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such analysis. The rigidity characteristics of elements of a building have been
identified, and periods and spatial forms of free oscillations of buildings
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Introduction

The XXV Congress of the Communist Party of the Soviet Union presented
civil engineers with the task of constructing buildings, quickly and cconomi-
cally, based on modern technology. To achieve this objective, “... the build-
ing materials and construction industries would have to, firstly, cxpand the
in-plant production of building components and joints necessary for the
complex and mechanized assembly of residential and public buildings in an
uninterrupted manner.”*

Extensive use of modern methods of constructing buildings and the in-
creasing number of stories in urban housing systems in seismic regions have
led to a qualitative change in building construction as well as new problems
in engincering. The discrepancies between some assumptions used in methods
of analysis and the actual behavior of buildings under seismic activity should
be carefully noted.

One of the principal discrepancies arises when a complex three-dimen-
sional structure is represented by a simplified analytical model in the form of
a cantilever bar. Such a model cannot define the behavior of a building under
seismic activity with a sufficient degree of reliability. In current practice, the
three-dimensional analytical model of buildings is represented by the action
of a grid system subjected to horizontal forces. However, this represents the
reaction of the structure to only one type of force, for example, wind., How-
ever, during an earthquake, when the propagation of seismic waves results
in building vibrations in all directions in space, the given analytical model
cannot fully represent the truc naturc of structural behavior.

Research on this subject aims at the creation of a three-dimensional ana-
lytical model of frame-pane! buildings which will represent real conditions
during seismic activity and will be convenient for practical methods of analy-
sis. The following problems have been examined: the theoretical basis of a
three-dimensional analytical model of buildings considering the mutual beha-
vior of horizontal (floors) and vertical (frames and diaphragms) members

*Proceedings of XXV Congress of the Communist Party of the Soviet Union, Mos-
cow. Politizdat, 1976, p. 142,
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when the model is subjected to forces in all directions; substitution of verti-
cal and horizontal members of buildings with equivalent bars with equivalent
stiffness characteristics; determination of the dynamic characteristics of the
building; examination of scismic wave effect and estimates of seismic loads
on a building and design forces in its members.



CHAPTER 1

Special Features of Analysis of Frame-
panel Buildings for Seismic Effects

1. ANALYTICAL MODELS OF BUILDINGS

A building is represented by two analytic models: the dynamic and the
static. The dynamic model gives the distribution of mass and structurat de-
formability. [t shows those propertics of a building which determine its main
dynamic characteristics: periods, wave forms of natural oscillations and damp-
ing characteristics. In the spectral method of analysis, the dynamic model
helps to establish the seismic forces in buildings. The static model, which
shows only the deformable characteristics of a building, permits determina-
tion of the state of stress in the strecture. In practical design, the static model
is used to redistribute seismic loads and determine forces in the building
members. Many theoretical investigations are devoted to the selection of a
suitable analytical model and have in turn helped to develop and improve
design methods.

The frame-panel building system, in which the load-bearing and space
enclosing functions are different, is a widely used building method for seismic
construction. The external partitioning panels, mainly made of light weight
materials, share so small a part of the load that their contribution can be
ignored in practical design. Hence the design model of frame-panel buildings
is represented by a grid system of vertical and horizontal members (Fig. 1),
Depending on its deformation characteristics, a building design model may
be two or three dimensional, In a two-dimensional modcl the floor is consid-
cred as an absolutely rigid disk in its own plane. In such models the load-
bearing structures, which are parallel to each other in an actual building,
are shown standing side by side in one plane and joined together by hinged
braces at the level of cach story. These braces, which simulate the role of a
rigid floor, provide simultaneous displacement of vertical members (frames
and diaphragms) due to the action of horizontal loads (S) (Fig. 2). The use
of the method of forees results in laborious computations in the design of
multistory buildings; therefore, simplified design models are often used. The
simplification consists of the replacement of braces of the two upper floors



4

and the third at the level of the ground floor (Fig. 3). The other simplifica-
tion in the model consists of changeover from the discrete interlinking mem-
bers to a continuous system of braces. In this case, the system of canonical
equations with many unknown design parameters with one vertical row of
braces may be replaced by a linear differential equation using the theory of
composite bars. The sclution of this linear differential equation provides
readymade formulae for a cantilever bar. If there are many vertical rows, a
system of differential equations must be solved,

The simplified design model of a building may be represented by a double
layer cantilever beam with continuously distributed braces between them,
where one layer (diaphragm) undergoes bending strain and the other (frame)
shear strain {Fig. 4).
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Fig. 2. A two-dimensional analytical model,
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Fig. 3. A simplified two-dimensional discrete model.
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Fig. 4. A two-dimensional continuous model.

In many cases we must consider the deformation of floors because this is
comparable to the deformation of vertical components. Consideration of this
factor leads to a three-dimensional model in the form of a thin walled canti-
lever bar or a plate-like system. The three-dimensional design model in which
the floor undergoes shear and bending strain may be represented by multi-
column vertical diaphragms connected at the floor level with elastic horizontal
braces (Fig. 5).

A three-dimensional analytical model of a building, with floors which
resist torsion, is represented by a double layer composite cantilever bar with
continuous braces which yield to torsion and lateral displacement (Fig. 6).
A discrete analytical model in the form of a grid system is solved, without
considering the mutual torsion of floors and vertical members (Figs. 7, 8), by
using the method of forces or the method of grouping the floors and frames,
which, while reducing the number of unknownsand simplifying computation,
determines the three-dimensional behavior of the building with sufficient
accuracy.
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Fig. 6. A three-dimensional continuvous model of a building.
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Fig. 8. A simplified discrete three-dimensional analytical
model of a building.



In a discretely continuous three-dimensional model (Fig. 9) in which the
rigidity of vertical frame members is uniformly distributed in the horizonial
direction, we use the method of dividing the three-dimensional system into
two-dimensional uniformly spaced elements. The interaction between thesc
members is modeled by elastic supports. The design problem of a three-
dimensional system leads to the design of a beam on an elastic foundation
with elastic supports and the determination of displacement of vertical mem-
bers and rigidities of the thrust-carrying supports,

/"/H: ./":L l_i— 2! | /' 2"‘*//
/.;h 'L /L — %‘J//
: P i
r*" d n n'F‘ # ug
A (3” T'I’ H Jﬂ ﬂlﬂ T\J" i

% ,&x,&ﬁﬁ&,&ﬁﬁ
—

\

Fig. 9. A three- cllmensmnal analytical model of 2 bulldmg divided into
two-dimensional elements:

The three-dimensional analytical model of a building may also be repre-
sented by a prismatic shell consisting of a finite number of rectangular plates,
with a cross section defined by an arbitrary broken line.

The analytical model of @ building in the vertical direction also deserves
attention (Fig. 10). Modern buildings are not absolutely rigid because of their
precast construction and dimensions in the plan.
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Fig. 10. General view of 2 building including action by vertical loads,
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Flg. 12, A continuous design model of a building with foundation.

a—foundation with superstructure; b—foundation with equivalent
superstructure.

While designing framed buildings for non-uniform sinking of foundation,
the analytical model of a building in the vertical direction may be represented
by separate floors joined with the foundation by hinged braces in the form
of columns (Fig. 11), ignoring the effect of bending moments in them due
to the sinking of the foundation. Another model is in the form of a compo-
site system consisting of two members (foundation and superstructure) joined
with distributed vertical and elastic horizontal shear braces. Their rolc is play-
ed by the columns of the ground floor frame (Fig. 12).

2. STIFFNESS CHARACTERISTICS OF BUILDINGS

An important aspect of the scismic design of buildings is the determina-
tion of the stiffness characteristics of their load-bearing components. Such
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characteristics define the physical significance of a building design model.
Their correct determination helps to establish the seismic loads and their
distribution between the various components. Examples include the universal
concepts of axial, flexural, shear and torsional rigidities. The concepts of
equivalent or apparent rigidities correspond to apparent deformations of a
building.

Separate bars and their joints with each other, which may be elastic, affect
the magnitude of equivalent stiffness characteristics. The latter is determined
by the laboratory method, that is, by engineering design as well as by static
and dynamic tests. The static test consists of application of a horizontal force
on the building. The dynamic test involves determination of the respective
parameters in the process of oscillatory motion of the building. The vibration
tests help to determine the equivalent shear and bending stiffnesses of vertical
members of a building as well as floor stiffness.

3. BUILDING OSCILLATIONS

For the dynamic design model of a building in the form of a cantilever
bar the following types of natural oscillations are significant: {ransverse,
torsional and vertical. Depending on the stiffness characteristics of a bar, the
transverse oscillations may be flexural, shear or flexural-cum-shear. The
transverse and torsional oscillations occur separately as well assimultaneously
when the centers of mass and rigidity are not coincident.

In buildings with large dimensions in the plan, for which the dynamic
model is a plate fixed to the foundation, transverse oscillations occur in the
horizontal and vertical planes. There are three types of natural fransverse
oscillations representing the nature of floor displacement in space: translatory,
torsional and flexural.

During seismic activity, soil movement is conveyed to the building through
the foundation which suffers horizontal and vertical displacements. In this
process the building is subjected to two types of oscillations: horizontal
(translatory and torsional in the lateral and longitudinal directions) and ver-
tical. Seismic oscillations of buildings with large dimensions in plan are
special. Here the seismic effect is reduced according to the spectral method
of the theory of seismic stability.

4. MODERN METHODS AND TECHNIQUES OF ANALYSIS

For greater accuracy, the analysis of the building should be based on a
three-dimensional model; this better reflects the behavior of the building than
a one dimensional cantilever model. The computations become very laborious
as the design model becomes more complex. Modern computational tech-
niques have significantly changed the methods of solving many problems,
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accelerated computations and improved their accuracy. The use of computers
has shown that linear algebra is more adaptable to computations. This ex-
plains the exteunsive use of the theory of matrices in structural mechanics. The
number of cquations to be solved for a real, modern building may run into
a few thousand. Tt is therefore necessary to use special techniques to reduce
the quantum of operations and the memory required to store this information
in computers. For example, obtaining the differential equations of equili-
brium in terms of displacements on the basis of a discrete-base system is an
effective method. This method permits derivation of differential equations in
much the same way as canonical equations of the algebraic type uscd in struc-
tural mechanics and helps to reduce two-dimensional and three-dimensional
problems to one-dimensional ones. This method of obtaining a system of
differential equations makes it easier to solve bar systems which have a
high degree of statical indeterminancy. The changeover from an original com-
plex systcm 1o a simpler one, that is, analysis of complex systems by sub-
division into parts, is also effective.

Indeed, in practice, the analysis of multistory buildings uses approximate
methods. This is justified because the prerequisites, which form the basis of
analysis, are largely arbitrary. The design models of buildings are idealized
and the stiffness characteristics are entirely approximate because their values
significantly change due to the formation of cracks, creeping of concrete and
so on. The criterion for assessing the accuracy of approximate methods of
analysis is the experimental study of a real building and its model in a state
of stress. The methods described in this book are based on the methods in-
vestigated by the author. :



CHAPTER 2

Plane Orthogonal Bar Systems

The dimensions of a body in the form of a beam are characterized by
three dimensions: two are of the same order while the third is much larger
relative to the first two. From this basic feature, the size of this body, we can
make many geometric hypotheses:

1. Hypothesis of plane sections, according to which the cross sections of
a beam remain plane and normal to the elastic line of the beam after it bends.
The bending strain of the beam is examined independently of the shear strain
which distorts the plane of beam cross sections.

2. It is assumed that the distance between the longitudinal lavers of a
beam does not change and they do not interact with each other,

3. Ounly relatively rigid beams are examined in which the bending is slight,
relative to the height of beam cross section and the angles of rotation of
cross sections are small relative to unity.

To study the stress-strain state of a plane orthogonal system of bars under
the action of coplanar forces we must study the stiffness characteristics of its
constituents made up of individual bars.

1. STIFFNESS CHARACTERISTICS OF BARS

When examining the construction of a building, an individual bar may be
a column, cross bat, lintel, partition and so on. As the construction is pre-
cast or monolithic, their resistance to different forms of deformations varies,
Let us intreduce the following concepts of stiffness characteristics of a bar:

I. The rotational end stiffnesses of bars are denoted by o/, 5, «" wherea
is the reaction developing at the bar end when this end is turned through a
unit angle. 8 is the reaction at the opposite end of the bar (Fig. 13). From
such a concept of stiffness we can include the bending and shear strains
simultaneously, omit defining the reactions per unit displacement of the bar
end and consider different types of end fixities.

In general «/ and or are unequal because of different end resistances to
turning caused by unsymmetric geometric and physical factors.

2. Longitudinal end stiffness of a bar is denoted by ¥ andis equal to the
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reaction developing in the bar under unit longitudinal displacement of its
end (Fig. 14).

Fig. 13. Rotational end stiffness.
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Fig, 14. Longitudinal end stiffness.

3. Torsional end stiffness of a bar is denoted by @, It is equal tothe reac-
tion to torsion developing in the bar when its cross section is twisted by a
unit angle (Fig. 15), The reactions of a bar, fixed at the ends are given in Fig.
16 for known values of rotational end stiffnesses.

Knowing the end stiffnesses of a rod, a stiffness matrix may be formed
by which the forces at both ends can be determined for given end displace-
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Fig. 15. Torsional end stiffness,
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Fig. 16, Bnd reactions on bars due to displacements.
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ments. In the cxpanded matrix form this relationship will be:

"M opn trn Amn jsmn_ Apn % P
|
M },?,f : @mn - @nm Vin
' -Rmn Amn an Anm - Bnm Wm
Nmn — Vmn Ynm CP:.':”
o x| e
l Mo ﬁmn Aum G~ Anm Pn
% M 3,% — O Onm Va
|
| an — An— By, — A Bam W
t
j N"m Ymn = ¥nm ,Q?nor'
where
__ %mn _*_ Iemu - 4 o S + ,an,
Amn - ] s fipm T ‘—'T""_'s
ma mn
Onm 2ﬁm + et
Brn = Bnm = I—"—_rzn" = - .

The first column matrix is the matrix of forces, the second square matrix
is the stiffness matrix for the bar while the third column matrix is the dis-
placement matrix. Considering these matrices as block matrices, we can
divide them into submatrices. Matrix (2.1} will then become:

; SIP”‘T
Snm

Individual bars may be of these types: bars with constant stiffness and
infinitety rigid cnd connections, undergoing flexural and flexural-cum-shear
deformations, and bars with flexible joints which yield under bending mo-
ment and longitudinal force, as in precast reinforced concrete frames.

We determine the end stiffuess characteristics of bars by the method of
forces. Their magnitudes for various types of bars are given in Table 1.

H
kﬂlﬂ tﬂlﬂ
t)i’lll knm

Zm

. (2.2)

Zn

2. ANALYSIS OF PLANE ORTHOGONAL BAR SYSTEMS

A plane orthogonal system of bars is one in which the active loads liein
one plane {Fig. 17). Let us examine a plane orthogonal system of bars in
which the joints are theoretically squares of zero dimensions to which the
bars are connected. The joints of the system are assumed to be elastically
connected to points which are fixed in terms of horizontal, vertical and an-
gular displacements. The connections of the bars with the joints may be rigid
or elastic. These joints are subjected to the actions of external loads (Fig.
18) in addition to the support reactions transmitted to them by the loaded
bars connected to them.
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Table 1.
Value of end stiffness
Type of rod ,‘
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The support connections are the usual joints of the system with specific
stiffness characteristics. For example, arigid support connection has C, = =,

Cy = o0, Cy = co0, A support which allows only horizontal displacement has
C¢300,Cuf=0, CV=OO. :
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Fig. 17. Plane orthogonal system of bars.
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A support which allows free rotation and elastic displacement in the hori-
zontal and vertical directions has C, = 0, Cw = 0, Cy # 0. The foundation
support of the system may be provided by a bar on an elastic base.

Because the system of bars under consideration follows the linear elastic
law, the forces and displacements have a linear relationship, For a horizon-
tal bar this relationship is expressed in the following matrix form:

Mo Cyen Amn Bon— Amn Om Mo
R, Amn Bon Apm— Bun Vi R
Nown | _ — Yn Y nm N W + Ne 23
Mom Binn Aum %y — Anm On MO
R ~Amn—Bupn  — Aum Bum Va R,
N Yo — Vo W, Now
For a vertical bar it is: |
M. _ Ae Ben ~ Aen
Nen Yen ~ Yne
Rou ~Aen — Bon— Ane B,
M | | Ben Ane e ~ Ay,
Ny - Yen Yne
Rie Aen Ben Ape B,
Pe M,
Ve ND,
ik + &, . .4
Pn M,
Vv, NO,
w1 R,

The mairices of forces and stiffnesses for horizontal and vertical bars
differ due to the rearrangement of somc elements. The forces in the elastic
links of a joint may be expressed in the following matrix form:

M, Ce 0 0 @n M?
Nol=l0o ¢ o {x|v|+]|N| (2.5)
R, o o ol |wl (R

The last columns of the matrices in these three relationships are the
matrices of external loads. These relationships, written for individual bars
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and joints, are considered the elements of a block matrix which we shall call
a complete matrix.

Let us form complete matrices of forces for the bars and joints of the
system, separately, by successive increments. In this case the respective com-
plete matrices of stiffnesses of the bars and joints of the system will become
quasidiagonal. The complete column matrix of displacements, for the bars
constituting the system, will have repetitive elements and the joints of the
system will have no repetitive elements.

Hence the relationship between the forces and displacements for a frag-
ment of the system will be expressed by two matrices of the form:

for bars

S mn tam Zim S0
Sum L Kum Zn SO
Shic Kk tin 2, S,
Skn Lk K i 2z S?,
S| = kot | Xl | Tlse 12 @9
She I e Kon Zn S0,
Sy s L Za 59,
| St sk Zf S?n
for joints
Sul | Cn Zn ||| S5,
S Ca Zy 50
Sp || = Cr s llze ||+ S0 2.1
Se C. Z, S0
S Cr zr S7

Let us combine the complete column matrices for displacements of the
bars by grouping identical elements and shifting the lower elements into the
vacancies, The matrix then acquires the form of a complete column matrix
for the displacement of the joints. The complete matrix of stiffnesses of bars
must correspondingly change. For this its left side is multiplied by matrix
llall. Matrix lla] is obtained from the columns in which all unknowns succes-
sively become unity.
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To formulate the equilibrium eguations it is necessary to sum up the
respective forces in all the bars framed in each joint of thesystem. To doso
we shall use the matrix || D| for the bar connections and unit matrix {| E[| for
the joint forces.

Matrix | D}l of bar connections is:

1D = 000 100 100 000 000 100 100 000 ‘ 2.9)
000 010 010 000 000 010 010 000
000 001 001 000 000 0CI 001 60O
The cquilibrium equation of the system is written as:

1D (levarsll X fiall X Hzll 41187, 5 1) =+ B (1Ksoinsll X 121 +150;,,, 1) =©.

(2.10)
The matrix of displacements is determined from equation 2.10.
lzll=(lall™ X 1 &pars| 7 X TDYE + [ Kiotnes||TE X LE])
X NDIX NS, oo W IENXES 1D (2.11)

The complete system of analysis consists of finding all the forces in the
end sections of the bars and joint connections. These are determined by the
following formulae:

[Ssarsll =1 kevarsl] X Nl X 2[4 (15,5 1 (2.12)
“Sjomtsu ‘“‘ijomtsH X I]ZH~}— [I JOlﬂtSH (2'13)

“The proposed computational method leads to simpler equations which
simultaneously consider the conditions of fixity. As a result, all types of de-
formations in a bar and elastic restraining forces at its ends may be consid-
ered. The problem of frames in the form of bars on an elastic foundation
may also be solved by this method. The given method introduces substantial
simplification in the preparation of basic data, thus permitting automatic
computation for all stages.
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To derive the equilibrium equation in the expanded form for a bar sys-
ten), by the displacement method, let us use matrices (2.6) and (2.7) given
for a fragment of the system of thenth joint. By using the connecting matrix
| D|| we can obtain the equilibrium equation of the system in the form of
algebraic equations:

Bunom + (nm + cur -+ otne -+ tnr + C2) 0n + Buigr + Bewpe
A Bupor+ Aum Vo + (= Ay + Ang) V= Ay Vi + A, W,
T (—dne + Anp) Wa— Ay W - M= 0
A @i+ (A — Aun) 00— Apnore + Biwn Vin— (B + Bup.
F Yen o+ Vur+ C) Vat B Vie = yeu Ve + Yur Ve + Ny = 0;
Aen e + (Ane_ Anf) on—Are s+ Ben We~ (Youn -+ Yn

+ Ben + an‘[“ C,‘:) Wn "'I" Baf Wf'Jf" Ymn Wm + Yok Wk + P,? = 0.
(2.14)

The first expresses the equilibrium condition by equating to zero all ex-
ternal moments and moments in the end sections of the bars and joints. The
remaining express the equilibrium conditions by equating to zero the sum of
reactions caused by transverse and longitudinal forces in the end sections of
the bars and joints as well as by external forces acting along axes x and y.

