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ABSTRACT

A new nonlinear biaxial bending element for reinforced concrete
columns was developed. The new element represents the column as a
group of five translational springs, each representing the properties
of the concrete and reinforcement. The element was implemented in a
nonlinear static analysis program. Results using the five-spring
element compared favorably with experimental results producing a
better match than either the bilinear biaxial vield surface model or
the trilinear degrading yield surface model.

The new element was added to an existing nonlinear dynamic analy-
sis program (program NEABS). Three bridge structures, the Rose Creek
Interchange, the Meloland Qverpass, and the Flamingc Road Overpass,
were modeled for dynamic analysis. Each brdige structure was modeled
using both the elasto-plastic yield surface element and the five-
spring element. Comparisons of the dynamic responses showed that the
new element provided a more realistic stiffness degradation, a higher
amplitude acceleration response, and a lower amplitude Jdisplacement
response than the elasto-plastic yield surface element. The analyses
using the elasto-plastic yield surface element generally required much
longer execution times to produce stable results.

Nonlinear dynamic analyses using the five—spring element execute
faster, do not become unstable, and provide for a more realistic

response for reinforced concrete columns subjected to biaxial bending.,
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CHAFTER 1

INTRCDUCTION

1.1 Intrcduction

Many reinforced concrete column failures are caused by a combina-
tion of biaxial bending and axial lcad as a result of earthquake
loadings. Several researchers, (10,16,26,30) have confirmed that
biaxial bending is more critical than uniaxial bending when structures
are subjected to bidirectional horizontal earthquake motions.

To evaluate the inelastic dynamic response of reinforced concrete
structures subjected to strong bidirectional ground motions, a three-
dimensicnal analysis using a hysteresis model for the biaxial bending
of columns is required. Because earthguakes generally produce varig-
tions in the axial forces, the model must define the interaction of
axial lcad and the two bending moment components for elastic and
inelastic deformations. Modeling biaxial behavior is c¢rucial for the
accurate and realistic prediction of inelastic dynamic response of
reinforced concrete structures.

The modeling of biaxial behavior in reinforced concrete columns
is complex and involves many assumptions. This study reviews existing
models and introduces a simple hysteresis model to predict the inter-
action of axial load and biaxial bending. The effect of the hystere-
tic modeling is demonstrated through the analysis of three highway

bridges.

1.2 Review of Previous Work
Many models have been proposed that predict the hysteretic

response of reinforced concrete members subjected to earthgquake



loadings in only one direction (3,6,23,29,31). However, few models
consider the interaction between bending in two orthogonal directions.
The models that consider the interaction may be grouped into three
categories: (1) the yield surface medels, (2) the finite element
models, and (3) the multispring models.

1.2.1 The Yield Surface Models: A yield surface describes the
relationship between interaction diagrams calculated for axial load
and bending about each principal axis. BAs developed by Bressler (5),
the mathematical relaticnship is given by:

(My/Mo)® + (M/Mo )8 = 1 (1D
vhere

My, and MY = moments acting about the x and y axis, respectively;
and

M and Moy = the yield moments about the x and vy axis,

Y
respectively. This relationship was found to correlate well with

oX

experimental results involving monotonic loadings (5) and is one of
the methcds used in designing reinforced concrete columns for combined
biaxial and axial loadings (24). The parameter g is generally
recognized to lie between 1.0 and 2.0 and depends on the axial load
applied and on the bar arrangement in the column. For the models
examined herein, a = 2.0 is assumed for typical columns with small
aspect ratios and for mathematical simplicity. The yield surface is
used as & general limit surface based on which the vield point in
different hysteresis models is computed. The assumptions about the
variation of stiffness for pre- and postyielding stages vary depending

on the hysteresis model.



1.2.1.a The Bilinear Biaxial Model: The simplest model using
the vield surface is the bilinear biaxial model. The basic
formulation (17,30,32) is based on plasticity theory with the elastic-
perfectly plastic (elasto-plastic) model being a special case.

The column is assumed to be perfectly elastic until the combina-
tion of applied moments at a fixed axial load value intersects the
yield surface. The cracking peint in the force-deformation relation-
ship is ignored. Once the yield surface is reached, the column stiff-
ness is reduced to zero {elasto-plastic) or to small postyielding
stiffness value. The yield surface is then allowed to translate in
moment space but does not change shape as the column yields. Upon
unloading, the original elastic stiffness is assumed to apply. Hence,
this model does not allow for degradation of the stiffness of the
element. Lai (11) compared the analytical results based on this model
with experimental results obtained by Otani (16) for a cantilever
column subjected to bidirecticnal lateral deformations and found that
the bilinear biaxial model produced poor correlations with respect to
the force-displacement history of the test specimens. Although the
elasto-plastic mcdel is not realistic, it has been used or evaluated
by many researchers (8,17,19,26,32) because the addition of degrada-

tion effects has been considered too cumbersome to consider.

1.2,1.b The Trilinear Degrading Model: The trilinear degrading

model, developed by Takizawa and Aoyama (30), improves upon the
biaxial bilinear model by including the stiffness degradation of the
column., This model, as used by Takizawa and Aoyama, is not capable of

accounting for variations in axial load. No attempt was made to



include variations in axial load because of the increase in the
conplexity of the analysis that variable axial lcad would introduce.

The trilinear model is based on two "yield" surfaces, one within
the other. The outer che represents the yielding of the column and is
comparable to the yield surface explained in the previous section.
The inner surface represents the cracking of the column. The size of
each surface is determined from a trilinear skeleton curve that
relates moment to end rotation.

The column is perfectly elastic until the cracking surface is
reached. Once the cracking surface is reached, the stiffness is
modified and the cracking surface is allowed to translate in moment
space without changing shape. Once the yielding surface is reached,
the yield surface and the cracking surface are allowed to expand along
the direction of yielding. Beyond the yield surface, the stiffness is
further reduced to an assigned postyielding stiffnecs.

Upon unloading, the stiffness is multiplied by degradation
factors that are based on the maximum displacements achieved in each
coordinate direction. This technique accounts for permanent
deformations in the column and leads to a more realistic response
because it accounts for the stiffness degradation of the element.

The mathematical equations that define the rules for movement and
for the lengthening of the surfaces are quite complex and require a
considerable amount of calculations. The additiconal complexity
improves the results; ©Lai (11) found a better correlation using
analytical results from the trilinear degrading model than from the

bilinear model for Ctani's (16) experimental data. Still, Lai found



the correlation between experimental and trilinear degrading model
analytical results to be poor and tinacceptable.

The trilinear degrading model is probably as sophisticated as
yield surface techniques will become., The extra complexity of any
additional refinements to the technique will not overcome the many

approximations that are inherent in yield surface models.

1.2,2 The Finite Element Method: Ancother approach for determin-
ing the biaxial bkehavior of reinforced concrete models is the finite
element method. A few researchers are reported to have used this
_technique (11,20,28) to model the columns as a mesh of nodes. The
disadvantages of this method are the enormous amount of computation
required even for simple structures and that the microscopic inter-
action of concrete and steel (such as bond slip) are not modeled well.
As a result, this technigue does not appear to be promising for large

structural analyses.

1.2,3 The Multiple Spring Model: A major step toward accuracy
and simplification in modeling the biaxial bending was recently taken
by Lai (11). The model developed by Lai does not depend on the
formulation of a yield surface; hence, the complexities and approxi-
mations that plagued the other models ére eliminated. According to
Lai's method, the column in the vicinity of the probable yielding
region is represented by a special configuration of several springs
representing concrete and steel. Two hysteresis models are used to
idealize the behavior of the springs. The multiple epring is far
simpler and gives better correlations with experimental results (11)

than either of the yield surface techniques. The multispring model



developed as part of the study reported herein uses the same basic
philosorhy. Therefore, the detailed descriptions of the components of

Iai's medel are provided in Chapter 2.

1.3 Object and Scope

The modeling of biaxial bending in reinforced concrete columns
subjected to two-dimensional earthquake loads has been investigated by
many reserachers, and its importance in accurately predicting seismic
structural performance has been confirmed., Yield surface techniques
used in the analysis of biaxial bending behavior are both complicated
and unrealistic, The finite element technique requires too much
computation to be considered for the analysis of typical structures.
The only technique to date that provides for a relatively simple and
accurate prediction of the inelastic biaxial bending behavior of
reinforced concrete structures is a multiple spring type model.

The multispring model introduced by Lai is a considerable
improvement over existing techniques but still requires substantial
"bookkeeping”" in computer memory to store the parameters for each
spring. The first object of this study was to develop a multispring
model with a considerably reduced amount of computation and bookkeep—
ing without sacrificing the accuracy of the results. To evaluate the
model, analytical results were compared with the available experi-
mental data. Parametric studies were used to determine the important
factors affecting the amplitudes ardd shape of the hysteresis loops.

The second goal of this study was the implementation of the new
model into an existing inelastic dynamic analysis program for highway

bridges., This modified program was used to assess the effects of the



model to overall bridge structural performance under bidirectional
dynamic loadings.

The program chosen for implementation was NEARS, Nonlinear Earth-
quake Analysis of Bridge Systems. This program orginally used the

bilinear elasto—plastic model for inelastic beam and column elements.



