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CHAPTER 1
INTRODUCTION
1.1 GENERAL BACKGROUND

The proper seismic design of equipment and secondary subsystems
supported on primary structures is of great practical interest. Usually
these subsystems are very light compared to their primary structure.
Thus, often in their analyses for seismic motions they are assumed to be
decoupled from their supporting primary structures. That is, they
receive the input from the primary structure, but being very Tight they
are assumed not to affect the responée of their supporting structure.
However, when an equipment is not very light or when its natural
frequency is tuned or nearly tuned to a dominant frequency of the
supporting structure, the decoupled analysis may give inaccurate
response. In such cases it is necessary to consider the effect of the
dynamic interaction between the equipment and its supporting structure
on the equipment response.

This interaction effect can be properly included in response
calculations, if the dynamic characteristics such as the mode shapes,
frequencies, modal damping ratios and participation factors of the
combined equipment and the primary structure can be obtained somehow.
The most straightforward, but impractical, approach would be to analyze
the analytical model of the combined system. This approach is
impractical for several reasons. Firstly, the matrices of the combined
system will be i11-conditioned because of the large differences in the
mass and stiffness characteristics of the two subsystems; this can. cause
numerical errors unless an eigenvalue routine with extended numerical

precision is utilized. Secondly, even if one is willing to use extended



precision in the analysis, the approach becomes impractical when several
equipment with different characteristics are to be analysed. This is
usually the case when the floor response spectra are required to be
generated at several points of a primary structure. Such analytical
procedures requiring a repeated analysis of the combined structure-
equipment system are, therefore, not adopted.

Probably, the best approach is the one in which the modal
properties of the individual systems are synthesized to obtain the
eigenproperties of the combined system. One such mode synthesis
approach has been developed by Suarez and Singh [23]. However, this
approach requires a second eigenvalue analysis of a transformed
system. Another approach is to use perturbation methods to obtain the
perturbed eigenvalues of the combined system. Obviously, these
approaches can be used only when the perturbation in the eigenvalues of
the two subsystems are small. The perturbations will be small if the
equipment attachments are 1ight compared to the primary system. Yet
with these limitations, some useful results of practical importance can
still be obtained by the application of the perturbation approach.

The writers believe that Sackman and Kelly [11,16] were probably
the first to apply the perturbation approach for this purpose. This
approach was later utilized by Sackman et al [17], Hernried and Sackman
[8] and Gupta [5-7] in their further studies related to the seismic
response of light equipment.

This report also presents the application of yet another
perturbation scheme for calculating the eigenproperties of the combined
equipment-structure systems. This scheme is based on a systematic

application of the matrix perturbation theory, developed and applied



earlier by Lancaster [12], Franklin [4] and Meirovitch and Ryland [14]
in a rather different context.

The matrix perturbation approach has been applied to three
different cases of the equipment and structure systems here. The first
case deals with the analysis of a classically damped {1,3] combined
equipment- structure system. The second case deals with analysis of a
classically damped primary structure supporting an equipment where the
combined system can not be treated as a classically damped system. In
the third case, the primary system itself is nonclassically damped and
thus the combined system is also nonclassically damped. These three
cases were sequentia11y_developed, and reported in References 20, 25,
and 26. This report presents a synthesis of these papers. A common
1ink between these three cases is the matrix perturbation analysis which
is presented in Chapter 2. Because of the special separation of the
matrices required for the solution of the probiem at hand, the
analytical details of this perturbation analysis are quite different
from those reported in References 4, 12, and 14. Also, the case of an
equipment tuned to a primary structural frequency requires a quite
different perturbation expansion scheme. The details of this scheme are
also provided in Chapter 2. This is followed by the treatment of the
aforementioned three cases in Chapters 3, 4, and 5. For each of these
cases the closed-form expressions are obtained for the eigenvalues
(frequencies) and eigenvectors of the combined system in terms of the
eigenproperties of the subsystems. Both, the tuned and detuned cases
are considered. The numerical results demonstrating the applicability
and limitations of the approach for various cases are also given in

these chapters.



CHAPTER 2
MATRIX PERTURBATION ANALYSIS

2.1 INTRODUCTION

In this chapter we describe the perturbation analysis of a generic
eigenvalue problem. The problems to be discusséd in the subsequent
chapters are the special cases of this generalized eigenvalue problem.
The case in which all the unperturbed eigenvalues are distinct as well
as the case in which any two eigenvalues are closely spaced are
considered. The first case pertains to the problem of a detuned
equipment, whereas the second case is related to the problem of a tuned

or nearly tuned equipment.

2.2 A GENERIC EIGENVALUE PROBLEM

The eigenvalue analyses of the three damping cases of the combined
structure-equipment system, described in the later chapters of the
report, show that they all can be dealt within the framework of the

following generic eigenvalue problem:
[A +eA +eA] , =p, [B.+eB]v,; j=1 n (2.1)
o 1 20 <3 j'o 2° i e *

where the matrices [Aj] and [B,] of the original eigenvalue problem have
now been perturbed by the addition of the matrices [A1]= [A2] and [Bz],
which are of lower orders of magnitude. The parameter ¢ identifies the
order of the matrices as well as helps in keeping track of various
quantities of different orders of magnitude. Therefore, this parameter
is also called as the "bookkeeping parameter." The elements of matrix
[All are one order of magnitude smaller than the elements of [AQ], while

the elements of [A2] and [82] are two orders of magnitude smaller than



the elements of [Aj]. Therefore, we consider the elements of [A{] to
be O(e) and the elements of [A,] and [B,] as 0(€2), where 0(..) means
the "order of (..)".

We will now analyze this eigenvalue problem to obtain the perturbed
eigenproperties in terms of the original or unperturbed eigenvalues. We
will consider two cases in which the eigenvalues of the original system
are: (1) well separated and (2) closely spaced. These cases are often

referred to as the detuned and tuned cases, respectively.

2.3 PERTURBATION ANALYSIS OF A DETUNED SYSTEM

The matrices in Eq. (1) are nxn real symmetric matrices.
Furthermore, matrices [Bo] and [82] are positive definite whereas the
other matrices are not necessarily positive definite. For this
eigenvalue problem, we now seek the conventional second order expansions

for the eigenvalues and eigenvectors of the following form:

- 2
pj = poj + ¢ pij + € p2j + ... (2.2)

2
by = Ugg ey te Uyt (2.3}

Substituting p; and 95 from Eqs. (2.2) and(2.3) into Eq. (2.1) and
equating the coefficients of equal power of £ we obtain the following

hierarchy of equations:

0(e0): AO Boj = Poj BO goj (2.4)

O(e)s A0 Elj + A1 goj = pOj 3091j + plj BO goj s J=l,...on (2.5)
2y, =

0(e7)s Ag py + Ay iy * A oy = Poj By Uay + P1j Bo Myt

5



+p (2.6)

0j P2 %03
The eigenvectors ¢, obtained with the assumed expansion have to satisfy

p2j B0 on

the following orthonormality condition up to the second order terms

T 2 _ L sl
vs {BO + ¢ BZ] gj = 5ij s i,J=l,...,n (2.7)

where Gij is the Kronecker delta. Substituting Eq. (2.3) in the above

equation and comparing the coefficients of 1ike powers of ¢ we arrive at

0(e®): ul, B u

Hoi Po Hoj T 84 (2.8)
0(e): u'.B u.+u.B =0 3 d,351,...,n (2.9)
* 0 o <1 ~1J ¢ ~03 i 1T :
0(52)' Ul B U, 4 Ul By u .+l B Ue. + UL B =0 (2.10)
%0 o ~2] ~03 2 ~0) ~li ~1j <23 "o OJ

Following Meirovitch and Ryland [14] we expand the first order
correction terms Elj’ using the eigenvectors of the unperturbed
system 90j as the base vectors, as follows:

n

21 8k Yok j=1,...,n (2.11)

Y15 ~ L

where the coefficients ejk are yet to be determined. Premultiplying Eq.
T

(2.5) by goj and substituting Hlj from Eq. (2.11) we obtain
P . 8., + uT Ay U o =p . 8., +pqs 6 (2.12)
oj "ji  ~aj "1 ~o0j oj “ji i 7ij '

where Egs. (2.4) and (2.8) were used in arriving at Eq. (2.12).
Considering first the case of i=j we obtain the first order correction

terms to the eigenvalues as

T . ] -
Prs = Ul A Uos 5 delyeenin (2.13)

If we consider i+j we obtain



Hgi Al Yoj
9., =21 1 0] ;  1,3=1,.
J poj = Poj
To obtain the coefficients ejj we must consider the orthogonality

5N, 1#] (2.14)

conditions given by eq. (2.7). By replacing Eq. (2.11) in Eq. (2.9) we

obtain:

e_vlj‘= - ej_ol (2.15)
and hence:
.. =0 s J=1l,..., 2.16
943 N n (2.18)
To obtain the second order correction terms, we again expand 92j in
terms of the base vectors Uk 3S°
n .
Upg = Z ik Yok 3 i=l,...,n (2.17)
k=1
Premultiplying Eq. (2.6) by ggj, substituting Elj and !Zj from Egs.
(2.11) and (2.17) respectively and considering the orthonormality
properties of the unperturbed eigenproblem, we obtain:
- n T R
Poi O31 7 kzl (Poi = Poi) P5%ki * Y05 A2 Yo = Poj %51 * P1j i
T
+ Poj Yoi B, Upj * Poj Gij (2.18)
Letting i=j we obtain the second order correction terms for the
eigenvalues:
L 2 T
ij = kZl (p0j - pok) (Bjk) + on [A2 - poj Bz] Hoj M J=19"°sn
(2.19)

For 12j the coefficients aji are directly obtained from equation (2.18):

S )
31T By~ By P13 7 P1g) 01 Ly Pk = Po) 9 B
T
+ BOiIAZ - Doj le goj} (2.20)



The above expression is not valid for i=j. To find 5jj we have to use
the orthogonality conditions of egquation (2.10). Substituting Egs.
(2.11) and (2.17) in Egq. (2.10) we obtain:

~ ~ n

T -
eji * eij * kzl %1k ejk T Yos B2 on =0 (2.21)
and for i=j
o = ,..1... T L 2 ) -
8597 " 3 [on By Ugy * kzl (ejk) | : j=1,...,n (2.22)

2.4 PERTURBATION ANALYSIS OF A TUNED SYSTEM

[t will be observed in later chapters that if the equipment is
tuned to one of the supporting structure's frequencies, the eigenvalues
of the original system will be equal. Such a case can not be treated by
formulation developed in the previous section, primarily because of the
numerical problem in evaluation of Egs. (2.14) and (2.20) for a
perfectly tuned case. Even in a nearly tuned case, the terms in these
equation become very large thus invalidating the expansion of Egs. (2.2)
- (2.3) because the first and the second order terms, which were assumed
to be of Tower order in magnitude than the unperturbed terms, now become
large. Therefore, to treat the problem of tuned system we need a

different perturbation expansion.

th th

We will assume that the g and m

unperturbed eigenvalues are
equal or nearly equal. When the nonclassically damped cases are
considered, the matrices in the eigenvalue problem (2.1) wod1d be of
dimension 2mx2m. In such a case we will also be concerned with the
complex conjugate (sz+m)th and 2mth eigenvalues and corresponding
eigenvectors of this eigenvalue problem. Herein, therefore a general

eigenvalue problem of size 2mx2m with complex and conjugate eigenpairs

will be analyzed.



The perturbed eigenvalues and eigenvectors will now be obtained

assuming the following expansions:

1/2 3/2 2

Py = Poj * e Pry t e Py e Py e Pyt (2.23)

s i=2, m, mg, Z2m

1/2 3/2 2
Hoi B Hpg T el e gy te

b

by = U ¥ (2.24)

u,.
~41

where we introduced the notation mg = m+2 . The justification for the
above expansions lies in the fact that the eigenvalues of Eq. (2.1) for
the tuned case can be cbtained as the roots of a (2m)th degree poly-
nomial with two equal or nearly equal roots and its complex conjugate
values. It has been observed [15] that a proper expansion for finding
the roots of an algebraic equation with two closely spaced roots should
have the form of Eq. (2.23), that is, it must be expressed in terms of
exponents of the parameter e which are integer multiples of 1/2.

When the two assumed expansions are substituted into £q. (2.1) and

the coefficients of equal powers of ¢ are compared, we cbtain

0(e0): Ay Usi = Poi By Ui (2.25)

0(51/2): Ag Ui = Pyy By Ups +py; B 2.26)

oi "o ~1li o g01‘

0Ced: Aq Upy + Ay Yoy = Poq By Upy + Py By gy ¥ Py By Ugy (2:27)

3/2y. -
0(e™7): Ag gy + Ay Uyy= Poy Bg Ugy * Pyy By Uy + Ppy By Uy
+ Py B0 Uos (2.28)
2 - —
OCe™)s Ag Ugq * Ay Uy * A Ugi = Poi Bo Yag * Pry Bg Uag
¥ Poi By Upy *+ P3j By Upy * Pgy By gy *Pg By gy (2.29)

where the subscript i takes the values ¢, m, me or 2m. A similar



substitution for vy into the orthogonality condition, Eq. (2.7), yields:

0(e0):  uls By Ugy = 64y (2.30)
0(/2) uly By upy + 4]y By ugy = O (2.31)
0(e): EIJ BO upy + H;j BO Ugs + ng B0 Ups = 0 (2.32)
(/)3 gy By gy * 815 By Upy * Upg B iy + U3y By oy = O (2:33)
Os):  ugy By gy + U1y Bigy + Upg By Uy + U3y B by + gy By us

+ glj By Uy; =0 (2.34)

where again i,J take the values g¢,m,mg, or 2m.

We examine first the terms O(el/z). We again expand Uis in terms
K
2m

) 851 Yok 3 i=g,m,me,2m (2.35)
k=1 -

of the base vectors u_

91 7

Premultiplying Eq. (2.26) by Eli’ substituting Uy from Eq. (2.35)
and invoking the orthogonality properties of the unperturbed
eigenvectors, we obtain:

i=g,m,me,2m

Pys 6.:=(P.s - Pos) 04 : (2.36)
1i 7ij 0] 01 ij j=t,...,2m
With i=] we obtain:
Py = 0 : i=g,m,me,2m (2.37)
and with i+j we have:
ezj = emj =0 : j=l,....2m ; Jjza.,m (2.38)
eml’J = 82m,j =0 ;3 j=l,...,2m-1 3 J#+ms (2.39)

Introducing Eq. (2.35) into the condition (2.31), it follows that:

10



8.. = - 8,. s i,j=e,m,me,2m (2.40)

and hence:

812 = emm = emz,ma - e2m,2m

And thus considering the four possible values of i, Eq. (2.35) becomes:

=0 (2.41)

Y% 7 %m Yom

u = -8 _u

Yime = °me,2m Yoom
Yiom =~ emz,2m Yoms

~

Two coefficients in the set Bik sti11 remain unknown, namely

8 and 8

m me, 2m" To obtain these we must consider the higher order

hierarchical equations. We consider next the correction terms of

order . We express Uss in terms of the base vectors as:

2n .

Ups = Ly 8. Yok ;s i=e,m,me,2m (2.43)

Substituting this in Eq. (2.27), premultiplying by Egj and considering
Egs. (2.25) and (2.30) we obtain:

~ =g, m,mg,2m

T
Po: 8:.=(p . -P .) 8..+U . A U . 3 (2.44)
21 Tij cj o1 i3 oj 1 ~oi j=1,...,2m
tetting i=j, we obtain the correction terms:
=ul A ;s 2 2.45
P2i ~ Y01 "1 Yoi s EhLmLm,em (2.45)
If i2j we obtain instead:
i=g,m
I j=ly..es2m 3 jra.m
N u . AU,
g.. = ~0j 1 ~of . (2.46)
W Poi T Poj

i=me ,2m

J=1,...,2m-1; j=ma

|81



And with i=m, j=t2 and i=2m, j=me

uT A, u = uT A

Yoe "1 Yom = Yome ™1 Yoom © 0 (2.47)

When the expansions of Egs. (2.35) and (2.43) are substituted into the

orthogonality conditions (2.32) we obtain:

- - 2m i=g,m,me,2m
..+ 0., + . ., =0 : 2.48
"1 E=1 ik ik j=1,ees,2m (2:48)
Equation (2.48) in turn Jeads to:
A —A _ _]_. 2
gr - fmm T T2 (ezm) (2.49)
A —A _ l._ 2
emz,mg B e2m,2m -T2 (emz,Zm) (2.50)

And considering Eqs. (2.38), (2.39) and (2.41), from Eq. (2.48) we find:

~

= -0 (2.51)

esam 2

A~

6 (2.52)

me,2m eZm,mg

We conclude here the analysis of the terms of 0(e) with the

coefficien B
eff ants GmQ,Zm’ ]

am’ , and s stilt undefined.

29? 8mm’ e2m,2m me ,me
It turns ocut that they can be defined only when we consider the terms
of 0(e).

In order to examine the correction terms of 0(53/2

) we assume
that Us; can be expressed as a linear combination of the unperturbed
gigenvectors Hok:
am
Ugs = kzl Bi Yok 5 1= 2.mome,2m (2.53)
Inserting the above expansion and Eqs. (2.35) and (2.43) into Eq.

