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Design Problems in Soil Liquefaction 

by 

H. Bolton Seed 1 

Introduction 

In general, it may be said that there are two main problems confronting the 

soil engineer dealing with a situation where soil liquefaction may occur: 

1. Determining the stress conditions required to trigger 

liquefaction; 

and 2. Determining the consequences of liquefaction ~n terms of potential 

sliding and potential deformations. 

There ~s much evidence to show that if the pore pressures in a soil do not 

build up to high values, say exceeding a pore pressure ratio of about 60%, 

liquefaction will not be triggered in the soil. If the soil does not 

liquefy in the sense that a high pore pressure ratio, r u ' is developed, 

then: 

1. There ~s usually no problem of sliding since the soil retains high 

shear strength; 

and 2. There is no serious deformation problem. 

There are numerous examples of structures built of liquefiable soils 

or constructed on liquefiable soils that have stood for tens or hundreds of 

years without liquefaction occurring, simply because there has been no 

triggering mechanism sufficiently strong to induce liquefaction. Thus 

ensuring that liquefaction can not be triggered ~s a legitimate means of 

avoiding undesirable consequences. This can be achieved by designing on 

the principle of keeping the induced pore pressure ratio, r , well below 
u 

1. Professor of Civil Engineering, University of California, Berkeley. 
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100%; achievement of this condition ensures that liquefaction will not 

occur and thus it generally provides a stable and minimally deforming 

structure. 

There has been extensive work performed during the past 20 years to 

explore the conditions causing the development of liquefaction in sands and 

silty sands and on the build-up of pore-water pressures leading to the 

onset of liquefactions expressed as a condition where r ~ 100%. Thus the 
u 

ability of the profession to explore these conditions 1S relatively good. 

It is very good for level ground conditions because of the extensive data 

base of field case histories, and the principles involved in extending the 

method to embankments and sloping ground conditions are relatively 

well-established. The method has also been shown to provide results 1n 

good accord with some of the more important features of observed field 

performance of embankments in a number of cases. 

An alternative design approach is to accept that liquefaction may be 

triggered in a potentially liquefiable soil and allow this condition to 

persist. Then the design problem becomes one of determining the potential 

for sliding and the potential deformations that may result from the 

inducement of liquefaction. In this case it is necessary to be able to 

determine the strength and deformation characteristics of the liquefied 

soil. Significant differences exist within the profession at the present 

time about how these values should be determined (see following sections) 

and there are wide variations in professional opinions concerning the shear 

strength values appropriate for use in any given case. There is also 

fairly general agreement that for liquefied soils, "the prediction of 

deformations in soils not subject to flow failures 1S a very difficult and, 

complex problem that is still far from being resolved" (NRC Committee on 
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Earthquake Engineering, 1985). Thus once liquefaction occurs, the current 

ability of the geotechnical engineering profession to handle the problem of 

predicting the consequences deteriorates significantly. 

The design of critical structures such as dams and nuclear power 

plants requires confident handling of both the stability and deformation 

problems, and given the present state of knowledge, it is the author's view 

that the best way of ensuring that no undesirable consequences will develop 

is to design new embankments or modify old embankments in such a way that a 

condition of r ~ 100% is never approached, except in limited and 
u 

controlled zones of a structure. If we accept this point of view then it 

is clear that the major emphasis in a soil liquefaction potential 

investigation should be placed on the triggering problem and on exploring 

the conditions that cause sufficient pore pressure development to trigger 

liquefaction in a soil. It may be noted in passing that this does not 

imply that the inducement of a condition of r ~ 100% is necessarily 
u 

unacceptable. It is clear that the development of this condition in dense 

cohesionless soils is often of no practical significance since the strains 

required to eliminate the condition are very small. Thus dense 

cohesionless soils do not normally present problems in the design of dams 

or embankments because they rarely, if ever, develop conditions where r ~ 
u 

100% and if they do, it will usually have no practical consequences. 

The existence of different design goals with regard to the evaluation 

of liquefaction problems sometimes leads to conflicting requirements 

regarding the optimum conditions for achieving these goals. Thus for 

example, there is an extensive body of laboratory test data and limited 

field experience to show that: 
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1. The higher the confining pressure, other things being equal, the 

more difficult it is to build up pore pressures in a soil; 

and 2. The higher the initial shear stress in a soil element with a 

relative density above about 45%, the more difficult it is to 

build up pore pressures in the element. 

