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CHAPTER 1

INTRODUCTION

1.1 GENERAL BACKGROUND

The proper seismic design of equipment and secondary subsystems

supported on primary structures is of great practical interest. Usually

these subsystems are very light compared to their primary structure.

Thus, often in their analyses for seismic motions they are assumed to be

decoupled from their supporting primary structures. That is, they

receive the input from the primary structure, but being very light they

are assumed not to affect the response of their supporting structure.

However, when an equipment is not very light or when its natural

frequency is tuned or nearly tuned to a dominant frequency of the

supporting structure, the decoupled analysis may give inaccurate

response. In such cases it is necessary to consider the effect of the

dynamic interaction between the equipment and its supporting structure

on the equipment response.

This interaction effect can be properly included in response

calculations, if the dynamic characteristics such as the mode shapes,

frequencies, modal damping ratios and participation factors of the

combined equipment and the primary structure can be obtained somehow.

The most straightforward, but impractical, approach would be to analyze

the analytical model of the combined system. This approach is

impractical for several reasons. Firstly, the matrices of the combined

system will be ill-conditioned because of the large differences in the

mass and stiffness characteristics of the two subsystems; this can cause

numerical errors unless an eigenvalue routine with extended numerical

precision is utilized. Secondly, even if one is willing to use extended
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precision in the analysis, the approach becomes impractical when several

equipment with different characteristics are to be analysed. This is

usually the case when the floor response spectra are required to be

generated at several points of a primary structure. Such analytical

procedures requiring a repeated analysis of the combined structure­

equipment system are, therefore, not adopted.

Probably, the best approach is the one in which the modal

properties of the individual systems are synthesized to obtain the

eigenproperties of the combined system. One such mode synthesis

approach has been developed by Suarez and Singh [23]. However, this

approach requires a second eigenvalue analysis of a transformed

system. Another approach is to use perturbation methods to obtain the

perturbed eigenvalues of the combined system. Obviously, these

approaches can be used only when the perturbation in the eigenvalues of

the two subsystems are small. The perturbations will be small if the

equipment attachments are light compared to the primary system. Yet

with these limitations, some useful results of practical importance can

still be obtained by the application of the perturbation approach.

The writers believe that Sackman and Kelly [11,16] were probably

the first to apply the perturbation approach for this purpose. This

approach was later utilized by Sackman et al [17], Hernried and Sackman

[8] and Gupta [5-7] in their further studies related to the seismic

response of light equipment.

This report also presents the application of yet another

perturbation scheme for calculating the eigenproperties of the combined

equipment-structure systems. This scheme is based on a systematic

application of the matrix perturbation theory, developed and applied
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earlier by Lancaster [12], Franklin [4] and Meirovitch and Ryland [14]

in a rather different context.

The matrix perturbation approach has been applied to three

different cases of the equipment and structure systems here. The first

case deals with the analysis of a classically damped [1,3] combined

equipment- structure system. The second case deals with analysis of a

classically damped primary structure supporting an equipment where the

combined system can not be treated as a classically damped system. In

the third case, the primary system itself is nonclassically damped and

thus the combined system is also nonclassically damped. These three

cases were sequentially developed, and reported in References 20, 25,

and 26. This report presents a synthesis of these papers. A common

link between these three cases is the matrix perturbation analysis which

is presented in Chapter 2. Because of the special separation of the

matrices required for the solution of the problem at hand, the

analytical details of this perturbation analysis are quite different

from those reported in References 4, 12, and 14. Also, the case of an

equipment tuned to a primary structural frequency requires a quite

different perturbation expansion scheme. The details of this scheme are

also provided in Chapter 2. This is followed by the treatment of the

aforementioned three cases in Chapters 3, 4, and 5. For each of these

cases the closed-form expressions are obtained for the eigenvalues

(frequencies) and eigenvectors of the combined system in terms of the

eigenproperties of the subsystems. Both, the tuned and detuned cases

are considered. The numerical results demonstrating the applicability

and limitations of the approach for various cases are also given in

these chapters.
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CHAPTER 2

MATRIX PERTURBATION ANALYSIS

2.1 INTRODUCTION

In this chapter we describe the perturbation analysis of a generic

eigenvalue problem. The problems to be discussed in the subsequent

chapters are the special cases of this generalized eigenvalue problem.

The case in which all the unperturbed eigenvalues are distinct as well

as the case in which any two eigenvalues are closely spaced are

considered. The first case pertains to the problem of a detuned

equipment, whereas the second case is related to the problem of a tuned

or nearly tuned equipment.

2.2 A GENERIC EIGENVALUE PROBLEM

The eigenvalue analyses of the three damping cases of the combined

structure-equipment system, described in the later chapters of the

report, show that they all can be dealt within the framework of the

following generic eigenvalue problem:

[A +£A1 +£2A2 ]1\J.=P.[B +/B2]1\J.; j=l, •••• n(2.1)
o -J J 0 -J

where the matrices [Ao] and [Bol of the original eigenvalue problem have

now been perturbed by the addition of the matrices [A1], [A2] and [B2],

which are of lower orders of magnitude. The parameter £ identifies the

order of the matrices as well as helps in keeping track of various

quantities of different orders of magnitude. Therefore, this parameter

is also called as the "bookkeeping parameter." The elements of matrix

[A1] are one order of magnitude smaller than the elements of [AQ], while

the elements of [A2l and [821 are two orders of magnitude smaller than
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the elements of [Aol. Therefore, we consider the elements of [All to

be 0(£) and the elements of [A21 and [B21 as 0(£2), where 0( •• ) means

the "order of ( •. )".

We will now analyze this eigenvalue problem to obtain the perturbed

eigenproperties in terms of the original or unperturbed eigenvalues. We

will consider two cases in which the eigenvalues of the original system

are: (1) well separated and (2) closely spaced. These cases are often

referred to as the detuned and tuned cases, respectively.

2.3 PERTURBATION ANALYSIS OF A DETUNED SYSTEM

The matrices in Eq. (1) are nxn real symmetric matrices.

Furthermore, matrices [Bol and [B21 are positive definite whereas the

other matrices are not necessarily positive definite. For this

eigenvalue problem, we now seek the conventional second order expansions

for the eigenvalues and eigenvectors of the following form:

2p. = p . + £ p.. + £ P2J' +J OJ lJ

21V. = u . + £ u.. + £ u2 . +
-J -OJ -lJ - J

., j=1, ••• , n

(2.2)

(2.3)

Substituting Pj and ~j from Eqs. (2.2) and(2.3) into Eq. (2.1) and

equating the coefficients of equal power of £ we obtain the following

hierarchy of equations:

A u.=p.B u.o -oJ oJ 0 -oJ (2.4)

O( E): A u1.+A1~oJ.=p.BU1'+P1.B u.; j=1, ••• ,n (2.5)o - J .- OJ 0- J J 0 -OJ
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(2.6)u .
-OJ
the assumed expansion have to satisfy

P2j Bo ~oj + Poj B2
The eigenvectors ~. obtained with

-J
the following orthonormality condition up to the second order terms

T 2
IV· [B + £ B21 IV. = <S ..-1 0 -J 1J

., i,j=l, ••• ,n (2.7)

where <Sij is the Kronecker delta. SUbstituting Eq. (2.3) in the above

equation and comparing the coefficients of like powers of £ we arrive at

O(E) :

uT. B
o

u . = <S ..
-01 -oJ 1J

U
T . T B 0Bo ul' + U1 . u. =-OJ - J - J 0 -OJ

., i,j=l, ••• ,n

(2.8)

(2.9)

T T T Tu . B u2 · + u . B2 u . + u1. B u1 . + u2 . Bu. = 0 (2.10)-OJ 0 _ J -OJ -OJ _ 1 0 - J _ J 0 -oJ

Following Meirovitch and Ryland [141 we expand the first order

correction terms u1 ., using the eigenvectors of the unperturbed
- J

system u . as the base vectors, as fo 11 ows:-oJ
n

u1 · = I 8'k u k
- J k=l J -0

., j=l, ••• ,n (2.11)

where the coefficients 8 jk are yet to be determined. Premultiplying Eq.

(2.5) by uT. and sUbstituting u1 . from Eq. (2.11) we obtain
-OJ - J

(2.12)

where Eqs. (2.4) and (2.8) were used in arriving at Eq. (2.12).

Considering first the case of i=j we obtain the first order correction

terms to the eigenvalues as

P - uT. A1 u
1J' - .-OJ -OJ

j=l, ••• ,n (2.13)

If we consider i*j we obtain
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(2.14)
Tu , A

1
u ,_- o.=...''----=-----=0..>LJe " =

J' Poj - Poi
To obtain the coefficients ejj we must consider the orthogonality

conditions given by eq. (2.7). By replacing Eq. (2.11) in Eq. (2.9) we

obtain:

(2.15)

and hence~

e .. = a
JJ

j=l, ••• ,n (2.16)

To obtain the second order correction terms, we again expand u2 , in
- J

terms of the base vectors u k as:
-0

(2.17)j=l, ••• ,n
n "

u2 ' = L 8 'k u k- J k=l J -0

TPremultiplying Eq. (2.6) by u " substituting u1 ' and u2 ' from Eqs.
-oJ - J - J

(2.11) and (2.17) respectively and considering the orthonormality

properties of the unperturbed eigenproblem, we obtain:

n T
Po,' e .. + L (p k - P ,) 8 'k8k' + u , A2 ~oJ' = pOJ' e .. + P1J' e"J1 k=l 0 01 J 1 -oJ J1 J1

T+ P , u , B2 u • + P2' \5 ••oJ -01 -oJ J 1J (2.18)

Letting i=j we obtain the second order correction terms for the
eigenvalues:

n 2 T
P2 ' = L (p ,- p k) (8'k) + u , [A2 - pOJ' B2] u .J k=l OJ 0 J -oJ -oJ

., j=l, ••• ,n

(2.19)

(2.20)

e ,.
J'

For i*j the coefficients 8ji are directly obtained from equation (2.18):

1 n
= P . - p . {(P1j - P1j) 8ji + L (Pok - po;)

OJ 01 k=l

+ uT, [A
2

- P , B21 u ,}-01 oJ -oJ
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The above expression is not valid for i=j. To find 8" we have to use
JJ

the orthogonality conditions of equation (2.10). SUbstituting Eqs.

(2.11) and (2.17) in Eq. (2.10) we obtain:

~ ~ n T
8" + 8" + I 8

1
'k 8

J
'k + u , B2 u , = 0J1 1J k=1 -01 -oJ

(2.21)

and for i=j

8 ..
JJ

., j=1, ••• ,n (2.22)

2.4 PERTURBATION ANALYSIS OF A TUNED SYSTEM

It will be observed in later chapters that if the equipment is

tuned to one of the supporting structure1s frequencies, the eigenvalues

of the original system will be equal. Such a case can not be treated by

formulation developed in the previous section, primarily because of the

numerical problem in evaluation of Eqs. (2.14) and (2.20) for a

perfectly tuned case. Even in a nearly tuned case, the terms in these

equation become very large thus invalidating the expansion of Eqs. (2.2)

- (2.3) because the first and the second order terms, which were assumed

to be of lower order in magnitude than the unperturbed terms, now become

large. Therefore, to treat the problem of tuned system we need a

different perturbation expansion.

We will assume that the ~th and mth unperturbed eigenvalues are

equal or nearly equal. When the nonclassically damped cases are

considered, the matrices in the eigenvalue problem (2.1) would be of

dimension 2mx2m. In such a case we will also be concerned with the

complex conjugate (£+m)th and 2mth eigenvalues and corresponding

eigenvectors of this eigenvalue problem. Herein, therefore a general

eigenvalue problem of size 2mx2m with complex and conjugate eigenpairs

will be analyzed.
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The perturbed eigenvalues and eigenvectors will now be obtained

assuming the following expansions:

p. Poi + 1/2 P + £ P2i + 3/2 P 2 + (2.23)= £ 1i £ 3i + £ P4i ...1
. i=2" m, m2" 2m,

1V • - u + 1/2 u + £ u2· + £3/2 ur + £2
u4· + (2.24)-1 - -oi £ -li - 1 - 1 - 1 ...

where we introduced the notation m2, = m+2,. The justification for the

above expansions lies in the fact that the eigenvalues of Eq. (2.1) for

the tuned case can be obtained as the roots of a (2m)th degree poly-

nomial with two equal or nearly equal roots and its complex conjugate

values. It has been observed [15] that a proper expansion for finding

the roots of an algebraic equation with two closely spaced roots should

have the form of Eq. (2.23). that is, it must be expressed in terms of

exponents of the parameter £ which are integer mUltiples of 1/2.

When the two assumed expansions are substituted into Eq. (2.1) and

the coefficients of equal powers of £ are compared, we obtain

(2.25)

2.26)

Ao u2· + A1 u . = p . B u2· + P11· B u1· + P2· Bu. (2.27)- 1 -01 01 0 - 1 0 - 1 1 0 -01

0(£3/2) •• Ao ~3i + A1 B P B B.- ~li= Poi 0 ~3i + 1i 0 ~2i + P2i 0 ~li

+ P31. B u " (2.28)o -01

A u4" + A1 ~21" + A2 u " = p "B u4" + P1" B u3"o - 1- -01 01 0 - 1 1 0 - 1

+ P2i Bo ~2i + P3i Bo ~li + P4i Bo ~oi + Poi B2 ~oi (2.29)

where the subscript i takes the values 2" m, m2, or 2m. A similar

9



substitution for ~, into the orthogonality condition, Eq. (2.7), yields:
-1

Tu ,B u, = 0,.
-OJ 0 -01 1J (2.30)

0(£1/2): uT, B u1. + uTI' Bu. = 0
-OJ 0 - 1 - J 0 -01 (2.31)

O(E) : T B T B + uT. B 0u1 · u1' + u2 · u, u2. =- J 0 - 1 - J 0 -01 -oJ 0 - 1 (2.32)

0(£3/2): uT. B u3. + uTI' B u2' + uT
2 . B u1' + uT

3 , Bu. = 0 (2.33)
-OJ 0 - 1 - J 0 - 1 - J 0 - 1 - J 0 -01

T Tu ,B u4· + u1 · B u3'-oJ 0 - 1 - J 0- 1
T+ u . B2 u , = 0-OJ -01

T T T
+ u2 · B u2· + u3 ' B u1' + u4 • B u ,

- J 0 - 1 - J 0 - 1 - J 0 -01
(2.34)

where again i,j take the values ~,m,m~, or 2m.

We examine first the terms 0(£1/2). We again expand u1' in terms
- 1

of the base vectors u k ~
-0

2m
u1' = I 8'k u k i=~,m,m~,2m (2.35)
- 1 k=1 1 -0

Premultiplying Eq. (2.26) by ~~i' sUbstituting ~li from Eq. (2.35)

and invoking the orthogonality properties of the unperturbed

ei genvectors, we obtain ~

Pli °ij = (poj - Poi) 8ij
With i=j we obtain:

Pli = 0

and with itj we have:

i=~,m,m~,2m

j=1, ... ,2m

i=~,m,m~,2m

(2.36)

(2.37)

8,=8,=0
~J mJ

8 .=8 =0
m~,J 2m,j

j=1, ••• ,2m ; jt~,m (2.38)

(2.39)

Introducing Eq. (2.35) into the condition (2.31), it follows that:

10



(2.40)

and hence:

8~~ = 8mm = 8m~,m~ = 82m ,2m = 0 (2.41)

And thus considering the four possible values of i, Eq. (2.35) becomes:

u e2,m ~om-h
u ::: - e~m ~o~-1m (2.42)
u = em~,2m ~02m-lm~

~12m
::: - e u

m~,2m -om~

Two coefficients in the set eik sti 11 remain unknown, namely

82,m and em2,,2m. To obtain these we must consider the higher order

hierarchical equations. We consider next the correction terms of

order E. We express u2. in terms of the base vectors as:
- 1

(2.43)
2m "

u ::: I e u
-2i k=1 i k -ok

Substituting this in Eq. (2.27), premultiplying by uT. and considering
-OJ

Eqs. (2.25) and (2.30) we obtain:

A T
P2. c.. = (p . - p .) 8 •• + U • Al u .1 1J oJ 01 1J -oJ -01

Letting i=j, we obtain the correction terms:

(2.44)

If i*j we obtain instead:

(2.45)

e ..
1J

Tu . Al u .
= -OJ -01

Poi - Poj
.,

j=1, ••• ,2m

i=m~,2m

(2.46)

1 1

j=I, ••• ,2m-l; j*m~



And with i=m, j=~ and i=2m, j=m~

uT A u = uT A u = 0
~o~ 1 ~om ~om~ 1 ~02m

(2.47)

When the expansions of Eqs. (2.35) and (2.43) are substituted into the

orthogonality conditions (2.32) we obtain:

A 2m
80 0 + 8 0' + I 8 ok 80 k = 0
'J Jl k=1 J 1

Equation (2.48) in turn leads to:

i=~,m,m~,2m

j=1, ••• ,2m
(2.48)

(2.49)

(2.50)

And considering Eqs. (2.38), (2.39) and (2.41), from Eq. (2.48) we find:

(2.51)

(2.52)

We conclude here the analysis of the terms of O(E) with the
A ~ A A

coefficients 8~m' 8m~,2m' 8~~, 8mm , 82m ,2m' and 8m~,m~ still undefined.

