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CHAPTER I
INTRODUCTION
I.1 GENERAL BACKGROUND

For seismic design of important industrial facilities,
the earthgquake input loading is often prescribed in terms of
the ground response spectra {8,14,15]. For such loadings, a
proper seismic.design of the primary systeﬁs és well as the
subsystems is of wvital importance for safe operation of the
facility. For the analysis of the primary systems, rational
analytical method which can effectively use the ground spectra
as inputs have already been developed. However, for the
analysis of the secondary systems, especlally the systems with
multiple supports (such as piping attached at several points of
a main structure), the methods are still in the devélopment
stage, and research efforts [1,2,9-12,16,18,27,30] are being
continually reported in the literature.

In the current practice, the time history and the single
response spectrum methods are commonly used [1] to analyze such
multiply supported subsystem. The time history method, thbugh
analytically most accurate for a given earthguake motion time
history, does not provide unique response results suitable for
a design. To obtain the design response, i.e. the response
which can be used for the design of these subsystems, one musat
consider a set of time histories as inputs in the analysis.
This, however, requires a large computational effort and thus

is not be economically feasible.



The response spectrum method, on the other hand, is
computationally inexpensive. Currently, it is a common practice
to use the envelcpe cof all the support point floor spectra as
input in this approach. To account for the effect of the
relative displacements between the supports, some approximate
and conservative methods are employed [1]. These methods,
however, do not account for the effect of the correlation
between the support motions and may, sometimes, give overly
conservative results.

In this report, the analysis of the multiply connected
secondary systems subjected to correlated random excitations at
the supports 1is examined in details. The random vibration
approach is employed. This analysis leads to the development
of a rational response spectrum apprcach. The different types
of floor response spectra reguired as inputs in this spectrum
approach are identified. The procedurevto obtain these floor
spectra directly from the prescribed ground response spectra
are developed. Use of these spectra as inputs in the
calculation of response is, then, demostrated on several

examples of the multiply connected secondary systems.

I.2 ORGANIZATION OF REPORT

The report consists of several chapters in which the
theoretical development are presented. However, for a user who
is primarily interested in the implementation of the approach,
Chapter VI entitled USER SUMMARY OF THE PROPOSED METHOD is

provided. This chapter gives a step-by-step procedure for the



implementation of the approcach.

In Chapter II, the equations of motions for a free-free
primary-secondary system are developed, and the strategy of
partitioning the total response displacement into the so-called
pseudo-static and dynamic components in elaborated upon. The
basic equations of eqguilibrium necessary to define these two
components are developed. As an immediate extensicn, other
response gquantities such as member forces are also partitioned
into their pseudo-static and dynamic components. The equations
for the mean square values of these response components and
their correlation, defined in terms of the so-called cross
terms, are developed in this Chapter. Since the main aim is to
develop a response spectrum approach employing response spectra
as the design inputs, the médal analysis approach has been used
in the formulation.

Finally, the expressions are developed for c¢alculating
the dynamic, pseudo-static and cross responses directly from
the design inputs defined in terms of the floor response
spectra. Here, the need for defining the inputs £for the
secondary system in terms of different types floor response
spectra is identified. It is shown that the conventionally
employed pseudo-acceleration floor response spectra is just one
of the several other types of floor spectra which must be
defined for a proper seismic analysis of multiply connected
secondary systems. The other types of floor response spectra
are: (1) auto relative velocity floor spectra; (2) coincidént

velocity and displacement floor spectra and; (3) guadrature



velocity and displacement floor spectra. The procedure for the
calculation of the pseudo~-static and cross response components
in terms of the support displacement, velocities and floor
spectral quantities 1s alsc developed in this Chapter.

In Chapter III, the procedures are developed to define
various floor response spectral guantities, which were
identified in Chapter II as the necessary inputs for the
calculation of the dynamic as well as the ¢ross response
contributions. The procedures are also developed to calculate
other floor inputs, such as the maximum dispiacements,
velocities, the correlation between the displacements of
variéus supports etc., which are reguired in the calculation of
the pseudo-static and cross response terms. These methods
employ the dynamic characteristic of the supporting primary
structure and directly use the ground response spectra as the
base input.

The special case of a secondary system with one or more
of its supports on the ground is examined in Chapter IV. The
development of the cross floor spectra, correlatiocns between
support displacements as well as support wvelocities in this
case is somewhat different from that described earlier in
Chapter 1I; these are thus covered in this chapter.

The numerical results obtained for various floor response
spectral gquantities and the response of two secondary systems
are presented in Chapter V. The relative contributions of the
dynamic, pseudo-static and cross response terms to the total

response> are evaluated. Also some of the currently used



procedures of combining the wvarious response contributions,
specially the dynamic response and the response due to relative
displacement between the supports, are evaluated vis-a-vis the
results obtained by this proposed method. Chapter VII

summarizes the report and presents the general conclusions.



CHAPTER II
RESPONSE ANALYSIS

I1.1 INTRODUCTION

In this Chapter, the development of the equations of
motion and their solution technique are presented. A response
guantity of interest 1is devided into the dynamic and pseude-
static part. The dynamic part is associated.with the inertial
effects induced by the support acceleration. The pseudo-static
part is due to the relative displacement between the supports.
The methods to obtain the contributions cf these two types of
the responses to the design response as well as the effect of
their correlation are developed. Various types of the support

(or floor) inputs, required in these methods, are identified.

IT.2 EQUATIONS OF MOTION

The equations of motion of a secondary system attached at
several points of a primary structure, considered as a free-

free system, can be written as

(2.1)

+
+
1

where the subscript a is associated with the degrees-of-freedom
of the support points and s with the degrees-ocf-freedom of the
active or unattached mass points of the secondary system. The

displacement vectors US and Ua' respectively, denote the



absolute displacements of the unattached points and the support
points of the gtructure, measured in the Newtonian frame of
reference. The vector US is o¢f dimension n, the degrees-of-
freedom of the unattached masses, and Ua is of dimension m, the
degrees-of-freedom of the support points or the masses on the
primary structure. The dot over a time dependent wvector
quantity denotes i1ts time derivative. Mss, CSS and KSS,
respectively, are the mass, damping, and stiffness matrices
associated with the active degree of freedom, and thus are of
dimension n x n; similarly Maa' Caa and Kaa which are of
dimension m x m, are the respective matrices associated with
the support points. The other matrices in Eg.(2.1) introduce
the existing coupling effects between the support and active
degree of freedom through the inertial, damping and elastic
forces.

By taking the right hand side of Eq.(2.1) to be zero, we
imply that the support points are connected to the rest of the
primary structure by springs of zero stiffness. Thus, no force
is transmitted between the rest of the primary structure and
the support points to which the secondary system is attached.
However, as we will see later the support point motion Ua
constitute the input to the rest of the secondary system and to
define these motions we will consider the entire primary
structure. Thus, the motion is assumed to propagate only in one
direction, i.e. from the primary to the secondary structure and

not backwards. Such systems are also called as the systems in

cascade.



In this formulation, the total response is partitioned
into the pseudo-static and dynamic components. Earlier, a
~similar partitioning of the response was alsc utilized by Lee
and Penzien [12].‘ The pseudo~static component is due to the
relative displacement between the suppoerts, without any dynamic
influence. The dynamic component comes from the inertial forces
induced in the unattached masses due to the support inputs.
Obviously, the dynamic response of the attached degrees of

freedom 1s zero. Thus, we write

[}
<
=
—
[ d
S
+
Lo
o
ct
e

ug(t) (2.2a)

P
u,(e) = uB(e) (2.2b)

where Ui and Uz, respectively, are the dynamic and the
pseudo-static components of the active degree of freedom and Ua
are the support motion time histories.

Substituting Eq.(2.2) into (2.1) , the first set of
equations associated with the dynamic component of response can
be written as

ud 4+ P od 4+ P d -
(Mg IV + UG + [e  Je0G + B9 + [k  Jtul + uB) =
- Mg U,y - L6, 20,1 - (K JQu,) (2.3)

Since the pseudo-static response does not include any dynamic
effect , it can be obtained by making the forces associated

with the mass and damping matrix as zero in Eg.(2.1). That is,

S5 sa S - (2.4)



Thus, the pseudo-static response of the n degrees-of-freedom

can be written in terms of the prescribed support inputs as
p =
Ko JUEY + [K MU} = {0} (2.5)
or
Py = (- -1
gt = (IR I IK DY) (2.6)

Substituting Eqg.(2.6) intec Eg.(2.3) and rearranging terms, we

obtain

Mg 10y + [0, IUS) + [k Iudy = (Im Ik I7MK,D - Dv, 200 )

+ ([0 K ITHKG,T - Lo, 10 (2.7)

If the complete damping matrix is -assumed proportiocnal to

the complete stiffness matrix, i.e.

¢ c K K | (2.8)

then the terms dependent on ﬁa in Eg.(2.7) vanish. In a more
general case these terms will not be zero. Here we assume such
proportionality to simplify the analysis, although mere general
case can also be treated analytically. Furthermore, since these
terms are assoclated with damping +terms, their magnitude
compared to the other terms will be relatively small [5], and
thus they can be neglected. With these assumptions, the
equations of motions associated with the dynamic response can,

then, be expresed as,
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Mg JUSY + Lo 2008 + [k 0D = [r1eU ) (2.9)

- -1 . o .
where [r]—([MSS][KSS] [Ksa]”[Msa]) is dynamic influence matrix
in which each column represents the distribution of force in
the unattached degrees-cof-freedom due to the acceleration of

each support.
I1.3 DESIGN RESPONSE

A response gquantity linearly related to the displacement
response, c¢an also be expresed as a sum of the dynamic and

pseudo-static component as
- gd P
S(t) = s°(t) + SF(t) (2.10)

where Sd(t) corresponds to the diplacement vector Ui(t) and
Sp(t) corresponds to the vector Ug(t).

We are interested in calculating the maximum response
induced by the ground motions which are likely to occur at a
site. We assume these site motions to be the sample functions
of a random process. The maximum response or the design
response for such randem motions can be obtained in terms of

the root mean sguare response and its peak factor, as
Rd = CdoS (2.11)

where Rd= maximum response, Cd: the. peak factor and 0 root
mean square value of response S(t).

To obtain the root mean square response we first develop

the ccevariance function of the response. From Eq.(2.10) this
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c¢an be obtained as,

Rg(ty,tp) = E[SH(t})5%(t,)T + ELSP(t;)SP(t,)]

+ E[S9(t)8P(t,)] + ELSP(t;)5%(t,) ] (2.12)

where Rs(tl,tz): covariance function of the response, The
first two terms represent the contribution of the dynamic and
pseudo-~static components, respectively, to the total response,
while the last two terms take into account the c¢ross
cérrelation between them. The wvariance of the response is
obtained by setting t1=t2 in Eg.(2.12), and the design response

can be written as follows’

2 _ 2,2 2
Ry = Cq(0gq+9ps2Ca,) (2.13)

where 954" variance due to the dynamic component, op = yvariance
due to the pseudoc-static component and and Cdp: the cross-
covariance between the dynamic and pseudo-static components.
The three terms in Eg.(2.13) are referred to as the dynamic,
pseudo-static and cross response components.

For design purposes, the earthguake motions are wusually
precribed in terms of the ground response spectra for the
primary structures and in terms of the floor response spectra
for the secondary system. It is, thus, desired to evaluate Rd
in terms of such response spectra. In the follcocwing, therefore,
the response spectrum methods employing the ground and floor

response spectra as inputs, are developed for the calculation

of the contributions of the dynamic, pesudo-static and cross
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response compcenents.

II.4 DYNAMIC RESPONSE CONTRIBUTICN

In Eg.(2.13) the contribution of the dynamic response to

the total response, here denoted by Rdd’ is
2 .2 2 2.14
Rdd = Cd 9aq (2-1%)

Tc obtain 934’ the solution of Eqg.{(2.9) is required.
Employing the modal analysis approach and standard
manipulations invelving orthogonal properties of the normal

modes, a decoupled modal eguation (for a classically damped

system) can be written as

q(t) + 28 50,4;(t) + ulg(t) = (P33 (U} (2.15)
where qj= jth principal coordinates; wj= jth modal freqguency,
Bj: the modal damping ratio, and {Yj}= jth medal shape vector.
{Pj}= the influence vector= §Yj}'[r] ; each element of this

vector represents the contribution of a support motion to the
response in the jth mode. A prime (') over a vector gquantity
represents its transpose. Here we have assumed that the
secondary system is classically damped. However, analysis can
also be made for nonclassically damped system, as indicated by
Singh [23].

For given support motion time histories, Eg.(2.15) can be
solved to define qj. In terms of qj any component of the
displacement vector or the response gquantity of interest which

1s linearly related to the displacement can be obtained by the
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expansion theorem as

s9e) = 1 eygy(t) (2.186)
j=1

where pj is the so called modal response in the jth mode which
can be evaluated from the displacement mode shape by a simple
linear transformation.

For randem site motions, the motions of the support
points of the secondary system will also be random processes.
To simplify the analysis we assume that the ground motion, the
motions of the support points defined by Ua as well as the
induced dynamic response of the secondary systems are
stationary random processes. Although, these assumption are not
strictly wvalid for earthguake type o0f ground motions and
responses, they have been found to be acceptable in the
calculation o¢f primary system response and in generation of
floor response spectra, reguired as inputs for the secondary
system response [17]. With these assumptions, the stationary
value of the wvariance of the dynamic response ,can be shown to

be as follows (See Appendix [):

2 n n m m w

“a * L J._E__l ?i; kzl zél PikPan /| Cake(0)HfHaw  (2.17)
in which Pik is the kth component of the modal force influence
vector Pi; Hj is the freguency response function which is

defined as

- 2 _ 2 : _ 2.18
Hj 1/(wj wc + 21Bjme) ( )

The asterisk over the frequency response function denotes its
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complex conjugate and i is the imaginary number=/-1.

@akz(w) is the cross spectral density function of the absolute
accelerations at supports k and ¢. It can be obtained by a
dynamic analysis of the supporting primary structure as shown
in Chapter III.

In Eq.(2.17), the first double summation represents the
contribution of the modes of the secondary system to the
dynamic response. The second double summation ¢gives the auto
and cross correlation effects of the excitation at various
support points. Often the c¢ross correlation effects of the
support motions are neglected. However, this could lead to
erroneous results.

Substituting Eg.(2.17) into Eg.(2.14), the contribution

of the dynamic response to the total response is cbtained as

follows,
RS ngg ?%PPI (2.19)
= [Py s P s ‘2 .
dd d i=1 j=1 17J k21 o021 ik Jn‘akm;
where the fregquency integral, Iakzij' is defined as,
lakeij = f_m °ak£(w)H’{dem (2.20)

If the auto and cross spectral density functions of the
support accelerations are known, Rdd can be obtained from
Eg.(2.19). However, our aim is to develop a response spectrum
approach wherein the support inputs are defined in terms of
floor spectra, and not the spectral density functions, for the

calculation of design response.

In the current practice, the seismic floor input is most
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commonly defined in terms of pseudo-acceleration floor spectra.
This input is, however, adeguate only for the single-degree-of-
freedom secondary systems. For the multi-support secondary
systems, it becomes necessary to define floor inputs in other
forms of fleor spectra to obtain the frequency integral in
Eg.(2.20). Here, these floor spectra are classified as the auto
and cross floor spectra, and are presented in the followings

sections.
IT.4.1 AUTO-FLOOR RESPONSE SPECTRA

For the evaluation of the terms with k=¢ in Egs.(2.19)
and (2.20), we need the (auto) spectral density function for
the motion of the Kth support. That is, in such a case we are
concerned with the motion of a single support. However, we need
tc obtain such terms for i=j and i#j separately. Evaluation of
the frequency integral in Eg.(2.20) for these two cases is now

described.
CASE 1: k=f and i=j

The frequency integral Eg.(2.20) for this case, defined

as

= 2
Iakkjj = j_w k(@) |HJ.] dw (2.21)

represents the mean square displacement response of an
oscillator with parameters wj (frequency) and Bj (damping
ratio) subjected to the base acceleration of kth floor. This

can be defined in terms of the conventionally used pseudo-
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acceleration or the relative displacement floor response
spectra and the peak factor of the oscillator response. Here,

we will call these floor spectra as auto pseudo-acceleration

and auto displacement floor spectra and denote them by Rpk(wj)
and de(wj), respectively. In terms of the frequency integral
they are defined as

2 _ 12 4, _ 2 2

In Eq.(2.22) and hereafter, the suffix p is associated with
term pseudo, d with displacement, k with the floor number and j
with the oscillator of parameters wj and Bj. cdj is the peak
factor associated with the displacement response.

In term of the displacement spectrum, the frequency

integral in Eg.(2.21) is obtained as,

|2 2
Takkgg = Raley)/Cq; (2.23)

‘The evaluation of the terms with k=t and i=j ,thus,
reqguires only the auto displacement {(cor pseudc-acceleration)
floor spectra of the support point accelerations. The
procedures to obtain these spectra, directly from ground
response spectra, have been developed in Reference
[9,17,20,22]. The expressions for these spectra are also given

in Chapter III.
CASE 2: k=% and ifj

For the case of i#j but with k=% the fregquency integral

of Eq.(2.20) can be written as,
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w

akkij = [ 0, (w) HEH o (2.24)

y--

I

.
The complex part of HiHj will finally cancel out when summed

up in Eg.(2.19) or when integrated over the freguency range due
to it being an odd function of w. Thus, in Eq.(2.24) we will

EY
consider only the real part of HiHj which can be written as,

Real (HHH;) = N(w) ]H1|2|HJ.]2 | (2.25)

where N(w) is defined as

L4 2 2 2
N(w) = w' + w (4BiB.win~mi

2
J J

) + (w.m.)

95 (2.26)

The right hand side of Eg.{(2.25) can be resolved into partial

fractions as
N(w) ]H1.|2|HJ.|2 = (Au?B)|H, % 4 (C+wZD)IHj|2 (2.27)

where the coefficients of the partial fraction A, B, C and D
are obtained from the solution of the fecllowing simultaneous

eqguations
[Yij]{vl} = (W)} (2.28)

where the matrix {Yij}, and vectors V1 and W1 are defined as,

g 4
m‘j 0 Lu,.I 0
ng(ZBg-l) w4 Zm?(ZBE 1) w4
(Y51 = ’ 20 2 b 1 (2.29)
1 2u2(282-1) 1 2w§(2sf 1)
|0 ] 0 1
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{vl}‘: {A’ B’ C, D} (230&)

, 2 2 2
{wl} = {(w_iwj) s (4818jm‘]mj - Wy - wj), 1, 0} (2.3Cb)

Substituting Eg.(2.27) into Eg.(2.24), and noting that

the imaginary part is equal to zero, we obtain,

-]

2
kg =T s ARB) 12 (cuo) i B (2.31)

The terms associated with A, and C in Eq.(2.31) can be obtalined
in terms o¢f the auto displacement (or pseudo-acceleration)
floor response spectra, as explained above. However, the terms
assoclated with B and D are obtained in terms of different
spectra called the auto velocity floor response spectra. The
velocity response spectrum value for floor k and the oscillator

parameters of wj and Bj’ denoted by Rvk(wj), is defined as,

R+

2 . nl 21 12
Rvk(wj) = Cvj f-w ¢akk(m)w IHJ' dw (2.32)

Cvj is the peak factor of the relative velocity response of the

oscillatoer.

