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1. INTRODUCTION

For seismic design of secondary systems, floor response spectra are

commonly used as the design input. Like the ground response spectra,

the floor spectra define the maximum response characteristics of a floor

motion. It has been a common practice to ignore the dynamic interaction

or the feed-back effect between the secondary and primary systems in the

analyses used for generation of floor response spectra [1-3]. That is,

in these analyses, the equipment or the secondary system is considered

decoupled from, and in cascade with, the primary systems. The primary

structure is analyzed for the specified ground motion to obtain the

motion of the floor. The floor motion is then used as the input to the

equipment to calculate its maximum response. This decoupled analysis is

acceptable in most cases, especially when the equipment or the secondary

system is very light. There are, however, situations where it is impor­

tant to consider the feed-back effect to obtain more accurate response.

This especially happens when the equipment is in resonance with one of

the dominant structural frequencies.

To incorporate this dynamic interaction in the seismic analysis of

an equipment-structure system, a novel approach was originally proposed

by Sackman and Kelly [4]. An analytical procedure was developed to

obtain the small perturbations caused in the frequencies and modes of

the primary system by an addition of a tuned and detuned oscillator.

This approach was formulated for deterministic ground inputs originally.

It was then extended to stochastic inputs by Der Kiureghian and Sackman

and their colleagues [5-7]. A somewhat similar approach has also been

proposed by Gupta [8-9] to obtain the combined frequencies of the

primary and light secondary systems and the modified mode shapes of the
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primary system. This enables one to study the effect on the primary

system response of the interaction between the two systems. A recent

paper by Hernried and Sackman [10] in this area is also of direct

relevance.

This paper presents a mode synthesis-based approach for obtaining

the combined modal properties and a response spectrum approach for cal­

culating the response of the two systems. The approach is not

restricted to light equipment; that is, an equipment as heavy as (or

heavier than) its support can be considered and the combined eigenpro­

perties as well as the system response can be calculated as accurately

as desired. The basic inputs required for this approach are the modal

properties of the supporting primary system and the equipment character­

istics. The seismic input defined in terms of the smoothed ground

response spectra can be directly used. The proposed response spectrum

approach is based on the random vibration analysis. The applicability

of the approach is demonstrated by numerical examples.

2. DYNAMIC ANALYSIS OF COUPLED SYSTEMS

It is desirable that the methods to be used in the analysis of a

combined structure-equipment system employ only the modal properties of

the two systems. This is because, sometimes, it is more convenient to

define and store the dynamic characteristics of a structure in terms of

the natural frequencies and mode shapes rather than the complete physi­

cal characteristics (stiffness and mass matrices). The stiffness coupl­

ing method is one of such methods in which the dynamic characteristics

of a complete system are obtained using only the vibrational character­

istics of each component substructure. Here, for the analysis of a main
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structure supporting an equipment, represented as a single degree-of-

freedom (dof) oscillator, the two subsystems are considered connected by

a flexible link of finite stiffness equal to the stiffness of the

oscillator. The equations of motion for this n+1 dof coupled system
.,

subjected to a base motion of Xg(t) are:

[ M
p Q Jl~pl + [[C

p QJ + [C I11~pl + [[K
p Q] + [K III ~pl = -1 Mp~ Ix (t)o m - 0 0 c x· 0 0 c Xe mere g- e x - -

e e (1)

where x = relative displacement response vector of the primary system;-p
xe = relative displacement of the oscillator with respect to ground;

[Mp]' [Cpl and [Kpl are the mass, damping and stiffness matrices,

respectively, of the primary system; me = equipment mass; [Ccl and [Kcl

are the coupling matrices associated with the damping and stiffness

forces and contain the damping coefficient and stiffness of the

oscillator in their non-zero elements; and r = displacement influence

vector of the primary system. The displacement influence coefficient,

re , of the equipment is equal to 1 if the equipment vibrates in the

direction of excitation and zero if it is constrained to move in a

perpendicular direction. Here, in general, the subscripts p, e and c

refer to the primary elements, equipment and coupling elements,

respectively. We introduce the following transformation in equation (1)

(2)

where: [~p] = eigenvector matrix of the primary system, normalized such

that:

(3)
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where the superscript T denotes transpose.
1

<l>e =-
Ime

Premultiplying by [UlT, we obtain:

Also,

(4)

..
[M*l{q} + [C*l{q} + [K*l{q} = -{y*}xg(t)

where:

[M* 1 = [I]

(5)

(6)

[
26 .w. 00-][C*l = pl Pl"

o
(7)

[K*l (8)

1
!p !{y*} = -

Ime re

(9)

Here w ., 6 . and y , respectively, are the ith natural frequency, ithpl pl -p

modal damping ratio and the vector of participation factors of the

primary structure.

If the oscillator is attached to the kth point of the primary

structure, the coupling terms in Eqs. (7) and (8) can be expressed as

follows:

(10)

( 11)

where we and 6e, respectively, are the equipment frequency and damping

ratio, and

T _ [(p) (p) (p)]
{v} - <j>kl' <j>k2 ' ••• , <j>kn ' -<j>e

4
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in which ~~~) is the (k,i)th element of [~p) or the kth element of the

eigenvector {~p}i of the primary structure.

To obtain any response quantity of interest for the combined struc-

ture-equipment system, one only needs to solve Eq. (5) in conjunction

with transformation of Eq. (2). The numerical inaccuracy which could

possibly occur in the solution of Eq. (1) due to ill-conditioning of the

matrices caused by the lightness of the equipment, is now avoided in Eq.

(5), as all diagonal elements of the matrices in this equation are of

the same order. The system of equations (5) in general may be nonclass­

ical and thus may require the state vector approach [11,12) for their

solution. Here, however, a classical normal mode approach is proposed.

This approach requires a second eigenvalue analysis. To save the

computation cost, the size of this second eigenvalue problem can,

however, be reduced as described in the following section.

2.1 Combined Modal Properties: Dynamic Transformation

To obtain the eigenproperties of the combined primary-secondary

(13)

following eigenvalue problem must be solved:

[ K* - w~ M* l{~~} = {O}; j = 1,2, •.• n+1
J J

jth eigenvector and wj = jth frequency. On substitution of*where {cP.} =
J

[K*] and [M*], we obtain

system, the

j 1,2,. •. n+1 (14)

In this section, the methods to reduce the size of the above eigen­

value problem are described. In the classical mode synthesis approach

the order of this eigenvalue problem is reduced by truncating or
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omitting (generally) the higher modes at the substructure level. Here,

we utilize a somewhat different size reduction technique. We partition

the component eigenvectors, modal coordinates and other associated

vectors and matrices in two nr (reduced) and nk (kept) sets as:

(15)

where it is understood that the kept modes include the modal value ~e

corresponding to the oscillator's degree of freedom. With this divi-

sion, the eigenvalue problem in Eq. (13) can be expressed as follows:

[[Kkk K
kr

]- w~ [jk
]]{ k f i f

o 2j _ g
(16)

Krk Krr J 0 Ir 2j - Q

where:

[Kkk] l(Wk
)2 0J

= p '" ~ + m w2
[{v

k
}{v

k}T] (17)o 0 e e

(18)

(19)

In Eqs. (15) through (19) and also in the following formulation, the

superscripts k and r on the vectors, matrices and scalar quantities

refer to the kept and reduced modal coordinates, respectively.