Thus it follows that large embankments with steeper slopes, which create 

higher effective confining pressures and higher initial shear stresses, 

make it more difficult to build up pore pressures in most sand deposits, 

and therefore more difficult to trigger liquefaction by inducing a 

condition of r = 100% than do low dams with flatter slopes. Since high 
u 

and steeper embankments make it more difficult to build up pore pressures 

and thus trigger liquefaction, it follows that these embankments can be 

constructed on sands with lower values of the normalized penetration 

resistance, N1 , and still not cause liquefaction to be triggered, than can 

embankments with lesser heights and flatter slopes. 

On the other hand, if liquefaction occurs and the liquefied soil 

develops a residual strength that is independent of confining pressure, 

then the larger the driving shear stresses in a soil structure the more 

likely it is that either sliding or large deformations will develop. Thus 

for high embankments and embankments with steeper slopes, both of which are 

conducive to the development of large driving stresses, higher residual 

strengths and thus higher Nl-values are required to prevent sliding than 

for smaller dams or embankments with flatter slopes. 

Thus if the problem of embankment stability on potentially liquefiable 

soils is approached from the point of view of evaluating what happens after 

the soil liquefies, it is concluded that steep slopes and high dams are 

more dangerous than flat slopes and low dams - or that a higher N1-value is 
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needed in the foundation soil for a high dam than for a low dam. This is a 

correct and logical conclusion, if the soil in ££ below the dam is to be 

allowed to liquefy. However it seems to be highly questionable whether, at 

the present time, prudent design permits the development of a condition of 

ru ~ 100%, except in certain limited zones, since it only leads to the 

creation of a situation, involving possible sliding and large deformation 

problems, which we have little confidence in our ability to handle. 

Experience shows, for example, that reducing the driving stresses and 

ensuring a high factor of safety against liquefaction-type (flow) sliding 

does not necessarily prevent large deformations from developing if a soil 

liquefies. In fact large deformations (5 to 10 ft) have occurred on slopes 

as flat as 2% (Ion 50), where the driving stress was as low as 60 psf and 

the post-earthquake failure of safety against sliding was probably greater 

than 2.5. Examples are the Juvenile Hall landslide in the San Fernando 

earthquake of 1971, and bridge foundation movements, such as those at the 

Snow River Bridge, in the Alaska earthquake of 1964. Furthermore very low 

dams, with heights of 20 and 30 ft, are known to have failed and deformed 

excessively as a result of liquefaction, under relatively low levels of 

earthquake shaking (about 0.2g to 0.3g). Thus determining a residual 

strength, even if it is done reliably, is not necessarily a solution to the 

whole problem of embankment stability on potentially liquefiable soils; it 

is a potential solution ~n some cases (depending on the choice of residual 

strength values) to the flow slide evaluation problem but it contributes 

little to the deformation evaluation problem. Thus it does not, in itself, 

produce an engineering solution to the practical problem of protecting 

public safety. Determining the residual strength of a liquefied soil and 

using it to evaluate slope stability is a potentially useful approach ~n 

cases where the prevention of major liquefaction-type slides is an 
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acceptable solution to an embankment stability problem, but not to problems 

where large deformations and cracking may lead to failure. Thus it may 

sometimes be applicable to flood control or other dams with very large 

freeboards or to tailings dams, where large deformations and cracking may 

be acceptable without permitting release of water or fluid from the 

reservoir. In these cases the determination of a residual strength value 

for a liquefied soil can be the major aspect of a seismic stability 

evaluation. 

In civil and geotechnical engineering, there are often different ways 

of approaching any g~ven problem and they often lead to similar results. 

However the engineer's decision on methodology should be made in full 

awareness of all relevant facts, including the practicability of applying 

the methodology and the degree to which it is supported by case histories 

and past experience. Otherwise it may be an interesting scientific 

exercise rather than the development of a good engineering solution (Peck, 

1978). Furthermore it is important to adopt a design philosophy which 

handles effectively all recognizable aspects of a problem and be able to 

apply it with confidence that its results will last for a long time. This 

also means that its results must be supported by field performance data. 

Recognizing this, it is important to document all available field 

performance for engineering structures and draw from it such lessons as 

will contribute to our knowledge of soil behavior. This means, from the 

standpoint of evaluating the residual (post-liquefaction) strength of a 

soil, examining cases where major sliding has occurred due to liquefaction 

and where some conclusions can be drawn concerning the strength and 

deformation resistance of the lique~ied soil. Unfortunately such cases are 

rare. However a small number of such cases do exist for which the residual 

strengths of liquefied sands and silty sands can be determined with a 



reasonable degree of accuracy; SPT N1-values are also available for these 

soils, permitting the development of a relationship between the residual 
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strength of liquefied sands, based on field case studies, and the N1-values 

of the sands. It seems prudent to keep these values in mind when selecting 

residual strength values for other sand deposits in which liquefaction may 

be triggered, for whatever reason, whether it be sudden static stress 

applications or earthquake shaking. 

