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CHAPTER I

INTRODUCTION

1.1 GENERAL BACKGROUND

For seismic design of important industrial facilities,

the earthquake input loading is often prescribed in terms of

the ground response spectra [8,14,15]. For such loadings, a

proper seismic design of the primary systems as well as the

. subsystems is of vi tal importance for safe operation of the

facili ty. For the analysis of the primary systems, rational

analytical method which can effectively use the ground spectra

as inputs have already been developed. However, for the

analysis of the secondary systems, especially the systems with

multiple supports (such as piping attached at several points of

a main structure), the methods are sti.1l in the development

stage, and research efforts [1,2,9-12,16,18,27,30] are being

continually reported in the literature.

In the current practice, the time history and the single

response spectrum methods are commonly used [1) to analyze such

multiply supported subsystem. The time history method, though

analytically most accurate for a given earthquake motion time

history, does not provide unique response results suitable for

a design. To obtain the design response, i . e. the response

which can be used for the design of these subsystems, one must

consider a set of time histories as inputs in the analysis.

This, however, requires a large computational effort and thus

is not be economically feasible.
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The response spectrum method, on the other hand, is

computationally inexpensive. Currently, it is a common practice

to use the envelope of all the support point floor spectra as

input in this appro_ach. To account for the effect of the

relative displacements between the supports, some approximate

and conservative methods are employed [1]. These methods,

however I do not account for the effect of the correlation

between the support motions and may, sometimes I give overly

conservative results.

In this report, the analysis of the multiply connected

secondary systems subjected to correlated random excitations at

the supports is examined in details. The random vibration

approach is employed. This analysis leads to the development

of a rational response spectrum approach. The different types

of floor response spectra required as inputs in this spectrum

approach are identified. The procedure to obtain these floor

spectra directly from the prescribed ground response spectra

are developed. Use of these spectra as inputs in the

calculation of response is, then, demostrated on several

examples of the multiply connected secondary systems.

I.2 ORGANIZATION OF REPORT

The report consi sts of several chapters in which the

theoretical development are presented. However, for a user who

is primarily interested in the implementation of the approach,

Chapter VI enti tIed USER SUMMARY OF THE PROPOSED METHOD is

provided. This chapter gives a step-by-step procedure for the
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implementation of the approach.

In Chapter II, the equations of motions for a free-free

primary-secondary system are developed, and the strategy of

partitioning the total response displacement into the so-called

pseudo-static and dynamic components in elaborated upon. The

basic equations of equilibrium necessary to define these two

components are developed. As an immediate extension, other

response quantities such as member forces are also partitioned

into their pseudo-static and dynamic components. The equations

for the mean square values of these response components and

their correlation, defined in terms of the so-called cross

terms, are developed in this Chapter. Since the main aim is to

develop a response spectrum approach employing response spectra

as the design inputs, the modal analysis approach has been used

in the formulation.

Finally, the expressions are developed for calculating

the dynamic, pseudo-static and cross responses directly from

the design inputs defined in terms of the floor response

spectra. Here, the need for defining the inputs for the

secondary system in terms of different types floor response

spectra is identified. It is shown that the conventionally

employed pseudo-acceleration floor response spectra is just one

of the several other types of floor spectra which must be

defined for a proper sei smic analysi s of multiply connected

secondary systems. The other types of floor response spectra

are: (1) auto relative velocity floor spectra; (2) coincident

veloci ty and displacement floor spectra and; (3) quadrature
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velocity and displacement floor spectra. The procedure for the

calculation of the pseudo-static and cross response components

in terms of the support displacement, veloci ties and floor

spectral quantities is also developed in this Chapter.

In Chapter I I I, the procedures are developed to define

various floor response spectral quanti ties, which were

identified in Chapter II as the necessary inputs for the

calculation of the dynamic as well as the cross response

contributions. The procedures are also developed to calculate

other floor inputs, such as the maximum displacements,

velocities, the correlation between the displacements of

various supports etc., which are required in the calculation of

the pseudo-static and cross response terms. These methods

employ the dynamic characteristic of the supporting primary

structure and directly use the ground response spectra as the

base input.

The special case of a secondary system with one or more

of its supports on the ground is examined in Chapter IV. The

development of the cross floor spectra, correlations between

support displacements as well as support velocities in this

case is somewhat different from that described earlier in

Chapter IIi these are thus covered in this chapter.

The numerical results obtained for various floor response

spectral quantities and the response of two secondary systems

are presented in Chapter V. The relative contributions of the

dynamic, pseudo- static and cross response terms to the total

response are evaluated. Also some of the currently used



5

procedures of combining the various response contributions,

specially the dynamic response and the response due to relative

displacement between the supports, are evaluated vis-a-vis the

results obtained by this proposed method. Chapter VIr

summarizes the report and presents the general conclusions.
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CHAPTER II

RESPONSE ANALYSIS

II.1 INTRODUCTION

In this Chapter, the development of the equations of

motion and their solution technique are presented. A response

quanti ty of interest is devided into the dynamic and pseudo-

static part. The dynamic part is associated with the inertial

effects induced by the support acceleration. The pseudo-static

part is due to the relative displacement between the supports.

The methods to obtain the contributions of these two types of

the responses to the design response as well as the effect of

their correlation are developed. Various types of the support

(or floor) inputs, required in these methods, are identified.

II.2 EQUATIONS OF MOTION

The equations of motion of a secondary system attached at-

several points of a primary structure, considered as a free-

free system, can be written as

(2.1)

where the subscript a is associated with the degrees-of-freedom

of the support points and s with the degrees-of-freedom of the

active or unattached mass points of the secondary system. The

displacement vectors Us and U,a respectively, denote the
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absolute displacements of the unattached points and the support

points of the structure, measured in the Newtonian frame of

reference. The vector U is of dimension n, the degrees-of­s

freedom of the unattached masses, and U is of dimension m, thea

degrees-of-freedom of the support points or the masses on the

primary structure. The dot over a time dependent vector

quantity denotes its time derivative. Mss '

respectively, are the mass, damping, and stiffness matrices

associated with the active degree of freedom, and thus are of

dimension n x n', similarly Caa and K whichaa are of

dimension m x m, are the respective matrices associated wi th

the support points. The other matrices in Eq. (2.1) introduce

the exi sting coupling effects between the support and active

degree of freedom through the inerti ai, damping and elastic

forces.

By taking the right hand side of Eq.(2.1) to be zero, we

imply that the support points are connected to the rest of the

primary structure by springs of zero stiffness. Thus, no force

is transmi tted between the rest of the primary structure and

the support points to which the secondary system is attached.

However, as we will see later the support point motion Ua

constitute the input to the rest of the secondary system and to

define these motions we will consider the entire primary

structure. Thus, the motion is assumed to propagate only in one

direction, i.e. from the primary to the secondary structure and

not backwards. Such systems are also called as the systems in

cascade.
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In this formulation, the total response is parti tioned

into the pseudo-static and dynamic components. Earlier, a

similar partitioning of the response was also utilized by Lee

and Penzien [121. The pseudo-static component is due to the

relative displacement between the supports, without any dynamic

influence. The dynamic component comes from the inertial forces

induced in the unattached masses due to the support inputs.

Obviously, the dynamic response of the attached degrees of

freedom is zero. Thus, we write

U (t) = UIJ ( t )a a

(2.2a)

(2.2b)

where u~ and u~, respectively, are the dynamic and the

pseudo-static components of the active degree of freedom and Ua

are the support motion time histories.

Sub s tituti ng Eq. (2 . 2 ) into (2 . 1 ) the first set of

equations associated with the dynamic component of response can

be written as

[MSS]{U~ + U~} + [Css]{U~ + U~} + [KssJ{U~ + U~} =

- [Msa]{Ua} - [Csa]{Ua} - [Ksa]{Ua} (2.3)

Since the pseudo-static response does not include any dynamic

effect , it can be obtained by making the forces associated

with the mass and damping matrix as zero in Eg.(2.1). That is,

(2.4)
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Thus, the pseudo-static response of the n degrees-of-freedom

can be written in terms of the prescribed support inputs as

(2.5)

or

(2.6)

Substi tuting Eq. (2.6) into Eq. (2.3) and rearranging terms, we

obtain

(2.7)

If the complete damping matrix is assumed proportional to

the complete stiffness matrix, i.e.

(2.8)

then the terms dependent on U in Eq. (2.7) vani sh. In a morea

general case these terms will not be zero. Here we assume such

proportionality to simplify the analysis, although more general

case can also be treated analytically. Furthermore, since these

terms are associated with damping terms, their magnitude

compared to the other terms will be relatively small [5], and

thus they can be neglected. With these assumptions, the

equations of motions associated with the dynamic response can,

then, be expresed as,
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(2.9)

where [r]=([M ][K ]-l[K ]-[M ]) is dynamic influence matrixss ss sa sa

in which each column represents the distribution of force in

the unattached degrees-of-freedom due to the acceleration of

each support.

11.3 DESIGN RESPONSE

A response quantity linearly related to the displacement

response, can also be expresed as a sum of the dynamic and

pseudo-static component as

(2.10)

where Sd(t) corresponds to the diplacement vector Ud(t) and
s

SP(t) corresponds to the vector Up(t).
s

We are interested in calculating the maximum response

induced by the ground motions which are likely to occur at a

site. We assume these site motions to be the sample functions

of a random process. The maximum response or the design

response for such random motions can be obtained in terms of

the root mean square response and its peak factor, as

(2.11)

where Rd= maximum response, Cd= the· peak factor and o ==s root

mean square value of response S(t).

To obtain the root mean square response we first develop

the covariance function of the response. From Eq. (2.10) this
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can be obtained as,

(2. 12 )

where Rs (t1 ,t2 )= covariance function of the response. The

first two terms represent the contribution of the dynamic and

pseudo-static components, respectively, to the total response,

while the last two terms take into account the cross

correlation between them. The variance of the response is

obtained by setting t 1=t2 in Eq. (2.12), and the design response

can be written as follows

(2.13)

where 0dd= variance due to the dynamic component,

due to the pseudo- static component and

o = variancepp

and Cdp= the cross-

covari ance between the dynamic and pseudo- static components.

The three terms in Eq. (2.13) are referred to as the dynamic,

pseudo-static and cross response components.

For design purposes, the earthquake motions are usually

precribed in terms of the ground response spectra for the

primary structures and in terms of the floor response spectra

for the secondary system. It is, thus, desired to evaluate Rd

in terms of such response spectra. In the following, therefore,

the response spectrum methods employing the ground and floor

response spectra as inputs, are developed for the calculation

of the contributions of the dynamic, pesudo-static and cross
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response components.

II.4 DYNAMIC RESPONSE CONTRIBUTION

In Eq. (2.13) the contribution of the dynamic response to

the total response, here denoted by Rdd , is

(2.14)

the

approach

To

Employing

obtain

the

Odd'

modal

solution

analysis

of Eq. (2.9) is

and

required.

standard

manipulations involving orthogonal properties of the normal

modes, a decoupled modal equation (for a classically damped

system) can be written as

qJ.(t) + 2tL w.q.(t) + w~g.(t) =
J J J J J (2.15)

where q.= jth principal coordinatesj
J

~.= the modal damping ratio,
J

of thi seach element

W.= jth modal frequency,
J

and {f.}= jth modal shape vector.
J

{fj}'[r]influence vector={P.}= the
J

vector represents the contribution of a support motion to the

. th .th dresponse In e J mo e. A prime (') over a vector quantity

represents its transpose. Here we have assumed that the

secondary system is classically damped. However, analysis can

also be made for nonclassically damped system, as indicated by

Singh [23].

For given support motion time histories, Eq. (2.15) can be

solved to define qj' In terms of any component of the

displacement vector or the response quantity of interest which

is linearly related to the displacement can be obtained by the
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expansion theorem as

P,q·(t)
J J

(2.16)

where p. is the so called modal response in the jth mode which
J

can be evaluated from the displacement mode shape by a simple

linear transformation.

For random site motions, the motions of the support

points of the secondary system will also be random processes.

To simplify the analysis we assume that the ground motion, the

motions of the support points defined by U as well as thea

induced dynamic response of the secondary systems are

stationary random processes. Although, these assumption are not

strictly valid for earthquake type of ground motions and

responses, they have been found to be acceptable in the

calculation of primary system response and in generation of

floor response spectra, required as inputs for the secondary

system response [17]. Wi th these assumptions, the stationary

value of the variance of the dynamic response ,can be shown to

be as follows (See Appendix I):

n n m m ~

\' \' P •P . \' \' P,' kP
J

n fL L , J L L • ~akn(w)H*l,HJ.dw
i=1 j=1 k=1 .11.=1 _~ A.

(2.17)

in which Pik is the kth component of the modal force influence

vector p, ;
1

H.
J

is the frequency response function which is

defined as

H. = 1/(w~ - w2 + 2i8.w.w)
J J J J

(2.18)

The asterisk over the frequency response function denotes its
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complex conjugate and i is the imaginary number=!=I.

~ak~(W) is the cross spectral density function of the absolute

accelerations at supports k and ~. It c an be obtained by a

dynamic analysis of the supporting primary structure as shown

in Chapter III.

In Eq. (2.17), the fi rst double summation represents the

contribution of the modes of the secondary system to the

dynamic response. The second double summation gives the auto

and cross correlation effects of the exci tation at various

support points. Often the cross correlation effects of the

support motions are neglected.

erroneous results.

However, this could lead to

Substi tuting Eq. (2.17) into Eq. (2.14), the contribution

of the dynamic response to the total response is obtained as

follows,

(2.19)

where the frequency integral, Iak~ij' is defined as,

(2.20)

If the auto and cross spectral density functions of the

support accelerations are known, Rdd can be obtained from

Eq. (2.19) . However, our aim is to develop a response spectrum

approach wherein the support inputs are defined in terms of

floor spectra, and not the spectral density functions, for the

calculation of design response.

In the current practice, the seismic floor input is most
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commonly defined in terms of pseudo-acceleration floor spectra.

This input is, however, adequate only for the single-degree-of-

freedom secondary systems. For the multi-support secondary

systems, it becomes necessary to define floor inputs in other

forms of floor spectra to obtain the frequency integral in

Eq.(2.20). Here, these floor spectra are classified as the auto

and cross floor spectra, and are presented in the followings

sections.

11.4.1 AUTO-FLOOR RESPONSE SPECTRA

For the evaluation of the terms wi th k=~ in Eqs. (2.19)

and (2.20), we need the (auto) spectral density function for

ththe motion of the K support. That is, in such a case we are

concerned with the motion of a single support. However, we need

to obtain such terms for i=j and i~j separately. Evaluation of

the frequency integral in Eq. (2.20) for these two cases is now

described.

CASE 1: k=~ and i=j

The frequency integral Eq.(2.20) for this case, defined

as

co

Iakkjj = I_co ~akk(w) IH j /
2

dW (2.21)

represents the mean square displacement response of an

oscillator with parameters wj (frequency) and ~j (damping

ratio) subjected to the base acceleration of k th floor. This

can be defined in terms of the conventionally used pseudo-
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acceleration or the relative displacement floor response

spectra and the peak factor of the oscillator response. Here,

we will call these floor spectra as auto pseudo-acceleration

and auto displacement floor spectra and denote them by R k(w,)
p ]

and Rdk(w j ), respectively. In terms of the frequency integral

they are defined as

a:>

C~j I_a:> ~akk(w)IHjI2dw (2.22)

In Eq.(2.22) and hereafter, the suffix p is associated with

term pseudo, d with displacement, k with the floor number and j

with the oscillator of parameters w. and ~ .. Cd]' is the peak
. ] ]

factor associated with the displacement response.

In term of the displacement spectrum, the frequency

integral in Eq.(2.21) is obtained as,

(2.23)

The evaluation of the terms wi th k=£. and i=j ,thus,

requires only the auto displacement (or pseudo-acceleration)

floor spectra of the support point accelerations. The

procedures to obtain these spectra, directly from ground

response spectra, have been developed in Reference

[9,17,20,22]. The expressions for these spectra are also given

in Chapter III.

