cause
quite a large difference. As seen in Figures 83 and 84,
the stiffness distributions are also nearly identical for
load cases 3 and 4. If the y-component excitation were
large enough toc cause a y-displacement to become active
the results of locad case 3 and 4 would be different.

In order to explore this concept further, load case
6 was included where the center of rigidity is within the
first quadrant of the mass center reference system. Load-
ing 6 requires less weight than lcad case 3 because of the
relative location of the mass center and center of rigid-
ity. The y-component of locad case 6 reduces the x-displace-
ment without an increase in stiffness by creating a
negative (clockwise) rotation about the center of rigidity.
Load case 3 provides a small positive (clockwise) rotation
about the center of rigidity which also helps to reduce the

¥-displacement as explained previously, but since its mass
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center and stiffness center are close the effect is’mini—
mized. Since loading 6 had a different mass center its
stiffness distribution was not included in Figures 82 and
83,

As in the case of loadings 1 and 2, lcad cases 4 and
5 can be compared. Load case 5 uses an external stiffness
in the y-direction in order to simulate load case 4. From
Figure 82 locad cases 3, 4, and 5 produce nearly identical
weights with the multi-component excitation (load case 3)
providing a slightly smaller weight as explained previously.
Load cases 4 and 5 have nearly identical final weights, but
they optimized along different paths and have different
active constraints. These results are similar to the
comparison made with load cases 1 and 2. The difference
comes from the effect of the external stiffness on the
mode shapes used within the analysis. The y-components of
the modes are suppressed providing load case 5 with three
modes which are x and ¢ dependent. Figures 83 and 84 show
a tremendous difference in the distribution of column and
beam stiffness for the two cases even though the final
weights are nearly identical. Load case 5 requires larger
columns and beams below‘level 3 in order to control the
displacement at that level while requiring less stiffness

than load case 4 above level 3.

Figures 83 and 84 give the stiffness distributions for

the first five loading cases. Each case requires large
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first level columns with decreasing column sizes from
bottom to top of each structuré. Each optimization
requires nearly identical column stiffnesses on the level
of the active constraint and the level just below the
active constraint. Also, it provides a large change in
stiffness between levels of active constraints in order
to allow the next level to displace to the active limit.
These rigid first level columns reduce the need for large
first level beams while the increased flexibility on the
second level forces the beams to become large in order to
stop excessive upper level displacements. All of the
cases have passive beams on level 5, while, cases 1, 2,
and 5 also have passive columns (200 in4 = 8320 cm4) on
level 5. In addition, cases 2 and 5 have passive beams
on lével 4 and case 2, also, has passive columns on level
4. The trend is to stiffen the structures with large
columns on the first level, and to stiffen the other levels

with both the columns and beams.

Observations:

1. The relative locaticon of the mass center and rigidity
center can be helpful or detrimental to the coptimal
solution. The outcome is dependent upon their loca-
tion as well as the type of constraints, number of
seismic components, and the relative magnitudes of

the seismic components.
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The final results are heavily dependent upon the
dominant components of loading. Cases 1 and 2 are
dominated by the y component loads and provide active
y-displacement constraints, where the other cases are
dominated by the x-component loads and provide active
x-displacement constraints.

Structures with external stiffnesses applied provided
similar optimal weights, but different distributions
of stiffness. They also produce different active
constraints. This is due to the effect on the eigen-
modes used in each analysis.

Each case requires large first level columns, and
each case requires.nearly'identical column sizes on
the level of and the level below an active constraint.
Each case also provides a large change in stiffness
between levels cf active constraints.

All six cases rapidly converged to an optimal solu-
tion. Each case terminated within four cycles due to

less than a 5 percent change in weight.

3. Non-linked, Wide-flange System. This five-story,

L-shaped structure was designed with respect to three

separate loading cases. Wide-flange cross-—-sections were

used with the major-axis orientation identical to that in

Figure 85. The initial size of the columns and beams was

4

9500 in~ (395,400 cm4) for all levels. Each element was
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represented by Equations 3.15 to 3.29 and were forced to

4 4

remain between 10 in~ (416 cm4) and 20,000 in~ (832,000

cm4). The constraints consisted of dynamic displacement
constraints where the constraint value was determined as
0.45 in. (91.14 cm) per floor. All other values remain the
same as those given in Section IX.J.l.

This structure was subjected to three separate load
cases. The first case was to use 0.4g as the maximum
ground acceleration in the x~direction, énly. The second
used maximum ground accelerations of 0.4g in the x-direc-
tion and 0.267g (2/3 of x) in the y-direction. The third
used maximum ground accelerations of 0.4g in the x-direc-
tion and 0.267g for both the y- and z- (vertical) direc-
tions. A two-thirds factor was used based on a statement
by Newmark and Hall in Reference 44. Essentially it states
that the vertical motion response spectrum can be approxi-
mated by two-thirds times the horizontal motion response
spectra. The modal analysis was performed with three
modes and the same root of the sum of the sguares method
of modal superposition.