It turns out that they can be defined only when we consider the terms

of O(E).

In order to examine the correction terms of 0(E3/ 2) we assume

that ~3i can be expressed as a linear combination of the unperturbed

eigenvectors u k ~
-0

U3 °- ,
2m *

= I 8,'k U kk=1 -0
i = ~,m,m~,2m (2.53)

Inserting the above expansion and Eqs. (2.35) and (2.43) into Eq.

(2.28), premultiplying by uT
0 and considering Eqs. (2.25), (2.30) and-OJ

12



(2.37) we obtain:

i==~,m,m~,2m

j=1, ••• ,2m

(2.54)

Evaluating the above expression for i==j it follows that

i==~,m,m~,2m
\.

(2.55)

If i==~, j==m, from Eqs. (2.47) and (2.54) we obtain

8~m == 0

Similarly for i==m~, j==2m we obtain

(2.56)

(2.57)

And inserting the above results into Eqs. (2.42), (2.49) and (2.50)

we conclude that

u1" == 0
- 1

i==l/"m,ml/,,2m

/,<;¢-"

.//#
(2.58)

~

8 - 8 - 8 - 8 - 0
~l/, mm ml/"ml/, - 2m,2m-

Moreover, from Eq. (2.54) for i*j we also obtain

(2.59)

*
8~j

*= e . == 0
mJ

; j=1, ••. ,2m;j~~,m (2.60)

* *8 "== 82 "== 0ml/"J m,J
j==1, ••• ,2m-l;j*ml/, (2.61)

The orthogonality conditions, Eq. (2.33), with u3" given by Eq. (2.53)
- 1

and u1" by Eq. (2.58), give
- 1

* *8" • == - 8 •.lJ Jl
and therefore

13
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* * *e ~~ = 8 mm = e m~,m~ (2.63)

* *We note here that the coefficients e ~m and e m~,2m still remain unknown

and cannot be obtained with the current five-terms expansion used in

Eqs. (2.23) and (2.24). To obtain them, we will have to extend our

expansions up to six terms, tha is, we will have to consider terms of

0(£5/2).

Finally we need to examine the correction terms of 0(£2). We

Tmultiply Eq. (2.29) on the left by ~oj' replace the following expansion

for u4' :
- 1

2m
= I eik~ok

k=l
(2.64)

and apply the orthogonality conditions of the zero order eigenvalue

problem, to obtain:

P4'<S' ,1 1J

2m A T T
= (p ,-p ,)8,. - P2,8" + \' e'ku ,A1U k + u ,[A2 - p ,B2]U •

OJ 01 1J 1 1J k~l 1 -oJ -0 -oJ 01 -01

(2.65)

considering the case i=j and with the help of Eqs. (2.46), (2.47) and

(2.59) we obtain for the correction terms P4i :

Tu ,[A
2

- p ,B
2

]u ,
-01 01 -01

2m-1
+ I

k=l
b~,m,m~

(2.66)

Letting hj in Eq. (2.65) it follows that:
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e ..
1 J

A 2m
P .B2]u ,-P2· e.. I01 -01 1 1J k=l (Pk - P .)e·kek·}o OJ 1 J

(2.67)

The above expression is valid for i = ~,m; j = 1, .•. ,2m; j * ~,m and for

i = m~,2m; j = 1, ••• ,2m-1; j * m~. For the cases i = ~, j = m and i

= m~, j = 2m, from Eq. (2.65) we obtain instead the coefficients:

A A

(Pom-POk)e~kemk} (2.68)

e = 1 {uT [A - p B
m~,2m P2m~-P2,2m -02m 2 om~ 2

2m-1
]u + I
~om~ k=l

k*~,m,m~

A A

{P02m-Pok)em~,k,e2m,k}

(2.69)

From the orthogonality conditions, Eq. (2.34), after sUbstituting Eqs.

(2.43), (2.58) and (2.64), we obtain:

(3 .. + 8 ..
1 J J 1

and hence:

Tu .B2u .
~oJ ~01

(2.70)

e..,, 1 2m A 2 T
= - -2 {\ (e· k) + u .B2u .}

k~l' -01 -01
i=~,m,m~,2m (2.71)

We conclude here with the analysis of the terms of O{E 2). However, the

coefficients (3~m and 8m~,2m remain undefined. In order to obtain them

we have to include up to terms of O{E 3) in the expansions (2.23) and

(2.24).

It is interesting to note that although we used the half power ex­

pansions in Eqs. (2.23) and (2.24), almost all the terms associated with

15



the half powers have been found to be zero. For example, the correction

terms u1' are identically zero and at least the elements of u3' which
- 1 - 1

could be obtained from the five-term expansion are all zero. A casual

observations, thus, seems to suggest that since the half power terms in

Eqs. (2.23) and (2.24) are inconsequential, the expansions assumed in

the detuned case is all we need. A more careful review, however,

reveals subtle differences. For instance, the expressions obtained for
A A

8~m and 8m~,2m obtained here, Eqs. (2.68) and (2.69) are quite different

from the corresponding expressions obtained for the detuned case, Eq.

(2.20).
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CHAPTER 3

EIGENPROPERTIES OF A CLASSICALLY DAMPED COMBINED
STRUCTURE-EQUIPMENT SYSTEM

3.1 INTRODUCTION

In this chapter, a combined structure and equipment system is

analyzed. It is assumed that the supporting primary structure as well

as the combined system is classically damped. In some situations a

combined system can be nonclassically damped. Such a case can be

handled as in Chapter 4, or the effect of the nonclassicality can be

indirectly included in the calculation of reponse as described in

References 22 and 23.

Since the primary structure and the combined system are assumed to

be classically damped, the eigenproperties will be real valued. Thus,

the numerical results are obtained for the real eigenproperties of the

combined system in terms of real eigenproperties of the primary

structure and the equipment parameters. The results are obtained both

for light and heavy equipment to test the applicability of the method.

3.2 EIGENVALUE ANALYSIS

The equations of motion for a system composed of a damped single

degree of freedom oscillator and a classically damped supporting
..

structure sUbjected to a base motion Xg(t) are
.. ..

[Ml~ + [Cl~ + [Kl~ = -[Ml~Xg(t) (3.1)

where x is the relative (with respect to ground) displacement vector of

the combined system and

(3.2)

17



(3.8)

(3.6)

(3.7)

[Cl = [:p :] + [C 1 (3.3)c

[Kl =[;p :]+ [Kcl (3.4)

rT = [rT,r 1 (3.5)
- -p e

in which [Mpl, [Cpl and [Kpl are the mass, damping and stiffness

matrices, respectively, of the primary system; [Ccl and [Kcl are the

damping and stiffness coupling matrices, respectively, containing the

damping coefficient and stiffness of the oscillator in their non-zero

elements. The vector {r} is the displacement influence vector of the

combined system, composed of r , vector of influence coefficients of the-p
primary system and re , the influence coefficient of the equipment. The

displacement influence coefficient re is set equal to 1 if the equipment

is constrained to move in the direction of the excitation and 0

otherwise.

If the oscillator is assumed to be attached to the Kth degree of

freedom of the primary system, the coupling matrices [Kc] and [ec ] can

be written as follows

[K ] = mw2[vvTlc e e --
[C ] = 28 w m [vvT]c e e e --

where v is a (n+1)-dimensional vector with only two non-zero entries at

the Kth and (n+1)th positions:

T
~ = [0, ••• ,1, ••• ,-1]

and we ,8e and me' respectively, are the natural frequency, damping ratio

and mass of the equipment.

18



Since we are interested in the eigenproperties of the undamped

combined system we have to solve the eigenvalue problem associated with

the system of Eq. (3.1):
A ~

[K)cjl. = L[M)cjl. j = 1, ... ,m (3.9)
-J J -J

where we call m = n + 1 the number of dof of the combined system.

We introduce the following transformation in Eq. (4.9):

cjl. = [~p Q] cjl. = [T)P'
J
'

-J 0 -J-_ lIJ
e

where:

(3.10)

(3.11)IIJ = _1_
e 1m

e

and [~p) is the matrix of eigenvectors of the primary system. It is

assumed that the primary system eigenvectors are normalized such that:

[~p)T[Mp)[ ~p) = [I) (3. 12)

Introducing Eq. (3.10) in (3.9) and premultiplying by the transpose of

[T) we obtain the following transformed eigenvalue problem:

o

cjl. = A.cjl.
-J J-J

j = 1, .•. ,m (3.13)

where wpi ' i = 1, ••• ,n, are the natural frequencies of the primary

system. Introducing the vector v, defined as:
T

~ = [cjlp1(K), ••. ,cjlpi(K), .•• ,cjlpn(K)] (3.14)

in which cjlpi(K) is the Kth element of the i th modal vector Tpi of the

primary system, the transformed eigenvalue problem can be written as

follows:

19



[rAI [ T -.e~]}.2 'J'J
j 1, ••. ,m (3.15)+ mewe -- T L<j> •

-1(J v a -J J-J
e-

where;

2 a
Wp1 .

[A]
• 2 (3.16)= Wpn

a 2
we

We are interested in this transformed eigenproblem instead of the

original problem because the closed form expressions for the eigenvalues

and eigenvectors can be obtained for this case. Futhermore, the

resulting expressions will be independent of the analytical model of the

primary structure; only the frequencies and mode shapes of the

supporting structure will be required for the solution of the combined

eigenvalue problem. We observe that due to the different orders of

magnitude of the elements in the second matrix in the left hand side of

Eq. (3.15) we can write

where:
[ ~

T
2 vv

[A] + m w -- T
e e -1(J 'J

e-

[A ] = [A]
o

(3.17)

(3.18)

(3.19)

The elements of matrix

2 fv} a1
[A21 = meWe l-o -if]

[A2] are proportional to the ratio of the

20
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equipment mass to the floor mass, while the elements of [All are

proportional to the square root of this ratio. Therefore, for light

equipment, if we consider the equipment mass-to-the-floor mass ratios,

or equivalently, the elements of [A21 to be small quantities of

order £2, the elements of [Aol and [AI] will be of order £0 and £

respectively. Introducing a small parameter £ to help to trace the

order of magnitude of the different quantities involved, the can write

the eigenvalue problem of Eq. (3.15) as follows:

[[A] + dA1] + £2[A2]]cj>. == Lcj>. j == 1, ••• ,mo ~J J~J
(3.21)

3.2.1 Closed Form Expressions for the Eigenproperties of a Detuned
Case.

Equation (3.21) has essentially the same form as Eq. (2.1), except

that [Bol is equal to the identity matrix and [B2] is equal to zero.

Therefore, we can apply the expressions obtained in Chapter 2 to obtain

the eigenproperties of the combined system directly. However, because

of the special nature of the matrices [Ao]' [AI] and [A2] and the

eigenvectors U ., we can also obtain the closed form expressions for the-OJ
desired eigenvalues and eigenvectors.

With [Ao] given by Eq. (3.18), from the zero order eigenvalue

problem, Eq. (2.4), we obtain:

(3.22)

(3.23)

(3.25)

(3.24)

u . defined as
~OJ

and [All from Eq. (3.19) in Eqs. (2.13) and (2.14) we obtain:

Plj == 0 ; j == 1, ••. ,n

above

We also obtain the eigenvectors as:
Tu . == [0, ••• ,1, ... ,01
~OJ

where 1 is at the jth location. By sUbstituting
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8,,=0; i,j=l, ••• ,n
Jl (3.26)

1m W
2\),

8
m1

, -8 = eel • i = 1, ••• ,n
im A, _ w2 '

pl e

(3.27)

SUbstituting Eqs. (3.24) through (3.27) in Eq. (2.19) and considering

the definition of matrix [A2l, Eq. (3.20), we obtain the correction

terms P2j as:

2 2 A,
P

2J
' = mw \), pJ

e e J 2
Apj - we

i = 1, •.• ,n (3.28)

4 n
P2m = -m W L

e e k=l 2A - wpk e
A

For calculating the coefficient 8ji , two different

considered: (1) for j = m and i = 1, ••• ,n and (2)

(3.29)

cases need to be

for i,j = 1, ••• ,n

with i 1= j. A substitution of [A2l, u " P1' and 8" in Eq. (2.20)-oJ J Jl
gives:

i = 1, ... ,n (3.30)

(3.32)

(3.31)

i = 1, •.• ,n

i,j = 1, ••• ,n; i 1= j.,

8 ' ,
JJ

2
mW\),\),

8 = eel J
ji 2

(A , - A ,) (w - A ,)
pl PJ e PJ

And from Eq. (2.22), considering Eqs. (3.26) and (3.27), we obtain:
4 2m W \)'

_ _ __....:::eC-..::..e-:l~

2(A , _ w2)2
pl e

For i = m, a different expression is obtained:

8 = - ! mw4 ~ ( \)k 2)2mm 2 e e k=l (3.33)
Apk - we

The modal vectors of the combined system can now be obtained from Eq.

(2.3), with the substitution of u1 ' and u2 ' from Eqs. (2.11) and (2.17):
- J - J
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m A

4>. = u . + I (8· k + 8· k)U k
~J -OJ k=l J J ~o

(3.34)

(3.36)

(3.25)1, ... ,n

4>., with j * m, can be written as:
-J
A A

8 j2 , ••• , 1 + 8 jj , .•• , 8jml ; j =

the last eigenvector 2m becomes~

T A

2m = [8m1 , 8m2 , ••• , 8mn , 1 + 8mml

and, similarly,

With u k given by Eq. (3.24) and considering Eqs. (3.26) and (3.30) the
-0

jth eigenvector
T A

4>. = [e·1,
~J J

A

Knowing the expressions for 8ji , etc., we can readily obtain the

elements of the transformed system eigenvectors as follows. The first n

eigenvectors are defined by;

2mWA .v.v.
e e PJ 1 J4>. . = --...::.-.::..-J:-"---'-:2;;-"---

1,J (Api - Apj)(We - Apj)
i = 1, ... ,n; i * j (3.37)

4> ..
J,J

4 2
= 1 _ 1 mewev j

2 (A . _ w2)2
PJ e

- 2
Ime wev j

4>m,j = - 2
A • - w

PJ e
And the elements of the mth eigenvector are:

(3.38)

(3.39)

i = 1, ... ,n (3.40)

m w4 n
4> = 1 e e E

m,m - -2- k=l
V k 2

( 2)
Apk - we

Similarly, substituting for Poj' P1j and P2j from Eqs.

(3.41)

(3.22), (3.23),

(3.25), (3.28) and (3.29) into Eq. (2.2) and setting the book-keeping

parameter E equal to 1, the following explicit expressions are obtained

for the eigenvalues of the combined system:

m iA~
A. = A .(1 + e e '2) j = 1, ... ,n

J PJ A . - W
p' e
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A = w2(1m e
2- m we e

2n \J k
L 2)

k=l A - wpk e

(3.43)

3.2.2 Closed Form Expressions for the Eigenproperties of a Tuned Case.

The expansions proposed in the previous section break down when the

equipment frequency is equal or nearly equal to one of the structural

frequencies. For example, consider the expression for the corrected

eigenvalue, Eq. (3.42), rewritten here as

[
m,}]

Aj = Apj 1 + :!~ J 1 ;

It is seen that for:

foll ows:

j = l, ... ,n (3.44)

(3.45)
A • 2-¥ - 1 ::::; me\J j
we

The second term in the parenthesis of Eq. (3.44), which is also the

correction term, will be of the same order as the first term, thus

invalidating the assumed form of the expansion in Eq. (2.2). Another

more stringent condition is obtained if we consider the corrected

eigenvector element~

j = l, ... ,n (3.46)

we observe that the correction terms will be of the same order as the

first term when:

A • 1-¥ - 1 ::::; - 1m I\J • I
/"2 e 1We

(3.47)

Therefore, since the term in the right hand side of Eq. (3.47) is one
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order of magnitude larger than the corresponding term in Eq. (3.45), it

governs the validity of the perturbation expansions. It is easy to see

that in the case of an oscillator tuned or nearly tuned to one of the

frequencies of the primary structure, Eq. (3.47) can be easily

satisfied. For such cases, the expansion used in the previous section

cannot be used and an alternative expansion is required. For such a

case, the expansion proposed in Section 2.4 must be used.

