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ABSTRACI'

A new nonlinear biaxial bending element for reinforced concrete

columns was developed. The new element represents the column as a

group of five translational springs, each representing the properties

of the concrete and reinforcement. The element was implemented in a

nonlinear static analysis program. Results using the five-spring

element compared favorably with experimental results producing a

better match than either the bilinear biaxial yield surface model or

the trilinear degrerling yield surface model.

The new element was added to an existing nonlinear dynamic analy

sis program (program 1:-1EABS). Three bridge structures, the Rose Creek

Intercha'1ge, the Meloland Overpass, and the Flamingo Road Overpass,

were modeled for dynamic analysis. Each brdige structure was modeled

using both the elasto-plastic yield surface element and the five

spr ing element. Comparisons of the dynamic responses showed that the

new element provided a more realistic stiffness degradation, a higher

amplitude acceleration response, and a lower amplitude displacement

response than the elasto-plastic yield surface element. The analyses

using the elasto-plastic yield surface element generally required much

longer execution times to prcduce stable results.

Nonlinear dynamic analyses using the five-spring element execute

faster, do not become unstable, and provide for a more realistic

response for reinforced concrete columns subjected to biaxial bending.

i



ACKNOiVLEDGEMENrS

The study presented in this report was part of a continuing

investigation at the University of Nevada, Reno (UNR) on the seismic

response of highway br idges. The project was funded by Grant CEE

8317477 from the National Science Foundation (NSF). The statements in

this report, however, are those of the authors and do not necessarily

present the views of NSF.

The authors are indebted to Mr. Shing Lai, a former graduate

student at the University of Toronto, and to Professor George Will of

th~ University of Toronto for providing information about their model.

Dr. Jack Scalzi, the NSF program manager for the project, is

especially thanked for his support and encouragement throughout the

project. The authors are also thankful to Dr. Bruce Douglas, the

director of the Center for Civil Engineering Earthquake Research at

UNR, for his advice.

Miss T. "Jeanie" Pratt and Chris Archer of the Civil Engineering

Dep;trtment are appreciated for their careful typing of this report.

The CYBER 830 computer system at UNR was used for all the

computations and computer graphics work.

This report is primarily based on a master of science thesis by

G.E. Gbusn directed by M. saiidi.

ii



TABLE OF CONI'ENI'S

CHAPl'ER PAGE.

1 INrRCDUCl'ION

1.1 Introouction•.•••• e.eCletlG •.• ., .•..• tIl •••• IIl.eCl.e........ 1
1.2 Reveiw of Previous Work.............................. 1

1.2.1 The yield surface models ••••••••••••••••••••• 2
1.2.1a The bilinear biaxial model.................... 3
1.2.lb The trilinear degrading model................. 3
1.2.2 The finite element method..................... 5
1.2.3 The mUltiple spring model..................... 5

1.3 Object and SCope..................................... 6
2 FOR1UIATION OF THE r-x:DIFIED NINE-SPRIm ELEMENl'

2.1 Intrcduction••••.••••••••••• Cl........................ 8
2.2 Nonlinear :1odel Element Description.................. 9

2.2.1 The steel spring•••••••••••••••••••••••••••••• 10
2.2.2 The concrete spring........................... 12
2.2.3 Inelastic Element stiffness matrix•••••••••••• 15

2.3 Hysteresis Models.~•••••••••••••••••••••••••••••••••• 18
2.3.1 Hysteresis model for steel springs............ 18
2.3.2 Hysteresis model for concrete springs......... 20

3 FORMUIATION OF THE FI'ilE-SPRIFG ELEMENI'

3.1 Introduetion•••••••••••••••••••••••••••••••• c •••••••• 22
3.2 Element Description•••••••••••.••••••.••••••••••••..• 22

3.2.1 The composite spring •••••••••••••••••••••••••• 23
3.3 Hysteresis Model for Composite Spring•••••••••••••••• 24

4 CDMPARISON OF ANALYTICAL AID EXPERIMENrAL RESUurS

4.1 Introollction••••••••••••••••••••••••••••••••••••••••• 27
4.2 Description of the Cantilever Structure •••••••••••••• 27
4.3 Evaluation of the Modified Nine-Spring Elerrent....... 29
4.4 Evaluation of the Five-Spring Element................ 32
4.5 Comments and Conclusions••••••••••••••••••••••••••••• 35

5 IMPLEMENI'ATION IN A OONLlNEAR BRIDGE MN.YSIS r-CDEL

5.1 Introduction••••.••••.•••••••••••••••.••.••.••••••••• 37
5.2 Description of Program ~~S ••••••••••••••••••••••••• 37
5.3 Modifications to Program NEARS••••••••••••••••••••••• 38

5.3.1 SUbroutines SMOO, TEAIDD, NEWIrn, and SPRI:NG.. 39
5.3.2 Subroutines STMOD and NMOD•••••••••••••••••••• 39
5.3.3 Subroutines AQHYST and GEYST•••••••••••••••••• 40

5.4 Evaluation of Modified NEABS••••••••••••••••••••••••• 40
5.5 Comments and Conclusions••••••••••••••••••••••••••••• 41

iii



6 CASE STUDIES

6.1 Introouetion••••.••..••••••••••••••.•••.••••••••.•••• 43
6.2 structure Modeling ••.•...••••••.••••.••...•.••••••• e 43
6.3 The Meloland Ove~ss •••••••••••••••••••••••••••••••• 44

6.3.1 Description of the structure•••••••••••••••••• 44
6.3.2 Modeling of the structure••••••••••••••••••••• 45
6.3.3 Results of dynamic analyses ••••••••••••••••••• 45

6.4 The Rose Creek Interchange ••••••••••••••••••••••••••• 47
6.4.1 Description of the structure•••••••••••••••••• 47
6.4.2 Modeling of the structure••••••••••••••••••••• 47
6.4.3 Results of dynamic analyses ••••••••••••••••••• 48

6.5 The Flamingo Road Overpass••••••••••••••••••••••••••• 49
6.5.1 Description of the structure•••••••••••••••••• 49
6.5.2 Modeling of the structure••••••••••••••••••••• 49
6.5.3 Results of dyna~ic analyses ••••••••••••••••••• 50

6.6 Comments and Conclusions••••••••••••••••••••••••••••• 51

7 SUMMARY AND COKCLUSIONS

7.1 St1Irtrna.I:Y' •-. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 52
7.2 Observations and Conclusions••••••••••••••••••••••••• 54

REFEm;JCES. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 56

APPENDICES

App:ndix A
User guide to l~-86•••••••••.••••••••••.••• 155

Ap~ndix B
Notations ••••.••••••••••••.••..••.•.••••.•.••• 157

App:ndix C
List of CCEER publications•••••••••••••••••••• 159

iv



~

6.1

6.2

6.3

LIsr OF TABLES

PAGE

Meloland Overpass section Data........................... 59

Rose Creek Interchange Section Data...................... 60

Flamingo Road Overpass Section Data...................... 61

v



LISl' OF FIGURES

FIGURE

2.1 The MUltiple Spring BiaxiaJ. Berrling Mooel................ 62

2.2 The MUltispring Biaxial Bending Elenent at the
Balanced Condition•.•.•••••••••••.••••.•..•••••.•••••.••• 63

2.3 Idealized Stress-Strain Relationship for Concrete
Spr ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . 64

2.4 Spring Displacenents in a Diagonal Section••••••••••••••• 65

2.5 The QHYSl' Hysteresis Mooel ••••••••••••••••••••••••••••••• 66

2.6 The GHYSl' Hysteresis Mooel ••••••••••••••••••••••••••••••• 67

3.1 The Five-Spring Element a_a.......................... 68

3.2 Primary Curve for the Composite Springs•••••••••••••••••• 69

3.3 The AQHYSl' Hysteresis Mooel for Corrposite
Steel-Concrete Springs•.......•••..•....•.•.•..........•. 70

4.1 Configuration of Specimens SF-7 and SF-S••••••••••••••••• 71

4.2 Loading History for Otani's Specinen SP-7................ 72

4.3 Loading History for Otani's Specimen SF-S•••••••••••••••• 73

4.4 Elevation of the Idealized Cantilever ColUIm Mooel....... 74

4.5 Degrees of Freedom in the cantilever Mooel............... 75

4.6 Flowchart for Program APPDIS•••••••••••••••••••••••••.••• 76

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Force-Def1ection Curve for SP-7 - BTO = 0.5.............. 77

Force-Deflection Curve for SP-7 - BrO = 0.5.............. 78

Force-Deflection Curve for SP-7 - BTO = 0.2 •• ., ••••••••••• 79

Force-Deflection Curve for SP-7 - BrO = 0.2.............. 80

Force-Deflection Curve for SF-8 - BTO = 0.2•••••••••••••• 81

Force-Deflection Curve for SP-8 - BrO = O.2..•....•. n •••• 82

Force-Deflection Curve for SP-7 .......................... 83

Force-Deflection Curve for SP-7.......................... 84

vi



4.15 Illustration of Spring Force "Overshoot" ••••••••••••••••• 85

4.16 Force~eflectionCurve for SP-7 Using the
Bilinear Yield Surface Model ••••••••••••••••••••••••••••• 86

4.17 Force~eflectionCurve for SF-7 Using
S-Spring Element - ETa = O.2~e~.e •• e•••••••••••••••• ~.oo. 87

4.18 Force~eflectionCurve for SP-7 Using
S-Spring Element - BTO = 0.2 88

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

5.1

Force~eflectionCurve for SF-a Using
5-Spring Element - ETa = BTl = 0.2•••••••••••••••••••••••

Force~eflectionCurve for SP-8 Using
5-Spring Elerrent - ETO = BTl = 0.2•••••••••••••••••••••••

Force~eflectionCurve for SP-7 Using
5-Spring Element - BTO = BTl = 0.4 •••••••••••••••••••••••

Force~eflectionCurve for SP-7 Using
5-Spring Element - BTO = BTl = 0.4 •••••••••••••••••••••••

Force~eflectionCurve for SP-7 Using
5-Spring Element - BTO = 0.4, BTl = 0.7 ••••••••••••••••••

Force~eflectionCurve for SP-7 Using
5-Spring Element - ETa = 0.4, BTl = 0.7 •••••••.••••••••••

Force~eflectionCurve for SP-7 Using
5-Spring Element - BTO = 0.4, BTl = 0.3••••••••••••••••••

Force~eflectionCurve for SP-7 Using
5-Spring Element - BTO = 0.4, BTl = 0.3••••••••••••••••••

Force-Deflection Cur\~ for SP-7 Using
S-Spring Element - KY = 5% Kse······················ .. ·.·

Force-Deflection Curve for SP-7 Using
5-Spring Element - KY = 5% Kse•••••••• ••• •••·• ••• •• •• ••••

Force-Deflection Curve for SP-7 Using
5-Spring Element - Ky = 0.2% Kse•••••••••••••••••••••••••

Force-Deflection Curve for SP-7 Using
5-Spring Element - KY = 0.2% Kse•••••••••••••••••••••••••