3. DIVISION OF A PLANE ORTHOGONAL BAR SYSTEM
INTO CONSTITUENT ELEMENTS

Let us examine a joint of a plane bar system which, as deseribed above,
is a theoretical square of negligible dimensions to which the bars are attached
(Fig. 19). We assume that this square consists of two layers and we assume
that the two bars joined with it in one direction also consist of two layers.
By dividing the square into layers we obtain a separate joint of bars with it
in the other direction. To satisfy the condition of continuity of deformation
in the joint the layers of the theoretical square are assumed to be connected
with braces that provide rigidity against angular rotation and horizontal and
vertical displacements (Fig. 20). :

The equivalent scheme (Fig. 21) may be obtained by joining the two
schemes, of which the main one has braces for horizontal and vertical dis-
placements. In the second scheme of the joint, the individual bars framing
into that joint have the same stiffness as in the main scheme. Such a concept
enables us to divide the joint, which results in separate groups of bar sys-
tems. . !

If the entire bar system is cut by a horizontal plane passing through the
nedal points (points connecting the joints), an equivalent system is obtained
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Fig. 20. A joint split up into its constituent components.

connecting all separated joints and linking to it alf the vertical rods (Fig.
22).

Introduction of a rigid plane makes it possible to satisfy the hypothesis
of plane sections for all the nodal points of the system lying on the section.
Individually each vertical bar attached to the system of a row also satisfies
the hypothesis of plane sections,

When an orthogonal bar system is cut by horizontal planes at cach floor
level, the system divides into separate floors and columns. Each floor is in
the form of a single story closed bar system in which the horizontal bars have
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half the stiffness while the vertical bars have the full stiffness. The columns
form a joined row of a system of vertical bars (Figs. 23, 24).

Similarly the system may be cut by vertical planes passing through the
joints. In this case the system breaks up into bays and beams. The bays of
the system also form a single story bar system in which the vertical bars have
half the stiffness. The beams form a joined row of & system of horizontal
bars (Fig. 25).

4. STIFFNESS CHARACTERISTICS OF INTERFLOOR
ELEMENTS AND COLUMNS

Let us examine a story located between two rigid planes to which it is
connected (Fig. 26). We assume the story is a bar of uniform section which
has equivalent shear and bending stiffnesses. To determine the effective shear
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stiffness of the story let us shift the upper rigid plane by W = 1. All joints
of this story also shift by 1, thereby turning the joints (Fig. 27). A reaction
Q = ZR; develops in the story and its equivalent shear stiffness is determined
by the formula:

[GF] = QI/I#’ (2.15)
where /1 is the story height,

The equivalent bending stiffness is determined as follows. Let us turn
both planes around the center of rigidity of the story in opposite directions
so that an angle ¢ =1 is formed between them (Fig. 28). All units of the
story turn and ‘shift vertically by a known magnitude., A reactive moment
of magnitude M = ZM; + X (NI); develops in the story and the cquivalent



Fig. 25. A bar system divided by a vertical plane.
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Fig. 29, Determination of bending stiffness of columns.

bending stiffness will be equal to:
M
et
The second member of the system, the column, has bending stiffness. A
column of height # may be taken to represent the story (Fig. 29). When the
system becomes deformed we assume that all columns bend through the
same angle, Hence they may be represented by one column, with an equiva-
lent stiffness equal to the sum of the stiffnesses of all of them. To determine
the latter, let us turn all units of the story so that anangle ¢ = 1 is formed
between the opposite joints. Reactive moments AM; will develop at the ends
of the vertical bars of the story. The total moment will be equal to
M = ZM; and the equivalent bending stiffness of the column can be deter-
mined by the formula:

[ET] = (2.16)

[Ello = ”i’”" ‘ 2.17)

Let us determine the stiffness characteristics with the help of the
matrices:

[GF] = AIQ| x|kl x |lall X1zoll; (2.18)
[ED] = BiiM|| % NIkl X [lall ¥zl (2.19)
[ETo = hi| My X |/k|| X [la]| X {|zarqlls (2.20)
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where ||k|} is the complete stiffness matrix of the story, j|alj is the matrix
corresponding to the group of displacements, ||Q]] is the matrix of inter-
connected posts to determine the reactions in the story, || M|} is the matrix
of interconnected posts to determine the moments and longitudinal forces in
the story, | My is the matrix of interconnected posts to determine the mo-
ments of the column, |zp|| and ||z are the matrices of unknown angular
displacements to determine the shear and bending stiffnesses of the story,
llzm,il is the matrix of given angular rotations to determine the bending
stiffness of the column.

The following equations are used to determine the matrices [|zg| and
llzagll:

1D x 1 &fl xflali > llzoll = 1D} k|l X fiall X {lzwl; (2.21)
DI XK < flatt X lzadd] = [1DY < kil < [ai] X [[zv 15 (2.22)

where |zw| is a matrix of unit horizontal displacements and |jizy| is a dis-
placement matrix of unit vertical displacements.

The required unknowns [|zp|| and ||zy|| are determined from the follow-
ing formulae:

lzgll = (lall ™t X {[&I X DI X121 X Ikl X lall % [lzw )
lzasll = (llall ™ X A7V D= X (1D X 1Kl X Nlall X izv ).

To determine the stiffness characteristics of a story in the given system,
the equilibrium equations are used in the expanded form:

Bunnorn + (G = ke 1 tne)Pn + Bukr + Bene + AumVin
—(Apm~ AV — AV + ApeWe— AneW, = 0;
Apnom T (Aum— A Yon— Arwor + BrunVir— (Bn + B
+ YV + BuVi + vV e = 0;

Z;l (A, o) + gl (A}, o) + ; (Bhas) WH—gl (Buar)i W2 =G,
(2.24)

(2.23)

where o, 3, ¥ are the end stiffnesses of the bars.

5. DERIVATION OF DIFFERENTIAL EQUATION
FOR A TWO-LAYER BAR

An orthogonal plane bar system (Fig. 30) may be represented by a two-
layer bar. The first layer of this bar is built up along its height by the inter-
floor elements while the second is a column consisting of individual vertical
members (Fig. 31). The layers are joined by discrete rigid horizontal braces.
Such a concept significantly simplifies the analysis of an orthogonal bar
system.
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When studying plane orthogonal systems with many hotizontal and
vertical members, the number of equations becomes very large in practical
situations. If the number of horizontal members is represented by < n »
and the number of vertical members by € m » then the number of equations
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is 2nmm =+ n, without the longitudinal deformations in the horizontal members.
If the system is considered in the form of a two-layer bar, the number of
equations will be 3n. However, in this case, m equations are formed separa-
tely to determine the equivalent stiffness characteristics of a story. In many
practical situations the algebraic equations of a two-layer bar become differ-

ential equations when—:l— - 0.

Let us examine a two-layer bar with discrete braces, acted upon by
horizontal forces applied at its joints. In the matrix form the equilibrium
equation for the joints and their neighborhood will be of the type:

I DIkt x llali X Hzll) + (Kot | X HEN X ||2}1) = REE XIS, .,
(2.25)

where the matrix of connections in the neighborhood of the joints under
consideration will be
1 01 000G OGO
[Dij=|C 1 01 01 0 1|, (2.26)

0O o0 0 0 1 0 1 O
and the matrix of forces will be of the type:

M,
R,
M,
R,
181 =Ikll x liali > 1zl = || (2.27)
. M"!el
R.Nlel
Mnlfl ‘
Rpipy l
The matrix of displacements will be
Pe
W,
Per
Ze ®n
lzll=1l z» ||= | Wn |, (2.28)
Zf (Plll
Qs
Wy
£
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where ||4]| is the matrix of stiffnesses of the bars in which the rotational-end

stiffnesses for the first layer will be equal to:

_ 4[EI [GF]I2+3[EI]. , 2[EI [GF]i—6[EI]
= Th GRRFIEY PT TR [GFIRF 20

For the second layer:

_ AlE .,
o= k 3 18"'

b

2[EIo
7

where [GF), [EIl, [£l]o are the equivalent shear and bending stiffnesses
ofa story and the bending stiffness of the column; % is the height of the
story.

Let us express the displacement of point n by the function Z, (z). The
respective displacements of points <€ ¢ » and < f'» will be expressed as
Z. (z—h), Z; (z -+ h). Let us expand the functions Z, (z—h) and Zy (z -+ k)
in the Taylor series in the neighborhood of point n. Then the matrix of
displacement ||zl will become:

Z,(z—h)
BORS
lzll = || Zu (@ =(!Ia:l\+i]agll xnh—g‘—,—g“

Zp(z + h)

d a

dz dz?

a3 d4 P

x| 4 +|[a31i><”7k§—,4i:—...“>< EN g, @B
45 ’ ) 46l
s % P
where matrices ||a|| have the following values:
100 -1 0 0 100
010 0—-1 0 0109
001 0 0 -1 001
100 0 0 0 0060
lai=) 0 10 ;llal=| 0 0 o0flal=]oo0o0 | (230

001 0 0 0 000
100 1 0 0 1060
010 o 1 0 0160
001 0 0 1 001
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To obtain the system of differential equations of equilibrium let us sub-

stitute displacements ||z]| in (2.25) and examine the limit _;lf -

lim [[L D >¢ (0 < lial) -+ (o] IIEH)]><([Ia1H+HazH

=0
H
/R
% Hh’?ﬁ"’ K “
d d2
dz a7z
d3 d* Pn
ey 2 4 6 e
% dz? +lesl] xl %, —%—», fér s H % dz4 ) W,
" ! ! ! s
@5 a N
1 o 1
K g = = IBLXS% X s (2.31)

where H is the height of a two-layer bar, the matrix of stiffnesses of
joints € n » and <€ n » |Koinsl]= 0 and the matrix of external loads

|0
150,45l = || P || where P is the horizontal nodat force.
0
The system of differential equations for a two-layer bar is as follows:
_Adw _ 1El) d% _
dz [GF] dz* g
do d3eq dxw aaw
[GF] z —Z[EI]() dz3 -+ {GF]—d-Z—z“ -+ [EI]()—d—ZT =-4q,
aw
D1— 7‘2— == O, (2.32)

where g = —;; is a distributed load.

To determine the forces in the layers of the bar, let us use the matrix of
member forces €eny»:

Men ten Aen [gen - Ac’n

Pe
-Ren - Aen - Bcn ""Ane -Bne We ) 33
S X ' .
Mnc fgcn Ape Une — Ane P ( )

Rne Aen Ben Ane - -Bne Wn
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Substituting displacements in (2.33) we obtain the forces in the bar at
point €n in the limit 4 —» 0:

M, . B
| || =t (et +tl x| 557, 5|
4 a
dz dz?
- 2 .
=5 : e @n
K@ x| B x5 | @
&5 ds '
= Pz
where the matrices have the following values:
1 ¢ -1 0
01 0 -1
_ 10 -190], . R
LARTE \,ualu—-il N T
1o 1 6 0
1 0
01
llas| =
0
g 0

In the first layer of the bar, the {orces are determined by the formulae:

— do. n aw
My =Bl - R =~ [CF]¢ +[GF]——; (2.35)
and in the second layer by:
W aw
M, =~[El] d7; Ry =—[Elly g (2.36)
The magnitude of ¢ is determined from the condition:
[El] d% 4w

[GF] dz¢ ~ * T 4z
The boundary conditions are expressed by a system of differential equa-
tions of equilibrium for the end points obtained from (2.31), in which the
matrix of joint stiffnesses [|kjoinesll has a specific value. For the lower point



of the two-layer bar it will be:

c, 0 0 |
Wioins =11 0 Cw 0 , (2.37)
0 0 Co |

where C,, C,, and Ci» are the characteristic stiffnesses of the elastic connec-
tion against rotation of the first and second layers of the bar and against
horizontal displacements of both layers,

The boundary conditions for the lower point of the bar are of the
following type. For z = Q:

oCy — [E] -

dz =0

z==0)

w ) W
~16Fl9 +GF1 S rtn T W =0

{IW

= 0. (2.38)

=0

#1Cp= BT

When the lower point is rigidly fixed, the stiffness characteristics will be
Cy = 0, Cy, = o, Cyr = oo and the boundary conditions at z = 0 will be
e=0;, W=0, ¢ = 0. (2.39

For the upper point of the bar the stiffness characteristics will be C, = 0,
C,, = 0, Cyw = 0 while the boundary conditions will be as follows:
for z = H:

dp
dz =0
—[GFp 4 [GF] ﬂ_ —1En, LW d W —
2w
aw ,
=0 _ (2.40)

To solve the system of differential cquations (2.32) let us represent the
displacements by the following sum: W = Wyenq + Wi where Wiena is the
displacement due to bending strain and its differential isequaltop = %H;Ef’f‘—i ;
while W,y, is the displacement due to shear strain.

Substituting these values in 2.32 we get two independent equations:

d* Wb] [EI W _
[ET]o L (I + {E,]Q)[G | =3 =4 (2.41)

d Wbcnd

[ETo[ET]  d®Wiend
[GF] dzs

—(IETo + [ET) ——gq.  (242)
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Hence a two-layer bar is represented by two differential equations, one
of which gives displacements caused by shear strains and the other by bend-
ing strains. The forces in the first layer of the bar are determined by the
following formulae:

d Wbend

My =—[E1] L Ri= 6P

or

Ry =—[EI & CVI,V‘:“‘* ) (2.43)

and in the second layer by:

da? en
M, =— IEIIO W d32+ Wsn) ;

Ry=—[El & (W“:;;;r W) | (2.44)

Differentiating equation (2.41) twice and adding to it (2.42) based on the
condition W = Whiena + Wen, we get one differential equation which can be
solved as;

EIo[EIl dSW W BN 42
[[(];oﬁ[] ! T — (BN + Bl S ‘[[Tplfggfqﬂﬂ

(2.45)

To solve a plane orthogonal bar system it is best to use equations (2.41)
and (2.42). When an orthogonal system is cut horizontally, the action of a
longitudinal force produces an additional transverse force in the bar given
by

0 =nH-2%F; (246)

__do a2 W dw
Guaa = —p—= = —n(H- Z) +n g

(247
where n is the uniformly distributed‘longitudinal load. ,

 If the longitudinal distributed load is replaced by an equivalent con-
centrated force N applied at-the upper end of the bar, then

W
Jaaa == N ‘flzz . (248)
The total external load will be equal to:
dzw
g—N—5— P (249

Substituting this corrected value of load in equation (2.45) we obtain the
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differential equation for a two-layer bar as:
6 4 2
(EN[EI, d°W ([EI} 4 [Ello— [EIT N) d*w N aw

[GF) dz6 [GF] dz* dz*
£ d*g _
~ GF] T ta="0. (2.50)

When an orthogonal system is cut vertically we get a two-layer bar rest-
ing on an elastic Winkler foundation. In this case the total externalload will

be:
q—CvW. (2.51)
If (2.51) is substituted in (2.45) we get the differential equation of a two-
layer bar as:

[EIN[El];, dSW [ED dZW
[GF] : dz% "([EI]HE’I") d4 - [GF] C”
(B d%q .
—CyW— GH & +q (2.52)

Differential equation {2.45) may be obtained in a different way by assum-
ing that the braces between the layers of the bar are continuously distributed
along the height (Fig. 32) for a system with many stories.

The first layer of the bar has bending and shear stiffnesses while the
second layer has only bending stiffness. The latter may be considered a bend-
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Fig. 32. Two-laycr bar with continuously
distributed horizontal braces.
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ing base for the first layer. The horizontal load, concentrated at the joints,
is transformed into a distributed load along the height of the two-layer bar.
The curvature of the first layer due to shear and bending deformations will
be:
WII — __1__ go; WII — _1_
sh [GF] s bend [EI]
The total curvature, considering both types of deformations, is expressed
by their sum:

M. (2.53)

1 !

I — —
W GF] go + TET] M. (2.54)
Differentiating this expression twice, we get
[ I} 17 - .
EIT WY IEN v
[ I} 1 [G.F] q() qo Oa (2.55)

where g is the load acting on the first layer.
If the second layer is considered as a bending base for the first layer,
then under the action of the external load, the value of go will be:

d“w
@ = q— [Elb—. (2.56)

By differentiating this equation twice and substituting it in (2.55) we get
differential equation (2.45).

6. EXAMPLES OF ANALYSIS OF A PLANE ORTHOGONAL
BAR SYSTEM ON A COMPUTER

A two-bay six story framed building was analyzed. The cross section of
columns and beams was taken as 50 50 cm. The frame span was taken as
6+ 6 m while the floor height was taken as 3 m. The concrete grade was
200. The horizontal joint load was S = 3 ton. The mass of each story was
m = 5 ton. The seismic intensity was 8 points. The analytical model of the
frame with the load is shown in Fig. 33. Static and dynamic analyses for the
frame were made for a commeon orthogonal bar system as well as for separate
stories and columns.

Figure 34 shows the bending moment diagrams, displacements of story
due to horizontal loads, seismic loads developed, wave form of first harmonic
of natural oscillations and time periods based on the results of the frame
analysis.

Figure 35 shows the analytical model of the same frame separated into
stories and columns. The results are shown in Fig. 36,

A comparative analysis showed that the frame and its separated system
of bars have almost identical stiffnesses and states of stress. For example, the
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Fig. 34. Analytical resulfs obtained on a computer.

displacement of the top of the frame is 8.49 mm while for 1he separated

system it is 8.4 mm,
The bending moments in the transverse beam of the ground floor frame
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are 9.25 and 8.45 ton-meter at its ends. For the separated system they are
4.66 - 4.43=19.09 ton-meterand 4.19 - 4.12 =8.31 ton-meter, respectively.
In the transverse beam of the third story frame they are equal to 6.93 and
6.43 ton-meter while in the separated system they are 3.99 4- 2.91 = 6.9
ton-meter and 3.7 4 2.7 = 6.4 ton-meter, respectively.

The bending moments in the extreme column of the ground floor frame
are equal to 10.08 ton-meter and 4.1 ton-meter at its ends. In the separated
system they are 10.49 ton-meter and 4.66 — 0.46 — 4.2 ton-meter, respectively;
in the central column of the ground floor frame they are 12.40 and 7.30 ton-
meter. In the separated system these values are 12.36 ton-meter and 8.38 —
0.46 = 7.92 ton-meter. In the extreme column of the third floor frame they
are 3.42 and 4.82 ton-meter, whereas in the separated system they are 3.99 —
0.71 = 3.28 ton-meter and 3.99 4 0.99 = 4.98 ton-meter; in the central
column of the frame they are 6.94 and 8.08 ton-meter, while in the separated
system the corresponding values are 7.4—0.7] = 6.7 ton-meter and 7.4 4-
0.99 = 8.39 ton-meter. The dynamic parameters of the frame and the sepa-
rated system of bars, periods and wave forms of oscillations were identical.

For the second analysis, the same frame was examined with a wider
section, 200x 50 cm, of the central column (Fig. 37). The increased section
of the central column was used to dctermine the active participation of the
column. The results of frame analysis are given in Fig. 38. The analytical
model for the separated system of this frame and the results of its analysis
are given in Figs. 39 and 40.
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Fig. 37. Analytical model of a frame with wider central column.
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Fig. 39, Separated system of bars.