CASE 2: k=~ and ifj

For the case of iFj but with k=~ the frequency integral

of Eq. (2.20) can be written as,
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co

(2.24)

*The complex part of H.H. will finally cancel out when summed
1 J

up in Eq.(2.19) or when integrated over the frequency range due

to it being an odd function of w. Thus, in Eq.(2.24) we will

*consider only the real part of H.H. which can be written as,
1 J

(2.25)

where N(w) is defined as

(2.26)

The right hand side of Eq.(2.25) can be resolved into partial

fractions as

where the coefficients of the partial fraction A, B, C and D

are obtained from the solution of the following simultaneous

equations

(2.28)

where the matrix [Yijl, and vectors VI and WI are defined as,

4
0 4w. w. 0J 1

2 2 4 2w? (2)3 ?-1 ) 42w . ( 28 . -1 ) wj[y .. ] J J w.
= 1 1 1 (2.29)lJ

1 2 2 2 22w . ( 213 .-1) 1 2w i (213 i -1)J J
a 1 0 1
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{VI}' = {A, 8, C, D}

222
{WI}' = {(w.w.) , (48.8.w.w. - w. - w.), 1, O}

lJ lJ1J 1 J

(2.30a)

(2.30b)

substituting Eq.(2.27) into Eq.(2.24), and noting that

the imaginary part is equal to zero, we obtain,

(2.31)

The terms associated with A, and C in Eq.(2.31) can be obtained

in terms of the auto displacement (or pseudo-acceleration)

floor response spectra, as explained above. However, the terms

associated with Band D are obtained in terms of different

spectra called the auto velocity floor response spectra. The

velocity response spectrum value for floor k and the oscillator

parameters of wj and ~j' denoted by Rvk(w j ), is defined as,

2R k(w.)v J (2.32)

C . is the peak factor of the relative velocity response of the
VJ

oscillator.

In terms of these floor response spectra, the frequency

integral of Eq.(2.24) or Eq.(4.3l) can now be written as

(2.33)

where I 1ki and 12ki are defined as follows

(2.34a)
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(2.34b)

From Eqs. (2.23) and (2.34a), it is noted that

I1ki=Iakkii' We also note that for the calculation of terms

wi th k=~ for any combination of the indices i and j, the

support point motions need to be defined in terms of the auto

di splacement (or pseudo-acceleration) and (relative) veloci ty

floor response spectra.

11.4.2 CROSS FLOOR SPECTRA

In a most general case with k~~ and iFj, the evaluation

of the frequency integral in Eq.(2.20) involves the cross

spectral density function, ~ak~(w). This functions defines the

correlation between the (absolute ) accelerations of two

differents supports. It consists of the real and imaginary

parts and can be written as

(2.35)

where the superscripts R and I denote the real and imaginary

parts, respectively. It is noted that the real and imaginary

components, respectively, are even and odd functions of w. The

expressions for these components of ~ ak~ (w) are developed in

terms of the ground motion spectral density function and the

properties of the primary structure in Chapter III.

To evaluate Eq. (2.20) for the most general case, we

*rewrite the term H.H. in the integrand as,
]. J
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(2.36)

where N(w) is defined by Eg.(2.26). M(w) is an even function

of w, and is defined as

M(w) = 2{w.w.(B.w.-B .w,.) + w2(S .w·-B.w.)}
'J 'JJ JJ 11

(2.37)

Substituting Egs.(2.35) and (2.36) into Eg.(2.20), we obtain

co R
= I_co [{~ak!(w)N(w) - w~~k!(w)M(w)}

+ i{cIl~kR.(w) N(w) + w~~kR.(w) M(w)}IH;12IHjI2dw (2.38)

It is noted that the imaginary part in Eq.(2.38) is zero as its

integrand is an odd function of w. As in Eq.(2.27), we

decompose the term 2 2M(w) JH. I jH·1 I
1 J

of Eq. (2.37) into its

partial fraction as follows

(2.39)

The coefficients of the partial fraction in Eg. (2.39) are

obtained from the solution of the following simultaneous

equations

[Y .. ]{V
2

} = {W}, J 2 (2.40)

where the matrix [Y .. J is defined in Eg.(2.29) and the vectors
1J

V2 and W2 are given by

(2.41a)

(2.41b)

Substituting Eqs.(2.27) and (2.39) into Eq. (2.38), we obtain
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(2.42)

To evaluate the frequency integrals in Eq.(2.42) in terms

of floor spectra, we introduce the following floor response

spectral quantities:

Coincident displacement spectra :

(2.43)

Coincident velocity spectra:

(2.44)

Quadrature displacement spectra :

Quadrature velocity spectra:

(2.45)

00

= Q~; J_
oo
w3~~k~(w)IHiI2dw (2.46)

where Pd"P "Qd' and Q . are the peak factors associated with
~ v~ ~ v~

various response quanti ties of concern in Eqs. (2.43) through

(2.46).

The floor spectral inputs are customarily defined in
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terms of the pseudo-acceleration rather than the displacement

response, specially for auto floor spectra. Here thus, .we

define coincident and quadrature pseudo-acceleration spectra as

follows

2
Cpk~(wi) = wiCdk~(wi)

2
Qpk~(wi) = wiQdk£(w i )

(2.47a)

(2.47b)

The procedure to obtain these coincident and quadrature

floor response spectral quantities directly in terms of ground

response spectra and the primary system properties are given in

Chapter I I I.

It is seen that for k=~, the quadrature spectra,

Eqs. (2.45) and (2.46) , are zero, whereas the coincident

displacement and velocity spectra as defined by Eqs. (2.43) and

(2.44) , revert back to the previously mentioned auto

displacement and velocity floor response spectra.

The influence of the correlation between the support

accelerations is reflected through the imaginary component of

the cross spectral density function. If the signals are

strongly correlated, the quadrature terms become less important

in comparison wi th the coincident terms. In fact, for two

perfectly correlated floor motions the contribution of the

quadrature terms is zero.

Substitution of Eqs.(2.43) through (2.46) into Eq.(2.42),

the frequency integrals can now be written in terms of these

spectral quantities as
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Iaktij = {A 13kti + B 14k~i + C 13k~j + 0 14k~j}

- {E 15kti + F 16k~i + G ISktj + H 16ktj } (2.48)

where I 3kfLi' I 4kfLi' 15kfLi and 16kfLi are defined in terms of the

coincident and quadrature spectra as follows

13kt i
2 2

= Cdk~ (wi )/Pdi (2.49a)

14k~i
2 2

= Cvkt (wi )/P vi (2.49b)

15kti
2 2= Qdkt (wi) IQdi (2.49c)

16kti =
2 2

Qvkt (wi) IQ vi (2.49d)

Evaluation of terms with i=j, but with k~t, is a special

case of Eq.(2.20). To define this, we substitute for the cross

spectral densi ty function in term of its real and imaginary

parts into Eq.(2.20) to obtain

00

Iaktij = 1_
00

{~:kt(w) + i ~~kt(w)}IHi ,2dw (2.50)

Since the imaginary part of the spectral density function is an

odd function of w, its integral is zero. Thus,

<II

Iak~i; = f ~ak~{wi) IH i 1
2

dw
-ao

(2.51)

which from Eq.(2.43) can be obtained in terms of the coincident

displacement spectrum as,

(2.52)

Thus, although two different floor motion are involved in



24

the evaluation of this term, only one type of the cross floor

spectra are required.

This presentation clearly identifies the types of floor

spectra we need for the calculation of response of the

secondary system wi th multiple supports. The methods for the

generation of these spectra are described in Chapter III.

II.5 PSEUDO-STATIC RESPONSE CONTRIBUTION

In Eq.(2.13), the pseudo-static part of the total design

response is written as

(2.53)

In Eq. (2.53) , a is the root mean square value of thepp

response due to the relative displacement between supports. The

displacement response due to the relative support displacement

is defined by Eq. (2.6), which is rewritten as,

where [A]=(-[Kss]-l[Ksa]) is called the pseudo-static influence

matrix. A generic term A of this matrix represents thers

di splacement of the active degree of freedom r due to a unit

displacement of support s. Therefore, each column of matrix

[A] defines the constrained displacement configuration of the

secondary system associated to each support motion.

Assuming the linear behavior of the structure,

displacement component, or any other response linearly related

to the displacement, can be obtained as a linear sum of the
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contribution of each support displacement. That is,

(2.55)

where nk is the constrained response associated with support k,

or the response due to a unit di splacement of support k; and

Uak(t) is the absolute displacement time history of support k.

The covariance function of the response in Eq.(2.55) can

now be written as

In III

Rpp(t1·tZ) = k~l ~~1 nkn~ E[Uak(tl)Ua~(t2)J (2.56)

Here also, we assume that the support displacements and the

induced response are stationary random processes. With this,

the covariance functions of the support displacements in

Eq.(2.56) can be expresed in terms of their auto and cross

spectral density functions.

By substituting t 1=t2 , the variance of the pseudo-static

response component can be shown to be as

(2.57)

where t dk£ (w) is the cross spectral densi ty function of the

displacement at supports k and~. Substituting Eq.(2.57) into

Eq. (2.53) / the contribution of the pseudo- static response to

the design response can be written as

(2.58)

in terms of the spectral densi ty function of the absolute

displacement of the supports.
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Separating the terms with k=R. and kfR., we obtain

m 00 m m 00

R2 = C2 {L n
2 J ~dkk (w )dw + L L l'\n t J ~dkt (w)dw) (2.59)

pp d k= 1 k _00 k=l £=1 .00

KH
The first frequency integral in this equation is the mean

square value of the absolute displacement of support k. It can

be obtained in terms of the maximum support displacement Uak ,

as

Q) TI
J ()d (~)2

_<1) ~dkk w w = C
uk

(2.60)

where c =uk the peak factor of the absolute displacement

response of floor k. The integral in the double summation term

can be expressed in terms of the correlation coefficient, 0kR.'

of the absolute displacement response, defined as

Real {f ~dk1(w)dW}
_00

°kt =-------------
00 00 1/2

{f ~dkk(w)dw f ~dtt(w)dw}
_00 _co

(2.61)

In terms of these quantities, the pseudo-static response

contribution can be expressed as

(2.62)

where [0 1 is the matrix of correlation coefficients of the

absolute displacement, with diagonal terms being equal to 1.

It will be shown that the maximum absolute displacement

Uak and correlation coefficient 0k~' required in Eq.(2.62) are

related to the auto and cross coincident floor spectra.

Therefore the approach to obtain these quantities, as described
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in the next Chapter , can be directly used for the evaluation

of Uak and 0kg,'

In the preceding formulation we expressed the pseudo-

static response in terms of the absolute displacement of the

support or floors. However, the pseudo-static response can also

be obtained in terms of the relative displacement of the

supports. For this, the absolute displacement in Eq.(2.55) can

be written as a sum of the ground displacement and displacement

of the supports with respect to ground as,

(2.63)

where Vak= relative displacement of the support k and r k=l if

the displacement of support k is in the direction of the ground

displacement otherwise it is zero.

The second part of Eq. (2.63 ) is the response due to the

rigid body displacement of X , of the supports of the secondaryg

system applied in the direction of ground motion. For force

quantities, this term should be equal to zero. Thus if SP(t)

represents the force response, and not the displacement

response, of the secondary system then

rn
Sp(t) = L nk V k(t)

k=l a
(2.64)

where now Vak(t) represents the relative displacement of

support k with respect to ground.

The mean square response can now be written in terms of

the spectral densi ty functions of the relative di splacements

as,
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m m CD

= k~l t~l nkn~ f_
ClO

~Vk~(W)dw (2.65)

where ~vk~(w)= cross spectral density function of the relative

displacements of supports k and ~.

By substituting Eq. (2.65) into Eq. (2.53), we obtain the

design response in terms of the spectral density function

~vk~(W)' To express this in terms of the relative floor

displacement response, we separate the terms with k=~, and kF~

as follows

R2 C2{ ~ 2 "" m m 00

= nk f ~Vlck(w)dw + L L nkn i. J ~Vkt(w)dw} (2.66)pp d k= 1 -"" k=l t=l -""
kH

in which the first frequency integral represents the mean

square value of the displacement of floor k. This can be

obtained in terms of the maximum relative floor displacement

and its peak factor as,

f
CD

-ClO

(2.67)

where ~ak is the maximum relative floor displacement and Cvk is

its peak factor obtained by a straight forward response

spectrum analysis of the primary structure. The expression to

obtain this is given in Chapter III.

The term related to the cross spectral densi ty term in

Eq. (2.66) can be defined in terms of the correlation

coefficient between the support displacements, expressed as

00
Real {J ~Vkt(w)dw}

5~~ = -00::.-------00--00------_ (2.68)

{f ell vkk (w )dw J
-~ -~

1/2
cll v.

U
(w)dw}
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The method to obtain this coefficient in terms of the ground

response spectra and properties of the primary structure is

also given in Chapter III.

In terms of the maximum relative floor displacement and

the correlation coefficient, the pseudo-static response

contribution can now be expressed as,

(2.69)

where [0' 1 is the matrix of correlation coefficients with its

diagonal terms being equal to 1.

It is noted that the single summation terms in Eqs. (2.59)

and (2.66) represent the response due to each support

displacement added up as the square-root-of-the-sum-of-the-

squares, whereas the double summation terms give the

contribution of the cross correlation between the support

displacements.

11.6 CROSS RESPONSE CONTRIBUTION

This contribution is given by the last term of Eq. (2.13),

(2.70)

where Cdp is the real part of the cross covariance between the

dynamic and pseudo-static parts. To obtain this cross

covariance, Eqs.(2.16) and (2.55) or (2.64) are used. This

covariance can be expressed in terms of the cross spectral

density function, tadk~(w),of the absolute acceleration of



support k and absolute displacement of support ~. At t 1=t2 , the

third term of Eq.(2.12) can be shown (See Appendix I) to be.as

follows,

2 n m m 00

O'dp = I I p;n.e I Pik J eJiad kR. (w )Hidw (2.71)i =1 .e=1 k=l _00

Similarly , the fourth term in Eq. (2.12) can be shown to be

2
n m m 00

O'pd = L L p;n.e I P;k J eJida.ek (w)H;dw (2.72)
;=1 .e=l k=1 _00

The integrands of Eqs. (2.71) and (2.72) are complex conjugate

of each other. Also since the imaginary part of the integrand

is an odd function of w, its integral is zero. Thus, the third

term in the parenthesis of Eq. (2.13) which is sum of Eqs. (2.71)

and (2.72) can be written as,

(2.73)

Substituting Eq.(2.73) into Eq.(2.70), the cross term

contribution is obtained as,

(2.74)

Here Eq. (2.74) is expressed in terms of the cross spectral

density function of the absolute displacement and absolute

acceleration of the supports. One could also use the cross

spectral density function between the absolute acceleration and

relative displacement of the supports. The relative

displacement formulation is, however, more involved as it

requires additional types of cross floor spectra. The absolute

displacement formulation has been found to be more convenient
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and will be persued further here.

From the stationary random vibration analysis, it is

known that the cross spectral density function between absolute

acceleration and absolute displacement, ~adk~(w), is related to

the power spectral density of the absolute acceleration,

~ak~(W), by the following expression

(2.75)

Thus, a generic frequency integral in Eq.(2.74), denoted

as

(2.76)

can be written in terms of the power spectral density function

of the absolute acceleration as

=J (2.77)

The right hand side of Eq.(2.77) is, however, the same as the

integral in Eq. (2.20) when w. is taken equal to zero. That is,
J

(2.78)

Thus, this frequency integral can be obtained by simply

substituting wj=O in Eq.(2.42). For this case it can be shown

that the coefficients C and G of the partial fraction in

Eg. (2.42) are identically zero. Thus, from Eq.(2.42),
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I adkti = {A
-00

+ D

+ F

2 R 1
J w ~ ak.e ( w) (4) dw 1 - {E

-00 w

+ H
-00

-00

(2.79)

in which the coefficients A, B, D, etc can be obtained from the

solution of Eqs. (2.28) and (2.40) for or they can be

explicitly defined as follows

A (46f-l) E = 46 i /w. (2B~-1)= 1 1

2
1

B F = 26./w':' (2.80)= l/W i 1 ::.