In terms of these floor response spectra, the frequency

integral cf Eg.(2.24) or Eg.(4.31) can now be written as

Lakkiy = A Tkes * B T * I + 0 oy (2.33)

where Ilki and IZki are defined as follows
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2 2
Lowi = Rylug)/Cyy (2.34b)

From Egs.(2.23) and (2.34a), it is noted that

I , = We also note that for the calculation of terms

1ki " lakkii
with k=¢ for any combination of the indices i and . j, the
support peoint motions need to be defined in terms of the auto

displacement (or pseudo-acceleration) and (relative) velocity

floor response spectra.
11.4.2 CROSS FLOOR SPECTRA

In a most general case with k#t and i#j, the evaluation
of the freguency integral in Eq.{(2.20) involves the c¢ross
spectral density function, §ak2(w)' This functions defines the
correlation between the (absclute) accelerations of two
differents supports. It consists of the real and imaginary

parts and can be written as

- &R .
(bakg(w) = d’akz(“) + 1 ¢;k£(w) (2.35)

where the superscripts R and I denote the real and imaginary
parts, respectively. It is noted that the real and imaginary
components , respectively, are even and odd functions of w. The

expressions for these components of éa are developed in

1 (@)
terms of the ground motion spectral density function and the
properties of the primary structure in Chapter III.

To evaluate Eq.(2.20) for the most deneral case, we

*
rewrite the term HiHj in the integrand as,
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HEHS = (N(6) + TwM(u)} (K, |2|H |2 (2.36)

where N(w) is defined by Eqg.(2.26). M(w) is an even function

of w, and is defined as

M) = 2Guge (808 0;) + o7

957854 B-w-—Biwi)} (2.37)

JJ
Substituting Egs.(2.35) and (2.36) into Eg.(2.20), we obtain

Iak213 N f ({e akg(w)N(w - akg(w) (w)}

sifel, (w) N(w) + wel, (w) M(w)}|Hi|2|HJ.‘2dw (2.38)

ake akg

It is noted that the imaginary part in Eg.(2.38) is zero as its
integrand is an odd function of w. As 1in Eqg.(2.27), we

decompose the term M(w)|Hi|2|H.|2

; | of Eg.(2.37) into its

partial fraction as follows
m)|H1|2|HJ.|2 = (E+w2F)[H].|2+(G+¢u2H)|Hj|2 (2.39)

The coefficients of the partial fraction 1in Eg.(2.39) are
ocbtained from the solution o¢f the following simultaneous

equations
[Y;530V50 = () (2.40)

where the matrix [Yij] is defined in Eqg.(2.29) and the vectors

VZ and W2 are given by
(Vo}'= {E, F, G, H} (2.41a)

{wz}' {2w; W (B W -8 sw; )s (ijj-siwi)’ 0, 0} ‘ (2.41b)

J

Substituting Egs.(2.27) and (2.39) into Eqg.(2.38), we obtain
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-] [ ]

PN, 2R

akt akg

(w)]Hilzdw +B [ w (u)[Hi|2dw

R 2 > R
+ 0 f_m akg (@) [Hj["dw + D f_m wle (w)lHjlzdw}

ake

o

P 2
- {E I*m Wb, (W) [Hy|"dw + F f 3 wol (wﬂH1|2dm

aKsg

-

I

2 "3
+ G j-m w@akz(m)lHJl ds + H e ¢ (m)[HJIZdw} (2.42)

ake

To evaluate the fregquency integrals in Eqg.(2.42) in terms

of floor spectra, we introduce the following

spectral guantities:

Coincident displacement spectra :

2 G2 ® R
¢ =Py S lzdw

dks (93] = Py IYACULE

Coincident velocity spectra

2 2 2 R 2
vki(wi) =P [ wfe (w)|H1| dw

¢ vi ake

-

Quadrature displacement spectra :
0

2 2
Qo (04) = gy [ w ol (w)]H, | P

-0

Quadrature velocity spectra

2 ‘
Qiglog) = €5 1 wlol Lt in, [Pau

floor response

(2.43)

(2.44)

(2.45)

(2.46)

where Pdi’P . Qdi and Qvi are the peak factors associated with

vi’

various response quantities of concern in Egs.(2.43) through

(2.46).

The fleoor spectral inputs are customarily defined in
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terms of the pseudo-acceleration rather than the displacement
response, specially for auto floor spectra. Here thus, .we
define coincident and quadrature pseudo-acceleration spectra as

follows
C o (0.) = wiC, | )
pka'?i ivdke ¥ (2.47a)
Q. ,(w,) = wZQ (w,)
pka ‘¥ i<dka VY5 (2.47b)

The procedure to obtain these coincident and quadrature
floor response spectral gquantities directly in terms of ground
response spectra and the primary system properties are given in
Chapter III.

It is seen that for k=t, the guadrature spectra,
Egs.(2.45) and (2.46), are zero, whereas the coincident
displacement and velocity spectra as defined by Egs.(2.43) and
(2.44), revert back to the previously mentioned auto
displacement and velocity floor response spectra.

The influence of the correlation between the support
accelerations is reflected through the imaginary component of
the cross spectral density function. If the signals are
strongly correlated, the gquadrature terms become less important
in comparison with the coincident terms. In fact, for two
perfectly correlated floor motions the contribution of the
quadrature terms is zero.

Substitution of Egs.(2.43) through (2.46) into Eg.(2.42),
the fregquency integrals can now pe written in terms of these

spectral quantities as
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Likgij = P Uy ¥ 8 g 0 Iggy 7D Igypy!
€ Igegq ¥ F Tggpq * 8 Lgypy ¥ H Tgegs) (2.48)
where I3k2i’ I4k£i’ ISkmi and I6k2i are defined in terms of the

coincident and guadrature spectra as follows

I3kei © Cikx(‘”i)/')gi (2.49a)
Laksi = Cikz(wi)/P\z/j (2.49b)
I5k£1 = stﬂ(wi)/021 (2.49¢)
Lekgi = stz(mi)/Qii (2.49d)

Evaluation of terms with i=j, but with k#¢, is a special
case of Eg.(2.20). To define this, we substitute for the cross
spectral density function in term of its real and imaginary

parts into Eq.(2.20) to obtain

o

R

- 1
Lakgij f_m (o glw) + 1 ¢ak2(w)}lH1|2dm (2.50)

Since the imaginary part of the spectral density function is an

odd function of w, its integral is zero. Thus,

= 2
Lakati f_m JONCI LA R (2.51)

which from Eqg.(2.43) can be obtained in terms of the coincident

displacement spectrum as,

. 2
Lakaii = Cake (@) 7Py (2.52)

Thus, although two different floor motion are involved in
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the evaluation of this term, only one type of the cross floor
spectra are reguired.

This presentation clearly identifies the types of floor
spectra we need for the calculation o¢f response of the
secondary system with multiple supports. The methods for the

generation of these spectra are described in Chapter III.

IT7.5 PSEUDO-STATIC RESPONSE CONTRIBUTION

In Eq.(2.13), the pseudo-static part of the total design

response is written as

R%p = C§ 9p (2.53)

Iin Eq.(2.53), Gpp is the root mean square value of the
response due to the relative displacement between supports. The
displacement response due to the relative support displacement

is defined by Eg.(2.6), which is rewritten as,

(Wl = [AJ(U (2.54)
where [A]m(-[Kss]-l[Ksa]) is called the pseudo-static influence
matrix. A generic term Ars of this matrix represents the

displacement o©of the active degree of freedom r due to a unit
displacement of support s. Therefore, each column of matrix
[A] defines the constrained displacement configuration of the
secondary system associated to each support motion.

Assuming the linear behavior of the structure,
displacement component, or any other response linearly related

to the displacement, can be obtained as a linear sum of the
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contribution of each support displacement. That is,

SP(t) =
k

Ht~1 5

| el t) (2.55)

where Tk is the constrained response associated with support k,

or the response due to a unit displacement of support k; and

Uak(t) is the absolute displacement time history of support k.
The covariance function of the response in Eqg.(2.55) can

now be written as

imn fib

Ropltisty) = kgl lgl My BLUL (890U, (8,) ] (2.56)

Here alsc, we assume that the support displacements and the
induced response are stationary random processes. With this,
the covariance functions of the support displacements in
‘BEg.(2.56) can be expresed in terms of their auto and cross
spectral density functions.

By substituting t1=t2, the variance of the pseudo~static

response compohent can be shown to be as

2 m nm w

e kgl 221 W S gy le)de (2.57)
where édkz(w) is the cross spectral dénsity function o©f the
displacement at supports k and 2. Substituting Eg.(2.57) into
Eg.(2.53), the contribution of the pseudo-static response to
the design response can be written as

s M m ol

=Cq 1 Z N, I-, Dy (W) (2.58)
in terms of the spectral density function of the absclute

displacement of the supports.
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Separating the terms with k=% and k#ﬁ, we obtain

2 el of) DL,
R® = C5 { n ¢, (w)dw + n.n ¢ (w)dw} (2.59)
PP d kzl k / _, dkk k2l g=1 kg 4 dka

k2

The first frequency integral in this equation is the mean

square value of the absolute displacement of support k. It can

be cbtained in terms of the maximum support displacement aak’

as

fod |

z k\2
o, (w)de = —E—)
I 2k (cuk

(2.60)
where Cuk= the peak factor of +the absclute displacement
response of floor k. The integral in the double summation term

can be expressed in terms of the correlation coefficient, §

RL!
of the absolute displacement response, defined as
Real {f-mwdkz(w)du}
sz = — — e (2.61)
U Ogypledde [ o4y, (w)ded

In terms of these gquantities, the pseudo-static response

contribution can be expressed as

2 - 2 I 1 : m
Rpp = Cy U /€0 (8 1 tn Uy /Chi (2.62)

where [8] is the matrix of correlation coefficients of the
absolute displacement, with diagonal terms being equal to 1.

It will be shown that the maximum absclute displacement
ﬁak and correlation coefficient akg' regquired in Eg.(2.62) are

related to the aute and c¢ross coincident floor spectra.

Therefore the approach to obtain these guantities, as described
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in the next Chapter , can be directly used for the evaluation

of U and 8
a

k ke’

In the preceding formulation we expressed the pseudo-
static response in terms of the absolute displacement of the
support or floors. However, the pseudo-static response can also
be obtained in terms of the relative displacement of the
supports. For this, the absolute displacement in Eg.(2.55) can
be written as a sum of the ground displacement and displacement
of the supports with respect to ground as,

m

SPUt) = T oV (t) + rtg(8)] (2.63)

where Vakz relative displacement of the support k and r. =1 if

4
the displacement of support k is in the direction of the ground
displacement otherwise it is zero.

The second part of Eg.(2.63) 1s the response due to the
rigid body displacement of Xg, of the supports of the secondary
system applied 1n the direction of ground motion. For force
guantities, this term should be equal to zero. Thus if Sp(t)

represents the force response, and not the displacement

response, of the secondary system then
o m
SP(t) = ; N Vo (1) (2.64)
k=1
where now vak(t) represents the relative displacement of
support k with respect to ground.
The mean sguare response can now be written in terms of

the spectral density functions of the relative displacements

as,
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2 m m =
Sop = LT omn, [e, (w)a (2.65)

PP kSl g5y -
where évkz(w): cross spectral density function of the relative
displacements of supports k and ¢.

By substituting Eg.(2.65) inte Eg.(2.53), we obtain the
design response in terms of thHe spectral density function
@ng(w). To express this ;n terms of the relative floor
displacement response, we separate the terms with k=%, and k#t

as follows

2 ) m 2 oo : m m Rt
Rpp = Cd{kzl n [-w O (w)du + kzl zzl M, J-m O g (@) dw) (2.66)
k#2

in which the first frequency integral represents the mean
sqgquare wvalue of the displacement of floor k. This can be
obtained in terms of the maximum relative floor displacement
and its peak factor as,

®

[ oy (w)do = (EEE)Z (2.67)
- vk

<

where vak is the maximum relative floor displacement and cvk is

its peak factor obtained Dby a straight forward response
spectrum analysis of the primary structure. The expression to
obtain this is given in Chapter III.

The term related to the cross spectral density term in
Eg.(2.66) can be defined in terms of the correlation

coefficient between the support displacements, expressed as

o«

Real {f-m ¢vk2(w)dw}

ki = " (2.68)

U oylodde [ o (w)auy!/?
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The method to obtain this coefficient in terms of the ground
response spectra and properties of the primary structure 1is
also given in Chapter III.

In terms of the maximum relative floor displacement and
the correlation coefficient, the pseudo-static response

contribution can now be expressed as,

2 2 ‘
Rop = Ca 1ngYe/Cyy! [6°1n Vo 7€, (2.69)

where [6'] is the matrix of correlation coefficients with its
diagonal terms being equal to 1.

It is noted that the single summation terms in Egs.(2.59)
and (2.66) represent the response due to each éupport
displacement added up as the sguare-root-of-~the-sum-of~the-
sguares, whereas the double summation  terms give the.
contribution of the «c¢ross correlation between the support

displacements.
II.6 CROSS RESPONSE CONTRIBUTION
This contribution is given by the last term of Eg.(2.13),
R, = 2CLC (2.70)

where Cdp is the real part of the cross covariance between the
dynamic and pseudo-static parts. To obtain this cross
covariance, Egs.(2.16) and (2.55) or (2.64) are used. This
covariance can be expressed in terms of the cross spectral

density function, w),of the absolute acceleration of

éadkz(



support k and absolute displacement of support ¢. At t1=t2, the

third term of Eg.(2.12) can be shown (See Appendix I) to be . as

follows,

o

é n m m
Zl Pik [ 0y (w)H¥do (2.71)

Ze 1 T e
dp 42y g5y TRy

Similarly , the fourth term in Eq.(2.12) can be shown to be

n

m m
2
o = 7 T e, TP, [ o, (0)H.dw
pd T g2y 5 TR Gy Tk Tdank T . (2.72)

-]

The integrands of Egs.(2.71) and (2.72) are complex conjugate
of each other. Also since the imaginary part of the integrand
is an odd function of w, its integral is zero. Thus, the third
term in the parenthesis of Eg.(2.13) which is sum of Egs.(2.71)
and (2.72) can be written as,
? 2 n m m ®

2gp = 9gp * %pq * 121 121 Pty L) ik T e @I (2.73)

Substituting Eg.(2.73) into Eg.(2.70), the cross term
contribution is obtained as,

m m «

P kél 2P f_m ¢adk£(w)ﬁqdw (2.74)

Réd = Cg .E

i=1l 2=1
Here Eq.(2.74) 1is expressed in terms of the c¢ross spectral
density function of the absolute displacement and absolute
acceleration of the supports. One could alsc use the cross
spectral density function between the absolute acceleration and
relative displacement of the supports. The relative
displacement formulation is, however, more involved as it

requires additicnal types of cross floor spectra. The absolute

displacement formulation has been found to be more convenient
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and will be persued further here.
From the stationary random vibration analysis, it is
known that the cross spectral density function between absolute

acceleration and absolute displacement, is related to

éadkﬁ(w)’
the power spectral density of the absolute acceleration,

§ak£(w), by the following expression

Yaka(®) = ""Z“’adkm(‘”) (2.75)

Thus , a generic freguency integral in Eqg.(2.74), denoted

as

o

Lokt =1 *adks

(w)H¥dw (2.76)

can be written in terms of the power spectral density function

of the absclute acceleration as

o 1
Ladks1 = f_m ks () (:;71 Hidw | (2.77)
The right hand side of Eqg.(2.77) is, however, the same as the

integral in Eqgq.(2.20) when wj is taken equal to zerc. That is,

Ladket = (Iakzij)wj=0 (2.78)

Thus, this fregquency integral can be obtained by simply
substituting wj=0 in Eg.(2.42). For this case it can be shown
that the coefficients C and G of the partial fraction in

Eq.(2.42) are identically zero. Thus, from Eq.(2.42),
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%0

- R 2 T 2R 2
Iiakey = (8 _i Pake (@) IHg 1 %de + B 1 w%e,  (w)|H | du
T 2.R 1 . 2
+ D _i w éakg(w)(zzﬂ du} -~ {E _f wé_ p(uw)[H,|7du

o0

1 2 3,1 1
oy lw)IH [Tdw + H [ @akg(w)czg) de] (2.79)

™

+ F f w3
in which the coefficients A, B, D, etc can be obtained from the
solution of Egs.(2.28) and (2.40) for wj=0, or they can be

explicitly defined as follows

- 2
N (455-1) E = 48, /v, (28%-1)
5 - 3
B = 12 | F o= 28, /u] (2.80)
2 H= -28, /u>.
D = —l/wi i7%

In Eq.(2.79), the frequency integrals associated with
coefficients A, B, E and F can be defined in terms of cross
floor spectra and the assoclated peak factors, as in Egs.(2.43)
through (2.46). The integrals associated with coefficients D
and H are, however, additional floor response quantities which
are required to be defined to obtain these terms. The physical
characteristics of these terms are examined in the following.

It is noted that these terms are associated with absolute
floor velocities. They can be defined in terms of cross floor
spectral quantities, For example, the term associated with D
is,

Lo =0

Z R 1 _ pe _ 2
W q'akz(“’) (;'[];] dw = CVkE(w‘i—O)/PV’I (2.81)
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For k=f, this term is the mean sguare value of the absolute
floor velocity. For k#t, this term represents the correlation
between the coincident components of the velocities of the two
floors, and it is the same as the coincident relative velocity
spectrum, defined by Eg.(2.44), for wi=0. In fact, this
frequency integral for all values of k and ¢ can be defined in
terms of ground spectra and primary structure properties by
using the coincident velocity spectrum genératioh algorithm.
This algorithm is developed in the next chapter.

The fregquency integral assocliated with H in Eqg.{(2.79) can
also be obtained similarly. For k=¢t, this term is zero. For
k#2, this represents the correlation between the guadrature
components of the absolute velocities of the two floors. It is
same as the guadrature velocity spectrum at wi=0 and is defined
by Eq.(2.46). That 1is

Los, = f_m o5y (0) ('1““5) = Qg (037002, (2.82)
This can be easily obtained in terms of ground response spectra
by using the quadrature velocity spectrum generation algorithm.
This algorithm is also developed in the next Chapter.