Initially each load case started with active x-
displacement constraints on levels 2 through 4. The next
cycle in each case added the fifth level x-displacement
to the active set of constraints. Finally each loading
produced active constraints in both the x- and y- |

directions as shown in Table XXV. The multi-component
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TABLE XXV.

Excitation

0.40g
0.4Qg

0.40g

Y

0.27g

0.27g

0.

27g

Final Results for the Non-linked Five Story
L-shaped Structure Subjected to Multi-component
Seismic Loads (1 kip = 4.45 kN)

Initial Wt,. Final Wt, Active Constraints
(kips) (kips)
274.1 108.2 x4,x5,y4,y5
261.7 135.6 Xy Xg Yo~ ¥Ye



cases have additional y-displacement constraints, and the
case with three components actually provides an additiocnal
x-displacement constraint. These solutions differ from
the linked case given in Section IX.J.2. Due to the
linking the y-displacements never became active even when
three-fourths of the x-component load was applied in the
y-direction. This will be discussed again in Sectien
IX.3.3.

The final results are given in Figure 86 and Tables
XXV to XXVIII. Tabler'XXV provides a comparison of the
welights and active constraints. Initially, the
multi-component cases regquire a smaller initial weight.
This is due to the fact that the rigidity center is
located within the third quadrant of the global coordinate
system. Therefore, the positive y-excitation causés a
reduction in the x-displacements. Finally, the multi-
component excited structures had nearly identical final
weights which were approximately 25 percent larger than
the single component excited structure. It is important
to note that the center of rigidity for the non-linked
structure is freé to relocate on each level because of the
redistribution of stiffness at each level for éach cycle
of optimization. The mass center on the other hand 1is
assumed to remain fixed. As long as, the structural mass
is small compared to the non-structural mass this assump-

tion is valid. The convergence of each case is shown
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TABLE XXVI.

ID
Level

ID
Level

4039
7876
16631
17070

2621

281
116
10
10

50

Final Stiffness Distribution for the Five Story L-shaped

Structure Subjected to a Single Component Excitation

(x=0.40g,

1186
1228
1331
1389

984

1564
4367
7737
9715

9381

y=0,

z=0)

(1 in4 =

Columns (in4)

3 4
5778 lle8
6854 2188
9106 1467
8045 1966

20000 1043

Beam (in4)

3 4
217 1501
401 4692
433 4827
478 6717
450 7300

41.6 cm4)

2339
4384
3489
6372

2070

361
891
928
1174

914

4244
10864
4627
19220

2380

462
2164
2862

400

154

2455
3326
2979
6147

1573

182
199
149

96

143
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TABLE XXVII,

ID 1
Level
5 9235
4 10305
3 20000
2 20000
1 20000
iD 1
Level
5 1833
4 5541
3 8639
2 12529
1 9860

2860
3913
4981
7503

20000

2113
5760
6697
9065

11601

Columns (in4)

3

6736
8790
6472
12865

20000

4

3288

4068

4753

5487

6020

Beam (in4)

3

297
543
541
621

790

4

2395
7172
7406
9724

7833

41.6 Cm4)

3556

4789

4929

5232

4547

314

619

610

607

557

6789
7697
14887
20000

4296

2709
6895
9612
8184

4323

Final Stiffness Distribution for the Five Story L-shaped
Structure Subjected to a 1wo Component Excitation

(x=0.40g, y=0.27g, z=0) (1 in4

1898
2019
1612
2073

2417

1095
894
879
664

727
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Level

Level

TABLE XXVIIT,

ID

1D

9282

10247

20000

20000

20000

1856
5805
8864
12382

9860

Final Stiffness Distribution for the Five Story L-shaped

Structure Subjected to a Three Component kxcitation

(x=0.40yg,

2866
3884
4836
6942

18544

2156
5953
6749
9008

11692

v=0.279g,

Columns (in

3

6849

9195

6466

12846

20000

z=0.279g)

4

4

3227
3775
4750
5722

8807

Beam (in?)

298
531
524
584

776

2448
7396
7629
9840

7873

(1 j114 =

3469
4100
4830
5023

5360

313
581
571
614

586

41.6 Cm4)

7320
7697
15916
20000

2254

2750
60000
9046
8247

4586

1919
1840
1546
2243

1723

1172
835
847
680

739



in Figure 86. The increase in weight for the last cycle
of the x—excitation case is due to a change in the active
set of constraints. Each case was terminated due to less
than a 5 percent change in weight.

The final distributions of stiffness are presented in
Tables XXVI to XXVIII. . These tables provide the necessary
information to explore the affects of the multi-component
excitation on the optimal structures. The x-only lcading
produces a structure which forms a strong frame using
columns 1, 3, and 6 and beams 2 and 4. ©Note that beam 6
takes on substantial values at levels 3 and 4 in order to
help resist the y-displacements. Keep in mind that
column 3 is oriented such that its major-axis moment of
inertia is used to resist the x-displacements, whereas
the other columns are oriented such that their major-
axis moments of inertia are primarily used to resist the
y-deflections. Therefore, it was expected that column 3
would be an important element in resisting the x-displace-
ments.