(2.28), premultiplying by ng and considering Eqs. (2.25), (2.30) and

12



{2.37) we cbhtain:

" 2m T i=¢,m,me,2m
. .. = . - . B.. + 8., U_. A - . 8.,
(2.54)
Evaluating the above expression for i=j it follows that
Pys = 0 ; i=a,m,me,2m v (2.55)
If i=¢, j=m, from Eqs. (2.47) and (2.54) we obtain
Om = 0 (2.56)
Similarly for i=me, Ji=2m we obtain
emg,Zm =0 (2.57)

And inserting the above results into Egs. (2.42), (2.49) and (2.50)

we conclude that &

s

U = 0 s i=g,m,me,2m /ff (2.58)
20 = %mm = Ome,me = ®2m,2m = O (2.59)
Moreover, from Eq. (2.54) for izj we aiso obtain
* * » )
egj = emj = 0 s j=l,...,2mij=e,m (2.60)
* * - -
em”‘,j - Bzm’j - O 9 J—l,...,zm—l,\]ﬂ"l (2-61)

The orthogonality conditions, Eq. (2.33), with Uss given by Eg. (2.53)
and Uy by Eg. (2.58), give

* *

eij = - Bji (2.62)

and therefore

13



* * * *

® ot "% mm = % meme = ? 2myom = O (2.63)

We note here that the coefficients B*Qm and B*mQ,Zm still remain unknown
and cannot be obtained with the current five-terms expansion used in
Egs. (2.23) and (2.24). To obtain them, we will have to extend our
expansions up to six terms, tha is, we will have to consider terms of
0(55/2).

Finally we need to examine the correction terms of 0(52). We

multiply Eq. {2.29) on the left by Elj’ replace the following expansion

for Ugs*
2m
Z 1kYok ;  isg,m,me,2m (2.64)

and apply the orthogonality conditions of the zero order eigenvalue

problem, to obtain:

2m
_ - - -~ T T
Pai8i3 = (PogPai)Byy = Ppifyy * kzl %ikdoP1Y0k * Yojlh2 - PoiBal¥sy
(2.65)
considering the case i=j and with the help of Egs. (2.46), (2.47) and
(2.59) we obtain for the correction terms p,; ¢
pgi = U (A, - p Bolu .+ J (b
4i  ~oi''2 oi 2" ~oi

~ 2 .
oi ~ Poid (85) ;1= 2,mme,2m

(2.66)
Letting i#j in Eq. (2.65) it follows that:

14



- 2m
= ___.].'__.__ {UT-[A

. - PoiBalug;P L (Po -~ Py )9 }
3 Py - Pgj ~0J 2 213017P21° ij K21 ok ik? kJ
(2.67)

DT

The above expression is valid for 1 = ¢,m; j=1,...,2m; j # 2,m and for

i=me,2my j=1,...,2m-13 j = me. For the cases i = ¢, J =m and i

me, j = 2m, from Eq. (2.65) we obtain instead the coefficients:

R 1 T 2m-1 aA
Som = P2y Pom {gom[AZ Pos Z]U kzl (pom'pok)emkemk} (2.68)
k#g,m,me
- 1 T 2m-1 - N
emsL,Zm - pZmQ‘pz,Zm {902m [AZ B pome 2 ]Eomg +kzl (p02m'pok)9m£,k’82m,k}

kzg,m,mg

(2.69)
From the orthogonality conditions, Eq. (2.34), after substituting Eqgs.
(2.43), (2.58) and (2.64), we obtain:

m ., .

c T

%37 851 77 L 03Pk T HogBator (2.70)
and hence:

- 1 am . T .

Bis = -5 ¢ Z (9. k) + UgiBolst 3 d=a,m,me,2m (2.71)

k=1

We conclude here with the analysis of the terms of 0(32). However, the
coefficients 8om and em2,2m remain undefined., In order to obtain them
we have to include up to terms of 0(53) in the expansions (2.23) and
(2.24).

It is interesting to note that although we used the half power ex-

pansions in Egs. (2.23) and (2.24), almost all the terms associated with
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the half powers have been found to be zerc. For example, the correction
terms 911 are identically zero and at least the etements of 931 which
could be obtained from the five-term expansion are all zero. A casual
observations, thus, seems to suggest that since the half power terms in
Egqs. {2.23) and (2.24) are inconsequential, the expansions assumed in
the detuned case is all we need. A more careful review, however,
reveals subtle differences. For instance, the expressions obtained for

~

O and Ome, 2m cbtained here, Eqs. (2.68) and (2.69) are quite different

from the corresponding expressions obtained for the detuned case, Eq.

(2.20).
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CHAPTER 3

EIGENPROPERTIES OF A CLASSICALLY DAMPED COMBINED
STRUCTURE-EQUIPMENT SYSTEM

3.1 [INTRODUCTION

In this chapter, a combined structure and equipment system 1is
analyzed. It is assumed that the supporting primary structure as well
as the combined system is classically damped. In some situations a
combined system can be nonclassically damped. Such a case can be
handled as in Chapter 4, or the effect of the nonclassicality can be
indirectly included in the calculation of reponse as described in
References 22 and 23.

Since the primary structure and the combined system are assumed to
be classically damped, the eigenproperties will be real valued. Thus,
the numerical results are obtained for the real eigenproperties of the
combined system in terms of real eigenproperties of the primary
structure and the equipment parameters. The results are obtained hoth

for 1ight and heavy equipment to test the applicability of the method.

3.2 EIGENVALUE ANALYSIS
The equations of motion for a system composed of a damped single
degree of freedom oscillator and a classically damped supporting
structure subjected to a base motion ig(t) are
MIx + [CIx + [K]x = -{M]gig(t) (3.1)
where X is the relative {with respect to ground) displacement vector of

the combined system and

[M] = (3.2)
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C, 9
[C} = + [CC] (3.3)
0 O
|~ i
_Kp 97
[K] = + K] (3.4)
0 0
T T
ro= [[p,re] (3.5)

in which [Mp], {Cp] and [Kp] are the mass, damping and stiffness
matrices, respectively, of the primary system; [CC] and [Kc] are the
damping and stiffness coupling matrices, respectively, containing the
damping coefficient and stiffness of the oscillator in their non-zero
elements. The vector {r} is the displacement influence vector of the
combined system, composed of rp, vector of influence coefficients of the
primary system and r,, the influence coefficient of the equipment. The
displacement influence coefficient r, is set equal to 1 if the equipment
is constrained to move in the direction of the excitation and O
otherwise.

If the oscillator is assumed to be attached to the KER degree of
freedom of the primary system, the coupling matrices [KC] and [Cc] can
be written as follows

K] = mwllvy'] (3.6)
(c.] = ZBeweme[y!T] (3.7)
where v is a (n+l)-dimensional vector with only two non-zero entries at
the kD and (n+1)th positions:
v = 1[0,...,1,...,-1] (3.8)
and wgs By and Mg respectively, are the natural frequency, damping ratio

and mass of the equipment.
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Since we are interested in the eigenproperties of the undamped

combined system we have to solve the eigenvalue problem associated with

the system of Eq. (3.1):

where we call m

~ ~

[Klos = as[Mle., 3 J=1,...,m (3.9)

n + 1 the number of dof of the combined system.

We introduce the following transformation in Eq. (4.9):

where:

S >
B}
R=s
I
=
&

(3.10)

L

/me

11; =

e (3.11)

and {@p] is the matrix of eigenvectors of the primary system. It is

assumed that the primary system eigenvectors are normalized such that:

T -
[¢p] [Mp][@p] = [I] (3.12)

Introducing Eq. (3.10) in (3.9) and premultiplying by the transpose of

[T] we obtain the foliowing transformed eigenvalue problem:

247
+ mewe[T] Vv

:

T e, = a0 3 3= 1hooum  (3.13)

where »_., 1 = 1,...,n, are the natural frequencies of the primary

pi
system.

Introducing the vector v, defined as:

ol = (o1 (K)aveent i (K)ot (KO (3.14)

in which ¢pi(K) is the KM element of the ith modal vector ?pi of the

primary system, the transformed eigenvalue problem can be written as

follows:
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T
vy "wei]

2 .
[A) + m o $. = A0, 3 J=1,...,m (3.15)
e E —lIJ \JT O J ~J J~J
B~
where:
2 0 7
mpl_
"2
a] = “on (3.16)
0 w2
- & |

We are interested in this transformed eigenproblem instead of the
original problem because the closed form expressions for the eigenvalues
and eigenvectors can be obtained for this case. Futhermore, the
resulting expressions will be independent of the analytical model of the
primary structure; only the freguencies and mode shapes of the
supporting structure will be required for the solution of the combined
eigenvalue problem. We observe that due to the different orders of
magnitude of the elements in the second matrix in the left hand side of

Eq. (3.15) we can write

o e~ -
[a] + M wg T = {AO] + {All + [AZI (3.17)
-V 0
B~
where:
[Ag] = [a] (3.18)
— 2 0 v
[A].] = —/me me “—“T——O (3.1.9)
v
2 ¥ 9
IAZ] = meme 5] —6— (3.20)

The elements of matrix [AZ] are proportional to the ratio of the
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equipment mass to the floor mass, while the elements of [All are
proportional to the square root of this ratio. Therefore, for light
equipment, if we consider the equipment mass-to-the-floor mass ratios,
or equivalently, the elements of [A,] to be small quantities of

order 52

, the elements of [Aj] and [A{] will be of order ¢° and ¢
respectively. Introducing a small parameter ¢ to help to trace the
order of magnitude of the different quantities inveolved, the can write
the eigenvalue problem of Eq. (3.15) as follows:
[1A] + elAl + sZ[AZ]]Qj = Aty 3 j=1,...,m  (3.21)
3.2.1 Closed Form Expressions for the Eigenproperties of a Detuned
Case.

Fquation (3.21) has essentially the same form as Eq. (2.1), except
that [Bo] is equal to the identity matrix and [82] is equal to zero.
Therefore, we can apply the expressions obtained in Chapter 2 to obtain
the eigenproperties of the combined system directly. However, because
of the special nature of the matrices {AO], [AI] and {Az] and the
eigenvectors 903’ we can also cbtain the closed form expressions for the
desired eigenvalues and eigenvectors.

With [A,] given by Eq. (3.18), from the zero order eigenvalue
problem, Eq. (2.4), we obtain:

pOj = kpj 5 J=1,...4n (3.22)
(3.23)
We also obtain the eigenvectors as:
Elj
where 1 is at the jth location. By substituting goj defined as

= [0y.00,1,...,0] (3.24)

above and [Aq] from Eq. (3.19) in Egs. (2.13) and (2.14) we obtain:

Prj=0 3 J=L...m (3.25)
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8., =0 5 i,J=1,...,n (3.26)
s T=1,...,n (3.27)
Substituting Egs. (3.24) through (3.27) in Eq. (2.19) and considering

the definition of matrix [A,], Eq. (3.20), we obtain the correction

terms Dzj as ;.

A -
- 2 2 pJ . 3o
ij = mewevj — m2 s i =1,...,n (3.28)
pJ e
g " “i
Pop = Mgy £ ——> (3.29)
k=1 lpk - g

For calculating the coefficient gji’ two different cases need to be
considered: (1) for j=mand i =1,...,n and (2) for i,j = 1,...,n

with i 2 j. A substitution of [AZ]’ Hoj’ plj and 8., in Eq. (2.20)

ji
gives;
Opi = 84y =0 3 1= l,...,n (3.30)
N memgviv.
055 = : 3o = Laeans 1§ (3.31)
R - A
Gpi = Apy)lug = 2py)
And from Eq. (2.22), considering Eqs. {3.26) and (3.27), we obtain:
~ memgv§
Bjj = - 55 i=1,...,n (3.32)
2()\'3,.| - me)

For i = m, a different expression is cobtained:

4 " Yk 2

e X (——T?) (3.33)
pk e

The modal vectors of the combined system can now be obtained from Eq.

(2.3}, with the substitution of Blj and 92j from Eqs. (2.11) and (2.17}:
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m -~

?j = goj + kzl (ejk + ejk)gok (3.34)

With Uok given by Egq. (3.24) and considering Egs. (3.26) and (3.30) the
th

J-" eigenvector ?j’ with j # m, can be written as:
T - - - .
. = [B519 0ing weosg 1 + 8.0, cuuy 0, : =1,...,n 3.25
CEJ [ j1* " j2 Jj Jm] J ( )
and, similarly, the last eigenvector ?m becomes :
T N -~
?m - [emls em2, LIE I Y emng 1 + emm] (3.36)

Knowing the expressions for eji’ etc., we can readily obtain the

elements of the transformed system eigenvectors as follows. The first

eigenvectors are defined by:

0.5 eepji] s i=1,...m 03 (3.37)
L
Ao~ . S
(i = Apg)(og = Apy)
1 mew:vg
¢4, ,=1-5—2F8FJ (3.38)
Jsd 2 (A . - m2)2
PJ e
/ﬁ; wsv.
¢m’j = - _ w2 (3039)
pJ e
And the elements of the mth eigenvector are:
¢1,m = - ¢m,i ; i=1,....n (3.40)
4
m_ w n v
_ ee k 2
tpm =1t -2 E ) (3.41)
k=1 2 - w
pk e

Similarly, substituting for Pojs P1j and P23 from Eqs. (3.22), (3.23),
(3.25), (3.28) and (3.29) into Eq. (2.2) and setting the book-keeping
parameter ¢ equal to 1, the following explicit expressions are obtained

for the eigenvalues of the combined system:

2\

w
o:)\-l ——'g—_e_—_ ; .=1,ooog 3-42
N " (3.42)
pi e
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2
2 2 T Yk
o= w (l -mae 1 ———p) (3.43)
m e I
pk g

3.2.2 C(Closed Form Expressions for the Eigenproperties of a Tuned Case.
The expansions proposed in the previous section break down when the

equipment frequency is equal or nearly equal to one of the structural

frequencies. For example, consider the expression for the corrected

eigenvalue, Eq. (3.42), rewritten here as follows:

2
m v.
;\_z)\.]_.}.__e_J__ 3
J PJ Al s
_gl -1

W
e

J= 1,0 (3.44)

It is seen that for:

A

Bl mevg (3.45)

Ye
The second term in the parenthesis of Eq. (3.44), which is also the
correction term, will be of the same order as the first term, thus
invalidating the assumed form of the expansion in Eq. (2.2). Another
mere stringent condition is obtained if we consider the corrected

eigenvector element;

o, s=l-2—81 i j-1.n (3.46)

we observe that the correction terms will be of the same order as the

first term when;

X .
Lol s a1y (3.47)
= e '
w s
e
Therefore, since the term in the right hand side of Eq. (3.47) is one
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order of magnitude larger than the corresponding term in Eg. (3.45), it
governs the validity of the perturbation expansions. It is easy to see
that in the case of an oscillator tuned or nearly tuned to one of the
frequencies of the primary structure, Eq. (3.47) can be easily
satisfied. For such cases, the expansion used in the previous section
cannot be used and an alternative expansion is required. For such a
case, the expansion proposed in Section 2.4 must be used.

The eigenvalue problem analyzed in Section 2.4 is more general in
scope than the case we are considering here. However, considering the
zero order matrix [B,] equal to the identity matrix, the second order
perturbation matrix [BZ] equal to zero and letting the subscript i take
the values ¢ or m only, we can readily use the expressions obtained for
the corrected eigenproperties in Section 2.4.

