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The book presents a model for the analysis of the spatial behavior of
multistory frame-panel buildings. The author has developed methods for
such analysis. The rigidity characteristics of elements of a building have been
identified, and periods and spatial forms of free oscillations of buildings
determined.
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Introduction

The XXV Congress of the Communist Party of the Soviet Union presented
civil engineers with the task of constructing buildings, quickly and economi­
cally, based on modern technology. To achieve this objective, " ... the build­
ing materials and construction industries would have to, firstly, expand the
in-plant production of building components and joints necessary for the
complex and mechanized assembly of residential and public buildings in an
uninterrupted manner."*

Extensive use of modern methods of constructing buildings and the in­
creasing number of stories in urban housing systems in seismic regions have
led to a qualitative change in building construction as well as new problems
in engineering. The discrepancies between some assumptions used in methods
of analysis and the actual behavior of buildings under seismic activity should
be carefully noted.

One of the principal discrepancies arises when a complex three-dimen­
sional structure is represented by a simplified analytical model in the form of
a cantilever bar. Such a model cannot define the behavior of a building under
seismic activity with a sufficient degree of reliability. In current practice, the
three-dimensional analytical model of buildings is represented by the action
of a grid system subjected to horizontal forces. However, this represents the
reaction of the structure to only one type of force, for example, wind. How­
ever, during an earthquake, when the propagation of seismic waves results
in building vibrations in all directions in space, the given analytical model
cannot fully represent the true nature of structural behavior.

Research on this subject aims at the creation of a three-dimensional ana­
lytical model of frame-panel buildings which will represent real conditions
during seismic activity and will be convenient for practical methods ofanaly­
sis. The following problems have been examined: the theoretical basis of a
three-dimensional analytical model of buildings considering the mutual beha­
vior of horizontal (floors) and vertical (frames and diaphragms) members

*Proceedings of XXV Congress of the Communist Party of the Soviet Union, Mos­
cow. PoIitizdat, 1976, p. 142.
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when the model is subjected to forces in all directions; substitution of verti­
cal and horizontal members of buildings with equivalent bars with equivalent
stiffness characteristics; determination of the dynamic characteristics of the
building; examination of seismic wave effect and estimates of seismic loads
on a building and design forces in its members.



CHAPTER 1

Special Features of Analysis of Frame­
panel Buildings for Seismic Effects

1. ANALYTICAL MODELS OF BUILDINGS

A building is represented by two analytic models: the dynamic and the
static. The dynamic model gives the distribution of mass and structural de­
formability. It shows those properties of a building which determine its main
dynamic characteristics: periods, wave forms of natural oscillations and damp­
ing characteristics. In the spectral method of analysis, the dynamic model
helps to establish the seismic forces in buildings. The static model, which
shows only the deformable characteristics of a building, permits determina­
tion of the state of stress in the structure. In practical design, the static model
is used to redistribute seismic loads and determine forces in the building
members. Many theoretical investigations are devoted to the selection of a
suitable analytical model and have in turn helped to develop and improve
design methods.

The frame-panel building system, in which the load-bearing and space
enclosing functions are different, is a widely used building method for seismic
construction. The external partitioning panels, mainly made of light weight
materials, share so small a part of the load that their contribution can be
ignored in practical design. Hence the design model offrame-panel buildings
is represented by a grid system of vertical and horizontal members (Fig. 1).
Depending on its deformation characteristics, a building design model may
be two or three dimensional. In a two-dimensional model the floor is consid­
ered as an absolutely rigid disk in its own plane. In such models the load­
bearing structures, which are parallel to each other in an actual building,
are shown standing side by side in one plane and joined together by hinged
braces at the level of each story. These braces, which simulate the role of a
rigid floor, provide simultaneous displacement of vertical members (frames
and diaphragms) due to the action of horizontal loads (S) (Fig. 2). The use
of the method of forces results in laborious computations in the design of
multistory buildings; therefore, simplified design models are often used. The
simplification consists of the replacement of braces of the two upper floors
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and the third at the level of the ground floor (Fig. 3). The other simplifica­
tion in the model consists of changeover from the discrete interlinking mem­
bers to a continuous system of braces. In this case, the system of canonical
equations with many unknown design parameters with one vertical row of
braces may be replaced by a linear differential equation using the theory of
composite bars. The solution of this linear differential equation provides
readymade formulae for a cantilever bar. If there are many vertical rows, a
system of differential equations must be solved.

The simplified design model of a building may be represented by a double
layer cantilever beam with continuously distributed braces between them,
where one layer (diaphragm) undergoes bending strain and the other (frame)
shear strain (Fig. 4).

Fig. 1. General view of a frame-panel building.
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Fig. 2. A two-dimensional analytical model.
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Fig. 3. A simplified two-dimensional discrete model.
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m

Fig. 4. A two-dimensional continuous model.

In many cases we must consider the deformation of floors because this is
comparable to the deformation of vertical components. Consideration ofthis
factor leads to a three-dimensional model in the form ofa thin walled canti­
lever bar or a plate-like sys~em. The three-dimensional design model in which
the floor undergoes shear and bending strain may be represented by multi­
column vertical diaphragms connected at the floor level with elastic horizontal
braces (Fig. 5).

A three-dimensional analytical model of a building, with floors which
resist torsion, is represented by a double layer composite cantilever bar with
continuous braces which yield to torsion and lateral displacement (Fig. 6).
A discrete analytical model in the form of a grid system is solved, without
considering the mutual torsion of floors and vertical members (Figs. 7, 8), by
using the method of forces or the method of grouping the floors and frames,
which, while reducing the number of unknowns and simplifying computation,
determines the three-dimensional behavior of the building with sufficient
accuracy.
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Fig. 5. A discretely continuous three-dimensional model.

Fig. 6. A three-dimensional continuous model of a building.
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Fig. 7. A three-dimensional discrete model of a building.

7
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Fig. 8. A simplified discrete three-dimensional analytical
model of a building.
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In a discretely continuous three-dimensional model (Fig. 9) in which the
rigidity of vertical frame members is uniformly distributed in the horizontal
direction, we use the method of dividing the three-dimensional system into
two-dimensional uniformly spaced elements. The interaction between these
members is modeled by elastic supports. The design problem of a three­
dimensional system leads to the design of a beam on an elastic foundation
with elastic supports and the determination of displacement of vertical mem­
bers and rigidities of the thrust carrying supports.

Fig. 9. A three-dimensional analytical model of a building divided into
two-dimensional elements.-

The three-dimensional analytical model of a building may also be repre­
sented by a prismatic shell consisting of a finite number ofrectangular plates,
with a cross section defined by an arbitrary broken line.

The analyticahnodel ofa building in the vertical direction also deserves
attention (Fig. 10). Modern buildings are not absolutely rigid because of their
precast construction and dimensions in the plan.

1+ ~ 'H 'HH HH 1'1 ' 'I 'I 'I 'I ~ 'I I. ~ ~ 'I

f" 'I 'I 'I W~ W'I 'I W I 'I ~ '1'1 'I 'I 'I ••• IW \I •••

IHHi 'I '1'1 'I ~ 'I 'I 'I 'I In.n ,+ .r'T IT.fTl

r •• n IW 'I • 'I 'I IW 'I 'I 'I • 'HH I. ,f,l I ~. H •

"'1H IW '1'1 'I 'I IW 'I 'I • 'I IW 'I • 'I • IW •• OO n 1.--.-.
11"5'

',7.,

Fig. 10. General view of a building including action by vertical loads.
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Fig. 11. A simplified analytical model of a building in the
vertical direction.
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Fig. 12. A continuous design model of a building with foundation,

a-foundation with superstructure; b-foundation with equivalent
superstructure.

While designing framed buildings for non-uniform sinking of foundation,
the analytical model of a building in the vertical direction may be represented
by separate floors joined with the foundation by hinged braces in the form
of columns (Fig. I I), ignoring the effect of bending moments in them due
to the sinking of the foundation. Another model is in the form of a compo­
site system consisting of two members (foundation and superstructure) joined
with distributed vertical and elastic horizontal shear braces. Their role is play­
ed by the columns of the ground floor frame (Fig. 12).

2. STIFFNESS CHARACTERISTICS OF BUILDINGS

An important aspect of the seismic design of buildings is the determina­
tion of the stiffness characteristics of their load-bearing components. Such
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characteristics define the physical significance of a building design model.
Their correct determination helps to establish the seismic loads and their
distribution between the various components. Examples include the universal
concepts of axial, flexural, shear and torsional rigidities. The concepts of
equivalent or apparent rigidities correspond to apparent deformations of a
building.

Separate bars and their joints with each other. which may be elastic, affect
the magnitude of equivalent stiffness characteristics. The latter is determined
by the laboratory method, that is, by engineering design as well as by static
and dynamic tests. The static test consists of application ofa horizontal force
on the building. The dynamic test involves determination of the respective
parameters in the process ofoscillatory motion ofthe building. The vibration
tests help to determine the equivalent shear and bending stiffnesses ofvertical
members of a building as well as fioor stiffness.

3. BUILDING OSCILLATIONS

For the dynamic design model of a building in the form of a cantilever
bar the following types of natural oscillations are significant: transverse,
torsional and vertical. Depending on the stiffness characteristics of a bar, the
transverse oscillations may be flexural, shear or flexural-cum-shear. The
transverse and torsional oscillations occur separately as well as simultaneously
when the centers of mass and rigidity are not coincident.

In buildings with large dimensions in the plan, for which the dynamic
model is a plate fixed to the foundation, transverse oscillations occur in the
horizontal and vertical planes. There are three types of natural transverse
oscillations representing the nature offioor displacement in space: translatory,
torsional and flexural.

During seismic activity, soil movement is conveyed to the building through
the foundation which suffers horizontal and vertical displacements. In this
process the building is subjected to two types of oscillations: horizontal
(translatory and torsional in the lateral and longitudinal directions) and ver­
tical. Seismic oscillations of buildings with large dimensions in plan are
special. Here the seismic effect is reduced according to the spectral method
of the theory of seismic stability.

4. MODERN METHODS AND TECHNIQUES OF ANALYSIS

For greater accuracy, the analysis of the building should be based on a
three-dimensional model; this better reflects the behavior of the building than
a one dimensional cantilever model. The computations become very laborious
as the design model becomes more complex. Modern computational tech­
niques have significantly changed the methods of solving many problems,
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accelerated computations and improved their accuracy. The use ofcomputers
has shown that linear algebra is more adaptable to computations. This ex­
plains the extensive use of the theory of matrices in structural mechanics. The
number of equations to be solved for a real, modern building may run into
a few thousand. It is therefore necessary to use special techniques to reduce
the quantum of operations and the memory required to store this information
in computers. For example, obtaining the differential equations of equili­
brium in terms of displacements on the basis of a discrete-base system is an
effective method. This method permits derivation of differential equations in
much the same way as canonical equations of the algebraic type used in struc­
tural mechanics and helps to reduce two-dimensional and three-dimensional
problems to one-dimensional ones. This method of obtaining a system of
differential equations makes it easier to solve bar systems which have a
high degree ofstatical indeterminancy. The changeover from an original com­
plex system to a simpler one, that is, analysis of complex systems by sub­
division into parts, is also effective.

Indeed, in practice, the analysis of multistory buildings uses approximate
methods. This is justified because the prerequisites, which form the basis of
analysis, are largely arbitrary. The design models of buildings are idealized
and the stiffness characteristics are entirely approximate because their values
significantly change due to the formation of cracks, creeping of concrete and
so on. The criterion for assessing the accuracy of approximate methods of
analysis is the experimental study of a real building and its model in a state
of stress. The methods described in this book are based on the methods in­
vestigated by the author.



CHAPTER 2

Plane Orthogonal Bar Systems

The dimensions of a body in the form of a beam are characterized by
three dimensions: two are of the same order while the third is much larger
relative to the first two. From this basic feature, the size of this body, we can
make many geometric hypotheses:

1. Hypothesis of plane sections, according to which the cross sections of
a beam remain plane and normal to the elastic line of the beam after it bends.
The bending strain of the beam is examined independently ofthe shear strain
which distorts the plane of beam cross sections.

2. It is assumed that the distance between the longitudinal layers of a
beam does not change and they do not interact with each other.

3. Only relatively rigid beams are examined in which the bending is slight,
relative to the height of beam cross section and the angles of rotation of
cross sections are small relative to unity.

To study the stress-strain state of a plane orthogonal system of bars under
the action of coplanar forces we must study the stiffness characteristics of its
constituents made up of individual bars.

1. STIFFNESS CHARACTERISTICS OF BARS

When examining the construction of a building, an individual bar may be
a column, cross bar, lintel, partition and so on. As the construction is pre­
cast or monolithic, their resistance to different forms of deformations varies.
Let us introduce the following concepts of stiffness characteristics of a bar:

1. The rotational end stiffnesses of bars are denoted by 1'1.', f3, I'I.r where at

is the reaction developing at the bar end when this end is turned through a
unit angle. f3 is the reaction at the opposite end of the bar (Fig. 13). From
such a concept of stiffness we can include the bending and shear strains
simultaneously, omit defining the reactions per unit displacement of the bar
end and consider different types of end fixities.

In general (J.' and (J,r are unequal because of different end resistances to
turning caused by unsymmetric geometric and physical factors.

2. Longitudinal end stiffness ofa bar is denoted by y and is equal to the
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reaction developing in the bar under unit longitudinal displacement of its
end (Fig. 14).

\P=1

Fig. 13. Rotational end stiffness.

-{----

Fig. 14. Longitudinal end stiffness.

3. Torsional end stiffness of a bar is denoted bye. It is equal to the reac­
tion to torsion developing in the bar when its cross section is twisted by a
unit angle (Fig. 15). The reactions of a bar, fixed at the ends are given in Fig.
]6 for known values of rotational end stiffnesses.

Knowing the end stiffnesses of a rod, a stiffness matrix may be formed
by which the forces at both ends can be determined for given end displace-
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m~

Fig. 15. Torsional end stiffness.

Fig. 16. End reactions on bars due to displacements.
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ments. In the expanded matrix form this relationship will be:

M mn tJ..mn A mn f3mn- A mn [! tpm

Mtor. emn
-e

nm Ii V mmn

Rmn A I1/1l B lIln Anm-Bnlll ! Wm

N mn -Ymn Ynm
tptor.

III

, (2.1)- X
Mnm f3mn A nlll rlnlll - A nlll tpn

Mtor. -emn e nm VIInm

Rnm -Amn-Bnm -Anm B nm
IW

I to:.Nnm Ymn -Y"1Il , tpn

where

A - rkmn + fJlIln . A _ rknm + f3mn.
mn - lmn ,nm - lmn '

B
- B - rk"m + 2f3nm + CJ.nm

mn - nm - [2 ­
mn

The first column matrix is the matrix of forces, the second square matrix
is the stiffness matrix for the bar while the third column matrix is the dis­
placement matrix. Considering these matrices as block matrices, we can
divide them into submatrices. Matrix (2.1) will then become:

II Sm" II = II k
mlI

f
nm

\'1 X 1\ Zm \1·
SlIm f mn k nm Zn

(2.2)

Individual bars may be of these types: bars with constant stiffness and
infinitely rigid end connections, undergoing flexural and flexural-cum-shear
deformations, and bars with flexible joints which yield under bending mo­
ment and longitudinal force, as in precast reinforced concrete frames.

We determine the end stiffness characteristics of bars by the method of
forces. Their magnitudes for various types of bars are given in Table 1.

2. ANALYSIS OF PLANE ORTHOGONAL BAR SYSTEMS

A plane orthogonal system of bars is one in which the active loads lie in
one plane (Fig. 17). Let us examine a plane orthogonal system of bars in
which the joints are theoretically squares of zero dimensions to which the
bars are connected. The joints of the system are assumed to be elastically
connected to points which are fixed in terms of horizontal, vertical and an­
gular displacements. The connections of the bars with the joints may be rigid
or elastic. These joints are subjected to the actions of external loads (Fig.
18) in addition to the support reactions transmitted to them by the loaded
bars connected to them.
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Table 1.

Type of rod
ValulZ of end stiffnlZSs

d! J3 r'
d.

~
I 4EI 2El r e

~ d =d.-l- -l-

t-- 1 --i

~
I

~
.llL 0 a
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~ +il
lli(1+ 3a +~) ~(1+~+~) ~(1+~+-~)P-+--tt 1 1 1 1 1 1 1 1 I

I,F_~
2

GFl
2
-6EI r er 4EI GFI +3£1 2 EI ()( =(j-1-' GFlz+12EI -l-' GFl2+12EI

I.F 2

¥- --=--+ 3ET GFl 0 0
1 GFl'+3EI

m

Sf
1ll1.

V ill, + lm 2EI 1 r -e
I

-1-'1 +lli(1 +ill ) d. =d
1 1+~(1+~)

tm 21m lm 21m
m m 1 + 15Er 1 +.ill.. r t

~ s:z I 2rt 4E1 8lm 2fl 4lm d =r)
1 7EI ( 6EI) I 1+ill (1 +GEl)'!-.I-;-+i 1+ 21m 1+ 71m 2lm 7lm

1<; 1+ la 1+ l!.l r -e
::lI I r-: 4El 41m --1ll, 21m d. =cJ.

1--~-+}-f
I 1+£L I 1+ IL

ml 1m

0- e

}=-
F ---------f EF

-
I

l'-- t -----,f

~--~-~
1

t 1 1 -
1T +-+-

K1 K2

~ - _GJE
1

The support connections are the usual joints of the system with specific
stiffness characteristics. For example, a rigid support connection has C", = co,
Cw = 00, Cv = 00. A support which allows only horizontal displacement has
C<p = 00, Cw = 0, Cv = 00.
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Fig. 17. Plane orthogonal system of bars.
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A support which allows free rotation and elastic displacement in the hori­
zontal and vertical directions has C<p = 0, Cw :f= 0, Cv :f= O. The foundation
support of the system may be provided by a bar on an elastic base.

Because the system of bars under consideration follows the linear elastic
law, the forces and displacements have a linear relationship. For a horizon­
tal bar this relationship is expressed in the following matrix form:

- 'Ymn
. (2.3)

RO
mn

N°mn

MO
mn

+ MO
nm

RO
11m

N~m

x
'Ynm

- 'Ynm

f3mn- A mn

Anm-Bmn

IXnm-Anm

-AnmBnm

'Ymn

rJ:mnAmn

For a vertical bar it is:

Men

N en

Ren

M ne

Nne

Rne

-lXen

-Aen

f3en

Yen

-Yen

- Yne

'Yne

x

MO Ien

N°en

RO
en

+ MO
ne

N~e

R~e

(2.4)

The matrices of forces and stiffnesses for horizontal and vertical bars
differ due to the rearrangement of some elements. The forces in the elastic
links of a joint may be expressed in the following matrix form:

~ q 0 ° ~ ~

°
°

CV
n

o
o X

CWn I

N°n (2.5)

The last columns of the matrices in these three relationships are the
matrices of external loads. These relationships, written for individual bars
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and joints, are considered the elements of a block matrix which we shall call
a complete matrix.

Let us form complete matrices of forces for the bars and joints of the
system, separately, by successive increments. In this case the respective com­
plete matrices of stiffnesses of the bars and joints of the system will become
quasidiagonal. The complete column matrix of displacements, for the bars
constituting the system, will have repetitive elements and the joints of the
system will have no repetitive elements.

Hence the relationship between the forces and displacements for a frag­
ment of the system will be expressed by two matrices of the form:

for bars

ISmn
I

k mn tnm Zm So
mn

Snm tnmknm Zn I
So

nm

Snk k nk tkn Zn So
nk

Skn tnk kkn Zk So
X + kn

Sen ken tne Ze So
en

Sne tne ken Zn So
ne

Snf knftfn Zn So
nf

ISfn tn/kfn Zf SJn

for joints

Sml Cm Zm I So
m

Sn en Zn So
n

Sk C" X z" + So
"

Se .Ce Ze So
e

Sf Cf Zf SJ

(2.6)

(2.7)

Let us combine the complete column matrices for displacements of the
bars by grouping identical elements and shifting the lower elements into the
vacancies. The matrix then acquires the form of a complete column matrix
for the displacement of the joints. The complete matrix of stiffnesses of bars
must correspondingly change. For this its left side is multiplied by matrix
Iiali. Matrix !lall is obtained from the columns in which all unknowns succes­
sively become unity.
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Zm 1 0 0 0 0

Zn 0 1 0 0 0

Zn 0 1 0 0 0

z" 0 0 1 0 0
Ilall=

0 0 0 1 0
(2.8)

Ze

Zn 0 1 0 0 0

Zn 0 1 0 0 0

Zf 0 0 0 0 1

To formulate the equilibrium equations it is necessary to sum up the
respective forces in all the bars framed in each joint of the system. To do so
we shall use the matrix IIDII for the bar connections and unit matrix IIEII for
the joint forces.

Matrix IIDII of bar connections is:

..._!?!~1!. . ._1!-::.~ ._~-:!! 1}.-I __.
000 100 100 000 000 100 100 000

IIDII = 000 010 010 000 000 010 010 000 (2.9)

000 001 001 000 000 001 001 000

The equilibrium equation of the system is written as:

II DII (Ilkbarsil X lIall x Ilzll + IIsgars II) + IIEII (lIkjointsll X IIzll + IISj~ints II) = O.

(2.10)

The matrix of displacements is determined from equation 2.10.