We can now rewrite Eg.(2.79) in terms of wvarious floor
response spectra quantities, defined by Egs.(2.4%9a) through

(2.49d) as follows

Ligkat = P Takei * B Takei * 0 laky

- E Tgps  F lokes ~ M loke (2.83)
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Again, 1t 1is noted that Eg.(2.83) 1s the same as

' Eq.(2.48) with u, =0.
I1.7 PEAK FACTOR AND RESPONSE

For the calculation of R,., R and R terms as defined
dd jo)e] dp
in the previcus section, we require the peak factor of the

response C, as well as the peak factors associated with several

d
other floor spectral response guantities. Thercalculation of
these peak factors accurately 1s rather a sensitive task. Such
calculations require that ground motion spectral density
function be defined explicitly. This information will usually
not be available in practice. An approximate evaluation of
these factors can, however, be made for a band-limited white
noise spectral density function, and the use of these peak
factors may provide a better estimate of design response. 3Such
an approach was used for generation of floor spectra[l7].
Implementation of this approach to the current problem is under
further study. However, in the mean time the analysis can be
simplified, without zeopardizing the accuracy of the results as
observed in Reference{l7], by assuming that all the peak
factors are the same. If this assumption is made, then the
response becomes independent of the peak factors. That is any
value can be assumed for the peak factors for the calculation
of response. In the numerical results presented here, all the

peak factors were assumed eqgual to 1.
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I1.8 SUMMARY

The response eXpressions developed in the

sections for the dynamic, pseudo-static and c¢ross
responses have been utilized to obtain numerical results.

convenience these expressions are summarized in the following

DYNAMIC RESPONSE TERMS:

n n

previous

term

For

2 2
RS = C
dd = “q zl j21 kil 12 % 5 ek (2.84)
where I .., for warious combination of the suffixes, 1is
akeij
defined as
i) k=% and i=j.
I = R2 (w )/C 2.85
akkii = Ndk (2.85)
1ii) k=t and i#j.
Takktg = A Tid * 8 Topq © 0l 0 Ty (2.86)
iii) k#e and i=j.
Lcait = Cokg @) /P (2.87)
iv) kft and i#j.
Takaig = B lgepi v B Dgi ¥ Clgy 5+ 0 Iygpgd
B Igegg ¥ F lgpgy + 8 Igps + 1 Igegy! (2.88)

where A, B, etc are defined by Egs.(2.28) and (2.40).
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The method to obtain various autec and cross response

spectra quantities are developed in the next Chapter.

PSEUDO-STATIC RESPONSE TERM:

This term can be obtained easily using the relative
displacement or absolute acceleration formulation. The final

expression obtained in the two formulation are as follows

Relative Displacement Formulation

2
PP

Y4
= Cd

- ' —
R tn V,/C, .} [6']{nkvak/cvk} (2.89)
Absoclute Acceleration Formulation

2 .2 .
Rop = Ca g0y /Cygd 18 1n, Uy /) (2.90)

CROSS RESPONSE TERMS:

2 n mom
R
; L QZ § "o 1k adkge i (2.91)
where I ., for wvarious combinations of X and ¢, is defined
adkei _
as
i) k=1.
Tadkki = A D3gei * B Igepq + 0 Lyy (2.92)
ii) k#e.
Tadkai = A Takgi * B Igueq + 0 gy
“ B lgepq = F Toar - f gk (2.93)
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The coefficients A, B, etc in these expressions are again
obtained <from Eg.(2.28) and (2.40) but with wj=0. However,

their explicit values are also given by Eg.(2.80)



CHAPTER TII

SEISMIC INPUTS FOR MULTIPLE SUPPORT SECONDARY SYSTEMS

III.1 INTRODUCTION

The previous Chapter has identified several types of
seismic inputs which must be prescribed for a proper seismic
evaluation of multiple support secondary systems. To define
these inputs, fhe primary supporting structufe is analyzed for
the base seisnic inpuﬁ. In this Chapter, the methods are
developed to obtain such inputs in terms of the properties of
the primary structure and the prescribed ground response
spectra. |

To define the frequency characteristics of the support or
the floor 1inputs, auto displacement (or pseudo-acceleration)
and relative velocity spectra for the floor motion are used.
The methods to obtain these flcocor spectra have been developed
earlier [17,22]. However, for the completeness of the treatment
and also because of the associlation of these inputs with other
inputs, the formulation wused to developr these inputs is
described. To characterize the correlation between various
floor inputs, the concept of c¢ross floor spectra for
displacement and velocity response of an oscillator 1s used.
The methods to obtain these cross spectra directly from ground
spectra are developed. These floor spectral inputs are
primarily used to calculate the dynamic component of the total
response. For the calculation of the pseudo-static component,

the floor or support displacements and their correlation are
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required. Also required are the floor velocities and their
correlations for the calculaticon of the c¢ross response terms.
The methods to obtain these floor inputs directly from
prescribed ground input and primary structure properties are

developed.
ITI.2 FLOOR SPECTRAL INPUTS FOR DYNAMIC RESPONSE

Tc define these inputs, we are required to solve the
equations of motion of the supporting primary structure,

subjected to a base excitation, wviz:

M V) + [ClEVy + [KIqVy = -[M]{l}ig(t) (3.1)

in which [M],'[C] and [K] are the mass, damping and stiffness
matrices of the structure, respectively; (V}]= the relative
displacement vector; {1l}= the excitation influence vector; and
Xg(t)z the ground acceleration input. |

We are interested in expressing the response guantities
of this structure in terms of the ground response spectra.
Thus, we must use the modal analysis approach. If the system is
classically (proportionally) damped, the normal mode approach
can be used. However, if the system is nonclassically damped,
the complex mode approach is required. Here we will develop
the soclution only for the proportionally damped system. The
formulation involving the nonclassically damped system is also
possible (see Reference 17) but will not be given here.

For the <classically damped system, Eqg.(3.1) can be

decoupled into the eguations of the principal coordinates as
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an - 2 Y
Yr(t) + 28 w ¥ (t) + err(t) = -yrx

ré e (t) (3.2)

g
where Yr= the rth principal coordinate or modal displacement;
W and Br are the natural frequency and damping ratio of the

rth mode, and Kr= the mode participation factor defined as

Yo = 2 IMICLY /o 3 MG ) (3.3)

In Eg.(3.3), {wr}= the rth displacement mode shape of the

system. The absolute acceleration of the floor k can be
obtained as a sum of the ground acceleration and the relative

acceleration of the floor as

Uk(t) = 1kig(t) + i}k(t) (3.4)

where 1k is the kth element of the vector {1} corresponding to

the displacement of the floor k.
In Eg.{(3.4), the relative floor acceleration can be

expressed 1in terms of the generalized coordinates Yr by

expansion theorem. Thus,
“ - N .
U (t) = lng(t) + rzl b (K)Y..() (3.5)

Eq.(3.5) can bke directly used to define the auto and
cross spectral density function for the floor acceleration.
This will lead to the mode acceleration formulation [17].‘This
formulation has some specific computational advantage. However,
here only the mode displacement formulation will be given.

In the. mode displacement formulation, Eg.(3.5) can be

further manipulated to give the following [20]
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- N
B (6) == T o0 (280, 7 (8) + WY, (1) (3.6)

Egq.(3.6) will be used to define the auto and cross spectral
density functions of the floor accelerations which are required

to define various floor spectral inputs.

CROSS SPECTRAL DENSITY FUNCTION OF FLOOR ACCELERATIONS

The cross correlation function of the accelerations of

two floors k and ¢ can be expressed as

Rog(tystp) = ELU (£, (t,)] (3.7)

Substituting from Eqg.(3.6), we obtain

N

. |
altiotg) = 5 L velkvg(a) BB ¥ (ey) v ol (4

28 ¥ (t,) + 0¥ (t,)}]  (3.8)

Assuming that the ground input is a stationary random process
with the spectral density function ég(w), and the response is

also stationary, the correlation in Eg.(3.8) can be shown to be

given by
N N w . )
Raka(t1rt) = 1 T vorgw (k)ug(e) [ (<218 + wp)
r=1 s=1 Y
, 2 (t,-t.)
(2iggow + wOlH s e ° Ha (3.9)

where Hr is the frequency response function of the primary

structure defined as

H = 1/(w§ - we + 2iBrw ) (3.10)

r r
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From Eg.(3.9), the cross spectral density function can be

identify as

N N
2 .
Sakele) = Lo Lovrge (kug(a) up - 218 0 w)
r=1 s=1
(wf + 212_u_w) HH 0 (o)
s "s¥st TpllsTg (3.11)

For k=, Eq.(3.11) is a real qguantity, whereas for k#e it will
have the real and imaginary parts.
We further expand Eg.(3.1l1l) by separating terms with r=s

and r#s as follows

N
2 ?
g lw) = r£1 Y (K ()X (w) R 70 ()
NN
2 2 2
! rzl szl Yy ghplkvg () luwg + 48 8w
r#s

. *
- 21wwrws(wsﬁr - mrBS)] HrHség(w) (3.12)

where

4 222
w) = (wr + 4Brwrw ) (3.13)

L 4
Separating HrHs into real and imaginary parts as

, 2 2
HYH, = (N(w) + TuM(o)}H 71| (3.14)

where N(w) and M(w) are defined by Eqs.(2.26) and (2.37), which

for the primary structure parameters are as follows

Nw) =0 +w (48 B ww, -w. = )+ouw

rsrs r $ r

4 2 ¢ 2 2 E (3.15)
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M(w) =‘2{wrws(859r - Brws) - wz(erwr - Bsws)} (3.16)

Substituting Eqg.(3.14) into (3.12) and separating the real'and

‘imaginary parts, we obtain

N 2 »
Pakg (@) = ( Zl vau (K)o (2)X(w) [H]
\

SZI Y bR (K)o (2) [T(w) + i“’z(“‘)””rlleslzhg(w) (3.17)
r=s

[ e D 1
—

r

where

T(w) = (wgws + 4Brssmr_wsw )N(w) + 2wrus(srws - Bsmr)sz(m) (3.18)

Z(w) =-2mrws(8rw - Bgw )N(w) + (m m + 46rﬂswrw5w M{w) (3.19)

Eg.(3.17) defines the real and imaginary parts of the

cross spectral density functions as

N
ngl(“) = Z (k)w ()X (w ]H | ® (w)
r=1
+ Z z v (K)ug(e) ) [H. |2|H [ (w) (3.20)
r=1 s=1
r=s
and
R ENECR®
e rZ SZ Yergbp (kg (2)uZ(u)] o (3.21)
r=s

For k=2, Eqg.(3.20) provides the auto spectral density function

of the kth floor.

We further reform Egs.(3.20) and (3.21) by splitting the

double summation terms into partial fractions.
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e z o (K)v (1K) 141 Po ()

NN 2 2, 2
+ z 2 ¥, 7 (KD ug (2) ((AgHu®By I C3+w 05) [H] }@g(m) (3.22)

r‘= =

rzs

wol (w) = § g (kYo (2) (A, + u?B,) [H |

ake'®! T Ly L, TrYglplkivg @ B/ My

r+s

+ (C + w D |H l (3.23)

where the coefficients of the partial fraction in Egs.(3.22)

and (2.23) are obtained as the solution of the following
simultaneous equations
LYV} = (W3} (3.24a)
[Y,. 10V} = () (3.24b)
Matrix [Yrs] is the same as Eg.(2.29) except that the
subscripts i and j, respectively, are now replaced  by the

subscripts r and s which pertain to the primary structure and

is defined as,

wg 0 mi 0
4 2,,.2 4
2,,.2 2,,,2
1 22l 1 232 (282-1)
| 0 1 0 1

The vectors {V3}, {Ws}, etc are defined as follows

il

{V3}'

v,

N3(1) = w W

{A3s B

Ry

44
rs

39

84,C D

4’

4» C3» D3l

4’

(3.26a)
(3.26b)

(3.26¢)
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H3(2) = Wil wZ(1-482) - WE(1-469))] (3.26d)
Hy(3) = wZu? (1-282) (1-48%) (3.26e)
W3(4) = 48 80w (3.26f)
Wy(l) =0 (3.269)
Wy(2) = 0 (3.26h)
Hy(3) =20 u (8- 8 ul) (3.261)
Hy(4) ==2lu s (1-482)-uP0 s (1-482)] (3.261)

Egs.{(3.22) and (3.23) will now be used to define the auto

and cross floor spectra.
II1.2.1 AUTO FLOOR SPECTRA

A method to obtain auto floor response spectra was
developed by Singh[20,22] where the expression for the absclute
floor acceleration spectra was provided. In the response
analysis of the secondary system, however, we need the
displacement (or pseudo-acceleration) and relative wvelocity
fioor spectra. Here, using Singh's approach, the explicit

expression for these two types of spectra are developed.

AUTO DISPLACEMENT FLOOR SPECTRA

Here we will obtain the expression for the displacement
floor spectrum. The pseudo~acceleration floor spectrum can,
then, be obtained by merely multiplying the displacement

spectrum by the square of the oscillator frequency.
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The displacement floor spectrum at the oscillator
frequency Wy and damping ratio 5i is defined as

R luy) = Gy [

2
akk(m)|H1.| da (3.27)

where Cdi is the peak factor for the displacement response.
Substituting for the spectral density function Qakk(w) from
Eq. (3.22),

2 V22 210 12

de “j di f (rzl Trwr(k)x(w)lHrl IHiI + r- z YrYS‘br(k (1)

r:s

[(A; + w283)|Hr12 + (C5 + w203)]HS|2HH1.]2¢g(w)]dw (3.28)

To express the fregquency integrals in Eg.(3.28) in terms
of the ground response spectra, we must further resolve the

products involving |Hr|2, IHSI2 and lHii2

into their linear sum
by partial fractions. Such partial fractions can be obtained 1if

Hr or Hs are not egual to Hi. Assuming such a case, we obtain

2 2 _ 2 2
x(“‘)lHrl IH-iI = (As tw Bs)lHrl + (CS + “’205)|H1i2 (3.29)

2 2 2 2
(A3+wB ) IH, 121,12 = (Ag + w“Bg) [H.}© + (Cg + w"Dg) [H, ] (3.30)
2 2 2 2 l 2 C 2
(Cq + w D IHTH, T = (Ay + w™By) [H [ + (€7 + wDy) |H, ] (3.31)
The coefficients of the partial fractions AS' BS’ ey A6’
and A B etc are obtained from the solution of the

B6l"' 7: 7

following set of linear simultaneous equations
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(Yo TtVgy = W (3.32b)

6}
[Ygi14Y5) = {Wy) (3.32¢)
where the elements of Yri’ YSi are the same as Eqg.(3.25) except

for the change in subscripts. The vectors {VS}, {VG}, etc are

defined as

Vgh' = (Ag, Bg, Cgy Dc) (3.33a)
(Vg}' = (Ags Bgy Cpy D¢t (3.33b)
V1" = {As, By, Cqy D} (3.33¢)
Wt = !, 4822, 0, 0 (3.33d)
Wg}' = (A5, By, 0, 0) (3.33e)
W' = {C3, D3, 0, O} (3.33f)

Now the fregquency integrals in Eg.(3.28) can be expressed in
terms of the pseudo-acceleration (or relative displacement) and
relative velocity ground spectra and their peak factors,

cbtained at appropriate frequency and damping ratio values as

follows
2 4 4 _ 2
Raglep) = Roglu)fur = Gy f_w °g(w)|H,.12dw (3.34)
2 2 52
Ugle) = Cogn [ ¢g(w)|Hr|2du (3.35)

where Rdg(wr), Rpg(wr) and Rvg(wr) are  the relative
displacement, pseudo-accelration and relative velocity ground

response gspectrum values obtained at parameters W and ﬁr,
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respectively. Cd and C are the peak factors wvalues
gr vgr
associated with these response quantities.

Substituting for the frequency integrals in Eqg.(3.28) in

terms of the ground spectra, we obtain the following expression

for the displacement response spectrum
N
2 2 2 2 '
Rak(wg) = Cy {r§1 1o (K [Aglygy * Bglpge *+ Clygs * Dglpgy]

NN ,
+ 21 szl v rg o (g (k) ([AgTyo + Bglpo + Colygy + Dglags]

r=
rs

+ [A7Ilgs + 371295 + c71191 + 071291}]} (3.36)

where
CL 2\12
I = [Rpg(mr)/(cpgrmr)] (3.37a)
= 2
Iogr = [Rvg(wr)/cvgr] (3.37b)

The case when Hr or Hs are identically equal to Hi is
referred to as the resconance case. In such a case it is not
possible to define the coefficients of partial fraction AS, BS’
etc. in Eg.(3.29) through (3.31). This case, however, can be
treated as described by Singh[22]. The frequency integrals for

the resonahce case reguired in Eqg.(3.28) are obtained as a

special case of the following integral
o [ 8 6 2
IR(al’aZ) = I-m (alwi + azm_iw ”Hi[‘;@g(m)dw (3.38a)
Folliowing Singh{22], it can be shown that

I(agag) = 1y, o} [F(ag)Chtar (1-F(u)3] + azufo;n {3.38b)

where F(wi), C% and D; are defined in Appendix II.
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Faor Hr:Hi' the fregquency integral associated with Hr and
Hi in Eqg.(3.28) can be defined in term of IR as follows
=[  X(w)[H |4¢ (w)dw = 1 (1 432) (3.39a)
Rl r g m4 R s r -

-

I

r

- 2 4 ! 2
Iog = [ (Agra®B3) [H [ "o (w)du = % Io(Agfur,B5)  (3.39b)
r

)

Substituting these in EgQ.({(3.28), the displacement floor

response spectrum expression for the resonance case becomes

RS (w.) = C2. {vSul(K)I,, + ? 2200 (A1,  +B.I, +Ccl. . +DI, .1
dic\ ¥4 dilvi%j 3 ¥y 5'1gr © “5-2gr ' *5°1gf 5'2gi
N ri
+ I . .
Ly st (R gy + AgTy e + Bylyoe + Colygy + Dylygy]
s#i
N N
+ I I b (k k)[A_I
s r(K)og (k) [AgTy o + Bslogr * Col1gi * Dolag;
rei rzs
+ Asligs * B7lgs * Cilgi * Dylagil! (3.40)
AUTO VELOCITY FLOOR SPECTRA
The velocity spectrum for floor k at the oscillator
frequency vy and damping ratio 6i is defined as
2 2 2
Rvk(mi) = CV‘i f w fbakk(w)lHilzdm (3.41)
where C._, 1is the peak factor for the velocity response.