Subroutine Organization of NEABS and NEABS-86••••••••••••

89

90

91

92

93

94

95

96

97

98

99

100

101

5.2 Flowchart for Subroutines SMOD and TEAMDD •••••••••••••••• 102

5.3 Flowcharts for Subroutines SPRING, NEWMD, and STr.1CD..... 103

vii



5.4 Flowchart for Subroutine ~w.oo..•...•..•.•..••.•••••.••••. 104

6.1 Elevation and Model of the ~~loland Overpass ••••••••••••• 105

6.2 Elevation of Meloland Overpass ••••••••••••••••••••••••••• 106

6.3 Pier Cross section for the Rectangular Column Model •••••• 106

6.4 The 1979 Imperial Valley Earthquake •••••••••••••••••••••• 107

6.5 The 1979 Imperial Valley Earthquake•••••••••••••••••••••• 108

6.6 Meloland Overpass Model Resr;:onse - Irnperial Valley
Earthquake *1.0 (round column) ••••••••••••••••••••••••••• 109

6.7 Meloland Overpass Model Response - Imperial Valley
Earthquake *1.0 (round column)........................... 110

6.8 1940 El Centro Earthquake E~•••••••••••••••••••••••••••• 111

6.9 1940 El Centro Earthquake N-S•••••••••••••••••••••••••••• 112

6.10 Meloland Overpass Model Response Using
El Centro Earthquake *2.0 (round column) ••••••••••••••••• 113

6.11 Meloland Overpass Model Response Using
El Centro Earthquake *2.0 (round column) ••••••••••••••••• 114

6.12 Meloland Overpass Model Response Using
El Centro Earthquake *2.0 (rectangular column) ••••••••••• 115

6.13 Meloland Overpass Model Response Using
El Centro Earthquake *2.0 (rectangular column) ••••••••••• 116

6.14 Rose Creek Interchange Plan and Elevation•••••••••••••••• 117

6.15 Elevation of Rose Creek Interchange Pier and
Column Cross section•........................•.•....•.... 118

6.16 Model of the Rose Creek Interchange••••••••••••.••••••••• 119

6.17 Rose Creek Interchange Model Response
(El centro *1.0)......................................... 120

6.18 Rose Creek Interchange Hodel Response
(El centro *1.0)......................................... 121

6.19 Hose Creek Interchange lJlcdel Response
(El Centro *1.0)......................................... 122

6.20 Rose Creek Interchange r:lcdel P..esponse
(El Centro *1.0)......................................... 123

viii



6.21 Rose Creek Interchange Model Response
(El Centro *1.0) ••••• $ ••••••••••••••••••••••••••••••••••• 124

6.22 Rose Creek Interchange Model Response
(El Centro *1.0) 1& •••••••••••••••••••••• 125

6.23 Rose Creek Interchange Model Response
(El Centro *1.O} ••••••• 5 •• ee$e.~ •••••••••••••• $ •• e •••••• e 126

6.24 Rose Creek Interchange Hodel Response
(El Centro *1.0) ••••••••••••••••••••••••••••••••••••••••• 127

6.25 Diagram of the Flamingo Road Overpass•••••••••••••••••••• 128

6.26 Idealized Pier Elevation for Flamingo Road Overpass •••••• 129

6.27 Flamingo Road Overpass Model ••••••••••••••••••••••••••••• 130

6.28 Flamingo Road Overpass Merlel Response
UsiI'lg' El centro *1.0••••••• e •••••••••••••••••••••••• '••••• 131

6.29 Flamingo Road Overpass Medel Response
Using El centro *1.0••••••••••••••••••••••••••••••••••••• 132

6.30 Flamingo Road Overpass Medel Response
Using El centro *1.0••••••••••••••••••••••••••••••••••••• 133

6.31 Flamingo Road Overpass t-iedel Response
Using El centro *1.0••••••••••••••••••••••••••••••••••••• 134

6.32 Flamingo Road Overpass Model Response
Using El centro *1.0 ••••••••••••••••••••••••••••••••••••• 135

6.33 Flamingo Road Overpass Model F..esponse
Using El centro *1.0••••••••••••••••••••••••••••••••••••• 136

6.34 Flamingo Road Overpass Model Resr;onse
Using El Centro *1.0.................................... 137

6.35 Flamingo Road Overpass Model Resr;onse
Using El centro *1.0.................................... 138

6.36 Flamingo Road Overpass Model Response Using
El centro *1.5 (Unstable Elesto-Plastic Response) •••••••• 139

6.37 Flamingo Road Overpass Model Response Using
El centro *1.5 (Unstable Elasto-Plastic Response) •••••••• 140

6.38 Flamingo Road Overpass Model P..esponse Using
El centro *1.5 (Unstable Elasto-Plastic Response) •••••••• 141

ix



6.39 Flamingo Rocrl Overpass Model Response Using
El Centro *1.5 (Unstable Elasto-Plastic Response) •••••••• 142

6.40 Flamingo Rocrl Overpass Model Resr:;onse Using
El Centro *1.5 (Unstable Elasto-P1astic Response) •••••••• 143

6.41 Flamingo Hoad Overpass r·lodel Response Using
E1 Centro *1.5 (Unstable Elasto-P1astic Response) •••••••• 144

6.42 Flamingo Hoad Overpass r1ode1 Response Using
El Centro *1. 5 (Unstable Elasto-Plastic F.esponse) •••••••• 145

6.43 Flamingo Hoad Overpass Hodel Response Using
El Centro *1.5 {Unstable Elasto-Plastic Response) •••••••• 146

6.44 Flamingo Hoad Overpass Model Hesponse Using
El Centro *1.5 {Unstable Elasto-Plastic Response) •••••••• 147

6.45 Flamingo Hoad Overpass Hodel Response Using
El Centro *1.5 (Unstable Elasto-Plastic F.esponse) •••••••• 148

6.46 Flamingo Road Overpass l>'!odel Hesponse Using
El Centro *1.5 (Unstable Elasto-Plastic F~sponse)•••••••• 149

6.47 Flamingo Road Overpass Model Response Using
El Centro *1.5 (Unstable Elasto-Plastic F.esponse) •••••••• 150

6.48 Flamingo F.oad Overpass Model Hesponse Using
E1 Centro *1.5 (Unstable Elasto-Plastic Response) •••••••• 151

6.49 Flamingo Road Overpass rJIodel Hesponse Using
El Centro *1.5 (Unstable Elasto-Plastic F.esponse) •••••••• 152

6.50 Flamingo Road Overpass Model Hesponse Using
El Centro *1.5 (Unstable Elasto-Plastic Response) •••••••• 153

6.51 Flamingo Road Overpass Model Response Using
El Centro *1.5 (Unstable Elasto-Plastic Response) •••••••• 154

x



CHAPrER 1

INI'RCOUCI'ION

1.1 Introduction

Many reinforced concrete column failures are caused by a combina

tion of biaxial bending and axial load as a result of earthquake

loadings. Several researchers, (10,16,26,30) have confirmed that

biaxial bending is more critical than uniaxial bending when structures

are subjected to bidirectional horizontal earthquake motions.

To evaluate the inelastic dynamic response of reinforced concrete

structures subjected to strong bidirectional ground motions, a three

dimensional analysis using a hysteresis model for the biaxial bending

of columns is required. Because earthquakes generally produce varia

tions in the axial forces, the model must define the interaction of

axial load and the two bending moment components for elastic and

inelastic deformations. Modeling biaxial behavior is crucial for the

accurate and realistic prediction of inelastic dynamic response of

reinforced concrete structures.

The modeling of biaxial behavior in reinforced concrete columns

is complex and involves many assumptions. This study reviews existing

models and introduces a simple hysteresis model to predict the inter

action of axial load and biaxial bending. The effect of the hystere

tic modeling is demonstrated through the analysis of three high\vay

bridges.

1.2 Review of Previous Work

Many models have been proposed that predict the hysteretic

response of reinforced concrete members subjected to earthquake



(1.D

loadings in only one direction (3,6,23,29,31). However, few models

consider the interaction between bending in two orthogonal directions.

The models that consider the interaction may be grouped into three

categories: (1) the yield surface models, (2) the finite element

models, and (3) the multispring models.

1.2.1 ~ Yield Surface Models: A yield surface describes the

relationship between interaction diagrams calculated for axial load

and bending about each principal axis. As develop:C! by Bressler (5),

the mathematical relationship is given by:

(Mx/Mox)a + (My!Moy)a = 1

where

Mx and lJI'-y = moments acting about the x and y axis, respectively;

and

Mox and Moy = the yield moments about the x and y axis,

respectively. This relationship was found to correlate well with

experimental results involving monotonic loadings (5) and is one of

the methods used in designing reinforced concrete columns for combined

biaxial and axial loadings (34). The parameter ~ is generally

recognized to lie between 1.0 and 2.0 and depends on the axial load

applied and on the bar arrangement in the column. For the models

examined herein, a = 2.0 is assumed for typical columns with small

aspect ratios and for mathematical simplicity. The yield surface is

used as a general limit surface based on which the yield point in

different hysteresis models is computed. The assumptions about the

variation of stiffness for pre- and postyielding stages vary depending

on the hysteresis model.

2



1.2.l.a The Bilinear Biaxial Model: The simplest model using

the yield surface is the bilinear biaxial model. The basic

formulation (17,30,32) is based on plasticity theory with the elastic

perfectly plastic (elasto-plastic) model being a special case.

The column is assumed to be perfectly elastic until the combina

tion of applied moments at a fixed axial load value intersects the

yield surface. The cracking point in the force-deformation relation

ship is ignored. Once the yield surface is reached, the column stiff

ness is reduced to zero (elasto-plastic) or to small postyielding

stiffness value. The yield surface is then allowed to translate in

moment space but does not change shape as the column yields. Upon

unloading, the original elastic stiffness is assumed to apply. Hence,

this model does not allow for degradation of the stiffness of the

element. Lai (11) com:r;:ared the analytical results based on this model

with experimental results obtained by Otani (16) for a cantilever

column subjected to bidirectional lateral deformations and found that

the bilinear biaxial model produced poor correlations with respect to

the force-displacement history of the test specimens. Although the

elasto-plastic model is not realistic, it has been used or evaluated

by many researchers (8,17,19,26,32) because the addition of degrada

tion effects has been considered too cumbersome to consider.

1.2.l.b The Trilinear Degrading l-1odel: The trilinear degrading

model, developed by Takizawa and Aoyama (30), improves upon the

biaxial bilinear model by including the stiffness degradation of the

column. This model, as used by Takizawa and Aoyama, is not capable of

accounting for variations in axial load. No attempt was made to

3



include variations in axial load because of the increase in the

complexity of the analysis that variable axial load would introduce.

The trilinear model is based on two "yield" surfaces, one within

the other. The outer one represents the yielding of the column and is

comparable to the yield surface explained in the previous section.

The inner surface represents the cracking of the column. The size of

each surface is determined from a trilinear skeleton curve that

relates rroment to end rotation.

The column is perfectly elastic until the cracking surface is

reached. Once the cracking surface is reached, the stiffness is

modified and the cracking surface is allowed to translate in moment

space without changing shape. Once the yielding surface is reached,

the yield surface and the cracking surface are allowed to expand along

the direction of yielding. Beyond the yield surface, the stiffness is

further reduced to an assigned postyielding stiffness.

Upon unloading, the stiffness is mUltiplied by degradation

factors that are based on the maximum displacements achieved in each

coordinate direction. This technique accounts for permanent

deformations in the column and leads to a more realistic response

because it accounts for the stiffness degradation of the element.

The mathematical equations that define the rules for movement and

for the lengthening of the surfaces are quite complex and require a

considerable amount of calculations. The additional complexity

improves the results; Lai (11) found a better correlation using

analytical reSUlts from the trilinear degrcding model than from the

bilinear model for otani's (16) exp:rirnental data. still, Lai found
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the correlation between experimental and trilinear degrading model

analytical results to be poor and unacceptable.

The trilinear degrading model is probably as sophisticated as

yield surface techniques will become. The extra complexity of any

additional refinements to the technique will not overcome the many

approximations that are inherent in yield surface models.

1.2.2 The Finite Element Method: Another approach for determin

ing the biaxial behavior of reinforced concrete models is the finite

element method. A few researchers are reported to have used this

_technique (11,20,28) to model the columns as a mesh of nodes. The

disadvantages of this method are the enormous amount of computation

required even for simple structures and that the microscopic inter

action of concrete and steel (such as bond slip) are not modeled well.

As a result, this technique does not apr-ear to be promising for large

structural analyses.

1.2.3 The Multiple Spring Model: A major step toward accuracy

and simplification in modeling the biaxial bending was recently taken

by Lai (11). The model developed by Lai does not depend on the

formulation of a yield surface; hence, the complexities and approxi

mations that plagued the other models are eliminated. According to

Lai's method, the column in the vicinity of the probable yielding

region is represented by a special configuration of several springs

representing concrete and steel. Two hysteresis models are used to

idealize the behavior of the springs. The mUltiple spring is far

simpler and gives better correlations with eXJ;:erirnental results (11)

than either of the yield surface techniques. The mUltispring model
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developed as part of the study reported herein uses the same basic

philosophy. Therefore, the detailed descriptions of the components of

Lai's model are provided in Chapter 2.

1.3 Object and ScoI;e

The modeling of biaxial bending in reinforced concrete colurons

subjected to two-dimensional earthquake loads has !:een investigated by

many reserachers, and its importance in accurately predicting seismic

structural performance has !:een confirmed. Yield surface techniques

used in the analysis of biaxial !:ending behavior are both complicated

and unrealistic. The finite element technique requires too much

computation to be considered for the analysis of typical structures.

The only technique to date that provides for a relatively simple and

accurate prediction of the inelastic biaxial bending behavior of

reinforced concrete structures is a mUltiple spring tYI;e model.

The multispring model introduced by Lai is a considerable

improvement over existing techniques but still requires substantial

"bookkeeping" in computer memory to store the parameters for each

spring. The first object of this study was to develop a mUltispring

model with a considerably reduced amount of computation and bookkeep

ing without sacrificing the accuracy of the results. To evaluate the

model, analytical results were compared with the available experi

mental data. Parametric studies were used to determine the important

factors affecting the amplitudes ar~ shape of the hysteresis loops.

The second goal of this study was the implementation of the new

model into an existing inelastic dynamic analysis program for highway

bridges. This modified program was used to assess the effects of the
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model to o....-erall bridge structural performance under bidirectional

dynamic loadings.