2 H 3
D = -26 i /w i= -1/1.1I.

1

In Eq. (2.79), the frequency integrals associated with

coefficients A, B, E and F can be defined in terms of cross

floor spectra and the associated peak factors, as in Eqs.(2.43)

through (2.46). The integrals associated wi th coefficients D

and H are, however, additional floor response quantities which

are required to be defined to obtain these terms. The physical

characteristics of these terms are examined in the following.

It is noted that these terms are associated with absolute

floor velocities. They can be defined in terms of cross floor

spectral quanti ties. For example, the term associated wi th D

is,

(2.81)
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For k=9., thi s term is the mean square value of the absolute

floor velocity. For k~9., this term represents the correlation

between the coincident components of the velocities of the two

floors, and it is the same as the coincident relative velocity

spectrum, defined by Eq. (2.44), for w.=O.
1

In fact, this

frequency integral for all values of k and 9. can be defined in

terms of ground spectra and primary structure properties by

using the coincident veloci ty spectrum generation algorithm.

This algorithm is developed in the next chapter.

The frequency integral associated with H in Eq.(2.79) can

also be obtained similarly. For k=Q" this term is zero. For

k:/=9., this represents the correlation between the quadrature

components of the absolute velocities of the two floors. It is

same as the quadrature velocity spectrum at w.=O and is defined
1

by Eq.(2.46). That is

(2.82)

This can be easily obtained in terms of ground response spectra

by using the quadrature velocity spectrum generation algorithm.

This algorithm is also developed in the next Chapter.

We can now rewrite Eq. (2. 79) in terms of various floor

response spectra quanti ties, defined by Eqs. (2. 49a) through

(2.49d) as follows

(2.83)
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Again, it is noted that Eq.(2.83) is the same as

Eq.(2.48) with wi=O.

II.7 PEAK FACTOR AND RESPONSE

For the calculation of Rdd , Rpp and Rdp terms as defined

in the previous section, we require the peak factor of the

response Cd as well as the peak factors associated with several

other floor spectral response quanti ties. The calculation of

these peak factors accurately is rather a sensitive task. Such

calculations require that ground motion spectral density

function be defined explici tly. This information will usually

not be avai lable in practice. An approximate evaluation of

these factors can, however, be made for a band-limited whi te

noise spectral densi ty function, and the use of these peak

factors may provide a better estimate of design response. Such

an approach was used for generation of floor spectra[17].

Implementation of this approach to the current problem is under

further study. However, in the mean time the analysis can be

simplified, without zeopardizing the accuracy of the results as

observed in Reference[17], by assuming that all the peak

factors are the same. If thi s assumption is made, then the

response becomes independent of the peak factors. That is any

value can be assumed for the peak factors for the calculation

of response. In the numerical results presented here, all the

peak factors were assumed equal to 1.
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11.8 SUMMARY

The response expressions developed in the previous

sections for the dynamic, pseudo-static and cross term

responses have been utilized to obtain numerical results. For

convenience these expressions are summarized in the following

DYNAMIC RESPONSE TERMS:

(2.84)

where I k n ' ., for various combination of the suffixes, isa .. lJ

defined as

i) k=Q. and i=j.

(2.85)

ii) k=Q. and it-j.

(2.86)

iii) kfQ. and i=j.

iv) kfQ. and i-fj.

Iakiij = {A 13kii + B I4kii + C I3kij + 0 I4k~j}

- {E 15k~i + F I6k~i + G r5k~j + H 16k~j}

where A, B, etc are defined by Eqs.(2.28) and (2.40).

(2.87)

(2.88)
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The method to obtain various auto and cross response

spectra quantities are developed in the next Chapter.

PSEUDO-STATIC RESPONSE TERM:

This term can be obtained easily using the relative

displacement or absolute acceleration formulation. The final

expression obtained in the two formulation are as follows

Relative Displacement Formulation

(2.89)

Absolute Acceleration Formulation

(2.90)

CROSS RESPONSE TERMS:

(2.91)

where I adkH , for various combinations of k and 2., is defined

as

i) k=2..

ii) k=l=L

Iadkki = A I3kki + B 14kki + 0 14kk (2.92)

(2.93)
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The coefficients A, B, etc in these expressions are again

obtained from Eg. (2.28) and (2.40) but with w.=O. However,
J

their explicit values are also given by Eg. (2.80)



CHAPTER III

SEISMIC INPUTS FOR MULTIPLE SUPPORT SECONDARY SYSTEMS

111.1 INTRODUCTION

The previous Chapter has identified several types of

seismic inputs which must be prescribed for a proper seismic

evaluation of multiple support secondary systems. To define

these inputs, the primary supporting structure is analyzed for

the base seismic input. In this Chapter, the methods are

developed to obtain such inputs in terms of the properties of

the primary structure and the prescribed ground response

spectra.

To define the frequency characteristics of the support or

the floor inputs, auto di splacement (or pseudo-acceleration)

and relative velocity spectra for the floor motion are used.

The methods to obtain these floor spectra have been developed

earlier [17,22]. However, for the completeness of the treatment

and also because of the association of these inputs with other

inputs, the formulation used to develop these inputs is

described. To characterize the correlation between various

floor inputs, the concept of cross floor spectra for

displacement and velocity response of an oscillator is used.

The methods to obtain these cross spectra directly from ground

spectra are developed. These floor spectral inputs are

primarily used to calculate the dynamic component of the total

response. For the calculation of the pseudo-static component,

the floor or support displacements and their correlation are
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required. Also required are the floor veloci ties and their

correlations for the calculation of the cross response terms.

The methods to obtain these floor inputs directly from

prescribed ground input and primary structure properties are

developed.

111.2 FLOOR SPECTRAL INPUTS FOR DYNAMIC RESPONSE

To define these inputs, we are required to solve the

equations of motion of the supporting primary structure,

subjected to a base excitation, viz:

[M]{V} + [Cj{~} + [K]{V}
..

= -[M] {l}Xg(t) (3.1)

in which [M], [C] and [K] are the mass, damping and stiffness

matrices of the structure, respectively; IVJ= the relative

displacement vector; I1J= the excitation influence vectori and
..
X (t)= the ground acceleration input.g

We are interested in expressing the response quanti ties

of thi s structure in terms of the ground response spectra.

Thus, we must use the modal analysis approach. If the system is

classically (proportionally) damped, the normal mode approach

can be used. However, if the system is nonclassically damped,

the complex mode approach is required. Here we will develop

the solution only for the proportionally damped system. The

formulation involving the nonclassically damped system is also

possible (see Reference 17) but will not be given here.

For the classically damped system, Eq. (3.1) can be

decoupled into the equations of the principal coordinates as
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•• • 2
Yr(t) + 28 rwr Yr (t) + wrYr(t) = -yrXg(t)

thwhere Y = the r principal coordinate or modal displacement;
r

wand P are the natural frequency and damping ratio of ther r
thr mode, and 0 = the mode participation factor defined as

r

(3.3)

In Eq. (3 . 3 ), I~ }= the r th displacement mode shape of the
r

system. The absolute acceleration of the floor k can be

obtained as a sum of the ground acceleration and the relative

acceleration of the floor as

.. '. ..
Uk(t) = lkXg(t) + Vk(t) (3.4)

where lk is the k th element of the vector II} corresponding to

the displacement of the floor k.

In Eq. (3.4), the relative floor acceleration can be

expressed in terms of the generalized coordinates Y by
r

expansion theorem. Thus,

(3.5)

Eq.(3.5) can be directly used to define the auto and

cross spectral densi ty function for the floor acceleration.

This will lead to the mode acceleration formulation [17]. This

formulation has some specific computational advantage. However,

here only the mode displacement formulation will be given.

In the. mode displacement formulation, Eq.(3.5) can be

further manipulated to give the following [20]
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N
= - L ~r(k)[2Brwr~r(t) + w2y (t)]

r=l r r
(3.6)

Eq. (3.6) will be used to define the auto and cross spectral

density functions of the floor accelerations which are required

to define various floor spectral inputs.

CROSS SPECTRAL DENSITY FUNCTION OF FLOOR ACCELERATIONS

The cross correlation function of the accelerations of

two floors k and £ can be expressed as

(3.7)

Substituting from Eq.(3.6), we obtain

N N
RakR.(t1,t Z) = ~ ~ 1/I r (k)ljIs(t) E[{ZSrwrYr(t 1) + w~Y r(t 1)}

r=l s=l

(3.8)

Assuming that the ground input is a stationary random process

with the spectral density function ~ (w), and the response is
g

also stationary, the correlation in Eq. (3.8) can be shown to be

given by

(3.9)

where H is the frequency response function of the primary
r

structure defined as

H = l/(w
Z

- w
2

+ 2iS w )r r r r (3.10)



From Eq.(3.9), the cross spectral density function can be

identify as

N N
= L L YrY5VJr(k)VJ5(R.) (w

2
- 2iS w w)

r=1 5=1 r r r

(w
5

2 + 2iS w w) H*H <I> (w)
5 5 r 5 9 (3.11)

For k=~, Eq.(3.11) is a real quantity, whereas for kF~ it will

have the real and imaginary parts.

We further expand Eq.(3.11) by separating terms with r=s

and r1s as follows

N N
+ L I

r=1 5=1
r*5

- 2iww w (w B - w B )] H*H <I> (w)r 5 5 r r 5 r 5 y

where

4 2 2 2
X(w) = (w + 4S w w )r ·r r

*Separating H H into real and imaginary parts asr s

(3.12)

(3.13)

(3.14)

where N(w) and M(w) are defined by Eqs.(2.26) and (2.37), which

for the primary structure parameters are as follows

2 2
+ w wr 5

(3.15)
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(3.16)

Substituting Eq.(3.14) into (3.12) and separating the real and

imaginary parts, we obtain

~ak2.(w)

where

N 2 2
= (I Yr~r(k)~r(~)X(w)IHrl +

r=l
N N
I I YrYs~r(k)~s(~)[T(w) + iwZ(w)] IH 1

2/H 12)~ (w)
r=1 s=1 r s 9

r;tS

(3.17)

(3.18)

(3.19)

Eq. (3.17) defines the real and imaginary parts of the

cross spectral density functions as

R N 2 2
~ak1(w) = L Yr~r(k)~s(~)X(w)IHrl ~g(w)

r=1
N N

+ I I YrYs~r(khs(1) T(w) IHrI2IHsI2~g(w)
r=1 s=1

r*s
and

(3.20)

I
~ak1(w) (3.21)

r;:s
For k=~, Eq.(3.20) provides the auto spectral density function

of the k th floor.

We further reform Eqs.(3.20) and (3.21) by splitting the

double summation terms into partial fractions.
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N 2 2
~R (w) = \ y ~ (k)~S(1)X(w)IHrl ~g(w)
ak~ r;l r r

(3.23)

where the coefficients of the partial fraction in Eqs. (3.22)

and (2.23) are obtained as the solution of the following

simultaneous equations

(3.24a)

(3.24b)

Matrix [Yrs ] is the same as Eq.(2.29) except that the

subscripts i and j, respectively, are now replaced by the

subscripts rand s which pertain to the primary structure and

is defined as,

4 0 4 0Ws Wr
2 2 4 2 2 4

[YrsJ = 2ws (2Ss-1) W s 2wr (2sr -l) wr
2 2 2 21 2ws (2S s-1) 1 2wr (2S r-l)

0 1 0 1

The vectors {V3 }, {W3 }, etc are defined as follows

{V } I = {A 3 ~ 83 ~ C3' °3}
3

{V }I = {A 4 ' B4 , C4, D4
}

4

W3(1) 4 4
= wrws

(3.25)

(3.26a)

(3.26b)

(3.26c)
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W3(2) 222 2 2 2 (3.26d)= wrws[- wr (l-4S s) - ws(l-4S r)]

W3(3) 2 2 2 (l-4S~) (3.26e)= wrws(1-4Ss)

W3(4) = 4srsswrws (3.26f)

W4(1) = 0 (3.26g)

W4(2) :: 0 (3.26h)

3 3 (3.26i)W4(3) ::- 2w w (S w - Srws)r s s r

W4(4) =-2[wrw;Sr(1-48;)-W~Ws6s(l-4S~)] (3.26j)

Eqs.(3.22) and (3.23) will now be used to define the auto

and cross floor spectra.

III.2.1 AUTO FLOOR SPECTRA

A method to obtain auto floor response spectra was

developed by Singh[20,22l where the expression for the absolute

floor acceleration spectra was provided. In the response

analysis of the secondary system, however, we need the

displacement (or pseudo-acceleration) and relative velocity

floor spectra. Here, using Singh's approach, the explicit

expression for these two types of spectra are developed.

AUTO DISPLACEMENT FLOOR SPECTRA

Here we will obtain the expression for the displacement

floor spectrum. The pseudo-acceleration floor spectrum can,

then, be obtained by merely multiplying the displacement

spectrum by the square of the oscillator frequency.
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The displacement floor spectrum at the oscillator

frequency w. and damping ratio ~' is defined as
~ ~

where Cdi is the peak factor for the displacement response.

Substi tuting for the spectral densi ty function t akk (w) from

Eq. (3.22),

To express the frequency integrals in Eq.(3.28} in terms

of the ground response spectra, we must further resolve the

products ~nvolving IH ,2, IH 12 and IH.1 2 into their linear sumr s ~

by partial fractions. Such partial fractions can be obtained if

Hr or Hs are not equal to Hi' Assuming such a case, we obtain

X(w)/ Hr I
2

IH; 1
2 = (AS + w2SS) IHr l

2 + (Cs + w20s)IH;1 2

2 2 2 2 I 12 2 I 12
(A3 + w 83)IHrl IH;1 = (A6 + w 86) Hr + (C6 + w 06) H;

(C3 + w203)IHsI2IH;12 = (A7 + w287)IHs12 + (C7 + w207)IH;12

(3.29)

(3.30)

(3.31)

The coefficients of the partial fractions AS' BS ' ... , A6 ,

B6 , .. , and A7 , B7 , etc are obtained from the solution of the

following set of linear simultaneous equations

(3.32a)
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[Yri){Vs } :: {Ws}

[Ys; ){V7} :: {W
7

}

(3.32b)

(3.32c)

where the elements of Y " Y , are the same as Eq.(3.2S) except
r~ s~

for the change in subscripts. The vectors {VS }, {V
6

}, etc are

defined as

{v }l :: {AS' BS' CS' OS} (3.33a)5

{V}' :: {A6, BS' C6, OS} (3.33b)6

{V }I = {A7, B7, C7, °7} (3.33c)7

{W }I 422 0, a}:: {Wr , 4sr OJr , (3.33d)5

{W } I :: {A3, 83, 0, a} (3.33e)6

{W7}' = {C3, 03' 0, a} (3.33f)

Now the frequency integrals in Eq.(3.28) can be expressed in

terms of the pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and their peak factors,

obtained at appropriate frequency and damping ratio values as

follows

(3.34)

<XI

C2 Jvgr -<XI
(3.3S)

where and are the relative

displacement, pseudo-accelration and relative veloci ty ground

response spectrum values obtained at parameters w and ~ ,
r r



respectively. C and C are the peak factors valuesdgr vgr

associated with these response quantities.