Substituting for éakk(w) from Eq.(3.22), we obtain

. o
2 2
Relog) = €y T (L, v2u2 k) wfX(u) M 21, ]
N N
£ 5T b (u (Pl (A + wB) [H |2
r=1 s=1
r:8
+(Cq + o) HPTIH 1Peg())de (3.42)
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To express the frequency integrals in Eq.(3.42) in terms
of the ground response spectra, we again resolve the products
involving |H_|* ,IB_{* and [H,]® into their linear sum by

partial fractions. If Hr or Hs are not equal to Hi’ we obtain

DX} [H 12 H 12 = (Ag + uPB) R 1% + (Cg + wiDg) K12 (3.43)

2
W (Ag ¥ “’283)|Hr|21H1|2 (Ag + “’ZBgHHrlZ - (g +'szg)IH1|2 (3.44)

2 2 214 12 _ 2 2 L2 2

w (C3 + w 03)IHS| lHil = (Alo + w Blo)fHSI + (C10 + w DlO)IHiI (3.45)
where the coefficients of the partial fractions A8’ B8""’ Ag,
Bg,...‘and AlO’ BlO’ etc are obtained from the solution of the

following set of linear simultaneous eguations

[Yril{vs} = (Na} (3.46a)

(Y ;T0Vg} = (Wg) (3.46b)

[Y ;1Y gt = Mg (3.46¢)

where [Y .| is defined by Eq.(3.25) and the vectors {Vg}, {V4],
etc are defined as

(VB}' = {AB’ 88, C8’ 08} (3.47a)

{Vg}' = {Ag, 89, Cg, Dg} (3.47b)

Vigh' = Ags Bygs Cipo 04t (3.47c)

(NB}' = {0, mi 455 i, 0} (3.47d)

{Hg}' = {0, A,, 83, 0} (3.47e)
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{Nlo}' = {0, C3, 03, 0} (3.47f)

Again each frequency integral in Eg.(3.42) can be expressed'in
terms of the pseudo-acceleration (or relative displacement) and

relative wvelocity grouhd spectra and their peak factors,

obtained at appropriate frequency and damping ratio. That is

2 -
Rk (eg) = Cy; (rz w (k)[AS 1gr ¥ 8129r +C Ilgi DBIZgil

+ B + 0.1

IIMZ
SIMZ

9 lgr 9I29r * CQIlgi

Atol1gs * Brolzags * C1ol1gi * D1olegil)  (3-48)

The case where Hr or HS is equal to Hi can again be
treated as described by Singh [22]. For this case the required

frequency integrals can be cbtained as a special case of the

following integral

o

Ig(ay,a4) = I_ (a 1w + A fm )!H l4° (w)dw (3.49%a)

which can be defined in terms cof ground spectra as follows

- 4 2

where F(wi), Fm and Dm are defined in Appendix 1II. For

Hr:Hi' the frequency integral in Eqg.(3.42), which are

associlated with Hr and Hi can be defined in terms of IS

2 4
IS]_ = f-m w X(m)'HiI ¢g(m)dw = i‘z‘ IS(1’48§) (3503.)
1'
T2 2 4 1 2
Ip = [ w(A+uBg)[H,] 9g(w)dw = K I(w5A3:B4) (3.50b)
- X 1
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Substituting these in Egq.(3.42), the velocity floor
response spectrum expression for the resconance case can be

written as

2 2 22 N2
R o= oL iyTeS (k) I
vk(w1) v1{71¢1( ) sp ¥ ril err(k)[Asllgr * B81291- * CSIlgi * DBIZQi}

r=i

+

vivghi (K)ug () Iy + Ajglyog + Byglons + Cigligy * Diplagi!

v w

e # W 12X
—e

+

N
Iy y.u (k)ws(k)[Agl

+ Bql + Cqyl + D4l
r's’r

lgr 9 2gr 9" 1g1 2g1i

-
—

s=1
rzs

-
H

* Aloligs * B1olags * Croligi * P1otegi!! (3.51)

IIT.2.2 CROSS FLOOR SPECTRA

In the response analysis of the secondary systems with
multiply supports, the coincident and qguadrature cross floor
spectra for the displacement and velocity responses are
required. Here, using similar approach as in the case of the
auto floor spectra, expressions for these two type of spectra

are developed.

COINCIDENT DISPLACEMENT SPECTRA

The coincident displacement spectrum at the frequency Wy
and damping ratio Bi is defined as
[-=3

2
Chaloy) = PGy I JONOILNEE (3.52)

where Pdi is the peak factor for the displacement response.

The coincident pseudo~acceleration spectrum 1is obtained from
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the displacement spectrum as

_ 2
Cpkz(“i) = 07 Chpg (ws) (3.53)

Substituting for & (w) from Eq.(3.22) into (3.52), we

obtain
¢ S P2 (1 e (ee(e) [ () I 1214, % (o)
dxe (o) = Py L1 LS IALIAN IR A LS
NN @ 2 2
+ rzl szl YrYS‘l-’r(k)‘US(Q') f—m [(A3 tow B3)IH7.|
res

+ (C3 + w203)lef2] |Hi|2¢g(m)d¢u) (3.54)

The frequency integrals in Eg.(3.54) have already been
defined in connection with the development of the auto
displacement floor spectra. Thus, by substituting Eqg.(3.29),
(3.30) and (3.31) into Eq.(3.54), each freguency integral can
be eXpressed in term of the pseudo-acceleration (or relative
displacement) and relative velocity ground spectra and peak

factors, obtalned at appropriate frequency and damping ratio

values. This leads to

N
2 Y 2
Caka{0g) = Poi( 1 vovp(k)u (2)[AG] Blogr * Csligs * Dglpgs]

Ly lgr ¥ 5°1gi U5 2gi
N N .
+ rzl SZI vprgb (g (2) (Al o + Bglog + Celygy + Dglogy]
r+s
+ A7I195 + 8712gs+ CYIlgi + 0712g1.] (3.55)

For the resonance case when Hr=Hi, the freguency integrals IRl

and IRZ cf Eg.(3.39) can be directly used. In terms of these
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integrals, the expression of the coincident displacement

spectra can be written as

N

2 - 2 ¢ 2 . 2 2

Cdkz(m .) P {Yiwi(k)wi(E)IRl + ril err(k)[ASI
rzl

lgr * BSIZQr * C5Ilgi

N + C,l
# DL, 0 £ vyvge; (Klug () gy + A7lige * Bylogs ¥ 277 1gd
%

N N
[ + C.I, .
# Oplpqilt I T wrgte(kb (2)[Agligr * Belagr * V6’1
r+i rzs
- 3.56
+ 0glogy * A7llgs + 8712gs + C 7l1gi * 0712g1}} ( )

COINCIDENT VELOCITY SPECTRA

The coincident velocity spectrum at frequency Wy and
damping ratio Bi is defined as

f° 2.R

vkz(“ ) = w °ak2(w)lH1l2dw © (3.57)

where Pvi is the peak factor of the velocity response.
Substituting for ézkz(w) from Eg.(3.22), we obtain an

eguation exactly similar to Eg.(3.54), except that the
integrands of each integral will be now be multiply by u2. We
further break this integrand into partial fractions. The
frequency integrals and participation factors involved in this
expressions are the same those involved in the calculation of
the auto velocity floor spectra. Thus, the expression for this
spectrum is essentially the same as Eg.(3.48) except for the
fact that here we are concerned with two floors. With a proper
substituting for the modal displacements of the two floors, we

obtain:



55

N
2 2 2
Cvkz(wi) - Pvi (rzl Yrwr(k)d’s(l)[ASIIQr * BBIZQr * C81191 * DBI291]

N N
gUpRESIEI
res

1gr ¥ Balagr * Coligy * Dglpgy

* Arol1gs * Brolags * Ciol1gi * Diolags!  (3-58)

For the resonance case when Hr is equal to Hi‘ the
frequency integral can be written in terms of integrals 151 and

I Thus, we obtain

s2°
2 2 .2 A
Cokawg) = Poslvguy (kv (2) Iy + ril Yr“’r‘(k)"’r(g)msllgr + Bglygy * C811g1‘
N rei
+ Dglygsl+ I vivgb; (K)ug ()L Lp + Apglyae + Biglags + Crotigs
S+
N N
* DlOIZQi]+ ril sil YrTs“’r(k)ws(z)[AQIlgr * Bologr * Col1gi
r+i res
I I, .1} (3.59)

+ Dglyns * Aigligs * Brolags * “10’1gi * D102

QUADRATURE DISPLACEMENT SPECTRA

The quadrature displacement spectrum at the frequency Wy

and damping ratio Bi is defined as

w«

Qg (o) = QG [ SN OICAER (3.60)

where Qdi is the peak factor for the displacement response.
The gquadrature pseudo-acceleration spectrum is obtained from

displacement spectrum as

2
kag(“f) = wiQdkg(mi) (3.61)

Substituting Eg.(3.23) into (3.60), we obtain
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2 NN - 2 2
Qdkﬂ,(wi) = Qdi rél SZ]_ Yrstr(kWs(E) .J.—m [(A4 tw 84) |Hr|
rs

+ (C4 + m204)|H5|2]|HiI2¢g(m)Adm (3.62)

To express the frequency integrals in Eg.(3.61) in terms
of ground response spectra, we resoclve the products invelving
|Hr|2, IHSIZ and [H | into their partial fractions. If H_ or

Hs are not identically equal to Hi, we can write

2 2 2 2 2 ' 2
(Ay + B K 21H, 12 = (A + WPB ) IHIZ + (€ + WD D12 (3.69)

2 210 12 2
(Cq + wDg) IHGIZTH, 1S = (Ay, + wfByp) M |% + (C, + WP0,) M2 (3.64)

The coefficients of the partial fraction A B A

11 10 1z’
812’ etc are obtained from the solution of the following set of

simultaneous eguations

(Yo 11V Wit (3.65a)

{W

i

[Ys1l(v

12} 12} (3.65b)

The vectors {Vll}, {Vlz}, etc. are defined as

(Vi3 = {Ayqs By Cipr 0qpt (3.66a)
Vot = (A5, By, Cips Dyp) (3.66b)
{wll}' = {Ags B4y 0, O} (3.66¢)
Wyph" = (Cys D4y 0, 0 (3.66d)

The frequency integrals in Eq.(3.62) can now be expressed
in term of the pseudo-acceleration (or relative displacement)

and relative velocity ground spectra and peak factors, obtained
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at appropriate frequency and damping ratio wvalues. This leads
to
G, (w ) ¢2 Z 2 b (k)v (1) (A Ty o+ By + Cyyl
dke ‘5 di &) &y TrTsPr 11°"1gr © “11%2gr 7 “11°1gd
r:s

+ B

Dyifagi * Araligs * Bralegs * Cialigy * Diplogi]  (3-67)

For the case when Hr is equal teo Hi’ the frequency integral IR2
cf Eg.(3.39) can be directly used. In terms of these
integrals, the expression of the gquadrature spectra can be

written as

N
Qea (03 = QSi{Sfl vivg¥ (K)o (Mg + Applyge + Biplogs + Ciplygy
5z
NN
" D1212g1’]+ il szl YrYsur( v (g) 11 1gr BllI2gr
r+i rzs

¥ c11Ilg'i * D111291' * A1211gs * BI2I295 * ClEIlgi " 0121291]} (3.68)

QUADRATURE VELOCITY SPECTRA

The gquadrature velocity spectrum at frequency Wy and

damping ratio Bi is defined as

2 PV
Qg () = Q55 I_m akg(m)lH 124w (3.69)
where Q . 1s the peak factor of the velocity response.

vi

Substituting for éikg(w) from Eq.(3.23) into (3.69) will give

an equation exactly similar to Eg.(3.62), except that the

integrand will be multiplied by wz. Here again we resolve the
2 2 2

product terms involving lHrt , IHS[ and |Hi| into their

partial fractions. If Hr or Hs are not identically egqual to Hi'
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we can write

2 2
w¥(Ag + u%8,) [Hy ] 2]H 12

i

(A3 + w8 ) [H 1%+ (€1 + W20y ) 1M, 12 (3.70)

2

i

2 2 2., 12
wB(Cy + D) M 12 1M 12 = (A + wfB ) IH 1%+ (Cpy + By ,) H,12 (3.72)

where the coefficients of the partial fractions A B

13’ 13°°
and A14, 814, etc are obtained from the solutions of the

following simultaneous eguations

(Y. 1tVyqh = (W) 4} (3.72a)
[Yoi1tV g3 = Hy ) (3.72b)
The vectors {VIB}, {V14}, etc are defined as
Vygh' = tA13- 813, Cy30 03! (3.73a)
Vigh' = Bugr Brge Cpg0 Opg) (3.73b)
tWygt' = (0, Ay, By, OO (3.73c)
(Wygt' = 0, Cypy Dy, O3 (3.73d)

The fregquency integrals in Eg.{3.69) can be expressed in
terms the of pseudo~acceleration (or relative displacement) and
relative velocity ground spectra and associated peak factors,

to give us the following

NN

2 .

Wialeg) = Gy 1 4 wrgse (g (DA g T1g * Bi3lage + Crghigs
r#S

+

*013lgi * Araligs * Bralogs * Craligs * Diglpgil  (3-74)

For the resonance c¢ase when Hr is equal to Hi, the
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frequency integral can be written in terms of integrals ISZ'

In such a case, Eq.(3.69) can be written as

N

Qg (0g) = €, zovivgbiuglailisy Argligs * Bralags * Cialigi
:xi
NN -
*Oyglpgilr 2 T Ttg¥ (b ()[R aly o + Biglogr + Crglhg;
r:i rzs
* Dyglags * Araligs * Bialogs * Craligi * Dralagill  (3.75)

IIT.3 FLOOR INPUTS FOR PSEUDO-STATIC RESPONSE

For the calculation of the pseudo-static response term,
we reqguire the maximum values of either the relative or
absolute displacement of each supporting floor. We also reguire
the correlation between these response guantities. Again, these
guantities are obtained from the dynamic analysis of the
primary structure. The expressions to obtain these are

developed in the following sections.

MAXIMUM FLOOR RESPONSE-RELATIVE DISPLACEMENT

The relative floor displacement response for floor k can

be written in terms of modal quantities as follows

N
Vi (t) = 21 (k)Y (L) (3.76)
r=

The maximum value of Vk(t), here denoted as Vﬁ, can be defined
in terms of its mean sguare response and peak factor wvalue,

Cvk’ as

52 _ 2 2 3.77
Vk = Cvk E[Vk(t)] | ( )
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Substituting for Vk(t) from Eg.(3.76), we obtain
2_.2 N N
Vi = C 2 T w (ke (KIELY Y ] (3.78)
r=1 s=]
Substituting for the expected value of E[YrYs] in terms of the
ground spectral density function and considering only the
stationary response, we obtain

"2 = Czk Z 2 PRI p (k) vy J ¢é(m)H;Hsdm (3.79)

To express the frequency integral in terms of ground spectra,

we separate terms with r=s and r#s, to obtain

N - 2
cSk(r§1 rEoplk) [ eg(a) M, | %ds

N-1 N @
2 2
+ 2 rzl . ;+1 YpYsbn (k)i (k) f_m N(w) [H_| H | og(m)dm) (3.80)

where N(w) is given in Eq. (3.15}.

The first frequency integral in Eq.(3.80) can be directly
expressed in terms of the relative displacement or pseudo-
acceleration spectrum values. We resolve the second integral
into its partial fractions as in Eg.(2.27), so that each term
can then be expressed in terms of the pseudo-acceleration and
relative wvelocity spectra. The £final expression for the

relative displacement response can, then, be shown to be as

follows
N N-1 N
2 2.2
yEul(k) I + 2 o b (K (K)
k Z r lgr rél s=;+1 r's’r

[Aljgr + Blogr + Clygq + Dlpgs]) (3.81)
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where I I are defined in terms of the ground response

lgr’ 29r

spectra by Egs.(3.37a) and (3.37b). This equation is similar to

the one obtained by Singh and Chuf24].

RELATIVE DISPLACEMENT CORRELATION COEFFICIENT

The expression for the correlation between the relative
displacement of two floors can be developed similarly. For two
floors k and 2, it can be shown that

N N ®
EV VD= T I vergba(kdeg(e) f

RS (w)HEH du (3.82)

2
9
Separating Eg.(3.82) into terms with r=s and r#s, we obtain
N 2 ® 2
E[Vkvzl = ,.__Z_l 'lebr(k)lbs(l) f—m @g(m)]Hr] duw

a3y

NN
+ r§1 szl etg b (K (2) I_m 2 (w)HiH du (3.83)

The first frequency integral can be directly expressed in terms
of the ground spectra. The second integral will have the real
and imaginary part. However, the imaginary part, being an odd
function of w, will give zero when integrated out over 1its
range. Thus, considering only the real term, we can write for
Eq.(3.83) as,
E[V,V. ] = § 29 (k)b (2) Im 2 (w) [H_| Zdu
ket Ty Tr¥plti¥s o g r
N N @ 2 2
+
Lo Lorergeo(®ug(2) [ N()H[Z[H] %0 (w)de  (3.84)
r=1 s=1 -
r=s

The integrand in the second frequency integral can now be split

into its partial fraction, to give us the expression for this
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correlation similar to Eg.(3.8l) as follows

N N N
2
Efvv ] =
(v v, ! rzl b (kK)o () o + rgl sél Yergb (ke (e)
res

(Aljgp + BIpgp + CIygq + DIpgsl) (3.85)

The correlation coefficient can now be defined as
6' - E[VkVE]
ke ™ Y :

MAXIMUM FLOOR RESPONSE-ABSOLUTE DISPLACEMENT

(3.86)

As mentioned in the previous chapter, the pseudo~static
response can also be obtained in terms of the absolute floor
displacement of the supports. Here the methods to obtain the
absolute displacement response and c¢orrelation between the
responses of two different floors are presented.

The maximum absolute displacement response can also be
obtained wusing the same approach as employed for ' the

calculation of the relative displacement response. That is
U (t ;
k(E) = LXg(t) + § v (k)Y (t) (3.87)
r=1 r

where Xg(t)= ground displacement time history. Eqg.(3.87) can be
used to obtain the mean sqguare wvalue of Uk(t) which when
multiplied by the peak factor will give the maximum
displacement. Using this approach, an expression similar to the
expression for the maximum relative displacement can be
developed for the maximum absolute displacement and the

correlation coefficient.

Here, however, a different approach is taken. For this,
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the displacement and correlation between the displacements is
expressed as the limiting cases of the auto flqor ‘and
coincident cross floor spectra.

The maximum value of the absolute displacement response
can be written in terms of the spectral density function of

displacement as follows

[--]

=2 _ 2
Up = C\ I-.,, ? 411 (0] dus (3.88)

where §dkk(w)= spectral density function of the absolute floor
displacement and Cuk: the peak factor.