In order to include in our analysis not only the tuned case, but
also the nearly tuned situation, we introduce two "detuning parameters"

81 and 85 such that if the value (1 - xpg/wi) is of order ¢ we write:
*ps
1 - mz =8 (3.48)
e

and 8o equal to zero. On the other hand, if (1 - xpg/mg) is 0(82) we
equate the left hand side of Eq. (3.48) to 8, and take 8¢ to be equal to
zero. In terms of these parameters, the equipment fregquency can be

written in terms of the nearly tuned structural frequency as follows:

mg = qul + aﬁlwg + ezézwg (3.49)

As per Eq. (3.49), we now slightly change the matrices [A;] and [A5] in

Egqs. (3.19) and (3.20) such that their (m,m)th elements are not zero but

are now equal to 51w§ and 62“2 respectively. Correspondingly, the
(m,m)t" element of [Ajl in Eq. (3.18) is now changed to -
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The zero order eigenvalue problem in Eq. (2.25) for i = ¢ and i = m

is:

Xpl. 0
-'Apa. Ugi = poigo% y 1= ge,m (3.50)
I 0 .Apgj
This directly gives:
Pos = Pom = sz (3.51)

To obtain the eigenvectors u__ and Uom Ve write them as follows:

~0% m
T .
909, - [Ogvovgd,oooyB] (3.52)
up = [0 ] (3.53)
~om sesr3Ygeney .

where the undetermined coefficients a, vy and g, A are in the lth and mth
position, respectively. These coefficients can be related to each other

by employing the orthogonality conditions (2.30) as follows:

@ = —— (3.54)
vl + A2
Y=—B=~——1“— (3.55)
/1 + AZ
To find 4 we substitute the eigenvectors Yo and Uy From Egs. (3.52)
and (3.53) in £q. {(2.47) and obtain the quadratic equation:
— 2 —
MMy VAT S kM = 0 (3.56)

which when solved for A gives:

8 S
b2 —t s 14 (—1)?
ZJme vy .

The minus sign before the radical term in Eq. (3.57) is also

— (3.57)
2/me v

admissible. It can be shown that this other choice of the sign will
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simply exchange the values of the two tuned eigenvalues and
corresponding eigenvectors.,

Using Egs. (3.52) and (3.53) in Eq. (2.45) we obtain:

2
w
e —
D, = (8, + 2/m_ v _A) (3.58)
2% 1+ A2 1 e %
mz
e 2 —
p (8,8 - 2/m_ v, 4) (3.59)
2m 1+ AZ 1 e 1

Furthermore, with substitution of Eqs. (3.24), (3.52) and (3.53) in Eq.
(2.46) we obtain:

8 ) YMow. vy, 1
2] by

(3.60)

_X.
p4 pJ 2
/1 + . .
A s J=1,i...n, J % 8

— 2
- /me wevj A (3.61)
Pe " PY 1 2

1

6_ .
mj X

To find the correction terms Pag and pgy, we first need to obtain:

2
Uy
e 2.2 . B
2 (52 + MV A ) 3 =2 (3.62)
T -
Yoot T 2
e 2 2y . s
Y (SZA + mevn) s T=m (3.63)
Substituting Egs. (3.60)}-(3.63) into Eq.(2.66) it follows that:
“g 2,2 2 “i
P, = [6, + mvoa™ +moe. 1 —————r] (3.64)
k#g
“g 2 2.2 " “E
Pa. = (6, + m v +mw A~ & ——| (3.65)
am o4, 4202 e R
k=g

In order to define the coefficients égm we use Egs. (3.20), (3.52),

(3.53), (3.60) and (3.61) to obtain the following partial results
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T S 2
YomPolor = 7, ;2 (Me¥s ~ 02) (3.66)
n ~ o~ Aw o
kil (pom pok)ea.kemk B 1 + A2 (3-67)
<3
where : L n vi
g = mewe L S (3.68)
k=1 “pg pk
kzg

Introducing Egs. (3.58), (3.59), (3.66) and (3.67) into Eq. (2.68)

yields:

~ m v2 - 62 - g

e ¢
g
am

= 5 — (3.69)
51(1 - A%)/a + 4/me v,

With the help of Egs. (3.24), (3.52), (3.53), (3.58)-(3.61) and (3.69),
from Eq. (2.67) we obtain:

2 2 -

s memevj A o, - ZvE wg (1 61 ) - Bgm]

2 Apg T Apj 1.2 1442 2pg = pj 2/mg vp g
J=1lseeiyny j2o (3.70)

. mewivj 1 2v AZ wg 61 Bzm

mji . - - [“j - s (1 - ————) - =

ps PJ 4 4 AZ 1+ A" "po pj 2/me Vo /me
(3.71)

The tuned eigenvectors can now be obtained from the expansion (2.24).
Setting the book-keeping parameter ¢ equal to one and considering Egs.

(2.35), (2.43), (2.53) and (2.64), we obtain;

~ * ~
s = + . .+ 0., .
¢ u (81k + 0.+ 0y + 0

< ~01 K (3.,72)

[

1
Note that the terms e:m and éam could not be obtained with the five-

terms expansion considered here. As mentioned earlijer, to obtain these,
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more terms in the perturbation expansion would be required. Expanding
Eq. (3.72) and ignoring the coefficients in the summation that are zero

or undefined, we obtain the eigenvectors ¢, and ¢y @S follows:

gl = Qo+ 800 cees (@0, ¥)y cees (v + o 0)] (3.73)
- ) . .
{Bm = [Bml + em1, esay (Y - eﬂ,ma)’ LR A ) (a + egle)] (3'74)

By substituting the coefficients 521, etc., we obtain the following

closed form expressions for the elements of these tuned eigenvectors:

mgvi 1 (i 2\)1 mg
b, = Jm 4+ mafv. +
i, A.: = A —_— e e i 2 M . - A
* pi PL 1 4 42 1+ A" pi pe
61 Amm
(1+—"—) -—1} 5 i=1,...,n5 1+ (3.75)
2/me VQA /me
b o= —t (a4t ) (3.76)
Lyl Y Lm *
/1 + A
- 1 -
maa T (-1 + Aemm) (3.77)
/1 + A
(.u2 j A {_ [ Zlee wg
] = /M -m_ [v, +
i,m 2 - A e e i 2 A: - A
P PL 1 4 4 1+ 4" “pi p
s 8
(1- _l e U IS UUUURN P B (3.78)
2/me vl /me
¢2,m = ~¢m,1 (3.79)
¢m,m = ¢1,1 {3.80)

Combining the expressions found for the correction terms for the

eigenvalues, Egs. (3.51), (3.58), (3.59), (3.64) and (3.65), the two
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tuned eigenvalues can be written as follows:

u’2
A= xpl + : +eA2 [51 + 8, t 2/%; v b+ mevEAz + o] (3.81)
wz
Ay = xpl + I—:EZE [(a1 + 62)A2 - Zfﬁg v A+ mevi + Azo] (3.82)

with ¢ defined in Eq. (3.68). The non-tuned eigenvalues and
eigenvectors are still obtained from Eqs. (3.42)-(3.43) and (3.37)-
(3.41), respectively.

Having obtained the eigenproperties of the transformed system of

Eq. (3.15), the eigenvectors of the original system of Eq. (3.9) can now

he obtained from:

e
il
e
<=
X
()
it
—
-

N (3.83)
The eigenvectors 9j obtained as indicated above are approximately
orthonormal with respect to the mass matrix of the combined system:

0](MIgy = 644 + terms of 0(c%) 5 1, = Leem  (3.84)

N
3.3 PARTICIPATION FACTORS OF THE COMBINED SYSTEM

To obtain the system response from Eq. (3.1) for a given ground
motion input by modal arnalysis, we also need the modal participation
factors. These participation factors can be obtained in terms of the
eigenvectors of the original system or the transformed system. In terms
of the eigenvectors of the original system, by definition, the
participation factors are:

vy=aiMir 5 = 1,.m (3.85)

In terms of the eigenvectors of the transformed system, the

participation factors are obtained as follows:
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3 J=1,...,m (3.86)

where Yp is the vector of participation factors of the primary system.

Substituting ¢, , and ¢_ . from Egs. (3.37)-(3.39), we obtain for the

1,] m,]
detuned case the following:
m wg\). 1 wzv.y . n VoY s
o=y .- —28d [y 42 ©JPI ., 5 1P $5=1,...,n
R T S I R
b3 e Pl ® (3.87)
22
. _ n VY mr_w_ v,
Yo = /Mg Yo + /Mg mg z [—-R1 5 - % eee ; 2] (3.88)
i=1l A, - w (A ;. - )
pi e pi ]

Similarly, substituting for 05 40 %y g and % g from Egs. (3.75) to

2

(3.78), and ¢.

i,m? ¢2,m and ¢m,m from Eqs. (3.78) to (3.80), we obtain

the participation factors corresponding to the two tuned frequencies as

follows:
- 1 — — ~ 2 n V.iY i
Yy T —————-E {AYpl - /Mg ra * (Ypm + A/me re)ezm - wg 151 K-;_TEIH'
1 + a =1 "p pL
k)
2 ~
2\) o) & 2
(g + Malog + —— 5 s B (Lo ) - ) (3.89)
AP pe 2/me v, /.
_ l J— — ~ 2 n \):|Y _i
Yy = T {ng +oa/mg v+ (_Asz +omgr)e. g ’El I—T“:RI—‘
/1 + A 1=1 "p3 pe
1F3}
2 2 ~
2v_A w § B
e % e 1 9
{/mg - mglv; + e (1 - ———) - 2} (3.90)
1+ 2" "pi pe 2/mg v, /Mg

Knowing the complete eigenproperties of the combined system any response
quantity of interest can now be obtained as described in References 22

and 23. In response analysis for tuned cases, it is sometimes important
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to consider the nonclassical nature of the combined system damping.
This can also be included by adopting the approcach in References 22 and

23.

3.4 NUMERICAL RESULTS

The numerical results are presented for a four degrees of freedom
structure shown in Fig. 3.1. The mass of each floor, m, is = 5x10° Kg.
The interstory stiffness, k, is = 2x109 N/m. The natural frequencies
and mode shapes of the primary structure are given in Table 3.1.

The freguencies calculated by the perturbation approach developed
here are shown in Tables 3.2, 3.3 and 3.4. The values are shown for
three different equipment-to-floor mass ratios of 171000, 1/10 and 1/2.
These values are compared with the values obtained by an extended
precision direct eigenvalue analyses of the complete equipment-structure
system; the magnitude of the relative errors between the exact and
approximate eigenvalues are also shown in these tables. The results in
Table 3.2 are for an equipment not tuned to any structural frequency.
The results in Tables 3.3 and 3.4, on the other hand, are for the cases
when the equipment is tuned to the lowest and the highest structural
frequencies, respectively. The magnitude of the errors in these tables
clearly shows that the perturbation approach gives rather very accurate
estimate of the frequencies even for the mass ratio as high as 1/2. The
error becomes a little higher for the equipment tuned to the highest
frequency, although still within the acceptable range. As will be noted

later, this is, however, not the case with the error in the eigenvector

values.
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The eigenvectors calculated by the perturbation approach are shown
in Tables 3.5 and 3.6 for the detuned and the tuned cases. In the tuned
case, the equipment frequency is very near the first structural fre-
guency. The results in both tables are for the equipment-to-floor mass
ratio of 1/10. The error in the calculated values when they are com-
pared with the corresponding exact values are also shown parenthetically
in the tables. In particular, the maximum error in the elements of the
modal matrix corresponding to the equipment degree of freedom, which is
shown in the last rows of Tables 3.5 and 3.6, is only 5.3 percent.

In Table 3.7 are shown the values of the participation factors and
the elements of the modal matrix associated the equipment degree of
freedom, calculated for four different equipment frequencies. Except
for the second case with wy = 42 rad/sec., all other values are for the
tuned cases. The first set of values are for the equipment tuned to the
first frequency, the third set for the equipment tuned to third fre-
quency and the last set is for the equipment tuned to the highest fre-
quency. The error between these values and the exact values calculated
by direct eigenvalue analysis of the combined system are also given in
parentheses. It is noted that the errors in the higher mode participa-
tion factors, and also to some exteni in the eigenvectors, are rather
large when the equipment is tuned to the higher mode frequencies. It is
primarily due to the fact that in this case, because of e being large,
the elements of matrix [Aj] are not necessarily much larger than the
corresponding elements of matrices [A;] and [A,], and thus the condi-
tions for application of the perturbation expansion are weakened. How-
ever, the accuracy can be improved somewhat if a seven-term expansion is

assumed thus enabling us to obtain the remaining terms, aik’ in expan-

33



sion (2.64) which we have been unable to obtain now. However, the
tuning with the higher modes is rarely of any importance as the
contribution of such modes to the response is usually small. If more
accurate values of the modal properties are desired, especially for
heavy equipment, the approach developed by the authors in Reference 24
can be used. In that case, the values obtained by the perturbation
approach proposed here, then provide excellent initial guesses to be
used in the iterative solution of a nonlinear equation developed in

Reference 24.

3.5 SUMMARY AND CONCLUSIONS

A systematic matrix perturbation approach is applied for
calculating the eigenproperties of a combined equipment-structure system
in terms of the eigenproperties of the individual systems. Both the
detuned and tuned equipment are considered. The perturbation analysis
of the tuned case requires a special expansion scheme to obtain
meaningful resuits. Closed form expressions are provided to calculate
the frequencies, mode shapes and participation factors, both for a
detuned and a tuned case,.

The numerical results are obtained and compared with the results
obtained by a direct eigenvalue analysis of the combined system. It is
observed that this analysis can provide quite accurate estimates of the
frequencies for equipment as heavy as 1/2 the mass of the supporting
floor. The accuracy in the calculated eigenvectors is, however,
acceptable only for equipment not heavier than 1/10 the floor mass. The
error in the higher modal properties becomes rather large when the

equipment is tuned to some very high frequency modes relative to the
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first mode frequency and if the equipment is heavy. These errors can be
reduced somewhat by considering a higher order expansion scheme.
However, as the contribution of the higher modes to the response is
usually much less when compared with the contribution of the Tower
modes, the errors in the calculated higher modal properties are usually

inconsequential,
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Mass m=-5x105 Kg

Q
m Stiffness k= 2x10 N/m

Figure 3.1 A Four Degrees of Freedom
Primary Structure and Equipment System
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Table 3.1 Eigenproperties of the example primary structure.

Natural Fregquencies (rad/sec)

21.9649 63.2455 96.8978 118.8628
Degree of Freedom Mode Shapes, x10~3
1 .32246 -.81650 .92848 .60602
2 .60602 -.81650 -.32246 -.92848
3 .81650 .00000 -.81650 .81650
4 .92848 .B1650 .60602 -.32246
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Table 3.2 Natural frequencies of the structure-equipment system for a

detuned case

Equipment Frequency = 42 rad/sec.

Mass Ratio
1/1000 1/10 1/2
Freq. Freq. Error Freq. Error Freq. Error
No. rad/sec. % rad/sec. % rad/sec. %
1 21.96 0.00 21.30 .21 18.42 5.05
2 42.00 0.00 42,58 .10 41,17 6.59
3 63.25 0.00 64.07 .01 67.03 .41
4 96.90 0.00 97.10 .00 97.92 11
5 118.86 0.00 118.91 .00 119.08 .02

Table 3.3 Natural frequencies of the structure-equipment system for a

tuned case.

Equipment Freguency = 22 rad/sec.

Mass Ratio
1/1000 _1/10 1/2

Freq. Freq. Error Freq. Error Freq. Error

No. rad/sec. % rad/sec. % rad/sec. %
1 21.75 0.0 19.79 .01 17.43 .34
2 22.21 0.0 24,35 .01 27.44 .08
3 63.25 0.0 63.39 .00 63.97 .01
4 96.90 0.0 96.95 .00 97.14 .01
5 118.86 0.0 118.87 .00 118.92 .00

Table 3.4 Natural frequencies of the structure-equipment system for a

tuned case: Equipment tuned to the highest mode.
Equipment Frequency = 118 rad/sec.
Mass Ratio

1/1000 1/10 1/2 .
Freq. Freq. Error Freq. Error Freq. Error

No. rad/sec. % rad/sec. % rad/sec. %
1 21.96 0.0 21.47 .09 19.36 2.37
2 63.23 0.0 61.75 .25 55.36 5.08
3 96.87 0.0 94.13 .89 82.11 11.01
4 117.90 0.0 118.57 1.30 130.26 11.42
5 119.05 0.0 126.76 .73 146.48 3.23
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Table 3.5

Eigenvectors of combined system obtained by perturbation

approach for a detuned case with mass ratio = 1/10
Equipment Freguency = 42 rad/sec.
Degree o Mode No.
Freedom 1 2 3 4 5
1 .30496 E-3 | .18688 E-3 | .80803 E-3 | .92481 E-3 | .60356 E-3
(0.50)* (2.88) (0.06) (0.01) (0.01)
2 .57544 E-3 | .29135 E-3 | .78656 E-3 | -.33044 E-3 | -.92630 E-3
(0.45) (3.65) (0.08) (0.048) (0.01)
3 .78085 £-3 | .26733 E-3 |-.42943 E-4 | -.80684 E-3 | .81804 E-3
(0.37) (5.52) (1.86) (0.03) (0.00)
4 .89792 E-3 | .12542 E-3 }-.82950 E-3| .61880 E-3|-.32915 E-3
(0.25) (13.03) (0.16) (0.01) (0.04)
5 .12780 E-3 |-.42407 E-2 | .64414 E-3 | -.14020 E-3 | .46005 E-4
(5.29) (0.36) (3.24) (1.55) (1.99)

*Error in percent.

Table 3.6 Eigenvectors of combined system obtained by perturbation
approach for a tuned case with mass ratio = 1/10: Equipment
tuned to the first mode

Equipment Frequency = 22 rad/sec.
Degree 0 Mode No.

Freedom 1 2 3 4 5

1 .20639 E-3 | .25301 E-3 | .81624 E-3 | .92771 E-3 | .60542 E-3
(0.04)* (0.02) (0.00) (0.00) (0.00)

2 .39306 E-3 | .46922 E-3 | .81249 E-3 |-.32436 £E-3 |-.92795 E-3
(0.17) (0.13) (0.00) (0.00) (0.00)

3 .54007 E-3 | .61506 E-3} -.74931 E-3 |-.81430 E-3 | .81689 E-3
(0.00) (0.05) (0.47) (0.00) (0.00)

4 .63618 E-3 .67193 E-3 | -.81999 £-3 .60908 E-3 | -.32413 £-3
0.21) (0.32) (0.00) (0.00) (0.00)

5 .33363 E-2 {-.29882 £E-2| .11240 E-3 |-.32938 £E-4 ] .11438 E-4
(0.20) (0,17) (0.11) (0.40) (0.18)

* .
Error in percent.
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Tahle 3.7

system- for mass ratio = 1/10.