Substituting for the frequency integrals in Eq.(3.28) in

terms of the ground spectra, we obtain the following expression

for the displacement response spectrum

2 2 N 2 2
Rdk(w;) = Cd; {I Yr~r(k)[As1lgr + 8S1Zgr + CS1 1gi + °S1 2g ;]

r=l
N N '

+ I I YrYs~r(k)~s(k) ([AS1 1gr + 8SI2gr + CSI 1g ; + °SI 2g ;]
r=1 s=1

NS

where

I1gr = [Rpg(wr)/(Cpgrw~)]2

I2gr = [Ryg(wr)/Cygr]2

(3.36)

(3.37a)

(3.37b)

The case when Hr or Hs are identically equal to Hi is

referred to as the resonance case. In such a case it is not

possible to define the coefficients of partial fraction AS' BS '

etc. in Eq. (3.29) through (3.31). This case, however, can be

treated as described by Singh[22]. The frequency integrals for

the resonance case required in Eq. (3.28) are obtained as a

special case of the following integral

(3.38a)

Following Singh[22], it can be shown that

(3.38b)

where F(wi ), C~ and D~ are defined in Appendix II.
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For H =H., the frequency integral associated with Hr and
r 1

Hi in Eq.(3.28) can be defined in term of I R as follows

(3.39a)

(3.39b)

0>

IR1 = f X(w)/H 14~ (w)dw =1- I (1 482)
r 9 4 R ' r

-0> w
r

0>

IR2 = f (A3+w2B3)IHrI4~g(w)dw =~ IR(A3/w~,B3)
-0> w

r

Substituting these in Eq.(3.28), the displacement floor

response spectrum expression for the resonance case becomes

N 2 2
+ r:l Yr~r(k)[A5Ilgr + 8s12gr + CSI 1g ; + °SI 2g;1

r*;

Y;YS~i(k)~s(k)[IR2 + A7I1gs + 8712gs + C2I1g ; + 07 I2g;]
N

+ E
s=l
s*;
N N

+ E E
r=l s=l
r*; r*s

(3.40)

AUTO VELOCITY FLOOR SPECTRA

The velocity spectrum for floor k at the oscillator

frequency w. and damping ratio ~. is defined as
1 1

(3.41)

where C. is the peak factor for the velocity response.
Vl

r*s
(3.42)
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To express the frequency integrals in Eq.(3.42) in terms

of the ground response spectra, we again resolve the products

involving IHr 12 ,I Hs 12
and IHi 12 into their linear sum by

partial fractions. If H or H are not equal to H., we obtainr s 1

wZX(w)IHrIZIHiIZ = (As + w2Ba)IHr12 + (Ca + w20a)IHi12 (3.43)

w
Z

(A3 + wZ83)IHrIZIHiI2 = (Ag + w2Sg)IHrIZ + (Cg + w20g) IHilZ (3.44)

w
Z

(C3 + wZ03)IHsI2IHiIZ = (Ala + w2S10)IHs12 + (C 10 + wZ010)IH;I Z (3.45)

where the Coefficients of the partial fractions AS' BS"'.' Ag ,

Bg , ... ' and Ala' BlO ' etc are obtained from the solution of the

following set of linear simultaneous equations

[Yr;]{Va} = {Wa}

(Yri J(Vg} = {Wg}

(3.46a)

(3.46b)

(3.46c)

where [Yri ] is defined by Eq. (3.25) and the vectors {VSl, {Vgl,

etc are defined as

{V }I = {Aa, Ba, Ca, Da} (3.47a)a

{V } I = {Ag, 6g, Cg, Og} (3.47b)9

tV lO}' = {Ala' 810 , ClOt 0lO} (3.47c)

{W }' = {a, 4 4aZwZ a} (3.47d)a Wr ' r r'

{Wg}' = {a, A3, 83, a} (3.47e)
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Again each frequency integral in Eq.(3.42) can be expressed in

terms of the pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and their peak factors,

obtained at appropriate frequency and damping ratio. That is

N N
+ I I YrYs~r(k)~s(k)[AgIlgr + BgI2gr + CgI 1g ; + Dg12g;

r=l s=2
r*s

The case where H or His equal to H. can again ber s 1

treated as described by Singh [22]. For this case the required

frequency integrals can be obtained as a special case of the

following integral

(3.49a)

which can be defined in terms of ground spectra as follows

(3.49b)

where F(wi ), Fm and D
m

are defined in Appendix II. For

H =H.,
r 1

the frequency integral in Eq. (3.42) , which are

associated with Hr and Hi can be defined in terms of IS

(3.50a)

(3.50b)
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substituting these in Eq.(3.42), the velocity floor

response spectrum expression for the resonance case can be

written as

N
+ E Y;Y sw;(k)ws(k)[IS2 + A1011gs + B10129S + C10119; + °10129;]

5=1
5:t;

N N
+ E E YrYs~r(k)~s(k)[Agl1gr + Bg12gr + Cg11g; + Ogl 2g ;

r=1 5=1
r:ti r;:s

(3.51)

111.2.2 CROSS FLOOR SPECTRA

In the response analysi s of the secondary systems with

mul tiply supports, the coincident and quadrature cross floor

spectra for the displacement and velocity responses are

required. Here, using similar approach as in the case of the

auto floor spectra, expressions for these two type of spectra

are developed.

COINCIDENT DISPLACEMENT SPECTRA

The coincident displacement spectrum at the frequency w.
l

and damping ratio ~. is defined as
l

(3.52)

where Pdi is the peak factor for the displacement response.

The coincident pseudo-acceleration spectrum is obtained from
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the displacement spectrum as

(3.53)

Substituting

obtain

for from Eq.(3.22) into (3.52) I we

C~kl(W;) = P~; (I Y;~r(k)~5(~) J~ X(w)IHrI2IH; 12~g(w)dw
r=l -~

N N ~ 2 2
+ L L YrY5~r(k)~s(~) J [(A3 + w 83) IHrl

r=l 5=1 -~
r;:s

The frequency integrals in Eq. (3.54) have already been

defined in connection with the development of the auto

di splacement floor spectra. Thus, by substi tuting Eq. (3.29) ,

(3.30) and (3.31) into Eq.(3.54), each frequency integral can

be expressed in term of the pseudo-acceleration (or relative

displacement) and relative velocity ground spectra and peak

factors, obtained at appropriate frequency and damping ratio

values. This leads to

N N
+ L I YrYs~r(k)~5(~)[A6I1gr + 8612gr + CS11g ; + °6 129;]

r=l 5=1
r;:5

(3.55)

For the resonance case when Hr=Hi , the frequency integrals I R1

and I R2 of Eq.(3.39) can be directly used. In terms of these
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integrals, the expression of the coincident displacement

spectra can be written as

N
1:

r=l
r;:l

+ °512 .]+ ~ YiYS~i(k}~S(~}[1R2 + A7119S + 871295 + C7I 1gi
91 s=l

s;:i

N
+ °7 12 .]+ 1:

91 r=l
r;:i

COINCIDENT VELOCITY SPECTRA

(3.56)

The coincident velocity spectrum

damping ratio ~i is defined as

at frequency CAl.
~

and

(3.57)

where Pvi is the

Substituting for

peak

R
tak~(w)

factor

from

of the velocity response.

Eq.(3.22), we obtain an

equation exactly similar to Eq.(3.54), except that the

2integrands of each integral will be now be multiply by CAl We

further break this integrand into partial fractions. The

frequency integrals and participation factors involved in this

expressions are the same those involved in the calculation of

the auto velocity floor spectra. Thus, the expression for this

spectrum is essentially the same as Eq. (3.48) except for the

fact that here we are concerned with two floors. With a proper

substituting for the modal displacements of the two floors, we

obtain:
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N N
+ L L YrYs~r(k)Ws(t)[Ag11gr + 8g12gr + Cg11 .

r=1 s=1 g1
r*s

(3.58)

For the resonance case when H
r

is equal to Hi' the

frequency integral can be written in terms of integrals lSI and

I S2 ' Thus, we obtain

2 2 2 N
Cvkn(w.) = P .{y.w.(k)~ (t)151 + E

~ 1 Vl 1 1 r r=l
r;:;

N
+ 0

10
1

2
.]+ E

gl r=1
r;:;

N
L YrYswr(k)~s(t)[A911gr + 8g12gr + Cg1 1g ;

s=1
r;:s

QUADRATURE DISPLACEMENT SPECTRA

(3.59)

The quadrature displacement spectrum at the frequency w.
1.

and damping ratio ~. is defined as
1.

where Qdi is the peak factor for the displacement

(3.60)

response.

The quadrature pseudo-acceleration spectrum is obtained from

displacement spectrum as

(3.61)

Substituting Eq.(3.23) into (3.60), we obtain
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N N IX) 2 2
L L YrYs~r(k)~s(~) I [(A4 + w 84) IHrl

r=l s=l _IX)

r*s

To express the frequency integrals in Eq.(3.61) in terms

of ground response spectra, we resolve the products involving

IHr
l2 , IH ,2 and IH.,2 into their partial fractions. If H ors l r

H
S

are not identically equal to Hi' we can write

(3.63)

The coefficients of the parti al fraction All' Bll ,···, A12 ,

B12 , etc are obtained from the solution of the following set of

simultaneous equations

(3.65a)

(3.65b)

The vectors {Vlll, {V12 J, etc. are defined as

{V11} I = {AU ,811 , Cu ' DB}

{VIZ}' = {A IZ ' 81Z ' CIZ ' °IZ}

{W
ll

} I = {A4, 8
4

, 0, a}

H/
lZ

} I = {C4t 04 t 0, a}

(3.66a)

(3.66b)

(3.66c)

(3.66d)

The frequency integrals in Eq. (3.62) can now be expressed

in term of the pseudo-acceleration (or relative displacement)

and relative velocity ground spectra and peak factors, obtained
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at appropriate frequency and damping ratio values. This leads

to

N N
L . L YrYsl/!r(k)l/!s(2.) [A ll ,I 1gr + BU I2gr + Cll I1g ;

r=1 s=1
rt:s

(3.67)

For the case when Hr is equal to Hi' the frequency integral I R2

of Eq.(3.39) can be directly used. In terms of these

integrals, the expression of the quadrature spectra can be

written as

2 2 N
Qdk~(wi) = Qd;{S~1 YiYs~i(k)~s(2.)[IR2 + A1211gs + 81212g5 + C1211gi

s;:i
N

+ °12 12 .J+ L
gl . r=l

rt i

N
E YrYs~r(k)l/!s(~)[AIIIlgr + BII12gr

s= 1
r;:s

QUADRATURE VELOCITY SPECTRA

The quadrature velocity spectrum

damping ratio ~. is defined as
1.

at frequency w.
1.

and

(3.69)

where QVi is the peak factor of the velocity response.

Substituting for ~~k£(w) from Eq.(3.23) into (3.69) will give

an equation exactly similar to Eq.(3.62), except that the

2integrand will be multiplied by w Here again we resolve the

product terms involving IHrI2, IHsl2 and IHil2 into their

partial fractions. If H or H are not identically equal to Hl.' Ir s
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we can write

where the coefficients of the partial fractions A13 , B13 , ...

and A14 , B14 , etc are obtained from the solutions of the

following simultaneous equations

(3.72a)

(3.72b)

The vectors {V13 J, {V14 J, etc are defined as

(3.73a)

(3.73b)

(3.73c)

(3.73d)

The frequency integrals in Eq.(3.69) can be expressed in

terms the of pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and associated peak factors,

to give us the following

(3.74)

For the resonance case when Hr is equal to Hi, the
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frequency integral can be written in terms of integrals I
S2

'

In such a case, Eq. (3.69) can be written as

N
+ 01412 .J + 1:

gl r=l
r~i

N
L YrYs~r(k)~s(~)[A13Ilgr + B1412gr + C14Ilgi

s=1
r~s

+ °1412gi + A14Ilgs + B1412gs + C14Ilgi + °14 12g;1}

111.3 FLOOR INPUTS FOR PSEUDO-STATIC RESPONSE

(3.75)

For the calculation of the pseudo-static response term,

we require the maximum values of either the relative or

absolute displacement of each supporting floor. We also require

the correlation between these response quantities. Again, these

quantities are obtained from the dynamic analysis of the

primary structure. The expressions to obtain these are

developed in the following sections.

MAXIMUM FLOOR RESPONSE-RELATIVE DISPLACEMENT

The relative floor displacement response for floor k can

be written in terms of modal quantities as follows

N
Vk(t) = I ~ (k)Y (t)

r=1 r r
(3.76)

The maximum value of Vk(t), here denoted as Vk , can be defined

in terms of its mean square response and peak factor value,

(3.77)
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Substituting for Vk(t) from Eq. (3.76), we obtain

-2 2 N N
Vk =Cvk r~l S~l wr(k)ws(k)E[YrYsJ (3.78)

Substituting for the expected value of E[Y Y ] in terms of ther s

ground spectral density function and considering only the

stationary response, we obtain

(3.79)

To express the frequency integral in terms of ground spectra,

we separate terms with r=s and rls, to obtain

V~ = C~k( I y~W~(k) I~ ~g(w)IHrI2dw
r=l -~

where N(w) is given in Eq. (3.15).

The first frequency integral in Eq. (3.80) can be directly

expressed in terms of the relative displacement or pseudo-

acceleration spectrum values. We resolve the second integral

into its partial fractions as in Eq.(2.27), so that each term

can then be expressed in terms of the pseudo-acceleration and

relative velocity spectra. The final expression for the

relative displacement response can, then, be shown to be as

follows

(3.81)



61

where I 1gr , I 2gr are defined in terms of the ground response

spectra by Eqs. (3.37a) and (3.37b). This equation is similar to

the one obtained by Singh and Chu[24].

RELATIVE DISPLACEMENT CORRELATION COEFFICIENT

The expression for the correlation between the relative

displacement of two floors can be developed similarly. For two

floors k and t, it can be shown that

(3.82)

Separating Eq.(3.82) into terms with r=s and ris, we obtain

(3.83)

The first frequency integral can be directly expressed in terms

of the ground spectra. The second integral will have the real

and imaginary part. However, the imaginary part, being an odd

function of w, will give zero when integrated out over its

range. Thus, considering only the real term, we can write for

Eq. (3.83) as,

N N a.

+ r~l S~l YrYs~r(k)~s(~) I_a. N(w) IHr /
2IHs /

2
¢g(w)dw (3.84)

r~s

The integrand in the second frequency integral can now be split

into its partial fraction, to give us the expression for this
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correlation similar to Eq.(3.8l) as follows

N N
~ ~ YrYs$r(k)~s(~)

r=1 s=1
r;tS

[AI 1gr + BI 2gr + CI 1gs + DI 2gs J) (3.85)

The correlation coefficient can now be defined as

(3.86)

MAXIMUM FLOOR RESPONSE-ABSOLUTE DISPLACEMENT

As mentioned in the previous chapter, the pseudo-static

response can also be obtained in terms of the absolute floor

displacement of the supports. Here the methods to obtain the

absolute displacement response and correlation between the

responses of two different floors are presented.

The maximum absolute displacement response can also be

obtained using the same approach as employed for the

calculation of the relative displacement response. That is

(3.87)

where Xg(t)= ground displacement time history. Eq.(3.87) can be

used to obtain the mean square value of Uk(t) which when

mul tiplied by the peak factor wi 11 give the maximum

displacement. Using this approach, an expression similar to the

expression for the maximum relative displacement can be

developed for the maximum absolute displacement and the

correlation coefficient.

Here, however, a different approach is taken. For this,
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the displacement and correlation between the displacements is

expressed as the limiting cases of the auto floor and

coincident cross floor spectra.

The maximum value of the absolute displacement response

can be written in terms of the spectral densi ty function of

displacement as follows

""02 =c2 Ik uk
(3.88)

where ~dkk(w)= spectral density function of the absolute floor

displacement and Cuk= the peak factor.

From the stationary random vibration analysis, it is

known that the cross or auto spectral density function of the

absolute displacement, ~dk~(w), and absolute acceleration,

~ak~(w) are related by the following expression

Thus, the maximum displacement in terms

(3.89)

of the

acceleration spectral density function can be written as,

(3.90)

The right hand side of Eq.(3.90) is, however, the same as the

following expression with w.=O
1.

