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THE USE OF LOAD DEFPENDENT VECTORS FOR

DYNAMIC AND EARTHRUAKE ANALYSES

ABSTRACT

f new method of dynamic analysis Ffor systems
subjected to fixed spatial distribution of the dynamic load
was recently introduced by Wilson, Yuan and Dickens as an
economic alternative to classical mode superposition. The
WYD Ritz reduction method 1is based an the direct
superposition of a special class of Ritz vectors generated

from the spatial distribution of the dynamic lpad.

The purpose of this report is to investigate
practical computer implementation aspects aof the HWYD Ritz
reduction method, its convergence characteristics and its

extension to more general forms of loadings and analyses.

First a formal mathematical framework for the WYD
Ritz reduction method is established by showing that the
algorithm wused to produce WYD Ritz vectors is similar to the
method used to produce Lanczas vectors. Errar narams to
measure the representation of the spatial distribution of the
dynamic load achieved by truncated WYD Ritz bases and to
establish a relationship between WYD Ritz solutions and exact
eigensolutions are developed. Computational variants to
generate load dependent vector bases for dynamic analyses are
then studied. One af the proposed formulations, the LWYD
algarithm, is shown to be more stable than the ariginal WYD
algorithm and allows a better control of the static

correction effects included in the methaod.



e

Theoretical dévelopments and computational procedures
ta apply the proposed Ritz reduction methad to three
dimensional earthguake regponse spectra analysis, to analysis
of systems subjected to multispatial dynamic load
distributidns, to multilevel substructure analysis and to

nonlinear dynamic problems are presented.

Comparisons between Ritz solutions and traditional
eigensolutions are used to show that solution procedures
based on the direct superposition of load dependent Ritz
vectors can be developed as complete analytical tools being
able to imprové the convergence characteristics and‘numerical
efficiency of any classical dynamic analysis techniﬁues that
are currently using eigenvectors as bases for response

computations.
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CHAaFRFTER 1

Introduction

During the last twenty years the rapid development of
high speed digital computers and of the Finite Element Method
(FEM) has greatly increased the range and complexity of
structural problems that can be solved. The FEM provided a
general method of analysis being able to accommodate
arbitrary geometry, boundary conditibns, and loading; and
applicable to one, two and three dimensional structures. In
its application to structural dynamics the daminant
characteristic of the FEM is to replace the actual continuous
system, which has theoretitally an infinite number of degrees
of +freedom, by an approximate multi-degrees of Ffreedom
system. It is not unusual while dealing with engineering
structures that the number of degrees of freedom retained in
the analysis be very large. Thus, a lot of emphasis in
structural dynamice has been put on the development of
efficient techniques to evaluate the response of large multi-
degrees of freedom systems subjected to various types of

dynamic loads.

Although formal solutions in terms of matrix algebra
are not affected in principle by the number of degrees of
freedom, computational problems, and costs grow rapidly as
this number increases. It is very important to maintain
reasonable computer costs for any analysis Ssuch that
inexpensive reanalysis become possible. Low computer costs’
of a typical analysis cycle will allow some basic assumptions
used 1in selecting models and loads to be varied to study the
sensitivity of the results, modify the original design and
conduct reliability evaluations. Thus, improvements in
numerical techniques and approximations in the methods of
solution, which reduce the computation time Ffor large

problems, are very useful.



The use of eigenvectors, to reduce the size of
structural systems or to represent the stuctural behavior by
a small number of generalized coordinates, requires in its
traditional forﬁulaticn, the solution of a large and

expensive eigenvalue problem.

A new method of dynamic analysis, which eliminates
the requirement for exact evaluation of the free vibration
frequencies and mode shapes, has been recently presented by
Wilson, Yuan and Dickens (1.17). The WYD Ritz reduction
methad 1is based on the direct superposition of Ritz vectaors
constructed from the spatial distribution of the specified
dynamic loads. These vectors are evaluated by a simple
recurrence algorithm at a fraction of the computational
effort required for the calculation of exact mode shapes.
Preliﬁinary evaluation of the algorithm applied to earthqguake
time history analysis of simple structural systems has shown
that the WYD Ritz vectors vield results of comparable
accuracy or even better accuracy than those obtain from exact

eigensolutions.

The purpose of this report is to investigate
practical computer implementation aspects of the WYD Ritz
reduction method, its convergence characterisics and its
extension to more general forms of loadings. In addition, the
development of solution strategies to applied the approach to
dynamic analysis of multilevel substructures and to dynamic
analysis of nonlinear systems will be presented. Guidelines
to develop general purpose FORTRAN subroutine for the
generation of Ritz vectors are provided and the various
algorithms are evaluated on simple realistic systems to

validate the approach for industrial applications.

Ehapter 1 describes the basic algorithm as suggested
by Wilson et al. and provides some theoretical bases for Rit:z
analysis in structural dynamics. The iafluence of the

mathematical modelling by the FEM, as defined by the charac-



teristics of the gpecified mass, stiffness and 1loading, on

the WYD Ritz vectors generation is also presented.

Chapter 2 establishes a relationship between the WYD
Ritz algorithm and the Lanczos method. It is shown that the
algorithm used to generate the WYD Ritz vectors is similar to
the method used to produce Lanczos vectors. However; the use
of the resulting basis to solve the dynamic equilibrium
problem is different since the objectives of the WYD Ritz
method is not to provide an accurate eigensolution but to use
the vector basis to transform the equations to a more
convenient form +for solution by reducing the size and
bandwidth of the system matrices. 'The WYD Ritz approach does
not provide a full uncoupling of the equilibrium eguations
but has proved toc be more efficient than the traditional
eigensolution approach while maintaining the high expected

degree of accuracy of modern computer analysis.

Chapter 3 presents the development of error
estimates to indicate how many WYD Ritz vectors should be
retained for a satisfactory convergence of the dynamic
response and to establish a relationship between the WYD Ritz
solution of the reduced system and the eigensolution of the
original system. The influence of variocus vector summation
procedures such as modal acceleration and static correction

is also compared to the behavior of WYD Ritz solutions.

Chapter 4 presents the development of a new
algorithm, the LWYD Ritz algorithm, to generate load
dependent wvectors to be used in the WYD Ritz reduction
method. In the presence of the finite precision arithmetic
of the computer, the calculation of transformation vectors by
the LWYD Ritz algorithm is shown to be more stable than the
application of the original WYD Ritz algorithm for which the
basis vectors exhibits a global loss of orthogonality after a
few iterations. The LWYD Ritz algorithm also permits a

better control of the static correction effects included in



the WYD Ritz reduction method. It is alsao shown that for
algorithms based on the WYD Ritz reduction method, it is
possible to form the reduced generalized system directly from
the orthonormalization coefficients calculated while

generating the vector basis.

Chapter 5 discusses the practical application of the
WYD Ritz reduction methad in eérthquake engineering. The
earthquake response spectrum analyses of two structural
models of approximately 100 dynamic degrees of freedom are
used for that purpose. The computational performances of
Ritz solutions and exact eigensolutions are compared and a
solution strateqgy based on transformation vectors obtained
from the LWYD Ritz algorithm with minimized static correction

is recommended.

Chapter & presents a formulation to extend the WYD
Ritz reduction method to general multiload pattern analysis
where the dynamic loads are a function of space and time. A
simul taneous iteration procedure using blocks of vectors in

the proposed algorithms is used for that purpose.

Chapter 7 deals with the use of load dependent Ritz
vectors in multilevel substructure analysis. Two different
approaches are investigated. In a first method, the internal
behavior of a substructure is represented by a small number
of Ritz coordinates in a component mode synthesis type of
formulation where constraint modes are used to interface the
components. In the second method, it is shown that it is
possible to efficiently generate the load dependent Ritz
basis of the complete structure from the structural
properties of each substructure by using an iterative version

of the familiar static condensation algorithm.

Chapter 8 is concerned by the extension of the WyD
Ritz reduction method to nonlinear dynamic systems. Various

solution strategies while using the 1load dependent Ritz



vectors as a coordinate reduction procedure are presented.
The emphasis is then put on systems experiencing localized
nonlinearities. A solution algorithm using the dynamic
substructuring methods of chapter 7 in conjunction with a
step - by-step integration procedure for the nonlinear subset

of degrees of freedom is recommended.

1.1 Two-Stage Discretization Procedure in Structural Analysis

The first step in a structural analysis using the FEM
is to discretize the structure to obtain the stiffpess, mass,
and damping characteristics needed for the formulation of the
equilibrium equations of motion. Then a new discretization
can be carried out using the combination of a small number of
linearly independent global shape functions, obtained +rom
the previous modeliing, to characterize the structural

response.

The second reduction technique is not interesting for
the solution of linear static analysis because a single step
is necessary to get a solution. It is however convenient for
nonlinear static and linear and nonlinear dynamics in which
several steps must be performed, each one involving the

solution of a linear or nonlinear system of eguations.

1.1.1 Discretization of Linear Dynamic Problems by Birect

Vector Superposition

Study of the static load deflection characteristics
and dynamic response time histories of a number of complex
structures reveals that the large number of Degrees Of
Freedom (DOF) retained in the analysis is often dictated by
their topoclogy rather than the expected complexity of
behavior. Usually the geometry of the structure does not
permit the discretization in a few finite elements but the
behavior may be perfectly characterized by a few generalized

DOF. This is generally true for structural dynamic problems,



such as earthquake analysis, where typical modal analysis
studies on the frequency content and spatial distribution of
the excitation have shown that the response is controlled by
a relatively small number of low fregquency modes. In the
case of vibration excitation analysis, only few intermediate
frequencies may be excited. However in the case of
multishock excited systems, the contribution of intermediate
and high frequenty structural modes to the response can
remain important throughout the time span of interest. The
change of basis from the original coordinate system to the
generalized modal coordinates, which requires in its
traditional <formulation the solution of a large eigenvalue
problem, is only interesting when the number of contributing
modes is relatively small compared to the ariginal number of
DGF .

In general, the finite element analysis approximates
the lowest exact frequencies best and little or no accuracy
can be expected in approximating higher frequencies and mode
shapes. This is due to the fact that higher modes have a
highly distorted nature that is difficult to accurately
represent using a mesh size practical for engineering
computations. Therefore there is usually little justification
for including the dynamic response in the mode shapes with
high frequencies in the analysis. Ideally the FEM mesh
should be chosen such that all important frequencies and
vibration mode shapes are well approximated, then the
solution needs only to be calculated including the response
in these modes. This is achieved by vector superposition
analysis by considering only the important modes of the FEM

system,

The evaluation of the exact natural frequencies and
mode shapes of large structural systems requires a
significant amount of numerical operations. However, as

stated by Wilson et al. {1.17), the direct engineering
significance of this information may be of limited value.

Frequency values indicate possible resonant conditions and



the mode shapes associated with low frequencies can indicate
which regions of the structure are most flexible. In many
cases approximate values can provide the same information.
For most analyses, the only reason for the evaluation of
exact eigenvectors is for their subsequent use to reduce the

size of the system in a superposition analysis.

1.2 The Use of Ritz Vectars in Structural Dynamics

1.2.1 Rayleigh's Method for SDOF System

The basic concept in the Rayleigh’'s method, used to
find an approximation to the vibration frequency for a Single
Degree of Ffreedom system (SDOF), is the principle of
conservation of enerqgy. The energy in a freely vibrating
system must remain constant if no damping acts to absorb it.
Therefore, the maximum strain energy in the elastic
structure must equal the maximum kinetic energy of the mass.
The method can be applied to any Multi-Degrees of Freedom
(MDOF) system, which tan be represented as a SDOF through the

use of an assumed Riitz displacement shape {X> :

nE o= K* r1.113

where K* is the generalized stiffness 3 {X37 [K1 {X}
{X}7 [M1 {X>

is the approximate vibration frequency

M* is the generalized mass

£1

1.2.2 Rayleigh-Ritz Analysis for MDOF System

The Ritz extension of the Rayleigh’'s method known as
Rayleigh—-Ritz analysis has been widely used to +ind
approximation to the lowest eigenvalues and corresponding

eigenvectors of the free vibration problem:

[K1 [@1 = [M] [B1 [w=] [i1.21



where [K] and [M] are the stiffness and mass matrix, {81 the
eigenvectors and w*, the eigenvalues or squared <¥frequencies

of the system.

The eigenvectars [B82 can be approximated by a

discrete number of trial functions {X:2? such that:

-
€B.3 =Z{x.} Y. £1.3]
Aumy
(®1 = [Xx1 LY}

The (X.}'s are prescribed global shape functions of the
original coordinate system called the Ritz vectors and the
Y.'s are a set of parameters, the Ritz coordinates, that
characterizes the participation of each Ritz vector to the

solution.

The Ritz vectors are substituted into the extremum
principle form of the Rayleigh’'s quotient and the set of
Ys '8y, which gives stationary values, are sought {(details of
the procedure can be found in ref. 1.2, 1.7).The Rayleigh’'s

quotient can be written as:

[B17 [KJ [@1 _ (LYIT [KI* CY] [1.4]
(@1 CM1.CO] £Y1T CM1* CY1
with ([K1* = [X1T [K1 [X3
LMI* = [X1T [M1 [X]

The stationary condition will lead to the solution aof the

eigenvalue problem ,
LK1= LYY = [M]I= [Y] [w2] £1.51

The approximation to the eigenvectors [@] is then (@1 = [X]
tYl. The reduced eigenvalue problem (eq.[1.5]) leads to a set

of r approximate frequencies, Ws;, and corresponding mode



shapes. It can be shown that the r eigenvalues produced by
the Rayleigh-Ritz approximation are an upper bound to

corresponding exact eigenvalues.

The static condensation procedure, the component mode
synthesis, the subspace iteration, and various other methods
can be understood as Ritz analyses. The techniques differ
only in the choice of the Ritz basis vectors assumed in the

analysis.

The Ritz procedure can be applied to reduce the
dynamic equilibrium equations of the FEM formulation. The
equations of dynamic epquilibrium for a finite element model

can be written in term of nodal displacements {U} as:
M3 {U} + [C] {ﬁ} + [K]1 U} = {F(s,t)} £1.61

where [M1l, ([C}, and [K] are respectively the square n x n
mass, damping and stiffness matrices and {F(s,t)} the vector
of imposed dynamic loading which is a function of space and

time. The dots represent derivatives with respect to time.

The vector of nodal displacement {U} can be
appraoximated by a linear combination of r linearly
independent Ritz wvectors, with r much less than n, as:

-

Wity =) X3 Volt) [1.73

d=st
where {X;3} are the linearly independent basis vectors and
Y. (t) are unknown parameters obtained by solving a reduced

system of equations that can be written as:
(8 R {;} + [CI= {Q} + EKI* {¥> = {Fi(s,t)}~ ii1.81
£X3T M1 X1

LX1IT LCY £X1
C[XI7T [K3 C£X]

where: CMi=
[Ci~
LK™

i
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{Fl= = [XIT {F}

The objective of the transformation is to obtain new
system stiffness, mass and damping matrices [K1l+*, [M]=, (Cl*
which are reduced in size (r x r} and have smaller bandwidth
than the nriginal‘system matrices, while maintaining a good
accuracy for the response guantities oaf interest. The
transformation matrix [X]1 should therfore be selected
accordingly. The success of the method depends to a great
extent on the proper selection of the basis vectors. Various
kinds of choices were proposed in the literature for static
(nonlinear) and dynamics problems (1.1, 1.5, 1.12, 1.13,
i.14). As noted by Noor (1.12) the ideal set of basis
vectore is one which maximizes the quality of the results and

minimizes the total effort in obtaining them.

As previously stated, one af the best known reduction
method used in linear dynamics praoblems is the "“modal
superposition technique”. It consists in choosing r free
undamped vibration modes, coming from the solution of the
eigenvalue problem [KJ (8] = [M] [B] [w2]l, as basis vectors.
With this particular choice it is easy to show that the
reduced £K1*, [MI1*, and [E€1* matrices become diagonal if
proportional damping, with a wvalue of £, critical, is

assumed;
uy & &y + F2Ewl {Q) + w23 Y} = (F)>= [1.91]

The reduced system becomes an independent set of r equations
which can be integrated one by one. However, it is not a
necessary condition for the reduction methad that the final

system of differential equations be uncoupled.

The lack of generality of Rayleigh-Ritz based code is
due to the difficulties in choosing appropriate global
functions that will ensure the high expected degree of

accuracy of modern computer analysis. This situation has



greatly +favored the use of exact eigenvectors as the basis
for mode superposition. However, recently Wilson et al.
(1.4, 1.17, 1.18) have developed a simple numerical algorithm
to automatically generate a special class of Ritz vectors,
called WYD Ritz vectors in this report, that produced results
of better accuracy with 1less computer time than the
traditional eigenvector approach for a wide variety of

studied examples.

1.3 Automatic Beneration of WYD Ritz Vectors for Dynamic

Analysis

The sequence of WYD Ritz veectors, used to reduce the
size of the system, is generated taking into account the
spatial distribution of the dynamitc loading which is
important information that is neglected by direct use of

exact mode shapes.

The algorithm, in its actual form, is presented in
fig.1l.1. It shauld be noted that the dynamic loading {F(s,t)}
of equation [1.63, used to initiate the recurrence algorithm,
is written as the product of a spatial vector and a time
function:

{Fis,t)3) = {f(s)) g(t) [1.103

The first WYD Ritz vector is the displacement vector cbtained
from a static analysis using the spatial distribution of the
dynamic load vector, {f{(s)}, as input. The other vectors are
generated from a recurrence relationship in which the mass
matrix is multiplied by the 1last WYD Ritz wvector; the
resulting vector is then used as the lcad for a static
solution. Therefore after the stiffness matrix is
triangularized, it is only necessary to solve statically for
one load vector for each WYD Ritz vector required. The
linear independence af the WYD Ritz vectors is achieved using

the Gram—Schmidt orthogonalization process.

11
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Fig. 1.1 Algorithm for Automatic Generation of

WYD Ritz Vectars

(Original formulation proposed by Wilson, Yuan,

1. Given Mass, Stiffness Matrices M1, [K], and

Dickens (1.17))

Load Vector {4}

Ml ‘ n x n system
K1 nxn
{3 nx 1
2. Triangularized Stiffness Matrix:
K3 = [L3IT [D1 L] fhh x n system
3. Solve for First Vector:
Kl {X.» = {3 solve for {X,
b = ({Xi37T [M1 {X,3)32-2 M-Normalizati
{X,) = {X33) # 1/b
4. Sclve for Additional Vectors: i=2,...,.T
(a)  [K1 {Xa3 = [MI {X,—s2 solve for {X,?
by 45 = {X,37 [M] (XD compute for ji=1,

4 =1
(€) Xa? = {Xa> =) cs {X43 M-Orthogonalized
Ju=3

(d) by = ({2.}7 M1l {f‘})*’z M-Normalization

£X,3 = ¢X,3 % 1/b,

S. Orthogonalization of WYD Ritz Vectors with R

size

3

on

|

espect to

Stiffness Matrix (optionall:

[K3I* [Z]1 = [M1* [Z] [w=] Solve the r «
problem, where:
[KJ* = [X17 (K]
[M1I* = [X1I7T [M]
W = approximate

[=X] = [X] [Z1 Compute final or
' WYD Ritz vectors

r eigenvalue
(X3

(X1 = £11
frequencies

thogonal



The technique used to construct WYD Ritz vectors
enforces mass orthonormality among the vectors such that the
matrix [M]1* of the reduced system (equation [1.81) will be
diagonal and will correspond to the identity matrix, however

the matrices [KI* and [C1™ will in general be full:
BI3 €Y} + [CI= {¥} + [KI= {Y} = {F}* [1.111

Equation [1.11]1 can thus be solved by a direct step-by—-step
integration method or by the introduction of an additional
transformation in order to reduce the system to a diagonal
form.

In the case of proportional damping, the solution of

the eigenvalue problem
[KI* £Z1 = [M1* [Z] [w=2] [1.12]

will produce a set of modal ccordinates [Z] which can be used
to diagonalize the system. The values of w=. are exact
eigenvalues of the reduced system and approximate squared
frequencies of the complete system. The eigenvectors [Z1 can
also be used to create a final set of orthogonalized WYD Ritz
vectors from:

{=X1 = £X1 [Z1] £1.131

The set of vectors {°X]l, are orthogonal with respect to both
the stiffness and mass matrices of the complete system.
Some of these vectors may be a good approximation to the

exact mode shapes of the structure.

In the case of arbitrary damping, a solution of the
compl ex eigenvalue problem will be required if modal
coordinates are to be uncoupled. It should be noted that the
numerical effort required for the solution of the reduced
system of order r {(equation [1.111) is normally very small
compared to the solution of the full original system of order

n (equation [1.61).

13
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Since the WYD Ritz wvectors are automatically
generated with a fraction of the numerical effort required
for the calculatiaon of the exact eigenvectars of the original
system, they represent an efficient approach to the reduction
of large three dimensional structural systems such as
soil/structure, dam/reservoirs, and offshore platforms in
which classi&al solution techniques are found to be costly
due to the large numerical effort required to solve the
eigenvalue problem. Ancther important advantage of the WYD
Ritz reduction method is the possibility to carry out dynamic
analyses of medium size structures on relatively inexpensive

micro-computers.

1.4 Influence of the FEM Formulation on WYD Ritz Vectors

Generation

The three basic elements of the WYD Ritz wvectors
generation, as presented in fig. 1.1, are the mass, the
stiffness matrices and the spatial load distribution. The
mass and stiffness matrices will normally be symmetric
positive definite although the following two exceptions can

arises

- if the structure is free to move as a riqid bady (for
example an aircraft or a ship) then the stiffness matrix is
positive semi-definite having rank n-b, where b is the

number of independent rigid body motions

— if no mass has been allacated to some nodal displacements
then completely null rows and celumns occur in the mass

matrix which become singular.

To deal with the problem of a rank deficient
stiffness matrix a positive definite shifted matrix of the
form

(K] — w2o [M1) £1.141



can be used instead of the original [K] matrix. The WYD Ritz
vectors approach will theoretically generate the same
vectors, although not in the same order, for any shifted
matrix of the form given by equation [1.141. The WYD Ritz
vectors will be such that eigenvalues of the reduced system
matrices, and the corresponding eigenvectors will approximate
the roots of the physical model closest to the specified

point of interest in the eigenspectrum wZ3..

The total number of independent WYD Ritz vectors that
can be geperated, including any existing rigid body modes, is
equal to the rank, s of matrix [Ml. Thus, the size of the

reduced problem, r, can not be greater than s.

Fipally it should be noted that for large systems, or
for special class of problems, coordinate reduction
procedures such as static condensation and substructuring
techniques can be used prior to the application of the WYD
Ritz algorithm to obtain smaller system matrices (IM1, [K]
and {f}) to be used in the vector calculation process. The
advantages of such solution procedures must be carefully
evaluated in order not to increase the total pumber of
operations required +or the sclution. This topic and the
conseguences of dealing with a singuiar mass matrix will be

reviewed in Chapter 7.

1.4.1 Mass Matriux

Two possible mass representations in the FEM formula-
tion are possible, First, a consistent mass matrix, based on
the same shape functions used to formulate the stiffness
matrix, can be used. In terms of energy, this means that the
representation of the kinetic energy is consistent with that
of the potential energy. The eigenfrequencies obtained by a
free vibration analysis using a consistent mass matrix will
all lie above the corresponding exact values accordihg to the

theory +for a true Rayleigh—Ritz analysis.

15
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Since the dynamic behavior of a structure is less
sensitive to the mass distribution than its stiffness
distribution, it is also possible to replace the distributed
mass of the structure and the attached non-structural
materials by a set of point masses located at the nodes. If
guch a lumped mass representation is chosen, as it is
generally the case for civil engineering structures, no bound
on eigenfrequencies can be stated. The accuracy may be
equally good since the use of a lumped matrix tends to
increase the wvalue of the denominator of the Rayleigh's
quotient, as compared to the consistent formulation, shifting

the response toward the beginning of the spectrum.

The computational advantages in using lumped masses
are apparent; smaller storage requirements and smaller number
of operations in WYD Ritz vectors generation. Furthermore, it
could be argued (1.11) that the use of a consistent mass
formulation is generally worth while only if the presence of
mass coupling coefficients do not substentially increase the
amount of computation required for the solution, otherwise
the same amount of computation devoted to solving the problem
with a 1larger number of basic  variables could be mare
profitable. Several possibilities using a lumped mass matrix
can be used vafying the number of lumped masses in
combination with the number of WYD Ritz vectars ta be taken
as basis vectors. For instance by increasing the number of
lumped masses, while keeping the number of WYD Ritz vectors
fixed, should provide a more accurate solution without

increasing the numerical effort significantly.

1.4.2 Loading VYector

The validity of the WYD Ritz basis to be used in
coordinate reduction or in direct vector superposition
depends on the nature of the locading acting on the vibratory
system.' In general, the‘amplitude of each vector companent,

as given by the cerresponding WYD Ritz coordinates, will



depend on both the representation of the spatial distribution
of the loading achieved by the truncated vector basis and the
frequency content of the loading as compared to the retained

structural frequencies.

Frequency content:

The frequency - effect can be pictured in fig. 1.2,
taken from reference (1.6) showing the relative contribution
of the elastic and inertia forces while resisting the 1load
applied to an undamped SDOF system subjected to harmonic
loading.

The conclusion drawn from the study of the response
of this S8DOF also pertains to analyses of MDOF since the
complete response is obtained as a superposition of the
response measured in each Ritz coordinate treated as a SDOF
and that actual Iocadings can be represented, in a Fourier
decomposition, as a superposition of harmonic sine and cosine

components.

It is observed that the inertial resistance is
significant only for the relatively low frequency madgg;
while for modes with freguencies greater that about th;ee
times the applied 1loading +Frequency the resistance is
essentially elastic. This suggests that higher modes

resistance can be calculated as a static problem.

Spatial Distribution:

While forming the dynamic equilibrium equations of

the reduced systemn, the dynamic loading is calculated as:
{Fe27™ = {X137 {F(s,t) = {{X 237 {f(s)}) g(t) C1.153
According to equation [1.151, the force {F:}"* will be insig-

nificant if the spatial distribution of the external load,
{f(s)3, is totally dissimilar to the vector shape {X,} and

17
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this vector can be omitted from the respbnse without loss of
accuracy. An  important example of such a behavior is found
in earthgquake loading where the load is distributed over the

entire structure and interacts effectively only with its
lower modes.

However, external loads applied at specific points on
a structure tend te participate with all modes and none can
be omitted arbitrarily from consideration. If the loading is
basically of low frequency, the concept of fig. 1.2 is
applicable and the higher modes will respond as static loads.
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CHAaFPTER 2

Relationship Between the WYD Ritz Algorithm

and the Lanczos Method

The well established transformation methods for small
matrix systems (Givens, ' Householders, LR and BR) are not
effective  for saolving large order eigenvalue problems
pccuring in the analysis of structural vibration because they
can not take advantage of sparsity. Over the last ten years
a very significant development effort has been put in vector
iteration methods to deal effectively with large sparse
eigenproblems. The subspace iteration method has emerged as
the standard appruacﬁ for the eigenvalue analysis of large
structural systems and has been implemented in several codes
for large main frame computers such as ADINA (2.1), ABARUS
(2.8) and SAP-IV (2.3). More recently a lot of attention has
been devoted to the Lanczos method, which is not in itself an
iterative technigque, to obtain a practical algerithm that can
be used as an alternative for the eigensclution of 1large
sparse matrix systems. In this chapter a formal
mathematrical relationship between the WYD Ritz algorithm and
the Lanczos method will be established. A 1ot of basic
properties of the WYD Ritz technique can thus be recognized
by considering the similarity between the twa numerical

algorithms.

2.1 The Lanczos Method

The Lanczos method (2.9) was originally proposed as a
technique for the tridiagonalization of matrices. A segquence
of trial vectors are formed by premultiplication with the
matrix to be reduced. Each new vector is orthogonalized with
respect to the two previous vectors. This orthogonalization
praocedure can be shown to be sufficient to obtain orthogona-

lity with all previously calculated vectors. The



coefficients computed from the orthogonalization process then
combine to form a tridiagonal matrix which, after n vectors
have been calculated, where n is the order of the system, has
theoretically the same eigenvalues as the original matrix.
It was pointed out later that even i+ the tridiagonalization
is not carried oﬁt to completion, good approximations to the
extremal eigenvalues can be obtained from the reduced
matrices. The Lanczos algorithm applied to the solution of

the generalized eigenproblem,

(KY E@1 = M1 [@] [w=2] {2.13
is presented 1in fig 2.1. In the Lanczos method all the
calculated vectors are mutually orthogonal. However the

early development of the method was hampered because the
implicit orthogonalization tends to break down in practice
and farmal nrthngonalizaticn reduces the computational
advantage of the method when it is applied to the complete
eigensolution of a matrix system. Various schemes have been
proposed to overcome the problem of lack of orthogonality and
now reliable Lanczos programs have been developed when the
partial eigensolution of a large matrix is socught (2.10 -
2.13).

The traditional use of the Lanczos method Ffor the
solution of the dynamic equilibrium equations has been to
apply the algorithm to calculate a specified number (m) of
exact eigenvalues and corresponding eigenvectnrs to

completely uncouple the equations of motion.

The starting wvector is usually chosen at random
ignoring important information specific to the dynamic
problem. Then the following operations are typically
performed:

— Truncated Lanczas tridiagonalization by constructing the
[T,-1 matrix {r is chosen large enough so that a good
approximation to the first m eigenvalues can be obtained
{eg. r=2m)). '
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Fig. 2.1 iLanczos Method for the Solution of the Generalized

Eigenproblem (K1 (@] = [(M] (@] (w=1
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- @R eigenvalue extraction of the reduced tridiagonal

system.

- Inverse iteration to obtain the eigenvectors of the
reduced system.

- Expansion of the sigenvectors to full system size.

The accuracy of the eigensolution and the convergence
characteristics of the Lanczas methaod are considerably
influenced by the spectral content of the starting vector
{X12, the number r of generated vectors using the méthod and
the spread in the eigenvalues of the eigenproblem. By
reviewing the performance of the algorithm (2.15) the
following observations can be made on each of the
preceeding convergence factors j

a) The spectral content of the starting vector :

1¢f wvector XsY is orthogonal to a reguired eigenvector
{8,>, the eigenvector {843 and the caorresponding
eigenvalue w2, will be missed by the predicted
eigensolution. A direct consequence of this property is
that if the starting vector {X,) is deficient in some
eigenvector components and lies in an i-dimensional sub-
space of the n dimensional space formed by the operators
[K1 and M1, the generated vector L PRRP will

theoretically be a null vector.

b)) The aumber r of generated vectors usingfthe method :

The accuracy of the approximation improves as the value of
r,' the number of vectors generated by the Lanczos methad
is increased. I+ r = n, the order of the full system, or
if  the companents of eigenvectars {@,..} to {#,} are noat
present in the starting vector then the smallest r eigen-—
values and associated vectors will be predicted exactly.
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c) The spread in the eigenvalues of the eigenproblem :

The accuracy of the eigenpair approximation depends also
to some extent on the spreading of the eigenvalues w2, of
 the generalized eigenproblem. The more spreading of the
~eigenvalues the more accurate will be the prediction
obtained +fraom the Lanczos method. The components of
eigenvectors corresponding to almost equal eigenvalues
undergo very similar magnification hence there will be a
poor resolution of the eigenvectors corresponding to very

close eigenvalues.

The Lanczos method is not an iterative method so the
analyst have little control on the accuracy of the calculated
eigensolution other than to choose a large value for r the
number of generated vectors. In order to ensure an accurate
eigensolution, the Lanczos pracedure is usually supplemented
by an eigenvalue error bound calculation and a Sturm sequence
check to ensure that no eigenvalue has been completely missed

by the procedure.