Participation factors and eigenvectors of the combined

Equipment Frequency

Participation Factor Y;

>

€

m, i
1054.7 (0.13)* .33363 E-2 (0.20)
855.2 (0.15) ~.29882 E-2 (0.17)

22 rad/sec 406.2 (0.00) .11240 E-3 (0.11)
197.4 (0.00) -.32938 E-4 (0.40)

85.7 (0.00) .11438 E-4 (0.50)

1343.5 (0.11) .12780 £-2 (5.29)

223.5 (11.33) -.42407 E-2 (0.36)

42 rad/sec 393.3 (0.15) .64414 E-3 (3.24)
196.2 (0.01) -.14020 E-3 (1.55)

85.4 (0.01) 46005 E-4 (1.99)

1351.7 (0.0) .97867 E- 3 (2.04)

411.3 (0.39) -.14203 E-2 (0.0)

97 rad/sec 209.1 (9.94) 27121 2 (7.60)

101.0 (0.3)
79.2 (3.13)

-.36124 E—2 (11.5)
.64289 E-3 (22.85)

118 rad/sec

1362.0 (0.00)
413.9 (0.10)
200.9 (1.19)
156.4 (66.4)
53.6 (235.5)

.96181 E-3 (1.88)
-.11456 E-2 (9.79)
.18608 E-2 (44.88)
-.18040 E-2 (3.73)
.45206 E-2 (23.74)

* .
Error in percent.
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Chapter 4

EIGENPROPERTIES OF CLASSICALLY DAMPED PRIMARY STRUCTURE AND EQUIPMENT
SYSTEMS WITH NONCLASSICAL DAMPING EFFECTS

4,1, INTRODUCTION

In the preceding chapter the combined system was assumed to be
proportionally or classically damped and thus the undamped eigenvalues
and eigenvectors of the primary system were used to obtain the real-
valued eigenproperties of the composite structure. However, in the
studies related to the calculation of equipment response [9,22], it has
been reported that in some cases the combined equipment-structure system
becomes nonclassically damped even though the supporting structure is
classically damped. This is especially the case when the equipment is
in resonance with one of the supporting structure's frequencies and the
damping ratios of the two systems are significantly different. In such
a case it may be necessary to incliude this nonclassicality in the
calculation of accurate equipment response.

Some approaches [10,23] have been proposed to include the effect of
this nonclassicality in the calculation of equipment response from the
combined undamped eigenproperties. However, a mathematically consistent
and more effective approach would be to obtain the combined damped
efgenproperties. Therefore in this chapter, a systematic perturbation
approach is applied to obtain the damped eigenproperties of a combined
equipment- structure system from the undamped eigenproperties of the
individual systems. Both the cases of the detuned and tuned equipment
are considered. For the detuned case the formulas obtained with the
conventional perturbation scheme breaks down and different expressions
are needed. This alternative formulation was presented in Chapter 2 in

a general form and is used here tc obtain the closed form expressions
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for the eigenproperties of the combined system which are tuned. These
combined properties can be used to calculate the response which will
incorporate the effect of the dynamic interaction between the equipment
and the supporting structure as well as the effect of the nonclassi-
cality of the combined system damping. The numerical results demon-
strating the effectiveness of the proposed perturbation approach are

presented.

4,2, EIGENVALUE ANALYSIS
The equations of motion for a system composed of a damped single
dof oscillator and a classically damped supporting structure excited by

a ground motion ig(t) are
[Mlx + [Clx + [K]x = -[M]r ¥ (t) (4.1)

The mass, damping and stiffness matrices [M], [C] and {K] of the com-
bined system are defined by Egs. (3.2)-(3.4) and (3.6)-(3.8) for an
oscillator attached to the K dof of the primary system. The vector of
influence coefficients of the combined system r is given by Eq. (3.5).
We will assume here that the properties of the supporting structure and
equipment are such that the damping matrix of the joint system cannot be
diagonalized or nearly diagonalized by a pre- and postmultiplication by
the eigenvector matrix obtained from an eigenvalue analysis of the
undamped case. The primary system, however, is regarded as proportion-
ally or classically damped, that is to say, its damping matrix [Cp] is
such that

ol [C 1o . =2

Np\] P ip] J = 1,...,]’\ (4.2)

Bpi¥pi *
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In order to obtain the system response by modal analysis we have to
resort to the state vector approach [13] where the equations of motion
are cast in a 2m-dimensional form. We introduce a 2m-dimensional vec-

tor, as follows:

1

z = (4.3)

T

and put Eq. (4.1) in the state vector form to obtain:

o M1  [M o 0] .
M oc|2Y |o « §=_Mrfxg(t) (4.4)

This system of equations can be decoupled with the eigenvectors provided

by the foilowing eigenvalue problem:

M 0 }|. 0 M |.
0 -K l'!')j = pj M C li)j M J = 1,...,2m (4.5)

Before we attempt to obtain the complex-valued eigenproperties of

the above system, we introduce the following transformation in Eq. (4.5)

R Uu o T
?j =lg u ?j = [T] ?j s Jj=1,...,2m (4.6)
where:
) 0
wp=1{ % (4.7)
0 1/./me

in which [¢p] is the real-valued eigenvector matrix of the primary sys-

tem normalized with respect to the mass matrix. Multiplying on the left
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Eq. (4.5) by [(T]T and considering the orthonormality properties of the

primary system eigenvectors we can write:

[ 0 0 I
p. = p, Y.
0 —Kt by J i1 Ct £j

The matrices [Kt] and [Ct] are defined as:

j = 1,...,2“1

-e

(Kel = [AY] - wimg[B{] + ulm (B3]

[Ct] = [86] - ZBeme/me [Bi} + Zseweme[Bé]

(4.8)

(4.9)

(4.10)

om which [Aé] and [Bé] are diagonal matrices, defined in terms of the

unperturbed frequencies and damping ratios of the two systems as:

'} = [~ .2
(AL} = [~ uf ]

[Byl = [T 2850 -1

(4.11)

(4.12)

It is noted that the mth slements of these two matrices pertain to

the equipment:

2. .2
wm e
ZBmwm = ZBeme

(4.13)

(4.14)

whereas the remaining elements are associated with the modal frequencies

and damping ratios of the primary structure:
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The remaining matrices [Bi] and {Bé] in Egs. (4.9) and (4.10) are

defined as:

o
[Bi] = T (4.17)
v 8]
-
vy Q
[Bé] = 7 (4.18)
g 0

The vector v is defined in terms of the Kth elements of the n eigenvec-
tors of the primary system as in Eq. (3.14).

From Eqs. (4.9) and (4.10) we riote that the matrices [Ki] and [Ci]
are composed of matrices with elements of different orders of magnitude.
For an equipment of small mass, we assume that the ratio of the equip-
ment mass to a floor mass is of order 52. The second term on the right
hand side of Eq. (4.9) will then be 0(e) and the third term 0(s2). Fur-
thermore, if we assume that the damping ratios of the two systems are of
order ¢ then the second and third terms in Eq. (4.10) will be 0(32)

and 0(33), respectively. Discarding the terms of order s3 and separ-

ating the matrices of different orders in Eq. (4.8), we obtain:
2 _ 2 . .
[Ag + eAy + e Azlyj = pJ.[B0 + ¢ legj s J=1,...,2m (4.19)

where a bookkeeping parameter ¢ has been introduced to keep track of the
order of magnitude of different quantities. The matrices [AOI, [All’

etc., are defined as follows:
I 0 0 I
[A.] = ; [B ] = | (4.20)
o] 0 -Aé 0 1 B0
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[A] = (4.21)

|

£
[ AN

-

3|
(1]
—"
o O
w o
T |

2 0 0 __]0 0
[As] = SOUN {P Bé] : {Bz] = -ESEme/me [O Bi] (4.22)
It is noted that the eigenvalue problem of Eq. (4.19) has the same form
as Eq. (2.1) in Chapter 2 which was analyzed by the matrix perturbation
methods. Therefore, we can readily apply the expressions obtained there
to obtain the perturbed eigenvalues and eigenvectors for the present
problem. To obtain the eigenproperties of the combined system we must
consider the case of a tuned and detuned equipment separately. First we
examine the case of a detuned equipment. The case of a tuned oscillator

will be presented later.

4,2.1. Closed Form Expressions for the Eigenproperties of a Detuned
Case.

Considering the unperturbed eigenvalue problem in Eq. (4.19), we
observe that the upper and the lower parts of these eigenvectors are

related as:

u _ 2 . 3=
BOj - pOjEOj 2 J = 1,...,2m (4'23)

where the superscripts u and ¢ refer to the upper and lower m elements
of Ho" From the Tast m equations of the eigenproblem of order 0 we
obtain:
2
Boj = [0’000,1,...,01 (4024)
where 1 is at the jth location, and:
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X 2 .
.= - BLw. + 1 -85 3 3=1,2,...,m 4,25
pOJ BJwJ 1wJ/ BJ J ( )

where the remaining m eigenvalues are the complex conjugate of these.
Here i denotes the complex number. The eigenvectors on when normalized

according to Eq. (2.8) become:
T

Boj=ajIO!Qoogpojgooo,l’.oogol ; 1’j= 1,2,...,2"1 (4026)
where:
o - (- 1) (8.27)
7172
e S L RS WO,
Uim = % (4.28)

Hereafter, a bar over a quantity will denote its complex conjugate.
Substituting for [All from Eq. (4.21) and on from Eq. (4.26) in
Egqs. (2.13) and (2.14) we find:

-e
L)
"
[u—y
-
(a®]
-
.
“
3

py; =0 (4.29)

J

8., =0

jk 3 V2,...,2m-1 (4.30)

/M. wov.aa

- e ejJjm._ . § o
9., = = -9, : j=1,2,...,2m-1 (4.31)
Jm Poj = Pom mJ jem
9- =g- ; j = 1,2,0.0,2"‘“1 (4032)
j.2m  "j,m Jem

where the following notation is used to define Vs for j =z m:

Vi =v, 3 J=1,2,...,m (4.33)
In order to find the second order correction terms we substitute the
expressions for goj’ [A>] and [Bs] in Eq. (2.19) and obtain:

2 -2

Qa [0
("t — ) ~ 1] 5§ = 1,...,2m-1(4.30)

. - P )
0J om poj Pom Jj#m

Py = Mgw
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which after some simplification can be written as;
2

. 28 w_ P
222 Po3’? - .
Ppj = - Mevgvie] 0J €eoal 5= Py jam 3 9= 1,2,..,m-1(4.35)
Poj * 28ewepoj + we
And for the case j = m the same set of equations leads to;
2 -2
m-1 a o
42 2 k k -
Po. = Muw o v + —) = p (4.36)
2m etem 2 k Pom = Pok Pom = Poi 2,2m
which can also be simpiified to:
2
-1 v
g2 ™ k —
Pom = Mae®m kzl zZ ., 2~ Poom (4.37)
=% Pom ¥ “Bk“%Pom T %k

With a similar substitution for [AZ]’ [52] etc. in Eq. (2.20) and after

some simplification we obtain:

2 —
A.. i \'ﬂet.uevj\,w1.0:.‘].@_i zpoj + ZBEwepoj o ;,l ; 1,...,2m-1 (4.38)
J1 p -~ Pai T
ak 0j pOj + Zsewepoj + ug Jei 2z m
and if i = m or j = m they become:
6, = *#“Egi——* 28w vM_ v.o.o (4.39)
Jm poj - Py €€ e Jim )
; j = 1,- .,2m—1
A Poi jem
PSS N S m .
BmJ Po - poj ZBewe/ e vJaJam (4.40)
For the case j = m and i = ?m we can similarly show that:
~ B memglum|2 n vﬁ B = .41
°m,2m ~ b -7 2 26 wp Wl = %2m,m (4-41)
om om k=1 Pom k™ k" om k

When both subscripts are equal we obtain:

~ 1 422 “m 2 “m 2
P11 7 7 Mevevieil (G * .

.

i =1,...,2m-1
S e (4.42)

e¥eVi%i
Pok
which after some simplification can be written as:

- 422 Poi T Pl i=1,...,2m-1
e 1

+ 28 p

. (4.43)
© 4+ w2)2 i oxm
g e oi e
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For the case i = m a different expressicn is obtained:

~ g2 0 2 (Pt Bwy) =
®mm = Me¥em kzl Yk ( + 2 . 2)2 = %om,2m (4.44)
Pom B®kPom T “k

Once all the coefficients eji and éji of Egs. (2.11) and (2.17) are

found, the perturbed eigenvectors ¢, can be obtained from the expansion

~

(2.3). Setting the coefficient ¢ equal to 1, we obtain:

Z2m

It is noted that we only need to know the lower half of these vectors,

as their upper halves are related to the lower halves as follows:

u _ %
i T Pidy

Substituting for Uok in Eq. (4.45) and taking advantage of the fact that

3 J = Llooo.,2m (4.46)

several elements of these vectors are zero, we obtain the simpiified

expressions for the elements of the lower half of Qj as follows:

~ ~

- - - 1. = l,.‘.,m—l
Yiem,i T %54 Y &5 aem®i 3§ s (4.47)

+ 8

. . = Q. . F B, . O 4,48
Viem,i T %5 T %33%5 T %5, 3y (4.48)

~ ~

$2m,j = (ejm + ejm)“m + (ej’?_m + ej,Zm)“m (4.49)

~

Substituting the coefficients gji’ ejj, etc. already obtained, and after

some algebra, we finally arrive at:
2

P .+ 28 wp . _ R
_ aJj eeoj Di,j=1,000,n
U, s = —M w_v,v.a. X 3 . . (4.50)
i+m, j ee i jj 2 2 1 %)
Poj T 28793Po5 * v
_ 225 4 3 222 3
"’j+m,3' = aj + memevjaj[poj +4Bemepoj + 4Bemepoj Bemepoj
3= 2 2.2 . . _
+ Semepoj + memj]X 3 J=1,...,n (4.51)

49



w2

¢2m,j = /m vy [ZSEmEpOJ Wy X 3 j=1,...,n (4.52)
where!
X = 1 (4.53)
p2 + 280D .+ u)2
0j g eoj e

Equations (4.50)-(4.53) only define the first m - 1 vectors. The

expressions for the elements of the mth vector, Yo 8ve:

¢j+m,m = (ejm + ejm)am + (ej,Zm + J 2m)a s J=1,....m-1 (4.54)

~ ~

= +
Yomom T %m Yt Pmm®m T Om, 2m%m

(4.55)

~

Substituting the values of s, etc., and after some simplifications

Jm? Jm
we obtain:
2
238 w p w
bim = 7 ceom e s j=1,2,...,m-1 (4.56)
jm.m Vi%m "2 + 280 + u)2
Pom i*Pom * 3
2.2 pd . 2
b e omo3 T 2 onPon * (1 + 28w )Py + (B + weep)uy
2m,m  m  e'em L. Tk ? 2.2
k=1 (Pom * 28w Pom * i)

(4.57)
The perturbed eigenvalues are obtained by substitution of Egs. (4.29),

(4.35) and (4.37) into Eq. {2.2) with ¢ equal to 1, as follows:

p.: + 2B.w
Dj = 03[1 - mewvaug 5 QJ €8 21 ; J=1,2,...,n (4.58)
Poj * 28e“’epoj T owg
2
42 U Yk
Pm = Pom ™ Me¥e®m ) (4.59)

2 2
k=1 Pom * 2B Pon * i
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4,2.2. Closed Form Expressions for the Eigenproperties of a Tuned Case.
When the equipment natural frequency and modal damping ratio are
equal or nearly equal to one of the modal frequencies and the corres-
ponding damping ratio of the primary system, the expansions obtained in
the previous section are no longer valid. From Eq. (4.34) we observe

that the expansion (2.2) does not hold whenever:

1Pos ™ Pom (4.60)

The condition for the validity of the expansion (2.3) is, however, dif-
ferent. According to Eg. (4.42), whenever the following ineguality is

true

1 = 2
< — /me |\J_i||(1_i| Iamlme (4.61)

p.; -p. | =—
01 om N7

the assumed expansion for the eigenvectors breaks down because the cor-
rection terms become of the same order as (or larger than) the zero
order terms. For this case, therefore, we need a different set of
expansions that will avoid the "non-uniformity" [15] of the foregoing
expansions. These alternative expansions were already obtained in
Chapter 2. We will assume in the sequel that the values of the lth
structural frequency and corresponding modal damping ratio are such that
condition (4.61) is satisfied. We will introduce some "detuning para-

meters" defined as follows:
2
“y
1- — ={or (4.62)
Ye

If the values of Wg and w, are such that (1 - wz/wi) is of order ¢, that
is, of the order of the square root of the ratio of the equipment mass

to the floor mass, we define 81 from Eq. (4.62) and set 85 equal to
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2, or of the order

zero. On the other hand, if (1 - wg/wi) is of order ¢
of the ratio of the equipment mass to the floor mass, we use Eq. (4.62)
to define 8o and take 51 equal to zero. In terms of these detuning

parameters, the equipment eigenvalue can be written as follows:

2 2 2 2
we = w, T edqug te szg (4.63)

In a similar way we introduce an additional detuning parameter:

1 - = 0y {4.64)

so that the quantity Beme can be expressed in the form:

8,0, = By, * 62018 (4.65)

L
e’e
We now redefine the matrices [A,], [Byl, [A;]l, [A,] and [B,]

w
ee

siightly differently by utilizing Eq. (4.63) and (4.64). The last

diagonal elements, that is the (2m,2m)th elements of matrices [Aj] and
[B,] of Eq. (4.20) are set equal to -wi
the corresponding elements of [Al], [A,] and [82] which were zero in

and ZBzmz, respectively, whereas

Egs. (4.21) and (4.22) are now changed to —61w§, —Szwg and 01BWes
respectively.