Ilzll=(llall-1 x IIkbarsll-l X IIDII-l + Ilkjointsll-1 X IIEII)
x (IIDII x IIS~ars II+IIEII X IISPointsll). (2.11)

The complete system of analysis consists of finding all the forces in the
end sections of the bars and joint connections. These are determined by the
following formulae:

I!Sbarsll= Ilkbarsll X Iiall x Ilzll + II sgars II; (2.12)

IISjointsl1 = Ilkjointsll X Ilzll + IISj~intsll. (2.13)

The proposed computational method leads to simpler equations which
simultaneously consider the conditions of fixity. As a result, all types of de­
formations in a bar and elastic restraining forces at its ends may be consid­
ered. The problem of frames in the form of bars on an elastic foundation
may also be solved by this method. The given method introduces substantial
simplification in the preparation of basic data, thus permitting automatic
computation for all stages.
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To derive the equilibrium equation in the expanded form for a bar sys­
tem, by the displacement method, let us use matrices (2.6) and (2.7) given
for a fragment of the system of the nth joint. By using the connecting matrix
IIDi! we can obtain the equilibrium equation of the system in the form of
algebraic equations:

{3mnrpm + (anm + ank + ane + anf + C~) rpn + {3nkrpk + {3enrp,

+ {3nfrpf + A llm Vm + (- Allm + Allk ) VIl - Ank Vk + AneWe

+(-Ane + Anf) Wn-AnfWf+M~=O;

Amnrpm + (Anm-Ank) rpn-Aknrpk + Bmn V,1l-(Bmn + Bnk

+~+~+~~+~~-~~+~~+~=~

Aenrpe + (Ane-Anf) rpn-Af'e rpf+ Ben We-(Ymn + Ynh

+ Ben + Bnf + C;n Wn+ Bef Wf+ Ymn Wm + Ynk Wk + P,~ = O.
(2.14)

The first expresses the equilibrium condition by equating to zero all ex­
ternal moments and moments in the end sections of the bars and joints. The
remaining express the equilibrium conditions by equating to zero the sum of
reactions caused by transverse and longitudinal forces in the end sections of
the bars and joints as well as by external forces acting along axes x and y.

3. DIVISION OF A PLANE ORTHOGONAL BAR SYSTEM
INTO CONSTITUENT ELEMENTS

Let us examine a joint of a plane bar system which, as described above,
is a theoretical square of negligible dimensions to which the bars are attached
(Fig. 19). We assume that this square consists of two layers and we assume
that the two bars joined with it in one direction also consist of two layers.
By dividing the square into layers we obtain a separate joint of bars with it
in the other direction. To satisfy the condition of continuity of deformation
in the joint the layers of the theoretical square are assumed to be connected
with braces that provide rigidity against angular rotation and horizontal and
vertical displacements (Fig. 20).

The equivalent scheme (Fig. 21) may be obtained by joining the two
schemes, of which the main one has braces for horizontal and vertical dis­
placements. In the second scheme of the joint, the individual bars framing
into that joint have the same stiffness as in the main scheme. Such a concept
enables us to divide the joint, which results in separate groups of bar sys­
tems.

If the entire bar system is cut by a horizontal plane passing through the
nodal points (points connecting the joints), an equivalent system is obtained
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View along 1-1

a.5Ip

Ie

Fig. 19. A fragment ofa joint.

Fig. 20. A joint split up into its constituent components.

connecting all separated joints and linking to it all the vertical rods (Fig.
22).

Introduction of a rigid plane makes it possible to satisfy the hypothesis
of plane sections for all the nodal points of the system lying on the section.
Individually each vertical bar attached to the system of a row also satisfies
the hypothesis of plane sections.

When an orthogonal bar system is cut by horizontal planes at each floor
level, the system divides into separate floors and columns. Each floor is in
the form of a single story closed bar system in which the horizontal bars have
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Fig. 21. Equivalent scheme of the joint.

Ie
0.5Ip ,

--""---+---_.

Fig. 22. Separated system.

half the stiffness while the vertical bars have the fuH stiffness. The columns
form a joined row of a system of vertical bars (Figs. 23, 24).

Similarly the system may be cut by vertical planes passing through the
joints. In this case the system breaks up into bays and beams. The bays of
the system also form a single story bar system in which the vertical bars have
half the stiffness. The beams form a joined row of a system of horizontal
bars (Fig. 25).

4. STIFFNESS CHARACTERISTICS OF INTERFLOOR
ELEMENTS AND COLUMNS

Let us examine a story located between two rigid planes to which it is
connected (Fig. 26). We assume the story is a bar of uniform section which
has equivalent shear and bending stiffnesses. To determine the effective shear
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Fig. 24. A bar system divided by a horizontal plane.

stiffness of the story let us shift the upper rigid plane by W = 1. All joints
of this story also shift by 1, thereby turning the joints (Fig. 27). A reaction
Q = ER; develops in the story and its equivalent shear stiffness is determined

by the formula:

[GF] = ~, (2.15)

where his the story height.
The equivalent bending stiffness is determined as follows. Let us turn

both planes around the center of rigidity of the story in opposite directions
so that an angle!p = I.is formed between them (Fig. 28). All units of the
story turn and shift vertically by a known magnitude. A reactive moment
of magnitude M = EM; + E (NI); develops in the story and the equivalent
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Fig. 28. Determination of bending stiffness of the story.

Fig. 29. Determination of bending stiffness of columns.

bending stiffness will be equal to:

[EI] = Mh .
cp

(2.16)

The second member of the system, the column, has bending stiffness. A
column of height h may be taken to represent the story (Fig. 29). When the
system becomes deformed we assume that all columns bend through the
same angle. Hence they may be represented by one column, with an equiva­
lent stiffness equal to the sum of the stiffnesses of alI of them. To determine
the latter, let us turn all units of the story so that an angle cp = 1 is formed
between the opposite joints. Reactive moments M; will develop at the ends
of the vertical bars of the story. The total moment will be equal to
M = EM; and the equivalent bending stiffness of the column can be deter­
mined by the formula:

(2.17)

Let us determine the stiffness characteristics with the help of the
matrices:

[GF] = h11Q11 X Ilkll X II all X IlzQII;
[El] = hiiMII X Ilkll X Iiall X I!ZMil;
[El]o = hllMol! X Ilkll X [[all X I!ZMOII;

(2.18)

(2.19)

(2.20)
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where Ilkll is the complete stiffness matrix of the story, Iiall is the matrix
corresponding to the group of displacements, IIQ!I is the matrix of inter­
connected posts to determine the reactions in the story, IIM!I is the matrix
of interconnected posts to determine the moments and longitudinal forces in
the story, IIMol1 is the matrix of interconnected posts to determine the mo­
ments of the column, IlzQ11 and IlzM11 are the matrices of unknown angular
displacements to determine the shear and bending stiffnesses of the story,
IlzMol1 is the matrix of given angular rotations to determine the bending
stiffness of the column.

The following equations are used to determine the matrices I/zQ!1 and
IlzMI!:

IIDII x Ilkll x lIall x IlzQ11 = IIDII x Ilkll x Iiall x Ilzwll; (2.21)

IIDII x Ilkll x Iiall x IlzM11 = IIDII x Ilkll x Iiall x Ilzvll; (2.22)

where Ilzwll is a matrix of unit horizontal displacements and Ilzvli is a dis­
placement matrix of unit vertical displacements.

The required unknowns IlzQII and IlzM11 are determined from the follow­
ing formulae:

IlzQ11 = (llall-1 x Ilkll-1 x IIDII-l) x(IIDII XIlk!1 x II all x llzwll);
IlzMII= (1Iail-1 x IIkll-1 x iIDII-l) X(IIDII x Ilkll x Iiall x IlzvliJ

(2.23)

To determine the stiffness characteristics of a story in the given system,
the equilibrium equations are used in the expanded form:

{3mnrplll + (rJ.nm + rJ.nk + rJ.ne)rpll + {3nkrpk + {3enrpe + AnmVm

-(Anlll-Ank)Vn -AnkVk + AneWe-Ane~, = 0;

Amnrplll + (Anlll-Ank)rpn-Akntpk + BlIlnVIII-(Bmll + Bilk

+ Yell)VII + BllkVk + YellVe = 0;
11 n n 11

1:. (A~arrpH)i + l: (Aga/Pb)i + r: (Bbar)i WH - r: (Bbar)i Wb = 0,
i=! i=l i=1 i=l

(2.24)

where rJ., {3, Yare the end stiffnesses of the bars.

5. DERlVATION OF DIFFERENTIAL EQUATION
FOR A TWO-LAYER BAR

An orthogonal plane bar system (Fig. 30) may be represented by a two­
layer bar. The first layer of this bar is built up along its height by the inter­
floor elements while the second is a column consisting of individual vertical
members (Fig. 31). The layers are joined by discrete rigid horizontal braces.
Such a concept significantly simplifies the analysis of an orthogonal bar
system.
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Fig. 30. A given framed system and the equivalent bar system
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Fig. 31. A two-layer bar equivalent to the framed system.

When studying plane orthogonal systems with many horizontal and
vertical members, the number of equations becomes very large in practical
situations. If the number of horizontal members is represented by ~ n ~

and the number of vertical members by ~ m ~ then the number ofequations
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is 2nm + n, without the longitudinal deformations in the horizontal members.
If the system is considered in the form of a two-layer bar, the number of
equations will be 3n. However, in this case, m equations are formed separa­
tely to determine the equivalent stiffness characteristics of a story. In many
practical situations the algebraic equations of a two-layer bar become differ-

ential equations when _1 ~ o.
n

Let us examine a two-layer bar with discrete braces, acted upon by
horizontal forces applied at its joints. In the matrix form the equilibrium
equation for the joints and their neighborhood will be of the type:

IIDII(I!kll X I\all X Ilzl\) + (lIkjointsll X IIEII X Ilzll) = IIEI! X liSj~ints\l,

(2.25)

where the matrix of connections in the neighborhood of the joints under
consideration will be

0 0 0 0 0 0

IIDII= 0 0 0 1 0 I ,
0 0 0 0 1 0 0

and the matrix of forces will be of the type:
M ne

R ne

M nf

IISII=llkll X lIall X Ilzll=
Rnf

Mnte}

R/I1et

Mmh I
I

R n1ft
i

The matrix of displacements will be
cpe

We

cpet

Ze cpn

Ilzll= Zn W n

Zf <pnt

<Pf

Wr

<Pft

(2.26)

(2.27)

(2.28)
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where Ilkll is the matrix of stiffnesses of the bars in which the rotational-end
stiffnesses for the first layer will be equal to~

_ 4 [EI] [GF] h2 + 3 [EI]. Q _ 2 [EI] [GF] h2 - 6 [EI]
at - -h- [GF] h2 + 12 [EI]' fJ - -h- [GF] h2 + 12 [Elf

For the second layer:

at = 4 [~I]o ; f1 = _2 r:I]o ,
where [GF], rEI], [EI]o are the equivalent shear and bending stiffnesses
ofa story and the bending stiffness of the column; h is the height of the
story.

Let us express the displacement of point n by the function Zn (z). The
respective displacements of points ~ e ~ and ~ f ~ will be expressed as
Ze (z- h), Zf (z + h). Let us expand the functions Ze (z- h) and Zf (z + h)
in the Taylor series in the neighborhood of point n. Then the matrix of
displacement Ilzl! will become:

Ze (z-h)

Ilzll = Zn (z) = (11alll +lla211 x II h, ~3! ' ;~ ... /1

Zf(Z + h)

: )

'~Idz2

d41
'dz4 I) x

d6

dz6

: I

(2.29)

where matrices lIall have the following values:

I 1 a 0 r 1-1 0 0
010 0-10

001 a 0-1

100 0 0 0
Ilalll= 0 1 0 ; Ila211= 0 0 0; Ila311=

001 0 0 0
100 1 0 0

010 0 1 0

001 0 0 1

1 0 0

010

001

000
o 0 0 . (2.30)

000
100

010

001
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To obtain the system of differential equations of equilibrium let us sub-

stitute displacements llzll in (2.25) and examine the limit ~ ~ 0:

~m [IIDII x(llkll x Iiall) + (1lkjointsll XIIEII)] x (11alll +lla211
--+0
H

x II h, ~~ , ~~ .. ·11
d

dZ

d 3

X dz
3

+lla31I xl/;2!, ~~, ~~ ... llx
d5

dz5

epn

1 1
X H =-IIEIIxllS10intsiiX H' (2.31)

(2.32)

where H is the height of a two-layer bar, the matrix of stiffnesses of
Joints ~ n ~ and ~ nl ~ Ijkjointsll = 0 and the matrix of external loads

'0
IlSYointsl1 = p where P is the horizontal nodal force.

°The system of differential equations for a two-layer bar is as follows:

dW [EI] d2ep _ .
ep- dz - [GF] dz2 - 0,

drp d 3epl d2W d4W
-[GF]£iZ- 2[EI]0 dz3 +[GF] dz2 + [EI]o dz4 =-q;

dW
epl- dz = 0,

where q = : is a distributed load.

To determine the forces in the layers of the bar, let us use the matrix of
member forces ~ en ~ :

Men OCen A en {Jen -Acn epe

R en -Aen -Ben -Ane Bne We
X (2.33)

M ne f3ell A ne OCne -Ane epn

Rne Aen Ben A ne - Bne Wn
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Substituting displacements in (2.33) we obtain the forces in the bar at
point ~ n~ in the limit h ~ 0:

II ~n II = ~,~lIDI!! x IIkll x (li at II +Ilazll X II h, ~!' h;! .. ·11
d dZ

dz dz z

where the matrices have the following values:

1 0 -1 0

111 0 -1 0 II
0 o -1

lIDIl1 = 0.5 0 1 0-1 ; Ilalll = ; llazll=
0 0 0

0 0 0

1 0

0
l!a311=

0 0

0 0

(2.34)

In the first layer of the bar, the forces are determined by the formulae:

dcp dW
Mt =-[EI] dz ; R I =-[GF]qJ + [GF1"dZ; (2.35)

and in the second layer by:

d2W d3W
M z = - [EI]o dzz ; Rz = - [EI]o dz3 • (2.36)

The magnitude of ep is determined from the condition:

[EI] dZrp dW
[GF] dzZ - <:P = (lZ'

The boundary conditions are expressed by a system of differential equa­
tions of equilibrium for the end points obtained from (2.31), in which the
matrix of joint stiffnesses Ilkjointsl\ has a specific value. For the lower point
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of the two-layer bar it will be:

C<p 0 0

Ilkjointsl! = 0 Cw 0 (2.37)

o 0 C'P1 I

where C<p, C<pl and Cw are the characteristic stiffnesses of the elastic connec­
tion against rotation of the first and second layers of the bar and against
horizontal displacements of both layers.

The boundary conditions for the lower point of the bar are of the
following type, For z = 0:

q>C<p - [EI] ~; Iz=o = 0;

dW d3W
- [OFJrp +. [OF]"dZ - [E1]o dz3 -+ Cw Wlz~o = 0;

d2 W/q>IC<Pl - [El]o dz2 ,=0 = O. (2.38)

When the lower point is rigidly fixed, the stiffness characteristics will be
C<p = 00, C<P1 = 00, Cw = 00 and the boundary conditions at z = °will be

q> = 0; W = 0, q>1 '= O. (2.39)

For the upper point of the bar the stiffness characteristics will be C<p = 0,
C<Pl = 0, Cw = 0 while the boundary conditions will be as follows:

for z = H:

_l{tt = 0'
dz '

dW d 3 W
-[OF]q> -+ [OF] -- -[EI]o -- = o'

dz dz3 '

d2W
dz2 = O. (2.40)

To solve the system of differential equations (2.32) let us represent the
displacements by the following sum: W = Wbcnd -+ W'h where Wbcnd is the

d ' I d b d' , d' dO"' . J ° I dWbend
ISP acement ue to en mg stram an Its luerentla IS equa to q> = dz

while Wsh is the displacement due to shear strain.
Substituting these values in 2.32 we get two independent equations:

[EI] d4Wsh_(1_1_ [Elh)rOF]d2Wsl1= ' (?4J)
o dz4 [EI] dz2 q, _.

[E~~1r] d
6
:~~ - ([E/]o -+ [EID d

4
r;;4en

<:\ = - q, (2.42)
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Hence a two-layer bar is represented by two differential equations, one
of which gives displacements caused by shear strains and the other by bend­
ing strains. The forces in the first layer of the bar are determined by the
following formulae:

M = - [El] d2Wbend. -R = [GF] dWsh .
1 dz2 ' 1 dz '

or

and in the second layer by:

M
2

= _ [El]o d 2
(Wbend + Wsh) •

dz2 ,

R - _ [El] d3
(Wbend + W sh)

2 - 0 dz3 •

(2.43)

(2.44)

Differentiating equation (2.41) twice and adding to it (2.42) based on the
condition W = W bend + W sh , we get one differential equation which can be
solved as:

[E/]o [EI] d6W d4W [El] d2q
[GF] dz6 - ([El] +[El]o) dz4 - [GF] dz2 +q = O.

(2.45)

To solve a plane orthogonal bar system it is best to use equations (2.41)
and (2.42). When an orthogonal system is cut horizontally, the action of a
longitudinal force produces an additional transverse force in the bar given
by

dW
Q=n(H-z) dz;

dQ . d2W dW
qadd = ---;[Z =-n (H-z) dz2 + n dZ'

(2.46)

(2.47)

(2.49)

where n is the uniformly distributed longitudinal load.
If the longitudinal distributed load is replaced by an equivalent con­

centrated force N applied at the upper end of the bar, then

d2W
qadd = - N dz2 • (2.48)

The total external load will be equal to:

d2W
q-N dz2 •

Substituting this corrected value of load in equation (2.45) we obtain the
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differential equation for a two-layer bar as:

[El] [El]o d6W _ ([El] + [EI] _ [EI] N) d4 W _ N ~2W
[GF] dz6 0 [GF] dz4 dz4

[EI] d 2q
- [GF] (JZ2 + q = O. (2.50)

When an orthogonal system is cut vertically we get a two-layer bar rest­
ing on an elastic Winkler foundation. In this case the total external load will
be:

q-CvW. (2.51)

If (2.51) is substituted in (2.45) we get the differential equation ofa two­
layer bar as:

[EI] [EI]o
[GF]

d6W d4W [EI] d2W
- dz6 - ([EI] + [E1]o) - dz4 + [GF] Cv dz2

[E1] d2q
-CvW- [GF] dz2 + q = O. (2.52)

Differential equation (2.45) may be obtained in a different way by assum­
ing that the braces between the layers of the bar are continuously distributed
along the height (Fig. 32) for a system with many stories.

The first layer of the bar has bending and shear stiffnesses while the
second layer has only bending stiffness. The latter may be considered a bend-

s

Fig. 32. Two-layer bar with continuously
distributed horizontal braces.
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ing base for the first layer. The horizontal load, concentrated at the joints,
is transformed into a distributed load along the height of the two-layer bar.
The curvature of the first layer due to shear and bending deformations will
be:

II 1 II _1 MWsh = - (GF] qo; Wbend - [El]' . (2.53)

The total curvature, considering both types of deformations, is expressed
by their sum:

1 I
WIl = - [GF] qo + [El] M.

Differentiating this expression twice, we get

[El] W IY + [El] II - 0
[GF] % -qo- ,

where qo is the load acting on the first layer.
If the second layer is considered as a bending base for the first

then under the action of the external load, the value of qo will be:

d4W
qo = q- [El]o dz4 •

(2.54)

(2.55)

layer,

(2.56)

By differentiating this equation twice and substituting it in (2.55) we get
differential equation (2.45).

6. EXAMPLES OF ANALYSIS OF A PLANE ORTHOGONAL
BAR SYSTEM ON A COMPUTER

A two-bay six story framed building was analyzed. The cross section of
columns and beams was taken as 50 X 50 cm. The frame span was taken as
6 + 6 m while the floor height was taken as 3 m. The concrete grade was
200. The horizontal joint load was S = 3 ton. The mass of each story was
m = 5 ton. The seismic intensity was 8 points. The analytical model of the
frame with the load is shown in Fig. 33. Static and dynamic analyses for the
frame were made for a common orthogonal bar system as well as for separate
stories and columns.

Figure 34 shows the bending moment diagrams, displacements of story
due to horizontal loads, seismic loads developed, wave form offirst harmonic
of natural oscillations and time periods based on the results of the frame
analysis.

Figure 35 shows the analytical model of the same frame separated into
stories and columns. The results are shown in Fig. 36.

A comparative analysis showed that the frame and its separated system
of bars have almost identical stiffnesses and states of stress. For example, the
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Fig. 33. Static and dynamic model of frame.
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Fig. 34. Analytical results obtained on a computer.

displacement of the top of the frame is 8.49 mm while for the separated
systemit is 8.4 mm.

The bending moments in the transverse beam of the ground floor frame
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are 9.25 and 8.45 ton-meter at its ends. For the separated system they are
4.66 + 4,43 = 9.09 ton-meter and 4.19 + 4.12 = 8.31 ton-meter, respectively.
In the transverse beam of the third story frame they are equal to 6.93 and
6.43 ton-meter while in the separated system they are 3.99 + 2.91 = 6.9
ton-meter and 3.7 + 2.7 = 6,4 ton-meter, respectively.

The bending moments in the extreme column of the ground floor frame
are equal to 10.08 ton-meter and 4.1 ton-meter at its ends. In the separated
system they are 10,49 ton-meter and 4.66 - 0.46 = 4.2 ton-meter, respectively;
in the central column of the ground floor frame they are 12.40 and 7.30 ton­
meter. In the separated system these values are 12.36 ton-meter and 8.38­
0.46 = 7.92 ton-meter. In the extreme column of the third floor frame they
are 3.42 and 4.82 ton-meter, whereas in the separated system they are 3.99­
0.71 = 3.28 ton-meter and 3.99 + 0.99 = 4.98 ton-meter; in the central
column of the frame they are 6.94 and 8.08 ton-meter, while in the separated
system the corresponding values are 7.4-0.71 = 6.7 ton-meter and 7.4 +
0.99 = 8.39 ton-meter. The dynamic parameters of the frame and the sepa­
rated system of bars, periods and wave forms of oscillations were identical.

For the second analysis, the same frame was examined with a wider
section, 200 x 50 em, of the central column (Fig. 37). The increased section
of the central column was used to determine the active participation of the
column. The results of frame analysis are given in Fig. 38. The analytical
model for the separated system of this frame and the results of its analysis
are given in Figs. 39 and 40.
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CJ LJ
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Fig. 37. Analytical model of a frame with wider central column.
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f, mm
2.69 0.32

234 0.27

1.9
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Fig. 38. Analytical results on a computer for a model with
wider central column.
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Fig. 39. Separated system of bars.