(3.91)

Comparing the right hand sides of Eqs.(3.27) and (3.91)

we notice that Uk is nothing but the relative displacement

floor response spectrum value obtained from Eq.(3.36) for wi=O.
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That is,

(3.92)

2Using the expression for Rdk , as in Eq.(3.36), we obtain

N N
+ L L YrYs~r(k)~x(k)[A6Ilgr + B612gr + C6I1g + °6129

r=1 s=1
r*s

in which

11g = fRd9(wi=O)/CdgJ2 = (Dg/C
d9

)2

12g = fRvg(wi=O)/C )2 = (V IC )2vg 9 vg

(3.93)

(3.94)

(3.95)

where Dg= maximun ground displacement and Cdg= peak factor for

the ground displacement random process; V = maximun groundg

veloci ty and C = peak factor for the ground velocity random
vg ~

process. It is noted that Cdi obtained for wi=O is the same as

Cuk '

It is mentioned that no numerical problem is encountered

in evaluation of the coefficients AS' BS"'" A6 , B6 ,···, A7 ,

B7 , etc for wi=O by Eqs.(3.29) through (3.31). Thus, to obtain

the maximum floor displacement, the algori thIn for the

evaluation of the displacement auto floor spectrum can be

directly used.
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ABSOLUTE DISPLACEMENT CORRELATION COEFFICIENT

The cross correlation between the absolute displacements

of two floors can be written in terms of the cross spectral

density function as,

(3.96)

Using Eg.(3.90), this can also be written in terms of the cross

spectral density function of the absolute acceleration as

(3.97)

Comparing the right hand sides of Eg. (3.52) and (3.97) we

notice that this correlation is the same as the coincident

displacement cross spectrum obtained at wi=O. That is

(3.98)

The right hand side of Eg.(3.98) can, thus, be directly

obtained by using Eg.(3.55) for wi=O, and is written as

N N
+ r~l S~l 'rYs·r{k)·s(t)[A6Ilgr + B6I2gr + C6I1g + °6I2g

r;l:S

Here again, the terms like I Ig and I 2g are expressed in terms

of maximun ground displacement and maximun ground velocity, as

in Egs.(3.94) and (3.95).

Thus, to evaluate the correlation, the algorithm used for
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the development of coincident displacement cross floor spectra

can be directly used. Here again, no problem is encountered in

the calculation of the partial fraction coefficients for w.=O.
1

Using Eqs.(3.93) and (3.99), the correlation coefficient

6k~ can be easily obtained as

(3.100)

111.4 FLOOR INPUTS FOR CROSS RESPONSE

We observed in Chapter II that we require the cross floor

response spectrum values as well as their limiting values for

w. =0 to calculate the contribution of the cross term. The. 1

evaluation of the cross spectra was presented in the earlier

section. Here the expression for the limiting cases are

developed.

MAXIMUM FLOOR VELOCITY RESPONSE

One of the terms required to define Eq. (2.79) was the

mean square value of the absolute floor velocity response. It

is defined as

(3.101)

which, as we saw in Eq. (3.41) is the auto velocity spectrum

value obtained for wi=O. This can be written from Eq.(3.41) as

(3.102)

This value can be directly obtained from Eq.(3.48) as follows
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E[02]
k

N N
+ ~ I YrYs~r(k)~s(k)[AgIlgr + BgI Zgr + Cg11g + Og1 2g

r=l s=l
r*s

It is again mentioned that no numerical problem is

encountered in evaluation of the coefficients AS' BS"'" A9 ,

B9 , ... , and A10 ' B10 ' etc for wi=O by Eqs. (3.46). Thus, to

obtain the maximum floor velocity, the algorithm for the

evaluation of the velocity auto floor spectrum can be directly

used.

COINCIDENT CROSS FLOOR VELOCITY RESPONSE

In Eq.(2.79) we also required a term associated with the

cross 'correlation of the absolute velocities of two floors.

This was defined in Eq. (2.Sl) as

(3.104)

Comparing Eq.(3.l04) with Eq.(3.57), we notice that this term

is nothing but the coincident cross velocity spectrum obtained

at wi=O. Thus, this can be written as

(3.105)

This can be directly obtained by using Eq.(3.5S). That is
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+ ~ ~ YrYs~r(k)~s(t)[Ag11gr + Bg12gr + Cg11g + Og1 29 ]
r=l s=l

r~s

Thus, the algorithm developed for ~he coincident relative

velocity cross floor spectra can be directly used without any

numerical problem. This term can also be expressed as a

correlation coefficient, defined as follows

(3.107)

A complete description of this velocity related input ,

as expressed by Eqs.(3.103) and (3.107), can now be given in

terms of a matrix of correlation coefficients and the maximum

floor velocity.

QUADRATURE CROSS FLOOR VELOCITY RESPONSE

The term associated with coefficient H in Eq.(2.79)

represents the correlation between the quadrature components of

absolute velocities between two floors. Thi s was defined in

Eq. (2.82) as

(3.108)

This term is nothing but the quadrature cross velocity spectrum

obtained at w.=O. Thus, this can be written as follows
~

(3.109)
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For the evaluation of this term, also the algorithm used

for the quadrature velocity spectra can be directly used. That

is,

N N
= L L YrY5~r(k)~5(t)[A1311gr + 81312gr + C1311g + 01312g]

r=l 5=1
r;tS

(3.110)

For k=t, this term is zero. Again, we can also express

this term as a correlation coefficient, defined as follows

I
0111 = 6k t ( 3 . 111 )
kt {El02] E[02]}1/2

k t

This part of the input can also be defined as a matrix.

The diagonal term of this matrix will be zero and the matrix is

skew sYmmetric.



70

CHAPTER IV

SUPPORT INPUTS FOR SECONDARY SYSTEMS ATTACHED TO GROUND

AND PRIMARY STRUCTURE

IV.l INTRODUCTION

In industrial facilities I a multiply supported piping

system could be directly attached to the ground. In this case

the ground is like a floor. The seismic inputs required to be

defined for this case are the special cases of the inputs

described in the previous chapters. These inputs will now be

explicitly developed in this chapter.

Auto floor spectra for the support on the ground are

simply the ground response spectra. The cross floor spectra for

the motions between a floor and ground support are developed in

section IV.2.

In addition to floor spectra, we also need to define the

cross correlation between the displacement of a floor and

ground support for the calculation of pseudo- static response.

These are developed in Section IV.3.

The quantities required in the calculation of the cross

terms are developed in Section IV.4.

IV.2 CROSS FLOOR SPECTRA

The cross correlation function of the absolute

accelerations of the ground and floor k can be expressed as

(4.1)
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Substituting from Eq.(3.6), we obtain

N ,.
r~l ~r(k){ZBrwrE[Xg(tl)~r(t2)1

+ w; E[Xg(t1)Yr(t2)]} (4.2)

For stationary ground motion and the floor response ,this cross

correlation can be shown to be given by

N ex> 2 iw(t2-t1)
Ragk(tl,tZ) = L Yr~r(k) f (w +128 w w)H ~ (w)e dw (4.3)r=l _ex> r r r r 9

From Eq.(4.3), the cross spectral density function of the

absolute acceleration of the ground and floor k can be

identified as

This cross spectral densi ty function has the real and

imaginary parts. These parts can be separated as

(4.5)

in which the real part is as follows

(4.6)

and the imaginary part as follows

(4.7)

The cross spectral density function associated with cross

correlation Rakg , here denoted by ~akg(w), is merely the

complex conjugate of ~ k(w). That is,ag
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(4.8)

Eqs.(4.6) and (4.7) will now be used to developed various

types of cross spectra, defined by Eq. (2.42) through (2.46).

COINCIDENT DISPLACEMENT SPECTRA

The coincident di splacement spectrum for the ground and

floor k at frequency w. and damping ratio ~. is defined as
1 1

(4.9)

The pseudo-acceleration spectrum is obtained from the

displacement spectrum as

(4.10)

Substituting Eq. (4.6) into (4.9), we obtain

(4.11)

To express the frequency integral in Eq. (4.11) in terms

of the ground response spectra, we resolve the product

involving IHr /2 and IHil2 into their partial fractions. If Hr

is not identically equal to H., we obtain
1

The coefficients of the partial fraction A15 , B15 , etc are

obtained from the solution of the following set of linear

simultaneous equations
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where the vectors {VIS} and {W1S } are defined as

{VIS}' = {AIS,B15,C15,DlS}

422{W 1S}' = {wr ' -wr (1-sr4), 0, O}

(4.13)

(4.l4a)

(4.l4b)

The frequency integral in Eq.(4.ll) can now be expressed in

terms of the pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and their peak factors. That

is

For the case Hr is equal to Hi (resonance case) the approach

developed in Section II 1.2.1 for the auto floor displacement

spectra is directly applicable. In terms of the integral IR of

Eq.(3.38a), the expression for Eq. (4.11) becomes

N
r~l yr\j!r(k) [A1SIlgr + BlSI2gr + C15I1gi + 015 12g;] (4.16)

ri=1

COINCIDENT VELOCITY SPECTRA

The coincident velocity spectrum for the ground and -floor

k at frequency wi and damping ratio ~i is defined as

(4.17)

Substituting Eq. (4.6) into (4.17), we obtain
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To express the frequency integral in Eq.(4.18) in terms

of the ground response spectra, we again resolve the product

involving IH ,2 and IH. ,2 into their partial fractions. If Hrr ~

is not identically equal to Hi' we obtain

The coefficients of the partial fraction A16 , B16 , etc are

obtained from the solution of the following set of linear

simultaneous equations

where the vectors {V16 } and {W16 } are defined as

{V 16 }1 = {A 16 , 816 , C16 , D
16

}

4 2 2= {a, Wr , -wr (l-4s r ), a}

(4.20)

(4.21a)

(4.21b)

The frequency integral in Eq. (4.18) can now be expressed in

terms of the pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and their peak factors. That

is

For the case Hr is equal to Hi (resonance case) the approach

developed in SectionlII.2.2 for the auto floor velocity spectra

is directly applicable. In terms of the integral IS of
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Eq.(3.49a), the expression for Eq.(4.l8) becomes

N

r~l Yrvr(k)[A16Ilgr + B16I2gr + C16I19 ;

r~;

QUADRATURE DISPLACEMENT SPECTRA

The quadrature displacement spectrum for the ground and

floor k at frequency w. and damping ratio S. is defined in
~ ~

terms of the imaginary part of the cross spectral density

function as

(4.24)

The pseudo-acceleration spectrum is obtained from the

displacement spectrum as

(4.25)

Substituting Eq.(4.7) into (4.24), we obtain

(4.26)

To express the frequency integral in Eq.(4.26) in terms

of ground response spectra, we resolve the product involving

IH.1 2 into their partial fractions.
~

If Hr is not

identically equal -to H., we obtain
~

The coefficients of the partial fraction A17 , B17 ,

(8.27)

etc are
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obtained from the solution of the following set of linear

simultaneous equations

where the vectors {V171 and {W171 are defined as

{V I7 }1 = {A BCD}
I7 t I7 t I7 t 17

{W17}' = {O 0 28 O}, , - rUlr t

(4.28)

(4.29a)

(4.29b)

The frequency integral in Eq. (4.26) can now be expressed in

terms of the pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and their peak factors. That

is

For the case H is equal to H. (resonance case) the approach
r 1

developed in Section 11.2.1 for the auto floor velocity spectra

is directly applicable. In terms of the integral Is of

Eq.(3.49a), the expression for Eq.(4.26) becomes

N
r~l Yr~r(k)[A17Ilgr + B17 1Zgr + C1711gi + 017 12g;] (4.31)

r~;

QUADRATURE VELOCITY SPECTRA

The quadrature velocity spectrum for the ground and floor

k at frequency w. and damping ratio ~. is defined as
1 1
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(4.32)

substituting Eq.(4.7) into (4.32), we obtain

2 2 N a>

Qvgk(w i ) = QV1 r~l Yr~r(k) I_a> (-26rWrw6)IHrI2IHiI2~g(w)dw (4.33)

To express the frequency integral in Eq.(4.33) in terms

of ground response spectra, we resolve the product involving

IH. ,2 into their partial fractions.
~

If H r is not

identically equal to H., we obtain
~

(4.34)

The coefficients of the partial fraction A
18

, B
18

, etc are

obtained from the solution of the following set of linear

simultaneous equations

where the vectors {V1S } and {W1Sl are defined as

{VIS}' = {A B CIS' IS' 18' DIS}

(4.35)

(4.36a)

(4.36b)

The frequency integral in Eq. (4.33) can now be expressed in

terms of the pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and their peak factors. That

is

For the case His equal to H. (resonance case) is treated as
r ~
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described by Singh[22]. Following this approach, the required

frequency integral is obtained for the generic case

(4.38a)

Thus,

(4.38b)

where F(wr ), Gm, Em and r are defined in Appendix II.

Thus, for H =H. the frequency integral in Eq.(4.33) can
r ~

be written in terms of IE as follows

N
+ Q~; rL Yrljlr(k)[AlS1lgr + 81812gr + C181lgi + °18 129;1 (4.39)

r;:;

IV.3 INPUTS FOR PSEUDO-STATIC RESPONSE

As mentioned in Chapter I I I, we could use either the

relative or absolute displacement of the supports points and

their respective cross correlation coefficients for the

calculation of the pseudo-static response.

·The maximum relative displacement of the ground is

obviously zero. Therefore, the correlation coefficient between

the relative displacement of any floor and the ground support

vanish automatically. That is

0' = a
gk

(4.40)

However, while working with the absolute displacements,
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the maximum ground displacement as well as its correlation with

the displacements of each support points are required. The

maximum ground displacement is an input parameter now, which if

not explicitly provide, can be estimated as suggested in

Reference [8]. However, as observed later the force response

quantity is not affected by this input parameter. That is, any

value can be assumed for the maximum ground displacement.

The correlation coefficient of the absolute displacements

of the ground and floor k evaluated at the same time instant is

defined as follows

<5 gk = (4.41)

The cross correlation between the ground and floor

displacements measured at the same time instant, and as

required in Eq.(4.41), can be expressed in terms of the cross

spectral density function as,

(4.42)

Using Eq.(3.89), this can also be written in terms of the cross

spectral density function of the absolute acceleration as

R 1
~agk(w) £} dw

w
(4.43)

Comparing the right hand sides of Eq.(4.9) and (4.43) we notice

that

(4.44)

Thus, Eq.(4.44) can be directly obtained by using Eq.(4.15) for



80

w.=O. That is
~

N
E[XgU k] = r~l Yr~r(k)[A1511gr + B1S12gr + C1S11g + °1512g] (4.45)

The terms IIg and I 2g are expressed in terms of the maximum

ground displacement and velocity, and are given by Eqs.(3.94)

and (3.95), respectively.

IV.4 INPUTS FOR CROSS RESPONSE

As shown in Eq.(2.79), various kind of cross floor

spectra as well as their limiting values for w.=O are required
~

to calculate the cross response component. The cross floor

spectra for the ground and a floor were developed in Chapter

III. In addition, we need to obtain the maximum ground velocity

response and the cross velocity response for the ground and

each floor. The maximum ground veloci ty parameter can be

prescribed or estimated from the maximum acceleration as

suggested in Reference [14]. The cross velocity response, for

the coincident and quadrature components, are presented in the

following sections.

COINCIDENT CROSS VELOCITY RESPONSE

The term associated with coefficient D in Eq. (2.79)

represents the cross correlation between the coincident

component of the velocities of two different supports. If one

of the supports is on the ground, then we can write

R 1
4\a k(w) 2" dw

9 w
(4.46)
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Comparing the right hand sides of Eqs. (4.16) and (4.46), we

notice that

(4.47)

Therefore, the coincident cross velocity response can be

directly obtained by using Eq.(4.22) as follows

N

14gk = r~l Yr~r(k)[A16Ilgr + B16I2gr + C16I1g + 016I291 (4.48)

Thus, the algorithm developed in Section 111.2.2. can be used

without any numerical problems.