2.2 Basic Properties of WYD Ritz Vectors

Chowdhury (1.5) has proposed that Lanczos vectors
could be used in place of normal modes as basic variables in
dynamic response calculations but did not carry on the
development of the idea. As previously reported, Wilson et
al. {1.17) independently developed the idea of generating a

set of orthogonal vectors for use in Ritz type of analysis as

an  alternative to the mode superposition method. By

comparing the WYD Ritz vectors algorithm as proposed in
fig.1.1 to the Lanczos method shown in fig 2.1 it is

recognized that the two basic elements of each technique are:
a) the vector sequence obtained from :

(Xs o CKI=3IMIEK LY, (EKI™3IMII (X1 . o0 4 (CKIT1LMIIP{X3) [2.2]



known to mathematician as Krylov subspace (2.14),

b) the Rayleigh-Ritz transformation method to obtain an

approximation to the eigenvalue problem.

It should be noted that the above vector sequence
when obtained without orthogonalization, will converge to the
eigenvector corresponding to the lowest eigenvalue of [K1[8]
= [(MILB1Lw=2], this method of solution for the lowest mode is
usually called Stodola‘s iteration by the civil engineering

profession.

The Lanczos method and the WYD Ritz approach
supplement the Krylov sequence with Gram—Schimdt orthogonali-
zation at each step, the result is a set of [M] orthonormal
vectors used to reduce the size of the system of dynamic
eguilibrium equations to a small number of generalized
coordinates. A parallel will be established between the two
methode showing that the WYD Ritz algorithm is similar teo the
method used to produce Lanczos vectors. It should however he
recognized that the philosophy behind the choice of the
starting vector used to initiate the recurrence algorithm and
the subsequentl use of the vector basis in the reduction of
dynamic equilibrium equations, as proposed in the WYD Ritz
reduction method, is new and requires further research and

development to become fully operational.

The basic algorithm to generate the WYD Ritz vectors,
as presented in fig 1.1, will next be reviewed to show its

equivalence to the Lanczos method presented in fig 2.1

A) Generate and mass normalize the first vector :

e

X33 = [KI-* [M1 {2} £2.3]
b = ({Xi)}T L[M1 (X,3}):-2
£X,3 = {X;:2 * 1/b £2.41
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B) Generate a typical additional vector : i = 2,...,r

(X3 = [KI=* [MI (Xaca?

C) Orthogonalize (X3} against all previously

£2.5]

obtained

vectors, assuming that {f.} has components common to each

vector of the basis :

N —
{Xa) = {X23- - PR & PREPE L Ay s ~2{X1-2) —see— A2 ,1{Xs2 [2.61]

A,y = X437 [M] (X4) fFor §=1,...,i-1
nt
D) Mass narmalize {X;} to obtain orthonormal {X,2},

v
{Xg3 = {Xs3 » 1/b,
n A
ba = ({Xg27 (M1 {Xy 2)rs=2

E) Equation [2.&] can be written as

{;;} = ba{Xad + A3 ,0-10{X02? + Qs 1~2{Xs-2} F+iceeqet
(K1I=* [M] {Xa-22}

writing [2.103 in matrix form we get :

[KI=* [M] X1 = {X1 TH]
with
- -
dz,1 83,1 A4,1 . . s Ap,a
bz a;.z a‘.z - - - - -
0 b: 34.3 - - - ] -
EH} = 0 0 b‘ - [] - » .

- 0 o - . . - -

) ) 0 0 . 0 br ar..

{H] 1is a matrix of upper Hessenberg form, that is

£2.71

[2.81]
[2.91

ay ,1{X,2

£2.103]

[2.111

£2.121]

an upper

triangular matrix with nonzero entries on first line below

the main diagonal (hg =0 for i>j+1).



Premultiplying equation [2.111 by {X3I¥ [MI, we get:
[X3IT M3 (KI-¢ [M3 [X3 = [X3I7 {M1 [X1 CH1 [z2.131
The right hand side of equation [2.13]1 must be symmetric
since [K] and [M] are symmetric, and that the inverse of a

symmetric matrix must be symmetric;

(CX3IT M1 CKI—* [M] CXD) ™

"

[X3¥ EMI™ EKI-T IM3I7T L[X] L2.14]
£X17T M1 [K3I~* IM]1 EX2

Ll

using the fact that [X17 (M1 £X1 = (I3 in equation [2.131,
we get .
(JEXAT CMI EKI™* [M3 (X1 = CHI {2.151
i Lo 4

symmetric upper Hessenberg

The only way that equation [2.15] can be satisfied is
if [Hl is tridiagonal that is (using only the first subscript
of the a coefficients);

3 bz © . . O]
bz az bs - - o=
[H1 = [T,.1 = O bs asx . . . [2.161
o o . . . ©
... . . be
Lo . . 0 b a.

Equation [2.146]1 shows that while calculating vectar {X.2
agrthogonality with only two of the preceeding vectors {Xi-i1},
{Xg—=¥ is sufficient to obtain orthogonality with all
previously calculated vectors. Equation [2.163 is also
identical to the tridiagonal matrix [T,3] generated”frnm the

Lanczos algorithas.

2.2 Note on Orthagonality of the WYD Ritz Vector Basis

In practice, it i= found that in the solution of
large systems, the vector {X,} may not be iM] orthogonal due
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to round off error and cancellation in the Gram—Schmidt

process. Orthogonalization procedure using iterative

_improvements on a local scale with vectors {X4-1}, {Xi.-a2} and

whenever necessary on a global scale with all previously
formed vectors have been sucessfully implemented to overcome

the numerical instability of the Gram-Schaidt method.

The algorithm used to produce WYD Ritz vectors thus
corresponds to the method used to obtain Lanczos vectors for
which the starting vector used to initiate the recurrence
relationship is ogiven by the spatial distribution of the
dynamic loading. Furthermore, in the WYD Ritz approach a
full reorthogonalization against all previously calculated
vectors is used for each new vector added to the basis to
maintain global orthogonality among the basis vectors as the
algorithm proceeds. It will however be shown that this is
generally not sufficient to ensure that the required [M]1-
orthogonality condition has been satisfied. A complete
discussion with numerical applications will be presented in

chapter 4.

2.4 Solution of Undamped Dynamic Equilibrium Equations in

Generalized Coordinates

Consider the undamped equilibrium equation given by:
LMl {U} + [K1 {UY = {F(s,t)} = {f(s)} # g(t) [2.171

2.4.1 Solution in WYD Ritz Loordinates

Using the substitution Uy = [X3 <Y directly in
equation [2.171 and premultiplying by C{X1T ta complete the

transformation we get,

[XIT [MI CX3 €Y} + [X3IT CKI CX1 €Y? = CXIT <F} £2.18]
[I] <Y} + [KJI*® €Y¥) = CX1T (F) £2-191



Equation ({2.19] can theoretically be solved by any standard
numerical technique used in structural dynamics, it can
notably be uncoupled by solving the reduced eigenvalue

problem in WYD Ritz coordinates as explained in section 1.3 .

2.4.2 Solution in Lanczos Coordinates

The reduced structural system expressed in
generalized Lanczos coordinates (see ref. 1.14) is obtained
by premultiplying equation [2.17] by [M] [Kl-?* and using the
substitution <{U} = ([X1 €Y3. The transformation is then
completed by premultiplying by [X1" to obtain,

CXIVIMITEI-*IMICXILYIHIXITIMILKI- Y EKIEXNI{YI=CXIVEMILKI-2*{F3}
[2.201]

Assumming that the dynamic loading distribution {f} is used

to initiate the vector sequence we get,

f

€T3 {?} + [IY {Y> CXIT [MI CKI™* {2 = g(t) €2.213

[XIT IMJ {X.} * g(t)

n

[T~3 €¥Y? + [IT LY} = {es} ({X.3T [MI £X43)272 % g(t)

where {e;} is the first column of the identity matrix.

The reduced Lanczos system, as expressed by equation
[2.211, can be uncoupled by the solution of the eigenproblem

in Lanczos conrdinates, Recalling that,
EX3Y™ M3 [KI~* [M] [X1 = (T3] £2.221

where [T,.] is tridiagonal of order r, we can now relate the
eigenvalues [A] and eigenvectors [Z] of [T,.1 when r=n, the
order of the unreduced system, to those of the original

system:
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(K] [@1 = [M] [@] [w=] £2,231
CM] (@8] [w=2)-* = [M] [K]—-* [M] [@] [2.24]

using the transformation [B] = [X1LZ] and premultiplying by
£xiw,

CXITEMICXTICZILw23—* = CXITIMILKI-*IMIEXICZ] £2.251

CZ] [w21-* = [Tnal [Z1] [2.24]

Hence the eigenvalues of [T,1 are reciprocal of the
eigenvalues of [K1{8) = [MI[O@1iw*] and the eigenvectors of

the two problems are related by the equation [@1 = [X1 [Z1].

If r is smaller than n the eigenvalues of ([T,.-1 can
give good approximations to the smallest eigenvalues of
CKI[B1 = [MICRILw=1.

It can be shown that equation [2.211 in Lanczos
coordinates and [2.192] in WYD Ritz coardinates are entirely
equivalents

(LK3I®)—2 = ([XI7T {(KI [X])—* = [X]—* [KI~* [X]1—7 £2.271

Since [X]Y [M] {X] = [I] we get,

tM3 [X1
(X317 [M]

LxX1-r £2.281
{Xi—-s (2.29]

Substituting [2.28) and [2.291 in [2.271 we get,
(CK1=)—* = £X37 {M3 EK3I~* {M] [X1 = (T.1 [2.301]
Premultiplying [2.191 by (2.27]1, we thus get:

([K]')“[IJ{V}+([K]')“[KJ’{Y} = [XJ7*[KI7*[XI-TLXIT{F2(2.31]
£T,-1 €Y} 4+ CI1 (Y} = {(XI7T [M] EKI-* {+) # g(t) [2.32]

The equilibrium equation [2.32]1 derived from equation



[2.191, the equilibrium equation in WYD Ritz coordinates, is
identical to the Lanczos equilibrium equation (eq. [2.213),
thus showing that the solution in WYD Ritz coordinates is
equivalent to the solution in Lanczos coordinates, one
approach being the inverse of the other. It should b noted
that the +topologies of the reduced systems are different
since in Lanczos coardinates the structure af the [T,1 matrix
is tridiagonal and in WYD Ritz coordinates the structure of
the [KI*® matrix is full. The solution in Lanczos coordinates
will thus potentially be more efficient than the solution in
WYD Ritz coordinates. It should also be npoted that in
practical applications, the reduced systems are generally
small, of the order of 10 to 50 generalized DOF, such that
the difference between the actual efficiency of the two

solutions might not be of major significance.

The methods used to obtain the reduced systems are
also different. In the Lanczos approach the {T.-1 matrix is
constructed directly using the information generated during
the orthonormalization of the vector sequence, while in the
WYD Ritz algorithm this information is not retained. The WYD
Ritz approach uses the formal transformation [XITIKIEX3 (that
can be imbeded in the vector generation algorithm for greater

efficiency) to obtain the reduced systems.

2.5 Analysis of Damped Systems

While wusing the FEM the generation of the damping
matrix [C] usually presents special difficulties due ta the
lack of information regarding damping mechanisms and damping
levels in structures. I1f the damping mechanisms are limited
to internal, or material damping and the structure is made
from one homogeneous material the damping matrix will be
proportional to the stiffness matrix. For structures build
from two or more homogeneous materials or in interaction
problems such as spil-structure or fluid-structure systems

each component damping matrix may be proportional tao the
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corresponding stiffness matrix but as the constants of
proportionality differ, the system damping matrix will not be
proportional to the system stiffness matrix. Non-
proprotionally damped systems require special considerations
if a dynamic solution using direct vector superpoesition is to

be used.

2.59.1 Solution Procedures for Proportional Damping

Consider the basic equilibrium equation obtained from
the FEM for the free damped vibration problem;

[MI CUY + CC1 <UY + €K1 €UY = {0}
U + [MI-2CCI CUY + CMI-[KI U3 = {03} [2.333

i¥ the normal mode method is used, the exact eigenvectoré of
the free undamped vibration problem will be used to diagona-

lized the system stiffness and mass matrices according to;

[K1 [@1 = [M] [@] L[w=]
EMI~-* [K]1 [@] = [B} [w21] [2.34]
with [@1" [K] [@] = [w?] and (@1 [M]1 @1 = [1I1 [2.35]

the damping terms are uncoupled if [C1* = [B]1T [C] [B] is a
diagonal matrix. In order to achieve damping uncoupling the
matrix (CMI—*LC]1) and matrix ([MI-*LK]) of equation [2.33]
should share the same eigenspace. From mathematical analysis
it is well known that two matrices [Al and [B] share the same
eigenspace if they commute, that is [AILB]l = C[B1{Al. The
necessary and sufficient condition for damping uncoupling

thus becomes

(CM1—*CK1) (IMI—*[CD
(EKItMI—*LCT) [2.361

(EMI-*[(CI) ([MI-2CKD])
or (CCICMI-3CK1)

In general this condition is not satisfied but



Caughey (2.4,2.5) has shown that by expressing the damping

matrix [C1 in terms of (M3 and [K] according to

[Cl = M1 Za, (CM1-*[{K]1)* [2.371

1
the reduced damping matrix [C1* will be diagonal. In most
analyses using the normal mode method the damping matrix ([CJ
is not formed explicitly, it is rather assumed that damping

is proportional to (M1 and [K] matrices such that;
€@,37 [C1 {043 = 2 wa £1 613 £2.381

where £, 1is a modal damping parameter and §i.4 is the

Kronecker delta (§.45 = 1 for i=j, .5 = O for i#j).

If the damping matrix [C]l needs ta be formed
explicitly it is important to consider a special case of

equation [2.371, using i=0,1 we get;
[C] = aolMl + a,[K1 ' [2.391

which is known as Rayleigh damping. The constants ac,a: are
arbitrary proportionality constants applied te the {M]1 and
K1 matrices of the complete system. The modal damping ratio

£a for any mode can be defined as,
fa = 172 ( ao/va + 8awWa) [2.401]

it is observed from equation [2.40] that the lower modes are
primarily damped by the mass proportional damping and the
higher modes by the stiffness propartional part. The
constants aoy, ai. are selected to obtain, as closely as
possible, the desired level of damping for the modes covering
the frequency range considered importanf to the dynamic
response. Rayleigh damping represents a convenient way of
introducing the damping concept as no extra storage is needed

since the matrices [M] and [K] already exist. The damping
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matrix [C] get the same orthogonality properties as [M]l and
[K1.

An important abservation from a numerical stand
point, is that if more than two proportiaonality constants
(as,ar plus others) are used the matrix [C1 will in general
be full, that is the banded form of [M) and [Kl matrices will
be lost, This will require more storage if [C1 is explicitly
formed and significantly more numerical operationg if a step-
by - step solution on the full unreduced system is performed.
In most analyses by direct integfatian Rayleigh damping is

therefore assumed.

The reduced Rayleigh damped FEM equilibrium equations
using the WYD Ritz vectors [X] as coordinate transformation

vectors will give the following reduced damping matrix ;3

CC1 oMl + a,lK]
LX3™ [C) [X]1 = ap EXI™ [M] [X] + a, £XI7 [K1 [X12
[C)* = acl1l 4+ a,[KI™ £2.413

the matrix [K]I*™ will in general be full and the matrix (CI1*™
will have the same topology as [K1®, The introduction of the
additional transformation matrix [Z] tp orthogonalize the WyD
Ritz vectors with respect to the stiffness matrix, as

explained in section 1.3 will diagonalized the reduced system

[K1= £21 = [M]= [Z] [w=*)
£Z17 CC1~ [Z1 = [2&{w] £2.421

If the solution is carried out in Lanczos coordinates

with a Rayleigh damped system we get;

{C]1 = aolM] + a,{K]
[XIV(IMITKI- Y LCI (X I=anl X IT ({MICKI™*IMII CXT+a  EXIT(IMILKI~*IKIICX]
(Cl" = aolT,-1 + a,lIl] £2.43]



the reduced damping matrix [[C1* will thus be tridiagonal. I¥
more than two terms are included in the Caughey serie (eq.
[2.373) the reduced damping matrix [CI* will lose its

tridiagonal tharacteristic and will in general be full.

2.5.2 Solution Procedures for Non-Proportionai Damping

Once the non—-proportional damping matrix has been
determined from damping properties of the various components
of the structure, an appropriate numerical technique for the

solution of the equilibrium equation
o8 *
M1 {U> + [CI {UF + EKI {UX = {F2 [2.44]

must be found under the restriction that the normal undamped
modes, or the mass and stiffness orthogonal WYD Ritz vectors,
will not diagonalize the system. The most frequently used

solution procedures are @

- the direct integration method using either the original
geometric coordinates or a reduced set of generalized Ritz

coordinates,

— the vector superposition approach using either complex
shape vectors or real vectors along with weighted damping
ratios.

An obvious method for analyzing a structure with non-
proportional damping 1is to integrate directly the coupled
equations of motion expressed in original discrete
coordinates. The important disadvantage'af this procedure is
that all the equations of motion must be included in the

analysis requiring a large computational effort.

In order to obtain a more efficient solution a direct
integration procedure on a reduced system expressed in
generalized Ritz coordinates was recommended by Clough and
Mojtahedi (2.6). In their presentation Clough and Mojtahedi
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used a set of the lowest exact mode shapes of the undamped
free vibration problem as transformation vectors to obtain a
reduced coupled system of equations that will be integrated
directly. The reduced coupled system will be of much smaller
order than the original system so an economic solution is
still poaossible even if a small time step increment is used
over a long loading record. In fact, the same procedure
using the WYD Ritz algorithm presented in fig. 1.1 to
generate the transformation vectors will lead to an even more
efficient salution technique since these vectors are more
economical to generate than the exact eigenvectors of the
structure. This numerical technique was tested on the
earthquake analysis of a small shear beam model and proved to

be very effective.

The equations of motion of a structure with non-
proportional damping may also be uncoupled by the solution of

the complex eigenproblem
— [w®1 [M] (@] + i [wl [C] £@]1 + [K] (@1 = {0} £{2.45]

in such a case the complex mode shapes and frequencies will
contain in phase and out of phase components such that the
eigenproblem is essentially of order 2n. The mame approach
can be used to diagonalize the reduced system expressed in
WYD Ritz coordinates by the matrices [M]*, {C1* and [K1l=, the
aorder of the compiex eigenproblem will then be 2r where r is

the number of vectors retained in the transformation.

A major advantage of this uncoupling procedure over
the direct integration method of the coupled system is that
an exact mathematical solution is possible if an approximate
description of the forcing function is used. The solution for
integration of the uncoupled differential equations subjected
to dynamic loads represented by a series of straight line
between equal or unequal intervals of time can be formulated

in closed +form. This approximate 1loading description is



generally used for any digitized transient record. The
disadvantage of the direct integration method of the coupled
system is that the dynamic response will generally exhibit

period elongation and amplitude decay with increasing time.

The major drawbacks of the complex eigenmethod is the
larger size of the eigenproblem that must be considered and
the necessity of dealing with complex numbers in the dynamic

response.

2.4 Basic Philosophy Behind the WYD Ritz Algorithm

If the objective of the calculation is an accurate
eigensolution we note, from the Lanczos method, that the
number of generalized coordinates in the reduced system, r,
must be much greater than the number of modes, m, retained in
the modal superposition summation. In view of the
uncertainty in the loading, especially for ear thquake
analysis, it appears that the extra cost of extracting higher
and more accurate modes is not really worth while. A
numerical method devised to correctly represent the specified
loading and associated response with a minimum number of
numerical operations, even if not producing an accurate
eigensolufimn, should  be considered acceptable for design

applications.

The objective of the WYD Ritz vectors procedure is
not to obtain an accurate solution of the +free vibration
eigenpraoblem but to from an accurate load dependent vector
basis to transform the dynamic equilibrium equations to a
more suitable form for soclution. The solution of the
transformed set of equations to a specified number of WYD
Ritz coordinates can then be carried out by any standard
numerical method used in structural dynamics, such as direct
step-by-step integration, frequency domain analysis or the
response spectra technique. If a wvector superposition

solution is chasen, the number of WYD Ritz coordinates used
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in the transformation will thus typically be the same as the
number of wvectors retained in the summation leading to an

optimal solution technique.

In theory while using the WYD Ritz method only
vectors which are excited by the spatial load pattern are
generated whereas some of the exact eigenvectors may be
nearly orthogonal to the spatial lcad pattern and therefore
do not significantly participate in the response. The
numerical results presented in Chapter 4 and S5 indicates
clearly that a dynamitc sclution working directly in WYD Ritz
coordinates, or in Lanczos coordinates obtained from 1load
dependent Ritz vectors, is much more efficient than an exact
eigensolution for the particular type of problems under

consideration.
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Development of Error Estimates for

the WYD Ritz Reduction Method

Reduction methods become unreliable without efficient
error estimates. In classical direct vector superposition
methods for linear systems, only approximations to the lower
modes of the structure are used. Even if interest is
centered around frequencies closed to a specified value to
discover possible resonant conditions from oscillatory
disturbing forces, the specified freguencies should be in the
lower end of the spectrum since approximations involved in
the physical idealization by the FEM cause higher frequencies
of the mathematical model to be inacurate. Higher modes are
thus discarded from the analysis and it should be verified
that the retained vectors will adequately represent the
spatial distribution and sufficiently span the frequency

range of the applied loading.

in this chapter error estimates to ensure that the
specified loading is correctly represented by the WYD Ritz
basis and to measure the relationship between the WYD Ritz
solution of the reduced system and the exact eigensolution of
the original system will be presented. A parallel will be
established between the WYD Ritz reduction method and the
familiar statie correction and modal acceleration procedures
used to improve the traditional modal superposition summation
while dealing with a truncated vector set. Finally, some
frequency considerations in the error estimation process will

also be discussed.

3.1 Spatial Error Estimates for Loading Representation

One of the important aspect of direct vector superpo-—

sition techniques for the snlhtion of the dynamic equilibrium
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equations pertains to the number of vectors that must be
retained in the analysis. As the number of required vectors
for a satisfactory sclution increases, the cost of the
analysis grows rapidly. The simplest way to know how many
vectors, oOr generalized coordinates, to retain in the FEM
analysis for a given mesh, is to use an iterative solution
procedure adding new vectors until convergence of two succes-
sive solutions is achieved. It is obvious that this method
is uneconomical even for small systems. A better approcach
would be to develop an error norm, at the 1level of the
vectors generation algorithm, to indicate when to stop
generating new vectors while ensuring a satisfactory

convergence for the response quantities of interest.

3.1.1 Representation of the Loading by the WYD Ritz Basis

Hansteen and Bell (3.4) demonstrated that the inac-
curacies of modal truncation are caused by the omission of
load components that are orthogonal to the modes included 1in
the solution. The basic idea to measure the part of the
external load vector that has not been included in the vector
superposition summation, will be to expand the load vector in
terms of the truncated vectors basis and define error norms

that are functions of the residual.

A complete set of mass orthogonal Ritz vectors
constitutes a basis for an n-dimensional linear space so that
an arbitrary vector such as the spatial loading distribution,

{f(s)}, can be expressed as

{f(s)>
{f(s)

IMI{X1) ps + [MI{X2} Pz + .. + [MI{XH2 pPn
[MILX] {pX £3.11

Premultiplying equation [3.1]1 by [X1IT and using the M-
orthondrmality condition CXJIVIMILX] = [1] we get,

[X1T{f ()2 = {p3 [3.21



substituting {3.2]3 in [3.1] we get,
{f(s)2 = IM] [X]1 LXI7T {f{s)3 [3.31

The spatial loading distribution can thug be expressed by the
following finite serie,

(2]

££(s)7 =Zp_, EMI€X,3 £3.4]

Ju=3

where the vector participation factor, py, is defined as,
Ps = (X337 {f(s)} £3.51]

In the use of exact eigenvectors or WYD Ritz vectors .in a
direct superposition analysis, the participation factor is a
direct indication if the shape vector,; (X4}, will participate
in the dynamiec solution. The participation factory, pj, can
thus be viewed as the coordinate of the load véctgr expressed
in term of the vector [MI1{X,}. Therefore, the error in the
representation of the lpad by a reduced number of retained

vectors, r, can be detined as,

-

{E-(s)2 = {{(s)}-zi:p, EMI{X,43 = {f(s)3 — {f,-(s5)3 [3.63
=3

It should be noted that the validity of equations

[3.31 to [3.61 is énsured by using shape vectors, <{X,;} that

are only I[M1 orthonormal. If we substitute [K1 and [M3]

orthogonal WYD Ritz vectors, {®X;}, for the vector matrix [X]

into equation {3.31 we get,
{f{s)3 = IMI (=X] [(=X1T {f(s)} {3.71

Using [=X1 = [X1LZ1, where [X] are WYD Ritz vectors that are

mass orthogonal only, we get,

{f(s)2 = M1 EXJ £Z1 LZ17 [X1IV {f(s)3 £3.81
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{(f(s)2 =Z°p, LMI{oX ) £3.93

=3

where epy = {Z437 [(X1T (f(s)2 £3.101

is the participation factor +Ffor [Ml and (K1l orthogonal
vectors. The matrix [Z] of equation [3.8] represents the
eigenvectors of the reduced system, [K3I*{Zl = ({MI*[Z]CwZ2],

normalized such that,

{21 1
or £Lziv

€1l
£zi—» £3.111

Substituting equation [3.11] into £3.8]1 we get,
{Fi(s)> = [M] [X] [XI7 {fis)> [3.12]

Equation [3.12]1 is exactly the same as equation ([3.3]
developed previously. Using a reduced vector set we can

therefore write,

(533 = p, [MICXs) =D =p, [MI(=X,) £3.131
Su=3 EL Y
The impartant fact about equation [3.13] is that for a fixed
number of retained vectors, r, we obtain exactly the same
value for {f,(s)} using either mass only orthogonal vectors,
{X433, or the [M] and [K1l orthogonal vectaors {°X,}. For a
practical implementation of the WYD Ritz algorithm this is
very significant since if the reduced system is ta be
diagonalized, it is possible to know prior to the solution of
the reduced eigenproblem what will be the error in the
loading representation cbtained from the final vector basis
[=Xx1.
An extension of the 1loading representation is
necessary to deal with more general three dimensional

analyses, In such a case the lcading can be written as,



(Fls,t)3 =) (F,(s)3 ga(t) [3.141
A=
where {f;(s8)> is the spatial distribution in the ith
direction (x,y or z!) and g5s(t) is the corresponding time
variation function.

A first analytical approach might consists in
applying the summation sign of equation [3.141 at the
respanse calculation level. The WYD Ritz algorithm will thus
be run for each axis separately using {f.(s)}, {f,(s)Y and
{f.(s)> as initial 1loading distributions to form three
directional vector bases that will be superimposed to obtain
the total response. This procedure will be most efficient i+
the 1oading axes correspond to the principal axes of the
structure such that there is no coupling of the response when
the stucture is subjected to independent excitations.

Actual numerical experimentation on the seismic
response of a three dimensional structure (see chapter 35) has
sthiown that the summation sign can advantagegusly be applied
at the initial loading distribution level to form a single
WYD Ritz basis constructed from the starting vector given by

() = {Fu ()2 + {f,(5)3 + {fx(S)3 [3.151]

It should be noted that even though a single vector
basis can be used in all calculations, it is very important
for consistency that the error calculations consider the
directionality of the loading. An independent evaluation of
the representation of the dynamic loads achieved by the
truncated basis should be done for the "X", "Y* and "1I"
directions. For example, if directionality is ignored in a
three dimensional analysis, the participation factor, p,,
abtained from {}32T{f( (s}, with {f(s)} given by the sum of
the directional loading distributions as described by
egquation [3.151, will be equal to
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Ps = Psx,s ¥ Py,s * P=,.a [3.161

Substituting equation [3.16]1 into [3.13] we get,

-

CFeS)} =D puos + Pyos + Puas) [MILXSD £3.171

=3
It is obvious that this equation will produce inconsistent
results with respect to a particular locading direction since
the participation <factors applied to individual wvector
components of [MI{X,> in the x,y and z directions should be
the participation factor of the corresponding direction and

not the sum of all directions.

The vector {E,-(s)} defined by equation [3.61 is the
spatial error in thé loading representation due to truncation
of the vector basis. Since {E-(s)} is a vector with many
individual components it is difficult to develop a direct
appreciation for the total amount of the force vector that

has been omitted in the calculations.

Two different suggestions, taking directionality of

. the loading into account, will next be presented to measure

the error in the loading representation due to truncation of

the vector basis.

3.1.2 Error Estimates Using Summation of Represented Forces

For earthquake analysis, an effective mass
carresponding to the part of the total mass responding to the
earthquake in each mode is commonly used as a good indication
to the relative contribution of a particular mode to the
global structural response. A typical development in the "X"
direction, while using the exact Mmass orthonormal
eigenvectors of the structure as basis vectors, is presented
below. '

The loading {f.(s)}, acting in the "X" direction, is

defined as



fe(s)3 = [MI {r,.} [3.181]

where [M3 is the mass matrix and {r.} is the influence vector
corresponding to the displacement obtained at each DOF of the
structure from a unit base input displacement in the "X"
direction. The modal participation factor is defined for
mode j as

*Pu,s = {B,437 M1 {r.3 [3.191]

The total mass in the "X" direction is given by
Myere = {r 3T (M1 {r,} £3.201

For a truncated vector basis containing r modes a comparaison
of M. to -
Br s =) "PZu £3.211
J=3
is made. The value of *p=2,_ ; corresponds to the fraction of
the total mass, in the "X" direction, represented by the
modal contribution of vector {8,}, a complete develaopment of
equation [3.21] can be found in Clough and Penzien (3.2).
The wvalue of M-, ww is thus the spétial summation in the "X"
direction of the loading represented by the maode set L(8,1.
The percentage of the total mass, m.., that should be
retained in m-,.. for satisfactory convergence is somewhat
open to discussion but for example the API-RP2A (3.1) code

suggests that a value of at least 90% should be used.

A generalization of this measure to arbitrary spatial
loading is natural. Using equation [3.3] with a truncated
WYD vector set [X,] to write an expression similar to  m-, .
in its full form and summing in the *X" direction by

premul tiplying by {r.2v we get,
Frosene = {re3T M1 EX,-] [£X- 17 {f, (s)} £3.221

It is important to note that while using the WYD Ritz method

45



equation [3.221 should be used instead of equation [3.21]
since the participation factors p..s and °p..,s obtained from
LMl orthonormal vectors, (X;}, or (M3 and (K] orthegonal
vectars, {(®X,}, are different, it is only the final total sum
as given by equation [3.22] that is identical. Thus if the
sum of the participation factors squared is used to calcualte
the portion of the total load represented by the basis,
different results will be obtained from individual vectors of
the [X-1 and [=X,.] bases. Considering a general three
dimensional analysis, the error estimates using summation of

the represented forces becomes,

€n = ({37 MIDX,-T (OX,-1T{f,(s}2)) /7 ({r 37{f(s}2 * 100 [3.23]
e, = {({r, 27 IMILX,-] ([X,17{f, (s)3)) / ({r 37 {f(s)} % 100 [3.24]
ex = ({rad¥ [MI[X,~] ([X,-17{f (8)3)) / ({rald7{f(s)} * 100 [3.25]

This measure could also be generalized to consider moments
applied to some DOF. Numerical experimentation on small
structural systems has shown that for earthquake laading, the
error norm based on the summation of represented forces will
exhibit a monotonically increasing type of convergence. The
value of e,.,e, or 2. will vary between 0 and 100 indicating
the relative percentage of the total locad represented in the
solution by the vector set [X,.]. For more general type of
dynamic l1pads, the error norm based on summation of
represented forces will not necessarily exhibit a monotonic
convergence and negative values as well as intermediate

values in excess of 100 are possible.

3.1.3 Error Estimate Using the Euclidean Norm of Error Force

Vector

Alternative formulations to measure the relative
amount of dynamic load represented by the vector basis were
studied in order to obtain an error estimate that will
exhibit more similar convergence characteristics for any

spatial distribution of the dynamic load. This new error



estimate should also avoid a potential problem of the first
error estimate which is that there might be cancellation in
the summation such that local fluctuations; with change iIn
sign in the represented forces, might not be fully accounted

for by the indexes e., &, or e..