A comparative study showed that the stiffnesses and forces of the frame
and its separated system of bars were identical. For example, the displace­
ment of the upper end of the frame and its separated system of bars was
identical and equal to 2.69 mm.
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Fig. 40. Analytical results obtained on a computer for a model
wilh the separated system of bars.

The bending moments in the cross beam of the ground floor frame are
2.72 and 4.02 ton -meter at the ends. In the separated system they are, respec­
tivelY,1.03 + 1.69 = 2.72 ton-meter and 1.47+2.55 = 4.02 ton-meter. In the
cross beam of the third floor frame they are 3.61 and 5.42 ton-meter, where­
as in the separated system they are 1.86 + 1.71 = 3.57 ton-meter and
2.81 + 2.57 = 5.38 ton-meter. The bending moments in the extreme column
of the ground floor are 1.86 and 0.73 ton-meter at the ends. In the separated
system they are 1.96 ton-meter and 1.03 - 0.17 = 0.86 ton-meter. In the
central column of the ground floor frame they are 70.71 ton-meter and
26.38 ton-meter and in the separated system 70.43 ton-meter and 29.53­
2.93 = 26.6 ton-meter. In the extreme column of the third floor frame the
bending moments are 1.95 and 1.96 ton-meter while in the separated system
they are 1.86 + 0.13 = 1.99 ton-meter and 1.86 + 0.12 = 1.96 ton-meter.
In the central column of the third floor frame the bending moments are
12.05 and 11.63 ton-meter while in the separated system they are 5.61 +
6.18 = 11.8 ton-meter and 5.61 + 6.16 = 11.77 ton-meter. The dynamic
parameters, periods and wave forms of oscillations were also identical.

Hence, the separated system of bars is equivalent to the orthogonal
frame and the use of the method of separating a system into equivalent mem­
bers enables us to examine an orthogonal bar system as a two-layer bar.



CHAPTER 3

Stiffness Characteristics of Load Bearing
Members of Frame-panel Buildings

1. MAIN LOAD BEARING MEMBERS OF
FRAME-PANEL BUILDINGS

A frame-panel building is a complex three-dimensional system. It consists
of plane vertical and horizontal members and rests on a compacted founda­
tion. The vertical members are arranged in the plan of the building in the
transverse as well as longitudinal directions. They are slabs in the form of
walls or a system of bars in the form of frames. Their functional purpose
in the building is to take the vertical and horizontal loads and transfer them
to the foundation. The commontypes of vertical members of buildings are
multiple bay and multiple story frames, frames with filter walls and with stiff­
ness, frame diaphragms and walls in the form of rigid diaphragms (Fig. 41).

Interstory floors are the horizontal members of a building. They are
parallel to each other along the building height and are of plane solid con­
struction with a small number of apertures for staircases and elevators. Their
function in a building is to carry the effective vertical load, interconnect the
vertical members of the building and transmit the horizontal loads to them.
The spatial behavior of a building is only due to floors. The horizontal
members ofa building may be monolithic floors of the beams and slab type
or built-up floors of the framework type with parallel rigid cross bars whose
apertures are filled with separate slabs (Fig. 42). We must analyze the stiff­
ness characteristics of the main load bearing vertical and horizontal members
of a building to study the stress-strain state of the building and to determine
its dynamic parameters.

2. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF FRAMES

A frame is an orthogonal column system whose geometric shape remains
unchanged through the rigid connection of its members at the joints. The
frames may be multiple bay or multiple story types. Determining the equivalent
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Fig. 41. Vertical members of a building.

a-frame; b-frame with filter walls; c-braced frame; d-diapllragm with
apertures; e-blind diaphragm; f-frame diaphragm.

shear stiffness of a story [GF] = Q: leads to find the reaction Qper unit

deflection of the joints in each story (Figs. 43 and 44). For this, equation 2.24
is written in the following form:

", ((J.. + /3)COI "((J.. + 13)'cotQ ==2I: -~ - 1: -- (cpu + cpL).
;=1 h- i i=1 h i

(3.1)
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Fig. 42. Horizontal members of building.

a-monolithic floor; b-built-up floor with transverse load tearing system;
c~built-up floor with longitudinal load bearing system.

The equivalent shear stiffness of a story will be

(3.2)

The unknown quantities in this expression are the angles ofrotation cpu
and cpL at the top and the bottom of the story. They are determined from
equation 2.24, which will be of the type given below for the ith upper joint:

Rbeam.U m~ +( ?e~n~.U + ube.am.U + IY.:OI) ro~ + {3?e.am.U robeam.U
l-'i_l; i '1'",-1 IY.,_,., 1.1+1 ,TI I, ,+1 '1'"1+1

+ [3:01 cpL _ (<I. + (3)COI = 0;
I I h i

from which the unknown cp~ will be equal to:

(~±f )COI_ {J?eam;U roy + a~e.a,m.U roU + {Jcol ro~
h I 1-1" TI-l 1-'"ITl 'l'"i+l IT'

ro,~ = ----'---~~--__;:___cc"--TC____;_-.,.----.,-,---:--_:_;_-----
T <l.J:eam;U + <I.~e.am.U + <1.:01

1-1,1 1,1+1 I

(3.3)

(3.4)

Fig. 43. A typical story.
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Fig. 44. Determination of the shear stiffness of a story.

Using the method of successive approximations, let us assume:

mU - mU - mU - mL
Tj - T;--1 - Ti+1 - T; •

The magnitude of cp~ is determined to the first degree of approximation
using the following formula:

I (a + (3)7°1
(CP~)I = Ii (a + (3)I;eam:U + (a + Q)I;e.am.U + (a + P>",.OI' (3.5)

1-1" fJ ,,1+1

where (a + p)I;eam.u and (a + p)I;e.am.U are stiffnesses of the upper beams of
1-1,1 1,1+1

the story that meet at the ith joint.
The magnitude of ep~ to the second degree ofapproximation is determined

by substituting the value (cp~)r in (3.4):

(
a + P)COI_ QI;eam..U (mU )r + QI;e~m.U (<pu )r + P~OI (cp~)r

h . fJ,-I" T,-1 fJ
"

I+l 1+1 I I
( mU ) = ' (36)
Tj II beam.U + beam.U + col . .

ai_I, i ai, HI a i

For practical purposes the first approximation may be considered accept­
able. This permits the determination of shear stiffness with ready-made
formulae.

After substituting the values of (cpY)1 and (cpr)1 in 3,2 and doing the neces­
sary transformations we get:

I n { [(a + (3)7OIF
[GF] = -h.1: 2 «('I. + P)F - (a + (3)beanLU+ (a + (3)bea~.U + (11.+ P)COI

l=l I-I, I 1,1-;-1 I

[(a + P)~OI F }
- (e< +-a)beam:L+(a -I- (3)beanl.C=t- «('I. + Q)coi • (3,7)

f..J ,-1, I t, r+1 f..J I

In a monolithic frame there are three main types of stories: ground floor,
a typical intermediate one and the top floor. They differ from each other in
their stiffness characteristics. Because a typical story has the same stiffness
characteristics as the upper and lower beams, formula (3.7) becomes:

n

[GF] = ~ 2: ---;l,---------~l----­
H (a + f3Y,ol + (a + f3)beam + (a + PW.am

1-1, I 1,1+1

(3,8)
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The equivalent shear stiffness of a ground floor members differs from
a typical story mainly because it has an infinitely rigid lower beam, a different
height and different constructional features. The shear stiffness of a ground
floor member is determined by the formula:

I 11 [ (~ + f3)"01 J
[GF]I = 711- i~(~ + f3)~01 2- (~+ f3),?.:~m.+ (~~ f3)~e~!;1 + ~~Ol . (3.9)

I ,I I, l I

The upper story member of the frame differs from the other typical ones
in that it has double the stiffness of the upper cross beam. Its shear stiffness
will be:

[GF] = 2~ ~":J«(J. + [3)~01 [4- 3(a+-,8)~~aJ~~~ +(CI. ~Xf3\~e~~-l+-(~+-J3)~Oj'J'
I ,I I, II I

(3.10)

If many types of story members with different shear stiffness characteris­
tics exist along the height of the frame they may be reduced to a single
stiffness characteristic:

[GFh
h[ = [GF]i hi. (3.1 1)

If only the bending deformations of bars are considered in the story then
formula (3.8) is written as follows:

n

[GF]-~ "- h L., --;1-----;1---

i=J -SI' + +ri_l, i ri, i+l

(3.12)

where Si = (~I ):01 is the transverse bending stiffness of the ith column;

(
EI )beam (EI)beam

ri_l,i + ri, ;+1 = -/-. .+ T ..
1-1. , I, 1+1

is the sum of the transverse bending stiffnesses of the cross beams of the story
meeting at the ith joint.

Assuming the angles of rotation of all joints are equal to a story during
the deflection of the latter, from (3.2) we obtain:

[GF] = 2 (~-<p)t (~+ f3)fOI,
h I~J

where <p is the average angle of rotation and is equal to:
11

~ (~ + f3)~01
I i=1 1<p=-
h 2t (C( + (3),?.:am. + t (rt. + f3)c;ol

1=1 I 1,1 ;=1 l

(3.13)

(3.14)
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By substituting the value of cp from (3.14) in (3.13) we get the equivalent
shear stiffness as:

(3.15)

While considering the bending strain of bars in a story, formula (3.15)
becomes:

12 1
[GF] = h I I '

-+­S r
(3.16)

where S = ~1 ( ~I ) ~Ol -is the total transverse bending stiffness of struts

and r = tl 2( ~I):~:~ -is the total transverse bending stiffness of the upper

and lower cross beams of a story.
Expression (3. I6), the accepted formula of E.E. Sigalov [3], is very effec­

tive in a multiple bay frame in which there is little difference between the
stiffnesses of struts and cross beams. Formula (3.12) is derived for different
angles of rotation of the joints of a deflected story and gives more accurate
results.

To find the equivalent bending stiffness ofa story, let us determine the
position of the center of rigidity, that is, the neutral axis of the story relative
to the extreme strut, by the formula:

II

I:,yibi
i=1

xo= -n--'
I:, Yi
i=l

(3.17)

where Yi is the longitudinal end stiffness of the ith strut; bi is the distance of
the ith strut measured from the extreme strut.

Determination ofthe equivalent bending stiffness [EI] = ~h leads to the

determination of the reactive moment when the end planes of the story turn
around the center of rigidity through unit angle (Fig. 45). Vertical displace­
ment of the joints, forming the story, occurs during this turning. For the ith
joint it will be:

(3.18)

The joints in the storyturn through angles cpi. These angles are determined
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-

(3.19)

-
Fig. 45. Determination of bending stiffness of a story.

by using equation (2.24) in the following form:

j3beam. ro?eam + (lY.?eam. + lY.?e~m + IY.col) roU + j3?e~111 mU _ j3~OI mI.
1-1,11"'1-1 1-1,1 1,1+1 I T1 1,1+1 T ,+1 I T 1

(
IY. + ,8)beam (IY. + j3)beam+ -Z-. .(Vi_l- VI) + -Z- .. (V;- Vi+l) = O.

,+1., ",+1

Angle <pp is determined from this equation by substituting the value of
vertical displacement of joints (3.18):

(3.21)

(3.20)

The value of cpP in the first approximation is found by the following for­
mula assuming rnU = roU = roU = mI.·.; .;-1 ';+1 .;.

(rt. + j3)?eam. + (IY. + j3)?e.am
( u' -05 ,-I" ,.,+1

<Pi )1 - . (IY. + (3)?eam. + (rt. + (3)?e.am+(a + (3)':°1'
1-1,1 1,1+1 I

By substituting the value of (tpP)[ in (3.20) we get cp,? to the second degree
of approximation.

The reactive moment in the ith strut of the story relative to the centre
of rigidity will be equal to:

M i = Yi (XO-b,)2 +(IY.- j3)~01<p;, (3.22)

where Yi (xo- b,) is the longitudinal reaction in a strut and (IY.- ,8)~0[ <P, is
the reactive moment at the end of the strut. The total reactive moment for
the story is determined as follows:

11 n

M = 1:. ')Ii (xo- b;)2 + 1:. (IY.- 13):°1 CPi.
i-I i-I'

The equivalent bending stiffness of the story will be:

[

n n ]
[EIJ=h r;?i(xo-b;)2+f:;l(lX-j3)~01<Pi ,

where a, [3, yare the end stiffnesses (see Table 1).

(3.23)

(3.24)



49

For the bars in which both bending and longitudinal deformations are
considered, formula (3.24) becomes:

n n

[EI] = 'E EFi (xo- bl )2 + 2'E EI; rpj.
i~1 i=l

(3.25)

Depending on the stiffness of struts and cross beams the angle of rota-
n

tion has the values 0 ~ cpi ~ 0.5; the expression L Eli is small compared to
1=1

the first term of (3.25) and hence it may be neglected. The equivalent bend-
ing stiffness of the story is determined by the formula:

(3.26)

The equivalent bending stiffness of columns which constitute the second
layer of the equivalent bar for the frame is determined as follows. Let us
represent the columns in the story by struts and turn all its joints so that
an angle rp = I (Fig. 46) is formed between the upper and lower ends of a
column. The sum of the reactive moments at the ends of the columns is deter­
mined by the formula:

h' fl

[EI]o = T ~1(tJ:- ,aWl, (3.27)

which, when bending deformations in the struts are considered (3.27),
becomes:

n
[EI]o = L (EI)j.

;=\
(3.28)

To determine the shear stiffness, Fig. 47 shows a ground floor story frame

Fig. 46. Determination of bending stiffness of columns.

Fig. 47. Analytical models.

a~a ground floor story; b-determination of shear stiffness.
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and its deformed state under a unit deflection.
In designing high rise frames, the bending stiffness ofindividual columns

is small and hence may be neglected.

3. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF IN-FILLED FRAMES

A frame may be in-filled with individual small blocks, stiffening walls,
trusses and other members which are strained when the frame is deformed.
Considering the compatibility of deformations, the equivalent shear stiffness
of a story with filled up members (Fig. 48) is determined by the sum:

[GFl = [GFlfrarne + [GF]filler. (3.29)

a b A

--.
Fig. 48. Analytical models.

a-a story with filled frame; b-determination of shear stiffness.

When the frame is filled up with masonry, the stiffness will be:

[GFlfiller = FG'Ylong, (3.30)

where F, G, 'Ylong are respectively the area in plan, shear modulus and filling
coefficient for the filler material.

If the masonry is compactly laid in the upper part of the story, the stiff­
ness of the cross beam may be considered equal to infinity. Then the frame
stiffness is determined by the formula:

n
2~(or. + f3)COl

.£.... I 12 n
[G.F]frarne = ,+1 h = -h2 I: (EI)ro l '

1=1

(3.31)

The equivalent shear stiffness of the story, with filled-in wall, will be
determined by the following expression:

12 11

[GFl= h2 (;1 (EI);CO + FG'Ylong. (3.32)

If the braces are arranged diagonally (Fig. 49), tensile and compressive
deformations will occur in them under a unit deflection of the story. The
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equivalent shear stiffness of the braces will be:

n

[GF]riller = :E (EF sin (): cos2 ():)i,
i~1

(3.33)

where F, E, (): are respectively the cross sectional area of the braces, the elas­
tic modulus of the material and the angle of inclination of the braceto the
horizontal.

a

Fig. 49. Frame models.
a-a story with frame and trusses; b-determination of shear stiffness.

The equivalent shear stiffness of a story with braces is determined by the
following formula:

[GFl = .-!~ I k
h I I +1: (EFsin():cos2

():)i'

n (EI)COI + -n"""--;-l(-:--'E=I7""7)b-ea-m i=1 (3.34)
1: - 21:-
i=1 h i i=l I i

Filling the frame with walls does not affect the magnitude of the equi­
valent bending stiffness of a story because the filling does not undergo the
same bending deformation of the frame nor provides any significant resistance
to it.

Considering the compatibility of deformations, the equivalent bending
stiffness of the story with braces (Fig. 50) is determined by the sum:

[EI] = [EI]rrame + [EI]brace. (3.35)

Fig. 50. Determination of bending stiffness.
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The reactive moment of the ith end of a brace taken about the center
of stiffness of the story will be equal to:

(3.36)

where bi and bi_l are the distances of the upper and lower ends of the braces
from the extreme strut.

The total reactive moment will be:

M = t 0.25 (1!R
h
brace) .sin3 rJ. (2xo- bi - bi_ I )2. (3.37)

1=1 "

The equivalent bending stiffness of the story with braces is determined
by the following expression:

n k
[EI] = ~ EFiol (xo-bl)2 +~ 0.25 EFibracc sin3 0( (2xo-bi-bl_I)2.

i=1 i-I

(3.38)

Figure 51 shows the distribution of forces in the braces when their ends
are displaced. Consequently, for the practical purpose of analysis under the
action of horizontal loads, the filled up frame may be represented byan
equivalent single layer bar, in which the filling increases the equivalent shear
stiffness but does not affect the bending stiffness. However, both the equiva­
lent shear and the bending stiffnesses increase in the presence of braces.

Fig. 51. Distribution of forces.

4. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF VERTICAL DIAPHRAGMS

Stiffening diaphragms are vertical members of buildings in the form of
walls; they may be blind or have apertures. Walls with apertures divide
into separate partitions joined with cross pieces or lintels. Blind diaphragms
may be represented by a cantilever bar. For a high rise building the effect
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of shear strain may he neglected and hence its stiffn<:ss characteristic will be
the equivalent bending stiffness only which is calculated as for a solid sec­
tion. A diaphragm with apertures may be represented by a frame with wide
struts and cross bars with rigid ends. By the method of dividing a frame into
stories and columns, a diaphragm may be represented by a two-layer bar.
The equivalent shear stiffness of the first layer is determined by formula
(3.8) in which the stiffness of struts in the story is omitted, since it is a large
quantity. The formula then becomes:

4 fI

[GF] = - ~ (a + f3)beam,
h 1=1 I

(3.39)

where rx and f3 are given in Table I. The shear and bending strains in the
lintel as well as their flexible connection with partitions can be considered
with the help offormula (3.39). The equivalent bending stiffness of the first
layer is determined by formula (3.26).

The representative column will be in the form of interconnected indivi­
dual partitions, the latter having a large bending stiffness, determined by
formula (3.28).

Wide multi-aperture diaphragms may be considered as two-layer bars in
which the first layer has shear stiffness and the second bending stiffness. The
bending deformations of the first layer are neglected because, here, the
bending stiffness is a large quantity.

Figures 52-55 shows stories with a diaphragm with an aperture. The load
bearing structures consisting of wide partitions and columns, joined by cross
beams, are called frame-diaphragms. A frame-diaphragm may be represented
by a two-layer bar in which the second layer is a wide partition. The equiva­
lent shear stiffness of the first layer is determined by the following formula:

2 1
[GF] = h ----T-------------1--··---·-·,

k + -fl-.-~1~----

~ (a + ,8);col 2 ~ (rx + f3)~eam
1=1 i=l

where k is the number of joints connecting the strut.

y

Fig. 52. A diaphragm with aperture in a story.

(3.40)
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The equivalent bending stiffness of the first layer is determined by formula

(3.26) and of the second layer by the following formula:
n-k ..

[EI]o = ~ (EI)fartltlon. (3.41)
i=l

Fig. 53. Determination of shear stiffness.

Fig. 54. Determination of beriding stiffness of a story.

Fig. 55. Determination of bending stiffness of columns.

I

Y

!

I
i
'f

Fig. 56. A frame-diaphragm in a story.
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Fig. 57. Determination of shear stiffness of a frame-diaphragm.

Fig. 58. Determination of bending stiffness of a frame-diaphragm.

Fig. 59. Determination of bending stiffness of
frame-diaphragm columns.

Figures 56-59 show a frame-diaphragm in a story, the determination of
shear and bending stiffnesses for the story and the bending stiffness of a
column.

5. DETERMINATION OF STIFFNESS CHARACTERISTICS
OF HORIZONTAL MEMBERS OF A BUILDING

(INTER-STORY FLOORS)

A monolithic floor in its plane is a beam with a large section which
undergoes shear and bending deformations. The equivalent shear and bending
stiffnesses of a floor are determined as for a full section.

A built-up floor may be considered a brace consisting of rigid joints,
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whose apertures are filled with individual slabs. This includes cases of slabs
with weak and rigid joints among themselves as well as with the brace con­
tour.

The chords of the brace are the cross beams of the longitudinal frame
and the struts are the cross beams of the transverse frame of the building.
The stiffness characteristics of a built-up floor are determined in the same
way as for a filled frame. To do so, let us divide the floor into individual bays
(Fig. 60). The equivalent shear stiffness of a. bay is expressed by formula
(3.32). When the slabs are loosely connected among themselves and with the
cross beams, the equivalent shear stiffness is determined by the formula:

2
[GF] = 71--1.--------;---

11 + n

1: (et. + m)on g 2 1: (et. + {3)J::tS
j

;=1 ;=[

(3.42)

where (et. + {3)long and (0'. + (3)trans are the end stiffnesses of the longitudinal
and transverse cross beams of the building frame in the plane of the floor.
The equivalent bending stiffness of the floor is determined by formula (3.26).

I
,

I; I

'~I;
I

c
"P/i

?""i i'""-.-
~

~
I \
I
I

I

I
/I II

ba

Fig. 60. A fragment offloor.

a-a floor bay; b-determination of shear stiffness;
c-determination of bending stiffness.

When the slabs are rigidly connected at their ends in a transverse load
bearing system, the equivalent shear stiffness of the floor will be:

[GF] = 2 [ t (a + {3);ong + :E (a + {3):],
h 1=1 ;=[

(3.43)

where (CI. + f3Yl is the end stiffness of floor slabs in which the shear and bend-
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ing deformations of slabs are considered; k is the number of slabs laid in
a bay.