We can also define Eq. (4.48) in terms of a correlation

coefficient as follows

(4.49)

QUADRATURE CROSS VELOCITY RESPONSE

The term associated with coefficient H in Eq.(2.79)

represents the correlation between the quadrature components of

the absolute veloci ties of any two supports. I f one of the

supports is on the ground, then we can write for this term as

(4.50)

Comparing the right hand sides of Eq.(4.32) and (4.50), we

notice that

(4.51)

Thus, the algorithm used for the quadrature velocity
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spectra can be directly used. That is, from Eq.(4.37)

N
16gk = r~l yrwr(k) [A18I1gr + B18I1gr + C18I1g + °1812g] (4.52)

Again we can express this term as a correlation

coefficient, defined as follows

(4.53)cS"'gk
= I-"-6"",,,gk~--:...-=

(V Ie ){E[02]}1/2
9 vg k

This part of the input can again be defined as a skew

symmetric matrix.
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CHAPTER V

NUMERICAL RESULTS

V.I INTRODUCTION

In the preceding chapters, a response spectrum approach

is developed for the calculation of seismic design response of

multiply connected secondary systems. The approach requires an

analysis of the supporting primary structure to define various

types of floor spectra and other inputs. These inputs are then

used in the analysis of the supported secondary system to

obtain its response. The response spectrum method to define

various inputs are developed in Chapter III and IV, and

utilization of these inputs for the calculation of the

secondary system response, again through a generalized response

spectrum approach, is described in Chapter II.

In this Chapter, the numerical results demostrating the

applicabili ty of the approach are presented for two different

structural configurations, shown in Fig. I and 2. The primary

structure in both these problems is the same. It consists of

five floors connected by columns which primarily deform in the

shearing mode. The system has five degrees of freedom. The mass

and stiffness properties of the system are shown in Fig.l and

2, with K=10.075 Kips/ft and M=35.5 Kips-Sec 2/ft. The natural

frequencies, participation factors and modal displacements are

given in Tables I and II. The primary structure is assumed to

have 5% damping in each mode.

The secondary systems shown in Fig. 1 and 2 are almost
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similar except that the system in Fig.2 has a support attached

to the ground. The mass and stiffness properties of the

secondary system are also shown in Fig.l and 2, with k=150

kips/ft and m=.1 kiPs~sec2/ft. The natural frequencies and mode

shapes of these two systems, assumed fixed at all the supports

are given in Tables III and IV. The dynamic influence

matrix definingcoefficients

Table V. Even though the

Eq. (2. 17) are

systems- have

given in

different

configurations, their dynamic properties, as listed in Tables I

to V, are identical as their mass and stiffness characteristic

are exactly the same. These systems are assumed to possess 2%

damping ratio in each mode.

V.2 FLOOR SPECTRAL INPUTS

The seismic ground input to the entire system is defined

in the form of pseudo-acceleration and relative velocity ground

response spectra and these are shown in Figs.3 and 4,

respectively. These curves represent the average spectra

obtained for an ensemble of 75 synthetically generated

acceleragrams. They have also been used in earlier studies

[6,17] .

Various floor spectral inputs developed for the analysis

of the two secondary systems are shown in Figs. 3 through 30.

Figs.5, 6 and 7 show the auto pseudo-acceleration floor spectra

for floors 2, 3 and 4, obtained by employing Eqs. (3.36) and

(3.40). The auto velocity floor response spectra were obtained

from Eqs.(3.48) and (3.51), and are shown in Figs.8, 9 and 10
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for these floors. The cross floor spectra, both for pseudo­

acceleration and velocity responses, have coincident and

quadrature components. These spectra are to be defined for all

the floors interconnected through the secondary system.

Figs.11 through 13 show the coincident pseudo-acceleration

spectra, obtained by employing Eqs. (3.55) and (3.56). The

coincident veloci ty spectra are shown in Figs. 14, 15 and 16,

and these were obtained from Eqs. (3.58) . and (3.59). The

quadrature spectra for the pseudo-acceleration and velocity

responses, respectively obtained from Eqs.(3.67), (3.68),

(3.74) and (3.75), are shown in Figs.17 through 22. For the

analysis of system in Fig. 2, the cross floor spectra between

the ground and various connected floors are required. These are

shown in Figs.23 through 30 and were obtained from the

equations developed in Chapter IV.

Here all the floor spectra have been developed for the

oscillator damping ratio of 2%, because the secondary systems

being examined in this work are assumed to have 2% damping

ratio in all the modes. However, if different damping ratios

are assumed in different modes, or if the secondary system is

assumed to be nonproportional, then floor spectra for all

possible modal damping ratios must be developed.

It is seen that for the development of all these floor

spectral inputs no time history analysis is required. The

prescribed ground response spectra can be directly used. In

addition to the ground spectra, the dynamic characteristic for

the primary system defined in terms of the natural frequencies,
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mode shapes, participation factors and modal damping ratios are

also required.

It is noted that although the auto floor spectra will

always have positiv~ values, the cross floor spectra can assume

negative values.

For design purposes these spectra should incorporate the

effect of the uncertanties in the parameters of the primary

structure. This can possibly be incorporated as described by

Singh[21] and Ghafory-Ashtiany and Singh[6]. The methods to do

this for various types of floor inputs defined here are under

developement at this moment.

V.3 RESPONSE OF SECONDARY SYSTEMS

Various floor spectra inputs developed in Chapter III are

utilized here to obtain the displacement and the force response

of the secondary systems shown in Figs.1 and 2. In addition to

the floor spectra, it is also necessary to define for various

floors: (1) the maximum absolute displacement and their

correlation coefficients and (2) the maximum absolute velocity

and their correlation coefficient, as described in Chapter III.

For the primary system being examined here, these values are

given in Table VI. The matrices of the correlation coefficients

are given in Tables VII, VIII and the matrix of the quadrature

veloci ty coefficient, as defined by Eq. (3.111), is defined in

Table IX. These represent the correlation between the

quadrature velocity components of two floors normalized by the

maximum velocity of the corresponding floors. Unlike
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correlation coefficient, these values could be greater than

1.0, as indeed they are in Table IX. These tables cover the

input requirements of both the systems of Figs.1 and 2.

For given ground response spectra, these inputs

quantities are also obtained by a direct analysis of the

primary structure by employing Eqs.(3.93) and (3.103) for the

displacement and velocity; Eqs. (3.100) and (3.107) for the

correlation coefficients and Eq. (3.111) for the quadrature

coefficient.

In Chapter IV, we noted that the maximum ground

displacement and velocity values are also required if the

absolute displacement formulation is used. It, however, turns

out that any value can be prescribed for these two parameters

wi thout affecting the force response values. This has been

verified by numerical results obtained for two widely different

values of the ground parameters which still provide identical

values within the numerical accuracy of the computations

performed. Probably, it can also be analytically shown that

these two parameters contribute only to the rigid body response

of the entire system. At this stage, however, it is not

immediately apparent.

The force response results obtained for the two systems

are shown in Table X. The results in columns (3) and (6) were

obtained by the approach developed in Chapter II employing the

floor spectra and other inputs presented earlier. For

comparison the parallel results were also obtained by a

straight forward response spectrum analysis of the combined



88

systems with ground response spectra as inputs. In this

combined analysis, the primary and secondary system were

considered jointly as one single system. Thus, these results

for the combined sys~em, shown in columns (2) and (5) of Table

X, do also incorporate the possible dynamic interaction between

the two systems. However, because the secondary systems

considered here are relatively very light, as well as their

frequencies are well separated, the interaction effect in the

results presented here are believed to be very small.

It is seen that, the results obtained by the two

approaches compare very well. This verifies the analytical

development presented here. Also the verification of the

resul ts against the well establi shed response spectrum

approach, commonly used for seismic response evaluation of

primary structures, clearly demostrates the applicabili ty of

the response spectrum approach developed here for the analysis

of multiply connected secondary systems as well. It also

ratifies the concept of cross floor spectra as a valid form of

the seismic input; such spectra also must be prescribed along

with auto floor response spectra for a proper seismic analysis

of the secondary systems with multiple supports.

V.4 RELATIVE CONTRIBUTION OF DYNAMIC, PSEUDO-STATIC AND

CROSS TERMS TO TOTAL RESPONSE

For the examples considered here, the relative importance

of the dynamic, pseudo-static and cross response terms in the

calculation of the total force response is evaluated. For
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system "A", Table XI shows the total response variance in

Col. (2) for various structural elements. In Col. (3) , (4) and

(S) are shown the contributions of various components as a

fraction of the total variance. For system "B", similar results

are reported in Table XI I. It is seen that in same cases the

pseudo-static and cross components are seen to contribute

negligibly to the total response, yet in other cases their

contributions can be relatively large. In particular , it is

noted that correlation between the dynamic and pseudo-static

part, as measured by the contribution of the cross terms can be

very significant and must be properly considered in the

analysis. Thus, no particular component can be disregarded as

trivial with respect to the other components in all situations

and as a rule all components should be properly calculated and

combined to obtain the total response.

V.S EVALUATION OF SOME CURRENT RESPONSE EVALUATION

PROCEDURES

Several different seismic analysis procedures are used in

the industry to calculate the design response of such systems.

As mentioned before, some analysts employ only time hi story

approach, as it provides most accurate response, at least for

that time history as well as the phase relationship between the

motions of various floors are correctly accounted. This

procedure is, however, only acceptable if an ensemble of time

histories representing the prescribed design input are used.

The currently employed response spectrum methods, on the other
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hand, use the envelop spectra to obtain the dynamic response or

a combination of time history and response spectrum methods for

the calculation of pseudo-static response due to differential

support movement. Here some of these approaches are evaluated

vis-a-vis the approach presented in this report.

To obtain the dynamic component of response, the envelop

response spectra approach is used. In this approach, the

seismic inputs are defined as the spectra -which envelop the

spectra of all the floors at which the secondary system is

supported. Such inputs, defined in terms of the pseudo­

acceleration and relative velocity spectra are shown in Figs.31

though 34 for system "A" and "B". These inputs are then used

wi th the fixed base model of the secondary system to obtain

response by the response spectrum approach [24].

To obtain the pseudo-static response due to it support

displacement, first the system was analyzed for each support

displacement applied individually, keeping the other supports

fixed. The responses obtained for such individual support

displacements were then combined by two, supposely,

conservative rules: (1) Square-root-of-the-sum-of-the-squares

procedure which assumes that support displacement are

uncorrelated and (2) the absolute sum procedure. These values

are refered to as SS and SA. These values were, in turn,

combined with the dynamic component obtained above, again by

the (1) square-root-sum procedure and (2)' absolute sum

procedures. The response combination procedure where the

dynamic and SS are combined by square- root- sum procedure is
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designated as procedure SSl. Likewise SS2 means combination of

the dynamic and SS as an absolute sum. The parallel

combinations for SA with the dynamic response are designated as

SAl and SA2, respecttvely. The ratio of the values obtained by

these procedures to the value obtained by the proposed approach

are shown in Tables XIII and XIV for systems "A" and "B", for

comparison purposes. If a particular ratio values is greater

than 1.0, it indicates that this particular combination

procedure gives a more conservative estimate of the response

than the proposed approach. It is seen that for system "A", all

these procedures give rather overly conservative estimates of

response. This, however, is not true for system "B". In this

case the approach SA2, in which the pseudo- static response is

obtained by absolute sum procedure which in turn is combined

with the dynamic response also as an absolute sum, only gives

the conservative response in all the terms.

This evaluation indicates that these ad hoc and

approximate rules of response combinations are not reliable and

should be used with restraints.
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CHAPTER VI

USER SUMMARY OF THE PROPOSED METHOD

VI.l INTRODUCTION

Although, the detailed analytical development of the

proposed method are given in Chapters I I and I I I , all the

necessary steps required to obtain the response of multiple

support secondary systems are given in thi s chapter for the

benefi t of a user not interested in the mathematical detai ls

but interested in the application of the method.

In the development of this method, it is assumed that the

secondary system is light so that the dynamic interaction

between the system and its supporting primary structure can be

neglected. With this assumption, the primary system can be

analyzed independently of the secondary system to define the

characteristics of the input motions at the supports of the

latter system. Chapter III is exclusively devoted to the

development of these inputs. Herein, the steps of the procedure

which employs these inputs in the calculation of the secondary

system response are described.

VI.2 STEP-BY-STEP PROCEDURE

The following step-by-step procedure can be used for the

calculation of the secondary system response.

1. Define the elements of the mass, damping and stiffness

matrices required ip the following equations-of-motion:
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More specifically, only matrices M ,C , K ,K and Mss ss ss sa sa

are requi red. For a lumped mass system Mis zero.sa The

matrices M ,C and K are n x n and the matrices K andss ss ss sa

Mare m x n, where n=unconstrained degree-of-freedom ofsa

the secondary system and m=number of support on the primary

system.

2. Define the static influence matrix [AJ as follows:nxm

-1 ](A]=(-[Kss] [Ksa)

3. Define the dynamic influence matrix [r) nxm as follows:

(6.2)

(6.3)

4. Obtain the natural frequencies and mode shapes of the

secondary system assumed fixed at the supports, as a

solution of the following eigenvalue problem:

h . th t 1 f dwere w.=J na ura requency an
J

Normalize the mode shape wi th respect

that

(6.4)

~.=jth mode shape.
J

to mass matrix such

(6.5)

5. Obtain the modal influence vector {Po J 1 for each mode:
J nx
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(6.6)

6. Obtain the mode shape for the response quantity of

interest by simple linear transformation as

into the response quanti ty of interest P j . If

·displacement response is required, then p.='!'.(u).
J J

where {T I is the transformation vector which

(6.7)

transform '!'.
J

only the

7. Obtain the static response influence coefficients nk for

the response quantity of interest. nk represents the

response of interest induced by a unit displacement of

support k, and can be obtained by a simple static solution

of the secondary system.

8. The total response consists of (a) dynamic, (b) pseudo-

static and (c) cross components of the response. These

individual components are calculated as follows:

a. CALCULATION OF DYNAMIC RESPONSE

The seismic inputs for the calculation of dynamic

response are defined in terms of auto, coincident and

quadrature floor spectra for the di splacement and veloci ty

responses. The procedures for the development of these

spectra are given in Chapter III. The following notations

have been used to designate various spectral quantities

earlier in the report. All these spectral quantities pertain

to an oscillator of frequency w. and damping ratio a..
J J
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FLOOR SPECTRAL INPUTS

Rdk(W
j

) = auto displacement spectrum for the k
th

floor (See section 111.2.1)

R k(w,) = auto velocity spectrum for the k th
v J

floor (See section 111.2.1)

Cdk£(W j ) = cross coincident displacement spectrum

for floors k and £ (See section 111.2.2)

CVk~(Wj) = cross coincident velocity spectrum for

floors k and ~ (See section 111.2.2)

Qdk£(W j ) = cross quadrature displacement spectrum

for floors k and £ (See section 111.2.2)

Cvk£(W j ) = cross quadrature velocity spectrum for

floors k and £ (See section 111.2.2)

It is assumed that all peak factors are equal. Thus, all the

peak factors, required for generation of these floor

spectral inputs according to Chapter I I I, should be taken

equal to 1.

The dynamic response component is now defined as

thwhere Pik= the k component of the influence

vector IP. ] ,
J.

.th d 1 t'tp.= J. mo a response quan J. y,
J.

n'= the number of modes desired to be included in

the analysis ~ n.

(6.8)

I akHj is defined in terms of various floor response
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spectral quantities for various combinations of i, j, k and

Q. as follows:

i) k=Q. and i=j

(6.9)

ii) k=9- and i:/:j

(6.10)

Coefficients A, B, C and D are obtained as a solution of

(6.11)

where

(6.12)

2 2) l,O}1- wi - wj , ( 6. 13 )

4
0 4w. aJ w.

1
2 2 4

2w?(2/3?-1) 42w . ( 213 . -1 ) w.
[y .. ] = J J J 1 1 wi (6.14)

1J
1 2w~( 2/3 2-1) 2 21 2w . (2/3 .-1 )J J 1 1
0 1 a 1

iii) k:f9- and i=j

(6.15)
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iv) kt-9- and itj

2 2 2 2= {A Cdk1 (w i ) + B Cvk1 (w;) + C Cdk1 (w j ) + D Cvk1 (w
j
)}

2 2 2 2- {E Qdk1 (w;) + F Qvk1(w i ) + G Qdk1(w j ) + H Qvkt(W j ) (6.16)

Coefficients A, B, C and D are the same as obtained in

Eq. (6.11) . Coefficients E, F, G and Hare ontained as a

solution of the following equation:

where

{V2} I = {E, F, G, H}

and the matrix [Y .. ] is same as in Eq.(6.14:).
lJ

b. CALCULATION OF PSEUDO-STATIC RESPONSE

(6.17)

(6.18)

(6.19)

The pseudo-static component can be obtained from the

relati ve or absolute displacement formulations. Here,

however, only the steps of the approach employing absolute

displacement formulation are given.