The program chosen for implementation was NEAaS, Nonlinear Earth

quake Analysis of Bridge Systems. This program orginally used the

bilinear elasto-plastic model for inelastic beam and column elements.
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CH1\..Pl'ER 2

THE FORMULATION OF THE ~IFIED

NINE-SPRING ELEMEN!'

2.1 Introduction

A simple accurate model for the biaxial behavior of reinforced

concrete columns under bidirectional d}'namic loadings is essential for

the economical and realistic prediction of the response of structures

subjected to strong earthquakes. Simplicity reduces computational

effort and expense, which is an important factor in three-dimensional

analyses. Even the simplest of yield surface techniques, the biaxial

bilinear model, requires considerable computation to define the yield

surface and its movement through moment space. The trilinear

degrading nlodel requires more calculations but still does not produce

good correlations with experimental results (11).

The mUltiple spring (nine-spring) model developed by Lai (11)

does not require the calculation of a yield surface or skeleton

curves. The spring parameters are calculated from cross section and

material pror:erties. The interaction effects of biaxial bending and

axial load are accounted for directly from the relationship between

the spring stiffnesses and the rotational and axial degrees of

freedom.

Two shortcomings can be identified in the nine-spring model in

its original form: (1) To calculate the rotational stiffness of the

element, the center of rotation is assumed to be at the centroid of the

section; and (2) a relatively complex hysteresis model is used for

the steel springs. The former results in the coupling of axial force
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and bending moment as soon as the extent of nonlinearity in different

springs is nonuniform. This problem is described in detail in section

2.2.3. The latter problem, namely, the complexity of the hysteresis

model, requires a considerable amount of bookkeeping during the

computation. This chapter describes the components of the Lai model

and the solutions to the problems outlined above.

2.2 Nonlinear Model Element Oeseription

In developing the Lai model, it is assumed that the hysteretic

behavior of a reinforced concrete column can be approximated by a zero

length nonlinear model element between the column and the joint. The

model is formulated assuming that torsional and shear deformations are

negligible. This assumption is reasonable for reinforced concrete

columns with a sufficient number of ties to prevent an inelastic shear

response. Because recent seismic design codes indeed require such

details, the model is applicable to relatively recent structures.

Another assumption incorporated into the Lai model is that the column

has a symmetric cross section and steel.

The nonlinear model element developed by Lai (11) consists of

nine springs: four representing reinforcing steel and five represent

ing concrete. The springs are allowed to deform only in the axial

direction. The nine springs are located in five positions: one steel

and one concrete spring at each corner and a concrete spring in the

center (Fig. 2.D. The two springs at each corner are assumed to be

concentric. All nine springs are assumed to be nonlinear. The

hysteresis models used for these springs are discussed at the end of

this chapter.
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The deformations of different springs are related by compatbility

equations. The compatibility equations are derived assuming that

plane sections remain plane. The column axial force is relatoo to the

spring forces. Thus, the model is capable of accounting for axial

load variations during biaxial bending, a feature not easily accom-

plished with yield surface techniques.

In the following sections, a brief description of the nine-spring

model is presented. The material is included in this report to

facilitate the description of the background for the model which was

developed in the present study (see Ch. 3).

2.2.1 ~ steel Spring: Each steel spring represents the

behavior of one-quarter of the steel in the cross section. The

properties of this spring incorporate the slippage of the reinforcing

bars. Lai (11) assumed that bond strength is uniform and can be

approximatoo by

u = 14 ( f~

in which

u = the bond strength in psi and

t
f~= the compressive strength of concrete in psi •....

(2.1>

The applicable bond strength expression specified in the 1963 ACI code
rt" .r:t

(1) for tensile bars ranged from 6 V f c to 9.5 V fe/db and for

compressive bars was 13 (f~. Emori and Schorobrich (7) studied the

test data on #6 bars obtained by Wight and Sozen (35) and concluded

that Eq. 2.1 leads to a gooo correlation with exper imental dato~ The

ACI equation results in 12.7 Vf~ for #6 bars. Given the degree of

scatter in experimental data and all the approximations that will be
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discussed in the following sections, Eq. 2.1 was considered to be

reasonable for both tensile and compressive bars. The bond strength

can be used to determine the development length of the bar at yield

stress:

(2.2)

in which

ld = development length,

~ = area of a single bar,

fy = yield stress of the bar, and

db = diameter of a single bar.

Assuming a uniform bond stress distribution and a triangular

strain distribution along the development length, the concentrated bar

displacement at the joint due to slipt:age is

(2.3)

in which

Es = Y0llrB' s rrodulus for steel bar.

Using these simple relationships, the initial elastic stiffness, kse

of the steel spring is calcul~ted from

(2.4)

which simplifies to

(2.5)

in which

As = one-fourth of the total area of longitudinal steel.

The initial stiffness is assumed to be the same in both tension and

compression. Reasonable results have been obtained using this

equation as will be demonstrated in Ch. 3.

The yield displaceIrent, dy ' for the spring is given by
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(2.6)

This yield displacement is used in the hysteresis rules and other

relationships described in the following sections.

The postyielding stiffness of the steel spring depends on the

strain-hardening of the bars, the amount of cOI1£ining steel, and the

thickness of the concrete cover. Lai assumed that the steel springs

representing a column element have zero postyielding stiffness.

However, test data from reinforced concrete columns subjected to

bidirectional latera] JOcds (16) have revealed a small postyielding

stiffness. In Chapter 3, it will be demonstrated that a postyielding

stiffness value of two percent of the initial elastic stiffness leads

to reasonable results.

2.2.2 ~ ~oncrete Spring: The concrete spring simulates the

behavior of concrete in a reinforced concrete merober. The properties

of these springs are determined by the compressive strength of

concrete and the moment and axial load at the balanced condition of

the section.

The yielding force level in each concrete spring is determined

from

in which

I

Pcy = O.S5fc;Ac (2.7)

Pcy = yield level in the concrete spring,

Ac = area of concrete represented by the corner or center

spring, and
I

f c = compressive strength of concrete.

The area represented by each of tbe corner concrete springs is the
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same because of symmetry. The areas are determined from the balanced

condition defined by conventional flexural theory (2,34). The area

for the center spring is the remaining area of concrete not repre-

sented by the comer springs.

The balanced condition occurs when the outermost reinforcement

layer yields in tension as the outermost fiber of concrete crushes in

compression. The crushing strain for concrete is assumed to be 0.003,

which is the value used by ACI (2).

In establishing the area of concrete springs, two simplifying

assumptions are made: (1) the compressive steel springs yield under

the balanced conditions, and (2) the neutral axis is located such

that the force in the central concrete spring is zero. Based on these

assumptions ar..(I given the symmetry of the column section, the area for

the comer concrete springs is found from Eq. 2.8.
,

Acorner = Pbl (2*0. 85fd
in which

(2.8)

Pb = balanced axial loed for the section.

An average % is used for rectangular sections with different balanced

loads in each orthogonal dir€Ction. The center spr ing area becomes

(2.9)

in which

Agross = gross area of the cross section and

Ast = total area of steel in the cross section.

The initial elastic stiffness for the corner springs is
,

kce = 0.85Acomerfc Idy
and for the center spring is

13

(2.10>



(2.11)

Both of these stiffnesses are found under the assumption that the

yield displacement for the concrete springs is the same as that for

the steel springs.

The above stiffnesses are valid only for compression. The

springs have no contribution in tension because the section is assumed

to be initially cracked. This is not an unreasonable assumption

because the initial cracking strength of concrete does not make a

significant contribution to response. The primary curve for concrete

springs is represented by an elasto-plastic relationship with no

postyielding stiffness assumed (Fig. 2.3).

The locations of the springs are also determined based on the

balanced condition. The moment at the yielding of opposing spring

sets is assumed to be equal to the balanced moment in the

corresponding direction (Fig. 2.2). The springs are assumed to be

located in a symmetric pattern. The distance between the springs in

direction i is

(2.12)

where

~i = the balanced rroment computed from flexural theory and

i = either the x or y coordinate direction.

Note that dsx is the distance p=rpendicular to the x axis and so

on.

The above relationships describe the characteristics of the

components of the element. The balanced moments and axial loads are

the only values that need to be calCUlated for the actual section in

order to formulate the element.
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2.2.3 Inelastic Element Stiffness Matrix: The nine springs

described in sections 2.2.1 and 2.2.2 form an element with three

degrees of freedom: one axial and two rotational. The element stiff

ness matrix translates the axial stiffnesses of the component springs

into joint rotational and axial stiffnesses. Shear and torsion defor

mations are neglected, and the stiffnesses in these degrees-of-freedom

are assumed to be infinite. The derivation of the stiffness matrix is

based on the equilibrium of forces and planar strain compatibility.

Lai (II> constructed the element stiffness matrix with the center

of rotation always at the center of the section. When inelastic

deformations are developed in the springs, this assumption generally

leads to a coupling between axial load and rotation <i.e., an axial

force is generated from pure bending) as described below. This

problem is not addressed in Ref. II.

Suppose the column shown in Fig. 2.1 has urrlergone a load history

that has caused yielding of the springs at location 1 but no yielding

in other springs. The instantaneous stiffness in location I is

considerably less than that of the other springs. with the neutral

axis fixed at the center and assuming plane sections remain plane, any

rotation (say, about the x axis) should prcduce equal displacements in

the upper (locations 1 and 2) and lower <locations 3 and 4) springs.

Because the stiffness at location 1 is lower than that of other

locations, the force in this spring is smaller. As a reSUlt, the

total forces at the upper springs will be smaller than the forces at

the lower springs. This, of course, leads to a lack of equilibrium in

the axial direction.
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Elimination of the coupling effect requires the neutral axis to

translate in response to the changing stiffnesses of the springs.

Using displacement compatibility relationships, the joint deformations

can be written as

~ere

=

112 1/2

o

-1Idsy

o

-l/dsx

-l/dsy

(2.13)

dsx ' dsy = distances between the spring locations as shown in

Fig. 2.1,

di = displacement in the ith spring location as shown in Fig.

2.1,

6p = axial displacement at the center of the section (at spring

5), and

8x ' 8y = rotations about the x and y coordinate axes, resp?ctive

lye

Note that the displacements at spring locations 2 and 5 do not

enter into Eq. 2.13. This is because the displacements at only three

of the spring locations are sufficient to define the plane of deforma

tion. The displacements at the otr..er two locations can be determined

based on the location of this plane.

Equation 2.13 relates the displacements in the springs to

rotational and m{ial degrees-of-freec1om without forcing rotation about

the centroid.

The moments and axial force at the column section can be related

to the spring forces as follows. As it was pointed out in previous
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p=

Mx=

My=

sections, the displacements at only three of the spring locations are

independent variables. The three locations chosen for formulating the

mUltispring element stiffness were 1, 3, and 4. The displacement at

the center spring is found frem

dS = (dl + d3)/2

Refer ring to Fig. 2.4, the displacement at location 2 will be

or

The axial force and moments about: the two orthogonal a.xes can be

wr itten in terms of spring forces as follows.

S

" K·d·L> J. J.

i=l
4

(L: Kidi ) (dsx/2)
i=l

4

(L: Kid i ) (dsyl2)
i=l

Substituting the expressions for d 2 and ds in the expressions for

forces and writing the equations in matrix form will lead to

p 2 (KS/2+K1+K2) 2 (KS/2+K3+K2)

= 1/2 (Kl +K2)dsx (K2-K3)dsx

(Kl -K2)Qsy (-K2-K3)dsy

2 (K4-K2)

(-K4-K2)dsx

(K2+K4)dsy

(2.14)

ki = stiffness at the ith spring location (Fig. 2.1).

The moments are calculated about the centroid of the section, but

the neutral axis can be at any location.

Summarizing Egs. 2.13 and 2.14
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(2.15)

(2.17)

and

{P} = [T2] {d} (2.16)

where [Tl] and £T2] are the 3 x 3 coefficient matrices presented in

Eqs. 2.13 and 2.14 respectively.

SUbstituting and rearranging results in

{P} = [TI ] [T2]-1{6}

which can be rewritten as

{P} = [K]{eJ

where [K] is the element stiffness matrix.

(2.18)

2.3 Hysteresis Models

In the original nine-spring models, the variation of stiffness as

a function of the load/deformation history was represented by the

Takeda hysteresis model model (29) for the steel springs and by a

modified elastic-plastic model (named Gh"'YST in this report) for the

concrete springs. Although the hysteretic behavior of steel (as a

material) is better idealized by a nondegrading model such as the

bilinear or the Ramberg-Qsgood model (21) because the steel spr ings in

the multispring element represent the bond slip behavior of the bars

as well as the steel behavior, it is appropriate to use a degrading

hysteresis model for the steel springs. The Takeda model, however, is

overly complicated. A comparison of hysteresis models (23) has shown

that the Q-Hyst model (22), which is considerably simpler than the

Takeda mooel, proouces comparable results.