For a longitudinal load bearing system the equivalent shear stiffness of
the floor is determined by the following formula:

(3.44)

When the floor slabs are rigidly connected among themselves, the equi­
valent shear stiffness of the floor will be:

2
[GF] = h ----.---------,---- + FH G,

-c
ll
----- +--,,-------
~ (CI. + ,8»)ong 2 t (CI. + fJ»)rans
i=l 1'=1

(3.45)

where FH is the cross sectional area of all slabs of the floor, G is the shear
modulus of the floor slab material.

Thus, a floor in its own plane may be represented by an equivalent beam
with free ends, with shear and bending stiffnesses. The beam rests on an
elastic foundation constituted by the vertical load bearing members of the
building.

6. STIFFNESS CHARACTERISTICS OF AN EQUIVALENT BAR

Vertical members of buildings, represented by orthogonal bar systems,
may be considered an equivalent two-layer cantilever bar system defined by
differential equations (2.45). Depending on the magnitude of the stiffness
characteristics [EI], [GF] and [Elo] of the first and second layers, which may
varyfrom zero to infinity, equation (2.45) is likely to change. Let us examine
separately the first layer of the bar undergoing shear and bending strains
and determine its potential energy (Fig. 61).

I GF]
[E I]

>mil

b

Fig. 61. A two-layer bar.

a-bending and shear strains or the first layer; b-bending strain of the second layer.
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The energy capacity of the first layer will be:

VI = VfGFl + ViElj • (3.46)

The energy capacity due to a uniformly distributed unit load along the
height of the bar is determined by the formula:

H3 H5
VI = 6 [GF] + 40 [El] (3.47)

To determine the predominant types of strains, shear bending, in a bar,
let us examine the ratio of total potential energy to the energy due to the
respective types of strains.

(3.48)

(3.49)
VI 20

viEI'j = 3A2 + 1,

where 11 is the stiffness characteristics of the first layer and is equal to:

q
[GF]
[EI]

11 = H f. [GF].
\j [El]

a b

(3.50)

Fig. 62. A single layer bar.
a-bar undergoing bending strain; b-bar undergoing shear strain.
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The following relationship for potential energy may be used for a two­
layer rod:

_1 __1 +_1
V - VI VII' (3.51)

where V, VI and VII are total potential energy and potential energies of the
first and second layers, respectively.

The energy capacity of the first layer is determined by (3.47) and of the
second layer, which undergoes only bending, by formula:

H5
VII = 40 [£1]0 . (3.52)

Let us examine the following ratios to determine the type of predomi­
nant load resistance offered by the first and second layers of the bar:

VI = VI + VII = 1 + 20 . (3.53)
V VII 3k2'

VII = VI + VII = 1 + 3k
2

(3.54)
V VI 20'

where k is the stiffness characteristic of the two-layer bar and is equal to:

(3.55)

~
[GF]

k-H .
- ( 1+ 2~ i\2) [EI]o

We shall assume that the resistance of the first layer may be neglected if

i = 10 and of the second if V?I = 10. Then, the following conditions

may be written: for k ~ 0.8-all the load is taken by the second layer; for
k;;;. 8-by the first layer; for 0.8 < k < 8-both layers of the bar undergo
strain (Fig. 63).

ba

q q ....
'"I-. >-

"" ~

~ u
c
8
'"V)

Fig. 63. Bar with two separated layers.
a--bar undergoing shear; b-bar undergoing bending.
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Hence, the stiffness characteristic ,\ of the first layer of the bar enables
us to determine the predominant types of strain in the bar and this stiffness
characteristic indicates whether the bar should be taken as a single or two­
layer one.

7. DIFFERENTIAL EQUATION OF EQUILIBRIUM FOR
VERTICAL MEMBERS OF A BUILDING

Depending on the stiffness characteristics ,\ and k differential equation
(2.50) may be simplified and particular equations obtained for different types
of vertical members ofa building.

For a multistory, multiple bay frame k > 8, assuming [E1]o = O. The
frame may be represented by a single layer bar for which the differential
equation will be:

(
[E1]) d4 W d2W [E1] d2q

[E1]- [GF] N dz4 + N dz2 + [GF] dz2 -q = o. (3.56)

The longitudinal deformations in columns are insignificant, in the case
of multiple bay frames with a smaller number of stories with ,\ < 0.8.
Assuming [E1] = 00 these frames may be represented by the following
differential equation:

d2W
([GF] - N) dz2 + q = O.

For q = const, the solution of equation (3.57) will be:

W-,- [GJ]_Nz(H- ~):

The deflection of the top of frame is determined by the formula:

qH2
f= 2 ([GF]-N)

(3.57)

(3.58)

(3.59)

(3.60)

Narrow multistory frames with rigid cross beams for which ,\ > 8 are
defined by the following formula without considering the shear strains in the
equivalent bar and assuming [GF] = 00,

d 4W d2W
[El] dz4 + N dz2 - q = O.

Solution of equation (3.60) will be:

_ q 1-Ha sin Ha , qH . qHz ( z )
W - Na2 cos Ha--~ (cosaz-l) T Na SIll az + N 2H -1 .

(3.61)
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The deflection of the frame top will be equal to:

f = 3-_ (1- 1 )+ qH ( tan Ha _ !!.-)
Na2 . cos Ha N a 2'

where

2_ N
a - lEI] .

(3.62)

(3.63)

Without considering the action of longitudinal force N applied to the top
of the equivalent bar, the equation for deflections will be:

w = 241~~] (1-4: + 6 ~:).
If 0.8 < II < 8, the frame is considered an equivalent bar which under­

goes shear and bending. Without considering the action of longitudinal force
N, the equation for deflections will be:

qz ( z ) qz4 ( H H2 )w= rGF] H- y + 24rEI] 1-4 z +6 7 ·

The deflection of the top of the bar is determined by the formula:

qH2 ( 1 )f= 2 [GF] 1+ 4).2 .

(3.64)

(3.65)

Let us examine the vertical diaphragms which may be represented by
frames with wide struts. The stiffness characteristic of the equivalent bar will
always be k < 8. Hence, we shall have a two-layer bar for which the differ­
ential equation will be (2.50).

In a diaphragm with slender cross pieces for which ). < 0.8, assuming
[GF] = 0, we have a single layer bar undergoing bending strain, which is
defined by the equation:

d4W d 2W
[El]o dz4 + N dz2 -q = o. (3.66)

Its solution will be similar to equation (3.60).
For a multiple unit diaphragm we have the condition 0.8 < k < 8 and

). < 0.8; assuming [El] = 00, we have a two-layer bar in which the first
layer, consisting of stories, undergoes shear strain and the second, consisting
of the columns, undergoes bending strain. In this case the longitudinal strains
of the partitions are ignored because they are small. The differential equation
will be:

d4W d2W
[E/]o - -([GF]-N) - -q = O.dz4 . dz2 (3.67)
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Its solution will be:

_ qZ2
W - C j + CZZ + C3chbz + C4shbz - 2 ([GF]-N) , (3.68)

where

b2 = [GF]-N
[El]o .

The boundary conditions for the two-layer cantilever bar will be:

dW
at z = 0; W = 0; dz = 0;

and

dZW d 3W dW
atz=H; dz2 =0; [El]o= dz3 -([GF]-N) dz =0.

After substituting the values of constants of integration in 3.68 we get:

q 1 + HbshbH
W = ([GF]-N) bZ chbH (ch bz-I)

qH qHz ( z )
- ([GF]-N) b shbz + [GF]-N 1- 2H .

The deflection of the top of the bar will be equal to:

q 1 + HbshbH
f= ([GF]-N) b2 ch bH (ch bH-I)

qH 0.5qHZ
([GF]-N) b shbH + [GF]-N' (3.70)

In a narrow diaphragm with rigid connectors, for 0.8 < k < 8; >. > 8;
[GF] = 00 we have a two-layer bar in which both layers undergo bending
strain. The differential equation will be:

d4W d2 W
([El] + [El])o dz4 +N dz2 -q=O. (3.71)

Its solution will be similar to the solution of (3.60).
Depending on the stiffness characteristics;>. and k the frame-diaphragms

are represented by an equivalent two-layer bar for which the differential
equation is similar to the case of vertical diaphragms.

8. DIFFERENTIAL EQUATION OF EQUILIBRIUM FOR
HORIZONTAL MEMBERS OF A BUILDING

Horizontal members of a building, floors,are always represented by a
single layer bar, with free ends, undergoing shear and bending strain and
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resting on an elastic base. The differential equation will be:

d4W [EI] d2W [El] d2q
[EI] dx4 - [GF]C dx2 +CW+[GF] dx2 -q=O, (3.72)

where C is the modulus of subgrade reaction of the base constituted by the
vertical members of the building.

The stiffness characteristic Aof the bar is determined by the formula:

L rIGF]
A = T \j lEI]' (3.73)

For A;;;. 8 only the bending strain in the floor is considered, for A~ 0.8
only the shear strain and for 0.8 < A< 8 both forms of strains are considered
for the floor.

In a built-up floor in narrow buildings A< 0.8. Assuming [EI] = 00 we
have the following differential equation:

d 2W
[GF] dx2 -CW + q = O. (3.74)

In a monolithic floor for a building with large dimensions in plane A> 8.
Assuming [GF] = 00 we have the following type of equation:

d4W
[El] dx4 + CW-q = O. (3.75)

Differential equations (3.74) and (3.75) will be used in the future to form
general equations for a building.

9. DETERMINATION OF FORCES IN THE BARS OF
INTERFLOOR ELEMENTS AND COLUMNS

Let us determine the combined forces in the layers of an equivalent two­
layer bar. For the first layer, consisting of stories, the combined bending
moment M and the combined transverse force Q are found from the follow­
ing formulae:

M = _ [El] d
2
Wbend •

k dz2 '

Qk = - [GF] d:J:Sh.

(3.76)

(3.77)

For the second layer of the bar, which is a column, the combined bend­
ing moment M oand the combined transverse force Qo are determined by the
formulae:

M = _ [El] d2 (Wbend + Wsh).
Ok dz2 '

Q _ lEI] d 3 (Wbend + W sh )
Ok - dz3 '

(3.78)

(3.79)
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The bending moment, acting in the first layer of the bar, causes rotation
and vertical displacement of the joints in the stories while the transverse
force produces rotation and horizontal displacements. The magnitude ofdis­
placement of joints in the story is proportional to the combined forces. The
angles of rotation of the joints are determined by the following expressions:

( -L fl)beam + (N + fl)beam h( !W)k = + 0.5 rJ.. I i-I. i ~ i, i+l
tJl, - (OI:+fl),,?:.alm,+(OI:+(3),,?e~+ml+(a+fl),:ol [EI]Mk • (3.80)

1 ,1 1,1 1

(a + fl)':OI 1
(cp?)k = (01: + ,8),,?eam.+(OI: +,8)~e~m + (01: + ,8yol [GF] Qk. (3.81)

£-1, I I, [+1 1

The relative horizontal displacement between the lower and upper sections
of the story are determined by the formula:

"Q _ Qh
Uk - [GF]' (3.82)

The vertical displacement of the lower and upper sections of the story
will be:

( M) - Mkh ( -b.)Lli k - [EI] Xo I'
(3.83)

The bending moment Mo acting in the second layer of the equivalent bar,
causes the column ends to rotate within the domain of each story by angle
t/J which is equal to:

Moh
(t/J)k = ± 0.5 [EI]o' (3.84)

If we know these deflections, the bending moment on the lower and
upper ends of the struts in the kth story can be determined as

(MfO'h = (01: + fl)~OI q>? - (01: t ,8 ):01 of ±(01: - fl)~OI rpr. (3.85)

Substituting the magnitudes of deflections from (3.80), (3.81) and (3.82)
in (3.85) we get the magnitude of bending moment at the ends of the strut
as

(3.86)

where

B CO! _ h
i - 2 [Ell 1 1

(01: + ,8),,?eam. + (01: + fl)?e~m + "'-(OI:-+--'--fl=)""~--'Ol
1-1,1 1,1+1 1

(3.87)

(3.88)
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By placing the respective pillar on the story strut and restoring the latter
to its initial shape, we determine the total bending moment in the frame strut
by the following expression:

where

D pillar = (N _ Q)co! _h_
i ~ fJ i 2 [ElJo·

Normal force, acting in the strut of the kth story will be:

hycol
(Nco!h = LJ·ycol = ~i_(xo-bi)Mk.
i'i [EI]

The transverse force is determined by the formula:

2A'?O!
(Q~olh=T'

The forces in cross beams are similarly determined.

(3.89)

(3.90)

(3.91)

(3.92)



CHAPTER 4

Grid Systems

1. SPECIAL FEATURES OF THE ANALYSIS

In a grid or plane orthogonal bar system the bars are arranged in one
plane and the forces act out of this plane. We shall represent the joints of the
grid system by theoretical squares of zero dimensions, elastically connected
to points which are relatively fixed with respect to mutually perpendicular
angular rotations and horizontal displacements (Fig. 64). Let us examine the
behavior of this grid system under an external load applied in the form of
concentrated forces at the joints. The supporting connections may be provid­
ed in the form of normal joints with different stiffness characteristics: for
example, a rigid support connection will have Cw = 00, C~ = 00, C~ = 00; a
connection which permits only horizontal displacements will have Cw = 0,
Cx = 00, Cz= 00; a connection which allows free bending along z axis and

'P 'P
elastic displacement in the horizontal direction will have Cw =1= 0, C; = 00,

C~ = °etc.

x

Fig. 64. A grid system of bars.
a-general view; b-an elastically fixed joint.
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The relationship between forces and displacements is expressed by the
following matrix for the horizontal bar

M lIln cxmnAlIln f3mn- Amn I rp~ il
Mtor em11 -fiJmn W m

II
mn

R II1I1 -Amn-Bmn -AnmBmn rp;n
X I· (4.1)

M"m f3mn A mn (J..mn-A"m rp~ I

Mtor -(9nf1l fiJ nm W nnm

Rnm AmnBmn Anm-Bmn rp~

For the vertical bar it is given by

Mtar fiJen -fiJen rp~
en e

Men Aet1rJ.en -Aen f3cn We

R cn -Ben-Aen B ell - A ne rp~
(4.2)X

Mtor -fiJen Bell rp~lle

M ne A en f3en - AneiXne Wn

R"e BenA.n -BenA"c rp~

The forces in the elastic connections with the joints are determined by the
following formula:

Mx CX 0 0 rpx MxO
n 'P n n

Mz 0 0 Co X W n + MzO (4.3)n 'P n

Rn 0 Cw 0 rp~
po

n

where iX, f3, (J are the end stiffness characteristics of the bars as given in
Table 1.

Let us form complete force matrices, separately for the bars and the
joints of the grid system by the method of successive increments. The cor­
responding displacement matrices for the bars will contain repetitive elements.
Let us use the transformation matrix ilall to refine them in the same way as
for a plane orthogonal bar system.

The condition for static equilibrium of the joints is expressed by the
following formula by using the connection matrix II Dli for all displacements.

!IDII(!lkcoIiI X Iiali x lizl!) + [iEI[(!!kjoint!l X l[z\l+lIS?oint1[) = O. (4.4)

The unknown displacements Ilzll are found from equation (4.4):

Ilzll = (IIall-1 X Ilkcodl- 1 X IIDII-1 +llkjointll-l X IIEII)( -IiE!1 X IIS?oint II).
(4.5)
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The forces in the bars and the elastic connections with the joints of the
grid system are determined by the following formulae:

IIScoll1 = Ilkcodl x 11011 x IlzlI. (4.6)

IISjointl1 = IIkjointll X Ilzll + IISj~int II. (4.7)

The algebraic equation of equilibrium of the nth joint of the cross bar
system, obtained by using the above matrix method, will be:

f3mnq>:" + (CXnk + CXnm + ()en + ()nf + C~) q>~ + f3nkq>% + AmnWm

+ (-A mn + Ank) Wn-AnkWk-()enq>~-()nfq>f+ M:o = 0;

f3enq>~ + (et.ne + et.nf + ()nm +()nk + C~) q>zn + Pnfq>j + AenW"

+ (-Ane + Anf) Wn-AnfWf- ()mnq>~n- ()nk q>k+ M~O = 0;

Amnq>:" + (Anm - A nk) q>~ - Aknq>Z + Aenq>; + (Ane - Anf)q>~

+Afnq>; + BmnWm-(Bmn + Bnk + Ben + Bnf + Cw)Wn

+ BnkWk + BenWe + BnfWf+ Pn = O. (4.8)

The first and second equations of system (4.8) show that the sum of all
moments acting along axes x and z is zero. The third equation shows that
the sum of reactions acting along y axis is zero.

2. PARTICULAR CASES OF A GRID SYSTEM

Let us examine a grid system with short bars with large sections. Let us
consider the shear and bending strains but neglect the torsional strength.
Considering joints which are not fixed (Fig. 65), the equilibrium equation
will assume the form:

Pmnq>':" + (CXnk + o:.nm) q>~ + Pnkq>" + AmnWm + (-Amn + Ank)Wn

-AnkWk + M~o = 0;

Penq>; + (o:.ne + o:.nf) cp~ + Pnfq>f + AenWe + (Ane + Anf)Wn

- AnfWf + M;,o = 0;

Amnq>~, + (Anm - Ank) cp~ - Akn cpZ + Aenq>; + (Ane - Anf) cp;,

+ Ajnq>j+ BmnWm-(Bmn + Bnk + Ben + Bnf) Wn

+BnkWk + BenWe + BnfWf + Pn = 0, (4.9)
where

0:.=
4[EIJ [GF]h2 +3[EIJ. p=2[EI] [GFJh2-6[EIl.

h [GF] h2 + 12 [.ElJ' h [GF]h2 + 12 [Ell'

_ 6 [EI] [GF] . _ 12 [EI] [GF]
A - [GF]h2+ 12 [EI] , B - h[GF]h2 + 12 [Elf (4.10)
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f
m n K

x e

0 x

Fig. 65. A grid system with different stiffness characteristics of the bars.

Let us examine a case in which the horizontal bars of the cross system
undergo only shear strain and the verticals only bending. The equilibrium
condition is expressed by two algebraic equations:

2ien cp: + 4 (ine + inf) CP,: + 2infCPj + 6
h
i
en

We
en

(4.11)

where i = [~l and g = [Gil are the running bending and shear stiffnesses

per unit length of the bar.
If the horizontal and vertical bars of the grid system undergo only shear

strain, then the equilibrium condition is expressed by one algebraic equation
which is similar to the suspension cable-girder lattice system.

gmnWm-(g",n + gnk + gen + gn/)Wn + gnkWk + genWe

+gnjW/+ Pn = O. (4.12)
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When the horizontal and vertical bars of a grid system undergo only
bending strain, the equilibrium condition is expressed by these three well
known equations:

2imn CfJ~ + (4ink + 4inm + 8 en + 8 n!) CfJ~ + 2ink CfJZ

+ 6imn W + (_ 6imll + 6ill l< )w' _6illk W -8 x-8 x
h m h h II h I< en CfJ e 111 CfJfmil mnnk nk,

+ M~o = 0;

2iell tp; + (4ine + 41111 + 8 11m + 8nk) tp;' + 2inlCfJ}

+ 6iell We + (- 6ine + 6inl ) w,.
hell hne hili

6'
111/ W e z e z + MzO - O·- -h- f- mn 'Pm - 11k 'Pk n - ,
IIf

(
6ill'" 6ink ) v + 6imn x 6ink x + ( 6ine 6inl ) "'z----- tp' --CfJ ---tp' ---- T
hnm hnk II hmn m hnk k hlle hnl II

+ 6iln z + 12il/l1l W -12 (! imll +~ +~ + illl ) w:
h CfJI h2 m h2 h2 h2 h2 II

In mn mn nk en - III

+ 121nk w: I 12i,," w: + 12illl W I P = 0
h2 k T h2 eh2 ITil'

Ilk en nl

By eliminating the. torsional stiffness of bars in these equations
the equations for cross beams.

(4.13)

we get

3. DIFFERENTIAL EQUATIONS OF EQUILIBRIUM FOR A
GRID SYSTEM

Let us examine a grid bar system consistingof-n horizontal and m verti­
cal bars. The number of algebraic equations required to solve it is 3 nm.

Assuming _1_ ....,)- 0 and _1_ --i>- 0, we assume the system under study consists
n m

of uniform horizontal and vertical strips and not separate discrete members.
To obtain the differential equations of equilibrium for the grid system let

us substitute displacements IIzll and Ilxll inthejoint equilibrium equation 4.4

and examine the limits for ~ --i>- °and 1--i>- O.

When the vertical and horizontal members of the grid system undergo
shear strain, the differential equation of equilibrium will be:

fPW 82 W
Cx 8x2 + Cz 8z2 + q = 0, (4.14)

[GFl' [GF]t
where Cx = -'-1- and Cz = ~l- are the shear stiffnesses of strips along



(4.15)

(4.16)

(4.17)
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the x and z axes, respectively, and q = ~ is the load per unit area.

Equation (4.14) is similar to the equation of an anistropic membrane.
When the vertical and horizontal members of a grid system are rigidly

connected with each other and undergo bending strain, the differential equa­
tion of equilibrium will be:

84W 84 W 84 W
Bx 8x4 + (Kx + K z) 8x28z2 + Bz 8z4 -q = 0,

[EI]X [EI]=
where Bx = -h- and Bz = --/- are the bending stiffnesses of the strips

[Gl]x [Gl]z
while Kx = + and K z = --/- are the torsional stiffnesses of the

strips along the x and z axes, respectively.
Equation (4.15) is similar to the equation of an anistropic plate consider­

ing the torsion of strips. This is the equation of a beam lattice. Considering
the shear and bending strains in the vertical and horizontal members of a
grid system and not considering torsion, the equilibrium equation will be:

84W 84W Bx a2q Bz a2q
Bx - a 4 + Bz - a 4-- -C --2 - -c-a2 -q=o.