After numerical experimentation with various implemen-
tation strateqgies it was found that a measure of the error
force vector based on the Euclidean norm (IXiz =
({X37{X2)2/2) and written as

e*, = 1 - {{f.(s)} — {f,. . {(s) iz * 100 £3.263
ifels)iz
e, = 1 - ({E. -}7{E..-})*"2 % 100
({fu(s)3T{f, (s)I)rr= £3.271

exhibited convergence characteristics that are similar to the
error norm based on the summation of the represented +forces
for earthquake loading with individual values being generally
sligthly more conservative. For more general spatial
distribution of the dynpamic load it was found from numerical

experimentation that,

~ the error norm based on equation [3.26] was more
conservative and more reliable than the simpler form given

by !({fr u(s)ia / {f.(s)3ia #* 100,

~— that although some fluctuations are possible when the first
few vectors are added to the solution, the error norm e®,
bad & better tendency than the error norm e, to exhibit

monotonic convergence.

A sample of these calculations is given in fig. 3.1 where a
single concentrated load was applied at the top of a 7 DOF
shear beam model and the proposed error estimates were
plotted as a function of the number of vectors retained in

the analysis.
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Equation [3.26] is developed Ffor typical i
direction, similar calculations must be performed to obtain
the value of e*, and e",. It is also possible to combine the
error indexes to aobtain a single index reflecting the overall

representation of the loading by the basis;

49

e* = 1 - (I{f d={f, Fizti{f 3-{Ff, izt {f 2-{f . ~21i2)272 % 100

iz [3.281

In equation [3.28]1 it is implicitly assumed that all loading
vectors are a function of space only. The single index e* is
thus based on a comparaison of the length of the loading
vector not represented in the analysis to the length of the

total load vector.

Tha key element of the two norms that have been
presented is the vector {(f-(s)} equal tao the fraction of the
total 1load that can be obtained from the truncated basis as
given hy equation [3.131. The directional monitoring of the
values of e or e* during the WYD Ritz vectors generation can
thus be implemented at the cost of a few extra numerical
operations since the product [M1{X43, required to obtain
{f-(s}}, has to be formed as part of the vector calculation

process anyway.

An appropriate value for e or e* can then be selected
to set a cut-off criterion to stop generating new vectors
when a good repfesentation of the loading vector by the WYD
Ritz basis 1is ensured. It should be kept in mind that
although reliable estimate of gross system behaviar,
expressed in term of global horizontal displacements, can be
achieved with a small number of WYD Ritz coordinates, in
practical design application forces and stresses rather than
global displacements are of primary inferest. Member end
rotations, axial forces and bending moments which are
dependent upon small differential deformations may be in

error leading to poor stress recovery. Performance evaluation
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of the numerical scheme should thus be Judged on both

displacement and stress convergence.

The two error norms, as presented in section 3.1.2
and 3.1.3, were implemented in the computer program used to
study the WYD Ritz algorithm and numerical experimentation
was used to establish a correlation between the values of e
or e* and the displacement and stress convergence for some
studied examples. A complete descripticn of the models used
for these analyses and the relevant numerical results are

presented in chapters 4 and S.

3.2 Summation Methods for Direct Vector Superposition Analysis

For most dynamic analyses the higher modes are
generally of local character and have a negligible
contribution to the overall or global structural response.
However, they can be quite important for accurate stress
recovery if the load vector has significant components in its
expension into modal coordinates. The exact response to the
residual force vector {E-(s)} of equation [3.61 while using a

truncated vector set can be written as

[MI{Ugl + [C€1{Ug} + [KI{Ug} = {E-~{(s)3 g(t) [3.29]
({f(s)} — {£-(5)1) gt}

where {Uc} represents the response of the system to the force
component neglected by the vector basis representation of the
loading. This displacement should be added to the response
obtained +from the truncated vector superposition to obtain

exact results.

S.2.1 Static Correction Method

By assuming that the modes with frequencies
substentially greater than the frequencies of the applied

loading will respond in a static manner, it is possible to



use a pseuto-static solution to account for the flexiblity of
modes which were not retained in the mode displacement
summation. - The acceleration and velocity in eguation [3.291

are set tao zerao faor all time to abtain
{Ug(t)y = {(KI™* ({f(s)} — {f,-(s)3}) gt} £3.301

The total response of the system using a static correction
for higher modes thus becomes

—

{Uet) > ==§:{E‘} vy (t) + EKI=* ({f(s)} ~ {f,-(s)}) g(t) [3.311
=3

The natural frequencies of the structure to be analyzed, w,.,
campared to the frequency content of the loading, w., plays a
key role on the effectiveness of the static correction
method. As noted in fig. 1.2, the assumption that the static
part of higher madal response is a good approximation to the
dynamic response is very good only for large frequency ratios
Wy S . As the frequency raties approach unity the
approximation bDecomes doubtfull and for w;/w_ smaller than
O.6 the static correction based upon equation [3.31]1 is 1less
satisfactory than neglecting the correction altogether. It
is +Jor this reason that the static correction method is
always very effective for loading whose frequency content is
well below the sructural frequencies such as ocean waves an
of fshore structures but not always as effective for
earthquake loading whose frequency content is wide band and

can extend in regions of high structural frequencies.

3.2.2 Modal Acceleration Method

A variation of the static correction method known as
modal acceleration has also been widely used to include
higher mode effects in vector superpaosition solution. The
formulation of modal acceleration derived here is a
computational variant that can be shown equivalent to the

classical formulation which deals explicitly with generalized
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acceleration and velocity components (see ref. 3.3, 5.1).
Consider modes {m‘}, i=r+1,...,n not retained in the
summation, by using a pseudo-static solution of the uncoupled

modal equation

Ya + 2 Wafa ;; + W2, va = {0427 {f(s)} g(t) £3.321
we get, y*, = {({D.}7 {f(s)3}) / w2, im=r+l,.ca £3.331

Going back to geometric coordinates, we have

LUty ? ='Z{a‘} yalt) + D (8.} y=, g(t) [3.34]
A wwy 4 el

where the first term of the summation corresponds to the

usual modal displacement solution and the second term

represents the additional static correction. Substituting

equation [3.331 into [3.343 we get, '

uie) 3 =Z €@, ya(t) + Z €@, (@,37{f(s)3 g(t) [3.35]
E L F 8 F T L wz‘

This may be written as,

Wwr =) B3 v. +Zw.} (B.37CF} g —Zm.} (@,)7CFY g [3.361
1Wmy . femy uz‘l R "2‘

where {f} is a function of space and (U}, vy:. and g are
function of time. By using the stiffness orthogonality
properties of the transformation vectors, [@B17(KI1(@]1 = (w21,

written as
[K1—* = [@] (w=]1-* (@17 £3.371

the second term of the summation in equation [(3.341 is thus
equal to [K1-* {f(s)} since

, Z{m} (0.3 = [B] (w=]-* (@I £3.383
Ly wz‘

Equation [3.36] can therefore bhe written as



Uy =) 8.3 vy, + [KI-* {f} g —Z €0, {@,37 {f} g £3.391
4= damit "2*

LU = [B-1 {Y,? + (EKI-* - [@,]1 [w2.1-* [@,.17) {f} g [3.401

U = LB, €Y.} + ([K1-* — [K,.3-%) {f} g £3.411

where (tkK,.] is a symbolic representation for the truncated
expansion of the inverted stiffness matrix using a reduced

set of r vectors.

3.2.3 Static Correction Vs Madal Acceleration ¥s WYD Ritz

Vectors

The analogy between the static correction method, the
modal acceleration method and the WYD Ritz approach can
easily be established by looking at the vector summation

technique used to obtain the total response;

-~ Static Correction

-

TSI =Z{m} ya(t) + [KI™* ({f(3)3 ~ {f-(5)3) g(t) [3.421

idmma

-~ Mpdal Acceleration

-

)Y =) B3 ya(t) + (IKI™* - [K-17) {#(s)} g(t) [3.43]

Ammy

- WYD Ritz Vectors approach

-

UMT =D (X3 y=a (8] + [KI=® ()3 y==,(t) [3.44]
1
where y*"*,(t) = y*i(t) [3.45]

{((EKI™2{f(s)3)7 M1 (CK1-2{f(s)3))2r=
In each of the first two summation methods the full
loading vector <{f(s)} bhas been accounted for either in a
dynamic manner by the first term of the summation or in a

static manner by the second term. By looking at eguation

o3



[3.44] it should be noted that when mass orthogonal only WYD
Ritz vectors, {X,3}, are used in a direct vector superposition
analysis, - the first vector corresponds to the static
salution, [K1I=*{f(s)} to which an appropriate scaling factor
has been applied, while the additional vectors represent the
dynamic contribution neglected by the statiec solution. The
mechanics of WYD Ritz vector generation spread the spectral
content of the starting vector among all the basis wvectors
such that the static correction for higher modes effects is
automatically included in the formulation with the most
significant term coming from the first vector. Since the WYD
Ritz basis is able to achieve a good representation of the
locading with very few vectors it will be more reliable, if
the benefit of static correction can not be ascertained, to
use the error norm concept to include dynamically, in the
usual modal superposition summation procedure, enough vectors
to obtain a good loading representation. This argument is
applicable also to WYD Ritz vectors, <{=X,}, that are both
mass and stiffness orthogonal since it was shown that the
residual error force vector will be the same if the truncated

basis is formed from vectors {X.,2} or vectors {=X;}.

After ensuring that the vector basis is able teo
provide an adegquate representation to the locading spatial
distribution, it might be of interest to check if the
carresponding approximate structural frequencies, calculated
from the reduced eigenproblem, will sufficiently span the
frequency range of the applied 1loading to produce an
efficient solution procedure.  For loadings.with a frequency
content contained in a narrow band at the beginning of the
structural eigenspectrum, the static correction effects
included in the Ritz technique will be very efficient and it
is possible to obtain very good result even if the
representation of the loading by the truncated basis is poor.
It becomes however more difficult for the analyst to get some
appreciation of thé accuracy achieved by the summation

procedure.



5.5 Relationship Between WYD Ritz Splution and Exact Eigensolution

Even though the basic objective of the WYD Rit:z
approach 1is not to provide an accurate solution of the free
vibration eigenproblem, it might be of interest to establish
error bounds on the approximate structural frequencies

obtained by the WYD Ritz method from the solution of the

reduced eigenproblem.

A first approach consists in evaluating the final
approximate eigenpair (W2,, {2X,}) and then back substituting

in the original eigenproblem. An error norm given by

gy = (IKI{®X,} - W2, [MI{=X, 312 £3.461
1LKI{=X 43 1=

can be used for this purpose. Physically [KJ1{®X,} represents
the elastic nodal point forces and wW2; [MI{®X,} represents
the inertia nodal point forces when the FEM model is
vibrating in mode {®X,3}. Equation [3.46] is thus the norm of
ocout-of-balance nodal forces divided by the norm of the
elastic forces. The quantity “e,y should be small if w24 and

{®X4s} are an accurate sclution of an eigenpair.

In principle it is possible to compute the
approximate eigenpairs (W=,, {°X,3) from the solution of the
reduced matrix system at any step of the algorithm and use
equation [3.46] to assess the accuracy of the eigensolution
achieved by the WYD Ritz basis at that step. However if the
WYD Ritz algorithm is implemented by calculating the
tridiagonal form of the reduced system [T,.1LZ]1] = ([Z1[ A1
directly as explained in the next chapter, a simpler approach
is possible. it was shown by Faige, in the context of the
Lanczos method, (3.7) that it is possible to monitor the
eigenconvergence of the algorithm at step r by computing the
residual norm of a Ritz pair, (W®,, {°X,}), associated with a

back substitution in the original free vibration problem,
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without computing the Ritz vector {®X,} at all.,

The off-diagonal elements of ([(T,] automatically
provide an error bound parameter for the extracted
eigenvalues. In particular for the generalized eigenproblem
of structural dynamics, the absolute error bound for each

approximate root w2, can be found from the inequality
I (W23)/7(w23) — 1 4 £ | bray * 2,5 1 / A3 = €5 [3.47]

where b,.: is the next off-diagonal element of [(T,] computed
from wvector (X, and z,.,5; is the last element of the
eigenvector, normalized such that £Z2437{Z,43 = 1,
corresponding to A, the root obtained from the solution of

the reduced tridiagonal system.

Numerical applications dealing with equations [3,46])
and [3.47] as eigenvalue error bounds for the WYD Ritz method

will be presented in chapter 3.

It should be noted that if a more accurate
eigensolution of fhe modes represented in the spectral
content of the starting vector is sought, a combination of
the WYD Ritz reduction method and of the subspace iteration
(1.2) may provide a very efficient algorithm. In the
subspace iteration the eigenpairs are calculated to an
accuracy specified by the analyst therefore an iterative
procedure 1is reguired. For a rapid convergence in the
subspace iteration the starting vectors need only to span a
subspace that is close to the subspace spanned by the
required eigenvectors. The individual iteration vectors need
not to be good approximations to the required eigenvectors.
The subspace spanned by the sequence of vectors generated
using the WYD Ritz method tend to be close to the least
dominant subspace of [K] and [M]. Therefore the vectors
generated by the WYD Ritz algorithm can be use effectively as

the starting vectors for the subspace iteration. The details



of the algorithm are presented in fig 3.Z2.

The stiffness orthogonalization of the WYD Ritz
vectors, through the solution of the reduced eigenproblem
(see section 1.3 and fig 1.1), corresponds in fact to one
cycle of the subspace iteration procedure. Putting k equal
to zero, the algorithm of fig 3.2 combining the WYD Ritz
method and the subspace iteration is started at step 4.b),
the projection of matrices [K] and [M] on subspace E,, using
the WYD Ritz vectors generated by the standard algorithm (fig
1.1) as transformation vectors [X]. No check on convergence
is performed since the reduced problem is dnly solved once.
If a closer approximation ta the exact eigenspectrum is
required it is possible to continue the iterative process by

performing more cycles of subspace iterations.
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Fig. 3.2- Algorithm combining the WYD Ritz Method and the
Subspace Iteration for the Soclution of the
Generalized Eigenproblem [K) (@) = [M] (9] (w=]

1. Biven Mass, Stiffness Matrices [M]1, [K] and Load Vector {f}

Ml n x n system size
[K1 n x n
{f> n % 1
2. Trianqularized Stiffness Matrix:
(K31 = [L1T D] (L] n x n system

3. Use WYD Ritz Method to Initiate Subspace I[teration :

Establish r starting vectors in matrix [X]), of size n x r
from the WYD Ritz method. The number of iteration vectors
r is chosen greater than the number of requested
eigenvalues.

4. Perform Subspace Iteration calculations :

for k=1,2,... iterate from subspace E, to Exe:

a) calculate inertia contribution

[KJ [XJuws = [MI [XI, solve for [;Jk+1

b) project matrices [K]l and (M]J on subspace Ep.a

[KI®wes = [XITuey CKI [Xlpas
[MI®nas = [X1Twey CM1 [Xluas

c) solve reduced eigensystem

[KI1®pwr [Z]pey = M) %y L2000y TwW21, .,

d) calculate an improved approximation to the eigenvectors (@]

[XJuog = [XJpwa £Z1nes

e) check for convergence

tnlc = | “2‘ Ch+1) o “z“u:) ' V4 wz’.‘k'ﬁl)

if tolc § 10~ stop
if tole > 10=* set k = k+1 go to step 4.a



CHAFTER A

A New Algorithm for Ritz Vectors Generation

In this chapter the behavior of thé WYD Ritz
reduction method in the presence of the finite precision
arithmetic of the computer will be first investigated. it
will be shown that if the algorithm is directly implemented
from the original version presented in chapter 1, the actual
behavior of the method can be quite different than the
expected theoretical behavior since the resulting vector set
is usually not 1linearly independent as implied by the
algorithm. The consequentes of this deficiency will be
reviewed and an effective remedy to obtain an orthogonal set
of transformation vectors will be proposed. Then a new
algorithm to generate load dependent Ritz vectors will be
intoduced. The LWYD Ritz algorithm will be shown to be more
stable than the original WYD Ritz algorithm and allows a
better control of the static correction effects included in
the method. It will also be shown that for algorithms based
on the WYD Ritz method, it is possible to +form the reduced
tridiagonal matrix [T,1, which was shown to be equal to
(LKI=*)—*, from the orthonormalization coefficients calculated
while generating the vector basis. Finally numerical results
obtained from a simple structural system will be used to
illustrate the performance of the proposed variations of the

basic method.

4.1 Linear Independence of WYD Ritz Vectors

It was shown in chapter 2 that the algorithm used to
generate the WYD Ritz vectors is similar to the method used
"to produce Lanczos vectors. The WYD Ritz approach will thus
be suceptible to exhibit the same problem of 1loss of
orthogonality that affected the early computer implementation

of the Lanczos method. To be more specific we are concerned
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by the actual computer implementation, using finite
arithmetic, of step 4.(b} and 4.(c) of the algorithm
presented in fig.l1l.1, corresponding to the Gram—-Schmidt
orthogonalization procedure, used to get a basis of linearly
independent wvectors that will span the subspace defined by
the WYD Ritz vectors. The numerical stability of the Gram—
Schmidt process has received a lot of attention in the
development of a stable Lanczos method to solve for the first
eigenvalues of large matrix systems and much can be learned

from the actual computer implementation of these algorithms.

4.1.1 The Lanczos Method and the Loss of Orthogonality

Problem

The problem of loss of orthogonality of the Lanczos
method was always tackled by mathematicians bearing in mind
the ultimate objective of the method which is to obtain an
accurate solution of the eigenproblem. If the Lanczos method
is directly implemented from the algorithm given in fig. 2.1,
orthogonalizing the current vector against only the two
preceeding ones, it is found in practice that the Lanczos
vectors basis [X] will not be globally orthogonal. The loss
of aoarthogonality implies that the generated vectors {Xi> do

not satisfy the mass orthagonality, that is
£X,3T [M1 X.3 # 0 for i#j . [4.13

also, the matrix [T,.1 of fig. 2.1, consisting of the elements
as and by, does not satisfy the relation given by equation
£2.201,

[T # [XITCMICKI-2IMICK] [4.2]

In such a case even when r is equal to n, the order of the
original systemy, the one to one correspondance between the
computed eigenvalues of [T,.] and the eigenvalues of L[KI1{@] =
[MILPILw=]1 no longer exists and the recurrence algorithm does

not terminate for r eqgual to n.



Paige (3.7) demonstrated that the losses of orthaogo-
nality in the Lanczos vectors were caused primarily by the
convergence of eigenvalues of [(T.1 tao eigenvalues of [KI1[@8] =
[MILB1Iw23 and not simply by cancellation errors as it was
previously thaought. Faige also demonstrated that although
globai orthogonality was lost a localized near orthogonality
of the Lanczos vectors persisted as long as the off-diagonal

entries, b; of [T.1, were not too small.

What goes wrong 1in practice is that after an
eigenvector has been predicted accurately rounding errors,
rapigdly amplified by repeated multiplication with the
unreduced mass matrix, start to create another copy of the
same eligenvector. So it is possible to have two, three or
more approximate Ritz pairs which will accurately estimate
the same exact eigenpair of the generalized eigenproblem.
These Ritz vectors will be parallel which manifest the loss

of linear independence among the Lanczos vectors.

As pointed out in chapter 2, the Lanczos method or
the WYD Ritz algorithm is theoretically unable to detect any
eigenvectars that are orthogonal toc the starting vector.
That ies why a random starting vector is usually chosen hoping
that all required eigenvectors will be represented and thus
cbtained +Ffrom the algorithm. It should be noted that in
theory the Lanczos method without modification is thus unable
of finding more than one eigenvector for any eigenvalue,
namely the projection of the starting vector on the
eigenspace, and so is unable to determine the multiplicity of
any eigenvalues it finds since the eigenvectors of reapeated
eigenvalues are chosen to be orthogonal. In practice
rounding errors are magnified in the matrix multiplication
and in the orthogonalization process so that the computed
vectors will also partially originate from this source. This
property is important since in practice Lanczos programs find
multiple eigenvalues quite naturally. Rounding errors

introduce components in all directions. After one
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eigendirection of a multiple eigenvalue has been found the
components in the orthogonal directions will persist after
purification. These components will grow as the algorithm
continues until a second eigenvector, orthogonal to the

first, has been found.

If we insist that every eigenvalue of [T,.]1 must
approximate an eigenvalue of [KI1{@1 = [MI[B1Lw=2] then the
near global orthogonality is essential. Near global orthogo-
nality cannot be maintained without recrthogonalization with
respect to converged eigenvectors. Subsequent algorithm to
the basic method presented by Lanczos maintain the glaobal
orthogonality of the vector basis by continuously reorthogo-
nalizing the Lanczos vectors, as they are generated, against
all previously calculated vectors, see for example Paige

{(4.12) 4, Newman and Pipano (2.11), Ojlavo and Newman (4.11).

The advantage of carrying out reorthogonalization
with respect to earlier vectors is that multiple copies of
the same eigenvectors are avoided without endangering the

late development of sigenvectors of multiple eigenvalues.

4.1.2 The WYD Ritz Reduction Methad and the Laoss of

Orthogonality Problem

Even if the objective of the WYD Ritz approach is not
to obtain an accurate solution of the eigenvalue problem the
near global orthegonality of the WYD Ritz basis is mandatory
for the success of the method. If a linearly dependent basis
is used directly as transformation vectors, the reduced FEM
system will be rank deficient and will vyield completely
erroncus results. Moreover if the reduced system is
diagonalized, as required by the response spectrum method for
earthquake analysis, it 1is important that the approximate
eigenvalues corresponding to the low frequency modes of the
reduced system be close to exact eigenvalues of the original

system. 1f an approximate eigenvalue of the reduced system,



w1, is close to a number of exact eigenvalues w=2g,...,w 5 of
the original system, the corresponding WYD Ritz vector {=X,}
will be close to a vecteor that 1lies in the subspace
corresponding to {@y%,...,{@B53. In a practical analysis using
vector superpositon and the response spectrum for dynamic
response calculation, this is most likely all that is
required because close eigenvalues may almost be dealt with
as equal eigenvalues in which case the calculated eigenvector
would also not be unique but lie in the subspace

corresponding to equal eigenvalues.

Another advantage of maintaining the giobal
orthogonality of the WYD Ritz basis is that the reduced mass
matrix can directly be assumed to be equal to the identity
matrix avoiding to actually perform the transformation
[XIVIMICX3 to obtain [MI*™. The mass orthonormality of the
vector basis was also shown to be essential to develop error
norms to provide a criteria to know when to stop generating
new vectors while ensuring a satisfactory convergence for the

response quantities of interest.

The generation of a null vector by the WYD Ritz
approach will indicate that the subspace obtained from the
method will completely span the spectral content of the
starting vector which is precisely one of the objective of
the method. If additional vectors are required to extend the
frequency span of the basis, the algorithm can be restarted
by orthogonalizing a random vector with the previously
calculated vectors and use this to initiate the calculation
of additional vectors. This solution strategy will thus
become a combination of the WYD Ritz reduction method and the

pure Lanczos technigue.

Since the obiective of the WYD Ritz approach is not
to obtain an accurate eigensolution but to form an accurate
load dependent vector basis a reorthogonalization strategy

that monitors the loss of prthogonality of the vectors as
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they are generated will be most appropriate to obtain the

global orthogonality of the vector basis.

4.1.3 Corrective Measures by Selective Reorthogonalization

To maintain the global orthogonality of the Lanczos
vectors Oregory (4.7) experimented with the use of higher
precision computer operations but found only marginal
improvements. Later, Ojalvo and Newman (4.11) found that the
introduction of an iterative reorthogonalization loop can
make the trial vectors as orthogonal as necessary for large
systems. This procedure, adapted to the generation of the

WYD Ritz vectors, will be as follows:

1. The vector {g‘} is obtained after a first orthogonalizé-
tion +from the recurrence algorithm presented in fig. 1.1
and denoted {gg“’}’ a check is performed to verify if the
vector {g“"} satisfy the orthogonality criterion
described by equation [4,71]. If this criterion is met,
the algorithm proceeds to step 3. If the criterion is not

met, the algorithm proceeds to steps 2 to 4.

~
2. The vector {X;¢*’} is reorthogonalized with respect to all
previously calculated vectors according to:
=3
N n o~
{Xy €223 = {Xge2?} - Z:({XJ}T [M1 {(Xq€223) (X543 £4.61

A=

" | B Y n
(X, =03 - E:tcx,}T TMI (Xa ¢*?3) {X,3

d=-3

]
{Xg (m+l??

[}

3. The iterationg are carried out until the acceptable vector

n
{Xy ¢tm*233 will gatisfy the orthogonality criterion:

n
Max 1 X337 [MI {Xy¢=*22} | < TOL for 1<j<i-1 £4.71]



where TOL 1is a function of the number of significant
digits carried by the computer. A matrix form of the
check performed by equation {4.71 can be defined by using
the vector

N
{V, (@+2>3 = [XJH‘]T [MI {X4q <=+233 £4.87

where [X4-3] is a matrix of size n x (j—-1). The
orthogonality criterion is verified by ensuring that the
infinite norm ( {V} = maxe 1 {VIK)I) of {(Vy=*223 is5 less
than the TOL parameter. For greater numerical efficiency
the components of vector {(V4‘=**’} can be saved since they
correspond to the coefficients required by the Gram-
Schmidt process if another orthogonalization cycle, to

N
form vector {X,‘=*=2>}, is requested.

I+ for some vectors the above criterion is not satified
after a set number of iterations, NOG, a warning is issued
specifying the maximum wvalue of the orthogonality

coefficient:
al
Cs = max | {Xy37 [MI (X, ¢=+2>3 | 1<3<i-1 [4.93
The user has then two options:

(a) It can be assumed that a new WYD Ritz vector {Xi:3} can
not be generated within the maximum number of
iterations and tolerance specified and a reduced

problem of order i-1 will be solved
(b) Calculation can be pursued with reduced accuracy.
I+ the orthogonality criterion is met, the resulting
vector is mass normalized and calculations will proceed to

the generation of the next vector:

v o
by = ({Xg$=T223T [M] {3 ¢=+r1r3)1-=
n
{X12 = {Xy$=*+22% » 1/b, £E4.101
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It should be noted that in the case where no
iterative orthogonalization improvements are allowed the
algorithm corresponds exactly to the original version

presented in fig. 1.1,

4.1.4 Computer Implementation of Gelective Reorthoqonalization

Numerical experimentations were conducted on a simple
structural system to study the perfarmance of the propaosed
orthogonalization procedure and to verify the relative
efficiency of various implementation strategies. The

following variations were studied :

1. Basic Gram—-Schmidt orthogonalization algorithm in single

and double precisian.

2. Modified Gram-Schmidt orthogonalization in single

precision.

3. Partial higher precision arithmetic where all inner

product summations are accumulated in double precision.

The difference between the regular Gram-Schmidt and the
modified Gram—Schmidt procedure is that in the modified
scheme the improved version of the trial vector is always

used in the cy calculation according to:

compute for j=1,...,i~1

cy = {X537T [MI (Xa2

A —
a3 = X3 — oy €423 £4.111]
- n
{Xa2 = X, 3
cantinue
Typical operation counts are presented in table 4.1. From

the results of numerical experimentation it can be observed
that:



TABLE 4.1

Typical Operation Counts for Various Drthngunalizatinn
Procedures

n: order of unreduced mass matrix (M]
r: number of WYD Ritz vectors to be calculated

Lumped mass matrix Full mass matrix
Regular 6.S. n (r2 + r -1} nrs + n (r - 1)1

Modified G.S. n (372 r=) nr* 1 + n/2)

Note that if one iterative improvement is allowed, it has
been observed that approximately 504 of the vertors to be
calculated will require it and that these vectors are evenly
distributed among the total set to be generated.

Example: n = 100 r = 25

Lumped mass matrix Full mass matrix
Regular G.5. _ &4 200 302 500
Regular G.S5. 97 350 433 750
one iterative
improvement
Modified G.S. 23 750 X 187 500
Modified G.S. 140 425 4 781 230

one iterative
improvement

&7
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The matrix product {X, 37T [M] {X;} which will be repeated
many times should be coded in a special subroutine that

should exploit any known special properties of [M].

If a "large" system is analysed by the original WYD
formulation and no control is done on orthogonalization,

the vectors will in fact be far from orthogonal.

The selective reorthogonalization procedure used with
regular Gram-Schmidt is sensitive to the specified TOL

parameter.

To get optimum results, a maximum of only one iterative
improvement after a full initial orthogonalization cycle
is usually sufficient to bring all vectors within the
speci fied tolerance. It has been obser ved that
approximately S0%Z of the vectors to be calculated will
actually require this iteration and that these vectors are
evenly distributed among the total set of vectors to be

calculated.

The optimum TOL wvalue to be used with regular Gram-5chmidt
with one iterative improvement allowed will be
approximately 107 +for single precision arithmetic
carrying 7 significant digits (10-*¢ {for double precision
carrying 16 significant digits) . It should be noted that
the allowance of a larger tolerance value (eg. TOL=10"%)
reduced dramatically the number of vectors that can be
obtained within the specified tolerance, with one
iteration allawed, by the regular Gram-Schmidt procedure.
This is because the lérge tolerance will permit the first
generated vectors to have large erraors in orthogonality
that are very difficult to annihilate while

orthogonalization with new vectors is done.

The modified Gram—-Schmidt procedure is not as sensitive to

large tolerance allowed for arthogonality between vectors.



It is more stable than the regular Gram—Schmidt process.

-~ Selective or complete higher precision arithmetic brings

only marginal improvements.

~ The modified Gram—Schmidt procedure requires a significant
ampunt of extra dparations over the regular Gram—Schmidt
algorithm especially if a non diagonal mass matrix 1is
used. This is due to the fact that orthogonality with
respect to the mass matrix, Fforcing a multiplication with
the matrikx EM] in the most inner loop, and not

orthonormality is sought for the hasis.

- An alternative implementation that was found sligthly more
efficient was to orthogonalize the current vector {i,}
against only the two previous vectors {Xu—-13}, {Xi-=23 twice
and then enter the selective reurthugonalizatibn procedure

at the level of the orthogonality check.

. It is thus recommended that the original WYD Rit:z
formulation be. suppleﬁented by the selective
reorthogonalization procedure presented in section 4.1.3 in
porder to obtain a stable solution when the method is applied
to a large structural system. Typical results to illustrate
the performance of the proposed variations will be presented

in section 4.3 dealing with numerical applications.

Finally it should be remembered that in wvibration
analysis of large structures discretized by the FEM, the
forward and backward reduction of the inertia loads is
usually more expensive than reorthogonalization. For example
it happens very often that the same model is used for static
and dynamic analysis to avpid the cost of generating two
different models and maintain compatibility Ffor subsequent
lcading combinations. In such case a condensed mass matrix
is usually selected to ocbtain the global response of the

system but the stiffness matrix will retain a very large

69
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bandwidth, the relative cost of vector — mass multiplication
will then become very small. The modified Gram—Schmidt and
selective reothagonalization procedure can then be introduced
without a significant increase in total computer execution

time.

4.2 Computational Variants of the WYD Ritz Algorithm

4.2.1 The LWYD Ritz Algorithm

A new algorithm formulation to produce load dependent
Ritz vectors was studied to evaluate the possibility of
obtaining a more stable vector generation scheme. This
algorithm, called the LWYD Ritz algorithm, is shown in +fig
4,1. An initial vector, {Uo}, corresponding to the static
deflection af the structure subjected to the spatial
distribution of the dynamic loads is first generated. As new
vectors are calculated this initial static vector is updated
using Gram-Schmidt orthogonalization to remove components
common to the vector basis. The updated statiﬁ vector is
then wused in the usual recurrence relationship to generate
additional wvectors. A physical interpretation of the
algorithm suggests that the basic solution is obtained from a
static analysis, the static response is then modified by
removing "dynamic" contribution components and this is used
as the mechanism to calculate new vectors. It is anticipated
that by always returning to the initial static deflected
shape rounding errors that are accumulated in the original
WYD Ritz algorithm will be partially eliminated. Furthermore
this formulation allows a better control of the static
correction effects included included in the solution
procedure. The first group of generated vectors, which
capture the inertia effects by multiplication with the mass
matrix, will represent the dynamic contribution to the modal
summation. The residual of the static solution can then be

added optionally to the basis as a static correction term.