The pseudo-static response is given by

2 m 2 m m
RdP = I Uak + I I nk n1ok1UakUa1

k=1 k=1 1=1
, k;t:l

where U = the maximum displacement of floor k, (Seeak

Section I II. 3)

(6.20)
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0k£= correlation coefficient between the displacement

of floors k and £. (See Section I I I. 3 for its

calculation)

c. CALCULATION OF CROSS RESPONSE

The cross response is obtained from the following

equation as

nl m m
= C2 \ \ \ 2 P Id ,, __L1 Pi L L n~ ik adk~,'2.=1 k=l

where the term Iadk£i is defined as follows:

i) k=£

(6.21)

(6.22)

where Uk= maximum velocity of floor k (See Section I I I, 4 for

its calculation). Coefficients AI Band D can be obtained from

Eq. (6.11) by setting w.=o or they are defined as
J

A == (46~-1)
1

B 2= l/w.
1

0 2== -l/w.
1

(6.23)

ii) k:j=£

(6.24)

Coefficients AI Band D are given in Eq. (6.23). Coefficients EI

F and H can be obtained from Eq.(6.17) by setting wj==O or they
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are defined as:

E = 4e./w. (2B~-1)
111

(6.25)

H = 28 / 3- i wi

O~.e= correlation coefficient between the velocity of floor k

and .e (See Section I I 1.4) O~.e= quadrature coefficient between

the velocity of floor k and .e (See Section 111.4)

Therefore, the total response is calculated as

(6.26)

The procedure outlined above can be used for the

calculation of force or absolute displacement response of the

secondary system.
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CHAPTER VII

SUMMARY AND CONCLUTIONS

VII.l GENERAL SUMMARY

A rational response spectrum procedure for seismic

analysis of multiply supported secondary systems is developed.

The development of the procedure is based on the random

vibration analysis of structural systems subjected to several

correlated inputs applied at several supports. The support

inputs are defined in the spectral form like floor spectra, and

herein the methods are developed to characterize the correlated

support motions in this form. The information about floor

displacements and velocities as well as correlation among these

quantities is also required as input.

The total response is expressed as a combination of the

dynamic and pseudo-static parts. The dynamic part is associated

with the inertial effects of the support accelerations, whereas

the pseudo-static part is due to the displacement of the

supports relative to each other. Since these two components of

the response are correlated, this correlation must be properly

reflected in the analysis. The procedure developed here include

thi s correlation through the terms, herein being referred as

the cross response terms.

The development of the floor spectral inputs, of course,

requires the dynamic analysis of the supporting primary

structure. The correlated support motions are characterized in

terms of the auto and cross floor response spectra for the
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displacement (or pseudo-acceleration) and velocity response of

the oscillators on the floors. The cross spectra consi sts of

the two components: (1) the coincident and (2) the quadrature

floor spectra. These. two spectra must also be defined for the

displacement and velocity response of an oscillator. The

methods are developed to obtain such cross floor ,spectra even

for the special case of a secondary system with one of its

supports being on the ground.

The methods for development of these various floor

spectral inputs also employ response spectrum approaches. Thus,

the ground response spectra can be directly used in these

methods for generation of floor spectra.

Various numerical results, showing the development of

various floor spectra are presented. These floor spectra are

then used as inputs in the analysi s of the secondary systems

for the calculation of the force responses. The numerical

results for these response quantities are also presented.

For the benefit of a user not interested in the

analytical developments presented in various chapters, a step­

by-step procedure for the implementation of the method is

provided in Chapter VI: USER SUMMARY OF THE PROPOSED METHOD.

VII.2 DISCUSSION AND CONCLUSIONS

The analysis presented in this report clearly shows that

for a proper seismic evaluation of the multiply connected

secondary system, it is necessary to define the seismic inputs

not only in terms of the (conventional) auto floor displacement
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spectra, but also the (1) auto relative veloci ty spectra and

(2) the cross floor spectra for displacement and velocity

responses. A complete description of the cross floor spectra,

characterizing the correlation between any two floor

accelerations, requires the definition of the coincident and

quadrature floor response spectra. In addition, the

displacement and velocity responses of various interconnected

floors and their correlation must also be defined as a part of

the input for seismic analysis of such systems.

The analytical feasibility of the methods to obtain

various types of floor response spectra, and also the effective

use of these spectral inputs in the calculation of the force

and displacement responses of the secondary systems, are

clearly demonstrated by the numerical examples.

The comparison of the numerical results obtained by the

proposed approach with the results obtained with the help of

some currently used procedures, shows that the latter

procedures may not always provide a conservative estimate of

the response. Since some of the currently used procedures,

such as an enveloping of the support point floor spectra and

the rules for combination of the dynamic and pseudo-static

responses, lack analytical rationality, their use will not give

analytically consistent results.

Often in the designs of such secondary systems, the

pseudo-static component of the response is considered secondary

of self limiting type in nature because it is induced by the

differential displacements of the supports (anchor movement
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stresses) . See ASME code, section I I I, Appendix N 1. For

such components of stresses, higher allowable stresses can be

used. Although, there are some interpretational differences in

considering these stresses as secondary self limiting stresses,

their separate rational evaluation is possible in the proposed

approach. In case one intends to treat these stresses

separately from the dynamic component of stresses, their

correlation, which can sometime be very significant as

represented by the cross term must not be ignored. It is

wri ters personal opinion that no di stinction be made between

the dynamic and pseudo-static components of stresses with

regard to the allowable stresses and that all these stresses be

considered as primary stresses in design evaluation of the

secondary systems.

The approach is valid for linearly behaving light

secondary systems for which their dynamic interaction with the

supporting primary structure can be ignored. In practice many

secondary systems are usually light enough, even for the tuned

case, such that this interaction is insignificant and thus a

decouple analysis of the two systems can be quite justified.

Such decouple analysis also facilitate the design of such

systems. The combined analysis to incorporate dynamic

interaction, on the other hand, will require the information

about the two systems simultaneously which may be difficult,

and sometimes practically impossible, to obtain. The methods to

incorporate the dynamic interaction are presented in a separate

report [26]. However, the proposed approach can be used with
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confidence to obtain the improved response results whenever

dynamic coupling is considered unimportant.
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TABLE I: Natural Frequncies (rad/S) and

Participation Factors of the Primary System.

Mode Natural Participation

Frequency factor

1 6.98 383.8

2 20.38 -120.8

·3 32.12 -63.7

4 41.26 35.4

5 47.06 -16.2

-2TABLE II: Mode Shapes of the Primary System - [ftx10 ].

Node Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

1 .093 -.249 -.326 .299 -.178

2 .178 -.326 -.093 -.249 .299

3 .249 -.178 .299 -.093 -.326

4 .299 .093 .178 .326 .249

5 .326 .299 -.249 -.178 -.093
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TABLE III: Natural Frequencies of the Secondary System (radjS).

Mode Natural

Frequency

1 17.32

2 24.49

3 34.64

TABLE IV: Mode Shapes of the Secondary System - -1[ftx10 ].

I
Node Mode 1 Mode 2 Mode 3

1 .577 .577 .577

2 -.707 .0 .707

3 .408 -.816 .408

TABLE V: Dynamic Influence Coefficient P
jk

.

Support Mode 1 Mode 2 Mode 3

1 -5.773 -5.773 -5.773

2 3.535 .0 -3.535

3 -1.020 2.041 1.020
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TABLE VI: Maximum Absolute Support

Di splacements and Velocities.

I
Support Maximun Maximun I

I
Disp. [ft] Vel. [ft/s] I

I
I

Ground .300 .400 . I
I

2 .309 .505 I
I

3 .315 .588 I
I

4 .319 .665 I
I
I

TABLE VI I: Displacement Correlation Coefficients.

Support Ground 2 3 4

Ground 1. .991 .978 .970

2 .991 l. .998 .994

3 .978 .998 l. .997

4 .970 .994 .997 1.
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TABLE VIII: Coincident Velocity Correlation Coefficients.

I
Support Ground 2 3 I 4

I
I

Ground 1. .701 .549 I- .451
I

2 .701 1. .962 I .890
I

3 .549 .962 l. I .975
I

4 .451 .890 .975 I 1.
I
I

TABLE IX: Quadrature Velocity Coefficients.

Support Ground 2 3 4

Ground O. -1. 038 -.837 -.684

2 1. 038 O. .366 .353

3 .837 -.366 O. .203

4 .684 -.353 -.203 O.
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TABLE X: Force Response - [Lb].

Configuration "A" Configuration "B"

I
Elem. Combined Proposed Elem. Combined I Proposed

I
system method system I method

I
( 1 ) (2) ( 3 ) (4 ) (5 ) I ( 6 )

I
I

2-6 713.2 708.6 G-6 1120.3 I 1114.6
I

6-7 378.8 426.2 6-7 728.4 I 738.4
I

3-7 513.9 532.1 2-7 836.5 I 822.3
I

7-8 367.2 367.5 7-8 529.0 I 496.6
I

4-8 475.5 476.9 3-8 858.9 I 847.1
I
I



115

TABLE XI: Fractional Contribution of the Dynamic, Pseudo­

static and Cross Components to the Total Force Response

Variance of Various Members in Structure "All.

Elem. Total Dynamic Pseudo-static Cross

variance component component component

( 1 ) (2 ) (3 ) (4) (5 )

2-6 502149. .455 .156 .388

6-7 181702. .307 .431 .261

3-7 283203. 1.070 .008 -.078

7-8 135124. .408 .442 .148

4-8 227473. 1.794 .262 -1. 057

TABLE XII: Fractional Contribution of the Dynamic, Pseudo­

static and Cross Components to the Total Force Response

Variance of Various Members in Structure "B".

Elem. Total Dynamic Pseudo-static Cross

variance component component component

( 1 ) (2 ) (3 ) (4) (5 )

G-6 1242430. .623 .287 .089

6-7 545329. .152 .654 .193

2-7 676232. 1.010 .067 -.078

7-8 246666. .286 .631 .082

3-8 717683. 1. 039 .216 -.256
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TABLE XIII: Comparison of the Results Obtained by

Various Response Combination Rules and Proposed

Approach for Structure "A".

Elem. Proposed SSl SS2 SAl SA2

method ratio ratio ratio ratio

2-6 708.6 1. 544 2.186 2.160 2.949

6-7 426.2 1. 948 2.475 3.176 3.743

3-7 532.1 2.315 2.703 3.678 4.080

7-8 367.5 2.918 3.519 4.330 4.961

4-8 476.9 2.245 2.693 3.338 3.805

TABLE XIV: Comparison of the Results Obtained by

Various Response Combination Rules and Proposed

Approach for Structure "B".

Elem. Proposed SS1 SS2 SAl SA2

method ratio ratio ratio ratio

G-6 1114.6 .786 1.072 .871 1.223

6-7 738.4 .689 .949 .892 1.178

2-7 822.3 1. 086 1.327 1.489 1. 739

7-8 496.6 1.733 2.164 2.268 2.715

3-8 847.1 1. 011 1.255 1.325 1. 578
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APPENDIX I. VARIANCE OF THE DYNAMIC AND CROSS RESPONSES

In this Appendix the variances of the dynamic and cross

responses, . given in Egs.(2.17), (2.71) and (2.72), are

developed.

1.1. VARIANCE OF THE DYNAMIC RESPONSE

The covariance function of the dynamic component is

obtained as follows

( 1. 1)

Replacing Eg. (2.16) into (1.1) gives

( 1. 2)

where the generalized coordinate can be expressed as a solution

of Eg.(2.15)

..
{Pi} I {Ua(8 1)}h; (tC S

1
)dS

1
( 1. 3)

in which h.(t) is the impulse response function of Eg.(2.15).
J.

Replacing Eg. ( I .3) into ( I .2) , and after some standard

manipulations, we obtain

n m t z t 1
Rdd(tl,tZ) =.I I P;Pj f f E[{P;}I{U

a
(s1)}{U

a
(8

2
)}I{P.}]

, =1 j=l 0 0 J

(1. 4)

in which the expected value can be replaced by
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Assuming stationary response, the ecpected value of the

absolute acceleration between floors k and ~ can be obtained

from the inverse Fourier transform of the cross spectral

density function of the absolute acceleration as follows

( I. 6)

Substituting Eqs. (I.6) and (I.5) into (I.4) and introducing the

change of variables u l =t l -8 l and u 2=t2 -8 Z' gives
tn n m m a> 1 i wU 1

=.L .L PiPj L L PikP jt J ~akt(w) (J hi (u1)e du 1)
1=1 J=1 k=1 t=1 _a> a

t 2 -iwU 2 iw(t2-t1)
(J0 hj (u 2) e du 2) e dw ( I. 7)

The stationary value of the covariance function is

Finally, the variance of the dynamic response is obtained

setting t
l
=t

2
in the covariance function. That is,

2 n n m Il) a>

odd =.I .I PiPJ' I ~ Pik PJ1 J ~ak1(w)H1H.dw
1=1 J=1 k=1 1=1 _00 J

I.2. VARIANCE OF CROSS RESPONSE

( I. 9)

The covariance function of the cross component is

obtained as follows

( I. 10)

Replacing Eqs. (2.16) and (2.55) into (I.10) gives
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(1.11)

Substituting Eg.(1.3) into the expected value in Eg. (I.ll)

n m t 1 ..
Rdp (t 1,t2) = L L Ping, f E[{Pi}'{Ua(e1)}Uag,(t2)!h;(tl-81)del (1.12)

1=1 2.=1 0

or

The expected values in Egs.(1.l1) and (1.12) can be

substituted in terms of the cross spectral density function as

follows

(1. 14)

Employing Eg. (1.14) and introducing the change of variable

. As t 1 approaches infini ty I the correlation function in

Eq.(I.15) becomes stationary as follows,

Following the same steps, it can be shown that

(I.17)

Finally, the variance of the cross response is obtained
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by setting t 1=t2 in the covariance functions in Eqs.(I.16) and

(1.17) as follows

2 n m m co

°pd = L L p·n \ P I ~ ()H d
i=1 ~=1 1 ~ k~1 ik -co da~k W i W

(1.18)

(1.19)
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APPENDIX II. FREQUENCY INTEGRALS - RESONANCE CASE

In this Appendix the functions required for computing the

integrals I R(a1 ,a2 ), I s (a2 ,a3 ) and I E (a4 ) in Eqs.(3.38), (3.49)

and (4.38) are obtained.

To define the frequency integrals for the resonance case

an approximation for the following general integral

CD. 4
I; = f w' IHoI ~ (w) dw ( I I . 1)a 9

is required. To evaluate this approximately, the PSDF of the

ground acceleration, ~g(w), and the frequency response function

can be written as follows (see Fig. 35),

~g(W) = ~g(wo) + g(w)

IHo l4 = 18 + f(w)
Wo

Replacing Eq.(II.2a) into (II.l) gives

(I1.2a)

( I 1. 2b)

( I I .3)'

Substituting Eq.(II.2b) into the second integral in Eq.(II.3)

(I1.4)

(I1.5)

The last integral in Eq.(II.4) can be split as following
Wi

ex> a . CD •. , ,
f w'g(w)f(w)dw = f w g(w)f(w)dw + f w g(w)f(w)dw
a a Wia

in which WI is a frequency slightly higher than w as shown
o 0

in Fig. 35(b). From Fig. 35(e) we observe that the first

integral in Eq.(II.5) is approximately zero as between 0 and
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WA' f(w) is zero and between wA and wB' g(w) is nearly equal to

zero. Furthermore, we assume that f(w) = -1/w8 for w > WIo 0

(which is indeed true for large w). Thus,

ex> • ex>

I w'9(w)f(w)dw = - 18 I g(w)dw
o w Wi

o 0

substituting Eq.(II.6) into (II.4), we obtain

(I1.6)

(I1.7)

Using Eq.(I1.2a) to define g(w) in

we obtain

terms of ~ (w ) and ~ (w),gog

ex> i 4
T. = ~ (w ) f w IH I dw - ¢g(wo), goo 0

( l)i+1 Wi

Wo 1 0 i
---'--=8 + 8" f w ~ (w)dw
(i+1)w w 0 9o 0

(I1.8)

This integral is also given by Vanmarcke (28). However, the

authors were unable to find the proof of this in any reference.