Since several elements of matrices [A ], [B,], etc. are zero, we
can take advantage of this again to obtain the closed form expressions
for various correction terms defined before. We start by examining the

unperturbed eigenvalue problem (2.25). From the definition of [Aj] it

follows that:

B = - _ . 2
Poe = Pom = Poms = Pozm = = By * Twy/ 1 -8y

Considering the orthonormality conditions (2.30), the unperturbed tuned

(4.66)

eigenvectors can be written as follows:

T o_-T s
LNJOQI = !Oml = [0,.'.’pog,’...’poﬂ,A"..gl’...’A]
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T =T g
Yom = Yozm = [0,...,pO£A,...,*p02,...,A,...,vl] ———— (4.68)

/s 1+ AZ

where the non-zero entries in the above arrays are at the ch, mth

gth

m and 2mth Jocations respectively and @ is defined by Eg. (4.27).

The value of the constant A can be defined with the condition given

by Eq. (2.47). It can be shown that:

I 8
b=ty 14 ()P
2/me v 2/me v

(4.69)
)

The choice of the sign of the square root is irrelevant. Indeed, it can
be shown that if the minus sign is chosen, this will only interchange
the respective values of P, and P and corresponding eigenvectors 91
and Oe

Utilizing Uog and Uom defined by Eqs. (4.67) and (4.68) in Eq.
(2.45) we obtain:

2 2
"y ( 2/m v_) (4.70)
Pn, = - .0 + 2/m_ v .
29 1+ A2 1 e ¢
2 2
"o’ (s, + 2/m_ v 4) (4.71)
p = AY) .
2m 1+ A2 1 e ¢

With goj defined by Eq. (4.26) and with the previous definitions of Uog

and u_ ., the coefficients 83 and %3 of Eq. (2.46) become:

-— 2
~ A /m . »
Bt e "e’j"] (4.72)
+ s 1+ A2 Por pOj
s i=1,2,...,2m-1
5 J o+ e,m,mg

~ L ay /me wevjaj (4.73)
mj Poe = Pgs

v 1+ A2 0% 0J
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To obtain the coefficient ézm we need to obtain first the expressions

for the following terms in terms of the quantities defined above as fol-

Tows:
22
% 5 (12 02 + 4 w ol 4.74
P2y, = Pom 1+ 42 [89(1 - 2%) + 4/mg wya (4.74)
2mil A 4 aia n “5
(P = P )8, 08 = - Mmu (4.75)
L om ok’ "k mk ee 1,2 5 pgl + 280,p,, + wg
kzg,m,me kzg
22
28 p ¢
T %% 2 e’o — 2
Yoml P2 = PoyBalio, = —_:*35 {A(SZ meve) * o loga - vmg v (1 - & )

(4.76)
Substituting Eqs. (4.74)-(4.76) into Eq. (2.68) we obtain for azm:

" - 1 2
= -9 _ = {a{s, - m_v5)
m me 2 — 2 e
al(l - AT) + 4Jme v 8
2
28_p _ n v
+ 2 02 fogs - vm_ v (1 - 22)] - m wla ) k 51
Ye e 2 €€ K21 p¢ + 280D  +w
K 04 k" k"o% k
5
(4.77)
We need also to obtain the coefficients ez,mﬁ’ 92,2m’ em,mﬁ and em,Zm

which cannot be defined with Eqs. (4.72) and (4.73). From Eq. (2.4%6)
and with the help of Eqs. (4.67) and (4.68), it can be shown that these

coefficients can be written as follows:

2, 22

~ QQ,IO'Q,! meA .

aame ST T, 2 (8,8 - 2vm, v ] (4.78)

) ) 0l la, | % B )

®eom T fmme T T, 2 [§8 = vm v (1 - 2%)] (4.79)
2, 22

~ allall wg

*m,om T T 5= (67 + 2/m, v 4] (4.80)

Sk



Introducing Eqs. {4.67) and (4.72) into Eq. (2.66) for i = g,
considering the previous definitions of matrices [A,] and [BZ] and after

some algebraic manipulations we can obtain the correction term Py, 35

follows:
2 Z
28 p
e _ 1% 2 2 0g” Y=
Pag = Pamg N A2 (8587 + mgvy + v (018 - 2vmg v))

2

n v

- muin’ ¥ — k 5] (4.81)
k=1 p- + 28, w, P+ w
keg (03} k k"o k

Proceeding in a similar way but now substituting Eqs. (4.68) and (4.73)

into Eq. (2.66) for i = m, we obtain for the correction term p,.:

2 2 28 p
o= _ z e 2.2 e oL o
p4m = p4,2m = R 7 [‘3 + m v A + (01 + 2/me \)Q’A)
A e
2
n v
2 k
-mws ) ] (4.82)
ee kL, 2 2
E;i Poe * 28kwkpoz oy

The tuned eigenvectors are retrieved from Eq. (2.24) as follows:

2m .

gi = Uyt kzl P IV i=q,m (4.83)

where Eq. (2.58) was considered and the correction terms u 3 and Ugs

were disregarded since they could not be completely defined with the
assumed five-term expansion. We will be only concerned with the lower m
elements of the vectors ¢4 and o since the upper m elements can be

obtained with
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g ,m

L4 1 =
wk,1 p1'¢k+m,1 *k=1,...,m (4.84)
and also:
Yme T Y (4.85)
Yom = Uy (4.86)

From Eq. (4.83) and with the proper substitution for Yok from Eqgs.
(4.26), (4.67) or (4.68), the lower m elements of ¢ become:

~ ~

Viem,e T %04 T O, qam®i 2 P=lyeeam, 122 (4.87)
.1 - - ~ —
Ymeg, g " 5 (L + amppdag + (8 ng + 88, oplog ] (4.88)
vy 1+ A
1 - .
Yom,s 5 [(a ~0ppay + (88y oy = 8y o)) (4.89)
/144

and similarly, the lower m elements of ?m are given by the following

expressions:
wi+m,m = Omioy 8m,i+m°‘1‘ 5T = leiee,ng 1+ 8 (4.90)
N S - ~ ~ -
wm+g,m = [(a - egm)ag + (Bm’m2 + ABm’Zm)aE] (4.91)
vy L+ A
- 1 " ~ - _
me,m = — [~ (1 + Aelm)ag + (Aem,mg - em,Zm)°1] (4.92)
v 1+ Az

Substituting Eq. (4.72) into (4.87) we obtain:

A /My ‘“g%"i i=1 n
Yitm,e T 702+ 28.0.p + ul I N (4.93)
vy 1+ 4 Tog i“i%or i

Introducing Eqs. (4.77), (4.78) and (4.79) into Eq. (4.88), it follows
that:
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¥ = i—— 1+ |a |4./m_ mz\) A - AY] (4.94)
m+g .9 > ) e e’q : °
/1 + A
where ;
1 2 28eposL — (1 - AZ)
Y = 5 — {62 - mevn + o [cl - /me \Jl A ] - Z}
51(1 - AT)/a + 4/mev2A e
(4.95)
n vz
t*l Pog * 2BuyPog * wy
3}

Similarly, substitution of Egs. (4.77)-(4.79) into Eq. (4.89) leads to:

42 —
Yom,g = +~“-~*E (A - |a%[ w88 - /Mg vg) - Y] (4.97)
/1 + 4

From Eqs. (4.73) and (4.90) we obtain:

— 2
1 /Mg ey vy ee.,n

=2 =
-
[p%]
-

(4.98)

-
—da s
#+ |l

Yiemm -

—_— 2 2
s 1+ 02 Pog T 2B3iPy + w;

When Eqs. (4.77), (4.79) and (4.80) are substituted into Egq. (4.91), it
yields:

Yq

4 — 2
b = —————-—E fa - |u£| /My WV, - Y] (4.99)
v 1+ 4

Finally, introducing Eqs. (4.77), (4.79) and (4.80) into Egq. (4.92), we

obtain:

4 2 —
Yomm T — -1+ |“g| me(§1 + /Mg va) - AY]  (4.100)
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Combining the correction terms for the eigenvalues, Egs. (4.70), (4.71),

(4.81) and (4.82), the tuned complex eigenvalues can now be written as

follows :
0.20.)2
B e 2 — 2
Py ™ Pog * |+ 42 [-(8) + 8p)a" + 2/mg v 8 - movy
28 p_ 4 .
-0 (on - 2/W v,) + 227] (4.101)
e
(121132
_ g e — 2.2
pm - pog‘ + 1 N A2 {_(51 + 62) - Zt/me \’Q,A - me\)EA
28 p _
- i % (o + 2/m v 8) + Z] (4.102)
e

Equations (4.84)-(4.86) and (4.93)-(4.102) define completely the
tuned modal shapes and eigenvalues of the combined system. The non-
tuned eigenvalues and eigenvectors are still given by Eqs. (4.46),
(4.50)-(4.52), (4.56)-(4.59) of the previous section. The matrix of
eigenvectors of the original system of Eq. (4.4) are obtained with the

transformation:

b= s 3=1,...,2m (4.103)
A
U1y}

The eigenvectors éj obtained from Eq. (4.103) are approximately (up to

second order terms) orthonormal in the following sense:

oI [o
Mo

_ 3
by = 855 % 0() (4.104)
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4.3. NUMERICAL RESULTS

The numerical results are obtained for the complex-valued frequen-
cies, eigenvectors and participation factors for the equipment-structure
shown in Fig. 3.1 by the perturbation approach proposed here. To ascer-
tain the accuracy of these results, they are then compared with the
exact values obtained by a direct analysis of the combined structure-
equipment system. The floor mass and interstory stiffness of the
example structure are identical to those of the primary structure used
in Chapter 3.

The primary structure is assumed to be classically damped. The
natural frequencies and undamped mode shapes of the primary structure
are given in Table 3.1. The modal shape matrix is normalized according
to Eq. {3.12). The damping ratio in each mode is assumed to be 0.03.
These values have been utilized in calculating the following results.

Tables 4.1, 4.2 and 4.3 show the eigenvalues of the combined system
obtained by the perturbation approach for the equipment-to-floor mass
ratios of 1/1000, 1/100 and 1/10. Table 4.1 is for a detuned equipment,
whereas Tables 4.2 and 4.3 are for the equipment tuned to the first and
the last structural frequencies, respectively. Both the modulus and
argument of the complex quantities are shown. These values are compared
with the exact values obtained by a direct analysis of the combined sys-
tem. The error, in percentage, obtained between these two values is
shown in parenthesis directly beneath the caiculated quantity. It is
seen that even for heavy equipment tuned to the highest frequency the
largest error between the exact value and the value calculated by the

proposed approach is less than 2 percent.
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Table 4.4 shows similar results obtained for the eigenvector ele-
ments @2m j and the modal participation factors. The modal participa-
]

tion factors are defined according to Reference 27 as follows:
2. T .
F.= {y3} L s J=1,2,...,m (4.105)

where g? is the vector formed by the m-lower elements of Yj and Yp is
the vector of participation factors of the primary system. It is seen
that even for the heavy equipment, the error is rather quite small. The
error, however, increases when the equipment is tuned to the higher
modes. As the higher modes usually do not contribute much to the
response, such errors are often inconsequential. The response results
substantiating this are given in Table 4.8 and are discussed later.

As the response, in particular the absoiute acceleration response

-

{23], is primarily determined by the product of qj = ngj¢2m,j’ it is of
interest to compare the error obtained in this product. Table 4.5 shows
the numerical values of this product, as well as the error when these
values are compared with the exact values. Here also the error is not
more that 3 percent.

A proper consideration of the nonclassicality of the combined sys-
tem is essential for accurate calculation of the response, especially
when the damping characteristics of the primary system and the equipment
are quite different and the equipment is tight and tuned to a structural
frequency (see References 9 and 22). This can be clearly seen from the
results given in Table 4.6. The values in Column 3 of this table are

the effective modal damping ratios for the two tuned frequencies shown

in Column 2. These are calculated from the complex-valued eigenvalues
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obtained by the proposed approach. The expressions for calculating

these frequencies and modal damping ratios are:
Qj = |pj] : Ej = —Rea](pj)/ﬂj : j=1,2,...,m (4.106)

Columns 4 and 5 show the exact frequencies and modal damping ratios cal-
culated with no regard for the nonclassicality of the combined system.
The differences in the two quantities due to this disregard of nonclas-
sicality are shown in Columns 6 and 7. It is noted that aithough the
difference in frequency is small, it is quite large in the corresponding
damping ratio. This latter difference can cause quite large errors in
the calculated response quantities as is shown by the following results.

Table 4.7 shows the absolute acceleration response values calcu-
lated for equipment tuned to each of the structural frequencies. Al
the results in this table were obtained for seismic input defined by a
set of ground response spectrum curves. The mass ratio of the equipment
is 1/1000. The results in Column 2 are the exact values obtained by a
direct analysis of the non-classically damped combined system made with
an extended numerical precision algorithm to include the effect of very
light equipment. They are exact in the sense that no approximations
have heen made in calculating the modal properties. The values in
Column 3 are obtained with the eigenproperties calculated by the pro-
posed approach. For calculating the response from these eigenproper-
ties, the method developed by Singh {27] was used. The error in these
values when compared with the exact values in Column 2 are shown in
Column 4, These are quite small for the whole range of frequencies.
Column 5 shows the exact response values calculated with no regard for
the nonclassicality of damping of the combined system. It is seen that

the error between these values and the exact values of Column 1 obtained
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from the damped case are quite large. Thus in such cases, the use of
the approach proposed here is advocated for calculating the combined
eigenproperties of equipment-structure systems to incorporate the non-

classical damping effects.

4.4, SUMMARY AND CONCLUSIONS

A second order perturbation analysis is developed to obtain the
complex-valued eigenvalues and eigenvectors of a combined equipment-
structure system. Both cases of detuned and tuned equipment, requiring
different perturbation expansion schemes, are considered. Closed form
expressions are obtained for the eigenvalues and eigenvectors of the
combined system in terms of the undamped eigenproperties of the two sys-
tems. Numerical results show that this approach can be effectively used
to obtain the eigenproperties for 1light equipment without much error
when compared with the exact values. The result showing the need of
such an analysis to incorporate the nonclassical damping effects in the

response are also presented.
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Table 4,1 Eigenvalues of the combined structure-equipment system for a

detuned case.

Equipment frequency = 42.0 rad/sec - Equipment damping = 0.03

Mass Ratio
1/1000 1/100 1/10
tigenvalue

No. Amplitude| Phase | Amplitude Phase | Amplitude Phase
1 21.9584 }-88.2791| 21.8990 | -88.2629| 21.3145 |-88.0963

(0.00) (0.00) (0.01) (0.03) (0.16) (0.28)
2 42.0059 |-88.2815] 42.0587 | -88.2879| 42.5874 |-88.3504

(0,00) (0.00) (0.00) (0.01) (0.10) {0.10)
3 63.2539 [-88.2812 ] 63.3287 | -88.2843}| 64.0767 |-88.3150

(0.00) (0.00) (0.00) (0.01) (0.00) (0.11)
4 96.8999 |-88.2809 | 96.9184 | -88.2813} 97.1036 |-B8.2855

(0.00) (0.00) {0.00) {0.00) (0.00) (0.02)
5 118.8632 |-88.2809 | 118.8672 | -88.2809 | 118.9068 |-88.2816

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 4.2 tigenvalues of the combined structure-equipment system for a
tuned case,

Equipment tuned to the Towest structural frequency - Equipment damping = 0.03

Mass Ratio
1/1000 17100 1/10
Eigenvalue
No. AmpTitude Phase | Amplitude { Phase Amplitude | Phase
1 21.7390 |-88.2990f 21.2645 | -88.3407 | 19.8901 |-88.4944
(0.01) {0.00) (0.06) (0.00) (0.57) (0.04)
2 22.1903 1{-88.2630| 22.6592 | -88.2240| 23.9770 |-88.0970
(0.01) {0.00) (0.16) {0.00) (1.43) (0.00)
3 63.2470 (-88.2809| 63.2600 | -88.2813| 63.3901 [-88.2855
(0.00) {0.00) {0.00) (0.00) (0.00) (0.03)
4 96.8983 |-88.2809 | 96.9026 | -88.2809 | 96.9460 |[-88,2818
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
5 118.8629 |[-88.2809 | 118.8638 | -88.2809 { 118.8737 |-88.2810
(0.00) (0.00) (0.00) {0.00) (0.00 (0.00)
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Table 4.3 Eigenvalues of the combined structure-equipment system for a

tuned case.

Equipment tuned to the highest structural frequency - Equipment damping
= 0.03.
Mass Ratio
171000 1/100 1/10
Eigenvalue
No. Amplitude| Phase [Amplitude { Phase |[Amplitude | Phase
1 21.9601 [-88.2770 21.9161 |[-88.2419| 21.4766 | -87.8830
(0.00) (0.00) (0.00) (0.05) {0.05) (0.50)
2 63.2309 |-88,2795 63.0987 |-88.2670f 71.7776 | -88.1395
(0.00) (0.00) (0.00) (0.02) (0.21} (0.21)
3 96.8713 |-88.2798 96.6329 | -88.2698| 94.2486 | -88.1671
(0.00) (0.00) (0.01) (0.02) (0.80) (0.18)
4 118.4761 |-88.2885 | 117.9251 | -88.3152] 118.7513 | -88.4879
(0.00) (0.00) (0.03) (0.02) (1.35) (0.22)
5 119.3362 |-88.2762 | 120.6662 | -88.2762| 127.6301 | -88.3622
(0.00) (0.00) (0.04) (0.03) (0.62) (0.60)
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Table 4.4 Complex participation factors and eigenvector elements iZm

for a tuned case. »J

Equipment tuned to the lowest structural frequency - Equipment damping =
0.03.