In doing this it is also appropriate to recognize that even for equal 

conditions of liquefaction resistance or relative density, the penetration 

resistance of silty sands is lower than that for clean sands. Thus the 

effective penetration resistance of a silty sand can be expressed for many 

practical purposes in terms of an equivalent clean sand value by use of the 

equation: 

where 6N1 depends on the fines content of the silty sand. Tentative 

values of 6N1 are approximately as follows: 

Fines Content 6N1 -----.-
< 5% 0 

~ 15% 3 

~ 35% 5 

~ 50% 7 

but judgement is required in the use of these values since fines may differ 

~n their characteristics and effects from one soil to another. 

In spite of this, an attempt to document case history data in this 

form is consistent with geotechnical engineering procedures for handling 
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other design problems involving sands and silty sands, and this procedure 

is therefore followed in the following pages. In the interest of improved 

standardization, N1-values are consistently related to those determined for 

an Energy Ratio of 60% in the SPT procedure and designated as (N1)60 as 

proposed by Seed et al. (1985). 

Case ~~udies of Liquefaction Slide Failures 

1. Lower San Fernando Dam 

Probably the best-defined case of a liquefaction-type slide is the 

failure of the upstream slope of the Lower San Fernando Dam just after 

the San Fernando (California) earthquake of 1971 (Seed et al., 1975; 

Seed, 1979). A representative cross-section of the embankment of the 

dam and the approximate position of the surface of sliding, are shown 

in Fig. 1. Field studies performed after the failure showed that 

liquefaction in this case extended over the greater part of the base of 

the upstream shell, with a short non-liquefied zone about 50 to 80 ft. 

long near the toe. Thus the situation after the earthquake triggered 

the development of a zone of liquefaction within the embankment was 

essentially as shown in Fig. 1. Since sliding occurred relatively 

slowly about 1 minute after the end of the earthquake shaking, the 

static forces tending to cause sliding were apparently just equal to 

the combination of the strength mobilized in the non-liquefied soil 

near the toe and the crest and the residual strength of the liquefied 

sand. From the known strengths of the non-liquefied zones it is a 

simple matter to calculate that, in this case, the residual strength of 

the liquefied sand at the start of sliding was about 700 to 750 psf. 

It may have been reduced as sliding progressed. 
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Numerous borings made in the downstream shell of the embankment 

following the earthquake in material similar to that in the upstream 

shell show that the average value of (N l )60 for the sand comprising 

shells is about 16 and field tests indicated that the relative density 

of the sand was about 50 to 55%. Both the relative density and the 

penetration resistance may have been slightly lower before the 

earthquake, with values of about Dr ~ 50% and (N l )60 ~ 15 respectively. 

The (N l )60 value of about 15 is also indicated by SPT tests performed 

before the earthquake. 

2. Sheffield Dam 

The Sheffield Dam failed near the end of an earthquake near Santa 

Barbara, California in 1925, as a result of a slide of the entire 

embankment on a liquefied layer covering essentially the entire base; 

in effect the embankment was pushed downstream by the water pressure 

acting on the upstream face (Seed et al., 1969). The conditions at the 

time of failure are shown in Fig. 2. A simple calculation shows that 

if liquefaction occurred all along the base, the residual strength of 

the liquefied soil when sliding occurred would be about 50 psf. 

A study performed by the U.S. Army Corps of Engineers (1949) 

concluded that sliding occurred on a liquefied layer of silty sand 

having a relative density of about 40%. This would correspond to a 

value of (N l )60 for a clean sand of about 8. 

3. Fort Peck Dam Slide 

A major slide occurred ~n the upstream shell of the Fort Peck Dam, 

near the end of construction of this hydraulic fill structure in 1935 

(U.S. Army Corps of Engineers, 1939; Casagrande, 1965). From the 

configuration of the slide material after failure, Bryant et ala (1983) 
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concluded that the residual strength of the liquefied sand was about 

200 psf. 

It is believed that in this case, the slide occurred due to 

liquefaction of sand in the foundation. Studies made by the U.S. Army 

Corps of Engineers, both soon after the slide occurred and during a 

re-evaluation of the stability of the dam in 1976 (Marcuson and 

Krinitzky, 1976), led to the conclusion that the relative density of 

the sand was about 45%. This would correspond to a value of (N1)60 for 

a clean sand of about 11. 