CHAFTER 2

THE FORMULATICON OF THE MODIFIED
NINE-SPRING ELEMENT
2.1 Introduction

A simple accurate model for the biaxial behavior of reinforced
concrete columns under bidirecticnal dynamic loadings is essential for
the econcmical and realistic prediction of the response of structures
subjected to strong earthquakes. Simplicity reduces computational
effort and expense, which is an important factor in three-dimensional
analyses. Ewven the simplest of yield surface techniques, the biaxial
bilinear model, requires considerable computation to define the yield
surface and its movement through moment space. The trilinear
degrading model requires more calculations but still does not produce
good correlations with experimental results (11).

The multiple spring (nine-spring’) model developed by Lai (11)
dees not require the calculation of a yield surface or skeleton
curves. The spring parameters are calculated from cross section and
material properties. The interaction effects of biaxial bending and
axial locad are accounted for directly from the relationship between
the spring stiffnesses and the rotaticnal and axial degrees of
freedom.

Two shortcomings can be identified in the nine-spring model in
its original form: (1) To calculate the rotational stiffness of the
element, the center of rotation is assumed to be at the centroid of the
section; and (2) a relatively complex hysteresis model is used for

the steel springs. The former results in the coupling of axial force



and bending moment as scon as the extent of nonlinearity in different
springs is nonuniform. This problem is described in detail in section
2,2.3. The latter problem, namely, the complexity of the hysteresis
model, requires a considerable amount of bookkeeping during the
computation. This chapter describes the compenents of the Lai model

and the solutions to the problems outlined above.

2.2 Nonlinear Model Element Description

In developing the Lai model, it is assumed that the hysteretic
behavior of a reinforced concrete column can be approximated by a zero
length nonlinear model element between the column and the joint. The
medel is formulated assuming that torsional and shear deformations are
negligible. This assumption is reasonable for reinforced concrete
columns with a sufficient number of ties to prevent an inelastic shear
response. Because recent seismic design codes indeed reguire such
details, the model is applicable to relatively recent structures.
Another assumption incorporated into the Lai model is that the column
has a symmetric cross section and steel.

The nonlinear model element developed by Lal (11) consists of
nine springs: four representing reinforcing steel and five represent-
ing concrete. The springs are allowed to deform only in the axial
direction. The nine springs are located in five positions: one steel
and one concrete spring at each corner and a concrete spring in the
center (Fig. 2.1). The two springs at each corner are assumed to be
concentric. All nine springs are assumed to be nonlinear. The
hysteresis models used for these springs are discussed at the end of

this chapter.



The deformations of different springs are related by compatbility
equations. The compatibility equations are derived assuming that
plane sections remain plane. The column axial force is related to the
spring forces. Thus, the model is capable of accounting for axial
load variations during biaxial bending, a feature not easily accom-
plished with yield surface technigues.

In the following sections, a brief description of the nine-spring
model is presented. The material is included in this report to
facilitate the description of the background for the medel which was

developed in the present study {(see Ch. 3).

2.2.1 The Steel Spring: Each steel spring represents the
behavior of one—quarter of the steel in the cross section. The
properties of this spring incorporate the slippage of the reinforcing

bars. Lai (11} assumed that bond strength is uniform and can be

u=14 £, (2.1)

approximated by

in which

u = the bond strength in psi and

f;= the compressive strength of concrete in psi.
The applicable bond strength expression specified in the 1963 ACI code
(1) for tensile bars ranged from 6 yrf_; to 8.5 V_fZ/db and for
compressive bars was 13 ;/?g. Emori and Schorobrich (7) studied the
test data on #6 bars obtained by Wight and Sczen (35) and concluded
that Eq. 2.1 leads to a good correlaticn with experimental data. The
ACT equation results in 12,7 fé for #6 bars. Given the degree of

scatter in experimental data ard all the approximations that will be
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discussed in the following sections, Eg. 2.1 was considered to be
reasonable for both tensile and compressive bars. The bond strength

can be use.d to determine the development length of the bar at vield

stress:
i3 = Abfy/ (T*@p*u) (2.2)
in which
.ld = development length,
. A, = area of a single bar,
fy = yield stress of the bar, and

dp, = diameter of a single bar.

Assuming a uniform bond stress distribution aﬁd a triangular
strain distribution along the development length, the concentrated bar
displacement at the joint due to slippage is

d = fyld(Z*Es) (2.3)
in which

Eg = Yourg's modulus for steel bar.

Using these simple relationships, the initial elastic stiffness, Kee
of the steel spring is calculzted from

keo = Asfy/d (2.4)
which simplifies to

Koo = 2AqE/14 | (2.5)
in which

A = one-fourth of the total area of longitudinal steel.

The initial stiffness is assumed to be the same in both tension and
compression. Reascnable results have been obtained using this
equaticn as will be demonstrated in Ch. 3.

The yield displacement, dy, for the spring is given by

11



dy = Agf /Koo (2.6)
This yield displacement is used in the hysteresis rules and other
relaticnships described in the following sections.

The postyielding stiffness of the steel spring depends on the
strain-hardening of the bars, the amcunt of confining steel, and the
thickness of the concrete cover. Lai assumed that the steel springs
representing a column element have zero postyielding stiffness.
However, test data from reinforced concrete columns subjected to
bidirectional lateral Joads (16) have revealed a small postyielding
stiffness. In Chapter 3, it will be demonstrated that a postyielding
stiffness value of two percent of the initial elastic stiffness leads

to reascnable results.

2.2.2 The Concrete Spring: The concrete spring simulates the

behavior of concrete in a reinforced concrete member. The properties
of these sprirgs are determined by the compressive strength of
concrete and the moment and axial load at the balanced condition of
the section.

The yielding force level in each concrete spring is determined

from
Pey = 0-85ECA, (2.7)
in which
Pcy = yield level in the concrete spring,
A, = area of concrete represented by the corner or center
spring, and
fc': = compressive strength of concrete.

The area represented by each of the corner concrete springs is the

l—-—d
ey



same because of symmetry. The areas are determined from the balanced
condition defined by conventional flexural theory (2,343. The area
for the center spring is the remaining area of concrete not repre-
sented by the comer springs.

The balanced condition occurs when the outermost reinforcemént
layer yields in tension as the outermost fiber of concrete crushes in
compression. The crushing strain for concrete is assumed to be 0.003,
which is the value used by ACI (2).

In establishing the area of concrete springs, two simplifying
assumptions are made: (1) the compressive steel springs yield under
the balanced conditions, and (2) the neutral axis is located such
that the force in the central concrete spring is zero. Based on these
assumptions and given the symmetry of the column section, the area for
the comer concrete springs is found from Eg. 2.8.

Beorner = P/ (2%0.85E) (2.8)
in which

P, = balanced axial load for the section.

An average B, is used for rectangular sections with different balanced

loads in each orthegonal direction. The center spring area becomes

Beenter = Pgross T $™Pcomer st (2.9)
in which : -
Agross = gross area of the cross section and
Ay = total area of steel in the cross section.
The initial elastic stiffness for the corner springs is
Kee = 0'85Acomerf:: /dy (2.10)

and for the center spring is

13



Kege = 0.85%A

1
centerfe /dy (2.11)

Both of these stiffnesses are found under the assumption that the
yield displacement for the concrete springs is the same as that for
the steel springs.

The above stiffnesses are valid only for compression., The
springs have no contribution in tension because the section is assumed
to be initially cracked. This is not an unreascnable assumption
because the initial cracking strength of concrete does not make a
significant contribution to response. The primary curve for concrete
springs is represented by an elasto-plastic relationship with no
postyielding stiffness assumed (Fig. 2.3).

The locations of the springs are alsc determined based on the
balanced condition. The moment at the vielding of opposing spring
sets is assumed to be equal to the balanced moment in the
corresponding direction (Fig. 2.2). The springs are assumed to be
located in a symmetric pattern. The distance between the springs in
direction i is

dgi = 3/ B £y + 2%0.85A00 e fe ) (2.12)
where

M,; = the balanced moment conputed from flexural theory and

i = either the x or y coordinate directicn.

Note that dg, is the distance perpendicular to the x axis and so
on.

The above relationships describe the characteristics of the
compenents of the element. The balanced moments and axial loads are
the only values that need to be calculated for the actual section in

order to formulate the element.
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2.2.3 Ipelastic Element Stiffness Matrix: The nine springs
described in sections 2.2.1 and 2.2.2 form an element with three
degrees of freedom: one axial and two rotational. The element stiff-
ness matrix translates the axial stiffnesses of the component springs
into joint rotational and axial stiffnesses. Shear and torsion defor-
mations are neglected, and the stiffnesses in these degrees—of-freedom
are assumed to be infinite. The derivation of the stiffness matrix is
based on the equilibrium of forces and planar strain compatibility.

Lai (11) constructed the element stiffness matrix with the center
of rotation always at the center of the section. When inelastic
deformations are developed in the springs, this assumption generally
leads to a coupling between axial load and rotation (i.e., an axial
force is generated from pure bending) as described below. This
probiem is not addressed in Ref. 11.