If the contribution of the reduced modes is neglected, as done in

the classical mode synthesis methods, only the following reduced

eigenvalue problem need to be solved:

6



j = 1,2, ..• nk (20)

However, by using the dynamic transformation proposed by Kuhar and

Stahle [13), the effect of the eliminated modes can be included approxi-

mately by relating the set of nr reduced eigenvectors to the nk kept

eigenvectors, by considering the lower set of Eq. (16), as:

(21)

where the transformation matrix [R! is defined as:

(22)

Substituting {~~} in Eq. (16), the resulting eigenvalue problem becomes
J

now:

j 1,2, ••• nk (23)

where:

(24)

Once this eigenvalue problem is solved, the elements of the reduced

eigenvectors associated with the reduced degrees-of-freedom can be

obtained from Eq. (21).

However, w. is
J

In thisnot known a priori. Often, w. is taken to be zero in Eq. (22).
J

case, the dynamic transformation is then the same as the well-known

It is noted that the solution obtained with the dynamic transforma­

tion will be exact provided that the jth eigenvalue is used in the

definition of the transformation matrix [R) in Eq. (22).

Guyan reduction technique [14). However, the accuracy can be improved

if we use the equipment frequency w for w. in Eq. (22), since the
e J

changes in the structural frequencies are expected to be significant

only when the equipment is tuned to a natural frequency or to a cluster
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of them. The remaining frequencies originally higher than the oscilla­

tor frequency will be increased and those originally lower will be

decreased by an amount depending on the lightness of the equipment [15].

It is pointed out that the order nk of the reduced eigenvalue prob­

lem in Eq. (23) is considerably smaller than the dimension (n+l) of the

original problem. For example, if the oscillator is tuned to, say, the

mth structural frequency, then the vector v
k in Eq. (15) may be defined

as:

(25)

which leads to a 4x4 eigenvalue problem. The solution of such a reduced

eigenvalue problem usually provides very accurate values for the nk

eigenvalues and eigenvectors of the combined system (when compared with

the values obtained from the solution of the complete (n+l)x(n+l) eigen­

value problem). In Eq. (25) we are assuming that only three adjacent

eigenproperties are affected by the equipment. Thus in the selection of

the kept modes, one mode on either side of the tuned mode plus the tuned

and equipment modes only are retained. However, if the equipment is

tuned to a cluster of primary modes, then in Eq. (25) one should include

the terms corresponding to the cluster plus a mode on either side along

with the equipment mode. If desired, the accuracy can be improved

further by including more modes around the cluster with, of course, an

increase in the size of the eigenvalue problem.

In this approach, the eigenproperties of the reduced modes, far

removed from the equipment frequency, are assumed to be unaffected and

thus an eigenvector can be written as

{¢*Jo)T ~ (0, ... 1 •.. 0., ¢* 1 0); j = (nr+l) ••. (n+l) (26)n+ ,J

8



where 1 is at the jth location. This is explained in Appendix I, where

it is shown that the changes in the eigenvector elements associated with

the degrees-of-freedom of the primary system are of the second order

compared to the change in the last element which is of the first order.

Thus, if we neglect the second order correction terms, the first n rows

of Eq. (14) will give the first n terms of vector (26) directly.

We must also obtain the last element of this vector which is

required for calculating the equipment response. This is especially

required if the modes which were kept in the reduced eigenvalue

analysis, did not include the first few modes which usually contribute

most to the response. These elements of all the reduced eigenvectors

can be obtained as follows. Substituting Eq. (26) into Eq. (14), and

examining only the last row, we obtain

2 ( *)m W v v. + v .e e n+l J n+l¢n+l,J (27)

From Eq. (12), we note that v. = ¢(~) and vJ kJ n+l
stituting these, we can solve for ¢* 1 . asn+ ,J

= -¢e = -II/me' By sub-

(28)

In Eq. (28), wpj is the same as the unaffected primary structure fre­

quency. It is noted that Eq. (28) is to be used only for those frequen-

cies which are not in the vicinity of the equipment frequency. The

tuned and nearly tuned modes were already included in Eq. (23).

Equations (23) with Eq. (21) and Eq. (26) with Eq. (28) now define

the complete set of eigenvectors of Eq. (5). To obtain the modal matrix

of the original system represented by Eq. (1), we can use the transfor-
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mation in Eq. (2) as

[ ~] = [U][ ~*] (29)

where [~] is the modal matrix of the original system.

It is straightforward to show that if the modal matrix [~*] is nor­

malized such that [~*]T[~*] = [I], then the modal matrix [~] is ortho-

normal with respect to the original mass matrix. That is,

(30)

2.2 An Alternative Dynamic Condensation Technique

In the aforementioned dynamic condensation technique, we require a

prior knowledge of w.. In addition, an inversion of a matrix of size
J

nr x nr was also required to define [R] as in Eq. (22). These two

problems can be eliminated if the equipment is tuned to one of the lower

structural frequencies.

In this case, only a first few of the lower modes are retained (or

kept) in the condensation. For such kept modes,

( k)2 (r 2w. < w.) ;
1 J

i = 1,2••• nk; j = 1,2 •.• nr (31)

where w~ = ith frequency of the kept modes and w~ = jth frequency of the
1 J

reduced modes. This condition enables us to use a numerically more

efficient scheme whereby the inversion in Eq. (22) is completely

avoided.

We examine the matrix to be inverted in Eq. (22), which with the

use of Eq. (18) can also be written as:

10
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2where xj = W j" Its inverse can be written as:

(33)

Expanding the inverse on the right hand side of Eq. (33) in a power

series, we obtain

Ir -[-(w~)-~ I [X j Ir _mew~~{:/TII-1 = [Irl-[-(w~)~ ][X j Ir -mew~:/:/TI
T

+ ([- (w~)~ ][ xj Ir -mew~~{:/ I) 2
+ •••

(34)

Equation (31) is a necessary condition for the convergence of the above

matrix series expansion. However, it is not a sufficient condition.

The condition that guarantees the convergence of the series in Eq. (34)

is that the spectral radius of the second matrix on the left hand side

of Eq. (34) be less than 1. As shown in Appendix II, in our case this

requirement is satisfied if

(35)

1 :::: i,g, :::: nr
In most cases, however, condition in Eq. (31) will be sufficient.