2.3.1 Hysteresis model for~ sprinas: The hysteresis model
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for the steel springs is the QHYST model as developed by Saiidi and

Sozen (22,23). The QHYST model is a simplified version of the Takeda

model (23,29) and is different from the one used by Lai (11). The

rules for the QHYsr hysteresis model (Fige 2.5) are as follows.

Eulal: (operates on branch Y'Y)

1.1 Loading: if di < = dy; K = Kse; LVL = 1

if di > dy; K = Ky; LVL = 2

1.2 Unloading: K = Kse; LVL = 1

1.3 Load reversal: K = Kse; LVL = 1

l3.lJk 2.: (operates on the postyielding branch)

2.1 Loading: K = Ky; LVL = 2

2.2 Unloading: K = Sl; LVL = 3

3.1 Loading: 1. if last unloading point on YU, go to 3.1.2

if f i < = f R K = Sl; LVL = 3
I

if f i > f R K = slope of XoUm; LVL = 4

2. if f i < = fUm K = Sl; LVL = 3

if f i < = fUm K = Ky; LVL = 2

3.2 Unloading: K = Sl; LVL = 3
I

3.3 Load reversal: K = slope of XoUm ; LVL = 4

4.1 Loading:

if f i > fUm K = Ky; LVL = 2

4.2 UnloOCling: unloading point is "R"; K = Sl; LVL = 3

in which
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di = the absolute value of the total current displacement in the

ith spring,

f i = the absolute value of the total current force in the ith

spring,

Kse = the elastic stiffness of the spring,

ICy = the postyielding stiffness in the spring,

LVL = the pointer to the next rule,

51 = Kse*(dylrlmax)btO,

btO = a factor bet~~en 0 and 1,

dy = the yield displacement,

<\rex = the absolute value of the maximum displacement the spring

has ex~rienced in either direction,
I

f u = the absolute value of the force at Urn (or Urn)' and
m

fF. = the absolute value of the force at the unloooing point R.

2.3.2 HYsteresis model fQ£ concrete springs: The hysteresis

model for the concrete springs is a simple model formulated by Lai

(11) for use in the multispring model. It is an extremely simple

approximation of the response of concrete. The rules for the hystere-

sis model for concrete springs, called GHYST in this report, are as

follo\l1s (Fig. 2.6).

RJ.1k 1

1.1 Loading: if di positive (tension) K = 0; LVL = 1

if ld·l < dy; K = Kce; LVL = 11

if ld·l > = d ; K = 0; LVL = 21 Y

1.1 Unloading: K = Kce; LVL = 1
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2.1 loading: K = 0; LVL = 2

2.2 Unloading: K = Sl = fi/d i ; dy = di ; LVL = 3

EW..e. .J.

3.1 loading: if ld·' < = dy; K = Sl; LVL = 3
~

if Id·l > dy; K = 0; LVL = 2
~

3.2 Unloading: if d· = > 0; K= 0; LVL = 3
~

if di < 0; K = Sl; LVL = 3

in which

di = the total displacement in the ith spring,

fi = the total force in the ith spring, and

Kce = the initial elastic stiffness for the springs.

A corner concrete spring is assumed to have the same total

displacement as the corresponding steel spring. therefore, it is not

necessary to use plasticity theory to update the displacement for the

concrete spring when its stiffness is zero. Although the model is

extremely simplified, in combination with the steel hysteresis steel

models, it has produced reasonable results when compared to

ex};Srirrental data for reinforced concrete elerre.'1ts (see Ch. 4).
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CHAPl'ER 3

FORMUIATION OF THE FIVE-SPRIt-X; ELEMENI'

3.1 Introduction

The nine-spring element introduced by Lai and the modified

version described in Ch. 2 are both more realistic and simpler than

the available yield surface or finite element models. NOnetheless,

the fact that the force and displacement of each spring need to be

traced throughout the analysis means that, for each column, nine

subelements are necessary. For a structure with a relatively large

number of columns, the required computer memory and the computation

time may be excessive. To reduce the number of the subelements, the

modified nine-spring element described in Ch. 2 was further refined

and a five-spring mooel was developed. This mooel produced reSUlts

which were of the same or better quality than those obtained from the

original and mooified nine-spring elements (see Ch. 4). The purpose

of this chapter is to describe the five-spring element and the

hysteresis mooels used for the springs within this element.

3.2 Element Description

The five-spring element is shown in Fig. 3.1. The major

difference between this element and the nine-spring element is that

the concrete and steel springs which were located at each corner of

the nine-spring element are replaced by a composite spring. The

center concrete spring remains unchanged. The five-spring element

requires approximately forty percent less computer memory and

eJ~ecution tine.

22



In subsequent sections, the composite springs and the hysteresis

model used to represent their behavior are described. The concrete

spring (spring 5 in Fig. 3.1> has the same description as that in sec.

2.2.2, and it utilizes the GHYST hysteresis model presented in sec.

2.3.2.

3.2.1 'rM. Composite Spring: The composite springs (springs 1

through 4) have different characteristics in tension and compression.

When in compression, they represent the steel and corner concrete

springs discussed in secs. 2.2.1 and 2.2.2. When the composite

springs are in tension, however, they represent only the steel springs

described in sec. 2.2.1. The derivation of the properties of the

composite spring is primarily based on the assumptions presented in

Ch. 2. The primary curve for the composite springs (Fig. 3.2) has the

follo\'1ing characteristics.

Tension:

Initial stiffness, Kse = 2AsEs/ld

Postyielding stiffness, K1 = 0.02 Kse

Yield displacement, dy = AsfyIKse

Yield force = Agfy

Conpression:

Initial stiffness, (Kse + Kce> = 2As Es /la +
,

O.85Acornerfc/dy

Postyielding stiffness, Ky = 0.02 Kse

Yield displacerrent, dy = Agf/Kse
,

Yield force = Asfy + 0.85 fcA:orner



3.3 Hysteresis Model for Composite Spring

A modified version of QHYST, called AQHYST, was developed to

model the response of the composite spring. AQHYST is based on the

same four rules as those used in the QHYST model except that the

initial stiffnesses for compression and tension are different. The

AQHYST model does not incorporate the rules from GHYST (sec. 2.3.2),

rather the concrete spring is assumed to "follow" the hysteretic path

of the steel spring. The GHYSI' model for the concrete springs is used

only for the center concrete spring.

The absolute value of the yield displacement is the same for both

compression and tension. The yield force in tension is the yield

force for a steel spring, and the yield force in compression is the

sum of the yield forces for a steel spring and a concrete spring. The

postyielding stiffness for both compression arD tension is that of a

steel spring. The pro~rties for each type of spring are calculated

as described in Cbs. 2 and 3 ar.d then combined to create the composite

spring properties.

The rules for the AQHYSI' rrodel are as follows (Fig. 3.3).

~l:

1.1 Loading: if 0 < di < = dyi K = Ksei LVL = 1

if 0 > di > = -dyi K = Kce + Ksei LVL = 1

if Idil > dyi K =Kyi LVL = 2

1.2 Unloading: if di > Oi K = Ksei LVI.. = 1

if d i < = Oi K = Kse + Kcei LVI. = 1

1.3 Load Reversal: if di > Oi K = Ksei LVL = 1

if d i < = Oi K =Kse + Kcei LVL = 1
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2.1 Loading: K = Ky; LVL = 2

2.2 Unloading: if d i > = 0; K = 51; LVL = 3

if d i < 0; K = 52; LVL = 3

3.1 Loading: if last unloading point on YU go to 3.1.2.

1. if Ifil < IfRI; and:

if f i < 0; K = 52; LVL = 3

if f i > 0; K = 51; LVL = 3
,

if Ifi I > IfRI; K = sloI;e of XoUrn; LVL = 4

2. if 0 < fi < fUm; K = 51; LVL = 3

if 0 > f i > = f urn; K = 52; LVL = 3

if f i < furr/ K =Ky; LVL = 2

3.2 Unloading: if f i > 0; K = 51; LVL = 3

if f i < 0; K = 52; LVL = 3
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4.2 Unloading: unloading fX)int is "R".

if f i > 0 K = Sl; LVL = 3

if f i < 0 K = S2; L\~ = 3

in which

Sl = Kse*<dyldwax)btO,

S2 = <Kse + Kce) (dyldmax)btl,

btl = the degrroation factor for corrpression, and

all other variables are the same as for the QHYST model <sec.

2.3.1> •

The new hysteresis model provides a smoother transition between

tension and compression. The model also degrades the stiffness and

allows for permanent deformation of the composite springs. Subroutine

AQHYST is used for each comer spring location at every iteration.
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CHAPI'ER 4

COMPARISON OF ANALYTICAL AID EXPERIt<ENrAL RESUurS

4.1 Intrcduction

All of the springs that make up the mUltispring biaxial bending

elements are inelastic. Each spring type (concrete, steel, or com

posite) is governed by a set of hysteresis rules which describe the

stiffness of the spring depending on its loading history. The quality

of the response calculated, based on the mUltispring elements des

cribed in Chapters 2 and 3, depends on (1) the assumptions made in

developing the general form (Figs. 2.1 and 3.1> of the element and (2)

the method of idealizing the hysteretic behavior. For the mUltispring

elements presented in previous chapters, both of these appear to be

rational. That is, the layouts shown in Figs. 2.1 and 3.1 have the

potential of simulating the behavior of a biaxially bent column and

the hysteresis models used for the constituent components are accept

able representatives of the behavior of concrete and steel.

To evaluate the multispring elements presented in Chapters 2 and

3, the elements were incorporaterl ina cantilever column analytical

model. The model was used to calculate the response of two biaxially

bent colurons for which experimental data were available. This chapter

presents the cantilever model as well as the analytical and exp:::rimen

tal results.

4.2 Description of the cantilever Structure

Few exp:::rimental data concerning the inelastic biaxial behavior

in reinforced concrete columns subjected to cyclic loads are avail

able. Some of the available data, such as those from Umehara and Jirsa
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(33), are for relatively short specimens in which shear deformations,

and not flexural deformations, dominate. otani (16) presents data for

cantilever column sp:cimens subjected to static bidirectional lateral

deflections. The specimens were designed to behave dominantly in

flexture. These data are used to test the biaxial bending elements

described in previous chapters.

The configuration and specifications for two of Otani's test

specimens gp-7 and SP-8 are presented in Fig. 4.1. The only difference

between SP-7 and gp-8 is the applied deflection history (Figs. 4.2 and

4.3). Neither test specirrens had an applied axial load.

The column was modelled as an elastic line element with a biaxial

bending mUltispring element (Chapters 2 and 3) at the base (Fig. 4.4).

The stiffness for the elastic line element was based on the gross

moment of inertia and the modulus of elasticity for concrete. The

parameters for the biaxial bending multispring elements were

calculated as described in Chapters 2 and 3. Only flexural and axial

degrees-of-freedom were considered as torsion effects were considered

negligible. Shear deformations were also ignored.

Figure 4.5 shows the degrees of freedom (DOF's) for the

cantilever column model. DOF's five and eight \,,'ere slaved because the

axial deformation of the line element (Fig. 4.4) was ignored. The

stiffness matrix for the system was condensed with respect to DOF's

one and two to allow for input displacement at these locations. For

any set of input displacements at DOF's one and two, the forces and

deformations at DOF's six through eight were calculated and used to

determine spring displacements and forces in the mUltispring element.

The cantilever model was implemented in program l\..PPDIS. This
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program first calculates the spring properties and then applies the

displacement history to the structure in small increments. The dis

placement histories for SP-7 and SP-8 were devided into 2950 and 2600

increments, respectively. For each incremental displacement an incre

mental moment is calculated at the location of the mUltispring

element. An incremental axial deformation is calculated for each

spring location and the proper hysteresis subroutine is called for

each spring. A large stiffness value was assigned to the element for

the pre-yielding stage to simulate the elastic behavior of the column.

Once the hysteresis routines indicate that one or more of the springs

have yielded, then a new stiffness matrix is created for all of the

subsequent iterations. The new shear forces at the top of the column

are calcUlated using the updated spring forces returned from the

hysteresis subroutines. The new shear force at the top of the canti

lever is then plotted against the total column deflection. The APIDIS

program was used for parametric studies presented later in this

chapter. A flowchart of ll.PIDIS is presented in Fig. 4.6.