From the stationary random vibration analysis, it is
known that the cross or auto spectral density function of the
absolute displacement, Qdkﬁ(w)’ and absolute acceleration,

akn(w) are related by the following expression

Oag(®) = u® 0 (u) (3.89)

Thus, the maximum displacement in terms of the

acceleration spectral density function can be written as,

‘2= 2 1 3.90
C uk i m m4 @akk(w)dw (3.90)
The right hand side of Eq.(3.%0) is, however, the same as the

following expression with mi=0
2 _ 2 ¢ 2

Uk = Cuk .r . Qakk(wHHiI duw (3.91)
Comparing the right hand sides of Eqgs.(3.27) and (3.91)

we notice that ﬁk is nothing but the relative displacement

floor response spectrum value obtained from Eqg.(3.36) for wi=O.
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That is,
n2 2
Ug = de(m1.=o) (3.92)

Using the expression for ng, as in Eg.(3.36), we obtain

N :
- 2.2 Del,, ]
i - ¢, (I vt iAstyg, * Sslage * Cslyg + Dslpg

NN
. 2 2 Yrstr(k)wx(k)[AﬁllgT + BGIZgr + CBIIg + 0612g
r=] s=1
res
in which
= = 2 _
fg = Reglu;=0)/€431% = (0 /c, )2 (3.94)
= - 2
I2g [Rvg(“’i“o)/CVg] = (vg/cvg)2 (3.95)

where Dg= maximun ground displacement and Cdg= peak factor for
the ground displacement random process; Vg= maximun ground
velocity and Cvg=‘peak factor for the ground velocity random
process. It is noted that cdi obtained for wi=0 is the same as
cuk'

It is mentioned that noc numerical problem is encountered
in evaluation of the coefficients AS’ BS""’ AS' Bs,..., A7,
B7, etc for wi=0 by Egs.(3.29) through (3.31). Thus, to obtain
the maximum £floor displacement, the algoerithm for the

evaluation of the displacement auto floor spectrum can be

directly used.
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ABSOLUTE DISPLACEMENT CORRELATION COEFFICIENT

The cross correlation between the absoclute displacements
of two floors can be written in terms of the cross spectral

density function as,
7GR
E[UU,] = I_, @ g (w)do (3.96)

Using Eq.(3.90), this can also be written in terms of the cross

spectral density function of the absolute acceleration as

® R 1
E[U U] = f-a ey () X dw (3.97)
Comparing the right hand sides of Eqg.(3.52) and (3.97) we

notice that +this correlation is the same as the coincident

displacement cross spectrum obtained at wi=0. That is

- 2
E[U U T = [Cyp, (g = 0)/P 4] (3.98)

The right hand side of Eqg.{(3.98) can, thus, be directly

obtained by using Eg.(3.55) for wi=0, and is written as

N
E[UU,] = r-z-l vau (K)o (1) [AgI +C.I, +0.1. ]

igr * BSIZQr 51g 529

HMZ
MZ

), erabe (D4 () Aglgr + Bglagr + Colig + Oglg
T'#S

Here again, the terms like I and I are expressed in terms

lg 29
of maximun ground displacement and maximun ground velocity, as
in Egs.(3.94) and (3.95).

Thus, to evaluate the correlation, the algorithm used for
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the development of coincident displacement cross floor spectra

can be directly used. Here again, nc¢ problem is encountered in

the calculation‘of the partial fraction coefficlients for wi=0.
Using Egs.(3.93) and (3.99), the correlation coefficient

Ekz can be easily obtained as

E[UkU11
(U, /€, )/ (U, /C

III.4 FLOOR INPUTS FOR CROSS RESPONSE

Sks, (3.100)

Uﬂ.)

We observed in Chapter II that we require the cross floor
response spectrum values as well as their limiting values for
.wi=0 to calculate the contribution o©of the cross term. The
evaluation of the c¢ross spectra was presented in the earlier
section. Here the expression for the limiting cases are

developed.

MAXIMUM FLOOR VELOCITY RESPONSE

One of the terms required to define Eg.(2.79) was the
mean square value of the absclute floor velocity response. It

is defined as
E[UZ] ; J‘m 0. . (w) LI (3.101)
k . akk u,2’ :

which, as we saw in Eg.(3.41) is the auto velocity spectrum

value obtained for wi=0. This can be written from Eq.(3.41) as

2y _ p2 - 2
E[U] = R, (uy = 0)/C,, (3.102)

This value can be directly obtained from Eg.(3.48) as follows
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N
21 - 2,2
E[0,] = rzl T (K)AgTy o+ Bglog + Cgly + Dgly |

e 1T gt 00w AgL + Bylpg, * Clig * Dglag
r=1 s=1
r=s

It is again mentioned that no numerical problem 1is
encountered in evaluation of the coefficients AB' BB""’ Ag,
Bg, .., and AlO' BlO’ etc for wi=0 by Egs.(3.46). Thus, to
obtain the maximum floor velocity, the algorithm for the

evaluation of the velocity auto floor spectrum can be directly

used.

COINCIDENT CROSS FLOOR VELOCITY RESPONSE

In Eq.(2.79) we also reguired a term asscciated with the
cross correlation of the absolute velocities of two floors.
This was defined in Eq.(2.81) as

[~}

- R 1
Loy = f_w ® s (@) -;2; duw (3.104)

Comparing Eqg.(3.104) with Eg.(3.57), we notice that this term
is nothing but the coincident cross velocity spectrum obtained

at wi=0. Thusg, this can be written as

= - 2
Lok = [Cypp(0y=0)/P, ] (3.105)

This can be directly obtained by using Eg.(3.58). That is
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N
Ly = rzl Yr RO (2)[A8119r * 88I29r * Callg ¥ 081291
A Byl + C I, + 01,1
+ Zl vt (k) (8) (Al g * Bglogr * “91g ™ "972g
r=1 s=

+ AlOIIgs * BIOIZQS + ClDIlg + DlOIZg] (3.106)

Thue, the algorithm developed for the coincident relative
velocity cross floor spectra can be directly used without any
numerical problem. This term can also be expressed as a

correlation coefficient, defined as follows

I4k9.

W2rerly 172
(ELOZ1E0Z);

S = (3.107)

A complete description of this velocity related input ,
as expressed by Egs.(3.103) and (3.107), can now be given in

terms of a matrix of correlation ceefficients and the maximum

floor velocity.

QUADRATURE CROSS FLOOR VELCCITY RESPONSE

The term associated with coefficient H in Eq.({(2.79)
represents the correlation between the gquadrature components of
‘absolute velocities between two floors. This was defined in
Eg.(2.82) as

N 1 3.108
L ~ I_ @ °ak£( w) =7 dw ( )

w
This term is nothing but the guadrature cross velocity spectrum

obtained at wi=O. Thus, this can be written as follows

Tgky = vkp.(“’ ‘0)/Q2 (3-109)
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For the evaluation of this term, alsc the algorithm used

for the quadrature velocity spectra can be directly used. That

is,
NN -
Toke = rzl SZI Yergbp (K)o () [A 3T 0 + Byalpgn + Cialyg + i3yl
r:s

+ A14Ilgs + 814.[295 + C14llg + 01412g] {3.110)

For k=f, this term is zero. Again, we can also express

this term as a correlation coefficient, defined as follows

Lok

6"' =
(E(02) £107)y1/2

ks,

(3.111)

This part of the input can also be defined as a matrix.
The diagonal term of this matrix will be zero and the matrix is

skew symmetric.
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CHAPTER IV

SUPPORT INPUTS FOR SECONDARY SYSTEMS ATTACHED TO GROUND

AND PRIMARY STRUCTURE
IV.1l INTRODUCTION

In industrial facilities, a multiply supported piping
system could be directly attached to the ground. In this case
the gréund is like a floor. The seismic inputs required to be
defined for this case are the special cases of the inputs
described in the previous chapters. These inputs will now be
explicitly developed in this chapter.

Aute floor spectra for the support on the ground are
simply the ground response spectra. The cross floor spectra for
the motions between a floor and ground support are developed in
section IV.2.

In addition to floor spectra, we also need to define the
cross correlation between the displacement of a floor and
ground support for the calculation of pseudo-static response.
These are developed in Section IV.3.

The quantities required in the calculation of the cross

terms are developed in Section IV.4.
IV.2 CROSS FLCOR SPECTRA

The Cross correlation function of the absolute

accelerations of the ground and flocor k can be expressed as

Ragk(tl’tz) = E[ig(tl)ﬁk(tZ)] (4.1)
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Substituting from Eg.(3.6), we obtain

N -
Ragk(t]_vtz) = - er 'br.(k) {zsrer[Xg(tl)Yr(tz)]

E[ig(tl)Yr(tz)]} (4.2)

For stationary ground motion and the floor response ,this cross
correlation can be shown to be given by
N @ ‘iw(t "t )
= 2
Ragk(t1stp) = rzl Yo (k) T (mr+125rmrw)Hr¢g(w)e 2 14 (4.3)

From Eqg.{(4.3), the cross spectral density function of the
absolute acceleration of the ground and floor Kk <can be
identified as
N 2 ..
Pagi (@) = ;1 Yo (k) (a + i28,00)H 0 () (4.4)
This cross spectral density function has the real and

imaginary parts. These parts can be separated as

N
0 () = T vv (0 lub-ubu?(1-a82) 128 w w71 [H, |2¢ (@)  (4.5)
9 r=1

in which the real part is as follows
R
o5g(w) = z 1oy (6) Lag-ufu® (1-482) 1 [H %o, (o) (4.6)

and the imaginary part as follows
1 N Iy 12
0agk(w) = rzl err(k) (-ZBrwrm )[Hrl ¢g(m) (4.7)

The cross spectral density function associated with cross

correlation Rakg’ here denoted by §akg(w), is merely the

complex conjugate of @agk(w). That is,
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- 4R .
¢akg(w) = Qagk(m) - 1¢§gk(w) (4.8)

Egs.(4.6) and (4.7) will now be used to developed various

types of cross spectra, defined by Eq.(2.42) through (2.46).

COINCIDENT DISPLACEMENT SPECTRA

The coincident displacement spectrum for the ground and

floor k at frequency Wy and damping ratio Bi is defined as

2 _p2 ¢ R 2
The pseudo-acceleration spectrum is obtained from the
displacement spectrum as

Conley) = w2C

pgk i dgk(wi) (4-10)

Substituting Eqg.(4.6) into (4.9), we obtain
2 _p2 4 = 4 22,0 . 2uu 1210 12
dgk(w_i) = Py er yrwr(k) f*m [wr-wrw (1—4BrﬂjHr! IHiI og(w)dw (4.11)

To express the fregquency integral in Eqg.(4.11) in terms
of the ¢ground response spectra, we resolve the product

2 2

involving IHrI and IHiI into their partial fractions. If Hr

is not identically egual to Hi' we obtain
4 22 2 2 2 _ 2 2 2 2
[wr—wrw (1-4Br)I|HrI lHiI = (A15 +w BIS)IHrl + (C15 + w 015)[H1| (4.12)

The coefficients of the partial fraction.‘Als, BlS’ etc are
obtained from the solution of the following set of linear

simultaneous equations
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AN UTURRCTY (4.13)
where the vectors {Vls} and {Wls} are defined as

Vet 202
Wygh' = (w], -u2(1-8%4), O, 0) (4.14b)

The frequency integral in Eqg.(4.11) can now be expressed in
terms of the pseudo-acceleration (or relative displacement) and

relative velocity ground spectra and their peak factors. That

is
¢z (w;) = P g o (K)[A Iy +B..I, + C,.l 0,0, .] (4.15
dgk\“1) = Tat L el R1shige * Brglagr * Cigligs ¥ Diglagyl (4-13)

For the case Hr is equal to Hi (resonance case) the approach
developed in Section III.Z2.1 for the auto floor displacement
spectra is directly applicable. In terms of the integral I, of

R
Eg.(3.38a), the expression for Eqg.(4.1l1) becomes

2 2
Cagr(wy) = Pay %y (k)IR(l"‘ﬁiz"l)/‘ﬁd

N
2 6
* Py L vt (A g g * Byglagn + Ciglygy + Dyglpgyl (5:3€)

r#d

COINCIDENT VELOCITY SPECTRA

The coincident velocity spectrum for the ground and floor

k at frequency 0y and damping ratio Bi is defined as

2 2
€ (wy) = Py

® 2R 2
vak 'r_.;. " @agk(m)|H1.| dw (4.17)

Substituting Eg.(4.6) into (4.17), we obktain
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Cvgk(wi) = pvi er err(k) f‘ {w m4~w (1-48 )]IH ]2[H ] ¢ (w)dw (4.18)

To express the frequency integral in Eqg.(4.18) in terms

of the ground response spectra, we again resocolve the product

involving IHr|2 and lHil2 into their partial fractions. If Hr

is not identically equal to Hi’ we obtain

wCut-ufut(1- 482) 110 _IZ[H, (2 = (A +o 16)|Hr|2 + (C 4. [2(4.19)

2
16t v D)

The coefficients of the partial fraction A B etc are

16’ 16’
obtained from the solution of the following set of linear

simultaneocus equations

[Yyq Vgl =ty (4.20)

where the vectors {Vls} and {Wle} are defined as
Vigt' = Aigs Bigr Crge Dy} (4.21a)
{wls}‘ = {0, wﬁ, -w§(1-4s§), 0}y (4.21b)

The frequency integral in Eg.(4.18) can now be expressed in
terms of the pseudo~acceleration (or relative displacement) and
relative velocity ground spectra and their peak factors. That
is '

2 2 N ‘

Crgles) = Py rzl v () (Agely o * Brglagr * Ciglig * Diglagel (4-22)
For the case Hr is equal to Hi (resonance case) the approach

developed in SectionllII.2.2 for the autoc floor velocity spectra

is directly applicable. In terms of the integral IS of
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Eg.(3.49a), the expression for Eqg.(4.18) becomes

2 . o2 2
Cugk(og) = Puy w9 (0 Tg(1,480-1) 1l

N
2
+ Pyy rgl Yo (K) (Al

r#i

+ B, .1

1gr * Bi6logr * Cigligs * Dyglagsl (4-23)

QUADRATURE DISPLACEMENT SPECTRA

The quadrature displacement spectrum for the ground and
- floor k at frequency Wy and damping ratio Bi is defined in
terms of the imaginary part of the cross spectral density

function as
Q2 (wy) = QZ fm ol (w) |H 2
dgk \¥4 di I @Paqk (@) [H;]%du (4.24)

The pseudo-acceleration spectrum is obtained from the

displacement spectrum as
2 2 -2
ngk(mi) = oy ngk(wi) (4.25)

Substituting Eg.(4.7) into (4.24), we obtain
N
2 Y-

Qgr(e1) = Qay 1

® 41y 121y 12 |
L vpbp(k) I_m (-28 w0 ) [H[7[H, ] 2g(w)du (4.26)
To express the frequency integral in Ed.(4.26) in terms
of ground response spectra, we resolve the product involvihg
[Hriz and ]Hilz into their partial fractions. If Hr is not
identically equal to Hi’ we obtain

By 120y (2 - 2 2
“28p00 TR = (Ryy + w7870 IR+ (C

bt wzoly)lHil2 (8.27)

The coefficients of the partial fraction A17, 817, etc are
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obtained from the solution of the following set of linear

simultaneous egquations

[Y ;1 (Vyq) = (W5} (4.28)

where the vectors {Vl7} and {W17} are defined as

Fo=tA Bygs Cpgs D150 (4.29a)

0, 0, -28 w, 0} (4.29b)

The frequency integral in Eg.(4.26) can now be expressed in
terms of the pseudo-acceleration (or relative displacement) and
relative velocity grocund spectra and their peak factors. That
is
2 2 0

ngk(mi) = Q; rzl err(k)[A1711gr + 817129r + C17Ilgi + 01712g1] (4.30)
For the case Hr is egual to Hi (resonance case) the approach
developed in Section II.2.1 for the auto floor velocity spectra
is directly applicable. In terms of the integral I of

S
Eq.(3.49a), the expression for Eg.(4.26) becomes

3
Qgilog) = Qgq 4 (k) I (01-28 /)

N
2
+ Qg; rzl Yol AL gr + Brplogr * Crpligq * Dyplagsl (4:31)

r#i

QUADRATURE VELOCITY SPECTRA

The quadrature velccity spectrum for the ground and floor

k at fregquency ws and damping ratio Bi is defined as
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[--]

ngk(wi) = Qsi I u3¢égk(m)lHi|2dw (4.32)

Substituting Eg.(4.7) into (4.32), we obtain
Q¢ ) = g2 N K 6 21y 12
vak(®g) = QU r‘Zl b () T (28 0 0P [H 9K, | og(u)du  (4.33)

To express the frequency integral in Eg.(4.33) in terms
of ground response spectra, we resolve the product involving
IHrI2 and |Hi12 into their partial fractions. If Hr is not

identically equal to Hi’ we obtain
6 2 2 _ 2 2 2 2
-28 0w IHr[ |Hi| = (Ajg *u Bls)[Hr| + (Cig+u 018)|Hij (4.34)

The coefficients of the partial fractioen A18’ B18’ etc are
obtained from the =soclution of the following set of linear

simultanecous eqgquations
[YpqTtVigh = (W o) (4.35)

where the vectors {V18} and {wla} are defined as

{V18}' = {A B

18> °18* C1gs Digk (4.362)

I

(Hpgh' = (0, 0, 0, -26 u )  (4.36b)

The frequency integral in Eqg.(4.33) can now be expressed in
terms of the pseudo-acceleration (or relative displacement) and
relative velocity ground spectra and their peak factors. That
is

2 2 N

Qg@s) = Gy L v (0 Agglygr * Biglagr * Crgligi * Diglagi! (4:-37)

For the case Hr is equal to Hi {resonance case) is treated as
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described by Singh([22]. Following this approach, the required

frequency integral is obtained for the generic case

IE(a4) = i aqw§m6lH1|4¢g(m)dw (4.38a)

Thus,
- 4
Ig(ay) = adllgr W F(mr)(Gm~r/4)/(Em-2r) (4.38b)

where F(wr), Gm, E_ and r are defined in Appendix II.

m
Thus, for H =H, the freguency integral in Eg.(4.33) can

be written in terms of IE as follows
Q2 (u:) = Q2. vy w5 (K)I_(-28; /uy )
vgk ‘i vi 1 E i’

N
2
+ Qu rzl err(k)lAmIlgr + BlBIEgr + CIBIlgi + 01812gi] (4.39)

r#i

IV.3 INPUTS FOR PSEUDO~STATIC RESPONSE

As mentiocned in Chapter III, we could use either the
relative or absolute displacement of the supports points and
their réspective cross correlation coefficients for the
calculation of the pseudo-static response.

‘The maximum relative displacement of the ground is
obviously zero. Therefore, the correlation coefficient between
the relative displacement of any floor and the ground support
vanish automatically. That is

G'gk = 0 (4.40)

However, while working with the absolute displacements,
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the maximum ground displacement as well as its correlation with
the displacements of each support points are regquired. The
maximum ground displacement is an input parameter now, which if
not explicitly provide, can be estimated as suggested in
Reference [8]. However, as cbserved later the force response
quantity is not affected by this input parameter. That isf any
value can be assumed for the maximum ground displacement.

The correlation coefficient of the absoclute displacements
of the ground and floor k evaluated at the same time instant is
defined as follows

ng _ E[XQUEI
(Dg/Cdg)(Uk/Cuk)

(4.41)

The Cross correlation between. the ground and floor
displacements measured at the same time instant, and as
required in Eqgq.(4.41), can be expressed in terms of the cross
spectral density function as,

ElxgUy] = g (@) du (4.42)

Using Eq.(3.89), this can also be written in terms of the cross
spectral density function of the absolute acceleration as

«©

R 1
E[XgUk] = _['—m Qagk(w) ;—E duw {(4.43)

Comparing the right hand sides of Eqg.(4.9) and (4.43) we notice

that

i} 2
EIXgU] = [C4qy (w4=0)/P ;] (4.44)

Thus, Eqg.(4.44) can be directly obtained by using Eq.(4.15) for
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wi=0. That is
N
EXQU ] = ) v (K IAglygn + Byglagn + Cyglyg + Dyglpgl  (4.45)
The terms Ilg and IZg are expressed in terms of the maximum

ground displacement and velocity, and are given by Edgs. (3.94)

and (3.95), respectively.
IV.4 INPUTS FOR CROSS RESPONSE

As shown in Eqg.(2.79), various kind of cross floor
spectra as well as their limiting wvalues for wi=0 are required
to calculate the cross response component. The cross floor
Spectra for the ground and a floor were developed in Chapter
ITI. In addition, we need to obtain the maximum ground velocity
response and the cross velocity response for the ground and
each floor. The maximum ground velocity parameter can be
prescribed or estimated from the maximum acceleration as
suggested in Reference [14]. The cross velocity response, for
the coincident and gquadrature components, are presented in the

following sections.