The eigenvalue problem analyzed in Section 2.4 is more general in

scope than the case we are considering here. However, considering the

zero order matrix [Bo] equal to the identity matrix, the second order

perturbation matrix [B2] equal to zero and letting the sUbscript i take

the values ~ or m only, we can readily use the expressions obtained for

the corrected eigenproperties in Section 2.4.

In order to include in our analysis not only the tuned case, but

also the nearly tuned situation, we introduce two "detuning parameters"
Z61 and 6Z such that if the value (1 - Ap~/we) is of order E we write:

1 -~= 61 (3.48)2
We

and 02 equal to zero. On the other hand, if (1 - Ap~/w~) is O(e;Z) we

equate the left hand side of Eq. (3.48) to 0z and take 01 to be equal to

zero. In terms of these parameters, the equipment frequency can be

written in terms of the nearly tuned structural frequency as follows:
2 Z Z 2

we = Ap~ + e; ol we + E 0Zwe (3.49)

As per Eq. (3.49), we now slightly change the matrices [A1] and [AZ] in

Eqs. (3.19) and (3.20) such that their (m,m)th elements are not zero but

are now equal to 61w~ and 62w~ respectively. Correspondingly, the

(m,m)th element of [Ao] in Eq. (3.18) is now changed to Ap~.
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The zero order eigenvalue problem in Eq. (2.25) for i = ~ and i = m

is:

a

., i = ~,m (3.50)

a

This directly gives:

To obtain the

Po~ = Pom = Ap~

eigenvectors u and u we write
-o~ -om

T
~o~ = [O, ••• ,a, ••• ,sl

(3.51)

them as follows:

(3.52)

T
~om = [O, ••• ,yp •• ,lll (3.53)

where the undetermined coefficients a, y and a, II are in the ~th and mth

position, respectively. These coefficients can be related to each other

by employing the orthogonality conditions (2.30) as follows:

1y=-a=---

11 + 112

To find II we substitute the eigenvectors u and u from Eqs.
-o~ -om

and (3.53) in Eq. (2.47) and obtain the quadratic equation:

Ime ~~1l2 + 01 11 + Ime ~~ = 0

which when solved for II gives:

II = _ °1 + /1 + ( °1 )2
2/me ~~ 2/me ~~

The minus sign before the radical term in Eq. (3.57) is also

(3.54)

(3.55)

(3.52)

(3.56)

(3.57)

admissible. It can be shown that this other choice of the sign will
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simply exchange the values of the two tuned eigenvalues and

corresponding eigenvectors.

(3.58)

(3.59)

Using Eqs. (3.52) and (3.53) in Eq. (2.45) we obtain:
2

we
P2~ 1 + ~2 (0 1 + 2/me v~~)

2

P2m = we (0 ~2 - 2/me vl~)
1 + ~2 1

Furthermore, with substitution of Eqs. (3.24), (3.52) and (3.53) in Eq.

(2.46) we obtain:
- 2

e .
Ime we vj 1 (3.60)=

~J Ap~ - Apj
11 + ~2 j l, ... ,n, j t- l1,

- 2

e .
Ime wev j ~ (3.61)=

mJ Ap~ - Apj
11 + ~2

(3.62)

(3.63)

To find the correction terms P4~ and P4m we first need to obtain:
2

we (02 + mev:~2) i = ~
1 + fj2 '"

Tu .A2u . = 2
-01 -01

we (02~2 + mev:) ; i = m
1 + fj2 '"

(3.64)

into Eq.(2.66) it follows that:
2

[ 0 + m 2~2 + m 2 ~ __v~k__]
2 eV~ eWe k=l ' ,"pl1, - "pk

kt-l

Substituting Eqs. (3.60)-{3.63)
2

w
P = e
4~ 1 + ~2

(3.65)

~

In order to define the coefficients e~m we use Eqs. (3.20), (3.52),

(3.53), (3.60) and (3.61) to obtain the following partial results

27



where:

(3.66)

(3.67)

(3.68)

Introducing Eqs. (3.58). (3.59). (3.66) and (3.67) into Eq. (2.68)

yields:

e °2,J

j 1•.••• n; j * ~

(3.71)

The tuned eigenvectors can now be obtained from the expansion (2.24).

Setting the book-keeping parameter E equal to one and considering Eqs.

(2.35). (2.43). (2.53) and (2.64). we obtain:

m A *
~o = U ° + L (Sok + SOk + SOk + eok}u k
~1 -01 k=l 1 1 1 1-0

(3.72)

* -Note that the terms s~m and s~m could not be obtained with the five-

terms expansion considered here. As mentioned earlier. to obtain these.
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more terms in the perturbation expansion would be required. Expanding

Eq. (3.72) and ignoring the coefficients in the summation that are zero

or undefined, we obtain the eigenvectors ~~ and ~m as follows:

(3.73)

(3.74)

By sUbstituting the coefficients e~i' etc., we obtain the following

closed form expressions for the elements of these tuned eigenvectors:

<l>i,~ =

°1 e
(1 + ) - ~ml} . i 1, ... ,n; *- ~, =

21me \J ~ 11 Ime

1 A

Ij>~,~ = (11 + e~m)

11 + 11
2

1 A

Ij>m,~ = (-1 + M~m)

11 + 11
2

2
W \J.e ,

(3.75)

(3.76)

(3.77)

i = 1, ... ,n; i *- ~ (3.78)

(3.79)

(3.80)

Combining the expressions found for the correction terms for the

eigenvalues, Eqs. (3.51), (3.58), (3.59), (3.64) and (3.65), the two
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(3.81)

tuned eigenvalues can be written as follows:
2

Ai = Api + 1 :e~2 [01 + 02 + 2/me v~~ + mev~~2 + oj

2
we 2 2 2

A = A + 2 [(01 + 02)~ - 2/me v~~ + mev i + ~ oj (3.82)
m Pi 1 + 6.

with 0 defined in Eq. (3.68). The non-tuned eigenvalues and

eigenvectors are still obtained from Eqs. (3.42)-(3.43) and (3.37)­

(3.41), respectively.

Having obtained the eigenproperties of the transformed system of

Eq. (3.15), the eigenvectors of the original system of Eq. (3.9) can now

be obtained from:
A

4>. = [Tjlj>.
-J -J

j = 1, ... ,m (3.83)

The eigenvectors ~j obtained as indicated above are approximately

orthonormal with respect to the mass matrix of the combined system:
AT A 3
4>.[Mjct>. = 0.. + terms of O(e: ) i,j = 1, ••• ,m (3.84)
-1 -J lJ

3.3 PARTICIPATION FACTORS OF THE COMBINED SYSTEM

To obtain the system response from Eq. (3.1) for a given ground

motion input by modal analysis, we also need the modal participation

factors. These participation factors can be obtained in terms of the

eigenvectors of the original system or the transformed system. In terms

of the eigenvectors of the original system, by definition, the

participation factors are:
hT

y.=lj>.[Mjr ; j=1, ••• ,m
J -J -

In terms of the eigenvectors of the transformed system, the

participation factors are obtained as follows:

30
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y .
J

j = 1, ... ,m (3.86)

n \I.y •

Apj r 1 p1 1 . j = 1, ... ,n,
hj Api - Apj

(3.87)

2 2
1 W \I.y •

[r + _ e J PJ +
e 2 A • _ w2

PJ e

where !p is the vector of participation factors of the primary system.

SUbstituting <\> .. and <\> . from Eqs. (3.37)-(3.39), we obtain for the1,J m,J
detuned case the following:

2
m W \I.

Y = e e J
j Ypj - 2

A • - W
PJ e

(3.88)
n

y = Ime r e + 1m w2 r
m e e i=l

2 2
\I.y • 1 m r W \I.[ 1 p1 _ _ e eel 1

A • _ w2 2 (A 2)2p1 e pi - we

Similarly, sUbstituting for <\>. n' <\>n nand <\> n from Eqs. (3.75) to
1,~ ~,~ m,~

(3.78), and <\>. m' <\>n m and <\>m from Eqs. (3.78) to (3.80), we obtain
1,~, ,m

the participation factors corresponding to the two tuned frequencies as

follows:

2
2\1 n we 01 8 n{1m- + m ~[\I. + ~ (1 + ) - ~ml}}

eel 1 + ~2 Api - Ap2. 2/m
e

\I ~ 1m
2. e

(3.89)

~ ) _ 82,~ 1}}
21m \I 1me 2, e

(3.90)

Knowing the complete eigenproperties of the combined system any response

quantity of interest can now be obtained as described in References 22

and 23. In response analysis for tuned cases, it is sometimes important
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to consider the nonclassical nature of the combined system damping.

This can also be included by adopting the approach in References 22 and

23.

3.4 NUMERICAL RESULTS

The numerical results are presented for a four degrees of freedom

structure shown in Fig. 3.1. The mass of each floor, m, is = 5x105 Kg.

The interstory stiffness, k, is = 2x109 N/m. The natural frequencies

and mode shapes of the primary structure are given in Table 3.1.

The frequencies calculated by the perturbation approach developed

here are shown in Tables 3.2, 3.3 and 3.4. The values are shown for

three different equipment-to-floor mass ratios of 1/1000, 1/10 and 1/2.

These values are compared with the values obtained by an extended

precision direct eigenvalue analyses of the complete equipment-structure

system; the magnitude of the relative errors between the exact and

approximate eigenvalues are also shown in these tables. The results in

Table 3.2 are for an equipment not tuned to any structural frequency.

The results in Tables 3.3 and 3.4, on the other hand, are for the cases

when the equipment is tuned to the lowest and the highest structural

frequencies, respectively. The magnitude of the errors in these tables

clearly shows that the perturbation approach gives rather very accurate

estimate of the frequencies even for the mass ratio as high as 1/2. The

error becomes a little higher for the equipment tuned to the highest

frequency, although still within the acceptable range. As will be noted

later, this is, however, not the case with the error in the eigenvector

values.
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The eigenvectors calculated by the perturbation approach are shown

in Tables 3.5 and 3.6 for the detuned and the tuned cases. In the tuned

case, the equipment frequency is very near the first structural fre­

quency. The results in both tables are for the equipment-to-floor mass

ratio of 1/10. The error in the calculated values when they are com­

pared with the corresponding exact values are also shown parenthetically

in the tables. In particular, the maximum error in the elements of the

modal matrix corresponding to the equipment degree of freedom, which is

shown in the last rows of Tables 3.5 and 3.6, is only 5.3 percent.

In Table 3.7 are shown the values of the participation factors and

the elements of the modal matrix associated the equipment degree of

freedom, calculated for four different equipment frequencies. Except

for the second case with we = 42 radjsec., all other values are for the

tuned cases. The first set of values are for the equipment tuned to the

first frequency, the third set for the equipment tuned to third fre­

quency and the last set is for the equipment tuned to the highest fre­

quency. The error between these values and the exact values calculated

by direct eigenvalue analysis of the combined system are also given in

parentheses. It is noted that the errors in the higher mode participa­

tion factors, and also to some extent in the eigenvectors, are rather

large when the equipment is tuned to the higher mode frequencies. It is

primarily due to the fact that in this case, because of we being large,

the elements of matrix [Aol are not necessarily much larger than the

corresponding elements of matrices [All and [A2l, and thus the condi­

tions for application of the perturbation expansion are weakened. How­

ever, the accuracy can be improved somewhat if a seven-term expansion is

assumed thus enabling us to obtain the remaining terms, 8ik' in expan-
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sion (2.64) which we have been unable to obtain now. However, the

tuning with the higher modes is rarely of any importance as the

contribution of such modes to the response is usually small. If more

accurate values of the modal properties are desired, especially for

heavy equipment, the approach developed by the authors in Reference 24

can be used. In that case, the values obtained by the perturbation

approach proposed here, then provide excellent initial guesses to be

used in the iterative solution of a nonlinear equation developed in

Reference 24.

3.5 SUMMARY AND CONCLUSIONS

A systematic matrix perturbation approach is applied for

calculating the eigenproperties of a combined equipment-structure system

in terms of the eigenproperties of the individual systems. Both the

detuned and tuned equipment are considered. The perturbation analysis

of the tuned case requires a special expansion scheme to obtain

meaningful results. Closed form expressions are provided to calculate

the frequencies, mode shapes and participation factors, both for a

detuned and a tuned case.

The numerical results are obtained and compared with the results

obtained by a direct eigenvalue analysis of the combined system. It is

observed that this analysis can provide quite accurate estimates of the

frequencies for equipment as heavy as 1/2 the mass of the supporting

floor. The accuracy in the calculated eigenvectors is, however,

acceptable only for equipment not heavier than 1/10 the floor mass. The

error in the higher modal properties becomes rather large when the

equipment is tuned to some very high frequency modes relative to the
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first mode frequency and if the equipment is heavy. These errors can be

reduced somewhat by considering a higher order expansion scheme.

However, as the contribution of the higher modes to the response is

usually much less when compared with the contribution of the lower

modes, the errors in the calculated higher modal properties are usually

inconsequential.
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Figure 3.1 A Four Degrees of Freedom
Primary Structure and Equipment System
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Table 3.1 Eigenproperties of the example primary structure.

Natural Frequencies (radjsec)

21.9649 63.2455 96.8978 118.8628

Degree of Freedom Mode Shapes, x10-3

1 .32246 -.81650 .92848 .60602
2 .60602 -.81650 -.32246 -.92848
3 .81650 .00000 -.81650 .81650
4 .92848 .81650 .60602 -.32246
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Table 3.2 Natural frequencies of the structure-equipment system for a
detuned case

Equipment Frequency = 42 rad/sec.

Mass Ratio
111000 1i1O 1/2

Freq. Freq. Error Freq. Error Freq. Error
No. rad/sec. % rad/sec. % rad/sec. %

1 21.96 0.00 21.30 .21 18.42 5.05
2 42.00 0.00 42.58 .10 41.17 6.59
3 63.25 0.00 64.07 .01 67.03 .41
4 96.90 0.00 97.10 .00 97.92 .11
5 118.86 0.00 118.91 .00 119.08 .02

Table 3.3 Natural frequencies of the structure-equipment system for a
tuned case.

Equipment Frequency = 22 rad/sec.

Mn<:<: Rntin
1/1000 1110 1J2

Freq. Freq. Error Freq. Error Freq. Error
No. rad/sec. % rad/sec. % rad/sec. %

1 21.75 0.0 19.79 .01 17.43 .34
2 22.21 0.0 24.35 .01 27.44 .08
3 63.25 0.0 63.39 .00 63.97 .01
4 96.90 0.0 96.95 .00 97.14 .01
5 118.86 0.0 118.87 .00 118.92 .00

Table 3.4 Natural frequencies of the structure-equipment system for a
tuned case: Equipment tuned to the highest mode.

Equipment Frequency = 118 rad/sec.

Mass Ratio
111000 1110 1/2

Freq. Freq. Error Freq. Error Freq. Error
No. rad/sec. % rad/sec. % rad/sec. %

1 21.96 0.0 21.47 .09 19.36 2.37
2 63.23 0.0 61.75 .25 55.36 5.08
3 96.87 0.0 94.13 .89 82.11 11.01
4 117.90 0.0 118.57 1.30 130.26 11.42
5 119.05 0.0 126.76 .73 146.48 3.23
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Table 3.5 Eigenvectors of combined system obtained by perturbation
approach for a detuned case with mass ratio = 1/10

Equipment Frequency = 42 rad/sec.