4.3 Evaluation of the Modified Nine-Spring Element

Lai (11) has demonstrated that the original nine-spring model

will prcduce results which are in reasonable agreement with eXj;:eri

mental data. The purpose of testing the modified nine-spr ing element

was to study the effects of using a new element stiffness matrix and

the QHYSI' hysteresis model. The postyielding stiffness for the steel

springs was assumed to be two percent of the initial elastic stiff

ness. Figures 4.7 and 4.8 are comparisons of the experimental and

analytical response for SP-7 in the x and y directions, respectively.
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The btO factor (Sec. 2.3.1) used for this case is 0.5. A reasonable

value for btO is 0.4 or 0.5 (20,27).

Note that btO controls the width of the hysteresis loops. As the

value of btO increases, the area within hysteresis loops will

decrease. The value of btO is used in the Takeda hysteresis model as

well as the Q-HYSI' and AQHYSI' models.

The overall shape of the hysteretic response curves shown in

Figs. 4.7 and 4.8 are similar, especially for the inner loops. The

calculated outermost loop in the x direction is not well matched with

the experimental data because of significant deterioration of column

which caused shear deformations to become significant for the last

displacement increments (16). The comrarisons show that this value of

btO does not allow for the hysteretic energy loss experienced by the

actual column, as measured by the area within the curves.

Smaller values of btO produce greater energy loss for the

element. A btO value of 0.2 was used for the response histor ies pre

sented in Figs. 4.9 and 4.10. The calculated curves are noticeably

wider in the displacement direction, comp3.ring more favorably with the

experimental data. This value of btO produced the best fit and is the

value used by Lai (11) in his hysteresis model. Responses for SF-8 are

shown in Figs. 4.11 and 4.12. Again acceptable results have been

obtained using a btO value of 0.2.

Both of the above compar isons show that the modified nine-spr ing

element underestimates the peak strength of the column by ten Fercent

to twenty percent. This is not unreasonable given the variability of

concrete and steel proFerties and the simplified nature of the model.
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The analytical results based on the original nine-spring element for

SP-7, shown in Figs. 4.13 and 4.14 shows a better peak strength

compar ison than the response for the modified element, but the shape

of the response curve for the y direction is not as good as that

produced by the modified element presented here.

A charccteristic of this implementation is the "stepping error".

A stepping error cccurs when a spring stiffness changes abmptly, such

as in the transition from compression to tension. These stepping

errors cause abrupt changes in the response, such as the "zig-zag"

shown in the left part of the outer loop of Fig. 4.12. These zig-zags

slightly reduce the amount of energy dissipated by the structure and

affect subsequent locrl-deformation relationships. Stepping errors are

minimized by small displacement increments, but cannot be completely

eliminatEd •

Another characteristic of the nine-spring element is the over

shoot error. This error affects the axial force balance of the

structure and is not evident from the hysteresis curves. The error

cccurs because the hysteresis routines modify each spring stiffness

arrl spring force without regard to the other springs. The hysteresis

routines change the force in the spring to correct for "overshooting",

or allowing a force in the spring that is not on the hysteresis curve

(Fig. 4.15>' Because modifying the force in one spring has no effect

on the other springs during an iteration, the axial load (the sum of

the spring forces) equilibrium is generally violated. The imbalance is

generally too large to be ignored; for the test cases presented here

the axial load imbalance in some instances approached 1,000 kips. The

moment response of the element is not greatly affected, but modeling
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variations in axial load carmot be p=rformed accurately.

~~though this implementation has some problems, it still produces

better results than the bilinear yield surface model. A representative

sample, obtained from Ref. 11, is shown in Fig. 4.16. The bilinear

model overestimates the p=ak forces by approximately forty percent.

The hysteretic energy loss is also significantly larger than what is

indicated by the exp=rimental data.

4.4 Evaluation of the Five-spring Elerrent

The main difference between the five-spring and the modified

nine-spring elements is the smaller computer memory and shorter

computation time requirements for the five-spring model, and the

hysteresis modeling of the comer springs.

The hysteresis model used in the five-spring element (AQHYST,

sec. 3.3.1) reduces stepping errors by allowing for a smoother transi

tion between compression and tension forces in a spring. However, it

does not remove the axial load imbalance caused by force modifico.tion

within a load interval. Using much snlaller displacement increments

would reduce the error, but would take far too much computation time.

A simple correction scheme was implemented which applies the opposite

of the axial load imbalance to the elen:ent in the next iteration. A

similar approach was used to correct force imbalances in a frame

analysis program develoI;ed by Otani (4), amon:] others. This method is

simple and fast as com:r;ared with other methcds.

In AQHYST, the slope of unloading branch for the postyielding

stage is controlled by parameters btO and btl (Sec. 3.3.1). These

parameters control the "fatness" of the hysteresis loops. Because a
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value of 0.2 had been used for a comparable parameter in the nine

spr ing model, this value was also used for btO and btl.

The experimental results from Otani's (16) specimens SP-7 and SP

a were utilized as the basis of evaluating the five-spring element.

Figures 4.17 through 4.20 compare the experimental data to the analy

tical results. The effects of tbe smoother transition from compression

to tension are evident in smoother curves. The overall shape of the

curves remains a goOO fit in both directions for both specimens. The

correlation with experimental data is as good or better than the

correlation between the nine-spring element results and the measured

data (Figs. 4.9-4.12).

To determine the sensitivity of the calculaterl resp::mse to varia

tion in btO, btl, and postyielding stiffness p:trarneters, specimen SP-7

was analyzed using the five-spring model with different values for

these parameters. Figures 4.21 and 4.22 show the effects of using a

value of 0.4 for bto and btl. These plots give a slightly better fit

for low-amplitude cycles, but are somewhat too fl.arrov..

The values of btO and btl should not necessarily be the same. The

btO parameter represents stiffness degradation for a steel spring

subjected to tension (Sec. 3.3.1), whereas btl is an index for stiff

ness degradation of the composite spring which includes the effect of

concrete. Note that as btl increases, the permanent displacement will

decrease. In the nine-spring model, the concrete springs have no

permanent displacement (Fig. 2.6) due to the fact that the branch

corresponding to rule 3 is forced to pass through the origin. The

slor;e of this branch could be formulated as follows to obtain a value
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of btl which would proouce zero r;ermanent displacement.

83 = Pc/<\rax

In which:

(4.1>

83 = slot:e of branch 3 in Fig. 2.6;

Pcy = yield force; and

dmax = maximum displacement

writing 83 in a form comJ;8.rable to 81 and S2 <Sec. 3.3.1.) leads to

53 = Kcc * (d/dmax)btl. (4.2)

Kcc ' the elastic stiffness is found from

(4.3)

substituting 53 from Eg. 4.1 and Kcc from Eg. 4.3 in Eg. 4.2 will lead

to btl = I for concrete. The value of btl used in AQHY5'I' represents

roth the concrete and steel (the composite spring). Because btl = 0.4

is reasonable for steel and btl = 1 simulates the concrete spring

model in the nine-spring element, a simple a~rage value of 0.7 may be

considered as a representative value for the composite spring.

Increasing the btl factor to 0.7 gives the results presented in Figs.

4.23 and 4.24. These loops do not provide the same amount of energy

dissipation as the ext:erimental results indicate. Comparison of these

figures with Figs. 4.9 and 4.10 reveals that btO = btl = 0.2 produced

b2tter correlation with exr;erimental data.

The analytical results using a btO value of 0.4 and a btl value

of 0.3 are compared to experimental results in Figs. 4.25 and 4.26.

These curves have good correlations with experimental results,

although they do slightly underestirrate hy-steretic energy loss.

The "blunting" of the sharp saw-toothed peaks in the response

histories for 8P-7 using the five-spring model are in rart due to U;e
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correction method used for axial force. The axial force imbalance

applied to the springs accelerates the yielding of some of the

springs, causing the stiffness to reduce prematurely. While the moment

response is reduced, it does force axial equilibrium to be satisfied.

Figures 4.27 and 4.30 illustrate the effects of changing the

postyielding stiffness. Figures 4.27 and 4.28 compare the experimental

results to analytical results using a postyielding stiffness of five

percent of Kse (the initial steel spring stiffness). This does

increase the peaks, but only in the large-amplitude loops. Using

extrerr:ely small values of postyielding stiffness can lead to "over

loading" of the correction scheme for axial force. Figures 4.29 and

4.30 show what can happen if a value of 0.2 percent of Kse is used.

The erratic response is caused by drastic changes in the hysteretic

path creatErl by large axial force imbalance in a single iteration. The

problem can be avoided by using smaller load increments or a larger

postyielding stiffness.

4.5 Comments and Conclusions

The first object of this study was to develop a simplified

multispring element and to compare its response with experimental

data. The completion of this task revealed that the element will

produce reasonable hysteretic responses for cantilever columns

subjected to bidirectional lateral displacements. Although the biaxial

bending element does not prcduce perfect match and must be used with

some care, it is simple and executes quickly.

It is recommended, on the basis of the comparisons presented

here, that a postyielding stiffness value in the range of one percent
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to five r-ercent be used for typical columns, unless a better approxi

mation is available or a different axial force correction method is

used. Values for btO and btl should be between 0.2 and 0.4 for

adequate hysteretic energy loss. When additional experimental data

become available, more representative general relations for postyield

ing stiffness, the btO factor, and the btl factor may be possible.
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CHAPI'ER 5

IMPLEl-1ENI'ATION IN A IDNLINEAR BRIDGE MDEL

5.1 Introduction

The multispring biaxial bending element described in Chapter 3

was added to program ~:EABS (Nonlinear E.arthquake Analysis of ~ridge

Sy.,tems) as a new element type. Program NEABS is a FORl'RAN IV program

written for nonlinear dynamic analysis of highway bridges. The

original program used four elenent types:

1) Linear elastic and elasto-plastic straight beam elements;

2) Linear elastic circularly curved beam elenents;

3) Linear elastic foundation spring elements;

4) Linear and nonlinear expansion joint elenents.

A fifth type of element, the five-spring biaxial bending element,

was installed in the program for this study. This chapter describes

the or;eration of NEABS and the rrodifications made to the program.

5.2 Description of Program NEABS

The subroutine organization of program NEABS is presented in Fig.

5.1. The analysis procedure used in NEABS is similar to that described

by Tseng and Penzien (30). This procedure can be summarized as

follows:

1) The initial static equilibrium equations of the bridge are formed

from the input data (Subroutine SErUP) •

2) The static systems of equations are solved for dead load and

static nodal load response (Subroutine STATIC). In this analysis,

the structure is assumed to remain elastic. The results are used

as the initial conditions for the subsequent nonlinear dynamic
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analysis.

3) Digitized dynamic load functions applied at nodes or ground

accelerations are input for equal or unequal time intervals.

Dynamic load vectors are calculated for each time step of

integration (Subroutine LOADS).

4) Incremental dynamic equilibrium equations are formed and solved

for incremental nodal displacements, velocities, accelerations

using Newmark's solution technique for the equations of motion

(13). Total nodal displacements, velocities, and accelerations

are calculated for each time step (Subroutine IHl'GR).

5) The nonlinearity conditions of each nonlinear element are checked

within each time interval. If necessary, a new element stiffness

matrix and nonlinear force vector are calculated for the element.

The bridge stiffness matrix is then recalculated for the next

time interval. Equilibrium of the bridge is checked using the

linear and nonlinear forces (Subroutine NELSI'F) •

6) The time histories of response results from the step-by-step

solution are rearranged for output (Subroutine OUTPUT).

5.3 Modifications to Program NEABS

The subroutines highlighted in Fig. 5.1 were added to NEABS to

implement the five-spring biaxial bending element. The subroutines are

SMOD, TEAMOD, NEWMOD; SPRING, STMOD, NMOD, AQHYST, and GHYST.

Subroutines SMOD, TEAMOD; NEWMOD, and SPRING create the element

stiffness matrix. Subroutine STMCD initializes the element hysteresis

model after the static loads have been determined by subroutine

STATIC. Subroutine ~~lOD calls the hysteresis models, AQHYST and GHYSl',
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and creates a new element stiffness matrix if necessary. The or;:eration

of the subroutmes is outlmed below.

5.3.1 Subroutines SMQD, TEAl1.QIh NIDiMOO.&.. gnQ SPRING: Subroutine

SMOD initializes parameters and then calls TEAMOD. Subroutine TEAMOD

first reads the cross section data and calls subroutine SPRING to

calculate the composite concrete-steel and concrete spring

stiffnesses. Subroutine TEAMOD reads the coordinate information for

each mUltispring element, calculates the local to global

transformation matrix, and calls subroutine NEWMOD. Subroutine NEWMOD

calculates the local element stiffness (3 x 3), expands the local

element stiffness matrix to 12 X 12, then calculates a 12 X 24 matrix

which relates global displacements to local forces, and finally

calculates a 24 X 24 global element stiffness matrix. These relatively

large matrix sizes were used not because they were necessary for the

multispring model but to maintain compatibility with the rest of the

program. Flowcharts for subroutines SMOD and TEAMOD are presented in

Fig. 5.2. Flowcharts for SPRIKG and ~i'EWMOD are presented in Fig. 5.3.