40 Slide at Cape ~£Eez.!. Q~~on 

A liquefaction slide occurred 1n a coastal deposit of sand at Cape 

Lopez, Gabon in 1971. Subsequently a similar deposit of sand was built 

up in the same location by similar geologic processes during the period 

1972 to 1984, and the penetration resistance of this new deposit, which 

would be expected to be very similar to that of the original deposit 

was measured in 1984. It is estimated that the effective (N1)60 value 

of this deposit was about 13. 

From the configuration of the soil mass at the time of sliding and 

assuming that the ground surface after the slide is closely 

representative of the slip surface, it can be computed that the average 

shear stress at the time of failure was about 600 psf. Thus the 

residual strength of the liquefied sand must have been somewhat lower 

than this value. 

5. Mochi-Koshi Tailings Dam Slide 

o A slide occurred due to liquefaction of the soil in a tailings dam 

in Japan in the near Izu-Oshima earthquake of 1979 (Marcuson et al., 

1979; Ishihara, 1984). Both Lucia (1981) and Bryant et al. (1983), who 
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studied this slide concluded that the residual strength of the 

liquefied tailings was about 210 psf. Penetration tests on the 

tailings indicate a penetration resistance (N l )60 of about 2, but 

allowing for the fact that the tail~ngs consisted of very fine-grained 

(silt size) particles, the equivalent (N1)60 value is about 7. 

6. Ju~~~~le ~all Landslide, Sa~ Fernando 

An extremely interesting landslide, involving liquefaction, but 

not resulting in a flow-slide type of failure is the Juvenile Hall 

slide which occurred in the San Fernando earthquake of 1971 (Youd, 

1971). A mass of soil about 20 ft thick and about 3000 ft long moved 

o laterally about 5 ft on a gentle slope of about 1.5. The soil at the 

base of the slide mass was a saturated sandy silt with a SPT (N I )60 

value of about 2. This would correspond to an equivalent sand value of 

It is readily apparent from the very gentle slope that the shear 

stress on the base of the slide mass was only about 55 psf and even 

over a length of 800 ft, this would not be sufficient to overcome the 

passive pressure acting on the end of the slide mass. Thus sliding 

could only occur apparently when the inertia forces induced by the 

earthquake motions were operative in the down-slope direction. 

Analyzing this situation using a Newmark-type deformation analyses 

leads to the conclusion that the residual strength of the sandy silt 

must have been close to zero, otherwise surface displacements of the 

order of 5 ft could not have occurred. 

7. Snow River ~rid&~ Slide Movemen~! 

Lateral deformations similar to those which occurred in the 

Juvenile Hall landslide also occurred at the site of the Snow River 
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Bridge in Alaska during the earthquake of March 19, 1964 (Ross et al., 

1969). In this case the river bed moved downstream about 10 ft 

carry~ng the piers for the new bridge with it. The soil involved ~n 

the lateral slide movement was a gravelly sand with a penetration 

resistance (N1)60 ~ 7, and the slope of the ground was again about 1 to 

1 1/20. The residual strength of the liquefied sand was aga~n very 

low, at least over this range of surface movement. 

8. Calaveras Dam Slide 

A liquefaction-type slide occurred ~n the upstream shell of the 

Calaveras Dam as it approached a height of 200 ft in 1919 (Hazen, 

1918). The dam was a hydraulic fill structure and it was subsequently 

re-constructed using rolled fill construction. From the configuration 

of the slide mass, the residual strength of the liquefied sand is 

estimated to be about 500 psf and tests performed in recent years show 

that the SPT (N l )60 value for the hydraulic sand fill in the original 

structure was about 10. 

9. Dike ~~ilure Along ~olfa~ara Canal 

A dike failure occurred due to liquefaction along the bank of the 

Solfatara Canal in Southern California in the El Centro earthquake of 

1940 (Ross, 1968). The dike was about 7 ft high and the average shear 

stress at the base of the dike was about 100 psf; however the residual 

strength was significantly less than this, say about 50 psf. The 

relative density of the sand foundation was measured to be about 32%; 

this would correspond to an (N1)60 value of about 5. 

10. Slope Failures Along Bank of Lake Merc~~L San Francisco 

Major flow slides occurred in a sand deposit along the bank of 

Lake Merced, California in the San Francisco earthquake of 1957 (Ross, 
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1968). Since the duration of shaking was only about 4 seconds, it is 

clear that the slide movements (about 150 ft) occurred after the 

earthquake motions had stopped. The residual strength of the slide 

mass has been estimated to be about 40 psf and the penetration 

resistance of the sand was found to be about (Nl )60 ~ 5. 