Degree of Mode No.
Freedom 1 2 3 4 5

1 .30496 E-3 .18688 E-3 .80803 E-3 .92481 E-3 .60356 E-3
(0.50)* (2.88) (0.06) (0.01) (0.01)

2 .57544 E-3 .29135 E-3 .78656 E-3 -.33044 E-3 -.92630 E-3
(0.45) (3.65) (0.08) (0.04) (0.01)

3 .78085 E-3 .26733 E-3 -.42943 E-4 -.80684 E-3 .81804 E-3
(0.37) (5.52) (1.86) (0.03) (0.00)

4 .89792 E-3 .12542 E-3 -.82950 E-3 .61880 E-3 -.32915 E-3
(0.25) (13.03) (0.16) (0.01) (0.04)

5 .12780 E-3 -.42407 E-2 .64414 E-3 -.14020 E-3 .46005 E-4
(5.29) (0.36) (3.24) (1. 55) (1. 99)

*Error in percent.

Table 3.6 Eigenvectors of combined system obtained by perturbation
approach for a tuned case with mass ratio = 1/10: Equipment
tuned to the first mode

Equipment Frequency = 22 rad/sec.

Error in percent.

Degree of Mode No.
Freedom 1 2 3 4 5

1 .20639 E-3 .25301 E-3 .81624 E-3 .92771 E-3 .60542 E-3
0.04)* (0.02) (0.00) (0.00) (0.00)

2 .39306 E-3 .46922 E-3 .81249 E-3 -.32436 E-3 -.92795 E-3
0.17) (0.13) (0.00) (0.00) (0.00)

3 .54007 E-3 .61506 E-3 -.74931 E-3 -.81430 E-3 .81689 E-3
0.00) (0.05) (0.47) (0.00) (0.00)

4 .63618 E-3 .67193 E-3 -.81999 E-3 .60908 E-3 -.32413 E-3
~0.21) (0.32) (0.00) (0.00) (0.00)

5 .33363 E-2 -.29882 E-2 .11240 E-3 -.32938 E-4 .11438 E-4
(0.20) (0.17) (0.11) (0.40) (0.18 )

*
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Table 3.7 Participation factors and eigenvectors of the combined
system-for mass ratio = 1/10.

A

Equipment Frequency Participation Factor Yi <Pm, i

1054.7 (0.13)* .33363 E-2 (0.20)
855.2 (0.15) -.29882 E-2 (0.17)

22 rad/sec 406.2 (0.00) .11240 E-3 (0.11)
197.4 (0.00) -.32938 E-4 (0.40)
85.7 (0.00) .11438 E-4 (0.50)

1343.5 (0.11) .12780 E-2 (5.29)
223.5 (11.33) -.42407 E-2 (0.36)

42 rad/sec 393.3 (0.15) .64414 E-3 (3.24)
196.2 (0.01) -.14020 E-3 (1.55)
85.4 (0.01) .46005 E-4 (1.99)

1351. 7 (0.0) .97867 E-3 (2.04)
411. 3 (0.39) -.14203 E-2 (0.0)

97 rad/sec 209.1 (9.94) .27121 E-2 (7.60)
101.0 (0.3) -.36124 E-2 (11.5)
79.2 (3.13) .64289 E-3 (22.85)

1352.0 (0.00) .96181 E-3 (1.88)
413.9 (0.10) -.11456 E-2 (9.79)

118 radlsec 200.9 (1.19) .18608 E-2 (44.88)
156.4 (66.4) -.18040 E-2 (3.73)
53.6 (235.5) .45206 E-2 (23.74)

*Error in percent.
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Chapter 4

EIGENPROPERTIES OF CLASSICALLY DAMPED PRIMARY STRUCTURE AND EQUIPMENT
SYSTEMS WITH NONCLASSICAL DAMPING EFFECTS

4.1. INTRODUCTION

In the preceding chapter the combined system was assumed to be

proportionally or classically damped and thus the undamped eigenvalues

and eigenvectors of the primary system were used to obtain the real-

valued eigenproperties of the composite structure. However, in the

studies related to the calculation of equipment response [9,22], it has

been reported that in some cases the combined equipment-structure system

becomes nonclassically damped even though the supporting structure is

classically damped. This is especially the case when the equipment is

in resonance with one of the supporting structure's frequencies and the

damping ratios of the two systems are significantly different. In such

a case it may be necessary to include this nonclassicality in the

calculation of accurate equipment response.

Some approaches [10,23] have been proposed to include the effect of

this nonclassicality in the calculation of equipment response from the

combined undamped eigenproperties. However, a mathematically consistent

and more effective approach would be to obtain the combined damped

eigenproperties. Therefore in this chapter, a systematic perturbation

approach is applied to obtain the damped eigenproperties of a combined

equipment- structure system from the undamped eigenproperties of the

individual systems. Both the cases of the detuned and tuned equipment

are considered. For the detuned case the formulas obtained with the

conventional perturbation scheme breaks down and different expressions

are needed. This alternative formulation was presented in Chapter 2 in

a general form and is used here to obtain the closed form expressions
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for the eigenproperties of the combined system which are tuned. These

combined properties can be used to calculate the response which will

incorporate the effect of the dynamic interaction between the equipment

and the supporting structure as well as the effect of the nonclassi­

cality of the combined system damping. The numerical results demon­

strating the effectiveness of the proposed perturbation approach are

presented.

4.2. EIGENVALUE ANALYSIS

The equations of motion for a system composed of a damped single

dof oscillator and a classically damped supporting structure excited by
..

a ground motion Xg(t) are

[Mj~ + [{ji + [K]x = -[M]r ~ (t)
- - - g

(4.1)

The mass, damping and stiffness matrices [M], [e] and [K] of the com-

bined system are defined by Eqs. (3.2)-(3.4) and (3.6)-(3.8) for an

oscillator attached to the Kth dof of the primary system. The vector of

influence coefficients of the combined system ~ is given by Eq. (3.5).

We will assume here that the properties of the supporting structure and

equipment are such that the damping matrix of the joint system cannot be

diagonalized or nearly diagonalized by a pre- and postmultiplication by

the eigenvector matrix obtained from an eigenvalue analysis of the

undamped case. The primary system, however, is regarded as proportion-

ally or classically damped, that is to say, its damping matrix rep] is

such that

2S .w •
PJ PJ
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In order to obtain the system response by modal analysis we have to

resort to the state vector approach [13] where the equations of motion

are cast in a 2m-dimensional form. We introduce a 2m-dimensional vec-

tor, as follows:

and put Eq. (4.1) in the state vector form to obtain:

[
0 M ] [-M 0 ] 1 0 I ..M C ~ + 0 K z = - Mr Xg(t)

(4.3)

(4.4)

This system of equations can be decoupled with the eigenvectors provided

by the following eigenvalue problem:

[M 0] A [0
o -K ~j = Pj M

., j = 1, ••. ,2m (4.5)

Before we attempt to obtain the complex-valued eigenproperties of

the above system, we introduce the following transformation in Eq. (4.5)

where:

A [ U OJ T\11.= 0 U \11.= [T] \11.-J -J-J

[U] = [~p ~J
OIl/me

j = 1, .•• ,2m (4.6)

(4.7)

in which [~p] is the real-valued eigenvector matrix of the primary sys­

tem normalized with respect to the mass matrix. MUltiplying on the left

43



Eq. (4.5) by [T]T and considering the orthonormality properties of the

primary system eigenvectors we can write:

The matrices [Kt ] and let] are defined as:

., j = 1, ••• ,2m (4.8)

(4.9)

(4.10)

om which [A~] and [B~] are diagonal matrices, defined in terms of the

unperturbed frequencies and damping ratios of the two systems as:

(4.11)

(4.12)

It is noted that the mth elements of these two matrices pertain to

the equipment:
2 2

w = wm e (4.13)

(4.14)

whereas the remaining elements are associated with the modal frequencies

and damping ratios of the primary structure:

2 2
w. = w •

1 pl

i = 1, .•. ,n

(4.15)

26 .w •
Pl pl
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The remaining matrices [Bi] and [B2] in Eqs. (4.9) and (4.10) are

defi ned as ~

[B 1 ] [:T ~]1

[B 1
] :: [~~T ~J2

(4.17)

(4.18)

The vector ~ is defined in terms of the Kth elements of the n eigenvec-

tors of the primary system as in Eq. (3.14).

From Eqs. (4.9) and (4.10) we note that the matrices [Kt ] and [et ]

are composed of matrices with elements of different orders of magnitude.

For an equipment of small mass, we assume that the ratio of the equip­

ment mass to a floor mass is of order £2. The second term on the right

hand side of Eq. (4.9) will then be 0(£) and the third term 0(£2). Fur-

thermore, if we assume that the damping ratios of the two systems are of

order £ then the second and third terms in Eq. (4.10) will be 0(£2)

and 0(£3), respectively. Discarding the terms of order £3 and separ­

ating the matrices of different orders in Eq. (4.8), we obtain:

2 2lAo + £A1 + £ A2]w. :: p.lB + £ B2]w.
-J J 0 -J

j :: 1, •.• ,2m (4.19)

where a bookkeeping parameter £ has been introduced to keep track of the

order of magnitude of different quantities. The matrices lAo]' [AI]'

etc., are defined as follows:

(4.20)
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(4.21)

~J (4.22)

It is noted that the eigenvalue problem of Eq. (4.19) has the same form

as Eq. (2.1) in Chapter 2 which was analyzed by the matrix perturbation

methods. Therefore, we can readily apply the expressions obtained there

to obtain the perturbed eigenvalues and eigenvectors for the present

problem. To obtain the eigenproperties of the combined system we must

consider the case of a tuned and detuned equipment separately. First we

examine the case of a detuned equipment. The case of a tuned oscillator

will be presented later.

4.2.1. Closed Form Expressions for the Eigenproperties of a Detuned
Case.

Considering the unperturbed eigenvalue problem in Eq. (4.19), we

observe that the upper and the lower parts of these eigenvectors are

related as:

j = 1, ••• ,2m (4.23)

where the superscripts u and ~ refer to the upper and lower m elements

of u .• From the last m equations of the eigenproblem of order 0 we
~OJ

obtain:

~u . = [0, ••• ,1, ••• ,0]
~OJ

where 1 is at the jth location, and:
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p.=-S.w.+iw./1-l ;j=1,2, ••• ,m
OJ J J J J

(4.25)

where the remaining m eigenvalues are the complex conjugate of these.

Here i denotes the complex number. The eigenvectors u . when normalized-OJ
according to Eq. (2.8) become:

T
~oj = aj [O' ••• 'Poj,···,l, ••• ,O]

where:

i,j = 1,2, ••. ,2m (4.26)

(l - i)

2)1/2/ 4w.(1 - B.
J J j=1,2, ••. ,m

(4.27)

(4.28)a. = a.
J+m J

Hereafter, a bar over a quantity will denote its complex conjugate.

SUbstituting for [A1] from Eq. (4.21) and u . from Eq. (4.26) in
-OJ

Eqs. (2.13) and (2.14) we find:

Plj = 0

8 jk = 0

j = 1,2, ••• ,m (4.29)

j,k = 1,2, ... ,2m-1 (4.30)
j,k * m

e ­jm - j = 1,2, ... ,2m-l
j * m

(4.31)

e. 2 = e.J, m J,m ; j = 1,2, ••• ,2m-1
j * m

(4.32)

where the following notation is used to define v. for j ~ m:
J

v j+m = v j j = 1,2, ••• ,m (4.33)

In order to find the second order correction terms we substitute the

expressions for u ., [A2l and [82] in Eq. (2.19) and obtain:-OJ

2 -2
2 2 2 2 am am

P2j = m w v.a.[w ( + ) - 1]
e e J J e Poj - Porn Poj - Porn
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(4.36)

j = 1,2, •• ,m-l(4.35)

simplification can be written as;
2P . + 2s W P .OJ e e OJ =

2 2 P2,j+m
P • + 2s W P . + WoJ e e OJ e
j = m the same set of equations leads to~

2 -2
4 2 m-l 2 uk uk

P = m W U \ v ( + ) - P2m e e m L k P P - - 2,2mk=l am - ok Porn - Pok

And for the case

which after some

which can also be simplified to:

(4.37)

With a similar substitution for [A2l, [82l etc. in Eq. (2.20) and after

some simplification we obtain:
2 2 j,i 1, ••• ,2m-lmeWeVtiUjUi P . + 2s WP . =

8 .• = oJ e e oJ j :/; i (4.38)Jl Pok - Poj 2 2P . + 2S WP . + W j,i :/; m
oJ e e oJ e

and if i = m or j = m they become:

e . =
Poj

2sewe/me VjUjUm (4.39)Jm Poj - Porn
j = 1, ••• ,2m-l

Poj j :/; m
8mj = 2s W1m v.u.u (4.40)

Porn - Poj e e e J J m

For the case j = m and i = 2m we can similarly show that:

m w41u 1
2 n 2vk -;;-

8 = e e m I = 82m ,m (4.41)m,2m -
P~m + 2skwkPom

2
Porn - Porn k=l + wk

When both sUbscripts are equal we obtain~

8 .•
11

_1 m w4v~u~[( am )2 + ( am )2]; ~ = 1, ••• ,2m-l (4.42)
2 e e , 1 Pok Porn P _ P 1 * m

ok am
which after some simplification can be written as:

8 ..
11

i = 1, ••• , 2m-l
i * m

(4.43)
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For the case i = m a different expression is obtained:

4 2 n 2 (porn + akwk) ~

emm = -m Wa L \lk 2 2 = e (4.44)e e m k=1 (porn + 2akwkPom + wk)
2m.2m

(4.45)

Once all the coefficients eji and 8 ji of Eqs. (2.11) and (2.17) are

found. the perturbed eigenvectors ~j can be obtained from the expansion

(2.3). Setting the coefficient E equal to 1. we obtain:

2m ~

ljI. = u . + [ (e·k + e·k)u k ; j = 1••••• 2m
~J ~OJ k=1 J J ~o

It is noted that we only need to know the lower half of these vectors.

several elements

Substituting for

as their upper halves are related to the lower halves as follows~

u l/,ljI. = p.ljI. ; j = 1••••• 2m (4.46)
~J J-J

u in Eq. (4.45) and taking advantage of the fact that
~oK

of these vectors are zero. we obtain the simplified

expressions for the elements of the lower half of ljI. as follows~
~J

i 1•••••m-l
i 1; j (4.47)

(4.48)

~ ~

ljI2 . = (e. + e. )a + (8. 2 + eJ.• 2m);-mm.J Jm Jm m J. m (4.49)

(4.50)i,j =
i 1; j

~ ~

Substituting the coefficients 8 ..• 8 ..• etc. already obtained. and after
Jl JJ

some algebra. we finally arrive at:
2

2 Poj + 2aewePoj
1\!i+m.j = -meWe\li\lja j 2 2 X

P . + 2a.w.p . + w.OJ 1 1 oJ 1

2 2 5[ 4 4 3 4D2W2p2. + 31\!J·+m.J. = a. + m W\l.a. p . + a Wp . + p B WP . +J e e J J OJ e e OJ e e OJ e e OJ

j = 1••••• n (4.51)
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1jJ2m,j

where:

= 1m! v.a.[2S w p . + w2]Xe J J e e oJ e j = 1, ..• ,n (4.52)

1X =---=-----'----~2 2
Poj + 2SewePoj + we

Equations (4.50)-(4.53) only define the first m - 1 vectors.

(4.53)

The

expressions for the elements of the mth vector, ~m' are:
~ ~

lji. = (s. + S.)a + (s. 2 + SJ·,2m)~mJ+m,m Jm Jm m J, m j = 1, ... ,m-l (4.54)

1jJ = a + S a + S a2m,m m mm m m,2m m (4.55)

Substituting the values of Sjm,Sjm etc., and after some simplifications

we obtain:

j = 1,2, ••• ,m-1 (4.56)

(4.57)

The perturbed eigenvalues are obtained by substitution of Eqs. (4.29),

j = 1,2, ••• ,n (4.58).,

(4.35) and (4.37) into Eq. (2.2) with E equal to 1, as follows:

2 2 Poj + 2Sewe ]
Pj = POj[l - meWeVjaj 2 + 2

0
+ 2

Poj ~eWePoj we

(4.59)
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4.2.2. Closed Form Expressions for the Eigenproperties of a Tuned Case.