5.3.2 Subroutines STMQD and NMOO: Subroutine STMOD is called

from subroutine STATIC after solution of static equilibrium forces.

Subroutine STMOD initializes the hysteresis pointers and calls

subroutine NMOD. Subroutine NMOD is called from two points in the

program: from subroutine STHCD and subroutme NELSTF. When called from

either subroutine, ~"'MOD finds the incremental forces in the element

springs and calls the appropriate hysteresis subroutine. After all of

the element springs have been updated, NMOD checks to see if any of
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the springs have yielded. If none of the springs have yielded, then

control is returned to the calling subroutine. If the element has

yielded, then new element stiffness matrices are calculated and

control is returned to the calling subroutine. Flo\vcharts for

subroutines STMOD and NMOD are presented in Figs. 5.3 and 5.4,

resPeCtively.

5.3.3 Subroutines AOHYST gnQ. GHYST: The hysteresis subroutines

AQHYST and GHYST are the same as those used for the static model in

Chapter 4. The oJ:eration and theory of these subroutines are presented

in Chapters 2 and 3.

5.4 Evaluation of Modified NEABS

The modified version of program NEABS (program NEABS-86) contains

the new mUltispring biaxial bending element. The implementation was

tested for compatibility with the existing element types both

statically and dynamically using a simple two span bridge. The results

indicated the five-spring element was compatible with all elements

both statically and dynamically except the elasto-plastic beam

element. The elasto-plastic element may lead to instabilities when

used in combination with the five-spring element. This incompatibility

is discussed in more detail below.

Implementation of the five-spring element for dynamic analysis

required that subroutine ITERN be bypassed for timely execution of the

program and to limit memory storage requirements (Fig. 5.1). If the

square root of the sum of the squares of the imbalanced forces due to

yielding or friction losses becomes larger than RTOLS (relative

tolerance of subdivision SPeCified by the user) then subroutine lTERN
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reverses the program one time interval. Subroutine ITERN then sub

divides the time interval by NSDIV (number of subdivisions specified

by the user). Subroutine ITERN prevents instabilities due to large

time steps which can create large force imbalances in a single time

step. The five-spring element is more stable than the elasto-plastic

element because stiffness changes are less severe, hence the force

imbalances are less. The bypass of subroutine ITERN is accomplished by

setting NSDIV and MAXIT (maximum number of iterations) to zero. It is

recommended that the five-spring element and the elasto-plastic

element not be used together. Care should be taken to ensure that

small time steps are used when using the new element.

5.5 Corrarents and Conclusions

The new multispring element was successfully implemented in

program NEABS-86. Testing revealed that the modifications were

compatible with the remainder of the original program for static and

dynamic analyses except for the elasto-plastic element. This incom

patibility is due to the bypassing of the subroutine ITERN, which was

necessary for the timely execution of the program and to reduce memory

storage requirements. This bypass will not lead to instabilities

unless large time steps or large load intervals are used. Testing of

the modified program revealed that the force imbalance produced by the

new element will increase for only one time interval after a change in

stiffness, then it will decrease to virtually zero within two or three

time intervals.

Program execution times using the five-spring element are

comtarab1e to those using the elasto-plastic element. Depending on the
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number of nonlinear program iterations, the execution times for the

new element are generally less than those for the elasto-plastic

element. Execution sreed increases derending on the values of NSDIV and

MAXIT and the number of nonlinear iterations. When the bridge remains

elastic, the execution time for the model with the five-spring element

is considerably longer than that for the model with the yield surface

element. This is because it is necessary to keep track of five sub

elements within the five-spring element even during elastic stages,

whereas the yield surface element is a single element. When nonlinear

deformations are developed, the yield surface element requires itera

tions within every time interval and, hence, requires a generally

longer execution time.
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CHAPI'ER 6

CASE SI'UDIES

6.1 Intrc:duction

This chapter compares the dynamic response of three highway

bridges rnooelea using both the elasto-plastic yield surface element

and the five-spring column elements (or the mUltiple-spring elements,

~1SE) presented in Chapter 3. Three modern bridges, tbe Eese Creek

Interchange in Nevada, the lileloland Overpass in California, and the

Flamingo Road Overpass in Nevada, were used as the basis for mathema

tical models analyzed using program tiJEABS-86 (Chapter 5). The pier top

acceleration and displacement histories are presented and compared for

each element.

6.2 structure Modeling

Two models were prepared for each case study: one using elastic

plastic column elements and another using mUltiple-spring elements at

the base of the columns. The objective of this study was to examine

the possible differences in dynamic response created by using differ

ent nonlinear column models. Ordinaril1'7, the nonlinear response i.~;

affected by the nonlinearity of the foundation, columns, hinges,

expansion joints, etc. To isolate the effect of modeling of the

columns, however, it was necessary to force all the elements other

than the colu~ns to remajn elastic. ~~ a result, the bridges were net

modeled exactly; rather, their properties were used as the basis for

realistic structural geometries ar~ cross section prof~rties. Founda

tion stiffnesses were considered infinite because yielding of the

foundation materials interferes with the yielding of the columns (9).
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The connections between the foundation and the columns were assumed to

be moment resistant i c_lthougb the actual connectioru,-, j n t\1/0 of the

bridges were "pinned" connections. Po-butments were modeled as pinned or

roller elements. Considering the above idealization, the results

presented in this chapter represent the dynamic response of ficticious

bridge structures with realistic structural properties for comparison

of two biaxial bending elements. The results do not represent the

actual bridge responses.

The models were subjected to rigid ground excitations (no phased

input was used) at the pier bases and at the abutments in the trans

verse and the longitudinal directions. Response hiE::tories were

plotted for the pier top displacements and accelerations. For the

five-spring elements, the btO and btl factors were set to 0.2 (Chapter

3),

6.3 The Meloland Cverpass

6.3.1 Description Q£ the structure: The 1·1eloland Overpass is a

208-foot long, two-span, symmetrical reinforced concrete box girder

bridge located within one-quarter mile of the Imperial Fault in

southern California. The single round concrete column pier is 20.5

feet high and five feet in diameter and is reinforced with eighteen

#18 bars equally distributed around its perimeter. An elevation of tbe

bridge is presented in Fig. 6.1.a, and an elevation of the pier is

presented in Fig. 6.2. The bridge was subjected to the magnitude 6.4

Imperial Valley Eartl~uake in Cctober 1979 and did not experience any

visible structural damage (9).
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6.3.2 Modeling Qf the structure: The Meloland Overpass was

idealized as shown in Fig. 6.1.b. The abutments were modeled as

rollers in order to allow for large deforrnation and yielding of the

column at reasonable acceleration levels. structural damping was

assumed to be five percent for all cases. structural element para

meters were based on actual cross section data and are tabulated in

Table 6.1. A rectangular column model was prepared to study the

effects of the shape of the column cross section on the dynamic

response (Fig. 6.3). The properties of this column were chosen such

that its strength and stiffness are comparable to the round column,

but the balanced moments are different in the two principal axes.

6.3.3 Resylts Qf fumgmi.Q gnal~: The measured free-field

horizontal accelerations from the 1979 Imr;erial Valley Earthquake were

applied to the round column mcx:1el of the r~Ielolanc1 Overpass. These two

acceleration histories, one longitudinal and one transverse (Figs. 6.4

and 6.5), were recordeo by an instrurnent located 200 feet from the

centerline of the bridge. The results from the analyses are presented

in Figs. 6.6 and 6.7. Only the transverse responses are shown because

tb€se resFonses V.E'l' E' IE'p:r.esentative of ttle correlc3tion between Ute

results from the two hysteresis modelS. The solid lines represent the

response of the f>1SE model and the dashed lines represent the elasto

plastic response. Note that the early low amplitude accelerations and

displacements at the pier top are identical, indicating that the

elastic resFOnse is the same for both element mcx:1els. Upon yielding at

approxirrately four seconds, the responses separate dramatically. The

elasto-plastic column has zero stiffness, whereas the stiffness in MSE
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rerlucesgradually. The elasto-pJastic accelerat:!on response is less

than the MSE response, but the displacement response for the elasto

plastic element are very much larger than the MSE response. The

responses also sho\'/ phase differences due to the different effective

stiffnesses reflected in the effective period of vibration.

The Meloland mooel was subjected to the 1940 El Centro Earthquake

with the input acceleration doubled (Figs. 6.8 and 6.9). The El Centro

east-west history was applied transversely and the El centro north

south history was applied in the longitudinal direction. The results

using the double El centro Earthquake are presented in Figs. 6.10 and

6.11. The displacement and acceleration response for the MSE analysis

differs from the elasto-plastic response in both phase and amplitude.

These differences are due to the changing of stiffness in the MSE as

element spr ings move from one hysteresis rule to another. The change

j n fU.ffness leads t.o Cl j fferent effective per iods for the structure

find can lead to a greater response tban the softer elasto-plastic

model.

A rectangular column was designed with propertieE; similar to

those of the actual round column to study the sensitivity of the

response when a rectangular column is used in tbe bridge model. The

Meloland model was subjected to the same El centro Earthquake acceler

ations with the same peak ground acceleration of:' tbat used for tbe

round column model. The responses (Figs. 6.12 and 6.13) are similar

to those for the roum colurrn model. The major differences between the

round colun-:n respom:;e and the rectangular coJun:n :response are the

displacements after three secorrls. The rectangular column models yield

earlier during the earthquake than the round column models do. As a
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result, the MSE and elasto-plastic responses differ more significantly

in the case of the rectangular column (Fig. 6.13). The last five

seconds of the rectangular elasto-plastic history show a shift in the

oscillation axis. This can be attributed to the drastic stiffness loss

in the elasto-plastic model. The MSE histories for both the round and

rectangular column models appear similar in amplitude but not in

phase.

6.4 The Rose Creek Interchange

6.4.1 Description.Q.f the. structure: The Rose Creek Interchange

is a 400-foot long, five-span, symmetrical reinforced concrete box

girder bridge (Fig. 6.14). The bridge crosses I-80 ten miles southwest

of Winnemucca, Nevada. The bridge deck is continuous over its entire

length and is supported by four, 21-foot high single column piers. The

piers are connected to the pile caps at the base using a single

transverse line of steel bars to produce a pinned connection in the

longitudinal direction of the bridge. The elevation of a typical pier

and cross-section of a column is presented in Fig. 6.15. The bridge

has been extensively tested statically and dynamically using hydraUlic

rams to provide lateral loads ar~ free vibration upon release.

6.4.2 Modeling Qf~ structure: The model of the Rose Creek

Interchange is shown in Fig. 6.16. The pinned column-pile cap connec

tions were assumed to be fixed to allow for testing of the biaxial

bending models. The abutments were modeled as pinna::1 connections. Each

of the columns was allowed to become inelastic. Structural element

properties were based on the actual cross sections and are show·n in
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Table 6.2. structural damping ratio was assumed to be five fercent.

6.4.3 Results Q.f fumgmi~ angl¥ses: The Rose Creek Interchange

model was subjected to the El centro Earthquake with the north-south

component applied in tbe longitudinal direction ana the east-west

component applied in the transverse direction. The results are pre

sented in Figs. 6.17 through 6.24. Because of the symmetry of the

structure and the motions, the responses for only piers 1 and 2 are

shown. Figures 6.17 through 6.18 present the transverse acceleration

responses at the pier tops. The l1SE response (solid lines) is general

ly of higher amplitude than the elasto-plastic response (dashed

lines). This reflects the larger effective E;tiffness modeled by the

MSE. The responses are completely out of phase at the top of pier 2.

In sharp contrast to the transverse direction, the longitudinal

acceleration responses obtained from tbe two models (Figs. 6.19 and

6.20> are nearly identical. This indicates tbot the response in the

longitudinal direction is insensitive to the hysteresis model used for

the piers. It should be noted that, because the abutments are modeled

as pins and because of the re] atively large axial stiffness of the

bridge deck, the response is dominated by the input motion at the

abutments and is insensitive to the yielding characteristics of pier

bases. The displacements in the lor:.gitudinal direction (Figs. 6.23

and 6.24) are also virtually jdenticcJ.• Figures 6.21 and 6.22 present

the transverse displacen:ent responses. The effective period for the

elasto-plastic model is very long because the columns yielded and

reduced the stiffness dramatically. The l!iSE model prcc1uces relatively

low amplitude displacements by comparison becollse of its greater and
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more realistic effective stiffness. The displacement histories pro

duced by the elasto-plastic mode1 predict substantial damage to the

bridge for an earthquake similar to the 1940 El Centro Earthquake. The

l'ISE model predicts rHooerate displacements and little damage to the

structure.