The multi-component systems produced nearly identical
results to one another. The final results are slightly
different as evidenced in Tables XXVII and XXVIII, but the
trends are identical. Except for level 1, the dominant
columns are again 1, 3, and 6 with beams 1, 2, 4 and 6.
Columns 2, 4, and 5 alsc play an important role. Columns

1, 3, and 6 along with beams 2 and 4 are primarily used to

348



67¢

300 T S

e
o
AV
—
.
O
=
Legend
AR
S 2
? ? i § : i (1 Xe¥eZ
100 - i i e
0 1 2 3 4 5 6

CYCLES OF OPT.

Figure 86. A Comparison of Weights for the Non-linked
Five Story L-shaped Structure Subjected to
Single and Multi-component Excitations
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control the x-deflections, while columns 1, 2, 4, and 5
along with beams 1 and 6 are used to control the y-deflec-
tions. Due to the y-constraints becoming active at levels
2 through 5, beams 1 and 6 are of considerable size in
order to help resist these déflections. Beam 7 was not a
likely candidate for becoming a strong membér due to its
length which would require a larger moment of inertia in
order to provide a similar resistance to that of beam 1

or 6, yet it doesn't become passive due to its location
which help prevent the rotational effects from becoming
large. Column 1 is critical for these loadings since it
can be used effectively as part of the frame used to
resist both sets of orthogonal deflection and at the same
time force the rigidity center toc be within the second
quadrant. Thé effect of multi-component seismic excita-
tion can be greatly attributed to the relative location of
the mass center and the rigidity center.

The sclutions try to provide resistances through the
use of dominant bents. In addition to these strong frames,
the optimization requires a lighter structural system by
reducing the effects of the rotation about the center of
rigidity. The center of rigidity is at a different loca-
tion on each level. It is generally located within a
quadrant of the mass center reference system which will
provide the most active constraints for the given loading.

The centers of rigidity are located in a fashion which
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allows the y- and x-excitations to provide a reduction in
the active constraint values allowing the structure to
become lighter and to allow more cénstraints to becpme
active. The square root of the sum of the sgquares does
not allow the signs of the rotations to be determined,
therefore it is difficult to predict exactly the effects of
the location of the center of rigidity

These examples are very general and have several fac-
tors which may or may not affect the multi-component solu-
tions. Eguation 3.17 is used to provide the relationship
of area with respect to the major-axis moment of inertia.
This eguation was develcped as an upper bound for the
wide-flange sections as given in(the AISC Manual. There-
fore, these areas could be overestimated and reducing the
effects of the z-component load. Also, these examples
used only three modes fcr the modal solution. These three
modes although coupled do not include any modes directly
associated with the vertical degrees of freedom. Possibly,
the suppression of these modes also reduces the effect cof
the z-component loading. Most likely these modes will be
within the higher modes with a very small period which
would produce little effect. The period is effected by
the mass and stiffness so possibly be increasing the mass
and decreasing the area the vertical modes along with the
vertical components could produce a larger difference

between the x+y and x+y+z loading cases.
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QObservations:

1.

The multi-component excitation provides larger opti-
mal weights than the single component excitation when
no linking is used.

Both multi-component lecadings (x+y and x+y+z) provide
nearly identical results. The effect of the vertical
excitation on this structure are minimal. This is
most likely due to the use of an elastic system.

Each system generated dominate bents to resist the
deflections in the directions of active constraints.
Certain elements definitely dominate the designs.

The continual relocation of the center o0f rigidity
during the optimization allows the optimal systems

to have many active constraints. Even the x-only
loading produces active y-displacements at the upper
two levels.

The dynamic response constrained problems converge
rapidly and are terminated due to a small change in

weight between cycles.

4, Linked, Wide-~flange System. This structural

system is identical to that used in the preceding section

with the exception that linking is used. The initial

data is exactly the same except that each level is

required to have the same size columns %throughout each

level and the same size beams throughout each level. The
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linking was used to stabilize the location of the rigidity
center. Due to the orientation and linking of the c¢olumns,
the rigidity center is located within the third guadrant
of the mass center reference for each cycle and each level.
Alsc, only the first twe load cases of x-only and x+y were
considered with the x-component being 0.40g and the y-com-
ponent being 0.2679g.

The final results for the linked, systems are given
in Figure 87 and Table XXIX. The location of the center
of rigidity allcows the multi-component excited structure
to continually produce results with less weight than the
single component excitation as shown in Figure 87. The
optimization of both systems have nearly parallel paths.
This is a result of the column orientation. Most of the
major axes are oriented to resist translation in the
y=direction. This coupled with the linking of the columns
produces active constraints only in the x-direction,
therefore the only effect of the y-component loading is ﬁo
reduce the deflection in the x-direction of the mass center
due to the rotation about the rigidity center. (Since the
minor axis of inertia needs to be fairly large in order
to resist the x-deflections, the major axis moment of
inertia must also be large according to Egquation 3.15,

therefore, none of the y-displacements become active.)
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TABLE XXIX. Comparison of Results for the Linked and Non-linked Five Story
L-shaped Structure Subjected to Multi-component Seismic Loads
(1 kip=4.45 KkN)