When the equipment natural frequency and modal damping ratio are

equal or nearly equal to one of the modal frequencies and the corres­

ponding damping ratio of the primary system, the expansions obtained in

the previous section are no longer valid. From Eq. (4.34) we observe

that the expansion (2.2) does not hold whenever:

(4.60)

The condition for the validity of the expansion (2.3) is, however, dif­

ferent. According to Eq. (4.42), whenever the following inequality is

true

(4.61)

the assumed expansion for the eigenvectors breaks down because the cor­

rection terms become of the same order as (or larger than) the zero

order terms. For this case, therefore, we need a different set of

expansions that will avoid the "non-uniformity" [15] of the foregoing

expansions. These alternative expansions were already obtained in

Chapter 2. We will assume in the sequel that the values of the ~th

structural frequency and corresponding modal damping ratio are such that

condition (4.61) is satisfied. We will introduce some IIdetuning para-

meters" defined as follows:

(4.62)

If the values of we and w~ are such that (1 - w~/w~) is of order E, that

is, of the order of the square root of the ratio of the equipment mass

to the floor mass, we define 81 from Eq. (4.62) and set 82 equal to
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zero. On the other hand, if (1 - w~/w~) is of order £2, or of the order

of the ratio of the equipment mass to the floor mass, we use Eq. (4.62)

to define 02 and take 01 equal to zero. In terms of these detuning

parameters, the equipment eigenvalue can be written as follows:

2 2 222
we = w~ + £01we + £ 02we

In a similar way we introduce an additional detuning parameter:

(4.63)

(4.64)

so that the quantity Bewe can be expressed in the form:
2Bewe = B~w~ + £ a1Bewe (4.65)

We now redefine the matrices [Aol, [801, [All, [A21 and [821

slightly differently by utilizing Eq. (4.63) and (4.64). The last

diagonal elements, that is the (2m,2m)th elements of matrices [Aol and

[801 of Eq. (4.20) are set equal to -w~ and 2B~W~, respectively, whereas

the corresponding elements of [Al ], [A21 and [821 which were zero in
2 2Eqs. (4.21) and (4.22) are now changed to -olwe' -02we and a 1Bewe ,

respectively.

Since several elements of matrices [Aol, [801, etc. are zero, we

can take advantage of this again to obtain the closed form expressions

for various correction terms defined before. We start by examining the

unperturbed eigenvalue problem (2.25). From the definition of [Aol it

follows that:

Po~ = Porn = Pom~ = P02m = - B~w~ + iW~1 1 - B~ (4.66)

Considering the orthonormality conditions (2.30), the unperturbed tuned

eigenvectors can be written as follows:

T ~u 0 = u mo = [O, .•• ,p o' ••• 'p o~, ••• ,l, •.• ,~]
-o~ -0 ~ o~ o~

I 1 + ~2
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Ctll,
[O' ••• 'POll,~' ••• '-POll" ••. ,~, ••• ,-l] ------- (4.68)

{ 1 + ~2

where the non-zero entries in the above arrays are at the ll,th, mth ,

mll,th and 2mth locations respectively and Ctll, is defined by Eq. (4.27).

The value of the constant ~ can be defined with the condition given

by Eq. (2.47). It can be shown that:

~ - - (4.69)

The choice of the sign of the square root is irrelevant. Indeed, it can

be shown that if the minus sign is chosen, this will only interchange

the respective values of Pll, and Pm and corresponding eigenvectors ~ll,

and 2m•

Utilizing ~Oll, and ~om defined by Eqs. (4.67) and (4.68) in Eq.

(2.45) we obtain:

(4.70)

(4.71)

With u . defined by Eq. (4.26) and with the previous definitions of u-OJ -Oll,
A

and ~om' the coefficients e . and e . of Eq. (2.46) become:- ll,J mJ

Ctll,~
- 2

e .
{me WeVjCt j (4.72)=ll,J

+ ~2
POll, - Poj

{ 1 j 1,2, ••• ,2m-l
- 2 j '" ll"m,mll,

Ct {me WeVtj
e . ll,

(4.73)- -mJ
+ ~2

POll, - Poj
{ 1
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A

To obtain the coefficient 8~m we need to obtain first the expressions

for the following terms in terms of the quantities defined above as fol-

lows:
2 2

Ct.~we 2
+ 4/me w~ll1 (4.74)P2~ - P2m = 1 + /:,2

[01(1 - /:, )

2m-1 2 2
A A 4 Ct.~/:' n ~k

I (porn - Pok)8g,k8mk = - m w ------ I (4.75)2k=l e e 1+/:,2 k=l p2 + 2s w P + wkb:g"m,mg, k*g, og, k k o~

(4.76)

SUbstituting Eqs. (4.74)-(4.76) into Eq. (2.68) we obtain for 8~m:

We need also to obtain the coefficients 8~,m~' 8g,,2m' 8m,mg, and 8m,2m

which cannot be defined with Eqs. (4.72) and (4.73). From Eq. (2.46)

and with the help of Eqs. (4.67) and (4.68), it can be shown that these

coefficients can be written as follows:

(4.78)

(4.79)

(4.80)
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Introducing Eqs. (4.67) and (4.72) into Eq. (2.66) for i = ~,

considering the previous definitions of matrices [A21 and [B21 and after

some algebraic manipulations we can obtain the correction term P4~ as

follows:

(4.81)

Proceeding in a similar way but now sUbstituting Eqs. (4.68) and (4.73)

into Eq. (2.66) for i = m, we obtain for the correction term P4m:

2- m we e (4.82)

The tuned eigenvectors are retrieved from Eq. (2.24) as follows:

1lJ. = u . +
-1 -01

2m ~

I e·ku kk=l 1-0
~,m (4.83)

where Eq. (2.58) was considered and the correction terms u3· and u4.
- 1 - 1

were disregarded since they could not be completely defined with the

assumed five-term expansion. We will be only concerned with the lower m

elements of the vectors ~~ and ~m since the upper m elements can be

obtained with
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1Vk . =,1

i =
k =

9.,m
1, ... ,m (4.84)

and also:

(4.85)

~2m = ~m (4.86)

From Eq. (4.83) and with the proper substitution for ~ok from Eqs.

(4.26), (4.67) or (4.68), the lower m elements of 1V become:-9.

1Vi+m,9. = e .ct. + e • ct.9.11 Q"l+m 1 i = 1, ••• ,n, i * 9. (4.87)

(4.88)

(4.89)
1 A A A

1V2m,9. = [(~ - 89.m)ct9. + (~8Q"m9, e9,,2m)~Q,1
I 1 + ~2

the lower m elements of 1V are given by the following-mand similarly,

expressions:

i = 1, ... ,n, i * 9, (4.90)

SUbstituting Eq. (4.72) into (4.87) we obtain:

i = 1, ... ,n
i * 9,

(4.93)

Introducing Eqs. (4.77), (4.78) and (4.79) into Eq. (4.88), it follows

that:
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(4.94)

where:

(4.95)

(4.96)

Similarly, substitution of Eqs. (4.77)-(4.79) into Eq. (4.89) leads to:

From Eqs. (4.73) and (4.90) we obtain:

(4.97)

1JJi+m,m =
i == 1,2, ... ,n
i "* 2,

(4.98)

When Eqs. (4.77), (4.79) and (4.80) are substituted into Eq. (4.91), it

yields:

(4.99)

Finally, introducing Eqs. (4.77), (4.79) and (4.80) into Eq. (4.92), we

obtain:

(4.100)
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Combining the correction terms for the eigenvalues, Eqs. (4.70), (4.71),

(4.81) and (4.82), the tuned complex eigenvalues can now be written as

follows:

28 P
e o~ (0 + 21m- v ~) + Z]
we 1 e ~

(4.101)

(4.102)

Equations (4.84)-(4.86) and (4.93)-(4.102) define completely the

tuned modal shapes and eigenvalues of the combined system. The non­

tuned eigenvalues and eigenvectors are still given by Eqs. (4.46),

(4.50)-(4.52), (4.56)-(4.59) of the previous section. The matrix of

eigenvectors of the original system of Eq. (4.4) are obtained with the

transformation:

1
p .[U]1jJ~!A J ~ J

1jJ = •
~j ,

[u]~j

j = 1, ••• ,2m (4.103)

A

The eigenvectors ~j obtained from Eq. (4.103) are approximately (up to

second order terms) orthonormal in the following sense:

3
~j = Qij + O(e: )

58

(4.104)



4.3. NUMERICAL RESULTS

The numerical results are obtained for the complex-valued frequen­

cies, eigenvectors and participation factors for the equipment-structure

shown in Fig. 3.1 by the perturbation approach proposed here. To ascer­

tain the accuracy of these results, they are then compared with the

exact values obtained by a direct analysis of the combined structure­

equipment system. The floor mass and interstory stiffness of the

example structure are identical to those of the primary structure used

in Chapter 3.

The primary structure is assumed to be classically damped. The

natural frequencies and undamped mode shapes of the primary structure

are given in Table 3.1. The modal shape matrix is normalized according

to Eq. (3.12). The damping ratio in each mode is assumed to be 0.03.

These values have been utilized in calculating the following results.

Tables 4.1, 4.2 and 4.3 show the eigenvalues of the combined system

obtained by the perturbation approach for the equipment-to-floor mass

ratios of 1/1000, 1/100 and 1/10. Table 4.1 is for a detuned equipment,

whereas Tables 4.2 and 4.3 are for the equipment tuned to the first and

the last structural frequencies, respectively. Both the modulus and

argument of the complex quantities are shown. These values are compared

with the exact values obtained by a direct analysis of the combined sys­

tem. The error, in percentage, obtained between these two values is

shown in parenthesis directly beneath the calculated quantity. It is

seen that even for heavy equipment tuned to the highest frequency the

largest error between the exact value and the value calculated by the

proposed approach is less than 2 percent.
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Table 4.4 shows similar results obtained for the eigenvector ele-
'"ments.2 . and the modal participation factors. The modal participa­m,J

tion factors are defined according to Reference 27 as follows:

F. = {.~}Ti Yp f; j = 1,2, ••• ,m
J J Inn- r

e e

(4.105)

where .~ is the vector formed by the m-lower elements of •. and y is
-J -J -p

the vector of participation factors of the primary system. It is seen

that even for the heavy equipment, the error is rather quite small. The

error, however, increases when the equipment is tuned to the higher

modes. As the higher modes usually do not contribute much to the

response, such errors are often inconsequential. The response results

substantiating this are given in Table 4.8 and are discussed later.

As the response, in particular the absolute acceleration response
2 '"[23], is primarily determined by the product of qj = Pj Fj • 2m ,j' it is of

interest to compare the error obtained in this product. Table 4.5 shows

the numerical values of this product, as well as the error when these

values are compared with the exact values. Here also the error is not

more that 3 percent.

A proper consideration of the nonclassicality of the combined sys-

tern is essential for accurate calculation of the response, especially

when the damping characteristics of the primary system and the equipment

are quite different and the equipment is light and tuned to a structural

frequency (see References 9 and 22). This can be clearly seen from the

results given in Table 4.6. The values in Column 3 of this table are

the effective modal damping ratios for the two tuned frequencies shown

in Column 2. These are calculated from the complex-valued eigenvalues
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obtained by the proposed approach. The expressions for calculating

these frequencies and modal damping ratios are:

Q. = Ip.1 ; ~. = -Real(p.)/Q. j = 1,2, •.. ,m (4.106)
J J J J J

Columns 4 and 5 show the exact frequencies and modal damping ratios cal-

culated with no regard for the nonclassicality of the combined system.

The differences in the two quantities due to this disregard of nonclas-

sicality are shown in Columns 6 and 7. It is noted that although the

difference in frequency is small, it is quite large in the corresponding

damping ratio. This latter difference can cause quite large errors in

the calculated response quantities as is shown by the following results.

Table 4.7 shows the absolute acceleration response values calcu­

lated for equipment tuned to each of the structural frequencies. All

the results in this table were obtained for seismic input defined by a

set of ground response spectrum curves. The mass ratio of the equipment

is 1/1000. The results in Column 2 are the exact values obtained by a

direct analysis of the non-classically damped combined system made with

an extended numerical precision algorithm to include the effect of very

light equipment. They are exact in the sense that no approximations

have been made in calculating the modal properties. The values in

Column 3 are obtained with the eigenproperties calculated by the pro-

posed approach. For calculating the response from these eigenproper­

ties, the method developed by Singh [27] was used. The error in these

values when compared with the exact values in Column 2 are shown in

Column 4. These are quite small for the whole range of frequencies.

Column 5 shows the exact response values calculated with no regard for

the nonclassicality of damping of the combined system. It is seen that

the error between these values and the exact values of Column 1 obtained
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from the damped case are quite large. Thus in such cases, the use of

the approach proposed here is advocated for calculating the combined

eigenproperties of equipment-structure systems to incorporate the non­

classical damping effects.

4.4. SUMMARY AND CONCLUSIONS

A second order perturbation analysis is developed to obtain the

complex-valued eigenvalues and eigenvectors of a combined equipment­

structure system. Both cases of detuned and tuned equipment, requiring

different perturbation expansion schemes, are considered. Closed form

expressions are obtained for the eigenvalues and eigenvectors of the

combined system in terms of the undamped eigenproperties of the two sys­

tems. Numerical results show that this approach can be effectively used

to obtain the eigenproperties for light equipment without much error

when compared with the exact values. The result showing the need of

such an analysis to incorporate the nonclassical damping effects in the

response are also presented.
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Table 4.1 Eigenvalues of the combined structure-equipment system for a
detuned case.

Equipment frequency = 42.0 rad/sec - Equipment damping = 0.03

Mass Ratio

1/1000 1/100 1/10

Eigenvalue
No. Amplitude Phase Ampl itude Phase Ampl itude Phase

1 21.9584 -88.2791 21.8990 -88.2629 21. 3145 -88.0963
(0.00) (0.00) (0.01) (0.03) (0.16) (0.28)

2 42.0059 -88.2815 42.0587 -88.2879 42.5874 -88.3504
(0.00) (0.00) (0.00) (0.01) (0.10) (0.10)

3 63.2539 -88.2812 63.3287 -88.2843 64.0767 -88.3150
(0.00) (0.00) (0.00) (0.01) (0.00) (0.11)

4 96.8999 -88.2809 96.9184 -88.2813 97.1036 -88.2855
(0.00) (0.00) (0.00) (0.00) (0.00) (0.02)

5 118.8632 -88.2809 118.8672 -88.2809 118.9068 -88.2816
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 4.2 Eigenvalues of the combined structure-equipment system for a
tuned case.

Equipment tuned to the lowest structural frequency - Equipment damping = 0.03

Mass Ratio

1/1000 1/100 1/10
Eigenvalue

No. Amplitude Phase Amplitude Phase Amplitude Phase

1 21. 7390 -88.2990 21.2645 -88.3407 19.8901 -88.4944
(0.01) (0.00) (0.06) (0.00) (0.57) (0.04)

2 22.1903 -88.2630 22.6592 -88.2240 23.9770 -88.0970
(0.01) (0.00) (0.16) (0.00) (1. 43) (0.00)

3 63.2470 -88.2809 63.2600 -88.2813 63.3901 -88.2855
(0.00) (0.00) (0.00) (0.00) (0.00) (0.03)

4 96.8983 -88.2809 96.9026 -88.2809 96.9460 -88.2818
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

5 118.8629 -88.2809 118.8638 -88.2809 118.8737 -88.2810
(0.00) (0.00) (0.00) (0.00) (0.00 (0.00)
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Table 4.3 Eigenvalues of the combined structure-equipment system for a
tuned case.

Equipment tuned to the highest structural frequency - Equipment damping
= 0.03.

Mass Ratio

1/1000 1/100 1/10
Eigenvalue

No. Ampl itude Phase Amplitude Phase Amplitude Phase

1 21. 9601 -88.2770 21.9161 -88.2419 21.4766 -87.8830
(0.00) (0.00) (0.00) (0.05) (0.05) (0.50)

2 63.2309 -88.2795 63.0987 -88.2670 71.7776 -88.1395
(0 .00) (0.00) (0.00) (0.02) (0.21) (0.21)

3 96.8713 -88.2798 96.6329 -88.2698 94.2486 -88.1671
(0.00) (0.00) (0.01) (0.02) (0.80) (0.18)

4 118.4761 -88.2885 117.9251 -88.3152 118.7513 -88.4879
(0.00) (0.00) (0.03) (0.02) (1.35) (0.22)

5 119.3362 -88.2762 120.6662 -88.2762 127.6301 -88.3622
(0.00) (0.00) (0.04) (0.03) (0.62) (0.60)
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Table 4.4 Complex participation factors and eigenvector elements w
2

.
for a tuned case. m,J

Equipment tuned to the lowest structural frequency - Equipment damping =
0.03.