Fig. 4.1 The LWYD Ritz Algorithm

iI. Given Mass, Stiffness Matrices M1, [E1, load vectar {f3

LMl n % n
2 nxn
if n x 1

2. Trianqularized Stiffness Matriw:

(K1 = CL3I™ (D3 [L] n x n system

3. Solve for initial static deflected shape {Ug3
CK] U} = {3

4. Snlve faor First vector

(a) solve for vectors {X=i2

LK {X™33 = [M]1 {UoX

(b} [(Ml—mormalize {X*,3

({X™, 37T [MI {X*™,2)27=2
= {X*.} % /b,

1 =
Xe2

{c) Update Static Vector {Ucl}

Cur = {Us?T [MI {X,3
Uy = {Uo} — Cu1 £Xa 7

5. Solve for Additional Vectors: i=2,...,r~1

{a) solve for new vectors {X*.}

CET {X™:) = (M3 {Ug—al

(b) [Ml-orthogonalize {X*i) against previpus vectors {XsJ

Ty = TX337 IMI {X*,3 compute for J=1l,...,i-1
41

{X®*y 3 = {x'*}"E:C‘ {X42
LT

(c} [Ml-normalize {X*™*:}

v = ({X™® 37T [MI {X™"y3)37=
{Xa3F = {X*™33F # 1/v

() Update Static Vector {Us.,3

Cus = (Us23T [MI {Xy3
U3 = {U‘_]_} -~ Cua ¥ {X;}
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6. Add Static Residual {U,._.Y as Btatic Correction {X-2 {(optional)

(a) [M] orthogonalize {U,...Y (by precaution)
~ . 4—1 ’
Weoa? = {Up-ad - ({X53T [M] {Up—32) {X42

=3

(b)) [M)-normalize {Ue--317%

~)
br = ({U-23T M (U-_.3)27=
X3 = (0.3 % /b

7. Orthogonalization of Ritz Vectors with Respect to Stiffness
Matrix (optional):

(a) Solve the r x r eigeﬁvalug_prcblem 5

K= €Z1 = M1~ {11 (w=2]

where [Kl= CX1T [KI CX1]
tMi= [X2™ M1 [x3 = [11]
W = approximate frequencies

(b) Compute final orthogonal Ritz vectors

[=X1 = [X1 (2]



By using this formulation it is possible to define an
alternative error estimate that can be used to indicate when
the spectral content of the starting vector will be
exhausted. At any step of the calculation the norm of the
static residual ({U;}i3z can be checked against the norm of
the initial static solution |{Us}iz for that purpose. When
the ratio of {Ug2iz / 1{lUo}iz will drop below a certain
value the algorithm will potentially become able to generate
null vectors. From numerical experimentations it was found
that this error estimate will exhibit a logarithmic type of
decrement wuntil its value reaches the order of the numerical

roundoff of the computer.

It is recommended however that the 1loading error
estimates developed previously also be used along with the
LWYD Ritz algorithm since their values have a physical
interpretation closely realted to the analytical procedure of
vector superposition, indicating the fraction of the total
load that will participate in the calculation of the
structural response and are also able to indicate when the
spectral content of the starting vector will be completely

spanned by the vector basis.

Finally, it is interesting to note that the LWYD Ritz
algorithm, without the addition of the static residual, can
be shown to be numerically equivalent to the original WYD
algorithm if the vector {X;} used to initiate the recurrence
relationship is given by the [Ml-normalization of {{(LK3I=2L[MI1)
(LK1= {f(s)3)3} instead of {IKI-2 {f(s)32. From the
description of the LWYD Ritz algorithm it can be deducted

that its basic recurrence relationship is given by

X"y = {X"313F — Cuz—1 (LKIT2EMI) {Xgsd £4.121
with Cus—z = {Ug—237 [MI {Xi_1} - [4.13]

as compared to {X,3 = (KI7*IM]1) {Xg-ad £4.143

A



in the original WYD formulation. From the orthogonality

properties of the Ritz vectars it can be shown that

IX*aad = (X g a2 TIMIIX® 33V {Xa=2d + ({(Xaead TIMI{X™ g3 3D {X 22
[(4.151
Therefore the orthagonalization of the current vector {X=42}
against the two previously formed vectaors {X,-4} and {X;_-3}
included in step 5 b) of the LWYD Ritz algorithm will produce
a burified vector {X**,} that is theoretically equal to the
purified vector of the original WYD algorithm scaled by a

factor of cus-1, that is
{x"'g}huvn = Cug—-1 (Xitwvp [4.14861

The mass hormalization of the purified vectors will then

produce theoretically identical vectors {X,3.

4.2.2 Computer Implementation Using the Tridiagonal Form of the

Reduced System

By exploiting the similarity between the vector
generation algorithms used in the WYD Ritz reduction method
and the Lanczos method it becomes possible to form the
reduced tridiagonal matrix [{T,1 = ({KI*)~*, directly +rom
orthonormalization coefficients calculated while generating
the vector basis. This variation applied to the original WYD
formulation is presented in fig 4.2. The main advantages ot
this strategy are to avoid the explicit calculation of the
transformation [XITIKICXY and to further minimize the
bandwidth and storage requirements of the generalized

toordinate system.

I+ a <+$ull uncoupling of the reduced system is
required the solution of the eigenproblem in generalized
coordinates can then potentially take a full advantage of the
symmetric tridiagonal topology of the reduced matrix system.
The GR algorithm using Wilkinson's shifts (4.1) will be very



Fig. 4.2 Algorithm for Generation of WYD Ritz Vectors Taking
Advantage of the Tridiagonal Form of the Reduced
System (Extension of Original Formulation)

1. Biven Mass, Stiffrniess Matrices [M), [K), and Load Vector {f}

M1l n x n
[K3 n xn
i3 nx 1

system size

2. Triangularized Stiffness Matrixe

[K1 = [L2™ [D1] Ly n x n system

3. Solve for First Vector:

K3 €X.3 = {3 solve for {X,>
by = ({X437 IM1 (X3})127= M-Normalization
£X,3 = {X.3 # 1/b,

4. Solve for Additional Vectors: i=2,....r

(a) [K1 (X} = [M] {X.—22 - solve for {Xi}
(B)  @a—y = {Xa37T [M]1 {Xe—a? diagonal of L[T.)
(C) €y = X337 [M1 {X,3 compute for j=1,...,i-1
(@) (%3 = (Fa3 ~ 3. ©, €X,3  M-Orthogonalized

3 -3
(@) ba = ({X,37 M1 (X 3rs-= off-diagonal of [T-3
f) {Xy3 = {;l} * 1/b, M—-normalize

S. Orthogonalization of WYD Ritz Vectors with Respect to
Stiffness Matrix (optional)

(a)} EBonstruct symmetric tridiagonal matrix [T] of order r :

a; bz 0 [ . =« 0
bz an b; « = = - .
0 bs a: Ld L] - - -
ET-1 = o o . « « 0
. . - b'—‘ Sy b,
o . . - b. a,

(b) Calculate eigenvalues and eigenvectors of [T.3 :

£T-3 €21 CZ1 CA]

]

Cw=]

L}

£1/21

{c) Compute final orthogonal WYD Ritz vectors‘:

[=X1 = [X1 (Z]
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efficient to calculated the eigenvalues, X - By experience
approximately 9r= aperatiuns'are required for the solution of
all eigenvalues. The calculation of the eigenvectors however
requires special consideration. I¥f shifted inverse iteration
is used to téke advantage of the tridiagonal form of (T.-1,

two problems may occur;

- the shifted matrix (LT,.1 - A[LI1) used in the inverse
iteration procedure is naot generally pasitive definite so
there is a paossibility that normal symmetric factorization
will fail due to the presence of a zero pivot and a more

general matrix factorization algorithm may be required,

— while using inverse iteration the computed eigenvectors of
two close eigenvalues may be acceptable and yet not be

mutually orthogonal.

After proper numerical wvariations have been included to
overcome these problems the simplicity of inverse iteration
is lost and rival techniques that do not exploit the
tridiagonal tnpnlagy of the reduced matrix become
competitive. The convergence of the WYD Ritz reduction methad
is fairly rapid such that the task of computing the
eigenvalues and eigenvectors of the reduced system represents
a small fraction of the total exececution time. Therefore
the optimization of that final step does not appear to be

critical for the success of the method.

Actual numerical experimentations that will be
presented in chapter 5 have also shown that working directly
with I[T,.] is sometimes less stable than working with
CXITIKILX] especially if the eigenspectrum has close
eigenvalues regardless of the numerical technique used to
solve the reduced eigenhrnblem. Cunvergénce of displacements
and stresses can be obtained with approximately the same
number of vectors but intermediate results are more likely to

exhibit larger <fluctuations, particularly for stresses,



showing that the resolution of eigenvectors calculated From
[T-] was not always as sharp as the resclution obtained from
EXITLKILX].

By studying the basic recurrence relationship of the
LWYD Ritz algorithm it can be shown that it is also possible
to form the corresponding reduced tridiagonal system directly
from the orthonormalization of the calculated vectors. The
details of this implementation strategy are presented in fig.
4.3.

4.3 Numerical Application on Simple Structural Systems

4.3.1 The CALSAF Computer Program Development System

The basic tool to carry out the development,
implementation, and preliminary evaluation of load dependent
Ritz wvectors generation algorithms, is a modern version of
the computer program CAL (4.16) a Computer Assisted Learning
language adapted to the micro-computer. All computer
operations are conducted in FORTRAN 77 and use the CALSAP
development system (4.8, 4.17) in order to obtain program
modularity and portability. Therefore, the new program
modules will operate efficiently on both micro and mainframe

computer systems.

4.3.2 Description of Mathematical Model +or Numerical

Applications

In order to evaluate the proposed variations of the
WYD Ritz reduction method, numerical experimentations were

carried out on a simple structural system. A fictitious

offshore platform was modeled as a 40 DOF shear beam.

structure as shown in fig. 4.4 . The material properties
were selected such that the fundamental period of vibration
is close to 6 sec (5.93 sec). The steady state dynamic

responses to two type of loadings were then examined. The
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Fig. 4.3 Implementation of the LWYD Ritz Algorithm Taking
Advantage of the Tridiagqonal Form of the Reduced System

1. Given 'Mass, Stiffness Matrices [M1, (K1, load vector {f)

(M3 n % n
[E] n x n
{+3 nx 1

2. Triangularized Stiffness Matrix:

K1 = [LIT £D1 (L] n x n system

3. Solve for Initial Static Deflected Shape {Ug}

[T {Usd = {3

4. Solve for First vector

{a) solve for vectors {X*,2}

[KI {X*.3 = M1 {Usl

(b) [(MlI-normalize {X*,}

2 = ({X*3Y [M] {X=,3)r-=
Xi} = {X’;} * 1/b,

{c) Update Static Vector {Us}

Cur = {Uo3™ CM1 {X.2}
Uy = {Uod ~ Cua €Xi2

9. Solve for Additional Vectors: i=2,...,r—1

(a) solve for new vectors {(X®.7

[KI {X®*y3 = [M] {Uy-13

(b) calculate diagonal element of (T1

Aa—a = CLLX®3 ~ X233 MY {Xq—23) * (-1/0ua-2)

(cy ([Ml-orthogonalize {X*,} against previous vectors {X,J

Cy = (X437 M2 {X*:2 compute for j=1,...,i-1
| e

X", 3 = {X*,} —Z cy X423
=1

(d) (Ml-normalize {X="";3)

v = ({X""g37 [M] {X=™y3)27=
{Xad = {(X*=",3 % 1/v
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te) calculate aoff-diagonal element of L[T]

Bi = =v/Cus—a

(f) Update Static Vector {U,_.>

Cus = U337 [MI {Xy 3
{Ug} = {Ug_—.l} ~ Gz ¥ {Xz3

&. Add Static Residuwal {U._3) as Static Correction {(X-3 (optional)

(a) M1 orthogaonalize {U._,3} (by precaution)

Lald 11 .
CUroa? = {Uroyd — 2, (X427 [MI (Ueroad) €X,2
3

2
{b) Ml-normalize {Gr—x}

~ ~
({037 M1 WU, _ 3272

-_,3 * 1/b,-

(c) complete diagonal of [T3

IKY {X-usd = M1 (X2 solve for {(X-+17%
Ay = X,z M1 {X-3

(d) complete off-diagonal of [T]

b, = {Xec13T MY {X-aa?

7« Drthpogonalization of Ritz Vectors with Respect to
Stiffness Matrix {(optional?l

(a) Construct symmetric tridiagonal matrix (T3 of order r :

a; bz O . . .. 0]
be az bx « s . . =
0] bs ax - ® 0w . =
[T-1 = o O . . « O
e . ber-12 ar-1 b~
0o . . - b~ ar~
L N

(b) Calculate eigenvalues and eigenvectors of (T, =

[7,-3 €213

£LZ31 X}

Cw=1 L1723

(c) Compute final orthogonal Ritz vectors :

[=X1 = [X] [Z1]



8o

&00°

40 @ 15°

DOF No.
ar 40
39
Wave Loading
a8 =% 1000% Sin(0.78 t)
37

%

Wy
To

Structural Froperties

= 0.78 rad/sec
= 8.0 sec

(klpwam = 1 -1 *# 6854 kips/ft
4V' -1 1
3
2
1 MIpsag = {7y 79 7y =u-3 7, 7, 493
(kips - sec®) /s ft

AR

| epn———
Earthquake Loading

{(F{s,t)> = [M] {r3> (0.2g Sin(B.5 t)

ry = €1, 1, 1y cuey 1, 1, 1,37

We
To

8.5 rad/sec
0.74 sec

nu

"Exact" Eigensolution [KI (81 = [M] [8] [w=2]

Mode no. Freq. (rad/sec) Feriod
1 1.046 5.93
2 3.22 1.95
=t 5.47 1.15
4 7.78 0.81
= 10.17 0.62
é 12.49 Q.50
7 14.84 0.42
8 17.19 0.36
T 12.51 0.32

10 21.81 0.29

{sec)

Fig. 4.4 Fictitious Offshore Flatform Modelled as a
40 DOF Shear Beam Structure



first case represented wave loading idealized as a sinuscidal

forcing Ffunction with a maximum amplitude of 1000 Kips and a

period of B sec. This example is specifically designed such

that

— the participation of higher modes is important to the
structural response since a single ctoncentrated load and no

damping were being used,

- the static correction or modal acceleration summation

methods should be very effective.

The second case represented earthquake loading. The
ground acceleration was idealized as a sinusoidal motion with
a period of 0.74 sec and a maximum amplitude of 0.2Zg. The
static correction or modal acceleration summation methods
will not be as effective for this loading since the forcing
frequency, w_, 1is in the range of important structural

frequencies (between the 4th and 5th modes).

In both cases an exact mathematical solution
corresponding to the spatial distribution of the steady state
response, {Ui(s)}, of the proposed discrete structural model
can easily be computed from

(LK1 — w32 [M1)—1 {f{(=)} = {UW{s)} [4.171
the exact displacements will be given by

Uls,t)> = {U(s)) * sin (w_t) [4.181

The exact shear force in each beam can then be calculated

from the differential displacements of the nodes.

4.3.3 Evaluation of Computational Variants of the WYD Ritsz

Algorithm

The overa11 quality of an algorithm should be judged
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by the numerical effort and storage requirements necessary to
achieve displacement and stress convergence. More
specifically the following aspects of the WYD Ritz reduction

method should be considered;

computational efficiency monitoring computer execution time

for vector calculation,

- the number of required vectors to be considered in the

superposition summation,

- the representation of the spatial distribution of the

dynamic load achieved by the truncated vector basis,

—- the degree of global orthogonality achieved by the vector

basis,
— the spectral content of the starting vector,

- the frequency content of the dynamic loads as compared to
the structural frequencies represented in the reduced Ritz

system,

- the spread in the eigenvalues of the free vibration

problem,

-~ the formulation of the reduced Ritz system using either
[KI* or [T.1. '

The computational efficiency study and an assessment
of the influence of the form of the reduced Ritz system and
of the spread in the eigenvalues of the free vibration
problem will be postponed to the next chapter where the
response of a fully coupled 3D model of approximately 100
dynamic DOF will be investigated.

The representation of the spatial distribution of the



dynamic laad, as given by the Euclidean norm of the error
force vector, e*, {for various number of vectors included in
the calculations is shown in fig. 4.3 and 4.6. The
superiority of the WYD Ritz reduction method over the exact
eigensplution is clearly svident. Load dependent'Ritz bases
are able to obtain a good reresentation of dynamic load, say
from 90% to 100%, with a fraction of the number of vectors

reguired from the eigensolution.

To monitor the degree of orthogonality achieved by
the wvector bases a global orthogonality index, 0I, was
defined using the ratio of the lowest to the largest
eigenvalue of the matrix [V] = [XITIMILCX1]. For a perfectly
orthogonal set of vectors this index, corresponding to the
inverse of the condition number of [V]l, should be equal to 1.
For a linearly dependent set 01 should be squal to =zero,
intermediate values will show the relative degree of

orthogonality achieved by the bases.

The results comparing the performance of the LWYD
Ritz algorithm without selective reorthogonalization and the
original WYD Ritz algorithm for the case of wave loading are
presented in fig 4.7 . It is shown that the orthogonality of
the basis generated from the original WYD algorithm decays
rapidly after the first 12 vectors were calculated the vector
basis becoming linearly dependent at the inclusion of the
18th vector. The LWYD Ritz algorithm maintained a high level
of orthogonality until the spectral content of the starting
vectar was exhausted. The orthogonality index (without
reorthogonalization) was obtained as .7999936 after 20
vectors, the loading erreor norm e* indicating a value of
99.9264. The orthogonality characteristics of the LWYD Ritz
aigorithm are so good that the algorithm started to generate
null vectors after the calculation of the 20th vector. The
error estimate monitoring the norm of the static residual
{{Us!2 against the norm of the initial static scolution

1{Us}ia was found to exhibit a logarithmic type of decrement
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reaching a value of 107, the order of the roundoff! used in

these calculations at the 20th vector.

The oariginal WYD Ritz algorithm with one selective
reorthogonalization 1loop permitted was able to obtain an
orthogonality index of .9981955 after 20 vectors were
calculated +For a loading error norm, e*, of 99.9932. The

behavior of the two algorithms being now very similar.

A significant difference then happened after the
calculation of the 20th vector. The original WYD Ritz
formulation (with selective reorthpgonalization) kept on
generating new vectors reaching an orthogonality index of
- 990464620 after the calculation of the 40th vector, while the
logading error norm oscillated between 99,9932 and 99.9944.
What was happening is that the first orthogonalization pass
produced an almost random starting vector containing
numerical noise and the reorthogonalization pass was then
restarting the method in a stable fashion. On the other hand
the superior orthogonality characteristics of the LWYD Ritz
algorithm terminated the vector generation in accordance with
the basic philosophy of the WYD Ritz reduction method, when a
complete representation of the spatial distribution of the
dynamic load was obtained from the basis and this without the

requirement for any iterative reorthogonalization.

The convergence characteristics of the structural
responses are shown in fig 4.8 and 4.9. The maximum error in
beam shear forces were calculated for various number of
vectors considered by different algorithms. The errpr was

obtained as

Sk,i. - Sk,-n.:t * 100 [4.19]

Sk.-unct max owver ik
where 5,.,1 1is the shear force in beam "k" considering "i"
modes in the summation. This error evaluation will not

necessarily exhibit a monotonically decreasing type of
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convergence since the maximum value can occur from a
different beam for a different number of modes retained in
the summation. The error in displacements were generally

small and were not worth tabulating.

A +Ffully converged solution was defined when the
maximum error in beam shear forces was found to be less than
1%, For the case of wave loading convergence was obtained
from 3 LWYD Ritz vectors with static residual or from 3
vectors calculated from the ariginal WYD formulation. The
exact eigensolution required a complete basis of 40 vectors
for convergence while 2 eigenvectors supplemented by static
correction or mopdal acceleration were able +to achieve
convergence. This example emphasized the benefit af the
static correction effect included in the WYD Ritz reduction
method to obtain rapid convergence of the stuctural response
when the ratio of loading frequency to structural frequencies

suggest that higher modes are responding in a static manner.

The LWYD Ritz algorithm without static  residual
converged with 12 vectors. It can be further observed that
the cdnvergence characteristics of the LWYD Ritz algorithm
without static residual is somewhat similar to the exact
gigensolution but shifted to the left suggesting that vectors
of similar contribution occur much =sarlier in the Ritz mode

basis than exact eigenbasis.

A graphical representation of the vector shapes that
were calculated for convergence under wave loading ié
presented in fig 4.10 and 4.11. The original WYD Ritz
algorithm or the LWYD Ritz algorithm with static residual
generated (M1 orthonormal vectors {X,} or (M3 and [K1]
orthogonal vectors {=X;}, that were very close to the vectors
cbtained from the exact eigensolution supplemented by static

correction.

The LWYD Ritz algorithm without static residual
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generated [M] orthonormal vectors {X;} that had chh more
oscillations in amplitude near the applied loading than the
corresponding exact eigenvectors. The first [M]I and [K31
orthogonal vectors {°X,}, obtained from {X,2}, had shapes that
were very similar to the corresponding exact eigenshapes.
Then "specialized” vectors that had high amplitude components
in the vicinity of the loading were obtained. Tﬁese vectors
will be very efficient to modify locally the solution
capturing the effect of the concentrated load. Vectors of
high ascillatbry nature are obtained last +From exact
eigensolutions such that a linear combination of all the
eigenvectors is required to reproduce the localized effects
of the Ritz modes, this is why a complete eigenbasis was

necessary for convergence.

For earthquake Iloading, applied with a forcing
frequency between the 4th and the Sth mode, convergence was
obtained from 10 vectors for the LWYD Ritz algorithm with
static residual or the original WYD formulation (with reor-
thogonalization), while 12 wvectors were required from the
LWYD Ritz algorithm without static residual. The
eigensolution converged with 30 vectors while the
eigensolution supplemented by static correction or modal
actceleration required 15 vectors. For this example where the
effects of static torrection can not be expected to be very
effective the LWYD Ritz algorithm with or without static
residual produced results of comparable accuracy for madal
summation including 7 vectors or more. wWhen the first few
vectors were considered in the summation wide fluctuations in
the response were observed as reported in table 4.2.
However, the solution using the LWYD Ritz algorithm without

static residual did stablize more rapidly,

It should als=ac be noted that as Ritz wvectors are
added to the solution, the first structural frequencies of
the reduced system are converging toward values of the exact

eigensolution. It is +thus possible for the reduced Ritz
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TABLE 4.2

Maximum Error in Beam Shear Foaorce (%)

Earthgquake Loading

vector Eigenvectors Eigenvectors LWYD vectors+ LWYD vectors no

no. +Static corr. Static resid. Static residual
1 331 2066 333 3I3
2 494 82 415 486
3 453 884 323 401
4 714 510 1435= 145921
S 17 91 Io16 646
- b 117 43 348 147
7 118 26 100 12

note 1- Ritz mode # 4 has a period of 0.73 sec which |is
close to resonance with applied loading

2- Ritz mode # 4 has a period of 0.77 sec which is
close to resonance with applied locading



system to enter in a state of resonance at an intermediate
stage of calculation. If the eigenvalues of the reduced
system are not yet stabilized the inclusion of additional
vectors in the solution will correct the situation; if the
eigenvalues are stabilized then a true resonance condition is
tc be expected and appropriate design modifications must be
considered. The calculation of the eiqgenvalues Ffrom the
reduced tridiagonal matrix offers a very economical way of
checking the ratios of retained structural frequencies to

loading frequency at any stage of the calculation.

In summary, <for both analyses it is obvious that an
exact eigensolution is not very effective to obtain the
structural response. The eigensolution supplemented by
static correction or modal acceleration is able to compete
with the WYD Ritz reduction method in terms of the number of
vectors to be considered in the superposition summation but
as it will be shown in the next chapter the load dependent
Ritz wvectors are approximately 7 times cheaper to generate
than eigenvectors such that the WYD Ritz reduction method is

clearly superior.

4.3.4 Influence of Starting Vector on Convergence

Characteristics of Ritz Solutions

To demonstrate the influence of the choice of the
starting vector on the convergence characteristics’ of the
solution a vector basis aenerated from the LWYD Ritz
algorithm without static residual and using a random vector
as 1initial 1loading distribution was used to calculate the
structural ‘response of the system to wave 1lpoading in a
Lanczoz type of analysis. The spectral content of the
starting vector was exhausted after the calculation of 179
vectors with a corresponding maximum shear force error term
of &3%. To obtain convergence the procedure will thus
reqgquire a restart to add new vectors to the basis in order to

force convergence of the eigensolution of the reduced system

95



-

to the exact eigensolution of the original structure. The
original WYD formulation with selective reorthogonalization,
which was shown to automatically restart itsel# from
numerical roundoffs was used to pursue the analysis. The
convergence of the solution was found to follow closely that
of the exact eigensolution requiring a full basis bf 40

vectors to achieve convergence.

This aﬁalysis illustrate that the fast convergence
rate obtained from the WYD Ritz reduction method is mainly
due to the inclusion of the spatial distribution of the
dynamic load in the vector generation process. Ta obtain
convergence the Lanczos method was forced tao extract higher
modes accurately, in such situation the Lanczos method is not

very effective,

4.4 Recommendations

From the analysis of the numerical results it can be
concluded that if the benefit of static correction can not be
ascertained, the most reliable solution strategy while using
the WYD Ritz method will be to assume that the static
correction effects obtained from the addition of the static
residual to the basis will have a small contribution to the
rate of convergence of the solution. The locading error norms
should then be used ta ensure that a "“"good" loading represen-—
tation, say from Q0% to 100%, is ohtained from the modal
summatiaon of “dynamic" vectors, the static residual being

then optionally added to the sclution.

The frequencies spanned by the Ritz solution' shouid
also be compared, whenever possible,'with the frequency range
of the applied loadings. 14 there is an insufficient number
of vectors after the spectral content of the starting vector
has been exhausted a random vector can be used to restart the
algorithm. It should however be recognized that any vector

superposition technique is generally not very effective to



evaluate the structural response of systems subjected to high
frequency laading nor is the structural (FEM) model likely to

be very good for such loading condition.
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CHARFTER S

Application of the WYD Ritz Reduction Method

in Earthguake E€ngineering

This chapter presents numerical results ocbtained from
the seismic analysis of a structural system using
approximately 100 dynamic DOF in its idealization. The
earthqgquake response spectra technique was used in the
analysis to validate the WYD Ritz reduction method for this
particular solution procedure. The analysis tries to answer,
from a pra;tical standpoint, two important questions; (1) how
many 1load dependent Ritz vectors should be retained in the
reduction process and (2) how accurate are the ensuing
results. For that purpose comparisons were established
between analytical results ocbtained from exact eigensolutions
and Ritz solutions. It is shown that the WYD Ritz reduction
method used along with response gpectra type of calculations,
bhas definite advantages over the traditional eigensolution in
terms of a much reduced numerical effort to generate the
transformation vectors and improved convergence rate of the
resulting basis. Finally, specific numerical criteria,
established in terms of the error norms presented in chapter
3 are suggested to serve as guidelines for an efficient use
of the WYD Ritz reduction methaod .in actual engineering

applications.

5.1 SAP-80 Pragram Mgdule for Ritz Vectors Calculations

In order to gain experience with a larger and mare
campliex structural system than the shear beam madel used for
preliminary algorithms development by the CAL program,
computational variants to generate 1load dependent Ritz
vectors, with the addition of error norms calculations, were
caoded as a new modules of the SAP-B80 computer program (4.18),
a general purpose structural analysis package developed for

micra and mainframe computers.



5.2 Description of Mathematical Models for Numerical

Applications

f fixed offshore platform was selected for this study

since it represents a complete dynamic problem where
mul tilpad patterns, dynamic substructuring and lpcal
nonlinearities have found many applications. An  idealized

version of a three dimensional steel Jjacket platform
described in some details by Ferrante et al. (85.8) was scaled
up  fram a 130 ft high tower ta a 3JI00 ft structwe. The
mattiematical model , a 'space frame composed of three
dimensional linear beam elements of tubular section, is shown
in fig S.1. The platform has a total of 192 static DOF. The
26 dynamic DOF retained in the analysis were taken as the 3
translational components at each noade. The mass matrix,
obtained from a special computer program, was thus generated
ignoring rotatory inertia at all nodes.

Twiz different models having the same stiffness
characteristics but using different mass distribution at the
deck level were studied using the response spectra  technigue
for three component earthquake design. The first madel uses
a symmetrical mass disgtribution and the second model an
asymmetrical mass distripbution., The inertial characteristics
of the two models are presented in table $.1. The purpose of
the symmetric model is to study the behaviar af WYD Ritz
solutions for systems that da not have a simple eigen—
spectrum; that is, repeated eigenvalues can be expected from
the mathematical madel. The asymmetric model will be mare
likely to possess a simple eigenspectrum and will also be
useful to examine the behaviar aof structures where the

torsional respaonse can become significant.

S.2.1 Mass Mabrix

The structural mass matrix was formed by lumping at

the nodes the member masses in air including deck loads and
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TABLE 5.1

Inertial Characteristics of the Two Studied Models

The mass matrices were formed considering centributions from
the mass of the material of structural elements including
contained fluid, the added mass at submerged nodes and the
mass of the deck.

Symmetric Mass Model Asymmetric Mass Model

Center of Gravity

CGX: S50.00 CGX: 44,89
$t) CGY: 56.00 CGY: 02.84
CGZ:  273.09 CGi: 273.09

" Total Mass {Including non active DOF)

Kip-sec® MX: 492.8 MX: 492.8
ft MY: 492.8 MY: 492.8
MZ: 471.7 MZ: 471.7

Moment of Inertia

ft IYY: 270,044 IYy: 266,066

[KiE—Sec2 * ft%] IXX: 270,044 IXXsz 257,158
12Z: 2,397,463 1ZZ: 2,397,463
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water (up to still water level) contained in the members.
The hydrodynamic forces coming from motions in the water were
accounted for by using an added mass, corresponding to the
mass of #fluid accelerated by the structure, for each node
below still water level. The total added mass at a node was
obtained by summing the volumetric contributions of members
contained in the nodal tributary zone which was calculated
using the specified diameter, D, and projected length, L, of
the elements onto the structural coordinate axes. For a

typical node the added mass in the "X" direction was thus

given by
-
Mo w = (Cx = 1 PY . Viisom 5.11
Jeu g
where m=®,.. = total added mass at node "i" in "X" direction
Cs = inertia coefficient taken as 2 (see ref. 3.1)
P = fluid density (64 #/ft> for sea water)
Vi,3.0 = tributary volumetric contribution of element
"j" in direction “X"; (TD=2,/4) % L, 5. for
nodal zone "i"
- = number of elements in nodal zone "i"

Similar calculations were performed to obtain m=,_,, &nd
m*; .x- This lumping procedure will result in a diagonal mass
matrix, which 1is in accordance to the usual practice in the
dynamic analysis of fixed jacket platforms (see ref. 5.1,

S.9).

S.2.2 Stiffness Matrix

The stiffness matrix was obtained by. using static
condensation on the massless DOF. The main advantages of
using static condensation are to get a reduced matrix size
for storage requirements in further manipulations (such as
eigenvalue extraction) and to reduce the number of numerical
operations required for successive matrix decomposition used

in the subspace iteration with shifting tc extract exact



eigenvalues. The characteristics of the stiffness matrix

used for this analysis are presented in table 5.2.

It is noted that a saving of approximately 44 in the
operations count and 30% in storage requirements is achieved
by using a reduced system. For micro-computer applications
this was advantageous since the initial static condensation
was done using a block—-out-of-core solver and the smaller
storage requirements of the reduced system allowed the use of
an incore solver for subsequent calculations. The incore
solver is much more efficient since 1/0 transmissions to and

from low speed storage are eliminated.