BExcitation Linked Initial Wt. Final Wt. Active Constraints
X V% (kips) (kips)
0.40g - No 274.1 108 .2 XyrXgr¥y1¥g
0.40g - Yes 274.1 208.2 X,"Xg
0.40g 0.27¢g No 261.7 135.6 X yrXg1¥Yy~Yg
0.40g 0.27g Yes 261.7 206.5 X,—%

2 75



The final results and comparison to the non-linked
cases are given in Tables XXIX. The single component,
linked case gives a final weight of 208.2 kips (94.3 Mg)
which is a 92 percent increase over the non-linked case,
while the multi-component, linked case provides a final
weight of 206.5 kips (93.5 Mg) or a 52 percent increase
over the non-linked case. Each linked system had a set of
active constraints consisting of the x-displacements on
levels 2 through 5. The yv-displacements were approximately
7 to 10 percent of the limiting values for both of the
linked cases. This is where the additional weight is
accumulated. The non-linked cases allowed several of
the elements to become quite small in order to allow the
v-displacements to become active. The linking and orien-
tation .of the columns provide a distribution of stiffness
which will not allow this to occur for the linked cases.

The stiffness distribution per level is shown in
Figure 88. As seen in most linked cases the final results
provide a strong column-weak beam syste. The beams for
the two linked cases are nearly identical, but the columns
are slightly different. Levels 3, 4, and 5 provide the
most.significant differences in stiffness. This is due
to the accumulative effects of the positive rotations
associlated with the additional y-excitation. This effect
helps reduce the upper level x-displacements and, there-

fore, requires less stiffness at these levels. Generally,
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both cases provide the same design with no large changes
in stiffness.

These results point out the fact that a new design is
in order. A lighter structure could be cbtained by reori-
enting several of the columns such that their major-axis
moment of inertia would help to resist the x-deflections.
This recrientation would most likely let several of the
y-deflections become active providing a better balance in

resistance.

Observations:

1. The multi-component linked system produces a lighter
structure than the single-component linked system.
This is due to the location of the rigidity center.

2. The orientation of the columns precludes any
y—-displacements from becoming active within the linked
systems.

3. Both linked cases provide similar stiffness distribu-
tions with a slight reduction in the multi-component
solution.

4, The linked cases provide sclutions which are much
heavier than the non-linked case. This is due to the
fact that the linked cases cannot allow the
y-displacements to become active without viclating

the x-displacement constraints.
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These results suggest that a lighter structure could
be obtained by reorienting several of the columns
such that their major—axis moment of inertia would

help resist the x-deflections.

- The coptimization of the structures occurs rapidly

with each system terminating due to a small change

in the weight between cycles.
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X. OBSERVATIONS, REMARKS, AND RECOMMENDATIONS

The examples within Chapters VIII and IX were opti-
mized and designed using an optimality criteria approach
to structural optimization as presented in Chapters V and
VI. Structural optimization provides a consistent means
of studving and comparing the effécts of structural-
related parameters. In this vein, a three-dimensional
structural cptimization computer program ODRESB-3D,
(Optimum Design of 3-Dimensional Reinforced-Concrete and
Steel Buildings), was developed. The program has both
static and dynamic capabilities. This was the tool used
to study the effects of several structural and optimization
parameters such as: types of constraints, combinations of
constraints, types of objective functions, combinations
of elements, irregularities in structures, effects of
multi-component excitation, effect of ATC-03 parameters,
and effects of analysis technigques. The results of
Chapters VIII and IX will be consolidated and discussed
within this chapter.

The primary objective was to develop an efficient
means for the cptimizaticn of three-dimensicnal structural
systems subjected to multiple types of constraints and
different analysis technigues. As seen in the examples
presented, the program is capable of optimizing a
structure subjected to any combination of static dis-
placement and stress, dynamic displacement and stress,
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and frequency constraints. The use of frequency con-
straints with other types of constraints is more difficult
than the combinations of stress and displacement con-
straints. In certain instances, a structure cannot be
optimized when several restrictive frequency constraints
are combined with other constraints. This situation
implies that the structural geometry given cannot provide
a system which would satisfy the frequency coupled with
other constraints. Generally, the fewer and less restric-
tive the frequency constraints, the higher the probability
of reaching an optimal solution. The use of frequency
constraints is extremely helpful in keeping a structural
system within a specific region of the response spectra
used for a dynamic analysis. The use of strictly frequency
constraints is very effective if the upper and lower
limits on the frequencies do not represent an impossible
situation. They are best used when the initial design
provides natural frequencies which are reasonably close
to the limits set for the optimization. The control of
these natural frequency constraints and their combinations
with other constraint types is an area where additicnal
research is and should be pursued with respect to
structural optimization.

The algorithm presented does provide an efficient
means of optimizing three-dimensional structural systems.

As seen within the examples presented, the algorithm
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converges rapidly and monotonically for most systems.