Discarding the terms of order higher than two and sUbstituting Eq. (34)

into Eq. (33) we obtain:

Krr -x
j

(36)

Introducing the vector:

(37)

with one of its element

11



r
\l •,

Ct.; =

the transformation matrix [R] in Eq. (22) can be expressed now as:

(38)

With the above transformation matrix, the reduced eigenvalue problem

becomes:

j = 1,2, ••• nk (40)

where the new matrices [K] and [M] are defined now as:

(42)

It is possible to simplify further the definitions of [K] and [M] with

the help of Eq. (19). The first triple product in Eq. (41) becomes:

T T
[Kkr ] [-(w~r:~.-l [Kkr]T = m~w:[:/~r l[-(w~)~][~r:/] (43)

Introducing:

(44)

the above expression becomes:

Similarly, by letting

nr
Y = L

i=1

(45)

(46)



the triple product in Eq. (42) can be written as:

( 47)

Also, considering Eqs. (38) and (44), the second triple product in Eq.

(41) becomes:

(48)

Finally, combining Eqs. (17), (41), (42), (45), (47) and (48), the

matrices [K] and [M] can be written as follows:

[K] ::: (49)

(50)

After solving the eigenproblem of Eq. (40), the procedure of the pre-

vious section is followed.

3. DAMPING COUPLING

When a dynamic analysis of a structure is performed, it is gener-

ally assumed that the standard normal coordinate transformation

uncouples not only the inertia and elastic forces but also the damping

forces. When the damping matrix is proportional to the mass or stiff-

ness matrix or can be derived from a linear combination of these

matrices, it can always be diagonalized by the transformation to normal

coordinates. As shown by Caughey [16], some damping matrices that are

not restricted to one of these forms can also be diagonalized in this

way. A general damping matrix, however, cannot be diagonalized by the

13



normal coordinate transformation and therefore it introduces coupling

between the undamped modal coordinates. The systems where this modal

coupling occurs are often referred to as nonproportiona11y damped, or

more properly, nonclassica11y damped. Well-known examples of nonc1ass-

ica11y damped structures are systems composed of massive structures,

like nuclear reactor facilities, founded on soft soil. In these cases

the substantial differences in the energy loss mechanisms of the com-

ponents give rise to the nonclassical damping effects. The nonclassical

damping effects also become important in the calculation of an equipment

response when the equipment is tuned to its supporting structure and the

damping characteristics of the equipment and structure differ signifi­

cantly. Based on the study of a 2 dof structure-equipment system, Igusa

et a1 [17] have opined that the nonclassical damping effect is important

when: (1) The ratio rm between the equipment mass and the structure

mass is small; (2) the equipment frequency is tuned or nearly tuned to

the structure frequency; and (3) the damping ratios of the equipment Be

and the structure Sst satisfy the following inequality

(51)

In order to examine whether the above conditions hold also for a
~

multi-dof structure-equipment system, the matrix [C] resulting from the

product

(52)

was obtained for several values of the mass, frequency and damping ratio

of the equipment and for the primary structure described in Section 5.
~ ~ ~

The absolute value of the ratio c . ./c .. between the elements of [CI was
1 J 11

taking as an indicator of the degree of coupling obtained for each case.

14



The ratio rm is defined here as the quotient between the equipment mass

and the floor mass where the equipment is supported. The damping ratio

Bst is taken equal to the structure modal damping ratio, assumed con~

stant for all modes.
A

Table 1 shows the ratios c .. /c .. for the equipment tuned to the
1 J 11

lowest structural frequency and different values of rm, with modal damp-

ing ratio Bst = 0.05. In Table 2, the relation (Be-Bst)2/rm = 16 is

kept constant, while the equipment frequency is tuned to different

structural frequencies. The mass ratio rm is 1/10000, with Bst = 0.05

and Be = 0.01. Table 3 presents the results obtained with the same

value of (Be-Bst)2/rm as in Table 2 but now rm is set equal to 1/2000,

and Bst = 0.095, Be = 0.005. From the results of Table 1, it is

observed that some coupling effect is present even if the condition (51)

is not satisfied, although from Tables 2 and 3 we conclude that the

coupling is more significant when the condition (51) is met. Also from

Tables 2 and 3, it is seen that if the difference between Be and Bst is

large, the effect of lowering the ratio rm does not affect significantly

the degree of coupling. For example, for the same value of (B -B t)2/re s m
in Tables 2 and 3, widening the difference between Be and Bst increases

the coupling more than decreasing the ratio rm• Finally, it is noted
A

that only the off-diagonal terms of [Cj associated with the tuned fre-

quencies are significant cumpared to the diagonal terms.

Based on these results, we confirm that the damping coupling can

affect some normal coordinates in the modal response equations of the

combined system. Therefore, the floor response spectrum formulation

developed in the next section also considers this damping coupling

effect.
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4. EQUIPMENT RESPONSE: FLOOR RESPONSE SPECTRA

Once the (n+1) modes of the combined system are obtained, the equa­

tions of motion (1) can be decoupled, if the combined system can be

assumed to be classically damped, with the help of the following

standard transformation

{x} = [~l{n} (53)

where {n} is the vector of principal coordinates. This transformation

gives:

The participation factor vector of the combined system, {y} is obtained

from:

Or:

{y} (55)

(56)

In Eq. (54), it is assumed that the triple product [~*IT[C*I[~*1 leads

to a diagonal matrix, i.e., the combined system exhibits proportional or

classical damping. But, as mentioned earlier, this is not always the

case in structure-equipment interaction even if the primary structure is

classically damped. Nevertheless, this general case of non-classical

damping can always be handled by employing the state vector approach.

The size of the problem to be solved by the state vector approach can be

reduced by realizing that, as mentioned earlier, these damping coupling

terms will be predominant only near the equipment frequency. Thus, only

the equations corresponding to these frequencies need to be analyzed by

16



the state vector approach. Here, the Eqs. (52) are rearranged such that

the strongly coupled equations are the first ones in the set. Assuming

that there are nc strongly coupled equations. we write for them as:

n. + C .. n· +
, 11'

= 1,2 •••• nc (57)

where:

nc A

L ciJ·n J. + w~ni =
j=1
Jti

c. . = {cP*} : [C*] {Ij>*} .;
'J , J

i,j = 1.2, .•• nc (58)

In most cases. the number of equations that need to be regarded as

coupled need not be more than the number of tuned frequencies. including

the equipment frequency. The accuracy can be further improved by

including a few more "adjacent modes but. of course, with an increased

computational effort. The remaining (n+l - nc) equations are essen­

tially uncoupled and can be written as:

A. 2
n· + c. ·n· + w·n·, 11' " i = nc+l ••.. ,n+l (59)

Equation (57) can be decoupled with the state vector approach [11.12] in

which they are cast in the following form:

(60)

where:

and:

(61)

[AI • [-~ [B] = [0 I]I c .., J
(62)

To decouple Eqs. (60). we employ the eigenvectors of the following

17



associated eigenvalue problem

in the transformation

= p.[B]{ljJ.}
1 1

(63)

{y} = ['¥ l {Z} (64)

where [ljJl is modal matrix of Eq. (60). SUbstituting, Eq. (64) into Eq.