Suppose the column shown in Fig. 2.1 has urdergone a lcad history
that has caused yielding of the springs at location 1 but no yielding
in other springs. The instantaneous stiffness in location 1 is
considerably less than that of the other springs. With the neutral
axis fixed at the center and assuming plane sections remain plane, any
rotation (say, about the x axis) should produce egual displacements in
the upper (locations 1 and 2} and lower (locations 3 and 4) springs.
Because the stiffness at location 1 is lower than that of other
locaticns, the force in this spring is smaller. As a result, the
total forces at the upper springs will be smaller than the forces at
the lower springs. This, of course, leads to a lack of equilibrium in

the axial direction.
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Elimination of the coupling effect requires the neutral axis to
translate in response to the changing stiffnesses of the springs.
Using displacement compatibility relationships, the joint deformations

can be written as

Ap 1/2 172 0 d;
6y = 1/dgy 0 -1/dgy dg (2.13)
By 0 —l/dSy -l/dsy dy
where
dsx’ dsy'= distances between the spring locations as shown in

Fig. 2.1,

di = displacement in the ith spring location as shown in Fig.
2.1,

AP = axial displacement at the center of the section (at spring
5), and

Ogs GY = rotations about the x and y coordinate axes, respective-

1y.

Note that the displacements at spring locations 2 and 5 do not
enter into Egq. 2.13. This is because the displacements at only three
of the spring lecations are sufficient to define the plane of deforma-
tion. The displacements at the other two locaticns can be determined
based on the lccation of this plane.

Equation 2.13 relates the displacements in the springs to
rotational and axial degrees-of-freedom without forcing rotation about
the centroid.

The moments ard axial force at the column section can be related

to the spring forces as follows. As it was pointed cut in previous
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sections, the displacements at only three of the spring locations are
independent variables. The three locations chosen for formulating the
multispring element stiffness were l; 3, and 4. The displacement at
the center spring is found frem

dg = (dy +d3)/2

Referring to Fig. 2.4, the displacement at lccation 2 will be

d2

(d] +d3)/2 + [(dg +dg)/2 - 4]

or

The axial force and moments about the two orthogonal axes can be

written in terms of spring forces as follows.

5
P= z Kldi
i=1
4
Moo= (2 Kidy) g/
i=1
4
My = (I Kyd;) @gy/D)
i=1

Substituting the expressions for d, and dg in the expressions for

forces and writing the equations in matrix form will lead to

p 2(Kg/2+K11Kq) 2(Kg/24K31K4) 2(Ky=Kq) d;
MY o= 1/2 | (RpHRy)dg, (KoKq)dg,  (KyKpddg, |{ d3 b (2.14)
My, , (Kl-Kz)éSy (—K2—K3)dsy (K2+K4)dsy dg
where
ki = stiffness at the ith spring location (Fig. 2.1).

The moments are calculabed about the centroid of the section, but
the neutral axis can be at any lecation.

Summarizing Egs. 2.13 and 2.14
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0} = [1Tq14a} (2.15)
and

{p} = ITyli8} (2.16)
where [Ty] and [Ty] are the 3 x 3 coeffici.ent matrices presented in
Egs. 2.13 and 2.14 respectively.

Substituting and rearranging results in
{P} = [Ty11T,1 716} (2.17)

which can be rewritten as

{P} = [K11{6} (2.18)

where [K] is the element stiffness matrix.

2.3 Hysteresis Models

In the original nine-spring mcdels, the variation of stiffness as
a function of the lcad/deformation history was represented by the
Takeda hysteresgis model model (29) for the steel springs and by a
modified elastic-plastic model (named GHYST in this report) for the
concrete springs. Although the hysteretic behavior of steel (as a
material) is better idealized by a nondegrading model such as the
bilinear or the Ramberg-Osgood medel (21) because the steel springs in
the multispring element represent the bond slip behavior of the bars
as well as the steel behavior, it is appropriate to use a degrading
hysteresis model for the steel springs. The Takeda model, however, is
overly complicated. A comparison of hysteresis models (23) has shown
that the Q-Hyst model (22), which is considerably simpler than the

Takeda model, produces comparable results.

2.3.1 BHysteresis model for steel sprinas: The hysteresis model
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for the steel springs is the QBYST model as developed by Saiidi and
Sozen (22,23). The CHYST model is a simplified version of the Tekeda
model (23,29) and is different from the one used by Lai (11). The
rules for the QHYST hysteresis model (Fig. 2.5) are as follows.
Rule 1: (operates on branch Y'Y)

1.1 loading: 1if di { = dy; K=Kgi: IWL=1

if d; > dyj K=K, IVL =2
1.2 Unloading: K = Kse; VL = 1

1.3 Ioad reversal: K =K VL =1

se’
Rule 2: (operates on the postyielding branch)
2.1 Loading: K = Ky; VL = 2
2.2 Unloading: K= 8l; IVL =3
RBule 3: (operates on X Uy or XéR)
3.1 Loading: 1., if last unloading point on YU, go to 3.1.2
if f; <=fp K=35l; LVL =3

if £; > g K = slope of X Up: IVL = 4

()]

2, iffi<=fUm K=358l; LVL=

1l
[ 8

if £,

i <

3.2 Unloading: K= 8l; IVL = 3
3.3 Iload reversal: K = slope of XOUT:1 ; IVL =4
Rule 4: (operates on XOUI;Ior' X:)Um)
4.1 roading: if £; <= fy K = slope of XUp; LVL = 4
iffi>fUrn K=Ky; VL = 2
4.2 Unleading: unloading point is "R"; K = 81; ILVL = 3
in which

i3



o
il

the absolute value of the total current displacement in the
ith spring,

the absolute value of the total current force in the ith

Hh
I

spring,
Ky = the elastic stiffness of the spring,
Ky = the postyielding stiffness in the spring,
IVI. = the pointer to the next rule,
S1 = Kge* (dy/dp,0 %0,
bt0 = a factor between 0 and 1,
dy = the yield displacement,
dmax = the absolute value of the maximum displacement the spring

has experienced in either direction,

fU = the absolute value of the force at U {or Ur:x) , amd
m

fy = the absolute value of the force at the unloading point R.

2,3.2 Hysteresis medel for concrete springs: The hysteresis
model for the concrete springs is a simple mcdel formulated by Lai
(11) for use in the multispring model. It is an extremely simple
approximaticn of the response of concrete., The rules for the hystere-
sis mddel for concrete springs, called GHYST in this report, are as
follbws (Fig. 2.6).
Rule 1

1.1 rLoading: 1if d; positive (tension) K = 0; LVL = 1

if 1djl < 4y K =Kgei IVL

I
b

Y;

if idif >=dy; K=20; LVL

1.1 Unloading: K =K, LVL =1

"
N
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Rule 2

2.1 Loading: K =0; IVL =2

2.2 Unloading: K =Sl =£;/d,; d,=d;; LVL =3
Rule 3

3.1 Ioading: if 1d; < = dy
if 1441 > dys K=0; IVL =2

K=2581; ILVL =3

3.2 Unloading: if di =>0; K=0; ILVL=3

if d; < 0; K=8l; ILVL=3

d; = the total displacement in the ith spring,

{1
H

the total force in the ith spring, and

K

ce = the initial elastic stiffness for the springs.

A corner concrete spring is assumed to have the same total
displacement as the corresporxling steel spring. therefore, it is not
necessary to use plasticity theory to update the displacement for the
concrete spring when its stiffness is zero. Although the model is
extremely simplified, in combination with the steel hysteresis steel
models, it has produced reasonable results when compared to

experimental data for reinforced concrete elements (see Ch. 4).
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CHAPTER 3
FORMULATION COF THE FIVE-SPRING ELEMENT

3.1 Introduction

The nine-spring element introduced by Lai and the modified
version described in Ch. 2 are both more realistic and simpler than
the available yield surface or finite element models. MNonetheless,
the fact that the force and displacement of each spring need to be
traced throughout the analysis means that, for each column, nine
subelements are necessary. For a structure with a relatively large
number of columns, the required computer memory and the computation
time may be excessive. To reduce the number of the subelements, the
modified nine-spring element described in Ch. 2 was further refined
and a five-spring model was developed. This model produced results
which were cof the same or better quality than those obtained from the
original and meodified nine-spring elements (see Ch. 4). The purpose
of this chapter is to describe the five-spring element and the

hysteresis models used for the springs within this element.

3.2 Element Description

The five-spring element is shown in Fig. 3.1. The major
cifference between this element and the nine-spring element is that
the concrete and steel springs which were located at each corner of
the nine—~spring element are replaced by a composite spring. The
center concrete spring remains unchanged. The five-spring element
requires approximately forty percent less computer memory and

execution time.
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In subsequent sections, the composite springs and the hysteresis
model used to represent their behavior are described. The concrete
spring (spring 5 in Fig. 3.1) has the same description as that in sec.
2.2.2, and it utilizes the GHYST hysteresis model presented in sec,
2.3.2,

3.2.1 The Composite Sprina: The composite springs (springs 1
through 4) have different characteristics in tension and compression.
When in compression, they represent the steel and corner concrete
springs discussed in secs. 2.2.1 and 2.2.2. When the composite
springs ace in tension, however, they represent only the steel springs
described in sec. 2.2.1. The derivation of the properties of the
composite spring is primarily based on the assumptions presented in
Ch. 2. The primary curve for the composite springs (Fig. 3.2) has the
following characteristics.