The rate of convergence of each problem must be examined
independently since it is dependent upon the initial
design, the convergence control parameter, the bandwidth
for the active constraints, the type of constraints, the
type of elements, the secondary to primary design variable
relationships, and the type of analysis. Certain situa-
tions can cause a non-monotonic convergence. These
situations are related to cases with a large number of
highly restrictive constraints, a small convergence
control parameter, or a numerical discontinuity. The
highly restrictive set of constraints creates a "small"
feasible design space which can cause optimality criteria
algorithms to have a fluctuating set of active constraints.
The nonconsistency of the constraints can cause some
fluctuation within the convergence. Small convergence
control parameters create a situation where the design.
variables change too rapidly which can cause constraint
violation between cycles of optimization. A convergence
control parameter of 2 has been acceptable for nearly all
of the problems solved. Two types of numerical discon-
tinuities can occur which will cause a non-monotonic
convergence. The most common occurs when using the ATC-03
analysis procedures. When the fundamental pericd of a
structural system fluctuates, during successive cycles of

optimization, above and below the ATC-03 limit for the
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fundamental period, a discontinuous situation arises where
different periods are used in successive analyses. There-
fore, the gradients based on the previous analysis cannot
guarantee the control of the constraints within the next
analysis using the new peribd. The sécond type of discon-
-tinuity occurs when stress constraints are used. If ﬁhe
element with the active stress constraint is near a
discontinuity in the relationship between the secondary
and primary design variables, a situation occurs where
the stress constraint is not maintained during successive
cycles of optimization. This second type cf discontinuity
rarely occurs. In most instances the algorithm will
adjust and continue to optimize. The oscillatory conver-
gence can be controlled by changing the appropriate para-
meters to avoid these situations. Most of the examples
presented converge to a solution within eight to ten
cycles with several converging as fast as two cycles.
These examples provided initial to final weight changes
of anywhere from 100 percent to 10 percent., Overall, the
proposed algorithm is very efficient and quite capable of
handling a variety of constraints.

A major asset of structural optimization 1is its
ability to be used as a design tool. Each optimization
of a structural system provides a series of designs (one
for each cycle) which satisfy all of the design con-

straints. Every intermediate and final design of every
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example was a feasible design solution which satisfied
the constraints of that specific structural system.
Theoretically, the final optimization cycle produces

the "best" design for the given objectifé function subject
to the applied constraints. In order to make the algorithm
a useful design tool, side constraints and linking were
provided. Realistic designs have certain limitations on
the sizes for specific elements (side constraints), and
they also use the same size elements for more than one
element (linking). With these features included, the
program becomes a useful tool for design. The structural
optimization program is much more efficient and reliable
than the current methods of intuitively readjusting and
reanalyzing a given sysﬁem. The current methods of
design cannct guarantee that the constraints will be
satisfied, whereas, the structural optimization resizes
the elements based upon the effects of the critical con-
straints {(gradients) and always produces a feasible
design., Therefore, a single optimization provides a
series cof feasible design with each successive design
being better than the previous. Another approach is

to use a series of complete optimizations to procduce
increasingly better designs. After each optimization

is completed changes can be made in the constraints,
geometry, and optimal sizes in order to start a new

optimization which will produce a better optimal design
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than the previous optimization. For instance, if only
the displacements in one direction are active éfter the
first complete optimization, a better solution might
result if certain columns are reoriented to produce a
system where the displacements in two directions became
active. After reorienting certain columns a new optimi-
zation is performed with a better solution. Due to the
guaranteed feasible solution and the production of a
series of designs, a structural optimization program
such as ODRESB-3D can produce a series of reascnable
designs with less time and effort than the current
intuitive, reiteration techniques. This program in no
way replaces structural designers, but is another tool
at their disposal,

ODRESB-3D allows the flexibility of using any
objective function which is based on the volume of
structural steel and concrete used within the building
system. Using cost information taken from the Means Cost
Data For Building Construction, average costs per unit
volume for steel and concrete elements were generated.
A comparison cof optimal results for the cost and weight
objective functions was performed. It was found that
the cost and weight objectives provide nearly identical
stiffness distributions and nearly identical optimal
welights. Since the results were sc similar, the weight

objective function was considered to be an adequate
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representation for the cost objective function, and it
was used for the majority of the examples. This would
be acceptable as long as a preliminary design was the
ultimate goal, but a final design could use more refined
estimates of the cost per volume along with the cost
function for a final design. Cheng and associates have
been working on a variety of more complex objective
functions for the two-dimensional systems. These
objective functions have not been used with the three-
dimensional systems to date.

Several examples were used to compare the results
of using the ATC-03 analysis techniques. 1In all cases
the ATC-03 moaal analysis produced lighter optimal
solutions than the equivalent lateral force procedure.
The modal analysis also used the same or less number of
cycles than equivalent lateral force methods to reach
the optimal soluticn. Each type of analysis produced
nearly identical stiffness distributions regardless of
any plan or vertical discontinuities. This contradicts
the statements within the ATC-03 provisions which suggest
that the modal analysis procedure be used for any
irregular structures. The equivalent lateral force
procedure did show some irregularity in the stability
coefficients, but these were still twenty percent of
the ATC-03 maximum limit and of little consequence.