Mass |Frequency | Complex Participation Facton Eigenvector Vo j
Ratio No. Amplitude Phase Amp1itude Phase
1 140.4685 -45,0013 .47196 E-2 -44,9993
(0.00) (0.01) (0.00) (0.01)
2 144.8682 -44_.9987 .48248 E-2 -45,0006
(0.00) (0.01) (0.00) (0.01)
1/1000 3 36.3050 -44.,9984 .10059 E-4 -37.7046
(0.00) (0.00) (0.00) (0.00)
4 14.2010 -45.0012 .24223 E-5 -32.8706
{(0.00) (0.00) (0.00) (0.00)
5 5.5652 -44.9987 .77091 E-6 -29.7564
(0.00) {0.00) (0.00) (0.00)
1 149.8405 -44.,9965 .15619 E-2 -45.9981
(0.02) (0.01) (0.03) (0.02)
2 135.9720 -45.0041 .14563 E-2 -44,9981
(0.02) (0.04) (0.03) (0.02)
1/100 3 36.2854 -44,9844 .10060 E-4 -37.7046
(0.00) {0.05) (0.02) (0.00)
4 14.2073 -45.0124 .24223 E-5 -32.8706
(0.00) (0.02) (0.04) (0.02)
5 5.5646 -44.9872 .77091 E-6 -29.7565
(0.00) (0.,03) {0.05) (0.03)
1 167.2062 -44,9906 .53008 E-3 -45,0052
(0.13) (0.07) (0.23) (0.04)
2 123.3643 -45,0149 .42435 E-3 -44.9935
(0.27) (0.14) (0.39) (0.07)
1/10 3 36.0810 -44.8431 .10059 E-4 ~-37.7046
(0.02) (0.47) (0.21) (0.01)
4 14.1801 -45,1247 .24223 E-5 -32.8706
(0.00) (0.23) {0.37) (0.18)
5 5.5587 -44,8724 .77090 E-6 -29.7564
(0.00) (0.34) (0.49) (0.29)
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Table 4.5 Response quantity g

tuned case.

j for the combined damped system for a

Equipment tuned to the highest structural frequency - Equipment damping
= 0.03.
Mass Ratio
1/1000 17100 1/10
Frequency
No. Amplitude| Phase | Amplitude | Phase |Amplitude | Phase
1 330.3174 |-86.5975| 105.8283 |-86.6797| 35.0647 | -86.9847
(0.01) (0.00) (0.10) (0.00) (1.03) (0.07)
2 326.4446 -86,5266 | 101.6664 |-86.4502| 30.0959 | -86.2024
(0.03) (0.00) (0.33) (0.01) (2.95) (0.03)
3 1.4609 |-79.2649 1.4607 {-79.2517 1.4588 | -79.1187
(0.00) (0.00) (0.02) (0.02) (0.21) (0.20)
4 0.3232 |-74.4336 0.3232 |-74.4450 0.3228 | -74.5590
(0.00) (0.00) (0.03) (0.02) (0.37) (0.18)
5 0.0606 |[-71.3169 0.0606 |-71.3055 0.0606 | -71.1909
(0.00) (0.00) (0.00) (0.01) (0.00) (0.17)
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Table 4.6 Comparison between frequencies and modal damping coefficients
obtained from the classical and non-classical damping
analysis of the combined system.

Mass ratio = 1/1000 - Equipment damping = 0.005 - Structure modal
damping = 0.09
Non-Classical Damping Classical Damping Error in %
Analysis Analysis
Frequency
No. Frequency { Modal | Frequency | Modal |Frequency| Modal
Damping Damping Damping
Equipment tuned to the lst frequency
1 21.9647 0.08873121.7378 0.04739 1.03 46.59
2 21.9646 0.00627 | 22.1938 0.04761 1.04 659.33
Equipment tuned to the 2nd frequency
2 63.2450 0.08902 | 62.6762 0.04785 0.90 46,25
3 63.2564 0.00601 | 63.8307 0.04717 0.91 684.86
Equipment tuned to the 3rd frequency
3 956.8973 0.08946 | 96.2659 0.04897 0.65 45.26
4 96.9433 0.00561 | 97.5793 0.04612 0.66 722.10
Equipment tuned to the 4th frequency
4 118.8626 0.08985 |118.4764 0.05183 0.32 42.31
5 118.9446 0.00528 |119.3372 0.04333 0.33 720.64
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Table 4.7 Compariscon between absolute acceleration response values
obtained from non-classical and classical damping analysis.

Mass ratio = 1/1000 - Equipment damping = 0.005 - Structure modal

damping = 0.09.

Absolute acceleration in G units.

Non-classically damped system

Classically damped system

Tuned Exact Values| Perturbation {Error in % |Exact Values | Error in %
Frequency Approach
1 0.2620 0.2566 2.06 0.2028 22.60
2 0.0628 0.0619 1.43 0.0449 28.50
3 0.0298 0.0298 0.00 0.0271 9.06
4 0.0246 0.0246 0.00 0.0243 1.22
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CHAPTER 5

EIGENPROPERTIES OF NONCLASSICALLY DAMPED PRIMARY STRUCTURE
‘ AND EQUIPMENT SYSTEMS

5.1. INTRODUCTION

In the preceding chapter, the combined system was considered to be
nonclassically damped, though the primary structure was assumed to be
classically damped. Thus, the new modal properties of the composite
system were obtained in terms of the undamped eigenproperties of the
supporting structure and the equipment. There are cases, however, in
which not only the combined system but also the primary structure itself
cannot be regarded as proportionally damped. Examples of these are the
structures composed of parts with large differences in their energy
dissipation rates, like massive structures on soft soil. In some cases
it is satisfactory to neglect the off-diagonal terms in the damping
matrix corresponding to the normal coordinates [28], but this
approximation may lead to unacceptable errors.

The response of such nonclassically damped combined systems can be
obtained via modal decomposition by employing the state vector approach
[13,18]. This requires a knowledge of the complex-valued eigenvalues
and eigenvectors of the composite systems. These, in principle can be
obtained by solving an eigenvalue problem of double size with respect to
the undamped case. However, as mentioned earlier, due to the gross
differences in the mass and stiffness properties of the two subsystems,
some numerical problems may appear. And even though these problems may
be overcome by using extended precision algebra, when different
characteristics or locations of the equipment need to be considered,
1ike in the generation of floor response spectra, the process becomes

costly and cumbersome. For the nonclassically damped case these

70



difficulties are even more manifest because of the increased size of
each eigenproblem. It is desirable, therefore, to have available the
ctosed form expressions to define the eigenvalues and eigenvectors of
the combined system in terms of the equipment characteristics and the
moedal properties of the primary structure. To that end, in this chapter
these eigenproperties are obtained through the general second order
perturbation expansions developed in Chapter 2. The case when the
equipment damped frequency is well-separated from all of the structure's
eigenvalues as well as the case when it is equal or nearly equal to some
of them are examined. Numerical results showing the accuracy of the
proposed approach both in the complex eigenproperties and floor response
spectra are presented. This approach provides reasonably accurate

results for equipment as heavy as 1/5 the mass of the supporting floor.

5.2. EIGENVALUE ANALYSIS

| Consider a non-classically damped structure with n degrees of free-
dom. The primary structure properties are described by the stiffness
matrix [Kp], damping matrix [Cp] and mass matrix [Mp]. If an equipment
modelled as a single degree of freedom oscillator of frequency Wg s
damping ratio Be and mass m, is attached to the Kt dof of the structure
and the system is subjected to a base excitation kg(t), the equations of

motion in state vector form [13] for the combined structure are

0

+ = - X (t) (5.1)
My | 9

= o
o=
Ee 1X

1
o X
=~ o
x X

where the mass matrix [M], damping matrix [C] and stiffness matrix [K]

of the combined system are defined by Egs. (3.2)-(3.4) and (3.6)-(3.8).
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The vector of influsnce coefficients of the combined system r comprises
the vector of influence coefficients of the primary system rp and the
equipment influence coefficient r, and is given by Eq. (3.5). The
combined system posseses m = n+l degress of freedom.

To solve Eq. (5.1), we need to obtain the 2m eigenvalues Pj and
eigenvectors éj of its associated eigenvalue problem. We would like,
however, to cobtain the eigenvalues and eigenvectors in terms of the
eigenproperties of the primary structure and equipment. Let xpj and ij
be the jth eigenvalue and eigenvector of the damped primary structure,

obtained from the solution of the following eigenvalue problem of order

2n
3 j=1,...,2n (5.2)

We also assume that these eigenvectors are orthonormalized with
respect to the right hand side matrix of Eq. (5.2). Similarly we also
define the complex eigenproperties of the oscillator which are obtained

as a solution of the following equation

My 0 0 me )
Voo = A vo. 3 3=1,2 (5.3
o 2| ~S] SJ ~5J
0 Mg my ZBeweme
These eigenvalues and eigenvectors are
A=A o= A= -8uw + iw /1—32 (5.4)
sl s2 e ee e e ’
T _ T _ .
bs1 = ¥sp = [0ghes bl (5.5)
(be = l—-] 1 (5‘6)
2,1/2
2/mewe(l—Be)



where a bar over a complex gquantity denote its complex conjugate. These
complex eigenvectors are also normalized wfth respect to the matrix in
the right hand side of Eq. (5.3).

Before we solve the eigenvalue problem associated with Eq. (5.1),

it will be advantageous to consider a transformed eigenvalue problem,

with the transformation defined by:

[ U — i
Y 0 v 0
p ~ p ~
R 0 e t0 o
AT eoe A Ee by = Ul (5.7)
y y
P -l P _-
_9 b |0 9 ]

where [w;] and [w;] are (nxn) submatrices of [wp], the eigenvector
matrix of the primary system. The submatrix {vgl is composed of the
upper n rows and first n eigenvectors, while [¥*] contains the lower n
elements of the first n eigenvectors.

By introducing the transformation of Eq. (5.7) in the eigenvalue
problem associated with the system of Egq. (5.1), premultiplying by the
transpose of [T] and using the orthonormality properties of the

eigenvectors ?pj’ it can be shown [27] that we obtain:

n 0 0 0 I 0O 3

D
mel | M1z v 2eem | 1L 12|
o x| €& |0l B =3 Tl eee|pl 3 ~J
12 11 12 11
: j=1,...,2m (5.8)
where ©
Apl. 0
[A] = Apn (5.9)
0 Xe
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(0] ={ 7 = (5.10)
11 '¢e3T 0
ST
ol = o (5.11)
_¢EY 0
oT = [P (ken)seee P (ko) 40P (kim) ) (5.12)

and ¢gp)(K+n) is the (K+n)th element of the ith eigenvector of the pri-
mary system.

An examination of the second matrix in the left hand side of Eq.
(5.8) shows that except for the mth ancl'(Zm)th rows and columns, all its
elements are of the order of the ratic of the equipment mass to primary
system mass elements. We will assume here that these ratios are small
quantities of order 52 and therefore these elements are O(sz), while the
remaining elements in the mth and (Zm)th rows and columns are 0(e).
Similarly, if we assume that Ba is 0(e), then the second matrix in the
right hand side of Eq. (5.8) is composed of the elements of order ¢ and
¢Z. As we intend to obtain the eigenproperties up to terms 0(92), we
will discard the third order elements in the eigenvalue problem (5.8) to

obtain the following:

[Ag + ehy + <?Aylyy = pylT + e%Bylyy 5 J = Lieosam (5.13)

where we have discarded the elements of order e3 and a bookkeeping para-
meter ¢ is introduced to trace the order of the different quantities
involved. The matrices [Ajl. [Aq] and [A5] in Eq. (5.13) are

A O

[A ] = (5.14)
© 0 1
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0 v | 0 \~)—|
o 0|3 o
[Ay] = mew§¢e 0 | o 5 (5.15)
Lo oY o)
W' oo W o]
, |0 of o o
(Rl = Mgy [ T 7 (5.16)
|0 o] o of
[0 v 0 v ]
o0l T o
[B,] = ~23ememe¢e ; 3 ; g— (5.17)
T T
_l’ O v Oj

As it will be evident later, we need to consider two separate cases
in the solution of the eigenproblem (5.8). First we assume that all of
the primary system eigenvalues do not have numerical values close to the
equipment eigenvalue A (detuned case). If any eigenvalue of the
structure is equal or nearly equal to Ae, a different analysis is
required for the two closely spaced eigenvalues and eigenvectors (tuned

case).

5.2.1 Closed Form Expressions for the Eigenproperties of a Detuned Case,
In Chapter 2 we obtained general expressions for the perturbed
eigenvalues and eigenvectors for any eigenvalue problem that can be cast

in the form of Eq. (2.1). The eigenproblem that we are considering in
this chapter has the same form as Eq. (2.1) if we set [Bo] = [1] and let

n be equal to 2m. Because of the simple form of the matrices [A1], [A2]
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and [Bz], we can obtain compact expressions for the eigenvalues and
eigenvectors of the transformed system (5.8). We begin examining the

zero order eigenvalue probiem (2.4). In our case it is:

n O I O

=P

0 - EOJ. Dj 0 I EOJ. s j = l,...,2m (5.18)
A

from which we conclude that the unperturbed eigenvalues are:

= A . 1=l .. (5.19)

Poj = g 7 Po,jm T Mpj

Pom = *e 3 Pooom = e (5.20)

and the unperturbed eigenvectors are;
uT

Uys = [0pe0eslyeee,@] ¢ J=1,...,2m (5.21)

where 1 is at the jth Yow.
The first order correction terms to the eigenvalues will be

obtained from Eq. (2.13). With Egs. (5.15) and (5.21) it follows that:

0 s i,i=1,...,2m=1 3 i,j +m (5.22)
T _ 2 . _ L .
goiAlgcj = Mawavid, s i=1,...,2m-1; dzm ; Jj=m (5.23)
2 - s e e s (5.24)
MewaVida s 1 =1,....2m-1 ; dzm 3 j=2m

where the following notation is used to define Vs for 1 2 m:

Viem T Vi ; 1i=1,...,n (5.25)

Direct substitution of Egs. (5.19)-(5.24) in Eqs. (2.13)-(2.16) leads to:

p1; =0 s J=1,...,2m (5.26)
Bji =0 s ij=1,...,2m-1 5 i,j + m (5.27)
em,2m - 9Zm,m - em,m = e2m,2m =0
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m wch V.

eee i
g, = —— 5.28
mi Pom~Poi ( :
2_ ; i = 1,.-.,2"]-‘1 ; i + M
muw ¢ \J_i
8o 3 = _E€E (5.29)
m, i -
pom poi

To obtain the second order correction terms we examine first the

T T
products Uoi [AZ] Boj and u

0i [Bz} Hoj‘ From Eqs. (5.16) and (5.21) we

obtain first:

: (5.30)
UT' A u . = -mewe\,i\)j ; 19,] = 1,.0.,2"‘—1 ; 19J £ M
~of "2 ~0j 0 s i=1,...,2m ;3 j =m,2m

(5.31)
From the definitions of [B,], Eq. (5.17), and Uy s Eq. (5.21), it

follows that:

’ s i,i=1,...,2m-1 ; i,j+m
sy i=3=m2m
0 s i=my; J=2m (5.32)
T — L) = L =
U B2 o PormEma e m . (5.33)
"zsememe¢e“i’ i=1,.e0,2m-13; i2m; j=m
kZBewemeEévi s i=1,...,2m-1; i=m; J=2m (5.34)

The correction terms Ppj can be obtained from Eqs. (2.19), (5.30) and
(5.32), as follows:

3 Jj=1,...,2m-1 (5.35)
JEm

2m
- 2 2.2
Pag = L (0507 (Pg Poy) -Mevey

But since ejk is different from zero only for k = m,72m, substituting

Egs. (5.28) and (5.29), we obtain:

¢ 0]
242 e e 22
( + ]wmw\).
€€ 35 PosPom p €J

(5.36)

e
03 Pom
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From the definitions of Poj* %a and pyy we get:

2 —2
¢ o 1/m
e + e

PojPom p

= € 5 (5.37)

= 2
oj_pom kpj+28emekpj+me

And substituting the above expression in Eq. (5.36), P23 becomes :

2
AD 428 w o h_ .
Pps = -Mulvs 2L EBl_ o o1 (5.38)
J €€ I 428 0 2 .
pi “Fe¥e’pi™e  jem

The correction term p,. is obtained by replacing Egs. (5.27),

(5.31) and (5.32) in Eq. (2.19) for j =m:

AV v
Pop = M ¢§ b (o s —K (5.39)

Introducing the following constants:

2,_.
a, = 2meRea1(uk) 3 by = —2meRea1(vkxpk)
2 (5.40)
¢, = -2 Rea1(xpk) yod = prkl
we can write for Poy ¢
n a_x_+b
Pom = mem:¢§ ) 5 ke k (5.41)
k=1 xe+ckxe+dk

In order to examine the coefficients eij we need to consider
several cases separately. First, for the case i,j » m,2m and i = J,

substituting Egs. (5.26), (5.28)-(5.29) and (5.32) in Eq. (2.20) we

obtain:
2 ? —2
m w ]
e e 2 e e
8., = m . - V.V, 5.42
T PojPoi | e"e’i"y [poj_pom Pyi-P, ] v1vJ] ( )



and with Eq. (5.37) the coefficients 8ji becomes :

z 2
N s MaeViV§ lpj+23e°’expj AP l,...,2m-1 (5.43)
J1 lpi“kpj x§j+288mexpj+m§ i,j=m 3 12
For the case i = m, Eq. (2.20) reduces to:
uT [A,-p_.B,lu j=1 2m-1
5. = =om 2 VYoj 2 ~0j . 2ot (5.44)
and from Egs. (5.31) and (5.33) we obtain:
~ )\ > j_—“ 1,.0-,2m_‘1
= —PJ .
Bjm Zsememe¢euj o b §em (5.45)
pJ "e
In a similar fashion we can find that:
~ o l hd j“—" l,oco,zm““l
ej,Zm = 23eweme¢evj ;——%%7- 3 jem (5.46)
pj e