5.2.3 Dynamic toading Characteristics

Time history analysis may be attractive to some
analysts because it provides completely deterministic results
for a particular ground motion. However, any two motions may
produce quite different peak responses, even though they have
the same intensity and statistical properties. Thus, +{or
design it is necessary to analyze for several ground motions
and use an average or envelope of the results. The quantity
of computations becomes rapidly excessive and in practice it
is much more convenient to introduce the averaging process in
the construction of a smoothed response spectrum. Mareover,
certifying agencies and national or regional building codes
usually provide response spectra specifications to help the
engineers to comply with the requirements of the seismic
analysis. it is therefore very important, +from a practical
standpoint, to assess the performance of the WYD Ritz
reductiocn method for the earthquake response spectra analysis
technigque. For that purpose & comparaison between the
convergence characteristics obtained from exact eigen—
solutions and 1load dependent Ritz solutions will be

presented.

The response spectra used in the calculations follows
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TABLE 5.2

Characteristics of the Stiffness Matrices used in the

Numerical Example

Original [K] Matrix

[N

Reduced [K] Matrix

[R—

Number of equations {(n)

Semi bandwidth (b)

Number of mass points s

Number of operations for
matrix factorization H

Storage requirements z
{real values)

192

40

24

153 &00*
7 052

&

Q6

&6

147 AS56"™*

4 &356

* 172 nb2 For (n << b)

#* n3/4 for (n = b)



the earthquake design recommendations for offshore platforms
(AFPI-RP2A, ref.3.1) and is shown in fig. 5.2. An effective

horizontal . ground acceleration of 0.2g with 5% damping was

used. The resulting spectrum was applied along the
horizontal "X" axis of the structure. An acceleration
spectrum of 2/3 the acceleration used in the principal *“X*

direction was applied in the orthogonal "Y" direction and an
acceleration spectrum of 1/2 the principal "X* acceleration
was applied in the vertical "Z" direction. The three spectra

were applied simul taneously.

The spatial distribution of the dynamic load {f{s))}
used to initiate the calculation of load dependent Ritz
vectors was taken as

{f(s)} = IMI{r,.3 + [M14r, 3 + [M1{r.3 [(5.21
where [M]1 is the mass matrix and {r;} is the influence vector
representing the displacements of each DOF of the model! from

unit directional displacement of base input.

5.3 Earthquake Analysis by the Response Spectrum Technique

A response spectrum is an envelope of maximum
response of a SDOF subjected to a particular disturbance and
plotted as a Ffunction of the natural period of the
oscillator. Different spectrum curves are obtained for
different damping ratios. For earthguake analysis typical
response spectra are obtained from the average maximum
response oOf SDOF systems subjected to a serie of earthquake

accelerograms scaled to the same intensity.

The traditional approach of response spectra analysis
for MDOF systems is to use a truncated set of the lowest
eigenvectors, {@,1}, corresponding to the displacement
sclution of the free vibration equilibrium equations with

damping neglected, to transform the original system expressed
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Response Spectra Used in Calculation
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in geometric toordinates to a serie of uncoupled generalized
SDOF expressed in modal rcoordinates. The damping matrix is
not formed explicitly, it is rather assumed that damping is
proportional to [M) and EK] such that a modal damping
parameter,{,, can be assigned to each generalized coordinate.
A typical equation of motions in modal coordinate is thus

given by

Ve + 28, we ya + W8 oya = {@:37 [M1 {r} g(t) [5.3)]
@37 [M] {02

The typical maximum contribution of mode *"i", taken
as a generalized SDOF, to the total displacement response of

" the structure, is obtained as:

{Ul.m-u} = {Bg} * Pi »* Sg.g [5.43

where 54, is the spectral displacement at the period of mode

“i" and p, is the modal participation factor given by:

pa = {B.37 [M]I {r) £5.5]
{2,327 [M] (B3

the vector 4{r} being defined from the usual directional
coefficients resulting from unit support displacements. The
maximum value of the generalized coordinate y,(t}) is thus

equal to ps * Su,a.

The uncoupled form of equation [5.31 can alsa be
cbtain from the load dependent Ritz pair {(®X.:2. The resulting

equation of motion in generalized Ritz coordinate is given by

Sy, + 2 F4 WR Oyy + W2, Oyg = {oX 3T [MI {r} g(t) [S.6]
' £oX, 3T [M1 (=X,}

The maximum wvalue of ©y, (t) will also be derived from the
specified spectral displacement.
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Far an arbitrary arientatiaon aof a three dimensianal
input acceleration vector, the modal responses associated
with a particular direction aof excitation are first
evaluated. An approximation to the maximum response is then
obtained by combining modal maximum of individual response
quantities (modal combinations) using a specified combination
rule. The total response is gbtained by summing the response
from the three directions by the Square Root of the Sum of
the Square (SRSS) method (spatial combination).

As previously stated, the use of response spectra for
the design of earthquake resistant structures has been
established as an inexpensive and reliable alternative to
multiple time history analyses. The main drawbacks of the
method are pertaining to the number of modes that should be
retained in the analysis and the choice of an appropriate
cembination rule for the superpositiaon of maodal maxima, not

all aof which occur at the same time.

For this study, the modal response were combined
using the Complete Quadratic Combination method (CQC). The
CAC method requires that all modal response terms be combined

by the application of the following equations:

for typical displacement components u{k):

utk) =(ZZu(k)‘ Pas ulk)grrrs= £5.71
< 3

for typical force component f(k):

FCK) =CD D FK)y pay £(KI,)372  [5.8]

L 3
where ulk), is a typical component of the modal displacement
response vector {Us;.me.} and F(k), is a typical force
component which is produced by the modal displacement vector
Uy .manxl. Thae CEC method considers a cross modal correlation

factor, p.ss which is a function of the modal frequencies and



damping ratios of the structure. The method has proved to be
more accurate, when compared to actual time history analyses,
than the traditional SRSS method (for modal combinations)
specially for sasymmetric models or models having closely
spaced modes. A complete description of the method has been

given by Wilson, Der Kiureghian and Bayc in reference 5.6.

Finally it should be noted that while working with the
response spectra method, the basic static carrection
procedure can not be applied directly to supplement the modal
summation since a special combination rule to approximate the
expected value of the added effects of individual maximum
response must be used. The LWYD Ritz algorithm without static
residual would therefore appear to be more consistent with
the response spectra method.

S.4 Computational Efficiency Study

Typical operation counts required by the subspace
iteration technique, the Lanczos method and the WYD Ritz

reduction method to obtain a fixed number of transformation

vectors, r, to expressed the original structural system in

generalized coordinates are presented in table 35.3. The
purpose of this comparison is to provide an indication of the
potential efficiency of each wmethod assuming that all
techniques have been implemented with the same programming
skills. Each operation is assumed to consist of a multipli-
cation followed by an addition, the value of n denotes the
aorder of the stiffness matrix in the analysis and b its
average semi bandwidth. It is assumed that the mass matrix
is diagonal. The average bandwidth parameter is used
primarily ta provide a measure of the number of nonzero
matrix elements, ‘since in actual implementation a profile
solver which does not require a uniform.band structure is
used for efficient computational operations. It should also
be noted that each method has the same order of storage

requirements Qdnk).
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TABLE 5.3

Operation Counts for Alternate Methods of Transformation

Vectors Calculation

Method Approximate Operation Count for r vectors?
(significant terms)

Subspace Iteration? Method

{assuming ten iterations on a nBZ + 20 nbr + 18 nr® + 147 nb ...
subspace of r+B vectors to + 136B n + 162 r= + 324 7
obtain r eigenvectors {@8,3)

Lanczos Method

{assuming 2r vectors required 172 nb= + 4 nbr + 10.5 nr2 + ...
for r eigenvectors {@,}) 16 nr + 284 r= + B0 r=

WYD Ritz Vectors Methaod

{original algorithm using [KI*, 1/2 nb2 + 3 nbr + 3.7 nr2 + (..
r vectors {®X;3) 2.9 nr + 9 r= + 18 r=

LWYD Vector Algorithm

{ algorithm using [Ki-, 172 nh2 + I nbr + 3.3 nr= + ...
r vectors‘{ﬂx4}) 1S nr + 92 r= + 1B r=

LWYD Vector Algorithm

{ algorithm using (7,1, 1/72 b= + 2 nbr + 2.3 nr= + ...
r vectors {=X,3} 1S nr + 3 r< +. 20 r=
where n aorder of stiffness matrix

b = average semi bandwidth
= number of transformation vectors to calculate

o
I

note The mass matrix is assumed to be diagonal
2 - Adapted from Bathe and Wilson (ref. 5.4)

® - Includes a Sturm sequence check



From table 5.3 it can be seen that the major computa-
tional effort of the WYD Rit:z reduction technique involves
the decomposition of the stiffness matrix and provides the
leading term of 1/2 nb2 in the total operation count. In the
subspace iteration method, the leading term of the count,
nb®, 1is twice as large as in the WYD Ritz approach and all
aother terms involving the same functional of the parameters

n,b,r are also much larger.

Ta get an appreciation of the performance of each
technique on a real problem, the parameters of the original
offshore system were substituted in the equations and it was
assumed that 25 transformation vectors were to be calculated.
According to these calculations, the original WYD Ritz
algorithm and the LWYD Ritz algorithm will present an
operation count that is approximately one half of the Lanczos
method and one seventh of the subspace iteration if [KI1* is
used as the reduced Ritz system, if the reduced {T] matrix is

formed directly this value will drop to one ninth.

To confirm this theoretical analysis, the total
computer execution time of the standard GAP-80 subspace
iteration module (using the incore solver) and of the new
Ritz modules were monitored as a function of the number of
requested vectors. The calculations were performed in single
precision arithmetic carrying 7 significant digits on a
micro-computer working with a 780 eight bits micro—processor.
The results are presented in fig 3.3. It is shown that after
the overhead of initial matrix factorization was overcome,
the l1oad dependent Ritz technigue using LK1= Wwas
approximately 7 times more efficient than the subspace
iteration technique requiring only 33 minutes of execution
time as compared to nearly 4 hours by the subspace iteration
for the generation of 25 transformation vectors. The
implementation using the tridiagonal form of the reduced
system decreased the execution time for Ritz vectors

calculation by approximately 20 Z. The computational
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advantage of the WYD Ritz reduction method over the subspace
iteration technique, using either [K1® or [Tl as generalized
system, 1is thus very significant and the method is well

suited for micro-computer applications.

The transformation vectors, {@d,), obtained Ffrom
subspace iteration are an "accurate"” eigensolution of the
free vibration prablem while some vectors, {=X,}, obtained
from the load dependent Ritz approach are only approximate
eigenvectors af the original structural system.
Traditionally the accuracy of the eigensolution, obtained at
high computational costs, has been a primary criterion for
the analyst to accept a vector basis For coordinate
transformation. It will however be shown that a criterion
based on the representation of the dynamic locad by the vector
basis is actually sufficient to ensure a satisfactory
solution for the seismic analysis and that the accuracy of
the eigensolution might be considered of secondary
importance. The long execution time of the subspace
iteration are thus hardly justifiable for this type of

analysis where a fixed load distribution has been specified.

9.9 Computer Results

Computational wvariants of the algorithms used to
generate load dependent Ritz wvectors were evaluated in
pgreliminary calculations to select the best algorithm to be
used along with the response spectra method. It was Found
that the more stable solution in terms of moderate stress and
displacements fluctuations calculated during convergence can
be obtained from the LWYD Ritz algorithm without static
residual using [KI" as reduced structural system. The
addition of the static residual to the solution resulted in
larger displacements and stress fluctuations when the first

few vectors were added to the basis.

The computer results reported in the next sections
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were thus obtained from Ritz vectors calculated by the LWYD
Ritz algorithm without static residual unless otherwise

specified.

5.5.1 Representation of the Dynamic Load Using Spatial Error

Estimates

Figures 5.4 (a) and (b) present the percent of
overall leoading representation, as expressed by the Euclidean
norm of the error force vector, e* (see equation (3.281),
achieved by the vector bases using exact eigenvectors, {@8,3},
and LWYD Ritz modes {9X,;). It is shown that the
representation of the loading is much smoother while using
LWYD Ritz modes than eigenvectors and that a good
representation, given by an e* value of 904 to 100%, is
obtained with much fewer LWYD Ritz vectors than exact
eigenvectors. For example, in the asymmetrical model a value
of e* equal to 70Z is obtained from S5 LWYD Ritz vectors while

14 eigenvectors are required to get the same e” value.

To get a better understanding of this phenomenon it
is useful to consider the directional values of the error
norms. For that purpose the directional components of the
error estimate based on the Euclidean norm of the error force
vector and the error norm based on the summation of
represented forces, measuring directional effective modal
masses in this application, wefe evaluated for baoth models as
shown in fig. 5.5 and S.6 UOnly the values related to the "X"
and "ZI" directions are reported since the "Y" values are very

similar to the "X" results.

The most obvious difference in the convergence
characteristics of the LWYD Ritz and eigensalutions is the
way in which the vertical "Z" contribution is included in the
analysis. The first vertical mode of deformation in the “Z"
direction is occuring much earlier in the LWYD Ritz expansion

than in exact eigenvectors analysis. This is due to the fact
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that the initial sgpatial distribution of the loading to
generate LWYD Ritz vectors is causing significant
deformations in the "ZI" direction favoring early appearance
of relatively stiff axial deformation modes. This is a major
advantage of LWYD Ritz solutions over exact eigensolutions if
vertical excitation is to be included in the analysis. This
is also why a better overall loading representation can be
achieved with 1less vectors considering the LWYD Ritz

solution.

Table 5.4 presents the number of vectors required
from the two solution methods to obtain a good representation
pf the dynamic load, I1¥ a2 satisfactory convergence in the
loading representation is considered to be obtained with at
least 90% of the total dynamic Iocad included in the analysis,
as suggested by the API~-RP2A specifications, the
eigensolution for the symmetric model will achieve

convergence with the contribution of only 2 modes in the “X*

and "Y" directions while 10 modes are reguired in the "2
direction. The LWYD Ritz solution achieved convergence with
4 wvectors far any direction "X", "Y" or “ZI". For the

asymmetric model the eigensclution requires 2 modes in the
"X" direction; 3 modes in the "Y" direction and 14 modes in
the "Z" direction while the LWYD Ritz solution converged with
3 vectors in the "X" and “Y* directions and 10 vectors in the

*Z% direction.

If wvertical excitation is considered, the LWYD Ritz
solution achieved loading convergence with fewer vectors than
tﬁe eigensolution for both models., If one disregard
convergence in the  “Z*® direction and a 90%Z dynamic 1load
representation is required then the eigenvectors are sligthly
more efficient , in term of the number of required vectors,
than the LWYD Ritz approach +Ffor the horizontal loading
representation. However, if a higher precision in the
loading representation is required, say 957 of the total load
is to be included in the analysis, then the LWYD Ritz
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TABLE 5.4

Number of Regquired Vectors for Adeguate Loading
Representation Using Spatial Error Estimates

1- Error norm based an summation of represented forces

Model direction # of vectors for effective modal mass of
Q0% 953
Ritz Eigen Ritz Eigen
Symmetric .. 4 2 10 15
e, 4 2 10 i4
e, 4 10 10 16
Model direction # of vectors far effective modal mass of
Q0% 5%
Ritz Eigen Ritz Eigen
Asymmetric = 3 2 10 15
a,, 3 3 12 14
e 10 14 15 18

2—- Error norm based on Euclidean norm of error force vector

Model direction # of vectors for error norm value of
QO% 5%
Ritz Eigen Ritz Eigen
Symmetric e, 4 z S 15
er, 4 2 3 14
2%y 5 10 7 10
er 4 10 7 14
Madel direction # of vectors for error norm value of
FO% ?S%4
Ritz Eigen Ritz Eigen
Asymmetric e, I 2 & 15
ev, =z 3 8 14
aev, 13 17 19 23

[= 9 i4 14 22
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solution is equally or more effective, in terms af the
number of required vectors, than the eigensolution for both

models and in all directions.

It should be noted that in all cases the LWYD Ritz
solutions proved to be numerically more efficient since the
Ritz vectors were obtained at a fraction of the cost (1/7) of
exact eigenvectors clearly demnnstrating the advantage of the

LWYD Ritz solutions over the eigensolutions.

5.5.2 Relationship Between Ritz Solutions and Eigensoclutions

Natural periods of vibration are important
information to the analyst tc identify possible resonant
conditions and to indicate how changes in the mass and
stiffness matrices will affect the dynamic response. Even in
the case of & direct step-by-step solution on coupled systems

a limited approximate eigenvalue analysis is highly desirable

to provide this type of informations or to construct an

explicit damping matrix from specified modal damping ratios.

Tables S.S and 5.6 list natural periods of vibration
of the platform models using exact eigensolutions of the
original systems calculated by the subspace iteration module
of the SAP-80 computer program and the approximate
eigenvalues obtained from reduced systems using [K]1 and [M]
orthogonal LWYD Ritz vectors {(®X,}. The results are reported
in terms of periods instead of frequencies to be compatible
with the specified earthquake response spectra. The
fundamental periods were obtained as 3.690 sec for the
symmetric model and 3.758 sec of the asymmetric model
indicating a relatively flexible structure for which the
response is controlled by the displacement bound region of
the earthquake spectra, that is the maximum spectral
displacement approaches the maximum ground displacement. The
LWYD Ritz solutions spanned a larger period range than the

exact eigensulutiqns; for example according to table 5.5, 25



TABLE 5.5

Natural Periocds (sec) of Symmetric Mass Model

Mode Exact Eigensolution
on Original System

1 3.690
2 3. 670
S 2.309
4 0.930
S 0.873
6 0.873
7 0.827
8 0. 672
9 0.4&673
10 0. 6463
11 0.661
12 0. 661
13 0.598
14 0.5860
15 0.560
i6 0.470
17 0.430
i8 0.430
i 0.427
20 0.407
21 0.400
22 0.363
23 0.3463
24 0.358
23 0.386

121

LWYD Ritz Analysis on Reduced

System
ri=25 r=15 r=10 r=35
3.690 3.5650 3.4690 3.690
3. 690 3.6F0 I3.690 3.4690
2.309 2.309 2.309 0.873
0,930 0.926 0.873 0. 462
0.873 0.873 0.826 0.488
0.873 0.8B27 0.663
0.827 0.663 0.5962
0,692 0.661 0.547
0.673 0.5926 0.361
0.663 0.560 0.217
0.6b61 0.425
0.598 0.362
0.561 0.290
0.5&0 0.222
0.430 0.128
0.401
0.363
0.344
0.270
0.226
0.165
0.14%9
0.1Q7
0.084
Q. 051

note 1 - r is the number of generalized coordinates retained

in the reduced eigenproblem



TABLE 5.4

Natural Periods (sec) of Asymmetric Mass Model

Mode Exact Eigensoclution LWYD Ritz Analysis on Reduced

on Driginal System System
ri=23 r=195 r=10 r=3
1 3.758 3.758 3.738 3.738 3.738
2 3.694 3. 4876 3. 696 3.4%6 3. 696
3 Z2.200 2.200 2,200 2.200 2.200
4 0.930 0.930 0.929 0.873 Q.775
5 Q0.873 0.873 0.873 0.724 0.623
) 0.873 0.873 0. 828 0.702
7 0.827 ©.827 C.734 0.631
8 0.7534 0.754 Q. 644 0.5346
g 0. 6922 C.&492 0. 631 0. 398
10 0. 659 0.459 0,577 0.253
11 0. 657 0.457 0,536
12 0.630 0.630. 0.427
13 0.598 0.597 0,360
14 0.554 0.354 0,244
15 0.333 0.533 Q. 169
16 0.470 0.434
17 0.434 0.422
18 0.430 0.375
19 0.422 Q.340
20 0. 408 0.321
21 - 0.401 Q.271
22 0.375 0.223
23 0.364 0.159
24 0. 344 0.115
25 0.328 0.083

note i~ r is the number of generalized cocordinates retained
in the reduced eigenproblem



exact mode shapes of the symmetrical model stop at a period
of 0.346 sec, while 25 LWYD Ritz modes extended to 0.051 sec.
It is also.observed that for the symmetric model, modes tend
to occur in pairs with the same period of vibration
indicating the presence bf reapeated eigenvalues in the

eigenspectrum as expected from the mathematical modelling.

The Ffirst two modes of each model were dominated by
global flexural behavior acting simultaneously in the "X" and
"¥" directions while the third mode was characterized by
torsional behavior. Higher modes had generally small
participation factors and included local deformations as well
as "breathing” type of behavior. There was however one
important exception related to the relatively stiff glaobal
vertical deformation mode. A graphical representation of the

first few modes of each model is given in fig. 5.7.

The natural period of vibration of a specific mode of
the reduced dynamic system as expressed by the free vibration
problem is not a function of the number of vectors retained
in the analysis if exact eigenvectors are used. However if
[K]1 and [M] orthogonal LWYD Ritz vectors are used the period
of vibration associated with a specific wvector becomes a
function of the number of Ritz coordinates retained in the

salution.

Figures 5.8 (a) and 5.8 (b) illustrate the change in
natural periaods of vibration as a function of the number of
LWYD Ritz vectors retained in the reduced systems. As the
number of generalized Ritz coordinates increases the first
few [K1 and [M1 orthogonal LWYD Ritz vectors becomes closer
and closer appraximations to the exact eigenvectors at the
beginning of the spectrum as expected from the similarity
between the LWYD Ritz algorithm and the Lanczos method.

To get a better appreciation of the relationship

between the LWYD Ritz solution and the eigensolution in terms
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of the accuracy of the Ritz pair (Ww%;, {=X,43}) as a solution
of the free vibration problem [KI[@1 = [MILEILw=21, the error
norms, ©=e,, described by equation (3.442 were calculated for
various number of generalized coordinates retained in the
reduced systems for both models. A comparison was also
established with the exact eigenvectors obtained from

subspace iteration.

The first step in the interpretation of these results
was to define what might be considered an "accurate” eigen-—
solution while using the error bounds. Result cobtained from
the subgpace iteratiaon module for which a tolerance of 102
was requested for the eigenvalues, yielded a maximum value of
g, equal to B8 x 10~ (symmetriC model), moreover it was
shown by Bathe (1.2) that a value of <e, equal to 102 is
able to ensure a precision of 4 significant digits in the
related eigenvectors. A maximum vaiues of 1072 for ®e; was
thus considered acceptable to qualified a given LWYD Ritz

pair as an accurate eigensolution.

The number of LWYD Ritz pairs that can be considered
exact eigenpairs (based on the value “e,) as a function of
the number of Ritz coordinates retained in the reduced system
is shown in fig. 5.7 (a) and 5.9 (b). These plots illustrate
the number of LWYD Ritz pairs lacated at the beginning of the
eigenspectrum that were classified as exact eigenpairs which
is consistent with a Lanczos interpretation of the LWYD Ritz
algorithm to seek an exact eigensolution. The total number of
LWYD Ritz pairs satisfying the eigenconvergence error norms
but located anywhere along the eigenspectrum was also
reported.

For example the taotal number of LWYD Ritz pairs, with
a reduced gystem of 25 Ritz coordinates, that can be
classified as eigenpairs was 12 for the asymmetric model and
18 +for the symmetric model. The ¢irst B LWYD Ritz pairs of
the asymmetric model and the first 12 LWYD Ritz pairs of the
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Fig. 5.9 (b) Asymmetric Model
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symmetric model were considered "exact" eigensolutions. Even
though some of the remaining LWYD Ritz pairs were not
classified - as "exaci" eigensolutions they nevertheless
provide a good indication of the content of the rest of the
eigenspectrum for which confidence intervals can be

established from the error bounds calculatipns.

The following guideline can be used tc get an accurate
agreement between the lower frequencies of the reduced system

and exact frequencies of the original system :

r= min (2Z2m + 10, n) ES.111
where
r is the order of the reduced eigenvalue problem
m is the number of requested exact eigenvalues

n is the order of the original system

It was observed in the context of the Lanczos method
(2.11, 2.12), that in the case where r<<{n, a first grouping
of mare than r/2 eigenvalues of the reduced system are in
good agreement with the corresponding number of exact
eigenvalues. The remaining reduced system roots are spread

across the remaining exact eigenspectrum.

To evaluate the influence of the form of the reduced
Ritz system on the convergence characteristics of the LWYD
Ritz solution the accuracy of the Ritz pairs (W=,, {2X4)) as
a solution of the free vibration problem were calculated.
The error norm °e, was applied to Ritz pairs obtained +from
the LWYD Ritz algorithm without static residual using {K1*

and [T, 1 as reduced Ritz system.

The eigensolution of the reduced Ritz system was
first obtained from the threshold Jacobi method applied to
EKI*LZ1 = [MI»[Z1Lw2]1 and [T,1LZ1 = L[Z1LA] such that the
numerical method used for the reduced eigensolution was

identical in both cases and therefore did not contribute to
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discrepency in the results.

The results are shown in fig. 5.10 for the case where
23 Ritz coordinates were included in the analysis. It is
shown that for the symmetric model having closely Spaced
eigenvalues, the results using [T,] are not as accurate as
the results using [KI=, For the asymmetric model where the
eigenvalues are generally more distinct the results using
either (KI® or [T.] followed closely each other. It can thus
be concluded that the reduced system using [K1® is able to
provide a higher resolution in thelsolution especially for

systems that do not have a single eigenspectrum.

In terms of displacements and stresses it was found
that the asymmetric model exhibited convergence
characteristics that were almost identical using either [K1*
or £T.1. For the symmetric model, convergence was obtained
from approximately the same number of vectors but larger
stress and displacement Ffluctuations were observed in

intermediate calculations if [T,-1 was used instead of {KI1*.

The eigensolution of the reduced tridiagonal system
was also obtained from the GR algorithm followed by inverse
iteration. The trial vectors wWere continuously
reorthogonalized with all previously calculated eigenvectors
to obtain orthogonality in eigenvectors of closely spaced
eigenvalues. The results essentially followed those obtain
from the Jacobi method except for few eigenpairs where the

resolution was sligthly better or worse.

The error norm ¢ 4 used to provide error bounds on the
eigenvalues of the tridiagonal matrix was alsc evaluated and
a comparison with error norm ©®e; was established. It was
found that a value of ¢, équal to 10-* was sufficient to
gqualify a given LWYD Ritz pair as an accurate eigensolution
by this approach. A sample of these calculations is
presented in fig. S5.11 for models considering 25
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transformation vectors. It ie interesting to note that the
pattern exhibited by the error norm =e, ande¢y calculated from
the same LWYD Ritz pair Ww=2,, {=X,} were very similar, apart
from a scaling factor, illustrating that it is sufficient to
monitor ¢, to evaluate the relative accuracy achieved by a
given LWYD Ritz pair obtained from the reduced tridiagonal

system.

5.5.3 Convergence of Diplacements and Stresses

The behavior of the structural seismic responses
using the exact eigenvectors and LWYD Ritz vectors (obtained
from the LWYD Ritz algorithm without static residual and
using [K]* as reduced system) were calculated for each model
te study the performance of the WYD Ritz reduction technique
when used along with the response spectra method. The dynamic
responses were compared in terms of the convergence of nodal
displacements and axial stresses. In the elastic regime the
total stresses used for the design of the leg and bracing
members are largely dominated by the contribution of the
axial force components. The contributions of local bending
moments +to the total stresses are generally small and were
not considered for these analyses. 1t should be noted that
the axial forces in a member depend primarily on saall
differential displacements of the nodes and can thus exhibit
different convergence characteristics than the global nodal

displacement behavior.

The S & and "I" components of translational
displacements at nonde 27 (see fig. 35.1) were selected to
illustrate the convergence characteristics of typical nodal
displacements. The "Y" displacement component had a behavior
very similar to the "X" component and. is not reported.
Figure 5.12 shows the calculated displacements as a function
of the number of vectors retained in the solution. Typical
results of axial stress responses obtained from beam no. 7

{see fig. 5.1) are also shown in fig. S5.12.
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Ta obtain a better appreciation of the convergence
characteristics of the two solution procedures, "exact”
solutions were defined from the responses obtained after an
overall loading representation of at least 98%Z, asc defined by
e*, has been included in the CBC summations. It was +found
that for these master solutions the WYD Ritz reduction method
and the eigenvector technique yielded results that were on
the average, after considering all DOF and all beams, within
14 of each other for both models with the most significant
error terms arising from the stress responses. The eigen-
solutions and the Ritz solutions will thus virtually be

forced to converge to the same results.

Calculations were then performed to study how each
solution procedure will reach its corresponding master
solution by adding one vector at a time in the analyses. The

following error estimates were used for that purpose;
— absolute maximum error of a response gquantity:

Max. 4 error =

(Bi,2 — Su,=sn)|* 100 £5.121

Slt Py Max over k

— average error of a response gquantity:

* 100 £5.131

Avge % erraor = 1 2: {Sic,2 — Sk.as)
"; 3

Sk « RS

]

where Sk, response quantity S (displacement "X" or “Z"
or axial stress) for component k (DOF or beam

no.) in mode "i"

total number of components in model

The results are shown in fig. 9.13, 5.14 and 5.135 for the
asymmetric model and fig. S.16, 5.17 and G5.18 for the

symmetric model.
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To compare the rate of convergence of each solution
procedure the following two criteria were used to define a

"converged" solution;

— the first criterion requires that the displacements and
stresses be in average within 10% of the corresponding

master solution,

= the second criterion was more severe and requires that the
displacements and stresses be in average within 5% of the

corresponding master sclution.

The number of vectors required for convergence under
these two criteria for each analysis are presented in table
5.7. It was generally found that for either criterion the
LWYD Ritz solutions achieved convergence with only half the
number of vectors required by the eigensolutions. This was
mainly due to the better "ZI" loading representation of the

first LWYD Ritz vectors compared to the eigenvectors.

To establish a correlation between the error naorms
measuring the dynamic load representation presented in
chapter 32 and the convergence of displacements and stresses
the percent error in these response quantities were plotted
against the error norm based on the summation of the
represented force and the Euclidean norm, e*; a sample aof
these results is presented in fig 5.19. The following rule of
thumb was then established, a loading representation of at
least 904 (954) in all the directions for either of the error
norms is sufficient to obtained an average error of 107 (5%)
in the response quantity of interest. To avoid potential
instability problems it is also suggested that if there is a
sharp increase in locading representation from the addition of
a single vector, say greater than 5% when the error norms are
already in the 83% range, two or three additional vectors
should be added to the basis to smoaoth out its contribution

to the modal summation. The numbers of vectors required for



TABLE 5.7

Number of Vectors for Convergence of the Spectral Analyses

1—- "Exact" solutions are defined from the response obtained
after an overall loading representation of 98% was achieved

"Exact” Master Solutions (displacements or stresses)

Analysis # of vectors %4 Modal Mass (XYZ) Error norm e*
LWYD Sym. 25 (97 7 100} 28
Eigen. Syin. 25 (98 98 26) 98
LWYD Asym. 25 (92 99 99) T8
Eigen. Asym. 25 (99 99 9b6) oB

2- Convergence criterion no.1: Response quantities are in

average within 10Z of theé corresponding Master solution

ne : Number of required vectors for solution convergence

143

neig : Number of LWYD Ritz vectors out of "nc" that can be consi-

dered "exact" eigenvectors from error normsey, or “e;

Displacements (direction "X" or "Z")

Analysis nc neig % Modal Mass (XYZ) Error norm e"
LWYD Sym. 4 (1) (1 92 0 21
Eigen. Sym. 10 (22 92 96) 24
LWYD Asym. 4 ) (1 91 76) 83
Eigen. Asym. B (92 92 53) 74

Axial Stresses

Analysis ne neig % Modal Mass (XYZ) Error norm e*
LWYD Sym. 4 (1) (91 92 <20) 2?1
Eigen. Sym. 10 (P2 92 96) 94
LWYD Asym. 5 (3) (92 92 89 21

Eigen. Asym. 12 (94 94 81) 84



144

TABLE 5.7 (CONTINUED)

Nuimber of Vectors for Convergence of the Spectral Analyses

3— Convergence criterion no.2: Response quantities are in
average within 5% of the corresponding master solution

nc ¢t Number of required vectors for solution convergence

neig : Number of LWYD Ritz vectors out of "nc" that can be consi-
dered "exact" eigenvectors from error normsey; or “e,

Displacements (direction "X" or "ZI")

Analysis nc neig % Modal Mass (XYZ) Error norm e”
L WYD Sym. S (2) (94 94 93) 94
Eigen. Sym. 10 (92 92 96) 4
LWYD Asym. 8 3) (95 94 B9) 91
Eigen. Asym. 12 (94 294 81) 84

Axial Stresses

Analysis nc neig 7 Modal Mass (XYZ) Error norm e*
LWYD Sym. S (2) (94 94 93) ' 94
Eigen. sym. 14 (96 96 96) 94
L WYD Asym. 8 (3 - {94 94 8%9) 91

Eigen. Asym. 14 (94 96 921) 21
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satisfactory solutions convergence were compared to the
numbers of vectors required to achieved these specific values
of loading representation. The results are presented in
table 5.8. The rule of thumb proved to be satisfactory in

all cases.