All other parameters for both analysis techniques were
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similar except the modal analysis provided less weight,
lower drifts, and a smooth curve for the stability factors.
These factors tend ‘to support the use of the ATC-03 modal
analysis but these factors have no connection to the fact
that the structures are irregular. On the other hand, the
equivalent lateral force method requires less computations
and produces the same distribution of stiffness. The
choice of which analysis to use seems to depend upon the
importance of less weight or less computations not on the
structural configuration.

A structure with vertical irregularities was used
to explore the effects of their locations on the stiff-
ness distribution. The irregularity was an increase in
story height for two consecutive levels within the
structure. As the location of these two tall stories
was moved from top to bottom, it was found that the
location had very little effect on the optimal structure
weight., The lightest structure was found when the
irregularity was at the upper two levels, and the
heaviest structure was found when the irregularities
were at the first levels above the base. Both ATC-03
analysis techniques provided similar stiffness distri-
buticns with the taller stories requiring large increases
in stiffness at the locations with the tall stories. The
beams tend to have a large increase in stiffness with a

linear transition through the irregular portion of the
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structure, whereas the columns tend to have a large
increase with a nearly constant value through the
irregular porticn of the structure., The members above
the irregularity have almost identical sizes for all
cases, and parallel stiffness distributions below the
irregularity. As the irregular stories are moved upwards
in the structure the stiffness distributions are enclosed
by an envelope with the lower bound being the curves of
the distributions above the irregularities and by an
upper bound formed by the large stiffness required by the
irregularities. Therefore, the vertical irregularities
tend to have a very localized affect on the stiffness
which produces a series of results with similar weights.
A structure with two setback portions was used to
explore the effects of vertical irregularities and the
effects of linking columns above and below the first
level of each setback portion. The first analysis was
performed using linking of the columns on each level
and linking the beams on each level (one column size
per floor and one beam size per floor). The second
analysis was performed where multiple level linking of
the columns was used such that the same size column was
used above and below the level where each setback began.
The linking produced a slightly heavier system (six
percent) but it used considerably less computations

and produced a more realistic design. The vertical

368



irregularities created an irreqular stiffness distri-
bution along the height of the strucuture, whereas the
linking created a system which was essentially an average
of the irregular distribution. One significant contribu-
tion was a large decrease in the size of the first level
column size. In general, the effect of the vertical
irregularity was greatly minimized by using a continuous
column size through at least the first level of the
discontinuity.

Many of the examples were also used to explore the
effects of various ATC-03 parameters on the optimal
solutions of various building systems. All of these
examples were based upon map areas which were larger than
four for the effective peak acceleration and the effective
peak velocity-related acceleration. Within the analyses
performed the‘effective peak velocity-related acceleration
and the soil conditions were the dominate factors. The
effective peak acceleration had little or no effect on
the soluticns. These factors dominated due to the egua-
tions used for the base shear. All but one of the test
structures had a calculated period abeve the ATC-03 limit.
Note that as a structure is optimized, it generally becomes
less stiff and the period increases or remains nearly con-
stant. If the equivalent lateral force method is used it
appears that a freguency analysis is not needed, but the

algorithm should use the ATC-03 empirically determined
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period directly. This creates a situation where the base
shear formula which includes the effective peak velocity-
related acceleration and the coefficient for the soil type
was used in all instances. The optimal solutions for each
structure with a variation in soil and/or effective peak
velocity-related acceleration are nearly identical within
an appropriate factor. The base shear equation includes
the direct multiplication of the soil coefficient and the
effective peak velocity-related acceleration which provides
the approximate factors for comparison. It will not be an
exact factor since the solution is dependent upon the
optimization history.' The ATC-03 drift is based upon an
elastic representation of a'psuedo—inelastic limit. It
was found that this psuedo-inelastic drif; could be con-
trolled by using an elastic displacement constraint which
was approximately 80 percent of the inelastic drift
divided by the ATC-03 response modification factor. Most
examples satisfy the ATC-03 drifts using these displacement
constraints and generally the largest drift occurs at the
level below the lowest level with an active displacement
constraint. The ATC-03 stability factor was also checked
for each optimal stiffness distribution. 1In allvcases
consider the stability factor never went above sixty
percentlof the maximum value, and in most cases it was
below thirty percent of the maximum value. As the map

area numbers decreased the optimal structures became
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less stiff, therefore producing the larger stability
factors. Possibly, if map areas below four were used
these factors would become more significant.