COINCIDENT CROSS VELOCITY RESPONSE

The term associated with coefficient D in Eg.(2.79)
represents the cross correlation between the coincident
component of the velocities of two different supports. I1f one

of the supports is on the ground, then we can write

I4gk = I agk(m) 1 dw (4‘46)
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Comparing the right hand sides of Egs.(4.16) and (4.46), we

notice that
Lgk = [Cyq (0y=0)/P, .12 (4.47)

Therefore, the coincident <c¢ross wvelocity response can be

directly obtained by using Eq.(4.22) as follows

N
I =
4gk rzl Tebp (KN AL g + Brgloge * Ciglyg + Dyl ] (4.48)

Thus, the algorithm developed in Section III1.2.2. can be used

without any numerical problems.

We can also define Eg.(4.48) in terms of a correlation
coefficient as follows

6u Idgk

gk 21172
(vg/cvg){Eluk]}

(4.49)

QUADRATURE CROSS VELOCITY RESPONSE

The term associated with coefficient H in Eg.(2.79)
represents the correlation between the guadrature components of
the absolute velocities of any two supports. If one of the

supports is on the ground, then we can write for this term as

w@

3,1
Togk = [ w °agk(“) iz dw (4.50)

wa{x)

Comparing the right hand sides of Eqg.(4.32) and (4.50), we

notice that

YA _ 2
159;( = Qng(m'i_O)/Q\H (4.51)

Thus, the algorithm used for the dguadrature velocity
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spectra can be directly used. That is, from Eqg.(4.37)

N
legk = rél "r"’r(k)[AmIlgr + Bgligr * Crglyg * Diglpgl  (4-52)

Again we can express this term as a <correlation

coefficient, defined as follows

[
6gk
8 = (4.53)
gk 121,172
(Vg/C,q) ELUIY

This part of the input can again be defined as a skew

symmetric matrix.
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CHAPTER V
NUMERICAL RESULTS
V.1l INTRODUCTION

In the preceding chapters, a response spectrum approach
is developed for the calculation of seismic design response of
multiply connected secondary systems. The approach regquires an
analysis of thé supperting primary structure-to define various
types of floor spectra and other inputs. These inputs are then
used in the analysis of the supported secondary system to
obtain its response. The response spectrum methed to define
various inputs are developed in Chapter III and IV, and
utilization of these inputs for the calculation of the
secondary system response, again through a generalized response
épectrum approach, is described in Chapter II.

In this Chapter, the numerical results demostrating the
applicability of the approcach are presented for two different
structural copfigurations, shown in Fig.l and 2. The primary'
structure in both these problems is the same. It consists of
five floors connected by columns which primarily deform in the
shearing mode. The system has five degrees c¢f freedom. The mass
and stiffness properties of the system are shown in Fig.l and
2, with K=10.075 Kips/ft and M=35.5 Kips-Secz/ft. The natural
frequencies, participation factors and modal displacements are
given in Tables I and II. The primary structure is assumed to
have 5% damping in each mode.

The secondary systems shown in Fig.l and 2 are almost
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similaf except that the system in Fig.2 has a support attached
to the ground. The mass and stiffness properties of the
secondary system are also shown in Fig.l and 2, with k=150
kips/ft and m=.1 kipsfSecz/ft. The natural frequencies and mode
shapes of these two systems, assumed fixed at all the supports
are given 1in Tables III and 1IV. The dynamic influence
coefficients matrix defining Pik in Eqg.(2.17) are given in
Table V. Even though the two systems have different
configurations, their dynamic properties, as listed in Tables I
to V, are identical as their mass and stiffness characteristic
are exactly the same. These systems are assumed to possess 27

damping ratio in each mode.
V.2 FLOOR SPECTRAL INPUTS

The seismic ground input to the entire system is defined
in the form of pseudo-acceleration and rélative veiocity ground
response spectra and these are shown 1in Figs.3 and 4,
respectively. These curves represent the average spectra
cbtained for an ensemble of 75 synthetically generated
acceleragrams. They have also been used in earlier studies
[6,17].

Various floor spectral inputs developed for the analysis
of the two secondary systems are shown in Figs.3 through 30.
Figs.5, 6 and 7 show the auto pseudo-acceleration floor spectra
for floors 2, 3 and 4, obtained by employing Egs.(3.36) and
(3.40). The auto velocity floor response spectra were obtained

from Egs.(3.48) and (3.51), and are shown in Figs.8, 9 and 10
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for thése floors. The cross floor spectra, koth for pseudo-
acceleration and velocity responses, have coincident and
quadrature components. These spectra are to be defined for all
the floors interconnected through the secondary system.
Figs.1ll through 13 show the coincident pseudo-acceleration
spectra, obtained by employing Egs.(3.55) and (3.56). The
coincident velocity spectra are shown in Figs.1l4, 15 and 16,
and these were obtained from Egs.(3.58) . and (3.59). The
quadrature spectra for the ﬁseudo-acceleration, and velocity
responses, respectively obtained from Egs.(3.67), (3.68),
(3.74) and (3.75), are shown in Figs.17 through 22. For the
analysis of system in Fig.2, the cross floor spectra between
the ground and various connected floors are reguired. These are
shown in Figs.23 ‘through 30 and were obtained from the
equations developed in Chapter IV.

Here all the flocor spectra have been developed for the
oscillator damping ratio of 2%, because the secondary systems
being examined in this work are assumed to have 2% damping
ratio in all the modes. However, 1f different damping ratios
are assumed in different modes, or if the secondary system is
assumed to be nonproportiocnal, then floor spectra for all
possible modal damping ratios must be developed.

It is seen that for the development of all these floor
spectral inputs no time history analysis is required. The
prescribed ground response spectra can be directly used. In
addition to the ground spectra, the dynamic characteristic for

the priméry system defined in terms of the natural frequencies,
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mode éhapes, participation factors and modal damping ratios are
also required.

It is noted that although the auto floor s'pectra will
always have positive values, the cross flcor spectra can assume
negative wvalues.

For design purposes these spectra should incorporate the
effect of the uncertanties in the parameters of the primary
structure. This can possibly be incorporated as described by
Singhl[21] and Ghafory-Ashtiany and Singh{6]. The methods to do
this for wvaricus types of floor inputs defined here are under

developement at this moment.
V.3 RESPONSE OF SECONDARY SYSTEMS

Various floor spectra inputs developed in Chapter III are
utilized here to obtain the displacement and the force response
of the secondary systems shown in Figs.l and 2. In addition to
the floor spectra, it is also necessary to define for various
floors: (1) the maximum absolute displacement and their
correlation coefficients and (2) the maximum absolute velocity
‘and their correlation coefficient, as described in Chapter III.
For the primary system being examined here, these values are
given in Table VI. The matrices of the correlation coefficients
are given in Tablegs VII, VIII and the matrix of the quadrature
velocity coefficient, as defined by Eg.(3.111), is defined in
Table I¥X. These represent the  correlation between the
guadrature velocity components of two floors normalized by the

maximum‘ velocity of the corresponding floors. Unlike
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correlétion coefficient, these wvalues could be dgreater than
1.0, as indeed they are in Table I1X. These tables cover the
input requirements of both the systems of Figs.l and 2.

For given ground response spectra, these inputs
gquantities are also obtained by a direct analysis of the
primary structure by employing Egs.{(3.93) and (3.103) for the
displacement and velocity; Egs.(3.100) and (3.107) for the
correlation coefficients and Eg.(3.111) for the guadrature
coefficient.

In Chapter IV, we noted that the maximum ground
displacement and velccity wvalues are also regquired if the
absolute displacement formulation is used. It, however, turns
out that any value can be prescribed for these two parameters
without affecting the force response values,. This has been
verified by numerical results obtained for two widely different
values of the ground parameters which still provide identical
values within the numerical accuracy of the computations
performed. Probably, it can also be analytically shown that
these twe parameters contribute only to the rigid bedy response
of the entire system. At this stage, however, 1t 1is not
immediately apparent.

The force response results obtained for the two systems
are shown in Table X. The results in columns (3) and (6) were
obtained by the approach developed in Chapter II employing the
floor spectra and other i1nputs presented earlier. For
comparison the parallel results were also obtained by a

straight forward response spectrum analysis of the combined
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systemé with ground response spectra as inputs. In this
combined analysis, the primary and secondary system were
considered Jointly as one single system. Thus, these results
for the combined system, shown in columns (2) and (5) of Table
X, do also incorporate the possible dynamic interaction between
the two systems. However, ©because the secondary systems
considered here are relatively very light, as well as their
frequencies are well separated, the interaction effect in the
results presented here are believed to be very small.

It 4is seen that, the results obtained by the two
approaches compare very well. This verifies the analytical
development presented here. Also the verification of the
results against the well established response spectrum
approach, commonly used for seismic response evaluation of
primary structures, clearly demostrates the applicability of
the response spectrum approach developed here for the analysis
of multiply connected secondary systems as well. It also
ratifies the concept of cross floor spectra as a valid form of
the seismic input; such spectra also must be prescribed along
with auto flccr response spectra for a proper seismic analysis

of the secondary systems with multiple supports.

V.4 RELATIVE CONTRIBUTION OF DYNAMIC, PSEUDO-STATIC AND

CROSS TERMS TO TOTAL RESPONEE

For the examples considered here, the relative importance
of the dynamic, pseudo-static and cross response terms in the

calculation of the total force response 1is evaluated. For
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system "A", Table XI shows the total response variance in
Col.{2) for wvarious structural elements. In Col.(3), (4) and
(5) are shown the contributions of wvarious components as a
fraction of the total variance. For system "B", similar results
are reported in Table XII. It is seen that in same cases the
pseudo~-static and cross components are seen to contribute
negligibly to the total respoﬁse, yvet in other cases their
contributions can be relatively large. In particular, it is
noted that correlation between the dynamic and pseudo-static
part, és measured by the contribution of the cross terms can be
very significant and must be properly considered in the
analysis. Thus, no particular component can be disregarded as
trivial with respect to the other components in all situations
and as a rule all components should be properly calculated and

combined to obtain the tctal response.

V.5 EVALUATION OF SOME CURRENT RESPONSE EVALUATION

PROCEDURES

Several different seismic analysis procedures are used in
the industry to calculate the design response of such systems.
As mentioned before, some analysts employ only time history
approach, as it provides most accurate response, at least for
that time history as well as the phase relationship between the
motions of wvarious floors are correctly accounted. This
procedure 1is, however, only acceptable if an ensemble of time
histories representing the prescribed design input are used.

The curréntly emplcoyed response spectrum methods, on the other
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hand, use the envelcp spectra to obtain the dynamic response or
a combination of time history and response spectrum methods for
the calculation of pseudo~static response due to differential
support movement. Here some of these approaches are evaluated
vis-a-vis the approach presented in this report.

To obtain the dynamic component of response, the envelop
response spectra approach is wused. In this approach, the
seismic inputs are defined as the spectra -which envelop the
spectra of all the floors at which the secondary system is
supported. Such inputs, defined in terms of the pseudo-
acceleration and relative velocity spectra are shown in Figs.31
though 34 for system "A" and "B". These inputs are then used
with the fixed base model of the secondary system to obtain
response by the response spectrum approach [24].

To obtain the pseudo-static response due to it support
displacement, first the system was analyzed for each support

displacement applied individually, keeping the other supports

fixed. The responses obtained for such individual support
displacements were then combined by two, supposely,
conservative rules: (1) Sguare-root-of-the-sum-of-the-squares

procedure which assumes that support displacement are
uncorrelated and (2) the absolute sum procedure. These wvalues
are refered to as 88 and SA. These wvalues were, in turn,
combined with the dynamic component obtained above, again by
the (1) sguare-root-sum procedure and (2)° absolute sum
procedures. The response combination procedure where the

dynamic and SS are combined by square-root-sum procedure 1is
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designated as procedure S$S1. Likewise SS2 means combination of
the dynamic and S$S as an absolute sum. The parallel
combinations for SA with the dynamic response are designated as
SAl and SA2, respectively. The ratio of the values obtained by
these procedures to the value obtained by the proposed apprcach
are shown in Tables XIII and XIV for systems "A" and "B", for
comparison purposes. If a particular ratio values 1s greater
than 1.0, it indicates that this particular combination
procedure gives a more conservative estimate of the response
than the proposed approach. It is seen that for system "A", all
these procedures give rather overly conservative estimates of
response, This, however, is not true for system "B". In this
case the approach SA2, in which the pseudo-static response is
obtained by absolute sum procedure which in turn is combined
with the dynamic response also as an absolute sum, onlylgives
the conservative response in all the terms,

This evaluation indicates that these ad Thoc and
approximate rules of response combinations are not reliable and

should be used with restraints.
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CHAPTER VI
USER SUMMARY COF THE PROPOSED METHCOD
VI.1l INTRODUCTION

Although, the detailed analytical development of the
proposed method are given in Chapters II and III, all the
necegsary steps required to obtain the response of multiple
support secondary systems are given in this chapter for the
benefit of a user not interested in the mathematical details
but interested in the application of the method.

In the development of this method, it is assumed that the
secondary system 1s 1light so that the dynamic interaction
between the system and its supporting primary structure can be
neglected. With this assumption, the primary system can be
analyzed independently of the seccendary system to define the
characteristics of the input motions at the supports of the
latter system. Chapter III 1is exclusively devoted to the
development of these inputs. Herein, the steps of the procedure
which employs these inputs in the calculation of the secondary

system response are described.
VI.2 STEP-BY-STEP PROCEDURE

The following step-by-step procedure can be used for the
calculation ¢of the secondary system response.
l. Define the elements of the mass, damping and stiffness

matrices required in the following equations-of-motion:
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MSS MS& US CSS Csa US KSS KSd US 0
+ + = (6-1)

MdS Maa Ua Cas Caa Ud K&S Kaa Ua 0

More specifically, only matrices MS C

, , K , K and M
s 58 ss sa sa

are reguired. For a lumped mass system MSa is zero. The

matrices Mss’ C and Kss are n X n and the matrices KSa and

88

MSa are m X n, where n=unconstrained degree-of-freedom of

the secondary system and m=number o¢f support on the primary

system.
Define the static influence matrix [A]nxm as follows:
-1 (6.2)
[A]=(-[Kss] "[Ksal) .
Define the dynamic influence matrix [r]nxm as follows:
(e)=(IM__TIK,_ 17 x__1-1M__1) C(6.3)
S8 88 sa sa ’

OCbtain the natural freguencies and mode shapes of the
secondary system assumed fixed at the supports, as a

solution of the following eigenvalue problem:

_ 2
[KSS]{Yj} = wj[MSS]{vj} (6.4)

where wj=jth natural frequency and Y.=jth mode shape.

]
Normalize the mode shape with respect to mass matrix such

that

(vj}‘[MSS]{wj} =1 (6.5)

Obtain the modal influence vector {P

}

for each mode:

jinxl
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{PJ} = [P]'{VJ} (6.6)

Obtain the mode shape for the response guantity of

interest by simple linear transformation as

= I 6.7

where {T} is the transformation wvector which transform VY.
intq the response quantity of interest op.. If only the
-diSplacement response is required, thenlpjﬁ?j(u).

Obtain the static response influence coefficients M for

the response qguantity  of interest. L represents the
response o©of interest induced by a unit displacement of
support k, and can be obtained by a simple static solution
of the secondary system.

The total response consists of (a) dynamic, (b) pseudo-

static and (c) cross components of the response. These

individual components are calculated as follows:
a. CALCULATION OF DYNAMIC RESPONSE

The seismic inputs for the calculation of dynamic
response are defined in terms of auto, coincident and
quadrature floor spectra for the displacement and velocity
responses. The procedures for the development of these
spectra are given in Chapter III. The following nctations
have been used to designate various spectral quantities
earlier in the report. All these spectral guantities pertain

to an oscillator of frequency wj and damping ratio Bj.
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FLOOR SPECTRAL INPUTS

de(wj) = auto displacement spectrum for the kth

floor (See section III.2.1)

Rvk(wj) = auto velocity spectrum for the kth

floor (See section 11I1.2.1)

Cdkz(wj) = cross coincident displacement spectrum
for floors k and & (See section III.2.2)
Cvkz(wj) = cross coincident velocity spectrum for
floors k and & (See section III.2.2)
Qdkl(wj) = cross guadrature displacement spectrum
for floors k and £ (See section II1.2.2)
Cvki(wj) = ¢cross quadrature velocity spectrum for

floors k and & (See section I111.2.2)

It is assumed that all peak factors are equal. Thus, all the
peak factors, required for generation of these floor
spectral inputs according to Chapter III, should be taken

equal to 1.
The dynamic¢ response component is now defined as

22 1§ b
R = ( D:p - p..P. I . (6.8)
dd d 21 =1 i3 ko1 ¢21 ik jaakeij

where Pikz the kth component of the influence

vector {Pi},

Pi= ith modal response quantity,

n'= the number of modes desired to be included in

the analysis € n.

Iakﬁij is defined in terms of wvarious floor response
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spectral gquantities for wvarious combinations of i, j, k and
L as follows:
i) k=1 and i=j

I = RZ (wy)

akkjj = Tdk‘7J (6.9)
ii) k=t and i#j

- 2 2 2 2
Tkt = A Rgi(ug) + B Rylug) + € Ry lug) + 0 Ry (ug) (6.10)

Coefficients A, B, C and D are obtained as a solution of

[Yijl{Vl} = (W)} (6.11)
where
{V;)'= (A, 8, C, D) (6.12)
- 2 2 2 :
(wl} = ((mimj) . (4518jmiwj - wy - wj), 1, Oy {(6.13)
4
wJ #] w? 0
205,2 4 2,02
2us{285-1 : ogé_ 4
[¥i;] = wylesg-1) sz ) 2ui(283-1) 1 (6.14)
1 2wj(28J~1) 1 2w§(23§_1)
i 0 1 0 1

iii) k#t and i=j

2
Lakzii = Cawaley) (6.15)
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iv) k#2 and i#j

2

= 2 2 2
Iakzij = (A Cdkl(mi) + B Cvkl(mi) + C Cdkl(wj) +D Cvkz(wj)}

2
- {E Qg lug) +F stz(“’i) + G ngg(mj) + H stg‘(m‘j) (6.16)

Coefficients A, B, C and D are the same as obtained in
Eg.(6.11). Coefficients E, F, G and H are ontained as a

solution of the following eguation:

[Yij“"’z} = {H,) (6.17)
where
{(V,}'= {E, F, G, H} (6.18)
tigh'= {2wju;(Biu5-Bju;), 2(84u -Bw;), 0, 0) (6.19)
and the matrix [Y..] is same as in Eg.(6.14).

i3

b. CALCULATION OF PSEUDO-STATIC RESPONSE

The pseudo-static component can be obtained from the
relative or absolute displacement formulations. Here,
however, only the steps of the approcach employing absoclute
displacement formulation are given.