(60), we obtain nc decoupled complex and conjugate equations

..
zi - Pizi = FiXg(t); i = 1,2, ••• nc (65)

where the complex participation factors Fi are defined as:

and

i 1,2, ..• nc

i = 1,2, ••. nc

(66)

(67)

To obtain the absolute acceleration floor spectrum value, we need

to obtain the maximum of the oscillator acceleration response. The

absolute acceleration vector is:

..
in which the relative acceleration vector {x} is:

(68)

{x}

nc .. n+1
= .L {<!>}.n. + I {<!>} ·n •

J=1 J J j=n +1 J J
c

(69)

The acceleration associated with the principle coordinates of the

coupled equations can be written as:

j = 1,2, ••. , nc (70)
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where ~~(j) is the jth element of the upper part of the eigenvector

{w~}, and the acceleration associated with principal coordinates of the

decoupled equations as,

j = nc+1, ..• ,n+1 (71)

SUbstituting Eqs. (70) and (71) into Eq. (69), and after some manipula-

tions, it can be shown that:

nc 2nc +1
n 2

= .I ~J' I w~(j)p~z~ - I ~.(26.w.~. + w.n.)
J=l ~=1 j=n +1 -J J J J J J

c

(72)

(73)

n+1 . 2
1jJ~ (j)PtZ~ - . I ~ .(u) (26.w.n. + w.n.)

J=n +1 J J J J J J
c

.. ..
= xc(t) + xu(t)

is associated with the uth degree of

.. nc 2nc
x (t) = I ~ .(u) I
e j=l J ~=1

-.
Therefore, the absolute acceleration of the oscillator mass xe(t) which

freedom is:

..
where xc(t) and xu(t) are the contributions to the equipment accelera-

tion from the coupled and uncoupled modes of Eq. (54). These are

defined as:

(74)

-.
xu(t)

n+1 2
I ~.(u) (26.w.~. + w.n.)

j=n +1 J J J J J J
c

(75)

In terms of the earlier notations, u = n+1 and thus ~.(u) = ~ +1 .J n,J
To obtain the floor response spectrum, we would like to obtain the

..
maximum value of xe(t) for all possible ground motion that can occur at

the site. To consider all possible motions at the site, herein the
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design ground motion is modeled as a random process. For such random

ground motions, the maximum response can be conveniently expressed as

the amplified root mean square response. That is

(76)

defines the floor response spectrum, Ra , in terms of the mean square

response E[~;(t)] and the peak factor Pf. Here E(·) means the ensemble

average of (.). To obtain the mean square response, we obtain the auto­

correlation function of xe(t) defined by equation (71) as follows:

.... .... ....
E[xe(t1)xe(t2)) = E[xc(t1)xc(t2)) + E[xu(t1)xu(t2)]

.... ....
+ E[xc(t1)xu(t2) + xc(t2)xu(t1)] (77)

The auto and cross correlation terms in Eq. (77) can be obtained in

terms of the stochastic characteristics of ground motion and structural

properties by employing Eqs. (74) and (75). To simplify the algebra

here, it is assumed that the ground motion is stochastically stationary

with spectral density function ~g(w). It is realized that earthquake

motions are inherently nonstationary. Yet, however, results of practi-

cal importance have been obtained in earlier studies with this assump­

tion. Verification of the results obtained here through a simulation

study with realistic nonstationary ensemble of ground motion is reported

later.

Each of the correlation terms in Eq. (77) can be expressed in terms

of the ground motion spectral density function. The analytical
.. ..

development of the correlation term E[xc(t1)xc(t2)) is given in Appendix
.. ..

III. The development of E[xu(t1)xu(t2)] is explained in Appendix IV.

The third term is examined in Appendix V. As the design ground motions
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are usually prescribed in terms of the ground response spectra, the mean

square values associated with these three correlation terms can also be

expressed in terms of ground response spectra (see Appendices III-VI).

In terms of these three mean square values, the floor response spectrum

value, as defined by Eq. (76), can now be written as follows:

(78)

where Rl and R2 are the contributions to the mean square values by the

coupled and uncoupled modes, respectively, and R12 is the contribution

of the cross modes. These contributions can be expressed in terms of

the ground response spectrum values as follows:

nc-l nc
+ 2 2: 2:

g,=1 m=Hl

E I
( g,m 19, + F I + G I + HI)]

r2 g,m 2g, g,m 1m g,m 2m
2

(79)

n+l 2 2 2 2
R2 = I y.~.(u)w.[Il· + 48.1 2 .]

j=n +1 J J J J J J
c

+ 2

(81)

where rl' r2 and r3 and the coefficients Ajk , Bjk , ••• Mjrn are defined

in Appendix VI. The terms ajg,' akg, and Zg,jk are defined in Appendix VI
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in terms of the complex-valued eigen properties of the Eq. (60). 11j

and 12j , respectively, are the mean square values of the pseudo velocity

and relative velocity responses of an oscillator with parameter

Wj and Sj' excited by the design ground motion. These mean square

values can be defined in terms of the pseudo velocity and relative

velocity ground response spectrum values as:

(82)

(83)

In Eqs. (82) and (83), Rpj and Rrj , respectively, are the pseudo

velocity and relative velocity ground response spectrum values at fre­

quency wj and damping ratio Bj ; and Cpj and Crj are the peak factors

associated with the pseudo velocity and relative velocity responses of

the oscillator. Hj(w) is the frequency response function, as defined in

Appendix III.

The peak factors can be approximately obtained by several of the

available methods. The calculation of these factors requires knowledge

of the spectral density function of the process. However, it has been

observed in seismic response studies made earlier [181 that all the peak

factors involved in Eqs. (78), (82) and (83) ,can be assumed equal,

without affecting the results much. This assumption makes Eq. (78)

independent of the peak factor values. The numerical results demon-

strating the acceptability of this assumption are presented in the fol-

lowing section.
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5. NUMERICAL RESULTS

To illustrate the application of the proposed approach, the struc­

ture shown in Figure 1 is analyzed to obtain the floor response spectra

for various cases. The floor mass is taken equal to 1.2 kips-sec2/in

for the first floor and equal to 1.0 kips/sec2/in for the remaining

floors. The flexural stiffness is 2000 kips/in for the first story and

1800 kips/in for the remaining stories. The modal damping ratio for the

structure is assumed to be .05 for all modes. The natural frequencies

of the structure are given in Table 4.