A comparative study showed that the stiffinesses and forces of the frame
and its separated system of bars were identical. For example, the displace-
ment of the upper end of the frame and its separated system of bars was
identical and equal to 2.69 mm.
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Fig. 40. Analytical results obtained on a compuier for a model
with the separated system of bars.

The bending moments in the cross beam of the ground floor frame are
2.72 and 4.02 ton-meter at theends. In the separated system they are, respec-
tively, 1.03 4- 1.69 = 2.72 ton-meter and 1.4742.55 == 4.02 ton-meter. Inthe
cross beam of the third floor frame they are 3.61 and 5.42 ton-meter, whete-
as in the separated system they are 1.86 - [.71 = 3.57 ton-meter and
2.81 + 2.57 = 5.38 ton-meter. The bending moments inthe extreme column
of the ground floor are 1.86 and 0.73 ton-meter at the ends. In the separated
system they are (.96 ton-meter and 1.03—0.17 = 0.86 ton-meter. In the
central column of the ground floor frame they are 70.7! ton-meter and
26.38 ton-meter and in the separated system 70.43 ton-meter and 29.53 —
2.93 =26.6 ton-meter. In the extreme column of the third Hoor frame the
bending moments are 1.95 and 1.96 ton-meter while in the separated system
they are 1.80 - 0.13 = [.99 ton-meter and 1.86 - 0.12 = 1.96 ton-meter.
In the central column of the third floor frame the bending moments are
12.05 and [1.63 ton-meter while in the separated system they are 5.61 +
6.18 = 11.8 ton-meter and 5.61 + 6.16 = 11.77 ton-meter. The dynamic
parameters, periods and wave forms of oscillations were also identical.

Hence, the separated system of bars is equivalent to the orthogonal
frame and the use of the method of separating a system into equivalent mem-
bers enables us to examine an orthogonal bar system as a two-layer bar,



CHAPTER 3

Stiffness Characteristics of Load Bearing
Members of Frame-panel Buildings

I. MAIN LOAD BEARING MEMBERS OF
FRAME-PANEL BUILDINGS

A frame-panel building is a complex three-dimensional system. It consists
of plane vertical and horizontal members and rests on a compacted founda-
tion. The vertical members are arranged in the plan of the building in the
transverse as well as longitudinal directions. They are slabs in the form of
walls or a system of bars in the form of framaes. Their functional purpose
in the building is to take the vertical and horizontal loads and transfer them
to the foundation. The common types of vertical members of buildings are
multiple bay and multiple story frames, frames with filter walls and with stiff-
ness, frame diaphragms and walls in the form of rigid diaphragms (Fig. 41).

Interstory floors are the horizontal members of a building. They are
parallel to each other along the building height and are of plane solid con-
struction with a small number of apertures for staircases and elevators. Their
function in a building is to carry the effective vertical load, interconnect the
vertical members of the building and transmit the horizontal loads to them.
The spatial behavior of a building is only due to floors. The horizontal
members of a building may be monolithic floors of the beams and slab type
or built-up floors of the framework type with parallel rigid cross bars whose
apertures are filled with separate slabs (Fig. 42). We must analyze the stiff-
ness characteristics of the main load bearing vertical and horizontal members
of a building to study the stress-strain state of the building and to determine
its dynamic parameters.

2. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF FRAMES

A frame is an orthogonal column system whose geometric shape remains
unchanged through the rigid connection of its members at the joints. The
frames may be multiple bay or multiple story types. Determining the equivalent
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Fig. 41, Vertical members of a building.
a—frame; b—{rame with filter walls; c—braced frame; d—diaphragm with
apertures; e—blind diaphragm; f—frame diaphragm.

. Oh . .
shear stiffness of a story [GF] = = leads to find the reaction Q per unit
deflection of the joints in each story (Figs. 43 and 44). For this, equation 2.24
is written in the following form:

"o col " % + ycol
0 =23 (2 F) " B(F) @+ e (3.1
i = i

i=1
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Fig. 42, Horizontal members of building.

a—monolithic floor; b—built-up floor with transverse load bearing system;
c—built-up floor with longitudinal load bearing system.

The equivalent shear stiffness of a story will be

GF=E G+ Bl 5~ + e | (2)

The unknown quantities in this expression are the angles of rotation U
and U at the top and the bottom of the story. They are determined from
equation 2.24, which will be of the type given below for the /th upper joint:

beam U U beam.UJ beam.U col 8] beam U 4beam U
el i ‘Pi_1+(°¢i-i.i o o )‘Pi + BT e

col
+ Bief — (“—Z B)i =0; (3.3)

from which the unknown oY will be cqual to:

“ + B col » . L
(552 )7 =B o+ B oy + Bl
. .

i beam. U beam . U col
i
mi [ a’[,i 1 (X.’.

(3.4)

Fig. 43. A typical story.
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Fig. 44. Determination of the shear stiffness of a story.

Using the method of successive approximations, let us assume:

of =¢ =09l =9
The magnitude of ¢U is determined to the first degree of approximation
using the following formula:
(o + B
h (o A0 F @+ pRyny + (@ A5 7 (3.9)

i, i1

(@P) =

where (o + B)Po™V and (o + F)Perm Y are stiffnesses of the upper beams of
the story that mect at the ith joint.

The magnitude of ¢V to the second degree of approximation is determined
by substituting the value (V)1 in (3.4):

+
BB Y B ) B o e+ B (oD
apesm U mbnuni U7 eal '
i, i+ i
For practical purposes the first approximation may be considered accept-
able. This permits the determination of shear stiffness with ready-made
formulae.
After substituting the values of (¢V); and () in 3.2 and doing the neces-
sary transformations we get:

(o = ( (3.6)

(0(. ] ‘B)col]”
[GF] 2 {2 (O‘ -~ B)“” — (GC + B)bcam Ut (LZ + ﬁ)be’lm UL (m_g_ ﬂ)c.ol
o [@+MM}W_%A_#} 37
(a -+ B)beam L + (M +- B)};eﬂx},L -+ (0& + IB)?OI . .

In a monolithic frame there are three main types of stories: ground floor,
a typical intermediate one and the top floor. They differ from each other in
their stiffness characteristics. Because a typical story has the same stiffness
characteristics as the upper and lower beams, formula (3.7) becomes:

1
[eF1= hz: r I ENERS

I CR T CR ) SRR CRa )




46

The equivalent shear stiffness of a ground floor members differs from
a typical story mainly because it has an infinitely rigid lower beam, a different
height and different constructional features. The shear stiffness of a ground
floor member is determined by the formula:

I TP o+ B
[GFl = g, Ze ¥ RY [2 (@ T P, + G+ BT F o :] 39)

The upper story member of the frame differs from the other typical ones
in that it has double the stiffness of the upper cross beam. Its shear stiffness
will be:

1 n (U. "I‘ ﬁ)?OI
= =~ ol — 3 e e Ly .
(6F1= 3 S+ B [ 4=3 i o 5 BT G P |
» (3.1
If many types of story members with different shear stiffness characteris-
tics exist along the height of the frame they may be reduced to a single
stiffness characteristic:

. _ [GF}r
B = [GF;

If only the bending deformations of bars are considered in the story then
formula (3.8) is written as follows:

12 1
[GF]=T§: T T : (3.12)
-1 g+

h. (3.11)

[ SURUES S SR

cot
where S; = (%) is the transverse bending stiffness of the ith column;

EJI \beam Er beam
ri_t,i+ri,i+1:('_"l'-) +(T)

it i i il
is the sum of the transverse bending stiffnesses of the cross beams of the story
meeting at the ith joint.

Assuming the angles of rotation of all joints are equal to a story during
the deflection of the latter, from (3.2) we obtain:

| 2 .
[GF] =2 (75"‘9 )21 (o + B (3.13)
where o is the average angle of rotation and is equal to:
1 gl (e + A);

9= (3.14)

2%t B+ Bt A



47

By substituting the value of ¢ from (3.14} in (3.13) we get the equivalent
shear stiffness as:

2 1

h 1 N T : (3.15)

?_:31 (o -+ 2}';1 (@ =+ B)ecam,

[GF] =

While considering the bending strain of bars in a story, formula (3.15)
becomes:

=% 171 (3.16)

col

n(E . . .
where § =Y, (7;) —is the total transverse bending stiffness of struts
i=1

n EI bc’am : . s
and r = izl 2( 7 )1 L —is the total transverse bending stiffness of the upper
and lower cross beams of a story.

Expression (3.16), the accepted formula of E.E. Sigalov [3], is very effec-
tive in a multiple bay frame in which there is little difference between the
stiffnesses of struts and cross beams. Formula (3.12) is derived for different
angles of rotation of the joints of a deflected story and gives more accurate
results,

To find the equivalent bending stiffness of a story, let us determine the
position of the center of rigidity, that is, the neutral axis of the story relative
to the extreme strut, by the formula:

Xo= = (3.17)

where ¥; is the longitudinal end stiffness of the 7ith strut; b; is the distance of
the Jth strut measuyred from the exireme sirut.

Determination of the equivalent bending stiffness [El] = Mh leads to the

¥

determination of the reactive moment when the end planes of the story turn
around the center of rigidity through unit angle (Fig. 45). Vertical displace-
ment of the joints, forming the story, occurs during this turning. For the ith
joint it will be: ‘

Vi=0.5 (xo—by). (3.18)

The joints in the storyturn through angles ¢;. These angles are determined
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Fig. 45. Determination of bending stiffness of a story.

by using equation (2.24) in the following form:

be: bea bes be: - By U 1 Qben U Qeol L
AR (T, b el AR el Al

beatn beam
(Y e ()T e ey 0. @a19)
i P10 / iyl
Angle ¢V is determined from this equation by substituting the value of
vertical displacement of joints (3.18):

o T BN b Gk BN B eV b A et — friel

i—1, i

i beam beam coi beam beam - o COL
e T e T e % T o

=1 i i+l

(3.20)

The value of oV in the first approximation is found by the following for-
mula assuming oV = ol | = ¢} | = ol

(@t B, o+ (o 4 BT
(QC - ﬁ)beam +(m + B)heam_i_(“ -+ 5)‘;01

i—=1,i i i

(pPh=10.5

(3.21)

By substituting the value of () in (3.20) we get ¢ to the second degree
of approximation.

The reactive moment in the ith strut of the story relative to the centre
of rigidity will be equal to:

M ==y (xo—bi* + (a— B)* 9is (3.22)
where y; (xo—5) is the longitudinal reaction in a strut and (x— 8)¢°! ¢, is
the reactive moment at the end of the strut. The total reactive mroment for
the story is determined as follows: :

M= 2[ ¥i (xo—B;)? + Zi (x— ﬁ):."ﬂ i+ (3.23)
j= fe
The equivalent bending stiffness of the story will be:
L L
[EI = k| 3 yi(xo=bP + 3 (= B o ] (3.24)

where ¢, B,y are the end stiffnesses (see Table 1).
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For the bars in which both bending and longitudinal deformations are
considered, formula (3.24) becomes:

[EI] =ZIEE (X()-“bg)?' + 22[ L ;. (325)
Depending on the stiffness of struts aﬁd cross beams the angle of rota-
tion has the values 0 < ¢; € 0.5; the expression ¥, E7; is small compared to
i=1!

the first term of (3.25) and hence it may be negiécted. The equivalent bend-

ing stiffness of the story is determined by the formula:
[EI} =3 EF; (xo— b2 (3.26)

i=1

The equivalent bending stiffness of columns which constitute the second
layer of the equivalent bar for the frame is determined as follows. Let us
represent the columns in the story by struts and turn all its joints so that
an angle o = 1 (Fig. 46) is formed between the upper and lower ends of a
column. The sum of the reactive moments at the ends of the columns is deter-
mined by the formula;

[l = 5 3 (a— B, (3.27)

which, when bending deformations in the struts are comnsidered (3.27),
becomes:

[EI, = );1 (ED);. (3.28)

To determine the shear stiffness, Fig. 47 shows a ground floor story frame

a

77 LTI IEEEsEds FILTFTLr7 Vi

Fig. 47. Analytical models.
a—a ground floor story; b—determination of shear stiffness.
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and its deformed state under a unit deflection.

In designing high rise frames, the bending stiffness of individual columns
is small and hence may be neglected.

3. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF IN-FILLED FRAMES

A frame may be in-filled with individual small blocks, stiffening walls,
trusses and other members which are strained when the frame is deformed.
Considering the compatibility of deformations, the equivalent shear stiffness
of a story with filled up members (Fig. 48) is determined by the sum:

[GF] =[G Fltcame + [C Flsitter. | (3.29)

a b 14

w |

Fig. 48, Analytical models.
a—a story with filled frame; b—determination of shear stiffness.

When the frame is filled up with masonry, the stiffness will be:

[GF)einer = FGV10ns, (3.30)

where F, G, Y05 are respectively the area in plan, shear modulus and filling
coefficient for the filler material.

If the masonry is compactly laid in the upper part of the story, the stiff-
ness of the cross beam may be considered equal to infinity. Then the frame
stiffness is determined by the formula:

2%+ A |y
[GF}frame = ‘i—-t["—h—‘—" = ‘h—z E (EI):OI' (3'31)
i==1

The equivalent shear stiffness of the story, with filled-in wall, will be
determined by the following expression:
12 n
(OF]= 3z X (EDf° + FG¥iong. (3.32)

If the braces are arranged diagonally (Fig. 49), tensile and compressive
deformations will occur in them under a unit deflection of the story. The



equivalent shear stiffness of the braces will be:
[GF]f‘i[]gr == E{ (EF sin u cos? O(),', (3.33)
where F, E, « are respectively the cross sectional area of the braces, the elas-

tic modulus of the material and the angle of inclination of the brace to the
horizontal.

a bW,

Fig. 49. Frame models,
a—a story with frame and trusses; b—determination of shear stiffness.

The equivalent shear stiffness of a story with braces is determined by the
following formula:

2 1 i ‘
(GF] = —- i i - ;_'_‘,1 (EFsin ¢ cos?a).

— -+
n EI\¢o! n—1 ¢ FJ\beam (334)
(%) 2E(F)

Filling the frame with walls does not affect the magnitude of the equi-
valent bending stiffness of a story because the filling does not undergo the
same bending deformation of the frame nor provides any significant resistance
to it.

Considering the compatibility of deformations, the equivalent bending
stiffness of the story with braces (Fig. 50) is determined by the sum:

[EI} = [Eﬂframc + [E]]brace. (3.35)

i

Y2

"

.

Fig. 50. Dctermination of bending stiffness.
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The reactive moment of the ith end of a brace taken about the center
of stiffness of the story will be equal to:

My — 0,25 Lhorce.

sin? o (2){0- bi—b,'_;), (336)
where & and &;.1 aré the distances of the upper and lower ends of the braces
from the extreme strut.

The total reactive moment will be:

k
M= 2 0.25 (é‘i;’;—ag: ) sind o (2X()-—b,'—b,'_|)2. (337)
. i=1 i :

The equivalent bending stiffness of the story with braces is determined
by the following expression:

" )
[EI] = Y, EFso (xo—b)? + ¥, 0.25 EFprace sind a (2xp— by — br_p)2.
i=1 i=1
(3.38)

Figure 51 shows the distribution of forces in the braces when their ends
are displaced. Consequently, for the practical purpose of analysis under the
action of horizontal loads, the filled up frame may be represented by an
equivalent single layer bar, in which the filling increases the equivalent shear
stiffness but does not affect the bending stiffness. However, both the equiva-
lent shear and the bending stiffnesses increase in the presence of braces.

Fig. 51. Distribution of forces.

4. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF VERTICAL DIAPHRAGMS

Stiffening diaphragms are vertical members of buildings in the form of
walls; they may be blind or have apertures. Walls with apertures divide
into separate partitions joined with cross pieces or lintels. Blind diaphragms
may be represented by a cantilever bar. For a high rise building the effect
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of shear strain may be neglected and hence its stiffness characteristic will be
the equivalent bending stiffness only which is calculated as for a solid sec-
tion. A diaphragm with apertures may be represented by a frame with wide
strits and cross bars with rigid ends. By the method of dividing a frame into
stories and columns, a diaphragm may be represented by a two-layer bar,
The equivalent shear stiffness of the first layer is determined by formula
(3.8) in which the stilTness of struts in the story is omitted, since it is a large
quantity. The formula then becomes:

[GF] = % }; (o + B)pe=m, (3.39)

where « and § are given in Table 1. The shear and bending strains in the
lintel as well as their flexible connection with partitions can be considered
with the help of formuld-(3.39). The equivalent bending stiffness of the first
layer is determined by formula (3.20).

The representative column will be in the form of interconnected indivi-
dual partitions, the latter having a large bending stiffness, determined by
formula (3.28).

Wide multi-aperture diaphragms may be considered as two-layer bars in
which the first layer has shear stiffness and the second bending stiffness. The
bending deformations of the first layer are neglected because, here, the
bending stiffness is a large guantity. '

Figures 52-55 shows stories with a diaphragm with an aperture. The load
bearing structures consisting of wide partitions and columas, joined by cross
beams, are called frame-diaphrapms. A frame-diaphragm may be represented
by a two-layer bar in which the second layer is a wide partition. The equiva-
lent shear stiffness of the first layer is determined by the following formula:

2 1

[GF] = T i i . (3.40)

k Col'!“ el ‘heam
Y (e B 2§(a+ﬁ)f

i=}

where k is the number of joints connecting the strut.

———

| |

1

Ll
1 1

Fig. 52, A diaphragm with aperture in a story.
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The equivalent bending stiffness of the first layer is determined by formula

(3.26) and of the second layer by the following formula:
n—k s
[EI]() — 2 (EI)?altlttO;I. (3'41)
1

o=

Fig. 53. Determination of shear stiffness.

Yy

i

Fig. 56. A frame-diaphragm in a story.



55

Fig. 57. Determination of shear stiffness of a frame-diaphragm.

%

Fig. 59. Determination of bending stiffness of
frame-diaphragm columns.

Figures 56-59 show a frame-diaphragm in a story, the determination of
shear and bending stiffnesses for the story and the bending stiffness of a
column.

5. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF HORIZONTAL MEMBERS OF A BUILDING
(INTER-STORY FLOORS) :

A monolithic floor in its plane is a beam with a large section which
undergoes shear and bending deformations. The equivalent shear and bending
stiffnesses of a floor are determined as for a full section.

A built-up floor may be considered a brace consisting of rigid joints,
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whose apertures are filled with individual slabs. This includes cases of slabs
with weak and rigid joints among themselves as well as with the brace con-
tour.

The chords of the brace are the cross beams of the longitudinal frame
and the struts are the cross beams of the transverse frame of the building.
The stiffness characteristics of a built-up floor are determined in the same
way as for a filled frame. To do so, let us divide the floor into individual bays
(Fig. 60). The equivalent shear stiffness of a bay is expressed by formula
(3.32). When the slabs are loosely connected among themselves and with the
cross beams, the equivalent shear stiffness is determined by the formula:

2 1
[GF] = 4 ; ] .

Yo+ 2Y Gt A

f=

(3.42)

where (« + B)°r2 and (5 4 B)trans are the end stiffnesses of the longitudinal
and transverse cross beams of the building frame in the plane of the floor.
The equivalent bending stiffness of the floor is determined by formula (3.26).

" a b '-,@/%;.c 'w/y‘
9 w
——
%
— S \
g
| —
\\
TN

Fig. 60. A fragment of floor.

a—a floor bay; b—determination of shear stiffness;
c—determination of bending stiffness.

When the slabs are rigidly connected at their ends in a transverse foad
bearing system, the equivalent shear stiffness of the floor will be:

G =3[ B e+ o + L6+ o] (3.43)

where (« -+ 8)7 is the end stiffness of floor slabs in which the shear and bend-
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ing deformations of slabs are considered; & is the number of slabs laid in
a bay.

For a longitudinal load bearing system the equivalent shear stiffness of
the floor is determined by the following formula:

G = 25+ o B ol | G4

When the floor slabs are rigidly connected among themselves, the equi-
valent shear stiffness of the floor will be:

[GF] = - : ! : L FIG,  (3.45)

i s "
pINCEN D MR

where F?! is the cross sectional area of all slabs of the floor, G is the shear
modulus of the Hoor slab material.