The pseudo-static response is given by
LY. m m o
de - kzi-l Uak * kzl 221 ”k“z‘skzuakuaz (6.20)
kK*g

where ﬁa the maximum displacement of floor k, {(See

k:
Section III.3)
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akﬂ: correlation coefficient between the displacement
of floors k and f. (See Section III.3 for its

calculation)

c. CALCULATION OF CROSS RESPONSE

The c¢ross respcnse 1is obtained frem the fcllowing

equation as

2= ] oy 3 i (6.21)
pd d j=1 ! 151 k=1 " 1k adkz1 ’
where the term I .. . is defined as follows:
adkfi
i) k=4
I =AR2 2 -
adkki ak(#g) + B Ryg(w;) +0 0, (6.22)
where §k= maximum velocity of floor k (See Section III.4 for

its calculation). Coefficients A, B and D can be obtained from

Egq.(6.11) by setting wj=O or they are defined as

A= (a62-1)
D = -1/
ii) k#g
I = (A Co (w:) + 8 € (w) +0 6t 0,0
adkki dks vka ‘¥4 ke kY
2 2 w T
- (B Qg (wg) + F Qg (wg) +H e, 0,03 (6.24)

Coefficients A, B and D are given in Eg.(6.23). Coefficients E,

F and H can be obtained from Eq.(6.17) by setting wj=O or they
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are defined as:

-
4Bi/ui(281-l)

1
il

— 3
F o= ZBi/wi (6.25)
- . 3
H = 2Bi/ui
6;E= correlation coefficient between the velocity of floor k
and ¢ (See Section III.4) 5§£= gquadrature coefficient between

the velocity of floor k and 2 (See Section III.4)
Therefore, the total response is calculated as

2 2 2

The procedure outlined above can be used for the
calculation of force or absolute displacement response of the

secondary system.
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CHAPTER VII
SUMMARY AND CONCLUTIONS

VII.1 GENERAL SUMMARY

A rational response spectrum procedure for seismic
analysis of multiply supported secondary systems is developed.
The development of the procedure is based on the random
vibration analysis of structural systems subjected to several
correlated. inputs applied at several supports. The support
inputs are defined in the spectral form like floor spectra, and
herein the methods are developed to characterize the correlated
support motions in this form. The information about floor
displacements and velocities as well as correlation ameng these
quantities is also reqguired as input.

The total response is expressed as a combination of the
dyvnamic and pseudo-static parts. The dynamic partris associated
with the inertial effects of the support accelerations, whereas
the pseudo-static part 1is due to the displacement of the
supports relative toc each other. Since these two components of
the response are correlated, this correlation must be properly
reflected in the analysis. The procedure developed here include
this correlation through the terms, herein being referred as
the cross response terms.

The development of the floor spectral inputs, of course,
requ;res the dynamic analysis of the supporting primary
structure. The correlated support motions are characterized in

terms of the auto and cross floor response spectra for the
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displacement (or pseudo-acceleraticn) and velocity response of
the oscillators on the floors. The cross spectra consists of
the two components: (1) the coincident and (2) the gquadrature
floor spectra. These two spectra must also be defined for the
displacement and velocity response of an oscillator. The
methods are developed to obtain such cross floor ,spectra even
for the special case of a seéondary system with one of its
supports being on the ground,

The methods for development of these wvarious floor
spectral inputs also employ response spectrum approaches. Thus,
the ground response spectra can be directly used in these
methods for generation of floor spectra.

Various nqmerical results, showing the development of
various floor spectra are presented. These floor spectra are
then used as inputs in the analysis of the secondary systems
for the calculatién of the force responses. The numerical
results for these response guantities are alsc presented.

For the benefit of a user not interested in the
analytical developments presented in various chapﬁers, a step-~
by~-step procedure for the implementation of the method is

provided in Chapter VI: USER SUMMARY OF THE PROPOSED METHOD.

VII.2 DISCUSSION AND CONCLUSIONS

The analysis presented in this report clearly shows that
for a proper seismic evaluation of the multiply connected
secondary system, it is necessary to define the seismic inputs

not only in terms of the (conventional) auto floor displacement
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spectré, but also the (1) aute relative velocity spectra and
(2) the cross floor spectra for displacement and velocity
responses. A complete description of the cross floor spectra,
characterizing the correlation between any two floor
accelerations, requires the definition of the coincident and
quadrature flooxr response spectra. In addition, the
displacement and velocity responses of various interconnected
floors and their correlation must also be defined as a part of
the input for seismic analysis of such systems.

The analytical feasibility of the methods to obtain
various types of floor response spectra, and also the effective
use of these spectral inputs in the calculation of the force
and displacement responses of the secondary systems, are
clearly demonstrated by the numerical examples.

The comparison of the numerical results obtained by the
proposed approach with the results obtained with the help of
some currently used procedures, shows that the latter
procedures may not always provide a conservative estimate of
the response. Since some of the currently used procedures,
such as an enveloping of the support point floor spectra and
the rules for c¢ombination of the dynamic and pseudo-static
responses, lack analytical rationality, their use will not give
analytically consistent results.

Often in the designs of such secondary systems, the
pseudo-static component of the response is considered secondary
of self limiting type in nature because it is induced by the

differential displacements of the supports (anchor movement
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stresses). See ASME code, section III, Appendix N 1. For
such coﬁponents of stresses, higher allowable stresses can be
used. Although, there are some interpretational differences in
considering these stresses as secondary self limiting stresses,
their separate rational evaluation 1is possible in the proposed
approach. In case one intends +to treat these stresses
separately from the dynamic component of stresses, their
correlation, which can sometime be very significant as
represented by the cross term , must not be ignored. It is
writers personal opinion that no distinction be made between
the dynamic and pseudo-static components of stresses with
regard to the allowable stresses and that all these stresses be
considered as primary stresses in design evaluation of the
secondary systems.

The approach 1s wvalid for linearly behaving light
secondary systems for which their dynamic interacticn with the
supporting primary structure can be ignored. In practice many
secondary systems are usually light enough, even for the tuned
case, such that this interaction is insignificant and thus a
decouple analysis of the two systems can be quite juétified.
Such decouple analysis also facilitate the design of such
systems. The combined analysis to incorporate dynamic
interaction, on the other hand, will reguire the information
about the two systems simultaneously which may be difficult,
and sometimes practically impossible, to cbtain. The methods to
incorporate the dynamic interaction are presented in a separate

report [26]. However, the proposed approach can be used with
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confidence to obtain the improved response results whenever

dynamic coupling is considered unimportant.
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TABLE I: Natural Frequncies (rad/S) and

Participation Factors of the Primary System.

i Mode Natural i Participation

i I Frequency i factor

| |

| 1 6.98 | 383.8

! -2 20.38 ; —120.é

} -3 g 32.12 1 -63.7 }
} 4 41.26 } 35.4 |

E 5 | 47.06 i ~l6.2 E
L | ]

2

TABLE II: Mode Shapes of the Primary System - [ftx10 “].

I | | 1 ] 1 t
| Node | Mode 1 | Mode 2 | Mcde 3 | Mode 4 | Mode 5 |
l | | | | | |
I I | } ] | |
k | l i l 1 1
| 1 | .093 | -.249 | -.326 | .299 | -.178 |
| | i | 1 i |
| 2 | .178 -.226 -.093 | -.249 | .299 |
| i | | |
| 3 [ .249 | -.178 .299 | -.093 | -.326 |
| | | | |
| 4 | .299 .093 178 | .326 | .249 |
| | | | | |
| s | .326 .299 -.249 | -.178 | -.093 |
| | | | |
1 | | 1 {
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TABLE II1I1: Natural Freguencies of the Secondary System (rad/S).

1 |
| Mode | Natural

| | I
| | Frequency |
| [

| &

| 1 17.32

| |

} 2| 24.49 |
| | |
| 3| 34.64 |
| | |
l | }

1

TABLE IV: Mode Shapes of the Secondary System - [£tx10 ~].

T

I T 1 1
{ Node Mode 1 | Mode 2 | Mode 3 |
| | | 1 |
1 | { | |
I l ! T |
| 1| 577 | 877 | .577 |
| | l | !
| 2] ~-.707 | .0 | .707 |
| 1 l | |
[ 3 ] .408 | -.816 | .a08 |
| | | l |
L i | i |

TABLE V: Dynamic Influence Coefficient ij.

i 1

1
Support | Mode 1 Mode 2 | Mode 3

| 1 | =-5.773 -5.773 -5.773
2 3.535 .0 | -3.535
|
3 -1.020 2.041 1.020
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TABLE VI: Maximum Absolute Support

Displacements and Velocities.

| 1 1
| Support | Maximun | Maximun I
I | | I
| | Disp. [£ft] Vel. [ft/s] |
I | I
| I 1
| Ground | .300 .400 - |
| | |
| 2 |  .309 .505 |
| | I
| 3 | .315 | .588 |
| I | |
| 4 | .319 .665 |
| | |
| 1 ]

TABLE VII: Displacement Correlation Coefficients.

1 1 1

Support | Ground 2 3 | 4 I

| | I | |
s {

Ground 1. .991 .978 | .970 |

| I | | I
2 .991 1. .998 | .994 |

| |

I 3 | .978 | .98 | 1. | .997 |
I I |

4 .970 .994 | .997 | 1. |

I | | | 1 |
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TABLE VIII: Coincident Velocity Correlation Coefficients.

] ! 1 |

Support | Ground | 2 | 3 | 4 |
| | | | l

| | | |

Ground | 1. .701 | .549 |- .451 |
| I | l

2 | .701 1. | .962 | .8%0 |

l | I |

3 | .s49 962 | 1. | .975 |

[ | | | | |
4 | .451 .890 | .975 | 1. |

| \ | |

i I ] |

TABLE IX: Quadrature Velocity Coefficients.

1

| T T T ]
| Support | Ground | 2 | 3 | 4 |
| l I | | [
: : % |
| Ground 0. ~1.038 | -.837 | -.684 |
| | | | l
| 2 1.038 o. | .366 | .353 |
| | | [
| 3 .837 -.366 | 0. | .203 |
| | | [
| 4 .684 ~-.353 | -.203 | 0. |
| | | |
l I\ { )
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TABLE X: Fdrce Response - [Lb].

Configuration "A"

Configuration "B"

[

|

|

% T l T s

| Elem. | Combined | Proposed Elem. | Combined | Proposed
| I | | | !

| | system | method | | system | method
| I l | l

| (1) | (2) | (3) (4) | (3) | (6)

| | E E

| 2-6 | 713.2 | 708.6 | G-6 | 1120.3 | 11i4.6
| | | | i

| 6-7 | 378.8 | 426.2 | 6-7 728.4 | 738.4
| | | | I |

|  3-7 | 513.9 | 532.1 | 2-7 836.5 | 822.3
| I I | l

| 7-8 | 367.2 | 367.5 | 7-8 529.0 |  496.6
1 l | | |

|  a-8 | a75.5 | 476.9 | 3-8 | 858.9 | 847.1
| | ! I |
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TABLE XI: Fractional Contribution of the Dynamic, Pseudo-~

static and Cross Components to the Total Force Response

Variance of Various Members in Structure "aY.

I S T T 7
| Elem. | Total Dynamic | Pseudo-static | Cross |
| | I -
| | variance component component component |
I I I |
| (1) | (2) | (3) I (4) (3) I
| | |
I I } I
| 2-6 502149. . 455 .156 .388 |
| |
| 6=-7 | 181702. | . 307 I .431 | .261 |
I | I | I
| 3-7 283203. | 1.07¢0 I .008 | -.078 |
| I I I I
| 7-8 135124. | . 408 | . 442 | . 148 ]
I | I I I |
| 4-8 | 227473. | 1.794 | .262 | -1.057 |
| I I | I |
L 1 t | 1 |

TABLE XII: Fractional Contribution of the Dynamic, Pseudo-

static and Cross Components to the Total Force Response

Variance of Various Members in Structure "B".
i 1 1 | I i
| Elem. Total | Dynamic | Pseudo-static Cross I
| | | |
{ | variance % component % component | component %
(1) (2) | (3) | (4) (5) I
| I | |
I I I I
| G-6 | 1242430. | .623 | .287 .089 |
| I |
6-7 545329. | .152 I . 654 | .193 I
| I | |
2-7 676232. | 1.010 | 067 -.078 |
| I I | |
| 7-8 | 246666. | .286 I .631 I .082 |
| I | | | I
i 3-8 | 717683. | 1.03¢2 | .216 I, -.256 I
| I ! | | |
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TABLE XIII: Comparison of the Results Obtained by
Various Response Combination Rules and Proposed

Approach for Structure "A".

| T 1 1 T

| Elem. | Proposed | 881 | 882 | sal SA2
I I | ! l

| | method | ratio | ratio | ratio ratio
l l | | |

: : { % %

| 2-6 | 708.6 | 1.544 | 2.186 | 2.160 | 2.949
l | - | | | -

| 6-7 | 426.2 1.948 | 2.475 3.176 3.743
l I l

| 3-7 | 532.1 | 2.315 | 2.703 | 3.678 | 4.080
| I | |

| 7-8 | 367.5 2.918 | 3.519 4.330 4.961
| l |

|  4-8 | 476.9 | 2.245 2.693 | 3.338 | 3.805
| ! | i |

TABLE XIV: Comparison of the Results Obtained by
Various Response Combination Rules and Proposed

Approach for Structure "B".

| T T l l
| Elem. | Proposed | SSi1 | Ss2 | sal | saAz |
| i | l | |
I | method ratio | ratio | ratio ratio |
| | l | I
! { I 7 > I i
| c-6 | 1114.6 .786 | 1.072 | .871 | 1.223 |
| I I | |
| 6-7 | 738.4 .689 | .949 | .892 | 1.178 |
I | | | | l
| 2-7 | 822.3 | 1.086 | 1.327 | 1.489 1.739 |
l | | | 1 | I
| 7-8 | 496.6 | 1.733 | 2.164 | 2.268 | 2.715 |
| l | [ E | |
| 3-8 | 8a47.1 | 1.011 | 1.255 | 1.325 | 1.578 |
| I | | | | |
L 1 i | 3 | §
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FIG.1l: Structural Configuration "A".

FIG.2: Structural Configuration "B".
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APPENDIX I. VARIANCE OF THE DYNAMIC AND CROSS RESPONSES

In this Appendix the variances of the dynamic and cross
responses, - given in Egs.(2.17), (2.71) and (2.72), are

developed.
I.1. VARIANCE OF THE DYNAMIC RESPONSE

The covariance function of the dynamic component is

obtained as follows
Rga(t1stp) = E(s9(t])s9(tp)] (1.1)

Replacing Eg.(2.16) into (I.1) gives

n

m
Raa(trsta) = 1 Z o1 4ELay(t])g (t,)] (1.2)

J

where the generalized coordinate can be expressed as a solution
of Eg.(2.15)
t .
q;(ty) = IO (Py}' U (8) 3y (ty-0,)de, (I.3)
in which hi(t) is the impulse response function of Eg.(2.15).
Replacing Eqgq.(I.3) into (I.2), and after some standard

manipulations, we obtain
AT
Riq(ty,ts) = ) Ef(P.}'{U_(o U (s (P,
ddti1et2l T L) ) PPy Y i1 Ug(0)) 31U (85) 1" (P ]
hi(tl-el)hj(tz-ez)delde2 (I.4)

in which the expected wvalue can be replaced by

- . m m
ELEPy1" (Uy(ey) 1 U, (0p) 1 P41 = 21 121 PicP JlE[U (e (8] (1.5)
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Assuming stationary response, the ecpected value of the
absolute acceleration between floors k and ¢ can be obtained
from the inverse Fourier transform of the cross spectral
density function of the absolute acceleration as follows

@ fw(s

. " -8,)
E[Uak(el)uaz(SZ)I = f_m Qakn(‘”)e 2 du

(I.6)

Substituting Egs.(I.56) and (I.5) into (I.4) and introducing the

change of variables u ztl-—el and uzmtz—ez, gives

1
1 1 ey b T ) (0 mylope ™y
Ri{tq,t5) = P3P P..P. ) w h.(u,)e du
dd( 1 2) 121 jzl i3 k21 51 ik’ ja ¢ Taka o | 1 1
t
2 ~fwu fu(t,-ty)
271
(IO hj(uz)e 2du2) e dw (I.7)

The stationary value of the covariance function is

n n m @ im(tz-tl)

m
Ryq(tysty) = . P, P *H,
aaltiot2) = L jzl S EZI i3 I Sk (o)HiHse du (1.8)

Finally, the variance of the dynamic respcnse is obtained

setting t1=t2 in the covariance function. That is,

2 - 1] D ] [
oL, = piP. P. P ¢, {w)H*H.dw (1.9)
dd o4 ISR A ) Tk g% @ “aks LN

1.2. VARIANCE OF CROSS RESPONSE

The covariance function of the <c¢ross component is

obtained as follows
Rgp(tyota) = E[sd(ty) sP(t,)! (I.10)

Replacing Egs.(2.16) and (2.55) into (I1.10) gives
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nom
Rap(t1stp) = izl jzl Py, E(qi(tl)uaz(tZ)] (I.11)

Substituting Eq.(I.3) into the expected value in Eg.(I.11)

n tl

Ryp{t1sta) = 121 zzl Py Io E[(P, 3" (U (8, (L) 1h (ty-8,)d8y (1 12)

or

t
n m m R
Rgp(t1ata) = 1 1 oqny 1 Py [ ELU (80U, (E))Ihy(ty-81)dey (1.13)
i=1 2=1 k=1 0
The expected wvalues in Egs.(I1.11} and (I.12) can be

substituted in terms of the cross spectral density function as

follows

. @ iw(t
E[Uak(el)uaz(tz)] - f q’adkp.(‘”) 91 |

-0

2701
duw (I.14)

Emploving Eqg.{I.14) and introducing the change of wvariable

u1=t1-61, Eq.{I.13) becomes

n m m @
faplt1te) = 121 Ly i kZI P T ada(®)
t .
1 fuu fw(t,-t,)
(IO hy(u;)e 1dul)e 2 1y, (I.15)

. As t1 approaches infinity, the correlation function in

Eg.(I1.15) becomes stationary as follows,
n m m

fap(taete) = 1 Loy L Pa T oaquale) MY e * M (1)

Following the same steps, it can be shown that

n m m
pal1:%2) = 121 zzl "1 kZI ik I-m Pdaks ()5 B

Finally, the variance of the cross response is obtained
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by setting t1=t in the covariance functions in Egs.(I.16) and

2
(I.17) as follows

:

2 n m il @
TR L A LT R N O L2 (1.18)

? n m

m :r:
i=1 =1 Pimy kgl Pik I_m ®dagk (w)Hdw (I.19)
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APPENDIX II. FREQUENCY INTEGRALS - RESONANCE CASE

In this Appendix the functions required for‘computing the
integrals IR(al’aZ)’ Is(az,a3) and IE(a4) in Egs.(3.38), (3.49)
and (4.38) are obtained.