The coefficients gm om require a different expression. Starting
from Eq. (2.20) for j =m, i = 2m and with the help of Egs. (5.28)-
(5.32) we conclude that:

R
Sm,om " = 1 G —=) (5.47)
AaAg k=1 Fom Fok PomPok

and with the definitions of Agr 9 and Eg. (5.40), it follows that:

n a r +b
2|¢|22 ke "k

Ly 2
k=1 xe+ckxe+dk

(5.48)
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We will investigate next the coefficients éii given by Eq. (2.22).
For i # m,2m and using the results already obtained, Eq. (2.22) reduces

to:

?Jg i=1,...,2m-1
( “— )2] i 1. # M (5.49)
poi pom

From the definitions of poi’ ¢e’ and Poms it can be shown that the term

in square brackets can be expressed as:

2 —2
o $ A_FB w
B Sty (5:50)
(poi-pom) (poi_pom) e (x Zeewepr )
and therefore:
- B w i=1,...,2m-1
6., = -muh? "pi*fe% s (5.51)
ii e e i (0428 A +u’2)2 i+m
pi ““e’e"pi

Finally we study the terms 6mm and gz . Introducing Eqs. (5.28)

m,2m
and (5.33) into Eq. (2.22) it follows that Bmm is

2 -2
- 242 % Vk Vk
%im = 7 Me¥e’e kzl [(A y )2 * S )2] (5.52)
e "pk e "pk
This can also be written as:
- 242 0 ALt e,
mm " 7 Me¥e% 2 2 2] (5.53)
k= (Ae+ckxe+dk)
where:
e, = 2m. Real (vi3Z,) (5.54)
k e k" pk )
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Proceeding in a similar way we find that:

A

T >

e2m,2m ~ mm (5.55)

The expressions for the eigenvectors of the transformed system can

be obtained from Eg. (2.3) setting the bookkeeping parameter ¢ equal to

1:
2m .

by = Ugy t kzl (ejk+ejk)gOk s j=1,...,2m (5.56)

With Uok given by Eq. (5.21) and discarding the terms ejk and Bjk that

were found to be zero, the elements of ?j’ j # m,2m, become:

. i,i=1,...,2m-1
bi,5 7 %5 S 4e§ 30,5+ mam  (997)
=1 +0.. 5.58
V5.3 eag , (5-58)
wm,j = Bjm + Bjm s Ji=1,....2m-1 5 j+#m (5.59)
Yom,5 7 °3,em * %5,m (5-60)

The elements of vector mm are .

-~

b, =8, +06 .

i,m ™ mi T mi s i=1,....2m-1 54 +m (5.61)
Yoom = LY O (5.62)
Yom,m = Om,2m (5.63)

With the expressions for the coefficients éji’ etc., substituted in
Egs. (5.57)-(5.60), we obtain the final expressions for the elements of

the eigenvectors ?j for j=1,...,n:

2 2 L }
. - mewevi\)j i Apj+28ewekpg : 1 = 1,...,.2m 1 (5.64)
1,3 A=A fem, 2 j
pi “pJ ij+23emekpj+we
A_ B W
1 _ 4 2 pj “e’e
wj,j =1 memevj (5.65)



= gep) &
wm,j me¢e“j WY (5.66)
pJ e
_ ZSEweA .+w£
$2m,j = me¢e“j ——————%%——— (5.67)
pj e

Substituting O i etc., in Egs. (5.61)-(5.63), the elements of the mth

eigenvector are given by the following expressions:

2 .
28 w A+ i=1,...,2m-1
gee e
Y, =M v, —————= 3 (5.68)
i,m e'e’i xe'xpi i+m

2
42 n akxe+2bkxe+e

1 k
Y =1-5muwoé (5.69)
m,m 2 eee & P 2
k=1 (xe+ckxe+dk)
B = m2w4|¢ |2¢2 fi M (5 70)
2m,m ee’’e’ e,z xe+ckxe+dk

where the constants ak,....,dk are defined by Eq. (5.40) and ey is given
by Eq. (5.54).

The eigenvalues of the combined system are obtained from Egq. (2.2)
by setting ¢ equal to 1 and considering Eqs. (5.19), (5.20), (5.26),
(5.38) and (5.41) as:

A28 _w
- 22 pj TTe'e .
Psi = Pay = A1 - mwiv ] 3 Jj=1l,....n (5.71)
J J+m pJ eej 2 2
poj+28ewepoj+we
n a i +b
- 4 2 ke "k
Pm = Po. = A_ + M w_ ¢ —_—— (5.72)
m am € ©eE =t A2+C x +d
e ke "k
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5.2.2 Closed Form Expressions for the Eigenproperties of a Tuned Case.
Examining the expressions found in the previous section for the
eigenvectors we can see that the assumed expansion for ?j breaks down

whenever

N 1
__Eli_é_ < —= melvil}¢el (5.73)
O /2

since for this case the correction terms are equal tc, or larger than

th

the unperturbed terms., If the ¢ eigenvalue x__ satisfies the condi-

pa
tion (5.73), we need different expansions for the ch, mth, (m+9,)th and
(2m)th eigenvalues and eigenvectors. These expansions are available
from Chapter 2 for an eigenvalue problem in the general form of Eq.
(2.1).
For the tuned case also, we can use these generalized expressions
to obtain the closed form expressions for the tuned eigenvalues and

eigenvectors for the specialized form of matrices [Aj], [A;] and [A].

We introduce here two "detuning parameters" defined as follows

A |
1--22= Jor (5.74)
€ ¢
2

with the understanding that if [(l-kpm/xe)| is of order e, we will set
85 equal to zero and define 84 from the above expression. On the con-
trary, if |(1-xp2/xe)| is 0(52), then 81 is taken equal to zero and Eq.
(5.74) defines PR From Eq. (5.74) thus, the equipment eigenvalue can
be expressed in the form

2

Ao = sz +eSqA, + e b, (5.75)

This form of tg. (5.75), in turn, requires some modifications in the
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matrices [Ajl, [A;] and [A;] of Egs. (5.14)-(5.16). The mth and (2m)th
diagonal elements of [A, ] now change to Xpa and Kbi, respectively. The
(m,m)th elements of [A1] and [A2] are now equal to 8§1%a and PYI
respectively. The (2m,2m)th elements are the complex conjugate values
of the (m,m)th elements. The remaining elements of these matrices
remain unchanged.

From the zero order eigenvalue problem (2.25) we obtain that the

tuned eigenvalues and eigenvectors are:

Pos = Pom = kpz (5.76)

T 2
Ugg = [0gevegbyenay=1,0..,0] 1/v14a (5.77)

T 2
Uom = (0,000, 0egpyen,0] 1/v1+a (5.78)

where the non-zero entries are at the zth and mth locations, and:
Poms = Poom ~ Apz (5.79)
T
Bomg, = [09°°°9Ts-"s‘1] 1//1+T2 (5°80)
T ‘ 2

EOZm = [0,00-;1,00-,‘[] 1//1+T (5081)

th and (2m)th rows.

where the only two nonzero terms are at the mg
The values of the constants A and t can be obtained using the con-
ditions given by Eq. (2.47), with the above eigenvectors and the

modified matrix [A;]. It can be shown that they are:

_ 842 84X
pe=Te—2f e (L2 (5.82)
2mewev 0a 2meme\}9'¢e
The correction terms p,; are obtained by substituting Yog and Yom from

Egs. (5.77) and (5.78) ¥n Eq. (2.45).
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2
) lee~2meme¢evlﬁ (5.83)
ng 1+ AZ ]

2
+
dlxen 2mem ¢ev2A

1+2a

P ro

p2m = (5.84)

By direct evaluation of Eq. (2.46) with Egs. (5.21) and (5.79)-

(5.81) we obtain the coefficients sik in the expansion for u,. :

2
a mMw é& v.
--ceej 1 (5.85)
2] Xpi~Apg 5
emj = -Aelj (5.86)
o s J=1l,0..52m-1
- mwd v, .
8 - _tee] 1 J o= o,m,me (5.87)
m.J 4 X —7
pj pL v1+4
eZm,j = - A B, § (5.88)

Similarly, evaluating Eq. (2.46) for j = m2 and j = 2m we obtain the

remaining coefficients:

~

ez,ml = -2a Real (¢ev£A) (5.89)
6 . =a( |82 - 6.5.) (5.90)
¢,2m e’y ey ‘
em,mg = -8 om (5.91}
m,2m = 2a Real (Eeviﬂ) (5.92)
where :
2
m_w
o= —28 1 (5.93)

*pe  pe /(1+A2)(1+Ez)
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To chtain the correction terms Pgis We consider first the expres-

sions for Uog and Uom? Egs. (5.77) and (5.78), and the definitions of

[A2] and [BZI to obtain:

ul A= (s n, - mulefa?) /(10 (5.94)
ut A= (8,0 08 - mwb)/(14a) (5.95)
92282901 = 2BgugMaqyy liaz (5.96)
BgmBZEOm = -28wgMaogv, liaz (5.97)

We also need to obtain the second terms in Eq. (2.66) for i = ¢ and 1 =

m. With Eqs. (5.85) and (5.86) we get:

2m-1 ~ o mgm:¢§ n vi CE

) (PoyPoi) (8, = = —— + ———} (5.98)

k=1 1+4¢ k=1 Poe Pok Py Pok

k:e,mg,m kg

24272 2 -2

T g g - e B M) (s
& om "ok’ mk ¢ Lo ‘p_-p I~ )
k=1 1+a k=1 "or Fok Pog Pok

k#g,me,m k+g
With Egs. (5.94)-(5.99) we conclude that the correction terms Pay and

Pgy are:
=L 222 42
Pgy = Y (8,0 -M gy A ~280 bV AN HMowobio)  (5.100)
: 2 n wly2 422
Pam 1+A2 (szeﬂ —mewevl+288weme¢evEAxp2+meme¢eA s) (5.101)
in which:
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n a r_ +b
o = e (5.102)
k=1 xpg+ckxpl+dk
k+4
Next we study the coefficients ®em and 8m1,2m' According to Eq. (2.68),

we need first to obtain the following expressions:

T _ 1 2 2 2
UomlAp~PogBalloy = - 1a2 [8 3 p0tmaug v, 4428w Mo by (1-07)a0, 1 (5.103)
Do -Po = —t (5.0 (1-02)=8m_wlo v 4] (5.104)

29 T2m 1+A2 1"e geey
2m-1

A 42 A
kzl (pom_pok)emkemk = Mgete 14a2 ° (5.105)

k% ,m,ma
Substituting Egs. (5.103)-(5.105) in Egq. (2.68), we obtain:

~ 1 2.2 2 4 2
Oom = ; 2 Dyan 2 [52AeA+memele+Zsememe¢ev2(l—A )xpg+meme¢er]
lxe(a -1)+ MaugdaV, B
(5.106)
Similar manipulations with Eq. (2.69), show that:
Ome,om = P2,m (5.107)

Now we can obtain the closed form expressions for the tuned eigen-
vectors by setting the bookkeeping parameter equal to one in Eq. (2.24)
and ignoring the correction terms which are zero and those not com-
pletely defined:

2m .

P = U_, +

bs = Uy kzl PN ;1 = g2,m,me,2m (5.108)

According to Eqs. (5.21), (5.77) (5.78), (5.80) and (5.81), it

follows that the elements are defined by five different expressions:
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7 s
m we¢ v. 1 i=1,...,2m-1

_ ee'ei .
wi,z N xp1ﬁxp2 5 * i o g,m,mg (5.109)
/144
o,
P — (5.110)
() 5
v 1+4
—1+5 A
v o= — (5.11)
m, e 5
FAEY.
8 T+
v _ _h,me "g,2m (5.112)
mL, e —
FARY
- +8 A
R L,me %,2m 3
Yom,e © — (5.113)
V14

and substituting 8, .ms and 99,2m from Egs. (5.89) and (5.90), it follows

that the last two terms can be expressed as:

22 3 1
¢mg,g = —Mgwadgv, - (5.114)
v1+4
22 72— A
i’zm’g mewe¢e¢e\ﬁg > (5.115)
v1+a

Similarly, expanding Eq. (5.108) and considering Egs. (5.21), (5.77),
(5.78), (5.80) and (5.81), the elements of the other tuned eigenvector
gm are described by the following set of expressions;

b, = AP, ; i= 1,...,2m—1 (5.116)

i+ g,m,me



b = -y (5.117)

£,m m,e
wm’m =¥y, (5.118)
8 140
_ m,mg” m,Z2m
wml,m = = (5.119)
s 1+A
8 A-8
_ m,2m “m,me
me,m = = (5.120)
J1+A

Substituting 6 and ;m 2m from Egs. (5.91) and (5.92) in Egs. (5.119)

m,mg
and (5.120) and comparing the expressions obtained with Egs. (5.114) and
(5.115), we conclude that the last two elements can also be written as
follows:

Yme,m T 2¥mg e (5.121)

Yomym = ¥om,e (5.122)

Finally, combining Eq. (5.83) with (5.100) and Eq. (5.84) with (5.101),

the tuned eigenvalues are defined by the following equations:

o)
]

1 2 4 2
me = Pog ¥ I:;§ [(61+62)xe-memerA(2¢e+le)-ZBeweme¢eAv2kp2+mewe¢eo]

(5.123)

= 1 2 2 4 2 2
Pm = Pom = Pog ¥ L4n2 [(8%85)a 08 +mewe“z(Z%A"“z)+28ewe“e¢e“2)‘p9,+meme¢eoA ]

(5.124)

p, =

The detuned eigenvalues and eigenvectors are still defined as in the
previous section by Eqs. (5.64) through (5.72).
The remaining m eigenvectors are related to the first m eigenvec-

tors according to the following expressions.:

89



Lbi,j+m =V
s d,i=1,...,m {5.125)

lbi+m,j+m G P

The eigenvectors éj of the original system are then recovered with the
transformation of Eg. (5.7). Since the eigenvectors gj of the trans-
formed system satisfy approximately the orthonormality condition given

by Eq. (2.7), the eigenvectors ij are nearly orthonormal (up to second

order terms) in the following sense:

v, 19 Mg, =6, +terms 0(3) 3 4.5 =1,...,2m (5.126)
~1 ~J 1]
M C
5.3 PARTICIPATION FACTORS OF THE COMBINED SYSTEM
If we are seeking the response of the structure-equipment system to
a base excitation by modal superposition, we need to obtain the complex

participation factors F; defined as follows:

J

1O

Fs=0:dfMu o s j=1,....m (5.127)

1O
3
[

where the eigenvectors of the combined system are normalized as in Eq.

(5.126). The participation factors Fj can be more conveniently obtained

in terms of the complex participation factors of the primary

system F_.:
J P

0

~

T

Foo= S R T 5.128
py " Yy M (G " (5-128)

Indeed, it is not difficult to show that the combined system participa-
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tion factors can be obtained as:

m
F5 7 P = 2y vt Yo

j=1,...,m (5.129)

where we defined :

i}

T oM (5.130)

5.4 NUMERICAL RESULTS

A simple six degree of freedom model representing a shear building
showed in Figure 5.1 is chosen as the primary system to examine the
accuracy of the proposed method. The primary system is regarded as

nonclassically damped with the damping matrix given in Table 5.1. The

floor masses are: m; = m, = 7x10/ Kg, m3 = my = 5/7 my, mg = mg = 4/7

mi. The interstory stiffnesses are: kl = k2

5x1011 N/m, k3 = k4 =
0.8 kq, kg = kg = 0.7 k. The complex eigenvalues of the structure are
lTisted in Table 5.2.

Tables 5.3, 5.4 and 5.5 shows the complex eigenvalues of the
combined structure-equipment system obtained with the present approach.
The errors in percent in the amplitudes and phases of the eigenvalues
when they are compared with the exact values obtained by a combined
analysis of the structure-equipment system are given in the parentheses.
Three different oscillator-to-the-floor mass ratio values are examined:
1/100, 1/10 and 1/5. The oscillator is located on the fifth flicor. In
Table 5.3, the equipment eigenvalue is not tuned to any of the primary
systems eigenvalues while in Tables 5.4 and 5.5, respectively, it is
tuned to the lowest and fourth structural eigenvalues. From Table 5.5,

it is observed that the errors in the values obtained by the perturba-
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tion method do increase somewhat when the equipment is heavy and tuned
to a higher eigenvalue.

In Table 5.6, results of the eigenvectors obtained with the
proposed method are presented. Only the absolute value {(or amplitude)
of the half lower part of the eigenvectors of the combined system are
shown. The equipment-to-fioor mass ratio is 1/10 and the egquipment
eigenvalue is tuned to the lowest structural eigenvalue. It is noted
again that the largest error in the eigenvector elements is 0.37%. This
error increases when the equipment is tuned to a higher mode. However,
the effect of this error on the calculated response is usuaily
insignificant because the higher modes usually do not count much to the
response. This error can be further removed if the mode acceleration
formulation is utilized [19].