Thus, a floor in its own plane may be represented by an equivalent beam
with free ends, with shear and bending stiffnesses. The beam rests on an
elastic foundation constituted by the vertical load bearing members of the
building. '

6. STIFFNESS CHARACTERISTICS OF AN EQUIVALENT BAR

~ Vertical members of buildings, represented by orthogonal bar systems,
may be considered an equivalent two-layer cantilever bar system defined by
differential equations (2.45). Depending on the maghitude of the stilfness
characteristics [ET], [G F] and [Ely] of the first and second layers, which may
vary from zero to infinity, equation (2.45) is likely to change. Let us examine
separately the first layer of the bar undergoing shear and bending ‘strains
and determine its potential energy (Fig. 61).

a

) §
Z:j e ||
o—cl (AT []

= £l
4119 + =
Z' et
L >
< i ] I

p; L// tj?/!/’/ﬂl')y‘v;Mr

Fig. 61. A two-layer bar.
a—bending and shear sirains of the first layer; b—bending strain of the second layer,
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The energy capacity of the first layer will be:
V,= Vo { piEn, (3.46)
The energy capacity due to a uniformly distributed unit load along the
height of the bar is determined by the formula:

e HS
=GGF T 01BN

Vi (3.47)

To determine the predominant types of strains, shear bending, in a bar,
let us examine the ratio of total potential energy to the energy due to the
respective types of strains.

Vi 3 _

'—VF‘.]— == E }\2 + I, (3.48)
¥ 20

i =it (349)

where A is the stiffitess characteristics of the first layer and is equal to:

_ g [IGA 3.50
A_H\/ or (3.50)

V.
Let us assume that the rod undergoes only bending strain if ;féT] = 10
' ' I

V
and shear strain if r_ft—é”— == 10. Considering these ratios, the following condi-
1 :

tions may be written: for A < 0.8—the bar undei‘goes only shear strain; and
for A » 8—only bending strain; for 0.8 < A < 8 both shear and bending
(Fig. 62).

a b
= P N
é - |E1] . :
§ 2>8 R 2<08

Fig. 62. A single layer bar,
a—Dbar undergoing bending strain; b—bar undergoing shear strain.
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The following relationship for potential energy may be used for a two-
layer rod:
1 1,1
[Nz Vi’
where V, V1 and Viy are total potential energy and potential energies of the
first and second layers, respectively.
The energy capacity of the first layer is determined by (3.47) and of the
second layer, which undergoes only bending, by formula:
HS
V= 40TEN
Let us examine the following ratios to determine the type of predomi-
nant load resistance offered by the first and second layers of the bar:

(3.51)

v (3.52)

i _WVi+Vva o 20,
== I 5 (3.53)

Vi Vi+Vu 3k
PGS NI (3.54)

where k is the stiffness characteristic of the two-layer bar and is equal to:
P \/ gGF ] . (3.55)
- a2
(1 + 352 )[EI]O |

We shall assume that the resistance of the first layer may be neglected if
-—VI;I- = 10 and of the second if -K];—I == 10. Then, the following conditions

may be written: for & < 0.8—all the load is taken by the second layer; for
k >» 8—Dy the first layer; for 0.8 < & < 8—both layers of the bar undergo
strain (Fig. 63).

- . b
=N D
e ’f\\
q (N e | s s\
1 & g I i 3 H<08
[ = 1]
FTI7R77 7 — VT

Fig. 63. Bar with two separated layers.
a---bar undergoing shear; b—Ubar undergoing bending,
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Hence, the stiffness characteristic A of the first layer of the bar enables
us to determine the predominant types of strain in the bar and this stiffness
characteristic indicates whether the bar should be taken asa single or two-
layer one.

7. DIFFERENTIAL EQUATION OF EQUiLIBRIUM FOR
VERTICAL MEMBERS OF A BUILDING

Depending on the stiffness characteristics A and k& differential equation
(2.50) may be simplified and particular equations obtained for different types
of vertical members of a building.

For a multistory, multiple bay frame k > 8, assuming {El]o = 0. The
frame may be rtepresented by a single layer bar for which the differential
equation will be:

[EN] N)d4W v W d2W IENdg o s

(0= 17V ) s (Fagz

The longitudinal deformations in columns are insignificant, in the case

of multiple bay frames with a smaller number of stories with A < 0.8.

Assuming [EIl = oo these frames may be represented by the following
differential equation:

(GF]-N) ‘; W oy g=o. (3.57)

Fort g = const, the solution of equation (3.57) will be:

-4 (g_Z\ '
W= [G.F]__Nz.(H : ) e
The deflection of the top of frame is determined by the formula:
qil?

S = 2(GFI=-N) * (3.59)

Narrow multistory frames with rigid cross beams for which A > 8§ are
defined by the following formula without considering the shear strains in the
equivalent bar and assuming [GF] =

d* W d2w -
[E[] —_ + N —— 4= 0. (3.60)
Solution of equation (3.60) will be:
_ 4 1—Hasin Ha _ E qHz (___ )
W = Naz cos Ha (cos az 1) + 35 sin az + 277 1},

(3.61)
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The deflection of the frame top will be equal to:

9 {4 1 qH(taanwi
_Naz(l cosHa)+ N a 2)’ (3.62)

where

| T ED
Without considering the action of longitudinal force N applied to the top
of the equivalent bar, the equation for deflections will be:

gzt H H2
W_W(1ﬁ4?+6?). (3.63)

If 0.8 < A < 8, the frame is considered an equivalent bar which under-
goes shear and bending. Without considering the action of longitudinal force
N, the equation for deflections will be:

_ 9z (g Z qz* H . H
V= 1or (H 2 )+ 24 [ET] (]“4?4 6> ) (3.64)

The deflection of the top of the bar is determined by the formula:
L i 2)
f= 26T (1+ i Az, (3.65)

Let us examine the vertical diaphragms which may be represented by
frames with wide struts. The stiffness characteristic of the equivalent bar will
always be & < 8. Hence, we shall have a two-layer bar for which the differ-
ential equation: will be (2.50).

In a diaphragm with slender cross pieces for which A < 0.8, assuming
[GF] = 0, we have a single layer bar undergomg bending strain, which is
defined by the equation:

[EI]o + NI~ d W —g=0. (3.66)

Its solution will be similar to equation (3.60).

For a multiple unit diaphragm we have the condition 0.8 < & <8 and
A < 0.8; assuming [EJl] = 0, we have a two-layer bar in which the first
layer, consisting of stories, undergoes shear strain and the second, consisting
of the columns, undergoes bending strain. In this case the longitudinal strains
of the partitions are ignored because they are small. The differential equation
will be:

a1 5% —or-W) 20 g =0, (367)
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1ts solution will be:

qz%

W=C, +CZZ+C30th+C4Sth - E([—Gﬁ——N—)’

(3.68)

where
= [GF]-N '
[El)o
The boundary conditions for the two-layer cantilever bar will be:

at z=10, W=0;f?~pz=0;
dz

and

AW W aw
at z = H, —-3—2-2— = 0, [EIIQ = —H:'z—s— —([GF]—N) —a,—z— S O'
After substituting the values of constants of integration in 3.68 we get:

_ q 1 -+ HbshbH

~ (GF]-N) 82 chbH
qH _gHz z

The deflection of the top of the bar will be equal to:

fe q 1 + Hbsh bH
T (GF]-N)b2  chbH
qld
~ (GF]-N) b sh bH --
In a narrow diaphragm with rigid connectors, for 0.8 <k <8; A > 8;
[GF] = w we have a two-layer bar in which both layers undergo bending
strain, The differential equation will be:

W {ch bz—1)

(ch BH~1)

0.5gH?

GF-N G710

2w
7
Its solution will be similar to the solution of (3.60).
Depending on the stiffness characteristics A and & the frame-diaphragms
are represented by an equivalent two-layer bar for which the differential
equation is similar to the case of vertical diaphragms.

(EI+ IEI])O%KE +N q="0. (3.71)

8. DIFFERENTIAL EQUATION OF EQUILIBRIUM FOR
HORIZONTAL MEMBERS OF A BUILDING

Horizontal members of a building, floors, are always represented by a
single layer bar, with free ends, undergoing shear and bending strain and
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resting on an elastic base. The differential equation will be:

#W [EIl W [E1] d%
(BN~ dx? [GF]C dx? [GF] axt

where C is the modulus of subgrade reaction of the base constituted by the
vertical members of the building.

The stiffness characteristic A of the bar is determined by the formula:

L [GF]
Y= T (3.73)

For A > 8 only the bending strain in the floor is considered, for A < 0.8
only the shear strain and for 0.8 < X < 8 both forms of strains are considered
for the floor.

In a built-up floor in narrow buildings A < 0.8. Assuming [E]] = o we
have the following differential equation:

LW E 0 (372

2
[GF) %Cp—f —CW +q=0. (3.74)

In a monolithic floor for a building with large dimensionsin plane A > 8.
Assuming [GF| = o0 we havc the following type of equation:

[EI] + CW—gq=0. (3.75)

Differential equations (3.74) and (3.75) will be used in the future to form
general equations for a building,

9. DETERMINATION OF FORCES IN THE BARS OF
INTERFLOGR ELEMENTS AND COLUMNS

Let us determine the combined forces in the layers of an equivalent two-
layer bar. For the first layer, consisting of stories, the combined bending
moment M and the combined transverse force Q are found from the follow-
ing formulae:

My =~ 1) T oent (3.76)
0, =—(6F] B, (3.77)

For the second layer of the bar, which is a column, the combined bend-
ing moment M, and the combined transverse force Qg are determined by the
formulae:

d2 (IVbcnd + Wsh)_
dz? '

Qo = () & Posna + Wer) (3.79)

Mo, =— [EI

(3.78)
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The bending moment, acting in the first layer of the bar, causes rotation
and vertical displacement of the joints in the stories while the transverse
force produces rotation and horizontal displacements. The magnitude of dis-
placement of joints in the story is proportional to the combined forces. The
angles of rotation of the joints are determined by the following expressions:

(@i =+ 05 @B ARy By
I e R CR R

(3.80)

0y, — (w+ B)t I,
G G e TR O
The relative horizontal displacement between the lower and upper sections
of the story are determined by the formula:

h .
3p = [g—F] (3.82)

The verticél displacement of the lower and upper sections of the story
will be:

n Mk
Ay = ['E]}T (x0—5)). (3.83)
The bending moment M, acting in the second layer of the equivalent bar,
causes the column ends to rotate within the domain of each story by angle
¢ which is equal to: ‘

Moh
[EY

If we know these deflections, the bending moment on the lower and
upper ends of the struts in the kth story can be determined as

()= +0.5 (3.84)

M = o+ Byt (S5 E ) sp L mpretom. (089)
ki

Substituting the magnitudes of deflections from (3.80), (3.81) and (3.82)
in (3.85) we get the magnitude of bending moment at the ends of the strut
as

(Mjﬂ‘)k = -—Ag"l QO Bf.ol M, (3.86)
where
1 i

col — .

At = iGF] i i ; (3.87)
et BFsm+ (@ + B | @+ p

k 1 .
COl e 4
Bi = 3TET 3 1 . (3.88}

(Of. + ﬁ)pcam + (O& -}- ﬁ)beam + (0(. + ﬁ):;ol

i=1, 1 iyi+l
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By placing the respective pillar on the story strut and restoring the latter
to its initial shape, we determine the total bending moment in the frame strut
by the following expression:

(Micol)k —— A;:ol Qk i B;.‘Dl Mk i D!pillzn- MOk, (3.89)
where
Dpiliar = (g — gycol R (3.90)
: i 2[Ely
Normal force, acting in the strut of the kth story will be:
h,yf:nl
coly, — A. pc0l — d — b M,. 3.91
(Neol), = 4; % il {(xo—br) My (3.90)
The transverse force is determined by the formula:
col

(Qsol);, = 2?: . (3.92)

The forces in cross beams are similarly determined.



CHAPTER 4

Grid Systems

1. SPECIAL FEATURES OF THE ANALYSIS

In a grid or plane orthogonal bar system the bars are arranged in one
plane and the forces act out of this plane. We shall represent the joints of the
grid system by theoretical squares of zero dimensions, elastically connected
to points which are relatively fixed with respect to mutually perpendicular
angular rotations and horizontal displacements (Fig. 64). Let us examine the
behavior of this grid system under an external load applied in the form of
concentrated forces at the joints. The supporting connections may be provid-
ed in the form of normal joints with different stiffness characteristics: for
example, arigid support connection will have Cyw = co, C* = o0, C? = 0} a
connection which permits only horizontal displacements will have Cyp = 0,
C; = 00, C’; == ¢0; a connection which allows free bending along z axis and
elastic displacement in the horizontal direction will have Cw 5£ 0, Cy =,
C;; =0 etc.

Fig. 64. A grid system of bars.
a—general view; b—an elastically fixed joint.
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The relationship between forces and displacements is expressed by the
following matrix for the horizontal bar

My O(mnAmn ﬁmn"‘ Amn | CP;; ‘
tor
Mm n @mn - @mn Wm
7z
Rum - Amn - an - Antmn P
o | X b @.1
Am ﬁmnA mn e — Amn Pr
for
Mnm - @mn ) @nm Wn
z
an Amn Bnm Anm - an an

For the vertical bar it is given by

M:{ir @pn - @pn (?:

Men Aenthen - Aenﬁm W.

Rf’" — - Bc»n_ Aen B(‘n - Ana > CP; . (42)
M}.'Qer - @on - @cn ‘Pz

Mm' Aeﬂﬁvn - Anca’vm- Wn

Rm’ Banen - Banm’ cpzz’

The forces in the elastic connections with the joints arc determined by the
following formula:

M :‘ C{; 0 0 X M ;0
| R, 0 C» O ®; P

where «, B, ¢ are the end stiffness characteristics of the bars as given in
Table 1. ‘

Let us form complete force matrices, separately for the bars and the
joints of the grid system by the method of successive increments. The cor-
responding displacement matrices for the bars will contain repetitive elements.
Let us use the transformation matrix ¢/ to refine them in the same way as
for a plane orthogonal bar system.

The condition for static equilibrium of the joints is expressed by the
following formula by using the connection matrix || D|| for all displacements.

1D hcorll > Nlall X Bz} +HENC geindl x 2 +1[87,, D = 0. (4.4)
The unknown displacenents |z} are found from equation (4.4):
lizlt= (lali™t X {lkcorll =t X DI Hlikjoindl ™ XA EN) (— JET X ISP, 1D
(4.5)
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The forces in the bars and the elastic connections with the joints of the
grid system are determined by the following formulae:

i Seonll =llkearll X latl x liz1i. (4.6)
[Sioin !l = [{esomnell X 2] + 1S (4.7)

N
joint
The algebraic equation of equilibrium of the ath joint of the cross bar
system, obtained by using the above matrix method, will be:

By, + (ke & ttam = Oen + Ong + CZ) 0% + Bricpf + AmnWo
+ (= Awr + Ani) W= AuiWi~0en9i— Onr 9+ M0 = 0;
Ben®l A (ane + tnf -+ Bum + Bak 4 C2) 9% + Bayl + Acale
b (= Ane + Ang) Wa— AugWs — Bl ~ Ok 97+ M2 = 0;
Amnt0%, + (Anm= Au) 05— Apnf ~+ Aenp? + (Ane— Anp)o?
+Ap9% + BunWn—(Bun + Buk -+ Ben + Bus -+ Cw)Wy
+ BuWi + BoWe + BuyWy+ Py =0, (4.8)

The first and second equations of system (4.8) show that the sum of all
moments acting along axes x and z is zero. The third equation shows that
the sum of reactions acting along y axis is zero.

2. PARTICULAR CASES OF A GRID SYSTEM

Let us examine a grid system with short bars with large sections. Let us
consider the shear and bending strains but neglect the torsional strength.
Considering joints which are not fixed (Fig. 65), the equilibrium equation
will assume the form:

Bunn@ly + (e + 0m) 9% + Brict} + AmnWon + (= A + AW
— AuWr + M3° = 0;
Benl -+ (ene T o) @F + Bus®) + AealWe + (Ane + Anr)Wn
~ AWy + M = 0;
Apn®%, + (Anm= Auk) 97 = Ain 0% + Aen®’ + (Ane— Anf)
3 42,9% + BuaWm—(Bun + Bux -+ Ben + Bu) Wi

+ -Bnka —l— Bane _I_ -anWf"l_ Pn = 0, (4.9)
where
_ MEI] [GF)i2+31EN . 5 21E]] [GF]IR=6[E]] .
“T TR GHEFL2EL T Th [GRR T 12[E
y 6 [E1] [GF] 5 _ 12IE)[GF] “.10)

SR+ 12(EL° ° 7 R[GFIR® + 12[E1]
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0 X

Fig. 65. A grid system with different stiffness characteristics of the bars.

Let us examine a case in which the horizontal bars of the cross system
undergo only shear strain and the verticals only bending. The equilibrinm
condition is expressed by two algebraic equations:

6i€ﬂ
ken

2iey Pz + 4 (e + inf) @F + 2ins ‘P} + W,

6ill{é 6irlf 6inf
! —_— — — 20 — ()
e ( hn.;- knf ) Wx hnf Wf + M” O}

6l Bipe _ 6lnr \ Gip,
hc—m (P‘, + ( hne hnf )CP"—I_‘ "'hf'” +gmn Wm
12, 12i,
= gmwn + & T —21" + # W + 8nic Wi
h(’n hnf
124, ., 124
+75Wc+ hilj Wt Py =0, (4.11)
where [ = [E% and g = [G]Fj are the running bending and shear stiffuesses

per unit length of the bar,

If the horizontal and vertical bars of the grid system undergo only shear
strain, then the equilibrium condition is expressed by one algebraic equation
which is similar to the suspension cable-girder lattice system.

gmnWm— (gnm + nk + Ben + gnf) Wn + guka + genWe
+ ganf+ -Pu == 0. (4.12)
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When the horizontal and vertical bars of a grid system undergo only
bending strain, the equilibrium condition is expressed by these three well
known equations:

21mn’? + (4‘Ink -+ 4lnm + @m + @n[) <P *i 2tnk (?k

Ofun M Blur 6lnk _ O u
+ Ronn W + ( B + P - )Wn hnk Wk Eon EP nf @ f
+ M0 =0

2iey oz + (41ne + 4lnf + Gum + @nk)‘? -+ 2lnchf

6‘971 61m’ 6Inf)
NI— hen We + (m }ine + h!lf H/”

_ 0i,r
[

Ginm _ 6l ¥ Oimn P 6iny v L 6irze_ 6inf) 2
( T )“"* T Ty O T, Ok (h AL

Wy— O par P O (P,“: + M;O =0

Giﬁt C 1265 { imn ink fen Inf
oot G W12 (b e
hf" 4 ] mn hrzmr ‘ hnzh hzn hzzzf
12, B s 1
T Wt Wk Wy =0 1)
nik en nf

By eliminating the torsional stiffness of bars in these equations we get
the equations for cross beams.

3. DIFFERENTIAL EQUATIONS OF EQUILIBRIU‘V[ FOR A
GRID SYSTEM

Let us examine a grid bar system LOhSlstlng of n horizontal -and m verti-
cal bars. The number of algebralc equations required to solve it is 3 nm.

1
Assummg — - 0 dand -;-1-2- -~ 0, we assume the system under study consists

of uniform honzontal and vertical strips and not separate dlscwte members.
To obtain the dilferential equations of equilibrium for the grid system let
us substitute displacements [/z]| and || x| in the joint equilibrium eqguation 4.4
and examine the limits for ~Ih7 — 0 and % —0.
When the vertical and horizontal members of the grid system undergo
shear strain, the differential equation of cquilibrium will be:

W
Co T +C 62 W og=0 (4.14)

. IGEL

whcre Cy ==
“h

and C, - LG;L]Z are the shear Stiﬁ"nesées of strips along
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the x and z axes, respectively, and g = £ is the load per unit area.

th
Equation (4.14) is similar to the equation of an anistropic membrane.
When the vertical and horizontal members of a grid system are rigidly
connected with each other and undergo bending strain, the differential equa-
tion of equilibrium will be:

5w W oW
B g Y KA K) oggm + Befm g =0, (119
where B, = [_Ei'z{t and B, = [E}I']z are the bending stiffnesses of the sirips

while K, = —{—%15’1: and K, = -»Lgf—(’]z— are the forsional stiffnesses of the

strips along the x and z axes, respectively.