Hence the above proof was developed and is given here for ready

reference. This approximation will now be used to obtain

I R(a
l
,a2 ), I

S
(a2 ,a3 ) and I E (a4 ) required in Chapters III and

IV.

(I1.9)

Using Eq.(II.8), I R(a
1
,a2 ) can be approximated as follows

ex>

IR(a1,a2) = ¢g(wo) f
-ex>

w
a2 0 2

¢g(w)dw + ~ f w ¢ (w)dw
w -w 9o 0

(ILlO)

Replacing the limits in the first integral by the cut-off
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frequency w , it can be obtained inclosed form as followsc
w
c 8 6 2f (a1wo + a2wow )IH 1

4dw = w C
-w 0 c m

c

Expression for em is given later in Eq.(II.31).

The second frequency integral in Eq.(II.10) which

represents the partial area under the PSDF is denoted by
Wo

Ib = I ~g(w)dw
-wo

( I!. 1Z)

To express spectral terms, the following

relationship between the mean square values of the pseudo-

acceleration and relative velocity is used [22],

( I L 13)

in which 11 and I Z are defined in Eq.(3.37). Thus,go go

(IL14)

where

(ILlS)

(11.16)

The third integral in Eq. ( I 1.10) which represents the second

moment of the ground acceleration is denoted by

Wo
Ib2 = I W2~g(w)dw

-wo

To express I bZ in spectral terms, the relative velocity ground

spectra, I 2go ' can be approximated as follows
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(11.17)

where

(11.18)

The expression for D is given later by Eg. (II .31). Solvingm

Eg.(II.17) for I b2 , we obtain

1 w41 2 {b2 = 0 2go - Wo~g(wo)we Om - 2/3 r} (IL19)

Finally, to obtain t g (wo ) in terms of response spectrum

values, the approximation for II is used:go
we

11go = f ~g(w)IHoI2dw
-we

I 1
2 2 1H dw - ~ (w ) -- + -- 1ago 3 4 b

Wo Wo
(IL20)

where
w

4 c 2
Wo f IHol dw = w E

-w c m
c

(11.21)

The expression for E
m

is provided in Eg. ( I I . 31) . Replacing

Eq.(II.14) into (II.19) and rearranging terms gives

(11.22)

in which r = w /w .o c

Substituting Eqs.(ILll), (11.14), (II.19) and (11.22)

into (11.10) and after some algebraic manipulation, we obtain
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where C' and D' are as follows:m m

Om' = 1 - (0 - 2r/3)/(E - 2r)m m

(II.23a)

(I1.23b)

(11.24)

Using Eq.(II.8), I S (a2 ,a3 ) can be approximated as follows

CD 6 2 4 4 4 a2 a3I S(a2,a3) ~ ~g(wo) {CD (a2wow + a3wow ) IHol dw - ~g(wo)2wo(~ + s-)

w w
a2 0 2 d3 0 4

+ ~ J w ~ (w)dw + ~ J w ~ (w)dw
w -w g w -w go 0 0 0

(11.25)

(11.26)

It can be shown that the last integral in Eq.(II.25) is small

in comparison with the other terms and can be neglected.

Replacing the symbolic limits in the first integral in terms of

the realistic limit wi th the cut-off frequency Wc and

evaluating it in closed form we obtain

w

I e ( 6 2 444
d2wow + d3w w )/H I dw = w F

-w 0 0 c m
c

where Fm is defined by Eg. (11.31) later.

Replacing Egs.(I1.19), (11.22) and (11.26) into (11.25)

gives Eq.(3.49b)

where F' ism

I S(d2,d3) = wo
4I 1 F(w )F' + a2w2I 2 0'go . 0 m 0 go m (3.49b)
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Using Eq. (11.8), I E (a4 ) can be approximated as follows

(11.27)

(11.28)

<XI

~g(wo) J a4w~w6IHoI4dw-
_CD

w
a7 0 6

+ ~ J w ~ (w)dw
w -w 9o 0

(11.29)

(I1.30)

It can be shown that the last integral in Eq.(II.29) is small

in comparison with the other terms and can be neglected.

Replacing the limits in the first integral by the cut-off

frequency Wc and evaluating in closed form we obtain
w

c 2 6 4J a4wow IH I dw = w G
-w 0 c m

c

where Om is defined by Eq.(II.31) later. Replacing Eqs.(II.22)

and (11.30) into (II.29) gives Eq.(4.38a)

(4.38b)

The functions Cm' Dm' Em' F and ° used earlier arem m

defined as

em = Am(r,60,a1,a2,0,0)

D = B (r,8 ,1,0)m m a

E = B (r,8 ,0,1) (I1.31)
m m a

F = Am(r,Bo,0,a2,d3,0)
m
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in which the functions A and B are related to the followingm m

integrals

We
-I (8 62 44 26 4- -w alwO + a2wOw + a3wOw + a4wOw )IHOI dw (II.32)

r
w
e 2 2 4 2

weBm(r'SO,a,b) = f (awOw + bwo)IHOI dw (II.33)
-we

Equations (II.32) and (II.33) can be obtained in closed form to

define Am and Bm as follows:

--2
- Zr/l-BO :

__ J
2+ Zr/l-BO

2N
Z

{(1-r2) + 2s6r2} - m2/2(1+r2)

r2(l-S6) {(l_r2)Z + 4S6r2}

with

1+r2 - 2r/l-S6
-}

l+r2 + Zr/l- S6
(I!. 34)

Z Z Z 2
Nl = -(r /16s0)[a4(1-480)+a3+aZ+al(l+4s0)]

4 2 Z
NZ = -(r /16s0)[(a4+al)(1-4s0)+a3+aZ]

ml = (r
2/ 1666) [(a4+al)(1+4S6)+a3+aZ]

4 2mZ = r /2[2(1-2s0)a4+d3-all
(11.35)
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and

Q = 2(n-e) r < 1
r

= 1T

= 26

in which e = tan-1(260/!1-rI 2). And,

Bm(r'SO,a,b) =

where

r = 1
r > 1

1+r2 - 2r/l-S~
-}

2 2l+r + 2r/l-sO

(I I. 36)

(I I. 37)

(II.38)
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NOTATION

[A]= Pseudo-static influence matrix defined by Eg. (2.54:).

A,B,C,D= Coefficients of partial fraction.

C
d

= Peak factor of the design response.

C = Cross covariance between dynamic and pseudo-static parts
dp

of the response.

C
dj

= Peak factor associated with auto displacement spectra.

C .= Peak factor associated with auto relative velocity
vJ

spectra.

C = Peak factor associated with the relative displacement ofvk

support k.

C = Peak factor associated with the absolute displacement of
uk

support k.

C = Peak factor for the ground displacement.dg

CVg= Peak factor for the ground velocity.

Cdk£(w i )= Coincident displacement spectra between floors

k and £ defined by Eg. (2.4:3).

Cvk£(Wi )= Coincident velocity spectra between floors k and

£ defined by Eg. (2.4:4:).

Cpk£(Wi )= Coincident pseudo-acceleration spectra between

floors k and £ defined by Eg.(2.47a).

Cdgk(Wi )= Coincident displacement spectra between ground and

floor k defined by Eg. (4.9).

C k(w,)= Coincident pseudo-acceleration spectra betweenpg ~

ground and floor k defined by Eg. (4:.10).

CVgk(Wi )= Coincident relative velocity spectra between ground

and floor k defined Eg. (4.32).
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C = Expression defined in Appendix II.
m

D = Maximum ground displacement.g

D = Expression defined in Appendix II.
m

E[ . ]= Expected value of [.].

E = Expression defined in Appendix II.
m

F = Expression defined in Appendix II.
m

F(w.)= Expression defined in Appendix II.
1

G = Expression defined in Appendix II.m

H.= Complex frequency response function defined by Eq.(2.18).
1

h. (t)= Impulse response function.
1

I k n ' • = Frequency integral defined in Eq. (2.20) .a ><.lJ

IadkQ.i= Expression defined by Eq. (2.78) and (2.79).

Ilki,I2ki= Expressions defined by Eq. (2.34).

I3kQ.i,I4kQ.i,I5kQ.i,ISkQ.i= Expressions defined by Eq. (2.53).

1 4kQ.,I SkQ.= Frequency integrals defined by Eqs. (2.81) and

(2.82), respectively.

II ,1 2 = Expressions defined by Eq. (3.37).gr gr .

I R(a 1 ,a2 )= Frequency integral defined by Eq.(3.38).

I R1 ,I R2 = Frequency integrals defined in Eq.(3.39).

18 (a1 ,a2 )= Frequency integral defined by Eq. (3.49).

1 81 ,1 82= Frequency integrals defined in Eq. (3.50).

I 1g ,I 2g= Expressions defined by Eqs.(3.94) and (3.95),

repectively.

I E (a4 )= Frequency integral defined by Eq.(4.38).

[M ], [C ], [K ]= Mass, damping and stiffness matrices of the
S5 ss 5S

active degree-of-freedom of the secondary

system.
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[M 1 [C 1 [K 1- Mass, damping and stiffness matricesaa' aa' aa-

associated to support points of the

secondary system.

[Msa ]' [Csal, [Ksa ]= M~ss, damping and stiffness cross matrices

between active an support points.

[Ml, [Cl, [Kl= Mass, damping and stiffness matrices of the

supporting primary system.

M(w)= Expression defined by Eq.(2.37).

m= Number of support of the secondary system.

N(w)= Expression defined by Eq.(2.26).

N= Number of modes of the primary system.

n= Number of active degree-of-freedom of the secondary system.

n'= Number of modes of the secondary system included in the

analysis.

{P.}= jth influence vetor defined in Eq.(2.15).
J

P'k= k th component of influence vector {P.}.
1 J

Pdi= Peak factor associated with coincident displacement

spectra.

P .= Peak factor associated with coincident velocity spectra.
Vl

Qdi= Peak factor associated with quadrature displacement

spectra.

Qvi= Peak factor associated with quadrature velocity spectra.

Qdk£(w i )= Quadrature displacement spectra between floors

k and £ defined by Eq.(2.45).

Qvk£(w i )= Quadrature velocity spectra between floors k

and £ defined by Eq. (2.46).

Qpk£(w i )= Quadrature pseudo-acceleration spectra between
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floors k and ~ defined by Eq.(2.47b).

Qpgk(Wi )= Quadarture pseudo-acceleration spectra between

ground and floor k defined by Eq. (4.25).

Qvgk(W i )= Quadarture Felative velocity spectra between

ground and floor k defined by Eq. (4.32).

Qdgk(Wi )= Quadarture displacement spectra between ground

and floor k defined by Eq. (4.24).

qj(t)= jth principal coordinates of the secondary system.

Rd = Maximum or design response defined by Eq. (2.11).

Rs (t1 ,t2 )= Covariance function of the response S(t) defined

by Eq. (2.12).

Rdd= Dynamic component of maximum or design response defined

by Eq. (2.14).

R = Pseudo-static component of maximum or design responsepp

defined by Eq. (2.53).

R = Cross response of the maximum or design response defineddp

in Eq. (2.70).

R k(w,)= Auto pseudo-acceleration floor spectra defined by
p J

Eq. (2.22).

Rdk(W j )= Auto displacement floor spectra defined by Eq.(2.22)

R k(£')= Auto relative velocity floor spectra defined by
v J

Eq. (2.32).

Rak£(t1 ,t2 )= Cross correlation function of the absolute

acceleration between floors k and £.

Ragk(t1,t2)= Cross correlation function of the absolute

acceleration of ground and floor k.

Rdg(W r )= Auto displacement ground spectra defined by
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Eq. (3.34) .

R (w)= Auto pseudo-acceleration ground spectra defined bypg r

Eq. (3.34) .

R (w)= Auto relative velocity ground spectra defined byvg r

Eq. (3.41) .

[rJ= Dynamic influence matrix defined in Eq. (2.9).

S(t)= Response quantity.

Sd(t)= Dynamic part of the response S(t).

Sp(t)= Pseudo-static part of the response S(t).

{T}= Transformation vector defined in Eq. (6.7).

T(w)= Expression defined by Eq. (3.18).

{Us(t)}= Absolute displacement vector of active degree-of­

freedom of the secondary system.

{U (t)}= Absolute displacement vector of support points.a

{Ud(t)l= Dynamic component of displacement of the actives

degree-of-freedom.

Uak(t)= Absolute displacement of support k.

Uak= Maximum displacement of support k.

Vak(t)= Relative (to ground) displacement of support k.

Vak= Maximum relative (to ground) displacement of support k.

V = Maximum ground velocity.g

X(w)= Expression defined by Eq. (3.13).

[Yo .J= Matrix of coefficients defined by Eq.(2.29).
~J

Y (t) th . . 1 d . t f th .r = r pr~nc~pa coor ~na e 0 e pr~mary system.

Z(w)= Expression defined by Eq. (3.19).

~ak~(w)= Cross power spectral density function (PSDF) of the

absolute acceleration at supports (or floors) k and ~.
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~R
ak£(w)= Real part of the cross PSDF ~ak£(w).

~I
ak£(w)= Imaginary part of the cross PSDF ~ak£(w),

~dk£(w)= Cross PSDF of the displacement at support k and £.

~vk£(w)= Cross PSDF of the relative displacement of supports

k and £.

~adk£(w)= Cross PSDF of the absolute acceleration of floor

k and absolute displacement of floor £.

~dak£(W)= Cross PSDF of the absolute displacement of floor

k and absolute acceleration of floor £.

~ (w)= PSDF of the ground input.
g

~ k(w)= Cross PSDF of the absolute acceleration of groundag

and floor k.

~ k (w)= Cross PSDF of the absolute acceleration of floor ka g

and ground.

~dgk(w)= Cross PSDF of the absolute displacement of ground

and floor k.

~dkg(w)= Cross PSDF of the absolute displacement of floor k

and ground.

R Real part of ~ agk(w) .~ k(w)=ag

~I k(w)= Imaginary part of ~ k (w) •ag ag
R Real part of ~dgk(w).~dgk(w)=

I Imaginary part of ~dgk(w).~dgk(w)=

° = Variance of the response S(t).s
d0dd= Variance of the dynamic part of the response S (t).

° = Variance of the pseudo-static part of the response Sp(t).pp

0pd,odp= Cross variance of the dynamic and pseudo-static

response.
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[e]= Correlation coefficient matrix of the absolute

displacement of the supports.

ek £= Element of matrix [e].

[e']= Correlation coefficient matrix of the relative

displacement of the supports.

e~~= Element of matrix [e
l
].

<5~£= Correlation coefficient associated with the coincident

velocity cross floor spectra defined by 'Eq. (3.107).

e;~= Correlation coefficient associated with the quadrature

velocity cross floor spectra defined by Eq. (3.111).

e' = Correlation coefficient between relative displacementgk

of floor k and ground displacement.

<5 = Correlation coefficient between absolute displacement ofgk

floor k and ground displacement defined by Eq. (4.41) .

0" = Correlation coefficient associated with the coincidentgk

velocity cross floor spectra defined by Eq. (4.49).

e~ = Correlation coefficient associated with the quadraturegk

velocity cross floor spectra defined by Eq.'(4.53).

~.,w.= jth damping ratio and natural frequency of the
J J

secondary system, respectively.

~ th d' t ' d t 1 f f thw = rampIng ra 10 an na ura requency 0 er' r

primary system, respectively.

p,= Modal response in the jth mode.
J

nk= Constraint response associated with support k.

v th d t" t' f t f th .0r= r mo e par lclpa Ion ac or 0 e prImary system

defined by Eq. (3.3).

{¢ }= r th mode shape vector of primary system.
r
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{~.J= jth modal shape vector of the secondary system.
J .

{IJ= Excitation influence vector.

I = kth component of vector {IJ.k