6.5 '1're. Flamingo Road Overpass

6.5.1 Description Qf t.be. structure: The Flamingo Road Overpass

is actually two bridges side by side (Fig. 6.25). The actual structure

spans 270 feet in five unequal slightly curved spans. The decks are

continuous reinforced concrete box girders, one wider than the other.

Each deck bas one intermediate hinge/expansion jojnt in tbe middle

span. Each pier is supported by two columns 3'-3" in diameter and

reinforced with eleven #11 bars. The connection between the columns

and pile caps is p:inned in both transverse and longitudinal directions

by using a small group of five #11 bars positioned near the center. An

idealized pier elevation is shown in Fig. 6.26.

6.5.2 Modeling Qf the structure: The Flamingo RocO mcx:1el bears

little resemblance to the actual structure. The m<.Xlel considers only

the narrower of the two bridges. For simplicity, the model is straight

and flat (Fig. 6.27). Tile intermediate hinse/expansion joint was

mcx:1eled as a true hinge with the global Z direction moment re1eased.

The piers were assumed to be identical as illustrated in Fig. 6.26.

The abutments were assumed to be rollers ana the column connections

v:ere assumed to be r'igid at both ends. Due to a restriction in the

available software for computing the ultimate colurrn properties, the

reinforcement in each coJumn was assumed to be twelve #11 bars equally
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distributed about the perimeter of the column. The structural proper

ties of the rest of the model are based on the actual cross section

prof€rties and are summarized in Table 6.3. structural damping ratio

was initially assumed to be five percent of critical darrping.

6.5.3 Results Qf dynamic analyses: The Flamingo Hoed mooel is a

very strong and rigid structure, as the dynamic results show. The 1940

El Centro north-south component was applied in the longitudinal direc

tion and the east-west component in the transverse direction. The

results of the analyses are presentc1 in Figs. 6.28 through 6.51. The

longitudinal responses were so small as to be insignificant; there

fore, only the transverse responses are presented here. The bridge

experienced only minor yielding, hence the large acceleration response

and the small amplitude displacements. The MSE and the elasto-plastic

responses are very similar, because the MSE stiffness degradation was

not large and the elasto-plastic element did not yield. Although tbe

l1SE did yield, it did not change the response significantly because

the extent of yielding was limited. Instead of prcrlucing a dramatical

ly large displacement, the ~1SE mooel's response changes only slightly

as would be expected of the actual structure.

Because the yield moments in the Flamingo Road rrodel \vere

relatively large, the applied acceleration histories were multiplied

by 1.5 and the damping was reduced to three percent. The results

indicate that the elasto-plastic model, upon yielding, caused the

response to become unstable in the transverse direction (Figs. 6.45

6.51). Attemfts to alleviate the problem, such as using time steps of

integration four tirres smaner or more equilibrium iterations, failed
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to improve the results. Subsequent analyses with much shorter itera

tion times showed that the elasto-plastic model requires an enormous

number of iterations to prcduce stable results.

6.6 Comments and Conclusions

In the absence of experimental or empirical data, the best test

of the five-spring element is to compare its response to that of

another element, in this case the commonly used elasto-plastic yield

surface element. The MSE models examined here show that the I;Ostyield

ing strength of concrete is far more significant than the eJasto

plastic element would predict. The elasto-plastic element is also

subject to instabilites caused by the severe stiffness variation

during yielding and after yielding. The prcgram execution times on the

CYBER 830 at the University of Nevada ranged from 16 CP secoms for an

elastic analysis of the Mel01and model to over 1300 CP seconds for the

unstable Flamingo Roed analysis. Elastic program execution times are

three times longer using models with MSE's. Nonlinear analyses are

generally faster using the MSE than using the elasto-plastic element,

depending on the number of equilibrium iterations required. The

Flamingo Roed analysis for 1.5 times the El Centro Earthquake ran in

314 CP seconds, four times faster tban tbe unstable elasto-plastic

analysis.
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CHAPrER 7

S{1>'lJilJl,.P.Y AND COl\CLUSIONS

7 .1 Sl..l1mIary

A new biaxial bending element for the cyclic analysis of non

linear biaxial bending of reinforced concrete colurons was develop:!d.

The new element incorporates the idea of representing the column

section by several springs. This approach was first introduced by Lai

(11) who used nine springs to idealize the column. The new element,

namely the five-spring element also referred to as MSE in this report,

consists of five springs representing steel and concrete within a

cross section. The MSE was first implemented in a step-by-step static

analysis displacement-controlled program (program APPDIS). Results

obtained using the MSE compared favorably to ex~rimental data. The

MSE provided for a similar amount of energy loss and reproduced

displacement-force response well. The test results indicated that the

HSE provides approximately ten percent less peak strength than the

experimental data suggest. The HSE results are superior to results

obtained using tbe biaxial bilinear yield surface model or the tri

J jnear degrooing yield surface model (11).

The new five-spring element was addec1 to program :t-.."EABS, a program

for the nonlinear analysis of bridge systems. The original progro.m

used only an elasto-plastic yield surface model. Testing of the

modified program, ~ffiABS-86, revealed only one incompatibility. In

order to conserve computer memory requirements and reduce program

execution times, the MSE does not use the force equilibrium iteration

subroutine ITERN. The elasto-plastic element must use this routine to
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avoid instabilities caused by large nonlinear force losses. Because

forces change gradually in the new element y this routine was not

neerled. It is therefore necessary that the l<ISE and the elasto-plastic

element are not used together in the same structural model.

Dynamic analyses of three bridge structures were performed using

NEABS-86. The structures modeled were the Meloland Over"pass, the 1<.ose

Creek Interchange, and the Flamingo 1<.oad Overpass. The models \vere

idealizations of the structures not intended to represent the actual

bridges but to provide realistic geometries and cross sections. The

main difference betvieen the models and the real systems was in the

idealizations of the boundary elements. These elements were treated

either as fixed or free to allow the nonlinear column elements to

dominate the response. Results from models using the MSE and the

elasto-plastic element were compared. The results reveal dramatic

differences in the predicted seismic response of the structures. Tbe

elasto-plastic models generally predicted smaller amplitude accelera-

tion response and larger displacement response at the pier tops than

did the MSE models. The less severe stiffness changes produced by the

MSE model account for the smaller displacement response. The severe

changes in stiffness produced by the elasto-plastic model resulted in

an unstable displacement history for tbe Flamingo 1<.oo.d model. Through-

out the testing of ~lliABS-86, the MSE models did not display any sign

of instabilities.

Prcgrarn execution times using the NSE are generally faster for

nonlinear analyses. Elastic analyses using the HSE run three times

longer than those without the MSE. This is because each MSE is

actUally five elements which have to be monitored during the motion,



while the elasto-plastic element has but one component. When the

elasta-plastic model yields, it requires many more iterations of the

program to produce stDble results thus making the analysis slow.

Nonlinear analyses can run up to four times faster using the ltISE

instead of the elasto-plastic element depending on the number of

equilibrium iterations specified by the user. Program execution times

on the CYBER 830 at the University of Nevada ranged from 16 CP secoms

for 800 elastic iterations of the r.1eloland elasto-plastj.c model to

over 1300 CP seconds for the unstable Flamingo Eoad elasto-plastic

model analysis. The Flamingo Road mooel with the MSE prcduced stable

results and ran in 314 CP seconds.

7.2 Observations and Conclusions

A new nonlinear biaxial bending element for the cyclic analysis

of reinforced concrete colunms was developed and produced excellent

correlations with experimental data for two statically applied force

displacement specimens. The accuracy of the ftlSE's dynamic response is

inferred from these few data. There is little doubt that this new

element produces more realistic results than the elasto-plastic

element for biaxial bending of reinforced concrete columns. It has

been demonstrated tl~t reinforced concrete is not elasto-plastic.

However, researchers in this field have used the elasto-plastic model

not because it was accurate but because it is simple and convenient.

Accuracy of the l1SE for dynamic analyses of reinforced concrete

columns in bridge structures can only be determined from expedITer-tEl}

data. When roea.sured data frorr either dest:::uctivE' tE'fting of Cl full

scale bridge or from a well instrumented bri6ge that undergoes
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structural nonlinearities becomes availab] e i then refinements and

improvements to the l-lSE can be made.

Nonlinear analyses using the new five-spring element execute

faster, do not become unstable, and provide for a more realistic

dynamic response for reinforced concrete columns subjected to biaxial

bending. The analyses of models using the MSE can offer insight into

the performance of a reinforced concrete structure £;ubjected to

biaxial bending due to bidirectional earthquake loadings.

55



REFEEEOCES

1. ACI Committee 318-63, Building Croe Reguirem~ for Reinforced
Concrete, American Concrete Institute, Detroit, Michigan, 1963.

2. ACI Committee 318-83, Building Croe Regyirements for Reinforced
Concrete, P-..rnerican Concrete Institute, Detroit, 1983.

3. Anderson, J.C., and W.H. Townsand, "Models for RC Frames with
Degrading Stiffness," Jouurn.l Q.f the structural Division, ASCE,
Vol. 103, No. ST12, Dec., 1977, pp. 2361-2376.

4. Arnold, C., "Architectural Implications," Recormaissance Report
Imp:rial County, California, Earthquake, E.arthquake Engineering
Institute, Berkeley, February 1980, pp. 111-138.

5. Bressler, B., "Design Criteria for Reinforced Concrete Columns
under Axial Load and Biaxial Bending," American Concrete
Institute Journal, No. 57, !\'overrber 1960, pp. 481-490.

6. Clough, RoW. and S.B. Johnston, "Effect of Stiffness Degrcrlation
on Earthquake Ductility Requirements," Proceedings, Jg~ ~arth

quake Engineering ~2Q~ium, Tokyo, Japan, Oct., 1966, pp. 195
198.

7. Emori, K. and W.C. Schnobrich, "P--nalysis of Reinforced Concrete
Frame-Wall structures for Strong Notion Earthquakes," hiyil.
Enainee~ing Studies, SRS No. 457, University of Illinois at
Urbana-ehamp3.ign, December 1978.

8. Giberson, M.F., "The Response of Nonlinear Mult i-Storey
structures Subjected to Earthquake Excitation," Ca] j fornia
Institute of Technology, Earthquake Engineering Research
Lcboratorj, 1967.

9. Hart, J.D.; "Nonlinear Modeling of Short Highway Bridges Sub
jected to Earthquake Loading," a thesis submitted in partial
fulfillment of the requirements for the Master of Science degree
in Civil Engineering, University of 1:~evada, Feno, tIJay 1984.

10. Hill, R. The Mgt~maticalTheory Qf Elgsticity, London, Oxford
University Press, 1950.

11. Lai, S.-S., "Inelastic F-nalysis of Reinforced Concrete Space
Frame under Biaxial Earthquake Motions," a dissertation submitted
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Civil Engineering, University of Toronto,
1984.

12. Moss, P.J., A.J. Carr, and G.C. Pardeon, "Inelastic P-..naJ.ysis of
the Imperial County Services Building," Bulletin Qf thg N~~

Zealand Ngtion,al. Society fpr Earthgyake Engineering, Vol. 16,
No.2, June 1983.

56



13. Newmark, N.M. r "A Methcd of Computation for structural Dynamics,"
~ Journal Qf the Mechanics Divillin, July 1959, pp. 67-94.

14. otani, S., "SAKE-A Computer Program for Inelastic Response of RiC
Frames to Earthquake," ~il Engin.eering Studies., SRS No. 413,
University of Illinois, Urbana-champaign, Noverober 1975.

15. otani, S., "Hysteresis Mooels of Reinforced Concrete for Earth
quake Response Analysis," Journal. Qf the FaCUlty Qf Engineering,
University of Tokyo, Vol XXXVI, No.2, 1981, pp. 125-159.

16. Otani, S. and V.W.-T. Cheung, "Behavjor of Eeinforced Concrete
Columns Subjected to Biaxial Lateral Load Reversals," Publication
81-02, Department of Civil Engineering, University of Toronto,
February 1981.

17. Padilla-Hora, R. and W.C. Schnobrich F "Nonlinear Re~;ponse of
Framed structures Subjected to Two-Dimensional Earthquake
Motion," Civil En9.ine.ering Studies, SRS No. 408, University of
Illinois at Urbana-champaign, JUly 1974.

18. Park, R., and Paulay, T., Reinforced Concrete Structures, John
Wiley and SOns, 1975.

19. Pecknold i D.A., "Inelastic Structural Response to 2D Ground
Motion,"~ Journal Qf the Engineering Mechanics Division, Vol.
100, No. EM5, October 1974, pp. 949-963.

20. Penzien, J., R. Imbsen, and W.D. Liu, "NEABS: liIonlinear Earth
quake Analysis of Bridge Systems (Users Manual) ," NISSEE/Computer
Applications, Earthquake Engineering Research Center, University
of California at Berkeley, May 1981.