Equation (4.15) is similar to the equation of an anistropic plate consider-
ing the torsion of strips. This is the cquation of a beam lattice. Considering
the shear and bending strains in the vertical and horizontal members of 2
grid system and not considering torsion, the equilibrium equation will be:

sl 4 W B, p%g B, 0%

Bgw T g6 v ¢, a2 970 G419

This equation is similar to the equation of a thick anistropic plate.

If the horizontal members undergo shear and the vertical ones bending
strain, the differcntial equation of equilibrium for the grid system is express-
ed by the following formula:

W Gt oW
Cx"é‘xT“' x 522052 — B oz4 + g= 0. (417)

Let us examine a grid system consisting of two-layer horizontal and ver-
tical members in which the first layer undergoes shear and bending strain
and the second undergees bending sirain. Here the differential equation of
equilibrium for the grid system is expressed by the formula:

B:Bxy 0W | B:Byy W oWV
C. o e "Bt B e (B B
B. ¢3¢ B, ¢4
o Px v 4 = 18
C, ox2 (C, 02 +g=0 (4_1 )
EIY; LET]; . )
where B,p = 5 and B, = 7 are the bending stiffnesses of the

second layer of members in the grid.
When the first layer of members undergoes shear strain and the second
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ones bending, the differential equation of the grid system becomes:

oW ot oW
B g T g ~Ce 5
>*W .
-C, FZT"—Q = (. (4.19)

Equation (4.19) is similar to that for a two-layer membrane.

When the members of a grid system are multi-layered, in which the layers
undergo shear and the joints between layers are connected by elastic braces,
the differential equation of equilibrium wiil be:

C. W o ZW g O L, (4.20)

¢ Px2 7 pz2 ’ 5 2 .
where € [iF] and C, = -[i—f]f are the shear stiffnesses of strips,
Fy = [EIIZJ is the longitudinal stiffness along y axis, ¢’ = 71;11— is the force

per unit volume of the grid system and ¢ is the distance between the layers
of the grid system.

Equation (4.20} is the equation of a multi-layer membrane, If the hori-
zontal members of the grid system have different shear, bending, shear-
bending stiffness characteristics, then the grid system may be considered a
discretely-continuous analytical model (Fig. 66)for which each vertical strip
will have its own differential equation. For example, using the given method,

for the ithstrip, which undergoes shear strain, we obtain the following differ-
ential equation of equilibrium:

I’V:+1 [ E
0 e[+ = ()] o

r i1 i1, f
4.21)

When the distances between the vertical strips are equal, equation (4.21)
becomes:

d=w; C. ‘
[GF]; ——% -+ 5 (W =2W,+ W) + ¢ =0, 4.22)

Assuming that the adjacent (7 4 1)th vertical strip undergoes bending
strain, the differential equation will be:

AW, Cx
(Bl = — 5 W= Wi+ W)= g = 0. (4.23)

I (i + 2)th vertical strip undergoes shear-cum-bending strain, its differ-
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ential equation will be

d* Wiia E[I]inrz d2£]i+z C

[ET);,, C(Wig1=2Wigs -+ Wiss)

dz* [GFE, dz |
~ g2 =0, (4.24)

Simultaneous solution of the differential equations of equilibrium for
vertical strips will give the stress strain state of the grid system.

Ky
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Fig. 66. Discretely continuous analytical model of a grid system.

a—plan of building; b—plan of model; c—elevation of model;
d—end view of model.
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4, USE OF DIFFERENTIAL EQUATIONS OF A GRID SYSTEM
FOR DIFFERENT SCHEMATIC MODELS OF BUILDINGS

Under the action of horizontal forces a panel-type building may be repre-
sented by a grid system consisting of horizontal and vertical members. The
horizontal force is applied on the joints in the form of concentrated forces
and the vertical in the form of concentrated floor loads transmitted to the
vertical members. In the process of bending, the latter creates an additional
horizontal force distributed along the height and determined by (2.47). Con-
sidering this force the equilibrium equation becomes non-linear. To obtain
a linear equation the distributed vertical force n is considered as an equiva-
lent concentrated force N applied to the upper end of the vertical member.
This force is determined from the condition that the work done by forces n
and N, when the bar is displaced due to the action of uniformly distributed
horizontal force, is equal:

SN ( df/) dz=1] ( dW) n (H—7) dz. (4.25)

The magnitude of displacement W is taken from (3.64) and by substituting
~in it A from (3.50) we obtain the differential expression for W:

aw _ q z3)\2 222 gx )

& GH ~ T T (4.26)

(H I+ —=

By substituting this expression in (4.25) and integrating the expression,
we obtain the magnitude of the equivalent force N:

N = nH¢, 4.27)
where { is the equivalence coefficient. It is equal to:

0.6250* 4 5,550 + 25

$ = T7gsm L 102 & 333

(4.28)

For a bar undergoing shear for A < (.8, the equivalence coefficient ¢ =
0.75 while for a bar undergoing bending for A > 8, ¢ = 0.35.

Let us examine a multistory frame panel building which has large dimen-
sions in plan and has built-up floors where horizontal (floors) and vertical
(frames) members undergo shear strain. The differential equation of equili-
brium for such a building will be:

oW W

where N is the equivalent longitudiral force per running meter length along
the top of the building.

For a high rise building or with narrow frames the equilibrium equation



75

of the building will be:

o

32 4 2 2
a2 B;(Iﬁi\i)aW oW B 0o a0

ox2 C. /) ozt 0z C, 0z%

For a braced building in which vertical diaphragms undergo bending
strain and the torsional strength of the floor is also considered, the following
equation is obtained:

oW oW W

W
* gx: T Y Gzigxt B: oz

8z2

- N +qg=0;¢t (43D

A building with monolithic floor and vertical diaphragms undergoing
bending strain will have the following equation:

MW W AW W
Tyt T K K)o+ Bie + N =g =0, (432

By

In panel buildings of the frame brace type the differential equation of
equilibrium may be written for each vertical strip, considering the design
model of the building to be discretely continuous.

If'the floor undergoes shear strain, the diaphragm of the /th strip is defined
by equation (4.23).

Equation (4.29) may be used for the frame brace building. In this case
the diaphragms are considered stiffeners for which the boundary condition
for compatibility of deformation will be;

il id aw

c,

[EII; 624 S 68X |x=a

= 0. (4.33)

In the frame brace structure with many vertical diaphragms undergoing
hending strain, the building is considered two-layered in the vertical direction
and single-layered in the horizontal direction. For this the equation will be:

oW oW oW
Cs e +(C.—N) P - By G +q¢=20. (4.34)

For braced construction, that is, when the frame stiffness is small, the
equilibrium equation will be:

&*W W oW

G Nz~ B

+ g=0. (4.35)
For the vertical direction of a building, if it is considered multilayered

and the struts between the layers are represented by elastic braces that resist

bending, the differential equation of equilibrium will be of the type (4.20).
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5. GENERAL DIFFERENTIAL EQUATION OF EQUILIBRIUM
FOR A BUILDING

If we consider the building as a three-dimensional spatial system, we can
simplify its analytical model. Such a model may be represented by intersect-
ing plates and in the vertical direction as a collection of multilayer plates
with elastic braces. From such a model we can analyze the spatial behavior
of different schemes of buildings for transverse, longitudinal and vertical
forces.

Let us examine a frame-panel building in which the vertical members are
frames and diaphragms. Frames are represented as a single layer equivalent
bar with equivalent shear and bending stiffnesses. The diaphragms are simi-
larly represented by a single layer equivalent bar with equivalent bending
stiffness. Where the frames and diaphragms are simultaneously present in a
building, the vertical members are represented by two layers: the first layer
is a frame and the sccond a diaphragm, Floors form the horizontal members.
A floor is represented by a single layer equivalent bar with shear and bend-
ing stiffnesses. The torsional strains of horizontal and vertical members are
neglected, as they are small.

A view of the building with the x, y, z coordinate axes is shown in Fig,
67. The displacements along the respective axes are considered functions of
two variables W (x, z) and V (x, y) and in the vertical direction, as a function
of three variables U (x, y, ). The condition of building equilibrium may be
represented by differential equations in terms of the forces acting on the
building and the displacements.

In its general form the differential equation of equilibrium for the build-
ing will be:

trans JLrans g Btrans 4
BZ BZO 8 W — Blrems ,_I_ Btrans —_ z 8 W — trang 64W
(trans oz6 z 20 C’;raus a4 % Sxt
z
2 Birens a2 trans 11805 a2 trans
— Ntrans g w — z 0 q e 'Bx g q rans + qtrans —_ 0’

2 trans 2 ¢rrans 2
oz Ct dz cu ox

Blzong Blz%ng 66 V

fong
(Blong _[_ Blong _ Z Nlong )ﬂ_—. Blong ﬂ
z z0 624

C'iong 626 - Long v ayq.
2V B]zong 2 long Blong 2 ylong
— Nleng & A & aq — - f a‘q . -+ glone = (;
7~ Coms oz Ciwe oy
ver a*U ver U v 6214
. ax? T ey art + By az? +gver=0. {4.36)

The first two equations of (4.36) express the building equilibrium under
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Fig. 67. Building model.
a—general view; b—three-dimensional analytical model.

the action of transverse and longitudinal forces and the third that under
vertical forces.
Let

tran jon

Birans o i[EI]_Y s Z[ET]lone
x H H

be the equivalent bending stiffnesses of horizontal members in the transverse
and longitudinal directions and

Z[E[]!rans E[E[}Icmg
- and Blong = ———f
z Llong

and B}f’"g ==

Btrans —
z Jtrans
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be the equivalent bending stiffnesses of frames in the transverse and longi-
tudinal directions, Similarly,

Cirans — E[GFEF&“S d (Clong = Z’[GF]lzong
s T T pmms o ARG S e

will be the equivalent shear stiffnesses of frames in the transverse and longi-
tudinal directions and
[EI]Lrans Z[EI]L?)ng
B = — s And B =l —
will be the equivalent bending stiffnesses of diaphragms in the transverse
and longitudinal directions, Similarly,

S ' Z[GF]er
Cx = HJ long and C.v = HLtrahs

will be the shear stiffnesses of horizontal members in the vertical plane while
Z[EF]er

ver .. T
Fz LtransLlong

will be the equivalent longitudinal stiffness of vertical members;
gens, g'lore will be the distributed forces acting on the area of transverse and
longitudinal facades of the building and

ZQsmry
HLtransLlong

guer =

will be the force per unit volume of the building.

v Ctx ans

(4.37)

will be the vertical distributed forces applied on top of the building in the
transverse and longitudinal directions; ¢ is the equivalence coeflicient.
Figure 68 shows the analytical model of the building. Depending on the
magnitudes of equivalent stiffnesses, the differential equations of equilibrium
(4.36) may define different structural models of frame-panel buildings. By
introducing the concept of stilTness characteristic of a building and its mem-
bers, we can define the corresponding building model. To determine the pre-
dominant types of strains due to horizontal forces, let us write the stiffness
characteristics Atrans and Alone which are equal for the vertical members:

Crons
,\lzong =H leong__ (438)
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Fig. 68. Analytical model of a building with floor undergoing straln.

a—building plan; b—plan of model; c—elevation of model;
d—end view of model,

For horizontal members:

trans Ltrans Ct!‘anﬁ
Ax 8§ == 2 B[rdns, (4'39)
o I long ijong.
Alyo £ = 2 ,JB}Gng (4.40)
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In vertical members due to the action of longitudinal forces:

(4.41)

where C,, is the modulus of subgrade reaction for soil foundation.

We may write the following conditions: for A < 0.8-—since the building
member undergoes only shear strain we can assume that all values of B = co;
for X > 8 only bending strain occurs and hence we can assume all values of
C == 0. For 0.8 < A< 8 both shear and bending strains occur. In such a case,
for < 30 longitudinal deformations are considered in a vertical member
and for p > 30 they are not.

The stiffness characteristic of the building kyyig determines the nature of
the building design model defined by the predominant stiffness of a frame or
a diaphragm. It is expressed by the formulae:

. Ctrans

kbmld H Jl -4 0. ]5 (Atrans)z _Ezn_s, (4'42)
1 Clorg

k%)rl;il?é =H \/ 1+0. 15(}\10“")2 Tong . (4.43)

For kuuiia & 0.8 we have the brace model for the building where all load
is taken by vertical diaphragms and hence we may assume C, = 0. For kyuiia
> 8 the building has a frame model in which all load is taken by frames and
hence we assume B,o=0. For 0.8 <C kvuiig << 8 we have the frame brace
model, in which the load is redistributed between frames and diaphragms.

Let us examine particular cases of a frame-panel building with built-up
floors for which A'rans < 0.8 and Al*"z < 0.8.

If we have frames in the transverse direction for which Atrans <= 0.8 and
ktraes = 8 in the longitudinal direction, frames and diaphragms for which

build

Alns < 0.8 and klonz << 0.8 and for the vertical direction u >> 30, then the

differential equations of the building will be of the following types:

C;rans 6;]2] + Ctxrans a@x]] — Nteans 06 + qtrans 0
il &V
1 — (long 1 —_ gl — -
Bzgng 624 Cyon 5y2 _{_ Nlong [jz g ong 0’
ver 6211 ver ¥ ¥, 5 u ver ——
C.x X% + Cp 517 — gV = Q. (4.44)

If we have frames and diaphragms in the transverse and longitudinal

directions for which Alrans << (.8; 0.8 < kirans < &; Alons <2 0.8; 0.8 < klong,

<< 8 and for the vertical direction u << 30, then we have the frame brace
model in the transverse and longitudinal directions and hence the differential
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equations of equilibrium for the building will be:

Btrans 6@ w (Ctrans Ntra.us) ?E C)tcmns (’;;/V qtrdus = 0
84y o2V
Bigng - (Clonq_... Nlong) Clong o qlong 0;
© gzt vyt
et &%u L Cvcr o u -+ F\'er + ver — (J, 4.45
x 5}2— v Ej,z z 622 q ( ' )

6. DIFFERENTIAL EQUATION OF EQUILIBRIUM FOR
A BUILDING WITH RIGID FLOCR

In practical building construction one ofien finds point-type high rise
buildings with finite dimensions in plan, which are however small compared
to the height. In such cases the floor may be considered a rigid disk. The
design model of such buildings is discretely continuous and is obtained as
follows: all vertical, transverse and longitudinal members of the building are
moved out in the respective directions and joined with the rigid disk (floor)
(Fig. 69). The frames and diaphragms will be treated as the vertical members.
Reactions due to vertical members act on the rigid disk. The reaction from
the ith vertical transverse strip which happens to be a frame, will be equal
to:

213
([GF lt_l'ﬂns — N}runs) % - qtgrans [ R;rans_ (4.46)

The reaction from the jth strip, which happens to be a diaphragm, will
be:

4
__[E[]llms d W Nu"lns 4 W’ _{ gtrduq — R}rnn‘:‘ (4.47)

The turning of vertical members causes torsional reactions to act on the
rigid disk. These reactions are equal to:

2
{G](}];.m“s d(ll?;e — mgl‘ans; (448)
12 '
[GIO]_!,»PM‘S [dzg —_— nzjralxs. (449)

Similarly we obtain the reactions due to vertical members in the longi-
tudinal direction. Considering the floor disk as a solid body we can write the
following static equilibrium equations for it:

Y X =Y Rions 4 ¥ Riove = 0;
Z Y = ER;HH;S + ER;x‘ans — 0;
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Z M= E R;rang a;rans + Z Rj_rans b;rans _l_ E R}ong a}nng _!_ E R}ong b[jqng
+ Em;rans ._}_ Z m}rans _I_ Em}ong + E m}ong — 0_ (4‘50)

Let point O of the rigid disk be displaced by W and V,along the y and
x axes, respectively, and let the entire disk at this point turn through an

‘ Longitucinal
b I I]tranS- diaphragms
)
o of @ B
t ]UJ feng WEt.rans l lran5’| fong [GF]i
pmg=R by M b
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mﬁ—" 4 ] ongituding
" dong Eframes
Bk b}
y
Transverse
frames
c trans trans
N N; N
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[ DJ > -v ™ .L
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Fig. 69. Analytical model of a building with rigid floor.

a—plan of building; b—plan of model; c—elevation of model;
d—end view of model.
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angle o. Points / and j of the rigid disk will undergo the following displace-
ments along the y and x axes:
Wi = Wo 4 g alrans;
Wi = Wo+ ¢ birns;
Vi= Vot palons; (4.51)
Vi=Fo+obps.
By substifuting the values of reactions and displacements (4.51) in the

system of equations (4.50) we obtain the equilibrium equations for the build-
ing in the following form:

a’Wo

AR L - - @ o

= de

_}_ Z [E[]l[ ans (P bfrm'; 1 [jz.ll]\]}mns b}mns_i‘l([G};’]_ N)(‘_rans at_“m’*']

" i
b frans __ trans — ():
dzz E q Elqj H

dy & one |92V
JEl[b]]lonn i740 [EIN}OH';_.XZ‘J.[GF]_ZV}.OJ=] d_20

k
___%_ Z [Elj(lﬁng b}ong
=i :

4 H
% dd ¢ [E ]\}'iung7 bl«)nu —_— 2 ([GF]_ iI'v’)}rmg a}nnn] - —_ E q!cm“
74 i=1 -

N
~ ¥ glne = 0;
J=1

dVo

[EI]!: ans btr ans

d_lﬂ) L L[E[ longblong

1|MR~

-+ [Z Nt'nms b;rans
Z [GF ),L_rans a;rans] d? WO + [:E Nlong blom. _E ( GF] N)lon
4
v a](mn] VU + 2 [EXggaos (blrans)2 - L [El]long (b}ong)l:] ,‘fg‘f
f k
RN - L (GF - Ny (armmo + ¥ Ve (Bl
_Z([GF] N)]DHL (a[ong)z dzz ananc azmm_qurans btrans

“21' qgan,&' a},ong_ Z q}mlg ajr_ong - (g [Gly]irans +- Z‘l [GIdI;runs

- E[Glo“‘”‘nLL[GI]“’“g)d P =0 (4.52)
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To obtain the differential equations of equilibrium for the building, add
the equation which expresses the building equilibrium in the vertical direc-
tion to the system of equations (4.52):

< ver d2 U o VeI —
YEF= 0 + g =0.

When considering different structural models of buildings these equations
may be simplified depending on the stiffness characteristic kypuig of a build-

ing. When the building twists £{°%,, will be equal to:

ktor —

build ™

H\/E [GFirans (atlans)z + E {GFJ]Ong (aIOng)Z +¥ G[e]trans + Z{GIO long
L [E[Jtrans (btrans)z + E [E’]]long (blong)z

(4.53)

If the building has only plane diaphragms and there are no centers of
rigidity then the torsional stiffness of vertical members may be neglected.

If poini O of the rigid floor disk is a center of rigidity of the vertical
members and center of gravity for the longitudinal forces, then the following
expressions will be equal to zero:

k - k k
gl[EI]{L);ans b}”“s — 0; E[E[](I)?ng b}ong =0 }E::'lerans b}rans — 0;

E Nlono bIOI’I‘!, —_ 0 E ([GF} N)trans atrans — 0 2 ([GF] N)lonq along = (.

j=1

System 4.52 is then separated into three independent equations:

Lo+ 3 Ny (6P Ny |

d W - rans __ ran
Xz~ R 24‘ 2=0;

a'Vo

Z [EI]trans

d*Vy
dz?

E[Eljlozu, +[ZNIOng_Z([GF] N)long
— long — long — ()
ig}qi ¢ }};q, s=0,
: EI trans btrans 2 u EI 30“3.b10nz2 d4(p k Ntrans btrans 5
| BB G+ B e G | G0+ | e e
2 k
—E([GF] — N)E”ms (aifﬂﬂS)Z -+ Eljv}ong (b}l;ong)z

M dz n X
- ;‘V:‘t([GF] ~ N)lens (aIIpng)2] E'CZP - (gj[GFolsrans _!_j; [GLo]roms
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n . k d2 n ] ) k ) )
+ 21[G[O];0‘1‘1 + E[Gfoljlnng) E[EZE - Elqgmus a?lans __j; q}mns b;_ranb

i=
n k
—IZ:‘I qx!ong (Igong __Jg q}ong b}oug ={, (454)

The first and second equations of (4.54) express the building equilibrium
condition for transverse and longitudinalforces; this gives rise to correspond-
ing independent displacements. The third equation expresses the equilibrinom
condition due to the combined action of transverse and longxtudlnal forces
which caunse the building to turn.