In Figure 2 are shown the acceleration floor response spectra

curves for floor 10, obtained by the proposed approach, for the equip­

ment to floor mass ratio, r, being equal to 1/2, 1/20 and 1/200. The

abscissa in this and in all other spectrum curves is in terms of the

oscillator or equipment period. To evaluate the applicability of the

proposed approach, a comparison of a floor response spectrum obtained by

the proposed approach with the corresponding floor spectrum obtained by

a time history ensemble analysis is shown in Figure 4. For development

of the spectrum obtained by the proposed approach, the seismic input was

defined by the averaged pseudo acceleration and relative velocity ground

response spectra obtained for an ensemble of 75 synthetically generated

acceleration time histories. The synthetic time histories with fre­

quency characteristics deflned by a broad-band Kanai-Tajimi type of

spectral density function were generated by a standard randomly phased

harmonic summation process. The time histories were also modulated by a

deterministic time function with a build-up phase of 2 seconds, strong

motion phase of 4 seconds and a decaying phase of 9 seconds. The

averaged spectra of these time histories, which were used as seismic
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input in the proposed approach, are shown in Figure 3. Whereas the time

history floor spectrum in Figure 4 is the average of the 75 floor spec­

tra obtained for the very same ensemble of 75 time histories. Thus, the

inputs used for development of the two spectra in Figure 4 are consis­

tent. The floor spectrum for acceleration time histories was obtained

by integrating Eqs. (59) and (65) for each mode by a Duhamel integral

approach assuming linear variation between data points. The development

of this approach for the nonclassically damped case is given in Refer­

ence 19. The comparison of the two spectra is seen to be very good.

This verifies the applicability of the proposed approach in spite of the

assumption of the stationarity of earthquake and equality of the peak

factors made in the development.

To show the importance of the effect of coupling through damping on

the equipment response, an oscillator mass of 1/200 of the floor mass

with a damping ratio of .005 is considered. The modal damping ratio of

the structure is taken to be .095 for all modes; this has been chosen to

be rather on the high side to accentuate the effect of damping coupling.

The continuous curve in Figure 5 shows the spectrum in which the damping

coupling effect has been neglected; that is, it is assumed that the com­

bined damping matrix can be diagonalized by the combined undamped modes

of the structure-equipment system. The spectrum values shown by circles

in the same figure are obtained with a proper consideration of the non­

classicality of the damping matrix. The discrepancy between the two

values can be noted. It may thus be necessary to include this effect in

a floor spectrum generation process, especially at the oscillator

frequencies which are in tune with one of the structural frequencies.

Similar observations have been made earlier in Reference 7.
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The effect of the dynamic interaction between the equipment and

structure on the floor spectra is shown in Figure 6. The results

reported here are for an equipment with the mass ratio of 1/10. The

discontinuous curve in this figure is obtained by the conventional

methods [181 where the two systems are assumed decoupled and the effect

of the interaction is ignored. The continuous curve on the other hand

has been obtained by the proposed approach with a proper consideration

of the interaction effect. It is noted that the effect of disregarding

the interaction leads to an over-estimation of floor response spectrum.

Again this effect is most pronounced at the frequencies where the equip­

ment is tuned to one of the dominant modes of the structure.

6. SUMMARY AND CONCLUSIONS

The paper presents a method for generation of floor response spec­

tra which incorporate the effect of the dynamic interaction between the

primary structure and supported equipment. First, the dynamic proper­

ties of the combined system are obtained via a mode synthesis approach

wherein the modal properties of the two components are used. The

approach requires a second eigenvalue analysis. To reduce the computa­

tional cost associated with this second eigenvalue analysis, techniques

are presented to reduce the size of the eigenvalue problem in which only

a few selected modes of the primary system are used. The effect of the

truncated modes is taken into account through a dynamic transformation.

Next, a direct method for generation of floor spectra with the seismic

input defined in terms of pseudo and relative velocity spectra, is pre­

sented. This step employs the combined eigen properties of the system.

The nonclassicality of the damping matrix of the combined system is also

considered in the formulation.
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The method can deal with light as well as with heavy equipment,

since no assumption concerning small variations in the original struc­

tural frequencies and modes of the primary structure is made. If the

equipment is tuned to a cluster of structural frequencies, all of them

will contribute to affect the new mode shapes and frequencies of the

combined system. In the proposed approach, the effect of all such modes

in a cluster can be simultaneously considered.

From the numerical examples studied, it is observed that the

dynamic interaction plays an important role when the equipment frequency

is tuned or nearly tuned to some structural frequencies, or when its

mass is not negligible compared to the floor mass. The commonly used

classical floor response spectra may be too conservative for such tuned

and heavy equipment.

The effect of the modal coupling due to the non-proportionality of

damping of the combined system is also found to be quite important

especially when the difference between the damping ratio of the primary

and secondary systems is large and the oscillator is tuned to some

structural frequency.
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Table 1. Relative values of the elements of the modal damping matrix of
the combined system: equipment tuned to the lowest frequency.

(a) Equipment damping: 0.02

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Mass ratio rm cn /c 12 c13/c ll c14/c ll c12/c 22 c2/c22

1/2 0.552 0.011 0.056 0.333 0.028
1/20 0.465 0.006 0.018 0.395 0.008
1/200 0.434 0.002 0.006 0.418 0.002
1/2000 0.431 0.001 0.002 0.427 0.001
1/20000 0.431 0.000 0.001 0.426 0.000

(b) Equipment damping: 0.05
~ ~ ~ ~ ~ A ~ ~ A ~

Mass ratio rm cn /c12 c13/c ll c14/cll c12/c22 c2/c22

1/2 0.010 0.166 0.180 0.005 0.150
1/20 0.001 0.051 0.054 0.001 0.049
1/200 0.000 0.016 0.007 0.000 0.016
1/2000 0.000 0.005 0.005 0.000 0.005
1/20000 0.000 0.002 0.002 0.000 0.002
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Table 2 - Relative values of the elements of the modal damping matrix of
the combined system: mass ratio = 1/10000 - Equipment damping
= 0.01.

Equipment A A A A A A A A A A A A

Frequency c12/c ll c2l/c22 c2/c22 c32/c33 c34/c33 c43/c44

w1 0.676 0.657 0.001 0.000 0.000 0.000

w2 0.003 0.002 0.669 0.664 0.003 0.001

w3 0.000 0.000 0.004 0.004 0.668 0.668

Table 3 - Relative values of the elements of the modal damping matrix of
the combined system: mass ratio = 1/2000 - Equipment damping
= 0.005.

Equipment A A A A A A A A A A A A

Frequency c12/c ll c2l/c22 c23/c22 c32/c33 c34/c33 c4/c44

wI 0.912 0.888 0.004 0.001 0.000 0.000

w2 0.008 0.005 0.904 0.896 0.011 0.004

w3 0.000 0.000 0.010 0.012 0.889 0.889
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Table 4. Natural Frequencies of Primary Structure.