11. Uetsu Railway Embankment 

A sand fill placed to serve as a 33 ft high railway embankment 

failed during the 1964 Niijata earthquake in Japan (Yamada, 1966). The 

embankment was constructed across a rice field and the bottom portion 

of the embankment was saturated. The liquefied sand flowed about 400 

ft over ground which sloped at about 20 and came to rest at a slope 

angle of about 40
• Lucia (1982) estimated that the residual strength 

of the liquefied sand was about 35 psf. The (N1)60-value for the sand 

is unknown. However since the embankment had performed satisfactorily 

under train loadings before the earthquake it is unlikely that the 

(Nl)60-value for the sand was less than about 4. 

12. Kona Numa Railway Embankment 

Another small railway embankment, 10 ft high, at Koda Numa, Japan 

failed during the 1968 Tokachi-Oki earthquake (Mushina and Kumura, 

1970). The soil was a fine to medium sand which liquefied during the 

earthquake. The embankment failed by flowing in both directions, from 

the center-line, over level ground. The liquefied material flowed 

about 60 ft coming to rest at a slope of about 4°. Lucia (1982) 

estimated that the residual strength of the liquefied sand was about 25 

psf. No data is available concerning the penetration resistance of the 

sand but again it is not likely to be less than about 3 or 4 in a 

railway embankment of this type. 
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Summary of Liquefaction Slide Data on Residual Strengths 

The results of the evaluations of residual shear strength for the 

liquefied soils described above, and the equivalent clean sand (Nl )60 

values of the soils are summarized in Table 1. The relationship between 

the residual strengths of the liquefied sands and the equivalent clean sand 

(N l )60 values for the soils involved LS shown in Fig. 3. There is 

considerable scatter in the results, possibly reflecting differing degrees 

of water content redistribution resulting from different degrees of soil 

stratification, and to some extent whether the values were determined from 

conditions at the beginning of sliding or from conditions at the end of 

sliding. Never-the-less they reflect field performance for a number of 

sands and silty sands and thus provide a useful guide for engineering 

decisions concerning the residual strengths which may be developed in 

liquefied sands and silty sands for other deposits. 

Residual Streng!~ ~~ Liquefied Soil ~etermined £y Laboratory Tests 

It has recently been proposed that the shearing resistance of 

liquefied soil can alternatively be determined directly from the results of 

consolidated-undrained laboratory triaxial compression tests on undisturbed 

samples by determining the "steady-state strength" at which the soil will 

deform continuously without change in this resistance to deformation 

(Poulos et al., 1985). Determination of this strength requires that 

appropriate corrections be made to the results of laboratory tests to allow 

for densification of the test specimens during sampling, during handling 

and during re-consolidation in the laboratory to the stress conditions 

existing in the field. In the proposed procedure the steady-state strength 
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of a good quality undisturbed sample is determined at the laboratory void 

ratio after re-conso1idation in the laboratory. It is then assumed (1) 

that there is a unique relationship (the steady-state line) between steady 

state strength and void ratio; (2) that the slope of the steady state line 

is the same for re-constituted samples of the sand as it is for undisturbed 

samples of that sand; and (3) that the slope of the steady-state line is 

independent of the method by which samples are re-constituted in the 

laboratory. Thus by performing tests on re-constituted samples, the slope 

of the steady-state line for these samples can be established and used to 

predict the steady-state strength of the undisturbed sample at the void 

ratio corresponding to its in-situ condition. The procedure for 

accomplishing this is illustrated in Fig. 4. It would certainly be 

advantageous to be able to determine the post-liquefaction resistance of 

soils in this way; however available experience seems to indicate that the 

procedure leads to significantly higher values of residual strength than 

those indicated 1n Fig. 3. 

This may be due to the fact that a key assumption 1n the presently 

proposed use of this procedure is the concept that the void ratio of a sand 

deposit, after it liquefies, is the same as that of the soil before it 

liquefied, and it is not clear that this is necessarily the case. Even 

under constant volume (undrained) conditions, it is possible that there is 

a re-distribution of water content in sand samples in the laboratory 

(Casagrande, 1978; Castro, 1975; Gilbert, 1984) and in sand layers in the 

field. In fact, shaking table tests on stratified sand layers (Liu and 

Qiao, 1984) illustrated in Fig. 5, show clearly that even under undrained 

conditions, in stratified sands water may accumulate below an impervious 

zone and form a "water interlayer", as a result of water content 
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re-distribution. The procedure by which this may occur has been described 

in a report by the NRC Committee on Earthquake Engineering (1985), see Fig. 