A

Mass Frequency Complex Participation Factot Eigenvector w2 .
m,J

Ratio No. Amplitude Phase Amplitude Phase

1 140.4685 -45.0013 .47196 E-2 -44.9993
(0.00) (0.01) (0.00) (0.01)

2 144.8682 -44.9987 .48248 E-2 -45.0006
(0.00) (0.01) (0.00) (0.01)

1/1000 3 36.3050 -44.9984 .10059 E-4 -37.7046
(0.00) (0.00) (0.00) (0.00)

4 14.2010 -45.0012 .24223 E-5 -32.8706
(0.00) (0.00) (0.00) (0.00)

5 5.5652 -44.9987 .77091 E-6 -29.7564
(0.00) (0.00) (0.00) (0.00)

1 149.8405 -44.9965 .15619 E-2 -45.9981
(0.02) (0.01) (0.03) (0.02)

2 135.9720 -45.0041 .14563 E-2 -44.9981
(0.02) (0.04) (0.03) (0.02)

1/100 3 36.2854 -44.9844 .10060 E-4 -37.7046
(0.00) (0.05) (0.02) (0.00)

4 14.2073 -45.0124 .24223 E-5 -32.8706
(0.00) (0.02) (0.04) (0.02)

5 5.5646 -44.9872 .77091 E-6 -29.7565
(0.00) (0.03) (0.05) (0.03)

1 167.2062 -44.9906 .53008 E-3 -45.0052
(0.13) (0.07) (0.23) (0.04)

2 123.3643 -45.0149 .42435 E-3 -44.9935
(0.27) (0.14) (0.39) (0.07)

1/10 3 36.0810 -44.8431 .10059 E-4 -37.7046
(0.02) (0.47) (0.21) (0.01)

4 14.1801 -45.1247 .24223 E-5 -32.8706
(0.00) (0.23) (0.37) (0.18)

5 5.5587 -44.8724 .77090 E-6 -29.7564
(0.00) (0.34) (0.49) (0.29)
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Table 4.5 Response quantity qj for the combined damped system for a
tuned case.

Equipment tuned to the highest structural frequency - Equipment damping
= 0.03.

Mass Ratio

1/1000 1/100 1/10
Frequency

No. Amplitude Phase Ampl itude Phase Amplitude Phase

1 330.3174 -86.5975 105.8283 -86.6797 35.0647 -86.9847
(0.01) (0.00) (0.10) (0.00) (1.03) (0.07)

2 326.4446 -86.5266 101.6664 -86.4502 30.0959 -86.2024
(0.03) (0.00) (0.33) (0.01) (2.95) (0.03)

3 1.4609 -79.2649 1.4607 -79.2517 1.4588 -79.1187
(0.00) (0.00) (0.02) (0.02) (0.21) (0.20)

4 0.3232 -74.4336 0.3232 -74.4450 0.3228 -74.5590
(0.00) (0.00) (0.03) (0.02) (0.37) (0.18)

5 0.0606 -71.3169 0.0606 -71. 3055 0.0606 -71.1909
(0.00) (0.00) (0.00) (0.01) (0.00) (0.17)
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Table 4.6 Comparison between frequencies and modal damping coefficients
obtained from the classical and non-classical damping
analysis of the combined system.

Mass ratio = 1/1000 - Equipment damping = 0.005 - Structure modal
damping = 0.09

Non-Classical Damping Classical Damping Error in %
Analysis Analysis

Frequency
No. Frequency Modal Frequency Modal Frequency Modal

Damping Damping Damping

Equipment tuned to the 1st frequency

1 21.9647 0.08873 21. 7378 0.04739 1.03 46.59
2 21.9646 0.00627 22.1938 0.04761 1.04 659.33

Equipment tuned to the 2nd frequency

2 63.2450 0.08902 62.6762 0.04785 0.90 46.25
3 63.2564 0.00601 63.8307 0.04717 0.91 684.86

Equipment tuned to the 3rd frequency

3 96.8973 0.08946 96.2659 0.04897 0.65 45.26
4 96.9433 0.00561 97.5793 0.04612 0.66 722.10

Equipment tuned to the 4th frequency

4 118.8626 0.08985 118.4764 0.05183 0.32 42.31
5 118.9446 0.00528 119.3372 0.04333 0.33 720.64
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Table 4.7 Comparison between absolute acceleration response values
obtained from non-classical and classical damping analysis.

Mass ratio = 1/1000 - Equipment damping = 0.005 - Structure modal
damping = 0.09.

Absolute acceleration in G units.

Non-classically damped system Classically damped system

Tuned Exact Values Perturbation Error in % Exact Values Error in %
Frequency Approach

1 0.2620 0.2566 2.06 0.2028 22.60
2 0.0628 0.0619 1.43 0.0449 28.50
3 0.0298 0.0298 0.00 0.0271 9.06
4 0.0246 0.0246 0.00 0.0243 1.22
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CHAPTER 5

EIGENPROPERTIES OF NONCLASSICALLY DAMPED PRIMARY STRUCTURE
AND EQUIPMENT SYSTEMS

5.1. INTRODUCTION

In the preceding chapter, the combined system was considered to be

nonclassically damped, though the primary structure was assumed to be

classically damped. Thus, the new modal properties of the composite

system were obtained in terms of the undamped eigenproperties of the

supporting structure and the equipment. There are cases, however, in

which not only the combined system but also the primary structure itself

cannot be regarded as proportionally damped. Examples of these are the

structures composed of parts with large differences in their energy

dissipation rates, like massive structures on soft soil. In some cases

it is satisfactory to neglect the off-diagonal terms in the damping

matrix corresponding to the normal coordinates [28], but this

approximation may lead to unacceptable errors.

The response of such nonclassically damped combined systems can be

obtained via modal decomposition by employing the state vector approach

[13,18]. This requires a knowledge of the complex-valued eigenvalues

and eigenvectors of the composite systems. These, in principle can be

obtained by solving an eigenvalue problem of double size with respect to

the undamped case. However, as mentioned earlier, due to the gross

differences in the mass and stiffness properties of the two subsystems,

some numerical problems may appear. And even though these problems may

be overcome by using extended precision algebra, when different

characteristics or locations of the equipment need to be considered,

like in the generation of floor response spectra, the process becomes

costly and cumbersome. For the nonclassically damped case these
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difficulties are even more manifest because of the increased size of

each eigenproblem. It is desirable, therefore, to have available the

closed form expressions to define the eigenvalues and eigenvectors of

the combined system in terms of the equipment characteristics and the

modal properties of the primary structure. To that end, in this chapter

these eigenproperties are obtained through the general second order

perturbation expansions developed in Chapter 2. The case when the

equipment damped frequency is well-separated from all of the structure's

eigenvalues as well as the case when it is equal or nearly equal to some

of them are examined. Numerical results showing the accuracy of the

proposed approach both in the complex eigenproperties and floor response

spectra are presented. This approach provides reasonably accurate

results for equipment as heavy as 1/5 the mass of the supporting floor.

5.2. EIGENVALUE ANALYSIS

Consider a non-classically damped structure with n degrees of free­

dom. The primary structure properties are described by the stiffness

matrix [Kp]' damping matrix [Cp] and mass matrix [Mp]. If an equipment

modelled as a single degree of freedom oscillator of frequency we'

damping ratio Se and mass me is attached to the Kth dof of the structure
..

and the system is subjected to a base excitation Xg(t), the equations of

motion in state vector form [13] for the combined structure are

j 0 1.'= - - X (t)
[M]r 9

(5.1)

where the mass matrix [M], damping matrix [C] and stiffness matrix [K]

of the combined system are defined by Eqs. (3.2)-(3.4) and (3.6)-(3.8).
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The vector of influence coefficients of the combined system r comprises

the vector of influence coefficients of the primary system r and the
~p

equipment influence coefficient re and is given by Eq. (3.5). The

combined system posseses m = n+1 degress of freedom.

To solve Eq. (5.1), we need to obtain the 2m eigenvalues Pj and
A

eigenvectors ~. of its associated eigenvalue problem. We would like,
~J

however, to obtain the eigenvalues and eigenvectors in terms of the

eigenproperties of the primary structure and equipment. Let A • and ~p.
PJ - J

be the jth eigenvalue and eigenvector of the damped primary structure,

obtained from the solution of the following eigenvalue problem of order

2n

j = 1, ... ,2n (5.2)

We also assume that these eigenvectors are orthonormalized with

respect to the right hand side matrix of Eq. (5.2). Similarly we also

define the complex eigenproperties of the oscillator which are obtained

as a solution of the following equation

[
m 0] [0 m Je e

~ . = A • ~ •
o -m w2 -sJ sJ m 2s w m~sJ

e e e e e e

These eigenvalues and eigenvectors are

; j 1,2 (5.3)

(5.4)

(5.5)

(5.6)



where a bar over a complex quantity denote its complex conjugate. These

complex eigenvectors are also normalized with respect to the matrix in

the right hand side of Eq. (5.3).

Before we solve the eigenvalue problem associated with Eq. (5.1),

it will be advantageous to consider a transformed eigenvalue problem,

with the transformation defined by:

'JIu a ~ ap - p -
a <P eAe a <P eAe- - [T]l\! • (5.7)l\!. = l\!. =

-J 'JIll. a -2, a -J -J'JI
P - P -

a <P e a <P e- -

where ['JI~] and ['JI~] are (nxn) submatrices of

matrix of the primary system. The submatrix

upper n rows and first n eigenvectors, while

['JIp]' the eigenvector

['JI~] is composed of the

['JIll.] contains the lower np

elements of the first n eigenvectors.

By introducing the transformation of Eq. (5.7) in the eigenvalue

problem associated with the system of Eq. (5.1), premultiplying by the

transpose of [T] and using the orthonormality properties of the

eigenvectors ~pj' it can be shown [27) that we obtain:

where:

[

A
P1.

[/d = • Apn
a
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(5.10)

(5.11)

(5.12)

(5.13)

and ~~P)(K+n) is the (K+n)th element of the ith eigenvector of the pri­
1

mary system.

An examination of the second matrix in the left hand side of Eq.

(5.8) shows that except for the mth and (2m)th rows and columns, all its

elements are of the order of the ratio of the equipment mass to primary

system mass elements. We will assume here that these ratios are small

quantities of order £2 and therefore these elements are 0(£2), while the

remaining elements in the mth and (2m)th rows and columns are 0(£).

Similarly, if we assume that Be is 0(£), then the second matrix in the

right hand side of Eq. (5.8) is composed of the elements of order £ and

2 As we intend to obtain the eigenproperties up to terms 0(£2), we£ •

will discard the third order elements in the eigenvalue problem (5.8) to

obtain the following:
2 2[Ao + £A1 + £ A2]~· = p.[l + £ B2]~· ; j = 1, ••• ,2m

~J J ~J

where we have discarded the elements of order £3 and a bookkeeping para-

meter £ is introduced to trace the order of the different quantities

involved. The matrices [Ao]' [All and [A2] in Eq. (5.13) are

(5.14)
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0 \J 0 \J
~ -

T
0 -T 0\J \J

2 - -
[A1] = m w 4> 0 0 (5.15)e e e \J \J

~ -
T

0 -T 0\J \J
~

T 0 -T 0\J\J \J\J
~ -

2 0 0 0 0
[A2] ~ - (5.16)= -m w - T -Te e 0 0\J\J \J\J

~ -
0 0 0 0
~ ~

0 \J 0 \J
~ ~

T
0 -T 0\J \J

~ -
[B2] = -2Beweme4>e 0 (5.17)

\J 0 \J
~

T
0 -T 0\J \J

~ ~

As it will be evident later, we need to consider two separate cases

in the solution of the eigenproblem (5.8). First we assume that all of

the primary system eigenvalues do not have numerical values close to the

equipment eigenvalue Ae (detuned case). If any eigenvalue of the

structure is equal or nearly equal to Ae, a different analysis is

required for the two closely spaced eigenvalues and eigenvectors (tuned

case).

5.2.1 Closed Form Expressions for the Eigenproperties of a Detuned Case.

In Chapter 2 we obtained general expressions for the perturbed

eigenvalues and eigenvectors for any eigenvalue problem that can be cast

in the form of Eq. (2.1). The eigenproblem that we are considering in

this chapter has the same form as Eq. (2.1) if we set [Bo] = [I] and let

n be equal to 2m. Because of the simple form of the matrices [A1], [A2]
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and [82], we can obtain compact expressions for the eigenvalues and

eigenvectors of the transformed system (5.8). We begin examining the

zero order eigenvalue problem (2.4). In our case it is:

OJ u .
I ~OJ

j = 1, .•• ,2m (5.18)

from which we conclude that the unperturbed eigenvalues are:

Po,j+m = Apj ; j = 1, ... ,n (5.19)

and the unperturbed eigenvectors are:

uT. = [0, ••• ,1, .•• ,0]
~OJ

where 1 is at the jth row.

., j = 1, ..• ,2m

(5.20)

(5.21)

The first order correction terms to the eigenvalues will be

obtained from Eq. (2.13). With Eqs. (5.15) and (5.21) it follows that:

o
T 2u .A1u . = m w v.~

~o, ~OJ e e , e
2 ­

mewevi~e

· i , j = 1, ••• ,2m-1 . i , j *- m (5.22), ,

· i = 1, ... ,2m-1 hm j = m (5.23),

· i = 1, ... ,2m-1 hm j = 2m (5.24),

where the following notation is used to define v. for i ~ m:,
i = 1, ... ,n (5.25)

Direct substitution of Eqs. (5.19)-(5.24) in Eqs. (2.13)-(2.16) leads to:

P1j = 0

8 .• = 0
J'

j = 1, .•• ,2m

;,j = 1, ••• ,2m-1 ;,j *- m

(5.26)

(5.27}

8 = 8 8 = 8 = 0m,2m 2m,m m,m 2m,2m
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= 1, ... ,2m-l i "* m

(5.28)

(5.29)

To obtain the second order correction terms we examine first the

products ~~i [A2] ~oj and ~~i [82) ~oj" From Eqs. (5.16) and (5.21) we

obtain first:

i,j = 1, ••• ,2m-1; i,j"* m

T 1u . Au. =
-01 2 -OJ

2-m w \}. \} •e e 1 J

o i = 1, ..• ,2m j = m,2m

(5.30)

(5.31)

From the definitions of [B2], Eq. (5.17), and u ., Eq. (5.21), it
-OJ

follows that:

;,j = 1, ... ,2m-l
i = j = m,2m

i,j "* m

0 . i = m . j 2m (5.32), , =
uT. B2

u . = ; = 2m . j = m,
-01 -oJ (5.33)

-2f3eWeme<Pe\};; i = 1, ••• ,2m-1 . i "* m j = m,

-2f3eweme~e\}i
. ; = 1, •.• ,2m-1 i "* m j = 2m (5.34),

The correction terms P2j can be obtained from Eqs. (2.19), (5.30) and

(5.32), as follows:

2m 2 2 2
= I (8 'k) (p .-p k)-m w \).

k=1 J oJ 0 e e J
j = 1, ..• ,2m-1

j "* m

(5.35)

But since 8 jk is different from zero only for k = m,2m, sUbstituting

Eqs. (5.28) and (5.29), we obtain:

242
q,2 ~2

2 2
P2j = m w \} ( e + e - m w v. (5.36)e e . PorPom P .-p e e JJ oJ om
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From the definitions of Poj' $e and Porn we get:

(5.37)

And substituting the above expression in Eq. (5.36), P2j becomes:

2 2= -m w v.e e J

2
A .+213 W A •

PJ e e pJ
2 2A .+26 W A .+w
PJ e e PJ e

j = 1, ••• ,2m-l

j *" m

(5.38)

The correction term P2m is obtained by replacing Eqs. (5.27),

(5.31) and (5.32) in Eq. (2.19) for j = m:

Introducing the following constants~

(5.39)

we can write for P2m:

2­bk = -2meReal(vkApk)

dk = IAPk l2
(5.40)

(5.41 )

In order to examine the coefficients 8 •. we need to considerlJ
several cases separately. First, for the case i,j *" m,2m and i *" j,

substituting Eqs. (5.26), (5.28)-(5.29) and (5.32) in Eq. (2.20) we

obtain:

(5.42)
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and with Eq. (S.37) the coefficients e .. becomes:Jl

2 2mW\l.\I. Ap/2SeWeApj i ,j 1, ..• ,2m-1eel J =e .. =Jl A .-A . 2 2 i,j i jpl PJ A .+28 WA .+w *- m . *-PJ e e PJ e
,

For the case i = m, Eq. (2.20) reduces to:

(5.43)

Tu [A2-p .B21u .e - -om OJ -OJ
jm - Poj-Pom

j = 1, ••• ,2m-l

j *- m (5.44)

and from Eqs. (5.31) and (S.33) we obtain:

A •
e• = 20 W m ~ \I pJ
Jm ~e e e~e J. AprAe

In a similar fashion we can find that:

j = 1, ••• ,2m-1

j *- m

j = 1, ... ,2m-l

j *- m

(S.45)

(S.46)

A

The coefficients e 2 require a different expression. Startingm, m
from Eq. (2.20) for j = m, i = 2m and with the help of Eqs. (5.28)-

(S.32) we conclude that:

2 -2n \I \I
I ( k + k_)

k=l Pom-Pok P -Pom ok
(S.47)

and with the definitions of Ae, ¢e and Eq. (5.40), it follows that:

(S.48)
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We will investigate next the coefficients 8 i ; given by Eq. (2.22).