In addition to the ATC-03 analysis procedures, a set
of structures was subjected to a response spectra modal
analysis. These examples were used to study the effects
of multi-component excitations. It was found that the
final results were heavily'dependent upon the dominant
component of the horizontal excitations with little
effect from the vertical excitations. Also, the
orientation of columns and the use of linking had
significant effects on the solutions. The orientation
of the columns affects the solutions by providing more
or less total stiffness in a certain direction, as well
as fixing a location of the center of rigidity if linking
is used. If linking of ccolumns on a per level basis is
not used, the center of rigidity is free to relocate
during each cycle of the optimization. The location of
this rigidity center can be helpful or detrimental in
constraining the displacements of the mass center
depending upon their location relative to one another.
In general, when linking is not used multi-component
excitations provide larger coptimal weights than the
single components. When linking is used either of the
cases multi-component or single ccomponent can produce a
lighter system depending upon the location of the center

of rigidity, the type ¢f constraints, the magnitude of
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component excitations, and the direction of the seismic
compenents. The nonlinked systems are lighter than thé
linked systems since Fhe center of rigidity is free to
relocate on each level during the optimization. These
nonlinked systems use the component of the excitation
along with the location of the center of rigidity to
have more active constraints and a more flexible system
which 1is lighter than the linked systems. Within the
multi-component excitations, the vertical component had
little effect. This may be due to the structural systems
designed were not tall and the longitudinal stiffnesses
were not reduced when bending was considered. However the
studies on inelastic models reported a greater effect with
respect to vertical excitation. These modal analysis
examples converge very rapidly and monotonically, but they
reguire a large amount of computational effort. This opti-
mization procedure requires the gradients of the eigen-
vector which requires the inversion of the [[K]—wz[M]]
matrix for each eigenmode used in the analysis for each
cycle of optimization. It is much more economical to use
the ATC-03 procedures if possible.

A few general comments with respect to the linked
and nonlinked solution are needed. The nonlinked systems
produce unrealistic results in most cases. By trying to
achieve the lightest structure they produce strong bents
within the system while letting the other elements become

as small as possible. This type of result does provide
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some useful information as té which elements are most
important in maintaining the active constraint for that
combinations of loading. This information can be useful
in determining major bents to be used to resist lateral
loads. Linking is extremely useful for providing
realistic designs. It generally reduces the number of
cycles required for convergence in addition to producing
realistic results.

Several of these areas could be researched in greater
detail. The combination of frequency constraints with
other constraints creates a difficult situation for
finding solutions, therefore a series of guidelines
or an adjustment to the algorithm might be studied. The
use of only freguency constraints combined with modal
analysis might be explored as a possible means of con-
trolling dynamic response without additional constraints.
Parametric studies of optimized regular systems might be
considered in order to generate specific design aids.
Optimization of irregular structures, both in plan
and elevation, need to be studied with respect to ATC-03
analyses and modal analysis. Possibly these would
generate some design aids and reinforce the idea that
the ATC-03 modal analysis and equivalent lateral force
methods produce similar results. It would be worthwhile
to complete the required theory and implementation to

constrain the center of rigidity rather than the mass
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center. This theory would have to include the ability
to let this center of rigidity move during each cycle

of optimization. It would alsc be worthwhile to provide
an efficient structural optimization algorithm for
inelaétic analysis.

Structural optimization, specifically the presented
algorithm provides a consistent means for studying and
comparing the effects of structural-related parameters.
There are a multitude of topics that can be explored
through structural optimization above and beyond the
areas considered within this dissertation. The
development of ODRESB-3D a three-dimensional structural
optimization program with the ability to handle a wvariety
of combinations of elements, analyses, materials and
constraints should be a significant and worthwhile
contribution to be used within the research and design

of structural systems.
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APPENDIX A
MASS MCOMENTS OF INERTIA OR ROTATORY MASS INERTIA

AND THE TRANSFORMATION CF MASS MOMENTS COF INERTIA

In order to have a dynamic analysis it is imperative
that the rotatory inertia be calculated. This appendix
provides the means of determining the rotatory inertia
using the techniques of classical statics. Assuming the
mass to be represented by a volume of uniform thickness
and homogeneous material the rotatory inertia about its
own mass center which is the géometric centroid, G, as

shown in Figure 89 is given as

_ 2
MR = .jrr dm (A.1)

but dm = 7'dV where ¢' is the mass per unit volume and d4dv

i1s the differential volume giving

My = o f rav (A.2)

For regular shapes dV = ¢t dA = t dx dy where t is the con-
stant thickness dA is the differential area, and dx and dy

are the differential dimensions of dA which provides

Mp =o't [[ rfax dy = ;'t f/ (x?+y2)dx dy (A.3)

where x and y are the vector components of r.
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For a rectangular shape such as the one given in

Figure 89, Equation A.3 can be easily solved

b/2 h/2
Mp = C'tf f (X2+y2)dy dx (A.4)
~b/2° -h/2
b/2
2 .3
= ;'tf ~h§%‘+ dx (A.5)
-b/2 '
3 3
=o't B e 2 (A.6)
2 2
= otor Ry + 1y = B (p%an?) : C(A.T)

where m is the total mass of the rectangular element.