If the load is symmetrical with respect to the center of rigidity of the
building, then the third equation loses its significance because the building
will not undergo torsion, Due to different shear and bendingstrains of ver-
tical members, the center of rigidity of the building will change along the
height. Therefore, we shall use an approximate method to determine it.
According to this method, the coordinates of the center of rigidity will be:

E ({GF]-‘ N }.l‘ans a;l‘ﬂlls + 2 ([EI] + N)}rym b&rans ’

xafgid: E ([GF]“N)’ET811S + 2([5‘]] + N)}rans H
o . B AGFI=N)jers gions 4§ ([EI] + Nyjers bipne (4.55)
S N (7 N S (77 R ) R

where @ and b are the distances from the edge of the building to the corre~
sponding vertical member.

7. BOUNDARY CONDITIONS FOR THE DIFFERENTIAL
EQUATIONS OF EQUILIBRIUM OF BUILDINGS

To consider the action of horizontal forces, the three dimensional design
model of a building is represented by a plate-like system fixed at one end.
The base of the system is a beam which is elastically fixed against vertical
and horizontal displacements and torsion. Under the action of vertical forces
the design model of the building is represented by a multi-layer membrane
with elastic braces between the layers, The lower layer of the membrane isa
slab on an elastic foundation.

The building foundation may be designed in the form of either a mono-
lithic slab or as grid work continuous beams or as isolated footings, connected
by wall beams. Its solution leads to a horizontal beam with equivalent shear
and bending stiffnesses, resting on an elastic foundation. It will have free

ends in the horizontal direction. In shear deformation of the floor the bound-
ary conditions will be:
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for x = — 'é" 6@_1’: = 0;
for x = & fg/ =0 (4.56)
In bending deformation of the floor, the boundary conditions will be:
forx:—~—§—: %2—)?: s ?Tpfz();
forxz—é’—-: %23?-—: ;%gi:(). 4.57)

For the vertical direction, in a frame-type building in which the founda-
tion beam is rigidly fixed to the foundation, the boundary conditions will
be:

forz=0: W=0

forz=H: “-. =0, (4.58)
oz

If the foundation is a monolithic slab, with equivalent bending stiffness
[ET]} resting on elastic foundation, the boundary conditions will be:

— N X 64 W__ ﬂ e i — ()
forz=0: [ET}} Frre C. pre Cr W=
forz = M 2 = 0. (4.59)

In a grid work of strip foundations with equivalent shear stiffness [GF)F
resting on a rigid foundation, the boundary conditions will be:

=0 [GFE oW c. W o V; .
fon . W '
- forz="H. = 0. , (4.60)

Isolated foundations, for which the equivalent rigidity is zero, shall be
considered as a foundation beam with elastic restraint against horizontal
displacements. kt will then have the following boundary conditions:

aw

z=0 C = =CvW,
dz
ow
z == ——6—2—« s (4.61)
O = Cshé‘if] Fe, (4.62)

where Fris the area of foundation and Cho! is the modulus of subgrade reac-
tion of the foundation under horizontal displacement.

For the vertical dircction of a frame brace model of a building with uni-
formly spaced diaphragms along its length, the boundary conditions will be
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as follows when the foundation beam is rigidly fixed to the foundation:

forz=0: w=0 ¥ o
oz
arw
fonzH: —a?—=0,
W W
Bzo%zT—sz = 0. (4.63)

When the foundation is elastically fixed against horizontal displacements
and against turning in the case of a foundation slab, the boundary conditions
will be:

for 2= 0 [Ghl} ~q— 2’; + Ba a;:f— o g,
e T B T . oo,
for z = H: %;—f: 0;
B, r’?_;ZLE/ -C, %V =0. (4.64)
Ta a grid work of strip foundations:
forz=0: (Gl 270+ Bo 2 ~ce 2% =0,
(GFJ: 565432095—;-% C %Zz+ Cv I =0
for z = H: %: 0;
Ba ‘36 W _c. %VZK = 0. (4.65)

For isolated foundations the boundary conditions will be:

2w oW
forz=0: B, — 77 —Ce —a;HO
[GFJFaa’Z—BIOaan+C,——-+CWW 0;
. W
for z = H: e = 0;
3
B, 2W o OV _,, (4.66)

Y T ez
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IF Csoi1

¢ =
C I

(4.67)
where Ip is the moment of inertia of the foundation and C..; is the founda-
tion coefficient for non-uniform ground compression.

In diapbragms concentrated along the length of a building, the boundary
conditions will be (4.59),(4.60) and (4.61). Where the diaphragms are located,
we shall have additional boundary conditions as for a slab with stiffeners:

for x =a:

4
ZW_c. 2% o (4.68)

Bo =55~ ox

When the building is under the action of vertical forces, the boundary
conditions will be:

r
for x =— L;m oU =0;
2 8x
) _ [irans . —a—g o
for x = 77 Bk =0,
- Llong 6U
for y =—- T =0
2 'y
Llong o aU
f = T ==
ALk 2 ey ‘_Of;_ s
aU ..
| Afor zz = H: E_—-O o (4.69)
In isolated foundations:
for z =0
el
Fes = - Coonp UL (4.70)
In a foundation slab:
forz=0
84U aU '
By —% ox* 4_ £ Oy“ +(Kx K —7m= ax25y2 — B bz + Coou U= 0.

(4.71)
If the foundation is absolutely rigid we shall have:

for z=20:
U=0. 4.72)
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8. DETERMINATION OF FORCES IN THE VARIOUS
MEMBERS OF THE BUILDING

The system of differential equations of equilibrium for a building (4.36)
and the particular cases (4.44) and (4.55) are solved separately for transverse
and longitudinal horizontal forces as well asfor vertical forces by the method
of single, double and triple trigonometric series. After determining the un-
known displaccments W, ¥V and U in the horizontal and vertical members of
buildings, we find the combined resultant forces. Under the action of
horizontal forces the combined bending momenis and transverse forcesin a
diaphragm will be;

2w

M%ans s [EI]lranS @—22—"

H2
Mg =~ [ T

622;
rans rans 63 W'
QU — BT S
Qigpn =~ a2 Y, (4.73)
where [El].o == B.,g [ and [ is the distance between the diaphragms.
The combined transverse force in a frame will be:
rans — trans _@LV-
Qe = [GFEr™
Qs < [GF)ons O (4.74)
g s Oz
When the floor undergoes shear deformation the forces in it will be:
oW
rans e G’ trans .
Qs = [GFfze S
Qom IGFllcmv 61;- (4.75)
and for bending:
! W
trans e Jtrans .
Mx [EI—'v axZ ?
Miong jE— [Elllon& 6 V
¥ y
. o3 w.
trans — trans 2
2 &1 s
& V
long — — leng ¥ 7
Qions = = [BL}e T (4.76)
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When the building is loaded vertically, the transverse and longitudinal
forces for the vertical direction will be:
VeI o ver BU'
Q= [GFj

) aU
Oy =167 50

Nyes = [EF]ver %}, (4.77)

The values of these forces may be substituted in differential equations
{4.44) and (4.45) after which their order will diminish and the unknown in
these equations will be the forces which are to besolved. The values obtain-

ed are applied to individual stories and bays of the building and then the
forces in their constituent elements are determined as in (3.9).



CHAPTER 35

Natural Oscillations of Buildings

I. GENERAL DIFFERENTIAL EQUATIONS OF NATURAL
OSCILLATIONS OF BUILDINGS

To solve the problem of building oscillation we use d’Alembert’s princi-
ple, which treats the dynamic problem as a stafic one by adding inertia
forces to elastic forces. Here the displacements are taken to be functions of
time W (x, z, 1), V{z, y, tyand U (x, y, z, 1).

By multiplying the second differential of displacement with respect to
time by the respective mass, we obtain the inertia forces which become the
external forces in the case of natural oscillations of a building:

@2 W
trans — _ pylrans .
q H’l atg »
az v
long — . pmlong .
VOF — ver 62 U .
gy = —1m FYo (5.1)

The uniformly distributed masses in the respective directions of the build-
ing are equal to:

trans — EQstury N

thransH’
;nlong == EQStmy .
gLIong H 3
ZQsiory
n = thrans le(:;‘lg H" (52)

where Qsory is the weight of a storyand g is the acceleration due to gravity.
By substituting the values of inertia forces (5.1) in equation (4.36) we
obtain the general differential equations of natural oscillations of a building:

BtransBlrans 6 trans 4
z ! ‘"? 0 w - (Btrans - Birass _ _‘Bj MNtrans ki -
C;mn) 876 F1 z0 C;r:ms 024
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irans 4
— B'irans 64 H/___ N[rans 62 W + mtldl’ls B 6 W
axt 62 C’tr.ma 622 dzl

o Bxtrans o4 W . W A

+ jatrans C;rans 'axz dtz — pptrans 1‘2 — O’

_BLOHg B9 56 V' B (B]ong T Bl%ng_, B’;’“‘:’ Nkmg) 8tV _ grone ¢ @4 %4

C;ong Erd C;ong ozt ¥ 5}7
, @2 Biong L4 Biono atv NV )
— Along e -+ mlons Ej_lmm 622&,[2 - long Clong 6y2 e — plong T =05
Y
U @0 RU_ U
c axt T s T Fegm —m w0 (53)

The first, second and third equations (5.3) refer respectively to transverse,
longitudinal and vertical oscillations of a building.

Let us study a building which is frame type in the transverse direction
and brace type in the longitudinal direction. We assume the building is
undergoing shear strain. The differential cquations of natural osciflations of
the building will be:

rans W ans OC W oW
trans trans trans — trans — )
(Comns— )——522 G S s T = 0
otV v 2V
long & lon’ ton long = O
B =G, 6y2 + Nioms O G T 0;
wer 02U oru ot
ver ver ver ¥ T ypver —
cy mz Uio s e =0, (5.4)

Let us examine a frame brace type building in the transverse and longi-
tudinal directions with the floor undergoing bending strain in the transverse
and shear strain in the longitudinal directions. The building rests on a soft
foundation. The differential equations of natural oscillations of the building
will be:

6 W >*W W rW
trans . trans transy trans 2~ trans 7 " — {}
Bizans 5 Cirans — Ntrans) i + BU T +m a2 U;
oy 2V 2y 4
long * . long __ Alomgy ____ __ (Tlong 2 7 long == ()
Bl 37 (ch Nlong) 35 cx 5y +m e 3
U 0rU
ver 7 ver X ver = 0. 5.5
C‘ 6x2 + < g "M o : ()

In point type high rise buildings represented by the frame brace scheme
in which -the floors are absolutely rigid disks, the differential equations of
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natural oscillations of the building will be:

2 [EI trans 6 WO + [‘E ATHZIIIS 2 ([GF] N)tr Lns] MO

rans rans WO v s ns htran
-+ (gtm: a _jz;'_"lm} ) pre + (?_“m: ans a}ran +§1m3ra b; N s)
e
X =
X Py ;
; L ] 2V
Z‘ FI]T()nn 0+ [E Nlon;, L([GF] N} Ong] T
+ (i méouug + E(m}mlg) & VO + (E m\ong along + E mlong blong)
i=1 = )
5% .
s 73t2 =0

i EI tmm (bfrms)z + 2 [’E{] ong (blong)2] [Z Ntmns (btmnb)z

I

a8

_E‘] ([G'Fl____ N)}mnﬁ (ui‘rans)Z + Z“ N}ong (bjlong)Z__, ?_-"’l([GF] _ N)liong
" k
X(ajl_ong)'l:l e ziP (E [GIO trans + E uans + Z [G[o]éong + ;

5% [GIO]J]-UHQ) (7 (? (E mtmns atrdns _g Z mhans btrans

a2 Wo
azz F{— J )

o

i
+ (er: m}.““f-! ai_on [ Zmi(mgb 011?‘) ?Aﬁ) + E m;rans (agrans)Z

i=1 j=1 a1
E mtrans (blr ms)z 4 2 mlong (along)z -4 'Z mtong (b]ong)2 =);
n g2 U
EI[EF];’” > —i'j;l mye 5= 0, (5.6)

where my; and m; are the masses per unit length of the vertical members of
frames and diaphragms.

The first three equations of (5.6) constitute a total system giving the
expressions for the transverse, longitudinal and torsional oscillations of a
building. The fourth equation is independent of the first three and expresses
the vertical oscillations of the building.

If the center of rigidity of the building coincides with the center of mass,
then the following expressions are equal to zero:

E mtrans atrans + 2 mtrans btrans - 0

!'=1

tong glong A long plong —
;-Z; mioe gl —f—jz:lmj bj 0.
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In this case the first three equations of (5.6) become independent and
separately express the transverse, longitudinal and torsional oscillations of
" the building. In that case differential equations of natural oscillations acquire
the following form:

> s EH0, Ty 3 o 12T
. jg[ [EI]B:A s _.._4_0 + [Z le,rans _— Z ({GF] . N)til aus] Z2 [«
(Z”"'""S + )3 (m‘"““) 5af° =0
; 2
2 EI]long a4 Vo -+ [2 Nlong ([GF] )}ong] aaZI:o
j=1 =

+ (2 miors 1. E mmng) aa:’;o -0

o rur;g trans tran a & tr s
[E‘,[EI}%U s (bj n )2 +j§=:l[EI}é?ng (b; s)z:l EZ_‘? -+ [E‘INJ' ans (b;ran )2
. i ([GF] — _N‘i)traus (a}rans)z + é Nl_nng (b!.ong)z - i ([GF) — N)‘!ong

N (ak)ng)z @t2 (2 [G‘]O]trans + E IG]’O]tr'ms + E [G’IO]Iong

; on @ ¢ ’ rans rans
+J§1[GIOPJ 3) 57 + [:’glm:_rans (az ans)z _{_ 2 m; (b; a )2

n k
+ iglm,!mg (a[!ong)Z + Z" mj[ong (b}cng)zj gtch —0
L az U
-y e =0 .7

i=

5Uo

iz:: [EI}ver

The position of center of mass on the floor is determined by the follow-
ing coordinates:
Z'm;rans qtrans + Smtrans bt_rans
i i J I
trans trans
Z‘m‘_rdns + ijrans
long _Jong long fhlong
Emi a; —I— Z'm b

Yo — S 7
yo - Zm'!(mg _%_Z'm}{ong R (5.8)

£

-
xo ==

where ¢ and b are the distances between the edge of the building and the
respective center of gravity of the vertical member.

To solve the differential equations of natural oscillations of a building
let us write the displacements in the following form using the method of
separation of variables:

Wix, z,1) = Wy (x, 2) sin (wirns f -1 gp);

V(0 2, 0) = Va (2 sin (o 0+ )
U(x! Vs 2, )=Us (x: ¥, 2} sin (wyert + €3), (59)
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Fig. 70. Frame typs building.
a—plan; b—movement of floor during oscillations; c—analytical model of building;

d—eross section of the model; e—longitudinal section of the model.
For torsional oscillations of point type buildings the angular rotation
will be:
¢ (2, £) = @a (2} sin (@™ 1 + €a) (5.10)
By substituting the values of displacements from (5.9) in equation (5.3)
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and using the corresponding boundary conditions we obtain the frequency
equations. The solution of these equations gives the values of frequencies of
natural oscillations wtrass, wlonz and v, From thesc values the relative
magnitude of amplitudes of natural oscillations Wa, Vs and Us may be
determined.

2. DETERMINATION OF PERIODS AND WAVE FORMS OF
NATURAL OSCILLATIONS OF BUILDINGS WITH AN
IDEALIZED POINT SIZED AREA IN PLAN

Buildings with rigid floors and non-deforming contours may have different
structural schemes depending on their stiffness characteristics. These are
determined by the following formulae:

o [ B
kigns = H S— (5.11)

[
X L
i=1

£ 1omp
ki =HANJ = . (5.12)

3 [ET]igms
=1

We shall use formula (4.35) to determine the torsional stiffness char-

acteristic of building £to; .. We shall assume that the center of rigidity and

the center of mass of the building coincide. For k{13 > 8, klone > 8 and
kor > 8 we have the frame model of the building in the transverse and
longitudinal directions (Fig. 70). For this the equations of natural oscilla-
tions (5.7) will become:
I 62 I’V() 62 WO
—_ trans 2 _ 2 __ — == ()
igl([GF] Ny oz2 M daz? 0;

” o2 VO 62 VO
— long 2 Y AfZL N ()
fgl([GF] N)‘ * 8z% a2 0

¥ (AGF]— Ny (apers)2 £ Y2 (GF~ N (alone) + R [Gh

: tiong 1079 9%
+LIGh] g]a—zz— ~ Mo =2 =0;

n ver @2 U() 62 U() -
LGFLer S = M g =0,
where
. ZQstory_
M= He
M .
MO —_ [(Ltrans)z + (Llong)Z]_ (51 3)

2
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To solve the first equation of (5.13), let us write the values of displace-
ments as:

Wa(z, 1) = W,1(2) sin (wianss 4 ¢). (3.14)

Let us substitute the value of the second differential of displacement in

the first equation of system (5.13). Thereafter we obtain the following ex-
pression:

W 4

s T eWa=0, (5.15)

where
= (wtrans)2M

%2 (GF1- Wy

. (5.16)

The solution of equation (3.15) will be:
Wy = A;cos kz 4+ A» sin kz. (5.17)

For a cantilever undergoing shear deformations, we will have the follow-
ing boundary conditions:

forz=0 W,=0;

forz = H: dg:*‘ = 0. (5.18)
We obtain the following periodic equation:
cos kH =0, (5.19)
n(2n—1)

from which kH = , wheren=1, 2, 3,...

2
By substituting the value of & in (5.16) we obtain the frequency of natu-
ral oscillations of the building as

trAns —— T (2"— 1) W

,, o7 T (520)

The period of natural oscillation of the building in the transverse direc-
tion will be:

aH 7
LIans —- [
T = \/ G|~ Nyas © (5:21)

Similarly the period of natural oscillations in the longitudinal direction
will be:

4H \/ M
2n— 1\ Y ([GF]— N)lene”

long —
Tu -

(5.22)
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For torsional oscillations of the building:

or 4
= 2T
M, =
XN TG NI (@ + LGF]— NP (@ #F + LIOLT +
—r—
+ Z[GhLeE. (5.23)
For vertical oscillations:
Tver = 2n 7 \[E[EF]V” : (5.24)

The wave form of natural oscillations in the transverse direction of the
building will be:

kol (271 )
2H

The wave forms of all remaining cases should be as in (5.25).

For kirans < 0.8; kpug, << 0.8 and k%, < 0.8, we have the braced
scheme of building in the transverse and longitudinal directions. Let us
examine the deformations in the diaphragms without considering the effect
of longitudinal forces. The equation (5.7) of natural oscillations of the build-

ing will then become:

(W), = 4 sin (5.25)

o4 Wy 82 W

tranS +

E[E” S TMGE =0
82 Vo

I — 0

E[EI] ou 0 2t + M e 0;

‘:Z [EIItr ans (btrans)z + E [E[]long (bi,_ong)z:]

oo 0<p_
XE%Z—W{_MO@tZ 0

a U ER Y
E[EF]‘“ Y -M 7at207 = 0. (5.26)

Let us use (5.14) to solve the first equation of (5.26). This gives the
following differential equation:

—g4
‘;Z4W"— KW, = 0, (5.27)
where
2
= (wtrans) M (5_28)
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Solution of equation (5.27) will be:
Wai= Ay sin kz + 4> cos kz -+ A3 sh kz + A4 ch kz. (5.29)
Let us examine the boundary conditions:

dW4

forz=0. Wya=0 e =0
. AW, AW i
| forz = H: ——3%=0; }%—*‘n =, (5.30)

The transcendental equation for frequency will be:
cos kH > ch kH =—1 (5.31)

The roots of this equation are Hk = 1.875; 4.69; 7.86 .
The frequency of natural oscillations of the bulldmg is obtaincd from
(5.28):

wttans — /CZ \[%. (5.32)

The periods of natural oscillations of the building in the transverse and
tongitudinal directions will be:

prrans _ 27 2nH? \/ 70582 [T M
" P C? Y ~ Ga—1gN YER"
(5.33)
. 7.15H?
ong — ~
7 Gn— 1)2\/ YIEI (5.34)

For torsional oscillations of the building:

ror . TSI 535
n (3”— 1)2 Z[E[] TAns (b{rina)Z _{_ L'[E[ long (blung‘)z E] ( + )

where C| = {.875; C, = 4.69; C; =7.86...0=1,2,3,.