Frequency No. Natural Frequency (rad/sec)

1 6.3990
2 18.9961
3 31.0110
4 42.1542
5 52.2907
6 61. 3871
7 69.3352
8 75.8963
9 80.7992
10 83.8283
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APPENDIX I

APPROXIMATE EXPRESSIONS FOR THE DETUNED EIGENVECTORS

From the last row of the eigenvalue problem of Eq. (14) we obtain:

Considering the definition of vector ~, Eq. (12), we can write:

( 1.1)

(1. 2)

Introducing the definition

n
6. = L ~k(P)~* .

J 2,=1 ,2, 2"J

and solving for ~*+1 . we obtain:
n ,J

1m w
2

6e e j
<!>~+1,j = 2 2

W -w.
e J

(1. 3)

( 1.4)

For light equipment, the term Ime 6J and, consequently, ~~+l,j are

small quantities of order equal to the square root of the equipment-to-

floor mass ratio. It is noted that the tuned case (i.e. when w. ~ W)
J e

is not being considered here as the modes corresponding to the tuned

eigenvalues were already included in the reduced eigenproblem (20).

The ith row of the eigenvalue problem of Eq. (14) is

2 * 2 T * _ 2 * i = 1, ..• ,n (1. 5)W .~ .. +mW\J.\J<!>. - w.~ ..p1 1,J e e 1- -J J 1,J
and with the definitions of vector \J and 6 . we obtain- J

2 * + w2<f>(p~(m 6. - Ime <f>~+1,j)
_ 2 * 1, ... , n (1. 6)W .<f> .. - w.~ ..P1 1, J e k,l e J J 1, J
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Substituting for tjl* 1 . from Eq. (1.4) it follows thatn+ ,J

w .tjl~ •
P1 1, J

., i = 1, .. ,n (1. 7)

In the second term in the left hand side of the above expression, the

term m ~.~(p~ is of order equal to the ratio equipment-to-floor mass.e J k, 1

Since we are seeking approximate expressions for the detuned eigenvec-

tors that are correct up to terms of the order equal to the square root

of the mass ratio, we neglect the second term in Eq. (1. 7) and obtain:

2 * _ 2 * i = 1, •.• ,n (1.8)w .~ •• - w.~ ••
Pl 1, J J 1, J

If we assume that the frequencies of those modes far from the

equipment frequency remain unaffected by the addition of the equipment

we have that:

2 2w. w.
PJ J

and therefore, for i ~ j

(1. 9)

and for i = j

4>~ • '" 0
1 , J

(1.10)

The complete eigenvector

(fll: . '" 1
J,J

4>~ can now be written as
-J

(1.11)

~ ~
fj = 11

*.
<l>n+l,j

; j = nr+l, ••• ,n+l (1.12)

Note that the element <l>~ . was set equal to 1 to render the eigenvector
J,J

4>~ approximately orthonormal in the sense
-J

~~T~~ = 1 + 0(£2) j = nr+l, •.• ,n+l (1.13)
-J -J

where 0(£2) represents the terms of order equal to (or smaller than) the

ratio equipment-to-floor mass.
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APPENDIX II

CONVERGENCE OF THE MATRIX SERIES EXPANSION

The matrix series expansion of Eq. (34) has the form

[I-O]-l = I + 0 + 02 + •••

where, in our case, matrix [0] is:

(ILl)

(IL2)

For any arbitrary matrix [0] the series expansion (II.1) is convergent

provided that [20]

p(O) < 1 (IL3)

where p(O) is the spectral radius of matrix [0], defined as follows

[20] :
A

p(O) = max IAil (IL4)

in which Ai are the eigenvectors of matrix [0].

We can rewrite matrix [0] of Eq. (II.2) in the following way:

[0] = (IL5)

where the elements of vector a are:

., 1, ... ,nr (IL6)

In order to examine the convergence of the series (II.1) we need to

estimate in some way the spectral radius p(O) since, obviously, the

eigenvalues of [0] are unknown. According to Reference 20, a simple

upper bound for the spectral radius of [0] can be obtained as follows
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p(D) :s max

1 :s i

Id. I
12,

(ILl)

where di~ are the elements of matrix [0]:

= 1, ... ,nr (IL8)

(IL9)

Therefore, the condition for convergence can be written as

p(O) :s max
1 :s < n- r

, nr
1\. W 2 ]

[ J 2 + m (~) Iv~1 I Iv~l:s 1 (11.10)
(wr .) e r 1 ~=1pl Wpi

From the condition of Eq. (31), we can write

r 2
A. < (w .)

J pl j = 1•••• ,nk ; i = 1, ••.• nr (11.11)

k 2In particular, we can take A. ~ (w k) as the largest value of the
J pn

set of eigenvalues Aj and w~i equal to w~l' the smallest value in the

set wr . to consider the most stringent case in condition (11.10). Wepl
can also simplify the condition (11.10) writing

nr
max Iv~1 I Iv~1 < nr maxlv~v~1

1
~=11 :s :s nr 1 :s i,~ :s nr

With these considerations. Eq. (IL10) becomes

k
p(D) :s (pnk)2 + m (e )2 n max Iv~v~1 :s 1r e r rwp1 wp1

1 :s i.2, :s nr
41
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Or:

where the subscript p was dropped to simplify the notation.

(11.14)

It is

emphasized that Eq. (11.14) is only a sufficient condition for the con­

vergence of the series expansion (34). In many cases the series will

converge even if condition (11.14) is not satisfied.
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APPENDIX III

CONTRIBUTION OF THE COUPLED MODES TO THE FLOOR RESPONSE SPECTRUM

In this appendix the contribution of the first term in Eq. (77) is

analyzed separately.

The first term in Eq. (77) can be written as:

SUbstituting the steady state solution of Eq. (65) in Eq. (III.1)

and assuming that the ground motion can be represented as a stationary

random process with a spectral density function ~g(w), Eq. (III.1)

becomes

(III. 3)

where we introduced the notation:

(II1.4)

Extending the inner summations to nc only by combining the complex and

conjugate terms, it can be shown that, for a stationary response, Eq.

(I I1. 3) becomes:
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qJ"nqkm _ qJ'nqkm 1 '"w~+ __---'IL."':..-.;..;:.:.:.-_ + __---'_IL."':..-.;..;:.:.:.-_ ~g(w)e ' dw ( II L 5)
(-pl/,+iw) (-Pm+iw) (-pl/,+iw) (-Pm- iw)

where T = tl-t2 and a bar over a quantity denote its complex conjugate

value. In order to put this equation in terms of modal response, the

undamped natural frequencies and modal damping ratios of Eq. (60) are

defined in terms of its complex eigenvalues Pl/, as:

Pl/,
-Real~

,Pl/,I
l/, = 1,2, ••• ,nc (rrL6)

Next, combining the four terms in Eq. (111.5) and collecting real and

imaginary parts, we obtain:

where Hl/,(w) is the frequency response function of a single degree-of­

freedom oscillator defined as:

(IILa)

and:

(IIL9)

with 01' 02 and E3 defined as in Appendix VI.