Tension:

Initial stiffness, K., = 2ASES/ld

se
Postyielding stiffness, Ky = 0.02 Ky
Yield displacement, dy = Asfy/Kse
Yield force = Asfy
Conmpression:
Initial stiffness, (Kse + Kce) = ZASEs/ld +
0°85Acornerfc/dy
Postyielding stiffness, Ky = 0.02 K¢
Yield displacerent, dy = Asfy/Kse

. )
Yield force = Agf, + 0.85 fhoqrner

N
)



3.3 Bysteresis Model for Corposite Spring

A modified version of QHYST, called AQHYST, was developed to
model the response of the composite spring. AQHYST is based on the
same four rules as those used in the QHYST model except that the
initial stiffnesses for compression and tension are different. The
AQHYST model does not incorporate the rules from GHYST (sec. 2.3.2),
rather the concrete spring is assumed to "follow" the hysteretic path
of the steel spring. The GHYST model for the concrete springs is used
only for the center concrete spring.

The absolute value of the vield displacement is the same for both
compression and tension. The yield force in tension is the yield
force for a steel spring, and the yield force in compression is the
sum of the yield forces for a steel spring and a concrete spring. The
postyielding stiffness for both compression and tension is that of a
steel spring. The properties for each type of spring are calculated
as described in Chs. 2 and 3 and then combined to create the composite
spring properties,

The rules for the AQHYST model are as follows (Fig. 3.3).

Rule 1:
1.1 1oading: if0<di<=dy; K=Kgi LVWL=1
I£0>d; >=-dy K=Ky +Kgei LWL =1

if ldil > dy: K = KY: IVL = 2

1.2 Unloading: if d; > 0; K= Keei LVL =1
ifdi<=0; K = Kgo + Keg!

1.3 Ioad Reversal: if di >0; K=FK_.; LvL =1

ifdi<=0; K=K, +K..; ILVL =1
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2.1 ILoazding: K = KY; VL = 2
2.2 Unloading: if di >=0; K=8I; LvL =3
ifdi<0; K=8582; ILVL=3
Rule 3:
3.1 Loading: if last unloading point on YU go to 3.1.2.
1. if Ifjl < ifgl; and:

iffi<0,' K=82; IVL =3
iffi>0; K=281; ILVL =3
if I£;1 > Ifgl; K = slope of XUy LVL = 4

2. ifU(fi'(fUm? K=81; IVvL =3
ifO)fi>=f%; K=g82; IVL =3

1€ £5 < fy; K=Ky VL =2

iffi>fUm; K=KY; IVL, = 2
3.2 Unloading: if £; > 0; K=81; IVL =3
if £, < 0; K=82; LWL =3

3.3 Load reversal: K of x(;Um (or XOUT;]); IVL = 4

"
n
e
O

0

Rule 4
4.1 Loading: if 0> f; > fu: K

il
It

slope of XOUI'H; LVL

H|
i

. ‘.' -
if 0 < £; < fUm; K = slope of X Up: LVL
iffi<f%;K=KY; IVL = 2

iffj_)fUm; K=Ky; VL = 2
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4,2 Unloading: unloading point is "R".

if £; > 0K =61; IVL=3
if £, <OK=852 LVL=3
in which
S1 = K__*(d ybto
se” (Gy/dmax !
82 = (Kge + Kge) (dy/d 8L,

btl = the degradation factor for compression, and
all other variables are the same as for the QHYST model (sec.
2.3.10.
The new hysteresis model provides a smoother transition between
tension and compression. The model also degrades the stiffness and
allows for permanent deformation df the composite springs. Subroutine

AQEYST is used for each corner spring location at every iteration.

26



CHAPI‘ER 4
COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESUITS

4.1 Introduction

All of the springs that make up the multispring biaxial bending
elements are inelastic. Each spring type (concrete, steel, or com-
posite) is governed by a set of hysteresis rules which describe the
stiffness of the spring depending on its loading history. The quality
of the response calculated, based on the multispring elements des~
cribed in Chapters 2 and 3, depends on (1) the assumptions made in
developing the general form (Figs. 2.1 and 3.1) of the element and (2)
the method of idealizing the hysteretic behavior. For the multispring
elements presented in previcous chapters, both of these appear to be
rational. That is, the layouts shown in Figs. 2.1 and 3.1 have the
potential of simulating the behavior of a biaxially bent column and
the hysteresis models used for the constituent conmponents are accept-
able representatives of the behavior of concrete and steel.

To evaluate the multispring elements presented in Chapters 2 and
3, the elements were incorporated in a cantilever column analytical
model. The mecdel was used to calculate the response of two biaxially
bent columns for which experimental data were available. This chapter
presents the cantilever model as well as the analvtical and experimen-

tal results.

4,2 Description of the Cantilever Structure
Few experimental data concerning the inelastic biaxial behavior
in reinforced concrete columns subjected to c¢cyclic loads are avail-

able., Some of the available data, such as those from Umebara and Jirsa
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(33), are. for relatively short specimens in which shear deformations,
and not flexural deformations, dominate. Otani (16) presents data for
cantilever column specimens subjected to static bidirectional lateral
deflections. The specimens were designed to behave dominantly in
flexture. These data are used to test the biaxial bending elements
described in previous chapters.

The configuration and specifications for two of Ctani's test
specimens SP-7 and SP-8 are presented in Fig. 4.1. The only difference
between SP-7 and SP-8 is the applied deflection history (Figs. 4.2 and
4.3}. Neither test specimens had an applied axial load.

The column was modelled as an elastic line element with a biaxial
bending multispring element (Chapters 2 and 3) at the base (Fig. 4.4).
The stiffness for the elastic line element was based on the gross
moment of inertia and the modulus of elasticity for concrete. The
parameters for the biaxial bending multispring elements were
calculated as described in Chapters 2 and 3. Only flexural and axial
degrees—of-freedom were considered as torsion effects were consicdered
negligible. Shear deformations were also ignored.

Figure 4.5 shows the degrees of freedom (DOF's) for the
cantilever column model. DOF's five and eight were slaved because the
axial deformation of the line element (Fig. 4.4) was ignored. The
stiffness matrix for the system was condensed with respect to DOF's
one and two to allow for input displacement at these locations. For
any set of input displacements at DOF's one and two, the forces and
deformations at DOF's six through eight were calculated and used to
determine spring displacements and forces in the multispring element.

The cantilever model was implemented in program APPDIS. This
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program first calculates the spring properties and then applies the
displacement history to the structure in small increments. The dis-
placement histories for SP-7 and SP-8 were devided into 2950 and 2600
increments, respectively. For each incremental displacement an incre-
mental moment is calculated at the location of the multispring
element. An incremental axial deformation is calculated for each
spring location and the proper hysteresis subroutine is called for
each spring. A larcge stiffness value was assigned té the element for
the pre-yielding stage to simulate the elastic behavior of the column.
Once the hysteresis routines indicate that one or more of the springs
have yielded, then a new stiffness matrix is created for all of the
subseqguent iterations., The new shear forces at the top of the column
are calculated using the updated spring forces returned from the
hysteresis subroutines. The new shear force at the top of the canti-
lever is then plotted against the total column deflection. The APIDIS
program was used for parametric studies presented later in this

chapter. A flowchart of APIDIS is presented in Fig. 4.6.

4.3 Evaluation of the Modified Nine-Spring Element

Lai (11) has demonstrated that the original nine-spring model
will produce results which are in reasonable agreement with experi-
mental data. The purpose of testing the modified nine-—springlelement
was to study the effects of using a new element stiffness matrix and
the QHYST hysteresis model. The postyielding stiffness for the steel
springs was assumed to be two percent of the initial elastic stiff-
ness. Figures 4.7 and 4.8 are comparisons of the experimental and

analytical response for SP-7 in the x and y directions, respectively.
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The bt0Q factor (Sec. 2.3.1) used for this case is 0.5. A reasonable
value for btO is 0.4 or 0.5 (20,27).

Note that btO controls the width of the hysteresis loops. As the
value of btO increases, the area within hysteresis loops will
decrease. The value of btO is used in the Takeda hysteresis model as
well as the O-HYST and AQHYST models.

The overall shape of the hysteretic response curves shown in
Figs. 4.7 and 4.8 are similar, especially for the inner loops. The
calculated outermost locop in the x direction is not well matched with
the experimental data because of significant deterioration of column
which caused shear deformations to become significant for the last
displacement increments (16). The comparisons show that this value of
btO does not allow for the hysteretic energy loss experienced by the
actual column, as measured by the area within the curwes.

Smaller values of bt0O produce greater energy loss for the
element, A bt0 value of 0.2 was used for the respense histories pre-
sented in Figs. 4.9 and 4.10. The calculated curves are ncticeably
wider in the displacement direction, compering more favorably with the
experimental data. This value of btO produced the best fit and is the
value used by Lai (11) in his hvsteresis model. Responses for SP-8 are
shown in Figs. 4.11 and 4.12. Again acceptable results have been
obtained using a btO value of 0.2

Both of the above comparisons show that the modified nine-spring
element underestimates the peak strength of the column by ten percent
to twenty percent. This is not unreascnable given the variability of

concrete and steel properties and the simplified nature of the model.
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The analytical results based on the original nine-spring element for
SP~7, shown in Figs. 4.13 and 4.14 shows a better peak strength
comparison than the response for the modified element, but the shape
of the response curve for the y direction is not as good as that
produced by the modified element presented here.

A characteristic of this implementation is the "stepping error”.
A stepping error occurs when a spring stiffness changes abruptly, such
as in the transition from compression to tension. These stepping
errors cause abrupt changes in the response, such as the "zig-~zag"
shown in the left part of the cuter loop of Fig. 4.12. These zig-zags
slightly reduce the amount of energy dissipated by the structure and
affect subsequent load-deformation relationships. Stepping errors are
minimized by small displacement increments, but cannot be completely
eliminated.