The period of vertical oscillations of thc building is determined from
(5.24).

Based on the solution (5.29) and the boundary conditions (5.30), the
wave form of natural oscillations of the building in the transverse direction
will be:

(W) = (cos C:H + ch CiH ) (sin Cjz—sh Ciz}— (sin CGH
+ shCiH) (cos Ciz—ch Ciz). (3.36)

The wave forms of oscillations for all remaining cases should be con-
sidered according to (5.36); however, they can be simplified and expressed
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in the form of the following trigonometric function:

T (= 1yrsin "_(&I;]i] (5.37)

The wave forms of all three harmomcs, plotted on the basis of (5.36)

and (5.37) are given in Fig. 71.

first roximate Jecond !
harmaric valuz harmonic b

Wy = AI:I —COS

Third
hamonic

Fig. 71. Wave forms of building oscillations for a braced scheme.

For 0.8 </kifn, <8, 0.8 </kif, <8, 0.8 < /i), <8 we have the
braced frame model of a building in the transverse and longitudinal direc-
tions (Fig. 72) for which the differential equations of natural oscillations

(5.7) become:

2.
st Sy py g (071 Ny 20 1 gy EWo g,
V ‘V 2
E [EI]long o and + [2 Nfong__Z([GF] N)long] 82 Vy + M 5at20 =0

il
[ 2 [EIlrrans (b;..”’ ns)z -+ Z [El]é)‘;.“g (b}ong)] Ez_? + [2 N}rans (b;rans)l’

— E (IGF1— N)}rans (agrans)Z -+ Z le_ons (b}ong)2_ Z ([GF]— N)l!ong (a;ong)zl

022 + MO 012 = 0;
vor 82U 8> Up
LIEF SR - mT =0, (5.38)

The first equation of (5.38) expresses the natural oscillations of a two-
layer bar in which the first layer (diaphragm) undergoes bending strain and
the second (frame) shear strain.

Let us isolate the two layers of the bar from cach other and separately
examine their natural oscillations. Then the first equation of (5.38) may be
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Fig. 72. A braced frame building model.
a--plan; b—analytical model of building; c—cross section of model;
d—tongitudinal section of model.

represented by two equations:

Y ED, o2 Wo

4
TWs 4 m, =y (5.39)

ozt
a2W,
ar?

[~ (=N~ S 6~ 220w, T2 =0, (540
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where M, and M; are the masses of the first and second layers, respectively,
satisfying the condition:
My My =M. (5.41)
The period of natural oscillations of diaphragms is determined by (5.33)
in the following form:
7.15H? M,
Gn—12N LIy

The period of natural oscillations of frames is determined by (5.21). It
will be as follows:

T, = (5.42)

fn= 211—1 \/E( N)HrZ([GF] N):

The two layers of the bar should have identical periods of natural oscilla-
tions because, in reality, they are continuously connected to each other. By
equating their periods and using condition (5.41) we determine the masses
M and M, of the respective layers. Then by substituting the value of mass
M in (5,42) we obtain the periods of natural oscillations of the braced
frame system in the transverse direction as:

(5.43)

Tans — Af[ Y5
e = 115 ST 30— 17 (s )2 = )

_ (5.44)
For the longitudinal direction we obtain the period in a similar way:

buitd |

. M
Tlons = 71542 - ;
' \/ STE% B2 =17 (g, 2 - Gam 1 G4

where k22, is the stiffness characteristic of the building taking into account
the effect of longitudinal forces and is equal to:

a1 = H | RN IMGHI=N); (5.46)
SE
For torsional oscillations the period will be:
Tior =17.15 H>

My
X \/[Z[Ellb;d] (b}r"ins)2+ Z[E[]l[ﬁmg (bj_ong)Z] [3.202n—1) (k%](z‘r”d 1)2+(3n— 1]
' (5.47)

where k{o7,,is the torsional. stiffness characteristic of the building, deter-

mined by taking into account the effect of the longitudinal forces.
The wave form of natural oscillations of the braced frame system is



103

determined approximately by summing the wave forms of the bars under-
going bending and shear. These wave forms are taken to be proportional
to the masses with equal frequencies of natural oscillations:

(WA)n = A {[(”‘ 1)* sin -T——(I;q;l)- + ¢os %~ ljflw[sin R Ch? ) (22”1; D :léz},

(5.43)
where
g= L
ERE = P v )
(Grn=1)
b= “ﬁi: . 32 —iy
1 'BW'ZT)z (5.50)
For the first harmonic of oscillations we shall have
(W) :A[& (cosj%—l)—fzsin% , (5.51)
where
¢ = TW;
baild
£ = "———1—~5——- .
R

There may also be cases of point type buildings in which the vertical
members undergo shear and bending strains. The stiffness characteristic of
such a building is 0.8 < A < 8.

The differential equation of natural oscillations of such a building, con-
sidering the effect of shear and bending strains in vertical members, will be:

oW YUEL L W

W YIEL W 2w
ozt XAGF] " e dr

YIED; + M Y 0. {3.52)
To solve equation (5.52) let us examine separately the natural bending
and shearing oscillations of the building, expressing the deflection as in

(5.14). Based on the result of {5.52), we shall have two independent equations:

dt W jend bend 2 Lend .
LB St = M (@b et = 0; (5.53)
z .
dZWsh
LUGF] —t - M (i} W3 =0. (5.54)
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The frequency of bending oscillations of the building is determined from
(5.32) and shearing oscillations from (5.20). The frequency of combined
natural shearing-bending oscillations of the building is determined as for a
bar with additional mass undergoing shear deformation:

w,= 22221 \/ 2IGHT (5.55)
M+ Maga”
The additional mass is determined from the condition that it executes
natural shearing oscillations with the frequency of bending oscillations:
1 [GF]72(2n—1)? , (Cn—1)
(whend)2 4H? =3.22 (Gn—-1)* M.
The period of natural shearing-bending oscillations of the building is
determined by the formula'

y— 2n : \/E[GF][H 320 (2” 1;4] (5.57)

The wave form of natural shearing-bending osc1llat10ns of buildings is
determined by (5.48) where coefficients £; and & have the values:

Mayga = (5.56)

(2n—1) .
£y =322 =Ty fr=1. (5.58)
The stiffness characteristic of the building nmember is equal to:
A= 11, [ ZIGFT (5.59)
YIET:

3. DETERMINATION OF PERIODS AND WAVE FORMS OF
NATURAL OSCILLATIONS OF BUILDINGS WITH LARGE
DIMENSIONS IN PLAN

Let us examine buildings which have large dimensions in pian in both
directions. Let them have deformable floors which can be represented by
frame, braced frame and braced structural schemes.

1. A frame type building in transverse and longitudinal directions for
kirans> 8 and kot > 8 with floors undergoing shear for Atr*™ < 0.8 and
Alens < 0.8 and the stiffness characteristic in the vertical direction e > 30
(which, in turn, means consideration of longitudinal deformation in columns)

will have the following differential equations of natural oscillations:

s a2 W oW
Clmm. _ Lrans trans L _ppirans " —. 0
« N ) + C o " or ’
(C£7°“g ~ Nlevg) 9 zzf __Clong (Z;zV — mlons 662:2/: 4
X 02U
C;er ax,z,, 4 Cvm f_ Fvel 622 — mver EYD) =0. (560)
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To solve the first equation of (5.60) let us write the deflections in the
following form by using the method of separation of variables:

W (x, z, t) = X (x) Z(z) sin (wt20s  -}- €). (5.61)

By substituting the value of differential coefficients of deflections in the
first equation we get:

(C.— N —{— mw2XZ =0, (5.62)
The frequency of natural oscillations is written as:
w? = w? + w? (5.63)
Then equation (5.62) becomes:
C,—N 622 C, X
= + me? + — X He — -t moel=0 (5.64)

Because Z and X are 1ndependent vatiables, equation (5.64) divides into
two equations:

2
(C,— N) ‘2722 + Zmet =0 (5.65)
2
. EX vmwr—o. 5.66
dx? x

Bquation (5.65) is similar to (5.15) with the boundary conditions given
in (5.18). The frequency and wave form of natural oscillations are determined
by formulae:

(e = oL "(2” C N (5.67)
i om(2a—1)z
Z,=Asin — g (5.68)
wheren=1,2,3,...
The solution of equation (5.66) will be:
X=4d,cos C My,x+ Aysin, [ Mo, x. (5.09)

The boundary conditions for the symmetrical wave form of oscillations
are:

dx
forz =0 i 0; (5.70)
for x = £: ﬂ =0.

2 dx



we get
2 =0 Wy —— ==,

The frequency and wave form of natural oscillations are determined by
formulae:

me 27k [C,
(w)pm="7 \[ C: (5.71)
Xevm 4 cos %{x, ' (5.72}

where k=0,1,2,3,...
For skew-symmetric forms of oscillations the boundary conditions will
be:

forx=0,X=0

LY O (5T3)

we get
Ay = 0and cos ,\/(ff’_wx—g—z();

The frequency and wave form of natural oscillations are determined by
formulae:
(wpyovm = 7K [ Cr (5.74)
. L m
7k

‘ skosym :
X = Asin I

x, (5.75)

where k=1,3,5,...

By comparing frequencies (5.71} and (5.74) we can write the formula
for general frequency of natural oscillations of symmetric and skew-symmet-
ric wave forms as:

(a = ZE=L [C (5.76)

Similarly it is possible. to write the formula for general wave form of
natural oscillations as:

Xk:A[Sin w(l;— D gn vr(/cLul)xJrcos w (kz— D s ™ (kf;—l)x],

(5.77)
wherek=1,2,3,4,5,...
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For k = 1 we have translational deflcctions; for k =2, 4, 6, . . . skew-
symmetric forms of oscillations; for k=3, 5, 7, . . . symmetric forms of
oscillations.

From condition (5.63) we get the frequency of natural oscillations of the
building in the transverse dircctions as:

Wy, = -2—;11—,\/ ;1;[1;—’ (2n— 12 (C,—N)+ 4H? (k— 12 C;].  (5.78)

The period and wave form of natural oscillations of the building in the
transverse direction will be:

Tn;cems = 4 [ trans . nltmns,,A ,,,,, )
" (L) (In— 1) (C.— N) - 4H? (f— 192C,, >

mu—Dz0 . wk—1)x ak—=1) wk—Dx
2H [Sln Jtraus - cos -2_\—_ Cos W :Iv

(5.79)

(W) = A sin

(5.80)
wheren==1,2,3,4,5,...,k=1,2,3,4,5,...

Similar formulae for periods and wave forms of natural oscillations of a
building are obtained for the longitudinal direction by substituting the re-
spective gcometrical dimensions, stiffness characteristics and loads in (5.79)
and (5.80).

To determing the frequency and wave form of natural oscillations of a
building in the vertical direction, let us solve the third equation of (5.60) by
writing the deflections in the following form:

Ux,y,2,t)=X(x) Z2{2) I (p) sin (wv ¢+ €). (5.31)

Considering (5.63) and (5.81) the third equation is broken down to three
independent equations:

Yer de g Ver very2 — (- o

Cx dxz +Xi“ (U)x ) _‘05 ‘ (3.82)
wr B2 ver
;’u dyZ L Fprer ((U}C\)Z —_ O, (583)
Sver dﬁZ ver var

Fyor S Zmer (wyer)? = 0. (5.84)

Equations (5.82) and (5.83) are similar to (5.66) while (5.84) is similar to
(5.65). On this basis we obtain a formula to determine the period of naturai
oscillations of the building in the vertical direction:

T\yer B \/‘ 4mver ‘
rkr (TCTISTC;cr (r_ 1)27(:::” (2,1_,,, 1)2 F;/cr ) (585)
(Loreisy? T (Llovz)? 452
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The wave form of natural oscillations of the building in the vertical direc-
tion is obtained in a similar way as (5.80):

7 (2n—1)z [sin" (k=1) . w(k=1)x

(UA)nki‘ = 4 sin 3H 3 irans

-+ cos

w(k—l) w(k—l)x:”: 7r(r‘——l) w(r—l)y
2 Ltrans Llong

+ cos L4 (1'2—' 1) cos w (ZI;“L)y ], (5.86) )
wheten=1,2,3,...,k=1,2,3,...,r=12,3,.
If Ltrans 5, Flong (Fig, 73) the floor may be considered rigid in the longi-
tudinal direction and the general differential equation will be:
ran 5 W trans 62 W — pptrans 62 W 1
(Com Nymens T + O g =™ = =0

X

u ome Vo _ar Vo _
E“GF]“’N’} Com MmO

v ver a U : az U
Cxer .+ F 55 —pver o = (. (5.87)

The period and wave form of natural oscillations of such a building in
the transverse direction are determined by (5.79) and (5.80) and in the longi-
tudinal direction by (5.22) and (5.25). The period of natural oscillations in
the vertical direction of the building will be:

Fver — 4 mver
W = A G=TpCw A= 1EFer (5.88)
(Ln-ans)z 4 H2

Let us examine a frame building with a floor which undergoes bending
strain for Alrens < 8, The differential equation of natural oscillations of the
building in the transverse direction will be:

r2wW W *w

(Cz_Ntrans 022 B.Lylans ax4 — ptrans pYe = (. (589)

By using the method of separation of variables, equation (5.89) is separ-
ated into two equations, of which the first will be (5.65) while the second
is writien in the form:
d4x
dx*

This equation has a known solution based on formula 130 given in [65]

trans
BJF

« Xmtrans w2 0. (590)
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Fig. 73. Frame building which is very long in the transverse direction.

a—plan; b—facade; c—analytical model; d—Ilongitudinal section of model;
e—cross section of model.

which is written in the following way:

X = A; (cos ax+ch ax) + 45 (cos ax—ch «x) + A3 (sin ax+sh ax)

109

+ Ag (sin ax—sh ex). (5.91)
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The coordinates are measured from the leftend. The boundary conditions
will be:
dtX C d3X .
dx2 0 e =0
ax )
a0

Finally the transcendental equation for frequency based on formula (141)
of [65] will be of the following form:

for x=0:

e

for x == Ltrans: P 0. (5.92)

cosal-chal =1, (5.93)
where at = n;w; ) (5.94)

The roots of equation (5.93) are as follows:
ayLo=0; asLl = 0; 3L = 4.73; auL = 7.853; asL = 10.99.

From where o= % .
Let us represent b; in the form.:
br =11 (k2—3k + 2); (5.95)

wherek=1,2,3,4,5, ...
By substituting the vatues of « in (5.94) we obtain the formula for the
frequency of natural osciflations of the horizontal component:

11 (k2=3k +2)2 By

(Ltrzms)4 ntrans’ (5 96)

2
wy

Using (5.63), (5.67) and (5.96) we obtain the period of natural oscillations
of the building in the following form:

Tnl’{ans =4H (Ltrans)Z

thrans

X N
’\[(2"_ 1)2(Ltrans)4 (Cz._... N)lrans _I_. 49 (/CZ‘“‘ 3k -+ 2)2 Hz2 _B;rans

. (5.97)

wheren=1,2,3,...,k=1,2,3,...
The wave form of natural oscillations of the horizontal component will

be:
X, = A I:cos(x—é)b; + ch(x~§) b,—]

+A3[:sin( --é‘—) by +sh (x——gi) by ] (5.98)
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For symmetrical forms of oscillations we have the following additional
conditions:

X _

for x = 0: e 0; (5.99)

from which we get:
L L
4, €0 - bi 4 ch Tbi

L= . (5.100)
43 -— §in -2£ b; +sh -QL’—b,

For skew-symmetric forms of oscillations we have the following addi-
tional conditions:
forx=0, X=0 {5.101)
from which we get:

sin~L—b,- + sh—Iib,-
Ay 2 2
= 7 I (5.102)
3 €O — b; -+ ch Ebj
Oscillations given by (5.98) may be expressed by the following approxi-
mate function:

X =A [(3— k) xk-1 (cos 206 ) (k= 1) (k—2) ] (5.103)

where k=1, 2, 3.
The wave form of natural oscillations of a building is expressed by the
following equation:

(W) = Asin 1@%”&[(3 —k) x*1

n (cos X 06 )(k—l)(k—Z)], (5.104)

wheren=1,2,3,..., k=1,2, 3.
Let us examine a building which is braced in the transverse direction for
kirans << 0.8 and has a braced frame in the longitudinal direction for 0.8 <

klors, < 8 with the floor undergoing shear strain for Alrns << 0.8 and Aloss <
0.8. The differential equations of natural oscillations will be:

ans OW W > W >W
trans — (TMiraos | trans trans = 0O
BZO 624 C.v 0x2 —}_ N 822 + m @tz 0,
ong OV on PV o BV RV
Byt S — O Tgor — (Com N)o® Fmge o mions S = 0. (5.105)
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By using the method of separation of variables, we obtain two indepen-
dent equations each for (5.105) in the following form:

BLE““S d Z _( Nu-ans) d2 Z__ thrans(wtzrans)2=0; (5106)
a2 x
Ctrans + thrans (wtranq)z pa— 0 (5,107)
4
Be ‘3242 —(Clons — N'ovs) d—}— Zm'os (wlrs 2 = 0; (5.108)
(Clong dZI T mlons {ylong)2 — ) 5.109
y dy2+m (wpre)? = 0. (5.109)

Equations {5.106) and (5.108) are similar to the first and second equa-
tions of (5.38) while equations (5.107) and (5.109) are similar to (5.66). By
using the solutions of the above equations we obtain the period and wave
form of natural oscillations of the building in the transverse direction:

T’l,rkans = 7.15H?2 Ltrans

-
mtrans

X \[3‘2 (2”—" 1)2 HZ (Ltrnns)z (__N[rans) + (3}1__. 1)4 (Ltrans)Z Bz() _,:_
—_—

T12.75 (k— 12 H* Cirs; (5.110)
(W )i == A {[(~ 1" sin l(n—f;_)___;_ cos EH 1]
: k—-1) . k—=1) x w(k—1 -
[fon =G Ran G b oo 2D o (T
(5.111)
and in the longitudinal direction:
Jlong — 7 15 2 [ long \/ mlong -
nk 32 (2]’1-— 1)2 H? (LIong)2 (Cz_ N)]ung +
->
4 (3n—1)% (Llov2)2 By 4- 12.75 (k- 1)2 H4C1ong . (5.112)
(VA),,k=A{[:( l)nsm”("‘ Dz 4 cos %_1] £
- m(2n—-1)z o (k=1) . w(k=1y
[sm 3T ] H:sm S sin —
+ cos (k; D cos T (Z;gl)y]’ (5.113)
where n=1,2,3,...,k=1,2,3,...; & and & are determined by for-

mulae (5.49) and (5.50).
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The deduced formulae to determine the periods of natural oscillations
of buildings consider the longitudinal force applied to the top of the building.
This longitudinal force is computed with the equivalence coefficient as in
(4.28). These formulae may be used in the dynamic method to analyze the
static stability of a building.

4. SPATIAL WAVE FORMS OF NATURAL OSCILLATIONS
OF BUILDINGS

For horizontal oscillations the three dimensional analytical model of a
building is considered a cantilever plate system with one fixed edge and three
frec edges. In the expression for periods and wave forms of natural oscilla-
tions Ty and W, the values of indices » and &k will be considered equal to
the number of sections between the edges and the nodal lines into which
the plate is divided. The values of # and k appear in the expressions for
periods and wave forms of oscillations and permit their complete determina-
tion.