Separating terms with l/, = m from those with l/, * m, and discarding

terms with odd powers of w that vanish when the integration is carried
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out, Eq. (111.7) yields:

(111.10)

where the coefficient Z£jk' (I' E1, E2 and r2 are defined in Appendix

VI. Expanding in partial fractions the integrand in the second term of

Eq. (111.10) and setting T = 0 to obtain the contribution to the mean

square response we obtain:

[ 2 2 2 2 2 2](E£mwm+F£mw)IHt(w)1 + (G£mwm+H£mw ) IHm(w)1 ~g(w)dw}

(111.11)

where the coefficients E£m' etc., are defined in Appendix VI.

Finally, considering the definitions of pseudo and relative

velocity response spectra given by Eqs. (82) and (83), the contribution

R1 from the coupled modes to Ra can be expressed as in Eq. (79).
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APPENDIX IV

CONTRIBUTION OF THE UNCOUPLED MODES TO THE FLOOR RESPONSE SPECTRUM

We examine here the contribution to the mean square response from

the second term in Eq. (77). Using Eq. (75) we can write:

(IV.i)

Considering the solution of Eq. (59):

(IV.2)

where hj(t-T) is the impulse response function, the first expected value

in Eq. (IV.i) can be written as

Expressing the autocorrelation function of the ground motion in terms of

its power spectral density function and considering the stationary

response, it can be shown that Eq. (IV.3) becomes:

(IV.4)

where T = t 2-t1• From Eq. (IV.4) it follows that:

(IV.5)

46



SUbstituting Eqs. (IV.4)-(IV.6) in Eq. (IV.1) and evaluating

separating the terms with j = k and j * k with T = 0, we obtain:

n+1
R1 = . I

J=n +1c

2 2 foo 2 2 2 4 2
y.~.(u) (4s.w.w +w.)~ (w)IH.(w)1 dw

J J -00 J J J g J

(IV.7)

where the coefficients W1' W2, W3 and W4 are defined by Eq. (VI.2) in

Appendix VI. Solving the integrand in the second term of the above

equation in partial fractions we can write

n+1 2 22 m 2 2 2 1 2R1 = I y.~.(u)w. f (w.+4s.w)~ (w)IH.(w) dw
j=n +1 J J J _00 J J g J

c

(IV.8)

where the coefficients Ajk , etc., are obtained as explained in Appendix

. VI. From Eqs. (82) and (83), it follows that that contribution of the

uncoupled modes to the floor response spectrum can be written as in Eq.

(80).
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APPENDIX V

CONTRIBUTION OF THE CROSS TERMS TO THE FLOOR RESPONSE SPECTRUM

In this appendix the contribution of the last term in Eq. (77) will

be expressed in terms of modal response spectra values.

The first part of the third term in Eq. (77) can be written as:

2nc
+ 2s.w. I ~ (k)p E[n.(t1)z (t2)1}

J J m=l m m J m
(V.l)

With nj(t l ) and Zm(t2) given by Eqs. (IV.2) and (111.2) respectively,

the first expected value in Eq. (V.l) becomes:

Expressing the autocorrelation of the ground motion in terms of its

spectral density function for the stationary response, Eq. (V.2) can be

written as:

and similarly, the second expected value term in Eq. (V.l) can be shown

to be:

With Eqs. (V.3) and (V.4), the terms in the curled brackets in Eq. (V.l)

become:
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(V.6)

Combining the complex and conjugate terms in Eq. (V.5). we obtain

n -
A C co [qkm _qkm] 2 i
R12 = -Yo \ f ( 0) + ---~--- (wJo+i2SJowJow)HJ.(w)~g(w)e WTdw

J m~-l __ -Pm- 1W ( 0)
~ -Pm- 1W

After some manipulations. the term in square brackets can be

written as:

-
qkm qkm 2 3 0 3 2 I 2
~~o- + = [(A2wmw + AOwm) + 1 (2akmw +A1wmw)] Hm(w)1
-Pm- 1W -p -iw

m
(V.7)

where AO' A1 and A2 are given in Appendix VI. It can also be shown

that:
2 222 4 3 2(w.+i2Sowow)H.(w) = [(4S

J
o-1)w

J
ow + wJo + i(-2s.w.w )] IHo(w)/ (V.B)

J J J J J J J

SUbstituting Eqs. (V.7) and (V.B) in (V.6) we obtain:

where W1• W2• etc •• are given by Eqs. (V.4) in Appendix VI. Expanding

the above integrand in partial fractions. the contribution of the first

part of the third term in Eq. (77) is:

n n
n+1 c c co 2 2 2

Ri2 = I I Yo~o(u)~k(u) I w f [(J 0 w + K. w ) IHo(w)1
j=n +1 k=l J J m=l m -co Jm m Jm J

c

2 2 12+ (Ljmwm+ Mjmw )IHm(w) ]~g(w)dw

where the constants are obtained as indicated in Appendix VI.

49

(V.10)



If the second part of the third term in Eq. (77) is analyzed in the

same way as above, it leads to an expression identical to Eq. (V.10).

Considering Eqs. (82) and (83) and combining the contribution of the

first and second part of the last term of Eq. (77), we obtain R12 as in

Eq. (81).
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APPENDIX VI

COEFFICIENTS OF PARTIAL FRACTIONS

The coefficients Ajk , Bjk , etc. in Eqs. (79-81) are obtained from

the solution of the following equations:

1 a x 0 W1
y I z x Vjk

W2 (VI. 1)=
1 y 1 z W3
0 I 0 I W4

Three different cases must be considered to obtain all the partial coef-

ficients. To obtain Ajk, •.• ojk' we solve Eq. (VI.I) for vector Vjk with

following values:

To obtain E~m, ..• H~m we solve Eq. (VI.1) for vector Vjk with following

values:

r 2 = w/wm

x = r4
2

2y = -2(1-28 )m
2 2z = -2(1-28 )r
~ 2

2WI = r 202
2W2 = C102 + r 201 + E2

W3 = C101 + O2 + E1

W4 = 01

(VI. 3)

To obtain Jjm, ••• ,M jm , we solve Eq. (VI.I) for vector Vjk with following

values:

r3 = w/wm

x - r4
- 3

y = -2(1-282)m

z = -2(1-28~)r~

51

4WI = r 3AO
4W2 = r 3A2 + AOA3

W3 = A2A3 + 28 j r3AI
W4 = 48 j akmr 3

(VI.4)