Another characteristic of the nine-spring element is the over—
shoot error. This error affects the axial force balance of the
structure and is not evident from the hysteresis curves. The error
cccurs because the hysteresis routines modify each spring stiffness
ard spring force without regard to the cother springs. The hysteresis
routines change the force in the spring to correct for "overshooting”,
or allowing a force in the spring that is not on the hysteresis curve
(Fig. 4.15). Because modifying the force in cne spring has no effect
on the other springs during an iteration, the axial load (the sum of
the spring forces) equilibrium is generally violated. The imbalance is
generally too large to be ignored; for the test cases presented here
the axial load imbalance in some instances apprcached 1,000 kips. The

moment response of the element is not greatly affected, but modeling
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variations in axial load cannot'be performed accurately.

Although this implementation has some problems, it still produces
better results than the bilinear yield surface model. A representative
sample, obtained from Ref. 11, is shown in Fig. 4.16. The bilinear
model overestimates the peak forces by approximately forty percent.
The hysteretic energy loss is also significantly larger than what is

indicated by the experimental data.

4.4 Evaluation of the Five-spring Elerent

The main difference between the five-spring and the modified
nine-spring elements is the smaller computer memory and shorter
;omputation time requirements for the five-spring model, and the
hysteresis modeling of the comer springs.

The hysteresis medel used in the five-spring element (AQHYST,
Sec. 3.3.1) reduces steppring errors by allowing for a smoother transi-
ticn between compression and tension forces in a spring. However, it
does not remcve the axial load imbalance caused by force modification
within a load interval. Using much smaller displacement increments
would reduce the error, but would take far too much computation time.
A simple correction scheme was implemented which applies the opposite
of the axial load imbalance to the element in the next iteration. &
similar approach was used to correct force imbalances in a frame
analysis program develored by Otani (14), among others. This methed is
simple and fast as compared with other methads.

In AQHYST, the slope of unlecading branch for the postyielding
stage is contrelled by parameters btO and btl (Sec. 3.3.1), These

parameters control the "fatness” of the hysteresis loops. Because a
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value of 0.2 had been used for a comparable parameter in the nine-
spring model, this value was alsc used for btO and btl.

The experimental results from Otani's (16) specimens SP-7 and SP-
8 were utilized as the basis of evaluating the five-spring element.
Figures 4.17 through 4.20 compare the experimental data to the analy-
tical results. The effects of the smoother transition from compression
to tension are evident in smoother curves. The overall shape of the
curves remains a good fit in both directions for both specimens. The
correlation with experimental data is as good or better than the
correlation between the nine-spring element results and the measured
data (Figs. 4.9-4,12).

To determine the sensitivity of the calculated response to varia-
tion in btO, btl, and postyielding stiffness parameters, specimen SP-7
was analyzed using the five-spring model with different values for
these parameters. Figures 4.21 and 4.22 show the effects of using a
value of 0.4 for bt0O and btl. These plots give a slightly better fit
for low-amplitude cycles, but are somewhat toc narrow.

The values of btQ and btl should not necessarily be the same. The
btO parameter represents stiffness degradation for a steel spring
subjected to tension (Sec. 3.3.1), whereas btl is an index for stiff-
ress degradation of the composite spring which includes the effect of
concrete, Note that as btl increases, the permanent displacement will
decrease. In the nine-spring model, the concrete springs have no
rermanent displacement (Fig. 2.6) due to the fact that the branch
corresponding to rule 3 is forced to pass through the origin. The

slope of this branch could be formulated as follows to obtain a value
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of btl which wou;Ld produce zero permanent displacement.
Sy = Pcy/dmax (4.1}
In which:
53 = slope of branch 3 in Fig. 2.6;
Pcy = yield force; and
dyay = maximum displacement

2 (Sec. 3.3.1.) lexds to

83 = Koe * (dy/Gra)PEL- (4.2)

o the elastic stiffness is found from

Ko = Poy/dy | (4.3)

substituting §3 from Eq. 4.1 and K, from Eq. 4.3 in Eq. 4.2 will lead

writing S3 in a form comparable to Sy and &

Ke

to btl = 1 for concrete., The value of btl used in AQHYST represents
both the concrete and steel (the composite spring). Because btl = 0.4
is reasonable for steel and bti = 1 simulates the concrete spring
mocgel in the nine-spring element, a simple average value of 0.7 may be
considered as a representative value for the composite spring.
Increasing the btl factor to 0.7 gives the results presented in Figs.
4.23 and 4.24. These loops do not provide the same amount of energy
dissipation as the experimental results indicate. Comparison of these
figures with Figs. 4.9 and 4.10 reveals that btQ = btl = 0.2 produced
better correlation with experimental data.

The analytical results using a btO value of 0.4 and a btl value
of 0.2 are compared to experimental results in Figs. 4.25 and 4.26.
These curves have good correlations with experimental results,
althowgh they do slightly underestimate hysteretic energy loss.

The "blunting” of the sharp saw-toothed peaks in the response

histories for SP-7 using the five-spring model are in part due to the
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correction method used for axial force. The axial force imbalance
applied to the springs accelerates the vielding of some of the
springs, causing the stiffness to reduce prematurely. While the moment
response is reduced, it does force axial equilibrium to be satisfied.
Figures 4.27 and 4.30 illustrate the effects of changing the
postyielding stiffness. Figures 4.27 and 4.28 compare the experimental
results to analytical results using a postyielding stiffness of five
percent of K., (the initial steel spring stiffness). This does
increase the peaks, but only in the large-amplitude loops. Using
extremely small values of postyielding stiffness can lead to "over-—
loading™ of the correction scheme for axial force., Figures 4.2% and
4.30 show what can happen if a value of 0.2 percent of K., is used.
The erratic respense is caused by drastic changes in the hysteretic
path created by large axial force imbalance in a single iteration. The
problem can be avoided by using smaller load increments or a larger

postyielding stiffness.

4.5 Comments and Conclusions

The first object of this study was to develcr a simplified
multispring element and to compare its response with experimental
data. The completion of this task revealed that the element will
produce reasonable hysteretic responses for cantilever columns
subjected to bidirectional lateral displacements. Although the biaxial
bending element does not produce perfect match and must be used with
some care, it is simple and executes guickly.

It is recommended, on the basis of the comparisons presented

here, that a postyielding stiffness value in the range of one percent
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to five percent be used for typical columns, unless a better approxi=-
mation is available cr a different axial force correction method is
used. Values for bt0O and btl should be between 0.2 and 0.4 for
adequate hysteretic energy loss. When additional experimental data
become available, more representative general relations for postyield-

ing stiffness, the btO factor, and the btl factor may be possible.



CEAPTER 5

IMPLEMENTATION IN A NONLINEAR BRIDGE MCDEL

5.1 ‘Introduction

The multispring biaxial bending element described in Chapter 3
was added to program NEABS (Nonlinear Earthquake Analysis of RBridge
Systems) as a new element type. Program NEABS is a FORT'RAN IV program
written for nonlinear dynamic analysis of highway bridges. The
original program used four element types:
1) Linear elastic and elasto-plastic straight beam elements;
2) Linear elastic circularly curved beam elenents;
3) Linear elastic foundation spring elements;
4} Linear and nonlinear expansion joint elements.

A fifth type of element, the five-spring biaxial bending element,
was installed in the program for this study. This chapter describes

the operation of MEABS and the modifications made tc the program.

5.2 Description of Program NEABS
The subroutine organization of program NEABS is presented in Fig,
5.1. The analysis prccedure used in NEABS is similar to that gescribed
by Tseng and Penzien (30). This procedure can be summarized as
follows:
1)  The initial static eguilibrium equations of the bridge are formed
from the input data (Subroutine SETUP).
2) The static svstems of equations are sclved for dead load and
static nodal load response (Subrqutine STATIC). In this analysis,
the structure is assumed to remain elastic. The results are used

as the initial conditions for the subsequent nonlinear dynamic
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analysis.

3) Digitized dynamic lcad functions applied at nodes or ground
accelerations are input for eqgual or unequal time intervals.
Dynamic load vectors are calculated for each time step of
integration (Subroutine ILOADS).

4) Incremental dynamic equilibrium equations are formed and solved
for incremental nodal displacements, velocities, accelerations
using Newmark's sclution techniaue for the eauations of motion
(13). Total nodal displacements, velocities, and accelerations
are calculated for each time step (Subroutine INIGR).

5) The nonlinearity conditions of each nonlinear element are checked
within each time interval. If necessary, a new element stiffness
matrix and nonlinear force vector are calculated for the element.
The bridge stiffness matrix is then recalculated for the next
time interval. Equilibrium of the bridge is checked using the
linear ard nonlinear ferces (Subroutine MELSTF),

6) The time histories ¢f respcnse results from the step-by-step

solution are rearranged for output (Subroutine OUTEUT).

5.3 Modifications to Program NEABS

The subroutines hichlighted in Fig. 5.1 were added to MNEARS to
implement the five-spring biaxial bending element. The subroutines are
SMOD, TEAMOD, NEWMOD, SPRING, STMOD, NMOD, AQHYST, and GHYST.
Subroutines SMOD, TEAMOD, NEWMOD, and SPRING create the element
stiffness matrix. Subroutine STMCD initializes the element hysteresis
mcéel after the static loads have been determined by subroutine

STATIC. Subroutine NMCD calls the hysteresis models, AQHYST and GHYST,
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and creates a new element stiffness matrix if necessary. The operation

of the subrbutines is outlined below.