X Z x 8x z z

This equation is similar to the equation of a thick anistropic plate.
If the horizontal members undergo shear and the vertical ones bending

strain, the differential equation of equilibrium for the grid system is express­
ed by the following formula:

82W 84 W 84W
ex ox2 -Kx 8z28x2 - Bz OZ4 + q = 0.

Let us examine a grid system consisting of two-layer horizontal and ver­
tical members in which the first layer undergoes shear and bending strain
and the second undergoes bending strain. Here the differential equation of
equilibrium for the grid system is expressed by the formula:

(4.18)

[EIg [EI]~ .
where Bxo = _h- and Bzo = -,- are the bendmg stiffnesses of the

second layer of members in the grid.
When the first layer of members undergoes shear strain and the second
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ones bending, the differential equation of the grid system becomes:

84W 84 W 8zW
Bxo~ + Bzo 8z4 - cx 8xz

8ZW
-Cz -z- -q = O.

8Z
(4.19)

(4.20)

Equation (4.19) is similar to that for a two-layer membrane.
When the members of a grid system are multi-layered, in which the layers

undergo shear and the joints between layers are connected by elastic braces,
the differential equation ofequilibrium will be:

C' 8
z
W + C' 8

z
W + F 8

z
W + '= 0

x 8x2 z 8z2 Y 8yz q ,

where C~ = [GFh]X and C' = JGFl
I

Z are the shear stiffnesses of strips,
a z a

Fy = [E~]Y is the longitudinal stiffness along y axis, q' = ::h is the force

per unit volume of the grid system and a is the distance between the layers
of the grid system.

Equation (4.20) is the equation of a multi-layer membrane. If the hori­
zontal members of the grid system have different shear, bending, shear­
bending stiffness characteristics, then the grid system may be considered a
discretely-continuous analytical model (Fig. 66) for which each vertical strip
will have its own differential equation. For example, using the given method,
for the ith strip, which undergoes shear strain, we obtain the following differ­
ential equation of equilibrium:

[GFjZ d
2
W i +Cx[ Wi-I + Wi+l _ (_1_ + _1_) WI] + qi = O.

I dz2 li_l, iii, i+ 1 Ii-l, iii, i+ 1

(4.21)

When the distances between the vertical strips are equal, equation (4.21)
becomes:

(4.22)

Assuming that the adjacent (i + 1)th vertical strip undergoes bending
strain, the differential equation will be:

(4.23)

If (i + 2)th vertical strip undergoes shear-cum-bending strain, its differ-
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ential equation will be

[EI]" d4Wi+2_ E[I]f+2 d2qi+2 ex ( 2W )
-dz2 - -/- Wi+l - i+2 + Wi+3i+2 dz4 [GF]z

;+2

(4.24)

Simultaneous solution of the differential equations of equilibrium for
vertical strips will give the stress strain state of the grid system.

a

b

-
i l+1 [+2

c

t

d

t

Fig. 66. Discretely continuous analytical model of a grid system.

a-plan of building; b-plan of model; c-elevation of model;
d-end view of model.
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4. USE OF DIFFERENTIAL EQUATIONS OF A GRID SYSTEM
FOR DIFFERENT SCHEMATIC MODELS OF BUILDINGS

Under the action ofhorizontal forces a panel-type building may be repre­
sented by a grid system consisting of horizontal and vertical members. The
horizontal force is applied on the joints in the form of concentrated forces
and the vertical in the form of concentrated floor loads transmitted to the
vertical members. In the process of bending, the latter creates an additional
horizontal force distributed along the height and determined by (2.47). Con­
sidering this force the equilibrium equation becomes non-linear. To obtain
a linear equation the distributed vertical force n is considered as an equiva­
lent concentrated force N applied to the upper end of the vertical member.
This force is determined from the condition that the work done by forces n
and N, when the bar is displaced due to the action of uniformly distributed
horizontal force, is equal:

1 H( dW )2 1 H( dW )2-NS - dz=-f - n(H-z)dz.
2 0 dz 2 0 dz

(4.25)

(4.26)

The magnitude of displacement W is taken from (3.64) and by substituting
in it ;\ from (3.50) we obtain the differential expression for W:

dW q ( Z3;\2 Z2;\2 Z;\2 )
dZ = IGF] H-z+ 6H2 - 2H + -2- .

By substituting this expression in (4.25) and integrating the expression,
we obtain the magnitude of the equivalent force N:

N=nHg,

where [ is the equivalence coefficient. It is equal to:

g = 0.625),4 + 5.55i12 + 25
1.785;\4 + 10;\2 + 33.3 .

(4.27)

(4.28)

(4.29)

For a bar undergoing shear for ,\ < 0.8, the equivalence coefficient g=
0.75 while for a bar undergoing bending for ;\ > 8, g= 0.35.

Let us examine a multistory frame panel building which has large dimen­
sions in plan and has built-up floors where horizontal (floors) and vertical
(frames) members undergo shear strain. The differential equation of equili­
brium for such a building will be:

82W a2W
Cx ax2 + (Cz-N) az2 + q = 0,

where N is the equivalent longitudinal force per running meter length along
the top of the building.

For a high rise building or with narrow frames the equilibrium equation
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of the building will be:

iJ2W ( N ) 84W 8zW Bz 82q
Cx fJxz -Bz 1- C

z
8Z4 -N 8zZ - C

z
8zz + q = O. (4.30)

For a braced building in which vertical diaphragms undergo bending
strain and the torsional strength of the floor is also considered, the following
equation is obtained:

(4.31)

(4.33)

A building with monolithic floor and vertical diaphragms undergoing
bending strain will have the following equation:

In panel buildings of the frame brace type the differential equation of
equilibrium may be written for each vertical strip, considering the design
model of the building to be discretely continuous.

Ifthe floor undergoes shear strain, the diaphragm ofthe ith strip is defined
by equation (4.23).

Equation (4.29) may be used for the frame brace building. In this case
the diaphragms are considered stiffeners for which the boundary condition
for compatibility of deformation will be:

8
4
W 8W I[ElY -4--CX - = O.

q 8z {)X x=a

In the frame brace structure with many vertical diaphragms undergoing
hending strain, the building is considered two-layered in the verticaldirection
and single-layered in the horizontal direction. For this the equation will be:

8zW 8zW 84W
Cx --2 + (C-N) -z- - Bzo~+ q = O.

oX 8z uZ
(4.34)

For braced construction, that is, when the frame stiffness is small, the
equilibrium equation will be:

8zW 8zW 84W
C, --z- -N-z- - Bzo -{)4 - + q = O.

. oX OZ Z
(4.35)

For the vertical direction of a building, if it is considered multilayered
and the struts between the layers are represented by elastic braces that resist
bending, the differential equation of equilibrium will be of the type (4.20).
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5. GENERAL DIFFERENTIAL EQUATION OF EQUILIBRIUM
FOR A BUILDING

If we consider the building as a three-dimensional spatial system, we can
simplify its analytical model. Such a model may be represented by intersect­
ing plates and in the vertical direction as a collection of multilayer plates
with elastic braces. From such a model we can analyze the spatial behavior
of different schemes of buildings for transverse, longitudinal and vertical
forces.

Let us examine a frame-panel building in which the vertical members are
frames and diaphragms. Frames are represented as a single layer equivalent
bar with equivalent shear and bending stiffnesses. The diaphragms are simi­
larly represented by a single layer equivalent bar with equivalent bending
stiffness. Where the frames and diaphragms are simultaneously present in a
building, the vertical members are represented by two layers: the first layer
is a frame and the second a diaphragm. Floors form the horizontal members.
A floor is represented by a single layer equivalent bar with shear and bend­
ing stiffnesses. The torsional strains of horizontal and vertical members are
neglected, as they are small.

A view of the building with the x, y, z coordinate axes is shown in Fig.
67. The displacements along the respective axes are considered functions of
two variables W (x, z) and V (x, y) and in the vertical direction, as a function
of three variables U (x, y, z). The condition of building equilibrium may be
represented by differential equations in terms of the forces acting on the
building and the displacements.

In its general form the differential equation of equilibrium for the build­
ing will be:

Btrans Btrans fJ6W ( Bztrans ) fJ4W 04W
z zO __ _ Btrans + Btrans _ N Btrans

c~rans oz6 z zO C;rans Oz4 - x ox4

02W B~rans fPqtrans B:rans 02qtrans
- Ntrans - __ -- -- + qtrans = O.

fJz2 c;rans 8z2 c~rans 8x2 '

Blong Blong 86V ( BIOng ) 4V 4V
z zO __ _ Blong + Blong _ _ z__ Nlong _8 Blong _0__

c;ong 8z6 z zo· c;ong 8z4 v 8y4

82V B~ong 02q lon g Blong 82q long
- Nlong -- - --_ ---- y _-=--:,_ + qlong = 0;

8z2 c;ong 8z2 - C10ng 8y2

82U fJ2U 82u
Cver -_ + ever __ + Fver __ + qver = O.

x 8x2 . y 8y2 z 8z2 (4.36)

The first two equations of (4.36) express the building equilibrium under
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W(X,z) V(y,z)

y

x

Fig. 67. Building model.

a-general view; b-three-dimensional analytical model.

the action of transverse and longitudinal forces and the third that under
vertical forces.

Let
L'[EI]trans L'[ElJlong

Btrans = x and Blong = .v
x H y H

be the equivalent bending stiffnesses of horizontal members in the transverse
and longitudinal directions and

L'[EIJ~rans L'[EI];ong

Btrans and Blong = ---':.--
z Ltrans z Liang
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be the equivalent bending stiffnesses of frames in the transverse and longi­
tudinal directions. Similarly,

2[GFprans
Ctrans = z

z Ltrans

.E[GF}lang
and Clang = z

z LIang

will be the equivalent shear stiffnesses of frames in the transverse and longi­
tudinal directions and

2[ElJtrans
Btrans = zO

zO Ltrans and
2[EIJlang

Blang = zO
zO Liang

will be the equivalent bending stiffnesses of diaphragms in the transverse
and longitudinal directions. Similarly,

2[GF]ver
Cver = x

x HLlong
2[GF]'"r

and Cver = y
Y HLtrans

will be the shear stiffnesses of horizontal members in the vertical plane while

.E[EF]ver
Fver = z

z LtransLIang

will be the equivalent longitudinal stiffness of vertical members;
qtrans, qlong will be the distribu,ted forces acting on the area of transverse and
longitudinal facades of the building and

ver _ I:Qstory
q - HLtransLlong

will be the force per unit volume of the building.

I:Q 2Q J-Ctrans
Ntrans - e story and Nlong = e__s_tolL. _.:\ trans = H z •

- HLtrans HLlong z Btrans ,
z

(4.37)

will be the vertical distributed forces applied on top of the building in the
transverse and longitudinal directions; eis the equivalence coefficient.

Figure 68 shows the analytical model of the building. Depending on the
magnitudes of equivalent stiffnesses, the differential equations of equilibrium
(4.36) may define different structural models of frame-panel buildings. By
introducing the concept of stiffness characteristic of a building and its mem­
bers, we can define the corresponding building model. To determine the pre­
dominant types of strains due to horizontal forces, let us write the stiffness
characteristics .:\trans and Along which are equal for the vertical members:

J

Clong

,\long = H _z__
Z B;ong •

(4.38)
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c

trans
b Bzo

,..,.,,,..,.,.,.,,..,.,,"'" Distributed
~I~ ~(J ltl:l14l~I~~~ ~~ t'{(J!:'&l transverse

diaphragms
fong .fong

Cz B
2

Fig. 68. Analytical model of a building with floor undergoing strain.
a-building plan; b-plan of model; c-elevation of model;

d-end view of model.

For horizontal members:
Ltrans JCtrans

Alrans =__ _x_.
x 2 B~rans>

Dong~Cjong
Nong = __ _Y_,

Y 2 B!ong
Y

(4.39)

(4.40)
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In vertical members due to the action of longitudinal forces:

-H Chor
,." - Fver'

z
(4.41)

where Char is the modulus of subgrade reaction for soil foundation.
We may write the following conditions: for .\ ~ 0.8-since the building

member undergoes only shear strain we can assume that all values of B = 00;

for ;\ > 8 only bending strain occurs and hence we can assume all values of
C= 00. For 0.8 < A< 8 both shear and bending strains occur. In such a case,
for fL ~ 30 longitudinal deformations are considered in a vertical member
and for p. > 30 they are not.

The stiffness characteristic of the building kbuild determines the nature of
the building design model defined by the predominant stiffness of a frame or
a diaphragm. It is expressed by the formulae:

J 1 Ctrans
trans _ Z

kbuild - H 1 + 0.15 (;\trans)2 B'trans;
z zO

(4.42)

(4.43)J
1 Clang

ktrans - H z
build - I + 0.15 (;\~ong)2 B;gng •

For k build ~ 0.8 we have the brace model for the building where all load
is taken by vertical diaphragms and hence we may assume Cz = O. For k build

> 8 the building has a frame model in which all load is taken by frames and
hence we assume Bzo = O. For 0.8 < kbuild < 8 we have the frame brace
model, in which the load is redistributed between frames and diaphragms.

Let us examine particular cases of a frame-panel building with built-up
floors for which Atrans < 0.8 and ;\long < 0.8.

x y

If we have frames in the transverse direction for which ;\trans < 0.8 and
kbr~IJ > 8, in the longitudinal direction, frames and diaphn:gms for which
;\~~~ifd< 0.8 and k~ouird< 0.8 and for the vertical direction p. > 30, then the
differential equations of the building will be of the following types:

a2H! a2H! a2H!Ctrans __ + Ctrans Ntrans __ + qtrans = o·
z aZ2 x aX2 aZ2 ,

04V a2v a2vBlong __ Clong _ + Nlollg __ qlollg = O·
zO aZ4 y ay2 aZ2 '

a2u a2u
Cver _ + Cver - + qver = O.

x aX2 y ay2 (4.44)

If we have frames and diaphragms in the transverse and longitudinal
directions for which A;rans < 0.8; 0.8 < kb".;';?J < 8; .\~ong < 0.8; 0.8 < k~ouifd

< 8 and for the vertical direction p. < 30, then we have the frame brace
model in the transverse and longitudinal directions and hence the differential
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equations of equilibrium for the building will be:

84W 82W 82WBtrans (Clrans_Ntrans) __. _Clrans qtrans = o'
zO 8z4 z 8z2 x 8x2 '

(4.45)

6. DIFFERENTIAL EQUAnON OF EQUILIBRIUM FOR
A BUILDING WITH RIGID FLOOR

In practical building construction one often finds point-type high rise
buildings with finite dimensions in plan, which are however small compared
to the height. In such cases the floor may be considered a rigid disk. The
design model of such buildings is discretely continuous and is obtained as
follows: all vertical, transverse and longitudinal members of the building are
moved out in the respective directions and joined with the rigid disk (floor)
(Fig. 69). The frames and diaphragms will be treated as the vertical members.
Reactions due to vertical members act on the rigid disk. The reaction from
the ith vertical transverse strip which happens to be a frame, will be equal
to:

d 2 W,.
( [GF]lranS - N~rans) -d2 I + q~rans = - R~rans.
lIZ I t

(4.46)

The reaction from the jth strip, which happens to be a diaphragm, will
be:

d4W d2 W·_ [EI]lrans __J _ N~ra!1S __! + quans = _ Rlrans.
OJ dz4 J dz2 J J

(4.47)

The turning of vertical members causes torsional reactions to act on the
rigid disk. These reactions are equal to:

dry
[GloWa !18 -d- <t'2 = - mtrans;

I z I

d2
[GIo]!rans~ = _n1lrans.

.I dz2 .I

(4.48)

(4.49)

Similarly we obtain the reactions due to vertical members in the longi­
tudinal direction. Considering the floor disk as a solid body we can write the
following static equilibrium equations for it:

'E X = 'E R)ong + 'E RJon g = 0;

'E y = 'E R~rans + 'E R~rans = 0;
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"" M = "" R~rans a~rans +"" R~rans b~rans +"" R!ong a/lOng +"" Rlong b10ng
£... £..., , £...J J £..., £...J J

+1: mj"ans +1: myans +1: m)ong +1: mJong = O. (4.50)

Let point 0 of the rigid disk be displaced by Wo and Voalong the y and
x axes, respectively, and let the entire disk at this point turn through an

'$' +- +t'-'-T- -H-+- -+-
------. .t- -+ ------iI-,-til-----

a.

c

LongitLiclinal
diaphragms

<><C:JLongitudinal
- frames

Ntrans
t

Fig. 69. Analytical model of a building with rigid floor.

a-plan of building; b~plan of model; c-elevation of model;
d~nd view of model.
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angle y. Points i and j of the rigid disk will undergo the following displace­
ments along the y and x axes:

Wi = Wo+ tp a}ran>;

Wj = Wo + tp bt,rans;
J

Vi = Vo+ tp aiong;

Vj = Vo + tpbl.o ng •
J

(4.51)

By substituting the values of reactions and displacements (4.51) in the
system of equations (4.50) we obtain the equilibrium equations for the build­
ing in the following form:

k ~~ [k II J~~'E [E/]~rans __0 + 'E N~ra!lS - 'E ([G F] _ Npans __0
j=1 J dz4 j~l J ;=1 I dz2

k d4m [ k II ]+ 'E [E/]~r,:lI1S _T_ btrans + 'E Ntrans blrans - 'E... ([GF] - N)lranS drans .
j=1 J dz4 J j=1 J J ;01 I I

d2 r~ II k
X __T _ ~ q~l'ans _ ~ q~rans = 0;

dz2 ;~I I j=1 J

k d4 V; [ k II ] d2 V; k'E [E/]Iong __0 + 'E N!ong- E [GF] - N!ong __0+ 'E [EIJI~ng bl,ong
j=1 OJ dz4 )=1 J ;~I I dz2 j=1 OJ .I

X d
4

ep -I- [t NlongbIong _ t ([GF]- N)lon galOng] 42
cp - t qlon g

dz4 j=1 J J ;~I J I dz2 i=1 I

k

- 'E qlOn g = 0;
j=1 J

k d4~" d4 V; [ k
~ [E/]tr,ans btran, 0 + 'E [E/]Io,n gblong __0 + 'E Nt,rans blrans
F:l OJ J dz~ j~1 OJ J dz4 j=1 J J

II Jd2 ~ [k_ ~ ([GF] - Nyrans a~rans __0+ 'E Nlong b~ong - 'E ([GF] - N)long
f:l I I dz2 ,= I J J J

XalOng] d
2
.Vo + [..b [E/]lranS (b!r:lI1s)2 +t [E/]Ion g(bIOng)2] d

4
tF.

I dz2 ,f;;:1 OJ J i~1 0.1 J dz'"

- -E ([GF] - N)lon g (aIOn £)2J ~.!'!I - t qlrans alrans - t q~rans b:rans
i~1 I I dz2 i=\ I I j=1 J J

/I k ( /I k- 'E qlongalong - 'E qlongalong - 'E [G/o]!.'ans + 'E [G/o)lrans
;=1 I I j=1 J J i=1 I )=.1 J

II k ) d2 m+ 'E [G/OWa!lS + 'E [G/o]l.°ng -; = O.
i=\ I j=l J dz

(4,52)
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To obtain the differential equations of equilibrium for the building, add
the equation which expresses the building equilibrium in the vertical direc­
tion to the system of equations (4.52):

n d2U II

1: [EFr er - +1:q-:er = O.
i=1 I dz2 i=1 I

When considering different structural models ofbuildings these equations
may be simplified depending on the stiffness characteristic kbuild of a build­
ing. When the building twists kt~ld will be equal to:

k tor =build

(4.53)

If the building has only plane diaphragms and there are no centers of
rigidity then the torsional stiffness of vertical members may be neglected.

If point 0 of the rigid floor disk is a center of rigidity of the vertical
members and center of gravity for the longitudinal forces, then the following
expressions will be equal to zero:

k k kL. [EI]trans b~rans = 0; L. [EI]I,?ng b10ng = 0; L. N~rans b~rans = 0;
j=1 OJ J j=1 OJ j j=1 J J

k IT n
1: Nl.ong b10ng = 0; L. ([GF] - Npans a~rans = 0; 1: ([GF] - N)!onga~ong = O.
j=1 J J i=l I I i=1 I I

System 4.52 is then separated into three independent equations:

k d4 W; [ k II ]1: [EIFans __0 + 1: N~rans_ 1: ([GF]- Nyrans
j=1 OJ dz4 j=1 J i=1 I

d2W n k
X -- -1: q~rans_1:qtrans= 0;

dz2 i=1 I j=1 j

k d4 ~ [ k JII d2 ~1: [EI]l,?ng__0 + 1: N!ong-1: ([GF]- N)!ong__0
j=l . OJ dz4 j=1 j i=1 I dz2

k k
-1: q!ong- 1: q~ong = 0;

i=1 I j=1 j
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n k ) d2m n k+ 'E [Glopon g + 'E [GIo]l°ng _T - 'Eq~ranSa;rans_ 'Eqtrans b~rans
i~l I j=l J dz2 i=l I j=l J J

11 k
- 'E qlongalong - 'E qlongbl,ong = O.

i=l I I j~l J J
(4.54)

The first and second equations of (4.54) express the building equilibrium
condition for transverse and longitudinal forces; this gives rise to correspond­
ing independent displacements. The third equation expresses the equilibrium
condition due to the combined action of transverse and longitudinal forces
which cause the building to turn.

If the load is symmetrical with respect to the center of rigidity of the
building, then the third equation loses its significance because the building
will not undergo torsion. Due to different shear and bending strains of ver­
tical members, the center of rigidity of the building will change along the
height. Therefore, we shall use an approximate method to determine it.
According to this method, the coordinates of the center of rigidity will be:

, , 1: ([GF] - Nyrans atrans + 'E ([EI] + Nyrans btrans
nord 1 1 J J

xo~ = 'E([GF}-N)jrans + 'E([EI] + N)]"ans

, , 'E ([GF] - N)'onga!ong + 'E ([EI] + N)~ong b1?ng
rigId _ I 1 J J

YO - 'E([GF]-N))on g + 'E([EI]+ N)r g ,
(4.55)

where a and b are the distances from the edge of the building to the corre­
sponding vertical member.