To define the frequency integrals for the resconance case

an approximation for the following general integral

I FTY:
I, = Io w IHOI @g(w)dw (11.1)
is required. To evaluate this approximately, the PSDF of the

ground acceleration, @q(w), and the fregquency response function

can be written as follows {(see Fig. 35),

vgle) = 9 (ug) + glu) (II.2a)
|HO]4=i§+f(m) (II.2b)
o]

Replacing Eg.(II.2a) into (II.1) gives
- o [ R ITRT: ®
11. = Qg(wo) IO w IHO] dw + IO w1g(m)‘Hol4dw (II1.3)
Substituting Egq.(Il.2k) into the second integral in Eg.(I1I.3)

- R TTY 17 2
Iy = ogluy) Io w [Hy|"du + 5 fo w g(w)de + IO w'g(e)f(u)de  (II.4)
o , :
The last integral in Eg.(II.4) can be split as following

|
i

o

: e ] .
J,watw)ds = [ w'g()f(u)du + [ wig(w)f(e)ds  (1I.5)

“o
in which wé is a fregquency slightly higher than w, as shown
in Fig. 35(b). From Fig. 35(e) we observe that the first

integral in Eqg.(II.5) 1s approximately =zerc as between 0 and
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Wa s f(w) is zero and between Wy and Wy, g(w) is nearly equal to

zero. Furthermore, we assume that f{w) = wl/wg for w > wg

{which is indeed true for large w). Thus,

@ 'i o
J w'gw)f(u)de = - l§ [ glw)de (II.6)
0 W !
0 ¢
substituting Eqg.(II1.6) into (II.4), we obtain

1
o) w

- iy (4 1 0
I'| @g(wo) f w IHOI duw + 8 J‘ w1g(w)dw (I1.7)
0 w. 0
0
Using Eq.(II.Z2a) to define g(w) in terms of @g(wo) and @g(w),
we obtain
- () 7+ “¢
1.=¢(m)fw"'|H[4dw-¢(w)—-———— f m"w()d (11.8)
i g%l Y o g g®/ee '

(1+l)w 0

This integral is also given by Vanmarcke (28). However, the
authors were unable to find the proof of this in any reference.
Hence the above proof was developed and is given here for ready
reference. This approximation will now be used to obtain
IR(al,az), IS(aZ’aB) and IE(a4) required in Chapters III and
IvV.

CASE 1: Integral IR(al'aZ)

- 8 6 2 4
Ip(a).3,) = {m (ayug + a5u0u)[H_| 74 (0)da (I1.9)
Using Eq. (I11.8), IR(al,aZ) can be approximated as follows

IR(al.az) = ¢g(mo) {m (alwg + azwow )IH | dw - 9 (m )m 2{a ay + a2/3}

+ 4, [ lbg(u) Ydw + - _I' w2¢ (w)dw (I1.10)
0 0 0

Replacing the limits in the first integral by the cut-off
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frequency W it can be obtained inclosed form as follows

Ye

) (alwg + azmng)chl“clm = ul (I1.11)
=W
c

Expression for Cm is given later in Eq.(II.31).
The second frequency integral in Eqg.(II.10) which

represents the partial area under the PSDF is denoted by

w

o
I = {w @g(w)dm (11.12)
0 .
To express Ib in spectral terms, the following

relationship between the mean square wvalues of the pseudo-

acceleration and relative velocity is used [22],

4

on

.2
1go = m0I290 1y (II.13)

in which I1go and Izgo are defined in Eq.(3.37). Thus,

4

Iy = Tygoug(l = Flug)} (I1.14)

where

2
Flag) = Tpge/ (wglygp) (I1.15)

The third integral in Eg,.(II.10) which represents the second

moment of the ground acceleration is denoted by

w

0

Ib2 = {w w2¢g(w)dw (II.16)
o)

To express Ib2 in spectral terms, the relative velocity ground

spectra, I can be approximated as follows

2¢go’
W
(o}
- 2 2
1290 = {m w tPg(m)IHO! dw
o
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W
Cc
~ 2 2 2 1
lIlg(wO)_[m w ,HOI dw - Og(w) 3_&!; + 7 Ib2 (I1.17)
C mo
where
W
C
22 2
{w W IHOI dw = mCDm (I1.18)
Cc

The expression for Dm is given later by Eqg.(II1.31). Solving

Eq.(II1.17) for Ib2’ we obtain

I 4

2 .
b2 = molzgo - wo@g(wo)wc{nm - 2/3 r} (I1.19)

Finally, to obtain ég(wo) in terms of response spectrum

values, the approximation for Ilgo is used:
W
v c 2
Ilgo = | ¢g(w)|Hoi dw
—
o
o2 2 .1
x ¢g(wo) {w JHol dw - @g(wo) S+ L, (I1.20)
C Yo Yo
where
w
c
4
w J_'w IHolzdw =uf (II.21)

c

The expression for B is provided in Eg.(II.31). Replacing

Egq.(II.14) into (II.19) and rearranging terms gives
o (w) = wil Flu)/{E - 2r)
g\ o 0 1go” ‘¥o’/ 5n Ye (11.22)

in which r = w_/u_.
o’ "¢
Substituting Egs.(II.11), (11.14), (II1.19) and (11.22)

into (I1.1C) and after some algebraic manipulation, we obtain

=0 , )
Tp(aysay) = wgly ([FT(w)C) + 3, {1 - Flu )} + PO P (3.38b)
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where C% and Dh are as follows:

= [Cm - 2r(a1 + a2/3]/(Em - 2r)

(11.23a)
=1 - (0 - 2r/3)/(E - 2r) (11.23b)
CASE 2: Integral Is(az,a3)
I(a,a)=fw(aw6w2+a44)lH]4 1.2
31720730 A% 3% 1My -‘I’g(w)dw (I1.24)

Using Eqgq.(I1I1.8), I (az,a } can be approximated as follows

6 2 a, 33
Is(ay,aq) = Qg fm (apmgu” + au o ]H ] du (wo)2w0(§_ + 22
a, “o a, “o
+ ~% | w2¢g(w)dw + ~% [ w4¢g(w)dw (I1.25)
W it} w V]
o "o o Yo

It can be shown that the last integral in Eq.(II1.25) is small
in comparison with the other terms and can be neglected.
Replacing the symbolic limits in the first integral in terms of
the realistic 1imit with the cut-off frequency W and

evaluating it in closed form we obtain
f (ﬁ2w6w2 + a [H , duw cFm (II.26)

where Fm is defined by Eg.(I1.31) later.
Replacing Egs.(I1.19), (I1.22) and (II.26) into (II.25)

gives Eqg. (3.49b)

Flug)Fl + il (3.49b)

I =
(aa,a ) 2”0 2go m

o lgo

'] .
where F_ is
m
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= [Fm - 2r(a2/3 + a3/5)]/(Em ~ 2r} (I1.27)
CASE 3: Integral In(a,)
= {w a4wow ]H %4 (11.28)

Using Eq.(11.8), IE(aQ) can be approximated as follows

d

I(a)=®(w)f aqmow ]H '4dwwo(m)2w
a, “o
7 6
+-m—6 _Lu w lbg(w)dw (II1.29)
0 0

It can be shown that the last integral in Eq.(II.29) is small
in comparison with the other terms and can be neglected.
Replacing the limits in the first integral by the cut-off

frequency W and evaluating in closed form we cobtain

Ye

i 4wow Hil du = w G (II.30)

where Gm is defined by Eg.(I1.31) later. Replacing Egs.(I11.22)

and (I1.30) into (II1.29) gives Eq.{4.38a)
fgag) = Iy, OF(w )(8, - aq 2r/7)/(E_ - 2r) (4.38b)

The functions ¢, D, E_, F and G used earlier are
m m m m m

defined as
Cm = Am(r’ao’al’HZ’o’o)

Dm = Bm(rasoalso)
- IT.31
£ = B,(rs8,,0,1) ( )
Fm = Am(r,eo,o,az,a3,0)
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G = Aplr.s,,0,0,0,a

m a)

in which the functions Am and Bm are related to the following
integrals
mCAm(r,sO,al,az,a3,a4) =

W

C \
= 8 6 2 4 4 26 4
f_w (alwo tauge” ¥ dquge + auuge )]Hol duw (II1.32)
c .
. 2 2 4 2
w.B (r,85.8,b) = f~w (awgu® + bug) [Hy | “du (I1.33)
¢

Equations (II.32) and (II.33) can be obtained in closed form to

define Am and Bm as follows:

Am(rgSO;alsazsa3’a4) =

m 2N, +m (l+r2) - 2r/1~82

1 v m 0,
= ot g 4 " N

2r/1—80 (1+r7) + 2r/l-sg4
] 2N2{(1*r2) . 2a§r2} _ m2/2(1+r2)

ré(1-88) ((1-r8)? + ae¥r?

0 0
2N, + My/2 1er? - 2rv1-gl
- in | ] (11.34)
4r3(1-88) v -sg 1+r2 + 2r/1—88
with

Ny = -(rz/ISBS)[a4(l—4sg)+a3+a2+al(1+4e§)]

Ny = -(V4/15ﬁé)[(da+al)(l—4sg)+a3+a2]

my = (r2/1685) [(a4+a;) (1+dsd)+agra, |

y ) (11.35)
my = v /2[2(1-230)a4+a3-all
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=
—_
3

= ml/Zisor

=
~nN
i

= m2/4150r
and
Q. = 2(n-8) r<l

= 7 r=1 (I11.36)
29 r>1

in which & = tan"l(28,/(1-r|%). And,

B(ri85.2,b) =
m3 2N3+m3 1+r2 - Zr/l-sg
= 8. + an | 1 (11.37)
28gr 1 7 2 7
2rv1-8 I+r° + 2rv1-8
0 0
where

my = (a+b)ré/r

(11.38)
Ny = ~bré/2
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NOTATION

[A]l= Pseudo-static influence matrix defined by Eg.{2.54).

A,B,C,D= Coefficients of partial fraction.

C4= Peak factor of the design response.

Cdp= Cross covariance between dynamic and pseudo-static parts
cf the response.

Cdj= Peak factor associated with auto displacement spectra.

C .= Peak factor associated with auto relative velocity

spectra.

cvk= Peak factor associated with the relative displacement of

support k.

cuk= Peak factor associated with the absolute displacement of

support k.
cdg= Peak factor for the ground displacement.
Cvg= Peak factor for the ground velocity.

Cdki(wi)z Coincident displacement spectra between floors
k and ¢t defined by Eg.(2.43).

Cvkl(wi)= Coincident velocity spectra between floors k and
£ defined by Eq.(2.44).

Cpkﬂ(wi)= Coincident pseudo-acceleration spectra between
floors k and ¢ defined by Eq.(2.47a).

Cdgk(w')z Coincident displacement spectra between ground and
floor k defined by Eq.(4.9).

Cpgk(wi)= Coincident pseudo-acceleration spectra between
ground and floor k defined by Eq.(4.10).

Cvgk(wi)= Coincident relative velocity spectra between ground

and flogr k defined Eg.(4.32).



148

Cm= Expression defined in Appendix II.

Dg= Maximum ground displacement.

Dm= Expression defined in Appendix II.

E[.]= Expected value of [.].

Em= Expression defined in Appendix II;

Fm= Expression defined in Appendix II.

F(wi)= Expression defined in Appendix II,

Gm= Expression defined in Appendix II.

Hi= Complex ffequency response function defined by Eg.(2.18).

hi(t)= Impulse response function.

Iakzij: Frequency integral defined in Eg.(2.20}).

Iadkgiz Expression defined by Eg.(2.78) and (2.79).

Ilki'IZkim Expressions defined by Eqg.(2.34).

IBin’Iéin’ISkEi'IGRQiz Expressions defined by Eg. (2.53).

I4k2‘16k2= Freguency integrals defined by Egs.(2.81) and

(2.82), respectively.

'Ilgr’I2grE Expressions defined by Eq.(3.37).

IR(al,a2)= Frequency integral defined by Eg.(3.38).

IRl’IR2= Frequency integrals defined in Eq. (3.39).

Is(al,a2)= Frequency integral defined by Eg.(3.49).

ISl’ISZZ Frequency integrals defined in Eqg.(3.50).

Ilg’IZg: Expressions defined by Egs.(3.94) and (3.95),
repectively.

IE(a4)= Freguency integral defined by Eg.{(4.38).

[MSS],[CSS],[KSS]= Mass, damping and stiffness matrices of the

active degree-of-freedom of the secondary

system.



149

(M__1,[IC__]1,[K_ ]= Mass, damping and stiffness matrices
associated to support points of the
secondary system.

[Msa],[csa],[Ksa}: Mass, damping and stiffness cross matrices
between active an support points.

(M],[C], [K]j= Mass, damping and stiffness matrices of the

supporting primary system.

M(w)= Expression defined by Eq.{(2.37).

m= Number of support of the secondary system.

N(w)= Expression defined by Eqg.(2.26).

z
I}

Number of modes of the primary system.
n= Number of active degree-cf-freedom of the seccndary system.

n'= Number of modes of the secondary syétem included in the

analysis.

Py 1= 5 influence vetor defined in Eq.(2.15).
t

Pik= k h component of influence vector {Pj}.
Pdi: Peak factor associated with coincident displacement
spectra.
P .= Peak factor associated with cecincident veiocity spectra.
Qd.: Peak factor asscociated with quadrature displacement
spectra.
Q. .= Peak factor associated with gquadrature velocity spectra.
Qdkz(wi)z Quadrature displacement spectra between floors
k and ¢ defined by Eg.(2.45}).
kag(wi)= Quadrature velocity spectra between floors k

and ¢ defined by Eg.(2.46).

kag(wi)é Quadrature pseudo-acceleration spectra between
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floors k and ¢ defined by Eq.(2.47b).

quk(wi)— Quadarture pseudo-acceleration spectra between
ground and floor k defined by Eqg.(4.25).
Qvgk(wi): Quadarture relative velocity spectra between
ground and floor k defined by Eg.(4.32).
ngk(wi): Quadarture displacement spectra between ground
and floor k defined by Eg.(4.24),
qj(t)= jth principal coordinates of the secondary system.
Rd= Maximum or design response defined by Eq.{(2.11).
Rs(tl,t2)= Covariance function of the response S(t) defined
by Eq.(2.12).
Rdd= Dynamic component of maximum or design response defined
by Eq. (2.14).
R__= Pseudo-static component of maximum or design response
defined by Eg.(2.53).
de= Cross response of the maximum or design response defined
in Eq.(2.70).
Rpk(wj)= Auto pseudo-acceleration floor spectra defined by
Eq.(2.22).
de(wj)z Auto displacement floor spectra defined by Eg.(2.22)
Rvk(ﬂj)= Auto relative velocity floor spectra defined by
Eq.(2.32).
Rakz(tl’tZ)z Cross correlation function of the absolute
acceleration between floors k and ¢2.
Ragk(tl,tz): Cross cérrelation function of the absolute
acceleration of ground and floor k.

Rdg(wr)=.Auto displacement ground spectra defined by
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-Eg.(3.34).

Rpg(wr)z Auto pseudo-acceleration ground spectra defined by
Eg.(3.34).

Rvg(wr)z Auto relative velocity ground spectra defined by
Eg.(3.41).

{r]= Dynamic influence matrix defined/in Eg.(2.9).

S(t)= Response quantity.

Sd(t)= Dynamic part of the response S(t).

Sp(t)= Pseudo-static part of the response S(t).

{T}= Transformation vector defined in Eq.(6.7).

T{w)= Expression defined by Eq.(3.18).

{Us(t)}z Absolute displacement vector of active degree-of-

freedom of the secondary system.

{Ua(t)}x Absolute displacement vector of support points.

d

{ug

(t)]= Dynamic component of displacement of the active
degree-of-freedom.

Uak(t): Absolute displacement of support k.

ﬁakz Maximum displacement-of support k.

vak(t)= Relative (to ground) displacement of support k.

Vakn Maximum relative (to ground) displacement of support k.

Vg= Maximum ground velocity.

X{w)= Expression defined by Eg.(3.13).

IYij]= Matrix of coefficients defined by Eq.(2.29).

Yr(t)= rth principal coordinate of the primary system,.

Z{w)= Expression defined by Eqg.(3.19).

@akz(w)z Cross power spectral density function (PSDF) of the

absolute acceleration at supports (or floors) k and 1¢.
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§R

akl(“)z Real part of the cross PSDF %a

§I

akz(w): Imaginary part of the cross PSDF @akl(w).

ke W)

édkz(w): Cross PSDF of the displacement at support k and 2.

§sz(w)= Cross PSDF of the relative displacement of supports
k and .

éadkz(w)= Cross PSDF cof the absolute acceleration of floor
k and absolute displacement of floor ¢.

@dakz(w)z Cross PSDF of the absclute displaceﬁent of floor
k and absolute acceleration of floor .

§g(w)= PSDF of the ground input.

§agk(w)= Cross PSDF of the absolute acceleration of ground
and floor k.

éakg(w)z Cross PSDF of the absolute acceleration of floor k
and ground.

édgk(w): Cross PSDF of the absolute displacement of ground
and floor k.

édkg(w)z Cross PSDE cof the absolute displacement of floor k

and ground.
R

@agk(w): Real part of Qagk(w).

I _ .

éagk(w)— Imaginary part of éagk(w).
R _

édgk(w)— Real part of édgk(w).

I _ .
édgk(w)— Imaginary part of équ(w).

0 = Variance of the response S(t).

Oqq" Variance of the dynamic part of the response Sd(t).

opp= Variance of the pseudo-static part of the response Sp(t).
opd’cdp: Cross variance of the dynamic and pseudo-static

response.
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[8]= Correlation coefficient matrix of the absolute
displacement of the supports.

8,,~ Element of matrix [§].

[8']= Correlation coefficient matrix of the relative
displacement of the supports.

6, Element of matrix [6'1.

Gig= Correlation coefficient associated with the coincident
velocity cross floor spectra defined by fEg.(3.107).

6k2= Correlation coefficient associated with the gquadrature
velocity cross floor spectra defined by Eqg.(3.111).

5;k— Correlation cocefficient between reiative displacement
of floor k and ground displacement.

ng= Correlation coefficient between absolute displacement of
floor k and ground displacement defined by Eq.(4;41).

5;k“ Correlation coefficient associated with the coincident
velocity cross floor spectra defined by Eq. (4.49).

6;k= Correlation coefficient associated with the quadrature
velocity cross floor spectra defined by Eg.(4.53).

B.,w.= jth damping ratic and natural frequency of the

secondary system, respectively.
B, w = rth damping ratio and natural fregquency of the
primary system, respectively.
pj= Meodal response in the jth mode.
k= Constraint response associated with support k.

th

Kr= r mode participation factor of the primary system

defined by Eqg.(3.3).

th

v }=r mode shape vector of primary system.

o
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(Y.1= jth modal shape vector ¢f the secondary system.

J
{l1}= Excitation influence vector.

1k= kth component of vector {1}.