For i * m,2m and using the results already obtained, Eq. (2.22) reduces

to:

i = 1, ••• ,2m-1

i * m
(5.49)

From the definitions of Poi' ¢e' and Porn' it can be shown that the term

in square brackets can be expressed as:

",2 -2
~ 4J 2 A .+8 we e = __ p' e e

---"--~2 + - 2 2 2
(p P) ( ) me (A .+28 W A .+w )oi- am Poi-Porn P' e e P' e

and therefore:

(5.50)

8 ..

"
i = 1, ••• ,2m-1

i * m
(5.51)

A A

Finally we study the terms 8mm and 82m ,2m' Introducing Eqs. (5.28)
A

and (5.33) into Eq. (2.22) it follows that 8mm is :

(5.52)

This can also be written as:

(5.53)

where:

(5.54)
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Proceeding in a similar way we find that:

(5.55)

The expressions for the eigenvectors of the transformed system can

be obtained from Eq. (2.3) setting the bookkeeping parameter s equal to

2m A

1jJ. = u . + I (8. k+8 .k) u k
~J ~oJ k=1 J J ~o

j = 1, •.. ,2m (5.56)

With ~ok given by Eq. (5.21) and discarding the terms 8 jk and 8 jk that

were found to be zero, the elements of 1jJ., j * m,2m, become:
~J

1jJ .. = 8 ••
1 , J J 1

i,j = 1, ••• ,2m-1
hj i,j:f:- m,2m (5.57)

1jJ .. = 1 + 8 .•
J,J JJ

1jJm, J. = 8. + 8.Jm Jm

1jJ2m,j = 8 j ,2m + 8 j ,2m

(5.58)

; j = 1, ••• ,2m-1 j * m (5.59)

(5.60)

The elements of vector '" are:~m

1jJi,m = 8mi + 8 . i = 1, ••• ,2m-1 :f:- m (5.61)ml
A

1jJm,m = 1 + 8 (5.62)mm
1jJ = 8 (5.63)2m,m m,2m

With the expressions for the coefficients 8 .. , etc., substituted inJl
Eqs. (5.57)-(5.60), we obtain the final expressions for the elements of

the eigenvectors 1jJ. for j = 1, ••• ,n:
~J

1jJ ..
1 , J

1jJ ..
J,J

i = 1, ••• ,2m-1

i * m, :f:- j
(5.64)

(5.65)



(5.66)

2213 W A .+we e pJ e
A .-A
PJ e

(5.67)

SUbstituting 8mi • etc •• in Eqs. (5.61)-(5.63), the elements of the mth

eigenvector are given by the following expressions:

(5.68)

(5.69)

(5.70)

where the constants ak ••••••dk are defined by Eq. (5.40) and ek is given

by Eq. (5.54).

The eigenvalues of the combined system are obtained from Eq. (2.2)

by setting 8 equal to 1 and considering Eqs. (5.19). (5.20). (5.26).

(5.38) and (5.41) as:

2 2 A .+213 W

P '-P -ApJ.(1-mw\J. pJ ee )J - J'+m - e e J 2 2P .+213 W P .+wOJ e e OJ e

.
• j = 1••••• n (5.71)
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5.2.2 Closed Form Expressions for the Eigenproperties of a Tuned Case.

Examining the expressions found in the previous section for the

eigenvectors we can see that the assumed expansion for ~. breaks down
-J

whenever

(5.73)

(5.74)

since for this case the correction terms are equal to, or larger than

the unperturbed terms. If the ~th eigenvalue Ap~ satisfies the condi­

tion (5.73), we need different expansions for the ~th, mth , (m+~)th and

(2m)th eigenvalues and eigenvectors. These expansions are available

from Chapter 2 for an eigenvalue problem in the general form of Eq.

(2.1).

For the tuned case also, we can use these generalized expressions

to obtain the closed form expressions for the tuned eigenvalues and

eigenvectors for the specialized form of matrices lAol, [All and [A2].

We introduce here two "detuning parameters II defined as follows

1 - ~ = r:;Ae
62

with the understanding that if 1(1-Ap~/Ae)1 is of order E, we will set

62 equal to zero and define 61 from the above expression. On the con­

trary, if 1(1-Ap~/Ae)1 is O(E 2), then 61 is taken equal to zero and Eq.

(5.74) defines 62• From Eq. (5.74) thus, the equipment eigenvalue can

be expressed in the form

(5.75)

This form of Eq. (5.75), in turn, requires some modifications in the
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matrices [Aolt [AI] and [A2] of Eqs. (5.14)-(5.16). The mth and (2m)th

diagonal elements of [Ao] now change to Ap~ and Ap~t respectively. The

(m,m)th elements of [AI] and [A2] are now equal to 0lAe and 02Aet

respectively. The (2m,2m)th elements are the complex conjugate values

of the (mtm)th elements. The remaining elements of these matrices

remain unchanged.

From the zero order eigenvalue problem (2.25) we obtain that the

tuned eigenvalues and eigenvectors are:

po~ = Porn = Ap~

uT
= [0, ••• ,~, ••• ,-1, ••• ,0] 1/11+~2

-o~

(5.76)

(5.77)

T --2
~om = [Ot •.• ,l, ••• ,~, ••• ,O] 1/11+~ (5.78)

where the non-zero entries are at the ~th and mth locations, and:

p - p - A
om~ - 02m - p~

uT = [0, ••• ", ••• ,-1] 1/11+,2
-om~

UT
2 [0, ••. ,1, •.• ,,] 1/11+,2

-0 m

(5.79)

(5.80)

(5.81)

where the only two nonzero terms are at the m~th and (2m)th rows.

The values of the constants ~ and, can be obtained using the con­

ditions given by Eq. (2.47), with the above eigenvectors and the

modified matrix [AI]. It can be shown that they are:

(5.82)

The correction terms P2,' are obtained by sUbstituting u and u from
-o~ -om

Eqs. (5.77) and (5.78) ln Eq. (2.45).
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(5.83)

(5.84)

By direct evaluation of Eq. (2.46) with Eqs. (5.21) and (5.79)-
A

(5.81) we obtain the coefficients 8 ik in the expansion for ~2i :

8 • = -Ll8 •mJ lJ
; j = 1, ••• ,2m-1

j '" l,m,ml

(5.85)

(5.86)

(5.87)

82 .m, J
(5.88)

Similarly, evaluating Eq. (2.46) for j = ml and j = 2m we obtain the

remaining coefficients:

8 l ,ml = -2a Real ($eVlLl)

8 -8m,ml l,2m

8 = 2a Real ($eVn~)m,2m '"
where:

m uleel
a = -

Apl-Ap~ 1(1+Ll2)(1+~2)
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To obtain the correction terms P4i t we consider first the expres­

sions for ~o~ and ~omt Eqs. (5.77) and (5.78)t and the definitions of

[A2] and [82] to obtain:

(5.94)

(5.95)

(5.96)

(5.97)

We also need to obtain the second terms in Eq. (2.66) for i ~ and i =

m. With Eqs. (5.85) and (5.86) we get:

2m-l
L

k=l
k;t2, tm~ tm

2m-l
L

k=l
k;t~tm2,tm

(5.99)

With Eqs. (5.94)-(5.99) we conclude that the correction terms P4~ and

P4m are:

in which:
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a = (5.102)

A

Next we study the coefficients 8~m and 8m~,2m. According to Eq. (2.68),

we need first to obtain the following expressions:

122P2 -P2 = --2 [olA {l-d )-4m w ~ v d]l m l+d e e eel
(5.104)

2m-1
L

k=l

A A

{Pom-Pok)8l/,k8mk
4 2 d-m w ~ -- a

e e e 1+d2
(5.105)

b:l/"m,ml

Substituting Eqs. (5.103)-(5.105) in Eq. (2.68), we obtain:

Similar manipulations with Eq. (2.69), show that:

8 = 8ml/,,2m l,m (5.107)

Now we can obtain the closed form expressions for the tuned eigen-

vectors by setting the bookkeeping parameter equal to one in Eq. (2.24)

and ignoring the correction terms which are zero and those not com-

pletely defined:

2m A

~, = U ,+ I 8'kU k
-1 -01 k=l 1-0

; i l,m,ml,2m (5.108)

According to Eqs. (5.21), (5.77) (5.78), (5.80) and (5.81), it

follows that the elements are defined by five different expressions:
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2 i 1, ••• ,2m-1mewe<Pe'Ji 1 =
l/Ji,~ = . (5.109)

Api-Ap~
, i "* ~,m,m~

11+1\2

1\+8
l/J~,~

~m (5.110)=
11+1\2

A

-1+8 1\
l/Jm,~

~m (5.11)=
11+1\2

8 1\+8
~,m~ ~,2m

11+~2

-8~,m~+8~,2ml\

11+~2

(5.112)

(5.113)

A A

and sUbstituting 8~,m~ and 8~,2m from Eqs. (5.S9) and (5.90), it follows

that the last two terms can be expressed as:

(5.114)

(5.115)

Similarly, expanding Eq. (5.10S) and considering Eqs. (5.21), (5.77),

(5.7S), (5.80) and (5.81), the elements of the other tuned eigenvector

l/J are described by the following set of expressions:-m

i = 1, ••• ,2m-1
i "* ~,m,m~
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1\J2"m = -l\Jm,2,

I\Jm,m = l\J u

I\Jm2"m =
8m,m2,li+8m,2m

11+~2

8 li-8

1\J2m,m =
m,2m m,m2,

11+~2

(5.11l)

(5.118)

(5.119)

(5.120)

A

SUbstituting 8 and 8 2 from Eqs. (5.91) and (5.92) in Eqs. (5.119)m,m2, m, m

and (5.120) and comparing the expressions obtained with Eqs. (5.114) and

(5.115), we conclude that the last two elements can also be written as

follows:

(5.121)

(5.122)

Finally, combining Eq. (5.83) with (5.100) and Eq. (5.84) with (5.101),

the tuned eigenvalues are defined by the following equations:

1
Pm = P2m = P02, + ----2

l+li

242
[(ol+o2)Ae-meweV2,li(2~e+V2,li)-2Seweme~eliV2,Ap2,+mewe¢eal

(5.123)
2 2 4 2 2

[(ol+o2)Aeli +mewev2,(2¢eli-V2,)+2SeweWe~eliV2,Ap2,+meWe¢eali ]

(5.124)

The detuned eigenvalues and eigenvectors are still defined as in the

previous section by Eqs. (5.64) through (5.72).

The remaining m eigenvectors are related to the first m eigenvec­

tors according to the following expressions:
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1\!i,j+m = 1\!i+m,j

i,j = 1, ••• ,m (5.125)

The eigenvectors 1\!. of the original system are then recovered with the
~J

transformation of Eq. (5.7). Since the eigenvectors ~j of the trans-

formed system satisfy approximately the orthonormality condition given
A

by Eq. (2.7), the eigenvectors 1\!. are nearly orthonormal (up to second
-J

order terms) in the following sense:

~'i [OM MC]~J.-- 3! ! Qij + terms 0(£ ) ., i,j = 1, ••• ,2m (5.126)

5.3 PARTICIPATION FACTORS OF THE COMBINED SYSTEM

If we are seeking the response of the structure-equipment system to

a base excitation by modal superposition, we need to obtain the complex

participation factors Fj defined as follows:

0
AT ~

Fj = 1\! .

[:p m~ ]

. j = 1, •.• ,2m (5.127)
~J

,
r
~

where the eigenvectors of the combined system are normalized as in Eq.

(5.126). The participation factors Fj can be more conveniently obtained

in terms of the complex participation factors of the primary

system Fpj :

(5.128)

Indeed, it is not difficult to show that the combined system participa-
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tion factors can be obtained as:

F· = F.J J+m

where we defi ned:

m
= I

i=l
ljJ ••F . + ljJ. .F.1,J pl l+m,J pl j = 1, ..• ,m (5.129)

(5.130)

5.4 NUMERICAL RESULTS

A simple six degree of freedom model representing a shear bUilding

showed in Figure 5.1 is chosen as the primary system to examine the

accuracy of the proposed method. The primary system is regarded as

nonclassically damped with the damping matrix given in Table 5.1. The

floor masses are: m1 = m2 = 7x107 Kg, m3 = m4 = 5/7 m1' m5 = m6 = 4/7

m1. The interstory stiffnesses are: k1 = k2 = 5x1011 N/m, k3 = k4 =

0.8 k1, k5 = k6 = 0.7 k1• The complex eigenvalues of the structure are

listed in Table 5.2.

Tables 5.3, 5.4 and 5.5 shows the complex eigenvalues of the

combined structure-equipment system obtained with the present approach.

The errors in percent in the amplitudes and phases of the eigenvalues

when they are compared with the exact values obtained by a combined

analysis of the structure-equipment system are given in the parentheses.

Three different oscillator-to-the-floor mass ratio values are examined:

1/100, 1/10 and 1/5. The oscillator is located on the fifth floor. In

Table 5.3, the equipment eigenvalue is not tuned to any of the primary

systems eigenvalues while in Tables 5.4 and 5.5, respectively, it is

tuned to the lowest and fourth structural eigenvalues. From Table 5.5,

it is observed that the errors in the values obtained by the perturba-
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tion method do increase somewhat when the equipment is heavy and tuned

to a higher eigenvalue.

In Table 5.6, results of the eigenvectors obtained with the

proposed method are presented. Only the absolute value (or amplitude)

of the half lower part of the eigenvectors of the combined system are

shown. The equipment-to-floor mass ratio is 1/10 and the equipment

eigenvalue is tuned to the lowest structural eigenvalue. It is noted

again that the largest error in the eigenvector elements is 0.37%. This

error increases when the equipment is tuned to a higher mode. However,

the effect of this error on the calculated response is usually

insignificant because the higher modes usually do not count much to the

response. This error can be further removed if the mode acceleration

formulation is utilized [19].

Since the complex participation factors defined by Eq. (5.129) and

the elements of the eigenvector corresponding to the equipment degree of

freedom are used to obtain the equipment response it is also relevant to

examine the accuracy obtained for these quantities. Moreover, the

errors in the participation factors give a measure of the overall

accuracy of the eigenvectors obtained with the present approach. It is

seen that even for the cases of a rather heavy equipment, the errors in

these quantities remain small (less than 2%), as indicated by the

results in Table 5.7. These errors will, however, increase if a heavier

equipment is considered and also if it also is tuned a high frequency

mode.

The eigenproperties obtained with the closed form expressions are

next used to calculate the floor response spectra values. These values,

obtained for the three mass ratios 1/100, 1/10 and 1/5, are given in
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Columns (2)~ (4) and (6) of Table 5.8. The procedure for the calcula­

tion of these response quantities is described in Reference 27. The

seismic input for these results is defined in terms of average pseudo

and relative velocity response spectrum curves obtained for an ensemble

of 75 synthetically generated accelerograms. The errors in these spec­

trum values~ when they are compared with the exact spectrum values

(obtained with the exact eigenproperties), are shown in Columns (3), (5)

and (7). The errors are mostly less than 4%, but at the frequencies

where the transition from the tuned to detuned case is rather abrupt;

this error is about 10%.