E1 = -8(B~r2-Bm)E3 ; E2 = -8r2(Bmr2-B~)E3

--2 --2
E3 = aj~akm(Bm-B~r2)-aj~bkm/1-Bm +akmbj~r2/1-B~

where:

[ 2 2 2 2
02 = 4r2 aj~akmB~Bm+bj~bkm/1-B~ 11-Bm -aj~bkmB~/1-Bm -akmbj~Bm/1-B~

(VI. 5)

{

AD = 2(akmBm-bkm/1-B~ ; A1 = -2[akm(1-2B~)+2bkmBm/1-B~]

A2 = 2(akmBm+bkm/1-B~) ; A3 = (4B~-1)r~

{

a. = Real Part of (q. )
J~ J~

b. = Imaginary Part of (q. )
J~ J~
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NOMENCLATURE

[A] = (2ncx2nc) matrix of the eigenvalue problem associated with the
coupled coordinates

imaginary part of the quantity qj~

damping matrix of the combined system

damping coupling matrix

(nxn) damping matrix of the primary system

real part of the quantity qj~

ith complex constant

(2ncx2nc) matrix of the eigenvalue problem associated with the
coupled coordinates.

a =-
a. =
J~

a~ =
1

[8 ] =

b. =
J~

[C] =

[Cc] =

[Cpl

AO,A1,A2,A3 = auxiliary constants

Ajk,Bjk,Cjk,Ojk = coefficients of partial fractions associated with the
uncoupled modes

auxiliary vector used in the definition of [0]

C1,01,02,E1,E2 = auxiliary constants

Cpj peak factor associated with the pseudo velocity response

Crj peak factor associated with the relative velocity response

[C*] = transformed damping matrix of the combined system
"[C] = non-diagonal modal damping matrix of the combined system

"
c .. = a generic element of matrix [CI

lJ
[01 = matrix in the pow2r series expansion

di~ = a generic element of matrix [01

E[ ••• ] = expected value of [•.. 1

E F G H - coefficients of partial fractions associated with the
~m' ~m' ~m' ~m - coupled modes

jth complex-valued participation factor

frequency response function for an oscillator of frequency w.
and damping ratio Sj J
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hj(w) :::

[I1 :::

[I k] :::

[I r ] :::

I1j :::

I2j :::

impulse response function for an oscillator of frequency wj and
damping ratio Bj
ident ity matri x

(nkxnk) identity matrix

(nrxnr ) identity matrix

mean square value of the pseudo velocity

mean square value of the relative velocity

Jjm,Kjm,Ljm,Mjm ::: coefficients of partial fractions associated with the
cross terms

[Kl :::

[Kc ] :::

[Kp] :::

[Kkk] :::

[Kkr ] :::

[K*] :::

[M] :::

[Mp] :::

[M*] :::

m :::e

n :::

nc =

n :::r

Pf :::

p. :::
J

qe :::

(nkxnk) reduced transformed stiffness matrix

stiffness coupling matrix

(nxn) stiffness matrix of the primary system

(nkxnk) submatrix of [K*l associated with the kept coordinates

(nkxnr) submatrix of [K*] composed of products of kept and
reduced coordinates

(nkxnr) submatrix of [K*l associated with the reduced
coordinates

transformed stiffness matrix of the combined system

(nkxnk) reduced transformed mass matrix

(nxn) mass matrix of the primary system

transformed mass matrix of the combined system

mass of the equipment

number of degrees of freedom of the primary system

number of strongly coupled principal coordinates due to the
nonclassical damping effect

number of kept modal coordinates

number of reduced modal coordinates

peak factor

jth complex-valued eigenvalue

transformed coordinate associated with xe
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9p =

[R]

R ­a -

Rpj

Rrj =

Rl =

R2 =

R1 2 =

r =

r ­e -

r =m

transformed coordinate vector associated with ~p

transformation matrix relating the reduced to the kept
coordinates

floor response spectrum value

pseudo velocity ground response spectrum

relative velocity ground response spectrum

part of Ra due to the contribution of the coupled modes

part of Ra due to the contribution of the uncoupled modes

part of Ra due to the contribution of the cross terms

displacement influence coefficient of the equipment

displacement influence vector of the primary system

ratio equipment mass-to-supporting floor mass

rl,r2,r3 = frequency ratios

t,tl,t2 = time

[U] = auxiliary transformation matrix

W1,W2,W3,W4 = constants used to define the vector of independent coeffi­
cients for the system of equations of Appendix VI

x =

X9,m =

x =

x =
~a

..
xc(t)

xe(t)

xu(t) =

y =

auxiliary constant for the definition of [K!

auxiliary variable

ground motion

relative displacement of the equipment

relative displacement vector corresponding to the dof's of the
primary system

relative acceleration vector of the combined system

absolute acceleration vector of the combined system
..

contribution to xm(t) from the coupled modes

absolute acceleration of the equipment
..

contribution to xm(t) from the uncoupled modes

auxiliary constant for the definition of [M!
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Yl/,m =

't =

Zl/,jk =

Zj =

CI. =-
Sj =

Spj =

X =

Xp
{') . =

J

n =

A. =
J

"
Aj =

\I =-
k

\I =

r
\I =

p(O) =

T =

[~J =

~g(W)

[~p J =

[~*J =

cP e
k

cP' =-J

auxiliary variable

2nc-dimensional state vector

auxiliary constant

jth principal coordinate associated with the coupled modal
coordinates

auxil i ary nr-dimensional vector

jth modal damping ratio of the combined system

jth modal damping ratio of the primary system

vector of participation factors of the combined system

vector of participation factors of the primary system

constant used in the definition of cP*n+l,j

(n+l)-dimensional vector of principal coordinates

jth eigenvalue of combined system

jth eigenvalue of matrix [0]

vector composed of the kth elements of the primary system
eigenvector and the equipment eigenvector

vector formed by the elements of \I associated with the nk kept
coordinates

vector formed by the elements of \I associated with the nr
reduced coordinates

spectral radius of matrix [OJ

time difference

dummy time variables

real-valued eigenvector matrix of the combined system

spectral density function of the ground motion

mass-normalized eigenvector matrix of the primary system

real-valued eigenvector matrix of the transformed combined
system

equivalent eigenvector element associated with the equipment

part of the eigenvector cP~ associated with the kept coordinates
-J
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r
~ . =
-J

~~-J
w. =
-J

W=

we =

w·J
W .

PJ
k

Wpj =

rwpj =

part of the eigenvector 2j associated with the reduced
coordinates

jth eigenvector of the primary system

jth complex eigenvector associated with the coupled modal
coordinates

variable frequency in rad/sec.

natural frequency of the equipment

jth natural frequency of the combined system

jth natural frequency of the primary system

natural frequency of the primary system corresponding to a kept
modal coordinate

natural frequency of the primary system corresponding to a
reduced modal coordinate
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