21. Ramberg, W. and W.T. Osgood, "Description of Stress-Strain Curves
by Three Pararreters," meA Technical tIcte No. 902, 1943.

22. Saiidi, M. and M.A. Sozen, "Simple and Complex Hodels for Non
linear Seismic Response of Reinforced Concrete Structures," kiill
Ensinee£ing Studies, SRS No. 465, University of Illinois at
Urbana-champaign, August 1979.

23. Saiidi, M. r "Hysteresis ~Icdels for Reinforced Concrete;" ASC~

Journal Qf the stL1Jctural Divi.§ion, Vol. 108, No. ST5, May 1982,
pp. 1077-1087.

24. saiidi, M. and B.M. Douglas, "Effect of Design seismic Loads on a
Highway Bridge," ASCE JQurnal Q.f Structural. Engineerin9-, Vol.
110, No. 11, November 1984, p. 2723-2737.

25. Saiidi, M., Hart, J.D., and Douglas, B.M., "Inelastic Stati.c and
Dynamic Analysis of Short F./C Bridges SUbjected to Lateral
Loads," Civil Engineering Department, Report No. CCEER-84-03,
University of Nevada, P.eno, July 1984.

57



26. Shepherd, R. and A.W. Plunkett, "Damage Analysis of Imperial
County Services Building," AseE Journal Qf Structural Engineer
ing, Vol. 109, No.7, July 1983, pp. 1711-1726.

27. Sozen, N.A. r "Hysteresis in Structural Elements," tWPlied
Mechanics in Earthgpake Engineering, ASME, MMD, Vol. 8, NoveIrber
1974, p. 63-98.

28. Suharwardy, M.LH. and D.A. Pecknold, "Inelastic Response of
Reinforced Concrete Columns Subjected to Two-Dimensional Earth
quake r-Iotions," Civil Engineeting Studie.Q., SRS No. 455, Univer
sity of Illinois at Urbana-ehampaign, october 1978.

29. Takeda, T., M.A. Sozen, and N.N. Nielsen, "Reinforced Concrete
Eesponse to Simulated Earthquakes," ASCE llQurnal Qf t~.s.tIuc
tura! Diyision, Vol. 96, ~l(). 81'12, Decerrber 1970, pp. 2557-2573.

30. Takizawa, H. and H. Aoyama, "Biaxial Effects in Hodeling Earth
quake response of pJC structures," Eartb.gygke Engineering and
Structural Ihffigmics, Vol. 4, 1976, pp. 523-552.

31. Thomas, C.W., I.G. Buckle, and R.C. Fenwick, "The Effects of
Inelastic Shear on the Seismic Response of structures," Report
No. 347, Department of Civil Engineering, University of Auckland,
New Zealand, lJlarch 1983.

32. Tseng, N.S. and J. Penzien, "Analytic Investigations of the
Seismic Response of Long HUltiple Span Highway Bridges," Report
No. EERC 73-12, Earthquake Enginering Research Center, University
of California, E~rkeley, June 1973.

33. Umehara, H. and J.O. Jirsa, "Shear Strength ar:<1 Deterioration of
Short P.einforced Concrete CoJ.uTIms under Cyclic Deformations,"
P?Jl.FSEL Report No. 82-3, Department of Civil Engineering, Univer
sity of Texas at F..l.1stin, JUly 1982.

34. Wang, C. -K. and C.G. Salmon, Re inforc~g CQDQb~te Q~s ign, Fourth
Edition, Harrer & Row, 1985.

35. Wight, J.K. and M.A. Sozen, "Strength Decay of RC Columns under
Shear Eev ersals," ASC~ Jgurnal of th~ Structura.l QiYisiQn, Vol.
101, No. 5, ~~y 1975, pp. 1053-1065.

36. ~ljosser, T.D., D. Campi, ~1. Fovinci, and W.H. Smith, "On the
Earthquake Induced Failure of the Imperial County Services
Building," Reconnaissance Report Imperial County, California,
Earthquake, Earthquake Engineering Institute, Berkeley, February
1980, pp. 159-184.

58





TABLE 6.1

Me101and Overpass Data

(a) section Properties:

Elerrent

Deck
Colurnn (round)
Column (reet.)

Iy

272.3
30.68
48.52

Iz

4562.0
30.68
19.65

,J

616.0
61.4
61.4

P-.rea

27.74
19.64
19.25

(b) Five-spring Elen~nt Properties:

Element.

Collmm (round)
Co1urrll. (reet.)

P (bal>

2500.0
3390.8

My(bal>

8600.0
10904.2

Mz (baD

8600.0
7911.0

(c) E1asto-plastic Elerrent Properties:

Element

Column (round)
Colurrn (reet.)

P (conp)

11112.0
10976.0

Myo

7350.0
9550.8

Nzo

7350.0
6566.1

pt/Pe

0.3888
0.3936

Elerrent a1 a2 a3 b1 b2 b3

CoJ.umn (round.) -1.375 -2.884 -0.508 -1.375
Co1urnn (rect.) -1.315 -2.887 -0.572 -1.461

Units : Kips and ft.
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-2.884 -0.509
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TABLE 6.2

Rose Creek Interchange Data

(a) section Pr0t:erties:

Elerrent

Deck
Colunns

Iy

131.3
39.1

Iz

3533.0
148.5

J

410.6
117.2

Area

56.00
30.00

(b) Five-spring E1errent Pr0t:erties:

Element

Piers 1 & 4
Piers 2 & 3

P (bal>

7474.0
7251.2

My (bal)

14560.0
11887.2

Ivlz (ba1)

22833.5
18662.2

(c) E1asto-p1astic E1errent Pr0t:erties:

Element

Piers 1 & 4
Piers 2 & 3

P (comp.)

19710.3
17500.0

Myo

18406.0
12367.0

Nzo

10069.0
6402.0

Pt/Po

0.2880
0.1920

Elerrent al a2 b3 b1 b2 b3

Piers 1 & 4
Piers 2 & 3

-2.152
-3.798

-4.278 -1.126 -2.505 -3.405 0.100
-6.919 -2.120 -4.219 -5.150 0.069

Units: Kips and ft.
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TABLE 6.3

Flamingo Road Overpass

(a) Section Properties:

Elerrent

Deck
Pier cap
Colunns

Iy

119.6
21.3
5.5

Iz

2188.2
21.3

5.5

J

400.0
36.0
10.9

!<...rea

36.80
16.00

8.30

(b) Five-spring E1errent Properties:

Element

Columns

P (ba1>

1520.0

My (bal)

1745.9

Nz (ba1>

1745.9

(c) E1asto-p1astic Element Properties:

Elerrent

Co1unns

Elerrent

P (comp.)

3747.3

al a2

l>1yo

1119.2

a3

Mzo

1119.2

b1

pt/Po

0.200

b2 b3

Co1urrns -3.671 -6.311 -1.642 -3.671 -3.314 -1.642

Units: Kips ana ft.
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Fig. 4.6. Flowchart for Program APPDIS.
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(Unstable Elasto-Plastic Response).
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(Unstable Elasto-Plastic Response).
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APPENDIX A

USER I S GUIDE FOR NEABS-86:

FlVE-SPRIt'G BIAXIAL BEIDIN; ELEMENI': TYPE 2.

A. Control Data Card (1415)
One card is required:

Colunns
1... 5
6-10

11-15
16-20
21-25

Var iable Nome
mYPE
NEEAM
NUMETP
blank
NUMNAT

Cornrrents
MlYPE = 6 for this element
Number of elements
Number of cross section types

Number of material property sets

Ih Material Property Cards .il.2.t.. 2FlO. 0)
One card is required for each type (as many as NUMNAT specified
above) :

Colurms
1- 5
6-15

16-25

Variable Narre
N
FC(N)
FY(N)

Comrents
Material property number
Compressive strength of concrete
Yield stress of steel rebar

C. Cross section Property~ L .il.2.t.. FlO.O, 2F5.3)
One card is required for each type (as many as ~~METP specified
above) :

Columns
1- 5
6-15

16-20
21-25

Variable l'Tame
N
AGROSS(N)
BTO(N)
BTl(N)

Comrents
Cross section property nUITber
Gross area of the cross section
Stiffness degradation factor for tension
Stiffness degradation factor for compression

D. Cross section Prowrties Cards II (5FlO.O. ill
One card is required for eocl· type (as many as ~1UME'l'P specified
al::ove) :

Colurrns
1-10

11-20
21-30
31-40
41-50
51-55

Variable Narre
PEAL
YMBAL
2MBAL
SUMA
UID
~.AT1'P

Comrrents
Average axial load at balanced rrDrrents
Balanced rroment about the local y axis
Balanced rrorrent about the local z axis
Total area of steel in the cross section
Developrrent length for the rebar (note 1)
Yaterial property set for this section

~bte 1: ULD=(area of bar)*f~(n*diarreterof a bar*u)
where u=14*(f~) *0.5 (psi)
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~ E1euent~~ (1415)
One card is required for each element (as many as ~~EAM specified
above) :

Co1unns
1- 5
6-10

11-15
16-20
21-25
26-30

variable Name
lNEL
IN!
lID
INK
blank
lMEL

Comrrents
Elerrent identification nunber
I-joint mmber (same as for a beam element)
J-joint nUITber (same as for a beam element)
K-joint number (same as for a beam element)

Cross section property number

totes: NSDIV and MAXIT rrust be set to zero.
I-joint and J-joint number cannot be the same point. They
should be sep3.rated by 0.1 (any compatible units) in the axial
direction.
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A
c

Acenter

Acorner

Agross

Ast

btO

btl

dmax

dsx

dsy

d
y

ff
C

f.
~

£
Y

[K]

K
cce

Kce

APPENDIX B

NOTATIONS

area of a single rebar;

area of concrete represented by the spring;

area represented by the center concrete spring;

area represented by a corner concrete spring;

gross area of the cross section;

total area of steel in the cross section;

degradation factor for tension ;

degradation factor for compression;

diameter of a single rebar;

total current displacement in the i th spring;

maximum displacment a spring has experienced;

distance between the spring locations in the y direction;

distance between the spring locations in the x direction;

yield displacement;

specified compressive stength of concrete in psi;

I f · h .th .tota current orce ~n t e ~ spr1ng;

force at the unloading point R;

force at U ;
m

specified yield stress of the rebar;

element stiffness matrix;

initial elastic stiffness for the center spring;

initial elastic stiffness for the corner springs;

stiffness at the i th spring location;



Kse

'Ky

ld

LVL

~i

M , Mx Y

Mox' Moy

81

82

Pb

Pcy

u

Um

t.p

e and ex y

elastic stiffness of a steel spring;

post-yielding stiffness of a spring;

development length in inches;

pointer to the next rule;

balanced moment computed from flexural theory;

applied moments about the x and y axes, respectively;

yield moments about the x and y axes, respectively;

'K *(d /d )btO.
se y max '

(K +K )(d /d )bt1.
se ce y max '

balance axial load for the section;

yield level in the concrete spring;

bond stress in ps~;

maxiumum displacement after yielding;

net axial displacement defined as the displacement

at the center of the section;

rotations about the x and y coordinate axes,

respectively.
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APPENDIX C

~ {X CCEER PUBLICATIONS

Report No. Publication

CCEER-84-0l Saiidi, Mehdi and Renee a. Lawver, "User's Manual for
LZAK-e64, A Computer PrCX]ram to Implement the Q-Hodel on
Commodore 64," Civil Engineering Department, Peport ~o.

CCEER-84-Ql, University of Nevada, Reno, January 1984.

CCEER-84-02 Douglas, Bruce M. and Toshio Iwasaki, "Proceedings of
the First USA-Japan Bridge Engineering Workshop," held
at the Public Works Research Institute, Tsukuba, Japan,
Civil Engineering Department, Report No. CCEER-84-02,
University of ~Tevada, Reno, l\.pril 1984.

CCEER-84-03 Saiidi, Mehdi, James D. Hart, and Bruce M. Douglas,
"Inelastic Static and Dynamic Analysis of Short RIC
Bridges SUbjected to Lateral Loads," Civil Engineering
Department, Report No. CCEER-84-03, University of
Nevada, Reno, JUly 1984.

CCEER-85-0l Norris, Gary M. and Pirouze Abdollaholiaee, "Laterally
Loaded Pile Response: Studies with the Strain Wedge
l:icrlel," Civil Engineering Department, Heport No. CCEER
85-01, University of Nevada, Reno, April, 1985.

CCEER-86-0l Ghusn, C~orge E. and Mehdi Saiidi, "A Simple Hysteretic
Element for Biaxial Bending of RiC Columns and Imple
mentation in l-iEABS-86," Civil Engineering Department,
Report No. CCEER-86-01, University of Nevada, Feno, JUly
1986.
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