In order to find the rotatory inertia about a point
other than the mass center a transformation similar to the
parallel-axis theorem can be used. Suppose the rotatory

inertia about point z in Figure 90 is required the formula

would be
Py 2 2
Mz = ‘/‘(r ) Tdm = ﬁd+r) dm (A.8)
2 2
= f(d +2dr+r”~)dm (A.9)
2 2
= fr dm+d,fdm+2dfrdm (A.10)
2
=MR+dm+O (A.11)
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The last term of Equation A.l0 is zero since the position
vector r 1s with respect to the centroid of the geometric
shape. Therefore the mass moment of inertia about some
point, z, other than the mass center of the shape can be
found by adding the mass moment of inertia about its own
mass center to the product of the total mass of the shape
and the square of the distance from the point z to the

mass center of the shape itself.
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APPENDIX B

GENERALIZED JACOBI ITERATION

The generalized Jacobi iteration technique 1is used to

solve the generalized elgenvalue problem of the form

[K][e] =

where [K],

(M},

(M] [¢] [w?]

is the mass matrix,

(B.1)

is the stiffness matrix,

[¢], is the matrix of eigenvectors, and

[wzl, is the diagonal matrix of eigenvalues,

Being a transformation technique,. the approach is to find

a series of orthogonal transformation matrices which will

diagonalize the mass and stiffness matrices.

This is an

iterative technique where the transformation matrices are

chosen in order to reduce the off-diagonal elements of [K]

and [M] to zero.

this form

|

[r), =

Writing the transformation matrices in

ith jth columns

1 A .

B 1. .
L
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where k represents the iteration number, A and B are
constants to be determined in a manner which will eliminate

the off-diagonal elements. After pre and postmultiplying

[X] and [M] by the transformation matrix, the ki?+l) and
mi§+l) elements produce the two equations
k k ko _ (k+1)
Ak, + (l+AB)kij + Bkjj = kij = 0 (B.3)
and
S, + (1+aB)mf. + Bm.. = m EFL) - g (B.4)
ii ij 33 i3 :

Multiplying Egquation B.3 by m; and Equation B.4 by -kij

and adding the two new equations, a single equation can be

found of the form

A{k,.m..-k

1357k M) F B ) =0 (B.3)

L.m. .=k, .m. .
JJ 13 17 33

which produces the solution (k, the iteration numher has

been omitted)

A= ) (B.6)

k..m..~-k.. m..
JJ 13 1] 3]
and

..M, .=k, .m. .
11713 13711

391



Since Equations B.3 and B.4 are nonlinear this is not a
solution to either equation, but Equations B.6 and B.7 do
provide a means for a solution. Modifying Equations B.#6

and B.7 to the form
(k.. .m..=k..m..)

A = 33 ljc 137337 (B.8)

and

(kiimij-kl]mll)

and substituting into Equation B.5 gives

k..
Lo, k. m .-k..k..m..] - -3 [k..k..m%.-k..k,.m,.m..-
C 71373371 Tiiig 37 C2 ii73j3 i3 Tiivijoij o33
K. K. .m. . me.+k2.m..m..] + K.. = 0 (B.10)
B N R 1 M By S s s B e . i7 '

which is a quadratic equation. Dividing Egquation B.10

2 :
by (—kij/C ) gives

2 - 2 _ -
mCT T Cleygmy TR gy gh T DRy TR R T 0
k. k,.m,.m . +tki.m,.m..] = 0 (B.11)
g 0 A s T A s s Ry s By R 5 § h
Qor
C® 4 Clkyamy =Ky maa] = [k ymy-me k) (ke m, mm, K
SR R R B £ S NPt F IR FUES

(B.12)
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and C can be written as

_ b b, 2 ‘ ‘
C=3 (5" +c . (B.13)
where
b = [kllmjj jjmiiJ (B.14)
c = [kllmlj m; 5 l]][k 3mlj mjjkij] (B.15)
Note that this transformation only zercs k. k and

137 f3ir M3
mji for this iteration. The next transformation will
force these elements to become nonzero again. Although
the elements become nonzero, convergence can be guaranteed.

The proocf can be found in Reference 4l1. For a diagonél

mass Equations B.8 and B.9 become

‘kijmj‘
A = o (B.1l6)
and
K194 | -
B = —c : {(B.17)
and
b b 2
Cc = 3 t (f) + C {B.18)
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where

K

o
1

[kiimjj— jjmii] (B.19)

and

2

[—kijmii][— ]l = kijmiimjj {(B.20)

0
|

K..m..
1] 337

The sign in Equation B.18 is determined in accordance with

the sign of b. The solution is considered acceptable when

lw?(k.i-l) - .(k) ]
1

l —S . _
TRF D) < 10 i=1,...,n (B.2L1)
@i
and
(x+1).2 |+/2 o
Ry ) _s |
e 3 j=1,.../n (B.22)
and
m EFD) ) 2 1/2
13 -5 .
o (R (k+D) < 10 i=1,...n and
. = j =1, ...,n (B.23)

where 10°° is a convergence tolerance. Equations B.22 and
B.23 are a means of testing whether the off-diagonal ele-
ments are sufficiently close to zero. The eilgenvectors are

determined as the multiplication of all the transformation
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matrices used or

[¢] = [T} IT], .-- [Tl (B.24)

which is then normalized with respect to the mass. A com=-

puter program for the generalized Jacobi method is given

in Reference 41.
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