7. BOUNDARY CONDITIONS FOR THE DIFFERENTIAL
EQUATIONS OF EQUILIBRIUM OF BUILDINGS

To consider the action of horizontal forces, the three dimensional design
model of a building is represented by a plate-like system fixed at one end.
The base of the system is a beam which is elastically fixed against vertical
and horizontal displacements and torsion. Under the action of vertical forces
the design model of the building is represented by a multi-layer membrane
with elastic braces between the layers. The lower layer of the membrane is a
slab on an elastic foundation.

The building foundation may be designed in the form of either a mono­
lithic slab or as grid work continuous beams or as isolated footings, connected
by wall beams. Its solution leads to a horizontal beam with equivalent shear
and bending stiffnesses, resting on an elastic foundation. It will have free
ends in the horizontal direction. In shear deformation of the floor the bound­
ary conditions will be:



86

for x = _!::..: 8W = O.
2 8x '

L oW
for x =""";): - = O. (4.56)

k OX

In bending deformation of the floor, the boundary conditions will be:

L a2w i)3W
for x = - -' -- = o· -- = O·

2' ox2 '8x3 '

L 82W a3W
for x = 2: 8x2 = 0; 8x3 = O. (4.57)

For the vertical direction, in a frame-type building in which the founda­
tion beam is rigidly fixed to the foundation, the boundary conditions will
be:

for z = 0: W = 0;

for z = H: oW = O. (4.58)az
If the foundation is a monolithic slab, with equivalent bending stiffness

[EIJp resting on elastic foundation, the boundary conditions will be:

forz=O: [EI]-:-04 W-c 8W ...LCw w=o·
F 8x4 z 8z I ,

fou = H: oW = o. (4.59)
8z

In a grid work of strip foundations with equivalent shear stiffness [GF1:
resting on a rigidfoundation, the boundary conditions will be:

[orz=O: [GFjX02W +Cz
8 U::: cwW=0'

F ox2 8z '

forz= H: oW = O. (4.60)
oz

Isolated foundations, for which the equivalent rigidity is zero, shall be
considered as a foundation beam with elastic restraint against horizontal
displacements. It will then have the following boundary conditions:

z = 0: C {) W = Cw W·
z oz '

z=H: oW =0'
az ' (4.61)

(4.62)

where Fp is the area of foundation and C~'~j~ is the modulus ofsubgrade reac­
tion of the foundation under horizontal displacement.

For the vertical direction of a frame brace model of a building with uni­
formly spaced diaphragms along its length, the boundary conditions will be
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as follows when the foundation beam is rigidly fixed to the foundation:

for Z = 0: W = o' 0 W = o·
'oz '

for z = H:

03W oW
BZo-

3
- -Cz ,,---- = o.

oz vZ
(4.63)

When the foundation is elastically fixed against horizontal displacements
and against turning in the case of a foundation slab, the boundary conditions
will be:

for z = 0:
. 03W 02W oW

[Glo]F~ + Bzo --2 - Cq>~ = 0;
vX 8z 8z vZ

04W 83 W oW
[EI]'<- +Ro--C - -CwW=O'

F 8x4 • OZ3 z OZ '

02W
for z = H: {Jz2 = 0;

a3 W oW
Bzo --3 - Cz -f) = O.f)z Z

In a grid work of strip foundations:

(4.64)

forz = 0:

for z = H:

[Gli]X a3 W + B f)2 W -Cq> f)W = O.
o F f)x2 f)z zQ f)z2 f)z '

f)2W 03 W oW
[GF1;~ -BZo--3 + Cz - + Cw W= 0;

vX f)z f)z

02W
-=0'f)z2 '

f)3 W oW
Bzo -f)j -Cz - = o.

z f)z
(4.65)

For isolated foundations the boundary conditions will be:

for z = 0:

for z = H:

B a2 w -CIf! oW =0'
zO az2 az'

[GFjX a
2

W _ B 0
3

W + C 0W + CIV W = o·
F 8x2 zO OZ3 z {)z '

8
2

W = o.
az2 '

{)3 W oW
Bo--C- =0' (4.66)

Z f)z3 - Oz '
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Cip = lpCsoil

L '
(4.67)

where IF is the moment of inertia of the foundation and Csoi1 is the founda­
tion coefficient for non-uniform ground compression.

In diaphragms concentrated along the length of a building, the boundary
conditions will be (4.59), (4.60) and (4.61). Where the diaphragms are located,
we shall have additional boundary conditions as for a slab with stiffeners:

for x = a:

84 W 8W
Bzo -84 -Cx -=0.z 8x

(4.68)

When the building is under the action of vertical forces, the boundary
conditions will be:

Ltrans 8U
for x=- --2-: --- =0'

{}x '

Ltrans

for x = -2-: {}U = O.
{}X '

Dong . {}U
for y=- -2-: 8y = 0;

L long _. 8-·U·
fory = -2-: - = o·{}y. ,

for z= H: {}U==O.
8z,-···

In isolated foundations:

for z = 0:

(4.69)

(4.70)

In a foundation slab:

for z = 0:

84 U 84 U 84 U {}U
B; {}X4 + Bf, c:---{}4 + (Kp+ K~) 8x2 8y2 - per - + C ·1 U = 0. _. y z {}z SOl •

(4.71)

If the foundation is absolutely rigid we shall have:

for z = 0:

U=o. (4.72)
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8. DETERMINATION OF FORCES IN THE VARIOUS
MEMBERS OF THE BUILDING

The system of differential equations of equilibrium for a building (4.36)
and the particular cases (4.44) and (4.55) are solved separately for transverse
and longitudinal horizontal forces as well as for verticalforces by the method
of single, double and triple trigonometric series. After determining the un­
known displacements W, V and U in the horizontal and vertical members of
buildings, we find the combined resultant forces. Under the action of
horizontal forces the combined bending moments and transverse forces in a
diaphragm will be:

(J2 WMtl'ans = _ [E1]ll'anS __.
zO zO 8z2 '

82 VMlong = _ [E1]long__.
zO zO 8z2 '

iJ3 W
Qtrans = __ [Eljtrans __.

zO zO 8z3 '

83 VQlong= _ [E1]lon g__
zO zO 8z3 '

where [EI]zo = Bzo I and I is the distance between the diaphragms.
The combined transverse force in a frame will be:

Qtrans = fGF]tfans oW.
z L Z 8Z'

Q~ong = [GFJlong 8V .
" z 8z

(4.73)

(4.74)

(4.75)

When the floor undergoes shear deformation the forces in it will be:

Qtrans = [GFJtrans 8W.
x x 8X'

OVQlon g = [GFJlong_.
Y Y 8y'

and for bending:

82 WMtrans = _ [E1J'trans __.
x x 8x2'

82 VMlong = _ [E1]IOn g_.
Y Y 8y 2'

83 WQirans = _ [E1]lranS __.
x x 8x3 '

83 V
Qlong = _ [E1] long _".

Y Y 8y 3
(4.76)
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When the building is loaded vertically, the transverse and longitudinal
forces for the vertical direction will be:

Qver = [GFrer aU.
x x ax'

Qver = [GF]ver aU.
y Y ay'

Nver = [EF]ver au.
z z az (4.77)

The values of these forces may be substituted in differential equations
(4.44) and (4.45) after which their order will diminish and the unknown in
these equations will be the forces which are to be solved. The values obtain­
ed are applied to individual stories and bays of the building and then the
forces in their constituent elements are determined as in (3.9).



CHAPTER 5

Natural Oscillations of Buildings

1. GENERAL DIFFERENTIAL EQUATIONS OF NATURAL
OSCILLATIONS OF BUILDINGS

To solve the problem of building oscillation we use d'Alembert's princi­
ple, which treats the dynamic problem as a static one by adding inertia
forces to elastic forces. Here the displacements are taken to be functions of
time W (x, z, t), V (z, y, t) and U (x, y, Z, t).

By multiplying the second differential of displacement with respect to
time by the respective mass, we obtain the inertia forces which become the
external forces in the case of natural oscillations of a building:

82 W
qtrans = _lntrans __•

8t2 '

82 V
qlong = _ ln10ng --'

8t2 '

q\'cr=_m\'cr 8
2

U. (5.1)
8t2

The uniformly distributed masses in the respective directions of the build­
ing are equal to:

nltrans = .EQstory •
gLtransH'

l'Q"llong = stol y .
gLlongH'

nl\'cr = .EQstory,
gLtrans Liong H' (5.2)

where Qstory is the weight of a story and g is the acceleration due to gravity.
By substituting the values of inertia forces (5.1) in equation (4.36) we

obtain the general differential equations of natural oscillations of a building:

BtransB:rans 86 W ( BtranS) 8 4 W
z .0 ._ __ _ BtrallS + Btrans z__ Ntrans _

c;ralls OZ6 Z 20 c;rans OZ4
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84 W 2 W B;rans 8 4 W
_ Btrans Ntrans _8__ + mtran, _

x 8x4 8z2 Ctrans 8z2dt2
z

Bxtrans 8 4 W
+ mtrans Ctrans - 8x2 dt2

x

82 W
mtrans -- = o·

8t2 '

(5.5)

Blang Blang 6 V ( Blang ) 4 V 8 4 V
z zO 8_ _ Blang + Blang _ _ z_ Nlang ~ _ Blang __

Clang ez6 z zO clang ez4 y 8y 4
z z

82 V Blang 84 V Blang 4 V 82 V
_ Nlang __ + m1ang -3... + mlang _Y__8 mlang __ = O.

8z2 Clang 8z2dt2 clang 8 y2 dt2 8t2 '
z Y

{;2 U 82 U 82 U 82 U
Cver _ + Cver -- + F -- - mver -- = O. (5.3)

x 8x2 Y 8y 2 z 8z2 {)t2

The first, second and third equations (5.3) refer respectively to transverse,
longitudinal and vertical oscillations of a building.

Let us study a building which is frame type in the transverse direction
and brace type in the longitudinal direction. We assume the building is
undergoing shear strain. The differential equations of natural oscillations of
the building will be:

82 W 82 W 82 W
( Clrans _ Ntrans) __ + Ctrans mtrans -- = O·

z 8z2 x 8x2 8t2'

84 V 82 V 82 V 82 VBlang Clang __ + Nlang __ + m 1ang-- = O·
zO 8z4 Y 8y2 8z2 8t2'

82 U 82 U 82 U 82 UCver __ + Cver __ + Fver __ m ver -- = O. (5.4)
x 8x2 Y 8y2 z 8z2 8t2

Let us examine a frame brace type building in the transverse and longi­
tudinal directions with the floor undergoing bending strain in the transverse
and shear strain in the longitudinal directions. The building rests on a soft
foundation. The differential equations of natural oscillations of the building
will be:

84 W 82 W 84 W 82 WBtrans (ClranS _ Ntrans) __ + Blran> __ + m lran, -- = O·
zO 8z4 z {)Z2 x 8x4 {)t2'

84 V . 82 V 82 V 82 V
Blang (Clang _ Nfan g) -- _ Clang --+ m fang -- = O·

zO 8z4 z 8z2 Y 8y2 8t2'

Cver {j2 U + cver
82 U _ m ver 8

2
U = O.

x 8X2 Y 8y2 8t2

In point type high rise buildings represented by the frame brace scheme
in which the floors are absolutely rigid disks, the differential equations of
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natural oscillations of the building will be:

k 8 4 W; [ k 11 ] 82 W;'E [EI]trans __0 + 'E Ntyans_ 1:. ([GF]- N)trans __0
j=l OJ 8z4 j=1 J i~J '8z2

(

/l k ) e2 W; ( 11 k )+ 1:. m~rans - 1:. mt.rans 0 + 1:. m~rans a~rans +1:. mt.rans btrans
i=1 I j=1 J et2 i=1 I I j=l J j

e2 1'
X -=0'

Bt2 '

k 8 4 V, [ k 11 ] e2 v,1:. [EI]I~ng _0 + 'E N!0ng - 1:. ([GF] _ Nyon g _0
j~l OJ 8z4 j~[ J i~1 I 8z2

n k n
- E ([GF]- Nyrans (atrans)2 +'E Nlong (b 1ong)2- 'E ([GF] - N)l°ng

i=1 I I j=1 j j i=[ I

X (ajong)2] ~;21' -(tJGlol;ral1s +jt [Glowans + i'tt [Glo];ong +jt
X [Glo]Iong ) 8

2
cp + (t mtrans atrans --t. t mtrans b~rans) 8

2
Wo

J ez2 i~1 I I j=[ J J 8t2

k 11 k ] e2m+'E mtrans (b t,f"ns)2 + 'E m 10ng (a1.ong)2 +'E m 10ng (b~ong)2 __T = 0;
j=l J J i~I' , j~l J J 8t2

11 e2 U 11 e 2 U'E [EF]yer- - 'E myer_ = 0 (5.6)
i=1 I ez2 i~l I Bt2 '

where mi and Inj are the masses per unit length of the vertical members of
frames and diaphragms.

The first three equations of (5.6) constitute a total system giving the
expressions for the transverse, longitudinal and torsional oscillations of a
building. The fourth equation is independent of the first three and expresses
the vertical oscillations of the building.

If the center of rigidity of the building coincides with the center of mass,
then the following expressions are equal to zero:

11 k
1: m~rans a~rans + 'E m~rans b~rans = 0;
i=1 I I j~l J J

11 k
1: m~ong dong + 1: m 10ng b1.ong = o.
i~[ I I j~l J J
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In this case the first three equations of (5.6) become independent and
separately express the transverse, longitudinal and torsional oscillations of

. the building. In that case differential equations ofnatural oscillations acquire
the following form:

k {)4 m [ k II ] 82 Wo~ [EI]tr.allS __0 + ~ Nt.rans_ ~([GF1_N)trans __0
j=1 OJ 8z4 j=1 j i=1 I 8z2

(
" k )82Wo+ ~ m~rans +~ (mtrans __0 = 0;

i=1 I j=1 j 8t2

t [EIl',?n g8
4

Vo +[t N~ong_t ([GF]-NyongJ {}2 Vo
j=1 OJ 8z4 j=1 j i=1 I 8z2

(
Ilk ) 82 Vo+ ~m~ong+ ~mlong -- = 0;

1=1 I j=1 j 8t2

[

k k ] 84 [ k1: [EI]brans (btrans)2 + 1: [EI] I,? ng (btrans)2 ~ + 1: Nt.rans W rans)2
j=l j j j=1 OJ J 8z4 j=1 j j

n k n
- 1: ([GF]- Ni)lrans (at rans)2 + 1: N~ong(bl.0ng)2_ 1: ([GF)- N)~ong

i=1 I j=1 j j i=1 I

X (a~Ong)2J 8
2

qJ - (t [Glo]!rans + t [Glo]lrans + t [GIo]~ong
I 8t2 1=1 I j=1 j i=1 I

+t [Glo]l?ng ) 8
2

qJ + [t m~rans (at:ans)2 + t mt: ans (bt.rans)2
j=1 J {}Z2 1=1 I I j=1 j J

II k J82+ 1: m~ong (a~ong)2 + 1: ml.ong (b!ong)2 ~ = 0;
i=I' I j=! j j 8t2

II ",2 U. " ",2 U.1: [EIrer _v_0 _ 1: m~er _v_0 = O. (5.7)
i=l. I {}z2 i=1 I 8t2

The position of center of mass on the floor is determined by the follow­
ing coordinates:

Em!rans a!rans + Em!rans bt.rans
m _ I 1 J J •

xo - Emtrans + Emtrans '
I j

Em!ong along + Em!ong b
'
.ong

m _ I I J J (58)
Yo - Em!ong +Eml.ong' .

I j

where a and b are the distances between the edge of the building and the
respective center of gravity of the vertical member.

To solve the differential equations of natural oscillations of a building
let us write the displacements in the following form using the method of
separation of variables:

W (x, z, t) = WA (x, z) sin (wtrans t + €I);

V(y, z, t) = VA (y, z) sin (wlong t + £2);

U(x, y, z, t) = UA (x, y, z) sin (cover t + £3). (5.9)
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Rigid disk representing the floor

-+-+.+­
·++-t
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• , atrans
, 2

o

d

[Gr~

Fig. 70. Frame type building.

a-plan; b-movement of floor during oscillations; c-analytical model of building;
d-cross section of the model; e-Iongitudinal section of the model.

For torsional oscillations of point type buildings the angular rotation

will be:
ep (z, t) = <PA (z) sin (wtor t + 1'4) (5.10)

By substituting the values of displacements from (5.9) in equation (5.3)



(5.1] )

(5.12)
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and using the corresponding boundary conditions we obtain the frequency
equations. The solution of these equations gives the values of frequencies of
natural oscillations wtrans, w10ng and w ver. From these values the relative
magnitude of amplitudes of natural oscillations WA , VA and UA may be
determined.

2. DETERMINATION OF PERIODS AND WAVE FORMS OF
NATURAL OSCILLATIONS OF BUILDINGS WITH AN

IDEALIZED POINT SIZED AREA IN PLAN

Buildings with rigid floors and non-deforming contours may have different
structural schemes depending on their stiffness characteristics. These are
determined by the following formulae:

~
I: IGF.]trans

ktrans = H i=1 '
build k

1: IEI]trans
j=1 OJ

~
t [GFJ!ong

k 10ng = H _,=_1 _
build n •

1: IEI]b'~ng
i=1 J

We shall use formula (4.35) to determine the torsional stiffness char­
acteristic of building kt~~ld' We shall assume that the center of rigidity and
the center of mass of the building coincide. For kt,~ai~d > 8, k~ouifd > 8 and
kt°u';ld > 8 we have the frame model of the building in the transverse and
longitudinal directions (Fig. 70). For this the equations of natural oscilla­
tions (5.7) will become:

f (IGF] _ N)~rans [j2 Wo _ M 8
2

Wo = o·
i=1 I 8z2 8z2 '

I: (IGF]-N)!on g8
2

Vo _ M 82 Vo = 0;
i=1 I 8z2 812

[tl(IGF]- N);rans (a;rans)2 +tl ([GF] - N))ong(a)On g) +~IGlowans

+ f [GloJ1ong] 8
2

rp -Mo8
2

q> = 0;
i=1 I 8z2 8t2

11 82 U, 82 U,1: IGF]:er _0 - M_o = 0,
i~1 I 8z2 8t2

where

(5.13)
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To solve the first equation of (5.13), let us write the values of displace­
ments as:

Wo (z, t) = WA (z) sin (wtl'ans t + El). (5.14)

Let us substitute the value of the second differential of displacement in
the first equation of system (5.13). Thereafter we obtain the following ex­
pression:

where

a2wA +k2W = 0az2 A,

(wtrans)2M
k 2 = -n---'-----"----

I: ([GF] - N)t;"ans
1=1

(5.15)

(5.16)

The solution of equation (5.15) will be:

WA = Al cos kz +A2 sin kz. (5.17)

For a cantilever undergoing shear deformations, we will have the follow­
ing boundary conditions:

for z = 0:

for z = H:

WA=O;

dWA = 0
dz .

We obtain the following periodic equation:

cos kH= 0,

(5.18)

(5.19)

'1T (2n-l) h - 1 ?from which kH = 2 ,were n - ,-, 3, ...

By substituting the value of k in (5.16) we obtain the frequency of natu­
ral oscillations of the building as

_ '1T(2n-l) J"E([GF]-N)trans
wtran::. = I

n 2H M'
(5.20)

The period of natural oscillation of the building in the transverse direc­
tion will be:

Ttl'ans __ -=-4H---,-J M
1/ - 2n - I .E([GF]- NW"ans •

1

Similarly the period of natural oscillations in the longitudinal
will be:

(5.21)

direction

Tlong =
/I

4H J M
2n-1 "E([GF]-N»)ong'

(5.22)
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For torsional oscillations of the building:

Ttor = 4H
n 2n-1

~-----

(5.23)

(5.24)

For vertical oscillations:

Tver - 4H J M
n - -2n-1 ~[EF]rr'

The wave form of natural oscillations in the transverse direction of the
building will be:

(W ) - A' 1T (2n-l)z
An- Stn- 2H (5.25)

The wave forms of all remaining cases should be as in (5.25).
For ktr,:WJ < 0.8; k~ounird < 0.8 and kt,~ld < 0.8, we have the braced

scheme of building in the transverse and longitudinal directions. Let us
examine the deformations in the diaphragms without considering the effect
of longitudinal forces. The equation (5.7) of natural oscillations ofthe build­
ing will then become:

k 84 J¥,o 82 W;
I:[El1tr~ns_- + M __o = 0;
j=J OJ 8z4 8t2

f. [EI]I~ng 8
4

Vo + M 8
2

Vo = o·
j=J oJ 8z4 812 '

[f [Elr~ans Wrans)2 + f: [EI]I~ng (bl.ong)2J
j=J OJ J j=l OJ J

X 8
4

<P + M 8
2

<P = o·
8z4 0 812 '

t [EFte r 8
2

Uo - M q~!!~ = O. (5.26)
;=J I {)Z2 8t2

Let us use (5.14) to solve the first equation of (5.26). This gives the
following differential equation:

-d4 WA
dz4 - k4WA = 0, (5.27)

where
4 _ (wtrans)2 M

k - ~[EI]~?ns • (5.28)



for z = 0:

for z = H:

Solution of equation (5.27) will be:

WA = Al sin kz + Az cos kz + A3 sh kz + A4 ch kz.

Let us examine the boundary conditions:

WA = O· dWA = O·
, dz '

d 2 WA d 3 WA
([Z2' = 0; (lz3 = O.