Since the complex participation factors defined by Eq. (5.129) and
the elements of the eigenvector corresponding to the equipment degree of
freedom are used to obtain the equipment response it is also relevant to
examine the accuracy obtained for these quantities. Moreover, the
errors in the participation factors give a measure of the overall
accuracy of the eigenvectors obtained with the present approach. It is
seen that even for the cases of a rather heavy equipment, the errors in
these quantities remain small (less than 2%), as indicated by the
results in Table 5.7. These errors will, however, increase if a heavier
equipment is considered and also if it also is tuned a high frequency
mode.

The eigenproperties obtained with the closed form expressions are
next used to calculate the floor response spectra values. These values,

obtained for the three mass ratios 1/100, 1/10 and 1/5, are given in
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Columns (2), {4) and (6) of Table 5.8. The procedure for the calcula-
tion of these response guantities is described in Reference 27. The
seismic input for these results is defined in terms of average pseudo
and relative velocity response spectrum curves obtained for an ensemble
of 75 synthetically generated accelerograms. The errors in these spec-
trum values, when they are compared with the exact spectrum values
(obtained with the exact eigenproperties), are shown in Columns (3), (5)
and (7). The errors are mostly less than 4%, but at the frequencies
where the transition from the tuned to detuned case is rather abrupt;

this error is about 10%.

5.5 SUMMARY AND CONCLUSIONS

The eigenproperties of a nonproportionatly damped structure-equip-
ment system are obtained via a systematic second order matrix perturba-
tion analysis. Two different cases are analyzed. For the case when the
equipment eigenvalue is well separated from all of the primary system
eigenvalues, the standard perturbation expansions for the combined
system eigenvalues and eigenvectors are used to obtain the closed form
expressions. These eigenproperties are expressed in terms of the com-
piex modal properties of the main structure and equipment characteris-
tics. When the equipment natural frequency and damping ratio are such
that its eigenvalue is equal or nearly equal to an eigenvatue of the
structure, the conventional expansion for the eigenvalues and eigen-
vectors breaks down and alternative expansions are required., These
special expansions are used in this chapter to obtain the closed form
expression for the eigenproperties. The accuracy of the proposed method

is tested through several numerical examples by comparing the exact and
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approximate eigenproperties. The expressions provided for the eigen-
values for both the tuned and detuned cases are quite accurate for
equipment with mass as large as 1/5 of the supporting floor mass.
Because of the nature of the perturbation method the results tend to
deteriorate for heavy equipment which are tuned to the higher structural
frequencies. Although this error is more severe in the calculation of
the eigenvectors, it does not affect significantly the equipment
response. Examples of floor response spectra obtained with the modal
properties of the composite system obtained with the proposed method are
also presented and compared with those obtained by using the exact

eigenproperties.
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Tabte 5.1 - Damping matrix of the nonclassically damped primary
structure of the example problem.
[ 20.0 -4.0 -0.4 -0.1 -0.08 -0.06 ]
9.0 -4.0 -0.3 -0.2 -0.15
8.0 -4.0 -0.3 -0.2

[Cpl = x 108 [Kg/sec]
7.0 2.0 -0.6
SYMM
5.0 -3.0
4.0

- —

Table 5.2 - Complex-eigenvalues of the nonclassically damped primary
structure of the example problem.

Eigenvalues of the primary system
No. Real Imaginary
1 -0.2923 23.8724
2 -3.7472 61.5101
3 -7.2993 97.1178
4 -11.7546 132.5499
5 -11.7583 153.0566
6 -12.1126 170.3976
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Table 5.3 - Eigenvalues of the combined structure-equipment system for a
detuned case.

Equipment undamped frequency = 40.0 rad/sec - Equipment damping ratio = 0.03

Mass Ratio
1/100 1/10 1/5
Eigenvalue
fNo. Amplitude Phase Amplitude Phase Amplitude! Phase
1 23.8295 |-89.,2850 | 23.4272 -89.1609 | 22.9804 |-89.0180
(0.00) (0.02) (0.07) (0.17) (0.29) (0.34)
2 61.6426 |-86.5159 | 61.8087 -86.5341 | 61.9933 |-86.5543
(0.00) (0.00) (0.00) (0.03) (0.01) (0.05)
3 97.3919 |-85.7017 | 97.3932 -85.7013 | 97.3947 |-85.7009
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
4 133.0770 }-84.9320 ) 133.1390 -84.9294 |133,2079 |-84.9266
(0.00) {0.00) {0.00) (0.01) (0.01) (0.01)
h 153.5219 |-85.6070 | 153.6512 -85.6069 |153.7949 [-85.6067
(0.00) (0.00) (0.00) (0.015) | (0.01) (0.03)
6 170.8429 |[-85.93541170.,9810 -85,9485 |171.1345 | -85.9630
(0.00) (0.00) (0.05) (0.02) (0.01) (0.03)
7 40.0535 |-88.2878 ] 40.5345 -88.3497 | 41.0691 | -88.4167
(0.00) (0.00) (0.05) (0.10) (0.19) (0.20)
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Table 5.4 - Eigenvalues of the combined damped structure-equipment system
with the equipment frequency tuned to the lowest structure
eigenvaiue.

Equipment undamped frequency = 24.0 rad/sec - Equipment damping ratic = 0.0l

Mass Ratio
17100 1/10 1/5
Eigenvalue

No. Ampiitude Phase | Amplitude Phase | Amplitude Phase

1 24.5419 1-89.3611 | 25.9367 | -89.3575| 26.8396 | -89.3556
(0.03) (0.01) (0.31) (0.06) {0.61) (0.09)

2 61.6287 |-86.5142 | 61.6698 | -86.5171| 61.7153 | -86.5205
(0.00) (0.00) (0.00) (0.00) {0.00) (0.01)

3 97.3917 [-85.7017} 97.3922 | -85.7016| 97.3927 | -85.7015
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

4 133.0725 1-84.9321 1| 133.0934 | -84.93172| 133.1168 | -84.9301
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

5 153.5125 |-85.6070} 153.5570 | -85.6068 | 153.6064 | -85.6067
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

6 170.8329 |-85.9345| 170.8809 | -85.9390| 170.9343 | -85.9439
(0.00) {0.00) (0.00) (0.00) (0.00) (0.01)

7 23.3578 1-B9.3649 ) 22.1923 | -89.3694| 21.5442 | -89.3724
(0.03) (0.01) (0.30) (0.05) (0.61) (0.07)
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Table 5.5 - Eigenvalues of the combined damped structure-equipment system
with the equipment frequency tuned to the 4th structure
eigenvalue.

Equipment undamped frequency = 133.0 rad/sec - Equipment damping ratio = 0.08

Mass Ratio
1/100 1/10 1/5
Eigenvalue

No. Amplitude | Phase |Amplitude | Phase Amplitude| Phase

1 23.8450 |-89.2337| 23.5834 | -88.6434| 23.2958 | -87.9721
(0.00) (0.07) (0.01) (0.75) (0.00) (1.51)

2 61.5922 1-86.5034| 61.3042 | -86.4094; 60.9844 ) -86.3039
(0.00) (0.01) {6.01) (0.15) (0.05) (0.29)

3 97.3900 |-85.7021| 97.3747 | -85.7051f 97.3576 | -85.7085
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

4 134.8448 |-85.0321| 137.1382 | -84.8228| 137.2825 | -84.6323
(0.03) (0.05) (0.10) (0.03) (0.21) (0.23)

5 154,1024 |-85.6140] 159.4565 | -85.6744| 165.4057 | -85.7369
(0.03) (0.08) (1.29) (0.50) (3.87) (0.66)

6 171.2331 [-85.9751 174.8868 | -86.3364| 178.9543 | -86.7205
(0.02) (0.06) (0.48) (0.68) (1.27) {1.50)

7 130.6917 |-85.2992| 123.6131 | -85.3828{ 118.1527 | -85.4301
(0.03) (0.12) {0.83) (0.54) (2.37) (0.74)
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Table 5,6 - Amplitude of the lower-half part of the combined system
eigenvectors for a tuned case.

Equipment undamped frequency = 24.0 rad/sec - Equipment damping ratio = 0.01

Degree Amplitude of eigenvectors, x 10-9
of
Freedom 1 2 3 4 5 6 7

.19449 | .43626 | .42087 | .46499 | .28627 | .07620 | .18429
1 (0.33) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.28)

.37138 | .64163 | .28979 | .23316 | .37761 | .16058 | .35641
Z (0.24) | (0.00) | (0.00) | (0.00) | (0.00) | (0.02) | (0.21)

.54991 | .47387 | .35497 | .38164 | .36136 | .36470 | .54179
3 (0.08) | (0.00) | (0.00) { (0.00) | (0.02) | (0.01) | (0.05)

.68311 | .08370 | .57037 | .30582 | .06714 | .44168 | .69463
4 (0.11) | (0.05) | (0.00) | (0.01) | (0.33) | (0.01) | (0.12)

; .77092 | .41151 | .04662 | .31287 | .45685 | .48717 | .82154
(0.37) | (0.00) | (0.00) | (0.00) | (0.01) | (0.01) | (0.36)

. .83392 | .72821 | .52851 | .30453 | .26985 | .20882 | .86947
(0.28) | (0.00) | (0.00) | (0.00) | (0.01) | (0.01) | (0.27)

, | 4.76588 | .07321 | .03005 | 01051 | .01145 | .00977 | 5.44083
(0.32) | (0.06) | (0.04) | (0.35) | (0.24) | (0.30) | (0.29)
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Table 5.7 - Complex participation factors and (2m)th eigenvector ele-
ments of the combined system with the equipment frequency
tuned to the lowest structure eigenvalue.

Equipment undamped frequency = 24.0 rad/sec - Equipment damping ratio =
Complex Participation Factor Eigenvector &Em .
Mass | Frequency sJ
Ratio No. Amplitude Phase Amplitude Phase
1 1515.13 -43.689 .16579 E-3 -46,2394
(0.06) (0.31) (0.00) (0.04)
2 579.13 -45.165 .73213 E-6 -49,6609
(0.00) (0.01) {0.01) (0.00)
3 227.68 -37.305 .30054 €E-7 -33.5202
(0.00) (0.00 (0.00) (C.00)
1/100
4 137.30 -30.347 .10512 £-6 -43.2076
(0.00) (0.01) (0.04) (0.01)
5 64.17 -19.022 .11446 E-6 -43.,9303
(0.00) (0.03) (0.03) (0.01)
6 12.08 -18.068 .97735 E-7 -50.6005
(0.00) (0.08) (0,03) {0.01)
7 1809.64 -46.239 .15705 E-3 -43.6917
(0.13) (0.03) (0.09) (0.21})
1 1412.19 -44.800 .32281 -4 -45,3190
(0.28) (0.06) (0.55) (0.10)
2 575.95 -45,085 .73213 £-6 -49.6609
{0.01) (0.12) (0.11) (0.06)
3 227.73 -37.299 .30054 E-7 -33.5202
. {0.00) (0.01) (0.07) (0.07)
/5
4 137.35 -30.355 .10512 E-6 -43.2076
(0.01) (0.14) (0.70) (0.13)
5 63.95 -18.936 .11446 E-6 -43.9303
(0.08) (0.66) (0.47) (0.15)
6 11.82 -18.440 .87735 E-7 -50.6005
{0.59) (1.65) (0.60) (0.21)
7 1976.17 -45.272 .39891 E-4 -44.7418
(0.08) (0.06) (0.42) (0.04)
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Table 5.8 - Comparison of floor response spectrum values chtained with

the exact and approximate modal properties of the combined

system.
Equipment damping ratio = 0,01,
Mass Ratio

Equipment

Natural 171600 1/10 1/5

Freguency,

in rad/sec | Acceleration | Error in % | Acceleration | Error in %| Acceleration | Error in %

G-units G-units G-units

10.0 0.3176 0.00 0.3166 0.07 0.3154 0.13
15.0 0.6376 0.16 0.6280 1.45 0.6172 2.66
22.0 3.6915 10.22 1.8756% 3.37 1.4340%* 3.03
24.0 6.0681%* 0.11 2.1641* 0.52 1.4947%* 1.23
28.0 2.2574 4.04 1.5326 4.19 1.2480 4.35
40.0 0.8932 0.46 0.8797 4.16 0.8637 7.48
50.0 0.7209 0.19 0.7056 1.69 0.6882 2.81
60.0 0.7103 1.96 0.6513* 1.78 0.6239* 1.82
62.0 0.9138 3.39 0.6573% 4.20 0.6219* 2.73
70.0 0.6095 0.34 0.56812 1.44 0.5634 1.66
97.0 0.5061 0.13 0.4975* 1.43 0.4879* 2.91
130.0 (3.4908 0.18 0.4809* 1.89 2.63* 2.63

(*):

These cases were considered as tuned.
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(K]
(K, ]

1K, |

NOMENCLATURE

left hand side symmetric matrix of the unperturbed eigenvalue
praobiem.

Teft hand side symmetric perturbation matrix or order .
left hand side symmetric perturbation matrix of order 52.
auxiliary diagonal matrix.

right hand side symmetric matrix of the unperturbed eigenvalue
problem.

right hand side symmetric perturbation matrix of order 32.
auxiliary diagonal matrix.

auxiliary (mxm) matrix.

auxiliary (mxm) matrix.

(mxm) damping matrix of the combined system.
(mxm) damping coupling matrix.

(nxn) damping matrix of primary system.
transformed damping matrix.

damping coefficient of the equipment
auxiliary matrix composed of v and ¢e.
auxiliary matrix composed of Vv, § and ¢e'

jth complex-valued participation factor of the nonclassically
damped combined system.

jth complex-valued participation factor of the nonclassically
damped primary system.

identity matrix

(mxm) stiffness matrix of the combined system.
(mxm) stiffness coupling matrix.

(nxn) stiffness matrix of primary system.
transformed stiffness matrix,

stiffness of equipment.
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[M]

(mxm) mass matrix of combined system.

(nxn) mass matrix of primary system.

number of dof of combined structure - oscillator system.
mass of equipment.

number of dof of primary system.

jth complex-valued eigenvalue of nonclassically damped combined
system.

jth unperturbed eigenvalue.

first correction term for the jth eigenvalue.

second correction term for the jth eigenvalue.

third correction term for the jth eigenvaiue.

fourth correction term for the jth eigenvalue.
displacement influence vector of combined system.
displacement influence coefficient of equipment.

ratio of equipment mass-to-supporting floor mass
displacement influence vector of primary system.

auxiliary transformation matrix.

auxiliary transformation matrix.

jth eigenvector of the general unperturbed eigenprobiem.
first vector of correction terms for the jth eigenvector.
second vector of correction terms for the jth eigenvector.
third vector of correction terms for the jth eigenvector.
fourth vector of correction terms for the jth eigenvector.

vector formed by the upper m elements of Hoj‘

vector formed by the lower m elements of Hoj'

m-dimensional vector with 2 non-zero entries at the Kth and mth
positions.

auxiliary constant.
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Xg(t) ground excitation.

X = relative displacement vector of the combined system.
g = relative velocity vector of the combined system.
% = relative acceleration vector of the combined system.
Y = auxiliary constant.
Z = auxiliary constant.
z = 7m-dimensional state vector.
oy = Jjth complex constant.
8. = structure modal damping ratio for j = 1,..,n and equipment
J damping ratio for j = m.
By = damping ratio of equipment.
Bpj = Jjth modal damping ratio of the primary structure.
Y5 = Jjth real-valued participation factor of the combined system.
ij = Jjth real-valued participation factor of the primary system.
A = auxiliary constant for the definition of the tuned eigen
vectors.,
81 = detuning parameter of order e.
85 = detuning parameter of order 52,
6ij = Kronecker delta.
£ = bookkeeping parameter indicating the order of the accompanying
quantity.
-~ ~ * > o » >
eij’ eij’ eij’ eij = coefficients used in the expansions of glj’
Uy s etc.
~L]
[A] = (mxm) diagonal matrix comprising the natural frequencies of the
primary system and equipment.
[Ap] = (nxn) diagonal matrix with the primary system eigenvalues.
xe = complex eigenvalue of single dof equipment.
‘j = jth real-valued eigenvalue of the combined system.
ij = Jjth complex-valued eigenvalue of the nonclassically damped

primary system.
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AS}'

i<

jth eigenvalue of a (2x2) eigenproblem associated with the
equipment.

vector composed of the elements of the eigenvector matrix of
the primary system associated with the attachment point of
equipment.

auxiliary constant.

complex eigenvector element of the equipment.

jth real-valued eigenvector of transformed combined system.
jth real-valued eigenvector of primary system.

jth real-valued eigenvector of comhined system.

complex (2nx2n) eigenvector matrix of the nonclassically damped
primary system.

(nxn) submatrix with the first n rows and columns of [wp].

(nxn) submatrix with the lower n rows and first n columns of
[y 1.
p

equivalent eigenvector element of the equipment = 1//5;.

jth complex eigenvector of a transformed nonclassically damped
combined system.

jth complex eigenvector of the nonclassically damped combined
system

jth eigenvector of a (2x2) eigenproblem associated with the
equipment.

Jjth complex eigenvector of the nonclassically damped combined
system.

lower half of the eigenvector y..
upper half of the eigenvector y..
natural frequency of equipment in rad/sec.

structure natural frequency for j = 1,..,n and equipment
frequency for j = m.

jth natural frequency of primary system in rad/sec.
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