9.3.4 Conclusions from Computer Results Analysis

This section presents a summary of the main -
conclusions drawn from the analysis of the computer results
of the two models used to study the solution characteristics
of the LWYD Ritz solutions and the eigensolutions. The main

conclusions were that,

— the generation of WYD Ritz vectors was approximately 7 to
9 times more efficient than shifted subspace iteration to
form a vector basis to be used for the transformation of
the dynamic equilibrium equations to a fixed number of

generalized coordinates,

— the WYD Ritz reduction technique can be applied sucessful-
ly to seismic analysis using the three dimensional
earthquake response spectra method; the most reliable
solution strategy was obtained from transformation vectors
obtained from the LWYD Ritz algorithm using no static

residual,

- LWYD Ritz solutions spanned a longer period range than
eigensolutions for the same number of generalized

caordinates retained in the analysis,

— the spatial error estimates based on the summation of the
represented lpading (corresponding to the effective modal
mass for these example55 and the Euciidean norm of the
error force vector provided satisfactory results to
monitor loading representation as a function of the number

of generalized coordinates retained in the analysis. For a



TABLE 5.8

Number of Vectors for Displacement and Stress Convérgence

Vs

Number of Vectars for Geod Loading Representation

nc : number of required vectors for solution canvergence

147 .

neig ¢ number of LWYD Ritz vectors out of "nc" that can be consi-
dered as "exact" eigenvectors from error norm “e,

t- Convergence criterion no.1: Response quantities (displace-

ments

or stresses) are in average within 107 of the cor-

responding master solution

n 90 e, =

n 90 e*,:

number of vectars required to obtain 90% of the
total load acting in direction "X","Y" or "I" based
on the error norm summing the represented forces

{ 0% Modal mass for these examples)

number of vectors required to obtain 904 of the
total load acting in directions “X", “Y" aor "ZI“
based on the Euclidean norm of the error force
vector ( e*., e”, or e%*y)

number of vectors required to obtain an overall
lpading representation of 90X based on the single
Euclidean error norm index e*

Analysis nc neig n 20 e, n 90 ev, n 90 e*
LWYD Sym. 4q (1) 4 S 4
Eigen. Sym. 10 10 10 10
LWYD Asym. 5 (3 10 i3 S
Eigen. Asym. 12 i3 17 i4

2- Convergence criterion no.2: Response quantities (displace-

ments

or stresses) are in average within 5Z of the cor-

responding master solution

n 993 ey ¢

n 925 e*,:

same definition as in (1) except 95%Z loading repre-
sentation must be achieved

same definition as in (1) except 95Z loading repre-—
sentation must be achieved

n 99 e™ : same definition as in (1) except 95% loading repre-—
sentation must be achieved

Analysis nc neig n 99 e, n 95 e*, n 9 e*

LWYD Sym. 5 (2} 10 7 7

Eigen. Sym. 14 15 15 i4

LWYD Asym. B (3 15 20 143

Eigen. Asym. 14 i8 23 22
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given number of vectors the overall lovading representation
obtained from LWYD Ritz bases was almost always superior

to the representation of corresponding eigenbases,

better loading representation of the LWYD Ritz bases was
primarily due to early appearance aof relatively stiff
vertical axial deformation modes. The better vertical
("Z") representation of the LWYD Ritz bases was due to the
use of the spatial distribution of the dynamic 1load to
initiate the vector calculation sequence forcing
significant deformations in the "1I" direction in the first

vectors,

reduced LWYD Ritz systems considering more than 3
generalized coaordinates have their first few (2 or 3}
vectors close to exact eigenvectors. This number keeps
increasing as the number of retained Ritz coordinates

becomes larger,

satisfactory convergence characteristics were obtained by
considering LWYD Ritz systems for which the szame number of
generalized coordinates was used for coordinate transfor-—
mation and CRC summation. It is thus unnecessary, for the
type of analysis under study, to artificially increase the
number of Ritz coordinates to obtain closer approximation

to a larger number of exact eigenvectors,

LWYD Ritz solutions proved to be satisfactory for systems

tlaving closely spaced mades (symmetricl,

for structural systems that do not have a simple
eigenspectrum, reduced LWYD Ritz system working from the
farmal transfarmation (XI17LKI1[X] = [K]= are able to
provide a higher resolution of a given LWYD Ritz pair than

if the tridiagonal matrix [T,1 is used directly,

in three dimensional earthquake analysis using the



response spectra method, LWYD Ritz solutions requires
fewer vectors than exact eigensolutions to obtain
displacements and stress convergence {(approximately one

half for these examples),

- +Ffor earthquake loading, a representation of 904 (or 954)
expressed by either of the error norms was able to ensure
that the response quantities were in average within 104
(or SX) of their "exact”™ values. To avoid potential
.instability problem no single vector contribution to the
loading representation in a LWYD Ritz solution should be
greater than S5Z when the error norms are in the B5% range
aor above. If this is the case two or three vectors should

be added to the LWYD solution to reach convergence,

— a cut off criterion in the vector generation process using
the error norms to achieve 0% to 95% loading
representation, under the above restriction, should
provide an adequate number of vectors to pbtain

satisfactory convergence of LWYD Ritz solutions.

It can thus be concluded that for seismic analyses
using the response spectra method, LWYD Ritz solutions have
definite avantages over exact eigensoclutions in terms of a
much reduced numerical effort to generate the transformation
vectors and improved convergence rate of the resulting bases
in terms of the response quantities of interest. The WYD Ritz
reduction method thus provides a suitable numerical technigque
to allow inexpensive reanalysis to evaluate design
modifications by keeping computer costs down and decreasing

the time for a typical calculation cycle.
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Generalization of the WYD Ritz Reduction Method
to Arbitrary Loadings

Commonly time varying loadings such as wind, waves,
and earthguakes which act on engineering structures are
specified in the form of discrete time series,. One
classification of dynamic response problems depends on how
the elements of the force vector {F(s,t)? vary with time. The

following categories can be recognized:

- zero or no locading (free vibration)
- harmonic

- periodic

- aperiodic or transient

-  random

In its present form, the WYD Ritz reduction method is
restricted to dynamic loads which can be defined as the
product of one spatial load vector and one time function
according to equation [1.101. An important case of this
category is the earthquake problem. The components of the
load vector due to an earthquake motion acting along one of
the structural axes have all the same time variation given by

the prescribed base acceleraogram.

The most general form of dynamic loading can be
expressed as @ "
(F(s,t)? =Z{<h(s)} gs (£) _ £6.11
L=
where {f,(s)} represents the ith spatial distribution pattern
and g, (t) the ith time variation function. It is obvious
that the method of Ritz vector generation can be extended to
this type of loading by generating several sets of vectors
starting with different load patterns {f,(s)}. However, this
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approach will be relatively inefficient and a better method
will be to extend the lpad dependent Ritz algorithms to a
recurrence sequence which uses blocks of vectors

corresponding initially to the multiload patterns.

6.1 Block Ritz Algorithms

6.1.1 Description of Block Ritz Algorithms

A block version of the Ritz algorithm is presented in
fig. &.1 as a direct extension of the original WYD algorithm
given in fig. 1.1. It is also possible to develop a block
LWYD Ritz Jormulation as shown in fig. 6.2 and both
algorithms can be implemented to take advantage of the
tridiagonal form of the reduced system as ghown in fig. &.3
and 4.4, 1in such a case the resulting reduced matrix (7]

becomes block tridiagonal.

The block Ritz algorithms replace each Ritz vectors,
X3}, by an n x k orthonormal matrix [X1,. The orthogonali-
zation of the current black ff]; is done in +two steps.
First, block [?]‘ is [Ml-prthogonalized against previous
blocks [X1l; by using a process similar to the Bram-Schmidt
method.  Second, the resulting purified vector block X1, is

[(Ml-orthonormalized by a suitable numerical technique.

The block Gram—Schmidt process will be subjected to
the same instability problems that were reported for the case
of the single vector method. A selective reorthogonalization
‘pra:edure should thus be implemented. The orthogonality

check corresponding to equation [4.7] should ensure that,
i
JCEXTIT 5 EMI [X3¢=+1 1, € TOL for 1<i<i-i [&.23

where the infinite norm of a matrix [A]l of order n is defined

as,
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Fig. 6.1 Block WYD Ritz Algorithm
{extension of original formulation}

1. Biven Mass, Stiffness Matrices (M), (K], and Linearly
Independent Multispatial Load vectors Distribution [F3J

(M3 nxn
K2 nxn
LF1 n % k

where n is the number af equations in the system
k is the number of vectors in a block

2. Triangularized Stiffness Matrixs

[K] = C[LIT [D] [L1 n x n system

3. Form First Block aof Vectors [X],

(a) solve for block [X1.

LK1 £X1, = IF1

.(b) IMl—orthonormalize Ii];

vl [X17. LM] [X1,
Lvi [E] LAJ CN1T with [N1T [N]1 = (1]
[Xls= [X1s [N] CA1-2-=

0

4. Solve for Additional Block of Vectors: i=2,...,.,p

ta) solve for new block [X1,

[K3 €X3s = CM] [XJui-s

(b) [MJ-orthogonalize block [X]. against previous blocks

~ - [t _
X1, = [X], - z: [X1,(LX17, [M] [X1,)

F LS

{(c) I[Ml-arthonormalize block tf].

V1, = [X17. I[M] X1,
tvl, = [N] CAI [NIT with [NIT [NJ = CI3
[X), = [X]. [N] [A}-2-2

S. DOrthogonalization of Ritzr Vectors with Respect to Stiffness
Matrix (optional):

(a) Solve the r x r eigenvalue problem (r = p % k),

[K1= [2Z] = [M3* (2] [W=]
where [KI* = [X1I¥ (K1 [X1
CMI= = X1 LM] [X1 = [I]
w = approximate frequencies

{(b) Compute final orthogonal Ritz vectors

[=X1 = [X1 [Z]



Fig. 6.2 Block LWYD Ritz Algorithm

1. Given Mass, SGtiffness Matrices [MI, [Kl, and Linearly

Independent Multispatial Load Vector Distribution [F1

Ml nxn
K1 nxn
[F] n x k

where n is the number of equations in the system
k is the number of vectors in a block

2. Triangularized Stiffness Matrix:

[KI = [L1T [D] (L] . n x n system

3. Solve for Initial Static Block [Ule

{a) solve for block [Gﬁo

(K1 [Ule = L[F1

(b)Y [Ml-orthonormalize [Ulo

(vl = U1 M1 L0175
[Vl = [NI LAY IN3T with [NIT [N1 = [1]
[Ulo= tUlo [N1 [A]-2-=

4. Solve for First Block of Vectors

(a) solve for block [X*™],

K] [X*1, = [M1 [Ulo

(b) [Ml-orthonormalize [X*],

[Vl = [X*17, [M1 L[X*1,
[V1 = [N1 L[A] IN3IT with [NJ7T IN] = [11]
[X1,= [X*]1, O[N] [A)-2-=2

(c) Update Static Block [Uleo

[CL]1, = [X17, (M1 [Ula
[Ul, = [Ulo — [X1a ECLIa

S5. Solve for Additional Blocks of vectors i=2,....p—1

(a) solve for new block [X*1,

LK1 [X*1, = IMI [Ulg—s

1533
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(b) [Ml-orthogonalize block [X*], against previous blocks

L Yot 3
[X==3y = ©X™J. = 3,  [X3y (EXIT4 [MI £X*1,)

EE T4
{c) I[Ml-orthonormalize block [X*=+*],

[VIy = [X*=17, M1 [X**].
(vl, = (N1 CAZ [NIT with [NI1IT [N]1 = (1]
£X1y = (X*=1; [N] [Al-2s-=

(d) Update Static Block [Ul,_s

{CLls = X117, [M] LUL, .,
[U]‘ = [UJ;—: - CX]; [Cu]A

6. Add Block Residual [Ul,_., as Static Correction £X]1, (optional)

(a) [MJ arthogonalize [Ul,_, (by precaution)

~ 2 =3
Ulgms = CUJaoa — 2,  ©X35 (EXIT, [MI CUln-s)

EL %
(b) [Ml-orthonormalize EGJE_,

Vi, = C0ITn-a [MI CUI._s
V1, = [NIT [AJ [N3J with [NIT NI = CI]
[X1= [Ul.-a [N] [AJ-1/z

7. Orthogonalization of Ritz Vectors with Respect to Stiffness
Matrix (optional):

{(a) Solve the r x r eigenvalue problem (r = p * k)

[K1I* [Z1 = [M1= ({13 (w=]
where fKl* = [X17 (K1 [X]
tMi* = [XI7 M) X3 = {1]
w = approximate frequencies

(b) Compute final orthagonal Ritz vectors

[=Xxl = £X] 7]
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Fig. 6.3 Tridiagonal Block WYD Ritz Algorithm
(extension of original formulation)

1. Given Mass, Stiffness Matrices [M]1, [K], and Linearly
Independent Multispatial Load vectors Distributian [F]

[M3 n X n
LK1 nxn
LF1] n x k

where n is the number of equations in the system
k is the number of vectors in a block

2. Triangularized Stiffness Matrix:

[K1 = L[LIT™ [DJ [L1] n X n system

3. Form First Block of Vectors [X1,

(a) solve for block [X1,

K1 [X1, = [F1

(b) [Ml-orthonormalize [X1,

[Vl = [X37y [MI [X1s
LVl = [NJ [AJ [NJIT with [NIT [N = CI3
[X3s= [X1: [NI [AI-1-=

4. Solve for Additional Block of Vectors: i=2,....p

(a) solve for new block [f],

K1 [X1, = [M1 [XJs-2

(b)Y form diagonal block [Al,.s of {T1]

[Aly_s = [XIT,_, [MI [X1,

tc) [Ml-orthogonalize block (X1, against previous blocks

1 —1

~ - —
[XJs = [X1y — 2. EXIS(CXIT, [MI L[X3y)

=3

~S
(d) [Ml—arthonormalize block [X1,

Vi, = £X17, [M1 [X31,
[V, = [N LAl INIT with [NIT [N] = [I13
[X1, = [X1. [N [AI-2-=2

(e} farm off—-diagonal block [Bl, of [T1

[B1, = EN]1 [AJx-=
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S. Orthogonalization of Ritz Vectors with Respect to Stiffness
~Matrix (optional):

(a) construct symmetric block tridiagonal matrix [T] of order
rxr (r=p % k)

p-

[AJ; [B]z to] [0] LI I I ) --[0] ‘1

[Blz [Ala [B1ls [0 .... ««[0]

[0] [Bls [Als [Bls [07 ....L0]
[Tl = . «  a «

ol . {Blp-s [Al._s [Bl,

ol . . [Bl. [Al,

(b) calculate eigenvalues and eigenvectors of [T1]

LT3 £Z] = 723 )1

(c) calculate approximate eigenvalues of original system

[w=21 = [1/)1

(d) Compute final orthogonal Ritz vectors

[=XJ = [X] [Z1]
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Fig. 6.4 Tridiagonal Block LWYD Ritz Algorithm

1. BGiven Mass, Gtiffness Matrices [M1, [K]l, and Linearly
Independent Multispatial Load Vector Distribution [F1

Ml nxn
[K3J nxn
LF1 n x k

where n is the number of equations in the system
k is the number of vectors in a block

2. Triangularized Stiffness Matrix:

[K1 = L3I D] LL1 n X n system

3. Solve for Initial Static Block [Ulo

(a) spolve for block [Ulo

K] [Uloe = [F1]

(b) tMl~orthonormalize [Uls

(V1] = [U170 [M] [Ule
[Vl = [N1 [Al [NIT with [NJV [Nl = [11]
[Ulo= [Ulo EN] L[A]—3-=

4. Solve fpr First Block of Vectors

{a) solve for block [X*]1,

[KI [X"1, = EM1 [Ulo

(b)Y [Ml—orthonaormalize [X™1,

[Vl = [X"17, [M] L[X*1,
[Vl = [N]1 [A] [NIT with [NI7T ENI = [I]
[X1,= CX*1, [N} L[A3-272

(c) Update Static Block [Ulg

[C.ly = L£XI7, [M1 [U]o
[U]; = [UJo - [X]; [C...J:.

5. Solve for Additional Blocks of vectors i=2,....p—1

(a) solve for new block [X*],

(K1 £X=1, = (M3 [UJ ..,

(b) form diagonal block of [T1

[A]‘,.—; = “‘([X]Ti_; iM] ([x-]; - [X-Jg_g) [Cu]ﬁgi—g)
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ey

(d)

(e}

[Ml-orthogonalize block [X*1, against previous blocks

4=1
[X*"3s = [X=3, -3 X3, (CX3IT5 £MI1 [X=1,)

S
CM)-orthonormalize block [X**],

[X**J, =-[X**1, [CuI"%s—s

[VIs = [X**17", [M] [X==1,
(vl, = [ﬁ] Al ENIT with ENIT [N] = {11
[XJs = [X*"]. [N [AI-2-=

calculate off-diagonal block

[Bls = [N] [A1*2 [CL1"*,_,

(#) Update Static Block [Ul,—,

(£

[C.ls = [X17y IM] (U3a-s
[U]‘ = [U]‘-—g - [xjg (Cu]g

calculate off-diagonal block

[Bly, = LN]1 [AI*~= [C 1%, _,

&£. Add Block Residual [UJ._.. as Static Correction (X1,

{optional)

(a) [MJ orthogonalize [Ulp,_: (by precaution)

~ A—2
(Ula—s = [UJp=s - Q) EXJI, ([X3I75 [M] (Upey)

J=1

~
(b} [Ml-orthonormalize {Ul,_3

(c

(d)

(V1. = [UITp—s [MI [Ulp-s
[Vl. = [NIT CAJ [N3J with CNIT [N1 = CI1
[X1p= CUJp—2 [NI [AI-2-=

complete diagonal of [T]

(K] [X1pes = [M] [X1p solve for [Xlp.a
[Alg = [X17a [M] [XIgeas

complete off-diagonal of [T]

[(Blg = [X17p-1 [M] [X]pea
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7. Orthogonalization of Ritz Vectors with Respect to Stiffness

{a)

(b)

{(C}

d)

Matrix (optional):

construct symmetric block tridiagonal matrix [T] of order
r xr (r=p % kij -

(tAJ, [B1z [01 £0] .... ..TO3 |

[Bl: [Alz [Bls 0] .... .. £01

L0l ([Bls [Als [Bls [01 ....[01

[T] = - . - -
ol . . (Bl. CAl,

calculate eigenvalues and eigenvectors of [T]

LT LZ1 = [Z1 LA]

calculate approximate eigenvalues of original system

[W21 = C1/)]

Compute final orthogonal Ritz vectors

[eX3 = [X] [Z3
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LAYl = maxs D laas! [&.3]
w3
All other observations presented in chapter 4 for the single
vector iteration method are still vaiid for the block method
and will not be repeated here.

The selection of the numerical method to [Ml-ortho-
normalize the purified block EQJ‘ gives room for some freedom
of choice. In order to be able to implement the method by
taking advantage of the block tridiagonal form of the reduced
system the off-diagonal matrix [Bl, should satisfy

~
[Bl. [BIT. = [X1IT. (M1 [X34 = [VIa [6.43

The formulation for [{Bl: is therefore directly related to the

method used to [Ml-orthonormalize the individual vectors of
~

the purified block [Xl,. The following alternatives can be

used to satisfy equation [6.41;

- reverse Cholesky factorization of [V], such that [B]l, is an
upper triangular matrix, the [Ml-orthonormal vectors (X1,

will then be given by
£x1, = X1, [BI-7, [6.53

- QR factorization of tﬁl‘ such that,

n
£Xl, = CX), EB1I™, Lh.6]
with [X3¥, (M1 (X1, = (11 [6.71
where [B1l7, is a lower triangular matrix. The [Ml-prtho-

normal vectors (X], will be given by equation [4.31],

- spectral decomposition of [(V1, such that,

V1. = CNJ CAJ INIT £6.81
with CN1IT [NJ = (C13] [6.91



the [Ml-orthonormal vectors tXJ; are then obtained from
LX1, = [X1y [N1 [AJ-272 {6.103
and the [Bl, matrix is given by
[Bls = E[N] [A]Jar= f6.111

Each method has some advantages and inconveniences.
If the reverse Cholesky factorization or the GR factorization
are used, the blocks [B1Y: should be included as the upper
diagonal elements of the [T] matrix. On account of the
triangular form of [(Bly, ([T] will be of band form with semi-
bandwidth of k+1 rather than block tridiagonal. However ,
these methods require a special factorization subroutine that
should overcome the instability of the Gram-Schmidt method. A
simpler and more accurate approach as suggested in the block
Ritz algorithms presented in fig. 6.1 to 6.4 is to use the
spectral decomposition of the matrix [V1l,. The eigensolution
of the prablem
[Vl [N1 = INJ L[A] £6.121

can be obtained from the same subroutine that is needed to
solve for the eigenvalues and eigenvectors of the reduced

system. A minor disadvantage of this procedure is that i+

the implementation is carried out taking advantage of the

block tridiagonal form of the reduced system then the
topology of [T] will remain block tridiagonal with a semi-~-
bandwidth of 2Zk.

6.1.2 Spatial Error Estimates for Multilpad Representation

The spatial error norms developed for a single
loading vector representation can easily be extended to a
multiload representation. Block Ritz vectors should be
generated untilrall the specified loading distributions are

adequately represented by the basis. As soon as a new blaock

161
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of vectors [X]l, has been calculated the error norms should be
evaluated considering successively each loading distribution
and each vector of the new block. Faor earthquake analysis
the error norm based on the summation of the represented
forces (e.y €,, 8«) or the error norm based on the Euclidean
norm (e*,, e*,., e";) of the error force vector can be used.
For mare general form of loadings, it is recommended that the
Euclidean error norm be used due to its superior convergence

characteristics for arbitrary loadings.

6.1.3 Relationship Between Block Ritz Solutions and Exact

Eigensolutions

I¥f the block Ritz algorithm is implemented without
taking advantage of the block tridiagonal form of the reduced
system the error norm ®e; described by equation [(3.46] can be
used directly to get an appreciation for the accuracy in
which the block Ritz vectors satisfy the free vibration

problem [K3I[B1 = [MI[{@ILw=].

If the implementation is done by taking advantage of
the block tridiagonal form of the reduced system then an
error bound to evaluate the relationship between the
eigensolution of the reduced system and the original system
can easily be established as an extension of equation (3.471
developed for single vector algorithm. The block version of

the error bound will be given by

I (RZ /(W= — 1 1 $Ny7 Ny t6.131
where Ny = 5[BJ,+;£P]..{Z_,}{= [6.14]
and [Blane:s is the k x k off-diagonal block calculated in

the last step of the algorithm

CPJy = [ [02 (11 1]

[Pl is a k x r projection matrix to obtain the



last k components of vectar {Z43}. The size

af matrix [I]l is thus equal te k x k.

{Z,2 is the jth eigenvector of [Tl normalized such
that {Z,37 {21,} = 1.

As is the Jjth eigenvalue of the reduced block

tridiagonal system.

6.2 Starting Spatial Vectors for Block Algerithm

In complex structural systems, the selection of the
initial deformation vectors, the starting static deflected
shapes,; should be supplemented by an automated linear
independency criterion to reduce the number of repetitive
load patterns to a minimum and to favor the generation of an

orthegonal vector basis.

A basic requirements of the block Ritz formulation is
that the starting static deformation patterns selected to
initiate the algorithm be linearly independent. In order to
satisfy this requirements and to identify, out of the
complete loading sequence, the spatial distributions that
will be most important to the structural response a loading
correlation matrix, [CI- can be established. A typical entry
will be given by

Chay = {F,(522 » {f4(5)3 {6,151
i{fais)ing ({fy(s)ia

the value of cv.4 corresponds to the cosine of the angle
between vectors {fi(s)} and {f,(s)} and will vary between O
and 1. A wvalue of 1 will indicate the the 1loading
distributions are linearly dependent, a value of 0O will
indicate that the 1loading distributions are orthogonal,
intermediate values can be interpreted as the degree of
linear independence relating a given pair of loading
distributions {f:(s)3, {fi(s)2.

1463
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It should be observed that the correlation of the
static deflected shapes {U;(s)}, {U,(s}} cbtained from the
loading distributions will generally be higher than the
loading correlation due to structural coupling. The selection
of the starting static deformation patterns should therefore
be done in two steps. First the loading correlation matrix
is calculated and the loading patterns are chosen such that
no loading pairs haQe a strong correlation coefficient (say
greater than 0.8}, Second the static deflected shapes
corresponding to the selected load patterns are calculated.
The correlation matrix of the mass weighted deflected shapes

is then evaluated from

ele gy = {Uy(s)Y « {IMILU () L&.161
iUy (s)3ia iIMI{U,(s) ia

the initial deformation patterns are selected such that no
static deflection pair having a strong correlation is
included in the starting block because the algorithm will not
be able to maintain the orthogonality of the iteration
vectors. This procedure thus provides a rational method to
choaose the defarmation patterns that will be important to the

structural response.

Finally while using the block Ritz algorithm there
are two parameters that will influence the final results.
The first one is k the number of vectors that are iterated
simultanecusly and the other one is p the number of steps
used by the algorithm. The final dimension of the reduced
problem will be r = k x p. In any practical analysis the
maximum dimension of the reduced praoblem will be limited by
some computer restrictions. I¥f k is made fairly large then
the number of steps, p, available to reach the error norm
criterion will be small and may lead to a poorer
approximation of the dynamic effects of the inertial
characteristics, therefore the number of initial loading

patterns should be kept small.



6.3 Numerical Applications of Block Ritz Reduction Hgthod

To illustrate the performance of the block Ritz
method this section will present numerical results obtained

from three specific examples.

6.3.1 Responses to Independent Dynamic Loading Distributions

In the first example it is assumed that the response
of the simple offshore platform of chapter 4, modelled as a
shear beam system as shown in fig. 4.4, needs to be obtained
for the wave and earthquake loadings separately but that a
single vector basis is toc be used in the response
talculations. The block LWYD Ritz algorithm was used to
ctalculate the vector basis using the spatial distribution of
the earthquake and wave loade to initiate the recurrence
relationship. The follaowing correlation coefficients were

calculated;

0.1G6
~ static deflected shape 0.993
= [M] weighted static deflected shape ¢ 0.637

- spatial loading distribution

The representation of the dynamic load achieved by
the block Ritz basis is shown in fig. 6.5, It is observed
that the representation of a uniformly distributed 1loading
such as earthgquake loads is very close to the representation
obtained from single vector iteration. In the case of wave
loading modelled by a concentrated load, more block Ritz
vectors were required to achieve the same representation as

obtained from the single vector iteration algorithm.

The responses to wave and earthquake loads were then
computed from Ritz bases calculated with and without static
residual, with the same convergence criterion that was used
for the single vector iteration algorithm, a maximum error of

1%Z allowed in beam shear forces. - The results are summarized

16
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toading Representation e* (%)

Loading Representation e® (%)
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Wave Loading

}3-—5}- LWYD Ritz Vectors
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Ef {single vector iterations)

’

~-E7 - £} - Block LWYD Ritz Vectors
without Static Residual
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Earthquake Loading

—O— LWYD Ritz Vectors
without Static Residual
(single vector iterations)

l -{3-- Block LWYD Ritz Vectors
without Static Residual

Y ¥ T -r L - "

o 2 4 ) 8 10 12 14 16 18 20 22 24
Number of Vectors in Analysis

Fig. 6.5 Representation of Dynamic Loads from
' Block Ritz Bases (Example no. 1)



in table 6.1 and a graphical fepresentation of the wave load
response is given in fig. 6.6. It is observed that the block
LWYD Ritz algorithm requires slightly more vectors than the
single vector iteration methad to achieve convergence. The
effect of static residual was beneficial to both response
calculations, If a correction for higher modes effects is
to be included in the analysis it was found slightly
advantageous, in terms of the numher of requested vectors, to
use the block LWYD Ritz algorithm without static residual and
add to the modal éummatiun the modal acceleration terms
calculated from the loading for which the response was

reguested.

It was observed that when exact eigensolutions are
used, the account of higher modes effects by the application
of static correction terms in the form of eqguation [3.423 or
of modal acceleration terms in the form of equation [3.431 is
equivalent. If these modal summation procedures are to be
used along with the WYD Ritz reduction method without static
residual it was found that modal acceleration provides much

better results than static correction.

It can thus be concluded that independent dynamic
response analyses can be obtained from a single vector basis
generated simultaneocusly from the multiload pattern
distributions. The number of vectors required for convergence
will be smaller as compared to the calculation of different

vector bases aobtained from individual lpading distributions.

6£.3.2 Three Dimensional Earthquake Analysis

The second example is related to the three
dimensional earthquake analysis of the Jacket platform
presented in chapter 5 (see fig. 5.1). The analysis was
carried out using the response spectra method as beftore but
the vector basis was formed by the block LWYD Ritz algorithm

using

167
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‘TABLE &.1

Convergence of Block Ritz Bases for Independent Dynamic
Response Analysis

I. Wave load

Analysis Number of vector
for convergence
- Block Ritz without static residual : 14
— Single vector iteration without static residual : 12
— Block Ritz with static residual H 4
— Block Ritz without static residual + modal acc. : 2
— Single vector iteration with static residual H 3
II. Earthgquake load
Analysis Number of vector
‘ for convergence
— Block Ritz without static residual : 16
- 8ingle vector iteration without static residual : 12
- Block Ritz with static residual : 14
-~ Block Ritz without static residual + modal acc. : 12
- Single vector iteration with static residual : 10
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(F(s)1 = { tMICr. 2, [MI{r,>, tMI{r.} 1 [&.161

as initial lpoading distribution to initiate the reccurence
relationship. The analysis was carried out far the symmetric
and asymmetric model. The application using the symmetric
madel represents an ideal situation for the block algorithm
because the 1loading as well as the corresponding static
deflected shapes are perfectly uncarrelated since the
geometric axes "X", “Y" and “"I" are also principal structural
axes,

The representation of the dynamic load achieved by
the block Ritz basis is shown, for the symmetric model, in
fig. &.7. It can be observed that the block Ritz algarithm
produced results that are equivalent or slightly superior to

the single vector iteration procedure.

It was then verified that the structural response
using block Ritz vectors, with at least 984 loading
representation, was in average within 1%~ of the exact
eigensolution or the results of single WYD Ritz iteration.
The rate of convergence af the block Ritz solution was also
caompared with the rate of convergence of the single vector
iteration procedure according to the method outlined in
section S5.4.4. These results are shown in fig. 6.B. It was
found that after the first few vectors were included in the
basis the rate of convergence of average values were nearly
identical. The rate of convergence of maximum error values
was faster for displacements calculated from the block Ritz
solution, however maximum error  values of stresses did
converge more rapidly from the single vector iteration
procedure. The rule of thumb af 0% (23%) laading
representation corresponding to an average error of 10(X)
(3%2) in the response quantity of interest was always

respected.