5.3.1 Subroutines SMOD, TEAMCD, NEWMOD, and SPRING: Subroutine
SMOD initializes parameters and then calls TEAMCD. Subroutine TEAMCD
first reads the cross secticn data and calls subroutine SPRING to
calculate the composite concrete-steel and concrete spring
stiffnesses., Subroutine TEAMOD reads the coordinate information for
each multispring element, calculates the local to global
transformation matrix, and calls subroutine NEWMCD. Subroutine NEWMCD
calculates the local element stiffness (3 x 3), expands the local
element stiffness matrix to 12 X 12, then calculates a 12 X 24 matrix
which relates global displacements to local forces, and finally
calculates a 24 X 24 glcbal element stiffness matrix. These relatively
large matrix sizes were used not because they were necessary for the
multispring model but to maintain compatibility with the rest of the
‘program. Flowcharts for subroutines SMCOD and TEAMCD are presented in

Fig. 5.2. Flowcharts for SPRING and NEWMCD are presented in Fig, 5.3.

5.3.2 Subroutipes STMOD and NMQOD: Subroutine STMOD is called
from subroutine STATIC after solution of static equilibrium forces.
Subroutine STMOD initializes the hysteresis pointers and calls
subroutine NMOD. Subroutine NMOD is called from two points in the
program: from subroutine STMCD and subroutine NELSTF., When called from
either subroutine, NMCD finds the incremental forces in the element
springs and calls the appropriate hysteresis subroutine, After all of

the element springs have been updated, NMOD checks to see if any of



the springs have yielded. If none of the springs have yielded, then
control is returned to the calling subroutine. If the element has
yielded, then new element stiffness matrices are calculated and
control is returned to the c¢alling subroutine, Flowcharts for
subroutines STMOD and NMCD are presented in Figs. 5.3 and 5.4,

respectively.

5.3.3 Subroutines AQHYST and GHYST: The hysteresis subroutines
AQHYST and GHYST are the same as those used for the static model in
Chapter 4. The operation and theory of these subroutines are presented

in Chapters 2 and 3.

5.4 Evaluation of Modified NEABS

The modified version of program NEABS (program NEABS-86) contains
the new multispring biaxial bending element. The implementation was
tested for compatibility with the existing element types both
statically and dynamically using a simple two span bridge. The results
indicated the five-spring element was compatible with all elements
both statically and dynamically except the elasto-plastic beam
element. The elasto-plastic element may lead to instabilities when
used in combination with the five—spring element. This incompatibility
is discussed in more detail below.

Impleinentation of the five-spring element for dynamic analysis
required that subrcutine ITERN be bypassed for timely execution of the
program and to 1imit memory storage requirements (Fig. 5.1), If the
square root of the sum of the sqguares of the imbalanced forces due to
yielding or friction losses becomes larger than RTOLS (relative

tolerance of subdivision specified by the user) then subroutine ITERN
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reverses the program one time interval. Subroutine ITERN then sub-
divides the time interval by NSDIV (number of subdivisions specified
by the user). Subroutine ITERN prevents instabilities due to large
time steps which can create large force imbalances in a single time
step. The five-spring element is more stable than the elasto-plastic
element because stiffness changes are less severe, hence the force
imbalances are less. The bypass of subroutine ITERN is accomplished by
'setting NSDIV and MAXIT (maximum number of iterations) to zero. It is
recommended that the five-spring element and the elasto-plastic
element not be used together. Care should be taken to ensure that

small time steps are used when using the new element,

5,5 Comments and Conclusions

The new multispring element was successfully implemented in
program NEABS-86. Testing revealed that the modifications were
compatible with the remainder of the original program for static and
dynamic analyses except for the elasto-plastic element. This incom-
patibility is due to the bypassing of the subroutine ITERN, which was
necessary for the timely execution of the pregram and to reduce memory
storage requirements. This bypass will not lead to instabilities
unless large time steps or large load intervals are used. Testing of
the medified program revealed that the force imbalance produced by the
new element will increase for only one time interval after a change in
stiffness, then it will decrease to virtually zero within two or three
time intervals.

Program execution times using the five-spring element are

comparable to those using the elasto-plastic element. Depending on the
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number of nonlinear program iterations, the execution times for the
new element are generally less than those for the elasto-plastic
element. Execution speed increases depending on the values of NSDIV and
MAXIT and the number of nonlinear iterations. When the bridge remains
elastic, the execution time for the model with the five-spring element
is censiderably longer than that for the model with the yield surface
element. This is because it is necessary to keep track of five sub-
elements within the five-spring element even during elastic stages,
whereas the yield surface element is a single element. When nonlinear
deformations are developed, the yield surface element requires itera-
tions within every time interval and, hence, requires a generally

longer executicn time,
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CHAFTER 6

CASE STUDIES

6.1 Introduction

This chapter compares the dynamic response of three highway
bridges medeled using both the elasto-plastic yield surface element
and the five-spring column elements (or the multiple-spring elements,
MSE) presented in Chapter 3. Three modern bridges, the Rcse Creek
Interchange in Nevada, the Meloland Ovefpass in California, and the
Flamingc Road COverpass in Nevada, were used as the basis for mathema-
tical models analyzed using program NEABS-86 (Chapter 5). The pier top
acceleration and displacement histories are presented and compared for

each element.

6.2 Structure Modeling

Two models were prepared for each case study: one using elastic-
plastic column elements and another using multiple-spring elements at
the base of the columns. The cbjective of this study wag to examine
the possible differences in dynamic response created by using differ-
ent nonlinear column models. Ordinarily, the nonlinear respcense is
affected by the nconlinearity of the foundation, columns, hinges,
expansion joints, ete. To isolate the effect of modeling of the
columns, however, it was necessary to force all the elements other
than the columns to remain elastic. As a result, the bridges were not
medeled exactly; rather, their properties were used as the basis for
rezlistic structural geometries and cross section prorerties. Founda-
tion stiffnesses were considered infinite because yielding of the

foundation materials interferes with the yielding of the columns (9).
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The connections between the foundation and the columns were assumed to
be moment resistant, although the actual connections in two of the
bridges were "pinned" connecticns, Abutments were modeled as pinned or
roller elements. Considering the above idealization, the results
presented in this chapter represent the dynamic response of ficticious
bridge structures with realistic structural properties for compariscn
of two biaxial bending elements. The results do not represent the
actual bridge respconses.

The models were subjected to rigid ground excitations (no phased
input was used) at the pier bases and at the abutments in the trans-
verse and the longitudinal directions. Response histories were
plotted for the pier top displacements and accelerations. For the
five-spring elements, the bt0 and btl factors were set to 0.2 (Chapter

3.

6.3 The Meloland Cverpass

6.3.1 Description of the structyre: The Meloland Overpass is a
2086~foot long, two—-span, symmetrical reinforced concrete box girder
bridge located within one-quarter mile of the Imperial Fault in
southern California. The single round concrete column pier is 20.5
feet hiéh and five feet in diameter and is reinforced with eighteen
#18 bars ecually distributed around its perimeter. An elevation of the
bridge is presented in Fig. 6.1.a, and an elevation of the pier is
presented in Fig. 6.2, The bridge was gubiected to the magnitude 6.4
Imperial Valley Eartlauske in Cctober 1979 and did not experience any

vigible structural damage (9).



6.3.2 Modeling of the structure: The Meloland Overpass was
idealized as shown in Fig. 6.l1.b. The abutments were modeled as
rollers in order to allow for large deformation and yielding of the
column at reasonable acceleration levels. Structural damping was
assumed to be five percent for all cases. Structural element para-
meters were based on actual cross section data and are tabulated in
Table 6.1. A rectangular column model was prepared to study the
effects of the shape of the column cross section on the dynamic
responge (Fig. 6.3). The properties of this column were chosen such
that its strength and stiffness are comparable to the round coiunn,

but the balanced moments are different in the two principal axes.

6.3.3 Results of dynamic analyses: The measured free-field
horizontal accelerations from the 1979 Imperial Valley Earthquake were
applied to the round column model of the Meloland Cverpass. These two
acceleration histories, cne longitudinal and one transverse (Figs. 6.4
and 6.5), were recorded by an instrument located 200 feet from the
centerline of the bridge. The results from the analyses are presented
in Figs. 6.6 and 6.7. Only the transverse responses are shown because
thesxe respcnses were relresentative of the correlation between the
results from the twe hysteresis models. The sclid lines represent the
response of the MSE model and the dashed lines represent the elasto-
plastic response. Note that the early low amplitude accelerations and
displacements at the pier top are identical, indicating that the
elastic response is the same for both element models. Upon yielding at

approximately four secords, the responses separate dramatically. The

elaste-plastic column has zero stiffness, whereas the stiffness in MSE
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reduces gradually. The elaéto-plastic acceleraticn response is less
than the MSE response, but the displacement response for the elasto-
plastic elewment are very much larger than the MSE respcnse. The
respdnses alsc show phase differences due to the different effective
stiffnesses reflected in the effective pericd of vibration.