6; it involves the densification of sand in the lower part of a layer and 

the corresponding loosening of the sand in the upper part of the layer. In 

the extreme, the sand at the top of the layer may consist only of void 

space so that its void ratio becomes infinitely large and a thin zone 

consists only of water. This apparently is the condition described by Liu 

and Qiao. 

Recognizing that this may also occur in the field under earthquake 

loading conditions, it becomes apparent that the lowest strength of the 

liquefied soil will be that for the loosened zone of sand at the top of a 

layer, where the void ratio near the end of earthquake shaking may be 

higher, and perhaps very much higher, than the initial (pre-earthquake) 

void ratio of the sand. Even if the validity of steady-state theory is 

accepted therefore (and the author believes it to provide a very reasonable 

basis for understanding the strength of liquefied sands), it is not 

necessarily appropriate to correct steady state strengths to the pre­

earthquake void ratio of a sand deposit. In fact, if the lowest strength 

which controls stability is to be determined, the strengths determined by 

laboratory tests in which no water content redistribution occurs should be 

corrected to a void ratio corresponding to that of the loosest sand zone 

that may exist in the field near the top a layer and below a more 

impervious boundary; this void ratio may apparently approach infinity ~n 

some cases (see Fig. 5) and its value is likely to depend on the nature and 

degree of stratification of the field deposit and its relative density 

among other factors. There seems to be no good basis for anticipating the 

extent of such water content redistribution at the present time, other than 
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evaluating its effects from the performance of field deposits 1n which flow 

slides due to liquefaction are known to have occurred. 

This simply means that for cases where water content redistribution 

may occur, the steady state strength of a soil at its pre-earthquake void 

ratio may be viewed as an upper bound value and that the actual strength 

which the liquefied sand will mobilize may be significantly lower than this 

value depending on the extent to which water content re-distribution occurs 

in the field. Viewed in this light there may be many steady state 

strengths depending on the void ratio that an engineer considers to 

represent the conditions in the critical zone of a deposit after 

liquefaction has occurred. For this reason it seems preferable to refer to 

the post-liquefaction strength of a sand as the "residual strength" of the 

soil. This may certainly be considered as a special value of the 

steady-state strength -- but it corresponds to the steady-state strength at 

some unknown void ratio which is higher than the pre-earthquake void ratio, 

and may apparently in some cases be as great as infinity. 

Under these conditions, even with the acceptance of the assumptions 

involved in steady-state theory, there seems to be no recourse for the 

practicing engineer interested in the field behavior of sand deposits than 

to accept the concept that the effects of water content redistribution, to 

whatever extent it occurs in nature, can only be evaluated at the present 

time by back-analyses of previous flow slides as described 1n the previous 

section. This is not a limitation of steady-state theory, but rather of 

our current inability to predict water content re-distribution in soil 

deposits subjected to earthquake shaking under undrained conditions. This 

problem does not exist in cases where liquefaction 1S induced by static 

loading, and the steady state strengths determined by appropriate 
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laboratory tests should be applicable to problems of this type. 

Deformations of Embankments Overlying Liquefied Soil 

From time to time a problem will arise in which it may be necessary to 

determine the seismic stability of an embankment overlying a liquefied sand 

layer in the foundation. The sand layer may be so loose that it liquefies 

early ~n the earthquake and its strength then drops to a residual value as 

indicated by the data in Fig. 3. 

With a small embankment as indicated ~n Fig. 7 and a sand layer 

located well below the surface, it may well be possible to show that even 

if the liquefied sand has no significant residual strength, in the absence 

of any inertia forces the embankment still has an ample margin of safety 

against a liquefaction-type slide, due to the fact that the passive 

pressure at the toe of the slide far exceeds the active driving pressure at 

the head of the slide. It may also be argued that because of the damping 

effect of the liquefied sand layer, no significant inertia forces should be 

induced in the soil overlying the liquefied layer and thus no significant 

deformation of the slide mass is likely to occur. 

It may be noted that this rationale is not supported by the observed 

field performance of slide masses at the Juvenile Hall landslide in San 

Fernando CYoud, 1971) or by the movements of the upper layers of soil at 

the site of the new Snow River Bridge in Alaska (Ross et al., 1969). In 

these cases, the ground surface moved between 5 and 10 feet even though 

there was virtually no driving stress developed on the base of the slide 

block and the slope of the ground surface was very flat (1 to 2 degrees). 