The relationship between the block Ritz sclution and

the exact eigensolution is shown in fig. 6.9. It was found
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that with the block Ritz solution considering 27 generalized
coordinates only 3 block Ritz pairs located at the beginning
of the eigenspectrum can be considered exact eigenpairs aé
compared to 12 Ritz pairs fraom the single vector iteration
procedure. This is due to the fact that the block algorithm
performs less steps to obtain the same number of vectors. On
the other hand the vector resolution obtained from the eigen-
sclution of [KI*[Z]l = [w2JL[MI*[Z] and the reduced block
tridiagonal system [TI[Z]1 = [LJtZJ is now nearly identical
even +for the symmetric model where there are repeated
eigenvalues. This is due to the fact that multiple
eigenvalues are now found simultaneously (up to block size k)
rather than sequentially with improved convergence

characteristics.

For the asymmetric model the following correlation
coefficients were obtained;

~ gpatial loading distribution uncorrelated

0.003

- static deflected shape 1 U2 lUadr =
{U3 U = 0.237
{Ua}{UsxY = 0.131
— [M] weighted static deflected shape : {(U,3{Ux} = 0.132
{U,¥{Usy = 0.277
{Ux3{Ux} = 0.1546

showing a weak correlation of the static deflected shapes
through structural coupling. The detailed analysis of the
structural response substantiated the observations obtained

for the symmetric model.

It can thus be concluded that for three dimensional
earthquake analysis using the response spectra method the
block Ritz algorithm and the single vector iteration

algorithm, as applied in chapter 5, will produce results of



comparable accuracy. One advantage of the block Ritz method
is that the matrix [K] and [M] need to be accessed less
frequently which might be important to liamit I/0 operations

if [K] and [M] are stored in block form on low speed storage.

6.3.3 Multilogad Pattern Analysis

The third example. is related to the study of
structural systems where the spatial distribution of the load
is a function of time. The response to wave loading of the
simple offshore platform shown in fig. 6.10 was evaluated for
that purpose. The platform is modeled as a space frame with
48 dynamic DOF. A diagonal mass matrix including rotatory
inertia was calculated from the procedure outlined by Hinton
et al. (6.4} and Surana (&.11). The mass matrix included
contributions from the mass of the material of the structural
elements, including contained fluid, the added mass and the

mass of the deck.

A lumped description of wave forces was used far the
analysis. This treatment invelves lumping the areas and
volume of individual structural members into areas and
volumes at the nodes of the structure and calculating the
horizontal wave forces acting on these assumed concentrated
bodies.  The linear (Airy) wave theory was used to determine
the water motion to be considered in the wave force
calculations. A detailed description of the procedure has

been given by Dawscn in reference 6.2.

The final form of the load acting on a typical node

*i* of the structure will be given by
fal(s,t) = f4(s) # sin (—w .t + A) [6.171]
where +f.(5) is a constant coefficient

W is the specified wave frequency

t is the time

17
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Fig. 6.10 Flexible Offshore Structure (Example no. 3)
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A iz an angle reflecting the difference in phase
hetween the inertial and drag loading components
of the water wave acting on a single node as
well as the spatial location of the nodes with

respect to the position of the wave crest.

The wave used in the calculation had a height of 40
ft and a period of ? sec (Ww. = 0.6981 rad/sec) and was
assumed to act in the structural "X" direction. The total
base shear as well as typical load patterns obtained +from
these calculations are shown in fig 6.11. It is observed
that the 1loading is periodic (with a period of 9 sec) but
that the spatial distribution of the load is continuously

changing within this period.

The loading was discretized using a time increment of
0.5 sec and the loading correlation matrix was calculated.
Three 1load patterns were identified as important to the
structural response. The correlation of the corresponding
deflected shape was evaluated and two deformation patterns
{using t=7 sec and t=9 sec) were retained for the block Ritz
analysis. A summary of these calculations is presented in
table 6.2.

The representation of the specified loading patterns
was then evaluated from the Euclidean norm of the error force
vector for different vector bases comparing block Ritz
solutions to the exact eigensolution and single vector Ritz
solutions. The single vector LWYD Ritz algorithm used the
spatial distribution at time t=9 sec, causing maximum base
shear, to initiate the recurrence relationship. A summary of
the results is showm in fig. 6.12. It can be abserved that
all the Ritz solutions were able to achieve a good
representation of the simple load distribution specified at
time t=9 sec with relatively few vectors. However, only the
block Ritz solution was able to achieve simultaneously a good

representation of the dynamic load at t=7 sec. In fact the
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TABLE 4.2

Correlation Analysis for Multiload Pattern Analysis

Loading Correlation (sperscripts correspond to specific time t)

£7 f= :
7 1.000 0.755 0.148
f® 0.755 1.000 0.773

% 0.1568 0.773 1.000

Correlation of static deflected shapes

Uz ue u-
Uz 1.000 0.755 0.168
ue 0.755 1.000 0.773

u* 0,168 0.773 1.000

Correlation of mass weighted static deflected shapes

u” pe u-
Uz 1.000 0.445 0.447
U® 0.445 1.000 0.82%9

u* 0.447 0.829 1.000

Selected time to specified starting deformation pattern are
t=7 sec and t=9 sec
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Fig. &6.12 Representation of Dynamic Load from
Block Ritz Bases (Example no. 3)



spectral content of the starting vector of the single WYD
Ritz method (using t=% sec) was exhausted before a complete
representation (say 98%) of the load at =7 sec could be
obtained. The eigensolution required many more vectors than
any Ritz solution to obtain a good loading representation,
reflecting once again the importance of higher modes to

represent concentrated loads.

The fundamental period of vibration was found to be
clase to 10 sec. The periods of the first few modes are
shown in table 6.3. By comparing the freguency content of
the loading to the "structural frequencies it can be
anticipated that after the first few modeg are included in
the summation the concept of static correction to approximate

higher modes effects will be very effective.

The steady state structural response was calculated
by direct vector superposition. By assuming appropriate
trigonometric identities it was possible to obtain a closed
form solution for the displacements. For these calculations
it was assumed that the damping in each generalized
coordinate can be taken as 8% of the critical damping of the
first Ritz or eigenmode, The exact solution was obtained by
considering a complete exact eigenbasis of 48 vectors. The
convergence of displacements was fairly rapid for any vector
basis and is not worth reporting. The convergence of a
typical response quantity such as the total longitudinal
fiber stress at the bottom chord of the horizontal bracing
member was calculated. The location of the section +For
stress calculation (see fig. 6.10) was chosen near the
midlength inflection point such that the response is
dominated by axial stresses. The stress response was then
calculated +From different vector bases for various number of
vector retained in the analysis. A sample of these
computations is shown in fig. 6.13 where & vectors were
included in the summation and a comparison with exact results

was also established.

181
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TABLE 6.3

Natural Periods of Vibration of

Flexible Steel Offshore Platform

Exact Eigenanalysis Block Ritz Analysis®
period(sec) freql{rad/sec) period(sec) freqg(rad/sec)

1- 10,343 0.607 10,339 0. 608

2- 10.294 0.610 7.539 0.831

3- 7 .309 0,837 5.907 1.064

44— 5.894 1.0646 1.298 4.83%9

o- 1.301 4,830 Q.673 ?.333

&6- 1.298 4,838 G.182 34.504

Note : # 6 vectors included in Block Ritz analysis (2 static
and 4 dynamic)
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The results using & eigenvectors supplemented by
modal acceleration virtuwally coincided with the exact
solution. The block Ritz solution using 2 static and 4
dynamic vectors was also almost identical to the exact
solution. It should be noted that formal application af the
static correction concept is very simple for loading that can
be written as the product of a spatial distribution and a
single time variation parameter. In this case only the
magnitude but not the spatial distribution of the loads
varies with time such that the pseudo-static displacement
correction vector has only to be solved once, an appropriate
scaling factor is then applied at each time step to obtained
the required correction effect. For more general loading,
such as the wave loads usedmin this analysis, this procedure
becomes much more invoived since a new pseudo-static solution
has to be calculated at each time step since the spatial

distribution vary with time.

The results obtained from the WYD Ritz methaod using
single vector iteration with static residual were campletely
erroneous except at time t=0, 4.5 and 9 sec where they were
almost exact. As 'expected these are the times when the
spatial distribution of the loading coincide with the loading
chosen to initiate the single vector iteration algorithm.
The solution using & exact eigenvectors is also completely
false as expected from the poor 1loading representation

achieved by the first few exact eigenvectors.

It can thus be concluded that this example, although
very simplified, clearly illustrates the advantage of a block
Ritz solution over the alternative vector superposition
method for loadings that are function of space and time. The
block Ritz method was able to provide very good results in an
economical way as no extra terms need to be added tao the

usual modal summation procedure.



CHARPTER 7

Use of the WYD Ritz Reduction Method +{or Multilevel

Substructure Analysis

The concept of dividing a structure into parts to
carry out an analysis may be advantageous in several

applications:

- analysis of large FEM systems that have too many DOF to be

handle by the computer in a single analysis,
- analysis of systems that have repetitive components,

- interaction studies when the behavior of different media
can be separated such as soil/structure or fluid/structure

problems,

- subdivision of large systems between groups of analysts

that can work more independently,

~ parametric studies and optimization of specific sections of

complex systems,

- analysis of structure with Ilocalized nonlinearities
reducing the size of the nonlinear problem by treating the

lingar and nonlinear sections as substructures.

In dynamic analysis, the substructuring concept is
related to the idea of reducing the number of DOF of the
structural system while retaining a high accuracy in the
dynamic response. The reduction is not done globally but at
the substructure level and compatibility of displacements and
forces at the substructure interface generates the global set
of equations representing an approximate mathematical madel
of the complete structure. Thé static condensation procedure,

the Guyan reduction wmethod (7.7) and the component made

ig
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synthesis, which forms the basic tools of dynamic
substructure analysis, can be understood as Ritz analysis.
Variations in the methods are related to the choice of the
Ritz basis vectors. ‘

The critical point in the reduction of any dynamic
problem is to find an adequate representation of the work
done by the internal Jloads of each substructure. The
internal loads in a substructure may arise from elastic
forces when an external load is directly applied on a
structural components, or from inertia, damping and elastic
forces developed during the dynamic structural response.
Typically internal inertia and damping forces are not known
before the final solution is known. The classical approach
ta dynamic substructuring is therefore to describe the
internal motion of each substructure by a linear comhination
of substructure modes with the implicit assumptions that
these modes satisfy a certain substructure eigenvalue
problem. To enforce compatibility between substructures,
constraint or attachment modes are useds; these are
displ acement patterns corresponding to successive unit

displacements or forces applied at each boundary DOF.

Three basic variants of the method have been
developed depending on whether the modes of each substructure
are obtained with its interface held fixed (7.5, 7.12), free
{(7.4) or lcaded (7.2, 7.6). Since it is not possible to
define a unique eigenvalue problem for a given substructure
and because none of these methods can yield exact results for
the actual structure using a truncated set of exact mode
shapes, the significance of using exact substructure mode
shapes can be seriously questioned. The suggestion for
improvements should therefore be directed toward two basic

questions;

- how to select a set of substructure modes,



— how to enforce geometric compatibility at substructure
boundaries.

It should be recognized that the substructure
synthesis method 'is in fact a Ravleigh Ritz method for an
intermaediate structure for which Ritz vectors can be used to
reduce the ariginal model. In this chapter it will be shown
that dynamic substructuring methods can be greatly impraoved
if LWYD Ritz vectors are used in the basic transformation
equations. First, specific considerations concerning the
application of the WYD Ritz reduction method to substructures
that do not develop internal inertia or damping forces will
be presented. Secondly, a component mode synthesis type of
hfurmulation, using LWYD Ritz vertors to represent the
internal substructure behavior for substructures that develop
inertia and damping forces, will be developed. Finally a new
method to generate exactly the LWYD Ritz basis of the
compiete structure Ffrom basic substructure data will be

introduced as the Dynamic Ritz Condensation (DRC) algorithm.

7.1 Static Condensation

Static condensation is used to reduce the total
number of DOF of a substructure by eliminating the internal
DOF. The term "static condensation"” is chosen because a
static equilibrium constraint is used to express the
eliminated DOF in terms of the boundary DOF that will be
retained in the assembly of the substructures.

To establish the equations used in static
condensation, we partition the basic static equilibrium
equations of a substructure into the internal DOF "i" to be
eliminated and the boundary DOF "b" to be retained:

(K1 LUl = {F¥ [7.11

187
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K Kiw U;s = Fas £7.21
Kbl Kbb Ubb be
using the {first matrix equation of egquation [7.2] to solve

for {U,.3, we get:
{tUsa? = [Kea1™2 ({Fy122 — [Kin] {Unad) £7.31

The internal substructure displacements are thus obtained by
superposition of two components, a local analysis to known
substructure loads given by [Kial—2 {F,13 and the effect of
boundary displacements given by -[K,gj-*[K;.] {Upnl.
Substituing [7.31 in the second equation of [7.2], we get:

(IKawn] ~ [KpaJlKis172 K]} {Ugn? = ((Fae) — [KesllKia1732{F,.3)
£7.43]

This can be written as:
(Kued Unn} = <Fuuo} £7.51

where ng.J and CFL.J are the reduced stiffness and loading.

The same results can be obtained by applying the

transformation matrix:

vl = [? Kyo—t K.b] = [T‘] [7.61
1 1

where [I] is the identity matrix, to the original stiffness

and loading matrices:

[Kewl = [VIT [K] [V] [7.73
(Fon} = [VIT {F}

This constitutes a Ritz analysis in which the DOF
{Upn? are the Ritz cocordinates and the columns of L[V] are the

assumad displacement patterns or the Ritz vectors.

i1t should be noted that static condensation is in
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fact Bauss elimination on the DOF {U,,} and that when applied
to a static problem, there is no approximation in the
procedure. - For static structural analysis, substructuring

computations can be divided into three phases:
—~ BGeneration of basic substructures

— Reduction and assembly of substructure matrices (forward

and global pass)
-~ Local analysis of individual substructures (backward pass)

To reduce the size of the dynamic system, one
alternative is to apply the transformation matrix [V] of

equation [7.46] to the dynamic equilibrium equation:
CM1 (U + CCI €U + (K] U = {Fis,t)? £7.81
according to the procedure of equation [1.81.

But the transformation matrix [V] is based on static
equilibrium and does not account for dynamic shape inertia
effects. If no ipertia forces are associated with a DOF, it
can be eliminated by static condensation and does not need
further consideration in the dynamic analysis. If masses are
associated with DOF tao be eliminated, the static transforma-
tion constitutes a standard Rayleigh—-Ritz reduction but there
is only limited rational justification for the choice aof the
Ritz vectors obtained from the static condensation procedure.
It should be noted that this particular choice of Ritz basis

vectors is also known as BGuyan reduction.

7.2 Substructure with Massless Degrees of Freedom

Structural systems that possess massless DOF are
frequently encountered in practice and the formal application

of the static condensation procedure can be avoided by
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working directly with the singular mass matrix in the vector
generation algorithm. The final results will theoretically

be the same but there are however some special considerations

lthat must be addressed.

If a structural system possesses massless DOF the
space spanned by the dynamic problem, as defined by the
characteristics of matrix (M], becomes a subspace of the
static problem as defined by the characteristics of the [KI
matrix. I+ an exact eigensclution is used the resulting
eigenproblem will be defective; that is, it has fewer than n
eigenvectors for an n DOF system. It is therefore possible
that some vectors such as deflected shapes or the initial
loading distribution can not be made up of a linear
combination of all eigenvectors of the specified mathematical
maodel. In such a case, the exact eigensolution will therefore
be unable to yield an accurate solution spanning the entire
space of the static problem. 1f however the WYD Ritz
reduction method is used, the addition of a static residual
term to the basis will provide a means to supplement the
dynamic solution by a vector spanning the entire praoblem

space and will thus be able to yield more accurate results.

A simple numerical example is used here to illustrate
that point. The mass matrix of the offshore platform
idealized as a 40 DOF shear beam model accarding ta fig. 4.4
was modified by removing masses at three DOF below the mass
representing the deck as shown in fig. 7.1. The ‘"exact"
mathematical response of the discrete model subjected to wave
lpading applied at a massless DOF was obtained from the

procedure outlined in section 4.3.2.

The response was then calculated by vector
superposition using a complete set of 37 eigenvectors,
eigenvectors supplemented by static correction and LWYD Ritz
vectors. .The results in terms of displacements of the top
POF are shown in fig. 7.1. It can be observed that a full
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gigenbasis is only able to provide a linear variation between
mass DOF no. 36 and mass DOF no. 40 and therefore missed the
local shape deformation in the vicinity of the load. On the
other hand, the soclution using LWYD Ritz vectors with static
residual and the eigensolution supplemented by static

correction were able to yield "exact"” results.

This simple example clearly illustrate the advantage
of the WYD Ritz reduction method when dealing with problems
where local "static” responses are significant. There are
however two specific problems that need to be considered when
applying directiy the WYD Ritz reduction method to problems
that have singular mass matrices. The first problem is
related to the choice of the starting vector and the second

to spatial error norm calculations.

7.2.1 Btarting vector

If the problem size is designated by n and s is the
rank of wmatrix fMl, then there are (n-s) spurious eigen-
solutions corresponding to multiple infinite eigenvalues. I
the WYD Ritz method is applied directly from the original
algorithm the starting vector, given by [K1-* {f}, can not be
made up of a linear combination of Ritz wvectors of the
original problem, that is ([K1-* {f}) is not in the space
spannad by the [Ml-orthonormal Ritz vectors basis and
possesses components belonging to the subspace associated
with w%, =», s the algorithm proceeds these components
will grow since their magnitude can not be fixed by the [M]
orthonormality condition and they can potentially cause
numerical difficulties. To eliminate this problem the
starting vector should have a null projection on the set of
eigenvectors associated with w2, =w. Te ensure that the
initial vector be contained in the original problem space the
starting vector should be multiplied by [M] or hy [KI-2[{M]
before its [Ml-normalization. The problem with this approach
when applied to the original WYD Ritz élgurithm is that the



benefit of the static vector contribution to the response of
massless DOF is lost and that the WYD Ritz solution will
suffer +Ffrom the same deficiency exhibited by the eigen-—

solution as illustrated by the numerical example of fig. 7.1.

The LWYD Ritz vector zlgarithm on the other hand is
we2ll suited to the application with singular mass matrices
since the initial static vector {Us} is multiplied by the
mass matrix before entering the recurrence relationship thus
avoiding the growth of components belonging to the subspace
of infinite eigenvalues. The static residual, if added to
the basis, will however possess significant components
belonging to the subspace of infinite eigenvalues and there
will be a high frequency associated with this vector as given
by the reduced eigenproblem [K1*[Z1 = [MI*L[Z1{w=] or L[TILZ] =
LZzlLxld.

7.2.2 Spatial Error Norm Calculations

I1¥ the applied loading has no components belonging to
the subspace aof infinite eigenvalues, that is no dynamic

loads are applied at massless DOF, the error norm to monitor

the degree of loading representation achieved by a truncated

LWYD Ritz basis, as defined in chapter 3, can be applied
directly without any problem. It should be noted that this

condition will always be satisfied for earthquake loading.

On the other hand, in the case of forced vibration if
the dynamic load has components assigned at massless DOF, the
spatial error norms (which implicitly assumed that the
loading distribution can be represented by a complete set of
[Ml-orthonormal LWYD Ritz vectors) will fail to praovide a
measure of the representation of these components by a
truncated LWYD Ritz basis. In such a céée, one can either
formally apply the static condensation transformation to the
dynamic lopading and monitor the representation of the

resulting virtual work equivalent or use the error norm based
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on the magnitude of the static residual.

For this application the error norm based on the
magnitude of the static residual (see section 4.2.1) should

be written as
(I[MI{U, 312 /7 IMI{USYiz) < tol £7.91

since the magnitude of {U:} components is based on an ([M])-
orthonormality condition. The initial static vector {Ugl}
will span the complete problem space, and the error norm
defined in equation [7.7]1 will ensure a good representation
of dynamic subspace components excited by the loading. When
a good representation of dynamic components is ensured the
solution can be supplemented by the static residual. If the
benefit of static correction can be ascertained from
frequency considerations prior to the analysis then a good
response can be obtained with only a few vectors even if the
error norm given by equation [7.7] is still relatively large.
An example of the use of this error norm for the 40 DOF shear

beam model with singular mass matrix is given in fig. 7.2.

It is shown that the error norm which monitors the
magnitude of the static residual components 1lying in the
subspace of the mass matrix, as defined by equation [7.9]1,
exhibit & logarithmic type of decrement until its value
reaches the order of the numerical roundoff of the computer.
The error norm measuring the magnitude of all static residual
components (including those of massless DOF) reaches a
constant value after the calculation of a few vectors. This
is due +to the fact that the magnitude of components of
massless DOF of the initial static vector {Us} are not
reduced by the application aof the mass orthagonality
condition used to update the static residual as the algorithm
proceeds. As the companents lying in the subspace of the
mass matrix are reduced the unreduced components of massless
DOF start to dominate the ratio {{Us2iz/i{Us}!a which

stabilize to a near constant value. This value is therefore
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not indicative of the representation of dynamic subspace

components achieved by the basis.

7.3 Substructuring in Dynamic Analysis

In order to obtain a better set of reduced
coordinates than those obtained from Buyan reduction, it is
necessary to account for the inertia and damping forces of
the substructures in a rational way. The internal dynamic
behavior may, in many cases, be represented by a relatively
few generalized coordinates representing the lowest vibration
shapes of the structure. The effectiveness of this type of
reduction depends on the nature of the loading acting on the

structure as discussed previously.

The mass, stiffness, damping, and load matrices of

each substructure can be partitioned according to:

21 [y PSS Cas Cim 23 Kin Faa £7.101
Mbl Mbb Chl cbb Kl:’. Kbb th
where Yi" represents the interior coordinate and "b™ the

boundary or juncture coordinates.

The physical coordinates {U} may be represented in
terms of component generalized coordinates {Y} by the

coaordinate transformation:
Uy = ¥l {Y3 [7.111

where L[ ¥1 represents a matrix of preselected component
moades. In the proposed application the following two types
of Ritz modes will be considered: the LWYD Ritz vectors to
represent the internal dynamic behavior of the substructures,

and the constraint modes to connect the substructures.



7.3.1 Ritz Vector Calculation

The Ritz vectors caiculated at the substructure level
will be easily obtained by restraining the interface
coordinates and using the LWYD Ritz vector algorithm. This
approach will be consistent with the fixed interface normal
modes method used in classical mode synthesis formulation
which was shown by Curnier (7.4) to be the best technique for
designs controlled by low frequency modes. The use of LWYD
Ritz vectors instead of exact eigenvectors will provide a
significant improvement to the procedure by reducing the
nunerical effort and generating accurate load dependent
vectors.

In +Fforced vibration analysis it might happen that
only one or a few substructures are directly subjected to
applied dynamic loads. In such a case, the spatial 1load
distribution assigned to each substructure should be used to
obtain the corresponding LWYD Ritz vectors. To obtain an
accurate structural response in all substructures LWYD Ritz
vectors should also be included for substructures that are
not externally loaded. In fact the first LWYD Ritz vector
should satisfy the fixed boundary conditions and somehow
reflects the effects of the load in adjacent substructures as
if the analysis was performed on the complete system treated

as a single entity.

If the dynamic model was first validated by a static
analysis, as it should always be, then the best choice will
be to initiate the LWYD Ritz algorithm for the unloaded

substructures from fictitious inertia loadings obtained from
{f‘g} = [H;_;] {U‘_‘,}B [7.121

where [Mi.1 is a specified substructure mass matrix and
{Uy413% 1is the static deflected shape obtained from a static
substructure analysis of the system subjected to the spatial

distribution of dynamic loads. In the absence of information
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on the static deformation shape {U,4}® a uniform displacement
field might be used. i1t should be noted that if no
substructure LWYD Ritz vectors are used the transformed

equations will be identical to those obtained from the Guyan

reduction technique.

The spatial error norms can be computed at the
substructure level to ensure an adequate representation of
the specified substructure loading. The error in the final
structural response of the complete system will in general be
emall if there is a good representation of the loading in
each substructure, however since there is no interaction
between the substructures at this stage of the calculation
there is still an uncertainty related to the synthesis of

errors that can not easily be gquantified.

7.3.2 Constraint modes:

The physical coordinates {U} may be partitioned into
a set {Une} relative to which constraint modes are ta be
defined; let {Uy:} be the complement of {(Upel. A constraint
mode is defined by imposing a unit displacement on one
physical coordinate of the {Uuwn) set and zero displacement on
the remaining {Uee} coordinates while the {U;:3 set is free.

Thus the set of constraint modes will be defined as:

Kia Kim Yam = ib £7.131
Kioas Koo lon Ron -

where [Runl is the set of reactions at the {lUg,} coordinates.

From the top equation of [7.13], we get:

Yo = =[KgsI—2 [Kyul [7.141]

The constraint mode matrix is thus:



ib = [“Kys™* Kan] = |Ta £7.151
Ina lon I

This matrix corresponds to the static condensation
transformation matrix of equation [7.6] presented in section
7.1.

7.3.5 Bystem Synthesis at the First Level

The generalized coordinates employed in the component
mode synthesis method can be identified as the boundary DOF
needed for interconnection, {Ups}, and interior DOF, {Y,}, to
represent the internal dynamic behavior. Thus, the

displacements {Us.) can be expressed as:
{Uasd = [Xad {¥e3 + [Te] {Unul [7.16]
for each component. This equation can be written in
Uss | = Xa Ta Ya £7.171
b v R

where {U;;2} are the internal DOF for the substructure

partitioned form as:

{Upn) are the boundary DOF needed for interconnection
{¥Ys} are the generalized Ritz coordinates for the
substructure corresponding to Ritz vectors [X:1
[T,1 is the static condensation transformatieon,
—[K341"2[Ky1, obtained by back substitution of
[Kagd [T, = — [K;zel '
[I1 is the identity matrix.

Equation [7.171 represents a coordinates transfor—
mation that can be used to reduce the dynamic equilibrium

equations of each substructure according to:

(K1 = [A1T [K]1 [Al
[M1 = CAIT [M1 CA] [7.18]
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(€1 = CAIT [C1 [A]
F3 = 1AI™ {F3

where [A]l 1is the displacement transformation from Ritz
coordinates and retained DOF to component DOF according to

equation £7.171.

If the retained system coordinates are ordered as:

- oy

Ys
Y2
- [7.191]
Ubb
e -
for substructures 1,2,..., the assembly of reduced

substructures matrices can be daone directly and will vyield
the global stiffness, mass, damping and load matrices shown

in table 7.1 at the first substructure level.

7.3.4 Higher Substructure Levels

After the reduced mass and stiffness matrices of each
substructure have been obtained they can be coupled together
to form the next level of substructuring. 1f the number of
boundary DOF {Uss? is very large, they may be reduced at the
next substructure level.considering some of them as internal
unknowns. The procedure for reduction of each substructuring

level is similar to that followed at the first level.

The repetition of this process will 1lead to the
formation of a reduced set of coupled equations corresponding
to the complete structural system. The reduced coupled set
of equations may be integrated numerically by using a step-
by—-step algorithm or may be uncoupled using eigenvectors.

Displacements and stresses are then obtained from equations



TABLE 7.1

Substructure Level

Global System Matrices at First

Stiffness : [Klg
xlT Kll xl o - e
o sz K’z Xz e s
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L desy
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of the form given by eq. [7.161.

In practical design applications, it is often
interesting toc know approximately the stresses at critical
section locations when the final set of equations is
assembled and solved before the backward pass required to
evaluate the internal displacements and stresses in each
substructure is done. Although, it is a requirement that all
nodes interfacing two substructures be declared boundary
nodes of the substructures for continuity purposes, boundary
nodes can also be declared within a substructure for nodes

not lying on a physical boundary. These fictitious boundary

nodes can be linked at the global resolution level, the final

substructure level, by "gauge" elements consisting of beams
being only able to carry unidirectional loads. The area of
the "gauges" should be selected to be of unit wvalue, such
that stresses can be obtained directly from the force
calculation. The addition of these elements, at the global
level, can significantly speed up the results interpretation
phase of the analysis. Gauge elements should be used only in
critical locations since an abusive repetition of this idea
will increase significantly the number of boundary nodes and
the cost aof the solution.

7.4 Dynamic Ritz Condensation Algorithm

If one considers the interconnection of components it
should be recognized that it is almost impossible to  simply
formulate a substructure LWYD Ritz system that will reflect
exactly the effect of the rest of the substructures. - The
effects of adjoining substructures are only accounted for in
the synthesis process by mean of constraint equations

enfarcing compatibility at the boundary DOF.

The LWYD Ritz vectors are generated from a recurrence
relationship that uses a static sclution to a fictitious

inertial loading. It is therefore appropriate to think about



the generation of LWYD Ritz vectors using a static

substructuring method. In fact from the coordinate
transformation equation, it is shown that static
substructuring is a subset of dynamic substructuring. The

local inertia effects can be captured by an iterative
procedure where the inertial load from internal DOF of each
substructure will be condensed to boundary DOF at each step
of the LWYD Ritz algorithm. The generation of global LWYD
Ritz vectors using static substructuring data will be able to
take account of the effect of adjoining substructures
exactly. This method will be introduced as the Dynamic Ritz
Condensation (DRC) algorithm.

The three important type of matrix computations that
need to be performed to calculate LWYD Ritz vectors are:

~ the mass-vector product of the form

Y = M1 {Ug_,3 [7.20]
~ the solution of a linear system of equations of the form

LK1 X"y} = (Y2 [7.211
—~ the gquadratic transformation of the form

[KI* = [X1IT CK] X1 [7.221]

These computations can be performed with substructure
matrices rather than complete system matrices so that there
is no need to generate and store the stiffness and mass
matrice of the entire structure. Consider first the mass-—
vector product defined by equation [7.201]. The mass matrix

[M1 is formed by adding the contribution of each finite
element such that we may write [(7.20] as
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x

€Y} = () [a;17 Imyd Caly) (Uaos? £7.233
F N
where 1 is the number of finite elements

{my1 is the mass matrix of the ith element expressed in
global coordinates
(asl is a Boolean transformation matrix taking the

contribution from [my] to the final matrix [M].

It should be noted that fer each element the matrix
(La; 3¥Lm,y JLa; 1) is therefo?e an n X n matrix. Equation [7,23]
can be rewritten as
a
&YY =) € [a,17 Ime1 Cayd CUeoad 3 £7.241
d w3
such that (Y} may be calculated without ever forming and
storing the complete system matrix [M1. In practical
computer operations the multiplication of matrices are never
performed, instead an identification array is used to express
the connectivity of the elements and the contribution of each
element 1is5 added directly to assemble system matrices. The
identification array can be used to perform the computation
of equation [7.24] by considering the final position of each
entry of [my1 in [M]1 such that the formal application of the

Lfas] matrix is never required.

The same approach can be implemented to assemble
substructure matrices [Mis]1. The calculation with equation
{7.24]1 basically implies the generation of the mass matrix
{M1 for each mass—vector product which will be relatively
inefficient since this computation has to be repeated many
time at each step of the LWYD algorithm. It will be more
appropriate, if possible, to establish the system mass
matrix, ([Ml, only once and store it either in core or on low
speed storage for use in all mass—vector product
computations. This become a trivial operation if [M] is a

lumped diagonal matrisx.



The calculation aof {X*,} from equation [7.21] can be
performed using only substructure stiffness matrices.
Equation [7.21]1 can be interpreted as an equilibrium equation
corresponding to the static response of the system to a
pseudo-load vector {Y} which can be solved using static
substructuring concepts as explained in section 7.1. The
boundary stiffness matrix [E;,J will be assemble and
decomposed only once. Each step of the LWYD Ritz algorithm
Will require the reduction of substructure components of the
{¥} wvector to form the effective boundary load vector {E;b},
the solution of fE;gl {X*s ¢y I = f?;b}, the expansion to
compute {X*:¢113} and assembly to obtain the complete {X*:2

vector.