The Meloland model was subijected to the 1940 El Centro Earthquake
with the input acceleration doubled (Figs. 6.8 and 6.9). The El Centro
east-west history wag applied transversely and the El centro north-
south history was applied in the longitudinal direction. The results
using the double El Centro Earthquake are presented in Figs. €.10 and
6.11. The displacement and acceleration response for the MSE analysis
differs from the elastc—plastic response in both phase and amplitude.
These differences are due to the chenginc of stiffness in the MSE as
element springs move from one hysteresis rule to another. The change
in stiffness leads to different effective periods for the structure
and can lead to a oreeter response than the softer elasto-plastic
model.

A rectangular column was designed with properties similar to
thecse ¢f the actual round column to study the sensitivity of the
response when a rectangular celumn is used in the bridge model. The
Melolard model was subjected to the same E1 Centro Earthguake acceler-
ations with the same peak ground acceleration as thet used for the
round column model. The responses (Figs. 6.12 and 6.13) are similar
to those for the round column model. The major differences between the
round column responge ané tbhe rectangular colunn response are the
displacements after three seconds. The rectangular column medels yield

earlier during the earthquake than the rcund column medels do. As a
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result, the MSE and elasto-plastic responses differ more significantly
in the case of the rectangular column (Fig. 6.13). The last five
seconds of the rectangular elasto-plastic history show a shift in the
oscillation axis. This can be attributed to the drastic stiffness loss
in the elasto~plastic model. The MSE histories for both the round and
rectangular column models appear similar in amplitude but not in

pPhase.

6.4 The Rose Creek Interchange

6.4.1 Description of the structure: The Rose Creek Interchange
is a 400-foot long, five-span, symmetrical reinforced concrete box
girder bridge (Fig. 6.14), The bridge crosses I-80 ten miles southwest
of Winnemucca, Nevada. The bridge deck is continuous over its entire
length and is supported by four, 21-foot high single celumn piers. The
piers are connected to the pile caps at the base using a single
transverse line of steel bars to produce a pinned connection in the
longitudinal direction of the bridge., The elevation of a typical pier
and cross-section of a column is presented in Fig. 6.15, The bridge
has been extensively tested statically and dynamically using hydraulic

rams to provide lateral loads arnd free vibration upon release.

6.4.2 Modeling of the structure: The model of the Rose Creek
Interchange is shown in Fig. 6.16. The pinned column-pile cap connec-
tions were assumed to be fixed to allow for testing of the biaxial
berding models. The abutments were modeled as pinned connections. Each
of the columns was allowed to become inelastic. Structural element

properties were based on the actual cross sections and are shown in
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Table 6.2. Structural damping ratio was assumed to be five percent.

6.4.3 Results of dvnamic analyses: The Rose Creek Interchange
model was subjected to the E1 Centro Earthquake with the north-south
component applied in the longitudinal direction and the east-west
component applied in the transverse direction. The results are pre-
sented in Figs. 6.17 through 6.24, Because of the symmetry of the
structure and the motions, the responses for ¢nly piers 1 and 2 are
shown. Figures 6.17 through 6.1€ present the transverse acceleration
responses at the pier tops. The MSE response (sclid lines) is general-
ly of highgr amplitude than the elastc-plastic response (dashed
lines). This reflects the larger effective stiffness medeled by the
MSE. The respcnses are completely out of phase at the top of pier 2.
In sharp contrast to the transverse directicn, the longitudinal
gcceleration responses cbtained from the two models (Figs, 6.19 and
6.20) are nearly identical. This indicetes that the response in the
longitudinal direction is insensitive to the hysteresis model used for
the piers. It should be noted that, because the abutments are modeled
as pins and because of the relatively large axial stiffness of the
bridge deck, the response is cdominhated by the input motion at the
abutments ard is insensitive to the yielding characteristics of pier
bases. The displacements in the lorngitudinal direction (Figs. 6.23
andG 6.24) are also virtually icenticali. Figures €.21 and 6.22 present
the transverse displacenent responses. The effective periocd for the
elasto-plastic model is very long because the columns vielded and
reauced the stiffness dramatically. The MSE model produces relatively

low amplitude displacements by comparison because of its greater and
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more realistic effective stiffness. The displacement histories pro-
duced by the elasto-plastic model predict substantial damage to the
bridge for an earthquake simiiar to the 1940 El Centro Earthquake. The
MSE model predicts moderate displacements and little damage to the

structure,

6.5 The Flamingo Road Qverpass

6.5.1 Description of the structure: The Flamingo Road Overpass
is actually two bridges side by side (Fig. 6.25). The actual structure
spans 270 feet in five unegual slightly curved spans. The decks are
continuous reinforced concrete box girders, cne wider than the other.
Each deck has cne intermediate binge/expansion jeint in the middle
span. Each pier is supported by two columns 3'-3" in diameter and
reinforced with eleven #11 bars., The connection between the columns
anc pile caps is pinned in both transverse and longitudinal directions
by using a small group of five #11 bars positioned near the center. An

idealized pier elevation is shown in Fig. 6.26.

6.5.2 Modeling of the structure: The Flaminao Foad model bears
little resemblance to the actual structure. The model considers only
the narrower of the two bridges. For simplicity, the model ig straicht
and flat (Fig. 6.27). The intermediate hince/expansion joint was
modeled as a true hinge with the glecbal Z directicon moment released.
The piers were assumed to be identical as illustrated in Fig. 6.26.
The abutments were assumed to be rollers and the column connections
were assumed to be rigid at both ends. Due to a restriction in the
zvailable scftware for computing the ultimate c¢olumn properties, the

reinforcement in each column was assumed to be twelve #11 bars equally
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distributed about the perimeter of the column. The structural proper-
ties of the rest of the model are based on the actual cross section
properties and are summarized in Table 6.3. Structural cdamping ratio

was initially essumed to be five percent of critical damping.

6.5.3 Results of dynamic analyses: The Flamingo Road model is a
very strong and rigid structure, as the dvnamic results show. The 1240
El Centro north-south component was applied in the longitudinal direc-
tion and the east-west component in tle transverse direction., The
results of the analyses are presentd in Figs. 6,28 through 6,51. The
longitudinal responses were so small as to be insignificant; there—
fore, only the transverse responses are presented here. The bridge
experienced only minor vielding, hence the large acceleration response
and the small amplitude displacements. The MSE and the elasto-plastic
responses are very similar, because the MSE stiffness degradation was
not large and the elasto-plastic element did not yield. Although the
MSE did yield, it did not change the response gignificantly because
the extent of vielding was limited. Instead of producing a drametical-
ly large displacement, the MSE medel's response charcies only slightly
as would be expected of the actual structure.

Because the yileld moments in the Flamingo Road moedel were
reiatively large, the agpplied acceleration histories were multiplied
by 1.5 and the damping was reduced to three percent. The results
indicate that the elasto-plastic model, upon yielding, caused the
response to become unstable in the transverse direction (FPigs. 6.45-
6.51). Attempts to alleviate the problem, such as using time steps of

integratior four times smajler or mere equilibrium iterations, failed
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to improve the results. Subsequent analyses with much shorter itera-
tion times showed that the elasto—plastic model requires an enormous

number of iterations to produce stable results.

6.6 Comments and Conclusions

In the absence of experimental or empirical data, the best test
of the five-~spring element is to compare its response to that of
ancther element, in this case the commonly used elasto-plastic yield
surface element. The MSE mcdels examined here show that the postyield-
ing strength of concrete ig far more significant than the elasto-
plastic element would predict;The elasto-plastic element is alsoc
subiect to instabilites caused by the severe gtiffness vgriation
during yielding and after yielding. The prooram execution times on the
CYBER 830 at the Uniwversity of Nevada ranged from 16 CP secords for an
elastic analysis of the Meloland model to over 1300 CP seconds for the
unstable Flamingo Road analysis. Elastic program execution times are
three times longer using models with MSE's. Nonlinear analyses are
generally faster using the MSE than using the elasto-plastic element,
depending on the number of ecuilibrium iteraticnsg required. The
Flamingc Foad analysis for 1.5 times the El Centro Earthquake ren in
314 CP seconds, four times faster then the unstable elasto-plastic

analysis.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

A new biaxial bending element for the cyclic analysis of non-
linear biaxial bending of reinforced concrete columns was developed.
The new element incorporates the icdea of representing the column
section by several springs. This approach was first introduced by Lai
(11) who used nine springs to idealize the column. The new element,
namely the five-spring element alsc referred to as MSE in this report,
consists of five springs representing steel and concrete within a
cross section. The MSE was first implemented in a step-by-step static
analysis displacement~controlled program (program APFDIS). Results
obtained using the MSE compared favorably to experimental data. The
MSE provided for a similar amount of energy loss and reproduced
displacement-force response well. The test results indicated that the
MSE provides approximately ten percent less peak strength than the
experimental data suggest., The MSE results are superior to results
cbtained using the biaxial bilinear vield surface model or the tri-~
Jjirear degrading yield surface model (11).

The new five-spring element was acCded to program NEABS, a program
for the nonlinear analysis of bridge systems. The original program
used only an elasto-plastic yield surface model. Testing of the
modified program, NEABS-86, reveaied only one incompatibility. In
order to conserve computer memory requirements and reduce program
execution timeg, the MSE does not use the force equilibrium iteration

subrouvtine ITERN. The elasto-plastic element must use this routine to
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avoid instabilities caused by large nonlinear force losses. Recause
forces change gradually in the new element, this routine was not
needed.'It is therefore necessary that the MSE and the elasto-plastic
element are not used together in the same structural model.