The transcendental equation for frequency will be:
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(5.29)

(5.30)

cos kH X ch kH=- 1. (5.31)

The roots of this equation are Hk = 1.875; 4.69; 7.86 ...
The frequency of natural oscillations of the building is obtained from

(5.28):

(5.32)

(5.34)

The periods of natural oscillations of the building in the transverse and
longitudinal directions will be:

Ttrans = _2rr = 2rrH2 J M = 7.15H2 r M .
n W C? ~[EI]~?ll5 (311-1)2 V 'E[E11Wns'

(5.33)

Tlonc, _ 7.15Hz r M
1/ - - (311-1)2 V IJE1lbjng •

For torsional oscillations of the building:

Ttor _ 7.15Hz r M
n - (311-1)Z V I:[El]';::hjC::-:al:71s-;(C;-bj::-:::~r::-::an::-:::S)"'2C-+7--.'E,~C"'\c;o[E~I];;-:~~=-.no-=-a7(b'-;-j-=-on=-=g)2' (5.35)

where C1 = 1.875; Cz = 4.69; C3 = 7.86 ... n = 1, 2, 3, '"
The period of vertical oscillations of the building is determined from

(5.24).
Based on the solution (5.29) and the boundary conditions (5.30), the

wave form of natural oscillations of the building in the transverse direction
will be:

(WA ); = (cos C;H + chC;H) (sin Cjz-sh Ciz)-(sin CjH

+ shCiH)(cos C;z-ch C;z). (5.36)

The wave forms of oscillations for all remaining cases should be con­
sidered according to (5.36); however, they can be simplified and expressed
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in the form of the following trigonometric function:

[

'lTZ • 'IT (n-1)z ]
(WA)n = A I-cos 2H -(- l)n Sill H . (5.37)

The wave forms of all three harmonics, plotted on the basis of (5.36)
and (5.37) are given in Fig. 71.

First
harmonic

Fig. 71. Wave forms of building oscillations for a braced scheme.

For 0.8 < kt\;'ild < 8, 0.8 < k~°,ilTd < 8, 0.8 < kt'::ild < 8 we have the
braced frame model of a building in the transverse and longitudinal direc­
tions (Fig. 72) for which the differential equations of natural oscillations
(5.7) become:

~ IEllt~ans {)4 Wo+I~ N!rans _ ~ ([GF] _ Nyrans] {)2 Wo+ M {)2 Wo= O.
L... OJ {)Z4 L... J L... I 8z2 Bt2 '

~ [EI]I~ng 8
4

Vo+ I~ N!ong _ ~ ([GF] _ N)!ong]8
2

Vo + M {)2 Vo = O·
L... oJ 8z4 L... J L... I 8z2 8t2 '

{)2~ {)2~ _ .
X {)Z2 +M08t2 -0,

~ IEF]yer ()2 Uo _ M fj2 Uo= O.
L... I 8z2 8t2 (5.38)

The first equation of (5.38) expresses the natural oscillations of a two­
layer bar in which the first layer (diaphragm) undergoes bending strain and
the second (frame) shear strain.

Let us isolate the two layers of the bar from each other and separately
examine their natural oscillations. Then the first equation of (5.38) may be
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a --=t=t--- -
-+++..+++.

;

d

M
trans \on~

b-..-=::.:c:~J 6"- [EIJ -r- L OJ • -

c

b

longitudinal
diapnragms [.2-"Z2L::J>-<:I

[Eltng ­
oJ

Fig. 72. A braced frame building model.

a-plan; b-analytical model of building; c-cross section of model;
d-longitudinal section of model.

represented by two equations:

~ [Ell 8
4

W4 + M 8
2

Wo = O' (5.39)
~ OJ {}Z4 I {}/2 '

{}2 Wo {}2 Wo
[-~(-N)j-~([GF]-N)i] 8Z2"+M2 ----;}i2 =0, (5.40)
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where M j and M 2 are the masses of the first and second layers, respectively,
satisfying the condition:

M j + M 2 = M. (5.41)

The period of natural oscillations of diaphragms is determined by (5.33)
in the following form:

T - 7.15H2 r M j (542)
n - (3n- 1)2 \j 1: [EI]qj' .

The period of natural oscillations of frames is determined by (5.21). It
will be as follows:

1', - 4H r M2 (543)
n - 2n-1 \j 1: (- N)j +1: ([GF]-N); . .

The two layers of the bar should have identical periods ofnatural oscilla­
tions because, in reality, they are continuously connected to each other. By
equating their periods and using condition (5.41) we determine the masses
M 1 and M 2 of the respective layers. Then by substituting the value of mass
M j in (5.42) we obtain the periods of natural oscillations of the braced
frame system in the transverse direction as:

For the longitudinal direction we obtain the period in a similar way:

Tlong = 7 15H2 (. . M (545)
11 • \j -!JEI]bjng [3.2 (2n- f)2 (k~Ouifd IF +(3n- 1)4]' .

where k~o~ifd is the stiffness characteristic of the building taking into account
the effect of longitudinal forces and is equal to:

1<.., = H {'E( - N)j + 'E([GF] - N)i .
(LJlll,d I \I. 1:[EI]oj

For torsional oscillations the period will be:

Ttor = 7.15H2
n

(5.46)

where kG~,l;ld is the torsional. stiffness characteristic of the building, deter­
mined by taking into account the effect of the longitudinal forces.

The wave form of natural oscillations of the braced frame system is
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determined approximately by summing the wave forms of the bars under­
going bending and shear. These wave forms are taken to be proportional
to the masses with equal frequencies of natural oscillations:

( {[
. rr(n-l)

WA)n = A ( - 1)" SIn H

where

'iTZ ] [. 'iT (2n- I) ] }+ cos 2H- I fl- SIn 2H f2,

(5.48)

M1 1
gl=----W= 3 .

1 + .2k~uild (2n- 1)2'
(3n- 1)4

g2 = -Z_2- = -------;3"(I-;-n-_---,IC"7)4--­
I+~~-~-----c-:

3.2 k~uild (2n-I)2

For the first harmonic of oscillations we shall have

where

fl = I
1 + 0.2 k~Uild '

(5.49)

(5.50)

(5.51)

6= 5
1 + -,--;;---

k~uild

There may also be cases of point type buildings in which the vertical
members undergo shear and bending strains. The stiffness characteristic of
such a building is 0.8 < A< 8.

The differential equation of natural oscillations of such a building, con­
sidering the effect of shear and bending strains in vertical members, will be:

84 W 'E[E!]; 84 W 82 W _
'E[EI]i -4 - 'E[GF] M-2-d 2 + M -82 - O.8z i 8z t t

(5.52)

To solve equation (5.52) let us examine separately the natural bending
and shearing oscillations of the building, expressing the deflection as in
(5.14). Based on the result of(5.52), we shall have two independent equations:

d4 Wbend
~[EI] A - M(Wbcnd )2 Wbend = 0;
L.. dz4 A

(5.53)

(5.54)



(5.59)

(5.60)
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The frequency of bending oscillations of the building is determined from
(5.32) and shearing oscillations from (5.20). The frequency of combined
natural shearing-bending oscillations of the building is determined as for a
bar with additional mass undergoing shear deformation:

w
n

= n'(2n-l) r 'E[GF] (5.55)
2H '\I M + Madd •

The additional mass is determined from the condition that it executes
natural shearing oscillations with the frequency of bending oscillations:

_ 1 [GF]n'2(2n-l)2 _ 2 (2n-l)2
M add - (Wbcnd)2 4HZ - 3.2;\ (3n-l)4 M. (5.56)

The period of natural shearing-bending oscillations of the building is
determined by the formula:

T --~ r M [ (2n - 1)z ] (5 57)
n - 2n-l '\I 'E[GF] 1 + 3.2;\2 (3n- 1)4 . .

The wave form of natural shearing-bending oscillations of buildings is
determined by (5.48) where coefficients el and gz have the values:

_ 2 (2n-l) . _
gl - 3.2A (3n-l)4' gz - 1. (5.58)

The stiffness characteristic of the building member is equal to:

,\ = H ('E[GFl
'\I 'E[ElJi .

3. DETERMINATION OF PERIODS AND WAVE FORMS OF
NATURAL OSCILLATrONS OF BUILDINGS WITH LARGE

DIMENSIONS IN PLAN

Let us examine buildings which have large dimensions in plan in both
directions. Let them have deformable floors which can be represented by
frame, braced frame and braced structural schemes.

1. A frame type building in transverse and longitudinal directions for
ktr:i~J> 8 and k~~~fd > 8 with floors undergoing shear for ,\~ntl1S < 0.8 and
Along < 0.8 and the stiffness characteristic in the vertical direction fL > 30

y

(which, in turn, means consideration oflongitudinal deformation in columns)
will have the following differential equations of natural oscillations:

{}Z W {}z W 8 2 W
(Ctrans _ Ntrans) __+ Clrans mtrans __ = o·

z {}Z2 x {}X2 {}t2'

{}2 V {}2 V {}2 V
(
Clong _ Nlon g) CJong m Jong __ = O·

z {}Z2 Y {}y2 {}t2'

{}U {}2 U {}2 U {}2 U
Cver __ + Cver __ + Fvcr __ - n1vcr --= 0

x {}xz Y {}y2 Z {}Z2 {}t2'
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To solve the first equation of (5.60) let us write the deflections in the
following form by using the method of separation of variables:

W (x, z, t) = X(x) Z (z) sin (wtrans t + €I). (5.61)

By substituting the value of differential coefficients of deflections in the
first equation we get:

82 Z 82 N
(Cz-N) 8z2 + CxZ 8x2 + mw2 XZ = O.

The frequency of natural oscillations is written as:

Then equation (5.62) becomes:

Cz-N 82 Z + 2 + Cx 82 X + 2 _ 0
Z fj z2 mw z X 8x2 m w

x -'

(5.62)

(5.63)

(5.64)

Because Z and X are independent variables, equation (5.64) divides into
two equations:

d2 Z
(Cz - N) dz2 + Zm w; = 0;

d 2 X
Cx dx2 Xm w; = o.

(5.65)

(5.66)

Equation (5.65) is similar to (5.15) with the boundary conditions given
in (5.18). The frequency and wave form ofnatural oscillations are determined
by formulae:

( ) = 7T (2n-l) [Cz-N.
W

z
n 2H \/111'

Z -A . 7T(2n-l)z
II - SIn 2H '

where n = 1, 2, 3, ...
The solution of equation (5.66) will be:

(5.67)

(5.68)

(5.69)X=A1cos [m wxx +A2 sin [m wxx.
\/ Cx \/ ex

The boundary conditions for the symmetrical wave form of oscillations
are:

for z = 0:

L
for X= 2:

dX=O'
dx '

dX =0
dx .

(5.70)



106

We get

'J- LAz = °and sin .'!!- w X "2 = o.
Cx

The frequency and wave form of natural oscillations are determined by
formulae:

(w )sym = 2Tfk rCx •

Xk L\jm'

27TkXsym A cos -- X
k L'

(5.71)

(5.72)

where k = 0, 1, 2, 3, ...
For skew~symmetric forms of oscillations the boundary conditions will

be:

for x=O, X=O

we get

L dX =0
x="2' dx . (5.73)

Jrn L
Al = °and cos - wX2= 0;

Cx

The frequency and wave form of natural oscillations are determined by
formulae:

Xsk.sym = A sin 7Tk x
k L '

(5.74)

(5.75)

where k = 1, 3, 5, ...
By comparing frequencies (5.71) and (5.74) we can write the formula

for general frequency of natural oscillations of symmetric and skew-symmet­
ric wave forms as:

( ) _ 7T (k- 1) JCx
Wx k- L -.

m
(5.76)

Similarly it is possible to write the formula for general wave form of
natural oscillations as:

X-A[' 7T(k-1) . 7T(k-1)x+ 7T(k-1) 7T(k-l)X]
k - sm 2 sm L cos 2 cos L '

(5.77)

where k = 1,2, 3,4, 5, ...
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For k = 1 we have translational deflections; for k = 2, 4, 6, ... skew­
symmetric forms of oscillations; for Ie = 3, 5, 7, ... symmetric forms of
oscillations.

From condition (5.63) we get the frequency of natural oscillations ofthe
building in the transverse directions as:

(5.78)

The period and wave form of natural oscillations of the building in the
transverse direction will be:

(W) -A' 'l1'(2n-l)Z[. 'l1'(Ie-l)x+ 7T(k-l) 'l1'(k-1)X]
A nk - sm 2H sm Ltrans cos 2 cos Ltrans '

(5.80)
where n = 1, 2, 3, 4, 5, ... , Ie = 1, 2, 3,4, 5, ...

Similar formulae for periods and wave forms of natural oscillations of a
building are obtained for the longitudinal direction by substituting the re­
spective geometrical dimensions, stiffness characteristics and loads in (5.79)
and (5.80).

To determine the frequency and wave form of natural oscillations of a
building in the vertical direction, let us solve the third equation of (5.60) by
writing the deflections in the following form:

U (x, y, z, t) = X (x) Z (z) I (y) sin (wver t + e). (5.81)

Considering (5.63) and (5.81) the third equation is broken down to three
independent equations:

d2 X
ever __ +Xmver (w,c')2 = o·

x dx2 x'

d2 1
e;;er -d2 + Imver (wvcr)2 = 0;. y y

d 2 Z
liver __ Zmver (w ver )2 = O.

z dz2 z

(5.82)

(5.83)

(5.84)

Equations (5.82) and (5.83) are similar to (5.66) while (5.84) is similar to
(5.65). On this basis we obtain a formula to determine the period of natural
oscillations of the building in the vertical direction:

(5.85)
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The wave form of natural oscillations ofthe building in the vertical direc­
tion is obtained in a similar way as (5.80):

(U) -A' 'IT(2n-I)Z[. 'IT(k-I). 'IT(k-I)x
A nkr - sm 2H sm 2 sm Drans

+ 'IT(k-l) 'IT(k-I)X][. 'IT(r-I). 'IT(r-l)y
cos 2 cos Ltrans sm 2 sm Dong

'IT (r-l) 'IT (r-l) y ]+ cos 2 cos -Llong , (5.86)

where n = 1, 2, 3, ... , k = 1, 2, 3, ... , r = 1,2, 3, ...
If Drans ~ Dong (Fig. 73) the floor may be considered rigid in the longi­

tudinal direction and the general differential equation will be:

{p W {;2 W {)2 W
(c - N)trans -- + Ctrans -- - mtrans -- = o·

z {)X2 x {)X2 at2 '

!:([GFJ-N)'ong {)2 Vo -M {)2 Vo = 0;
i=l I {)Z2 {)t2

{)2 U {)2 U {)2 U
Cver __ + Fver__ - nlver-- = O.

x 8x2 z {)Z2 {)t2
(5.87)

(5.88)

(5.89)

The period and wave form of natural oscillations of such a building in
the transverse direction are determined by (5.79) and (5.80)andin the longi­
tudinal direction by (5.22) and (5.25). The period of natural oscillations in
the vertical direction of the building will be:

r 4 mver
T~~r = 'V (k-I)2c;er (2n-I)2 F;er .

(Drans)2 + 4H2

Let us examine a frame building with a floor which undergoes bending
strain for A~ans < 8. The differential equation of natural oscillations of the
building in the transverse direction will be:

{)2 W {)4 W {)2 W(C - N)trans - __ Blrans __ - mtrans -- = o.
z {)Z2 Y {)x4 {}t2

By using the method of separation of variables, equation (5.89) is separ­
ated into two equations, of which the first will be (5.65) while the second
is written in the form:

d4 xBtrans __ _ Xmtrans (()2 = 0
x dx4 x'

(5.90)

This equation has a known solution based on formula 130 given in [65]



109

b

trans
L -----+

trans
ex

lOngN.verver

''trans ,u, ,w" ~... ~~ rI~ ..., r!"" r!", ,u,C .
Z Io...U ..U ....II..U .... L..III-I L.... l....IL..J L..I

d
m ex I

er p-<:

b-<

I I:>-<

lK lDng... ... ... ... GFJ. M
I lH: I

I:>-<

lH
1>-<

~io~io~$io~~

'/ '"'''''''''''' / / /""""" /"" / / // / '"// / / /

Fig. 73. Frame building which is very long in the transverse direction.

a-plan; b-facade; c-analytical model; d-Iongitudinal section of model;
e-cross section ofmodel.

which is written in the following way:

X = AI (cos o:x+ch o:x) +Az (cos o:X- ch o:x) + A3 (sin o:x+sh o:x)

+ A4 (sin o:x-sh o:x). (5.91)
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The coordinates are measured from the left end. The boundary conditions
will be:

d2 X d3 X
for x = 0: dx2 = 0; dx3 = 0;

d2 X d3 X
for x = £trans: dx2 = 0; dx3 = O. (5.92)

Finally the transcendental equation for frequency based on formula (141)
of [65] will be of the following form:

cos aL-chaL = 1, (5.93)

where
mw2

cx.4= __x
B

x
•

The roots of equation (5.93) are as follows:

(/.,IL = 0; (/.,2L = 0; (/.,3L = 4.73: (/.,4L = 7.853; rJ.sL = 10.99.

(5.94)

From where hi
rJ.i=y'

Let us represent hi in the form:

hi = 11 (k2 -3k + 2); (5.95)

(5.96)

where k = 1,2,3,4, 5, ...
By substituting the values of (/., in (5.94) we obtain the formula for the

frequency of natural oscillations of the horizontal component:

2 _ 11 (k2 - 3k + 2)2 B;rans
w - ---.

x (Ltrans)4 mtrans

Using (5.63), (5.67) and (5.96) we obtain the period ofnatura1oscillations
of the building in the following form:

where n = 1, 2, 3, ... , k = 1, 2, 3, ...
The wave form of natural oscillations of the horizontal component will

be:

Xi = A{COS (x- ~ ) hi + ch (x- ~ ) hi]

+A{sin(x- ~ )bi+Sh(X- ~ )bi J (5.98)
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For symmetrical forms of oscillations we have the following additional
conditions:

from which we get:

for x = 0: dX = o·
dx '

(5.99)

L L
Al cos T bl -+ ch yb i

A3 =--sin.!:.-b.-+sh!:..b.' (5.100)
2 I 2 I

For skew-symmetric forms of oscillations we have the following addi­
tional conditions:

from which we get:

for x= 0; X=O (5.101)

(5.102)
AI sin}bi + sh ~ bl

A= L L'
3 cOS 2 bi -+ ch 2 bi

Oscillations given by (5.98) may be expressed by the following approxi­
mate function:

Xk = A [(3-k)xk-l -+ (cos 7, -0.6) (k-l)(k-2)], (5.103)

where k = I, 2, 3.
The wave form of natural oscillations of a building is expressed by the

following equation:

(W) -A' '1T(2n-l)z [(3-k) k-I
A nk - SIll 2H x

-+(cos 7: -0.6 )(k-1)(k-2)]. (5.104)

wheren= I, 2,3, ... , k=1,2, 3.
Let us examine a building which is braced in the transverse direction for

k~r~li7J < 0.8 and has a braced frame in the longitudinal direction for 0.8 <
k~0~1fd < 8 with the floor undergoing shear strain for ,\trans < 0.8 and ,\long <
0.8. The differential equations of natural oscillations will be:

8W 82 W 82 W 82 WBtrans Ctrans .__ -+ Ntrans __ -+ mtrans --= O·
zO GZ4 x 8X2 {}Z2 8t2'

Blong 8
4

V _ Clang 8
2

V _ (C _ Nyon g 8
2

V -+ m10ng {y2 V = 0 (5.105)
zO 8z4 y oy2 z 8z2 8(2'
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By using the method of separation of variables, we obtain two indepen­
dent equations each for (5.105) in the following form:

d4 Z d2 ZBtrans (_Ntrans) Zmtrans(wtrans)2 =0' (5.106)
zO dz4 dz2 z'

d 2 XC rans __ + Xmtrans(wtrans)2 = O' (5.107)
x dx2 x'

Blong d
4

Z _ (C1ong _ Nlong) d
2

Z _ Zm10ng (w1ong)2 = O· (5.108)
zO dz4 z dz2 z'

d2 1Clong __ + I m10ng (w1ong)2 = O. (5.109)
Y dy 2 Y

Equations (5.106) and (5.108) are similar to the first and second equa­
tions of (5.38) while equations (5.107) and (5.109) are similar to (5.66). By
using the solutions of the above equations we obtain the period and wave
form of natural oscillations of the building in the transverse direction:

T~kans = 7.15H2 Drans

r mtrans -
X \J 3.2 (2n- 1)2 H2 (Drans)2 (- Ntrans) + (3n- 1)4 (Drans)2 Bzo +

-----------

X [Sin

+ 12.75 (k-I)2 H4 c~rans; (5.110)

(WA)nk = A {[( -l)n sin '1T (n;;. J)x + cos ;~ -1]
7T (k-I) sin '1T(k-l)x + cos '1T(k-1) cos'1T(k-1)X]}.

2 Ltrans 2 Ltrans'

(5.111)

and in the longitudinal direction:

TJong = 7 15 H2 Dong r mJong -
nk' \/ 3.2 (2n-1)2 H2(Dong)2 (Cz- Nyong+
-+------------------

+ (3n-1)4 (Dong)2 Bzo + 12.75 (k-1)2 H4C1on g ; (5.112)
y

(VA)nk = A {[(-l)n sin '1T(n.; l)z + cos ;~ -1] = tl

[
. '1T (2n-l) z ] (; } [. '1T (k- 1) . '1T (k-l) y

- SID 2H !>z SID 2 SID Dong

+cos '1T (k
2
-1) cos '1T~I:;)YJ (5.1I3)

where n = I, 2,3, "" k = I, 2, 3, ... ; ~l and gz are determined by for­
mulae (5.49) and (5.50).
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The deduced formulae to determine the periods of natural oscillations
of buildings consider the longitudinal force applied to the top of the building.
This longitudinal force is computed with the equivalence coefficient as in
(4.28). These formulae may be used in the dynamic method to analyze the
static stability of a building.