This is a form of lateral spreading and it seems to require consideration 
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of large inertia forces acting on long slide masses, as well as low 

residual strengths, to explain the magnitude of the observed deformations. 

Thus special caution is required in analyzing the stability of 

embankments under these conditions especially in cases where large 

deformations constitute an unacceptable type of performance. It should 

also be noted that in cases where lateral spreading occurs due to 

earthquake shaking, the movements are often accompanied by transverse 

cracking of the embankment, as shown in Fig. 8. This type of deformation 

behavior 1S especially undesirable in small embankment dams since it could 

readily lead to release of water through the transverse cracks and thus to 

erosion and failure. 

Special care is apparently necessary in evaluating the potential for 

deformations under conditions of this type. 

Desirable ~~~servatism in ~iquefaction Analysis of Embankment Stability 

In the preceeding pages it has been postulated that with the current 

state of knowledge, the best way to avoid undesirable and detrimental 

deformations of earth structures due to soil liquefaction is to prevent the 

triggering of liquefaction in the first place. It is also suggested that 

the current ability of the geotechnical engineering profession to predict 

the deformations of earth structures following liquefaction is quite poor 

and not sufficiently well-developed or proven to provide results with 

sufficient reliability for design or safety evaluation purposes in dealing 

with critical structures. 

The problem of predicting deformations following liquefaction can be 

broken into two categories however: 
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Figure 7. Schematic View of Low Embankment Underlain 
by Very Loose Sand Layer 

Figure 8. Cracking of Embankment Associated 
with Lateral Spreading of Embankment 
in Alaska Earthquake (1984) 
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1. Deformations which occur due to liquefaction of a substantial body 

of soil part-way through a period of strong earthquake shaking, so 

that movements occur due to the effects of both static and inertia 

forces acting on a composite system of liquefied and non-liquefied 

soils. This is indeed a formidable problem for which reliable 

deformation - evaluation techniques are poorly-developed. 

2. Deformations which occur in cases where liquefaction may occur ~n 

a substantial body of soil near the conclusion of strong 

earthquake shaking, so that subsequent deformations are virtually 

unaffected by the remaining very small inertia forces which follow 

the onset of liquefaction and are due entirely, for practical 

purposes, to the effects of static stresses acting on the 

composite mass of liquefied and non-liquefied soil. This is a 

much simpler problem and the estimation of potential deformations 

in such situations is probably within the current capability of 

geotechnical engineering practice. Consideration would have to be 

given to the possible effects of water content re-distribution 

which may lead to failures or large deformations long after the 

earthquake motions have ceased (say up to 24 hours later, as 

evidenced by the post-earthquake failure of the Mochi-Koshi 

tailings dam in Japan in 1979), to evaluation of an appropriate 

residual strength for the liquefied soil before any drainage 

occurs and to its possible changes with time, and to the 

stress-deformation relationships of the liquefied and 

non-liquefied soils. In the light of these considerations, the 

overall stability of the soils involved could be evaluated by 

accepted methods of stability analysis and, if major sliding is 
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not likely to occur, conservative estimations of deformations 

could be made. This might be accomplished, for example, by 

examining the stability of the structure for several assumptions 

concerning the resistance provided by the liquefied soil zone: 

(a) Assuming that the full residual strength of the liquefied 

soil is mobilized to prevent sliding. If .the computed factor 

of safety is less than or close to 1.0 under these conditions 

then sliding and large deformations must be anticipated. 

(b) Assuming that the resistance to deformation of the soil in 

the liquefied zone 1S zero. If under these conditions the 

computed factor of safety is significantly larger than 1.0, 

then the deformations are controlled by the strength and 

deformations in the non-liquefied soil and the deformations 

are likely to be small. 

(c) If the results of the above analyses show that the slope is 

only stable if the liquefied soil makes some contribution to 

the resistance to sliding, then the amount of the sliding 

resistance which must be mobilized in the liquefied zone to 

produce a stable condition can be computed, and the shear 

strain which would have to develop in the liquefied soil 1n 

order to mobilize this resistance could be estimated 

conservatively. From a knowledge of this strain, the 

potential deformation of the slope or embankment could then 

be evaluated. 

The evaluation of potential deformations in this way does not appear 

to be beyond the scope of available geotechnical abilities and could well 

be applied in cases where the primary condition for its applicability is 
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satisfied - that is, when liquefaction occurs just at the end of earthquake 

shaking. This condition is achieved when the computed factor of safety 

against liquefaction (defined as a condition where the pore pressure ratio 

r ~ 100%) is close to unity; ~n these terms a factor of safety less than 
u 

unity indicates that liquefaction, in the form of r ~ 100%, is achieved 
u 

part-way through the period of earthquake shaking. 