Dynamic analyses of three bridge structures were performed using
NEABS-86. The structures modeled were the Meloland Overpass, the Rose
Creek Interchange, and the Flamingo Road Overpass. The models were
idealizations ¢f the structures not intemded to represent the actual
bridages but to provide realistic geometries and cross sections. The
main difference between the models and the real systems was in the
idealizations of the boundary elements. These eleménts were treated
either as fixed or free to allow the nonlinear column elements to
dominate the response. Results from models using the MSE and the
elasto-plastic element were compared. The results reveal dramatic
differences in the predicted seismic response of the structures. The
elasto-plastic models generally predicted smaller amplitude accelera-—
tion response and larger displacement response at the pier tops than
did the MSE models. The less severe stiffness changes produced by the
MSE model account for the smaller displacement response. The severe
changes in stiffness produced by the elasto~plastic medel resulted in
an unstable displacement history for the Flamingce Road model. Through-
out the testing of MEARS-86, the MSE models did not display any sign
of instabilities. |

Program execution times using the MSE are generally faster for
nonlinear analyses. Elastic analyses using the MSE run three times
longer than those without the MSE, This is because each MSE is

actually five elements which have to be monitored during the motion,

n
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while the elasto-plastic element has but one component. When the
elastc-plastic medel yields, it requires many more iterations of the
program to produce steble results thus making the analysis siow.
Nonlinear analyses can run up to four times faster using the MSE
instead of the elasto-plastic element depending on the number of
eguilibrium iterations specified by the user. Prcgram execution times
on the CYBER 830 at the University of MNevada ranged from 16 CP secorxds
for 800 elastic iteratiocons of the Meloland elasto-plastic model to
over 1200 CP ceconds for the unstable Flamingo Road elasto-plastic
model analysis., The Flamingo Road model with the MSE produced stable

results ard ran in 314 CP secords.

7.2 Cbservations and Conclusions

A new nonlinear biaxial bending element for the cyclic analysis
of reinforced concrete columns was developed and produced excellent
correlations with experimental data for two statically applied force-
displacement specimens. The accuracy of the MSE's dynamic response is
inferred from these few data. There is little doubt that this new
element produces more realistic results than the elasto-plastic
element for biaxial bending of reinforced concrete celumnsg. It has
been demonstrated thalt reinforiced concrete is not elasto-plastic.
However, researchers in this field have used the elasto-plastic model
not because it was accurate but because it is simple anG convenient.
Accuracy of the MSE for dynamic analyses ¢f reinforced concrete
columns in bridge structures can only be cdetermined from experimertel
data. When meastured data fronr either destzuctive testing ¢f 2 full-

scale bridge or from a well instrumented bridge that undergoes

L
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structural nonlinearities becomes available, then refinements and
improvements to the MSE can be made. |

NMonlinear analyses using the new five-spring element execute
faster, do not become unstable, and provide for a more realistic
dynamic response for reinforced concrete columns subjected to biaxial
bending. The anélyses of models using the MSE can offer insight into
the performance of a reinforced concrete structuze cvbiected to

biaxial bending due to bidirectional earthoguake loadings.
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TABLE 6.1

Meloland Overpass Data

{(a) Section Properties:

Eiement Iy Iz J Area
Deck 272.3 4562.0 616.0 27.74
Column {(round) 30.68 30.68 61.4 19.64
Column (rect.) 48.52 19.65 61.4 18.25

(b} Five-spring Element Properties:

Element P (bal) My (bal) Mz (bal)
Column {round) 2500.0 8600.0 8600.0
Column (rect.) 3390.8 10904.2 7911.0

(c) Elasto-plastic Element Properties:

Element P (conp) Myo Mzo Pt/Pc
Colum (round) 11112.0 7350.0 7350.0 0.3888
Colunn (rect.) 10976.0 €550.8 6566.1 0.3936

Element al a2 a3 bl b2 b3

Column {round} =-1.375 -2.884 -0.508 -1.375 -2.884 -0.508
Column (rect.) =-1.315 -2.887 -0.572 -1.461 -2.664 -(G.290

Units: Kips and ft.
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TABLE 6.2

Rose Creek Interchange Data

{a) Section Properties:

Element Iy Iz J Area
Deck 131.3 3533.0 410.6 56.00
Colums 39.1 148.5 117.2 30.00

{b) Five-spring Element Properties:

Element P (bal) My (kal) Mz (bal)
Piers 1 & 4 7474.0 14%60.0 22833.5
Piers 2 & 3 7251.2 11887.2 18662.2

{(c) Elasto-plastic Element Properties:

Element P (comp.) Myo Mzo Pt/Po
Piers 1 & 4 19710.3 18406.0 10068.0 0.2880
Piers 2 & 3 17500.0 12367.0 6402.0 0.1920

Element al az b3 bl b2 b3
Piers 1 & 4 -2.152 -4.278 -1.126 -2.505 -3.405 0.100
Piers 2 & 3 -3.798 -6.919 -2.120 -4.21% -5.15G 0.06S

Units: Kips and ft.
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TABLE 6.3

Flamingo Road Overpass

(a) Section Properties:

Element Iy Iz J Area
Deck 119.¢6 2188.2 400.0 36.80
Pier Cap 21.3 21.3 36.0 16.00
Columns 5.5 5.5 10.9 8.30

(b) Five—spring Element Properties:

Element F (bal) My (bal) Mz (bal)
Columns 1520.0 1745.9 1745.9

{c) Elasto-plastic Element Properties:

Elenent P (comp.) Myo Mzo Ft/Po
Colunns 3747.3 1118.2 1119.2 0.206

Element al az a3 bi b2 b3
Colums -3.671 -6.311 -1.642 -3.671 -3.314 1,642

Units: Kips and ft.
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APPENDIX A
USER'S GUIDE FOR NEABRS-86:

FIVE-SPRING BIAXIAL BENDING ELEMENT: TYEE &

A. Control Data Card (1415)
Cne card is required:

Colums Variable Name Comments
1-5 MIYFE MIYPE = 6 for this element
6-10 NREAM Nunber of elements
11-315 NUMETP Number of cross section types
16-20 blank
21-25 NUMMAT Number of material property sets

B. Meterial Property Cards (I5, 2r10.0)
One card is required for each type (as many as NUMMAT specified
above) :

Colums Variable Name Cenments

i-5 N Material property number

6-15 FC(N) Compressive strength of concrete
16-25 FY (M) Yield stress of steel rebar

C. Cross Section Property Cards I (15, F10.0, 2¢5.3)
One card is required for each type (as many as NUMETP specified
above) :

Columns Variable Nanre Comments
1-5 N Cross section property number
6-15 AGROSS (M) Gross area of the cross secticn

16-20 BTO(N) Stiffriess degradation factor for tension
21-25 BT1(N) Stiffness degradation factor for compression

D. Cross Section Properties Cards II (5F10.0, I5)
Cne card is reguired for eaclh type (as many as NUMETP, specified
above) :

Columns Variable Name Comments
1-10 PRAT, Average axial load at balanced moments
11-20 YMBAL Balanced moment about the local y axis
21-30 ZMBAL Balanced moment about the local z axis
31-40 SUMA Total area of steel in the cross section
41-50 UrD Development length for the rebar (note 1)
51-55 MATTP Material property set for this section

Mote 1: ULD=(area of bar)*f /(n*diameter of a bar*u)
where u=14*(£3)*¥0.5 (psi)



E. Element Data Cards (1415)
One card is required for each element (as many as NBEAM specified
above) :

Columms Variable Name Comments

1-5 INEL Element identification number

6-10 INI I-joint number (same as for a beam element)
11-15 INng J-joint number (same as for a beam element)
16-20 INK K-jeint number (same as for a beam element)
21-25 blank

26-30 IMEL Cross section property number

MNotes: NSDIV and MAXIT must be set to zero.
I-joint and J-joint number cannot be the same point. They
should be separated by 0.1 (any compatible units) in the axial
direction.
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b
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c
Acenter
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corner
A

gross
ASt
bt0

btl

APPENDIX B
NOTATIONS

area of a single rébar;

area of concrete represented by the spring;

area represented by the center concrete spring;
area represented by a corner concrete spring;
gross area of the cross section;

total area of steel in the cross section;
degradation factor for tension ;

degradation factor for compression;

diameter of a single rebar;

total current displacement in the ith spring;
maximum displacment a spring has experienced;
distance between the spring locations in the y direction;
distance between the spring locations in the x directiong
yield displacement;

Specified compressive stength of concrete in psij
total current force in the ith spring;

forece at fhe unlecading point R;

force at Um;

specified yield stress of the rebar;

element stiffness matrix;

initial elastic stiffness for the center spring;
initial elastic stiffness for the corner springs;

stiffness at the ith spring locationg
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elastic stiffness of a steel spring;
post-yielding stiffness of a spring;
development length in inches;

pointer to the next rule;

balanced moment computed from flexural theory;
applied moments about the X and y axes, respectively:

yield moments about the x and y axes, respectively;

R *(d /d )th;
se "y max

btl,
(Kse+Kce)(dy/dmax) ;

balance axial load for the section;
yield level in the concrete spring;

bond stress in psi;

maxiumum displacement after yilelding;

net axial displacement defined as the displacement

at the center of the section;

rotations about the x and y coordinate axes,

respectively.
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