5.5 SUMMARY AND CONCLUSIONS

The eigenproperties of a nonproportionally damped structure-equip­

ment system are obtained via a systematic second order matrix perturba­

tion analysis. Two different cases are analyzed. For the case when the

equipment eigenvalue is well separated from all of the primary system

eigenvalues, the standard perturbation expansions for the combined

system eigenvalues and eigenvectors are used to obtain the closed form

expressions. These eigenproperties are expressed in terms of the com­

plex modal properties of the main structure and equipment characteris­

tics. When the equipment natural frequency and damping ratio are such

that its eigenvalue is equal or nearly equal to an eigenvalue of the

structure~ the conventional expansion for the eigenvalues and eigen­

vectors breaks down and alternative expansions are required. These

special expansions are used in this chapter to obtain the closed form

expression for the eigenproperties. The accuracy of the proposed method

is tested through several numerical examples by comparing the exact and
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approximate eigenproperties. The expressions provided for the eigen­

values for both the tuned and detuned cases are quite accurate for

equipment with mass as large as 1/5 of the supporting floor mass.

Because of the nature of the perturbation method the results tend to

deteriorate for heavy equipment which are tuned to the higher structural

frequencies. Although this error is more severe in the calculation of

the eigenvectors, it does not affect significantly the equipment

response. Examples of floor response spectra obtained with the modal

properties of the composite system obtained with the proposed method are

also presented and compared with those obtained by using the exact

eigenproperties.
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Figure 5.1 A Six Degrees of Freedom
Primary Structure Supporting an
Equipment
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Table 5.1 - Damping matrix of the nonclassically damped primary
structure of the example problem.

20.0 -4.0 -0.4 -0.1 -0.08 -0.06

9.0 -4.0 -0.3 -0.2 -0.15

8.0 -4.0 -0.3 -0.2
x 108[Cp] = [Kg/sec]

7.0 -2.0 -0.6
SYMM

5.0 -3.0

4.0

Table 5.2 - Complex-eigenvalues of the nonclassically damped primary
structure of the example problem.

Eigenvalues of the primary system

No. Real Imaginary

1 -0.2923 23.8724

2 -3.7472 61. 5101

3 -7.2993 97.1178

4 -11. 7546 132.5499

5 -11.7583 153.0566

6 -12.1126 170.3976
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Table 5.3 - Eigenvalues of the combined structure-equipment system for a
detuned case.

Equipment undamped frequency = 40.0 rad/sec - Equipment damping ratio = 0.03

Mass Ratio

1/100 1/10 1/5
Eigenvalue

No. Amplitude Phase Amplitude Phase Amplitude Phase

1 23.8295 -89.2850 23.4272 -89.1609 22.9804 -89.0180
(0.00) (0.02) (0.07) (0.17) (0.29) (0.34)

2 61. 6426 -86.5159 61.8087 -86.5341 61.9933 -86.5543
(0.00) (0.00) (0.00) (0.03) (0.01) (0.05)

3 97.3919 -85.7017 97.3932 -85.7013 97.3947 -85.7009
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

4 133.0770 -84.9320 133.1390 -84.9294 133.2079 -84.9266
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01)

5 153.5219 -85.6070 153.6512 -85.6069 153.7949 -85.6067
(0.00) (0.00) (0.00) (0.015) (0.01) (0.03)

6 170.8429 -85.9354 170.9810 -85.9485 171.1345 -85.9630
(0.00) (0.00) (0.05) (0.02) (0.01) (0.03)

7 40.0535 -88.2878 40.5345 -88.3497 41.0691 -88.4167
(0.00) (0.00) (0.05) (0.10) (0.19) (0.20)
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Table 5.4 - Eigenvalues of the combined damped structure-equipment system
with the equipment frequency tuned to the lowest structure
eigenvalue.

Equipment undamped frequency = 24.0 rad/sec - Equipment damping ratio = 0.01

Mass Ratio

1/100 1/10 1/5
Eigenvalue

No. Amplitude Phase Amp 1itude Phase Amplitude Phase

1 24.5419 -89.3611 25.9367 -89.3575 26.8396 -89.3556
(0.03) (0.01) (0.31) (0.06) (0.61) (0.09)

2 61.6287 -86.5142 61.6698 -86.5171 61. 7153 -86.5205
(0.00) (0.00) (0.00) (0.00) (0.00) (O.ot)

3 97.3917 -85.7017 97.3922 -85.7016 97.3927 -85.7015
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

4 133.0725 -84.9321 133.0934 -84.9312 133.1168 -84.9301
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

5 153.5125 -85.6070 153.5570 -85.6068 153.6064 -85.6067
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

6 170.8329 -85.9345 170.8809 -85.9390 170.9343 -85.9439
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

7 23.3578 -89.3649 22.1923 -89.3694 21.5442 -89.3724
(0.03) (0.01) (0.30) (0.05) (0.61) (0.07)
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Table 5.5 - Eigenvalues of the combined damped structure-equipment system
with the equipment frequency tuned to the 4th structure
eigenvalue.

Equipment undamped frequency = 133.0 rad/sec - Equipment damping ratio = 0.08

Mass Ratio

1/100 1/10 1/5
Eigenvalue

No. Amplitude Phase Amplitude Phase Ampl itude Phase

1 23.8450 -89.2337 23.5834 -88.6434 23.2958 -87.9721
(0.00) (0.07) (0.01) (0.75) (0.00) (1.51)

2 61.5922 -86.5034 61.3042 -86.4094 60.9844 -86.3039
(0.00) (0.01) (0.01) (0.15) (0.05) (0.29)

3 97.3900 -85.7021 97.3747 -85.7051 97.3576 -85.7085
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

4 134.8448 -85.0321 137.1382 -84.8228 137.2825 -84.6323
(0.03) (0.05) (0.10) (0.03) (0.21) (0.23)

5 154.1024 -85.6140 159.4565 -85.6744 165.4057 -85.7369
(0.03) (0.08) (1.29) (0.50) (3.87) (0.66)

6 171. 2331 -85.9751 174.8868 -86.3364 178.9543 -86.7205
(0.02) (0.06) (0.48) (0.68) (1.27) (1. 50)

7 130.6917 -85.2992 123.6131 -85.3828 118.1527 -85.4301
(0.03) (0.12) (0.83) (0.54) (2.37) (0.74)
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Table 5.6 - Amplitude of the lower-half part of the combined system
eigenvectors for a tuned case.

Equipment undamped frequency = 24.0 rad/sec - Equipment damping ratio = 0.01

Degree Amplitude of eigenvectors, x 10-5
of

Freedom 1 2 3 4 5 6 7

1
.19449 .43626 .42087 .46499 .28627 .07620 .18429
(0.33) (0.00) (0.00) (0.00) (0.00) (0.00) (0.28)

2
.37138 .64163 .28979 .23316 .37761 .16058 .35641
(0.24) (0.00) (0.00) (0.00) (0.00) (0.02) (0.21)

3
.54991 .47387 .35497 .38164 .36136 .36470 .54179
(0.08) (0.00) (0.00) (0.00) (0.02) (0.01) (0.05)

4
.68311 .08370 .57037 .30582 .06714 .44168 .69463
(0.11) (0.05) (0.00) (0.01) (0.33) (0.01) (0.12)

5
.77092 .41151 .04662 .31287 .45685 .48717 .82154
(0.37) (0.00) (0.00) (0.00) (0.01) (0.01) (0.36)

6
.83392 .72821 .52851 .30453 .26985 .20882 .86947
(0.28) (0.00) (0.00) (0.00) (0.01) (0.01) (0.27)

7 4.76588 .07321 .03005 .01051 .01145 .00977 5.44083
(0.32) (0.06) (0.04) (0.35) (0.24) (0.30) (0.29)
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Table 5.7 - Complex participation factors and (2m)th eigenvector ele­
ments of the combined system with the equipment frequency
tuned to the lowest structure eigenvalue.

Equipment undamped frequency = 24.0 rad/sec - Equipment damping ratio = 0.01
~

Complex Participation Factor Eigenvector ~2 .
Mass Frequency m, J

Ratio No. Ampl itude Phase Ampl itude Phase

1 1515.13 -43.689 .16579 E-3 -46.2394
(0.06) (0.31) (0.00) (0.04)

2 579.13 -45.165 .73213 E-6 -49.6609
(0.00) (0.01) (0.01) (0.00)

3 227.68 -37.305 .30054 E-7 -33.5202
(0.00) (0.00 (0.00) (0.00)

1/100
4 137.30 -30.347 .10512 E-6 -43.2076

(0.00) (0.01) (0.04) (0.01)

5 64.17 -19.022 .11446 E-6 -43.9303
(0.00) (0.03) (0.03) (0.01)

6 12.08 -18.068 .97735 E-7 -50.6005
(0.00) (0.08) (0.03) (0.01)

7 1809.64 -46.239 .15705 E-3 -43.6917
(0.13) (0.03) (0.09) (0.21)

1 1412.19 -44.800 .32281 E-4 -45.3190
(0.28) (0.06) (0.55) (0.10)

2 575.95 -45.085 .73213 E-6 -49.6609
(0.01) (0.12) (0.11) (0.06)

3 227.73 -37.299 .30054 E-7 -33.5202
(0.00) (0.01) (0.0l) (0.0l)

1/5
4 137.35 -30.355 .10512 E-6 -43.2076

(0.01) (0.14) (0.70) (0.13)

5 63.95 -18.936 .11446 E-6 -43.9303
(0.08) (0.66) (0.4l) (0.15)

6 11.82 -18.440 .97735 E-7 -50.6005
(0.59) (1. 65) (0.60) (0.21)

7 1976.17 -45.272 .39891 E-4 -44.7418
(0.08) (0.06) (0.42) (0.04)
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Table 5.8 - Comparison of floor response spectrum values obtained with
the exact and approximate modal properties of the combined
system.

Equipment damping ratio = 0.01.

Mass Ratio
Equipment
Natural 1/100 1/10 1/5

Frequency,
in rad/sec Acceleration Error in % Acceleration Error in % Acceleration Error in %

G-units G-units G-units

10.0 0.3176 0.00 0.3166 0.07 0.3154 0.13

15.0 0.6376 0.16 0.6280 1.45 0.6172 2.66

22.0 3.6915 10.22 1.8756* 3.37 1.4340* 3.03

24.0 6.0681* 0.11 2.1641* 0.52 1.4947* 1.23

28.0 2.2574 4.04 1.5326 4.19 1.2480 4.35

40.0 0.8932 0.46 0.8797 4.16 0.8637 7.48

50.0 0.7209 0.19 0.7056 1.69 0.6882 2.81

60.0 0.7103 1.96 0.6513* 1.78 0.6239* 1.82

62.0 0.9138 3.39 0.6573* 4.20 0.6219* 2.73

70.0 0.6095 0.34 0.5812 1.44 0.5634 1.66

97.0 0.5061 0.13 0.4975* 1.43 0.4879* 2.91

130.0 0.4908 0.18 0.4809* 1.89 2.63* 2.63

(*): These cases were considered as tuned.
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NOMENCLATURE

= left hand side symmetric matrix of the unperturbed eigenvalue
problem.

[AI]

[A2]

[A I]
o

[Bo ]

[B 2 ]

[B I
]o

[B I]
1

[B I]
2

[C]

[Ce]

[Cp]

[C t ]

= left hand side symmetric perturbation matrix or order £.

= left hand side symmetric perturbation matrix of order £2.

= auxiliary diagonal matrix.

= right hand side symmetric matrix of the unperturbed eigenvalue
problem.

= right hand side symmetric perturbation matrix of order £2.

auxiliary diagonal matrix.

auxiliary (mxm) matrix.

= auxiliary (mxm) matrix.

= (mxm) damping matrix of the combined system.

= (mxm) damping coupling matrix.

= (nxn) damping matrix of primary system.

= transformed damping matrix.

= damping coefficient of the equipment

auxiliary matrix composed of v and ~ •
~ e

auxiliary matrix composed of ~' ~ and ~e.

F·
J

= jth complex-valued participation factor of the nonclassically
damped combined system.

= jth complex-valued participation factor of the nonclassically
damped primary system.

[I] = identity matrix

[K] = (mxm) stiffness matrix of the combined system.

[Kc ] (mxm) stiffness coupling matrix.

[Kp] = (nxn) stiffness matrix of primary system.

[Kt ] transformed stiffness matrix.

ke = stiffness of equipment.
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[Ml (mxm) mass matrix of combined system.

[Mpl = (nxn) mass matrix of primary system.

m = number of dof of combined structure - oscillator system.

me = mass of equipment.

n

p ,
J

= number of dof of primary system.

= jth complex-valued eigenvalue of nonclassically damped combined
system.

= jth unperturbed eigenvalue.

= first correction term for the jth eigenvalue.

= second correction term for the jth eigenvalue.

P3j third correction term for the jth eigenvalue.

P4j = fourth correction term for the jth eigenvalue.

r = displacement influence vector of combined system.

re = displacement influence coefficient of equipment.

rm = ratio of equipment mass-to-supporting floor mass

r = displacement influence vector of primary system.-p
[T] = auxiliary transformation matrix.

[U] = auxiliary transformation matrix.

u, = jth eigenvector of the general unperturbed eigenproblem.
-OJ
u1 ' = first vector of correction terms for the jth eigenvector.
- J

u2 ' = second vector of correction terms for the jth eigenvector.
- J
u3 , = third vector of correction terms for the jth eigenvector.
- J

u4 , = fourth vector of correction terms for the jth eigenvector.
- J

u ~ = vector formed by the upper m elements of u .•
-oJ -OJ

v

= vector formed by the lower m elements of u '.-OJ
= m-dimensional vector with 2 non-zero entries at the Kth and mth

positions.

x = auxiliary constant.
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= relative displacement vector of the combined system.

= relative velocity vector of the combined system.

= relative acceleration vector of the combined system.

= auxiliary constant.

= auxiliary constant.

= 2m-dimensional state vector.

y

o

X

z
z

x

Xg(t) = ground excitation.

x

Be =

Bpj =

y. =
J

Ypj =

6- =

n.
J

B.
J

= jth complex constant.

= structure modal damping ratio for j = l, .. ,n and equipment
damping ratio for j = m.

damping ratio of equipment.

jth modal damping ratio of the primary structure.

jth real-valued participation factor of the combined system.

jth real-valued participation factor of the primary system.

auxiliary constant for the definition of the tuned eigen
vectors.

= detuning parameter of order E.

2
= detuning parameter of order E 0

= Kronecker delta.

= bookkeeping parameter indicating the order of the accompanying
quantity.

*8 0_' 8 00' 8. 0' 8. - = coefficients used in the expansions of u1 .,
lJ lJ lJ lJ - Ju20' etc.

- J

[A] = (mxm) diagonal matrix comprising the natural frequencies of the
primary system and equipment.

(nxn) diagonal matrix with the primary system eigenvalues.

= complex eigenvalue of single dof equipment.

= jth real-valued eigenvalue of the combined system.

jth complex-valued eigenvalue of the nonclassically damped
primary system.
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= jth eigenvalue of a (2x2) eigenproblem associated with the
equipment.

= vector composed of the elements of the eigenvector matrix of
the primary system associated with the attachment point of
equipment.

a = auxiliary constant.

$e

$ .
-J

~pj
~

~j

[~p]

= complex eigenvector element of the equipment.

= jth real-valued eigenvector of transformed combined system.

= jth real-valued eigenvector of primary system.

= jth real-valued eigenvector of combined system.

= complex (2nx2n) eigenvector matrix of the nonclassically damped
primary system.

=

=

(nxn) submatrix with the first n rows and columns of [~p].

(nxn) submatrix with the lower n rows and first n columns of
[~p].

= equivalent eigenvector element of the equipment = 11/mi.e

= jth complex eigenvector of a transformed nonclassically damped
combined system.

= jth complex eigenvector of the nonclassically damped combined
system~pj

~sj

$ .
-J

= jth eigenvector of a (2x2) eigenproblem associated with the
equipment.

= jth complex eigenvector of the nonclassically damped combined
system.

$~ = lower half of the eigenvector $ ••
-J -J
$~ = upper half of the eigenvector $ .•
-J -J
we = natural frequency of equipment in rad/sec.

w.
J

= structure natural frequency for j = 1, .. ,n and equipment
frequency fQr j = m.

= jth natural frequency of primary system in rad/sec.

109