4. SPATIAL WAVE FORMS OF NATURAL OSCILLATIONS
OF BUILDINGS

For horizontal oscillations the three dimensional analytical model of a
building is considered a cantilever plate system with one fixed edge and three
free edges. In the expression for periods and wave forms of natural oscilla­
tions Tnk and Wnb the values of indices nand k will be considered equal to
the number of sections between the edges and the nodal lines into which
the plate is divided. The values of nand k appear in the expressions for
periods and wave forms of oscillations and permit their complete determina­
tion.

For frame buildings, with floors undergoing shear strain, the period and
wave form of oscillations are determined by (5.79) and (5.80). In the first
harmonic of oscillations the period and wave form of oscillations are repre­
sented by To and WIl • Here the floor executes symmetrical translational
deflections as a rigid body. For II; = 2 we shall have skew-symmetric
wave forms of floor oscillations resembling its rotation. For the second
harmonic of oscillations the period may be TI2 or T2J depending on the
building height and length and the stiffness characteristics of the frames
and floors. For example, if the floor stiffness Cx is ten times greater

than the stiffness of frames Cz , then for ratio ~ > 2.5, for buildings

which are not very long, we shall have the second harmonic of oscillations

with periods T IZ , that is, rotation of the floor. If ~ < 2.5 for high buildings

with short length, the period of second harmonic of oscillations will be Tz1,

that is, we shall have translational deflection of the floor.
The ratio between indices ~ n ~ and ~ II; ~ is represented in the form of

nk diagrams in Fig. 74 which shows the spatial wave forms of oscillations.
For a frame building, with the floor undergoing bending strain, the period
and wave form of oscillations are determined by (5.97) and (5.104). For the
first harmonic of oscillations the period and wave form will be Tll and Wll •

In this case the floor executes symmetrical translational deflections. For k = 2
we shall have pure torsion of the floor as a rigid body and periods Tnl = T n2 .

Then, in accordance with the principle of superposition, in these cases it is
possible to superimpose two wave forms with random amplitudes. The compo­
site wave form so obtained is the natural oscillation of the given plate. For
II; = 3 we have the symmetrical wave form of floor oscillations resembling
its bending.
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Fig. 74. Spatial wave forms of oscillations of a frame with
floor undergoing shear strain.

The spectrum ofwave forms ofoscillations are represented by nk-diagrams
in Fig. 75. We see that torsional oscillations of a building are one of the
components of the spatial wave form of oscillations. Buildings with rigid
and elastic floors have identical translational and torsional oscillations for
low initial harmonics, so we can obtain the spatial wave forms ofoscillations
for point-type buildings by combining these separate types of oscillations.
Finally, using (5.21) and (5.23), the formula for transverse direction of a
building will be:

-+-------------------
.. . (k-:-l) Mo •

+'E([GF] - N);ong (a)On g)2 + 'E([GF] - NWng (alOngP'

and for longitudinal direction:

Tlono _ 4H r ·-("'2~--;k""')·M"-----+
nk 0 - 2n-1 - \I 'E ([GF] - N)'iong +

(5.114)

-+-------------------
+ (k-l)Mo _ (5 115)

'E([GF]- N)j"ans (ajrans)2 + 'E([GF]- N»)ong (a)On g )2 • .
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Fig. 75. Spatial wave forms of oscillations of a frame with
floor undergoing bending strain.

The wave forms of oscillations along the floor length are determined by
the following expressions:

'Tr("n-l)z
(WA)nk=A[(2-k)+x(k-l)]sin ~2H ;

(VA)"" = A [(2 - k) + y (k _ 1)] sin 'Tr (2~~ 1) z (5.116)

where n = 1, 2, 3, ... , k = 1, 2.

For k = 1 we have translational oscillations, for k = 2 torsional. In tor­
sional oscillations the periods for the transverse and longitudinal directions
are equal, that is, T:,ct" = T)~2,g and the wave forms of oscillations will be:

'Tr (2n-l) z .
(WA)1I2 = Axsin 2H '

'Tr (211- l) Z
(VA )1I2 = Ay sin 2H (5.117)

Formulae to determine the periods and wave forms of three-dimensional
natural oscillations of point type buildings with rigid floors, which can be
represented by braced frame or braced schemes, are similarly deduced.
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For vertical oscillations of buildings with large dimensions in plan, the
first harmonic of oscillations similarly represents translational vertical dis­
placements of the floor as a rigid body while the second harmonic represents
rotation of the floor in the vertical plane. The periods and wave forms of
vertical oscillations are determined by (5.85) and (5.86).



CHAPTER 6

Seismic Effects on Buildings

1. SEISMIC WAVES

We shall assume that each point on the surface of the earth executes
translational deflection. This deflection may be resolved into a vertical and
two mutually perpendicular horizontal components. Their respective accele-

rations may be represented by Uo(/), WO (I) and Vo(t). These accelerations
may be considered amplitudes of wave functions in the following form:

W~ = WO(I) <Px (Ax, x, c, I);

v~ = VO (I) <Py (A y , y, c, I);

u; = UO (I) <Pzx (A zx, x, c, I) <PZy (Am y, C, I), (6.1)

where <Px and <Py are the wave functions in the horizontal plane along the
x and y axes; (j'Jzx and <PZy are the wave functions in the vertical plane along
the x and y axes.

The wave functions may be represented by a series of harmonic curves:
Il

<Px = 'E sin
;=1

1/

<Py = 'E sin
1=1

"<Pzx = 'E sin
;=1

Il

<Pzy = 'E sin
;=1

where Ai is the wave length

277'
(Ax); (X-CI);

277'
(A

y
); (y- cl);

277'
(A

zx
); (x- CI);

277'
(AzY)i (y- cl),

(6.2)

(6.3)

c and Ti are the velocity of propagation and time period of seismic waves.
Expressions (6.2) represent a complex oscillatory process containing
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many waves of varying wave lengths. The component which has a frequency
close to the frequency of natural oscillation of the building will have signi­
ficant effect on the building. Hence we shall consider seismic accelerations
depending on the period of natural oscillations of the building:

W~ = Wo(t) sin T~:ns (~- t);
build C

V~ = Vo (t) sin T:;g (; - t);
bUild

u~ = Uo (t) sin T~':' (~ - t)
budd

. 27T (y )Xsm-- --t.
Tb~rld c

(6.4)

The effect of seismic waves on a building, represented by a three-dimen­
sional analytical model, is shown .in Fig. 76.

Let us examine a standing seismic wave when the point of inflexion of

z

iVo(tlCPi?ly,y,C,t)
I
i

Fig. 76. Effect of seIsmic wave on the three-dimensional model of a building.
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the wave coincides with the center of rigidity of the building. Acceleration
acting in the transverse horizontal direction of the building will be:

.. * .. . 27TX
WO = Wo (t) sm -,-.

/Ix
(6.5)

Coordinate ~ x ~ will be measured from the center of rigidity of the
building. In this case the building will experience torsional seismic effect. If
the center of rigidity of the building is located on the crest of the standing
wave (Figs. 77, 78) the acceleration will be:

.,.. 21TXW; = Wo(t)cos -~.

f=Fff£IJH *H.
~t)~(t.J

.. .2Jix
b.. ~rrrrn Wo{t) COS T
~~LLJ.1J'_~ . X

7" ""'"'

C W·· (t)S' 2$x
~ olnl\x

~

(6.6)

Fig. 77. Building model.

a-effect of running seismic waves; b, c-horizontal standing seismic waves.

In this case the building experiences translational seismic effect. Let us
examine two standing seismic waves which cause torsional and translational
effects. These two effects on the building (Fig. 77) may be represented as
follows:

"." ''[''IT(k-l).2'1TX 'IT(k-l) 27TXJ
WO = Wo rJ)x = Wo sm 2 smT + cos 2 cos~ .

(6.7)

For k = 1 we shall have translational seismic effect and for k = 2
torsional.

Accelerations in the other directions may be similarly obtained.
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a

b

c·

Fig. 78. Building model.

a-section; b, c-vertical standing seismic waves.

2. DETERMINATION OF SEISMIC LOADS ON A BUILDING
BY THE SPECTRAL METHOD

During earthquakes the ground oscillates. The ground movement and
the respective accelerations cause inertia forces to appear in the upper part
of a building. The oscillations caused by the foundation displacement may
be considered forced and the foundation fixed.

Oscillations of foundation in an elastic medium, with the ground mass
and building superstructure connected to it, are a complex process. Let us
examine two cases. The first is one in which we assume that forced oscilla­
tions ofa building occur as a result of foundation deformation due to the
passage of a seismic wave, fully reproducing the shape of these waves. This
assumes that the ground suffers little deformation. In the second case the
foundation is considered an absolutely rigid body and the ground is assum­
ed to be pliable. Then the shape of the seismic wave will be distorted and
the foundation will deflect as a rigid platform.

In other cases for purposes of calculation, a coefficient may be intro­
duced which reduces the magnitude of acceleration imparted by the ground
to the foundation due to the pliability of the ground.

Let us consider the simultaneous effect of all the components of accele­
ration (6.1) on a three-dimensional analytical modelofa building and equate
equations (5.3) to the respective disturbing seismic forces:
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RU = - mver Uo(t) fPzx fPzy • (6.8)

For frame buildings the differential equations of seismic oscillations will
be:

{}2 W {}2 W {}2 W ..
(Ctrans _ Ntr""s) __ + Ctrans -- - mtrans -- = - mtrans Wo (t) fP .

z 8z2 x 8x2 8t 2 x,

82 V 82 V 82 V ..
(Clong_Nlong) --- Clong m1ong __ = _m1ong VO(t)fP .

z eZ2 y 8y 2 8t2 y,

82 U 82 U 82 U 82 UCver __ + Cver __ + Fver mver __
x 8x2 y 8y2 z 8z2 8t2

= - mver Uo (t) fPzx fP zy • (6.9)

Let us examine the first equation and use the method of resolution along
the main directions. In this case the external force may be resolved into a
series of components of the following form:

., 00

RW = mWo (t) fPx = 1: 1: rnk'
n=I/<=1

(6.10)

(6.14)

Components rnk deform the system according to the wave form ofnatural
oscillations and should be distributed on an area proportional to the expres­
sion Xk (x) Zn (z) m (x, z):

rnk = (J.nkXkZnm, (6.11)

where (J.nk is a coefficient depending on the wave form of oscillations of the
system.

For this the following condition should be satisfied:

RW = 'E 1: (J.nk Xk (x) Zn (z) m (x, z). (6.12)
fl k

Let us multiply both sides of equation (6.12) by XjZj and integrate on the
area XOZ:

JfRW = XjZ j dxdz = f f I:'E(J.nk Xk Zn mXjZj dxdz. (6.1 3)
s s

For i::j= k and j::j= 11 we have

f rmXk Zn XjZj dxdz = O.
s·

Coefficient (J.ij will be equal to:

ffRW X; Zj dxdz
S

(Xij = TIXl ZJ mdxdz

s
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(6.15)rtnk = Wo(t) JJ
mXfZ~dxdz

S

Considering (6.10) and changing indices i, j we get

JJwPx Xk Zn dxdz
S

Components rnk will be equal to:

(6.16)

(6.17)

rnk = mWo(t) Yjnk,

where Yjnk is a coefficient for the given wave form of oscillations:

f Jmr:[Jx Xk (x) Zn (z) dxdz

Yjnk (x, z) = Xk (x) Zn (z) SJ J ----
mX~ (x) Z~ (z) dxdz

S

We know that the principle of resolution permits examination of oscilla­
tions as a system with one degree of freedom in each direction. Based on
this we may write the differential equation for a point by considering the
dissipation of energy:

d2 W + EdW ...L w 2 W rnk
dt2 mdt I iiI< m' (6.18)

(6.20)

where <Ilk is the dispersion factor of energy for nkth wave form of oscillations.
The general solution of this equation for zero initial boundary conditions

is known to be:

Wn" = _10- Wn" rrnk (0 exp [- °2nk
Wnk (t- OJ sin Wnk (t- g) dg,

mw;,,, J 'TT

(6.19)

where Snk is the logarithmic decrement of natural oscillations of nkth wave
form in the building.

By substituting the value of rnk from (6.16) in (6.19) we get:

Wnk = W~k Wnk fWo(g) 1]l1k exp [- ~n; Wn" (t - g)]
X sin Wnk (t-g) dg.

Considering the standing wave and taking the acceleration to be
.. ..

Wo (t) = Wmax J(t), equation (6.20) becomes:

nT k c g r {; r Onk ]
rrnk = w~" 'l/nk Wnk J t(s)exPL - ~ Wnk (t-O

X sin W l1k (t - ,) dg. (6.21)



where keg = Wma" k c is the coefficient of seismic stability and g
ration due to gravity.

Expression (6.21) may be written in the standard form:

keg il
Wllk = -~2- !-'lIk 'Ij Ilk,

(Un/{
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is accele-

(6.22)

where f3l1k is the dynamic response factor:

f3l1k = Wllk Jf(O exp [- 8;; wndt- g) ] sin wndt- g)dg, (6.23)

On the basis of the spectral curve of the dynamic response coefficient, the
seismic load, distributed on the facade of the building, is expressed by the
formula analogous to the prevailing standards:

(6.24)

Consequently, the seismic loads acting in the transverse, longitudinal and
vertical directions on a building for different wave forms of oscillations are
determined by the following formulae:

Strans = k gnllrans f3trans 'ljtrans'
Ilk C nk nk'

1
where f3 = T and 0.8 ~ f3 ~ 3;

(WA)l1k fJmtrans Wx (WAhk dxdz

O{i ~it1S = ----ff3 -------------;
ln trans (W4)2 dxdz

J Ilk
S

(VA)nk frm10ng rJ>y(VA)nk dydz

7J~7,:,g = --fJL-------~-----;
71110llg (VA)2 dydzIlk •

S

(UA)"kr fffmver (jjzx rJ>zr (UA),;fa dxdzdy
]I

Jffmver (UA);'kr dxdydz
v

(6.25)

(6.26)

The total seismic load at any point of a building, for example in the
transverse direction, is determined as the sum of forces acting for all main
wave forms of oscillations:

Strans (t) = 'ES:ii:ns (t) = ke gmtrans 'Ef3nk (t)Y)nk' (6.27)
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Formula (6.27) is rewritten in the following form:

Strans (t) = kcgmtrans [,Blk (t) Y)lk + ,Bzk (t) Y)2k + ... + ,Bnl (t) 7)nl

+ fJnZ(t) Y)n2 + .. ,+ fJnk (t) 7)nkl = k cgmtrans (rllk fJlk 7)nk + rl2k fJZk T)2k

+... + IY.nl ,Bnl T)nl + IY.nz ,Bn2 T)n2 + ... + rlnk (Jnk 7)nk), (6.28)

where {JIb fJZk are the maximum values of the dynamic response coefficient,
rllb rl2k the coefficients depending on time which vary from - 1 to +1 and
attain their maximum values at a specific time.

We must determine the most likely magnitude of force Strans (t) during
the entire period of an earthquake ... that force which causes maximum
force Ns (bending moment, transverse force, longitudinal force) in the section
under consideration, that is, we must determine the coefficient IY.nk when
force N s will be maximum.

There are several propositions according to which magnitudes of maxi­
mum seismic load are found for each wave form of oscillation after which
diagrams of force Ns are constructed separately. Combinations of these dia­
grams give complete design force. This condition is expressed in standard
form as:

(6.29)

3. DETERMINATION OF OSCILLATION ANALYSIS FACTOR

." ,

Seismic load (6.25) may be written in the following form:

Snk = k c gm fink Dnk (WA)nk;

L
H2

1Jmrpx (WA)nk dxdz
o L

Dnk = --ii'"-----­
Il2

1Im (WA)~k dxdz
o L

-2:

(6.30)

(6.31)

where Dnk is the oscillation analysis factor. It is a specific number de­
pending on the ratio of building length to the length of the seismic wave

L
Dnk (n, k, -X ).

Using (5.80) and (6.7), the analysis factor for frame buildings and floors
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undergoing shear strain under translational seismic action will be:

'IT (2n-l) z d d
2H x Z

L
HZ

J
r 2'ITx. 'IT(2n-l)zJ m cos A; sm 2H dxdz

o L

Dn1 = ----=-2---,L,.-~~~~~~~~~-

HZ

JJm sin
2

o L
-2

By evaluating the specific integrals we get:

D 0.4. X
nl = (2n-l) X sm 'IT ;

L L
x=~=---,

A cTwave

(6.32)

(6.33)

(6.34)

where Twave is the period of seismic wave.
When the length of a building is very much smaller than the wave length,

that is, ~ _ 0, the analysis factor will have the maximum value:

D
1.27

nl = 2n- I'

For torsional seismic waves the value of analysis factor Dn2 will be

L
H "2r J . 'IT (2n - 1) z . 2wx . wx d dJ sm 2H SIll~ SIll L x z
o L

D - _-,=2 ~
n2 - L

H 2

JJsl
'n2 'IT(2n-l)z . 2 'lTX d d

2H SIll L x z
o L

2-

By determining the integral we get:

(6.35)

(6.36)1.27 [2 sin ; (2 X- I) 2 sin ; (2X + 1)1.
Dn2 = ---

2n-l 7T(2 X-l) 'fT(2X +l) J
For X = 0.5, that is, L = 0.5A, Dn2 will have the maximum value Dn2 =

1.27
2n -1 .
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For higher harmonic translational seismic oscillations the analysis factor
will be:

L
H2r r· 7T (2n- 1) z 2'ITx 27TX
j Jsm 2H cos T cos ---y- dxdz
o L

-2
Dn3 = ~LO----

H2

J J
. 2 'IT (2n - 1) z 2 2'ITx d d

SIn 2H cos -y:- x z
o L

2

After determining the integrals we have:

(6.37)

(6.38)= 1.27 [~in7T(X~~ + sin 'IT (X + 1) ]
Dn3 2n-l 7T(X-l) 7T(x+l)'

. I 1.27For X= 1, that is, L = A, Dn3 attains the maXllnum va ue to Dn3 - -­
2n-l

(see Fig. 79).
If the floor undergoes bending strain, then by using (5.104) we obtain

the following analysis factors: Dn1 is determined by (6.33).

L
If2
f r . 'IT (2n - 1) z . 2'ITx
j JX sm ---2H ---- sm Ax dxdz
o L-z

Dn2 = --;L-------------

If2

J lx2 sin2 'IT (2;H 1) z dxdz
o L

-2

(6.39)

L
fiT

J
r. 7T(2n- l)z
Jsm 2H

o L

2'ITx ('lTX )cos Ax cos L - 0.6 dxdz

-[
D173 =--:-L--

If 2

J Jsin2

o L
Z

'IT (2n- 1) z
2H (

'lTX )2cos T" -0.6 dxdz

(6.40)

Analysis factors Dnk may be determined similarly for buildings with differ­
ent structural schemes.
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Fig. 79. Types of building oscillations.

a-graph of analysis factors of oscillations; b-seismic effects
and wave forms of building oscillations.

4. DETERMINATION OF SEISMIC FORCES

The differential equations of equilibrium for a frame type building will
be of the following form under the action of seismic loading:

a2 w, k 8 2 W, k
(Ctrans _ Ntrans)__n_ + Ctrans n + Stram = Q'

z az2 x 8x2 nk '

{j2 v. e2 v.
( Clon g _ Nlan g) __nk_ + Clang __nk + Slang = Q'

z aZ2 y ay2 11k '
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{)2 U, (12 U {)2 U
Cver -.!!':.::... + Cver 11kI' + Fvcr 11kI' + Sver = O.

x ()X2 y oy2 z Oz2 11kI'
(6.41)

Displacements W llk> Vllk and Ullkr for the respective wave forms ofoscil­
lations due to seismic loads are determined by solving (6.41). We then deter­
mine the overall separate maximum seismic forces for frames in the form of
normal components:

(a) in the transverse direction:

and (b) in the longitudinal direction:

(Q long) = C OVllk • (Qlong) k = C OVllk •
z 11k Z 8Z' y 11 Y 8y ,

and (c) in the vertical direction:

Nver = Fver 0 Unkr •
11kI' Z 82:-'

(Qver) = Cver 0Unkr •
x nkr x ox'

(Qver) Cver. 0Unkr •
y 11kI' Y oy

(6.42)

(6.43)

(6.44)

(6.45)

We can determine these forces in a different manner without determin­
ing the seismic loading and by solving equations (6.41). For this we use ex­
pression (6.22) which is rewritten in the following form:

TV, k = keg Dtrans (Ttrans)2 wrans (WA ) k'
11 4'1T2 11k 11k 11k 11 ,

V k = kcfI Dlong (TJong)2 f310n g (VA) k'
n 41T2 11k Ilk 11k 11 ,

U = k e g Dver (Tver)2 f3ver (U )
nkr 4'1T2 11kI' 11kI' ilkI' A 11kI"

(6.46)

(6.47)

By substituting the values of (6.45), (6.46) and (6.47) in the expressions
(6.42), (6.43) and (6.44), respectively, we obtain the desired forces in the
transverse direction as:

(Qtrans) k = Ctrans k e g Dtrans (Ttrans)2 f3trans 0 (WA)l1k.
z n z 41T2 11k 11k 11k OZ'

(Qtrans) = C keg Dlong (TJong)2 f3Iong 0 (WA)l1k.
z x 4'1T2 11k nk 11k 8Z

(6.48)

(6.49)



In the vertical direction the compressive force will be:

Nvcr = Fver keg Dver (Tver)2 f3ver {) (UA)nkr
nler z 4172 III", IIkr ilki' {)z
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(6.50)

For a braced building the bending moment and shear force will be:

(Mtrans) k = _ Btrans kcg Dtrans (Ttrans)2 f3trans {) (WA)nk.
c II zO 4172 Ilk Ilk Ilk {)Z2'

( Q,rans) =c _ Btrans kefJ Dtr"ns (Ttrans)2 f3trans {)3 (WA)lIk
z 11k zO 471'2 Ilk III, flk {)Z3'

(6.5])

(6.52)

The distribution of forces in individual components of building members
is determined by (3.9) and (4.8). The seismic forces for design purposes are
determined by summation according to formula (6.29).
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