Thus when the computed factor of safety against the occurence of a 

condition of r ~ 100% is close to unity, the determination of the 
u 

resulting deformations may reasonably be considered to provide an adequate 

evaluation of embankment or slope stability. In designing new structures, 

it would normally seem prudent to plan the design to prevent this condition 

from occurring. However in dealing with existing structures which are 

marginally safe against the triggering of liquefaction, it may well provide 

an adequate basis for seismic stability evaluation, provided, of course, 

that the estimated deformations are acceptably small. 

Conclusions 

In the preceeding pages an attempt has been made to clarify some 

aspects of the problems encountered in evaluating the stability of 

embankments under conditions where a potential for soil liquefaction 

exists. It is suggested that at the present time, the most prudent method 

of minimizing the hazards associated with liquefaction-induced sliding and 

deformations is to plan new construction or devise remedial measures ~n 

such a way that high pore water pressures can not build up in the 

potentially liquefiable soil and thus liquefaction can not be triggered; by 

this means the difficult problems associated with evaluating the 

consequences of liquefaction - sliding or deformations - are avoided. 
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When large deformations can possibly be tolerated however, it may be 

adequate to simply ensure stability against major sliding after 

liquefaction has occurred; however evaluating this possibility requires a 

knowledge of the residual strength of the liquefied soil. It is suggested 

that water content re-distribution which has been observed in laboratory 

tests and may occur under field conditions makes this a difficult soil 

characteristic to determine by means of laboratory tests which do not 

permit water content re-distribution to occur, or by correction procedures 

which cannot anticipate the final field condition of the liquefied soil. 

Thus observations of the residual strength of liquefied soils in the field 

and the establishment of a relationship between this characteristic and 

some in-situ soil characteristic such as soil penetration resistance may 

provide the most practical method for evaluating residual strengths in 

problems where such values are required. Available data is summarized and 

plotted in chart form for this purpose. 

Finally, the general principles of a design philosophy for handling 

liquefaction problems at the present state of knowledge is presented. It 

is suggested that the ability of the profession to predict the deformations 

of structures after liquefaction occurs 1n a substantial portion of the 

soil compr1s1ng or underlying a structure is not well enough developed at 

the present time to make this a suitable design methodology for critical 

structures. However where the risks associated with the possibility of 

large deformations occurring are considered acceptable, designing on the 

basis that such movements may occur may well provide an economically 

advantageous approach for the solution of design problems associated with 

soil liquefaction. 
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It is hoped that the results presented in this report will help to 

clarify some of the conceptual differences which currently exist among 

geotechnical engineers with regard to the subject of soil liquefaction and 

its effects. It would appear that a principal basis for differing points 

of view rests on the degree to which laboratory tests are considered to be 

representative of field conditions, a subject discussed by many engineers 

over a long period of time, ranging from Terzaghi (1936) to (more recently) 

Peck (1978). Laboratory tests playa major role in geotechnical 

engineering studies of all types but they only provide reliable data if 

they reproduce faithfully all essential aspects of the field situation they 

are intended to represent. Where doubt exists on this matter, case studies 

have necessarily provided the key to understanding field behavior. 

Recognition of this basic principle is the key to successful practice 

in the field of geotechnical engineering. The principal has been stated at 

various times in different ways by different members of the engineering 

profession, but always with the same common concern with regard to the 

geotechnical engineer's responsibility for predicting the field performance 

of soil deposits and earth structures. It might well be termed General 

Principle A-I concerning the application of new ideas, concepts and 

techniques in engineering practice. It is stated by Terzaghi and Peck in 

the following terms: 

Terzaghi (1936): "No honest business man and no self-respecting 

scientist can be expected to put forth a new scheme 

or theory as a "working proposition" unless it is 

supported by at least fairly adequate evidence-." 

Peck (1978): "In soil mechanics, no evidence can be considered 

reas~nably adequate until there is sufficient field 
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experience to determine whether the phenomena 

observed in the laboratory are indeed the same as 

those that operate in the field. It must also be 

determined whether predictions based on laboratory 

studies are indeed fulfilled in the field • " 

Engineers will necessarily have different opinions concerning the 

question of how much field experience is "sufficient" to validate any given 

concept or procedure, but in the light of past experience, there seems to 

be no basis for any disagreement over the need for some field validation of 

any new idea before it is applied in engineering practice. 
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