For frame buildings, with floors undergoing shear strain, the period and
wave form of oscillations are determined by (5.79) and (5.80). In the first
harmonic of oscillations the period and wave form of oscillations are repre-
sented by Ti; and Wy,. Here the Hoor executes symmetrical translational
deflections as a rigid body. For k = 2 we shall have skew-symmetric
wave forms of floor oscillations resembling its rotation. For the second
harmonic of oscillations the period may be 7i; or 73 depending on the
building height and length and the stiffness characteristics of the frames
and floors. For example, if the floor stiffness C, is ten times preater

than the stiffness of frames C, then for ratio %‘I— > 2.5, for buildings

which are not very long, we shall have the second harmonic of oscillations
with periods T\g, that is, rotation of the floor. If J-'_[-j;— < 2.5 for high buildings

with short length, the period of second harmonic of oscillations will be 7%y,
that is, we shall have translational deflection of the floor.

The ratio between indices € n» and <k is represented in the form of
nk diagrams in Tig. 74 which shows the spatial wave forms of oscillations.
For a frame building, with the floor undergoing bending strain, the period
and wave form of oscillations are determined by (5.97) and (5.104). For the
first harmonic of oscillations the period and wave form will be Ty; and Wy,.
In this case the floor executes symmetrical translational deflections. Fork =2
we shall have pure torsion of the floor as a rigid body and pericds T,y = Ty
Then, in accordance with the principle of superposition, in these cases it is
possible to superimpose two wave forms with random amplitudes. The compo-
site wave form so obtained is the natural oscillation of the given plate. For
k = 3 we have the symmetrical wave form of floor oscillations resembling
its bending.
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Fig. 74. Spatial wave forms of oscillations of a frame with
floor undergoing shear strain.

The spectrum of wave forms of oscillations are represented by nk- diagrams
in Fig. 75. We see that torsional oscillations of a building are one of the
components of the spatial wave form of oscillations. Buildings with rigid
and elastic floors have identical translational and torsional oscillations for
low initial harmonics, s0 we can obtain the spatial wave forms of oscillations
for point-type buildings by combining these separate types of oscillations.
Finally, using (5.21) and (5.23), the formula for transverse direction of a
building will be:

Ttrdns — (2 k M
nk 2]’!—- 1 L([G-FJ N trans

~ (k—=1) M, .
T SGF=Mp (@2 + LI~ W™ (o) (5.114)

and for lon gitudinal direction:

ong 2=-KkM -
it = SIGF- Nyt
—
(/(—I)MO (5_115)

Z(IGF] N)tr.ms (atmr'%)Z -+ Z([G_F] N) long (a10ng)2
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Fig. 75. Spatial wave forms of oscillations of 4 [rame with
floor undergoing bending strain.

The wave forms of oscillations along the floor length are determined by
the following expressions:

(W) = A[@—k) + x (k~1)] sin i‘(?,’_;[;il)i .
(Ve = AU2—Kk) -+ y(k—1)]sin iz’%)i, (5.116)

wheren=1,2,3, ..., k=12

For k = 1 we have translational oscillations, for k = 2 torsional. In for-
sional oscillations the periods for the transverse and longitudinal directions
are cqual, that is, Tt = T'9re and the wave forms of oscillations will be:

7 (2n—-1) z

(Wa)uz = Axsin T

— gpan T@2n—-1)z
(Vaduz = Aysin — g

(5.117)
Formulae to determine the periods and wave forms of three-dimensional

natural oscillations of point type buildings with rigid floors, which can be

represented by braced frame or braced schemes, are similarly deduced.
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For vertical oscillations of buildings with large dimensions in plan, the
first harmonic of oscillations similarly represents translational vertical dis-
placements of the floor as a rigid body while the second harmonic represents
rotation of the floor in the vertical plane. The periods and wave forms of
vertical oscillations are determined by (5.85) and (5.86).



CHAPTER 6

Seismic Effects on Buildings

1. SEISMIC WAVES

We shall assume that each point on the surface of the earth executes
translational deflection. This deflection may be resolved into a vertical and
two mutually perpendicular horizontal components. Their respective acccle-

rations may be represented by Uo(t), W, (t) and Vo (t). These accelerations
may be considered amplitudes of wave functions in the following form:

W= Wo(1) Px (Aas x, ¢, 2);
Vg = VO(t) (p)’ (AJ/’ y: [ t);

= Up (£) Pux oy X, € 1) Dy (N, 35 5 ), (6.1)

where @, and @, are the wave functions in the horizontal plane along the
x and y axes; ©,, and @.y are the wave functions in the vertical plane along

the x and y axes.
The wave functions may be represented by a series of harmonic curves:

D, “2 sin {x—ct);

(T)

¢y =13, sin (A) (y—ct);

Dy = 3 sin x—ct);
%o g e
O, =3 sin 2" (y—cb), (6.2)
i=1 (AZY i
where A; is the wave length
A =Ty (63)

¢ and T; are the velocity of propagation and time period of seismic waves.
Expressions (6.2) represent a complex oscillatory process containing
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many waves of varying wave lengths. The component which hasa frequency
close to the frequency of natural oscillation of the building will have signi-
ficant effect on the building. Hence we shall consider seismic accelerations
depending on the period of natural oscillations of the building:

o - . 2w x
WO == WQ (f) 511 Tgmﬂf (T“"'t);

.. . . 20 [y
Vi = Vo (f)sin ———Qn;—(-——-— t);
° T{)ui?d ¢

L - " 2 X
Uy = Un{r) sin —iﬂ'\%" (»zj—- I)

build
. 27 (y )
X 81N o= = —t}. (6.4)
Teha \ €

The effect of seismic waves on a building, represented by a three-dimen-

sional analytical model, is shown in Fig. 76.
Let us examine a standing seismic wave when the point of inflexion of

g

Uyme, x(zzx,x?m)q;g“(‘z‘z’g y.61)

~d

Fig. 76. Effect of seismic wavé on the Lhree-dimensional model of a building.
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the wave coincides with the center of rigidity of the building. Acceleration
acting in the transverse horizontal direction of the building will be:

W;; = Wo (£) sin Zi‘Tx . {6.5)
Ax
Coordinate <€ x > will be measured from the center of rigidity of the
building. In this case the building will experience torsional seismic effect. If
the center of rigidity of the building is located on the crest of the standing
wave (Figs. 77, 78) the acceleration will be:

S Dy
W5 = Wy(t)cos - o

(6.6)

o8

Fig, 77. Building model.
a—effect of running seismic waves; b, c—horizontal standing seismic waves.

In this case the building experiences translational seismic effect. Let us
examine two standing seismic waves which cause torsional and transtational

effects. These two eflects on the building (Fig. 77) may be represented as
follows:

W; = Wo &, = Wo[sinﬂ(k; D sin 2:\Tx +COSZT(]‘2*1) cos 2_';3_6_:]

6.7)

For k =1 we shall have translational seismic effect and for k=2
torsional.

Accelerations in the other directtons may be similarly obtained.
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Fig. 78. Building model.
a—section; b, c—vertical standing scismic waves.

2. DETERMINATION OF SEISMIC LOADS ON A BUILDING
BY THE SPECTRAIL METHOD

During earthquakes the ground oscillates. The ground movement and
the respective accelerations cause inertia forces to appear in the upper part
of a building. The oscillations caused by the foundation displacement may
be considered forced and the foundation fixed.

Oscillations of foundation in an elastic medium, with the ground mass
and building superstructure connected to it, are a complex process. Let us
examine two cases. The first is one in which we assume that forced oscilla-
tions of a building occur as a result of foundation deformation due to the
passage of a seismic wave, fully reproducing the shape of these waves, This
assumes that the ground suffers little deformation. In the second case the
foundation is considered an absolutely rigid body and the ground is assum-
ed to be pliable. Then the shape of the seismic wave will be distorted and
the foundation will deflect as a rigid platform.

In other cases for purposes of calculation, a coefficient may be intro-
duced which reduces the magnitude of acceleration imparted by the ground
to the foundation due to the pliability of the ground.

Let us consider the simultaneous effect of all the components of accele-
ration (6.1) on a three-dimensional analytical model of a building and equate
equations (5.3) to the respective disturbing seismic forces:

RYW — — pytrans WO (I) (px,



RV = mlong VD (I) ij;
RU == — pyver Uy (£) D Dy (6.8)

For frame buildings the differential equations of seismic oscillations will
be:

. *EwW 8w 2
trans transy Z_ (rans > °° trans = — pppirans @X’
(ct N ) + cl a2 —m FYE 7 Wo ()
g2 2 ..
(ClonL — Niong) CJ"% TJ}E;:_lnl()x'lg aarZV _— mloug VO (I) ‘:Dy;
oxU 82U azu
ver ver ver —ppgver
¢ 6x2 + c N tE oz Y
= —mver Uy (£) Dy By (6.9)

Let us examine the first equation and use the method of resolution along
the main directions. In this case the external force may be resolved into a
series of components of the following form:

RY = mW, OP =% ¥ rne (6.10)
A=l k=
Components r,; deform the system according to the wave form of natural
oscillations and should be distributed on an area proportional to the expres-
sion X (x) Z.(z) m(x, z):
Puk = arXp i, (61 1)
where .. 1s a coefficient depending on the wave form of oscillations of the

system.
For this the following condition shouid be satisfied:

RW = i i duk X (%) £y (2) 11 (x, 2). (6.12)

Let us multiply both sides of equation (6.12) by X:Z; and integrate on the
area XOZ:

j j RV = X,Z, dxdz = j f YN Xy ZymX, Z,; drdz. (6.13)
S 5
For ik and j 3£ nwe have

J‘ “ I’l’le Z,; X,*Zj dxdz = 0.
®

Cocfficient «,; will be equal to:

| [ =7 x, 2 axa

W= . (6.14)
[ {2722 masae
s
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Considering (6.10) and changing indices i, j we get

j jm@x X, Z, dxdz

e = Wo(t) —> : (6.15)
J 5 mX? Z2 dxdz
S
Components r,; will be equal to:
ok = mWo (f) T ks (6.16)

where 7. is a coefficient for the given wave form of oscillations:

j j m®Py X;. (x) Z,{2) dxdz

Nl (x= Z) = X (x) Z, (Z) 5 . (6.]7)
j j mX?2(x) Z2(2) dxdz
s

We know that the principle of resolution permits examination of oscilla-
tions as a system with one degree of freedom in each direction. Based on
this we may write the differential equation for a point by considering the
dissipation of cnergy:

BW, dW L, T

dm T mar e (618)

whete e, is the dispersion factor of energy for nkth wave form of oscillations.
The general solution of this equation for zero injtial boundary conditions
is known to be:

I 5, .
W= o S Fut (€) eXp [ D (1 e)] Sint ong (1— &) dE,
6.19)

where &, is the logarithmic decrement of natural osciflations of nkth wave
form in the building.
By substituting the value of r,;, from (6.16) in (6.19) we get:

1 _ Sk
Wik == —5— o jWo (€) mur exp [— 2:; wni (F— g):]

nk .

X 8in wp (t— &) dE. (6.20)
Considering the standing wave and taking the acceleration to be
Wo () = Woatax S (), equation (6.20) becomes:

ke | 8,
Wnk = wzf Nnic Wnle E t(g) exp[‘ 2:; Wak (t_ f)]

X $IN ayy (£~ £) d¥. (6.21)
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where k. g —= W,ngix, ke, is the coefficient of scismic stability and g is accele-
ration due to gravity.
Expression (6.2() may be written in the standard form:

k
I/Vnk = 'w;g Bnk N nkes (6.22)

nk

where 8, is the dynamic response factor:
) 8 .
Bac= wa | SO0 = P o (=) [sinwn (-0)dt. (029

On the basis of the spectral curve of the dynamic response coefficient, the
seismic lead, distributed on the facadc of the building, is expressed by the
formula analogous to the prevailing standards:

Sy == ’nw,zsznk = kr‘gmﬂnk"]nk- (6-24)

Consequently, the seismic loads acting in the transverse, longitudinal and
vertical directions on a building for different wave forms of oscillations are
determined by the following formulae:

trans —- paptians Brrans o iranss
Suk k. & ’Bn/c fufe ?

lonz _ . long Rlong . long.
é’nlc ke gm 'Bnk S Mk o

Sver —- k( gm\u:l ver g ver (625)

nkr alor ke

where B =%and 08 B K3

(W adar “ ptians b (Way, dxdz

trams e oY

Tinie — T
“- phtrans (W,q)fk dxdz

S

(VA)ﬂk j:J[ miong CDy (VA)nk dydz

E]

nl()}lj&g o S -
s
(U nar J_” et G Doy (Ug) gy dxdzdy
Moy =7 : (6.26)
( ” mver (Ug)? dxdydz

V
The total seismic load at any point of a building, for examplein the
transverse direction, is determined as the sum of forces acting for all main
wave forms of oscillations:

St (1) = LS (1) = e g™ o (e (6.27)
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Formula (6.27) is rewritten in the following form:

Strans (£) = k. gmteans [B, () qig + Baw (£) nor v+ ot B () m
+ Bua(D) 0wz + . Bk () mur] = ko gm0 (oik Bik e -+ o2ic Bar Tare
& R Unl ,Bn] Nal + An2 ,BtzZ Nn2 _I" ‘e + Oak Bnk nnk)a (628)

where Big, Ba2r are the maximum values of the dynamic response coefficient,
@iz, o2 the coefficients depending on time which vary from —~1 to 41 and
attain their maximum values at a specific time.

We must determine the most likely magaitude of force Strans (f) during
the entire period of an earthquake . .. that force which causes maximum
force N, (bending moment, transverse force, longitudinal force) in the section
under consideration, that is, we must determine the coellicient o, when
force N, will be maximum.

There are several propositions according to which magnitudes of maxi-
mum seismic load are found for each wave form of oscillation after which
diagrams of force N, are constructed separately. Combinations of these dia-

grams give complete design force. This condition is expressed in standard
form as:

\[ max + 0.5 E N2 (629)

3. DETERMINATION OF OSCILLATION ANALYSIS FACTCOR

Seismic load (6.25) may be written in the following form:

Suk = ke g1 Bt Doy, (W s (6-30)

[e=

m®Py (Wa)ar dxdz

Oty tyy
L 1

ral

Dy =

; (6.31)
m (Wa)?, dxdz

Og_.—-'q
N\t“‘—_"NfL"

where D, is the oscillation analysis factor. It is a specific number de-
pending on the ratio of building length to the length of the seismic wave

an (ﬂs ks '%" )
Using (5.80) and (6.7), the analysis factor for frame buildings and floors
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nndergoing shear strain under translational seismic action will be:

L
HZ
2nx . w(2n—1)z
j- Xm cos W $in - dxdz
0_L
Dy =—" (6.32)
HY
sy T (271—- 1) 4
j X m sin ¥ dxd.
0 L
2
By evaluating the specific integrals we get:
0.4 .
Dnl = m Sin Tf‘x, (6.33)
L L
X = """ == —
A CT\vave ’ (634)

where Tyaye is the period of seismic wave.
When the length of a building is very much smaller than the wave length,

that is, —g'- — 0, the analysis factor will have the maximum value:

1.27

D= g1

For torsional seismic waves the value of analysis factor D,z will be

a(2n—1)z . 2ox . =x
H sin o sin -L—dxdz

sin? _"LQ_;__;{_UE sin2 —%dxdz

L
L
Dy = —32 . (6.35)
z
|
2

By determining the integral we get:

D,y = (6.36)

. Kol >
17 | 2sin 5 @X=1) 2sm-§(2X+ 1
20T @ X=1) ~ w(2X D il

For x = 0.5, that is, L= 0,51, D, will have the maximum value D, =
1.27

2n-1"
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For higher harmonic translational seismic oscillations the analysis factor
will be:

L
H 2 5 5
. 7 (2n—=1)z X 27X
g j Sin 5= 08 5 €0s — dxdz
0_L
Dy=—1 me (6.37)
T (2n—1) 2
< 5 a(zit— ﬁ;Z' 2 wX
J S 5E - 08 T dxdz
(U
3
After determining the integrals we have:
127 [sina(X—1)  sinm (X+1)
D=y | wx=1) " GFD ) (6.38)
1.27

For X = 1, thatis, L. == A, D3 attains the maximum value to D,;3 = In—1

(see Fig. 79).
If the floor undergoes bending strain, then by using (5.104) we obtain
the following analysis factors: D, is determined by (6.33).

H _12‘— (
. T(@n—-1)z . 2mx
S Exsm - 3 sin T dxdz
¢ L
Dy = Lz : (6.39)
H 7
E S X2 sin ”%;#li dxds
0 L
2
_l:_
H 2
. 7m(2n—-1)z 2mx X
X ISIH T COSs _X; (COST —0.6 )dxdz
Dpy=—71 © (6.40)

2 T 2u-1)z

2
o (cos -7%-~0.6) dxdz

]

& ey
N[;-.r.._—-——.:\)
@

Analysis factors D, maybe determined similarly for buildings with differ-
ent structural schemes.



127

) 1 : 13

il s Vit iididd COLETPIT77777

k=1 k=2 k=3
—————— e —— i ™S
ﬁ W,
W, 05

Fig. 79. Types of building oscillations.

a—graph of analysis factors of oscillations; b—seismic effects
and wave forms of building oscillations.

4. DETERMINATION OF SEISMIC FORCES

The differential equations of equilibrium for a frame type building will
be of the following form under the action of seismic loading:

6 Wnk Wnk

(C;trran Ntﬂns) -+ C’tl ans + Stians — 0

nk

6 Vnk

+ Cloag £2 Vnk
g 5y2

(Clou,_gNlong) + Slong — 0

nk
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82 Unkf
8x>

a2 Unkr
ay?

8% U ir
+ Py S =0, (6.41)

C;er + C-\(’er

Displacements W, Vir and Uy, for the respective wave forms of oscii-
lations due to seismic loads are determined by solving (6.41). We then deter-
mine the overall separate maximum seismic forces for frames in the form of
normal components:

(a) in the transverse direction:

BW,, BW,,
(Qtlans Vi = C; i ; (Qtrans) = - k ; (6.42)
and (b} in the longitudinal direction:
6Vn oV,
(Qiomz) L == C k| (Qicng) = y ayftk; (643)
and (¢) in the vertical direction:
VeI — JFver 6U”kr .
wkr Yz _a;_r_— ’
ver —— {ver aU"k’" .
(Qx )nkr - Cx 5)«' 5
ver 6Unkr ‘
(Q}’“)nkr Cy —6—}7— {6.44)

We can determine these forces in a different manner without determin-
ing the seismic loading and by solving equations (6.41). For this we use ex-
pression (6.22) which is rewritten in the following form:

W, — ch Dflxkans (T:!}'(ans)Z B::rI?ns (W i (6.45)
k.g
Vo == g5 Digpe (Tiope)e BlSos (Vahuss (6.46)
ke e (77
Unir = 7 § Dyer (Tvesy® Bres (U g)pier. (6.47)

By substituting the values of (6.45), (6.46) and (6.47) in the expressions
(6.42), (6.43) and (6.44), respectively, we obtain the desired forces in the
transverse direction as:

(Q;rans) - Ctrans kcg Dtrﬂns (Ttrans)z ﬁtrans 0 (WA)"I‘ (648)

nk

(Q;rans) Cx kcg Dlong (T'lgcng)Z ﬁll’scng 6(___,1/;/;_)’1‘_

s D (6.49)




129
In the vertical direction the compressive force will be:

Nver — F;ﬁr% Dver (Tver)z ﬁvm‘ Mr . (6.50)

nkr nky nfer ke dz

For a braced building the bending moment and shear force will be:

Fans ran k g T 5 ran ran 3 (WA) k.
(ij : >)7fk == BL(; s Z_Z—T_z‘ Drff?n (Tit;kl‘ 5)2 t1]“;\; s az2 = 1 (6-5])

irans rans k £ rans rans rans a3(WA . b
(Q‘zm“\)nk == BE—O ! 4—;—2 Dllrf:- ' (T]flf‘ )2 lBt”A T {723) k' (652)

The distribution of forces in individual components of building members

18 determined by (3.9) and (4.8). The seismic forces for design purposes are

determined by summation according to formula (6.29).
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