Cnce the Ritz basis has been calculated we need to
establish the reduced set of equilibrium equations expressed
in WYD Ritz coordinates or in Lanczos coordinates. If
advantage is taken of the tridiagonal faorm of the reduced
system, there will be no need to compute the transformation
[XITLKICX}? and the procedure will be most efficient. If+ the
computation of [XJ1VIKI[X] is required, the product [KI{X1I=[E]
can first be evaluated by the same procedure outlined for the
mass—vector product substituting [k;]1 an elementary stiffness
matrix for Em:] in equation [7.241. The product L[XI1TLEJ can
then be calculated directly or by using matrix partitioning
keeping in mind that the rules used in the calculation with
partitioned matrices follow from the definition of matrix
addition, substraction and multiplication as if submatrices
vere ordinary matrix elements. The Dynamic Ritz Condensation

algorithm can thus be summarized as follow :

~ generate partitioned substructures stiffness, mass and

lpad matrices,
— assemble and store complete system mass matrix [M1,

- calculate static substructure transformation matrix [T,1,

3

n



— transform substructure stif#ness matrices, assemble global

[Kla matrix, triangularized (Kla,
— solve for initial static vector by static substructuring,

- reduce loads,
- solve global set of equations,

-~ backsubstitute for complete vector,

- compute Ritz basis from the LWYD Ritz vectar algorithm,
the only modifications are in the solution for new vectors
at each step of the algorithm by the

- reduction of pseudo-load vector [MI{Us-.3,
- solution of boundary Ritz displacements,

-~ expansion and assembly of complete vectors.

The relative efficiency of the DRC algorithm compared to
classical dynamic substructuring using synthesis of LWYD Ritz
vectors, as developed in section 7.3, will be discussed in

the next section dealing with a specific numerical example.

7.5 Application of Dynamic Substructuring using LWYD Ritz

Vectors

In order to test the proposed dynamic substructuring
algorithms the 40 DOF shear beam model with complete diagonal
mass matrix‘preaented in section 4.3.2 was divided into four
substructures, SSA, 8SB, 5SC and SSD as shown in fig. 7.3.
Four boundary displacements were retained for the analysis.
The structural response to concentrated wave loading applied
in S5D was first calculated by the method of component mode
systhesis adding generalized coordinate one by one only in

§5D. The following vector shapes were used:

- "exact" eigenvectors,

- "exact" eigenvectors + static correction,
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- LWYD Ritz vectors with static residual obtained from the

specified loading distribution.

It is interesting to note that static correction
terms can be added to the solution using "exact" eigenvectors
on a local basis to improve the results obtained from modal
truncation. The expression used to calculate {U;,3} by this

approach was
{Uga) = [KgaJ72({fs,3 — {f,,042) + [@ILY,3 + ET41{Upp} [7.231

where <{f., 422 = [(MILBILAIT{F,.,2
and [@1 is a truncated set of exact mode shapes of the

substructure obtained with fixed boudaries.

The periods of the first few approximate modes of
vibration obtained from any vector basis were close to the
exact natural periods of vibration. The structural response
in terms of maximum error in S5D beam shear forces is shown
in fig. 7.4. If a maximum error of 1% is used to define a
fully converged solution, the use of exact eigenvectors to
capture the internal behavior of SSD required a full basis of
% eigenvectors while T eigenvectors supplemented by static
correction or 4 LWYD Ritz vectors with static residual were
sufficient to obtain the same results. It should be ocbserved
that the response in S8A, SSB and SSC can be considered
almost independent of the number of generalized coordinates
retained to capture the internal behavior of S$5D. A constant
maximum error of 9% was obtained in SSC +from any vector
basis. |

In order to obtain convergence in 55A, SS5B, and 5SC
generalized coordinates were added tc capture their internal

behavior. The following vector bases were used:

- "exact” eigenvectors;
- LWYD Ritz vectors obtained from {(£3: = [M:42{Us,.1" as

initial 1loading distribution, with {U;,3}*®™ taken to be
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uniform displacements and displacements obtained fraom a
full static substructure analysis to the applied SSD

loading distribution.

It was found that the addition of 1 generalized coordinate in
each substructure was sufficient to obtained convergence from
any basis, the most accurate results being obtained from
LWYD Ritz vectors generated from fictitious loading
corresponding to static displacements analysis. In summary,
the total number of DOF (boundary and internal) that had to
be uncoupled in the eigensolution of the glocbal matrix system
for steady state response calculations, to obtain shear force

convergence in all substructures, was the following:

- "exact" eigenvectors : 16
- ‘"exact® eigenvectors + static correction : 12
- LWYD Ritz vectors £ 11

showing that the most efficient vector basis for synthesis

caomputations is obtained from LWYD Ritz vectors.

The results obtained from the DRC algorithm
corresponding to the response obtained from an exact LWYD
Ritz basis of the complete system, are alsoc reported in fig.
7.4 for comparison purposes. Only 3 LUWYD Ritz vectors were
necessary by this approach such that the size of the reduced
eigenproblem was of order 3. If one considers the number of
numerical operations required for convergence by the WYD Ritz
synthesis method and the DRC algorithm it was found, for this
particular example, that the opreation counts are roughly
equivalent for the formation of the global matrix system,
[KlalZl = I[MlalZlLw®1 (i1 x 11) or the reduced WYD Ritz
system, [KI*{Z] = [MI*[Z1Lw=2] (3 x 3). The difference in the
two methods comes from the tepology of the global or reduced
system of eguations that must be uncoupled using

eigenvectors.



The eigenproblem generated by the WYD Ritz synthesis
method is larger than the eigenproblem obtained from the DRC
algorithm, moreover, there is mass coupling terms in the [(Mle
matrix such that a numerical algorithm adapted to the
esolution of the generalized eigenproblem must be used. On
the .other hand, the eigenpraoblem cbtained +from the DRC
algorithm is already cast in the standard form since [M1*
corresponds to the identity matrix from orthonormality
conditions. For this example, the solution using the DRC
algorithm was thus found to be more efficient than the WYD
Ritz synthesis method. It is anticipated that if accurate
results are required in all substructures, the DRC algorithm
will be able to maintain a numerical advantage over the WYD
Ritz synthesis method for a wide range of applications by
generating reduced WYD Ritz systems that require fewer

generalized DOF for convergence.
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CHAFPTER S

Nonlinear Dynamic Analysis by

Direct Superposition of Ritz Vectors

The increasing importance of nonlinear analysis is
due teo the need for the structural engineer to develop
realistic modelling and accurate analysis of critical
structural components. The most important factors in the
efficiency of dynamic calculations are generally associated
with the solution procedure employed. The selection of an
appropriate solution technique can bring an analysis to an
economic possibility and technical feasibility without making
campromises in the modelling to the point of rendering

questionable any results obtained.

For certain classes of problems, the use aof direct
superposition of Ritz vectors for nonlinear dynamic analysis
can present an‘advantageous solution strategy as compared to
the classical step-by-step integration of the fully coupled
system of nonlinear equations. This chapter presents various
solution strateqgies to apply the WYD Ritz reduction method to

globally and locally nonlinear dynamic problems.

8.1 Source and Extent of Nonlinear Behavior

The major sources of nonlinearity in a structural

system can be classified as fcllows:

1- Geometric nonlinearity: This type of nonlinearity arises
through nonlinearity in the strain-displacement relations
and through the need to faormulate equilibrium conditions

in the deformed configuration.

2- Material nonlinearity: This type of nonlinearity arises

through nanlinearity in the stress-strain or member-force



deformation relatiopships.

3— Force nonlinearity: This type of nonlinearity occurs
when the forces are a function of the displacements of
the system. Examples are hydrodynamic 1loadings on
of fshore platforms, or pressure leadings on thin
membranes.

After the type and severity of nonlinearities
affecting the behavior of a particular system have been
identified, an important aspect in the choice of the solution
scheme is to evaluate the extent to which such nponlinear
bebhavior can be expected. In many practical problems complete
general nonlinear analysis capabilities are not required when
the structure may exhibit nonlinearities in only one or a few
local regions while the rest of the system remains linear
elastic. Efficient numerical solution procedures can be
developed if advantage is taken of the prior knowledge of the
nonlinear loralizations. A summary of the possible solution
techniques for nonlinear dynamic problems will next be
presented.  The extension of these techniques to the use of
substructuring for local nonlinearities will be discussed in

section 8.4.

8.2 Solution Techniques for Nonlinear Dynamic Analysis

Solution techniques can be classified according to
the manner in which they attempt to solve the equations of

motion written in the form:

[MICU + [CNL]{G} + [Kn J{UY = {Fr? [B.11

where:
CM1 is the consistent or lumped mass matrix usually taken
as a constant in time and independent of displacement

parameters,

[Ch ]l is the nonlinear damping matrix dependent upon
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velocities and displacements,

[Knel is the nonlinear stiffness matrix dependent upon

displacements,

{Fur} is the applied force vector that can depend upon

displacements.

The most obvious division of the solution techniques
is based wupon whether the approach seeks to use direct
inteqgration technigues or vector superposition methods +to
solve equaticon [8.11]. In both cases, the solution procedure
is based on an‘incremental step-by-step solution of the

governing equations of motion.

The solution requires that for each time step, the
incremental dynamic equilibrium equations be established and
then solved uwusing equilibrium iterations. This tan be
interpreted as the solution of an equivalent nonlinear static
problem at every time stép. Integration procedures <for
solving equation [8.11, can be based on either the tangent
stiffness method or the pseudo—force approach. The
evaluation and decomposition of the tangent stiffness matrix
(to speed up the convergence of the equilibrium i1terations)
at each time step is a costly procedure. Depending on the
problem considered, a new tangent stiffness matrix need not
toc be calculated in each time step. In many analyses, the
original stiffness matrix can be employed throughout the
complete response calculation and all nonlinearities can be
taken fully intp account in the evaluation of pseudo—forces

on the right hand side of the equations of motion.

Let:

[Cnl = [CL] + LCwd
and [8.213
[Kp 1 [K Yl + [Kn]



where [C.31 and [K_] are the damping and stiffness matrices
representing the reference state of the structure. [Ln] and
[Knl are the damping and stiffness matrices dependent on
velocities and displacements. I+ equations [8.2] are

substituted in equation [B.11, we get:
EMICU3 + [C_I4U> + [KLICUY = (Frod — (Frd £8.33
where the pseudo—force vector is defined by:
{Fu? = [En1{Ur + EKNI{US ‘ [8.4]
If the nonlinear properties are restricted to a small
portion of the structure, the matrices [Cnwl and [Kn]l will be
sparse and the cost of pseudo—forces evaluation will be small

if computations are performed at the eslement level.

B8.2.1 Direct Integration Methods

A lot of different procedures are currently available
for direct step-by-step integration of the fully coupled
equations of motion. The critical parameter in the use of
these techniques is generally the largest value of the time
step which can be used to provide sufficiently accurate
results. The ultimate comparison standard for any method is

therefore the total cost per satisfactory analysis.

Various explicit and implicit integration operators
have been used in structural dynamic calculations. The
eigenmode of the complete finite element assemblage with the
shortest period is usually critical to fix the time step for
an accurate and stable application of explicit integration
operators. The unconditional stability of many single step
implicit schemes (as applied in linear analysis) has favored
their use for practical nonlinear analysis. The time step of
implicit operators is selected only from consideration of the

required accuracy of solution. Implicit schemes are
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characterized by the dependence of the displacement vector
{Ujy+:? at the end of the time step upﬁn the loads, damping
and stiffness matrices evaluated at the end of the j+1 step.
This requires either iterative calculations at each time step
or an aproximation procedure using some type of
extrapolation. Implicit formulations leads to simultaneous
equations relations where the coefficient matrix is a

combination of the mass, stiffness, and damping matrices.
The most popular schemes are:

- the Newmark Beta method,
— the Houbolt method,
- the WilsonB® method{(unconditionally stable for linear

problem for 6 > 1.37).

A detailed presentation of the application of these
methods to the incremental form of the equilibrium equation
in nonlinear dynamics can be found in references 1.2 and 3.2.
Computer implementation of incremental integration with
corrective equilibrium iterations algorithm at each time step
have been summarized by Bathe and Cimento in reference 8.2. A
review of the recent developments in direct time integration
methods for nonlinear structural dynamics has heen reported

by Fellipa and Park in reference B.7.

B8.2.2 Vector Superposition Methods

The integration procedure mathematically corresponds
to simultanecus integration of all modes using the same time
step. The possible use of vector superposition in nonlinear
analysis - should not be surprising since only a change of
basis to a more effective system of equations is performed.
Although, at a Ffirst glance, modal methods in nonlinear
problems appears to vioclate the well known fact that
superposition principle are not applicable to nonlinear
systems, Nickell (B.14) suggested the use of the principle of



"local modal superposition®. This principle states that
small harmonic motions may be super-imposed upon large static
motions and that small forced motiocns may be represented in
terms of the nonlinear (tangent stiffness) frequency

spectrum.

Vector superposition methods can be more efficient
than direct step-by-step integration of the unreduced coupled
system in two different ways. 1f the caordinate
transformation completely uncouples the equations of motion,
time integration may be performed with more precise methods
than the unconditionally stable methods used in direct time
integration. The time step required by vector superposition
will alsa be generally greater than that required by the
direct method. The time steps may also be subdivided to
consider separately the integration of higher modes of the
reduced system. If the time steps required by the direct
integration and the vector superposition solution are the
same, the vector superposition approach can still be wmore
economical if the amount of computations for the application
of the coordinate transformation and solution of the reduced
system is smaller than solving the complete set of equations
directly. This will be true if the number of required
transformation vectors, r, is much less than, n, the order of
the original system. The larger the structural system the
more likely that this will be the case. Moreover,
approximate eigensolutions of the reduced system of equations
will provide knowledge of the spectrum of frequencies for the

dominating modes throughout the nonlinear response.

The effectiveness of vector superposition techniques

in nonlinear dynamic problems depends on:

~ The number of basis vectors required to accurately simulate
the response. This is a function of the frequency content
and spatial distribution of the 1loading versus the

vibrational characteristics of the system.
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- The frequency of updating or recalculating the basis
vectors which is a function of the rate of change of these

vectors with time.

— The efficiency in the algorithm used to calculate the

initial deformation vectors and updating them.

It should be noted that the actual (instantaneous)
frequencies of the system are continuously changing during
the nonlinear response. If the system stiffens during the
response history, the frequencies become larger and the
number of selected vectors based on a linear analysis will
probably be conservative. However, in analysis of softening
structure {(elasto-plastic conditions), the number of
generalized displacements may have to be 1larger than in

linear analysis.

8.3 Selection of Transformation Vectors for Superposition
Methods

In a first approach, the change of basis could be
performed at each time step using the exact mode shapes
corresponding to time t. Such a procedure would require the

solution of the generalized eigenproblem:
€[K1 =[2] = [M] =[@]1 :=Ew=] [B.51]

where the superscript “t" indicates that the stiffness
matrix, mode shapes and Ffrequencies carrespond to the
instantaneous configuration at time t. It is questionable if
such a scheme would be effective due to the large numerical

effort involved.

Nickell (B.14) presented an algorithm using subspace
iteration to extract only the 1lowest modes from the
generalized eigenvalue problem that represents the initial

state of the structure. An iterative procedure based on a



first order perturbation theory of the eigenvalue problem was
then used to update the vector basis as nonlinearities were
felt. For the one dimensional problems considered by
Nickell, about 10% more computer time was required in using
modal technique as compared to direct methods. It was
expected that this economic penalty might be eliminated when
models with significantly 1larger bandwidths were to be

analysed.

More recently, Idelsohn and Cardona (8B.11) presented
a reduction pracedure based on a vector basis selection using
tangent eigenmodes together with some modal derivatives that
indicate the way in which the spectrum is changing. The
calculation of the derivatives, which are not evaluated in a
standard finite element code, is performed by special
subroutines at the level of element computations. The
calculation of modal derivatives requires the the same amount
aof computations as the evaluation of an internal force vector
and associated displacements. An  implicit integration
operator, used along with error estimates and an efficient
equilibrium iteration algorithm, was able to provide

economical soclutions for the nonlinear problems reported.

For mildly nonlinear problems with localized
nonlinearities, the use of modal technigues in conjunction
with the pseudo—force method seems promising. This is
because a single set of modes (based on linear analysis) can
be used throughout the analysis. Only the residual farces
due to nonlinearities need to be transformed in each time
step. This approach was suggested by Bathe and Gracewski
(8.3). It should be noted that although the reduced
stiffness, damping and mass matrices are diagonal (Rayleigh
dumping assumed) the reduced system is coupled by the
nonlinear force vectors, so a direct time integration must be
employed. In a number of simple nonlinear structural dynamic
problems, modal methods were found to be competitive with

direct integratiocn operators (see ref. 8.3, 8.8, 8.13, 8.164,
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B8.19). However, it should be noted that experienced analysts
are required if the technique, in its present form, is to be
efficiently used since the choice of the number of modes
retained greatly affects both the accuracy and cost of the

analysis.

It is believed that the use of the LWYD vectors can
improve the effectiveness of the modal methods in nonlinear
dynamics since it provides a more economical way to generate
a vector basis to transform the equations of the system.
Moreover, the WYD Ritz method usually caonverges with fewer
vectors than if exact eigenvectors are used leading to
further computational advantages. In fact, Idelsochn and
Cardona (8.12) extended the procedure developed in reference
8.11 to use Ritz vectors calculated from the original
algorithm proposed by Wilson, Yuan and Dickens (1.17) to
treat geometrically nonlinear dynamic problems. Comparisons
made with computations performed using exact tangent modes
and their derivatives have shown that the basis cbtained from
the WYD Ritz method (including some derivatives) was easier
to generate and gave results of equal or better accuracy than
if exact eigenmodes (and associated derivatives) were used.
Alternate solution strategies to apply the WYD Ritz method to

globally nonlinear problems will next be presented.

8.4 Solution Strategies for Globally Nonlinear Systems

Whenever the basis vectors are no longer
representative of the dynamic behavior, the equilibrium
iteration procedure will fail to converge and a change of
basis should be perfarmed. The current set of vectors can be
modified and vectors can also be deleted or added to the
basis.

A Ffirst approach to modify the LWYD vector basis is
to recalculate new vectors, based on the tangent stiffness at
each step of the time integration. Even if the cost of

generating LWYD vectors is much smaller than calculating



exact eigenvectors, this technique still remain expensive
since a complete factorization of the tangent stiffness
matrix will be required at each step. If the nonlinearities
are not too severe a better way will be to modified the
current vector basis to take into account the nonlinearities
without Ffactorization of the tangent stiffness matrix. For
that purpose the application of the. following perturbation

technique is suggested
®LX1Y ==[DK] *[X] = =*=[DKI1*
€K™ + S€[DK]I®™ = ®trae[K]" £8.61
erde[K]* Erae[7] = [MI™ &+dE[7] tvde[ 2]
E+AE[X] = €[X] t~=a*lZ]
where <€[X1 is the current LWYD Ritz basis at time t,
«[KI"® is the current reduced stiffness,

<= [DK]] 1is the modifications to the ®ILK] matrix due to

the nonlinearities,
t+at[X1 is the updated LWYD Ritz basis at time t+dt.

For each basis update a solution of the reduced eigenproblem

will therefore be required.

If new vectors need to be added to the basis, the
triangularized stiffness matrix can be updated directly after
a certain number of time steps to generate these vectaors. An
algorithm proposed by Benett (8.4) has been adapted for this
purpose by Argyris and Roy (B.1) to structural mechanics
problems. The break even point for complete matrix triangu—
larization was established when the number of modified DOF dc

not exceed 357 of the semibandwidth of the stiffness matrix.
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If the modified DOF are concentrated in the highest numbered
equations, the application of the modified Cholesky algorithm
proposed by Row et al. (B.18) will be most efficient to

reformulate the triangularized stiffness matrix.

Iterative equation solvers can also be used as an
inner loop of the Newton’'s method to solve the 1linearized
system of equations at each time step. Classical Lanczos
vectors have been used in a conjugate gradient algorithm for
that purpose. The procedure was developed by Nour—-Omid
{8.15) for the solution of static nonlinear problems. The
same approach can be extended to nonlinear dynamic problems
using LWYD vectors to possibly improve the convergence

characteristics of this technique.

8.5 Solution Stategy for Locally Nonlinear Systems

Many types of structures exhibiting local nonlinear
behavior can be identified,. Some examples are elastic
structures mounted on vyielding supports to protect them
against earthquake motions or offshore platforms supported by
soil conditions that offer nonlinear response. Additional
examples are given by structures that are designed to permit
uplift in response to earthguake excitation or in structures
with Jpoints that may open or close during loading. The
determination of the possible regions of nonlinearity at the
beginning of the analysis is a key factor since it permits
the use of substructuring procedures as discussed in chapter

7, to reduce the size of the nonlinear problem to a minimum.

Our attention will now be restricted to structural
systems where a small number of members experience nonlinear
material behavior since this represents one of the most
impaortant and common type of nonlinearity occuring in
practical dynamic analysis. The basic idea of the proposed
method will be to use LWYD Ritz vectors to reduce the elastic

region of the structure to a small number of generalized



coordinates. The DOF associated with the nonlinear behavior
will be retained in the modelling. A step-by-step nonlinear
analysis will then be conducted on a relatively small system
in which only the stiffness of the nonlinear elements will

need to be considered at each time step.

8.5.1 Substructuring for Local Nonlinearities

Clough and Wilson (1.6) have presented a review of
the applications of the substructuring concept to the dynamic
response analysis of structures having localized
nonlinearities. One of the proposed algorithm used exact
substructure eigenvectors to reduce the elastic region of the
system to a small number of genesralized coordinates, <{Y.. 23,

using the transformation matrix

(€ B Ko™ Ken Yoo £8.71

where [B..1 are substructure eigenvectors obtained with

restrained nonlinear DOF and the subscripts "L and "N"
correspond to the 1linear and nonlinear DOF respectively.
Equation [8.7] is used to reduce the partitioned system
matrices according to the prdcedure presented in section
7.3.3, wnith the understanding that the linear DOF correspond
to internal DOF "i" and the nonlinear DOF to boundary DOF “b".

It was showm in chapter 7 that transformations of the
form described by equation [B.71] Qill be mofe efficient i*
LWYD Ritz vectors are used instead of exact eigenvectors.
There is however one problem with this formulation, that is
the LWYD Ritz vectors calculated for the reduction of the
linear portion of the structure will not represent the
effects of the loading applied to the nonlinear DOF since
these are assumed fixed during the vectors computation. I+
it 1is supposed that LWYD Ritz vectors of the complete system
can be obtained directly (or using the DRC algorithm) the

M)
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following modifications should eliminate this problem. The
LWYD Ritz vectors of the complete reference system without
any restraints of the nonlinear DOF are initially computed

and partitioned according to
X o £{8.81
cxNN

where the superscript "C" is used as a reminder that the
vectors were calculated from complete system matrices. the
transformation matrix of equation £8.7] can be rewritten as
U | = X + Ko™t Kow X K™ ?* Kin Yoo (8.9]
[UNN = 4] I Upars
where the term (K  I17IK n1{®Xmnn) is used to modify the
linear portion of the vector basis +for nonzero Ritz
displacements, {®Xww}, corresponding to nonlinear DOF. By
this approach the LWYD Ritz vectors are generated from the
ctomplete system matrices such that the spatial error norms,

as presented in chapter 3, can be applied without any

synthesis approximation.

8.5.2 Solution Algorithm

The complete soclution algorithm using substructuring

for locally nonlinear systems is divided into two phases,

"=~ the reduction of the number of DOF describing the 1linear

part of the structure,

— the nonlinear step-by-step solution of the reduced system

of equations considering changes in the nanlinear elements.

A summary of the procedure is presented in table 8.1. The
important feature of this solution method is that any changes
in the stiffness of nonlinear elements will not affect the

representation of the linear portion of the structure leading



TABLE 8.1

Solution Frocedure for tocally Nonlinear System

(Adapted from Clough and Wilson (1.6) )

I. Initial Calculations

A. Establish and Partition System Matrices (linear)
("N" refers to expected location of nonlinear DOF)

[K] g | EM3 {F>
Kir Kew e Cuwn Mie Mon Fos

B. Compute and partition linear LWYD Ritz vectors of the
complete system with expected nonlinear DOF unrestrained

X
EXpara

C. Form Coordinate Transformation and Reduce System Matrices

U] = % + Kee™t Kan X ~Ken™? Kow Y
Urara (] 1 Uparne
or (U = [A] {U3~
[KI® = [AITLKICLA] [CI™ = [AITLCILA] [MI= = [AITIMILA]

I1. Step-by—-step solution at ¢t = dt, 2dt, ...jdt

A. Form incremental stiffness for nonlinear elements (Kunyl
B. Form incremental load vector

{DF}™ = [AIT {DF:}
C. Form reduced incremental equations
[MI® {DU,LX® + [CI® {DU," + ([KI® + [Knmsl) {DU,I™ = {DF}"®
D. Solve for {DU,4J® and {U, 2" by step-by-step method

E. Return to step II A.
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to an efficient algorithm. Moreaver, if the expected
location of the nonlinearities is to be modified, the
original set of Ritz shapes, {€X¥, needs only to be
partitioned differently such that the generation of a new

Ritz basis is avoided.



CHAPTER 9

Conclusion

9.1 Summary

This report has presented theoretical formulations
and computational procedures that will be most efficient for

the dynamic analysis of large structural systems. The

numerical techniques are essentially based on the direct

superposition of a special class of Ritz vectors generated
from the spatial distribution of the dynamic load. The method
first introduced by Wilson, Yuan and Dickens (1.17) as an
economic alternative to classical mode superposition,
recognized the special nature of structural dynamic problems
mainly that a dynamic analysis can be interpreted as a static

analysis which takes into account inertia forces.

The report first established a formal mathematical
framework +for the WYD Ritz reduction method by showing that
the algorithm used to produce WYD Ritz vectors is similar to
the method used to produce Lanczos vectors. Error norms to
measure the representation of the spatial distribution of the
dynamic 1load achieved by a truncated WYD Ritz basis and to
establish a relationship between WYD Ritz solutions and exact
rigensolutions were developed. Computational variants to
generate load dependent vector bases for dynamic analyses
were then studied. One of the proposed formulations, the
LWYD algorithm, was shown to be more stable than the aoriginal
WYD algorithm and allows a better control of the static

correction effects included in the method.

Theoretical developments and computational procedures
to apply the proposed Ritz reduction method to three
dimensional earthquake response spectra analysis, to
analysie of systems subjected to multispatial dynamic load

distributions, to multilevel substructure analysis and to

h
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nonlinear dynamic problems were presented. Solution
algorithms related to linear systems were evaluated by
numerical - applications on simple structural models to

validate the techniques for industrial applications.

2.2 Conclusions

The main conclusions of this study can be summarized

as follows :

- the convergence characteristics of the WYD Ritz reduction
method follow very closely the convergence characteristics
of exact eigensolutions supplemented by static correction
or modal acceleration to approximate the contribution of

higher modes not retained in the usual modal summation,

— the WYD Ritz reduction method includes the benefit of
static correction directly in the vector basis used to
transform the equations of motion. This was shown to be
very effective as new pseudo-static solutions do not need
to be calculated at each time step even when the spatial

distribution of the load varies with time,

- accurate structural responses were obtained from Ritz bases
"that were able to achieve a good representation of the
specified dynamic loads (from 904 to 1004 as defined by the
proposed spatial error norms) and that produced retained
structural frequencies, from the contribution of dynamic
vectors, that spanned adequately the frequency range of the

applied loading,

- the spolution of the reduced eigenproblem in Ritz
coordinates, applied to convergent Ritz bases that included
static residual components, indicated that mass and
stiffness orthogonal Ritz shapes were generally good
approximations to exact eigenvectors up to the frequency

range of the applied loading,



load dependent Ritz bases that completely uncouple the
equations of motion can be constructed at a cost of
approximately ane seventh of that required to ocbtain exact
eigenvectors, with much improved convergence

tharacteristics,

a further 20Z reduction in computer execution time is
possible for linear systems if advantage is taken of the
similarity between the algorithm used to generate load
dependent Ritz vectors and Lanczos vectors to cast directly

the reduced Ritz system in tridiagonal form,

dynamic response analyses based on the tridiagonal form of
the reduced system were found to exhibit poorer resoclution
than solutions based on the application of the formal
transformation [XIVLKIIXI +for structural systems that

possess repeated eigenvalues,

an algorithm to ensure that the Ritz vectors maintain
global orthogonality as they are generated is essential in

order to apply the method to large structural systems,

the 1load dependent Ritz reduction method, using either
single vector iterations or simultaneous vector iteration,
was shown to be effective in reducing the numerical effort
and improving the convergence characteristics of three
dimensional earthquake analysis by the response spectra
method,

a block form of the load dependent Ritz reduction method
can effectively be used in transient dynamic analysis where
the 1pads are specified by a relatively small number (say

from 1 to 10) of dynamic load distributions,

the method can be advantageously applied to multilevel
dynamic substructure analysis by producing a better

convergence rate of a component mode synthesis type of

-



formulation or by using substructuring concepts directly in
the recurrence relationship used to calculate the Ritz
basis of the caomplete system without any synthesis

approximation,

- the method has the potential to be extended to treat
nonlinear dynamic problems more effectively than if exact

eigenéectors are used in coordinate reduction procedures,
-~ the proposed Ritz reduction algorithms can easily be
implemented on micro-computers providing an efficient mean

af analysis for medium size structures.

?.3 Suggestions for Future Research and Development

?.3.1 Linear Systems

The proposed algorithms will benefit from numerical
experimentation in an industrial environment where the
variety of structural dynamic problems to be analyzed should
provide complementary infaormation on the actual performance
of the WYD Ritz reduction method when applied to more complex

problems than those presented in this report.

One specific area suggested for future development is
to extend the 1load dependent Ritz reduction method to
generate directly complex Ritz shapes for the analysis of
non-proportionally damped systems. A recent study by Traill-
Nash (9.4) proposed that the use of complex eigenvectors with
the modal acceleration type of summation could possibly be
one aof the most effective procedures to analyze non-—
classically damped systems. Complex Ritz vectore can be
substituted to replace complex eigenvectors to +further
impraove the efficiency of this approach. A numerical
technique to calculate complex eigenvectors from a matrix
iteration formulation similar to the one used for undamped

systems has been presented by Hurty and Rubinstein (9.2).



This algorithm can potentially be extended to compute complex

Ritz shapes directly.

7.3.2 Nonlinear Systems

When dealing with nonlinear problems no solution
procedure can be universally applied to all analyses. The
lack of uniformity in the selection of a solution procedure
can be attributed to varying levels of priority assigned to

factors affecting the choice of the technigue such as

- type and extent of expected nonlinear behavior,
— degree of nonlinearity,

~ desired level of accuracy,

-~ problem size,

— computational economy,

- user interaction and experience required.

A careful evaluation of the influence of these factors, as
reflected by practical implementation strategies, on the
convergence characteristics of the theoretical solution
prmcedures presented in chapter B will be essential to apply
successfully these methods to solve nonlinear dynamic
probelms. The identification and quantification of critical
formulation parameters from actual numerical experimentation
will be required to determine the range of applicahility of
the proposed solution algorithms and validate the techniques

+or practical use.

Finally, in developing solution algorithms for
nonlinear systems it should always be remembered that current
numerical solution capabilities are usually in advance of the
knowl edge of fundamental material behavior. This is
particularly true for dynamic problems where there is a need
for more information on material properties under transient

conditions.



2.4 Final Remarks

As the need for methods of analysis with better
performance. is felt by industry, it is believed that
analytical trends in the near future will be to recognize
that the specific nature of structural dynamic problems can
be exploited to formulate efficient reduction procedures
which will depart from the traditional the eigensolution as
the so0le criterion to accept a basis for dynamic response
calculations. In fact, the paper presented by Wilson et al.
(1.17) has already started to generate great interest in the
literature as more and more analysts recognize the advantages

of the approach (see ref. 1.14, 3.3, 8.12, 9.1).

This report contributed to this process by clearly
showing that solution procedures based on the direct
superposition of load dependent Ritz vectors can be developed
as complete analytical tools being able to improve the
convergence characteristics and numerical efficiency of any
classical dynamic analysis techniques that are currently

using eigenvectors as bases for response computations.
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